Depth matters: Soil pH and dilution effects in the northern Great Plains
USDA-ARS?s Scientific Manuscript database
In the northern Great Plans (NGP), surface sampling depths of 0-15.2 cm or 0-20.3 cm are suggested for testing soil characteristics such as pH. However, acidification is often most pronounced near-surface (e.g., <10 cm). Thus, sampling deeper can potentially dilute (increase) pH measurements and the...
NASA Astrophysics Data System (ADS)
García-Gil, Juan Carlos; Soler-Rovira, Pedro Angel; García López de Sa, Esther; Polo, Alfredo
2013-04-01
Soil tillage practices exert a significant influence on the dynamic of soluble organic C and N pools, affecting nutrient cycling in agricultural systems by enhancing its mineralization through microbial activities or stabilization in soil microaggregates, which contribute to mitigate greenhouse gases emissions. The objective of the present research was to determine the influence of three different soil management systems (moldboard plowing, chisel and no-tillage) and the application of composted sludge (CS) and thermally-dried sewage sludge (TSS) obtained from wastewater treatment processes on dissolved organic C (water-soluble organic C -WSOC-, carbohydrates, phenolic compounds) and soluble N (total-N, NH4+, NO3-) pools in a long-term field experiment (27 years) conducted on a sandy-loam soil at the experimental station "La Higueruela" (40° 03'N, 4° 24'W) under semi-arid conditions. Both organic amendments were applied at a rate of 30 tonnes per hectare prior to tillage practices. Unamended soils were used as control for each tillage system. Soil sampling was performed two months after tillage practices at the following depths for each treatment: 0-10 cm, 10-20 cm and 20-30 cm. Results obtained for unamended soils showed that no-tillage management increased total-N, NH4+ and NO3- contents at the 0-10 cm depth samples, meanwhile WSC and carbohydrates contents were larger at 20-30 cm depth samples in both moldboard and no-tillage plots. CS and TSS-amended soils presented a general increase in soluble C and N compounds, being significantly higher in TSS-amended soils, as TSS contains a great amount of labile organic C and N substrates due to the lack of stabilization treatment. TSS-amended soils under no-tillage and chisel plowing showed larger N, NH4+ and NO3- content at the 0-10 cm samples, meanwhile moldboard management exhibited larger NH4+ and NO3- content at 10-20 and 20-30 cm samples, possibly due to the incorporation of TSS at deeper depths (20-40 cm). CS and TSS-amended soils in no-tillage system showed the largest content of organic C pools at 0-10 cm depth samples due to less soil disturbance and the input of organic substrates with CS and TSS on soil surface. CS and TSS-amended soils under chisel plowing exhibited similar contents of soluble organic C pools at 10-20 and 20-30 cm depth samples and only TSS-amended soils increased significantly WSOC content at 0-10 cm samples. Similarly, contents of WSOC and carbohydrates in moldboard plowing were distributed more uniformly throughout the soil profile due to the turnover of soil and CS and TSS amendments into the plow layer. Acknowledgements: this research was supported by the Spanish CICYT, Project no. CTM2011-25557.
NASA Astrophysics Data System (ADS)
Wilson, K. P.; Williams, D. D.
2004-05-01
Integration of the fields of hydrogeology, biogeochemistry, and meiofaunal and microbial ecology is being used for a shallow groundwater temperature manipulation which simulates global climate change predictions. This study is being conducted on a first order spring-stream, Valley Spring, (southern Ontario, Canada) the headwater of which has been longitudinally divided to a sediment depth of -100 cm. To examine groundwater flow paths and hydraulic conductivity, and to collect physicochemical parameters and nutrient samples, a series of nested piezometers have been installed along three transects across the stream channel. Each nest evaluates water characteristics at depths of -20, -40, -60, -80, and -100 cm. Meiofaunal and microbial samples are collected, using a standpipe corer at the same depths as the piezometer openings. Sampling started in June 2002 and heating of one side of the groundwater began in March 2004. Hydraulic conductivity is heterogeneous with depth ranging from 0.0004 cm/s at -20 cm to 0.00002 cm/s at -100cm, but relatively uniform laterally, ranging from 0.0004 cm/s at 1 m to 0.0003 cm/s at 3 m from the stream channel. Pre-manipulation water temperatures decrease with depth in the summer, ranging from 14.5° C at the surface to 12.5° C at -100 cm. In contrast, temperature increases from 13.1 at the surface to 14.5° C at -100 cm in the fall. Temperature during the winter and spring are within 1.0° C from the surface to -100 cm, but range from 9.0-9.5° C in the winter and 8.0-7.0° C in the spring, respectively. Pre-manipulation nitrate concentrations are higher in winter (0.45 mg/l) then in summer (0.28 mg/l) and decrease with depth. Ammonia shows an inverse relationship, with lower concentrations in winter than summer (0.19 and 0.32 mg/l, respectively) and increase with depth. Dissolved organic carbon (DOC) also shows an increase with depth, ranging from 1.6 mg/l at the surface to 6.23 mg/l at -100 cm. Pre-manipulation meiofaunal abundance shows no difference between seasons but higher densities at -20cm then at all other depths. The most common meiofaunal taxa include Harpacticoida, Nematoda, Ostracoda, Chironomidae, Collembola, and Hydracarina. Plecoptera and Hymenoptera larvae are also found on occasion above -60 cm.
Composition of Apollo 17 core 76001
NASA Technical Reports Server (NTRS)
Korotev, Randy L.; Bishop, Kaylynn M.
1993-01-01
Core 76001 is a single drive tube containing a column of regolith taken at the base of the North Massif, station 6, Apollo 17. The core material is believed to have accumulated through slow downslope mass wasting from the massif. As a consequence, the core soil is mature throughout its length. Results of INAA for samples taken every half centimeter along the length of the core indicate that there is only minor systematic compositional variation with depth. Concentrations of elements primarily associated with mare basalt (Sc, Fe) and noritic impact melt breccia (Sm) decrease slightly with depth, particularly between 20 cm and the bottom of the core at 32 cm depth. This is consistent with petrographic studies that indicate a greater proportion of basalt and melt breccia in the top part of the core. However, Sm/Sc and La/Sm ratios are remarkably constant with depth, indicating no variation in the ratio of mare material to Sm-rich highlands material with depth. Other than these subtle changes, there is no compositional evidence for the two stratigraphic units (0-20 cm and 20-32 cm) defined on the basis of modal petrography, although all samples with anomalously high Ni concentrations (Fe-Ni metal nuggets) occur above 20 cm depth.
NASA Astrophysics Data System (ADS)
Preusser, Sebastian; Poll, Christian; Marhan, Sven; Kandeler, Ellen
2017-04-01
At the global scale, soil organic carbon (SOC) represents the largest active terrestrial organic carbon (OC) pool. Carbon dynamics in subsoil, however, vary from those in topsoil with much lower C concentrations in subsoil than in topsoil horizons, although more than 50 % of SOC is stored in subsoils below 30 cm soil depth. In addition, microorganisms in subsoil are less abundant, more heterogeneously distributed and the microbial communities have a lower diversity than those in topsoil. Especially in deeper soil, the impact of changes in habitat conditions on microorganisms involved in carbon cycling are largely unexplored and consequently the understanding of microbial functioning is limited. A reciprocal translocation experiment allowed us to investigate the complex interaction effects of altered environmental and substrate conditions on microbial decomposer communities in both topsoil and subsoil habitats under in situ conditions. We conducted this experiment with topsoil (5 cm soil depth) and subsoil (110 cm) samples of an acid and sandy Dystric Cambisol from a European beech (Fagus sylvatica L.) forest in Lower Saxony, Germany. In total 144 samples were buried into three depths (5 cm, 45 cm and 110 cm) and 13C-labelled root litter was added to expose the samples to different environmental conditions and to increase the substrate availability, respectively. Samples were taken in three month intervals up to a maximum exposure time of one year to follow the temporal development over the experimental period. Analyses included 13Cmic and 13C PLFA measurements to investigate the response of microbial abundance, community structure and 13C-root decomposition activity under the different treatments. Environmental conditions in the respective soil depths such as soil temperature and water content were recorded throughout the experimental period. All microbial groups (gram+ and gram- bacteria, fungi) showed highest relative 13C incorporation in 110 cm depth and samples with root addition had generally higher microbial abundances than those with no root addition. Here, especially fungi benefited from the additional carbon source with highly increased abundances in all incorporation depths. Also the altered environmental conditions in the different incorporation depths significantly influenced the different microbial groups. The steepest decrease with depth was detected in fungal abundance, while bacteria were less affected and increased in relative abundance in soil samples incorporated into subsoil layers. The highest seasonal variability in microbial abundance, however, was determined in 5 cm incorporation depth demonstrating the higher amplitude in micro-climatic and micro-environmental conditions in this near-surface soil habitat. In summary, this experiment demonstrated that carbon quality and quantity are the main factors restricting fungal abundance in deeper soil layers, while bacterial decomposer communities are adapted to a wider range of habitat conditions.
Changes in Soil Carbon Storage After Cultivation
Mann, L. K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
2004-01-01
Previously published data from 625 paired soil samples were used to predict carbon in cultivated soil as a function of initial carbon content. A 30-cm sampling depth provided a less variable estimate (r2 = 0.9) of changes in carbon than a 15-cm sampling depth (r2 = 0.6). Regression analyses of changes in carbon storage in relation to years of cultivation confirmed that the greatest rates of change occurred in the first 20 y. An initial carbon effect was present in all analyses: soils very low in carbon tended to gain slight amounts of carbon after cultivation, but soils high in carbon lost at least 20% during cultivation. Carbon losses from most agricultural soils are estimated to average less than 20% of initial values or less than 1.5 kg/m2 within the top 30 cm. These estimates should not be applied to depths greater than 30 cm and would be improved with more bulk density information and equivalent sample volumes.
Mapping snow depth within a tundra ecosystem using multiscale observations and Bayesian methods
Wainwright, Haruko M.; Liljedahl, Anna K.; Dafflon, Baptiste; ...
2017-04-03
This paper compares and integrates different strategies to characterize the variability of end-of-winter snow depth and its relationship to topography in ice-wedge polygon tundra of Arctic Alaska. Snow depth was measured using in situ snow depth probes and estimated using ground-penetrating radar (GPR) surveys and the photogrammetric detection and ranging (phodar) technique with an unmanned aerial system (UAS). We found that GPR data provided high-precision estimates of snow depth (RMSE=2.9cm), with a spatial sampling of 10cm along transects. Phodar-based approaches provided snow depth estimates in a less laborious manner compared to GPR and probing, while yielding a high precision (RMSE=6.0cm) andmore » a fine spatial sampling (4cm×4cm). We then investigated the spatial variability of snow depth and its correlation to micro- and macrotopography using the snow-free lidar digital elevation map (DEM) and the wavelet approach. We found that the end-of-winter snow depth was highly variable over short (several meter) distances, and the variability was correlated with microtopography. Microtopographic lows (i.e., troughs and centers of low-centered polygons) were filled in with snow, which resulted in a smooth and even snow surface following macrotopography. We developed and implemented a Bayesian approach to integrate the snow-free lidar DEM and multiscale measurements (probe and GPR) as well as the topographic correlation for estimating snow depth over the landscape. Our approach led to high-precision estimates of snow depth (RMSE=6.0cm), at 0.5m resolution and over the lidar domain (750m×700m).« less
Mapping snow depth within a tundra ecosystem using multiscale observations and Bayesian methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wainwright, Haruko M.; Liljedahl, Anna K.; Dafflon, Baptiste
This paper compares and integrates different strategies to characterize the variability of end-of-winter snow depth and its relationship to topography in ice-wedge polygon tundra of Arctic Alaska. Snow depth was measured using in situ snow depth probes and estimated using ground-penetrating radar (GPR) surveys and the photogrammetric detection and ranging (phodar) technique with an unmanned aerial system (UAS). We found that GPR data provided high-precision estimates of snow depth (RMSE=2.9cm), with a spatial sampling of 10cm along transects. Phodar-based approaches provided snow depth estimates in a less laborious manner compared to GPR and probing, while yielding a high precision (RMSE=6.0cm) andmore » a fine spatial sampling (4cm×4cm). We then investigated the spatial variability of snow depth and its correlation to micro- and macrotopography using the snow-free lidar digital elevation map (DEM) and the wavelet approach. We found that the end-of-winter snow depth was highly variable over short (several meter) distances, and the variability was correlated with microtopography. Microtopographic lows (i.e., troughs and centers of low-centered polygons) were filled in with snow, which resulted in a smooth and even snow surface following macrotopography. We developed and implemented a Bayesian approach to integrate the snow-free lidar DEM and multiscale measurements (probe and GPR) as well as the topographic correlation for estimating snow depth over the landscape. Our approach led to high-precision estimates of snow depth (RMSE=6.0cm), at 0.5m resolution and over the lidar domain (750m×700m).« less
NASA Astrophysics Data System (ADS)
Farmer, E. C.; Browne, J.; Peteet, D. M.; Cochran, K. K.; Heilbrun, C.; Chery, N.; LongJohn, T.; Mayo, J.; Ricigliano, V.
2016-12-01
A 122 cm long sediment core was collected from the salt marsh of North Cinder Island (73.6092W, 40.6097N), a small uninhabited island in Middle Bay between Oceanside and Point Lookout, in the Town of Hempstead, NY, on 2 July 2013, in order to investigate the age of the marsh and the history of trace metal pollution in the area. First, to determine the chronostratigraphy of the core, pollen counts were compared to radiocarbon measurements. Sediment samples at several depths in the core were analyzed for Pine, Oak, Hickory, Birch, Grass (S. alterniflora and S. patens), and Ragweed pollen. The concentration of Ragweed was below 3% in samples below 80cm, and greater than 7% in samples above 80cm. This proliferation of a disturbance species suggests that layers deeper than 81cm were deposited prior to widespread European settlement, sometime in the 1600s AD. Paired radiocarbon measurements on sieved fine sediment at 42-43 cm depth, however, match well with each other (their 1-sigma confidence intervals overlap), but suggest a calendar age between 932 and 997 years before present. Paired radiocarbon measurements from the 60-61 cm depth also match well with each other, but represent an age that is approximately 200 years younger. Additional paired radiocarbon measurements at 78-79 cm and 96-97 cm depths give older ages, as expected stratigraphically. Perhaps the reversal between 43 and 60 cm represents reworking of sediments in the marsh by tidal currents. Interestingly, root matter extracted from the sediment at the same depths gives radiocarbon ages that range from 600-1200 years younger. Perhaps the roots penetrate down through older sediment, or perhaps the fine sediment is comprised of recaptured sediment with lignin or other residual organic matter that is older because it is difficult to break down. This would explain the apparent contradiction between the radiocarbon dates on fine sediment and the younger pollen date at a deeper depth.
Hyperfine and radiological characterization of soils of the province of Buenos Aires, Argentina
NASA Astrophysics Data System (ADS)
Montes, M. L.; Taylor, M. A.; Mercader, R. C.; Sives, F. R.; Desimoni, J.
2010-03-01
The depth profile concentration of both natural and anthropogenic gamma-ray-emitter nuclides were determined in soil samples collected in an area located at 34° 54.452' S, 58° 8.365' W, down to 50 cm in depth, using an hyper-pure Ge spectrometer. The soil samples were also characterized by means of Mössbauer spectrometry and X-ray diffraction. The activities of 238U and 232Th natural chains remain constant in depth at 41 Bq/kg and 46 Bq/kg, respectively, while the 40K activity increases from 531 Bq/kg to 618 Bq/kg between 2.5 cm y 25.5 cm of depth. The only anthropogenic detected nuclide is 137Cs, whose activity changes form 1.4 Bq/kg to values lower than the detection limit (LD) for depths below 25 cm, exhibiting a maximum at 10 cm beneath the surface. The Mössbauer spectra show two magnetic sextets associated with α-Fe2O3 and Fe3O4, as well as two Fe+3 Fe+2 doublets, probably originated in octahedral and tetrahedral sites of paramagnetic phases. The Fe3+ paramagnetic signal relative fraction increases up to 82% at the expense of the α-Fe2O3 one when de depth increases. No correlation between Fe3O4 and the 137Cs was identificated.
Depth profiling of ion-induced damage in D9 alloy using X-ray diffraction
NASA Astrophysics Data System (ADS)
Dey, S.; Gayathri, N.; Mukherjee, P.
2018-04-01
The ion-induced depthwise damage profile in 35 MeV α-irradiated D9 alloy samples with doses of 5 × 1015 He2+/cm2, 6.4 × 1016 He2+/cm2 and 2 × 1017 He2+/cm2 has been assessed using X-ray diffraction technique. The microstructural characterisation has been done along the depth from beyond the stopping region (peak damage region) to the homogeneous damage region (surface) as simulated from SRIM. The parameters such as domain size and microstrain have been evaluated using two different X-ray diffraction line profile analysis techniques. The results indicate that at low dose the damage profile shows a prominent variation as a function of depth but, with increasing dose, it becomes more homogeneous along the depth. This suggests that enhanced defect diffusion and their annihilation in pre-existing and newly formed sinks play a significant role in deciding the final microstructure of the irradiated sample as a function of depth.
Concentration and spatial distribution of lead in soil used for ammunition destruction.
do Nascimento Guedes, Jair; do Amaral Sobrinho, Nelson Moura Brasil; Ceddia, Marcos Bacis; Vilella, André Luis Oliveira; Tolón-Becerra, Alfredo; Lastra-Bravo, Xavier Bolívar
2012-10-01
Studies on heavy metal contamination in soils used for ammunition disposal and destruction are still emerging. The present study aimed to evaluate the contamination level and spatial distribution of lead in disposal and destruction areas. This site was used for ammunition disposal and destruction activities for 20 years. The ammunition destruction site (1,296 ha), a sampling system that followed a sampling grid (5 m × 5 m) with 30 points was adopted and samples were collected at the following five depths with a total of 150 samples. During the collection procedure, each sampling grid point was georeferenced using a topographic global positioning system. Data were validated through semivariogram and kriging models using Geostat software. The results demonstrated that the average lead value was 163 mg kg(-1), which was close to the investigation limit and the contamination levels were higher downstream than upstream. The results showed that there was lead contamination at the destruction site and that the contamination existed mainly at the surface layer depth. However, high lead concentrations were also found at deeper soil depths in the destruction area due to frequent detonations. According to the planimetry data, the areas that require intervention significantly decreased with increasing depths in the following order: 582.7 m(2) in the 0-20 cm layer; 194.6 m(2) in the 20-40 cm layer; 101.6 m(2) in the 40-60 cm layer; and 45.3 m(2) in the 60-80 cm layer.
Assessment of Density Variations of Marine Sediments with Ocean and Sediment Depths
Tenzer, R.; Gladkikh, V.
2014-01-01
We analyze the density distribution of marine sediments using density samples taken from 716 drill sites of the Deep Sea Drilling Project (DSDP). The samples taken within the upper stratigraphic layer exhibit a prevailing trend of the decreasing density with the increasing ocean depth (at a rate of −0.05 g/cm3 per 1 km). Our results confirm findings of published studies that the density nonlinearly increases with the increasing sediment depth due to compaction. We further establish a 3D density model of marine sediments and propose theoretical models of the ocean-sediment and sediment-bedrock density contrasts. The sediment density-depth equation approximates density samples with an average uncertainty of about 10% and better represents the density distribution especially at deeper sections of basin sediments than a uniform density model. The analysis of DSDP density data also reveals that the average density of marine sediments is 1.70 g/cm3 and the average density of the ocean bedrock is 2.9 g/cm3. PMID:24744686
Sampling depth confounds soil acidification outcomes
USDA-ARS?s Scientific Manuscript database
In the northern Great Plains (NGP) of North America, surface sampling depths of 0-15 or 0-20 cm are suggested for testing soil characteristics such as pH. However, acidification is often most pronounced near the soil surface. Thus, sampling deeper can potentially dilute (increase) pH measurements an...
Che, Sheng-guo; Guo, Sheng-li
2010-05-01
Analyzing and estimating soil organic carbon (SOC) storage and changes in deep layers under different land uses and landforms may play a pivotal role in comprehending the balance and cycle mechanisms of C cycling, and comprehending the capacity of C sequestration in the terrestrial ecosystem. The study mainly emphasized on effects of landforms and land uses on vertical distribution characteristic of SOC sampled to a depth of 200 cm at the Wangdonggou watershed on the tableland region of Loess Plateau, China. For the top soil of 0-20 cm, the order of SOC contents was gully (10.0 g x kg(-1)) > tableland (7.8 g x kg(-1)) and slopeland (8.2 g x kg(-1)). For the subsoil, SOC in tableland was higher than that in gully and slopeland. For slopeland and gully, SOC decreased with increasing depth, while for tableland, SOC decreased initially, then increased, lastly decreased. Meanwhile, for tableland, the order of SOC appeared approximately manmade grassland > cropland > orchard with the effecting depth of land uses for 40 cm, and for slopeland the order was native grassland (4.3 g x kg(-1)) > manmade woodland (3.8 g x kg(-1)) > manmade grassland (3.3 g x kg(-1)) > orchard (3.3 g x kg(-1)) with the depth for 100 cm, while for gully, there was no significantly difference (p > 0.05) among different land uses. SOC storage in the profile of 20-200 cm accounted for 67.6% sampled to a depth of 100 cm, while for 100-200cm, SOC storage accounted 37.3% in 0-200 cm equaled to 63.8% of the SOC storage in 0-100 cm. The results revealed that landforms and land uses highly significantly (p < 0.05) affected the vertical distribution of SOC at a small watershed scale and considerable amounts of C were stored at deeper depths.
Wheeler, T A; Porter, D O; Archer, D; Mullinix, B G
2008-09-01
Plots naturally infested with Rotylenchulus reniformis were sampled in the spring of 2006 and 2007 at depths of 15 and 30 cm in the bed, furrow over the drip tape, and "dry" furrow, and at approximately 40 to 45 cm depth in the bed and dry furrow. Then, 1,3-dichloropropene (Telone EC) was injected into the subsurface drip irrigation at 46 kg a.i./ha, and 3 to 4 weeks later the plots were resampled and assayed for nematodes. The transformed values for nematode population density (IvLRr) before fumigation were higher at 30 and 40 cm depths than at a 15 cm depth. IvLRr before fumigation was higher in the soil over the drip lines than in the bed or dry furrow and was higher in the bed than the dry furrow. IvLRr was higher in the plots to be fumigated than the plots that were not to be fumigated for all depths and locations except at a 15 cm depth over the drip lines, where the values were similar. However, after fumigation, IvLRr was lower over the drip lines at a 30 cm depth in plots that were fumigated compared to samples in a similar location and depth that were not fumigated. There were no other location/depth combinations where the fumigation reduced IvLRr below that in the nonfumigated plots. Yield in 2006, which was a very hot and dry year, was predicted adequately (R(2) = 0.67) by a linear model based on the preplant population density of R. reniformis, with a very steep slope (-2.8 kg lint/ha per R. reniformis/100 cm(3) soil). However, no relationship between nematode density and yield was seen in 2007, which had cooler weather for most of the season. Yield was not significantly improved by fumigation through the drip irrigation system in either year compared to plots treated only with aldicarb (0.84 kg a.i./ha), indicating that the level of control with fumigation did not kill enough R. reniformis to be successful.
Localization of 15N uptake in a Tibetan alpine Kobresia pasture
NASA Astrophysics Data System (ADS)
Schleuß, Per-Marten; Kuzyakov, Yakov
2014-05-01
The Kobresia Pygmea ecotone covers approximately 450.000 km2 and is of large global and regional importance due several socio-ecological aspects. For instance Kobresia pastures store high amounts of carbon, nitrogen and other nutrients, represent large grazing areas for herbivores, provide a fast regrowth after grazing events and protect against mechanical degradation and soil erosion. However, Kobresia pastures are assumed to be a grazing induced and are accompanied with distinct root mats varying in thickness between 5-30 cm. Yet, less is known about the morphology and the functions of this root mats, especially in the background of a progressing degradation due to changes of climate and management. Thus we aimed to identify the importance of single soil layers for plant nutrition. Accordingly, nitrogen uptake from different soil depths and its remain in above-ground biomass (AGB), belowground biomass (BGB) and soil were determined by using a 15N pulse labeling approach during the vegetation period in summer 2012. 15N urea was injected into six different soil depths (0.5 cm, 2.5 cm, 7.5 cm, 12.5 cm, 17.5 cm, 22.5 cm / for each 4 replicates) and plots were sampled 45 days after the labeling. For soil and BGB samples were taken in strict sample intervals of 0-1 cm, 1-5 cm, 5-10 cm, 10-15 cm, 15-20 cm, 20-25 cm. Results indicate that total recovery (including AGB, BGB and soil) was highest, if tracer was injected into the top 5 cm and subsequently decreased with decreasing injection depth. This is especially the case for the 15N recovery of BGB, which is clearly attributed to the root density and strongly decreased with soil depth. In contrast, the root activity derived from the 15N content of roots increased with soil depth, which is primary associated to a proportionate increase of living roots related to dead roots. However, most 15N was captured in plant biomass (67.5-85.3 % of total recovery), indicating high 15N uptake efficiency possibly due to N limitation of Kobresia ecosystems. Considering only the nitrogen uptake of AGB hardly any differences appeared between the six injection depths. Nevertheless, it could be shown, that 50.4 % percent of total variance of AGB nitrogen uptake could be explained by combining root density and root activity. Concluding, from the upper root mat horizons highest amounts of nitrogen were taken up by plants, because root densities are correspondingly high. However, in deeper root mat layers the root activity increases and accordingly plays a key role for plant nitrogen supply in this depth. Underlying causes for increasing root activities may be better soil moisture conditions, lower variation of soil temperature and/or a higher access to plant available nitrogen in deeper soil layers.Please fill in your abstract text.
Schimmack, W; Schultz, W
2006-09-15
The temporal changes of the vertical distribution of (134)Cs (deposited by the Chernobyl fallout in 1986) and (137)Cs (deposited by the Chernobyl and the global fallout) in the soil were investigated at an undisturbed Bavarian grassland site in Germany. At ten sampling dates between 1986 and 2001, the activity density of (134)Cs and (137)Cs was determined in various soil layers down to 80 cm depth. In 2001, the small-scale spatial variability of the radiocaesium activity was determined by sampling five plots within 10 m(2) (coefficient of variation about 20% for the upper soil layers). Between 1987 and 1990, substantial changes of the activity-depth profiles were observed. The percentage depth distributions of (134)Cs and (137)Cs were rather similar. The 50%-depth of the accumulated activity increased from 2.4 cm in 1988 to 5.3 cm in 2001 for (134)Cs and from 2.7 to 5.8 cm for (137)Cs. This indicates that at the study site the migration data of Chernobyl-derived (137)Cs can be estimated by those of total (137)Cs. In the second part of this study, the activity-depth profiles will be evaluated by the convection-dispersion model [Schimmack, W, Feria Márquez, F. Migration of fallout radiocaesium in a grassland soil from 1986 to 2001. Part II: Evaluation of the activity-depth profiles by transport models. Sci Total Environ 2006-this issue].
Bacterial diversity and community structure in lettuce soil are shifted by cultivation time
NASA Astrophysics Data System (ADS)
Liu, Yiqian; Chang, Qing; Guo, Xu; Yi, Xinxin
2017-08-01
Compared with cereal production, vegetable production usually requires a greater degree of management and larger input of nutrients and irrigation, but these systems are not sustainable in the long term. This study aimed to what extent lettuce determine the bacterial community composition in the soil, during lettuce cultivation, pesticides and fertilizers were not apply to soil. Soil samples were collected from depths of 0-20cm and 20-40cm. A highthroughput sequencing approach was employed to investigate bacterial communities in lettuce-cultivated soil samples in a time-dependent manner. The dominant bacteria in the lettuce soil samples were mainly Proteobacteria, Actinobacteria, Chloroflexi, Nitrospirae, Firmicutes, Acidobacteria, Bacteroidetes, Verrucomicrobia, Planctomycetes, Gemmatimo nadetes, Cyanobacteria. Proteobacteria was the most abundant phylum in the 6 soil samples. The relative abundance of Acidobacteria, Firmicutes, Bacteroidetes, Verrucomicrobia and Cyanobacteria decreased through time of lettuce cultivation, but the relative abundance of Proteobacteria, Actinobacteria, Gemmatimonadetes, Chloroflexi, Planctomycetes and Nitrospirae increased over time. In the 0-20cm depth group and the 20-40cm depth soil, a similar pattern was observed that the percentage number of only shared OTUs between the early and late stage was lower than that between the early and middle stage soil, the result showed that lettuce growth can affect structure of soil bacterial communities.
Walraven, N; van Os, B J H; Klaver, G Th; Middelburg, J J; Davies, G R
2014-02-15
In this study the origin, behaviour and fate of anthropogenic Pb in sandy roadside soils were assessed by measuring soil characteristics, Pb isotope composition and content. In 1991 and 2003 samples were taken at different depth intervals at approximately 8 and 75 m from two highways in The Netherlands. The Pb isotope composition of the litter layer ((206)Pb/(207)Pb=1.12-1.14) differs from the deeper soil samples ((206)Pb/(207)Pb=1.20-1.21). Based on a mixing model it is concluded that the samples contain two Pb sources: natural Pb and anthropogenic Pb, the latter mainly derived from gasoline. (206)Pb/(207)Pb ratios demonstrate that the roadside soils were polluted to a depth of ~15 cm. Within this depth interval, anthropogenic Pb content is associated with organic matter. Although Pb pollution only reached a depth of ~15 cm, this does not mean that the topsoils retain all anthropogenic Pb. Due to the low pH and negligible binding capacity of soils at depths >15 cm, anthropogenic Pb migrated towards groundwater after reaching depths of >15 cm. The Pb isotope composition of the groundwater ((206)Pb/(207)Pb=1.135-1.185) establishes that groundwater is polluted with anthropogenic Pb. The contribution of anthropogenic Pb to the groundwater varies between ~30 and 100%. Based on the difference in soil Pb content and Pb isotope compositions over a period of 12 years, downward Pb migration is calculated to vary from 72 ± 95 to 324 ± 279 mg m(-2)y(-1). Assuming that the downward Pb flux is constant over time, it is calculated that 35-90% of the atmospherically delivered Pb has migrated to the groundwater. Copyright © 2013 Elsevier B.V. All rights reserved.
Cheng, Li Ping; Liu, Wen Zhao
2017-07-18
Soil water and stem water were collected in jointing and heading stages of the rainfed winter wheat in the Changwu Loess tableland, and the stable isotopic compositions of hydrogen and oxygen in water samples were measured to analyze the contribution of soil water at various depths to water consumption of winter wheat. The results showed that the isotopes were enriched in soil and wheat stem water in comparison with that in precipitation. Under the condition of no dry layer in soil profile, the contributions to wheat water consumption in jointing and heading stages were 5.4% and 2.6% from soil water at 0-30 cm depth, 73.4% and 67.3% at 60-90 cm depth (the main water source for winter wheat), and 7.9% and 13.5% below 120 cm depth, respectively. With the wheat growth, the contribution of soil water below the depth of 90 cm increased. It was concluded that soil evaporation mainly consumed soil water in 0-30 cm depth and wheat transpiration mainly consumed soil water below 60 cm depth in the experimental period. In the production practice, it is necessary to increase rainwater storage ratio during the summer fallow period, and apply reasonable combination of nitrogen and phosphorus fertilizers in order to increase soil moisture before wheat sowing, promote the wheat root developing deep downwards and raise the deep soil water utilization ratio.
Liang, Jianfang; Yang, Jiangke; Yang, Yang; Chao, Qunfang; Yin, Yalan; Zhao, Yaguan
2016-08-04
This study aimed to study the phylogenetic diversity and community structure of bacteria in petroleum contaminated soils from Karamay oil field, and to analyze the relationship between the community variation and the environment parameters, to provide a reference for bioremediation of petroleum contaminated soils. We collected samples from petroleum contaminated soils in 5 cm, 20 cm and 50 cm depth layers, and measured the environment parameters subsequently. We constructed three 16S rRNA gene clone libraries of these soil samples, and then determined the operation taxonomy units (OTUs) restriction fragment length polymorphism method, and finally sequenced the representative clones of every OUT. The diversity, richness and evenness index of the bacteria communities were calculated by using Biodap software. Neighbor-Joining phylogenetic tree was constructed based on 16S rRNA gene sequences of bacteria from Karamay oil field and the references from related environments. Canonial correspondence analysis (CCA) was used to analyze the relationship between environment parameters and species by using CANOCO 4.5 software. Environment parameters showed that 50 cm deep soil contained the highest amount of total nitrogen (TN) and total phosphorus (TP), whereas the 20 cm depth soil contained the lowest amount. The 5 cm depth soil contained the highest amount of total organic carbon (TOC), whereas the 50 cm depth soil contained the lowest amount. Among the 3 layers, 20 cm depth had the highest diversity and richness of bacteria, whereas the bacteria in 50 cm depth was the lowest. Phylogenic analyses suggested that the bacteria in Karamay oil field could be distributed into five groups at the level of phylum, Cluster I to V, respectively belong to Proteobacteria, Actinobacteria, Firmicute, Bacteroidetes, Planctomycetes. Cluster I accounts for 78.57% of all tested communities. CCA results showed that TN, TP, TOC significantly affected the bacteria community structure. Especially, TOC content is significantly related to the distribution of Pseudomonas. The petroleum-contaminated soil inhabited abundant of bacteria. The diversity index and spatial distribution of these communities were affected by the environment parameters in the soil.
Transport of E. coli in a sandy soil as impacted by depth to water table.
Stall, Christopher; Amoozegar, Aziz; Lindbo, David; Graves, Alexandria; Rashash, Diana
2014-01-01
Septic systems are considered a source of groundwater contamination. In the study described in this article, the fate of microbes applied to a sandy loam soil from North Carolina coastal plain as impacted by water table depth was studied. Soil materials were packed to a depth of 65 cm in 17 columns (15-cm diameter), and a water table was established at 30, 45, and 60 cm depths using five replications. Each day, 200 mL of an artificial septic tank effluent inoculated with E. coli were applied to the top of each column, a 100-mL sample was collected at the water table level and analyzed for E. coli, and 100 mL was drained from the bottom to maintain the water table. Two columns were used as control and received 200 mL/day of sterilized effluent. Neither 30 nor 45 cm of unsaturated soil was adequate to attenuate bacterial contamination, while 60 cm of separation appeared to be sufficient. Little bacterial contamination moved with the water table when it was lowered from 30 to 60 cm.
NASA Astrophysics Data System (ADS)
LaBrecque, J. J.
2002-05-01
Soil-gases (radon, thoron, carbon dioxide and hydrogen) were measured at 63-cm depths along a transect perpendicular to the rupture (fault trace) from the 1997 Caricao earthquake (Mw=6.9) at Guarapiche, state of Sucre (Venezuela). The transect was about 40 meters long with ten sampling points with the spacings was smaller near the rupture. The shapes of the horizontal spatial patterns for radon (Rn-222), thoron (Rn-220) and total radon (Rn-222+Rn-220) were similar; the gas concentrations increased from both ends of the transect toward the rupture where a dip (valley) occurred. Both carbon dioxide and hydrogen gases showed anomalous values at the same sampling points. Twin peaks (anomalies) had been previously reported and suggested that they were due to blockage in the rupture. We have also determined soil-gases from 25-cm to 155-cm depths near the rupture and at the ends of the transect. The results showed that the soil-gas concentrations were not only higher in the upper levels (less than 65-cm) near the fault trace but were similar or greater than the lower levels. Thus, producing the twin peaks when soil-gas sampling was performed at the 65-cm depth. When the sampling was performed at only 45-cm depth the dip over the rupture was much less and the patterns looked more like a broad doublet peak. In conclusion, one can clearly see that not only positive soil-gas anomalies can occur over a fault trace but also negative ones too. 1) This work was partially funded by a research contract from the Venezuelan National Science Foundation (CONICIT Proyecto S1-95000448). 2) Mailing Address: Centro de Quimica, 8424 NW 56th Street, Suite 00204,Miami, Fl 33166 (USA). E-mail jjlabrec@ivic.ve FAX: +58-212-504-1214
NASA Astrophysics Data System (ADS)
Hu, Yecui; Du, Zhangliu; Wang, Qibing; Li, Guichun
2016-07-01
The conversion of natural vegetation to human-managed ecosystems, especially the agricultural systems, may decrease soil organic carbon (SOC) and total nitrogen (TN) stocks. The objective of present study was to assess SOC and TN stocks losses by combining deep sampling with mass-based calculations upon land-use changes in a typical karst area of southwestern China. We quantified the changes from native forest to grassland, secondary shrub, eucalyptus plantation, sugarcane and corn fields (both defined as croplands), on the SOC and TN stocks down to 100 cm depth using fixed-depth (FD) and equivalent soil mass (ESM) approaches. The results showed that converting forest to cropland and other types significantly led to SOC and TN losses, but the extent depended on both sampling depths and calculation methods selected (i.e., FD or ESM). On average, the shifting from native forest to cropland led to SOC losses by 19.1, 25.1, 30.6, 36.8 and 37.9 % for the soil depths of 0-10, 0-20, 0-40, 0-60 and 0-100 cm, respectively, which highlighted that shallow sampling underestimated SOC losses. Moreover, the FD method underestimated SOC and TN losses for the upper 40 cm layer, but overestimated the losses in the deeper layers. We suggest that the ESM together with deep sampling should be encouraged to detect the differences in SOC stocks. In conclusion, the conversion of forest to managed systems, in particular croplands significantly decreased in SOC and TN stocks, although the effect magnitude to some extent depended on sampling depth and calculation approach selected.
Effects of Seasonal and Site Factors on Xiphinema index Populations in Two California Vineyards.
Feil, H; Westerdahl, B B; Smith, R J; Verdegaal, P
1997-12-01
Sampling of Xiphinema index for 2 years (1993-95) in two California vineyards indicated that a greater number of nematodes occurred during the winter months. The number of juveniles increased four-fold from December 1993 to January 1994, indicating a high reproductive rate during this time. Extremely high or low soil temperatures corresponded to low nematode numbers. Samples were taken from 0 to 31 cm and 31 to 62 cm deep both within and between the vine rows. Numbers of nematodes were greatest at the 0- to 31-cm depth in one vineyard with a loamy sand soil, and at a depth of 31 to 62 cm in the second vineyard, which had a silt loam soil. In both vineyards, X. index population densities were greater within the vine row.
NASA Astrophysics Data System (ADS)
Tindall, James A.; Vencill, William K.
1995-03-01
The objectives were to determine how atrazine (2-chloro-4-(ethylamino)-6-(isopropylamino)- s-triazine), dicamba (3-6-dichloro-2-methoxybenzoic acid), and 2,4-D (2,4-dichlorophenoxy-acetic acid) move through claypan soils (fine montmorillonitic, mesic Udollic Ochraqualf Mollic albaqualf, Mexico silty loam) at the Missouri Management System Evaluation Area (MSEA) near Centralia in Boone County, Missouri, and the role of preferential flowpaths in that movement. Twelve intact soil cores (30 cm diameter by 40 cm height), were excavated sequentially, four from each of the following depths: 0-40 cm, 40-80 cm, and 80-120 cm. These cores were used to study preferential flow characteristics using dye staining experiments and to determine hydraulic properties. Six undisturbed experimental field plots, with a 1 m 2 surface area (two sets of three each), were instrumented at the Missouri MSEA on 11 May 1991: 1 m 2 zero-tension pan lysimeters were installed at 1.35 m depths in Plots 1-3 and at 1.05 m depths in Plots 4-6. Additionally, each plot was planted with soybeans ( Glycine max L.) and instrumented with suction lysimeters and tensiometers at 15 cm depth increments. A neutron probe access tube was installed in each plot to determine soil water content at 15 cm intervals. All plots were enclosed with a raised frame (of 8 cm height) to prevent surface runoff, and were allowed to equilibrate for a year before data collection. During this waiting period, all suction and pan lysimeters were purged monthly and were sampled immediately prior to herbicide application in May 1992 to obtain background concentrations. Atrazine, 2,4-D, and dicamba moved rapidly through the soil, probably owing to the presence of preferential flowpaths. Staining of laboratory cores showed a positive correlation between the per cent area stained by depth and the subsequent breakthrough of Br - in the laboratory and leaching of field-applied herbicides owing to large rainfall events. Suction lysimeter samples in the field showed increases in concentrations of herbicides at depths where laboratory data indicated greater percentages of what appeared to be preferential flowpaths. Concentrations of atrazine, 2,4-D, and dicamba exceeding 0.50, 0.1, and 0.15 μg ml -1 were observed with depth (45-135 cm, 60-125 cm and 60-135 cm) after several months following rainfall events. Preferential flowpaths were a major factor in transport of atrazine, 2,4-D, and dicamba at the site.
222Rn and 220Rn concentrations in soil gas of Karkonosze-Izera Block (Sudetes, Poland).
Malczewski, Dariusz; Zaba, Jerzy
2007-01-01
Soil gas 222Rn and 220Rn concentrations were measured at 18 locations in the Karkonosze-Izera Block area in southwestern Poland. Measurements were carried out in surface air and at sampling depths of 10, 40 and 80 cm. Surface air 222Rn concentrations ranged from 4 to 2160 Bq m(-3) and 220Rn ranged from 4 to 228 Bq m(-3). The concentrations for 10 and 40 cm varied from 142 Bq m(-3) to 801 kBq m(-3) and 102 Bq m(-3) to 64 kBq m(-3) for 222Rn and 220Rn, respectively. At 80 cm 222Rn concentrations ranged from 94 Bq m(-3) to >1 MBq m(-3). The 220Rn concentrations at 80 cm varied from 45 Bq m(-3) to 48 kBq m(-3). The concentration versus depth profiles for 222Rn differed for soils developed on fault zones, uranium deposits or both. Atmospheric air temperature and soil gas 222Rn and 220Rn were negatively correlated. At sampling sites with steep slopes, 220Rn concentrations decreased with depth.
NASA Astrophysics Data System (ADS)
Golos, Peter
2016-04-01
Revegetation of sites following soil contamination can be challenging especially in identifying the most effective method for ameliorating phytotoxic effects in arid ecosystems. This study at a copper mine in the Great Sandy Desert of Western Australia investigated vegetation restoration of a site contaminated by acid (H2SO4) leach pad solution. Elevated soil copper at low soil pH is phytotoxic to plant roots inhibiting root elongation. In arid ecosystems where rapid root growth is crucial for seedling survival post germination physical or chemical barriers to root growth need to be identified and ameliorated. Initial attempt at rehabilitation of contaminated site with hydrated lime (CaOH2) at 2 tonnes/ha followed by ripping to 30 cm depth then seeding was ineffective as successful seedling emergence was followed by over 90% seedling mortality which was 10-fold greater than seedling mortality in an uncontaminated reference site. High mortality was attributed to seedling roots being impededed as soil water was more than 3-fold greater at 5 to 40 cm depth in contaminated site than reference site. In response to high seedling mortality after emergence test pits were dug to 1 m deep to collect soil samples at 10 cm intervals for phytotoxicity testing and to measure soil pH-CaCl2, copper (DPTA ion extraction), electrical conductivity and gravimetric water content in three replicate pits at three replicate sites. Also, soil impedance was measured down the soil profile at 5 cm intervals at six replicate points/pit. For phytotoxicity testing soil samples were placed into three replicate plastic pots/sample and seeded with 10 seeds of Avena sativa and watered daily. Seedlings were harvested after at least two weeks after seedling emergence and rooting depth in pots measured. There was no difference in seedling emergence and survival of seedlings between contaminated and uncontaminated soil samples however mean seedling root growth was significantly lower in soil samples collected at >10 cm depth than the control. Mean soil pH at 0-10 cm was higher (>7.2) at all sites treated with lime compared to uncontaminated soil (5.5). At depths greater than 10 cm soil pH was <4.6. Soil copper was >16 mg/kg in all contaminated soil samples compared to 0.5 mg/kg in control. High seedling mortality in contaminated site is attributed to low soil pH and elevated soil copper levels which inhibited plant root growth and hence access to soil water. While surface liming of soil increased soil pH ameliorating the effect of elevated soil copper, this was only effective in the top 10 cm due to low solubility of hydrated lime. To improve seedling survival lime will need to be incorporated into the contaminated soil profile to allow plants to access soil water at depth. This study highlights the importance of the need to assess the phytotoxic effects of soil contamination and the effectiveness of amelioration treatments and with proper reference to its ecological context. To improve the success of vegetation restoration of sites contaminated with acidic copper solution, lime needs to be incorporated into the contaminated soil profile to allow plant roots to access soil water at depth. This study highlights the importance of the need to assess the phytotoxic effects of soil contamination and the effectiveness of amelioration treatments and with proper reference to its ecological context.
Lovtang, Sara; Delistraty, Damon; Rochette, Elizabeth
2018-07-01
We challenge the suggestion by Sample et al. (2015) that a depth of 305 cm (10 ft) exceeds the depth of biological activity in soils at the Hanford Site, Washington, USA, or similar sites. Instead, we support the standard point of compliance, identified in the Model Toxics Control Act in the state of Washington, which specifies a depth of 457 cm (15 ft) for the protection of both human and ecological receptors at the Hanford Site. Our position is based on additional information considered in our expanded review of the literature, the influence of a changing environment over time, plant community dynamics at the Hanford Site, and inherent uncertainty in the Sample et al. (2015) analysis. Integr Environ Assess Manag 2018;14:442-446. © 2018 SETAC. © 2018 SETAC.
Methane production from bicarbonate and acetate in an anoxic marine sediment
NASA Technical Reports Server (NTRS)
Crill, P. M.; Martens, C. S.
1986-01-01
Methane production from C-14 labeled bicarbonate and acetate was measured over the top 28 cm of anoxic Cape Lookout Bight sediments during the summer of 1983. The depth distribution and magnitude of summed radioisotopically determined rates compare well with previous measurements of total methane production and the sediment-water methane flux. Methane production from CO2 reduction and acetate fermentation accounts for greater than 80 percent of the total production rate and sediment-water flux. Methane production from bicarbonate was found to occur in all depth intervals sampled except those in the top 2 cm, whereas significant methane production from acetate only occurred at depths below 10 cm where sulfate was exhausted. Acetate provided 20 to 29 percent of the measured methane production integrated over the top 30 cm of the sediments.
NASA Astrophysics Data System (ADS)
Silver, Matthew; Schlögl, Johanna; Knöller, Kay; Schüth, Christoph
2017-04-01
The EU FP7 project MARSOL addresses water scarcity challenges in arid regions, where managed aquifer recharge (MAR) is an upcoming technology to recharge depleted aquifers using alternative water sources. However, a potential impact to water quality is increasing ammonium concentrations, which are known to be a problem resulting from bank filtration. In the context of MAR, increasing ammonium concentrations have received little attention so far. A soil column experiment was conducted to investigate transformations of nitrogen species when secondary treated wastewater (TWW) is infiltrated through a natural soil (organic matter content 5.6%) being considered for MAR. The TWW contains nitrate and dissolved organic nitrogen (DON), but typically very low (<0.2 mg/L) concentrations of nitrite and ammonium. In addition to the nitrate and DON in the inflow water, nitrogen in the soil organic matter is a third possible source for ammonium produced during infiltration. The experiment simulated MAR using a series of wetting-drying cycles. At the end of the wetting phases, pore water samples were collected from six depths. Results show that the largest decreases in nitrate concentration occur in the upper part of the soil, with on average 77% attenuated by 15 cm depth and 94% by 30 cm depth. Starting at 30 cm and continuing downward, ammonium concentrations increased, with concentrations reaching as high as 4 mg-N/L (the EU drinking water limit is 0.41 mg-N/L). Selected samples were also measured for stable nitrogen and oxygen isotopes. Nitrate became isotopically heavier (both N and O) with increasing depth (samples collected at 5 and 15 cm below the soil surface), with most results forming a linear trend for δ18O vs. δ15N. This pattern is consistent with denitrification, which is also supported by the fact that the ammonium concentration first increases at a depth below where most of the nitrate is consumed. However, the relationship between δ15N-NO3- and nitrate concentration is not clearly logarithmic, so processes other than denitrification are not ruled out for explaining the fate of nitrate. The δ15N of ammonium in the water samples and of nitrogen in the soil were also measured. With increasing depth and time, the δ15N-NH4+ (mean 4.3‰) decreases and approaches the δ15N of the pre-experimental soil of 2.4‰. This suggests that ammonium is formed at least in part from the soil organic matter, likely through a combination of leaching and microbial processes. Although most nitrate attenuates by 15 cm depth and very little ammonium is observed here, some nitrate (usually <0.5 mg-N/L) was observed at depths of 30 cm and below, especially early in the experiments. Starting at 30 cm depth, organic carbon concentrations and thereby also C:NO3-ratios become high (>10), which are conditions sometimes found to be favorable to dissimilatory nitrate reduction to ammonium. Rayleigh enrichment factors also suggest that nitrate may be the source of some of the ammonium. Measurements of additional samples and organic nitrogen isotopes are planned, in order to further evaluate the fate of nitrate and the source(s) of the ammonium.
Girona-García, Antonio; Badía-Villas, David; Martí-Dalmau, Clara; Ortiz-Perpiñá, Oriol; Mora, Juan Luis; Armas-Herrera, Cecilia M
2018-03-15
Prescribed burning has been readopted in the last decade in the Central Pyrenees to stop the regression of subalpine grasslands in favour of shrublands, dominated among others by Echinospartum horridum (Vahl) Rothm. Nevertheless, the effect of this practice on soil properties is uncertain. The aim of this work was to analyse the effects of these burnings on topsoil organic matter and biological properties. Soil sampling was carried out in an autumnal prescribed fire in Buisán (NE-Spain, November 2015). Topsoil was sampled at 0-1cm, 1-2cm and 2-3cm depth in triplicate just before (U), ~1h (B0), 6months (B6) and 12months (B12) after burning. We analysed soil total organic C (TOC), total nitrogen (TN), microbial biomass C (C mic ), soil respiration (SR) and β-D-glucosidase activity. A maximum temperature of 438°C was recorded at soil surface while at 1cm depth only 31°C were reached. Burning significantly decreased TOC (-52%), TN (-44%), C mic (-57%), SR (-72%) and β-D-glucosidase (-66%) at 0-1cm depth while SR was also reduced (-45%) at 1-2cm depth. In B6 and B12, no significant changes in these properties were observed as compared to B0. It can be concluded that the impact of prescribed burning has been significant and sustained over time, although limited to the first two topsoil centimetres. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
González, M. A. Pagnan, E-mail: miguelangel.pagnan@hotmail.com; Mitsoura, E., E-mail: meleni@uaemex.mx; Oviedo, J.O. Hernández
Mycosis fungoides is a cutaneous lymphoma that accounts for 2–3% of all lymphomas. Several clinical studies have demonstrated the effectiveness of TSEBT (Total Skin Electron Beam Therapy) in patients with mycosis fungoides. It is important to develop this technique and make it available to a larger number of patients in Mexico. Because large fields for electron TSEBT are required in order to cover the entire body of the patient, beam characterization at conventional treatment distances is not sufficient and a calibration distance of 500cm or higher is required. Materials and methods: Calibration of radiochromic Gafchromic® EBT2 film (RCF) for electronsmore » was performed in a solid water phantom (Scanditronix Wellhöfer) at a depth of 1.4cm and a Source Axis Distance (SAD) of 100cm. A polynomial fit was applied to the calibration curve, in order to obtain the equation relating dose response with optical density. The spatial distribution is obtained in terms of percentage of the dose, placing 3×3cm samples of RCF on the acrylic screen, which is placed in front of the patient in order to obtain maximum absorbed dose on the skin, covering an area of 200×100cm{sup 2}. The Percentage Depth Dose (PDD) curve was obtained placing RCF samples at depths of 0, 1, 1.2, 1.4, 1.5, 2, 3, 4, 5, 6, 7, 8 and 9cm in the solid water phantom, irradiated with an ELEKTA SINERGY Linear Accelerator electron beam, with an energy of 6 MeV, at a Source Skin Distance (SSD) of 500cm, with 1000MU = 100Gy, with a cone of 40×40cm and gantry angle of 90°. The RCFs were scanned on a flatbed scanner (EPSON EXPRESSION 10000 XL) and the images were processed with the ImageJ program using a region of interest (ROI) of 1×1cm{sup 2}. Results: The relative spatial dose distribution and the percentage depth dose for a SSD of 500±0.5cm, over an area of 200×100cm{sup 2} was obtained, resulting to an effective maximum dose depth (Z{sub ref}) for electrons of 1.4±0.05cm. Using the same experimental data, horizontal and vertical beam profiles were also graphed, showing a horizontal symmetry of ±035%, horizontal flatness of ±3.62%, vertical symmetry of ±2.1% and vertical flatness of ±14.2%. Conclusions: The electron beam was characterized and the data obtained were useful to determine the spatial dose distribution to a SSD of 500±0.5cm, in an area of 200×100cm{sup 2}. Dose profiles were obtained both horizontally and vertically, thus allowing to assess electron beam symmetry and flatness. PDD analysis up to a depth of 9±0.05cm, has made possible to establish the depth of electron penetration, assuring an only skin irradiation treatment.« less
Concentration of (137)Cs in soil across Nebraska.
Weesner, Alexandra Palensky; Fairchild, Robert W
2008-06-01
Atmospheric nuclear weapons testing from 1945 through 1980 produced radioactive fallout that was transported by stratospheric winds and deposited unevenly around the world. The accident at Chernobyl in 1986 also contributed to the fallout in some locations. The (137)Cs activity concentration from fallout has been measured as a function of depth in soil samples from five different locations across Nebraska. Soil samples 2-cm thick down to a depth of 30 cm were collected in Brown, Dawes, Lancaster, Red Willow, and Thurston Counties. Samples taken from each of the sites were dried, sieved, and counted using an HPGe gamma spectroscopy system to measure the activity concentration of (137)Cs at each depth in the soil. Activity concentrations as high as 216 Bq kg(-1) were measured in the samples. Dry soil bulk densities were calculated for each site based on soil type and used to calculate the area density of deposition. Area deposition densities up to 13,100 Bq m(-2) were measured, consistent with published estimates.
Production and characterization of a nitrogen-implanted Fe standard to calibrate PIGE measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodrigues, C. L.; Silva, T. F.; Added, N.
2014-11-11
Three calibration standard was produced by ion implantation of nitrogen in samples of Armco iron (99.7% iron). The samples was irradiated with nitrogen ion beams at several different energies (between 4 keV and 40 keV), and the ion doses were adjusted to obtain an uniform depth profile, using simulations with SRIM code. Two standards, one thick and other a foil (1.62mg/cm{sup 2}), was irradiated at same time with total nominal dose of 6.6×10{sup −16} atoms/cm{sup 2} distributed in a region of 100 nm in depth, with an average concentration of 9.0% nitrogen in iron. The third sample uses the samemore » profile, but with a small dose, 1.1×10{sup −16} atoms/cm{sup 2} and average concentration of 1.5% nitrogen. The characterization of the implanted samples was done using RBS and NRA techniques to quantification of nitrogen.« less
Bacterial and fungal community composition and functioning of two different peatlands in China
NASA Astrophysics Data System (ADS)
Wang, Meng; Tian, Jianqing; Bu, Zhaojun; Chen, Huai; Zhu, Qiuan; Peng, Changhui
2017-04-01
Peatlands are important carbon sinks which store one third of the global soil carbon ( 550 Gt) with only 3% of the land surface. The slow rate of organic matter decomposition associated with low microbial diversity and limited functioning under cold, acidic and anoxic condition is of critical importance in controlling biogeochemical cycles in northern peatlands. To evaluate the variation in microbial community composition and functionality can advance our understanding of the underlying mechanisms of the biogeochemical processes and interactions. However, there is still a lack of information for Chinese peatlands. Here, we sampled peat profiles at three different depths (10-20, 30-40 and 60-70 cm) from two typical peatlands in China: a rich fen in Qinghai-Tibet Plateau (QTP) and a poor fen in the Changbai Mountains (CBM). We investigated the bacterial (16S rRNA) and fungal (ITS2) community composition and diversity with high-throughput sequencing and predicted the metagenome functioning with PICRUSt (Phylogenetic Investigation of Communities by Reconstruction of Unobserved States). The results showed that Proteobacteria, Acidobacteria and Actinobacteria were the most abundant bacterial phyla in the upper peat layer (10-20 cm) for both sites, with increasing abundance of Chloroflexi and Bacteroidetes down to the saturated zone (60-70 cm in CMB; 30-40 and 60-70 cm in QTP). For fungi, Ascomycota, Ciliophora and Basidiomycota were the most abundant phyla in both sites, with decreasing Ciliophora abundance down to the saturated zone. The α-diversity of both bacterial and fungal showed a decreasing trend with depth in QTP, with the largest diversity occurring at the depth of 30-40 cm in CMB. Regardless of sampling sites, the bacterial communities at the depth of 60-70 cm were more similar than the other depths. The fungal community was clustered into two groups, corresponding to two sampling sites. The variation in fungal community with depth was larger in QTP than in CBM. The predicted abundances of KEGG orthologs (KOs) assigned to the metabolism of amino acid, lipid and xenobiotics, as well as environmental adaptation, were decreased with depth in CBM, with energy metabolism showing the opposite trend. In contrast, the KO abundances of amino acid and lipid metabolism and environmental adaptation were the highest in the middle layer (30-40 cm) in QTP, where the KO abundance of energy metabolism was the lowest. In general, the difference in predicted metagenome functioning between sites was less obvious than between depths. These results highlight the important role of hydrology in shaping the microbial community in minerotrophic peatlands. The effect of environmental drivers on microbial diversity and functioning may be mediated by shifting in hydrological dynamics (e.g. land use change and desiccation) which should be considered under future global change condition.
NASA Astrophysics Data System (ADS)
Beck, Pierre; Maturilli, A.; Garenne, A.; Vernazza, P.; Helbert, J.; Quirico, E.; Schmitt, B.
2018-10-01
In order to determine the controls on the reflectance spectra of hydrated carbonaceous chondrites, reflectance spectra were measured for a series of samples with well-determined mineralogy, water-content, and thermal history. This includes 5 CR chondrites, 11 CM chondrites, and 7 thermally metamorphosed CM chondrites. These samples were characterized over the 0.35-150 μm range by reflectance spectroscopy in order to cover the full spectral range accessible from ground based observation, and that will be determined in the near-future by the Hayabusa-2 and Osiris-REx missions. While spectra show absorption features shortward of 35 μm, no strong absorption bands were identified in this suite of samples longward of 35 μm. This work shows that the 0.7-μm band observed in hydrated carbonaceous chondrites is correlated with the total water content as well as with the band depth at 2.7 μm, confirming the suggestion that they are related to Mg-rich, Fe-bearing phyllosilicates. A feature at 2.3 μm, diagnostic of such phyllosilicates was found for all samples with a detectable 0.7-μm band, also indicative of Mg-rich phyllosilicates. A strong variability is found in the shape of the 3-μm band among CM chondrites, and between CM, CR and thermally metamorphosed CM chondrites. Heavily altered CM chondrites show a single strong band around 2.72 μm while more thermally metamorphosed CM samples show an absorption band at higher wavelength. The CR chondrite GRO 95577 has a 3-μm feature very similar to those of extensively altered CM chondrites while other CR chondrite rather shows goethite-like signatures (possibly due to terrestrial weathering of metals). Thermally metamorphosed CM chondrites all have 3-μm features, which are not purely due to terrestrial adsorbed water. The band shape ranges from heavily altered CM-like to goethite-like. The overall reflectance was found to be significantly higher for CR chondrites than for CM chondrites. This is also true for the hydrated CR chondrite GRO 95577 whose reflectance spectrum is almost identical to spectra obtained for CM chondrites except that it is brighter by about 40% in the visible. Another possibility to distinguish hydrated CM from hydrated CR chondrites is to use the combination of band depths at 0.7 and 2.3 μm. When comparing the spectra obtained with Cg and Cgh spectral end member, it is found that the band depth determined for hydrated chondrites (0.7 and 2.3 μm) are always higher than calculated for these spectral endmembers. If one considers only asteroids with unambiguous hydration detection, band depth at 0.7 μm is of similar value to those measured for hydrated carbonaceous chondrites.
Accumulation, Release, and Solubility of Arsenic, Molybdenum, and Vanadium in Wetland Sediments
Fox, P.M.; Doner, H.E.
2003-01-01
This study was undertaken to determine the fate of As, Mo, and V (trace elements, TEs) in the sediments of a constructed wetland in use for the remediation of potentially toxic trace element-contaminated agricultural drainwater. After three years of wetland operation, sediment cores were collected to determine changes in TE concentrations as a function of depth and the effects of varying water column depth. All TE concentrations were highest in the top 2 to 4 cm and decreased with depth. Molybdenum accumulated in the wetland sediments, up to levels of 32.5 ?? 4.6, 30.2 ?? 8.9, and 59.3 ?? 26.1 mg kg-1 in the top 1 cm of sediment at water depths of 15, 30, and 60 cm, respectively. In the top 2 cm of sediment, As accumulated (28.2 ?? 3.0 mg kg-1) only at the 60-cm water depth. Below 2 cm, as much as 10 mg kg-1 of As was lost from the sediment at all water depths. In most cases, V concentrations decreased in the sediment. In this wetland system, the lowest redox potentials were found near the sediment surface and increased with depth. Thus, in general As, Mo, and V concentrations in the sediment were highest under more reducing conditions and lowest under more oxidizing conditions. Most of the accumulated Mo (73%) became water soluble on drying of samples. This has important implications for systems undergoing changes in redox status; for instance, if these wetland sediments are dried, potentially large amounts of Mo may be solubilized.
NASA Astrophysics Data System (ADS)
Stone, M.; Hockaday, W. C.; Plante, A. F.
2014-12-01
Tropical forests are the largest terrestrial carbon (C) sink, and tropical forest soils contribute disproportionately to the poorly-characterized deep soil C pool. The goal of this study was to evaluate how carbon chemistry and stability change with depth in tropical forest soils formed on two contrasting parent materials. We used soils from pits excavated to 140 cm depth that were stratified across two soil types (Oxisols and Inceptisols) at the Luquillo Critical Zone Observatory in northeast Puerto Rico. We used 13C nuclear magnetic resonance (NMR) spectroscopy to characterize soil C chemistry and differential scanning calorimetry (DSC) coupled with evolved gas analysis (CO2-EGA) to evaluate the thermal stability of soil C during ramped combustion. Thirty-four samples with an initial C concentration ≥1% were chosen from discrete depth intervals (0, 30, 60, 90 & 140 cm) for 13C NMR analysis, while DSC was performed on 122 samples that included the NMR sample set and additional samples at 20, 50, 80 and 110 cm depth. Preliminary 13C NMR results indicate higher alkyl : O-alkyl ratios and an enrichment of aliphatic and proteinaceous C with depth, compared with greater aromatic and carbohydrate signals in surface soils. The energy density of soil C (J mg-1 C) also declined significantly with depth. In Oxisols, most CO2 evolution from combustion occurred around 300ºC, while most CO2 evolution occurred at higher temperatures (400-500ºC) in Inceptisols. Our findings suggest soil C is derived primarily of plant biomolecules in surface soils and becomes increasingly microbial with depth. Soil matrix-mediated differences in C transport and preservation may result in differences in C chemistry between the two soil types and a more thermally labile C pool in the Oxisols. We suggest that energy-poor substrates, combined with potentially stronger organo-mineral interactions in subsoils, may explain the long-term stability of deep C in highly weathered tropical soils.
Transport of atrazine and dicamba through silt and loam soils
Tindall, James A.; Friedel, Michael J.
2016-01-01
The objectives of this research were to determine the role of preferential flow paths in the transport of atrazine (2-chloro-4-(ethylamino)-6-(isopropylamino)-s-triazine) and dicamba (3-6-dichloro-2-methoxybenzoic acid) through silt and loam soils overlying the High Plains aquifer in Nebraska. In a previous study, 3 of 6 study areas demonstrated high percentages of macropores; those three areas were used in this study for analysis of chemical transport. As a subsequent part of the study, 12 intact soil cores (30-cm diameter by 40-cm height), were excavated sequentially, two from each of the following depths: 0-40cm and 40-80cm. These cores were used to study preferential flow characteristics using dye staining and to determine hydraulic properties. Two undisturbed experimental field plots, each with a 3-m2 surface area, were installed in three study areas in Nebraska. Each was instrumented with suction lysimeters and tensiometers at depths of 10cm to 80cm in 10-cm increments. Additionally, each plot was planted with corn (Zea mays). A neutron probe access tube was installed in each plot to determine soil w ater content at 15-cm intervals. All plots were enclosed w ith a raised frame (of 8-cm height) to prevent surface runoff. All suction lysimeters were purged monthly for three months and were sampled immediately prior to pre-plant herbicide application to obtain background chemical concentrations. Atrazine and dicamba moved rapidly through the soil, but only after a heavy rainfall event, probably owing to the presence of preferential flow paths and lack of microbial degradation in these soil areas. Staining of laboratory cores showed a positive correlation between the percent area stained by depth and the subsequent breakthrough of Br- in the laboratory and leaching of field-applied herbicides owing to large rainfall events. Suction lysimeter samples in the field showed increases in concentrations of herbicides at depths where laboratory data indicated greater percentages of what appeared to be preferential flow paths. Concentrations of atrazine and dicamba exceeding 0.30 and 0.05µg m1-1 were observed at depths of 10-30cm and 50-70cm after two months following heavy rainfall events. It appears from the laboratory experiment that preferential flow paths were a significant factor in transport of atrazine and dicamba.
Depositional history of the Apollo 16 deep drill core
NASA Technical Reports Server (NTRS)
Gose, W. A.; Morris, R. V.
1977-01-01
Ferromagnetic resonance and magnetic hysteresis loop measurements were performed on 212 samples from the Apollo 16 deep drill core. The total iron content is generally uniform with a mean value of 5.7 plus or minus 0.9 wt%. The soils range in maturity from immature to mature. Two major contacts were observed. The contact at 13 cm depth represents a fossil surface whereas the contact at 190 cm depth has no time-stratigraphic significance. The data suggest that the core section below 13 cm depth was deposited in a single impact event and subjected to meteoritic gardening for about 450 m.y. However, our data do not preclude deposition by a series of closely spaced events. About 50 m.y. ago, the top 13 cm were added. Comparison with the Apollo 16 double drive tube 60009/60010 does not yield any evidence for a stratigraphic correlation with the deep drill core.
NASA Astrophysics Data System (ADS)
Inisheva, L. I.; Szajdak, L.
2009-04-01
Mires, or peatlands belong to the wetlands ecosystems where carbon is bounded in primary production and deposited as peat in water saturated, anoxic conditions. In those conditions, the rate of the supply of new organic matter has exceeded that the decomposition, resulting in carbon accumulation. Place of sampling belongs to an oligotrophic landscapes of the river Klyuch basin in spurs of Vasyugan mire. The catchment represents reference system for Bokchar swampy area (political district of Tomsk region). Landscape profile crosses main kinds of swampy biogeocoenosis (BGC) toward the mire center: paludal tall mixed forest, pine undershrub Sphagnum (high riam, trans-accumulative part of a profile, P2), pine-undershrub Sphagnum (low riam, transit part, P3), sedge-moss swamp (eluvial part, P5). The latter represents an eluvial part of a slope of watershed massif where it is accomplished discharge of excess, surface, soil-mire waters. The depth of peat deposit of sedge-moss swamp reaches 2,5m. To the depth of 0,6m there is a layer of Sphagnum raised bog peat, then it is a mesotrophic Scheuchzeria Sphagnum layer and at the bottom there is a thick layer of low-mire horsetail peat. The samples of peats were taken from two places (P2 and P3), both from the depth 0-75 cm of the great Vasyugan Mire. These materials represent (P2) Sphagnum fuscum peat (ash content ranged from 10.8 to 15.1%), but samples P3 belong to low-moor sedge peat (ash content ranged from 4.5-4.8%). The differences in water level, redox potential, pH, degree of degradation, bulk density, number of microorganisms, activity of enzymes, different kinds of nitrogen and humic substances were studied in two different peat soils characterized by different type of peat. In general in P2 the redox potential changed from 858 to /-140/ mV, higher activity of xanthine oxidase and peroxidase, different kinds of microorganisms (ammonifing bacteria and cellulose decomposing microorganisms) and different kinds of nitrogen (mineral, easily hydrolysable, hardly hydrolysable and non-hydrolyzable), bitumines, 3 fractions of humic acids and 3 fractions of fulvic acids were determined in the deep 0-25 cm than in 50-75 cm. The ratio HA/FA in the depth 0-25 cm was equal to from 1.87, but in the depth 50-75 cm was equal to 7.66. Contrary was observed for P3. For this peat with the increase of the deep of sampling the decrease of total nitrogen, activity of enzymes (xanthine oxidase and peroxidase) is connected with the changes of Fe+2/Fe+3 and lower difference of redox potential than in P2. The ratio HA/FA in the depth 0-25 cm was equal to 0.56, but in the depth 50-70 cm was equal to 0.84.
NASA Astrophysics Data System (ADS)
Lark, R. M.; Rawlins, B. G.; Lark, T. A.
2014-05-01
The LUCAS Topsoil survey is a pan-European Union initiative in which soil data were collected according to standard protocols from 19 967 sites. Any inference about soil variables is subject to uncertainty due to different sources of variability in the data. In this study we examine the likely magnitude of uncertainty due to the field-sampling protocol. The published sampling protocol (LUCAS, 2009) describes a procedure to form a composite soil sample from aliquots collected to a depth of between approximately 15-20. A v-shaped hole to the target depth is cut with a spade, then a slice is cut from one of the exposed surfaces. This methodology gives rather less control of the sampling depth than protocols used in other soil and geochemical surveys, this may be a substantial source of variation in uncultivated soils with strong contrasts between an organic-rich A-horizon and an underlying B-horizon. We extracted all representative profile descriptions from soil series recorded in the memoir of the 1:250 000-scale map of Northern England (Soil Survey of England and Wales, 1984) where the base of the A-horizon is less than 20 cm below the surface. The Soil Associations in which these 14 series are significant members cover approximately 17% of the area of Northern England, and are expected to be the mineral soils with the largest organic content. Soil Organic Carbon content and bulk density were extracted for the A- and B-horizons, along with the thickness of the horizons. Recorded bulk density, or prediction by a pedotransfer function, were also recorded. For any proposed angle of the v-shaped hole, the proportions of A- and B-horizon in the resulting sample may be computed by trigonometry. From the bulk density and SOC concentration of the horizons, the SOC concentration of the sample can be computed. For each Soil Series we drew 1000 random samples from a trapezoidal distribution of angles, with uniform density over the range corresponding to depths 15-20 cm and zero density for angles corresponding to depths larger than 21 cm or less than 14 cm. We computed the corresponding variance of sample SOC contents. We found that the variance in SOC determinations attributable to variation in sample depth for these uncultivated soils was of the same order of magnitude as the estimate of the subsampling + analytical variance component (both on a log scale) that we previously computed for soils in the UK (Rawlins et al., 2009). It seems unnecessary to accept this source of uncertainty, given the effort undertaken to reduce the analytical variation which is no larger (and often smaller) than this variation due to the field protocol. If pan-European soil monitoring is to be based on the LUCAS Topsoil survey, as suggested by an initial report, uncertainty could be reduced if the sampling depth was specified to a unique depth, rather than the current depth range. LUCAS. 2009. Instructions for Surveyors. Technical reference document C-1: General implementation, Land Cover and Use, Water management, Soil, Transect, Photos. European Commission, Eurostat. Rawlins, B.G., Scheib, A.J., Lark, R.M. & Lister, T.R. 2009. Sampling and analytical plus subsampling variance components for five soil indicators observed at regional scale. European Journal of Soil Science 60, 740-747
Investigation of ultrashort-pulsed laser on dental hard tissue
NASA Astrophysics Data System (ADS)
Uchizono, Takeyuki; Awazu, Kunio; Igarashi, Akihiro; Kato, Junji; Hirai, Yoshito
2007-02-01
Ultrashort-pulsed laser (USPL) can ablate various materials with precious less thermal effect. In laser dentistry, to solve the problem that were the generation of crack and carbonized layer by irradiating with conventional laser such as Er:YAG and CO II laser, USPL has been studied to ablate dental hard tissues by several researchers. We investigated the effectiveness of ablation on dental hard tissues by USPL. In this study, Ti:sapphire laser as USPL was used. The laser parameter had the pulse duration of 130 fsec, 800nm wavelength, 1KHz of repetition rate and the average power density of 90~360W/cm2. Bovine root dentin plates and crown enamel plates were irradiated with USPL at 1mm/sec using moving stage. The irradiated samples were analyzed by SEM, EDX, FTIR and roughness meter. In all irradiated samples, the cavity margin and wall were sharp and steep, extremely. In irradiated dentin samples, the surface showed the opened dentin tubules and no smear layer. The Ca/P ratio by EDX measurement and the optical spectrum by FTIR measurement had no change on comparison irradiated samples and non-irradiated samples. These results confirmed that USPL could ablate dental hard tissue, precisely and non-thermally. In addition, the ablation depths of samples were 10μm, 20μm, and 60μm at 90 W/cm2, 180 W/cm2, and 360 W/cm2, approximately. Therefore, ablation depth by USPL depends on the average power density. USPL has the possibility that can control the precision and non-thermal ablation with depth direction by adjusting the irradiated average power density.
Bottomley, Peter J.; Dughri, Muktar H.
1989-01-01
Bacterial cells small enough to pass through 0.4-μm-pore-size filters made up 5 to 9% of the indigenous bacterial population in 0- to 20-cm-depth samples of Abiqua silty clay loam. Within the same soil samples, cells of a similar dimension were stained with fluorescent antibodies specific to each of four antigenically distinct indigenous serogroups of Rhizobium leguminosarum bv. trifolii and made up 22 to 34% of the soil population of the four serogroups. Despite the extensive contribution of small cells to these soil populations, no evidence of their being capable of either growth or nodulation was obtained. The density of soil bacteria which could be cultured ranged between 0.5 and 8.5% of the >0.4-μm direct count regardless of media, season of sampling, or soil depth. In the same soil samples, the viable nodulating populations of biovar trifolii determined by the plant infection soil dilution technique ranged between 1 and 10% of the >0.4-μm direct-immunofluorescence count of biovar trifolii. The <0.4-μm cell populations of both total soil bacteria and biovar trifolii changed abruptly between the 10- to 15-cm and 15- to 20-cm soil depth increments, increasing from 5 to 20% and from 20 to 50%, respectively, of their direct-count totals. The increase in density of the small-cell population corresponded to a significant increase in soil bulk density (1.07 to 1.21 g cm−3). The percent contribution of the <0.4-μm direct count to individual serogroup totals increased with soil depth by approximately 2-fold (39 to 87%) for serogroups 17 and 21 and by 12-fold (6 to 75%) for serogroups 6 and 36. PMID:16347896
Mitigation of Methane and Odor using a Pilot-Scale Engineered Biocover at a Landfill, South Korea
NASA Astrophysics Data System (ADS)
Bomin, K.; O, G. C.; Ryu, H. W.; Jeon, J. M.; Cho, K. S.
2016-12-01
Landfill is an important anthropogenic source of methane (CH4) and odorous gases. In South Korea, 37% (0.5 Tg/y) of annual anthropogenic CH4 emissions come from landfills, which represent the third largest source of anthropogenic CH4 emissions. Moreover, civil complaints on landfill odor have been gradually increased. Biocovers have been demonstrated as promising solutions to mitigate CH4 and odors from landfills. The pilot-scale biocover (10 m in length x 5 m in width x 1 m in depth) was constructed at a landfill, Gwangyang, South Korea. The mixture of soil and perlite was used as packing materials, and EG microbial agent was used as an inoculum source. Methane removal efficiencies were 21% 72% from Feburary to May. Based on the dilution-to-threshold ratios derived by the air dilution sensory test, the removal efficiencies for complex odor were ranged from 95% to 99%. The packing materials of biocover were sampled from each of the following depth intervals: 0-15 cm, 15-30 cm, and 30-50 cm, and CH4 and DMS degradation rates were measured in serum bottles experiment. CH4 and DMS average degradation rates were the fastest in the 15-30 cm depth. Average degradation rates of CH4 and DMS in the 15-30 cm depth were 208±2.68 and 82±3.04 μg·g dry soil-1·h-1, respectively. Specific degradation rate were calculated excluding the lag time. CH4 specific degradation rate was the fastest in the 0-15 cm depth (329±14.45 μg·g dry soil-1·h-1), while DMS specific degradation rate was the fastest in the 30-50 cm depth (106±6.93 μg·g dry soil-1·h-1). The filling materials of biocover were sampled during winter, spring and summer. And three samples were examined bacterial communities by 16S rRNA pyrosequencing analysis. In order to clarify the relationship between the community structures and CH4/odor concentration, network analysis using extended local similarity analysis (eLSA) was also conducted. According to a phylogenic analysis, Methylobacter (40.4 42.1%) and Flavobacterium (20.2 38.2%) were the most prevalent species in the pilot-scale biocover. Methylobacter (Methanotrophics of Type I) are responsible for methane oxidation and can be identified in the biocover.
NASA Astrophysics Data System (ADS)
Domenech, Marisa; Castro Franco, Mauricio; Costa, Jose Luis; Aparicio, Virginia
2017-04-01
Apparent soil electrical conductivity (ECa) has been used to capture soil data in several Argentinean Pampas locations. The aim of this study was to generate digital soil mapping on the basis of understanding the relation among ECa and soil properties in three farming fields of the southeast Buenos Aires province. We carried out a geostatistical analysis using ECa data obtained at two depths 0-30cm (ECa_30cm) and 0-90cm (ECa_90cm). Then, two zones derived from ECa measurements were delimited in each field. A soil-sampling scheme was applied in each zone using two depths: 0-30cm and 30-90cm. Texture, Organic Matter Content (OMC), cation-exchange capacity (CEC), pH, saturated paste electrical conductivity (ECe) and effective depth were analyzed. The relation between zones and soil properties were studied using nested factor ANOVA. Our results indicated that clay content and effective depth showed significant differences among ECa_30 zones in all fields. In Argentine Pampas, the presence of petrocalcic horizons limits the effective soil depth at field scale. These horizons vary in depth, structure, hardness and carbonates content. In addition, they influence the spatial pattern of clay content. The relation among other physical and chemical soil properties was not consistent. Two soil unit maps were delimited in each field. These results might support irrigation management due to clay content and effective depth would be controlling soil water storage. Our findings highlight the high accuracy use of soil sensors in developing digital soil mapping at field scale, irrigation management zones, precision agriculture and hydrological modeling in Pampas region conditions.
The analysis of soil characteristics near the animal feed and fertiliser mill using the Bartington
NASA Astrophysics Data System (ADS)
Azhari, Adinda Syifa; Agustine, Eleonora; Fitriani, Dini
2017-07-01
Industrial activities have the potential to make pollution in agricultural land, the waste contains poisonous material and it is dangerous for the environment. In general, waste from factory is dumped directly into the river, but in the current study an object that is going to be conscientious is soil on around mill. There are three sampling sites are around fertilizer plants, feed mills and original uncontaminated soil. This research has been conducted to assess the impact of pollution resulting from the two mills for the environment. Physical parameter that used is magnetic susceptibility. Sampling was conducted using the method of magnetic susceptibility of rock to see the value of low frequency (lf) and shows Frequency Dependent (fd%) using the MS2B Bartington. The results from this study is at a location close to the fertilizer plant at a depth of 0-5 cm has a value susceptibility low frequency ( lf)=187.1 - 494.8, fd (%)=1.37 - 2:46, at a depth of 6-10 cm susceptibility value of low frequency (lf)=211 - 832.7,fd (%)=1.04 - 5.37. Results in the area of animal feed mill at a depth of 0-5 cm value susceptibility low frequency (lf)=111.9 - 325.7, fd (%)=0.8 - 3.57, at a depth of 6-10 cm value susceptibility low frequency (lf)=189.2 to 386.8,fd (%)=0.33 - 3.7. Results in the original soil at a depth of 0-5 cm susceptibility value of low frequency (lf)=1188.7 - 2237.8,fd (%)=2.75 - 4.65, at a depth of 6-10 cm value susceptibility low frequency (lf)=977.7 - 2134.7,fd (%)=3.06 - 6.21. The highest value was in the arealf original, shows the area has a high mineral content andlf lows were in the area near the factory fodder it is caused by high pollution, resulting in lower mineral content in the soil.
Radioactivities in returned lunar materials
NASA Technical Reports Server (NTRS)
1972-01-01
The Ar37, Ar39, and H3 were measured at four depths (from 0 to 19.5 cm) of the deep core from Apollo 16 and in four other Apollo 16 samples. The Ar37 increased steadily from 40 dpm/kg at the top of the core to 68 dpm/kg at 19-cm depth. The comparison of the Ar37 in the core with that in rock 15555 shows that the solar flare at the time of the Apollo 16 mission was approximately an order of magnitude less intense than solar flares of 24 January 1971 and 2 November 1969, which occurred before the Apollo 14 and 12 missions. The Ar39 activities in the top 19 cm of the deep core varied little with depth. Because the Apollo 16 samples have a much higher Ca content and much lower Fe and Ti contents than do the documented rocks from previous missions, the Ar39 in the Fe, Ca, and K can be determined from Ar39 measurements on lunar material if a Ti cross section is assumed.
Atmospheric Deposition of Heavy Metals in Soil Affected by Different Soil Uses of Southern Spain
NASA Astrophysics Data System (ADS)
Acosta, J. A.; Faz, A.; Martínez-Martínez, S.; Bech, J.
2009-04-01
Heavy metals are a natural constituent of rocks, sediments and soils. However, the heavy metal content of top soils is also dependent on other sources than weathering of the indigenous minerals; input from atmospheric deposition seems to be an important pathway. Atmospheric deposition is defined as the process by which atmospheric pollutants are transferred to terrestrial and aquatic surfaces and is commonly classified as either dry or wet. The interest in atmospheric deposition has increased over the past decade due to concerns about the effects of deposited materials on the environment. Dry deposition provides a significant mechanism for the removal of particles from the atmosphere and is an important pathway for the loading of heavy metals into the soil ecosystem. Within the last decade, an intensive effort has been made to determine the atmospheric heavy metal deposition in both urban and rural areas. The main objective of this study was to identification of atmospheric heavy metals deposition in soil affected by different soil uses. Study area is located in Murcia Province (southeast of Spain), in the surroundings of Murcia City. The climate is typically semiarid Mediterranean with an annual average temperature of 18°C and precipitation of 350 mm. In order to determine heavy metals atmospheric deposition a sampling at different depths (0-1 cm, 1-5 cm, 5-15 cm and 15-30 cm) was carried out in 7 sites including agricultural soils, two industrial areas and natural sites. The samples were taken to the laboratory where, dried, passed through a 2 mm sieve, and grinded. For the determination of the moisture the samples were weighed and oven dried at 105 °C for 24 h. The total amounts of metals (Pb, Cu, Pb, Zn, Cd, Mn, Ni and Cr) were determined by digesting the samples with nitric/perchoric acids and measuring with ICP-MS. Results showed that zinc contamination in some samples of industrial areas was detected, even this contamination reaches 30 cm depth; thus it is not possible to conclude that the actual contamination by zinc is due to atmospheric deposition or spill. However, some samples in this same area present lightly higher zinc concentration in topsoil than in subsoil indicating a cursory atmospheric deposition. Regarding to lead, one of the industrial areas showed a very active atmospheric deposition, with concentrations higher than 900 mg/kg in topsoil decreasing until less than 10 mg/kg to 30 cm depth. Oppositely, the lead concentration in natural soil is constant in the profile. On the other hand, the range of cadmium concentrations in the different depths of the profiles was, generally, low. Only one sample from the industrial area shows high concentration in the first centimetre of soil, decreasing quickly with the depth, supporting the hypothesis that the atmospheric deposition is the main pathway of cadmium contamination. Studding the copper concentration, only in agricultural soil atmospheric deposition is observed, probably due to application of pesticides. Oppositely to the rest of metals, manganese increases its concentration with the depth in natural soil, probably due to that the parent material (metamorphic rock) is rich in this metal. In the case of chromium has not been detected atmospheric deposition in any sampling point. Finally, only one sample located at the industrial area, nickel concentration shows a higher level in topsoil than subsoil, indicating atmospheric deposition. Acknowledgements: to "Fundación Séneca" of "Comunidad Autónoma de Murcia" for its financial support
NASA Technical Reports Server (NTRS)
Baird, A. K.; Castro, A. J.; Clark, B. C.; Toulmin, P., III; Rose, H., Jr.; Keil, K.; Gooding, J. L.
1977-01-01
Ten samples of Mars regolith material (six on Viking Lander 1 and four on Viking Lander 2) have been delivered to the X ray fluorescence spectrometers as of March 31, 1977. An additional six samples at least are planned for acquisition in the remaining Extended Mission (to January 1979) for each lander. All samples acquired are Martian fines from the near surface (less than 6-cm depth) of the landing sites except the latest on Viking Lander 1, which is fine material from the bottom of a trench dug to a depth of 25 cm. Several attempts on each lander to acquire fresh rock material (in pebble sizes) for analysis have yielded only cemented surface crustal material (duricrust). Laboratory simulation and experimentation are required both for mission planning of sampling and for interpretation of data returned from Mars. This paper is concerned with the rationale for sample site selections, surface sampler operations, and the supportive laboratory studies needed to interpret X ray results from Mars.
Wavelength-dependent penetration depth of near infrared radiation into cartilage.
Padalkar, M V; Pleshko, N
2015-04-07
Articular cartilage is a hyaline cartilage that lines the subchondral bone in the diarthrodial joints. Near infrared (NIR) spectroscopy is emerging as a nondestructive modality for the evaluation of cartilage pathology; however, studies regarding the depth of penetration of NIR radiation into cartilage are lacking. The average thickness of human cartilage is about 1-3 mm, and it becomes even thinner as OA progresses. To ensure that spectral data collected is restricted to the tissue of interest, i.e. cartilage in this case, and not from the underlying subchondral bone, it is necessary to determine the depth of penetration of NIR radiation in different wavelength (frequency) regions. In the current study, we establish how the depth of penetration varies throughout the NIR frequency range (4000-10 000 cm(-1)). NIR spectra were collected from cartilage samples of different thicknesses (0.5 mm to 5 mm) with and without polystyrene placed underneath. A separate NIR spectrum of polystyrene was collected as a reference. It was found that the depth of penetration varied from ∼1 mm to 2 mm in the 4000-5100 cm(-1) range, ∼3 mm in the 5100-7000 cm(-1) range, and ∼5 mm in the 7000-9000 cm(-1) frequency range. These findings suggest that the best NIR region to evaluate cartilage with no subchondral bone contribution is in the range of 4000-7000 cm(-1).
NASA Astrophysics Data System (ADS)
Korobova, Elena; Romanov, Sergey; Beriozkin, Victor; Dogadkin, Nikolay
2016-04-01
The main goal of the study performed in 2014-2015 at the test site located in the abandoned zone of the Iput river basin was to study detailed patterns of Cs-137 redistribution along the terrace slope and the adjacent floodplain depression almost 30 years after the Chernobyl accident. Cs-137 surface activity was measured with the help of modified field gamma-spectrometer Violinist III (USA) in a grid 2 m x 2 m within the test plot sized 10 m x 24 m. Gamma-spectrometry was accompanied by topographical survey. Cs-137 depth distribution was studied by soil core sampling in increments of 2 cm and 5 cm down to 40 cm depth. Cs-137 activity in soil samples was measured in laboratory conditions by Nokia gamma-spectrometer. The results showed distinct natural dissimilarity of Cs-137 surface activity within the undisturbed soil of slope. Cs-137 depth migration in successive soil cores marked different patterns correlated with the position in relief. In particular cores Cs-137 depth variation correlated with water regime that shows that the processes of secondary distribution of Cs-137 along the slope obviously depend upon water migration. The finding is important for understanding of regularities in patterns of radiocesium spatial distribution.
Dissolved organic carbon in soil solution of peat-moorsh soils on Kuwasy Mire
NASA Astrophysics Data System (ADS)
Jaszczyński, J.; Sapek, A.
2009-04-01
Key words: peat-moorsh soils, soil solution, dissolved organic carbon (DOC), temperature of soil, redox potential. The objective this study was the dissolved organic carbon concentration (DOC) in soil solution on the background of soil temperature, moisture and redox potential. The investigations were localized on the area of drained and agricultural used Kuwasy Mire, which are situated in the middle basin of Biebrza River, in North-East Poland. Research point was placed on a low peat soil of 110 cm depth managed as extensive grassland. The soil was recognized as peat-moorsh with the second degree of the moorshing process (with 20 cm of moorsh layer). The ceramic suction cups were installed in three replications at 30 cm depth of soil profile. The soil solution was continuously sampled by pomp of the automatic field station. The successive samples comprised of solution collected at the intervals of 21 days. Simultaneously, at the 20, 30 and 40 cm soil depths the measurements of temperature and determination of soil moisture and redox potential were made automatically. The mean twenty-four hours data were collected. The concentrations of DOC were determined by means of the flow colorimeter using the Skalar standard methods. Presented observations were made in 2001-2006. Mean DOC concentration in soil solution was 66 mg.dm-3 within all research period. A significant positive correlation between studied compound concentration and temperature of soil at 30 cm depth was observed; (correlation coefficient - r=0.55, number of samples - n=87). The highest DOC concentrations were observed during the season from July to October, when also a lower ground water level occurred. The DOC concentration in soil solution showed as well a significant correlation with the soil redox potential at 20 cm level. On this depth of describing soil profile a frontier layer between moorshing layer and peat has been existed. This layer is the potentially most active in the respect to biochemical transformation. On the other hand it wasn't possible to shown dependences on the DOC concentration from soil moisture. That probably results from a huge water-holding capacity of these type of peat soils, which are keeping a high moisture content even at a long time after decreasing of the groundwater table.
Small scale variability of transport and composition of dissolved organic matter in the subsoil
NASA Astrophysics Data System (ADS)
Leinemann, T.; Mikutta, R.; Kalbitz, K.; Guggenberger, G.
2016-12-01
Dissolved organic matter (DOM) is the most mobile fraction of carbon in the soil and connects the carbon-rich topsoil with the subsoil where translocated OM may get stabilized. The water flux in soil is highly heterogeneous, both temporarily and spatially. We, therefore, hypothesize that at high flow velocities, DOM can bypass possible mineral binding sites and microorganisms, thus leading to less degraded DOM under high flow velocities. To address this question, we investigated water and DOM fluxes in situ using segmented suction plates (4 x 4 segments on 24 x 24 cm) installed into three soil observatories at three depths (10 cm, 50 cm, and 150 cm) in a Dystric Cambisol under Beech (Fagus sylvatica) near Hannover, Germany. To follow the transport of carbon from the litter layer through the soil, an in situ 13C-labelling experiment has been conducted in January 2015. Concentration of dissolved organic carbon (DOC) and DOM composition was analyzed using high temperature combustion and photometric methods. The amount of transported DOC decreased by ca. 80 % from 10 to 50 cm depth and by 40 % from 50 to 150 cm depth. Different flow patterns existed at the centimeter scale, which were stable over time for individual suction plate segments. The specific UV280 nm absorbance of DOM decreased with increasing soil depth. This indicates a selective loss of aromatic compounds. The influence of different flow regimes on the DOM quality became apparent in the subsoil samples (>50 cm depth) showing a correlation of increasing UV280 nm absorbance with increasing water flux. The 13C-labelling experiment showed that after 10 month just 0.3 % of the DOC in 150 cm depth was derived from fresh litter. The transport of leaf litter carbon seemed to be controlled by the flow regime as the DO13C ratio and the water flux correlated positively. This can be an indication for the importance of preferential flow on carbon transport to the subsoil.
USGS/EPA collection protocol for bacterial pathogens in soil
Griffin, Dale W.; Shaefer, F.L.; Charlena Bowling,; Dino Mattorano,; Tonya Nichols,; Erin Silvestri,
2014-01-01
This Sample Collection Procedure (SCP) describes the activities and considerations for the collection of bacterial pathogens from representative surface soil samples (0-5 cm). This sampling depth can be reached without the use of a drill rig, direct-push technology, or other mechanized equipment. This procedure can be used in most soil types but is limited to sampling at or near the ground surface. This protocol has components for two different types of sampling applications: (1) typical sampling, when there is no suspicion of contamination (e.g., surveillance or background studies); and (2) in response to known or suspected accidental contamination (e.g., the presence of animal carcasses). This protocol does not cover sampling in response to a suspected bioterrorist or intentional release event. Surface material is removed to the required depth (0-5 cm) and clean trowel or 50 ml sample tube is used to collect the sample. Sample containers are sealed, bagged, and shipped to the laboratory for analysis. Associated documentation, including a Field Data Log and Chain-of-Custody are also included in this document.
Growth and Electrical and Far-Infrared Properties of Wide Electron Wells in Semiconductors
1994-04-15
uniform. cmw where the barrier doping is 5 X 10" 6 cm -’, the well 300 K true electron ,profiles are shown for four dfiffer- depth calculated using Eq...in some samples. The mobility vs temperature characteristic of a where y- 0 . 7 6 . Mobility decreases from -9.4x 10’ cm 2/ sample of n-GaAs bulk doped...x 10 14 cm -3 -wt size effect scattering. Points show experimental data (for sample PBW 3 1). II I I 0 2 O 4 O 6 ITm:’au K I 14 ujanmm Hall eff I At
Total Storage and Landscape Partitioning of Soil Organic Carbon and Phytomass Carbon in Siberia
NASA Astrophysics Data System (ADS)
Siewert, M. B.; Hanisch, J.; Weiss, N.; Kuhry, P.; Hugelius, G.
2014-12-01
We present results of detailed partitioning of soil organic carbon (SOC) and phytomass carbon (PC) from two study sites in Siberia. The study sites in the Tundra (Kytalyk) and the Taiga (Spasskaya Pad) reflect two contrasting environments in the continuous permafrost zone. In total 57 individual field sites (24 and 33 per study site respectively) have have been sampled for SOC and PC along transects cutting across different land covers. In Kytalyk the sampling depth for the soil pedons was 1 m depth. In Spasskaya Pad where the active layer was significantly deeper, we aimed for 2 m depth or tried to include at least the top of the permafrost. Here the average depth of soil profiles was 152 cm. PC was sampled from 1x1 m ground coverage plots. In Spasskaya Pad tree phytomass was also estimated on a 5x5 m plot. The SOC storage was calculated separately for the intervals 0-30 cm, 30-100 cm and 100-200 cm (the latter only for Spasskaya Pad), as well as for organic layer vs. mineral soil, active layer vs. permafrost and for cryoturbated soil horizons. Landscape partitioning was performed by thematic up-scaling using a vegetation based land cover classification of very high resolution (2x2 m) satellite imagery. Non-Metric Multidimensional Scaling (NMDS) was used to explore the relationship of SOC with PC and different soil and permafrost related variables. The results show that the different land cover classes can be considered distinct storages of SOC, but that PC is not significantly related to total SOC storage. At both study sites the 30-100 cm SOC storage is more important for the total SOC storage than the 0-30 cm interval, and large portions of the total SOC are stored in the permafrost. The largest contribution comes from wetland pedons, but highly cryoturbated individual non-wetland pedons can match these. In Kytalyk the landscape partitioning of SOC mostly follows large scale geomorphological features, while in Spasskaya pad forest type also has a large influence.
Vertical distribution of three namatode species in relation to certain soil properties.
Brodie, B B
1976-07-01
Population densities of Belonolaimus longicaudatus, Pratylenchus brachyurus, and Trichodorus christiei were determined from soil samples taken weekly in Tifton, Georgia during a 14-month period (except for April and May) at 15-cm increments to a depth of 105 cm. Belonolaimus longicaudatus predominately inhabited the top 30 cm of soil that was 87-88% sand, 6-7% silt, and 5-7% clay. No specimens were found below 60 cm where the soil was 76-79% sand, 5-6% silt, and 15-19% clay. Highest population densities occurred during June through September when temperature in the top 30 cm of soil was 22-25 C and soil moisture was from 9 to 20% by volume. Pratylenchus brachyurus was found at all depths, but population densities were greatest 45-75 cm deep where the soil was 78-79% sand, 6% silt, and 15-16% clay. In the months monitored, highest population densities occurred during March, June, and December when the soil temperature 45-75 cm deep was 14-17 C and soil moisture was 22-42%. Trichodorus christiei was found at all depths, but population densities were highest 30 cm deep where the soil was 83% sand, 5% silt, and 12% clay. Highest population densities occurred during December through March when the soil temperature 30 cm deep was 11-17 C and soil moisture was 18-23%.
NASA Astrophysics Data System (ADS)
Ziadi, Noura; Morel, Christian
2017-04-01
The use of conservation tillage for crops production worldwide has increased markedly over recent years. Nutrient distributions under no-till (NT) compared with conventional moldboard tillage (CT) management in the cold, humid region of the eastern Canada need to be assessed for future placement, quantity, and type of fertilizers to efficiently match crop demands. We determined soil-profile distributions of soil total C (TC), total N (TN), and phosphate ions concentration (CP) in soil solution to a depth of 0.4 m after 23 years of continuous CT and NT management at different P fertilization rates on a clay loam soil in eastern Canada cropped with grain maize -soybean rotation. The experimental site was initiated in 1992 in southern Quebec, Canada. In August 2014, soil samples were collected at five profiles: 0 to 5, 5 to 10, 10 to 20, 20 to 30 and 30 to 40 cm under CT and NT fertilized at three P fertilizations (0 (P0), 17.5 (P0.5), and 35 (P1) kg P ha-1 applied as triple superphosphate on maize at 5 cm depth). To refine CNP stratification analysis for NT-P0 and NT-P1, supplemental soils of the 0-5 cm layer were sampled in P0 and P1 and then cutting into 5 layers of 1 cm. Different patterns for CP in relation to P fertilization under CT and NT were observed at the five profiles. The CP values did not differ significantly within ploughed layer but increased with P fertilization, e.g. 0.031, 0.066, and 0.075 mg P L-1 for P0, P0.5 and P1, respectively. Significant decline was observed in deeper depth beyond the plough. The Cp results in NT-P0 did not differ significantly to those of MP-P0. By contrast, highly significant P stratifications were observed in NT-P0.5 and NT-P1, especially marked in NT-P1 for which the CP value in 0-5 cm layer (0.35 mg P L-1) was 50 times greater than that in 30-40 cm layer (0.007 mg P L-1). To refine the C, N, and P stratifications, supplemental sampling was carried out in the 0-5 cm to cut this layer every 1 cm depth for P0 and P1. Most dramatic changes occurred within the 0-5 cm depth. The CP value in the first cm of soil (0.20 mg P L-1) was four times greater than that in the 4-5 cm layer (0.049 mg P L-1) of soil. The main reason for the large P accumulation in the first centimeter of soil is the annual return of plant residues to the soil surface. The stratification of TC and TN within the 0-5 cm layer showed similar trends irrespective of P fertilization. Under NT, the magnitude of CNP stratifications within the 0-1 cm layer to the 4-5 cm layer is equivalent to that observed in the 0-5 cm layer to the 30-40 cm layer.
Scales of snow depth variability in high elevation rangeland sagebrush
NASA Astrophysics Data System (ADS)
Tedesche, Molly E.; Fassnacht, Steven R.; Meiman, Paul J.
2017-09-01
In high elevation semi-arid rangelands, sagebrush and other shrubs can affect transport and deposition of wind-blown snow, enabling the formation of snowdrifts. Datasets from three field experiments were used to investigate the scales of spatial variability of snow depth around big mountain sagebrush ( Artemisia tridentata Nutt.) at a high elevation plateau rangeland in North Park, Colorado, during the winters of 2002, 2003, and 2008. Data were collected at multiple resolutions (0.05 to 25 m) and extents (2 to 1000 m). Finer scale data were collected specifically for this study to examine the correlation between snow depth, sagebrush microtopography, the ground surface, and the snow surface, as well as the temporal consistency of snow depth patterns. Variograms were used to identify the spatial structure and the Moran's I statistic was used to determine the spatial correlation. Results show some temporal consistency in snow depth at several scales. Plot scale snow depth variability is partly a function of the nature of individual shrubs, as there is some correlation between the spatial structure of snow depth and sagebrush, as well as between the ground and snow depth. The optimal sampling resolution appears to be 25-cm, but over a large area, this would require a multitude of samples, and thus a random stratified approach is recommended with a fine measurement resolution of 5-cm.
NASA Astrophysics Data System (ADS)
Osher, L. J.; Leclerc, L.; Wiersma, G. B.; Hess, C. T.; Guiseppe, V. E.
2006-10-01
Concentrations of Cd, Cu, Pb and Zn in sediments of Egypt Bay in Hancock County, Maine, are elevated above background levels. The source of the contamination is Cu mining that occurred in the uplands adjacent to Egypt Stream between 1877 and 1885. Egypt Stream is a tributary to Egypt Bay. Egypt Bay is part of the Taunton Bay estuary system. The Hagan Mine was one of the mines extracting metals from the sulfide deposits in Downeast Maine north of Penobscot Bay. Metal concentrations were determined using ICP-AES after sample digestion with nitric acid. Soil collected from the coarse textured mine tailings pile contained elevated concentrations of Cd, Cu, Pb and Zn, but the majority of the surface soils at the Hagan Mine site were not contaminated. Estuary sediments from the surface to 100 cm depth were collected in four locations within Egypt Bay. Below 40 cm, metal concentrations in sediments were similar to those in uncontaminated upland soils. Metal concentrations in the estuary sediments between the surface and 26 cm were above background levels. According to 210Pb dating, the sediment at 26-34 cm depth was likely to have been deposited at the time the historic mines were in operation. Concentrations of Cd, Cu, Pb, and Zn in sediment from the 32-34 cm depth interval are similar to concentrations in the upland soil sample from the mine tailings pile. Elevated Pb concentrations in sediments from the surface to 24 cm are from atmospheric Pb deposition from anthropogenic sources. Sediment in the top 10 cm of the estuary has been mixed both by the polychaete worm Nereis virens and by those harvesting the worms for sale as fish bait.
2012-01-01
Background Mangrove forests are coastal wetlands that provide vital ecosystem services and serve as barriers against natural disasters like tsunamis, hurricanes and tropical storms. Mangroves harbour a large diversity of organisms, including microorganisms with important roles in nutrient cycling and availability. Due to tidal influence, mangroves are sites where crude oil from spills farther away can accumulate. The relationship between mangrove bacterial diversity and oil degradation in mangrove sediments remains poorly understood. Results Mangrove sediment was sampled from 0–5, 15–20 and 35–40 cm depth intervals from the Suruí River mangrove (Rio de Janeiro, Brazil), which has a history of oil contamination. DGGE fingerprinting for bamA, dsr and 16S rRNA encoding fragment genes, and qPCR analysis using dsr and 16S rRNA gene fragment revealed differences with sediment depth. Conclusions Analysis of bacterial 16S rRNA gene diversity revealed changes with depth. DGGE for bamA and dsr genes shows that the anaerobic hydrocarbon-degrading community profile also changed between 5 and 15 cm depth, and is similar in the two deeper sediments, indicating that below 15 cm the anaerobic hydrocarbon-degrading community appears to be well established and homogeneous in this mangrove sediment. qPCR analysis revealed differences with sediment depth, with general bacterial abundance in the top layer (0–5 cm) being greater than in both deeper sediment layers (15–20 and 35–40 cm), which were similar to each other. PMID:22935169
Andrade, Luiza L; Leite, Deborah C A; Ferreira, Edir M; Ferreira, Lívia Q; Paula, Geraldo R; Maguire, Michael J; Hubert, Casey R J; Peixoto, Raquel S; Domingues, Regina M C P; Rosado, Alexandre S
2012-08-30
Mangrove forests are coastal wetlands that provide vital ecosystem services and serve as barriers against natural disasters like tsunamis, hurricanes and tropical storms. Mangroves harbour a large diversity of organisms, including microorganisms with important roles in nutrient cycling and availability. Due to tidal influence, mangroves are sites where crude oil from spills farther away can accumulate. The relationship between mangrove bacterial diversity and oil degradation in mangrove sediments remains poorly understood. Mangrove sediment was sampled from 0-5, 15-20 and 35-40 cm depth intervals from the Suruí River mangrove (Rio de Janeiro, Brazil), which has a history of oil contamination. DGGE fingerprinting for bamA, dsr and 16S rRNA encoding fragment genes, and qPCR analysis using dsr and 16S rRNA gene fragment revealed differences with sediment depth. Analysis of bacterial 16S rRNA gene diversity revealed changes with depth. DGGE for bamA and dsr genes shows that the anaerobic hydrocarbon-degrading community profile also changed between 5 and 15 cm depth, and is similar in the two deeper sediments, indicating that below 15 cm the anaerobic hydrocarbon-degrading community appears to be well established and homogeneous in this mangrove sediment. qPCR analysis revealed differences with sediment depth, with general bacterial abundance in the top layer (0-5 cm) being greater than in both deeper sediment layers (15-20 and 35-40 cm), which were similar to each other.
Dissolved Organic Carbon in Marginal, Damaged Peatlands: Using 14C to Understand DOC Losses
NASA Astrophysics Data System (ADS)
Luscombe, D.; Grand-Clement, E.; Garnett, M.; Anderson, K.; Gatis, N.; Benaud, P.; Brazier, R.
2013-12-01
Peatlands are widely represented throughout the world and act as an important store of carbon, as well as providing society with a range of other ecosystem services, such as drinking water or the support of rare habitats. However, the combination of historical management practices, and the predicted impact of climate change means that they are now largely under threat. In the shallow peatlands of Exmoor National Park (South West UK), peat cutting and intensive drainage in the 19th and 20th century for agricultural reclamation have changed the hydrological behaviour of the peat. This damage has dried out the upper layers, causing oxidation, erosion and vegetation change. In addition, their location on the southernmost limit of peatlands geographical extent in northern Europe makes them particularly vulnerable to the predicted changes in rainfall and temperature. Recent modelling work has shown that such marginal peatlands may disappear as early as 2050. Restoration programs are currently in place, aiming to restore the hydrological functioning of the peat. However, current dissolved organic carbon (DOC) losses from damaged peatlands are especially of concern, because of the contribution of the aquatic pathways in the C flux, and because of the impact on water quality. DOC has been shown to originate from the drainage of highly-aged organic matter. In stream waters, DOC from low flow tends to contain a larger component of older C compared to that of high flow. Both the impact of extensive drainage on where DOC is originating from and the effect of peatland restoration on this process remain poorly understood. We used 14C dating of DOC from streams and pore water, as well as from damaged peat, in order to gain a better understanding of the process and origin of DOC loss in drained shallow peatlands. This will further help us understand the potential for peatland restoration. Work was carried out in a small intensively monitored catchment in Exmoor. Samples were taken in an area of shallow peat (ca. 20-30 cm depth) drained by a medium size ditch (50 x 50 cm). Samples of DOC from stream water were taken at low and high flow during 3 separate rain events in Winter- Spring 2013 using automatic pump samplers. Samples of DOC in pore water were taken 2 m away from the ditch at 5 and 15 cm depth on two occasions. Finally, matching bulk peat samples were collected at 5 and 15 cm depth. Intensive monitoring data also provides information on water table depth and level in streams. A neighbouring pristine peat area was used as a control, and DOC pore water and bulk peat soil samples were taken at 5, 15 and 45 cm depth on two occasions. Preliminary results show that DOC lost in streams at high flow contains a greater contribution of bomb-14C compared to that at low flow (107 and 101 % modern respectively). Stream water DOC at low flow had a 14C concentration lower than that in pore water at both 5 and 15 cm depth (105 and 102% modern, respectively), suggesting that low flow stream water DOC is predominantly older than that found in pore water at depth.
Yasuhara, Moriaki; Cronin, T. M.; Martinez, Arbizu P.
2008-01-01
We report the distribution of ostracods from ???5000 m depth from the Southeast and Equatorial Atlantic Ocean recovered from the uppermost 10 cm of minimally disturbed sediments taken by multiple-corer during the R/V Meteor DIVA2 expedition M63.2. Five cores yielded the following major deep-sea genera: Krithe, Henryhowella, Poseidonamicus, Legitimocythere, Pseudobosquetina, and Pennyella. All genera are widely distributed in abyssal depths in the world's oceans and common in Cenozoic deep-sea sediments. The total number of ostracod specimens is higher and ostracod shell preservation is better near the sediment-water interface, especially at the 0-1 cm core depths. Core slices from ???5 to 10 cm were barren or yielded a few poorly preserved specimens. The DIVA2 cores show that deep-sea ostracod species inhabit corrosive bottom water near the carbonate compensation depth (CCD) even though their calcareous valves are rarely preserved as fossils in sediment cores due to postmortem dissolution. Their occurrence at great water depths may partially explain the well-known global distributions of major deep-sea taxa in the world's oceans, although further expeditions using minimal-disturbance sampling devices are needed to fill geographic gaps. ?? 2008 Elsevier Ltd. All rights reserved.
Ammonium, Nitrate, and Total Nitrogen in the Soil Water of Feedlot and Field Soil Profiles1
Elliott, L. F.; McCalla, T. M.; Mielke, L. N.; Travis, T. A.
1972-01-01
A level feedlot, located in an area consisting of Wann silt loam changing with depth to sand, appears to contribute no more NO3- nitrogen, NH4+ nitrogen, and total nitrogen to the shallow water table beneath it than an adjacent cropped field. Soil water samples collected at 46, 76, and 107 cm beneath the feedlot surface generally showed NO3- nitrogen concentrations of less than 1 μg/ml. During the summer months, soil water NO3- nitrogen increased at the 15-cm depth, indicating that nitrification took place at the feedlot surface. However, the low soil water NO3- nitrogen values below 15 cm indicate that denitrification takes place beneath the surface. PMID:16349922
Geochemistry and microbiology at gas hydrate and mud volcano sites in the black sea
NASA Astrophysics Data System (ADS)
Drews, M.; Schmaljohann, R.; Wallmann, K.
2003-04-01
We present geochemical and microbiological results which were obtained from sediments at gas hydrate and mud volcano sites in the Sorokin Trough (northern Black Sea, south east of the Crimean peninsula) at water depths of about 1800 to 2100 m during the METEOR cruise 52-1. The surface near sub-bottom accumulations of gas hydrates (occuring at depths of several meters or less beneath the sea floor) in the Black Sea are associated with numerous mud volcanos. At stations we investigated gas hydrates occurred below 10 cm to 100 cm with a significant influence on the sediment biochemistry. Analyses revealed high methane concentrations, anoxic and sulfidic conditions, a steep sulfate gradient, carbonate precipitation, and high anaerobic methane oxidation rates. In proximity of the so called Odessa mud volcano one investigated sampling station showed maximum methane oxidation rates in the depth horizon of a firm 2 cm thick carbonate crust layer, adhered to by a bacterial mat. This observation is taken to indicate that the bacteria are causing or mediating the crust formation by their anaerobic methane oxidation metabolism. The station was further characterised by two layers of gas hydrate fragments and lenses below 1 m depth. A 2 to 4 cm thick carbonate crust with attached bacterial mat from a Yalta mud vulcano sample (2124 m water depth) was investigated under the scanning electron microscope. The stiff gelatinous mat showed a dense and morphologically uniform population of rod shaped bacteria with only a few nests of coccoid cells. Purified mat material exhibited anaerobic methane oxidation activity. These mats resemble the type previously found in the shallow NW methane seep area of the Black Sea, where it covers carbonate chimneys. Samples from two sites atop the summit of the active but flat-topped Dvurechenskii mud volcano were characterised by very high methane oxidation rates (up to 563 nmol/cm3/d) at the sediment surface. Strong pore water gradients of chloride, bromide, ammonium, methane, and temperature proved the existence of a rich upward flow of warm fluids from the deeper sediment. At both stations no carbonate crusts or bacterial mats were found. The lack of hemipelagic sediments and at the same time abundance of mud breccia gives ample evidence of the recency of the mud flow.
NASA Technical Reports Server (NTRS)
Bolton, Douglas E., Jr.
1993-01-01
A castable inhibitor is applied to the aft face of the Space Shuttle Redesigned Solid Rocket Motor (RSRM) forward segment propellant grain to control propellant surface burn area. During fabrication, the propellant surface is trimmed prior to the inhibitor application. This produces a potential for small propellant chips to remain undetected on the propellant surface and contaminate the inhibitor during application. The concern was that undetected propellant chips in the inhibitor might provide a fuse path for premature propellant ignition underneath the inhibitor. To evaluate the fuse path potential, testing was performed on inhibitor samples with embedded propellant. The internal motor environment was simulated with a calibrated CO2 laser beam directed onto a sample which was placed in a 4100 kPa (600 psi) nitrogen pressurized bomb (laser bomb). The testing showed definitive results pertaining to fuse path formation. Embedded propellant chips did not autoignite until the receding heat affected inhibitor surface reached, or passed, the propellant chip. Samples with embedded propellant chips in alignment did not propagate ignition from one chip to another with separation distances as small as 0.010 cm(0.004 inc) and some as little as 0.0051 cm (0.002 in). Propellant chips with volumes approximately less than 0.025 cu cm (0.0015 cu in) (which did not propagate ignition) did not increase the inhibitor material decomposition depth more than the resulting void cavity of the burned out propellant chip. In addition, the depth of this void cavity did not increase until it was overtaken by the surrounding material decomposition depth. This was due, in part, to the retention of the protective inhibitor char layer. Samples with embedded propellant strings, whose thicknesses were below 0.023 cm (0.009 in), did not propagate ignition. Propellant string thicknesses above 0.038 cm (0.015 in) did propagate ignition. Test sample char and heat affected layer measurements and observations compared well with those from the Space Shuttle Solid Rocket Motor (SRM) Technical Evaluation Motor no. 9(TEM-9).
Park size and disturbance: impact on soil heterogeneity - a case study Tel-Aviv- Jaffa.
NASA Astrophysics Data System (ADS)
Zhevelev, Helena; Sarah, Pariente; Oz, Atar
2015-04-01
Parks and gardens are poly-functional elements of great importance in urban areas, and can be used for optimization of physical and social components in these areas. This study aimed to investigate alteration of soil properties with land usages within urban park and with area size of park. Ten parks differed by size (2 - 50 acres) were chosen, in random, in Tel-Aviv- Jaffa city. Soil was sampled in four microenvironments ((lawn, path, picnic and peripheral area (unorganized area) of each the park)), in three points and three depth (0-2, 5-10 and 10-20 cm). Penetration depth was measured in all point of sampling. For each soil sample electrical conductivity and organic matter content were determined. Averages of penetration depth drastically increased from the most disturbed microenvironments (path and picnic) to the less disturbed ones (lawn and peripheral). The maximal heterogeneity (by variances and percentiles) of penetration depth was found in the peripheral area. In this area, penetration depth increased with increasing park size, i.e., from 2.6 cm to 3.7 cm in the small and large parks, respectively. Averages of organic matter content and electrical conductivity decreased with soil depth in all microenvironments and increased with decreasing disturbance of microenvironments. Maximal heterogeneity for both of these properties was found in the picnic area. Increase of park size was accompanied by increasing of organic matter content in the upper depth in the peripheral area, i.e., from 2.4% in the small parks to 4.5% in the large ones. In all microenvironments the increasing of averages of all studied soil properties was accompanied by increasing heterogeneity, i.e., variances and upper percentiles. The increase in the heterogeneity of the studied soil properties is attributed to improved ecological soil status in the peripheral area, on the one hand, and to the high anthropogenic pressure in the picnic area, on the other. This means that the urban park offers "islands" with better ecological conditions which improve the urban system.
NASA Astrophysics Data System (ADS)
Beem-Miller, Jeffrey; Lehmann, Johannes
2017-04-01
The majority of the world's soil organic carbon (OC) stock is stored below 30 cm in depth, yet sampling for soil OC assessment rarely goes below 30 cm. Recent studies suggest that subsoil OC is distinct from topsoil OC in quantity and quality: subsoil OC concentrations are typically much lower and turnover times are much longer, but the mechanisms involved in retention and input of OC to the subsoil are not well understood. Improving our understanding of subsoil OC is essential for balancing the global carbon budget and confronting the challenge of global climate change. This study was undertaken to assess the relationship between OC stock and potential drivers of OC dynamics, including both soil properties and environmental covariates, in topsoil (0 to 30 cm) versus subsoil (30 to 75 cm). The performance of commonly used depth functions in predicting OC stock from 0 to 75 cm was also assessed. Depth functions are a useful tool for extrapolating OC stock below the depth of sampling, but may poorly model "hot spots" of OC accumulation, and be inadequate for modelling the distinct dynamics of topsoil and subsoil OC when applied with a single functional form. We collected two hundred soil cores on an arable Mollisol, sectioned into five depth increments (0-10, 10-20, 20-30, 30-50, and 50-75 cm), and performed the following analyses on each depth increment: concentration of OC, inorganic C, permanganate oxidizable carbon (POXC), and total N, as well as texture, pH, and bulk density; a digital elevation model was used to calculate elevation, slope, curvature, and soil topographic wetness index. We found that topsoil OC stocks were significantly correlated (p < 0.05) with terrain variables, texture, and pH, while subsoil OC stock was only significantly correlated with topsoil OC stock and soil pH. Total OC stock was highly spatially variable, and the relationship between surface soil properties, terrain variables, and subsoil OC stock was spatially variable as well. Hot spots of subsoil OC accumulation were correlated with higher pH (> 7.0), flat topography, a high OC to total N ratio, and a high ratio of POXC to OC. These findings suggest that at this site, topsoil OC stock is input driven, while OC accumulation in the subsoil is retention dominated. Accordingly, a new depth function is proposed that uses a linear relationship to model OC stock in topsoil and a power function to model OC stock in the subsoil. The combined depth function performed better than did negative exponential, power, and linear functions alone.
A simple procedure for estimating soil porosity
NASA Astrophysics Data System (ADS)
Emmet-Booth, Jeremy; Forristal, Dermot; Fenton, Owen; Holden, Nick
2016-04-01
Soil degradation from mismanagement is of international concern. Simple, accessible tools for rapidly assessing impacts of soil management are required. Soil structure is a key component of soil quality and porosity is a useful indicator of structure. We outline a version of a procedure described by Piwowarczyk et al. (2011) used to estimate porosity of samples taken during a soil quality survey of 38 sites across Ireland as part of the Government funded SQUARE (Soil Quality Assessment Research) project. This required intact core (r = 2.5 cm, H = 5cm) samples taken at 5-10 cm and 10-20 cm depth, to be covered with muslin cloth at one end and secured with a jubilee clip. Samples were saturated in sealable water tanks for ≈ 64 hours, then allowed to drain by gravity for 24 hours, at which point Field Capacity (F.C.) was assumed to have been reached, followed by oven drying with weight determined at each stage. This allowed the calculation of bulk density and the estimation of water content at saturation and following gravitational drainage, thus total and functional porosity. The assumption that F.C. was reached following 24 hours of gravitational drainage was based on the Soil Moisture Deficit model used in Ireland to predict when soils are potentially vulnerable to structural damage and used nationally as a management tool. Preliminary results indicate moderately strong, negative correlations between estimated total porosity at 5-10 cm and 10-20 cm depth (rs = -0.7, P < 0.01 in both cases) and soil quality scores of the Visual Evaluation of Soil Structure (VESS) method which was conducted at each survey site. Estimated functional porosity at 5-10 cm depth was found to moderately, negatively correlate with VESS scores (rs = - 0.5, P < 0.05). This simple procedure requires inexpensive equipment and appears useful in indicating porosity of a large quantity of samples taken at numerous sites or if done periodically, temporal changes in porosity at a field scale, indicating the impacts of soil management. Reference Piwowarczyk, A., Giuliani, G. & Holden, N.M. 2011. Can soil moisture deficit be used to forecast when soils are at high risk of damage owing to grazing animals? Soil Use and Management, 27, 255-263.
Deformation of single and multiple laser peened TC6 titanium alloy
NASA Astrophysics Data System (ADS)
Umapathi, A.; Swaroop, S.
2018-03-01
Laser peening without coating (LPwC) was done on the titanium TC6 alloy at a wavelength of 532 nm using an Nd:YAG laser. The laser power densities of 3, 6 and 9 GW cm-2 were used to peen the samples. Samples were also peened multiple times (1, 3 and 5 passes) at 6 GW cm-2. Microhardness showed an overall 23% increase from the baseline value. Further, softening of α phase in the bulk was observed above 6 GW cm-2 in the samples peened once and above 1 pass in multiply peened samples. A similar trend was observed from the residual stress analysis of the samples. The maximum compressive residual stress was -1780 MPa at a depth of 50 μm at 9 GW cm-2. The observed softening of α phase was proposed due to adiabatic heating. Microstructural changes due to adiabatic heating resulting in increased β volume fractions were observed and confirmed by synchrotron radiation measurements.
The extent of lunar regolith mixing
NASA Technical Reports Server (NTRS)
Nishiizumi, K.; Imamura, M.; Kohl, C. P.; Murrell, M. T.; Arnold, J. R.; Russ, G. P., III
1979-01-01
The activity of solar cosmic-ray-produced Mn-53 measured as a function of depth in the upper 100 g/sq cm of lunar cores 60009-60010 and 12025-12028 is discussed. Analyses of samples from the Apollo 15 and 16 drill stems together with authors' previously published results (1974, 1976), and the Battelle Na-22 and Al-26 data, indicate that in three of the four cases studied the regolith was measurably disturbed within the last 10 m.y. Activities measured in the uppermost 2 g/sq cm indicate frequent mixing within this depth range. The Monte Carlo gardening model of Arnold (1975) was used to derive profiles for the gardened moon-wide average of Mn-53 and Al-26 as a function of depth. The Mn-53 and Al-26 experimental results agreed with theoretical predictions, but the calculated depths of disturbance appeared too low.
Phylogenetic analysis of Archaea in the deep-sea sediments of west Pacific Warm Pool.
Wang, Peng; Xiao, Xiang; Wang, Fengping
2005-06-01
Archaea are known to play important roles in carbon cycling in marine sediments. The main compositions of archaeal community in five deep-sea sediment samples collected from west Pacific Warm Pool area (WP-0, WP-1, WP-2, WP-3, WP-4), and in five sediment layers (1 cm-, 3 cm-, 6 cm-, 10 cm-, 12 cm- layer) of the 12 cm sediment core of WP-0 were checked and compared by denaturing gradient gel electrophoresis and 16 S rRNA gene sequencing. It was revealed that all the deep-sea sediment samples checked contained members of non-thermophilic marine group I crenarchaeota as the predominant archaeal group. To further detect groups of archaea possibly relating with C1 metabolism, PCR amplification was carried out using primers targeting methane-oxidizing archaea. Although no methane-oxidizing archaea was detected, a group of novel archaea (named as WPA) was instead identified from all these five WP samples by clone analysis. They could be placed in the euryarchaeota kingdom, separated into two distinct groups, the main group was peripherally related with methanogens, the other group related with Thermoplasma. The vertical distributions of WPA, archaea and bacteria along the WP-0 sediment column were determined by quantitative-PCR. It was found that bacteria dominated at all depths, the numbers of bacteria were 10-10(4) times more than those of archaea. The proportion of archaea versus bacteria had a depth related increasing tendency, it was lowest at the first layer (0.01%), reached highest at the 12 cm- layer (10%). WPA only constituted a small proportion of the archaeal community (0.05% to 5%) of west Pacific Warm Pool sediment.
Liu, Feng; Wang, Yugang; Xue, Jianming; Wang, Sixue; Du, Guanhua; Zhao, Weijiang
2003-02-01
The penetration depth of low-energy heavy ions in botanic samples was detected with a new transmission measurement. In the measurement, highly oriented pyrolytic graphite (HOPG) pieces were placed behind the botanic samples with certain thickness. During the irradiation of heavy ions with energy of tens of keV, the energetic particles transmitted from those samples were received by the HOPG pieces. After irradiation, scanning tunneling microscope (STM) was applied to observe protrusion-like damage induced by these transmitted ions on the surface of the HOPG. The statistical average number density of protrusions and the minimum transmission rate of the low-energy heavy ions can be obtained. The detection efficiency of the new method for low-energy heavy ions was about 0.1-1 and the background in the measurement can be reduced to as low as 1.0 x 10(8) protrusions/cm2. With this method, the penetration depth of the energetic particles was detected to be no less than 60 micrometers in kidney bean slices when the slices were irradiated by 100 keVAr+ ion at the fluence of 5 x 10(16) ions/cm2. c2002 Elsevier Science Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Liu, Feng; Wang, Yugang; Xue, Jianming; Wang, Sixue; Du, Guanhua; Zhao, Weijiang
2003-01-01
The penetration depth of low-energy heavy ions in botanic samples was detected with a new transmission measurement. In the measurement, highly oriented pyrolytic graphite (HOPG) pieces were placed behind the botanic samples with certain thickness. During the irradiation of heavy ions with energy of tens of keV, the energetic particles transmitted from those samples were received by the HOPG pieces. After irradiation, scanning tunneling microscope (STM) was applied to observe protrusion-like damage induced by these transmitted ions on the surface of the HOPG. The statistical average number density of protrusions and the minimum transmission rate of the low-energy heavy ions can be obtained. The detection efficiency of the new method for low-energy heavy ions was about 0.1-1 and the background in the measurement can be reduced to as low as 1.0 x 10(8) protrusions/cm2. With this method, the penetration depth of the energetic particles was detected to be no less than 60 micrometers in kidney bean slices when the slices were irradiated by 100 keVAr+ ion at the fluence of 5 x 10(16) ions/cm2. c2002 Elsevier Science Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Janniche, G. S.; Mouvet, C.; Albrechtsen, H.-J.
2011-04-01
Vertical variation in sorption and mineralization potential of mecoprop (MCPP), isoproturon and acetochlor were investigated at low concentrations (μg-range) at the cm-scale in unsaturated sub-surface limestone samples and saturated sandy aquifer samples from an agricultural catchment in Brévilles, France. From two intact core drills, four heterogenic limestone sections were collected from 4.50 to 26.40 m below surface (mbs) and divided into 12 sub-samples of 8-25 cm length, and one sandy aquifer section from 19.20 to 19.53 m depth divided into 7 sub-samples of 4-5 cm length. In the sandy aquifer section acetochlor and isoproturon sorption increased substantially with depth; in average 78% (acetochlor) and 61% (isoproturon) per 5 cm. Also the number of acetochlor and isoproturon degraders (most-probable-number) was higher in the bottom half of the aquifer section (93-> 16 000/g) than in the upper half (4-71/g). One 50 cm long limestone section with a distinct shift in color showed a clear shift in mineralization, number of degraders and sorption: In the two brown, uppermost samples, up to 31% mecoprop and up to 9% isoproturon was mineralized during 231 days, the numbers of mecoprop and isoproturon degraders were 1300 to > 16 000/g, and the sorption of both isoproturon and acetochlor was more than three times higher, compared to the two deeper, grayish samples just below where mineralization (≤ 4%) and numbers of degraders (1-520/g) were low for all three herbicides. In both unsaturated limestone and sandy aquifer, variations and even distinct shifts in both mineralization, number of specific degraders and sorption were seen within just 4-15 cm of vertical distance. A simple conceptual model of herbicides leaching to groundwater through a 10 m unsaturated limestone was established, and calculations showed that a 30 cm active layer with the measured sorption and mineralization values hardly impacted the fate of the investigated herbicides, whereas a total thickness of layers of 1 m would substantially increase natural attenuation.
NASA Astrophysics Data System (ADS)
Thomaz, Edivaldo L.; Doerr, Stefan H.
2014-05-01
The purpose of this study was to evaluate the effects of fire temperatures (i.e., soil heating) on nutrient release and aggregate physical changes in soil. A preliminary conceptual model of nutrient release was established based on results obtained from a controlled burn in a slash-and-burn agricultural system located in Brazil. The study was carried out in clayey subtropical soil (humic Cambisol) from a plot that had been fallow for 8 years. A set of three thermocouples were placed in four trenches at the following depths: 0 cm on the top of the mineral horizon, 1.0 cm within the mineral horizon, and 2 cm within the mineral horizon. Three soil samples (true independent sample) were collected approximately 12 hours post-fire at depths of 0-2.5 cm. Soil chemical changes were more sensitive to fire temperatures than aggregate physical soil characteristics. Most of the nutrient response to soil heating was not linear. The results demonstrated that moderate temperatures (< 400°C) had a major effect on nutrient release (i.e., the optimum effect), whereas high temperatures (> 500 °C) decreased soil fertility.
NASA Astrophysics Data System (ADS)
Ko, D.; Yoo, G.; Jun, S. C.; Yun, S. T.; Chung, H.
2015-12-01
Soil microorganisms play key roles in nutrient cycling, and are distributed throughout the soil profile. Currently, there is little information about the characteristics of the microbial communities along the soil depth because most studies focus on microorganisms inhabiting the soil surface. To better understand the functions and composition of microbial communities and the biogeochemical factors that shape them at different soil depth, we analyzed soil microbial activities and bacterial and fungal community composition in a soil profile of a fallow field located in central Korea. Soil samples were taken using 120-cm soil cores. To analyze the composition of bacterial and fungal communities, barcoded pyrosequnecing analysis of 16S rRNA genes (bacteria) and ITS region (fungi) was conducted. Among the bacterial groups, the abundance of Proteobacteria (38.5, 23.2, 23.3, 26.1 and 17.5%, at 15-, 30-, 60-, 90-, and 120-cm depth, respectively) and Firmicutes (12.8, 11.3, 8.6, 4.3 and 0.4%, at 15-, 30-, 60-, 90-, and 120-cm depth, respectively) decreased with soil depth. On the other hand, the abundance of Ascomycota (51.2, 48.6, 65.7, 46.1, and 45.7%, at 15-, 30-, 60-, 90-, and 120-cm depth, respectively), a dominant fungal group at this site, showed no significant difference along the soil profile. To examine the vertical difference of microbial activities, activity of five extracellular enzymes that take part in cycling of C, N, and P in soil ecosystems, beta-1,4-glucosidase, cellobiohydrolase, beta-1,4-xylosidase, beta-1,4-N-acetylglucosaminidase, and acid phosphatase were analyzed. The soil enzyme activity declined with soil depth. For example, acid phosphatase activity was 88.5 (± 14.6 (± 1 SE)), 30.0 (± 5.9), 18.0 (± 3.5), 14.1 (± 3.7), and 10.7 (± 3.8) nmol g-1 hr-1, at 15-, 30-, 60-, 90-, and 120-cm depth, respectively. These metagenomics studies, along with other studies on microbial functions, are expected to enhance our understanding on the complexity of soil microbial communities and their relationship with biogeochemical factors.
Methane and Carbon Dioxide Production Rates in Lake Sediments from Sub-Arctic Sweden
NASA Astrophysics Data System (ADS)
DeStasio, J.; Halloran, M.; Erickson, L. M.; Varner, R. K.; Johnson, J. E.; Setera, J.; Prado, M. F.; Wik, M.; Crill, P. M.
2013-12-01
Ecosystems at high latitudes are undergoing rapid change due to amplified arctic warming. Lakes in these regions are sources of both methane (CH4) and carbon dioxide (CO2) to the atmosphere and will likely be impacted by elevated temperatures. Because of the potential increase in the release of organic carbon due to thawing permafrost, it is believed that methanogenesis rates within neighboring fresh water sediments will display a positive feedback response, by increasing CH4 emission to the atmosphere. We studied CH4 production potential of sediments using cores from three lakes in the Stordalen Mire complex in sub-Arctic, Sweden: Inre Harrsjön, Mellan Harrsjön, and Villasjön. Sediment cores were incubated to determine CO2 and CH4 production rates and were analyzed for CH4 concentrations, dissolved inorganic carbon (DIC) concentrations, total organic carbon (TOC) concentrations, as well as carbon, nitrogen and sulfur content. Our results from the Villasjön cores indicate that CH4 production rates were highest at the same sediment depths as peak dissolved CH4 concentrations, with maximum values between depths of approximately 10cm and 30cm. Additionally, the highest observed CH4 production rates were in sediments from areas within Villasjön known to have the highest rates of CH4 ebullition. CO2 production rates were generally highest within surface sediments ranging from about 4cm to 11cm in depth, with production rates displaying a steady decrease below 11cm. Additionally, observed CO2 production rates correlated with total organic carbon (TOC) concentrations with respect to sediment depth, but displayed no relationship with dissolved inorganic carbon (DIC). Further analysis will be conducted to determine how CH4 and CO2 production characteristics vary between sediment core samples, as well as isotopic analysis of select samples taken from each lake.
NASA Astrophysics Data System (ADS)
Girona García, Antonio; María Armas-Herrera, Cecilia; Martí-Dalmau, Clara; Badía-Villas, David; Ortiz-Perpiñán, Oriol
2016-04-01
The decrease of livestock grazing during the last decades in the Central Pyrenees has led to a regression of grasslands in favour of shrublands, mainly composed by Echinospartum horridum. Prescribed burning might be a suitable tool for the control of this species that limits pastures development and therefore, the reclamation of grasslands; although, its effects on soil properties are still uncertain [1]. Controlled burnings are usually performed in spring or autumn, when soil moisture is high and temperature low, being easier to control and also reducing its effects on soil properties. However, burning during the wet seasons can increase the risk of soil erosion as the vegetation cover is partially destroyed. In this sense, soil water repellency (SWR) plays an important role reducing the infiltration rates and, thus, increasing runoff and soil erosion [2]. Then, it is of special interest to study parameters that influence SWR such as soil moisture, soil organic carbon (SOC) content and soil biological activity [3]. The aim of this work is, to analyse the effects of controlled burning on SWR as well as some of the influencing factors on this parameter. To achieve this, soil sampling was carried out in two prescribed fire events that took place in the Central Pyrenees: Tella (April, 2015) and Buisán (November, 2015). Temperature was simultaneously recorded during the fire via thermocouples placed at the surface level and at 1 cm, 2 cm and 3 cm depth. In each event, topsoil was scrapped and sampled from 0-1 cm, 1-2 cm and 2-3 cm depth in each sampling point (3 for Tella and 4 for Buisán) just before and immediately after burning. We analysed SWR persistence (Water Drop Penetration Time, WDPT) and intensity (Ethanol Percentage Test, EPT) as well as total C and N, microbial C, β-glucosidase activity, soil moisture and pH. Temperature measurements indicated a higher fire intensity in Tella than in Buisán burning. Surface unburned samples presented extreme SWR values for Tella (2726 s) and strong values for Buisán (191 s) according to the WDPT test, significantly decreasing with depth. Preliminary results showed that burning affected SWR, significantly reducing WDPT down to 3 cm in Tella (from extreme to strong) and 2 cm depth in Buisán (from strong to slight). EPT results indicated a significant decrease in SWR intensity down to 2 cm in Tella and 1 cm in Buisán with burning. On the other hand, no differences were observed regarding soil moisture between burned and unburned samples, although a trend to decreasing was observed with fire. Further analyses will allow us to explain and support in detail the variations observed in SWR with prescribed burning. [1] Shakesby, R.A. et al. (2015). Impacts of prescribed fire on soil loss and soil quality: An assessment based on an experimentally-burned catchment in central Portugal. Catena 128: 278-293. [2] Bodí, M.B. et al. (2013). Spatial and temporal variations of water repellency and probability of its occurrence in calcareous Mediterranean rangeland soils affected by fire. Catena 108: 14-25. [3] Jordán, A. et al. (2013). Soil water repellency: Origin, assessment and geomorphological consequences. Catena 108: 1-5.
NASA Astrophysics Data System (ADS)
Abbaszadeh Afshar, Farideh; Ayoubi, Shamsollah; Besalatpour, Ali Asghar; Khademi, Hossein; Castrignano, Annamaria
2016-03-01
This study was conducted to estimate soil clay content in two depths using geophysical techniques (Ground Penetration Radar-GPR and Electromagnetic Induction-EMI) and ancillary variables (remote sensing and topographic data) in an arid region of the southeastern Iran. GPR measurements were performed throughout ten transects of 100 m length with the line spacing of 10 m, and the EMI measurements were done every 10 m on the same transect in six sites. Ten soil cores were sampled randomly in each site and soil samples were taken from the depth of 0-20 and 20-40 cm, and then the clay fraction of each of sixty soil samples was measured in the laboratory. Clay content was predicted using three different sets of properties including geophysical data, ancillary data, and a combination of both as inputs to multiple linear regressions (MLR) and decision tree-based algorithm of Chi-Squared Automatic Interaction Detection (CHAID) models. The results of the CHAID and MLR models with all combined data showed that geophysical data were the most important variables for the prediction of clay content in two depths in the study area. The proposed MLR model, using the combined data, could explain only 0.44 and 0.31% of the total variability of clay content in 0-20 and 20-40 cm depths, respectively. Also, the coefficient of determination (R2) values for the clay content prediction, using the constructed CHAID model with the combined data, was 0.82 and 0.76 in 0-20 and 20-40 cm depths, respectively. CHAID models, therefore, showed a greater potential in predicting soil clay content from geophysical and ancillary data, while traditional regression methods (i.e. the MLR models) did not perform as well. Overall, the results may encourage researchers in using georeferenced GPR and EMI data as ancillary variables and CHAID algorithm to improve the estimation of soil clay content.
Transport of atrazine versus bromide and δO18 in sand
Tindall, James A.; Friedel, Michael J.
2016-01-01
The objective of this research was to determine the process of atrazine transport compared to bromide and δO18 transport in sands near Denver. Three 1.5 × 2 × 1.5-m plots were installed and allowed to equilibrate for 2 years before research initiation and were instrumented with 1.5 × 2-m zero-tension pan lysimeters installed at 1.5-m depths. Additionally, each plot was instrumented with suction lysimeters, tensiometers, time domain reflectometry (TDR) moisture probes, and thermocouples (to measure soil temperature) at 15-cm depth increments. All plots were enclosed with a raised frame (of 8-cm height) to prevent surface runoff. During the 2-year period before research began, all suction and pan lysimeters were purged monthly and were sampled for fluids immediately prior to atrazine and KBr application to obtain background concentrations. Atrazine illustrated little movement until after a significant rainfall event, which peaked concentrations at depths of about 90 to 135 cm. Both Br− and δO18 moved rapidly through the soil, probably owing to soil porosity and anion exclusion for Br−. Concentrations of atrazine exceeding 5.0 μL−1 were observed with depth (90 to 150 cm) after several months. It appears that significant rainfall events were a key factor in the movement of atrazine in the sand, which allowed the chemicals to move to greater depths and thus avoid generally found biodegradation processes.
Using tsunami deposits to determine the maximum depth of benthic burrowing
Shirai, Kotaro; Murakami-Sugihara, Naoko
2017-01-01
The maximum depth of sediment biomixing is directly related to the vertical extent of post-depositional environmental alteration in the sediment; consequently, it is important to determine the maximum burrowing depth. This study examined the maximum depth of bioturbation in a natural marine environment in Funakoshi Bay, northeastern Japan, using observations of bioturbation structures developed in an event layer (tsunami deposits of the 2011 Tohoku-Oki earthquake) and measurements of the radioactive cesium concentrations in this layer. The observations revealed that the depth of bioturbation (i.e., the thickness of the biomixing layer) ranged between 11 and 22 cm, and varied among the sampling sites. In contrast, the radioactive cesium concentrations showed that the processing of radioactive cesium in coastal environments may include other pathways in addition to bioturbation. The data also revealed the nature of the bioturbation by the heart urchin Echinocardium cordatum (Echinoidea: Loveniidae), which is one of the important ecosystem engineers in seafloor environments. The maximum burrowing depth of E. cordatum in Funakoshi Bay was 22 cm from the seafloor surface. PMID:28854254
Using tsunami deposits to determine the maximum depth of benthic burrowing.
Seike, Koji; Shirai, Kotaro; Murakami-Sugihara, Naoko
2017-01-01
The maximum depth of sediment biomixing is directly related to the vertical extent of post-depositional environmental alteration in the sediment; consequently, it is important to determine the maximum burrowing depth. This study examined the maximum depth of bioturbation in a natural marine environment in Funakoshi Bay, northeastern Japan, using observations of bioturbation structures developed in an event layer (tsunami deposits of the 2011 Tohoku-Oki earthquake) and measurements of the radioactive cesium concentrations in this layer. The observations revealed that the depth of bioturbation (i.e., the thickness of the biomixing layer) ranged between 11 and 22 cm, and varied among the sampling sites. In contrast, the radioactive cesium concentrations showed that the processing of radioactive cesium in coastal environments may include other pathways in addition to bioturbation. The data also revealed the nature of the bioturbation by the heart urchin Echinocardium cordatum (Echinoidea: Loveniidae), which is one of the important ecosystem engineers in seafloor environments. The maximum burrowing depth of E. cordatum in Funakoshi Bay was 22 cm from the seafloor surface.
Seven centuries of atmospheric Pb deposition recorded in a floating mire from Central Italy
NASA Astrophysics Data System (ADS)
Zaccone, Claudio; Lobianco, Daniela; D'Orazio, Valeria; Miano, Teodoro M.; Shotyk, William
2016-04-01
Floating mires generally consist of emergent vegetation rooted in highly organic buoyant mats that rise and fall with changes in water level. Generally speaking, the entire floating mass (mat) is divided into a mat root zone and an underlying mat peat zone. Floating mires are distributed world-wide; large areas of floating marsh occur along rivers and lakes in Africa, the Danube Delta in Romania, the Amazon River in South America, and in the Mississippi River delta in USA, whereas smaller areas occur also in The Netherlands, Australia and Canada. While peat cores from ombrotrophic bogs have been often (and successfully) used to reconstruct changes in the atmospheric deposition of several metals (including Pb), no studies are present in literature about the possibility to use peat profiles from floating mires. To test the hypothesis that peat-forming floating mires could provide an exceptional tool for environmental studies, a complete, 4-m deep peat profile was collected in July 2012 from the floating island of Posta Fibreno, a relic mire in the Central Italy. This floating island has a diameter of ca. 30 m, a submerged thickness of about 3 m, and the vegetation is organized in concentric belts, from the Carex paniculata palisade to the Sphagnum palustre centre. The whole core was frozen cut each 1-to-2 cm (n =231), and Pb determined by quadrupole ICP-MS (at the ultraclean SWAMP lab, University of Alberta, Canada) in each sample throughout the first 100 cm, and in each odd-numbered slice for the remaining 300 cm. The 14C age dating of organic sediments (silty peat) isolated from the sample at 385 cm of depth revealed that the island probably formed ca. 700 yrs ago. Lead concentration trend shows at least two main zones of interest, i.e., a clear peak (ranging from 200 to 1600 ppm) between 110-115 cm of depth, probably corresponding to early 1960's - late 1970's, and a broad band (80-160 ppm) between 295-320 cm of depth, corresponding to approximately AD 1480-1650. Lead concentrations were normalized to those of Th, a conservative, lithophile element often used as an indicator of the abundance of mineral particles. Crustal enrichment factor values, calculated by normalizing the Pb/Th ratio in peat samples to the corresponding ratio for the Upper Continental Crust, clearly show that almost all the Pb reaching this floating isle in the last seven centuries is of anthropogenic origin. In particular, while the big peak around 100-115 cm of depth is associated with that of Sb, the band around 300 cm characterized also the trend of several other major and trace elements (i.e., Ag, Al, Ba, Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, Sr, Th, Tl, U, V, Y, Zn) with the exception of Sb. Although γ-spectrometry measurement (210Pb, 137Cs and 241Am) for the first 100 cm of this core is still on-going, at the best of our knowledge, this work may provide the first Pb chronology obtained from a (4 m) deep floating mire. Furthermore, it is to note that a) this floating mire could consist of the southernmost European population of Sphagnum, and b) this core shows a great potential to be used as archive of environmental changes, especially considering its high resolution (1 cm = 0.5 yr in the first 100 cm, and 2-2.5 yrs in the remaining 300 cm of depth). The Authors thank the Municipality of Posta Fibreno, Managing Authority of the Regional Natural Reserve of Lake Posta Fibreno, for allowing peat cores sampling.
Atrazine degradation and enzyme activities in an agricultural soil under two tillage systems.
Mahía, Jorge; Martín, Angela; Carballas, Tarsy; Díaz-Raviña, Montserrat
2007-05-25
The content of atrazine and its metabolites (hydroxyatrazine, deethylatrazine and deisopropylatrazine) as well as the activities of two soil enzymes (urease and beta-glucosidase) were evaluated in an acid agricultural soil, located in a temperate humid zone (Galicia, NW Spain), with an annual ryegrass-maize rotation under conventional tillage (CT) and no tillage (NT). Samples were collected during two consecutive years from the arable layer at two depths (0-5 cm and 5-20 cm) and different times after atrazine application. Hydroxyatrazine and deisopropylatrazine were the main metabolites resulting from atrazine degradation in the acid soil studied, the highest levels being detected in the surface layer of the NT treatment. A residual effect of atrazine was observed since hydroxyatrazine was detected in the arable layer (0-5 cm, 5-20 cm) even one year after the herbicide application. Soil enzyme activities in the upper 5 cm layer under NT were consistently higher than those in the same layer under CT. Urease and beta-glucosidase activities decreased with depth in the profile under NT but they did not show any differences between the two depths for the plots under CT. For both tillage systems enzyme activities also reflected temporal changes during the maize cultivation; however, no consistent effect of the herbicide application was observed.
Heavy Metal Content in Terraced Rice Fields at Sruwen Tengaran Semarang - Indonesia
NASA Astrophysics Data System (ADS)
Hindarwati, Yulis; Soeprobowati, Tri Retnaningsih; Sudarno
2018-02-01
The presence of heavy metal on agricultural soils can be caused not only natural factors but also due to human intervention. Differences in management and lack of understanding of farmers in the production input of fertilizers and pesticides ensued in land ravaged. Periodic testing of paddy fields is necessary to minimize the contaminants from being absorbed by plants that will have an impact on health decline. The purpose of the assessment was to identify the heavy metal content in the terraced rice field in Sruwen Village, Tengaran District, Semarang Regency. Survey was conducted in February 2017. Sampling on terraced rice fields of different heights consisted of upper, middle, and upper down. Taken as many as eight single points and composed at a depth of 0-20 cm and 20-40 cm. The identification results showed that heavy metal content of Pb, Cd, and Cu were present at all altitudes. Heavy Metals Pb and Cd at a depth of 0-20 cm were higher from 20-40 cm in the upper and lower rice fields but lower in the middle rice field. Cu heavy metal at a depth of 0-20 cm was higher than 20-40 cm in all altitude land. The heavy metal content of Pb, Cd, and Cu was still below the heavy metal standard set by the European Union and India.
NASA Astrophysics Data System (ADS)
Nash, Ciaran; Bourke, Mary
2017-04-01
Coastal sand dune systems are some of the most physically dynamic landscapes; their susceptibility to geomorphic change is rooted in a host of interconnected processes and feedbacks. Soil moisture and salinity are two fundamental environmental variables capable of exerting a geomorphic influence but have not been thoroughly investigated in coastal dunes. In northwest Europe, coastal dunes are predominantly sediment-limited systems with reduced capacities to avoid severe morphological changes arising from storms. Climatic changes over the next century are predicted to manifest in more frequent and intense storms with the potential to enact severe geomorphic change in coastal settings. A lack of data pertaining to internal dune hydrosaline dynamics suggests we are missing part of the bigger picture. We conducted a pilot study of moisture and salinity dynamics within the upper 50 cm of the vadose zone in a vegetated dune system at Golden Strand, Achill Island on the west coast of Ireland. Golden Strand is a roughly 800 m long embayed sandy beach, backed by vegetated dunes that protect a low-lying machair grassland. A study transect was established across this dune-machair system, perpendicular to the shore. Innovative instrumentation in the form of capacitance probes and internal dune thermochrons were deployed to sample at 10 cm depth intervals at a sampling rate of 10 minutes and coupled with on-site rainfall data. Results indicate that dune moisture tracks rainfall inputs up to 30 cm depth. Antecedent moisture at depth was found to influence infiltration of water through the dune profile. Salinity within the study transect decreased with distance from the beach, suggesting that salt spray is the primary salt delivery mechanism in the dune system. We also noted that moisture and salinity below 30 cm depth failed to respond to rainfall events of varying intensities. Relatively constant moisture and salinity were observed at all depths within the machair. Predictions of climatic change for Ireland suggest more intense short-period precipitation events, this may increase infiltration depth. Baseline data collected will prove informative in predicting the response of Irish coastal dunes via changes in vegetation and dune stability.
NASA Astrophysics Data System (ADS)
Furman, O.; Toner, B. M.; Sebestyen, S. D.; Kolka, R. K.; Nater, E. A.
2014-12-01
As part of the "Spruce and Peatland Responses Under Climate and Environmental Change" (SPRUCE) experiment, we made initial measurements of sulfur speciation in peat. These observations represent a "time-zero" relative to the intended soil warming experiment which begins in 2015. Total sulfur and sulfur speciation were measured in peat cores (solid phase) from nine plots (hollows and hummocks) to a depth of 2 m. Peat samples were packed under nitrogen and frozen in the field immediately after collection. All subsequent sample storage, handling, and processing were conducted under inert gas. Sulfur speciation was measured using bulk sulfur 1s X-ray absorption near edge structure (XANES) spectroscopy at the SXRMB instrument at the Canadian Light Source, Saskatoon, SK, Canada and at the 9-BM instrument, Advanced Photon Source, Argonne National Laboratory, IL, USA. Total sulfur concentrations ranged from 968 to 4077 mg sulfur / kg dry peat. Sulfur content increased with depth from 2 g sulfur / m2 in the 0-10 cm increment to a maximum value of 38 g sulfur / m2 in the 50-60 cm increment. These sulfur loadings produced high quality XANES spectra. The nine cores exhibited reproducible trends with depth in both total sulfur and specific sulfur species; however, variability in sulfur speciation was greatest in the top 40 cm. All sulfur detected within the peat solids was in an organic form. The most abundant sulfur species group was composed of organic mono-sulfide and thiol forms, representing approximately half of the total sulfur at all depths. Sulfonate and ester-sulfate species were 10-15 mol% of sulfur and exhibited low variability with depth. A subsurface maximum in organic di-sulfide was observed in the 20-30 cm depth increment, which is the transition zone between transiently oxidized acrotelm and permanently saturated anaerobic catotelm. Quantification of major sulfur pools is important for the SPRUCE experiment as they are likely to be indicators of changes in the oxidation-reduction (redox) status, and mercury methylation potential, of the peat in response to warming and enhanced carbon dioxide.
The role of groundwater in streamflow in a headwater catchment with sub-humid climate
NASA Astrophysics Data System (ADS)
Liu, Yaping; Tian, Fuqiang; Hu, Hongchang; Tie, Qiang
2015-04-01
Recent studies have suggested that bedrock groundwater can exert considerable influence on streamflow in headwater catchments under humid climate. However, study of the role of bedrock groundwater is still challenged due to limited direct observation data. In this study, by utilizing observed hydrometric and hydrochemical data, we aimed at characterize the bedrock groundwater's response to rainfall at hillslope and catchment scales in a small headwater catchment with sub-humid climate. We selected Xitaizi catchment with area of 6.7 km in the earth-rock mountain region, which located in the north of Beijing, China, as study area. The catchment bedrock is mainly consist of fractured granite. Four weather stations were installed to observe the weather condition and soil volumetric water content (VWC) at depth of 10-60 cm with 10-minute interval. Five wells with depth of 10 m were drilled in two slopes to monitor the bedrock water table by pneumatic water gauge. At slope 1, the soil VWC at depth of 10-80 cm were also observed by soil moisture sensors, and surface/subsurface hillslope runoff at three different layers (0-20cm, 20-80cm, 80-300cm) was observed by three recording buckets. Field works were conducted from July 2013 to November 2014. During the period, precipitation, river, spring and groundwater were sampled nearly monthly. Water temperature, electrical conductivity (EC) and pH were measured in site with portable instruments. In addition, the precipitation, river and groundwater were also sampled intensively during two storm events. All the samples were subjected to stable isotope analysis, the samples taken monthly during the period from July 2013 to July 2014 were subjected to hydrochemistry analysis. Our results show that: (1) the bedrock groundwater is the dominant component of streamflow in the headwater catchment with sub-humid climate; (2) stream is recharged by groundwater sourcing from different mountains with different hydrochemistry characteristics; (3) the contribution of bedrock groundwater to the peak part of hydrograph was not observed from both hydrometric and isotopic data.
Investigation of Kodak extended dose range (EDR) film for megavoltage photon beam dosimetry.
Chetty, Indrin J; Charland, Paule M
2002-10-21
We have investigated the dependence of the measured optical density on the incident beam energy, field size and depth for a new type of film, Kodak extended dose range (Kodak EDR). Film measurements have been conducted over a range of field sizes (3 x 3 cm2 to 25 x 25 cm2) and depths (d(max) to 15 cm), for 6 MV and 15 MV photons within a solid water phantom, and the variation in sensitometric response (net optical density versus dose) has been reported. Kodak EDR film is found to have a linear response with dose, from 0 to 350 cGy, which is much higher than that typically seen for Kodak XV film (0-50 cGy). The variation in sensitometric response for Kodak EDR film as a function of field size and depth is observed to be similar to that of Kodak XV film; the optical density varied in the order of 2-3% for field sizes of 3 x 3 cm2 and 10 x 10 cm2 at depths of d(max), 5 cm and 15 cm in the phantom. Measurements for a 25 x 25 cm2 field size showed consistently higher optical densities at depths of d(max), 5 cm and 15 cm, relative to a 10 x 10 cm2 field size at 5 cm depth, with 4-5% differences noted at a depth of 15 cm. Fractional depth dose and profiles conducted with Kodak EDR film showed good agreement (2%/2 mm) with ion chamber measurements for all field sizes except for the 25 x 25 cm2 at depths greater than 15 cm, where differences in the order of 3-5% were observed. In addition, Kodak EDR film measurements were found to be consistent with those of Kodak XV film for all fractional depth doses and profiles. The results of this study indicate that Kodak EDR film may be a useful tool for relative dosimetry at higher dose ranges.
Geochemical stratigraphy of two regolith cores from the Central Highlands of the moon
NASA Technical Reports Server (NTRS)
Korotev, R. L.
1991-01-01
High-resolution concentration profiles are presented for 20-22 chemical elements in the under 1-mm grain-size fractions of 60001-7 and 60009/10. Emphasis is placed on the stratigraphic features of the cores, and the fresh results are compared with those of previous petrographic and geochemical studies. For elements associated with major mineral phases, the variations in concentration in both cores exceed that observed in some 40 samples of surface and trench soils. Most of the variation in lithophile element concentrations at depths of 18 to 21 cm results from the mixing of two components - oil that is relatively mafic and rich in incompatible trace elements (ITEs), and coarse-grained anorthosite. The linearity of mixing lines on two-element concentration plots argues that the relative abundances of these various subcomponents are sufficiently uniform from sample to sample and from region to region in the core that the mixture behaves effectively as a single component. Soils at depths of 52-55 cm exhibit very low concentrations of ITEs.
Yao, Xiaodong; Zhang, Naili; Zeng, Hui; Wang, Wei
2018-07-15
Although the patterns and drivers of soil microbial community composition are well studied, little is known about the effects of plant-soil interactions and soil depth on soil microbial distribution at a regional scale. We examined 195 soil samples from 13 sites along a climatic transect in the temperate grasslands of northern China to measure the composition of and factors influencing soil microbial communities within a 1-m soil profile. Soil microbial community composition was measured using phospholipid fatty acids (PLFA) analysis. Fungi predominated in topsoil (0-10 cm) and bacteria and actinomycetes in deep soils (40-100 cm), independent of steppe types. This variation was explained by contemporary environmental factors (including above- and below-ground plant biomass, soil physicochemical and climatic factors) >58% in the 0-40 cm of soil depth, but <45% in deep soils. Interestingly, when we considered the interactive effects between plant traits (above ground biomass and root biomass) and soil factors (pH, clay content, and soil total carbon, nitrogen, phosphorous), we observed a significant interaction effect occurring at depths of 10-20 cm soil layer, due to different internal and external factors of the plant-soil system along the soil profile. These results improve understanding of the drivers of soil microbial community composition at regional scales. Copyright © 2018 Elsevier B.V. All rights reserved.
Investigation of bacterial communities in peat land of the Gahai Lake natural conservation area
NASA Astrophysics Data System (ADS)
Bai, Yani; Wang, Jinchang; Zhan, Zhigao; Guan, Limei; Jin, Liang; Zheng, Guohua
2017-10-01
Peat is involved in the global carbon cycle and water conservation; therefore, it is implicated in global environmental change. Microorganisms play an important role in the function of peat. To investigate the bacterial communities in peat of Gahai Lake, different locations and depths were sampled and Illumina Miseq sequencing was used to analyze the microbial community. Chemical properties of peat samples were analyzed by China state standard methods (GB methods). The results showed that bacterial communities were affected by depth, with bacterial diversity and community structure at 90 and 120 cm significantly different from that at 10, 30 and 50 cm depth from the peat surface. Chemical properties of peat land including organic matter, total nitrogen and humus content did not significantly influence bacterial community structure in peat, with only one group from genus Rhizomicrobium that was significantly correlated with total nitrogen. A substantial proportion of the bacterial sequences were unclassified (1.4%), which indicates the great application potential of peat in the Gahai Lake natural conservation area in the future.
NASA Astrophysics Data System (ADS)
Brockman, L. E.; Younger, S. E.; Jackson, C. R.; McDonnell, J.; Janzen, K. F.
2017-12-01
Stable isotope signatures of stem water can illuminate where in the soil profile different types of trees are accessing soil water and thereby contribute to our understanding of water movement through the soil plant atmosphere continuum. The objective of this study was to use 2H and 18O isotopes to characterize water sources of fourteen-year-old intensively managed Loblolly Pine and Sweet Gum stands in replicated (n=3) paired plots. In order to differentiate the isotopic signatures of tree and soil water, both species and five soil depths were sampled monthly for one year. Tree sap and soil water were extracted cryogenically and their isotopic signatures were determined. Although plant water uptake is generally considered a non-fractionating process, our dataset suggests a source of fractionation in 2H signatures in both species and during most of the thirteen sampling events. As a result, only the 18O isotopic data were used to determine the vertical distribution of soil water contributions to stem water. Statistically, we grouped the five soil sampling depths into three isotopic horizons. Shallow, intermediate and deep soil represent sampling depths of 0-10cm, 30-70cm and 100-125cm, respectively. These isotopic horizons were used in a direct inference approach and Bayesian mixing model analysis to determine the origin of stem water. In this study, Loblolly Pine used more water from intermediate and deep soil while Sweet Gum used more water from shallow and intermediate soil. In the winter months, January through March, Loblolly Pine transpired primarily deep soil where as Sweet Gum mainly utilized shallow soil for transpiration. These results indicate that both species have opportunistic water use patterns with seasonal variation.
Changes in Soil Carbon Following Afforestation
Paul, K. I. [Commonwealth Scientific and Industrial Research Organization (CSIRO), Kingston ACT (Australia); Polglase, P. J. [Commonwealth Scientific and Industrial Research Organization (CSIRO), Kingston ACT (Australia; Nyakuengama, J. G. [Commonwealth Scientific and Industrial Research Organization (CSIRO), Kingston ACT (Australia); Khanna, P. K. [Commonwealth Scientific and Industrial Research Organization (CSIRO), Kingston ACT (Australia)
2003-01-01
Quantifying changes in soil C may be an important consideration under large-scale afforestation or reforestation. We reviewed global data on changes in soil C following afforestation, available from 43 published or unpublished studies, encompassing 204 sites. Data were highly variable, with soil C either increasing or decreasing, particularly in young (<10-y) forest stands. Because studies varied in the number of years since forest establishment and the initial soil C content, we calculated change in soil C as a weighted average (i.e. sum of C change divided by sum of years since forest establishment) relative to the soil C content under previous agricultural systems at <10 cm, >10 cm and <30 cm sampling depths. On average, soil C in the <10 cm (or <30 cm) layers generally decreased by 3.46% y–1 (or 0.63% y–1) relative to the initial soil C content during the first five years of afforestation, followed by a decrease in the rate of decline and eventually recovery to C contents found in agricultural soils at about age 30. In plantations older than 30 years, C content was similar to that under the previous agricultural systems within the surface 10 cm of soil, yet at other sampling depths, soil C had increased by between 0.50 and 0.86% y–1. Amounts of C lost or gained by soil are generally small compared with accumulation of C in tree biomass.
X-ray reflectivity of ruthenium nano-oxide layer in a CoFe-Ru-CoFe trilayer system
NASA Astrophysics Data System (ADS)
Asghari Zadeh, Saeid; Sutton, Mark; Altonian, Zaven; Mao, Ming; Lee, Chih-Ling
2006-03-01
A grazing incidence X-ray reflectivity technique is used to determine electron density profile(EDP) as a function of depth in CoFe-Ru-CoFe and CoFe-Ru nano oxide layer(NOL)-CoFe trilayers. Four trilayers with ruthenium thicknesses of 8,8.5 and 9 å.08cm and one with Ru8.5.05cmå.05cmNOL, prepared by a dc planetary sputtering system, were investigated. For all samples, EDP shows a central peak which is related to the Ru layer. Natural oxidation in all samples introduces a graded EDP of the top CoFe layer that decreases gradually to zero. The large surface resistivity of Ru8.5 å.05cm NOL compared to Ru 8.5å.08cm can be related to the remarkable difference between their EDP.
NASA Astrophysics Data System (ADS)
Lavielle, B.; Nishiizumi, K.; Marti, K.; Jeannot, J.-P.; Caffee, M. W.; Finkel, R. C.
1995-09-01
We report measurements of 1OBe7 26AI, 36CI, and of light noble gases in 6 samples of the type IIB Old Woman iron meteorite. The aim of this work is to study the depth dependence of the production rates of cosmogenic nuclides in iron meteorites. Old Woman is a large single mass of 2753 kg. Five samples have been taken from a slice of about 100 cm x 50 cm. One other sample was located roughly 40 cm above the center of the slice in a perpendicular direction. The distances between any two samples vary from 36.5 cm to 57.5 cm. Studies of cosmogenic nuclides in samples of known locations are very useful for the validation of models describing the production of cosmogenic nuclides in meteorites. Cosmogenic radionuclides were measured by accelerator mass spectrometry at Lawrence Livermore National Laboratory. Partial results have been reported earlier [1]. Concentrations of 4He, 21Ne and 38Ar in aliquots of the samples were determined by conventional mass spectrometry using an isotopic dilution method. The ratio 3He/4He appears to be almost constant with a value of 0.12 - ().13. This is about half the value generally observed in iron meteorites. Similar low ratios have been previously observed in some irons and in chondritic metal and reflect diffusion losses of 3H 12,31. The ratios 4He/38Ar, 4He/21Ne and 36Ar/38Ar are similar to those observed in iron meteorites indicating no significant losses of 4He. The measured ratio S = 4He/21Ne which represents one of the best indicators of shielding depth in iron meteorites, varies from 310 to 375 in samples from the slice. By using this as a shielding parameter, profiles were obtained for the different nuclides investigated in this work. Systematic decreases from the surface to the center of the meteorite are observed and the center of the meteoroid can be determined. As expected from nuclear systematics, the ratio 36Cl/36Ar is almost constant. The ratio 36Cl/10Be is relatively constant with a mean value of 4.7 indicating that the terrestrial age of Old Woman is probably less than 50,000 years. References: [1] Nishiizumi K. et al (1991) Meteoritics, 26, 379-380. [2] Schultz L. (1967) EPSL, 2, 87-89. [3] Graf T. et al., this volume.
NASA Astrophysics Data System (ADS)
dos Anjos Leal, Otávio; Pinheiro Dick, Deborah; Cylene Lombardi, Kátia; Gonçalves Maciel, Vanessa
2014-05-01
In some regions in Brazil, charcoal is usually applied to the soil with the purpose to improve its fertility and its organic carbon (SOC) content. In Brazil, the use of charcoal waste from steel industry with agronomic purposes represents also an alternative and sustainable fate for this material. In this context, the objective of this work was to evaluate the impact of Eucalyptus charcoal waste application on the SOC content and on the soil organic matter (SOM) composition. Increasing doses of charcoal (0, 10, 20 and 40 Mg ha-1) were applied to an Haplic Cambisol, in Irati, South-Brazil. Charcoal was initially applied on the soil surface, and then it was incorporated at 10 cm with a harrow. Soil undisturbed and disturbed samples (four replicates) were collected in September 2011 (1 y and 9 months) after charcoal incorporation. Four soil depths were evaluated (0-5, 5-10, 10-20 and 20-30 cm) and each replicate was composed by three subsamples collected within each plot. The soil samples were air dried, passed through a 9.51 mm sieve and thereafter through a 2.00 mm sieve. The SOC content and total N were quantified by dry combustion. The SOM was concentrated with fluoridric acid 10% and then the SOM composition was evaluated by thermogravimetric analysis along the soil profile. The main impact of charcoal application occurred at the 0-5 cm layer of the area treated with the highest dose: SOC content increased in 15.5 g kg-1 in comparison to the soil without charcoal application. The intermediary doses also increased the SOC content, but the differences were not significant. No differences for N content were found in this soil depth. Further results were observed in the 10-20 cm soil depth, where the highest dose increased the SOC content and N content. Furthermore, this treatment increased the recalcitrance of the SOM, mainly at the 0-5 cm and 10-20 cm soil layers. No differences between doses of charcoal application were found in the 20-30 cm soil depth, suggesting that the charcoal has not migrated so deep in soil even after almost two years of its incorporation.
NASA Astrophysics Data System (ADS)
Cloutis, Edward A.; Pietrasz, Valerie B.; Kiddell, Cain; Izawa, Matthew R. M.; Vernazza, Pierre; Burbine, Thomas H.; DeMeo, Francesca; Tait, Kimberly T.; Bell, James F.; Mann, Paul; Applin, Daniel M.; Reddy, Vishnu
2018-05-01
Carbonaceous chondrites (CCs) are important materials for understanding the early evolution of the solar system and delivery of volatiles and organic material to the early Earth. Presumed CC-like asteroids are also the targets of two current sample return missions: OSIRIS-REx to asteroid Bennu and Hayabusa-2 to asteroid Ryugu, and the Dawn orbital mission at asteroid Ceres. To improve our ability to identify and characterize CM2 CC-type parent bodies, we have examined how factors such as particle size, particle packing, and viewing geometry affect reflectance spectra of the Murchison CM2 CC. The derived relationships have implications for disc-resolved examinations of dark asteroids and sampleability. It has been found that reflectance spectra of slabs are more blue-sloped (reflectance decreasing toward longer wavelengths as measured by the 1.8/0.6 μm reflectance ratio), and generally darker, than powdered sample spectra. Decreasing the maximum grain size of a powdered sample results in progressively brighter and more red-sloped spectra. Decreasing the average grain size of a powdered sample results in a decrease in diagnostic absorption band depths, and redder and brighter spectra. Decreasing porosity of powders and variations in surface texture result in spectral changes that may be different as a function of viewing geometry. Increasing thickness of loose dust on a denser powdered substrate leads to a decrease in absorption band depths. Changes in viewing geometry lead to different changes in spectral metrics depending on whether the spectra are acquired in backscatter or forward-scatter geometries. In backscattered geometry, increasing phase angle leads to an initial increase and then decrease in spectral slope, and a general decrease in visible region reflectance and absorption band depths, and frequent decreases in absorption band minima positions. In forward scattering geometry, increasing phase angle leads to small non-systematic changes in spectral slope, and general decreases in visible region reflectance, and absorption band depths. The highest albedos and larger band depths are generally seen in the lowest phase angle backscattering geometry spectra. The reddest spectra are generally seen in the lowest phase angle backscatter geometry spectra. For the same phase angle, spectra acquired in forward scatter geometry are generally redder and darker and have shallower absorption bands than those acquired in backscatter geometry. Overall, backscatter geometry-acquired spectra are flatter, brighter, and have deeper 0.7 μm region absorption band depths than forward scatter geometry-acquired spectra. It was also found that the 0.7, 0.9, and 1.1 μm absorption bands in Murchison spectra, which are attributable to various Fe electronic processes, are ubiquitous and can be used to recognize CM2 chondrites regardless of the physical properties of the meteorite and viewing geometry.
NASA Astrophysics Data System (ADS)
Proskurnin, M. A.; Korte, D.; Rogova, O. B.; Volkov, D. S.; Franko, M.
2018-07-01
Photothermal beam deflection spectroscopy (BDS) with a red He-Ne laser (632.8 nm, 35 mW) as an excitation beam source and a green He-Ne laser (543.1 nm, 2 mW) as a probe was used for estimating thermal diffusivity of several types of soil samples and individual soil aggregates with small surfaces (2 × 2 mm). It is shown that BDS can be used on demand for studies of changes in properties of soil entities of different hierarchical levels under the action of agrogenesis. It is presented that BDS clearly distinguishes between thermal diffusivities of different soil types: Sod-podzolic [Umbric Albeluvisols, Abruptic], 29 ± 3; Chernozem typical [Voronic Chernozems, Pachic], 9.9 ± 0.9; and Light Chestnut [Haplic Kastanozems, Chromic], 9.7 ± 0.9 cm2·h-1. Aggregates of chernozem soil show a significantly higher thermal diffusivity compared to the bulk soil. Thermal diffusivities of aggregates of Chernozem for virgin and bare fallow samples differ, 53 ± 4 cm2·h-1 and 45 ± 4 cm2·h-1, respectively. Micromonoliths of different Sod-podzolic soil horizons within the same profile (topsoil, depth 10-14 cm, and a parent rock with Fe illuviation, depth 180-185 cm) also show a significant difference, thermal diffusivities are 9.5 ± 0.8 cm2·h-1 and 27 ± 2 cm2·h-1, respectively. For soil micromonoliths, BDS is capable to distinguish the difference in thermal diffusivity resulting from the changes in the structure of aggregates.
NASA Astrophysics Data System (ADS)
Preston, Caroline M.; Simard, Martin; Bergeron, Yves; Bernard, Guy M.; Wasylishen, Roderick E.
2017-11-01
Wildfires are a major driver of carbon stocks and ecosystem development in Canadian boreal forests, but there is little information on amounts and properties of the charcoal produced. Using data and samples available from a previous study, we determined amounts, depth distribution and chemical properties of visually-determined charcoal (> 2 mm) in a boreal chronosequence in the Abitibi region of Quebec, Canada. Sites ranged from 24 to 2355 years since fire (ysf) and originated from low- and high-severity soil burns (> 5 cm or < 5 cm organic horizon unburned, respectively). Two or three pits were sampled at 1-cm depth intervals from 20 jack pine (Pinus banksiana) sites (one low severity and 19 high severity) and 31 black spruce (Picea mariana) sites (12 low severity and 19 high severity). Site-level charcoal stocks ranged from 50 to 5527 kg ha-1 with high within-site variability and lower stocks for the oldest sites. Depth distributions typically peaked around the organic-mineral interface, but some low-severity sites also had charcoal layers within the organic horizon. Means from 30 samples were 569 mg g-1 total C, 4.1 mg g-1 total N and 140 C/N (molar), with total C and C/N showing a trend of decline with time since fire, and total N showing an increase. Solid-state 13C CPMAS NMR spectra of nine samples showed high variability among the younger samples, but a trend to higher aromaticity for the older ones. A literature survey focusing on boreal forests similarly showed highly variable stocks and chemical properties of charcoal in organic horizon and upper mineral soil, with reduction of variance and lower stocks after several hundred years. This initial variation was also consistent with reports of highly variable temperatures and duration of charring in wildfires. Adding reports available for char production, and considering that most studies of char stocks and production are limited to the organic horizon (forest floor), suggests that initial production of charred material from boreal wildfires might be around 5-10 tonnes ha-1.
Dental hard tissue drilling by longitudinally excited CO2 laser
NASA Astrophysics Data System (ADS)
Uno, Kazuyuki; Yamamoto, Takuya; Akitsu, Tetsuya; Jitsuno, Takahisa
2017-07-01
We developed a longitudinally excited CO2 laser with a long optical cavity and investigated the drilling characteristics of dental hard tissue. The CO2 laser was very simple and consisted of a 45-cm-long alumina ceramic pipe with an inner diameter of 13 mm, a pulse power supply, a step-up transformer, a storage capacitance, a spark gap, and a long optical cavity with a cavity length of 175 cm. The CO2 laser produced a short pulse that had a spike pulse with the width of 337 ns and the energy of 1.9 mJ, a pulse tail with the length of 180 μs and the energy of 37.6 mJ, and a doughnut-like beam. In the investigation, a sample was a natural drying human tooth (enamel and dentine). In a processing system, a ZnSe focusing lens with the focal length of 50 mm was used and the location of the focal plane was that of the sample surface. In 1 pulse irradiation, the drilling characteristics depended on the fluence was investigated. In the enamel and dentin drilling, the drilling depth increased with the fluence. The 1 pulse irradiation with the fluence of 21.5 J/cm2 produced the depth of 79.3 μm in the enamel drilling, and the depth of 152.7 μm in the dentin drilling. The short-pulse CO2 laser produced a deeper drilling depth at a lower fluence than long-pulse CO2 lasers in dental hard tissue processing.
Yergeau, Etienne; Maynard, Christine; Sanschagrin, Sylvie; Champagne, Julie; Juck, David; Lee, Kenneth
2015-01-01
Several studies have assessed the effects of the released oil on microbes, either during or immediately after the Deepwater Horizon accident. However, little is known about the potential longer-term persistent effects on microbial communities and their functions. In this study, one water column station near the wellhead (3.78 km southwest of the wellhead), one water column reference station outside the affected area (37.77 km southeast of the wellhead), and deep-sea sediments near the wellhead (3.66 km southeast of the wellhead) were sampled 1 year after the capping of the well. In order to analyze microbial community composition, function, and activity, we used metagenomics, metatranscriptomics, and mineralization assays. Mineralization of hexadecane was significantly higher at the wellhead station at a depth of ∼1,200 m than at the reference station. Community composition based on taxonomical or functional data showed that the samples taken at a depth of ∼1,200 m were significantly more dissimilar between the stations than at other depths (surface, 100 m, 750 m, and >1,500 m). Both Bacteria and Archaea showed reduced activity at depths of ∼1,200 m when the wellhead station was compared to the reference station, and their activity was significantly higher in surficial sediments than in 10-cm sediments. Surficial sediments also harbored significantly different active genera than did 5- and 10-cm sediments. For the remaining microbial parameters assessed, no significant differences could be observed between the wellhead and reference stations and between surface and 5- to 10-cm-deep sediments. PMID:26092461
NASA Astrophysics Data System (ADS)
Ali, S.; Stute, M.; Torgersen, T.; Winckler, G.; Kennedy, B. M.
2011-02-01
4He accumulated in fluids is a well established geochemical tracer used to study crustal fluid dynamics. Direct fluid samples are not always collectable; therefore, a method to extract rare gases from matrix fluids of whole rocks by diffusion has been adapted. Helium was measured on matrix fluids extracted from sandstones and mudstones recovered during the San Andreas Fault Observatory at Depth (SAFOD) drilling in California, USA. Samples were typically collected as subcores or from drillcore fragments. Helium concentration and isotope ratios were measured 4-6 times on each sample, and indicate a bulk 4He diffusion coefficient of 3.5 ± 1.3 × 10-8 cm2 s-1 at 21°C, compared to previously published diffusion coefficients of 1.2 × 10-18 cm2 s-1 (21°C) to 3.0 × 10-15 cm2 s-1 (150°C) in the sands and clays. Correcting the diffusion coefficient of 4Hewater for matrix porosity (˜3%) and tortuosity (˜6-13) produces effective diffusion coefficients of 1 × 10-8 cm2 s-1 (21°C) and 1 × 10-7 (120°C), effectively isolating pore fluid 4He from the 4He contained in the rock matrix. Model calculations indicate that <6% of helium initially dissolved in pore fluids was lost during the sampling process. Complete and quantitative extraction of the pore fluids provide minimum in situ porosity values for sandstones 2.8 ± 0.4% (SD, n = 4) and mudstones 3.1 ± 0.8% (SD, n = 4).
Organic carbon sequestration under selected land use in Padang city, West Sumatra, Indonesia
NASA Astrophysics Data System (ADS)
Yulnafatmawita; Yasin, S.
2018-03-01
Organic carbon is a potential element to build biomass as well as emitting CO2 to the atmosphere and promotes global warming. This research was aimed to calculate the sequestered Carbon (C) within a 1-m soil depth under selected land use from 6 different sites in Padang city, Indonesia. Disturbed and undisturbed soil samples were taken from several horizons until 100 cm depth at each location. Soil parameters observed were organic carbon (OC), bulk density (BD), and soil texture. The result showed that soil OC content tended to decrease by the depth at all land use types, except under rice field in Kurao-Nanggalo which extremely increased at >65 cm soil depth with the highest carbon stock. The soil organic carbon sequestration from the highest to the lowest according to land use and the location is in the following order mix garden- Kayu Aro > mix garden- Aie Pacah > Rangeland- Parak Laweh >seasonal farming- Teluk Sirih > rice field- Kampuang Jua.
Nematode assemblages in the deep-sea benthos of the Norwegian Sea
NASA Astrophysics Data System (ADS)
Jensen, Preben
1988-07-01
The deep-sea benthos of the Norwegian Sea contains 20-204 nematodes per 10 cm 2 down to 3 cm depth at seven stations sampled between 970 and 3294 m water depth. The majority of nematodes occur in the uppermost cm. Biomass varies from 3 to 73 μg C per 10 cm 2. Individual adult weight of the most dominant species differs by a factor of almost 1000, i.e. from 3-4 ng C to 3400 ng C; however, the majority of the nematodes is small-sized. Species diversity and evenness are high at all stations and each station harbours its specific fauna with little overlap between stations. Analysis of trophic group composition suggests that microbial feeding types (deposit and epistrate feeders) prevail in the deep-sea benthos; predators and scavengers are scarce. It is concluded that the nematode assemblage at each station consists of a mosaic of many microhabitats. The small nematode body weight probably results from limited food supply and/or poor food quality.
Lowenstern, Jacob B.; Hurwitz, Shaul; McGeehin, John
2016-01-01
To explore the timing of hydrothermal activity at the Upper Geyser Basin (UGB) in Yellowstone National Park, we obtained seven new accelerator mass spectrometry (AMS) radiocarbon 14C ages of carbonaceous material trapped within siliceous sinter. Five samples came from depths of 15–152 cm within the Y-1 well, and two samples were from well Y-7 (depths of 24 cm and 122 cm). These two wells, at Black Sand and Biscuit Basins, respectively, were drilled in 1967 as part of a scientific drilling program by the U.S. Geological Survey (White et al., 1975). Even with samples as small as 15 g, we obtained sufficient carbonaceous material (a mixture of thermophilic mats, pollen, and charcoal) for the 14C analyses. Apparent time of deposition ranged from 3775 ± 25 and 2910 ± 30 14C years BP at the top of the cores to about 8000 years BP at the bottom. The dates are consistent with variable rates of sinter formation at individual sites within the UGB over the Holocene. On a basin-wide scale, though, these and other existing 14C dates hint that hydrothermal activity at the UGB may have been continuous throughout the Holocene.
Decision support tool for soil sampling of heterogeneous pesticide (chlordecone) pollution.
Clostre, Florence; Lesueur-Jannoyer, Magalie; Achard, Raphaël; Letourmy, Philippe; Cabidoche, Yves-Marie; Cattan, Philippe
2014-02-01
When field pollution is heterogeneous due to localized pesticide application, as is the case of chlordecone (CLD), the mean level of pollution is difficult to assess. Our objective was to design a decision support tool to optimize soil sampling. We analyzed the CLD heterogeneity of soil content at 0-30- and 30-60-cm depth. This was done within and between nine plots (0.4 to 1.8 ha) on andosol and ferralsol. We determined that 20 pooled subsamples per plot were a satisfactory compromise with respect to both cost and accuracy. Globally, CLD content was greater for andosols and the upper soil horizon (0-30 cm). Soil organic carbon cannot account for CLD intra-field variability. Cropping systems and tillage practices influence the CLD content and distribution; that is CLD pollution was higher under intensive banana cropping systems and, while upper soil horizon was more polluted than the lower one with shallow tillage (<40 cm), deeper tillage led to a homogenization and a dilution of the pollution in the soil profile. The decision tool we proposed compiles and organizes these results to better assess CLD soil pollution in terms of sampling depth, distance, and unit at field scale. It accounts for sampling objectives, farming practices (cropping system, tillage), type of soil, and topographical characteristics (slope) to design a relevant sampling plan. This decision support tool is also adaptable to other types of heterogeneous agricultural pollution at field level.
Vertical stratification of bacteria and archaea in sediments of a boreal stratified humic lake
NASA Astrophysics Data System (ADS)
Rissanen, Antti J.; Mpamah, Promise; Peura, Sari; Taipale, Sami; Biasi, Christina; Nykänen, Hannu
2015-04-01
Boreal stratified humic lakes, with steep redox gradients in the water column and in the sediment, are important sources of methane (CH4) to the atmosphere. CH4 flux from these lakes is largely controlled by the balance between CH4-production (methanogenesis), which takes place in the organic rich sediment and in the deepest water layers, and CH4-consumption (methanotrophy), which takes place mainly in the water column. While there is already some published information on the activity, diversity and community structure of bacteria in the water columns of these lakes, such information on sediment microbial communities is very scarce. This study aims to characterize the vertical variation patterns in the diversity and the structure of microbial communities in sediment of a boreal stratified lake. Particular focus is on microbes with the potential to contribute to methanogenesis (fermentative bacteria and methanogenic archaea) and to methanotrophy (methanotrophic bacteria and archaea). Two sediment cores (26 cm deep), collected from the deepest point (~6 m) of a small boreal stratified lake during winter-stratification, were divided into depth sections of 1 to 2 cm for analyses. Communities were studied from DNA extracted from sediment samples by next-generation sequencing (Ion Torrent) of polymerase chain reaction (PCR) - amplified bacterial and archaeal 16S rRNA gene amplicons. The abundance of methanogenic archaea was also specifically studied by quantitative-PCR of methyl coenzyme-M reductase gene (mcrA) amplicons. Furthermore, the community structure and the abundance of bacteria were studied by phospholipid fatty acid (PLFA) analysis. Dominant potential fermentative bacteria belonged to families Syntrophaceae, Clostridiaceae and Peptostreptococcaceae. There were considerable differences in the vertical distribution among these groups. The relative abundance of Syntrophaceae started to increase from the sediment surface, peaked at depth layer from 5 to 10 cm (up to 21 % of bacterial 16S rRNA gene amplicons) and decreased gradually towards deeper layers while the relative abundances of Clostridiaceae and Peptostreptococcaceae started to increase at deeper depths, at 5 cm and 10 cm, respectively, both peaking at depth layer from 20 to 26 cm (Clostridiaceae up to 13 % and Peptostreptococcaceae up to 11 % of bacterial 16S rRNA amplicons). Methanogenic community was dominated by acetoclastic methanogens (genus Methanosaeta), which were most abundant at depth layer from sediment surface to 10 cm (up to 87 % of archaeal 16S rRNA gene amplicons) and decreased drastically until the depth of 18 cm having quite stable relative abundance from 18 to 26 cm (5 to 11 % of archaeal 16S rRNA gene amplicons). Hydrogenotrophic methanogens (Methanoregula, Methanolinea, Methanospirillum, Methanocella) (3 to 11 % of archaeal 16S rRNA gene amplicons) did not show any specific depth patterns. The proportion of methanotrophic microbes was very low and they consisted almost completely of type II methanotrophic bacteria (family Methylocystaceae), which had highest relative abundance at depth layer from 5 to 10 cm (up to 3 % of bacterial 16S rRNA gene amplicons) and were almost absent below 15 cm. Anaerobic methanotrophic archaea were not detected. These findings will be discussed with results from PLFA and q-PCR analyses.
Khan, Aysha Masood; Behkami, Shima; Yusoff, Ismail; Md Zain, Sharifuddin Bin; Bakar, Nor Kartini Abu; Bakar, Ahmad Farid Abu; Alias, Yatimah
2017-10-01
Rare earth elements (REEs) are becoming significant due to their huge applications in many industries, large-scale mining and refining activities. Increasing usage of such metals pose negative environmental impacts. In this research ICP-MS has been used to analyze soil samples collected from former ex-mining areas in the depths of 0-20 cm, 21-40 cm, and 41-60 cm of residential, mining, natural, and industrial areas of Perak. Principal component analysis (PCA) revealed that soil samples taken from different mining, industrial, residential, and natural areas are separated into four clusters. It was observed that REEs were abundant in most of the samples from mining areas. Concentration of the rare elements decrease in general as we move from surface soil to deeper soils. Copyright © 2017 Elsevier Ltd. All rights reserved.
Isotopic ratios of 36Cl/Cl in Japanese surface soil
NASA Astrophysics Data System (ADS)
Seki, R.; Matsuhiro, T.; Nagashima, Y.; Takahashi, T.; Sasa, K.; Sueki, K.; Tosaki, Y.; Bessho, K.; Matsumura, H.; Miura, T.
2007-06-01
We have measured the 36Cl/Cl ratio of uncultivated surface soil samples collected from 11 areas distributed throughout Japan to determine the undisturbed value of the ratio. The ratio was found to be on the order of 10-13 except for the Tokai-mura area, where four research reactors, two commercial nuclear power plants and a nuclear fuel reprocessing plant have been operated. The observed ratio in the Tokai-mura area was higher than 10-12. Notably, soil samples collected from a site of commercial BWR nuclear power plants in Fukushima prefecture showed no significant increase in 36Cl/Cl ratio. The 36Cl/Cl ratio depth profiles of soil samples collected at both of Makabe-town and Tokai-mura were also measured. Since Makabe-town is located about 50 km apart from Tokai-mura, we do not expect it to be affected by the nuclear facilities. No large variations were observed in the Makabe depth profile; the measured ratios ranged from ∼3 to ∼5 × 10-13. The result obtained for Tokai-mura is significantly different in that from the surface to about 80 cm depth, the measured ratios, ∼10-12, are much higher than any at Makabe. At depth below 80 cm, the Tokai-mura ratios are lower and become indistinguishable from those at Makabe. The 36Cl/Cl ratio in unaffected areas of Japan is estimated to be 3-4 × 10-13.
USEPA/USGS Sample Collection Protocol for Bacterial ...
Report/SOP This Sample Collection Procedure (SCP) describes the activities and considerations for the collection of bacterial pathogens from representative surface soil samples (0-5 cm). This sampling depth can be reached without the use of a drill rig, direct-push technology, or other mechanized equipment. Analizing soil samples for biothreat agents may, for instance, define the extent of contamination or determine whether the concentrations of contaminants present a risk to public health, welfare, or the environment.
NASA Technical Reports Server (NTRS)
Korotev, Randy L.; Morris, Richard V.; Jolliff, Bradley L.; Schwarz, Carol
1997-01-01
Using FerroMagnetic Resonance (FMR) and Instrumental Neutron Activation Analysis (INAA), we have determined the maturity (surface exposure) parameter I(sub s)/FeO and concentrations of twenty- five chemical elements on samples taken every half centimeter down the 61-cm length of the 68001/2 regolith core (double drive tube) collected at station 8 on the Apollo 16 mission to the Moon. Contrary to premission expectations, no ejecta or other influence from South Ray crater is evident in the core, although a small inflection in the I(sub s)/FeO profile at 3 cm depth may be related the South Ray crater impact. Regolith maturity generally decreases with depth, as in several previously studied cores. We recognize five compositionally distinct units in the core, which we designate A through E, although all are similar in composition to each other and to other soils from the Cayley plains at the Apollo 16 site. Unit A (0-33 cm) is mature to submature throughout (I(sub s)/FeO: 89-34 units) and is indistinguishable in composition from surface soils collected at station 8. Unit B (33-37 cm) is enriched slightly in a component of anorthositic norite composition. Unit D (42-53 cm) is compositionally equivalent to 80 wt% Unit-A soil plus 20 wt% Apollo-16-type dimict breccia consisting of subequal parts anorthosite and impact-melt breccia. Compared to Unit A, Unit E (53-61 cm) contains a small proportion (up to 4%) of some component compositionally similar to Apollo 14 sample 14321. Unit C (37-42 cm) is unusual. For lithophile and siderophile elements, it is similar to Units A and D. However, I(sub s)/FeO is low throughout the unit (less than 30 units) and in a bluish-gray zone at 41 cm depth I(sub s)/FeO drops to 1.6 units, the lowest value that we have observed in several hundred Apollo 16 soil samples. Samples from the bluish-gray zone also have low Zn concentrations, less than 10 micro g/g, compared to 20-30 micro g/g for the rest of the core. Although both values are consistent with fragmented rock material that has received virtually no surface exposure, the abundance of agglutinates in the bluish-gray soil of Unit C is moderately high, typical of a submature soil that would ordinarily have I(sub s)/FeO - 30. We believe that the anomalously low values of I(sub s)/FeO and Zn concentration result because the soil was heated to -800-1000 'C, probably during an impact. This temperature range is sufficient to volatize the surface-correlated Zn and agglomerate the nanophase metal giving rise to the FMR signal but is not great enough to sinter the soil. Alternatively, the unusual soil interval may represent a disaggregated or incipient regolith breccia, although there is no significant difference in the texture or clast-matrix relationships between Unit C and adjacent units.
Vertical distribution of living ostracods in deep-sea sediments, North Atlantic Ocean
NASA Astrophysics Data System (ADS)
Jöst, Anna B.; Yasuhara, Moriaki; Okahashi, Hisayo; Ostmann, Alexandra; Arbizu, Pedro Martínez; Brix, Saskia
2017-04-01
The depth distribution of living specimens of deep-sea benthic ostracods (small crustaceans with calcareous shells that are preserved as microfossils) in sediments is poorly understood, despite the importance of this aspect of basic ostracod biology for paleoecologic and paleoceanographic interpretations. Here, we investigated living benthic ostracod specimens from deep-sea multiple core samples, to reveal their depths distributions within sediment cores. The results showed shallow distribution and low population density of living deep-sea benthic ostracods (which are mostly composed of Podocopa). The living specimens are concentrated in the top 1 cm of the sediment, hence deep-sea benthic ostracods are either epifauna or shallow infauna. This observation is consistent with the information from shallow-water species. We also confirmed shallow infaunal (0.5-2 cm) and very shallow infaunal (0-1 cm) habitats of the deep-sea ostracod genera Krithe and Argilloecia, respectively.
Changes of soil organic matter and microbial activity in irrigated and non irrigated olive groves
NASA Astrophysics Data System (ADS)
Kavvadias, Victor; Papadopoulou, Maria; Theocharopoulos, Sideris; Vavoulidou, Evagelia; Doula, Maria; Reppas, Spiros
2014-05-01
The implementation of olive cultivation techniques in Greece has not been systematically tested under the prevailing Mediterranean conditions. A LIFE+ project was initiated (oLIVE-CLIMA; LIFE 11/ENV/000942) aiming to introduce new management practices in olive tree crops that lead to increased carbon dioxide uptake by plants as well as carbon sequestration from the atmosphere and reverse the trend of soil organic matter decline, erosion and desertification. This paper presents data on soil organic matter and microbial activity from a soil campaign in a pilot region in Greece, and particularly in the area of Chora, prefecture of Messinia, South west Peloponnese. The soil campaign took place during the period December 2012-February 2013. Twelve soil parcels of olive groves were selected (6 irrigated and 6 rainfed) and in each soil parcel six composite soil samples were taken from 0-10 cm depth at equal intervals along a straight line of the trunk of the tree to the middle of the distance from the nearest tree of the next tree series. The first three samples were under olive tree canopy. An additional composite sample was taken at depth of 10-40 cm. Soil samples were analyzed for soil physicochemical and biological properties. In this study results for total organic carbon (TOC), soil basal microbial respiration (BR), microbial biomass C (MB-C) from the region of Messinia, are presented. Organic matter was determined by dichromate oxidation. The microbial activity was measured by the amount of CO2 evolution, while microbial biomass C was determined by substrate-induced respiration, after the addition of glucose. The results showed considerable differences in TOC, BR and MB-C associated with the sampling position and soil depth. The higher TOC, BR and MB-C values, in most cases, were determined in samples taken from points under the canopy, but not close to the tree trunk compared to the sampling points outside the canopy. This indicates the positive effect of rhizosphere and the favorable soil moisture conditions under tree canopy on soil microbial activities. TOC, BR and MB-C values were considerably lower in soil depth of 10-40cm compared with 0-10 cm in both irrigated and rainfed soil parcels. Moreover BR and MB-C was higher in irrigated soil parcels compared with rainfed ones suggesting that the periodic irrigation significantly enhances the soil microbial activity. There were no considerable differences in TOC. For this the TOC and potential activity of microbial community can contribute in the soil nutrient and irrigation management guidelines in order to exploit the utilization of productive soils in the region under studied.
Microbial activities at the benthic boundary layer in the Aegean Sea
NASA Astrophysics Data System (ADS)
Bianchi, A.; Tholosan, O.; Garcin, J.; Polychronaki, T.; Tselepides, A.; Buscail, R.; Duineveld, G.
2003-05-01
During the Aegean Sea component of the EU MTP-MATER project, benthic samples were acquired along a depth gradient from two continental margins in the Aegean Sea. Sampling was undertaken during spring and summer 1997 and the microbial metabolic activities measured (Vmax for aminopeptidase activity, 14C-glutamate respiration and assimilation) displayed seasonal variability even in deep-sea conditions. The metabolic rates encountered in the North Aegean (average depth 566±234 m), were approximately five-fold higher than in the deeper (1336±140 m) Southern part of the Aegean. The aminopeptidase rates, however, were the exception with higher values recorded in the more oligotrophic sediments of the Southern stations (1383±152 vs. 766±297 nmol MCA cm-2 h-1). A discrepancy in bacterial metabolism also appeared in the near bottom waters. In the Southern stations, 80% of the glutamate uptake was used for energy yielding processes and only 20% devoted to biomass production, while in the North Aegean, most of the used glutamate was incorporated into bacterial cells. During the early burial stages, bacterial mineralization rates estimated from 14C-glutamate respiration decreased drastically compared to the rates of biopolymer hydrolysis estimated by aminopeptidase assays. Thus, at the 2-cm depth layer, these rates were only 32 and up to 77% of the corresponding average values, respectively, in the superficial layer. Such a discrepancy between the evolution of these two metabolic activities is possibly due to the rapid removal of readily utilizable monomers in the surface deposits. The correlation between bacterial respiration and total organic carbon, or total organic nitrogen, is higher in the surficial sediment (0-2 and 2-4 cm) than in the underlying layer. Conversely, it is only at 4-cm depth layer that the hydrolysis rates appear correlated with organic carbon and nitrogen concentrations. This pattern confirms the drastic degradation of organic matter during the early burial stages.
Meiofauna communities along an abyssal depth gradient in the Drake Passage
NASA Astrophysics Data System (ADS)
Gutzmann, E.; Martínez Arbizu, P.; Rose, A.; Veit-Köhler, G.
2004-07-01
Meiofauna standing stocks and community structure are reported for the first time for abyssal soft-sediment samples in Antarctic waters. At seven stations within a depth range of 2274-5194 m a total of 128 sediment cores were retrieved with a multiple corer (MUC) on board of the R.V. Polarstern during the ANDEEP-1 cruise (ANT XIX/3). The metazoan meiofauna (defined by a lower size limit of 40 μm) was identified and counted, and one core per station was preserved for CPE, C/N, TOM and grain size analyses. Meiofauna densities are in the range of 2731 Ind./10 cm 2 at 2290 m depth and 75 Ind./10 cm 2 at 3597 m depth, with nematodes being the dominant group at all stations. Nematodes account for 84-94% followed by copepods with 2-8% of the total meiofauna. Other frequent taxa found at each station are kinorhynchs, loriciferans, tantulocarids, ostracods and tardigrades. There is a general tendency of decreasing abundances of metazoan meiofauna with increasing depth, but not all higher level taxa displayed this pattern. In addition, a tendency of decreasing higher taxon density with increasing depth was observed. Standing stocks are higher than the average found at similar depths in other oceans.
Marcela Zalamea; Grizelle Gonzalez; D. Jean Lodge
2016-01-01
Decaying wood is related to nutrient cycling through its role as either a sink or source of nutrients. However, at micro scales, what is the effect of decaying logs on the physical, chemical,and biotic characteristics of the soil underneath? We took samples from a 0 to 5 cm depth under and a 50 cm distance away from decaying logs (Dacryodes excelsa and Swietenia...
NASA Astrophysics Data System (ADS)
Sprenger, Matthias; Tetzlaff, Doerthe; Soulsby, Chris
2017-07-01
Understanding the influence of vegetation on water storage and flux in the upper soil is crucial in assessing the consequences of climate and land use change. We sampled the upper 20 cm of podzolic soils at 5 cm intervals in four sites differing in their vegetation (Scots Pine (Pinus sylvestris) and heather (Calluna sp. and Erica Sp)) and aspect. The sites were located within the Bruntland Burn long-term experimental catchment in the Scottish Highlands, a low energy, wet environment. Sampling took place on 11 occasions between September 2015 and September 2016 to capture seasonal variability in isotope dynamics. The pore waters of soil samples were analyzed for their isotopic composition (δ2H and δ18O) with the direct-equilibration method. Our results show that the soil waters in the top soil are, despite the low potential evaporation rates in such northern latitudes, kinetically fractionated compared to the precipitation input throughout the year. This fractionation signal decreases within the upper 15 cm resulting in the top 5 cm being isotopically differentiated to the soil at 15-20 cm soil depth. There are significant differences in the fractionation signal between soils beneath heather and soils beneath Scots pine, with the latter being more pronounced. But again, this difference diminishes within the upper 15 cm of soil. The enrichment in heavy isotopes in the topsoil follows a seasonal hysteresis pattern, indicating a lag time between the fractionation signal in the soil and the increase/decrease of soil evaporation in spring/autumn. Based on the kinetic enrichment of the soil water isotopes, we estimated the soil evaporation losses to be about 5 and 10 % of the infiltrating water for soils beneath heather and Scots pine, respectively. The high sampling frequency in time (monthly) and depth (5 cm intervals) revealed high temporal and spatial variability of the isotopic composition of soil waters, which can be critical, when using stable isotopes as tracers to assess plant water uptake patterns within the critical zone or applying them to calibrate tracer-aided hydrological models either at the plot to the catchment scale.
NASA Technical Reports Server (NTRS)
Schuraytz, B. C.; O'Connell, S.; Sharpton, V. L.
1991-01-01
Fourteen samples spanning a 2.5 m interval that includes the Cretaceous-Tertiary (K/T) boundary from Hole 752B near the crest of Broken Ridge in the eastern Indian Ocean were studied in order to search for anomalous enrichments of iridium (Ir) and shock-metamorphosed quartz grains. No allogenic quartz grains larger than 10 microns were observed, hence the presence of quartz containing diagnostic evidence of shock-metamorphism could not be confirmed. Two Ir anomalies of 2.2 +/- 0.6 and 2.0 +/- 0.4 parts per billion (ppb) were measured in samples of dark green ash-bearing chalk at depths of 357.93 and 358.80 m below seafloor, respectively. These samples containing anomalous enrichments of Ir were taken from approximately 82 cm above and 5 cm below the extinction level of Globotruncanids. Our results are consistent with those of Michel et al., who observe elevated concentrations of Ir at these depths in addition to a larger Ir anomaly associated with the extinction level of Globotruncanids.
Bacterial community structure and soil properties of a subarctic tundra soil in Council, Alaska.
Kim, Hye Min; Jung, Ji Young; Yergeau, Etienne; Hwang, Chung Yeon; Hinzman, Larry; Nam, Sungjin; Hong, Soon Gyu; Kim, Ok-Sun; Chun, Jongsik; Lee, Yoo Kyung
2014-08-01
The subarctic region is highly responsive and vulnerable to climate change. Understanding the structure of subarctic soil microbial communities is essential for predicting the response of the subarctic soil environment to climate change. To determine the composition of the bacterial community and its relationship with soil properties, we investigated the bacterial community structure and properties of surface soil from the moist acidic tussock tundra in Council, Alaska. We collected 70 soil samples with 25-m intervals between sampling points from 0-10 cm to 10-20 cm depths. The bacterial community was analyzed by pyrosequencing of 16S rRNA genes, and the following soil properties were analyzed: soil moisture content (MC), pH, total carbon (TC), total nitrogen (TN), and inorganic nitrogen (NH4+ and NO3-). The community compositions of the two different depths showed that Alphaproteobacteria decreased with soil depth. Among the soil properties measured, soil pH was the most significant factor correlating with bacterial community in both upper and lower-layer soils. Bacterial community similarity based on jackknifed unweighted unifrac distance showed greater similarity across horizontal layers than through the vertical depth. This study showed that soil depth and pH were the most important soil properties determining bacterial community structure of the subarctic tundra soil in Council, Alaska. © 2014 The Authors. FEMS Microbiology Ecology published by John Wiley & Sons Ltd on behalf of the Federation of European Microbiological Societies.
Effect of heavy-ion irradiation on London penetration depth in overdoped Ba(Fe1-xCox)2As2
NASA Astrophysics Data System (ADS)
Murphy, J.; Tanatar, M. A.; Kim, Hyunsoo; Kwok, W.; Welp, U.; Graf, D.; Brooks, J. S.; Bud'ko, S. L.; Canfield, P. C.; Prozorov, R.
2013-08-01
Irradiation with 1.4 GeV 208Pb ions was used to induce artificial disorder in single crystals of iron-arsenide superconductor Ba(Fe1-xCox)2As2 and to study its effects on the temperature-dependent London penetration depth and transport properties. A study was undertaken on overdoped single crystals with x=0.108 and x=0.127 characterized by notable modulation of the superconducting gap. Irradiation corresponding to the matching fields of Bϕ=6 T and 6.5 T with doses 2.22×1011 d/cm2 and 2.4×1011 d/cm2, respectively, suppresses the superconducting Tc by approximately 0.3 to 1 K. The variation of the low-temperature penetration depth in both pristine and irradiated samples is well described by the power law Δλ(T)=ATn. Irradiation increases the magnitude of the prefactor A and decreases the exponent n, similar to the effect of irradiation in optimally-doped samples. This finding supports universal s± pairing in Ba(Fe1-xCox)2As2 compounds for the entire Co doping range.
Response of soil fauna to simulated nitrogen deposition: a nursery experiment in subtropical China.
Xu, Guo-Liang; Mo, Jiang-Ming; Fu, Sheng-Lei; Gundersen, Per; Zhou, Guo-Yi; Xue, Jing-Hua
2007-01-01
We studied the responses of soil fauna to a simulated nitrogen deposition in nursery experimental plots in Subtropical China. Dissolved NH4NO3 was applied to the soil by spraying twice per month for 16 months, starting in January 2003 with treatments of 0, 5, 10, 15 and 30 gN/(m2 x a). Soil fauna was sampled after 6, 9, 13 and 16 months of treatment in three soil depths (0-5 cm, 5-10 cm, 10-15 cm). Soil available N increased in correspondence with the increasing N treatment, whereas soil pH decreased. Bacterial and fungal densities were elevated by the N treatment. Soil fauna increased in the lower nitrogen treatments but decreased in the higher N treatments, which might indicate that there was a threshold around 10 gN/(m2 x a) for the stimulating effects of N addition. The N effects were dependent on the soil depth and sampling time. The data also suggested that the effects of the different N treatments were related to the level of N saturation, especially the concentration of NO3- in the soil.
NASA Astrophysics Data System (ADS)
Du, Changwen; Zhou, Jianmin; Liu, Jianfeng
2017-02-01
With increased demand for Cordyceps sinensis it needs rapid methods to meet the challenge of identification raised in quality control. In this study Cordyceps sinensis from four typical natural habitats in China was characterized by depth-profiling Fourier transform infrared photoacoustic spectroscopy. Results demonstrated that Cordyceps sinensis samples resulted in typical photoacoustic spectral appearance, but heterogeneity was sensed in the whole sample; due to the heterogeneity Cordyceps sinensis was represented by spectra of four groups including head, body, tail and leaf under a moving mirror velocity of 0.30 cm s- 1. The spectra of the four groups were used as input of a probabilistic neural network (PNN) to identify the source of Cordyceps sinensis, and all the samples were correctly identified by the PNN model. Therefore, depth-profiling Fourier transform infrared photoacoustic spectroscopy provides novel and unique technique to identify Cordyceps sinensis, which shows great potential in quality control of Cordyceps sinensis.
NASA Astrophysics Data System (ADS)
Nisauf, T. A.; Wibowo, W. E.; Pawiro, S. A.
2017-07-01
This study was done to evaluate the gamma index for registering between the planar of dose planning and the measurement of EBT film. The treatment plan was simulated for 5 patients using Fan Beam Computerized Tomography (FBCT) modality, Philips Pinnacle planning system, 6 MV photon energy, 50 segments IMRT technique, and calculation grid resolution (CGR) of 0.2 cm. Gamma Index (GI) evaluation was done with criteria of dose difference (DD) of 2 %, dose to agreement (DTA) of 2 mm and dose difference (DD) of 5 % DTA of 3 mm, SAD 100 cm, depth of 5 cm and 10 cm of the phantom. The result shows that GI for homogeneous material is greater than for inhomogeneous material with discrepancy to previous work is about 1.98 % for homogeneous material (depth 5 cm) and 2.05 % (depth 10 cm) while it was found of 2.98 % for inhomogeneous material (equivalent depth 5 cm) and 4.59 % (equivalent depth 10 cm).
Lacey, Corey; Armstrong, Shalamar
2015-03-01
There is a dearth of knowledge on the ability of cover crops to increase the effectiveness of fall-applied nitrogen (N). The objective of this study was to investigate the efficacy of two cover crop species to stabilize inorganic soil N after a fall application of N. Fall N was applied at a rate of 200 kg N ha into living stands of cereal rye, tillage radish, and a control (no cover crop) at the Illinois State University Research and Teaching Farm in Lexington, Illinois. Cover crops were sampled to determine N uptake, and soil samples were collected in the spring at four depths to 80 cm to determine the distribution of inorganic N within the soil profile. Tillage radish (131.9-226.8 kg ha) and cereal rye (188.1-249.9 kg ha N) demonstrated the capacity to absorb a minimum of 60 to 80% of the equivalent rate of fall-applied N, respectively. Fall applying N without cover crops resulted in a greater percentage of soil NO-N (40%) in the 50- to 80-cm depth, compared with only 31 and 27% when tillage radish and cereal rye were present at N application. At planting, tillage radish stabilized an average of 91% of the equivalent rate of fall-applied N within the 0- to 20-cm, depth compared with 66 and 57% for the cereal rye and control treatments, respectively. This study has demonstrated that fall applying N into a living cover crop stand has the potential to reduce the vulnerability of soil nitrate and to stabilize a greater concentration of inorganic N within the agronomic depths of soil. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Yergeau, Etienne; Maynard, Christine; Sanschagrin, Sylvie; Champagne, Julie; Juck, David; Lee, Kenneth; Greer, Charles W
2015-09-01
Several studies have assessed the effects of the released oil on microbes, either during or immediately after the Deepwater Horizon accident. However, little is known about the potential longer-term persistent effects on microbial communities and their functions. In this study, one water column station near the wellhead (3.78 km southwest of the wellhead), one water column reference station outside the affected area (37.77 km southeast of the wellhead), and deep-sea sediments near the wellhead (3.66 km southeast of the wellhead) were sampled 1 year after the capping of the well. In order to analyze microbial community composition, function, and activity, we used metagenomics, metatranscriptomics, and mineralization assays. Mineralization of hexadecane was significantly higher at the wellhead station at a depth of ∼1,200 m than at the reference station. Community composition based on taxonomical or functional data showed that the samples taken at a depth of ∼1,200 m were significantly more dissimilar between the stations than at other depths (surface, 100 m, 750 m, and >1,500 m). Both Bacteria and Archaea showed reduced activity at depths of ∼1,200 m when the wellhead station was compared to the reference station, and their activity was significantly higher in surficial sediments than in 10-cm sediments. Surficial sediments also harbored significantly different active genera than did 5- and 10-cm sediments. For the remaining microbial parameters assessed, no significant differences could be observed between the wellhead and reference stations and between surface and 5- to 10-cm-deep sediments. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Sample, Bradley E; Lowe, John; Seeley, Paul; Markin, Melanie; McCarthy, Chris; Hansen, Jim; Aly, Alaa H
2015-01-01
Soil invertebrates, mammals, and plants penetrate and exploit the surface soil layer (i.e., the biologically active zone) to varying depths. As the US Department of Energy remediates radioactive and hazardous wastes in soil at the Hanford Site, a site-specific definition of the biologically active zone is needed to identify the depth to which remedial actions should be taken to protect the environment and avoid excessive cleanup expenditures. This definition may then be considered in developing a point of compliance for remediation in accordance with existing regulations. Under the State of Washington Model Toxic Control Act (MTCA), the standard point of compliance for soil cleanup levels with unrestricted land use is 457 cm (15 ft) below ground surface. When institutional controls are required to control excavations to protect people, MTCA allows a conditional point of compliance to protect biological resources based on the depth of the biologically active zone. This study was undertaken to identify and bound the biologically active zone based on ecological resources present at the Hanford Site. Primary data were identified describing the depths to which ants, mammals, and plants may exploit the surface soil column at the Hanford Site and other comparable locations. The maximum depth observed for harvester ants (Pogonomyrmex spp.) was 270 cm (8.9 ft), with only trivial excavation below 244 cm (8 ft). Badgers (Taxidea taxus) are the deepest burrowing mammal at the Hanford Site, with maximum burrow depths of 230 cm (7.6 ft); all other mammals did not burrow below 122 cm (4 ft). Shrubs are the deepest rooting plants with rooting depths to 300 cm (9.8 ft) for antelope bitterbrush (Purshia tridentata). The 2 most abundant shrub species did not have roots deeper than 250 cm (8.2 ft). The deepest rooted forb had a maximum root depth of 240 cm (7.9 ft). All other forbs and grasses had rooting depths of 200 cm (6.6 ft) or less. These data indicate that the biologically active soil zone in the Hanford Central Plateau does not exceed 300 cm (9.8 ft), the maximum rooting depth for the deepest rooting plant. The maximum depth at which most other plant and animal species occur is substantially shallower. Spatial distribution and density of burrows and roots over depths were also evaluated. Although maximum excavation by harvester ants is 270 cm (8.9 ft), trivial volume of soil is excavated below 150 cm (∼5 ft). Maximum rooting depths for all grasses, forbs, and the most abundant and deepest rooting shrubs are 300 cm (9.8 ft) or less. Most root biomass (>50-80%) is concentrated in the top 100 cm (3.3 ft), whereas at the maximum depth (9.8 ft), only trace root biomass is present. Available data suggest a limited likelihood for significant transport of contaminants to the surface by plants at or below 244 cm (8 ft), and suggest that virtually all plants or animal species occurring on the Central Plateau have a negligible likelihood for transporting soil contaminants to the surface from depths at or below 305 cm (10 ft). © 2014 SETAC.
Fate and transport of plutonium-239 + 240 and Americium-241 in the soil of Rocky Flats, Colorado
DOE Office of Scientific and Technical Information (OSTI.GOV)
Litaor, M.I.; Barth, G.R.; Zika, E.M.
1996-07-01
Actinides contamination of soils around Rocky Flats, CO, resulted from leaking drums of Pu-contaminated oil stored at an outdoor site. The transport of these actinides through the soil to groundwater was studied using an advanced monitoring system (MS). The fully automated, remotely controlled MS gathered real-time data on soil water content, groundwater level, and timing of gravitationally flowing water. Controlled rain simulations coupled with measurements of volume flux and actinide activities provided essential information about the fate and transport of Pu-239 + 240 and Am-241. Volume fluxes at most sampling locations were similar, regardless of the antecedent moisture or themore » duration, frequency, and intensity of the simulated rain. Actinide activities were not correlated with the measured volume flux, or the duration, frequency, and intensity of the simulated rain. Flow was facilitated primarily via macropore channeling. The relatively short residence time precluded a continuous interaction between the soil and the flowing water, which minimized the movement of actinides in the soil. Actinide activities in the interstitial water collected from the upper 20 cm of the soil were significantly higher (P>0.001) than water collected at deeper sampling depths (20-70 cm). Actinide activity in water samples from the deepest sampling depth (40-70 cm) did not exceed 0.4 Bq/L. These results suggest that, under the experimental conditions, the movement of actinides was restricted to the top 20 cm. A transport mechanism involving discrete Pu oxide particles, coupled with macropore channeling is proposed to explain the observed actinide activities in the soil. 31 refs., 6 figs., 7 tabs.« less
The distribution of selected elements and minerals in soil of the conterminous United States
Woodruff, Laurel G.; Cannon, William F.; Smith, David; Solano, Federico
2015-01-01
In 2007, the U.S. Geological Survey initiated a low-density (1 site per 1600 km2, 4857 sites) geochemical and mineralogical survey of soil of the conterminous United States as part of the North American Soil Geochemical Landscapes Project. Three soil samples were collected, if possible, from each site; (1) a sample from a depth of 0 to 5 cm, (2) a composite of the soil A-horizon, and (3) a deeper sample from the soil C-horizon or, if the top of the C-horizon was at a depth greater than 100 cm, from a depth of approximately 80–100 cm. The < 2 mm fraction of each sample was analysed for a suite of 45 major and trace elements following near-total multi-acid digestion. The major mineralogical components in samples from the soil A- and C-horizons were determined by a quantitative X-ray diffraction method using Rietveld refinement. Sampling ended in 2010 and chemical and mineralogical analyses were completed in May 2013. Maps of the conterminous United States showing predicted element and mineral concentrations were interpolated from actual soil data for each soil sample type by an inverse distance weighted (IDW) technique using ArcGIS software. Regional- and national-scale map patterns for selected elements and minerals apparent in interpolated maps are described here in the context of soil-forming factors and possible human inputs. These patterns can be related to (1) soil parent materials, for example, in the distribution of quartz, (2) climate impacts, for example, in the distribution of feldspar and kaolinite, (3) soil age, for example, in the distribution of carbonate in young glacial deposits, and (4) possible anthropogenic loading of phosphorus (P) and lead (Pb) to surface soil. This new geochemical and mineralogical data set for the conterminous United States represents a major step forward from prior national-scale soil geochemistry data and provides a robust soil data framework for the United States now and into the future.
Core segment 15008 - Regolith stratigraphy at Apennine Front Station 2 using multispectral imaging
NASA Technical Reports Server (NTRS)
Pieters, C. M.; Meloy, A.; Hawke, B. R.; Nagle, J. S.
1982-01-01
High precision multispectral images for Apennine Front core segment 15008 are presented. These data have a spatial resolution less than approximately 0.5 mm and are analyzed for their compositional information using image analysis techniques. The stratigraphy of the regolith sampled by 15008 is documented here as three distinct zones, the most prominent of which is a feldspathic fragment-rich zone with a chaotic fabric that occurs between 10 and 18 cm depth. It is suggested that this material is the primary rim crest deposit of the local 10 m crater. Above this zone the stratigraphy is more horizontal in nature. Below this zone the soil is observed to be relatively homogeneous with no distinctive structure to 23 cm depth.
A flexible pressure sensor could correctly measure the depth of chest compression on a mattress.
Minami, Kouichiro; Kokubo, Yota; Maeda, Ichinosuke; Hibino, Shingo
2016-05-01
Feedback devices are used to improve the quality of chest compression (CC). However, reports have noted that accelerometers substantially overestimate depth when cardiopulmonary resuscitation (CPR) is performed on a soft surface. Here, we determined whether a flexible pressure sensor could correctly evaluate the depth CC performed on a mannequin placed on a mattress. Chest compression was performed 100 times/min by a compression machine on the floor or a mattress, and the depth of CC was monitored using a flexible pressure sensor (Shinnosukekun) and CPRmeter(™). The depth of machine-performed CC was consistently 5cm. We compared data from the feedback sensor with the true depth of CC using dual real-time auto feedback system that incorporated an infrared camera (CPR evolution(™)). On the floor, the true depth of CC was 5.0±0.0cm (n=100), or identical to the depth of CC performed by the machine. The Shinnosukekun(™) measured a mean (±SD) CC depth of 5.0±0.1cm (n=100), and the CPRmeter(™) measured a depth of 5.0±0.2cm (n=100). On the mattress, the true depth of CC was 4.4±0.0cm (n=100). The Shinnosukekun(™) measured a mean CC depth of 4.4±0.0cm (n=100), and the CPRmeter(™) measured a depth of 4.7±0.1cm (n=100). The data of CPRmeter(™) were overestimated (P<.0001 between the true depth and the CPRmeter(™)-measured depth). The Shinnosukekun(™) could correctly measure the depth of CC on a mattress. According to our present results, the flexible pressure sensor could be a useful feedback system for CC performed on a soft surface. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Ghani, Mastura; Adlan, Mohd Nordin; Kamal, Nurul Hana Mokhtar; Aziz, Hamidi Abdul
2017-10-01
A laboratory physical model study on riverbed filtration (RBeF) was conducted to investigate site suitability of soil from Tanah Merah, Kelantan for RBeF. Soil samples were collected and transported to the Geotechnical Engineering Laboratory, Universiti Sains Malaysia for sieve analysis and hydraulic conductivity tests. A physical model was fabricated with gravel packs laid at the bottom of it to cover the screen and then soil sample were placed above gravel pack for 30 cm depth. River water samples from Lubok Buntar, Kedah were used to simulate the effectiveness of RBeF for turbidity removal. Turbidity readings were tested at the inlet and outlet of the filter with specified flow rate. Results from soil characterization show that the soil samples were classified as poorly graded sand with hydraulic conductivity ranged from 7.95 x 10-3 to 6.61 x 10-2 cm/s. Turbidity removal ranged from 44.91% - 92.75% based on the turbidity of water samples before filtration in the range of 33.1-161 NTU. The turbidity of water samples after RBeF could be enhanced up to 2.53 NTU. River water samples with higher turbidity of more than 160 NTU could only reach 50% or less removal by the physical model. Flow rates of the RBeF were in the range of 0.11-1.61 L/min while flow rates at the inlet were set up between 2-4 L/min. Based on the result of soil classification, Tanah Merah site is suitable for RBeF whereas result from physical model study suggested that 30 cm depth of filter media is not sufficient to be used if river water turbidity is higher.
Mineral Soil Carbon in Managed Hardwood Forests of the Northeastern US
NASA Astrophysics Data System (ADS)
Vario, C.; Friedland, A.; Hornig, C.
2013-12-01
New England is characterized by extensive forest cover and large reservoirs of soil carbon (C). In northern hardwood forests, mineral soil C can account for up to 50% of total ecosystem C. There has been an increasing demand for forests to serve both as a C sink and a renewable energy source, and effective management of the ecosystem C balance relies on accurate modeling of each compartment of the ecosystem. However, the dynamics of soil C storage with respect to forest use are variable and poorly understood, particularly in mineral soils. For example, current regional models assume C pools after forest harvesting do not change, while some studies suggest that belowground mineral soil C pools can be affected by disturbances at the soil surface. We quantified mineral soil C pools in previously clear-cut stands in seven research or protected forests across New York, New Hampshire, Massachusetts, and Vermont. The ages of the sites sampled ranged from recently cleared to those with no disturbance history, with 21 forest stands represented in the study. Within each research forest studied, physical parameters such as soil type, forest type, slope and land-use history (aside from forest harvest) did not vary between the stands of different ages. Soil samples were collected to a depth of 60 cm below the mineral-organic boundary using a gas-powered augur and 9.5-cm diameter drill bit. Samples were collected in 10-cm increments in shallow mineral soil and 15-cm increments from 30-60 cm depth. Carbon, nitrogen (N), pH, texture and soil mineralogy were measured across the regional sites. At Bartlett Experimental Forest (BEF) in New Hampshire, mineral soil biogeochemistry in cut and uncut sites was studied at a finer scale. Measurements included soil temperature to 55 cm depth, carbon compound analyses using Py-GCMS and soil microbial messenger RNA extractions from mineral soil. Finally, we simulated C dynamics after harvesting by building a model in Stella, with a particular interest in the role that priming effects may play if C is transported from organic to mineral soil layers after forest harvest. Laboratory analyses were conducted at Dartmouth College and at the University of New Hampshire. For the regional study, mineral soil C and N concentrations, and in some cases, pools were highest at locations that had never been harvested. Although sites represented different stages of succession after clearing, there were no significant patterns over time since harvest. At BEF, soil temperature at 55 cm depth in a recently cleared stand was on average 1.5° C higher than surrounding forested sites between June and September, and shallower depths had greater temperature discrepancies. Our model, which was parameterized using published field data from Bartlett and Hubbard Brook forests, showed that inputs of labile C to mineral soil after harvest could prime the decomposition of preexisting mineral soil C and account for up to 40% of the observed difference in C pools between harvested and undisturbed sites.
Jiang, Hong; Du, Hongyu; Bai, Yingying; Hu, Yue; Rao, Yingfu; Chen, Chong; Cai, Yongli
2016-04-01
In order to study the effects of salinity on plant fine roots, we considered three different plant configuration modes (tree stand model (TSM), shrub stand model (SSM), and tree-shrub stand model (TSSM)). Soil samples were collected with the method of soil drilling. Significant differences of electrical conductivity (EC) in the soil depth of 0-60 cm were observed among the three modes (p < 0.05). In the above three modes, the variation of soil salinity among various soil layers and monthly variation of soil salinity were the highest in SSM and reached 2.30 and 2.23 mS/cm (EC1:5), respectively. Due to the effect of salinity, fine root biomass (FRB) showed significant differences in different soil depths (p < 0.05). More than 60% of FRB was concentrated in the soil depth above 30 cm. FRB showed exponential decline with soil depth (p < 0.05). FRB showed spatial heterogeneity in the 40-cm soil depth. In the above three modes, compared with FRB, specific root length (SRL) and fine root length density (FRLD) showed the similar changing trend. Fine roots showed significant seasonal differences among different modes (p < 0.05). FRB showed the bimodal variation and was the highest in July. However, we found that the high content of salts had obvious inhibitory effect on the distribution of FRB. Therefore, the salinity should be below 1.5 mS/cm, which was suitable for the growth of plant roots. Among the three modes, TSSM had the highest FRB, SRL, and FRLD and no obvious soil salt accumulation was observed. The results indicated that fine root biomass was affected by high salt and that TSSM had the strong effects of salt suppression and control. In our study, TSSM may be the optimal configuration mode for salt suppression and control in saline soil.
Fomsgaard, Inge S; Spliid, Niels Henrik; Felding, Gitte
2003-01-01
Isoproturon is a herbicide, which was used in Denmark against grass weeds and broad-leaved weeds until 1998. Isoproturon has frequently been detected in ground water monitoring studies. Leaching of isoproturon (N,N-dimethyl-N'-(4-(1-methylethyl)-phenyl)urea) and its metabolites, N'-(4-isopropylphenyl)-N-methylurea and N'-(4-isopropylphenyl)urea was studied in four lysimetres, two of them being replicates from a low-tillage field (lysimeter 3 and 4), the other two being replicates from a normal tillage field (lysimeter 5 and 6). In both cases the soil was a sandy loam soil with 13-14% clay. The lysimetres had a surface area of 0.5 m2 and a depth of 110 cm. Lysimeter 3 and 4 were sprayed with unlabelled isoproturon while lysimeter 5 and 6 was sprayed with a mixture of 14C-labelled and unlabelled isoproturon. The total amount of isoproturon sprayed onto each lysimeter was 63 mg, corresponding to 1.25 kg active ingredient per ha. The lysimeters were sprayed with isoproturon on October 26, 1997. The lysimetres were installed in an outdoor system in Research Centre Flakkebjerg and were thus exposed to normal climatic conditions of the area. A mean of 360 l drainage water were collected from lysimeter 3 and 4 and a mean of 375 litres from lysimeter 5 and 6. Only negligible amounts of isoproturon and its primary metabolites were found in the drainage water samples, and thus no significant difference between the two lysimeter sets was shown. In a total of 82 drainage water samples, evenly distributed between the four lysimetres isoproturon was found in detectable amounts in two samples and N'-(4-isopropylphenyl)urea was found in detectable amounts in two other samples. The detection limit for all the compounds was 0.02 microg/l. 48% and 54% of the added radioactivity were recovered from the upper 10 cm soil layer in lysimeter 5 and 6, respectively, and 17 and 14% from 10-20 cm's depth. By extraction first with an aquatic CaCl2 solution 0.49% of the added radioactivity was extracted from the upper 10 cm layer in lysimeter 5. In the subsequent extraction with acetonitril, 1.19% of the added radioactivity was extracted. In lysimeter 6, upper 10 cm, 0.2% were extracted with water and 0.56% were extracted with acetonitril. Below 10 cm's depth no measurable amounts could be extracted.
NASA Astrophysics Data System (ADS)
Mahindawansha, Amani; Kraft, Philipp; Orlowski, Natalie; Racela, Healthcliff S. U.; Breuer, Lutz
2017-04-01
Rice is one of the most water-consuming crop in the world. Understanding water source utilization of rice-based cropping systems will help to improve water use efficiency (WUE) in paddy management. The objectives of our study were to (1) determine the contributions of various water sources to plant growth in diversified rice-based production systems (wet rice, aerobic rice) (2) investigate water uptake depths at different maturity periods during wet and dry conditions, and (3) calculate WUE of the cropping systems. Our field experiment is based on changes of stable water isotope concentrations in the soil-plant-atmosphere continuum due to transpiration and evaporation. Soil samples were collected together with root sampling from nine different depths under vegetative, reproductive, and matured periods of plant growth together with stem samples. Soil and plant samples were extracted by cryogenic vacuum extraction. Groundwater, surface water, rain, and irrigation water were sampled weekly. All water samples were analyzed for hydrogen and oxygen isotope ratios (δ2H and δ18O) via a laser spectroscope (Los Gatos DLT100). The direct inference approach, which is based on comparing isotopic compositions between plant stem water and soil water, were used to determine water sources taken up by plant. Multiple-source mass balance assessment can provide the estimated range of potential contributions of water from each soil depth to root water uptake of a crop. These estimations were used to determine the proportion of water from upper soil horizons and deep horizons for rice in different maturity periods during wet and dry seasons. Shallow soil water has the higher evaporation than from deeper soil water where the highest evaporation effect is at 5 cm depth (drying front). Water uptake is mostly taking place from surface water in the vegetative and between 5-10 cm in the reproductive period, since roots have grown widely and deeper in the reproductive stage. This will be helpful to understand the WUE and identify the most efficient water management system and the influence of groundwater and surface water during both seasons in rice-based cropping ecosystems by using means of stable water isotope.
NASA Astrophysics Data System (ADS)
Wilsey, B. J.; Xu, X.; Polley, H. W.; Hofmockel, K. S.
2017-12-01
Global change includes invasion by non-native plant species, and invasion may affect carbon cycling and storage. We tested predictions in central Texas in an experiment that compares mixtures of all exotic or all native species under two summer irrigation treatments (128 or 0 mm) that varies the amount of summer drought stress. At the end of the eighth growing season after establishment, soils were sampled in 10 cm increments to 100 cm depth to determine if soil C differed among treatments, and if treatments differentially affected soil C in deeper soils. Soil C content was significantly (5%) higher under native plantings than under exotic species plantings (P < 0.001). The difference between native and exotic plantings increased with depth, and native plantings had higher soil C in deeper soil layers than in surface layers (native-exotic x depth, P < 0.001). Exotic plantings had decreasing soil C with depth. Soil C:N ratio and δ13C/12C were also significantly affected by native-exotic status, with soils in exotic plots having a significantly greater C4 contribution than native soils. Soil C was unaffected by summer irrigation treatments. Our results suggest that a significant amount of carbon could be sequestered by replacing exotic plant species with native species in the southern Plains, and that more work should be conducted at deeper soil depths. If we had restricted our analyses to surface soil layers (e.g. top 30 cm), we would have failed to detect depth differences between natives and exotics.
Linking geology and microbiology: inactive pockmarks affect sediment microbial community structure.
Haverkamp, Thomas H A; Hammer, Øyvind; Jakobsen, Kjetill S
2014-01-01
Pockmarks are geological features that are found on the bottom of lakes and oceans all over the globe. Some are active, seeping oil or methane, while others are inactive. Active pockmarks are well studied since they harbor specialized microbial communities that proliferate on the seeping compounds. Such communities are not found in inactive pockmarks. Interestingly, inactive pockmarks are known to have different macrofaunal communities compared to the surrounding sediments. It is undetermined what the microbial composition of inactive pockmarks is and if it shows a similar pattern as the macrofauna. The Norwegian Oslofjord contains many inactive pockmarks and they are well suited to study the influence of these geological features on the microbial community in the sediment. Here we present a detailed analysis of the microbial communities found in three inactive pockmarks and two control samples at two core depth intervals. The communities were analyzed using high-throughput amplicon sequencing of the 16S rRNA V3 region. Microbial communities of surface pockmark sediments were indistinguishable from communities found in the surrounding seabed. In contrast, pockmark communities at 40 cm sediment depth had a significantly different community structure from normal sediments at the same depth. Statistical analysis of chemical variables indicated significant differences in the concentrations of total carbon and non-particulate organic carbon between 40 cm pockmarks and reference sample sediments. We discuss these results in comparison with the taxonomic classification of the OTUs identified in our samples. Our results indicate that microbial communities at the sediment surface are affected by the water column, while the deeper (40 cm) sediment communities are affected by local conditions within the sediment.
Characterization of Whole Porewater Dissolved Organic Matter by 1H NMR
NASA Astrophysics Data System (ADS)
Fox, C.; Lewicki, J. P.; Abdulla, H. A.; Burdige, D.; Magen, C.; Chanton, J.; Komada, T.
2014-12-01
Dissolved organic matter (DOM) is a key intermediate in microbial remineralization of organic matter, but only a small percentage of this complex pool has been fully characterized. We present the results of a novel approach to the characterization of DOM in whole porewater samples from the anoxic sediments of the Santa Barbara Basin, California Borderland, using solution state nuclear magnetic resonance (NMR) techniques. Profiles of porewater DOM were obtained by 1H NMR from 95 to 435 cm sediment depth. 1H NMR spectra of each whole porewater sample showed continuous, broad regions from ~0.5 to ~4.5 ppm, indicative of significant signal overlap inherent to complex mixtures, superimposed on a few highly resolved peaks. The individual samples consist of a broad range of chemical environments with varying relative abundances that show a near linear trend with depth. The normalized spectral data were analyzed by principal component analysis to resolve variations in chemical composition of DOM as a function of depth. In addition to detecting the major components such as carbohydrates, cyclic aliphatics and aromatics, our results demonstrate a negative correlation between carbohydrates concurrent with a relative increase in levels of aliphatics. Furthermore, we have identified a decrease in the abundance of alkenes coupled with an increase in a broad region from ~1.9 to ~3.2 ppm, likely corresponding to signals from carboxylic-rich alicyclic molecules. In both trends, the greatest variation occurs between 115 and 135 cm, which straddles the sulfate-methane transition zone (~125 cm), potentially highlighting a region of relatively high DOM transformation. Our work has also identified thiol species which are thought to be formed by dissolved (inorganic) sulfide incorporation into porewater DOM compounds. The implications of these results with respect to carbon cycling in anaerobic sediments will be discussed.
von der Lühe, Barbara; Dawson, Lorna A; Mayes, Robert W; Forbes, Shari L; Fiedler, Sabine
2013-07-10
This study was carried out to evaluate the potential of using cholesterol and coprostanol, as indicators for the detection of decomposition fluid of buried pigs (S. s. domesticus) in soils. In May 2007, four pig carcasses (∼35kg) were buried in shallow graves (∼40 cm depth) at the University of Ontario Institute of Technology in Canada. Two pigs were exhumed after three months (Pig 1, Pig 2) and six months (Pig 3, Pig 4) post burial. Soil samples were collected beneath the pig carcasses (∼40cm depth) and from grave walls (∼15-20 cm depth) as well as from a parallel control site. Coprostanol and cholesterol were extracted from soils, purified with solid phase extraction (SPE) and analysed with gas chromatography/mass spectrometry (GC/MS). A significant increase in cholesterol concentrations (p<0.05) and amounts of coprostanol were detected in soil located beneath the pig carcasses after three months of burial. It is assumed that during the putrefaction and liquefaction stages of decomposition pig fluid which contains cholesterol and coprostanol is released into the underlying soil. Therefore, cholesterol and coprostanol could be used as potential biomarkers to detect the presence of decomposition fluid three months after burial under comparable soil and environmental conditions. Further research is suggested for additional soil sampling before and after three months to investigate the abundance of these and other sterols. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Mn-53 in the Apollo 15 and 16 drill stems - Evidence for surface mixing
NASA Technical Reports Server (NTRS)
Nishiizumi, K.; Imamura, M.; Honda, M.; Russ, G. P., III; Kohl, C. P.; Arnold, J. R.
1976-01-01
The activity of cosmic ray produced Mn-53 has been measured in a series of samples from the upper 10 cm of the Apollo 15 and 16 drill stems. The activity profiles for both cores indicate disturbance to depths of about 3 g/sq cm within the last 6 m.y. In at least one case (Apollo 16) the soil has been gardened to at least 14 g/sq cm within the last 10 m.y., and material from the upper less than 2 g/sq cm has been buried to 14 g/sq cm by this gardening. The results for the Apollo 15 core are compatible with a wide variety of possible histories including loss or gain of material.
NASA Astrophysics Data System (ADS)
Aaltonen, Heidi; Palviainen, Marjo; Köster, Kajar; Berninger, Frank; Pumpanen, Jukka
2017-04-01
On the Northern Hemisphere, 24% of soils are underlain by permafrost. These soils contain 50% of the global soil carbon pool. The Northern Hemisphere is also the region which is predicted to be most affected by climate warming and this causes uncertainties over the future of the permafrost. It has been estimated that 25% of permafrost might thaw by 2100, exposing previously frozen carbon pools to decomposition. In addition, global warming is expected to cause increase in the frequency of wild fires, which further increase permafrost melting by removing the insulating organic surface layer. The amount of released soil carbon from permafrost soils after forest fire is affected by degradability and temperature sensitivity of the soil organic matter, as well as soil depth and the stage of succession. Yet the common effect of these factors remains unclear. We studied how soil respiration and its temperature sensitivity (Q10) vary in different depths and within time by taking soil samples from different fire chronosequence areas (burned 3, 25, 46 and 100 years ago) from permafrost region in Northern Canada (Yukon and Northwest Territories, along Dempster Highway). The samples from three different depths (5, 10 and 30 cm) were incubated in four different temperatures (1, 7, 13 and 19°C) over 24h. Our results showed that the CO2 fluxes followed the stages of succession, with recently burned sites having lowest rates. The organic matter at 5 cm depth proved to be more labile and temperature sensitive than in deeper depths. The Q10 values, however, did not differ between sites, excluding 30 cm at the most recently burned site that had a significantly higher Q10 value than the other sites. The results implicate that heterotrophic soil respiration decreases on permafrost regions during the first stages after forest fire. At the same time the temperature sensitivity in deeper soil layers may increase.
Effect of depth of flooding on the rice water weevil, Lissorhoptrus oryzophilus, and yield of rice.
Tindall, Kelly V; Bernhardt, John L; Stout, Michael J; Beighley, Donn H
2013-01-01
The rice water weevil, Lissorhoptrus oryzophilus (Kuschel) (Coleoptera: Curculionidae), is a semi-aquatic pest of rice and is the most destructive insect pest of rice in the United States. Adults oviposit after floods are established, and greenhouse studies have shown that plants exposed to deep floods have more eggs oviposited in leaf sheaths than plants exposed to a shallow flood. Experiments were conducted in three mid-southern states in the USA to determine if the depth of flooding would impact numbers of L. oryzophilus on rice plants under field conditions. Rice was flooded at depths of approximately 5 or 10 cm in Arkansas in 2007 and 2008 and Louisiana in 2008, and at depths between 0-20 cm in Missouri in 2008. Plants were sampled three and four weeks after floods were established in all locations, and also two weeks after flood in Missouri. On all sampling dates in four experiments over two years and at three field sites, fewer L. oryzophilus larvae were collected from rice in shallow-flooded plots than from deep-flooded plots. The number of L. oryzophilus was reduced by as much as 27% in shallow-flooded plots. However, the reduction in insect numbers did not translate to a significant increase in rice yield. We discuss how shallow floods could be used as a component of an integrated pest management program for L. oryzophilus.
An In vitro evaluation of the reliability of QR code denture labeling technique.
Poovannan, Sindhu; Jain, Ashish R; Krishnan, Cakku Jalliah Venkata; Chandran, Chitraa R
2016-01-01
Positive identification of the dead after accidents and disasters through labeled dentures plays a key role in forensic scenario. A number of denture labeling methods are available, and studies evaluating their reliability under drastic conditions are vital. This study was conducted to evaluate the reliability of QR (Quick Response) Code labeled at various depths in heat-cured acrylic blocks after acid treatment, heat treatment (burns), and fracture in forensics. It was an in vitro study. This study included 160 specimens of heat-cured acrylic blocks (1.8 cm × 1.8 cm) and these were divided into 4 groups (40 samples per group). QR Codes were incorporated in the samples using clear acrylic sheet and they were assessed for reliability under various depths, acid, heat, and fracture. Data were analyzed using Chi-square test, test of proportion. The QR Code inclusion technique was reliable under various depths of acrylic sheet, acid (sulfuric acid 99%, hydrochloric acid 40%) and heat (up to 370°C). Results were variable with fracture of QR Code labeled acrylic blocks. Within the limitations of the study, by analyzing the results, it was clearly indicated that the QR Code technique was reliable under various depths of acrylic sheet, acid, and heat (370°C). Effectiveness varied in fracture and depended on the level of distortion. This study thus suggests that QR Code is an effective and simpler denture labeling method.
Effect of Depth of Flooding on the Rice Water Weevil, Lissorhoptrus oryzophilus, and Yield of Rice
Tindall, Kelly V.; Bernhardt, John L.; Stout, Michael J.; Beighley, Donn H.
2013-01-01
The rice water weevil, Lissorhoptrus oryzophilus (Kuschel) (Coleoptera: Curculionidae), is a semi-aquatic pest of rice and is the most destructive insect pest of rice in the United States. Adults oviposit after floods are established, and greenhouse studies have shown that plants exposed to deep floods have more eggs oviposited in leaf sheaths than plants exposed to a shallow flood. Experiments were conducted in three mid-southern states in the USA to determine if the depth of flooding would impact numbers of L. oryzophilus on rice plants under field conditions. Rice was flooded at depths of approximately 5 or 10 cm in Arkansas in 2007 and 2008 and Louisiana in 2008, and at depths between 0–20 cm in Missouri in 2008. Plants were sampled three and four weeks after floods were established in all locations, and also two weeks after flood in Missouri. On all sampling dates in four experiments over two years and at three field sites, fewer L. oryzophilus larvae were collected from rice in shallow-flooded plots than from deep-flooded plots. The number of L. oryzophilus was reduced by as much as 27% in shallow-flooded plots. However, the reduction in insect numbers did not translate to a significant increase in rice yield. We discuss how shallow floods could be used as a component of an integrated pest management program for L. oryzophilus. PMID:23906324
NASA Astrophysics Data System (ADS)
Aparicio, Virginia; Zamora, Martin; Barbera, Agustin; Castro Franco, Mauricio; Domenech, Marisa; De Geronimo, Eduardo; Costa, Jose Luis
2017-04-01
The industrial model of agriculture, defined here by its capital intensity and dependence on massive inputs like seeds, fertilizer, and pesticides, is reducing soil organic matter and increasing the inefficiency in agrochemical used. Ecological impacts of industrial agriculture include pollution by pesticides, soil organic matter loss and soil degradation, among many others, with the consequent human health risks. Many of the negative effects of industrial agriculture are remote from fields and farms. The impacts of industrial agriculture on the environment, public health, and rural communities make it an unsustainable way to grow our food over the long term. An alternative approach to the industrial agriculture is the agroecology which has shown promising success on the ground and is actually the only way to ensure that all people have access to sufficient, healthful food. Farming systems designed and managed according to ecological principles can meet the food needs of society while addressing these pressing environmental and social issues. Our concept of agroecological transition is based on increasing resource use efficiency (e.g. fertilizer, pesticides and water), recycling waste or byproducts of one subsystem in another and applying sound? agricultural practices or precision-agriculture technologies. The objective of this work was to compare two production systems: a) industrial agriculture, b) agroecological transition with respect to the impact on the glyphosate load and the organic matter content in the soil and its distribution in depth. The study sites were two field of 15 ha each located at Barrow Experimental Station (38°19´S, 60°15´W). Soil ECa mapping was carried out and the complete experimental area was divided in three ECa classes with similar soil characteristics. Therefore, soil sampling was carried out by zones, based on three ECa classes at each production systems. Soil samples were taken at 0-2, 2-5, 5-10, 10-20, 20-30 and 30-40 cm depth. Bulk density was taken at two depth 3-5 and 8-15 cm depth. Glyphosate and AMPA were analyzed by UPLC-MS/MS ESI(+/) and organic matter was determined by dry combustion. Glyphosate plus AMPA concentration was reduced significantly at the first 10 cm depth. The weighted average for the first 10 cm depth was 370 to 21 mg kg-1 for industrial agriculture and agroecological transition respectively. This reduction was after 5 years of agroecological transition. In the same period of time the organic matter content increased from 4.98 to 5,6 % from industrial agriculture to agroecological transition.
Bulle, Cécile; Samson, Réjean; Deschênes, Louise
2010-03-01
Field samples were collected around six pentachlorophenol (PCP)-treated wooden poles (in clay, organic soil, and sand) to evaluate the vertical migration of polychlorodibenzo-p-dioxins and furans (PCDD/Fs). Soils were characterized, PCDD/Fs, C(10)-C(50), and PCP were analyzed for seven composite samples located at a depth from 0 to 100 cm and at a distance from 0 to 50 cm from each pole. Concentrations of PCDD/Fs measured in organic soils were the highest (maximum 1.2E + 05 pg toxic equivalent TEQ/g soil), followed by clay (maximum 3.8E + 04 pg TEQ/g soil) and sand (maximum 1.8E + 04 pg TEQ/g soil). Model predictions, including the influence of wood treatment oil, were validated using measured concentration values in soils around poles. The model predicts a migration of PCDD/Fs due to the migration of oil, which differs depending on the type of soil: in clay, 90% of PCDD/Fs are predicted to remain in the first 29 cm, whereas in sand, 80 to 90% of the emitted PCDD/Fs are predicted to migrate deeper than 185 cm. For the organic soil, the predicted migration depth varies from 90 to 155 cm. This screening model allows evaluating the danger of microcontaminated sites around PCP-treated wooden poles: from a risk assessment perspective, in the case of organic soil and clay, no PCDD/F contamination is to be expected below the pole, but high levels of PCDD/Fs can be found in the first 2 m below the surface. For sand, however, significantly lower levels of PCDD/Fs were predicted in the surface soil, while the migration depth remains elevated, posing an inherent danger of aquifer contamination under the pole.
Soil properties linked to Phytophthora cinnamomi presence and oak decline in Iberian dehesas
NASA Astrophysics Data System (ADS)
Moreno, G.; Vivas, M.; Pérez, A.; Cubera, E.; Madeira, M.; Solla, A.
2009-04-01
Dehesas cover about 3,100,000 ha in the Iberian Peninsula, and support an outstanding diversity of wildlife and flora endemisms. These open woodlands provide Spain and Portugal inhabitants with a high-quality food, derived from animal production, sustain rural population, and act as retardants of soil erosion and desertification, which are considered primary environmental concerns in the Mediterranean basin. Dehesas are considered examples of sustainable use, though in the last few decades intensive land use, imposed by a concomitant change in the technological and socio-economic conditions, and common agricultural policies threat their conservation. Soil compaction and erosion, oak regeneration failure, dieback of old-ageing stands, and loose of biodiversity are some of the most common threats. At the same time, a severe decline of Quercus ilex (Holm oak) has been reported since the 1990s in the southern Iberian Peninsula, and more recently in France, Italy, and Morocco. In the Iberian Peninsula, the decline has been mostly observed in dehesas, where a combination of factors, possibly acting in synergy, have been put forward to explain the disease. Severe drought episodes, flooding, and rapid fluctuations in soil water content have been reported as predisposing factors favoring tree invasion by bark borer insects and/or pathogenic fungi. It is mostly ignored to what extent decline is a natural or a man-induced process, and if it is associated to either basic, management-related soil properties, or both. To bring insight to this problem, extensive and integrative comparisons of some soil properties related to hydromorphism were initiated, comprising pairs of adjacent non-symptomatic and symptomatic Q. ilex trees. In 2008, 48 dehesa stands from western Spain (Cáceres), half of them located along stream banks and the other half located in slopes, were intensively studied. In each stand, soil and root samples were taken under 3 non-symptomatic (healthy) and 3 symptomatic (declined) trees, at surface, 50, 100 and 150 cm depths. Soil texture, redox potential, mineral N, and the presence of Phytophthora cinnamomi were determined. Soil bulk density was measured at the surface, and soil compactness was measured through a digital penetrometer at 0-40 cm depth. In the stream banks, fine-textured soils were significantly more common under declined trees than under healthy ones, while in slopes the contrary trend occurred. Differences were clearly observed at layers located at 100 and 150 cm depth. Soil bulk density was moderate, with mean values of 1.05 and 1.07 g cm-3 (0-5 cm depth), and 1.28 and 1.30 g cm-3 (5-10 cm) for healthy and declined oaks, respectively. Regarding soil resistance to penetration, values under declined oaks were significantly (p=0.012) higher below 20 cm depth, probably due to compaction caused by old cultivation practices. Most of the soil samples analyzed showed a high level of oxidation (superoxic and manoxic), 28% were suboxic and only 0.7% were anoxic, with a possible limitation of root growth. Although not significant, soils trended to be more reduced under declined oaks at stream banks, with a contrary tendency at slopes (Table 1). The presence of P. cinammomi in soil was positively related to oak decline in stream banks (p=0.011), but not in slopes, and associated to more compacted soils (p=0.05). The presence of P. cinammomi in roots was positively correlated with oak decay (p=0.01), being more abundant among 50-100 cm depth in slopes, and among 100-150 cm depth in the stream banks, but in both cases was mostly associated to fine-textured soils. In conclusion, Q. ilex decline was not related with anoxic conditions limiting root growth, but with soil properties leading to restricted water availability for trees in slopes, and with soil conditions favorable for P. cinnamomi root-infections in the stream banks.
Rooting depths of plants on low-level waste disposal sites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Foxx, T.S.; Tierney, G.D.; Williams, J.M.
1984-11-01
In 1981-1982 an extensive bibliographic study was done to reference rooting depths of native plants in the United States. The data base presently contains 1034 different rooting citations with approximately 12,000 data elements. For this report, data were analyzed for rooting depths related to species found on low-level waste (LLW) sites at Los Alamos National Laboratory. Average rooting depth and rooting frequencies were determined and related to present LLW maintenance. The data base was searched for information on rooting depths of 53 species found on LLW sites at Los Alamos National Laboratory. The study indicates 12 out of 13 grassesmore » found on LLW sites root below 91 cm. June grass (Koeleria cristata (L.) Pers.) (76 cm) was the shallowest rooting grass and side-oats grama (Bouteloua curtipendula (Michx.) Torr.) was the deepest rooting grass (396 cm). Forbs were more variable in rooting depths. Indian paintbrush (Castelleja spp.) (30 cm) was the shallowest rooting forb and alfalfa (Medicago sativa L.) was the deepest (>3900 cm). Trees and shrubs commonly rooted below 457 cm. The shallowest rooting tree was elm (Ulmus pumila L.) (127 cm) and the deepest was one-seed juniper (Juniperus monosperma (Engelm) Sarg.) (>6000 cm). Apache plume (Fallugia paradoxa (D. Don) Endl.) rooted to 140 cm, whereas fourwing saltbush (Atriplex canecens (Pursh) Nutt.) rooted to 762 cm.« less
Predicting Secchi disk depth from average beam attenuation in a deep, ultra-clear lake
Larson, G.L.; Hoffman, R.L.; Hargreaves, B.R.; Collier, R.W.
2007-01-01
We addressed potential sources of error in estimating the water clarity of mountain lakes by investigating the use of beam transmissometer measurements to estimate Secchi disk depth. The optical properties Secchi disk depth (SD) and beam transmissometer attenuation (BA) were measured in Crater Lake (Crater Lake National Park, Oregon, USA) at a designated sampling station near the maximum depth of the lake. A standard 20 cm black and white disk was used to measure SD. The transmissometer light source had a nearly monochromatic wavelength of 660 nm and a path length of 25 cm. We created a SD prediction model by regression of the inverse SD of 13 measurements recorded on days when environmental conditions were acceptable for disk deployment with BA averaged over the same depth range as the measured SD. The relationship between inverse SD and averaged BA was significant and the average 95% confidence interval for predicted SD relative to the measured SD was ??1.6 m (range = -4.6 to 5.5 m) or ??5.0%. Eleven additional sample dates tested the accuracy of the predictive model. The average 95% confidence interval for these sample dates was ??0.7 m (range = -3.5 to 3.8 m) or ??2.2%. The 1996-2000 time-series means for measured and predicted SD varied by 0.1 m, and the medians varied by 0.5 m. The time-series mean annual measured and predicted SD's also varied little, with intra-annual differences between measured and predicted mean annual SD ranging from -2.1 to 0.1 m. The results demonstrated that this prediction model reliably estimated Secchi disk depths and can be used to significantly expand optical observations in an environment where the conditions for standardized SD deployments are limited. ?? 2007 Springer Science+Business Media B.V.
Organic matter evolution throughout a 100-cm ombrotrophic profile from an Italian floating mire
NASA Astrophysics Data System (ADS)
Zaccone, Claudio; D'Orazio, Valeria; Lobianco, Daniela; Miano, Teodoro M.
2015-04-01
The curious sight of an island floating and moving on a lake naturally, already described by Pliny the Elder in his Naturalis historia (AD 77-79), fascinated people from time immemorial. Floating mires are defined by the occurrence of emergent vegetation rooted in highly organic buoyant mats that rise and fall with changes in water level. Peat-forming floating mires could provide an exceptional tool for environmental studies, since much of their evolution, as well as the changes of the surrounding areas, is recorded in their peat deposits. A complete, 4-m deep peat core was collected in July 2012 from the floating island of Posta Fibreno, a relic mire in the Central Italy. This floating island has a diameter of ca. 30 m, a submerged thickness of about 3 m, and the vegetation is organized in concentric belts, from the Carex paniculata palisade to the Sphagnum centre. Here, some of the southernmost Italian populations of Sphagnum palustre occur. The 14C age dating of macrofossils removed from the sample at 360 cm of depth revealed that the island probably formed more than 500 yrs ago (435±20 yr BP). In the present work, we show preliminary results regarding the evolution of the organic matter along the first, ombrotrophic 100 cm of depth, hoping also to provide some insight into the possible mechanism of the evolution of this floating island. The 100 cm monolith was collected using a Wardenaar corer and cut frozen in 1-cm layers. It consists almost exclusively of Sphagnum mosses, often spaced out, in the top 20-30 cm, by leaves of Populus tremula that annually fell off. This section shows a very low bulk density, ranging from 0.017 and 0.059 g cm-3 (avg. value, 0.03±0.01 g cm-3), an average water content of 96.1±1.1%, and a gravimetric water content ranging between 14.3 and 41.5 gwater gdrypeat-1. The pH of porewaters was in the range 5-5.5. The C content along the profile ranged between 35 and 47% (avg., 41±1%), whereas the N between 0.3 and 0.9% (avg., 0.6±0.1%). Main atomic ratios seem to confirm what found during the visual inspection of the core, i.e., Sphagnum material so well preserved that it is hard to classify it as 'peat'. In fact, the F14C age dating suggests that the first 95 cm of Sphagnum material accumulate in less than 55 yrs, thus resulting in an average growing rate of ca. 1.7-1.8 cm yr-1. At the same time, C/N, H/C and O/C ratios show their lowest values between 20 and 55 cm of depth, corresponding to the section with highest bulk density (0.025-0.059 g cm-3). This seems to suggest a slightly more decomposed material. Consequently, the depth of 55-60 cm could represent the emerged (i.e., less anaerobic) section of this floating mire. Finally, the first 100 cm of the core show a great potential to be used as archive of environmental changes, especially considering their high resolution (1 cm = 0.5 yr ca.), although the short time-space covered could be a limiting factor. The Authors thank the Municipality of Posta Fibreno (FR), Managing Authority of the Regional Natural Reserve of Lake Posta Fibreno, for allowing peat cores sampling. C.Z. is indebted to the Staff of the Regional Natural Reserve for the help during samplings and for their continuous feedbacks.
NASA Astrophysics Data System (ADS)
Brinciotti, Enrico; Gramse, Georg; Hommel, Soeren; Schweinboeck, Thomas; Altes, Andreas; Fenner, Matthias A.; Smoliner, Juergen; Kasper, Manuel; Badino, Giorgio; Tuca, Silviu-Sorin; Kienberger, Ferry
2015-08-01
We present a new method to extract resistivity and doping concentration of semiconductor materials from Scanning Microwave Microscopy (SMM) S11 reflection measurements. Using a three error parameters de-embedding workflow, the S11 raw data are converted into calibrated capacitance and resistance images where no calibration sample is required. The SMM capacitance and resistance values were measured at 18 GHz and ranged from 0 to 100 aF and from 0 to 1 MΩ, respectively. A tip-sample analytical model that includes tip radius, microwave penetration skin depth, and semiconductor depletion layer width has been applied to extract resistivity and doping concentration from the calibrated SMM resistance. The method has been tested on two doped silicon samples and in both cases the resistivity and doping concentration are in quantitative agreement with the data-sheet values over a range of 10-3 Ω cm to 101 Ω cm, and 1014 atoms per cm3 to 1020 atoms per cm3, respectively. The measured dopant density values, with related uncertainties, are [1.1 +/- 0.6] × 1018 atoms per cm3, [2.2 +/- 0.4] × 1017 atoms per cm3, [4.5 +/- 0.2] × 1016 atoms per cm3, [4.5 +/- 1.3] × 1015 atoms per cm3, [4.5 +/- 1.7] × 1014 atoms per cm3. The method does not require sample treatment like cleavage and cross-sectioning, and high contact imaging forces are not necessary, thus it is easily applicable to various semiconductor and materials science investigations.
[Effects of long-term fertilization on enzyme activities in black soil of Northeast China].
Wang, Shu-Qi; Han, Xiao-Zeng; Qiao, Yun-Fa; Wang, Shou-Yu
2008-03-01
In this paper, black soil samples at the depths of 0-20 cm and 20-40 cm were collected from the Hailun Agricultural Ecology Station of Chinese Academy of Sciences to study the effects of long-term fertilization on their urease, invertase, phosphatase and catalase activities and total C and N contents. The results showed that long-term application of chemical fertilizers and organic manure increased the activities of urease, invertase and phosphatase in 0-20 cm and 20-40 cm soil layers in different degree, and the combined application of them increased the activities of the three enzymes significantly, with an increment of 43.6%-113.2%, 25.9%-79.5% and 14.7%-134.4% in 0-20 cm soil layer and 56.1%-127.2%, 14.5%-113.8% and 16.2%-207.2% in 20-40 cm soil layer, respectively. However, long-term application of chemical fertilizers without organic manure had little effects on catalase activity. The activities of urease, invertase and phosphatase decreased with increasing soil depth. Long-term application of N fertilizer increased urease activity, and P fertilization had obvious positive effect on phosphatase activity. Long-term fertilization also had obvious effects on the soil total C and N contents and C/N ratio.
NASA Astrophysics Data System (ADS)
Hariani, Yousida; Haris, Bambang
2017-05-01
Characterization of radiochromic film density is accomplished through Source Axis Distance (SAD) technique in a slab phantom Linac with various depths and breadths of field. Type of the film used is gafchromic RTQA2. The dose of radiation exposure of the film may cause changes in the film density. This research aims to determine the relation between the density and the dose depth through the characteristic of curves to identify the depth of the dose and particular breadth of the field as a reference for the dose of radiotherapy patients. The result shows that the higher the dose is absorbed, the darker the film will be, yet the lower the density is obtained. The dose depth is determined by measuring the amount of dose received at various depths and breadths of field using film that is placed on the slab phantom with 6 MV linac radiation and dose of 300 cGy. The variation of the depth at 1.5 cm; 4 cm; 6 cm; 8 cm; 10 cm, the field size at 4 × 4 cm2, and the dose depth at 359.7 cGy; 315.3 cGy; 281.4 cGy; 241.2 cGy; 220.5 cGy were settled. The field size 6 × 6 cm2 takes the dose depth 354.6 cGy; 314.1 cGy; 282.6 cGy; 244.5 cGy; 224.7 cGy. The field size 8 × 8 cm2 takes the dose depth 351.6 cGy; 313 cGy; 283.8 cGy; 247.2 cGy; 228 cGy. The field size 10 × 10 cm2 takes the dose depth 348.9 cGy; 342.6 cGy; 248.4 cGy; 249.6 cGy; 231 cGy.
Oh, Jaehoon; Lim, Tae Ho; Cho, Youngsuk; Kang, Hyunggoo; Kim, Wonhee; Chee, Youngjoon; Song, Yeongtak; Kim, In Young; Lee, Juncheol
2016-03-01
During cardiopulmonary resuscitation (CPR), chest compression (CC) depth is influenced by the surface on which the patient is placed. We hypothesized that training healthcare providers to perform a CC depth of 6-7 cm (instead of 5-6 cm) on a manikin placed on a mattress during CPR in the hospital might improve their proper CC depth. This prospective randomised controlled study involved 66 premedical students without CPR training. The control group was trained to use a CC depth of 5-6 cm (G 5-6), while the experimental group was taught to use a CC depth of 6-7 cm (G 6-7) with a manikin on the floor. All participants performed CCs for 2 min on a manikin that was placed on a bed 1 hour and then again 4 weeks after the training without a feedback. The parameters of CC quality (depth, rate, % of accurate depth) were assessed and compared between the 2 groups. Four students were excluded due to loss to follow-up and recording errors, and data of 62 were analysed. CC depth and % of accurate depth were significantly higher among students in the G 6-7 than G 5-6 both 1 hour and 4 weeks after the training (p<0.001), whereas CC rate was not different between two groups (p>0.05). Training healthcare providers to perform a CC depth of 6-7 cm could improve quality CC depth when performing CCs on patients who are placed on a mattress during CPR in a hospital setting.
Depth distribution of microbial production and oxidation of methane in northern boreal peatlands.
Sundh, I; Nilsson, M; Granberg, G; Svensson, B H
1994-05-01
The depth distributions of anaerobic microbial methane production and potential aerobic microbial methane oxidation were assessed at several sites in both Sphagnum- and sedge-dominated boreal peatlands in Sweden, and compared with net methane emissions from the same sites. Production and oxidation of methane were measured in peat slurries, and emissions were measured with the closed-chamber technique. Over all eleven sites sampled, production was, on average, highest 12 cm below the depth of the average water table. On the other hand, highest potential oxidation of methane coincided with the depth of the average water table. The integrated production rate in the 0-60 cm interval ranged between 0.05 and 1.7 g CH4 m (-2) day(-) and was negatively correlated with the depth of the average water table (linear regression: r (2) = 0.50, P = 0.015). The depth-integrated potential CH4-oxidation rate ranged between 3.0 and 22.1 g CH4 m(-2) day(-1) and was unrelated to the depth of the average water table. A larger fraction of the methane was oxidized at sites with low average water tables; hence, our results show that low net emission rates in these environments are caused not only by lower methane production rates, but also by conditions more favorable for the development of CH4-oxidizing bacteria in these environments.
NASA Astrophysics Data System (ADS)
Ingels, Jeroen; Vanreusel, Ann; Romano, Chiara; Coenjaerts, Johan; Mar Flexas, M.; Zúñiga, Diana; Martin, Daniel
2013-11-01
Despite recent advances in the knowledge of submarine canyons ecosystems, our understanding of the faunal patterns and processes in these environments is still marginal. In this study, meiobenthic nematode communities (from 300 m to 1600 m depth) obtained in November 2003 and May 2004 at eight stations inside and outside Blanes submarine canyon were analysed for nematode standing stocks (SSs), feeding types and gender-life stage distributions. Environmental data were obtained by sediment traps and current meters, attached to moorings (April 2003-May 2004), and sediments samples analysed for biogeochemistry and grain size (May 2004). In November 2003, nematode SSs decreased with increasing depth (367.2 individuals and 7.31 μg C per 10 cm2 at 388 m water depth to 7.7 individuals and 0.18 μg C per 10 cm2 at 1677 m water depth), showing a significant negative relation (abundance: R2 = 0.620, p = 0.020; biomass: R2 = 0.512, p = 0.046). This was not the case in May 2004 (283.5 individuals and 3.53 μg C per 10 cm2 at 388 m water depth to 490.8 individuals and 4.93 μg C per 10 cm2 at 1677 m water depth; abundance: R2 = 0.003, p = 0.902; biomass: R2 = 0.052, p = 0.587), suggesting a temporal effect that overrides the traditional decrease of SSs with increasing water depth. Both water depth and sampling time played a significant role in explaining nematode SSs, but with differences between stations. No overall differences were observed between canyon and open slope stations. Nematode standing stock (SS) patterns can be explained by taking into account the interplay of phytodetrital input and disturbance events, with station differences such as topography playing an important role. Individual nematode size decreased from November 2003 to May 2004 and was explained by a food-induced genera shift and/or a food-induced transition from a ‘latent’ to a ‘reproductive’ nematode community. Our results suggest that size patterns in nematode communities are not solely governed by trophic conditions over longer periods of time in relatively food-rich environments such as canyons. We hypothesize that food pulses in a dynamic and topographical heterogeneous environment such as canyons regulate nematode size distributions, rather than long-term food availability. Feeding type distributions in the Blanes Canyon did not clearly resemble those from other canyon systems, apart from the spring assemblage at one station in the head of the canyon.
SU-E-T-370: Measurement of Conical Cone Output Factors for the Varian Edge Linear Accelerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, H; Kim, J; Gordon, J
Purpose: To quantify the impact of detector type, SSD/depth, and intermediate reference on conical cone output factor (OF) measurements for the Varian Edge linac. Methods: OF's for 4, 5, 7.5, 10, 12.5, 15, and 17.5 mm diameter cones relative to 10cmx10cm field were measured for the 6X FFF and 10X FFF energies, with jaws set to 5cmx5cm. Measurements were performed with an Edge diode (0.8mmx0.8mmx0.03mm WxLxT), stereotatic diode SFD, photon diode, CC01 and pinpoint chambers (2mm diameter for both). 95cm SSD/5cm depth were used in a water tank. For the measurement with diodes, OF's were cross-referred to CC13 ion chambermore » measurements with 3cmx3cm field, as recommended, to help mitigate the energy variation in diode response with field size. Results were compared to the representative data from Varian measured with Edge detector. With SFD, OF's at 98.5cm SSD/1.5cm depth and 90cm SSD/10cm depth were also measured. Results: OF's measured with the Edge detector matched within 1.3% (max diff) with the representative data from Varian. For the SFD, OF's matched within 1.3% for the 4, 5 and 17.5 mm cones and within 3.7% for the other cones. OF's with photon diode were within 1.3% except for the 4 and 5 mm cones where they were 8.1% and 3.7%, respectively. OF's for the CC01 and pinpoint chamber deviated up to 36% and 44%, respectively for the 4 mm cone. OF's after intermediate reference with 3cmx3cm field changed by 3.7% for SFD, 0.8% for photon diode, and 0.6% for Edge detector. OF's at 98.5cm SSD/1.5cm depth were 10.8% higher than that at 95cm SSD/5cm depth, and OF's at 90cm SSD/1.5cm depth were 7.5% lower. Conclusion: OF's measured with the Edge detector appear to be reliable. CC01 and pinpoint chambers do not appear suitable for measuring the small cone OF's. SSD/depth affects OF measurements significantly.« less
NASA Astrophysics Data System (ADS)
Liu, Xiao; Liu, Jie; Feng, Xiuli
2018-06-01
The modern Yellow River delta is formed near the estuary of the Yellow River with the characteristics of short formation time, efficient sedimentation rate and loose structure which make sediments prone to be compacted and consolidate under the geostatic stress and overburden stress. It is one of the key areas with land subsidence disasters in China, bringing a series of safety hazards to production and living. Based on the data of massive surface cores and ten drill holes ranging from 12 to 40 m obtained from the northern modern Yellow River subaqueous delta, the inversion method suitable for the calculation of consolidation settlement characteristics of the modern Yellow River subaqueous delta is discussed, and the consolidation settlement characteristics of the delta sediments are inversed and predicted in this paper. The actual void ratio of the delta sediments at the depth from 3 to 15 m shows a significant power function relationship with the depth, while the void ratio of the sediments below 15 m changes little with depth. The pre-consolidation settlement (from deposition to sampling) of the delta sediments is between 0.91 and 1.96 m, while the consolidation settlement of unit depth is between 9.6 and 14.0 cm m-1. The post-consolidation settlement (from sampling to stable) of the subaqueous delta sediments is between 0.65 and 1.56 m in the later stage, and the consolidation settlement of unit depth is between 7.6 and 13.1 cm m-1 under the overburden stress. The delta sediments with a buried depth of 3 to 7 m contribute the most to the possible consolidation settlement in the later stage.
NASA Astrophysics Data System (ADS)
Gutiérrez del Arroyo, O.; Silver, W. L.
2015-12-01
We used the Canopy Trimming Experiment (CTE), an ongoing ecosystem manipulation study in the Luquillo Experimental Forest (LEF), Puerto Rico to determine the decadal-scale effects of canopy disturbance and debris deposition on biogeochemistry throughout the soil profile of a wet tropical forest. These manipulations represent the most significant effects of hurricanes, which may increase in frequency or intensity with warming, strengthening their ecosystem-level effects on carbon (C) and nutrient cycling. Four replicated treatments were applied in 2005 using a complete randomized block design: canopy trimming + debris deposition, canopy trimming only, debris deposition only, and untreated control. In 2015, we sampled soils at 10 cm intervals to 1 m depth in each of 12 plots (3 per treatment). We measured gravimetric moisture content, pH, HCl and citrate-ascorbate (CA) extractable iron (Fe) species, organic (Po) and inorganic fractions of NaHCO3 and NaOH phosphorus (P), as well as total C and nitrogen (N). Soil moisture decreased markedly with depth up to ~60-70 cm, and then stabilized at ~33% down to 1 m. Across all treatments, pH increased significantly with depth, ranging from 4.6 in surface soils (0-10 cm) of trimmed plots to 5.2 in deep soils (80-90 cm) of control plots. Canopy trimming decreased pH significantly, possibly due to increased root activity in surface soils as vegetation recovered. Both HCl and CA extractable Fe showed strong depth dependance, decreasing linearly to 50 cm, and stabilizing at very low concentrations (<0.2 mg/g) down to 1 m. Inorganic P concentrations were low and did not vary significantly with depth. The majority of P was associated with organic matter, with significantly higher values in the upper soil profile (<50 cm). Debris deposition significantly increased Po, revealing the role of hurricanes in subsidizing the available soil P pool in these highly productive, low-P wet tropical forests. Debris deposition also increased soil C and N concentrations in surface soils (<20 cm). Our results suggest that the dominant effects of disturbance are limited to the upper soil profile in this wet tropical forest. However, effects were persistent and detectable after ten years of the CTE, suggesting that hurricanes result in long-term changes in tropical forest biogeochemistry.
Long-term persistence of spent lead shot in tundra wetlands
Flint, Paul L.; Schamber, Jason L.
2010-01-01
We seeded experimental plots with number 4 lead pellets and sampled these plots for 10 years to assess the settlement rate of pellets in tundra wetland types commonly used by foraging waterfowl. After 10 years, about 10% of pellets remained within 6 cm of the surface, but >50% remained within 10 cm. We predict that spent lead pellets will eventually become unavailable to waterfowl; however, it will likely require >25 years for all pellets to exceed depths at which waterfowl species may forage.
Seifert, Anne-Gret; Roth, Vanessa-Nina; Dittmar, Thorsten; Gleixner, Gerd; Breuer, Lutz; Houska, Tobias; Marxsen, Jürgen
2016-11-15
Electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI-FT-ICR-MS) was used to examine the molecular composition of dissolved organic matter (DOM) from soils under different land use regimes and how the DOM composition in the catchment is reflected in adjacent streams. The study was carried out in a small area of the Schwingbach catchment, an anthropogenic-influenced landscape in central Germany. We investigated 30 different soil water samples from 4 sites and different depths (managed meadow (0-5cm, 40-50cm), deciduous forest (0-5cm), mixed-coniferous forest (0-5cm) and agricultural land (0-5cm, 40-50cm)) and 8 stream samples. 6194 molecular formulae and their magnitude-weighted parameters ((O/C)w, (H/C)w, (N/C)w, (AI-mod)w, (DBE/C)w, (DBE/O)w, (DBE-O)w, (C#)w, (MW)w) were used to describe the molecular composition of the samples. The samples can be roughly divided in three groups. Group 1 contains samples from managed meadow 40-50cm and stream water, which are characterized by high saturation compared to samples from group 2 including agricultural samples and samples from the surface meadow (0-5cm), which held more nitrogen containing and aromatic compounds. Samples from both forested sites (group 3) are characterized by higher molecular weight and O/C ratio. Environmental parameters vary between sites and among these parameters pH and nitrate significantly affect chemical composition of DOM. Results indicate that most DOM in streams is of terrestrial origin. However, 120 molecular formulae were detected only in streams and not in any of the soil samples. These compounds share molecular formulae with peptides, unsaturated aliphatics and saturated FA-CHO/FA-CHOX. Compounds only found in soil samples are much more aromatic, have more double bonds and a much lower H/C ratio but higher oxygen content, which indicates the availability of fresh plant material and less microbial processed material compared to stream samples. Copyright © 2016 Elsevier B.V. All rights reserved.
Cooper, Richard J; Fitt, Peter; Hiscock, Kevin M; Lovett, Andrew A; Gumm, Lee; Dugdale, Steve J; Rambohul, Justin; Williamson, Antony; Noble, Lister; Beamish, James; Hovesen, Poul
2016-10-01
Agricultural point source pesticide pollution arising from contaminated machinery washings and accidental spillages pose a significant threat to river water and groundwater quality. In this study, we assess the effectiveness of a three-stage on-farm biobed for treating pesticide contaminated wastewater from a large (20 km(2)) commercial arable estate. The facility consisted of an enclosed machinery wash-down unit (stage 1), a 49 m(2) lined compost-straw-topsoil biobed (stage 2), and a 200 m(2) drainage field with a trickle irrigation system (stage 3). Pesticide concentrations were analysed in water samples collected fortnightly between November 2013 and November 2015 from the biobed input and output sumps and from 20 porous pots buried at 45 cm and 90 cm depth within the drainage field. The results revealed that the biobed removed 68-98% of individual pesticides within the contaminated washings, with mean total pesticide concentrations reducing by 91.6% between the biobed input and output sumps. Drainage field irrigation removed a further 68-99% of individual pesticides, with total mean pesticide concentrations reducing by 98.4% and 97.2% in the 45 cm and 90 cm depth porous pots, respectively. The average total pesticide concentration at 45 cm depth in the drainage field (57 μg L(-1)) was 760 times lower than the mean concentration recorded in the input sump (43,334 μg L(-1)). There was no evidence of seasonality in the efficiency of biobed pesticide removal, nor was there evidence of a decline in removal efficiency over the two-year monitoring period. However, higher mean total pesticide concentrations at 90 cm (102 μg L(-1)) relative to 45 cm (57 μg L(-1)) depth indicated an accumulation of pesticide residues deeper within the soil profile. Overall, the results presented here demonstrate that a three-stage biobed can successfully reduce pesticide pollution risk from contaminated machinery washings on a commercial farm. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Figueroa, A.; Tindall, J. A.; Friedel, M. J.
2005-12-01
Concentration of delO18 in water samples extracted by suction lysimeters is compared to samples obtained by methods of centrifugation and azeotropic distillation. Intact soil cores (30 cm diameter by 40 cm height) were extracted from two different sites. Site 1 was rapid infiltration basin number 50, near Altamonte Springs in Seminole County, Florida on properties belonging to the Walt Disney World Resort Complex. Site 2 was the Missouri Management System Evaluation Area (MSEA) near Centralia in Boone County, Missouri. The delO18 water was analyzed on a mass spectrophotometer. Potassium Bromide (KBr) was also used as a tracer and analyzed by ion chromatography. A portion of the data obtained was modeled using CXTFIT. Water collected by centrifugation and azeotropic distillation data were about 2-5% more negative than that collected by suction lysimeter values from the Florida (sandy) soil and about 5-7 % more negative from the Missouri (well structured clay) soil. Results indicate that the majority of soil water in well structured soil is strongly bound to soil grain surfaces and is not easily sampled by suction lysimeters. Also, it is plausible that evaporation caused some delO18 enrichment in the suction lysimeters. Suction lysimeters preferentially sampled water held at lower matric potentials, which may not represent total soil water. In cases where a sufficient volume of water has passed through the soil profile and displaced all previous pore water, suction lysimeters will however collect a representative sample of all the water at that depth interval. It is suggested that for stable isotope studies monitoring precipitation and soil water, suction lysimeters be installed at shallow depths (10 cm). Samples should also be coordinated with precipitation events. The CXTFIT program worked well for Florida soils (a more homogeneous sand), but gave poor performance for Missouri soils (well structured clays) except for deeper depths where clay structure was less variable. The data also suggest that each extraction method samples a separate component of soil-pore water. Consequently, centrifugation can be used with good success, particularly for efficient sampling of large areas. Azeotropic distillation is more appropriate when strict qualitative and quantitative data for desorption, desorption, and various types of kinetic studies are needed.
Assessment of water sources to plant growth in rice based cropping systems by stable water isotopes
NASA Astrophysics Data System (ADS)
Mahindawansha, Amani; Kraft, Philipp; Racela, Heathcliff; Breuer, Lutz
2016-04-01
Rice is one of the most water-consuming crops in the world. Understanding water source utilization of rice will help us to improve water use efficiency (WUE) in paddy management. The objectives of our study are to evaluate the isotopic compositions of surface ponded water, soil water, irrigation water, groundwater, rain water and plant water and based on stable water isotope signatures to evaluate the contributions of various water sources to plant growth (wet rice, aerobic rice and maize) together with investigating the contribution of water from different soil horizons for plant growth in different maturity periods during wet and dry seasons. Finally we will compare the water balances and crop yields in both crops during both seasons and calculate the water use efficiencies. This will help to identify the most efficient water management systems in rice based cropping ecosystems using stable water isotopes. Soil samples are collected from 9 different depths at up to 60 cm in vegetative, reproductive and matured periods of plant growth together with stem samples. Soil and plant samples are extracted by cryogenic vacuum extraction. Root samples are collected up to 60 cm depth from 10 cm intercepts leading calculation of root length density and dry weight. Groundwater, surface water, rain water and irrigation water are sampled weekly. All water samples are analyzed for hydrogen and oxygen isotope ratios (d18O and dD) using Los Gatos Research DLT100. Rainfall records, ground water level, surface water level fluctuations and the amount of water irrigated in each field will be measured during the sampling period. The direct inference approach which is based on comparing isotopic compositions (dD and d18O) between plant stem water and soil water will be used to determine water sources taken up by plant. Multiple-source mass balance assessment can provide the estimated range of potential contributions of water from each soil depth to root water uptake of a crop. These evaluations will be used to determine the proportion of water from upper soil horizons and deep horizons for rice and maize in different maturity periods during wet and dry seasons. Finally we will estimate the influence of groundwater and surface water by irrigation water and/or by precipitation. First results of the sampling during the wet season 2015 will be presented.
SU-E-J-197: Investigation of Microsoft Kinect 2.0 Depth Resolution for Patient Motion Tracking
DOE Office of Scientific and Technical Information (OSTI.GOV)
Silverstein, E; Snyder, M
2015-06-15
Purpose: Investigate the use of the Kinect 2.0 for patient motion tracking during radiotherapy by studying spatial and depth resolution capabilities. Methods: Using code written in C#, depth map data was abstracted from the Kinect to create an initial depth map template indicative of the initial position of an object to be compared to the depth map of the object over time. To test this process, simple setup was created in which two objects were imaged: a 40 cm × 40 cm board covered in non reflective material and a 15 cm × 26 cm textbook with a slightly reflective,more » glossy cover. Each object, imaged and measured separately, was placed on a movable platform with object to camera distance measured. The object was then moved a specified amount to ascertain whether the Kinect’s depth camera would visualize the difference in position of the object. Results: Initial investigations have shown the Kinect depth resolution is dependent on the object to camera distance. Measurements indicate that movements as small as 1 mm can be visualized for objects as close as 50 cm away. This depth resolution decreases linearly with object to camera distance. At 4 m, the depth resolution had decreased to observe a minimum movement of 1 cm. Conclusion: The improved resolution and advanced hardware of the Kinect 2.0 allows for increase of depth resolution over the Kinect 1.0. Although obvious that the depth resolution should decrease with increasing distance from an object given the decrease in number of pixels representing said object, the depth resolution at large distances indicates its usefulness in a clinical setting.« less
Oh, Jaehoon; Cho, Youngsuk; Kang, Hyunggoo; Kim, Wonhee; Chee, Youngjoon; Song, Yeongtak; Kim, In Young; Lee, Juncheol
2016-01-01
Purpose During cardiopulmonary resuscitation (CPR), chest compression (CC) depth is influenced by the surface on which the patient is placed. We hypothesized that training healthcare providers to perform a CC depth of 6–7 cm (instead of 5–6 cm) on a manikin placed on a mattress during CPR in the hospital might improve their proper CC depth. Materials and Methods This prospective randomised controlled study involved 66 premedical students without CPR training. The control group was trained to use a CC depth of 5–6 cm (G 5–6), while the experimental group was taught to use a CC depth of 6–7 cm (G 6–7) with a manikin on the floor. All participants performed CCs for 2 min on a manikin that was placed on a bed 1 hour and then again 4 weeks after the training without a feedback. The parameters of CC quality (depth, rate, % of accurate depth) were assessed and compared between the 2 groups. Results Four students were excluded due to loss to follow-up and recording errors, and data of 62 were analysed. CC depth and % of accurate depth were significantly higher among students in the G 6–7 than G 5–6 both 1 hour and 4 weeks after the training (p<0.001), whereas CC rate was not different between two groups (p>0.05). Conclusion Training healthcare providers to perform a CC depth of 6–7 cm could improve quality CC depth when performing CCs on patients who are placed on a mattress during CPR in a hospital setting. PMID:26847307
Phthalic acid esters in soils from vegetable greenhouses in Shandong Peninsula, East China.
Chai, Chao; Cheng, Hongzhen; Ge, Wei; Ma, Dong; Shi, Yanxi
2014-01-01
Soils at depths of 0 cm to 10 cm, 10 cm to 20 cm, and 20 cm to 40 cm from 37 vegetable greenhouses in Shandong Peninsula, East China, were collected, and 16 phthalic acid esters (PAEs) were detected using gas chromatography-mass spectrometry (GC-MS). All 16 PAEs could be detected in soils from vegetable greenhouses. The total of 16 PAEs (Σ16PAEs) ranged from 1.939 mg/kg to 35.442 mg/kg, with an average of 6.748 mg/kg. Among four areas, including Qingdao, Weihai, Weifang, and Yantai, the average and maximum concentrations of Σ16PAEs in soils at depths of 0 cm to 10 cm appeared in Weifang, which has a long history of vegetable production and is famous for extensive greenhouse cultivation. Despite the different concentrations of Σ16PAEs, the PAE compositions were comparable. Among the 16 PAEs, di(2-ethylhexyl) phthalate (DEHP), di-n-octyl phthalate (DnOP), di-n-butyl phthalate (DnBP), and diisobutyl phthalate (DiBP) were the most abundant. Compared with the results on agricultural soils in China, soils that are being used or were used for vegetable greenhouses had higher PAE concentrations. Among PAEs, dimethyl phthalate (DMP), diethyl phthalate (DEP) and DnBP exceeded soil allowable concentrations (in US) in more than 90% of the samples, and DnOP in more than 20%. Shandong Peninsula has the highest PAE contents, which suggests that this area is severely contaminated by PAEs.
Phthalic Acid Esters in Soils from Vegetable Greenhouses in Shandong Peninsula, East China
Chai, Chao; Cheng, Hongzhen; Ge, Wei; Ma, Dong; Shi, Yanxi
2014-01-01
Soils at depths of 0 cm to 10 cm, 10 cm to 20 cm, and 20 cm to 40 cm from 37 vegetable greenhouses in Shandong Peninsula, East China, were collected, and 16 phthalic acid esters (PAEs) were detected using gas chromatography-mass spectrometry (GC-MS). All 16 PAEs could be detected in soils from vegetable greenhouses. The total of 16 PAEs (Σ16PAEs) ranged from 1.939 mg/kg to 35.442 mg/kg, with an average of 6.748 mg/kg. Among four areas, including Qingdao, Weihai, Weifang, and Yantai, the average and maximum concentrations of Σ16PAEs in soils at depths of 0 cm to 10 cm appeared in Weifang, which has a long history of vegetable production and is famous for extensive greenhouse cultivation. Despite the different concentrations of Σ16PAEs, the PAE compositions were comparable. Among the 16 PAEs, di(2-ethylhexyl) phthalate (DEHP), di-n-octyl phthalate (DnOP), di-n-butyl phthalate (DnBP), and diisobutyl phthalate (DiBP) were the most abundant. Compared with the results on agricultural soils in China, soils that are being used or were used for vegetable greenhouses had higher PAE concentrations. Among PAEs, dimethyl phthalate (DMP), diethyl phthalate (DEP) and DnBP exceeded soil allowable concentrations (in US) in more than 90% of the samples, and DnOP in more than 20%. Shandong Peninsula has the highest PAE contents, which suggests that this area is severely contaminated by PAEs. PMID:24747982
Outreach program by measurements of frost depth in Japan
NASA Astrophysics Data System (ADS)
Harada, K.; Yoshikawa, K.; Iwahana, G.; Stanilovskaya, J. V.; Sawada, Y.
2015-12-01
In order to emphasis their interest for earth sciences, an outreach program through measurements of frost depth is conducting in Japan since 2011. This program is made at elementary, junior high and high schools in Hokkaido, northern part of Japan where seasonal ground freezing occurs in winter. At schools, a lecture was made and a frost tube was set at schoolyard, as the same tube and protocol as UAF's Permafrost Outreach Program, using clear tube with blue-colored water. Frost depth was measured directly once a week at each school by students during ground freezing under no snow-removal condition. In 2011 season, we started this program at three schools, and the number of participated school is extended to 29 schools in 2014 winter season, 23 elementary schools, 5 junior high schools and one high school. We visited schools summer time and just before frost season to talk about the method of measurement. After the end of measured period, we also visited schools to explain measured results by each school and the other schools in Japan, Alaska, Canada and Russia. The measured values of frost depth in Hokkaido were ranged between 0cm and more than 50cm. We found that the frost depth depends on air temperature and snow depth. We discussed with student why the frost depth ranged widely and explained the effect of snow by using the example of igloo. In order to validate the effect of snow and to compare frost depths, we tried to measure frost depths under snow-removal and no snow-removal conditions at one elementary school. At the end of December, depths had no significant difference between these conditions, 11cm and 10cm, and the difference went to 14cm, 27cm and 13cm after one month, with about 30cm of snow depth. After these measurements and lectures, students noticed snow has a role as insulator and affects the frost depth. The network of this program will be expected to expand, finally more than a hundred schools.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alkhatib, H; Oves, S; Gebreamlak, W
Purpose: To investigate discrepancies between measured percent depth dose curves of a linear accelerator at depths beyond the commissioning data and those generated by the treatment planning system (TPS) via extrapolation. Methods: Relative depth doses were measured on an Elekta Synergy™ linac for photon beams of 6 -MV and 10-MV. SSDs for all curves were 100-cm and field sizes ranged from 4×4 to 35×35-cm{sup 2}. As most scanning tanks cannot provide depths greater than about 30-cm, percent depth dose measurements, extending 45-cm depths, were performed in Solid Water™ using a 0.125-cc ionization chamber (PTW model TN31012). The buildup regions ofmore » the curves were acquired with a parallel plate chamber (PTW model TN34001). Extrapolated curves were generated by the TPS (Phillips Pinnacle{sup 3} v. 9.6) by applying beams to CT images of 50-cm of Solid Water™ with density override set to 1.0-g/cc. Results: Percent difference between the two sets of curves (measured and TPS) was investigated. There is significant discrepancy in the buildup region to a depth of 7-mm. Beyond this depth, the two sets show good agreement. When analyzing the tail end of the curves, we saw percent difference of between 1.2% and 3.2%. The highest disagreement for the 6-MV curves was 10×10-cm{sup 2} (3%) and for the 10-MV curves it was the 35×35-cm{sup 2} (3.2%). Conclusion: A qualitative analysis of the measured data versus PDD curves generated by the TPS shows generally good agreement beyond 1-cm. However, a measurable percent difference was observed when comparing curves at depths beyond that provided by the commissioning data and at depths in the buildup region. Possible explanations for this include inaccuracies in modeling of the Solid Water™ or drift in beam energy since commissioning. Additionally, closer attention must be paid for measurements in the buildup region.« less
Influence of spacing and depth of planting to growth and yield of arrowroot (Marantha arundinacea)
NASA Astrophysics Data System (ADS)
Qodliyati, M.; Supriyono; Nyoto, S.
2018-03-01
This study was conducted to determine the optimum spacing and depth of planting to the growth and yield of arrowroot. This research was conducted at the Experimental Field of Agriculture Faculty, Sebelas Maret University on Jumantono, Karanganyar. This research was conducted using Randomized Completely Block Design (RCBD) with two treatment factors of plant spacing and depth of planting. Plant spacing consists of 3 levels, including J1 (30×30 cm), J2 (30×40 cm) and J3 (30×50 cm). Depth of planting consists of 2 levels which are K1 (10 cm) and K2 (20 cm). Data were analyzed by DMRT (Duncan’s Multiple Range Test) at 5% significance level. The results showed that spacing of 30×50 cm have significantly higher plant height, tuber (common names of rhizome) length, and tuber weight per plant. The depth of 20 cm gives a higher yield on the number of tubers per plant and tuber weight per plot variables. Both treatments have no significant interaction on growth and yield.
Effect of heavy-ion irradiation on London penetration depth in overdoped Ba(Fe 1 - x Co x ) 2 As 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murphy, J.; Tanatar, M. A.; Kim, Hyunsoo
2013-08-01
Irradiation with 1.4 GeV 208 Pb ions was used to induce artificial disorder in single crystals of iron-arsenide superconductor Ba(Fe 1 - x Co x ) 2 As 2 and to study its effects on the temperature-dependent London penetration depth and transport properties. A study was undertaken on overdoped single crystals with x = 0.108 and x = 0.127 characterized by notable modulation of the superconducting gap. Irradiation corresponding to the matching fields of B Φ = 6 T and 6.5 T with doses 2.22 × 10 11 d /cm 2 and 2.4 × 10 11 d /cm 2 ,more » respectively, suppresses the superconducting T c by approximately 0.3 to 1 K. The variation of the low-temperature penetration depth in both pristine and irradiated samples is well described by the power law Δ λ ( T ) = A T n . Irradiation increases the magnitude of the prefactor A and decreases the exponent n , similar to the effect of irradiation in optimally-doped samples. This finding supports universal s ± pairing in Ba(Fe 1 - x Co x ) 2 As 2 compounds for the entire Co doping range.« less
Implantation of sodium ions into germanium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Korol', V. M., E-mail: vkorol@ctsnet.ru; Kudriavtsev, Yu.
The donor properties of Na atoms introduced by ion implantation into p-Ge with the resistivity 20-40 {Omega} cm are established for the first time. Na profiles implanted into Ge (the energies 70 and 77 keV and the doses (0.8, 3, 30) Multiplication-Sign 10{sup 14} cm{sup -2}) are studied. The doses and annealing temperatures at which the thermoprobe detects n-type conductivity on the sample surface are established. After implantation, the profiles exhibit an extended tail. The depth of the concentration maximum is in good agreement with the calculated mean projected range of Na ions R{sub p}. Annealing for 30 min atmore » temperatures of 250-700 Degree-Sign C brings about a redistribution of Na atoms with the formation of segregation peaks at a depth, which is dependent on the ion dose, and is accompanied by the diffusion of Na atoms to the surface with subsequent evaporation. After annealing at 700 Degree-Sign C less than 7% of the implanted ions remain in the matrix. The shape of the profile tail portions measured after annealing at temperatures 300-400 Degree-Sign C is indicative of the diffusion of a small fraction of Na atoms into the depth of the sample.« less
Steven, Blaire; Gallegos-Graves, La Verne; Belnap, Jayne; Kuske, Cheryl R.
2013-01-01
Biological soil crusts (biocrusts) are common to drylands worldwide. We employed replicated, spatially nested sampling and 16S rRNA gene sequencing to describe the soil microbial communities in three soils derived from different parent material (sandstone, shale, and gypsum). For each soil type, two depths (biocrusts, 0–1 cm; below-crust soils, 2–5 cm) and two horizontal spatial scales (15 cm and 5 m) were sampled. In all three soils, Cyanobacteria and Proteobacteria demonstrated significantly higher relative abundance in the biocrusts, while Chloroflexi and Archaea were significantly enriched in the below-crust soils. Biomass and diversity of the communities in biocrusts or below-crust soils did not differ with soil type. However, biocrusts on gypsum soil harbored significantly larger populations of Actinobacteria and Proteobacteria and lower populations of Cyanobacteria. Numerically dominant operational taxonomic units (OTU; 97% sequence identity) in the biocrusts were conserved across the soil types, whereas two dominant OTUs in the below-crust sand and shale soils were not identified in the gypsum soil. The uniformity with which small-scale vertical community differences are maintained across larger horizontal spatial scales and soil types is a feature of dryland ecosystems that should be considered when designing management plans and determining the response of biocrusts to environmental disturbances.
The soil hydrologic response to forest regrowth: a case study from southwestern Amazonia
NASA Astrophysics Data System (ADS)
Godsey, Sarah; Elsenbeer, Helmut
2002-05-01
As a large and dynamic land-use category, tropical secondary forests may affect climate, soils, and hydrology in a manner different from primary forests or agricultural areas. We investigated the saturated hydraulic conductivity Ksat of a Kandiudult under different land uses in Rondonia, Brazil. We measured Ksat at four depths (12·5, 20, 30 and 50 cm) under (a) primary forest, (b) a former banana-cacao plantation (SF1), and (c) an abandoned pasture (SF2). At 12·5 cm, all three land uses differ significantly ( = 0·1), but not at the 20 and 30 cm depths. At 50 cm, Ksat was significantly greater in the former pasture than in other land uses. Lateral subsurface flow is expected during intense rainfall (about 30 times per year) at 30 cm depth in SF1 and at 50 cm depth in the forest, whereas the relatively low permeability at shallow 12·5 cm in the SF2 may result not only in lateral subsurface flow, but also saturation overland flow. For modelling purposes, recovering systems seem to have Ksat values distinct from primary forest at shallow depths, whereas at deeper layers (>20 cm) they may be considered similar to forests.
Mapping the global depth to bedrock for land surface modelling
NASA Astrophysics Data System (ADS)
Shangguan, W.; Hengl, T.; Yuan, H.; Dai, Y. J.; Zhang, S.
2017-12-01
Depth to bedrock serves as the lower boundary of land surface models, which controls hydrologic and biogeochemical processes. This paper presents a framework for global estimation of Depth to bedrock (DTB). Observations were extracted from a global compilation of soil profile data (ca. 130,000 locations) and borehole data (ca. 1.6 million locations). Additional pseudo-observations generated by expert knowledge were added to fill in large sampling gaps. The model training points were then overlaid on a stack of 155 covariates including DEM-based hydrological and morphological derivatives, lithologic units, MODIS surfacee reflectance bands and vegetation indices derived from the MODIS land products. Global spatial prediction models were developed using random forests and Gradient Boosting Tree algorithms. The final predictions were generated at the spatial resolution of 250m as an ensemble prediction of the two independently fitted models. The 10-fold cross-validation shows that the models explain 59% for absolute DTB and 34% for censored DTB (depths deep than 200 cm are predicted as 200 cm). The model for occurrence of R horizon (bedrock) within 200 cm does a good job. Visual comparisons of predictions in the study areas where more detailed maps of depth to bedrock exist show that there is a general match with spatial patterns from similar local studies. Limitation of the data set and extrapolation in data spare areas should not be ignored in applications. To improve accuracy of spatial prediction, more borehole drilling logs will need to be added to supplement the existing training points in under-represented areas.
Mapping the global depth to bedrock for land surface modeling
NASA Astrophysics Data System (ADS)
Shangguan, Wei; Hengl, Tomislav; Mendes de Jesus, Jorge; Yuan, Hua; Dai, Yongjiu
2017-03-01
Depth to bedrock serves as the lower boundary of land surface models, which controls hydrologic and biogeochemical processes. This paper presents a framework for global estimation of depth to bedrock (DTB). Observations were extracted from a global compilation of soil profile data (ca. 1,30,000 locations) and borehole data (ca. 1.6 million locations). Additional pseudo-observations generated by expert knowledge were added to fill in large sampling gaps. The model training points were then overlaid on a stack of 155 covariates including DEM-based hydrological and morphological derivatives, lithologic units, MODIS surface reflectance bands and vegetation indices derived from the MODIS land products. Global spatial prediction models were developed using random forest and Gradient Boosting Tree algorithms. The final predictions were generated at the spatial resolution of 250 m as an ensemble prediction of the two independently fitted models. The 10-fold cross-validation shows that the models explain 59% for absolute DTB and 34% for censored DTB (depths deep than 200 cm are predicted as 200 cm). The model for occurrence of R horizon (bedrock) within 200 cm does a good job. Visual comparisons of predictions in the study areas where more detailed maps of depth to bedrock exist show that there is a general match with spatial patterns from similar local studies. Limitation of the data set and extrapolation in data spare areas should not be ignored in applications. To improve accuracy of spatial prediction, more borehole drilling logs will need to be added to supplement the existing training points in under-represented areas.
NASA Astrophysics Data System (ADS)
Peplowski, Patrick N.; Wilson, Jack T.; Beck, Andrew W.; Burks, Morgan; Goldsten, John O.; Lawrence, David J.
2018-01-01
Gamma-ray spectroscopy investigations characterize the chemical composition of planetary surfaces by measuring element-characteristic gamma rays with energies of ∼100 keV to ∼9 MeV. Over this energy range, the mean free path of a gamma ray varies from about 1 to 25 cm, therefore gamma-ray measurements sample subsurface composition. Many elements emit gamma rays at multiple, often widely spaced energies, so gamma-ray measurements can in principle also be used to identify depth-dependent variations in subsurface composition. We report results from laboratory measurements and radiation transport modeling designed to demonstrate this capability. The laboratory measurements verified the presence of depth-dependent gamma-ray signatures, and were then used to benchmark radiation transport simulations that were used to model realistic Mars-like scenarios. The models indicate that compositionally distinct subsurface deposits, buried to depths of ∼80 cm (125 g/cm2), can be identified using gamma-ray measurements. Going beyond identification to characterization (burial depth, relative composition of the layers) of the deposits requires knowledge of the vertical and horizontal variability in the water content of the near-surface surface materials, the local Galactic Cosmic Ray environment (magnitude and energy distribution), the depth-dependent neutron flux, gamma-ray production cross sections, and knowledge of the composition and column density of the atmosphere. The results of our experiments and models provided a basis for examining the utility of using orbiter- and lander-based gamma-ray measurements to identify subsurface deposits on Mars.
NASA Astrophysics Data System (ADS)
Ma, Bin; Liang, Xing; Liu, Shaohua; Jin, Menggui; Nimmo, John R.; Li, Jing
2017-05-01
Subsurface-water flow pathways in three different land-use areas (non-irrigated grassland, poplar forest, and irrigated arable land) in the central North China Plain were investigated using oxygen (18O) and hydrogen (2H) isotopes in samples of precipitation, soils, and groundwater. Soil water in the top 10 cm was significantly affected by both evaporation and infiltration. Water at 10-40 cm depth in the grassland and arable land, and 10-60 cm in poplar forest, showed a relatively short residence time, as a substantial proportion of antecedent soil water was mixed with a 92-mm storm infiltration event, whereas below those depths (down to 150 cm), depleted δ18O spikes suggested that some storm water bypassed the shallow soil layers. Significant differences, in soil-water content and δ18O values, within a small area, suggested that the proportion of immobile soil water and water flowing in subsurface pathways varies depending on local vegetation cover, soil characteristics and irrigation applications. Soil-water δ18O values revealed that preferential flow and diffuse flow coexist. Preferential flow was active within the root zone, independent of antecedent soil-water content, in both poplar forest and arable land, whereas diffuse flow was observed in grassland. The depleted δ18O spikes at 20-50 cm depth in the arable land suggested the infiltration of irrigation water during the dry season. Temporal isotopic variations in precipitation were subdued in the shallow groundwater, suggesting more complete mixing of different input waters in the unsaturated zone before reaching the shallow groundwater.
Nazzal, Yousef; Ahmed, Izrar; Al-Arifi, Nassir S N; Ghrefat, Habes; Zaidi, Faisal K; El-Waheidi, Mahmud M; Batayneh, Awni; Zumlot, Taisser
2014-08-01
The present study deals with detailed hydrochemical assessment of groundwater within the Saq aquifer. The Saq aquifer which extends through the NW part of Saudi Arabia is one of the major sources of groundwater supply. Groundwater samples were collected from about 295 groundwater wells and analyzed for various physico-chemical parameters such as electrical conductivity (EC), pH, temperature, total dissolved solids (TDS), Na(+), K(+), Ca(2+), Mg(2+), CO3 (-), HCO3 (-), Cl(-), SO4 (2-), and NO3 (-). Groundwater in the area is slightly alkaline and hard in nature. Electrical conductivity (EC) varies between 284 and 9,902 μS/cm with an average value of 1,599.4 μS/cm. The groundwater is highly mineralized with approximately 30 % of the samples having major ion concentrations above the WHO permissible limits. The NO3 (-) concentration varies between 0.4 and 318.2 mg/l. The depth distribution of NO3 (-) concentration shows higher concentration at shallow depths with a gradual decrease at deeper depths. As far as drinking water quality criteria are concerned, study shows that about 33 % of samples are unfit for use. A detailed assessment of groundwater quality in relation to agriculture use reveals that 21 % samples are unsuitable for irrigation. Using Piper's classification, groundwater was classified into five different groups. Majority of the samples show Mix-Cl-SO4- and Na-Cl-types water. The abundances of Ca(2+) and Mg(2+) over alkalis infer mixed type of groundwater facies and reverse exchange reactions. The groundwater has acquired unique chemical characteristics through prolonged rock-water interactions, percolation of irrigation return water, and reactions at vadose zone.
A Comparison of Microbial Community Structures by Depth and Season Under Switchgrass
NASA Astrophysics Data System (ADS)
Fansler, S. J.; Smith, J. L.; Bolton, H.; Bailey, V. L.
2008-12-01
As part of a multidisciplinary study of C sequestration in switchgrass production systems, the soil microbial community structure was monitored at 6 different depths (reaching 90 cm) in both spring and autumn. Microbial community structure was assessed using ribosomal intergenic spacer analysis (RISA), and primers were used specific to either bacteria or fungi, generating microbial community fingerprints for each taxonomic group. Diverse microbial communities for both groups were detected throughout the soil profile. It is notable that while community structure clearly changed with depth, there was the deepest soil samples still retained relatively diverse communities. Seasonally, differences are clearly evident within plots at the surface. As the plots were replicated, significant differences in the community fingerprints with depth and season are reported.
Brookes, Justin D; Davies, Cheryl M; Hipsey, Matthew R; Antenucci, Jason P
2006-03-01
Artificial cow pats were seeded with Cryptosporidium oocysts and subjected to a simulated rainfall event. The runoff from the faecal pat was collected and different particle size fractions were collected within settling columns by exploiting the size-dependent settling velocities. Particle size and Cryptosporidium concentration distribution at 10 cm below the surface was measured at regular intervals over 24 h. Initially a large proportion of the total volume of particles belonged to the larger size classes (> 17 microm). However, throughout the course of the experiment, there was a sequential loss of the larger size classes from the sampling depth and a predominance of smaller particles (< 17 microm). The Cryptosporidium concentration at 10 cm depth did not change throughout the experiment. In the second experiment samples were taken from different depths within the settling column. Initially 26% of particles were in the size range 124-492 microm. However, as these large particles settled there was an enrichment at 30 cm after one hour (36.5-49.3%). There was a concomitant enrichment of smaller particles near the surface after 1 h and 24 h. For Pat 1 there was no difference in Cryptosporidium concentration with depth after 1 h and 24 h. In Pat 2 there was a difference in concentration between the surface and 30 cm after 24 h. However, this could be explained by the settling velocity of a single oocyst. The results suggested that oocysts are not associated with large particles, but exist in faecal runoff as single oocysts and hence have a low (0.1 m(d-1)) settling velocity. The implications of this low settling velocity on Cryptosporidium risk reduction within water supply reservoirs was investigated through the application of a three-dimensional model of oocyst fate and transport to a moderately sized reservoir (26 GL). The model indicated that the role of settling on oocyst concentration reduction within the water column is between one and three orders of magnitude less than that caused by advection and dilution, depending on the strength of hydrodynamic forcing.
MCNP6 model of the University of Washington clinical neutron therapy system (CNTS).
Moffitt, Gregory B; Stewart, Robert D; Sandison, George A; Goorley, John T; Argento, David C; Jevremovic, Tatjana
2016-01-21
A MCNP6 dosimetry model is presented for the Clinical Neutron Therapy System (CNTS) at the University of Washington. In the CNTS, fast neutrons are generated by a 50.5 MeV proton beam incident on a 10.5 mm thick Be target. The production, scattering and absorption of neutrons, photons, and other particles are explicitly tracked throughout the key components of the CNTS, including the target, primary collimator, flattening filter, monitor unit ionization chamber, and multi-leaf collimator. Simulations of the open field tissue maximum ratio (TMR), percentage depth dose profiles, and lateral dose profiles in a 40 cm × 40 cm × 40 cm water phantom are in good agreement with ionization chamber measurements. For a nominal 10 × 10 field, the measured and calculated TMR values for depths of 1.5 cm, 5 cm, 10 cm, and 20 cm (compared to the dose at 1.7 cm) are within 0.22%, 2.23%, 4.30%, and 6.27%, respectively. For the three field sizes studied, 2.8 cm × 2.8 cm, 10.4 cm × 10.3 cm, and 28.8 cm × 28.8 cm, a gamma test comparing the measured and simulated percent depth dose curves have pass rates of 96.4%, 100.0%, and 78.6% (depth from 1.5 to 15 cm), respectively, using a 3% or 3 mm agreement criterion. At a representative depth of 10 cm, simulated lateral dose profiles have in-field (⩾ 10% of central axis dose) pass rates of 89.7% (2.8 cm × 2.8 cm), 89.6% (10.4 cm × 10.3 cm), and 100.0% (28.8 cm × 28.8 cm) using a 3% and 3 mm criterion. The MCNP6 model of the CNTS meets the minimum requirements for use as a quality assurance tool for treatment planning and provides useful insights and information to aid in the advancement of fast neutron therapy.
An In vitro evaluation of the reliability of QR code denture labeling technique
Poovannan, Sindhu; Jain, Ashish R.; Krishnan, Cakku Jalliah Venkata; Chandran, Chitraa R.
2016-01-01
Statement of Problem: Positive identification of the dead after accidents and disasters through labeled dentures plays a key role in forensic scenario. A number of denture labeling methods are available, and studies evaluating their reliability under drastic conditions are vital. Aim: This study was conducted to evaluate the reliability of QR (Quick Response) Code labeled at various depths in heat-cured acrylic blocks after acid treatment, heat treatment (burns), and fracture in forensics. It was an in vitro study. Materials and Methods: This study included 160 specimens of heat-cured acrylic blocks (1.8 cm × 1.8 cm) and these were divided into 4 groups (40 samples per group). QR Codes were incorporated in the samples using clear acrylic sheet and they were assessed for reliability under various depths, acid, heat, and fracture. Data were analyzed using Chi-square test, test of proportion. Results: The QR Code inclusion technique was reliable under various depths of acrylic sheet, acid (sulfuric acid 99%, hydrochloric acid 40%) and heat (up to 370°C). Results were variable with fracture of QR Code labeled acrylic blocks. Conclusion: Within the limitations of the study, by analyzing the results, it was clearly indicated that the QR Code technique was reliable under various depths of acrylic sheet, acid, and heat (370°C). Effectiveness varied in fracture and depended on the level of distortion. This study thus suggests that QR Code is an effective and simpler denture labeling method. PMID:28123284
Study of Groundwater Physical Characteristics: A Case Study at District of Pekan, Pahang
NASA Astrophysics Data System (ADS)
Hashim, M. M. M.; Zawawi, M. H.; Samuding, K.; Dominic, J. A.; Zulkurnain, M. H.; Mohamad, K.
2018-04-01
A study of groundwater physical characteristic has been conducted at Pahang Tua, Pekan, Tanjung Batu and Nenasi, Pahang. There are several locations of tube well selected in this study. Four of five locations are situated in the coastal area and another one is located outside of coastal line. The purposes of this study are to identify the physical characteristic of groundwater (temperature, pH, electrical conductivity (EC), total dissolved solids (TDS) and salinity) and to identify the influence of sampling location and tube well depth to its physical characteristics. The results from the in-situ measurement were identified the physical characteristic groundwater for each tube well location. The result shows that temperature and pH for all groundwater samples almost in the same value but for the electrical conductivity, salinity and total dissolved solid have significant difference that related to location and depth of the tube well. The Pekan tube well with 80m depth and 2km distance from the sea have the highest value of EC, TDS and salinity (14460.53µS/cm, 7230.63 ppm and 8.32 PSU) compared to Nenasi with 30m depth of tube well and 0.65km distance from the sea. The EC, TDS and salinity value recorded are 1454.3253µS/cm, 727.00 ppm and 0.72 PSU. From the result of EC, TDS and salinity, it shows that the deeper tube well in the coastal area will obtained higher value of EC, TDS and salinity.
NASA Astrophysics Data System (ADS)
Brusa, Roberto S.; Karwasz, Grzegorz P.; Tiengo, Nadia; Zecca, Antonio; Corni, Federico; Tonini, Rita; Ottaviani, Gianpiero
2000-04-01
The depth profile of open volume defects has been measured in Si implanted with He at an energy of 20 keV, by means of a slow-positron beam and the Doppler broadening technique. The evolution of defect distributions has been studied as a function of isochronal annealing in two series of samples implanted at the fluence of 5×1015 and 2×1016 He cm-2. A fitting procedure has been applied to the experimental data to extract a positron parameter characterizing each open volume defect. The defects have been identified by comparing this parameter with recent theoretical calculations. In as-implanted samples the major part of vacancies and divacancies produced by implantation is passivated by the presence of He. The mean depth of defects as seen by the positron annihilation technique is about five times less than the helium projected range. During the successive isochronal annealing the number of positron traps decreases, then increases and finally, at the highest annealing temperatures, disappears only in the samples implanted at the lowest fluence. A minimum of open volume defects is reached at the annealing temperature of 250 °C in both series. The increase of open volume defects at temperatures higher than 250 °C is due to the appearance of vacancy clusters of increasing size, with a mean depth distribution that moves towards the He projected range. The appearance of vacancy clusters is strictly related to the out diffusion of He. In the samples implanted at 5×1015 cm-2 the vacancy clusters are mainly four vacancy agglomerates stabilized by He related defects. They disappear starting from an annealing temperature of 700 °C. In the samples implanted at 2×1016 cm-2 and annealed at 850-900 °C the vacancy clusters disappear and only a distribution of cavities centered around the He projected range remains. The role of vacancies in the formation of He clusters, which evolve in bubble and then in cavities, is discussed.
NASA Astrophysics Data System (ADS)
Mara Lima Goulart, Lívia; Amaral Guerrini, Iraê; Fidalgo de Faria, Marianne; Spada, Grasiela; Proença Nalesso, Pedro Henrique; Willian Carlos, Guilherme
2017-04-01
The use of organic waste such as sewage sludge, in the recovery of degraded áreas have shown very satisfactory results, because they are constituted by high contentes of organic matter and nutrients, essential to improve the physical and chemical properties of the soil. Thus, the objective of this study was to verify the total organic carbon (TOC) of a degraded soil, up to a metre deep, after 10 years of application of sewage sludge and planting native species of the Atlantic forest. The experiment was conducted at Fazenda Entre-Rios, owned by Suzano Papel e Celulose, in Itatinga, São Paulo, Brazil. The experiment was designed as randomized block with four replications, six doses of sewage sludge (0, 2.5, 5, 10, 15 and 20 t ha-1), conventional chemical fertilizer and only with potassium application, totaling eight treatments. Samples were collected every 20 cm (0-20, 20-40, 40-60, 60-80 and 80-100 cm) until reaching a metre deep. Ten years after trial deployment, the sewage sludge application in degraded soil was significantly influenced the TOC at all depths sampled. The highest values of the COT were observed in plots that received 15 and 20 t ha-1 of sewage sludge, in all depths sampled, except for the layer of 80-100 cm, which presented the highest average COT in the treatment with 10 t ha-1 of residue. As observed for all treatments, the highest TOC averages were observed in the superficial layers of the soil (0-20 and 20-40 cm). The sewage sludge application is useful to recover degraded soils, as it improving their chemical characteristics and showing to be a good alternative to the final destination of this residue.
Distribution of Pb-210 in Spanish Soils: Study of the Atmospheric Contribution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barrera, M.; Romero, M. L.; Valino, F.
The vertical distribution of activity and inventories of atmospheric Pb-210 is being studied in Spanish soils, aiming to establish the reference levels in the zone, based on the type of soil and the annual rainfall. A homogeneous distribution grid (approx. 150x150 km each cell) has been established covering the peninsular land, trying to combine the varying soil types (remaining undisturbed for the last 50 years) and the closeness to meteorological stations. Sampling has been performed by extracting undisturbed soil cylinders of 6 cm diameter and 120 cm length, with an impact penetrometer, and the soil cores have been sectioned inmore » slices of 3 cm thick. The analysis of Pb-210 has been performed using a gamma spectrometry system with coaxial HPGe detector sensitive at low energies (46.5 keV emission). The geometry of measured samples is thin enough (approx. 2 cm) to minimize self-absorption corrections. The work presents the results obtained so far. The Pb-210 activity profiles exhibit the characteristic decreasing shape with depth, showing maximum levels at the surface, and reaching the equilibrium activity with Ra-226 at a maximum depth depending on different environmental conditions. The unsupported Pb-210 inventory values are in the usual range (1000-5000 Bq/m{sup 2}), showing a positive correlation with the averaged annual rainfall. These reference levels could be used in posterior studies of anthropogenic alteration of soils, evaluation of erosion and desertification processes.« less
Production of Dioxins and Furans from the Burning of Excess Gun Propellant
2011-01-01
This is done by positioning the charges on the surface of the ground, in a shallow trench, on a concrete slab or in metal trays and igniting them from...environment are not fully understood. Burning, whether on snow cover, the ground or a combustion plate ( concrete or steel), does not lead to complete...the values for the background samples. The results for the samples taken from under the burnt pads (at a soil depth of 0 to 1 cm, samples BOP-12
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ayub, J. Juri; Velasco, R. H.; Rizzotto, M.
2008-08-07
Activity concentrations of {sup 40}K, {sup 226}Ra and {sup 137}Cs have been analyzed in soil and plant samples, collected in permanent grassland in central Argentina. Two near areas (A1 and A2) under field conditions with soil undisturbed at least in the last four decades were selected. For each of the three studied radionuclides we do not find differences in the inventories between both areas. The inventories range from 143 kBq m{sup -2} to 197 kBq m{sup -2} for {sup 40}K and from 13 kBq m{sup -2} to 18 kBq m{sup -2} for {sup 226}Ra. The vertical distributions of {sup 40}Kmore » and {sup 226}Ra are uniform through de soil profile. For {sup 137}Cs the inventories range from 0.33 kBq m{sup -2} to 0.73 kBq m{sup -2}. In spite of {sup 137}Cs inventories are similar in both areas the distribution through vertical profile is different. {sup 137}Cs activity concentration has a maximum for layers 5-10 cm depth in A1 and 10-15 cm depth in A2. For deeper layers both areas show similar activity concentrations. The diffusion coefficient (D{sub s}) and convection velocity (v{sub s}) are estimated with a convection-diffusion model. D{sub s} values are in the range reported in the bibliography, while v{sub s} values are one order of magnitude higher. After 40 years most {sup 137}Cs fallout is still in the layer 10-15 cm depth. The great penetration of {sup 137}Cs (25 cm) in these soils may be the result of a high sand and low fine materials content. {sup 137}Cs and {sup 226}Ra were not detected in grass samples. Activity concentration of {sup 40}K in vegetal samples ranges from 116 Bq kg{sup -1} to 613 Bq kg{sup -1}. The TF values obtained for {sup 40}K show a lognormal distribution and ranges from 0.05 to 0.42.« less
Lu, Shimin; Liu, Xingguo; Ma, Zhuojun; Liu, Qigen; Wu, Zongfan; Zeng, Xianlei; Shi, Xu; Gu, Zhaojun
2016-01-01
Pond aquaculture is the major freshwater aquaculture method in China. Ammonia-oxidizing communities inhabiting pond sediments play an important role in controlling culture water quality. However, the distribution and activities of ammonia-oxidizing microbial communities along sediment profiles are poorly understood in this specific environment. Vertical variations in the abundance, transcription, potential ammonia oxidizing rate, and community composition of ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) in sediment samples (0–50 cm depth) collected from a freshwater aquaculture pond were investigated. The concentrations of the AOA amoA gene were higher than those of the AOB by an order of magnitude, which suggested that AOA, as opposed to AOB, were the numerically predominant ammonia-oxidizing organisms in the surface sediment. This could be attributed to the fact that AOA are more resistant to low levels of dissolved oxygen. However, the concentrations of the AOB amoA mRNA were higher than those of the AOA by 2.5- to 39.9-fold in surface sediments (0–10 cm depth), which suggests that the oxidation of ammonia was mainly performed by AOB in the surface sediments, and by AOA in the deeper sediments, where only AOA could be detected. Clone libraries of AOA and AOB amoA sequences indicated that the diversity of AOA and AOB decreased with increasing depth. The AOB community consisted of two groups: the Nitrosospira and Nitrosomonas clusters, and Nitrosomonas were predominant in the freshwater pond sediment. All AOA amoA gene sequences in the 0–2 cm deep sediment were grouped into the Nitrososphaera cluster, while other AOA sequences in deeper sediments (10–15 and 20–25 cm depths) were grouped into the Nitrosopumilus cluster. PMID:26834709
Pifer, Ashley D; Miskin, Daniel R; Cousins, Sarah L; Fairey, Julian L
2011-07-08
Using asymmetrical flow field-flow fractionation (AF4) and fluorescence parallel factor analysis (PARAFAC), we showed physicochemical properties of chromophoric dissolved organic matter (CDOM) in the Beaver Lake Reservoir (Lowell, AR) were stratified by depth. Sampling was performed at a drinking water intake structure from May to July 2010 at three depths (3-, 10-, and 18-m) below the water surface. AF4-fractograms showed that the CDOM had diffusion coefficient peak maximums between 3.5 and 2.8 x 10⁻⁶ cm² s⁻¹, which corresponded to a molecular weight range of 680-1950 Da and a size of 1.6-2.5 nm. Fluorescence excitation-emission matrices of whole water samples and AF4-generated fractions were decomposed with a PARAFAC model into five principal components. For the whole water samples, the average total maximum fluorescence was highest for the 10-m depth samples and lowest (about 40% less) for 18-m depth samples. While humic-like fluorophores comprised the majority of the total fluorescence at each depth, a protein-like fluorophore was in the least abundance at the 10-m depth, indicating stratification of both total fluorescence and the type of fluorophores. The results present a powerful approach to investigate CDOM properties and can be extended to investigate CDOM reactivity, with particular applications in areas such as disinfection byproduct formation and control and evaluating changes in drinking water source quality driven by climate change. Copyright © 2010 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Gonzalez-Garrido, Laura; Delgado, Juan Antonio; Martinez, Teodora
2010-05-01
Soil respiration is one of the largest carbon flux components within terrestrial ecosystems, and small changes in the magnitude of soil respiration could have a large effect on the concentration of CO2 in the atmosphere. The main objective is evaluating the factors controlling soil respiration on the global carbon cycle in riparian areas of Henares River. We evaluated total soil respiration as it was affected by soil temperature, soil moisture, root respiration and organic matter in four areas differing in vegetation cover. We specifically assessed the contribution of soil organic matter and fine root biomass (≤1 mm.) in soil carbon dioxide flux. The study area is located on the riverbanks of Henares River where it passes through the municipal term of Alcala de Henares (Madrid) in Central Spain. Measurements were performed in spring and autumn of 2009. The study was conducted on four different types of riparian vegetation: natural Mediterranean riparian forest, reforestation of 1994, reforestation of 1999 and riparian grassland without trees. In each area of study 3, 25x25 m, plots were delimited and within each plot three sampling units of 50x50 cm were selected at random. The temperature of the ground was taken during the measures from respiration using a Multi-thermometer (-50°C - +300°C) at 5 cm depth. The moisture content of the ground was measured at 5 cm of depth with a HH2 Moisture meter (Delta Devices, Cambridge, UK). The measures of respiration of the ground were realised in field by means of LCI portable (LC pro ADC Bioscientific, Ltd. UK) connected to a ground respiration camera. We introduced the camera 3 cm into the soil just after eliminating the vegetation grass of the surface of measurement cutting carefully the aerial part, without damaging the roots. Soil CO2 flux measurements were registered after stabilization. Immediately after CO2 measurements, we obtained soil samples by means of a drill of 2.18 cm of diameter taking samples to 10 cm and 20 cm depth. Soil samples were dried to the air with the aim of preserving the roots the sample contained. They were extracted manually by means of very fine tweezers. We separate roots by diameter (Fine roots ≤ 1mm; rest of roots > 1mm) and dead from alive using texture and colour as clues. Finally the dry weight of roots was taking with a precision balance +-0.0001. Soil organic matter to 10 and 20 cm of depth were measure in laboratory using the method of Walkley and Black (1934). Differences in Soil CO2 flux, organic matter, fine root biomass, temperature and moisture between areas were analyzed using one-way ANOVAs. Our results suggest that fine root biomass present a larger impact than soil organic matter in soil CO2 flux values. Natural riparian forest presented higher values of soil CO2 flux than the rest of areas even when differences in root biomass and soil organic matter were controlled. Between the grassy area and both reforestations there were no differences in soil CO2 flux. In addition, we found that soil CO2 flux in our study area was more affected by soil temperature than by moisture, which could be relevant in the interpretation of the possible effects of global change. Key words: riparian forest, fine roots, carbon cycle, soil CO2 flux, root respiration. Acknowledgements: Research projects, n°FP08-AG02 IMIDRA and RTA 2006-00101-00-00 INIA and predoctoral scholarship FPI-INIA.
Explosive change in crater properties during high power nanosecond laser ablation of silicon
NASA Astrophysics Data System (ADS)
Yoo, J. H.; Jeong, S. H.; Greif, R.; Russo, R. E.
2000-08-01
Mass removed from single crystal silicon samples by high irradiance (1×109 to 1×1011W/cm2) single pulse laser ablation was studied by measuring the resulting crater morphology with a white light interferometric microscope. The craters show a strong nonlinear change in both the volume and depth when the laser irradiance is less than or greater than ≈2.2×1010W/cm2. Time-resolved shadowgraph images of the ablated silicon plume were obtained over this irradiance range. The images show that the increase in crater volume and depth at the threshold of 2.2×1010W/cm2 is accompanied by large size droplets leaving the silicon surface, with a time delay ˜300 ns. A numerical model was used to estimate the thickness of the layer heated to approximately the critical temperature. The model includes transformation of liquid metal into liquid dielectric near the critical state (i.e., induced transparency). In this case, the estimated thickness of the superheated layer at a delay time of 200-300 ns shows a close agreement with measured crater depths. Induced transparency is demonstrated to play an important role in the formation of a deep superheated liquid layer, with subsequent explosive boiling responsible for large-particulate ejection.
Soil carbon storage following road removal and timber harvesting in redwood forests
Seney, Joseph; Madej, Mary Ann
2015-01-01
Soil carbon storage plays a key role in the global carbon cycle and is important for sustaining forest productivity. Removal of unpaved forest roads has the potential for increasing carbon storage in soils on forested terrain as treated sites revegetate and soil properties improve on the previously compacted road surfaces. We compared soil organic carbon (SOC) content at several depths on treated roads to SOC in adjacent second-growth forests and old-growth redwood forests in California, determined whether SOC in the upper 50 cm of soil varies with the type of road treatment, and assessed the relative importance of site-scale and landscape-scale variables in predicting SOC accumulation in treated road prisms and second-growth redwood forests. Soils were sampled at 5, 20, and 50 cm depths on roads treated by two methods (decommissioning and full recontouring), and in adjacent second-growth and old-growth forests in north coastal California. Road treatments spanned a period of 32 years, and covered a range of geomorphic and vegetative conditions. SOC decreased with depth at all sites. Treated roads on convex sites exhibited higher SOC than on concave sites, and north aspect sites had higher SOC than south aspect sites. SOC at 5, 20, and 50 cm depths did not differ significantly between decommissioned roads (treated 18–32 years previous) and fully recontoured roads (treated 2–12 years previous). Nevertheless, stepwise multiple regression models project higher SOC developing on fully recontoured roads in the next few decades. The best predictors for SOC on treated roads and in second-growth forest incorporated aspect, vegetation type, soil depth, lithology, distance from the ocean, years since road treatment (for the road model) and years since harvest (for the forest model). The road model explained 48% of the variation in SOC in the upper 50 cm of mineral soils and the forest model, 54%
Spatial Variability in Decomposition of Organic Carbon Along a Meandering River Floodplain
NASA Astrophysics Data System (ADS)
Sutfin, N. A.; Rowland, J. C.; Tfaily, M. M.; Bingol, A. K.; Washton, N.
2017-12-01
Rivers are an important component of the terrestrial carbon cycle and floodplains can provide significant storage of organic carbon. Quantification of long-term storage, however, requires determination of the residence time of sediment and the decomposition rate of organic carbon in floodplains. We use fourier transform ion cyclotron resonance (FTICR) mass spectrometry to examine the organic carbon compounds present in sediment within three floodplain settings: point bars, cutbanks, and abandoned channels. We define decomposition of organic carbon in floodplain sediment as the ratio between the number of protein versus lignin, which serve as proxies for microbial-derived and terrestrial-derived organic carbon, respectively. Samples were collected at 0-5 cm, 5-15cm, and 15-30 cm depth along four transects that span a longitudinal valley distance of 8 km on the East River near Crested Butte, CO. Although no significant trends in decomposition ratio exist longitudinally between the fours transects, floodplain settings exhibit significant differences. At shallow depths (0-5 cm), there are no significant differences among settings, with the exception of gravel portions of point bars below bankfull flow, where the highest decomposition is present. Conversely, cutbanks contain significantly lower decomposition ratios compared with point bars, gravel bars, and abandoned channels when considering all depth intervals. Pointbars exhibit significantly greater protein vs. lignin at the surface compared to greater depth. Higher decomposition ratios along abandoned channels and point bars suggest that frequent wetting and drying periods, abundant oxygen, and continuous downstream movement and decomposition of organic matter occurs within the channel. Lower decomposition ratios and consistent trends with depth along cutbanks, suggest that these stable surfaces serve as organic carbon reservoirs that could become an increased source of carbon to the channel with increasing bank erosion. Detailed differences of organic carbon compounds in sediments of cutbanks, point bars, and abandoned channel will be examined in September 2017 using nuclear magnetic resonance (NMR).
Depth distribution of cesium-137 in paddy fields across the Fukushima pollution plume in 2013.
Lepage, Hugo; Evrard, Olivier; Onda, Yuichi; Lefèvre, Irène; Laceby, J Patrick; Ayrault, Sophie
2015-09-01
Large quantities of radiocesium were deposited across a 3000 km(2) area northwest of the Fukushima Dai-ichi nuclear power plant after the March 2011 accident. Although many studies have investigated the fate of (137)Cs in soil in the months following the accident, the depth distribution of this radioactive contaminant in rice paddy fields requires further examination after the typhoons that occurred in this region. Such investigations will help minimize potential human exposure in rice paddy fields. Radionuclide activity concentrations, organic content and particle size were analysed in 10 soil cores sampled from paddy fields in November 2013, 20 km north of the Fukushima power plant. Our results demonstrate limited depth migration of (137)Cs with the majority concentrated in the uppermost layers of soils (<5 cm). More than 30 months after the accident, between 46.8 and 98.7% of the total (137)Cs inventories was found within the top 5 cm of the soil surface, despite cumulative rainfall totalling 3300 mm. Furthermore, there were no significant correlations between (137)Cs depth distribution and the other parameters. We attributed the maximum depth penetration of (137)Cs to grass cutting (73.6-98.5% of (137)Cs in the upper 5 cm) and farming operations (tillage - 46.8-51.6% of (137)Cs in the upper 5 cm). As this area is exposed to erosive events, ongoing decontamination works may increase soil erodibility. We therefore recommend the rapid removal of the uppermost - contaminated - layer of the soil after removing the vegetation to avoid erosion of contaminated material during the subsequent rainfall events. Further analysis is required to thoroughly understand the impacts of erosion on the redistribution of radiocesium throughout the Fukushima Prefecture. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Treude, T.; Krause, S.; Bertics, V. J.; Steinle, L.; Niemann, H.; Liebetrau, V.; Feseker, T.; Burwicz, E.; Krastel, S.; Berndt, C.
2014-12-01
In 2008, a large area with several hundred methane plumes was discovered along the West Spitsbergen continental margin at water depths between 150 and 400 m (Westbrook et al. 2009, GRL 36, doi:10.1029/2009GL039191). Many of the observed plumes were located at the boundary of gas hydrate stability (~400 m water depth). It was speculated that the methane escape at this depth was correlated with gas hydrate destabilization caused by recent increases in water temperatures recorded in this region. In a later study, geochemical analyses of authigenic carbonates and modeling of heat flow data combined with seasonal changes in water temperature demonstrated that the methane seeps were active already prior to industrial warming but that the gas hydrate system nevertheless reacts very sensitive to even seasonal temperature changes (Berndt et al. 2014, Science 343: 284-287). Here, we report about a methane seep site at the gas hydrate stability boundary (394 m water depth) that features unusual geochemical profiles indicative for non-steady state conditions. Sediment was recovered with a gravity corer (core length 210 cm) and samples were analyzed to study porewater geochemistry, methane concentration, authigenic carbonates, and microbial activity. Porewater profiles revealed two zones of sulfate-methane transition at 50 and 200 cm sediment depth. The twin zones were confirmed by a double peaking in sulfide, total alkalinity, anaerobic oxidation of methane, and sulfate reduction. δ18O values sharply increased from around -2.8 ‰ between 0 and 126 cm to -1.2 ‰ below 126 cm sediment depth. While U/Th isotope measurements of authigenic seep carbonates that were collected from different depths of the core illustrated that methane seepage must be occurring at this site since at least 3000 years, the biogeochemical profiles suggest that methane flux must have been altered recently. By applying a multi-phase reaction-transport model using known initial parameters from the study site (e.g. water depth, temperature profile, salinity, and sediment surface concentrations of CH4, SO4, DIC, and POC) were able to show that the observed twin sulfate-methane transition zones are an ephemeral phenomenon occurring during increase of methane production in the sediment, which can be introduced by, e.g., gas hydrate dissociation.
NASA Astrophysics Data System (ADS)
Zhou, Y.; Boutton, T. W.; Wu, X. B.
2016-12-01
Recent global trends of increasing woody plant abundance in grass-dominated ecosystems may substantially enhance soil organic carbon (SOC) storage and could represent an important carbon (C) sink in the terrestrial environment. However, most studies assessing SOC response to woody encroachment only consider surface soils, and have not explicitly assessed the extent to which deeper portions of the profile may be affected by this phenomenon. Consequently, little is known about the direction, magnitude, and spatial heterogeneity of SOC throughout the soil profile following woody encroachment. These factors were quantified via spatially-specific intensive soil sampling to a depth 1.2 m across a subtropical savanna landscape that has undergone woody proliferation during the past century in southern Texas, USA. Increased SOC sequestration following woody encroachment was observed throughout the profile, albeit at reduced magnitudes at deeper depths. Overall, soils beneath small woody clusters and larger groves accumulated 12.87 and 18.67 Mg C ha-1 more SOC, respectively, to a depth of 1. 2 m compared to grasslands. Recent woody encroachment during the past 100 y significantly altered the spatial pattern and amplified the spatial heterogeneity of SOC at the 0-5 cm depth, with marginal effects at 5-15 cm and no distinct impact on soils below 15 cm. Fine root density explained much of the variation in SOC in the upper 15 cm, while a combination of fine root density and soil clay content accounted for more of the variation in SOC in soils below 15 cm. These findings emphasize the existence of substantial SOC sequestration in deeper portions of the soil profile following woody encroachment. Given the geographical extent of woody encroachment on a global scale, this largely undocumented deep soil C sequestration suggests woody encroachment may play a more significant role in regional and global C sequestration than previously thought.
NASA Astrophysics Data System (ADS)
Tomasovych, Adam; Gallmetzer, Ivo; Haselmair, Alexandra; Kaufman, Darrell S.; Zuschin, Martin
2016-04-01
Stratigraphic changes in temporal resolution of fossil assemblages and the degree of their stratigraphic mixing in the Holocene deposits are of high importance in paleoecology, conservation paleobiology and paleoclimatology. However, few studies quantified downcore changes in time averaging and in stratigraphic disorder on the basis of dating of multiple shells occurring in individual stratigraphic layers. Here, we investigate downcore changes in frequency distribution of postmortem ages of the infaunal bivalve Gouldia minima in two, ~150 cm-thick piston cores (separated by more than 1 km) in the northern Adriatic Sea, close to the Slovenian city Piran at a depth of 24 m. We use radiocarbon-calibrated amino acid racemization to obtain postmortem ages of 564 shells, and quantify age-frequency distributions in 4-5 cm-thick stratigraphic intervals (with 20-30 specimens sampled per interval). Inter-quartile range for individual 4-5 cm-thick layers varies between 850 and 1,700 years, and range encompassing 95% of age data varies between 2,000 and 5,000 years in both cores. The uppermost sediments (20 cm) are age-homogenized and show that median age of shells is ~700-800 years. The interval between 20 and 90 cm shows a gradual increase in median age from ~2,000 to ~5,000 years, with maximum age ranging to ~8,000 years. However, the lowermost parts of both cores show a significant disorder, with median age of 3,100-3,300 years. This temporal disorder implies that many shells were displaced vertically by ~1 m. Absolute and proportional abundance of the bivalve Gouldia minima strongly increases towards the top of the both cores. We hypothesize that such increase in abundance, when coupled with depth-declining reworking, can explain stratigraphic disorder because numerically abundant young shells from the top of the core were more likely buried to larger sediment depths than less frequent shells at intermediate sediment depths.
Wilson, Jordan L; Limmer, Matthew A; Samaranayake, V A; Schumacher, John G; Burken, Joel G
2017-09-19
Vapor intrusion (VI) by volatile organic compounds (VOCs) in the built environment presents a threat to human health. Traditional VI assessments are often time-, cost-, and labor-intensive; whereas traditional subsurface methods sample a relatively small volume in the subsurface and are difficult to collect within and near structures. Trees could provide a similar subsurface sample where roots act as the "sampler' and are already onsite. Regression models were developed to assess the relation between PCE concentrations in over 500 tree-core samples with PCE concentrations in over 50 groundwater and 1000 soil samples collected from a tetrachloroethylene- (PCE-) contaminated Superfund site and analyzed using gas chromatography. Results indicate that in planta concentrations are significantly and positively related to PCE concentrations in groundwater samples collected at depths less than 20 m (adjusted R 2 values greater than 0.80) and in soil samples (adjusted R 2 values greater than 0.90). Results indicate that a 30 cm diameter tree characterizes soil concentrations at depths less than 6 m over an area of 700-1600 m 2 , the volume of a typical basement. These findings indicate that tree sampling may be an appropriate method to detect contamination at shallow depths at sites with VI.
Wilson, Jordan L.; Limmer, Matthew A.; Samaranayake, V. A.; Schumacher, John G.; Burken, Joel G.
2017-01-01
Vapor intrusion (VI) by volatile organic compounds (VOCs) in the built environment presents a threat to human health. Traditional VI assessments are often time-, cost-, and labor-intensive; whereas traditional subsurface methods sample a relatively small volume in the subsurface and are difficult to collect within and near structures. Trees could provide a similar subsurface sample where roots act as the “sampler’ and are already onsite. Regression models were developed to assess the relation between PCE concentrations in over 500 tree-core samples with PCE concentrations in over 50 groundwater and 1000 soil samples collected from a tetrachloroethylene- (PCE-) contaminated Superfund site and analyzed using gas chromatography. Results indicate that in planta concentrations are significantly and positively related to PCE concentrations in groundwater samples collected at depths less than 20 m (adjusted R2 values greater than 0.80) and in soil samples (adjusted R2 values greater than 0.90). Results indicate that a 30 cm diameter tree characterizes soil concentrations at depths less than 6 m over an area of 700–1600 m2, the volume of a typical basement. These findings indicate that tree sampling may be an appropriate method to detect contamination at shallow depths at sites with VI.
Charland, Paule M.; Chetty, Indrin J.; Yokoyama, Shigeru; Fraass, Benedick A.
2003-01-01
In this study, a dosimetric evaluation of the new Kodak extended dose range (EDR) film versus ionization measurements has been conducted in homogeneous solid water and water‐lung equivalent layered heterogeneous phantoms for a relevant range of field sizes (up to a field size of 25×25 cm2 and a depth of 15 cm) for 6 and 15 MV photon beams from a linear accelerator. The optical density of EDR film was found to be linear up to about 350 cGy and over‐responded for larger fields and depths (5% for 25×25 cm2 at depth of 15 cm compared to a 10×10 cm2, 5 cm depth reference value). Central axis depth dose measurements in solid water with the film in a perpendicular orientation were within 2% of the Wellhöfer IC‐10 measurements for the smaller field sizes. A maximum discrepancy of 8.4% and 3.9% was found for the 25×25 cm2 field at 15 cm depth for 6 and 15 MV photons, respectively (with curve normalization at a depth of 5 cm). Compared to IC‐10 measurements, film measured central axis depth dose inside the lung slab showed a slight over‐response (at most 2%). At a depth of 15 cm in the lung phantom the over‐response was found to be 7.4% and 3.7% for the 25×25 cm2 field for 6 and 15 MV photons, respectively. When results were presented as correction factors, the discrepancy between the IC‐10 and the EDR was greatest for the lowest energy and the largest field size. The effect of the finite size of the ion chamber was most evident at smaller field sizes where profile differences versus film were observed in the penumbral region. These differences were reduced at larger field sizes and in situations where lateral electron transport resulted in a lateral spread of the beam, such as inside lung material. Film profiles across a lung tumor geometry phantom agreed with the IC‐10 chamber within the experimental uncertainties. From this investigation EDR film appears to be a useful medium for relative dosimetry in higher dose ranges in both water and lung equivalent material for moderate field sizes and depths. © 2003 American College of Medical Physics. PACS number(s): 87.53.Dq, 87.66.Cd, 87.66.Jj, 87.66.Xa PMID:12540816
NASA Technical Reports Server (NTRS)
Zeitlin, C.; Heilbronn, L.; Miller, J.
1998-01-01
We report beam characterization and dosimetric measurements made using a 56Fe beam extracted from the Brookhaven National Laboratory Alternating Gradient Synchrotron (AGS) with a kinetic energy of 1087 MeV/nucleon. The measurements reveal that the depth-dose distribution of this beam differs significantly from that obtained with a 600 MeV/nucleon iron beam used in several earlier radiobiology experiments at the Lawrence Berkeley National Laboratory's BEVALAC. We present detailed measurements of beam parameters relevant for radiobiology, including track- and dose-averaged linear energy transfer (LET), fragment composition and LET spectra measured behind sample holders used in irradiations of biological samples. We also report measurements of fluence behind three depths (1.94, 4.68 and 9.35 g cm(-2)) of polyethylene targets with the 1087 MeV/nucleon beam, and behind 1.94 g cm(-2) of polyethylene with a 610 MeV/nucleon beam delivered by the AGS. These results are compared to earlier measurements with the 600 MeV/nucleon beam at the BEVALAC.
Forest nutrient and carbon pools at Walker Branch watershed: changes during a 21-year period
Carl C. Trettin; D.W. Johnson; D.E. Todd
1999-01-01
A 21-yr perspective on changes in nutrient and C pools on undisturbed upland forest sites is provided. Plots originally representing four cover types have been sampled three times. On each plot, forest biomass, forest floor, and soil, to a depth of 60 cm, were measured, sampled, and analyzed for Ca, Mg, C, N, and P. Exchangeable soil Ca and Mg have declined in most...
The first find of massive pyrolusite in a deep-water basin of the Sea of Japan
NASA Astrophysics Data System (ADS)
Astakhova, N. V.; S"edin, V. T.; Mozherovsky, A. V.; Lopatnikov, E. A.
2015-05-01
Data are presented on the chemical composition and the content of microelements including REEs in samples of pyrolusite, todorokite, and birnessite collected from a depth of 3500-3200 m by dredging a nameless elevation in the Central Basin of the Sea of Japan. The samples of pyrolusite are characterized by high hardness and density (3.35 g/cm3). The conclusion of their hydrothermal genesis is made.
Robert A. Slesak; Stephen H. Schoenholtz; Timothy B. Harrington; Nathan A. Meehan
2011-01-01
We assessed the effect of harvest type (bole-only or whole-tree) and vegetation control treatments (initial or annual application of herbicide) on soil C and N at two contrasting sites in the Pacific Northwest. Pretreatment (2003) and posttreatment (2005) soil samples were collected by depth to 60 cm, and a stratified sampling approach based on four surface conditions...
Effect of land use on the spatial variability of organic matter and nutrient status in an Oxisol
NASA Astrophysics Data System (ADS)
Paz-Ferreiro, Jorge; Alves, Marlene Cristina; Vidal Vázquez, Eva
2013-04-01
Heterogeneity is now considered as an inherent soil property. Spatial variability of soil attributes in natural landscapes results mainly from soil formation factors. In cultivated soils much heterogeneity can additionally occur as a result of land use, agricultural systems and management practices. Organic matter content (OMC) and nutrients associated to soil exchange complex are key attribute in the maintenance of a high quality soil. Neglecting spatial heterogeneity in soil OMC and nutrient status at the field scale might result in reduced yield and in environmental damage. We analyzed the impact of land use on the pattern of spatial variability of OMC and soil macronutrients at the stand scale. The study was conducted in São Paulo state, Brazil. Land uses were pasture, mango orchard and corn field. Soil samples were taken at 0-10 cm and 10-20 cm depth in 84 points, within 100 m x 100 m plots. Texture, pH, OMC, cation exchange capacity (CEC), exchangeable cations (Ca, Mg, K, H, Al) and resin extractable phosphorus were analyzed.. Statistical variability was found to be higher in parameters defining the soil nutrient status (resin extractable P, K, Ca and Mg) than in general soil properties (OMC, CEC, base saturation and pH). Geostatistical analysis showed contrasting patterns of spatial dependence for the different soil uses, sampling depths and studied properties. Most of the studied data sets collected at two different depths exhibited spatial dependence at the sampled scale and their semivariograms were modeled by a nugget effect plus a structure. The pattern of soil spatial variability was found to be different between the three study soil uses and at the two sampling depths, as far as model type, nugget effect or ranges of spatial dependence were concerned. Both statistical and geostatistical results pointed out the importance of OMC as a driver responsible for the spatial variability of soil nutrient status.
Devine, Scott; Markewitz, Daniel; Hendrix, Paul; Coleman, David
2014-01-01
Impacts of land use on soil organic C (SOC) are of interest relative to SOC sequestration and soil sustainability. The role of aggregate stability in SOC storage under contrasting land uses has been of particular interest relative to conventional tillage (CT) and no-till (NT) agriculture. This study compares soil structure and SOC fractions at the 30-yr-old Horseshoe Bend Agroecosystem Experiment (HSB). This research is unique in comparing NT and CT with adjacent land concurrently undergoing forest succession (FS) and in sampling to depths (15–28 cm) previously not studied at HSB. A soil moving experiment (SME) was also undertaken to monitor 1-yr changes in SOC and aggregation. After 30 years, enhanced aggregate stability under NT compared to CT was limited to a depth of 5 cm, while enhanced aggregate stability under FS compared to CT occurred to a depth of 28 cm and FS exceeded NT from 5–28 cm. Increases in SOC concentrations generally followed the increases in stability, except that no differences in SOC concentration were observed from 15–28 cm despite greater aggregate stability. Land use differences in SOC were explained equally by differences in particulate organic carbon (POC) and in silt-clay associated fine C. Enhanced structural stability of the SME soil was observed under FS and was linked to an increase of 1 Mg SOC ha−1 in 0–5 cm, of which 90% could be attributed to a POC increase. The crushing of macroaggregates in the SME soil also induced a 10% reduction in SOC over 1 yr that occurred under all three land uses from 5–15 cm. The majority of this loss was in the fine C fraction. NT and FS ecosystems had greater aggregation and carbon storage at the soil surface but only FS increased aggregation below the surface, although in the absence of increased carbon storage. PMID:24465460
Simulated Reentry Heating by Torching
NASA Technical Reports Server (NTRS)
Harvey, Gale A.
2008-01-01
The two first order reentry heating parameters are peak heating flux (W/cm2) and peak heat load (kJ/cm2). Peak heating flux (and deceleration, gs) is higher for a ballistic reentry and peak heat load is higher for a lifting reentry. Manned vehicle reentries are generally lifting reentries at nominal 1-5 gs so that personnel will not be crushed by high deceleration force. A few off-nominal manned reentries have experienced 8 or more gs with corresponding high heating flux (but below nominal heat load). The Shuttle Orbiter reentries provide about an order of magnitude difference in peak heating flux at mid-bottom (TPS tiles, approximately 6 W/cm2 or 5 BTU/ft2- sec) and leading edge (RCC, approximately 60 W/cm2 or 50 BTU/ft2- sec). Orion lunar return and Mars sample lander are of the same order of magnitude as orbiter leading edge peak heat loads. Flight temperature measurements are available for some orbiter TPS tile and RCC locations. Return-to-Flight on-orbit tile-repair-candidate-material-heating performance was evaluated by matching propane torch heating of candidate-materials temperatures at several depths to orbiter TPS tile flight-temperatures. Char and ash characteristics, heat expansion, and temperature histories at several depths of the cure-in-place ablator were some of the TPS repair material performance characteristics measured. The final char surface was above the initial surface for the primary candidate (silicone based) material, in contrast to a receded surface for the Apollo-type ablative heat shield material. Candidate TPS materials for Orion CEV (LEO and lunar return), and for Mars sample lander are now being evaluated. Torching of a candidate ablator material, PICA, was performed to match the ablation experienced by the STARDUST PICA heat shield. Torching showed that the carbon fiberform skeleton in a sample of PICA was inhomogeneous in that sample, and allowed measurements (of the clumps and voids) of the inhomogeneity. Additional reentry heating-performance characterizations of high temperature insulation materials were performed.
Long-term ecological effects of exposure to uranium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanson, W.C.; Miera, F.R. Jr.
1976-03-01
The consequences of releasing natural and depleted uranium to terrestrial ecosystems during development and testing of depleted uranium munitions were investigated. At Eglin Air Force Base, Florida, soil at various distances from armor plate target butts struck by depleted uranium penetrators was sampled. The upper 5 cm of soil at the target bases contained an average of 800 ppM of depleted uranium, about 30 times as much as soil at 5- to 10-cm depth, indicating some vertical movement of depleted uranium. Samples collected beyond about 20 m from the targets showed near-background natural uranium levels, about 1.3 +- 0.3 ..mu..g/gmore » or ppM. Two explosives-testing areas at the Los Alamos Scientific Laboratory (LASL) were selected because of their use history. E-F Site soil averaged 2400 ppM of uranium in the upper 5 cm and 1600 ppM at 5-10 cm. Lower Slobovia Site soil from two subplots averaged about 2.5 and 0.6 percent of the E-F Site concentrations. Important uranium concentration differences with depth and distance from detonation points were ascribed to the different explosive tests conducted in each area. E-F Site vegetation samples contained about 320 ppM of uranium in November 1974 and about 125 ppM in June 1975. Small mammals trapped in the study areas in November contained a maximum of 210 ppM of uranium in the gastrointestinal tract contents, 24 ppM in the pelt, and 4 ppM in the remaining carcass. In June, maximum concentrations were 110, 50, and 2 ppM in similar samples and 6 ppM in lungs. These data emphasized the importance of resuspension of respirable particles in the upper few millimeters of soil as a contamination mechanism for several components of the LASL ecosystem.« less
Urease activity in different soils of Egypt.
el-Shinnawi, M M
1978-01-01
Samples from two depths (0--15 and 15--30 cm) of five Egyptian soils: sandy, calcareous, fertile alluvial, saline alluvial, and alkali alluvial were tested for urease activity. Samples were treated with farmyard manure at rates of 0 and 0.5% C, and moisture at levels of 50, 65, and 80% of the water holding capacity. The studied Egyptian soils showed different activities of urease. Decreases in the values were shown by depth of sampling and varied in their intensities according to soil type, except for saline soil which revealed an opposite trend by the higher activity of its sub-surface layer. Order of activity was the following: fertile, saline, alkali, calcareous, and sandy soil. Farmyard manure slightly increased the activity of the enzyme. Incubation of moistened samples revealed that the optimum moisture content was 50% of W.H.C. for the tested soils, except for saline which showed best results at 65% of W.H.C.
Picard, Aude; Ferdelman, Timothy G
2011-01-01
Microbial heterotrophic activity was investigated in oxic sub-seafloor sediments at North Pond, a sediment pond situated at 23°N on the western flank of the Mid-Atlantic Ridge. The North Pond sediments underlie the oligotrophic North Atlantic Gyre at 4580-m water depth and cover a 7-8 million-year-old basaltic crust aquifer through which seawater flows. Discrete samples for experimentation were obtained from up to ~9 m-long gravity cores taken at 14 stations in the North Pond area. Potential respiration rates were determined in sediment slurries incubated under aerobic conditions with (14)C-acetate. Microbial heterotrophic activity, as defined by oxidation of acetate to CO(2) (with O(2) as electron acceptor), was detected in all 14 stations and all depths sampled. Potential respiration rates were generally low (<0.2 nmol of respired acetate cm(-3) d(-1)) in the sediment, but indicate that microbial heterotrophic activity occurs in deep-sea, oxic, sub-seafloor sediments. Furthermore, discernable differences in activity existed between sites and within given depth profiles. At seven stations, activity was increased by several orders of magnitude at depth (up to ~12 nmol of acetate respired cm(-3) d(-1)). We attempted to correlate the measures of activity with high-resolution color and element stratigraphy. Increased activities at certain depths may be correlated to variations in the sediment geology, i.e., to the presence of dark clay-rich layers, of sandy layers, or within clay-rich horizons presumably overlying basalts. This would suggest that the distribution of microbial heterotrophic activity in deeply buried sediments may be linked to specific lithologies. Nevertheless, high-resolution microbial examination at the level currently enjoyed by sedimentologists will be required to fully explore this link.
NASA Astrophysics Data System (ADS)
Ariza, A.; Landeira, J. M.; Escánez, A.; Wienerroither, R.; Aguilar de Soto, N.; Røstad, A.; Kaartvedt, S.; Hernández-León, S.
2016-05-01
Diel vertical migration (DVM) facilitates biogeochemical exchanges between shallow waters and the deep ocean. An effective way of monitoring the migrant biota is by acoustic observations although the interpretation of the scattering layers poses challenges. Here we combine results from acoustic observations at 18 and 38 kHz with limited net sampling in order to unveil the origin of acoustic phenomena around the Canary Islands, subtropical northeast Atlantic Ocean. Trawling data revealed a high diversity of fishes, decapods and cephalopods (152 species), although few dominant species likely were responsible for most of the sound scattering in the region. We identified four different acoustic scattering layers in the mesopelagic realm: (1) at 400-500 m depth, a swimbladder resonance phenomenon at 18 kHz produced by gas-bearing migrant fish such as Vinciguerria spp. and Lobianchia dofleini, (2) at 500-600 m depth, a dense 38 kHz layer resulting primarily from the gas-bearing and non-migrant fish Cyclothone braueri, and to a lesser extent, from fluid-like migrant fauna also inhabiting these depths, (3) between 600 and 800 m depth, a weak signal at both 18 and 38 kHz ascribed either to migrant fish or decapods, and (4) below 800 m depth, a weak non-migrant layer at 18 kHz which was not sampled. All the dielly migrating layers reached the epipelagic zone at night, with the shorter-range migrations moving at 4.6 ± 2.6 cm s - 1 and the long-range ones at 11.5 ± 3.8 cm s - 1. This work reduces uncertainties interpreting standard frequencies in mesopelagic studies, while enhances the potential of acoustics for future research and monitoring of the deep pelagic fauna in the Canary Islands.
Age Distribution of Lunar Impact-Melt Rocks in Apollo Drive-Tube 68001/2
NASA Technical Reports Server (NTRS)
Curran, N. M.; Bower, D. M.; Frasl, B.; Cohen, B. A.
2018-01-01
Apollo 16 double-drive tube 68001 /68002 provides impact and volcanic materials along a depth of approximately 60 cm in five compositional distinct units. 68001 /2 offers the potential to study distinct populations of impact melts with depth to understand how 'gardening' affects these samples. We will use unbiased major-element chemistry, mineralogy, and age to understand the impact history of Apollo 16 landing site. The study demonstrates the techniques that landed missions require to identify lithologies of interest (e.g., impact melts).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, H; Sarkar, V; Rassiah-Szegedi, P
2014-06-01
Purpose: To investigate and report the discrepancy of scanned percent depth dose (PDD) for photon beams with physical wedge in place when using ion chambers with different sensitive volumes. Methods/Materials: PDD curves of open fields and physical wedged fields (15, 30, 45, and 60 degree wedge) were scanned for photon beams (6MV and 10MV, Varian iX) with field size of 5x5 and 10x10 cm using three common scanning chambers with different sensitive volumes - PTW30013 (0.6cm3), PTW23323 (0.1cm3) and Exradin A16 (0.007cm3). The scanning system software used was OmniPro version 6.2, and the scanning water tank was the Scanditronix Wellhoffermore » RFA 300.The PDD curves from the three chambers were compared. Results: Scanned PDD curves of the same energy beams for open fields were almost identical between three chambers, but the wedged fields showed non-trivial differences. The largest differences were observed between chamber PTW30013 and Exradin A16. The differences increased as physical wedge angle increased. The differences also increased with depth, and were more pronounced for 6MV beam. Similar patterns were shown for both 5x5 and 10x10 cm field sizes. For open fields, all PDD values agreed with each other within 1% at 10cm depth and within 1.62% at 20 cm depth. For wedged fields, the difference of PDD values between PTW30013 and A16 reached 4.09% at 10cm depth, and 5.97% at 20 cm depth for 6MV with 60 degree physical wedge. Conclusion: We observed a significant difference in scanned PDD curves of photon beams with physical wedge in place obtained when using different sensitive volume ion chambers. The PDD curves scanned with the smallest sensitive volume ion chamber showed significant difference from larger chamber results, beyond 10cm depth. We believe this to be caused by varying response to beam hardening by the wedges.« less
NASA Astrophysics Data System (ADS)
Rodríguez-Abad, Isabel; Klysz, Gilles; Martínez-Sala, Rosa; Balayssac, Jean Paul; Mené-Aparicio, Jesús
2016-12-01
The long-term performance of concrete structures is directly tied to two factors: concrete durability and strength. When assessing the durability of concrete structures, the study of the water penetration is paramount, because almost all reactions like corrosion, alkali-silica, sulfate, etc., which produce their deterioration, require the presence of water. Ground-penetrating radar (GPR) has shown to be very sensitive to water variations. On this basis, the objective of this experimental study is, firstly, to analyze the correlation between the water penetration depth in concrete samples and the GPR wave parameters. To do this, the samples were immersed into water for different time intervals and the wave parameters were obtained from signals registered when the antenna was placed on the immersed surface of the samples. Secondly, a procedure has been developed to be able to determine, from those signals, the reliability in the detection and location of waterfront depths. The results have revealed that GPR may have an enormous potential in this field, because excellent agreements were found between the correlated variables. In addition, when comparing the waterfront depths calculated from GPR measurements and those visually registered after breaking the samples, we observed that they totally agreed when the waterfront was more than 4 cm depth.
NASA Astrophysics Data System (ADS)
Kwok, R.; Maksym, T.
2014-07-01
We examine the snow radar data from the Weddell and Bellingshausen Seas acquired by eight IceBridge (OIB) flightlines in October of 2010 and 2011. In snow depth retrieval, the sidelobes from the stronger scattering snow-ice (s-i) interfaces could be misidentified as returns from the weaker air-snow (a-s) interfaces. In this paper, we first introduce a retrieval procedure that accounts for the structure of the radar system impulse response followed by a survey of the snow depths in the Weddell and Bellingshausen Seas. Limitations and potential biases in our approach are discussed. Differences between snow depth estimates from a repeat survey of one Weddell Sea track separated by 12 days, without accounting for variability due to ice motion, is -0.7 ± 13.6 cm. Average snow depth is thicker in coastal northwestern Weddell and thins toward Cape Norvegia, a decrease of >30 cm. In the Bellingshausen, the thickest snow is found nearshore in both Octobers and is thickest next to the Abbot Ice Shelf. Snow depth is linearly related to freeboard when freeboards are low but diverge as the freeboard increases especially in the thicker/rougher ice of the western Weddell. We find correlations of 0.71-0.84 between snow depth and surface roughness suggesting preferential accumulation over deformed ice. Retrievals also seem to be related to radar backscatter through surface roughness. Snow depths reported here, generally higher than those from in situ records, suggest dissimilarities in sample populations. Implications of these differences on Antarctic sea ice thickness are discussed.
NASA Astrophysics Data System (ADS)
Guzmán, Gema; Gómez, José Alfonso
2017-04-01
Magnetic iron oxide has been used as a tracer to monitor top soil movement and to identify source of sediments at the short-term scale, after high intensity rainfall events (Guzmán et al., 2010; Obereder et al., 2016) and periods up to two years (Guzmán et al., 2013). As it can be strongly bound to soil particles, its use allows the tacking of tagged soil all over the years until all this soil is lost or it is totally diluted with blank soil making the signal undetectable. Olive orchards planted on Vertisols are subject not only to tillage operations modifying soil profile but also to expansion-compression cycles and cracks appearance due to soil moisture changes. The aim of communication is to assess the soil movement at the mid-term scale, taking advantage of a tracer trial already performed by Guzmán et al. (2013) and a new sampling after 8 years of soil disturbance. In October 2008 two plots of 330 m2 were delimited and in which the top 5 cm of the inter tree rows were tagged with magnetite. Seventy locations at both plots were sampled so as to measure magnetic susceptibility twice (just after the tagging and March 2010), at three depth intervals (0-1, 1-8 and 8-12 cm) and distinguishing two zones: tree and inter tree rows. A third sampling was carried out at 0-2, 2-10 and 10-20 cm in August 2016 at the same locations and zones. Furthermore, in twenty of the sampling points additional samples from 20-30, 30-40, 40-50 and 50-60 cm were taken to check if tagged soil went deeper into the soil profile. Background values of susceptibility and bulk density at each depth, were characterized as well at the three sampling campaigns. Rainfall, soil management during these years and the inherent characteristics of a Vertisol have enhanced the movement of top soil not only superficially but also within the soil profile. First results comparing the evolution of magnetite distribution along soil profile indicate that while in 2008 and 2010 background values were measured at 12 cm, in 2016, in both zones (tree and inter tree rows) magnetite decreases slightly from the 10-20 cm interval but still finding tagged soil at a depth of 60 cm where background values were nearly reached. The implications of these results on the use of erosion magnetic tracers in long-term erosion experiments and soil vertical fluxes in Vertic soils will be discussed. References: Guzmán G., Vanderlinden K., Giráldez J.V., Gómez J. A. 2013. Assessment of spatial variability in water erosion rates in an olive orchard at plot scale using a magnetic iron oxide tracer. Soil Science Society of America Journal, 77(2), 350-361. Guzmán G., Barrón V., Gómez J.A. 2010. Evaluation of magnetic iron oxides as sediment tracers in water erosion experiments. Catena, 82(2), 126-133. Obereder E., Klik A., Wakolbinger S., Guzmán G., Strohmeier S., Demelash N., Gómez, J.A. 2016. Investigation of the impact of stone bunds on erosion and deposition processes combining conventional and tracer methodology in the Gumara Maksegnit watershed, Northern highlands of Ethiopia. In EGU General Assembly Conference Abstracts (Vol. 18, p. 2455).
NASA Astrophysics Data System (ADS)
Jaber, Salahuddin M.
Soil organic carbon (SOC) sequestration is a component of larger strategies to control the accumulation of greenhouse gases that may be causing global warming. To implement this approach, it is necessary to improve the methods of measuring SOC content. Among these methods are indirect remote sensing and geographic information systems (GIS) techniques that are required to provide non-intrusive, low cost, and spatially continuous information that cover large areas on a repetitive basis. The main goal of this study is to evaluate the effects of using Hyperion hyperspectral data on improving the existing remote sensing and GIS-based methodologies for rapidly, efficiently, and accurately measuring SOC content on farmland. The study area is Big Creek Watershed (BCW) in Southern Illinois. The methodology consists of compiling a GIS database (consisting of remote sensing and soil variables) for 303 composite soil samples collected from representative pixels along the Hyperion coverage area of the watershed. Stepwise procedures were used to calibrate and validate linear multiple regression models where SOC was regarded as the response and the other remote sensing and soil variables as the predictors. Two models were selected. The first was the best all variables model and the second was the best only raster variables model. Map algebra was implemented to extrapolate the best only raster variables model and produce a SOC map for the BGW. This study concluded that Hyperion data marginally improved the predictability of the existing SOC statistical models based on multispectral satellite remote sensing sensors with correlation coefficient of 0.37 and root mean square error of 3.19 metric tons/hectare to a 15-cm depth. The total SOC pool of the study area is about 225,232 metric tons to 15-cm depth. The nonforested wetlands contained the highest SOC density (34.3 metric tons/hectare/15cm) with total SOC content of about 2,003.5 metric tons to 15-cm depth, where croplands had the lowest SOC density (21.6 metric tons/hectare/15cm) with total SOC content of about 44,571.2 metric tons to 15-cm depth.
NASA Astrophysics Data System (ADS)
Baron, S.; Carignan, J.; Ploquin, A.
2003-04-01
Sixty sites of slags have been documented on the Mont-Lozère in southern France. The petrographic analysis shows that slags are metallurgical wastes (800 to 850 yr BP) which certainly result from smelting activity for lead and silver extraction (Ploquin et al., 2001). The aims of this study are: 1) to trace the source of Pb ores which supplied the smelting sites, by using the Pb isotopic composition of several surrounding Pb deposits, 2) to evaluate the actual pollution caused by these slags, by using elemental and isotopic compositions of soils, water and vegetation, and 3) to document the pollution history of the region, by using elemental and isotopic compositions of peat bog cores collected in the neighbourhood of the historical smelting sites. The lead isotopic composition of galena collected in most surrounding ores is very similar to that of different slag samples. On the other hand, the high precision of the results allowed us to select the mineralised areas which were probably the ore sources. The Pb isotopic composition of slags is even more homogeneous: 208/206 Pb: 2.092±0.002; 206/207 Pb: 1.179±0.001; 208/204 Pb: 38.663±0.025; 207/204 Pb: 15.665±0.006; 206/204 Pb: 18.476±0.023, and will allow source tracing in the environment. The "Narses Mortes" peat bog, around which two smelting sites have been reported, is strongly minerotrophic and contains 8 to 60% ash. A 1.40 m core have been retrieved and divided into 58 individual samples. Minerotrophic peat bog records both atmospheric deposition, soils leaching and the grounwater influence. The measured metal concentrations are normalised to Al contents of peat bog samples and the metal/Al ratios are compared to that of the Mont-Lozère granite: relative excess in metal concentrations are found in peat bog samples. An increasing excess of most metals (Pb, Zn, Cd...) was measured for surface samples, from 55 cm depth to the top of the core (23 cm depth). This profil might be attributed to atmospheric input during the last centuries. Pb and As alone are also enriched in some deeper samples (between 120--90 cm depth). At the moment, no sedimentation rates are available for this section of the peat bog. However, according to palynological data (de Beaulieu, in progress), the bottom of the core might be as old as 5000 years BP. This would place the medieval activities at the base of the surface metal enrichment (˜55 cm depth), having no large effect in Pb concentrations measured in peat bog. The older Pb-As enrichment remain enigmatic and may correspond to earlier anthropogenic activities (2000--2500 BP), a period for which very few traces of metallurgical activities are found in Occidental Europe. 14C dating and Pb isotope works are going on peat bog samples trying to discriminate metals sources.
SPRUCE Peat Physical and Chemical Characteristics from Experimental Plot Cores, 2012
Iversen, C. M. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Hanson, P. J. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Brice, D. J. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Phillips, J. R. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; McFarlane, K. J. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Hobbie, E. A. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Kolka, R. K. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.
2012-01-01
This data set reports the results of physical and chemical analyses of peat core samples from the SPRUCE experimental study plots located in the S1-Bog. On August 13-15, 2012, a team of SPRUCE investigators and collaborators collected core samples of peat in the SPRUCE experimental plots. The goal was to characterize the biological, physical, and chemical characteristics of peat, and how those characteristics changed throughout the depth profile of the bog, prior to the initialization of the SPRUCE experimental warming and CO2 treatments. Cores were collected from 16 experimental plots; samples were collected from the hummock and hollow surfaces to depths of 200-300 cm in defined increments. Three replicate cores were collected from both hummock and hollow locations in each plot. The coring locations within each plot were mapped
Ma, Bin; Liang, Xing; Liu, Shaohua; Jin, Menggui; Nimmo, John R.; Li, Jingxin
2017-01-01
Subsurface-water flow pathways in three different land-use areas (non-irrigated grassland, poplar forest, and irrigated arable land) in the central North China Plain were investigated using oxygen (18O) and hydrogen (2H) isotopes in samples of precipitation, soils, and groundwater. Soil water in the top 10 cm was significantly affected by both evaporation and infiltration. Water at 10–40 cm depth in the grassland and arable land, and 10–60 cm in poplar forest, showed a relatively short residence time, as a substantial proportion of antecedent soil water was mixed with a 92-mm storm infiltration event, whereas below those depths (down to 150 cm), depleted δ18O spikes suggested that some storm water bypassed the shallow soil layers. Significant differences, in soil-water content and δ18O values, within a small area, suggested that the proportion of immobile soil water and water flowing in subsurface pathways varies depending on local vegetation cover, soil characteristics and irrigation applications. Soil-water δ18O values revealed that preferential flow and diffuse flow coexist. Preferential flow was active within the root zone, independent of antecedent soil-water content, in both poplar forest and arable land, whereas diffuse flow was observed in grassland. The depleted δ18O spikes at 20–50 cm depth in the arable land suggested the infiltration of irrigation water during the dry season. Temporal isotopic variations in precipitation were subdued in the shallow groundwater, suggesting more complete mixing of different input waters in the unsaturated zone before reaching the shallow groundwater.
NASA Astrophysics Data System (ADS)
Affouri, Hassène; Sahraoui, Olfa
2017-05-01
The vertical distributions of bulk and molecular biomarker composition in samples from a ca. 156 cm sediment core from Lake Ichkeul were determined. Bulk analysis (Rock-Eval pyrolysis, carbonate, lipid extraction) and molecular analysis of saturated fractions were used to characterize the nature, preservation conditions and input of sedimentary organic matter (OM) to this sub-wet lake environment. The sediments are represented mainly by gray-black silty-clay facies where the carbonate (CaCO3) content varies in a range of 10-30% dry sediment. Rock-Eval pyrolysis revealed a homogeneous total organic carbon (TOC) content of ca. 1% sediment, but with down core fluctuation, indicating different anoxic conditions at different depths and material source variation. The values show three periods of relative enrichment, exceeding ca. 1%, at 146-134 cm, 82 cm and 14-0 cm depth. The low Hydrogen Index (HI) values [<119 mg hydrocarbon (HC)/g TOC)] were characteristic of continental Type III OM. The Tmax values in the range 415-420 °C were characteristic of immature OM at an early diagenetic stage. The distributions of n-alkanes (C17 to C34), isoprenoid (iso) alkanes (pristane and phytane), terpanes and steranes showed that the OM is a mixture of marine algal and bacterial source and emergent and floating higher plant origin. In addition, the distributions, as well as several biomarker ratios (n-alkanes, iso-alkanes/n-alkanes), showed that the OM is a mixture of immature and mature. Significant downcore fluctuation was observed in the molecular composition. This indicates intense microbial activity below ca. 50 cm core depth under an anoxic and brackish environment.
He, Xingyuan; Liu, Wenjie; Zhao, Qian; Zhao, Lin; Tian, Chunjie
2014-01-01
Global surface temperature is predicted to increase by at least 1.5°C by the end of this century. However, the response of soil microbial communities to global warming is still poorly understood, especially in high-elevation grasslands. We therefore conducted an experiment on three types of alpine grasslands on the Qinghai-Tibet Plateau to study the effect of experimental warming on abundance and composition of soil microbial communities at 0–10 and 10–20 cm depths. Plots were passively warmed for 3 years using open-top chambers and compared to adjacent control plots at ambient temperature. Soil microbial communities were assessed using phospholipid fatty acid (PLFA) analysis. We found that 3 years of experimental warming consistently and significantly increased microbial biomass at the 0–10 cm soil depth of alpine swamp meadow (ASM) and alpine steppe (AS) grasslands, and at both the 0–10 and 10–20 cm soil depths of alpine meadow (AM) grasslands, due primarily to the changes in soil temperature, moisture, and plant coverage. Soil microbial community composition was also significantly affected by warming at the 0–10 cm soil depth of ASM and AM and at the 10–20 cm soil depth of AM. Warming significantly decreased the ratio of fungi to bacteria and thus induced a community shift towards bacteria at the 0–10 cm soil depth of ASM and AM. While the ratio of arbuscular mycorrhizal fungi to saprotrophic fungi (AMF/SF) was significantly decreased by warming at the 0–10 cm soil depth of ASM, it was increased at the 0–10 cm soil depth of AM. These results indicate that warming had a strong influence on soil microbial communities in the studied high-elevation grasslands and that the effect was dependent on grassland type. PMID:25083904
Sediment chronology in San Francisco Bay, California, defined by 210Pb, 234Th, 137Cs, and 239,340Pu
Fuller, C.C.; van Geen, Alexander; Baskaran, M.; Anima, R.
1999-01-01
Sediment chronologies based on radioisotope depth profiles were developed at two sites in the San Francisco Bay estuary to provide a framework for interpreting historical trends in organic compound and metal contaminant inputs. At Richardson Bay near the estuary mouth, sediments are highly mixed by biological and/or physical processes. Excess penetration ranged from 2 to more than 10 cm at eight coring sites, yielding surface sediment mixing coefficients ranging from 12 to 170 cm2/year. At the site chosen for contaminant analyses, excess activity was essentially constant over the upper 25 cm of the core with an exponential decrease below to the supported activity between 70 and 90 cm. Both and penetrated to 57-cm depth and have broad subsurface maxima between 33 and 41 cm. The best fit of the excess profile to a steady state sediment accumulation and mixing model yielded an accumulation rate of 0.825 g/cm2/year (0.89 cm/year at sediment surface), surface mixing coefficient of 71 cm2/year, and 33-cm mixed zone with a half-Gaussian depth dependence parameter of 9 cm. Simulations of and profiles using these parameters successfully predicted the maximum depth of penetration and the depth of maximum and activity. Profiles of successive 1-year hypothetical contaminant pulses were generated using this parameter set to determine the age distribution of sediments at any depth horizon. Because of mixing, sediment particles with a wide range of deposition dates occur at each depth. A sediment chronology was derived from this age distribution to assign the minimum age of deposition and a date of maximum deposition to a depth horizon. The minimum age of sediments in a given horizon is used to estimate the date of first appearance of a contaminant from its maximum depth of penetration. The date of maximum deposition is used to estimate the peak year of input for a contaminant from the depth interval with the highest concentration of that contaminant. Because of the extensive mixing, sediment-bound constituents are rapidly diluted with older material after deposition. In addition, contaminants persist in the mixed zone for many years after deposition. More than 75 years are required to bury 90% of a deposited contaminant below the mixed zone. Reconstructing contaminant inputs is limited to changes occurring on a 20-year time scale. In contrast, mixing is much lower relative to accumulation at a site in San Pablo Bay. Instead, periods of rapid deposition and/or erosion occurred as indicated by frequent sand-silt laminae in the X-radiograph. , , and excess activity all penetrated to about 120 cm. The distinct maxima in the fallout radionuclides at 105–110 cm yielded overall linear sedimentation rates of 3.9 to 4.1 cm/year, which are comparable to a rate of 4.5±1.5 cm/year derived from the excess profile.
NASA Astrophysics Data System (ADS)
Brevik, E. C.; Heilig, J.; Kempenich, J.; Doolittle, J.; Ulmer, M.
2012-04-01
Sodium-affected soils (SAS) cover over 4 million hectares in the Northern Great Plains of the United States. Improving the classification, interpretation, and mapping of SAS is a major goal of the United States Department of Agriculture-Natural Resource Conservation Service (USDA-NRCS) as Northern Great Plains soil surveys are updated. Apparent electrical conductivity (ECa) as measured with ground conductivity meters has shown promise for mapping SAS, however, this use of this geophysical tool needs additional evaluation. This study used an EM-38 MK2-2 meter (Geonics Limited, Mississauga, Ontario), a Trimble AgGPS 114 L-band DGPS (Trimble, Sunnyvale, CA) and the RTmap38MK2 program (Geomar Software, Inc., Mississauga, Ontario) on an Allegro CX field computer (Juniper Systems, North Logan, UT) to collect, observe, and interpret ECa data in the field. The ECa map generated on-site was then used to guide collection of soil samples for soil characterization and to evaluate the influence of soil properties in SAS on ECa as measured with the EM-38MK2-2. Stochastic models contained in the ESAP software package were used to estimate the SAR and salinity levels from the measured ECa data in 30 cm depth intervals to a depth of 90 cm and for the bulk soil (0 to 90 cm). This technique showed promise, with meaningful spatial patterns apparent in the ECa data. However, many of the stochastic models used for salinity and SAR for individual depth intervals and for the bulk soil had low R-squared values. At both sites, significant variability in soil clay and water contents along with a small number of soil samples taken to calibrate the ECa values to soil properties likely contributed to these low R-squared values.
NASA Astrophysics Data System (ADS)
Soucemarianadin, Laure; Cécillon, Lauric; Baudin, François; Cecchini, Sébastien; Chenu, Claire; Mériguet, Jacques; Nicolas, Manuel; Savignac, Florence; Barré, Pierre
2017-04-01
Soil organic matter (SOM) is the largest terrestrial carbon pool and SOM degradation has multiple consequences on key ecosystem properties like nutrients cycling, soil emissions of greenhouse gases or carbon sequestration potential. With the strong feedbacks between SOM and climate change, it becomes particularly urgent to develop reliable routine methodologies capable of indicating the turnover time of soil organic carbon (SOC) stocks. Thermal analyses have been used to characterize SOM and among them, Rock-Eval 6 (RE6) analysis of soil has shown promising results in the determination of in-situ SOC biogeochemical stability. This technique combines a phase of pyrolysis followed by a phase of oxidation to provide information on both the SOC bulk chemistry and thermal stability. We analyzed with RE6 a set of 495 soils samples from 102 permanent forest sites of the French national network for the long-term monitoring of forest ecosystems (''RENECOFOR'' network). Along with covering pedoclimatic variability at a national level, these samples include a range of 5 depths up to 1 meter (0-10 cm, 10-20 cm, 20-40 cm, 40-80 cm and 80-100 cm). Using RE6 parameters that were previously shown to be correlated to short-term (hydrogen index, HI; T50 CH pyrolysis) or long-term (T50 CO2 oxidation and HI) SOC persistence, and that characterize SOM bulk chemical composition (oxygen index, OI and HI), we tested the influence of depth (n = 5), soil class (n = 6) and vegetation type (n = 3; deciduous, coniferous-fir, coniferous-pine) on SOM thermal stability and bulk chemistry. Results showed that depth was the dominant discriminating factor, affecting significantly all RE6 parameters. With depth, we observed a decrease of the thermally labile SOC pool and an increase of the thermally stable SOC pool, along with an oxidation and a depletion of hydrogen-rich moieties of the SOC. Soil class and vegetation type had contrasted effects on the RE6 parameters but both affected significantly T50 CO2 oxidation with, for instance, entic Podzols and dystric Cambisols containing relatively more thermally stable SOC in the deepest layer than hypereutric/calcaric Cambisols. Moreover, soils in deciduous plots contained a higher proportion of thermally stable SOC than soils in coniferous plots. This study shows that RE6 analysis constitutes a fast and cost effective way to qualitatively estimate SOM turnover and to discuss its ecosystem drivers. It offers promising prospects towards a quantitative estimation of SOC turnover and the development of RE6-based indicators related to the size of the different SOC kinetic pools.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Hee Jung; Department of Biomedical Engineering, Seoul National University, Seoul; Department of Radiation Oncology, Soonchunhyang University Hospital, Seoul
2015-01-01
To investigate how accurately treatment planning systems (TPSs) account for the tongue-and-groove (TG) effect, Monte Carlo (MC) simulations and radiochromic film (RCF) measurements were performed for comparison with TPS results. Two commercial TPSs computed the TG effect for Varian Millennium 120 multileaf collimator (MLC). The TG effect on off-axis dose profile at 3 depths of solid water was estimated as the maximum depth and the full width at half maximum (FWHM) of the dose dip at an interleaf position. When compared with the off-axis dose of open field, the maximum depth of the dose dip for MC and RCF rangedmore » from 10.1% to 20.6%; the maximum depth of the dose dip gradually decreased by up to 8.7% with increasing depths of 1.5 to 10 cm and also by up to 4.1% with increasing off-axis distances of 0 to 13 cm. However, TPS results showed at most a 2.7% decrease for the same depth range and a negligible variation for the same off-axis distances. The FWHM of the dose dip was approximately 0.19 cm for MC and 0.17 cm for RCF, but 0.30 cm for Eclipse TPS and 0.45 cm for Pinnacle TPS. Accordingly, the integrated value of TG dose dip for TPS was larger than that for MC and RCF and almost invariant along the depths and off-axis distances. We concluded that the TG dependence on depth and off-axis doses shown in the MC and RCF results could not be appropriately modeled by the TPS versions in this study.« less
Total organic carbon in aggregates as a soil recovery indicator
NASA Astrophysics Data System (ADS)
Luciene Maltoni, Katia; Rodrigues Cassiolato, Ana Maria; Amorim Faria, Glaucia; Dubbin, William
2015-04-01
The soil aggregation promotes physical protection of organic matter, preservation of which is crucial to improve soil structure, fertility and ensure the agro-ecosystems sustainability. The no-tillage cultivation system has been considered as one of the strategies to increase total soil organic carbono (TOC) contents and soil aggregation, both are closely related and influenced by soil management systems. The aim of this study was to evaluate the distribution of soil aggregates and the total organic carbon inside aggregates, with regard to soil recovery, under 3 different soil management systems, i.e. 10 and 20 years of no-tillage cultivation as compared with soil under natural vegetation (Cerrado). Undisturbed soils (0-5; 5-10; and 10-20 cm depth) were collected from Brazil, Central Region. The soils, Oxisols from Cerrado, were collected from a field under Natural Vegetation-Cerrado (NV), and from fields that were under conventional tillage since 1970s, and 10 and 20 years ago were changed to no-tillage cultivation system (NT-10; NT-20 respectively). The undisturbed samples were sieved (4mm) and the aggregates retained were further fractionated by wet sieving through five sieves (2000, 1000, 500, 250, and 50 μm) with the aggregates distribution expressed as percentage retained by each sieve. The TOC was determined, for each aggregate size, by combustion (Thermo-Finnigan). A predominance of aggregates >2000 μm was observed under NV treatment (92, 91, 82 %), NT-10 (64, 73, 61 %), and NT-20 (71, 79, 63 %) for all three depths (0-5; 5-10; 10-20 cm). In addition greater quantities of aggregates in sizes 1000, 500, 250 and 50 μm under NT-10 and NT-20 treatments, explain the lower aggregate stability under these treatments compared to the soil under NV. The organic C concentration for NV in aggregates >2000 μm was 24,4; 14,2; 8,7 mg/g for each depth (0-5; 5-10; 10-20 cm, respectively), higher than in aggregates sized 250-50 μm (7,2; 5,5; 4,4 mg/g) for all depths. Although, with lower organic C contents, NT-10 and NT-20 presented the same behavior, i.e., greater amounts of organic C in bigger aggregates, (NT-10: 10,7; 9,5; 9,0 mg/g and NT-20: 18,8; 15,7; 8,6 mg/g, for each depth respectively 0-5; 5-10; 10-20 cm), and lower C contents in smaller aggregates (NT-10: 5,7; 6,1; 5,6 mg/g and NT-20: 8,2; 7,9; 6,3 mg/g , for each depth respectively 0-5; 5-10; 10-20 cm). The aggregates > 2000 μm, at 10-20 cm depth, showed similar C contents for NV, NT-10 and NT-20 (8,7; 9,0; 8,6 mg/g, respectively) suggesting that the C supply, even in natural environment, is not enough to increase organic C at 10-20 cm depth. The organic C concentration for aggregates sized 250-50 μm, in all three evaluated depths, is similar. Therefore, under NT-10 and NT-20 the smaller aggregates are not influenced by cultivation system, suggesting that the organic C inside the smaller aggregates can be retained for longer time in soil system. The results suggest, with regard to aggregate distribution and organic carbon content under NV, that soil under NT-20 is recovering. Acknowledgement: This study received financial support from CNPq
CO2 efflux from soil under influence of cadmium and glucose
NASA Astrophysics Data System (ADS)
Gilmullina, Aliia; Galitskaya, Polina; Selivanovskaya, Svetlana
2017-04-01
Soil is the largest pool of organic carbon. Any anthropogenic activity may change the soil organic carbon stock resulting in the atmospheric carbon concentration increase. Organic wastes and sewage sludge are often used for soil fertilization. These amendments often contain not only organic compounds stimulating soil microflora but also toxic compounds e.g. metals inhibiting them. The question about the influence of such amendments on soil carbon stock still remains open. The aim of this study was to evaluate individual glucose and cadmium (Cd) additions and their combined effects on carbon mineralization and microbial community structure in forest soil sampled from different depths (0-20 cm, 20-40 cm and 40-60 cm). We incubated soil samples for 14 days after the addition of: glucose (10000 mg kg-1), Cd (300 mg kg-1) and their mixture. CO2 efflux was measured by CO2 trapping in NaOH, at the 3rd, 7th and 14th days of incubation DNA was extracted from soil samples for assessment of microbial community structure via real-time PCR and Illumina sequencing. Glucose addition induced the increase of soil respiration and fungal-bacterial ratio. However, bacterial alpha-biodiversity decreased as glucose addition caused the dominance of Proteobacteria (0-20 cm, 20-40 cm and 40-60 cm), Actinobacteria (20-40 cm) and Acidobacteria (40-60 cm) phyla. Single Cd addition did not have any effect on parameters studied. In case of simultaneous addition of glucose and Cd, soil respiration and microbial community structure mainly depended more on glucose amendment as compared with metal.
Liu, Ping-li; Zhang, Xiao-lin; Xiong, Zheng-qin; Huang, Tai-qing; Ding, Min; Wang, Jin-yang
2011-09-01
To investigate the dynamic distribution patterns of nitrous oxide (N2O) in the soil profiles in paddy fields with different rice-upland crop rotation systems, a special soil gas collection device was adopted to monitor the dynamics of N2O at the soil depths 7, 15, 30, and 50 cm in the paddy fields under both flooding and drainage conditions. Two rotation systems were installed, i.e., wheat-single rice and oilseed rape-double rice, each with or without nitrogen (N) application. Comparing with the control, N application promoted the N2O production in the soil profiles significantly (P < 0.01), and there existed significant correlations in the N2O concentration among the four soil depths during the whole observation period (P < 0.01). In the growth seasons of winter wheat and oilseed rape under drainage condition and with or without N application, the N2O concentrations at the soil depths 30 cm and 50 cm were significantly higher than those at the soil depths 7 cm and 15 cm; whereas in the early rice growth season under flooding condition and without N application, the N2O concentrations at the soil depth 7 cm and 15 cm were significantly higher than those at the soil depths 30 cm and 50 cm (P < 0.05). No significant differences were observed in the N2O concentrations at the test soil depths among the other rice cropping treatments. The soil N2O concentrations in the treatments without N application peaked in the transitional period from the upland crops cropping to rice planting, while those in the treatments with N application peaked right after the second topdressing N of upland crops. Relatively high soil N2O concentrations were observed at the transitional period from the upland crops cropping to rice planting.
NASA Astrophysics Data System (ADS)
Roldan, C.; Blake, J.; Cerrato, J.; Ali, A.; Cabaniss, S.
2015-12-01
The legacy of abandoned uranium mines lead to community concerns about environmental and health effects. This study focuses on a cross section of the Rio Paguate, adjacent to the Jackpile Mine on the Laguna Reservation, west-central New Mexico. Often, the geochemical interactions that occur in the hyporheic zone adjacent to these abandoned mines play an important role in trace element mobility. In order to understand the mobility of uranium (U), arsenic (As), and vanadium (V) in the Rio Paguate; surface water, hyporheic zone water, and core sediment samples were analyzed using inductively coupled plasma mass spectroscopy (ICP-MS). All water samples were filtered through 0.45μm and 0.22μm filters and analyzed. The results show that there is no major difference in concentrations of U (378-496μg/L), As (0.872-6.78μg/L), and V (2.94-5.01μg/L) between the filter sizes or with depth (8cm and 15cm) in the hyporheic zone. The unfiltered hyporheic zone water samples were analyzed after acid digestion to assess the particulate fraction. These results show a decrease in U concentration (153-202μg/L) and an increase in As (33.2-219μg/L) and V (169-1130μg/L) concentrations compared to the filtered waters. Surface water concentrations of U(171-184μg/L) are lower than the filtered hyporheic zone waters while As(1.32-8.68μg/L) and V(1.75-2.38μg/L) are significantly lower than the hyporheic zone waters and particulates combined. Concentrations of As in the sediment core samples are higher in the first 15cm below the water-sediment interface (14.3-3.82μg/L) and decrease (0.382μg/L) with depth. Uranium concentrations are consistent (0.047-0.050μg/L) at all depths. The over all data suggest that U is mobile in the dissolved phase and both As and V are mobile in the particular phase as they travel through the system.
NASA Astrophysics Data System (ADS)
Pum, Lisa; Reichenauer, Thomas; Germida, Jim
2015-04-01
Anthropogenic activities create a number of significant greenhouse gases and thus potentially contribute to global warming. Methane production is significant in some agricultural production systems and from wetlands. In soil, methane can be oxidised by methanotrophic bacteria. However, little is known about methane production and oxidation in oil sand reclamation covers. The purpose of this study was to investigate methane production and oxidation potential of tailing sands and six different reclamation layers of oil sands mining sites in Alberta, Canada. Methane production and oxidation potential were investigated in laboratory scale microcosms through continuous headspace analysis using gas chromatography. Samples from a reclamation layer were collected at the Canadian Natural Resources Limited (CNRL) reclamation site at depths of 0-10 cm, 10-20 cm and 20-40 cm in October 2014. In addition, tailing sands provided by Suncor Energy Inc. and soil from a CNRL wetland were studied for methane production. Samples were dried, crushed and sieved to 4 mm, packed into serum bottle microcosms and monitored for eight weeks. Methane production potential was assessed by providing an anoxic environment and by adjusting the samples to a moisture holding capacity of 100 %. Methane oxidation potential was examined by an initial application of 2 vol % methane to the microcosms and by adjusting the samples to a moisture holding capacity of 50 %. Microcosm headspace gas was analysed for methane, carbon dioxide, nitrous oxide and oxygen. All experiments were carried out in triplicates, including controls. SF6 and Helium were used as internal standards to detect potential leaks. Our results show differences for methane production potential between the soil depths, tailing sands and wetlands. Moreover, there were differences in the methane oxidation potential of substrate from the three depths investigated and between the reclamation layers. In conclusion, the present study shows that reclamation layers for oil sands mining sites in Alberta, Canada have the potential to oxidize on-site produced methane emissions to the less harmful greenhouse gas carbon dioxide. Such oxidation might mitigate impacts of methane production from these sites.
Long-term changes in mollisol organic carbon and nitrogen.
David, Mark B; McIsaac, Gregory F; Darmody, Robert G; Omonode, Rex A
2009-01-01
Conversions of Mollisols from prairie to cropland and subsequent changes in crop production practices in the Midwestern USA have resulted in changes in soil organic matter. Few studies have used archived samples, long-term resampling of soils to a depth of 1 m, and space for time studies to document these changes. We resampled soils by depth (0-100 cm) in fields at 19 locations in central Illinois on poorly drained Mollisols that were in corn (Zea mays L.) and soybean (Glycine max L. Merr.) rotations, were tile drained, and had no known history of manure application in recent decades. Three fields were paired with virgin prairie remnants, two had grass borders that were sampled, and 16 had been previously sampled in 1901 to 1904 or 1957 under various land uses (virgin prairie, cultivation, grass cover). The soils had large amounts of C and N in the profile, with mean values of 175 [corrected] Mg C ha(-1) and 16.1 Mg N ha(-1) for the 18 cultivated fields sampled in 2001 and 2002. We confirmed a large reduction in organic C and total N pools from conversion of prairies to annual cultivation and artificial drainage and documented no change in these organic matter pools of cultivated soils during the period of synthetic fertilizer use (1957--2002). Cultivated fields had soil C and N concentrations typically 30 to 50% less than virgin prairie soils. Smaller but significant declines in C and N concentrations were found when comparing 1900s cultivated fields to concentrations in 2002, after another 100 yr of cultivation, and in comparing 1957 grass covered fields that had been converted to annual cultivation before 2002. The reduction in organic matter after cultivation of prairies occurred mostly in the top 50 cm of soil, with evidence of translocation of C and N from these upper layers to the 50- to 100-cm depth, possibly enhanced by tile drainage. For these Mollisols, declines in organic matter were likely completed by the 1950s, with organic matter pools in a steady state under the production practices in place from the late 1950s through 2002.
A comparative study of soil water movement under different vegetation covers
NASA Astrophysics Data System (ADS)
FERNANDO, A.; Tanaka, T.
2002-05-01
Vegetation, varying widely floristically, structurally, and in spatial distribution, is a complex phenomenon, delicately adjusted within itself and to its broader environment. To investigate the soil water movement of different vegetation covers, soil physical properties, and pressure head of soil water, have been analysed in a pine forest and adjacent disturbed grassland at the Terrestrial Environmental Research Centre (ERC) of Tsukuba University, Japan. Our results of the soil physical properties showed significant differences under different vegetation. At the forest site, the total porosity was nearly constant, i.e. 81% to 84%, from the ground surface to the depth of 70 cm, and decreased uniformly with the depth to reach 63.2% at 150 cm. At the grassland site, the total porosity was about 70% near the ground surface, however, expeditiously decreased to approximately 62% between the depths of 10 and 40 cm. Below these depths the total porosity increased to a maximum of about 77% between the depths of 50 and 80 cm, then decreased again to 54.9% at 150 cm. The total pressure head indicated that the evapotranspiration zone of the pine forest was 70 cm but was 50 cm in the grassland. KEY WORDS: Natural pine forest, Disturbed grassland, Soil water movement, Soil physical properties, Evaporation effective zone.
Moura, Daniel R; Silveira, Maria L; O'Connor, George A; Wise, William R
2011-09-01
Rapid infiltration basins (RIBs) are effective tools for wastewater treatment and groundwater recharge, but continuous application of wastewater can increase soil P concentrations and subsequently impact groundwater quality. The objectives of this study were to (1) investigate the effects of reclaimed water infiltration rate and "age" of RIBs on soil P concentrations at various depths, and (2) estimate the degree (percentage) of sorption equilibrium reached between effluent P and soil attained during reclaimed water application to different RIBs. The study was conducted in four contrasting cells of a RIB system with up to a 25 year history of secondary wastewater application. Soil samples were collected from 0 to 300 cm depth at 30 cm intervals and analyzed for water extractable phosphorus (WEP) and oxalate extractable P, Al, and Fe concentrations. Water extractable P and P saturation ratio (PSR) values were generally greater in the cells receiving reclaimed water compared to control soils, suggesting that reclaimed water P application can increase soil P concentrations and the risk of P movement to greater depths. Differences between treatment and control samples were more evident in cells with longer histories of reclaimed water application due to greater P loading. Data also indicated considerable spatial variability in WEP concentrations and PSR values, especially within cells from RIBs characterized by fast infiltration rates. This occurs because wastewater-P flows through surface soils much faster than the minimum time required for sorption equilibrium to occur. Studies should be conducted to investigate soil P saturation at deeper depths to assess possible groundwater contamination.
Yorozu, M; Yanagida, T; Nakajyo, T; Okada, Y; Endo, A
2001-04-20
We measured the depth profile of hydrogen atoms in graphite by laser microprobing combined with resonant laser ablation. Deuterium-implanted graphite was employed for the measurements. The sample was ablated by a tunable laser with a wavelength corresponding to the resonant wavelength of 1S-2S of deuterium with two-photon excitation. The ablated deuterium was ionized by a 2 + 1 resonant ionization process. The ions were analyzed by a time-of-flight mass spectrometer. The deuterium ions were detected clearly with the resonant ablation. The detection limit was estimated to be less than 10(16) atoms/cm(3) in our experiments. We determined the depth profile by considering the etching profile and the etching rate. The depth profile agreed well with Monte Carlo simulations to within a precision of 23 mum for the center position and 4-mum precision for distributions for three different implantation depths.
Zn precipitation and Li depletion in Zn implanted ZnO
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chan, K. S.; Jagadish, C.; Wong-Leung, J., E-mail: jenny.wongleung@anu.edu.au
2016-07-11
Ion implantation of Zn substituting elements in ZnO has been shown to result in a dramatic Li depletion of several microns in hydrothermally grown ZnO. This has been ascribed to a burst of mobile Zn interstials. In this study, we seek to understand the reason behind this interstitial mediated transient enhanced diffusion in Li-containing ZnO samples after Zn implantation. ZnO wafers were implanted with Zn to two doses, 5 × 10{sup 15} cm{sup −2} and 1 × 10{sup 17} cm{sup −2}. Secondary ion mass spectrometry was carried out to profile the Li depletion depth for different annealing temperatures between 600 and 800 °C. The 800 °C annealing hadmore » the most significant Li depletion of close to 60 μm. Transmission electron microscopy (TEM) was carried out in selected samples to identify the reason behind the Li depletion. In particular, TEM investigations of samples annealed at 750 °C show significant Zn precipitation just below the depth of the projected range of the implanted ions. We propose that the Zn precipitation is indicative of Zn supersaturation. Both the Li depletion and Zn precipitation are competing synchronous processes aimed at reducing the excess Zn interstitials.« less
Soil Compaction Absent in Plantation Thinning
Tony King; Sharon Haines
1979-01-01
We examine the effects on soil bulk density by using a TH-105 Thinner Harvester and two forwarders in a mechanically thinned slash pine (Pinus elliottii Engelm.) plantation. Points in the machine tracks were sampled before and after harvesting at depths of 5 and 10 cm (2 and 4 in) for moisture and bulk density. Both the standard gravimetric method...
Trace metal in sediment from a deep-sea floor of Makassar Strait
NASA Astrophysics Data System (ADS)
Budianto, F.; Lestari
2018-02-01
Makassar Strait is located in the entrance of Indonesian Through Flow (ITF). However, the geochemistry of metals in sediment within Makassar Strait remains unexplored. The aim of this study was to measure the concentration of metals in sediment and to assess the sediment quality based on those metals concentrations. The sediment was collected from 632-4730 m in depth using giant piston corer on R/V Baruna Jaya VIII in December 2014. In each observation point, three layers of sediment were sub-sampled from the core i.e. surface layer (0-5 cm), middle layer (45-55 cm) and bottom layer. The metals were analyzed using acid digestion procedure followed by Atomic Absorption Spectrophotometer. The result indicated that the metal has spatially insignificant differences in sediment and the increase of metal concentration by depth was noticed. The Enrichment factor presented as no enrichment to minor enrichment of metal in sediment.
NASA Astrophysics Data System (ADS)
Green, M. A.; Aller, R. C.; Cochran, J. K.; Lee, C.; Aller, J. Y.
Biogenic particle reworking ( 234Th, Chl- a), chloropigment distributions, and pore-water irrigation rates (Br - tracer) were examined in the continental shelf-break/upper-slope region off the North Carolina, Cape Hatteras coastline. Sediment cores were obtained along three primary east-west transects (water depth ˜75-800 m; 36°20'N, 35°50'N, 35°25'N), at additional shallow stations along 35°40'N, and at slope stations within a region of complex topography known as the Manteo Lease Block. Samples were collected during August 1994, July 1996, and August 1996, and were recovered using two shipboard techniques (Haps Corer and Box Corer) as well as by the deep submersible, Johnson Sea-Link. Natural and experimental tracer distributions demonstrate that with few exceptions surface deposits throughout this region are rapidly reworked and irrigated by abundant infaunal benthos. Excess 234Th ( t1/2=24.1 days) was present at all stations, with surface activities (0-0.5 cm) ranging from ˜2 to 62 dpm cm -3 (5-54 dpm g -1), average inventories of ˜28±21 (median˜24) dpm cm -2, and typical penetration depths of 5-7 cm. Steady-state particle mixing coefficients ( Db) estimated using excess 234Th ranged from ˜1 to 200 cm 2 yr -1. Although the highest mixing intensities were found between ˜300 and 500 m water depths, rates were locally variable, and there was little or no evidence for any consistent attenuation with bathymetric depth in either 234Th inventories or mixing intensity. Estimates of Db made using Chl- a distributions are similar to those estimated using 234Th, ranging from ˜36 to 110 cm 2 yr -1. Added Br - tracer penetrated >7 cm in ˜24 h periods in shipboard-incubated sediment cores, representing rates ranging from 1.5 to 38X molecular diffusion (mean=13.1±13.0; median ˜11X). Sedimentary Chl- a and phaeophytin- a distributions below the photic zone are indicative of high input of fresh planktonic debris and rapid remineralization. These inputs presumably fuel the abundant benthic fauna, which rework sediments on the Hatteras slope at some of the highest mixing rates yet reported.
Kogan, M; Rojas, S; Gómez, P; Suárez, F; Muñoz, J F; Alister, C
2007-01-01
A field study was performed to evaluate the accuracy of six pesticide screening leaching indexes for herbicide movement. Adsorption, dissipation and soil movement were studied in a vineyard in a sandy loam soil during 2005 season. Simazine, diuron, pendimethalin, oxyfluorfen and flumioxazin were applied to bare soil at rates commonly used, and their soil concentrations throughout soil profile were determined at 0, 10, 20, 40 and 90 days after application (DAA). Herbicides were subjected to two pluviometric regimens, natural field condition and modified conditions (plus natural rainfall 180 mm). Leaching indexes utilized were: Briggs's Rf, Hamaker's Rf, LEACH, LPI, GUS and LIX. Simazine reached 120 cm, diuron 90 cm, flumioxazin 30 cm soil depth respectively. Pendimethalin and oxyfluorfen were retained up to 5 cm. None of the herbicides leaching was affected by rainfall regimen. Only flumioxazin field dissipation was clearly affected by pluviometric condition. The best representation of the herbicide soil depth movement and leaching below 15 cm soil depth were: Hamaker's Rf < Briggs's Rf < GUS < LPI, < LEACH < LIX. Field results showed a good correlation between herbicides K(d) and their soil depth movement and mass leached below 15 cm soil depth.
Testate amoebae communities sensitive to surface moisture conditions in Patagonian peatlands
NASA Astrophysics Data System (ADS)
Loisel, J.; Booth, R.; Charman, D.; van Bellen, S.; Yu, Z.
2017-12-01
Here we examine moss surface samples that were collected during three field campaigns (2005, 2010, 2014) across southern Patagonian peatlands to assess the potential use of testate amoebae and 13C isotope data as proxy indicators of soil moisture. These proxies have been widely tested across North America, but their use as paleoecological tools remains sparse in the southern hemisphere. Samples were collected along a hydrological gradient spanning a range of water table depth from 0cm in wet hollows to over 85cm in dry hummocks. Moss moisture content was measured in the field. Over 25 taxa were identified, with many of them not found in North America. Ordinations indicate statistically significant and dominant effects of soil moisture and water table depth on testate assemblages, though interestingly 13C is even more strongly correlated with testates amoebae than direct soil conditions. It is possible that moss 13C signature constitutes a compound indicator that represents seasonal soil moisture better than opportunistic sampling during field campaigns. There is no significant effect of year or site across the dataset. In addition to providing a training set that translates testate amoebae moisture tolerance range into water tabel depth for Patagonian peatlands, we also compare our results with those from the North American training set to show that, despite 'novel' Patagonian taxa, the robustness of international training sets is probably sufficient to quantify most changes in soil moisture from any site around the world. We also identify key indicator species that are shown to be of universal value in peat-based hydrological reconstructions.
Dosimetric Characteristics of Wedged Fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sidhu, N.P.S.; Breitman, Karen
2015-01-15
The beam characteristics of the wedged fields in the nonwedged planes (planes normal to the wedged planes) were studied for 6 MV and 15 MV x-ray beams. A method was proposed for determining the maximum field length of a wedged field that can be used in the nonwedged plane without introducing undesirable alterations in the dose distributions of these fields. The method requires very few measurements. The relative wedge factors of 6 MV and 15 MV X-rays were determined for wedge filters of nominal wedge angles of 15°, 30°, 45°, and 60° as a function of depth and field size.more » For a 6 MV beam the relative wedge factors determined for a field size of 10 × 10 cm{sup 2} for 30°, 45°, and 60° wedge filters can be used for various field sizes ranging from 4 cm{sup 2} to 20 cm{sup 2} (except for the 60° wedge for which the maximum field size that can be used is 15 × 20 cm{sup 2}) without introducing errors in the dosimetric calculations of more than 0.5% for depths up to 20 cm and 1% for depths up to 30 cm. For the 15° wedge filter the relative wedge factor for a field size of 10 × 10 cm{sup 2} can be used over the same range of field sizes by introducing slightly higher error, 0.5% for depths up to 10 cm and 1% for depths up to 30 cm. For a 15 MV beam the maximum magnitude of the relative wedge factors for 45° and 60° lead wedges is of the order of 1%, and it is not important clinically to apply a correction of that magnitude. For a 15 MV beam the relative wedge factors determined for a field size of 6 × 6 cm{sup 2} for the 15° and 30° steel wedges can be used over a range of field sizes from 4 cm{sup 2} to 20 cm{sup 2} without causing dosimetric errors greater than 0.5% for depths up to 10 cm.« less
Pereira, Arthur Prudêncio de Araujo; Andrade, Pedro Avelino Maia de; Bini, Daniel; Durrer, Ademir; Robin, Agnès; Bouillet, Jean Pierre; Andreote, Fernando Dini; Cardoso, Elke Jurandy Bran Nogueira
2017-01-01
Our knowledge of the rhizosphere bacterial communities in deep soils and the role of Eucalyptus and Acacia on the structure of these communities remains very limited. In this study, we targeted the bacterial community along a depth profile (0 to 800 cm) and compared community structure in monospecific or mixed plantations of Acacia mangium and Eucalyptus grandis. We applied quantitative PCR (qPCR) and sequence the V6 region of the 16S rRNA gene to characterize composition of bacterial communities. We identified a decrease in bacterial abundance with soil depth, and differences in community patterns between monospecific and mixed cultivations. Sequence analysis indicated a prevalent effect of soil depth on bacterial communities in the mixed plant cultivation system, and a remarkable differentiation of bacterial communities in areas solely cultivated with Eucalyptus. The groups most influenced by soil depth were Proteobacteria and Acidobacteria (more frequent in samples between 0 and 300 cm). The predominant bacterial groups differentially displayed in the monospecific stands of Eucalyptus were Firmicutes and Proteobacteria. Our results suggest that the addition of an N2-fixing tree in a monospecific cultivation system modulates bacterial community composition even at a great depth. We conclude that co-cultivation systems may represent a key strategy to improve soil resources and to establish more sustainable cultivation of Eucalyptus in Brazil.
de Andrade, Pedro Avelino Maia; Bini, Daniel; Durrer, Ademir; Robin, Agnès; Bouillet, Jean Pierre; Andreote, Fernando Dini; Cardoso, Elke Jurandy Bran Nogueira
2017-01-01
Our knowledge of the rhizosphere bacterial communities in deep soils and the role of Eucalyptus and Acacia on the structure of these communities remains very limited. In this study, we targeted the bacterial community along a depth profile (0 to 800 cm) and compared community structure in monospecific or mixed plantations of Acacia mangium and Eucalyptus grandis. We applied quantitative PCR (qPCR) and sequence the V6 region of the 16S rRNA gene to characterize composition of bacterial communities. We identified a decrease in bacterial abundance with soil depth, and differences in community patterns between monospecific and mixed cultivations. Sequence analysis indicated a prevalent effect of soil depth on bacterial communities in the mixed plant cultivation system, and a remarkable differentiation of bacterial communities in areas solely cultivated with Eucalyptus. The groups most influenced by soil depth were Proteobacteria and Acidobacteria (more frequent in samples between 0 and 300 cm). The predominant bacterial groups differentially displayed in the monospecific stands of Eucalyptus were Firmicutes and Proteobacteria. Our results suggest that the addition of an N2-fixing tree in a monospecific cultivation system modulates bacterial community composition even at a great depth. We conclude that co-cultivation systems may represent a key strategy to improve soil resources and to establish more sustainable cultivation of Eucalyptus in Brazil. PMID:28686690
NASA Astrophysics Data System (ADS)
Xie, Zhipeng; Hu, Zeyong
2016-04-01
Snow cover is an important component of local- and regional-scale energy and water budgets, especially in mountainous areas. This paper evaluates the snow simulations by using two snow cover fraction schemes in CLM4.5 (NY07 is the original snow-covered area parameterization used in CLM4, and SL12 is the default scheme in CLM4.5). Off-line simulations are carried out forced by the China Meteorological forcing dataset from January 1, 2001 to December 31, 2010 over the Tibetan Plateau. Simulated snow cover fraction (SCF), snow depth, and snow water equivalent (SWE) were compared against a set of observations including the Interactive Multisensor Snow and Ice Mapping System (IMS) snow cover product, the daily snow depth dataset of China, and China Meteorological Administration (CMA) in-situ snow depth and SWE observations. The comparison results indicate significant differences existing between those two SCF parameterizations simulations. Overall, the SL12 formulation shows a certain improvement compared to the NY07 scheme used in CLM4, with the percentage of correctly modeled snow/no snow being 75.8% and 81.8% when compared with the IMS snow product, respectively. Yet, this improvement varies both temporally and spatially. Both these two snow cover schemes overestimated the snow depth, in comparison with the daily snow depth dataset of China, the average biases of simulated snow depth are 7.38cm (8.77cm), 6.97cm (8.2cm) and 5.49cm (5.76cm) NY07 (and SL12) in the snow accumulation period (September through next February), snowmelt period (March through May) and snow-free period (June through August), respectively. When compared with the CMA in-situ snow depth observations, averaged biases are 3.18cm (4.38cm), 2.85cm (4.34cm) and 0.34cm (0.34cm) for NY07 (SL12), respectively. Though SL12 does worse snow depth simulation than NY07, the simulated SWE by SL12 is better than that by NY07, with average biases being 2.64mm, 6.22mm, 1.33mm for NY07, and 1.47mm, 2.63mm, 0.31mm for SL12, respectively. This study demonstrates that future improvements on snow simulation over the Tibetan Plateau are in urgent need for better representing the variability of snow in CLM. Furthermore, these findings lay a foundation for follow-up studies on the modification of snow cover parameterization in the land surface model. Keywords: snow cover, CLM, Tibetan Plateau, simulation.
Jadin, Kyle D; Wong, Benjamin L; Bae, Won C; Li, Kelvin W; Williamson, Amanda K; Schumacher, Barbara L; Price, Jeffrey H; Sah, Robert L
2005-09-01
Articular cartilage is a heterogeneous tissue, with cell density and organization varying with depth from the surface. The objectives of the present study were to establish a method for localizing individual cells in three-dimensional (3D) images of cartilage and quantifying depth-associated variation in cellularity and cell organization at different stages of growth. Accuracy of nucleus localization was high, with 99% sensitivity relative to manual localization. Cellularity (million cells per cm3) decreased from 290, 310, and 150 near the articular surface in fetal, calf, and adult samples, respectively, to 120, 110, and 50 at a depth of 1.0 mm. The distance/angle to the nearest neighboring cell was 7.9 microm/31 degrees , 7.1 microm/31 degrees , and 9.1 microm/31 degrees for cells at the articular surface of fetal, calf, and adult samples, respectively, and increased/decreased to 11.6 microm/31 degrees , 12.0 microm/30 degrees , and 19.2 microm/25 degrees at a depth of 0.7 mm. The methodologies described here may be useful for analyzing the 3D cellular organization of cartilage during growth, maturation, aging, degeneration, and regeneration.
NASA Technical Reports Server (NTRS)
Jadin, Kyle D.; Wong, Benjamin L.; Bae, Won C.; Li, Kelvin W.; Williamson, Amanda K.; Schumacher, Barbara L.; Price, Jeffrey H.; Sah, Robert L.
2005-01-01
Articular cartilage is a heterogeneous tissue, with cell density and organization varying with depth from the surface. The objectives of the present study were to establish a method for localizing individual cells in three-dimensional (3D) images of cartilage and quantifying depth-associated variation in cellularity and cell organization at different stages of growth. Accuracy of nucleus localization was high, with 99% sensitivity relative to manual localization. Cellularity (million cells per cm3) decreased from 290, 310, and 150 near the articular surface in fetal, calf, and adult samples, respectively, to 120, 110, and 50 at a depth of 1.0 mm. The distance/angle to the nearest neighboring cell was 7.9 microm/31 degrees , 7.1 microm/31 degrees , and 9.1 microm/31 degrees for cells at the articular surface of fetal, calf, and adult samples, respectively, and increased/decreased to 11.6 microm/31 degrees , 12.0 microm/30 degrees , and 19.2 microm/25 degrees at a depth of 0.7 mm. The methodologies described here may be useful for analyzing the 3D cellular organization of cartilage during growth, maturation, aging, degeneration, and regeneration.
Zhang, Hualin; Gopalakrishnan, Mahesh; Lee, Plato; Kang, Zhuang; Sathiaseelan, Vythialingam
2016-09-08
The purpose of this study was to evaluate the dosimetric impact of cylinder size in high-dose-rate (HDR) vaginal cuff brachytherapy (VCBT). Sample plans of HDR VCBT in a list of cylinders ranging from 2.5 to 4 cm in diameter at 0.5 cm incre-ment were created and analyzed. The doses were prescribed either at the 0.5cm depth with 5.5 Gy for 4 fractions or at the cylinder surface with 8.8 Gy for 4 frac-tions, in various treatment lengths. A 0.5 cm shell volume called PTV_Eval was contoured for each plan and served as the target volume for dosimetric evaluation. The cumulative and differential dose volume histograms (c-DVH and d-DVH), mean doses (D-mean) and the doses covering 90% (D90), 10% (D10), and 5% (D5) of PTV_Eval were calculated. In the 0.5 cm depth regimen, the DVH curves were found to have shifted toward the lower dose zone when a larger cylinder was used, but in the surface regimen the DVH curves shifted toward the higher dose zone as the cylinder size increased. The D-means of the both regimens were between 6.9 and 7.8 Gy and dependent on the cylinder size but independent of the treatment length. A 0.5 cm variation of diameter could result in a 4% change of D-mean. Average D90s were 5.7 (ranging from 5.6 to 5.8 Gy) and 6.1 Gy (from 5.7 to 6.4 Gy), respectively, for the 0.5 cm and surface regimens. Average D10 and D5 were 9.2 and 11 Gy, respectively, for the 0.5 cm depth regimen, and 8.9 and 9.7 Gy, respectively, for the surface regimen. D-mean, D90, D10, and D5 for other prescription doses could be calculated from the lookup tables of this study. Results indicated that the cylinder size has moderate dosimetric impact, and that both regimens are comparable in dosimetric quality. © 2016 The Authors.
Geomicrobiology of Fe-rich crusts in Lake Superior sediment
NASA Astrophysics Data System (ADS)
Dittrich, M.; Monreau, L.; Quazi, S.; Raoof, B.; Chesnyuk, A.; Katsev, S.; Fulthorpe, R.
2012-04-01
The limnological puzzles of Lake Superior are increasingly attracting scientists, and very little is known about the sediments and their associated microflora. The sediments are organic poor (less than 5%C) and the lake is deep oligotrophic, with water temperatures at the bottom around 3C. Previous studies reveal Fe-rich layers in the sediments at multiple loccations around the lake. The origin and mechanisms of formation of this layer remain unknown. In this study we investigated geochemical and microbiological processes that may lead to the formation of a two cm thick iron layer about 10 cm below the sediment surface. Sediment cores from two stations (EM, 230m water depth and ED, 310m water depth) in the East Basin were used. We monitored oxygen and pH depth profiles with microsensors, porewater and sediment solid matter were analyzed for nutrient and metal contents. Furthermore, phosphorus and iron sequantial extractions of sediment cores have been perfomed. The total cell count was determined using DAPI epifluoresence microscopy. DNA was extracted from the sediment samples and 16S ribosonal RNA amplicons were analyzed with denaturing gradient gel electrophoresis (DGGE). For a more in depth analysis, DNA samples from 8-10 cm and 10-12 cm were sent to the Research and Testing Lab (Texas) for pyrosequencing of 16S rRNA gene amplicons amplified using barcoded universal primers 27f-519r. The scanning electron microscope (SEM) images from the iron layer 10-12cm show filaments that were encrusted with spheres ca. 20 nm in diameter. SEM observations of thin sections also indicate the presence of very fine particles showing various morphologies. Analyses of the deposit material by SEM and energy dispersive X-ray spectroscopy (EDS) indicate that bacteria cells surfaces served as nucleation surfaces for Fe-oxide formation. EDS line-scans through bacterial cells covered with precipitates reveal phosphorus and carbon peaks at interface between cell surface and Fe-particles. The cluster analysis performed on the DGGE separation of ribosomal RNA gene fragments revealed that the two iron layers were not highly similar to each other. We obtained a total of 26,062 16S rRNA gene sequence reads from the two iron layers and the layers directly above them, which were clustered into operational taxonomic units sharing 80% similarity or more. 64-70% of these clusters could not be classified below the phylum level. While the 8-10 cm sediment layers were dominated (46.5% of reads) by relatives of Paenisporosarcina, the iron layers contained far fewer gram positive organisms, far more proteobacteria, and an a high proportion of Nitrospira species which show relatively high similarity to organisms found in an iron II rich seep.
NASA Astrophysics Data System (ADS)
Bechtold, Michel; Tiemeyer, Bärbel; Don, Axel; Altdorff, Daniel; van der Kruk, Jan; Huisman, Johan A.
2013-04-01
Previous studies showed that in-situ visible near-infrared (vis-NIR) spectroscopy can overcome the limitations of conventional soil sampling. Costs can be reduced and spatial resolution enhanced when mapping field-scale variability of soil organic carbon (SOC). Detailed maps can help to improve SOC management and lead to better estimates of field-scale total carbon stocks. Knowledge of SOC field patterns may also help to reveal processes and factors controlling SOC variability. In this study, we apply in situ vis-NIR and apparent electrical conductivity (ECa) mapping to a disturbed bog relict. The major question of this application study was how field-scale in-situ vis-NIR mapping performs for a very heterogeneous area and under difficult grassland conditions and under highly-variable water content conditions. Past intensive peat cutting and deep ploughing in some areas, in combination with a high background heterogeneity of the underlying mineral sediments, have led to a high variability of SOC content (5.6 to 41.3 %), peat layer thickness (25 to 60 cm) and peat degradation states (from nearly fresh to amorphous). Using a field system developed by Veris Technologies (Salina KS, USA), we continuously collected vis-NIR spectra at 10 cm depth (measurement range: 350 nm to 2200 nm) over an area of around 12 ha with a line spacing of about 12 m. The system includes a set of discs for measuring ECa of the first 30 and 90 cm of the soil. The same area was also mapped with a non-invasive electro-magnetic induction (EMI) setup that provided ECa data of the first 25, 50 and 100 cm. For calibration and validation of the spatial data, we took 30 representative soil samples and 15 soil cores of about 90 cm depth, for which peat thickness, water content, pore water EC, bulk density (BD), as well as C and N content were determined for various depths. Preliminary results of the calibration of the NIR spectra to the near-surface SOC contents indicate good data quality despite the challenging site conditions. Bore hole data indicates that the peat layer is characterized by lower BD, higher pore water EC, higher SOC content, and higher water contents compared to the underlying mineral sediments. This ECa contrast at the peat-sand interface is promising for using the various ECa investigation depths as predictors for peat thickness. Preliminary EMI results also show a correlation between ECa and SOC content, most strongly for the 25 cm EMI signal. We evaluate how vis-NIR and ECa data can be used in a joined approach to estimate SOC content as well as SOC stock distribution.
NASA Astrophysics Data System (ADS)
Quetglas, Antoni; Ordines, Francesc; González, María; Franco, Ignacio
2009-08-01
The life cycle of the deep-sea octopus Pteroctopus tetracirrhus was studied from monthly samples obtained throughout the year in different areas of the western Mediterranean (mainly around the Balearic Islands and along the coast of the Iberian Peninsula). A total of 373 individuals (205 females, 168 males) were analyzed; females ranged from 4.5 to 14.0 cm mantle length (ML) and males from 4.5 to 11.5 cm ML. There were few small-sized octopuses (<7 cm ML) in the samples, which might indicate that these individuals inhabit rocky grounds that are not accessible to trawlers or waters deeper than the maximum depth sampled (800 m). The species occurred more frequently around the Balearic Islands than along the Iberian Peninsula as they appeared in 20% and 7%, respectively, of the hauls in these areas. The octopus inhabits the lower continental shelf and upper slope in both areas, primarily between 200 and 500 m depth. Modal lengths were followed from autumn, when recruits were caught by trawlers, to summer, when reproduction took place. Females grew from 8 to 10 cm ML from winter to spring, but this modal size did not increase further in summer; males grew from 7 to 9 cm ML from winter to spring. The total disappearance of large individuals after summer suggests a life cycle lasting a single year. The evolution of the monthly mean sizes showed that the growth was best described by log-linear functions in both sexes. The length at first maturity was clearly higher in females (12 cm ML) than in males (8 cm ML). A total of 30 different prey items, belonging to four major taxonomic groups (crustaceans, osteichthyes, cephalopods and gastropods), were identified in the stomach contents. The diet of the octopus was based on crustaceans and teleosts, which accounted for 75% and 23% of the prey items, respectively. Cephalopods and gastropods were accessory prey as they only represented 1.6% and 0.7%, respectively, of the total. The octopus showed a marked preference for the benthic fish Symphurus nigrescens and the endobenthic crustacean Alpheus glaber. The bathymetric distribution of P. tetracirrhus coincides with those of these two main prey, which suggests that the distribution of the octopus might be strongly linked to its trophic resources.
Soil and surface layer type affect non-rainfall water inputs
NASA Astrophysics Data System (ADS)
Agam, Nurit; Berliner, Pedro; Jiang, Anxia
2017-04-01
Non-rainfall water inputs (NRWIs), which include fog deposition, dew formation, and direct water vapor adsorption by the soil, play a vital role in arid and semiarid regions. Environmental conditions, namely radiation, air temperature, air humidity, and wind speed, largely affect the water cycle driven by NRWIs. The substrate type (soil type and the existence/absence of a crust layer) may as well play a major role. Our objective was to quantify the effects of soil type (loess vs. sand) and surface layer (bare vs. crusted) on the gain and posterior evaporation of NRWIs in the Negev Highlands throughout the dry summer season. Four undisturbed soil samples (20 cm diameter and 50 cm depth) were excavated and simultaneously introduced into a PVC tube. Two samples were obtained in the Negev's Boker plain (loess soil) and two in the Nizzana sand dunes in the Western Negev. On one sample from each site the crust was removed while on the remaining one the natural crust was left in place. The samples were brought to the research site at the Jacob Bluestein Institutes for Desert Research, Ben-Gurion University of the Negev, Israel (31˚08' N, 34˚53' E, 400 meter above the sea level) where they were exposed to the same environmental conditions. The four samples in their PVC tubes were placed on top of scales and the samples mass was continuously monitored. Soil temperatures were monitored at depths of 1, 2, 3, 5 and10 cm in each microlysimeter (ML) using Copper-Constantan thermocouples. The results of particle size distribution indicated that the crust of the loess soil is probably a physical crust, i.e., a crust that forms due to raindroplets impact; while the crust on the sand soil is biological. On most days, the loess soils adsorbed more water than their corresponding sand soil samples. For both soils, the samples for which the crust was removed adsorbed more water than the samples for which it was intact. The difference in daily water adsorption amount between crusted and non-crusted sandy soils often exceeded that between crusted and non-crusted loess soils.
NASA Astrophysics Data System (ADS)
Kitamura, M.; Kitajima, H.; Henry, P.; Valdez, R. D., II; Josh, M.; Tobin, H. J.; Saffer, D. M.; Hirose, T.; Toczko, S.; Maeda, L.
2014-12-01
Integrated Ocean Drilling Program (IODP) Nankai Trough Seismogenic Zone Experiment (NanTroSEIZE) Expedition 348 focused on deepening the existing riser hole at Site C0002 to ~3000 meters below seafloor (mbsf) to access the deep interior of the Miocene inner accretionary prism. This unique tectonic environment, which has never before been sampled in situ by ocean drilling, was characterized through riser drilling, logging while drilling (LWD), mud gas monitoring and sampling, and cuttings and core analysis. Shipboard physical properties measurements including moisture and density (MAD), electrical conductivity, P-wave, natural gamma ray, and magnetic susceptibility measurements were performed mainly on cuttings samples from 870.5 to 3058.5 mbsf, but also on core samples from 2163 and 2204 mbsf. MAD measurements were conducted on seawater-washed cuttings ("bulk cuttings") in two size fractions of >4 mm and 1-4 mm from 870.5 to 3058.5 mbsf, and hand-picked intact cuttings from the >4 mm size fractions within 1222.5-3058.5 mbsf interval. The bulk cuttings show grain density of ~2.7 g/cm3, bulk density of 1.9 g/cm3 to 2.2 g/cm3, and porosity of 50% to 32%. Compared to the values on bulk cuttings, the intact cuttings show almost the same grain density, but higher bulk density and lower porosity, respectively. Combined with the MAD measurements on hand-picked intact cuttings and discrete core samples from previous expeditions, porosity generally decreases from ~60% to ~20% from the seafloor to 3000 mbsf at Site C0002. Electrical conductivity and P-wave velocity on discrete samples, which were prepared from both cuttings and core samples in the depth interval of 1745.5-3058.5 mbsf, range 0.15-0.9 S/m and 1.7-4.5 km/s, respectively. The electrical resistivity on discrete samples is higher than the LWD resistivity data but the overall depth trends are similar. The electrical conductivity and P-wave velocity on discrete samples corrected for in-situ pressure and temperature will be presented. The shipboard physical properties measurements on cuttings are very limited but can be useful with careful treatment and observation.
NASA Astrophysics Data System (ADS)
De Bovée, F.; Hall, P. O. J.; Hulth, S.; Hulthe, G.; Landén, A.; Tengberg, A.
1996-02-01
A quantitative survey of metazoan meiofauna in continental-margin sediments of the Skagerrak was carried out using virtually undisturbed sediment samples collected with a multiple corer. Altogether 11 stations distributed along and across the Norwegian Trench were occupied during three cruises. Abundance ranged from 155 to 6846 ind·10 cm -2 and revealed a sharply decreasing trend with increasing water depth. The densities were high on the upper part of the Danish margin (6846 ind·10 cm -2 at 194 m depth) and low in the central part of the deep Skagerrak (155 ind·10 cm -2 at 637 m depth). Also body lengths were significantly shorter on the Danish margin then elsewhere in the Skagerrak, indicating a greater importance of juveniles in this area. We suggest that the high densities may be explained by a stimulated renewal of the fauna, possibly induced by an adequate food supply. The low abundances found in sediments from the deepest part of the Norwegian Trench cannot be attributed to any lack of oxygen. We suggest that the low meiofaunal abundances are caused by a decrease in the food supply (accentuated in this area by lower sedimentation rates) and/or by the very high concentrations of dissolved manganese in the pore water of these sediments. The metazoan meiofauna was largely dominated by nematodes. Comparison of the respiration rates of the nematode population with the total benthic respiration (0.5 to 14%) suggests that the relative importance of metazoan meiofauna decreased with water depth.
Ciazela, Jakub; Siepak, Marcin
2016-06-01
We determined the Cd, Cr, Cu, Ni, Pb, and Zn concentrations in soil samples collected along the eight main outlet roads of Poznań. Samples were collected at distances of 1, 5, and 10 m from the roadway edges at depth intervals of 0-20 and 40-60 cm. The metal content was determined in seven grain size fractions. The highest metal concentrations were observed in the smallest fraction (<0.063 mm), which were up to four times higher than those in sand fractions. Soil Pb, Cu, and Zn (and to a lesser extent Ni, Cr, and Cd) all increased in relation to the geochemical background. At most sampling sites, metal concentrations decreased with increasing distance from roadway edges and increasing depth. In some locations, the accumulation of metals in soils appears to be strongly influenced by wind direction. Our survey findings should contribute in predicting the behavior of metals along outlet road, which is important by assessing sources for further migration of heavy metals into the groundwater, plants, and humans.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Hao; He, Zhili; Wang, Aijie
Numerous studies have shown that the continuous increase of atmosphere CO 2 concentrations may have profound effects on the forest ecosystem and its functions. However, little is known about the response of belowground soil microbial communities under elevated atmospheric CO 2 (eCO 2) at different soil depth profiles in forest ecosystems. In this paper, we examined soil microbial communities at two soil depths (0 to 5 cm and 5 to 15 cm) after a 10-year eCO 2 exposure using a high-throughput functional gene microarray (GeoChip). The results showed that eCO 2 significantly shifted the compositions, including phylogenetic and functional genemore » structures, of soil microbial communities at both soil depths. Key functional genes, including those involved in carbon degradation and fixation, methane metabolism, denitrification, ammonification, and nitrogen fixation, were stimulated under eCO 2 at both soil depths, although the stimulation effect of eCO 2 on these functional markers was greater at the soil depth of 0 to 5 cm than of 5 to 15 cm. Moreover, a canonical correspondence analysis suggested that NO 3-N, total nitrogen (TN), total carbon (TC), and leaf litter were significantly correlated with the composition of the whole microbial community. This study revealed a positive feedback of eCO 2 in forest soil microbial communities, which may provide new insight for a further understanding of forest ecosystem responses to global CO 2 increases. The concentration of atmospheric carbon dioxide (CO 2) has continuously been increasing since the industrial revolution. Understanding the response of soil microbial communities to elevated atmospheric CO 2 (eCO 2) is important for predicting the contribution of the forest ecosystem to global atmospheric change. This study analyzed the effect of eCO 2 on microbial communities at two soil depths (0 to 5 cm and 5 to 15 cm) in a forest ecosystem. Our findings suggest that the compositional and functional structures of microbial communities shifted under eCO 2 at both soil depths. Finally, more functional genes involved in carbon, nitrogen, and phosphorus cycling were stimulated under eCO 2 at the soil depth of 0 to 5 cm than at the depth of 5 to 15 cm.« less
Yu, Hao; He, Zhili; Wang, Aijie; ...
2017-10-27
Numerous studies have shown that the continuous increase of atmosphere CO 2 concentrations may have profound effects on the forest ecosystem and its functions. However, little is known about the response of belowground soil microbial communities under elevated atmospheric CO 2 (eCO 2) at different soil depth profiles in forest ecosystems. In this paper, we examined soil microbial communities at two soil depths (0 to 5 cm and 5 to 15 cm) after a 10-year eCO 2 exposure using a high-throughput functional gene microarray (GeoChip). The results showed that eCO 2 significantly shifted the compositions, including phylogenetic and functional genemore » structures, of soil microbial communities at both soil depths. Key functional genes, including those involved in carbon degradation and fixation, methane metabolism, denitrification, ammonification, and nitrogen fixation, were stimulated under eCO 2 at both soil depths, although the stimulation effect of eCO 2 on these functional markers was greater at the soil depth of 0 to 5 cm than of 5 to 15 cm. Moreover, a canonical correspondence analysis suggested that NO 3-N, total nitrogen (TN), total carbon (TC), and leaf litter were significantly correlated with the composition of the whole microbial community. This study revealed a positive feedback of eCO 2 in forest soil microbial communities, which may provide new insight for a further understanding of forest ecosystem responses to global CO 2 increases. The concentration of atmospheric carbon dioxide (CO 2) has continuously been increasing since the industrial revolution. Understanding the response of soil microbial communities to elevated atmospheric CO 2 (eCO 2) is important for predicting the contribution of the forest ecosystem to global atmospheric change. This study analyzed the effect of eCO 2 on microbial communities at two soil depths (0 to 5 cm and 5 to 15 cm) in a forest ecosystem. Our findings suggest that the compositional and functional structures of microbial communities shifted under eCO 2 at both soil depths. Finally, more functional genes involved in carbon, nitrogen, and phosphorus cycling were stimulated under eCO 2 at the soil depth of 0 to 5 cm than at the depth of 5 to 15 cm.« less
Yu, Hao; He, Zhili; Wang, Aijie; Xie, Jianping; Wu, Liyou; Van Nostrand, Joy D; Jin, Decai; Shao, Zhimin; Schadt, Christopher W; Zhou, Jizhong; Deng, Ye
2018-01-01
Numerous studies have shown that the continuous increase of atmosphere CO 2 concentrations may have profound effects on the forest ecosystem and its functions. However, little is known about the response of belowground soil microbial communities under elevated atmospheric CO 2 (eCO 2 ) at different soil depth profiles in forest ecosystems. Here, we examined soil microbial communities at two soil depths (0 to 5 cm and 5 to 15 cm) after a 10-year eCO 2 exposure using a high-throughput functional gene microarray (GeoChip). The results showed that eCO 2 significantly shifted the compositions, including phylogenetic and functional gene structures, of soil microbial communities at both soil depths. Key functional genes, including those involved in carbon degradation and fixation, methane metabolism, denitrification, ammonification, and nitrogen fixation, were stimulated under eCO 2 at both soil depths, although the stimulation effect of eCO 2 on these functional markers was greater at the soil depth of 0 to 5 cm than of 5 to 15 cm. Moreover, a canonical correspondence analysis suggested that NO 3 -N, total nitrogen (TN), total carbon (TC), and leaf litter were significantly correlated with the composition of the whole microbial community. This study revealed a positive feedback of eCO 2 in forest soil microbial communities, which may provide new insight for a further understanding of forest ecosystem responses to global CO 2 increases. IMPORTANCE The concentration of atmospheric carbon dioxide (CO 2 ) has continuously been increasing since the industrial revolution. Understanding the response of soil microbial communities to elevated atmospheric CO 2 (eCO 2 ) is important for predicting the contribution of the forest ecosystem to global atmospheric change. This study analyzed the effect of eCO 2 on microbial communities at two soil depths (0 to 5 cm and 5 to 15 cm) in a forest ecosystem. Our findings suggest that the compositional and functional structures of microbial communities shifted under eCO 2 at both soil depths. More functional genes involved in carbon, nitrogen, and phosphorus cycling were stimulated under eCO 2 at the soil depth of 0 to 5 cm than at the depth of 5 to 15 cm. Copyright © 2017 American Society for Microbiology.
Yield Response of Spring Maize to Inter-Row Subsoiling and Soil Water Deficit in Northern China.
Liu, Zhandong; Qin, Anzhen; Zhao, Ben; Ata-Ul-Karim, Syed Tahir; Xiao, Junfu; Sun, Jingsheng; Ning, Dongfeng; Liu, Zugui; Nan, Jiqin; Duan, Aiwang
2016-01-01
Long-term tillage has been shown to induce water stress episode during crop growth period due to low water retention capacity. It is unclear whether integrated water conservation tillage systems, such asspringdeepinter-row subsoiling with annual or biennial repetitions, can be developed to alleviate this issue while improve crop productivity. Experimentswere carried out in a spring maize cropping system on Calcaric-fluvicCambisolsatJiaozuoexperimentstation, northern China, in 2009 to 2014. Effects of threesubsoiling depths (i.e., 30 cm, 40 cm, and 50 cm) in combination with annual and biennial repetitionswasdetermined in two single-years (i.e., 2012 and 2014)againstthe conventional tillage. The objectives were to investigateyield response to subsoiling depths and soil water deficit(SWD), and to identify the most effective subsoiling treatment using a systematic assessment. Annualsubsoiling to 50 cm (AS-50) increased soil water storage (SWS, mm) by an average of8% in 0-20 cm soil depth, 19% in 20-80 cm depth, and 10% in 80-120 cm depth, followed by AS-40 and BS-50, whereas AS-30 and BS-30 showed much less effects in increasing SWS across the 0-120 cm soil profile, compared to the CK. AS-50 significantly reduced soil water deficit (SWD, mm) by an average of123% during sowing to jointing, 318% during jointing to filling, and 221% during filling to maturity, compared to the CK, followed by AS-40 and BS-50. An integrated effect on increasing SWS and reducing SWD helped AS-50 boost grain yield by an average of 31% and biomass yield by 30%, compared to the CK. A power function for subsoiling depth and a negative linear function for SWD were used to fit the measured yields, showing the deepest subsoiling depth (50 cm) with the lowest SWD contributed to the highest yield. Systematic assessment showed that AS-50 received the highest evaluation index (0.69 out of 1.0) among all treatments. Deepinter-row subsoilingwith annual repetition significantly boosts yield by alleviating SWD in critical growth period and increasing SWS in 20-80 cm soil depth. The results allow us to conclude that AS-50 can be adopted as an effective approach to increase crop productivity, alleviate water stress, and improve soil water availability for spring maize in northern China.
NASA Astrophysics Data System (ADS)
van Mourik, Tanja
1999-02-01
The potential energy curves of the rare gas dimers He2, Ne2, and Ar2 have been computed using correlation consistent basis sets ranging from singly augmented aug-cc-pVDZ sets through triply augmented t-aug-cc-pV6Z sets, with the augmented sextuple basis sets being reported herein. Several methods for including electron correlation were investigated, namely Moller-Plesset perturbation theory (MP2, MP3 and MP4) and coupled cluster theory [CCSD and CCSD(T)]. For He2CCSD(T)/d-aug-cc-pV6Z calculations yield a well depth of 7.35cm-1 (10.58K), with an estimated complete basis set (CBS) limit of 7.40cm-1 (10.65K). The latter is smaller than the 'exact' well depth (Aziz, R. A., Janzen, A. R., and Moldover, M. R., 1995, Phys. Rev. Lett., 74, 1586) by about 0.2cm-1 (0.35K). The Ne well depth, computed with the CCSD(T)/d-aug-cc-pV6Z method, is 28.31cm-1 and the estimated CBS limit is 28.4cm-1, approximately 1cm-1 smaller than the empirical potential of Aziz, R. A., and Slaman, M., J., 1989, Chem. Phys., 130, 187. Inclusion of core and core-valence correlation effects has a negligible effect on the Ne well depth, decreasing it by only 0.04cm-1. For Ar2, CCSD(T)/ d-aug-cc-pV6Z calculations yield a well depth of 96.2cm-1. The corresponding HFDID potential of Aziz, R. A., 1993, J. chem. Phys., 99, 4518 predicts of D of 99.7cm-1. Inclusion of core and core-valence effects in Ar increases the well depth and decreases the discrepancy by approximately 1cm-1.
Composition and maturity of the 60013/14 core
NASA Technical Reports Server (NTRS)
Korotev, Randy L.; Morris, Richard V.; Lauer, Howard V., Jr.
1993-01-01
The 60013/14 double drive tube (62 cm deep) is one of three regolith cores taken 35-40 m apart in a triangular array on the Cayley plains at station 10' (LM/ALSEP), Apollo 16. This trio, which includes double drive tube 60009/10 (59 cm deep) and deep drill core 60001-7 (220 cm), is the only such array of cores returned from the Moon. The top 45 cm of 60013/14 is mature, as is surface reference soil 60601 taken nearby. Maturity generally decreases with depth, with soil below 45 cm being submature. The zone of lowest maturity (34 is less than or equal to I(sub s)/FeO is less than 50) extends from 46 to 58 cm depth, and corresponds to the distinct region of light-colored soil observed during core processing. In the other two cores, most of the compositional variation results from mixing between fine-grained, mature soil with 10-11 micro-g/g Sc and coarse-grained ferroan anorthosite consisting of greater than 99% plagioclase with less than 0.5 micro-g/g Sc. This is most evident in 60009/10 which contains a high abundance of plagioclase at about 54 cm depth (minimum Sc: 3-4 micro-g/g); a similar zone occurs in 60001-7 at 17-22 cm (MPU-C), although it is not as rich in plagioclase (minimum Sc: 6-7 micro-g/g). Compositional variations are less in 60013/14 than in the other two cores (range: 7.9-10.0 micro-g/g Sc), but are generally consistent with the 'plagioclase dilution' effect seen in 60009/10, i.e., most 60013/14 samples plot along the mixing line of 60009/10. However, a plagioclase component is not the cause of the lower maturity and lighter color of the unit at 46-58 cm depth in 60013/14. Many of the samples in this zone have distinctly lower Sm/Sc ratios than typical LM-area soils and plot off the mixing trend defined by 60009/10. This requires a component with moderately high Sc, but low-Sm/Sc, such as feldspathic fragmental breccia (FFB) or granulitic breccia. A component of Descartes regolith, such as occurs at North Ray Crater (NRC) and which is rich in FFB, could account for the composition of these soils (i.e., a 3:1 mixture of 60601 and NRC soil). It seems unlikely that NRC ejecta would occur half a meter deep at the LM station, thus this low-Sm/Sc component may result from an older, local crater that penetrated the Cayley surface layer and excavated underlying Descartes material, as did North Ray Crater. There is no evidence for such a unit or component in the other two cores. Soil below the light-colored unit (58-62) cm has 'typical' Sm/Sc ratios, but the lowest absolute Sc concentrations, i.e., it is compositionally equivalent to a mixture of surface soil and plagioclase such as that in ferroan anorthosite. This is the only soil that might be related to the plagioclase-rich units in the other two cores. Except for the mature soil at the top of each core and, perhaps, the plagioclase-rich layers, there is little compositional evidence for any common unit among the three cores. Soil corresponding to the mare-glass-bearing unit (MPU-B) and regolith-breccia-bearing unit (MPU-A) of 60001-7 do not occur in 60013/14 or 60009/10.
A Regional Survey of River-plume Sedimentation on the Mississippi River Delta Front
NASA Astrophysics Data System (ADS)
Courtois, A. J.; Bentley, S. J.; Xu, K.; Georgiou, I. Y.; Maloney, J. M.; Miner, M. D.; Chaytor, J. D.; Smith, J.
2017-12-01
Many studies of the Mississippi River and Delta (MRD) have shown historic declines in sediment load reaching the main river distributaries over the last few decades. Recent studies also reported that 50% of the suspended load during floods is sequestered within the delta. While the impact of declining sediment load on wetland loss is well documented, submarine sedimentary processes on the delta front during this recent period of declining sediment load are understudied. To better understand modern sediment dispersal and deposition across the Mississippi River Delta Front, 31 multicores were collected in June 2017 from locations extending offshore from Southwest Pass, South Pass, and Pass a Loutre (the main river outlets) in water depths of 25-280 m. Core locations were selected based on multibeam bathymetry and morphology collected by the USGS in May 2017; the timing of collection coincided with the end of annual peak discharge on the Mississippi River. This multi-agency survey is the first to study delta-front sedimentary processes regionally with such a wide suite of tools. Target locations for coring included the dominant depositional environments: mudflow lobes, gullies, and undisturbed prodelta. Cores were subsampled at 2 cm intervals and analyzed for Beryllium-7 activity via gamma spectrometry; in such settings, Be-7 can be used as a tracer of sediment recently delivered from fluvial origin. Results indicate a general trend of declining Be-7 activity with increasing distance from source, and in deeper water. Inshore samples near Southwest Pass show the deepest penetration depth of Be-7 into the sediment (24-26 cm), which is a preliminary indicator of rapid seasonal sedimentation. Nearshore samples from South Pass exhibited similar Be-7 penetration depths, with results near Pass a Loutre to 14-16 cm depth. Be-7 remains detectable to 2 cm in water 206 m deep, approximately 20 km from South Pass. Sediment dispersal remains impressive offshore from all three major river outlets, despite overall decline of sediment load in recent decades, and pronounced declines for South Pass and Pass a Loutre. Future research will focus on relationships among changing sediment loads, dispersal patterns, and sediment transport by mudflows, which are an important process for dispersal after initial deposition.
Alpers, Charles N.; Hunerlach, Michael P.; Marvin-DePasquale, Mark C.; Antweiler, Ronald C.; Lasorsa, Brenda K.; De Wild, John F.; Snyder, Noah P.
2006-01-01
Deep coring penetrated the full thickness of material deposited after 1940 at six locations in the reservoir; the cores reached a maximum depth of 32.8 meters below the reservoir floor. At the three deep coring sites closest to Englebright Dam, concentrations of HgT (dry basis) were consistently in the range of 100 to 500 ng/g (nanogram per gram), in sediment dominantly of silt size (median grain size of 0.004 to 0.063 mm [millimeter]). At the deep coring sites located farther upstream, the upper parts of the profile had lower concentrations of HgT, generally ranging from 2 to 100 ng/g, in sediment dominantly of sand size (median grain size from 0.063 to 2 mm). The lower part of the vertical profiles at three upstream coring sites had higher concentrations of HgT than the upper and middle parts of these profiles, and had finer median grain size. The highest median concentration of MeHg (1.1 ng/g) was in the top 2 cm (centimeter) of the shallow box cores. This vertical interval also had the highest value of the ratio of MeHg to HgT, 0.41 percent. Median concentrations of MeHg and median values of MeHg/HgT decreased systematically with depth from 0-4 to 4-8 to 8-12 cm in the shallow cores. However, similar systematic decreases were not observed at the meter scale in the deep cores of the MEM (MEthylMercury) series. The overall median of the ratio MeHg/HgT in the deep cores was 0.25 percent, not much less than the overall median value for the shallow cores (0.33 percent). Mercury-203 radiotracer divalent inorganic mercury (203Hg(II)) was used to determine microbial mercury-methylation potential rates for 11 samples collected from three reservoir locations and various depths in the sediment profile. For the five shallow mercury-methylation subsamples, ancillary geochemical parameters were assayed, including microbial sulfate reduction rates, sulfur speciation (sediment acid volatile sulfide, total reduced sulfur, and pore-water sulfate), iron speciation (sediment acid extractable iron(II), amorphous iron(III), crystalline iron(III) and pore-water iron(II)), pore-water chloride and dissolved organic carbon, and pH, oxidation-reduction potential (Eh) and whole-sediment organic content. The highest potential rates of microbial mercury methylation were measured in shallow (0 to 8 cm depth) sediments (5 to 30 nanograms of mercury per gram dry sediment per day), whereas potential rates for subsamples collected from depths greater than 500 cm were consistently below the detection limit of the radiotracer method (< 0.02 nanogram of mercury per gram dry sediment per day). Chemical analyses of trace and major elements in bed sediment are presented for 202 samples from deep cores from five locations in Englebright Lake. The mean values and standard deviations for selected trace elements were as follows (in micrograms per gram): antimony, 2.4 ? 1.6; arsenic, 69 ? 48; chromium, 134 ? 23; lead, 33 ? 25; and nickel, 87 ? 24. Concentrated samples of heavy-mineral grains, prepared using nine large-volume composite samples from
Snow depth on Arctic sea ice from historical in situ data
NASA Astrophysics Data System (ADS)
Shalina, Elena V.; Sandven, Stein
2018-06-01
The snow data from the Soviet airborne expeditions Sever in the Arctic collected over several decades in March, April and May have been analyzed in this study. The Sever data included more measurements and covered a much wider area, particularly in the Eurasian marginal seas (Kara Sea, Laptev Sea, East Siberian Sea and Chukchi Sea), compared to the Soviet North Pole drifting stations. The latter collected data mainly in the central part of the Arctic Basin. The following snow parameters have been analyzed: average snow depth on the level ice (undisturbed snow) height and area of sastrugi, depth of snow dunes attached to ice ridges and depth of snow on hummocks. In the 1970s-1980s, in the central Arctic, the average depth of undisturbed snow was 21.2 cm, the depth of sastrugi (that occupied about 30 % of the ice surface) was 36.2 cm and the average depth of snow near hummocks and ridges was about 65 cm. For the marginal seas, the average depth of undisturbed snow on the level ice varied from 9.8 cm in the Laptev Sea to 15.3 cm in the East Siberian Sea, which had a larger fraction of multiyear ice. In the marginal seas the spatial variability of snow depth was characterized by standard deviation varying between 66 and 100 %. The average height of sastrugi varied from 23 cm to about 32 cm with standard deviation between 50 and 56 %. The average area covered by sastrugi in the marginal seas was estimated to be 36.5 % of the total ice area where sastrugi were observed. The main result of the study is a new snow depth climatology for the late winter using data from both the Sever expeditions and the North Pole drifting stations. The snow load on the ice observed by Sever expeditions has been described as a combination of the depth of undisturbed snow on the level ice and snow depth of sastrugi weighted in proportion to the sastrugi area. The height of snow accumulated near the ice ridges was not included in the calculations because there are no estimates of the area covered by those features from the Sever expeditions. The effect of not including that data can lead to some underestimation of the average snow depth. The new climatology refines the description of snow depth in the central Arctic compared to the results by Warren et al. (1999) and provides additional detailed data in the marginal seas. The snow depth climatology is based on 94 % Sever data and 6 % North Pole data. The new climatology shows lower snow depth in the central Arctic comparing to Warren climatology and more detailed data in the Eurasian seas.
Understanding catchment scale sediment sources using geochemical tracers
NASA Astrophysics Data System (ADS)
Ferreira, Carla S. S.; Walsh, Rory P. D.; Shakesby, Richard A.; Steenhuis, Tammo S.; Ferreira, António J. D.; Coelho, Celeste O. A.
2013-04-01
It is well-established that urbanization leads to increased erosion (at least locally) as well as enhanced overland flow and streamflow peaks. Less is known about how the spatial distribution of erosion sources and scale of increases in erosion vary with the nature of urbanization in different climatic and socio-economic settings. This is important in order to prevent or reduce adverse impacts of erosion on downstream sedimentation, channel siltation and shifting, and river pollution. This paper adopts a sediment fingerprinting approach to assess the impact of partial urbanization and associated land-use change on sediment sources within a peri-urban catchment (6 km2), Ribeira dos Covões on the outskirts of the city of Coimbra in central Portugal. Urban land-use has increased from just 6% in 1958 to 30% in 2009. The urban pattern includes some well-defined urban residential centres, but also areas of discontinuous urban sprawl, including educational, health and small industrial facilities, numerous new roads and an enterprise park is under construction on the upper part of the catchment. The catchment has a wet Mediterranean climate and the lithology comprises sandstone in the west and limestone in the east. Soil depth is generally >40cm. The average slope angle is 8° (maximum 47°). Altitude ranges from 30m to 205m. A sediment fingerprinting approach was adopted to help establish the relative importance of sediment inputs from different urban areas. During September 2012 current bed-sediment samples (0-3 cm depth) were collected from 11 channel sites along the main stream and in different tributaries. At sites where bed-sediment was deeper, additional samples were taken at 3cm intervals to a maximum depth of around 42cm. In addition, overbank sediment samples (0-3cm depth) were collected at 11 locations around the catchment. All samples were oven-dried (at 38°C) and different particle size fractions (0.125-2mm, 0.063-0.125mm and <0.063mm) obtained, where the <0.063mm fraction was considered equivalent to the suspended sediment load during storm events. The elemental composition (33 elements) of each fraction was assessed using a Niton X-ray fluorescence analyzer. The results were used to identify distinctive composite signatures of each tributary catchment and their influence on the geochemistry of the catchment outlet bed-sediment was explored. An unmixing model was applied to estimate the relative contribution of each tributary to channel-stored sediment at the catchment outlet. Many of the chemical elements analysed, including Zr, Sr, Zn and Ti, showed significant differences between sandstone and limestone areas. The closeness of values at the catchment outlet to those of sandstone stream bed-sediment indicates that most of the current catchment erosion is derived from the sandstone area. This is supported by the higher measured discharges and suspended sediment concentrations in storm events from the latter. Eroded sediments from urban areas still under construction also showed distinctive characteristics. It is concluded that this methodology represents a potentially useful tool for river managers and policy-makers to detect and assess sediment sources in urbanized catchments.
Measurements of the microwave conductivity of the organic superconductor ET2 (IAuI)
NASA Astrophysics Data System (ADS)
Tanner, D. B.; Jacobsen, C. S.; Williams, J. M.; Wang, H. H.
The microwave conductivity of ET2(IAuI), which is superconducting below 4 K, has been measured between 20 and 300 K. The measurements were done by cavity perturbation at 35 GHz for electric field along the highly conducting direction. The samples were in the skin-depth limit. The room temperature conductivity is quite low, approximately 6 mu/cm. With a decrease in temperature the conductivity increases as T sup -2 reaching nearly 900 mu/cm at 20 K. These values are rather close to extrapolations of the frequency-dependent conductivity determined from far-infrared experiments.
Intrauterine photoacoustic and ultrasound imaging probe
NASA Astrophysics Data System (ADS)
Miranda, Christopher; Barkley, Joel; Smith, Barbara S.
2018-04-01
Intrauterine photoacoustic and ultrasound imaging are probe-based imaging modalities with translational potential for use in detecting endometrial diseases. This deep-tissue imaging probe design allows for the retrofitting of commercially available endometrial sampling curettes. The imaging probe presented here has a 2.92-mm diameter and approximate length of 26 cm, which allows for entry into the human endometrial cavity, making it possible to use photoacoustic imaging and high-resolution ultrasound to characterize the uterus. We demonstrate the imaging probes' ability to provide structural information of an excised pig uterus using ultrasound imaging and detect photoacoustic signals at a radial depth of 1 cm.
Interstitial water studies on small core samples, Deep Sea Drilling Project, Leg 8
Manheim, F.T.; Sayles, F.L.
1971-01-01
Leg 8 sites are dominated by siliceous-calcareous biogenic oozes having depositional rates of 0.1 to 1.5 cm/1000 years. Conservative constituents of pore fluids showed, as have cores from other pelagic areas of the Pacific, insignificant or marginally significant changes with depth and location. However, in Sites 70 and 71, calcium, magnesium and strontium showed major shifts in concentration with depth. These changes appear to be related to recrystallization phenomena in skeletal debris of nannoplankton and to the relative accumulation rate of the sediments. The chemical anomalies increase relatively smoothly with depth, demonstrating the effectiveness of vertical diffusional communication, and apparent lack of bulk fluid movement, as noted in Leg 7 and other sites.
Hirayama, Hiroyuki; Kasuya, Eiiti
2010-06-01
Females generally avoid selecting sites for oviposition which have a high predation risk to increase offspring survival. Previous studies have focused on costs to ovipositing females. However, although offspring may also incur costs by being oviposited at low predation risk sites, no studies have focused on costs to offspring. Such costs to offspring were examined by using Aquarius paludum insularis, females of which avoid eggs parasitism by ovipositing at deep sites. Deep sites are safe from egg parasitism but may be unsuitable for hatching due to environmental factors. We examined the costs to offspring at deep sites by comparing the hatching rate, the duration to hatching and the proportion of drowned larvae between eggs that were set at three levels of water depth (0 cm, 25 cm and 50 cm depth). While the hatching rate at 50 cm was lower than that at 0 cm, the rate at 25 cm did not differ from that at 0 cm. Duration to hatching and the proportion of drowned larvae did not differ between the three depths. It is suggested that the declining survival rate of A. paludum eggs was due to increased water pressure at greater depth. Such a cost may exist in other species and such an observation may aid in understanding oviposition site selection. Copyright 2010 Elsevier Ltd. All rights reserved.
Lin, Qianxin; Mendelssohn, Irving A; Bryner, Nelson P; Walton, William D
2005-03-15
In-situ burning of oiled wetlands potentially provides a cleanup technique that is generally consistent with present wetland management procedures. The effects of water depth (+10, +2, and -2 cm), oil type (crude and diesel), and oil penetration of sediment before the burn on the relationship between vegetation recovery and soil temperature for three coastal marsh types were investigated. The water depth over the soil surface during in-situ burning was a key factor controlling marsh plant recovery. Both the 10- and 2-cm water depths were sufficient to protect marsh vegetation from burning impacts, with surface soil temperatures of <35 and 48 degrees C, respectively. Plant survival rate and growth responses at these water depth burns were not significantly different from the unburned control. In contrast, a water table 2 cm below the soil surface during the burn resulted in high soil temperatures, with 90-200 degrees C at 0-0.5 cm soil depth and 55-75 degrees C at 1-2 cm soil depth. The 2-cm soil exposure to fire significantly impeded the post-burn recovery of Spartina alterniflora and Sagittaria lancifolia but did not detrimentally affect the recovery of Spartina patens and Distichlis spicata. Oil type (crude vs diesel) and oil applied to the marsh soil surface (0.5 L x m(-2)) before the burn did not significantly affect plant recovery. Thus, recovery is species-specific when no surface water exists. Even water at the soil surface will most likely protect wetland plants from burning impact.
Effects of burn location and investigator on burn depth in a porcine model.
Singer, Adam J; Toussaint, Jimmy; Chung, Won Taek; Thode, Henry C; McClain, Steve; Raut, Vivek
2016-02-01
In order to be useful, animal models should be reproducible and consistent regardless of sampling bias, investigator creating burn, and burn location. We determined the variability in burn depth based on biopsy location, burn location and investigator in a porcine model of partial thickness burns. 24 partial thickness burns (2.5 cm by 2.5 cm each) were created on the backs of 2 anesthetized pigs by 2 investigators (one experienced, one inexperienced) using a previously validated model. In one of the pigs, the necrotic epidermis covering each burn was removed. Five full thickness 4mm punch biopsies were obtained 1h after injury from the four corners and center of the burns and stained with Hematoxylin and Eosin and Masson's trichrome for determination of burn depth by a board certified dermatopathologist blinded to burn location and investigator. Comparisons of burn depth by biopsy location, burn location and investigator were performed with t-tests and ANOVA as appropriate. The mean (SD) depth of injury to blood vessels (the main determinant of burn progression) in debrided and non-debrided pigs pooled together was 1.8 (0.3)mm, which included 75% of the dermal depth. Non-debrided burns were 0.24 mm deeper than debrided burns (P<0.001). Burn depth increased marginally from cephalic to caudal in non-debrided burns, but showed no statistical differences for these locations, in debrided burns. Additionally, there were also no statistical differences in burn depths from midline to lateral in either of these burn types. Burn depth was similar for both investigators and among biopsy locations. Burn depth was greater for caudal locations in non-debrided burns and overall non-debrided burns were deeper than debrided burns. However, burn depth did not differ based on investigator, biopsy site, and medial-lateral location. Copyright © 2015 Elsevier Ltd and ISBI. All rights reserved.
A modern soil carbon stock baseline for the conterminous United States
NASA Astrophysics Data System (ADS)
Loecke, T.; Wills, S. A.; Teachman, G.; Sequeira, C.; West, L.; Wijewardane, N.; Ge, Y.
2016-12-01
The Rapid Carbon Assessment Project was undertaken to ascertain the soil carbon stocks across the conterminous US at one point in time. Sample locations were chosen randomly from the NRI (National Resource Inventory) sampling framework and cover all areas in CONUS with SSURGO certified maps as of Dec 2010. The project was regionalized into 17 areas for logistical reasons. Within each region, soils were grouped by official series description properties. Sites were selected by soil groups and land use/cover as indicated by NRI or NLCD (USGS National Land Cover Dataset) class so that more extensive soils groups and/or land use/covers received more points and less extensive fewer points (with a minimum of 5 sites). Each region had 375 - 400 sites, for a total of approximately 6,400 sites. At each site, basic information about land use, vegetation and management were collected as appropriate and available. Samples were collected from 5 pedons (a central and 4 satellites) per site to a depth of 1m, at 0 - 5cm and by genetic horizon. A volumetric sample was collected for horizons above 50 cm to determine bulk density. For horizons below 50cm (or when a volumetric sample could not be obtained) bulk density was modeled from morphological information. All samples were air dried and crushed to <2mm. The central pedon was analyzed for total and organic carbon at the Kellogg Soil Science Laboratory in Lincoln, NE. A visible near-infrared (VNIR) spectrophotometer was used to predict organic and inorganic carbon contents for all satellites samples. A Hierarchical Bayesian statistical approach was used to estimate C stocks, concentrations, and uncertainty for each sampling level (i.e., CONUS, region, soil group, landuse and site). Carbon concentration and stocks were summarized by surface horizon and depth increments for sites, soil groups, and land use/groups and mapped by linking the values to a raster of SSURGO (Jan 2012) that includes map unit and NLCD classification. This modern soil C stock baseline data set will be useful for many application in climate science and biogeochemistry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, M; Wen, N; Beyer, C
Purpose: Treating bulky tumors with grid therapy (GT) has demonstrated high response rates. Long delivery time (∼15min), with consequent increased risk of intrafraction motion, is a major disadvantage of conventional MLC-based GT (MLC-GT). The goal of this study was to develop and commission a MLC-GT technique with similar dosimetric characteristics, but more efficient delivery. Methods: Grid plan was designed with 10X-FFF (2400MU/min) beam and MLC in a commercial treatment planning system (TPS). Grid size was 1cm by 1cm and grid-to-grid distance was 2cm. Field-in-field technique was used to flatten the dose profile at depth of 10cm. Prescription was 15Gy atmore » 1.5cm depth. Doses were verified at depths of 1.5cm, 5cm and 10cm. Point dose was measured with a plastic scintillator detector (PSD) while the planar dose was measured with calibrated Gafchromic EBT3 films in a 20cm think, 30cmx30cm solid water phantom. The measured doses were compared to the doses calculated in the treatment planning system. Percent depth dose (PDD) within the grid was also measured using EBT3 film. Five clinical cases were planned to compare beam-on time. Results: The valley-to-peak dose ratio at the 3 depths was approximately 10–15%, which is very similar to published result. The average point dose difference between the PSD measurements and TPS calculation is 2.1±0.6%. Film dosimetry revealed good agreement between the delivered and calculated dose. The average gamma passing rates at the 3 depths were 95% (3%, 1mm). The average percent difference between the measured PDD and calculated PDD was 2.1% within the depth of 20cm. The phantom plan delivery time was 3.6 min. Average beam-on time was reduced by 66.1±5.6% for the 5 clinical cases. Conclusion: An effective and efficient GT technique was developed and commissioned for the treatment of bulky tumors using FFF beam combined with MLC and automation. The Department of Radiation Oncology at Henry Ford Health System receives research support from Varian Medical Systems and Philips Health Care.« less
NASA Astrophysics Data System (ADS)
Krklec, Kristina; Domínguez-Villar, David; Carrasco, Rosa M.; Pedraza, Javier
2016-07-01
Rock tablets of known weight were buried in the soil of a karst region in Central Spain to evaluate the carbonate weathering during a period of a year. The experiment was conducted at two different soil depths: 5-10 and 50-55 cm from the surface. The parental rock used in the experiment is composed of dolomite and magnesite with variable proportion of accessory minerals and minor elements. Soil mineral and chemical composition as well as its texture was also characterized. Meteorological conditions at the site together with temperature and CO2 in both soil levels were monitored. Sets of tablets were retrieved after 6 and 12 months of the start of the experiment to account for seasonal weathering. Different lithologies do not exhibit significant differences in weathering, although a large inter-sample variability is attributed to variable size and distribution of the porosity. Results show an enhanced weathering during the wet and cold season that accounts for 78 ± 1% of the total annual weathering. Rock tablets examined under scanning electron microscopy prior and after exposure to natural environment show that most of the material lost occurred along cracks, edges or large pores. Although dissolution is a common process, most of the weathering is due to crystal detachment. Rock tablets at the depth of 5-10 cm were weathered 68 ± 1% more than those set at 50-55 cm from the surface. Higher soil moisture and concentration of CO2 were found deeper in the soil, which likely enhanced the dissolution of carbonate. However, physical weathering dominated weight loss of rock tablets at both soil depths; especially at the 5-10 cm level where soil thermal and moisture cycles were more frequent and greater. Denudation rate calculated from the 12 months set provides values of 2.48 ± 1.07 μm/yr and 1.75 ± 0.66 μm/yr at the depths of 5-10 and 50-55 cm, respectively. Since the conditions at the average contact between soil and bedrock are similar to those at the 50-55 cm depth, we consider that this is a more reliable denudation rate for the studied location during the studied period. The calculated weathering rate suggests that denudation has a limited contribution to the thinning of bedrock over caves at this site. Therefore, we consider that the formation of unroofed caves in this region most likely results from the thinning of bedrock cover over caves due to collapse of blocks from their ceilings.
,
2013-01-01
Median weekly absolute percent differences for selected parameters including: sample volume, 8.0 percent; ammonium concentration, 9.1 percent; nitrate concentration, 8.5 percent; sulfate concentration, 10.2 percent. Annual precipitation-weighted mean concentrations were higher for CO98 compared to CO89 for all analytes. The chemical concentration record for CO98 contains more valid samples than the CO89 record. Therefore, the CO98 record is more representative of 2012 total annual deposition at Loch Vale. Daily precipitation-depth records for the co-located precipitation gages were 100 percent complete, and the total annual precipitation depths between the sites differed by 0.1 percent for the year (91.5 and 91.4 cm).
Rapid Carbon Assessment Project: Data Summary and Availability
NASA Astrophysics Data System (ADS)
Wills, Skye; Loecke, Terry; Roecker, Stephen; Beaudette, Dylan; Libohova, Zamir; Monger, Curtis; Lindbo, David
2017-04-01
The Rapid Carbon Assessment (RaCA) project was undertaken to estimate regional soil organic carbon (SOC) stocks across the conterminous United States (CONUS) as a one-time event. Sample locations were selected randomly using the NRI (National Resource Inventory) sampling framework covering all areas in CONUS with SSURGO certified maps as of Dec 2012. Within each of 17 regions, sites were selected by a combination of soil and land use/cover groups (LUGR). At each of more than 6,000 sites five pedons were described and sampled to a depth of 100cm (one central and 4 satellites 30m in each cardinal direction). There were 144,833 samples described from 32,084 pedons at 6, 017 sites. A combination of measurement and modeled bulk density was used for all samples. A visible near-infrared (VNIR) spectrophotometer was used to scan each sample for prediction of soil carbon contents. The samples of each central pedon were analyzed by the Kellogg Soil Survey Laboratory for combustion carbon and calcimeter inorganic carbon. SOC stocks were calculated for each pedon using a standard fixed depth technique to depths of 5, 30 and 100cm. Pedon SOC stocks were transformed to better approach normality before LUGR, regional and land use/cover summaries were calculated. The values reported are geometric means. A detailed spatial map can be produced using LUGR mean assignment to correlated pixels. LUGR values range from 1 to 3,000 Mg ha-1. While some artifacts are visible due to the stratified nature of sampling and extrapolation, the predictions are generally smooth and highlight some distinct geomorphic features including the sandhills in the Great Plains in the central US, mountainous regions in the West and coastal wetlands in the East. Regional averages range from 46 Mg ha-1 in the desert Southwest to 182 Mg ha-1 in the Northeast. Regional trends correlate to climate variables such as precipitation and potential evapotranspiration. While land use/cover classes vary in mean values, the range within each class overlap and they are not significantly different. As expected, wetlands have the highest SOC stocks, 261 Mg ha-1, and range lands the lowest, 51 Mg ha-1. This is due primarily to the great stocks between 30 and 100cm in wetlands. Ongoing work includes incorporating measurement error into uncertainties and using Bayesian inference to test differences between land use/cover classes. Project information and raw data including sample descriptions, sample data, processing scripts, VNIR scans, and maps are available via web and R based packages. Future work will be done to map carbon across landscapes using environmental covariates and produce probabilities of C concentrations and stocks across multiple land use and management scenarios
Analysis of radiocaesium in the Lebanese soil one decade after the Chernobyl accident.
El Samad, O; Zahraman, K; Baydoun, R; Nasreddine, M
2007-01-01
Fallout from the Chernobyl reactor accident due to the transport of a radioactive cloud over Lebanon in the beginning of May 1986 was studied 12 years after the accident for determining the level of (137)Cs concentration in soil. Gamma spectroscopy measurements were performed by using coaxial high sensitivity HPGe detectors. More than 90 soil samples were collected from points uniformly distributed throughout the land of Lebanon in order to evaluate their radioactivity. The data obtained showed a relatively high (137)Cs activity per surface area contamination, up to 6545Bqm(-2) in the top soil layer 0-3cm. The average activity of (137)Cs in the top soil layer 0-3cm in depth was 59.7Bqkg(-1) dry soil ranging from 15 to 119Bqkg(-1) dry soil. The horizontal variability was found to be about 45% between the sampling sites. The depth distribution of total (137)Cs activity in soil showed an exponential decrease. Estimation of the annual effective dose due to external radiation from (137)Cs contaminated soil for selected sites gave values ranging from 19.3 to 91.6 micro Svy(-1).
Physical properties of the Nankai inner accretionary prism at Site C0002, IODP Expedition 348
NASA Astrophysics Data System (ADS)
Kitamura, Manami; Kitajima, Hiroko; Henry, Pierre; Valdez, Robert; Josh, Matthew
2014-05-01
Integrated Ocean Drilling Program (IODP) Nankai Trough Seismogenic Zone Experiment (NanTroSEIZE) Expedition 348 focused on deepening the existing riser hole at Site C0002 to ~3000 meters below seafloor (mbsf) to access the deep interior of the Miocene inner accretionary prism. This unique tectonic environment, which has never before been sampled in situ by ocean drilling, was characterized through riser drilling, logging while drilling (LWD), mud gas monitoring and sampling, and cuttings and core analysis. Shipboard physical properties measurements including moisture and density (MAD), electrical conductivity, P-wave, natural gamma ray, and magnetic susceptibility measurements were performed mainly on cuttings samples from 870.5 to 3058.5 mbsf, but also on core samples from 2163 and 2204 mbsf. MAD measurements were conducted on seawater-washed cuttings ("bulk cuttings") in two size fractions of >4 mm and 1-4 mm from 870.5 to 3058.5 mbsf, and hand-picked intact cuttings from the >4 mm size fractions within 1222.5-3058.5 mbsf interval. The bulk cuttings show grain density of 2.68 g/cm3 and 2.72 g/cm3, bulk density of 1.9 g/cm3 to 2.2 g/cm3, and porosity of 50% to 32%. Compared to the values on bulk cuttings, the intact cuttings show almost the same grain density (2.66-2.70 g/cm3), but higher bulk density (2.05-2.41 g/cm3) and lower porosity (37-18%), respectively. The grain density agreement suggests that the measurements on both bulk cuttings and intact cuttings are of good quality, and the differences in porosity and density are real, but the values from the bulk cuttings are affected strongly by artifacts of the drilling process. Thus, the bulk density and porosity data on handpicked cuttings are better representative of formation properties. Combined with the MAD measurements on hand-picked intact cuttings and discrete core samples from previous expeditions, porosity generally decreases from ~60% to ~20% from the seafloor to 3000 mbsf at Site C0002. Electrical conductivity and P-wave velocity on discrete samples, which were prepared from both cuttings and core samples in the depth interval of 1745.5-3058.5 mbsf, range 0.15-0.9 S/m and 1.7-4.5 km/s, respectively. The electrical resistivity (a reciprocal of conductivity) on discrete samples is generally higher than the LWD resistivity data but the overall depth trends are similar. On the other hand, the P-wave velocity on discrete samples is lower than the LWD P-wave velocity between 2200 mbsf and 2600 mbsf, while the P-wave velocity on discrete samples and LWD P-wave velocity are in a closer agreement below 2600 mbsf. The electrical conductivity and P-wave velocity on discrete samples corrected for in-situ pressure and temperature will be presented. The shipboard physical properties measurements on cuttings are very limited but can be useful with careful treatment and observation.
Hrbáček, Filip; Kňažková, Michaela; Nývlt, Daniel; Láska, Kamil; Mueller, Carsten W; Ondruch, Jakub
2017-12-01
The Circumpolar Active Layer Monitoring - South (CALM-S) site was established in February 2014 on James Ross Island as the first CALM-S site in the eastern Antarctic Peninsula region. The site, located near Johann Gregor Mendel Station, is labelled CALM-S JGM. The grid area is gently sloped (<3°) and has an elevation of between 8 and 11ma.s.l. The lithology of the site consists of the muddy sediments of Holocene marine terrace and clayey-sandy Cretaceous sedimentary rocks, which significantly affect the texture, moisture content, and physical parameters of the ground within the grid. Our objective was to study seasonal and interannual variability of the active layer depth and thermal regime at the CALM-S site, and at two ground temperature measurement profiles, AWS-JGM and AWS-CALM, located in the grid. The mean air temperature in the period March 2013 to February 2016 reached -7.2°C. The mean ground temperature decreased with depth from -5.3°C to -5.4°C at 5cm, to -5.5°C to -5.9°C at 200cm. Active layer thickness was significantly higher at AWS-CALM and ranged between 86cm (2014/15) and 87cm (2015/16), while at AWS-JGM it reached only 51cm (2013/14) to 65cm (2015/16). The mean probed active layer depth increased from 66.4cm in 2013/14 to 78.0cm in 2014/15. Large differences were observed when comparing the minimum (51cm to 59cm) and maximum (100cm to 113cm) probed depths. The distribution of the active layer depth and differences in the thermal regime of the uppermost layer of permafrost at CALM-S JGM clearly show the effect of different lithological properties on the two lithologically distinct parts of the grid. Copyright © 2017 Elsevier B.V. All rights reserved.
Zhang, Wen-Juan; Liao, Hong-Kai; Long, Jian; Li, Juan; Liu, Ling-Fei
2015-03-01
Taking 5-year-old Chinese prickly ash orchard (PO-5), 17-year-old Chinese prickly ash orchard (PO- 17), 30-year-old Chinese prickly ash orchard (PO-30) and the forest land (FL, about 60 years) in typical demonstration area of desertification control test in southwestern Guizhou as our research objects, the aim of this study using a batch incubation experiment was to research the mineralization characteristics of soil organic carbon and changes of the labile soil organic carbon contents at different depths (0-15 cm, 15-30 cm, and 30-50 cm). The results showed that: the cumulative mineralization amounts of soil organic carbon were in the order of 30-year-old Chinese prickly ash orchard, the forest land, 5-year-old Chinese prickly ash orchard and 17-year-old Chinese prickly ash orchard at corresponding depth. Distribution ratios of CO2-C cumulative mineralization amount to SOC contents were higher in Chinese prickly ash orchards than in forest land at each depth. Cultivation of Chinese prickly ash in long-term enhanced the mineralization of soil organic carbon, and decreased the stability of soil organic carbon. Readily oxidized carbon and particulate organic carbon in forest land soils were significantly more than those in Chinese prickly ash orchards at each depth (P < 0.05). With the increasing times of cultivation of Chinese prickly ash, the contents of readily oxidized carbon and particulate organic carbon first increased and then declined at 0-15 cm and 15-30 cm depth, respectively, but an opposite trend was found at 30-50 cm depth. At 0-15 cm and 15-30 cm, cultivation of Chinese prickly ash could be good for improving the contents of labile soil organic carbon in short term, but it was not conducive in long-term. In this study, we found that cultivation of Chinese prickly ash was beneficial for the accumulation of labile organic carbon at the 30-50 cm depth.
Wang, Hui-Mei; Wang, Wen-Jie; Chen, Huanfeng; Zhang, Zhonghua; Mao, Zijun; Zu, Yuan-Gang
2014-04-01
Soil physic-chemical properties differ at different depths; however, differences in afforestation-induced temporal changes at different soil depths are seldom reported. By examining 19 parameters, the temporal changes and their interactions with soil depth in a large chronosequence dataset (159 plots; 636 profiles; 2544 samples) of larch plantations were checked by multivariate analysis of covariance (MANCOVA). No linear temporal changes were found in 9 parameters (N, K, N:P, available forms of N, P, K and ratios of N: available N, P: available P and K: available K), while marked linear changes were found in the rest 10 parameters. Four of them showed divergent temporal changes between surface and deep soils. At surface soils, changing rates were 262.1 g·kg(-1)·year(-1) for SOM, 438.9 mg·g(-1)·year(-1) for C:P, 5.3 mg·g(-1)·year(-1) for C:K, and -3.23 mg·cm(-3)·year(-1) for bulk density, while contrary tendencies were found in deeper soils. These divergences resulted in much moderated or no changes in the overall 80-cm soil profile. The other six parameters showed significant temporal changes for overall 0-80-cm soil profile (P: -4.10 mg·kg(-1)·year(-1); pH: -0.0061 unit·year(-1); C:N: 167.1 mg·g(-1)·year(-1); K:P: 371.5 mg·g(-1) year(-1); N:K: -0.242 mg·g(-1)·year(-1); EC: 0.169 μS·cm(-1)·year(-1)), but without significant differences at different soil depths (P > 0.05). Our findings highlight the importance of deep soils in studying physic-chemical changes of soil properties, and the temporal changes occurred in both surface and deep soils should be fully considered for forest management and soil nutrient balance.
Long-term carbon and nitrogen dynamics at SPRUCE revealed through stable isotopes in peat profiles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hobbie, Erik A.; Chen, Janet; Hanson, Paul J.
Peatlands encode information about past vegetation dynamics, climate, and microbial processes. Here, we used δ 15N and δ 13C patterns from 16 peat profiles to deduce how the biogeochemistry of the Marcell S1 forested bog in northern Minnesota responded to environmental and vegetation change over the past ~10 000 years. In multiple regression analyses, δ 15N and δ 13C correlated strongly with depth, plot location, C/N, %N, and each other. Correlations with %N, %C, C/N, and the other isotope accounted for 80 % of variance for δ 15N and 38 % of variance for δ 13C, reflecting N and C losses.more » In contrast, correlations with depth and topography (hummock or hollow) reflected peatland successional history and climate. Higher δ 15N in plots closer to uplands may reflect upland-derived DON inputs and accompanying shifts in N dynamics in the lagg drainage area surrounding the bog. The Suess effect (declining δ 13CO 2 since the Industrial Revolution) lowered δ 13C in recent surficial samples. High δ 15N from –35 to –5 cm probably indicated the depth of ectomycorrhizal activity after tree colonization of the peatland over the last 400 years, as confirmed by the occasional presence of wood down to –35 cm depth. High δ 13C at ~4000 years BP (–65 to –105 cm) could reflect a transition at that time to slower rates of peat accumulation, when 13C discrimination during peat decomposition may increase in importance. Low δ 13C and high δ 15N at –213 and –225 cm (~8500 years BP) corresponded to a warm period during a sedge-dominated rich fen stage. As a result, the above processes appear to be the primary drivers of the observed isotopic patterns, whereas there was no clear evidence for methane dynamics influencing δ 13C patterns.« less
Long-term carbon and nitrogen dynamics at SPRUCE revealed through stable isotopes in peat profiles
NASA Astrophysics Data System (ADS)
Hobbie, Erik A.; Chen, Janet; Hanson, Paul J.; Iversen, Colleen M.; McFarlane, Karis J.; Thorp, Nathan R.; Hofmockel, Kirsten S.
2017-05-01
Peatlands encode information about past vegetation dynamics, climate, and microbial processes. Here, we used δ15N and δ13C patterns from 16 peat profiles to deduce how the biogeochemistry of the Marcell S1 forested bog in northern Minnesota responded to environmental and vegetation change over the past ˜ 10 000 years. In multiple regression analyses, δ15N and δ13C correlated strongly with depth, plot location, C / N, %N, and each other. Correlations with %N, %C, C / N, and the other isotope accounted for 80 % of variance for δ15N and 38 % of variance for δ13C, reflecting N and C losses. In contrast, correlations with depth and topography (hummock or hollow) reflected peatland successional history and climate. Higher δ15N in plots closer to uplands may reflect upland-derived DON inputs and accompanying shifts in N dynamics in the lagg drainage area surrounding the bog. The Suess effect (declining δ13CO2 since the Industrial Revolution) lowered δ13C in recent surficial samples. High δ15N from -35 to -55 cm probably indicated the depth of ectomycorrhizal activity after tree colonization of the peatland over the last 400 years, as confirmed by the occasional presence of wood down to -35 cm depth. High δ13C at ˜ 4000 years BP (-65 to -105 cm) could reflect a transition at that time to slower rates of peat accumulation, when 13C discrimination during peat decomposition may increase in importance. Low δ13C and high δ15N at -213 and -225 cm ( ˜ 8500 years BP) corresponded to a warm period during a sedge-dominated rich fen stage. The above processes appear to be the primary drivers of the observed isotopic patterns, whereas there was no clear evidence for methane dynamics influencing δ13C patterns.
Long-term carbon and nitrogen dynamics at SPRUCE revealed through stable isotopes in peat profiles
Hobbie, Erik A.; Chen, Janet; Hanson, Paul J.; ...
2017-05-17
Peatlands encode information about past vegetation dynamics, climate, and microbial processes. Here, we used δ 15N and δ 13C patterns from 16 peat profiles to deduce how the biogeochemistry of the Marcell S1 forested bog in northern Minnesota responded to environmental and vegetation change over the past ~10 000 years. In multiple regression analyses, δ 15N and δ 13C correlated strongly with depth, plot location, C/N, %N, and each other. Correlations with %N, %C, C/N, and the other isotope accounted for 80 % of variance for δ 15N and 38 % of variance for δ 13C, reflecting N and C losses.more » In contrast, correlations with depth and topography (hummock or hollow) reflected peatland successional history and climate. Higher δ 15N in plots closer to uplands may reflect upland-derived DON inputs and accompanying shifts in N dynamics in the lagg drainage area surrounding the bog. The Suess effect (declining δ 13CO 2 since the Industrial Revolution) lowered δ 13C in recent surficial samples. High δ 15N from –35 to –5 cm probably indicated the depth of ectomycorrhizal activity after tree colonization of the peatland over the last 400 years, as confirmed by the occasional presence of wood down to –35 cm depth. High δ 13C at ~4000 years BP (–65 to –105 cm) could reflect a transition at that time to slower rates of peat accumulation, when 13C discrimination during peat decomposition may increase in importance. Low δ 13C and high δ 15N at –213 and –225 cm (~8500 years BP) corresponded to a warm period during a sedge-dominated rich fen stage. As a result, the above processes appear to be the primary drivers of the observed isotopic patterns, whereas there was no clear evidence for methane dynamics influencing δ 13C patterns.« less
NASA Astrophysics Data System (ADS)
Lepage, H.; Evrard, O.; Onda, Y.; Lefèvre, I.; Laceby, J. P.; Ayrault, S.
2014-09-01
Large quantities of radiocesium were deposited across a 3000 km2 area northwest of the Fukushima Dai-ichi nuclear power plant after the March 2011 accident. Although many studies have investigated the fate of radiocesium in soil in the months following the accident, the potential migration of this radioactive contaminant in rice paddy fields requires further examination after the typhoons that occurred in this region. Such investigations will help minimize potential human exposure in rice paddy fields or transfer of radioactive contaminants from soils to rice. Radionuclide activity concentrations and organic content were analysed in 10 soil cores sampled from paddy fields in November 2013, 20 km north of the Fukushima power plant. Our results demonstrate limited depth migration of radiocesium with the majority concentrated in the uppermost layers of soils (< 5 cm). More than 30 months after the accident, 81.5 to 99.7% of the total 137Cs inventories was still found within the < 5 cm of the soil surface, despite cumulative rainfall totalling 3300 mm. Furthermore, there were no significant correlations between radiocesium migration depth and total organic carbon content. We attributed the maximum depth penetration of 137Cs to maintenance (grass cutting - 97% of 137Cs in the upper 5 cm) and farming operations (tilling - 83% of 137Cs in the upper 5 cm). As this area is exposed to erosive events, ongoing decontamination works may increase soil erodibility. We therefore recommend the rapid removal of the uppermost - contaminated - layer of the soil after removing the vegetation to avoid erosion of contaminated material during the subsequent rainfall events. Remediation efforts should be concentrated on soils characterised by radiocesium activities > 10 000 Bq kg-1 to prevent the contamination of rice. Further analysis is required to clarify the redistribution of radiocesium eroded on river channels.
Radiance Assimilation Shows Promise for Snowpack Characterization: A 1-D Case Study
NASA Technical Reports Server (NTRS)
Durand, Michael; Kim, Edward; Margulis, Steve
2008-01-01
We demonstrate an ensemble-based radiometric data assimilation (DA) methodology for estimating snow depth and snow grain size using ground-based passive microwave (PM) observations at 18.7 and 36.5 GHz collected during the NASA CLPX-1, March 2003, Colorado, USA. A land surface model was used to develop a prior estimate of the snowpack states, and a radiative transfer model was used to relate the modeled states to the observations. Snow depth bias was -53.3 cm prior to the assimilation, and -7.3 cm after the assimilation. Snow depth estimated by a non-DA-based retrieval algorithm using the same PM data had a bias of -18.3 cm. The sensitivity of the assimilation scheme to the grain size uncertainty was evaluated; over the range of grain size uncertainty tested, the posterior snow depth estimate bias ranges from -2.99 cm to -9.85 cm, which is uniformly better than both the prior and retrieval estimates. This study demonstrates the potential applicability of radiometric DA at larger scales.
Lee, Seung-Hoon; Kang, Hojeong
2016-02-01
The distribution of soil microorganisms often shows variations along soil depth, and even in the same soil layer, each microbial group has a specific niche. In particular, the estuary soil is intermittently flooded, and the characteristics of the surface soil layer are different from those of other terrestrial soils. We investigated the microbial community structure and activity across soil depths and biological gradients composed of invasive and native plants in the shallow surface layer of an estuary ecosystem by using molecular approaches. Our results showed that the total and denitrifying bacterial community structures of the estuarine wetland soil differed according to the short depth gradient. In growing season, gene copy number of 16S rRNA were 1.52(±0.23) × 10(11), 1.10(±0.06) × 10(11), and 4.33(±0.16) × 10(10) g(-1) soil; nirS were 5.41(±1.25) × 10(8), 4.93(±0.94) × 10(8), and 2.61(±0.28) × 10(8) g(-1) soil; and nirK were 9.67(±2.37) × 10(6), 3.42(±0.55) × 10(6), and 2.12(±0.19) × 10(6) g(-1) soil in 0 cm, 5 cm, and 10 cm depth layer, respectively. The depth-based difference was distinct in the vegetated sample and in the growing season, evidencing the important role of plants in structuring the microbial community. In comparison with other studies, we observed differences in the microbial community and functions even across very short depth gradients. In conclusion, our results suggested that (i) in the estuary ecosystem, the denitrifying bacterial community could maintain its abundance and function within shallow surface soil layers through facultative anaerobiosis, while the total bacterial community would be both quantitatively and qualitatively affected by the soil depth, (ii) the nirS gene community, rather than the nirK one, should be the first candidate used as an indicator of the microbial denitrification process in the estuary system, and (iii) as the microbial community is distributed and plays a certain niche role according to biogeochemical factors, the study of the microbial community even in surface soil should be performed in detail by considering the soil depth.
Shen, You-xin; Liu, Wei-li; Li, Yu-hui; Guan, Hui-lin
2014-01-01
A large number of small-sized samples invariably shows that woody species are absent from forest soil seed banks, leading to a large discrepancy with the seedling bank on the forest floor. We ask: 1) Does this conventional sampling strategy limit the detection of seeds of woody species? 2) Are large sample areas and sample sizes needed for higher recovery of seeds of woody species? We collected 100 samples that were 10 cm (length) × 10 cm (width) × 10 cm (depth), referred to as larger number of small-sized samples (LNSS) in a 1 ha forest plot, and placed them to germinate in a greenhouse, and collected 30 samples that were 1 m × 1 m × 10 cm, referred to as small number of large-sized samples (SNLS) and placed them (10 each) in a nearby secondary forest, shrub land and grass land. Only 15.7% of woody plant species of the forest stand were detected by the 100 LNSS, contrasting with 22.9%, 37.3% and 20.5% woody plant species being detected by SNLS in the secondary forest, shrub land and grassland, respectively. The increased number of species vs. sampled areas confirmed power-law relationships for forest stand, the LNSS and SNLS at all three recipient sites. Our results, although based on one forest, indicate that conventional LNSS did not yield a high percentage of detection for woody species, but SNLS strategy yielded a higher percentage of detection for woody species in the seed bank if samples were exposed to a better field germination environment. A 4 m2 minimum sample area derived from power equations is larger than the sampled area in most studies in the literature. Increased sample size also is needed to obtain an increased sample area if the number of samples is to remain relatively low.
Microbial Activity in Organic Soils as Affected by Soil Depth and Crop †
Tate, Robert L.
1979-01-01
The microbial activity of Pahokee muck, a lithic medisaprist, and the effect of various environmental factors, such as position in the profile and type of plant cover, were examined. Catabolic activity for [7-14C]salicylic acid, [1,4-14C]succinate, and [1,2-14C]acetate remained reasonably constant in surface (0 to 10 cm) soil samples from a fallow (bare) field from late in the wet season (May to September) through January. Late in January, the microbial activity toward all three compounds decreased approximately 50%. The microbial activity of the soil decreased with increasing depth of soil. Salicylate catabolism was the most sensitive to increasing moisture deep in the soil profile. At the end of the wet season, a 90% decrease in activity between the surface and the 60- to 70-cm depth occurred. Catabolism of acetate and succinate decreased approximately 75% in the same samples. Little effect of crop was observed. Variation in the microbial activity, as measured by the catabolism of labeled acetate, salicylate, or succinate, was not significant between a sugarcane (Saccharum officinarum L.) field and a fallow field. The activity with acetate was insignificantly different in a St. Augustine grass [Stenotaphrum secundatum (Walt) Kuntz] field, whereas the catabolism of the remaining substrates was elevated in the grass field. These results indicate that the total carbon evolved from the different levels of the soil profile by the microbial community oxidizing the soil organic matter decreased as the depth of the soil column increased. However, correction of the amount of carbon yielded at each level for the bulk density of that level reveals that the microbial contribution to the soil subsidence is approximately equivalent throughout the soil profile above the water table. PMID:16345393
Microbial activity in organic soils as affected by soil depth and crop.
Tate, R L
1979-06-01
The microbial activity of Pahokee muck, a lithic medisaprist, and the effect of various environmental factors, such as position in the profile and type of plant cover, were examined. Catabolic activity for [7-C]salicylic acid, [1,4-C]succinate, and [1,2-C]acetate remained reasonably constant in surface (0 to 10 cm) soil samples from a fallow (bare) field from late in the wet season (May to September) through January. Late in January, the microbial activity toward all three compounds decreased approximately 50%. The microbial activity of the soil decreased with increasing depth of soil. Salicylate catabolism was the most sensitive to increasing moisture deep in the soil profile. At the end of the wet season, a 90% decrease in activity between the surface and the 60- to 70-cm depth occurred. Catabolism of acetate and succinate decreased approximately 75% in the same samples. Little effect of crop was observed. Variation in the microbial activity, as measured by the catabolism of labeled acetate, salicylate, or succinate, was not significant between a sugarcane (Saccharum officinarum L.) field and a fallow field. The activity with acetate was insignificantly different in a St. Augustine grass [Stenotaphrum secundatum (Walt) Kuntz] field, whereas the catabolism of the remaining substrates was elevated in the grass field. These results indicate that the total carbon evolved from the different levels of the soil profile by the microbial community oxidizing the soil organic matter decreased as the depth of the soil column increased. However, correction of the amount of carbon yielded at each level for the bulk density of that level reveals that the microbial contribution to the soil subsidence is approximately equivalent throughout the soil profile above the water table.
Baskan, Oguz; Kosker, Yakup; Erpul, Gunay
2013-12-01
Modeling spatio-temporal variation of soil moisture with depth in the soil profile plays an important role for semi-arid crop production from an agro-hydrological perspective. This study was performed in Guvenc Catchment. Two soil series that were called Tabyabayir (TaS) and Kervanpinari (KeS) and classified as Leptosol and Vertisol Soil Groups were used in this research. The TeS has a much shallower (0-34 cm) than the KeS (0-134 cm). At every sampling time, a total of geo-referenced 100 soil moisture samples were taken based on horizon depths. The results indicated that soil moisture content changed spatially and temporally with soil texture and profile depth significantly. In addition, land use was to be important factor when soil was shallow. When the soil conditions were towards to dry, higher values for the coefficient of variation (CV) were observed for TaS (58 and 43% for A and C horizons, respectively); however, the profile CV values were rather stable at the KeS. Spatial variability range of TaS was always higher at both dry and wet soil conditions when compared to that of KeS. Excessive drying of soil prevented to describe any spatial model for surface horizon, additionally resulting in a high nugget variance in the subsurface horizon for the TaS. On the contrary to TaS, distribution maps were formed all horizons for the KeS at any measurement times. These maps, depicting both dry and wet soil conditions through the profile depth, are highly expected to reduce the uncertainty associated with spatially and temporally determining the hydraulic responses of the catchment soils.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wurtz, Jeff
2016-08-01
Well ER-20-12 was drilled for the U.S. Department of Energy, Nevada National Security Administration Nevada Field Office in support of the Underground Test Area Activity. The well was drilled from October 2015 to January 2016 as an addition to the Central and Western Pahute Mesa corrective action units 101 and 102 the Phase II drilling program. Well ER-20-12 was identified based on recommendations of the Pahute Mesa Guidance Team as a result of anomalous tritium detections in groundwater samples collected from Well PM-3 in 2011 and 2013. The primary purpose of the well was to provide information on the hydrogeologymore » in the area downgradient of select underground tests on Western Pahute Mesa and define hydraulic properties in the saturated Tertiary volcanic rocks. The main 46.99-centimeter (cm) (18.5-inch [in.]) borehole was drilled to a depth of 765.14 meters (m) (2,510.3 ft) and the hole opened to 66.04 cm (26 in.); followed by the 50.80-cm (20-in.) surface casing, which was installed and sealed with cement; and a piezometer (p4) was set in the Timber Mountain welded-tuff aquifer (TMWTA) between the casing and the open borehole. The borehole was continued with a 46.99-cm (18.5-in.) drill bit to a depth of 1,326.53 m (4,352.16 ft), and an intermediate 24.44-cm (9.625-in.) casing was installed and sealed to 1,188.72 m (3,900.00 ft) A piezometer (p3) was installed across the Calico Hills zeolitic composite unit (CHZCM) (lava-flow aquifer [LFA]) in the annulus of the open borehole. Two additional piezometers were installed and completed between the intermediate casing and the borehole wall, one (p2) in the CHZCM and one (p1) in the Belted Range aquifer (BRA). The piezometers are set to monitor groundwater properties in the completed intervals. The borehole was continued with a 21.59-cm (8.5-in.) drill bit to a total depth of 1,384.80 m (4,543.33 ft), and the main completion 13.97-cm (5.5-in.) casing was installed in the open borehole across the Pre-Belted Range composite unit (PBRCM). Data collected during hole construction include composite drill cutting samples collected every 3.0 m (10 ft), geophysical logs, hydrophysical logs, percussion core samples, water-quality measurements (including tritium), and water-level measurements. The well penetrated 1,384.4 m (4,543.33 ft) of Tertiary volcanic rocks. The stratigraphy and lithology were generally as expected with one noted exception. A thick lava-flow and related ash-flow tuffs were identified as Calico Hills Formation (Th), and no Crater Flat units were noted. Additionally, many of the Thirsty Canyon and Timber Mountain units were thicker than expected. Fluid levels measured in the borehole during drilling are the following: (1) on November 2, 2015, Navarro measured the fluid level in the borehole at a depth of 492.33 m (1,615.25 ft) below ground surface (bgs); (2) Schlumberger and COLOG recorded fluid levels during geophysical logging on November 4 and 5, 2015, at a depth of 492.86 m (1,617 ft) and 492.25 m (1,615 ft) bgs, respectively; and (3) on December 4, 2015, COLOG and Navarro measured fluid level in the 20-in. casing with an open borehole to 1,326.54 m (4,352.16 ft) bgs at 575.77 m (1,889.00 ft) and 574.03 m (1,883.3 ft) bgs, respectively. These and subsequent water-level measurements indicate a potential head difference of greater than 76.2 m (250 ft) for groundwater in aquifers above and below the Upper Paintbrush confining unit (UPCU). As expected, tritium was occasionally measured above the Safe Drinking Water Act limit (20,000 picocuries per liter [pCi/L]). Lab analysis on four bailed samples and taken from the undeveloped well indicate that the tritium activities average approximately 36,545 pCi/L. All Fluid Management Plan (FMP) requirements for Well ER-20-12 were met. Analysis of monitoring samples and FMP confirmatory samples indicate that fluids generated during drilling at ER-20-12 met the FMP criteria for discharge to the lined sump and designated infiltration area. All sanitary and hydrocarbon waste generated was properly handled and disposed of.« less
Diaphragm depth in normal subjects.
Shahgholi, Leili; Baria, Michael R; Sorenson, Eric J; Harper, Caitlin J; Watson, James C; Strommen, Jeffrey A; Boon, Andrea J
2014-05-01
Needle electromyography (EMG) of the diaphragm carries the potential risk of pneumothorax. Knowing the approximate depth of the diaphragm should increase the test's safety and accuracy. Distances from the skin to the diaphragm and from the outer surface of the rib to the diaphragm were measured using B mode ultrasound in 150 normal subjects. When measured at the lower intercostal spaces, diaphragm depth varied between 0.78 and 4.91 cm beneath the skin surface and between 0.25 and 1.48 cm below the outer surface of the rib. Using linear regression modeling, body mass index (BMI) could be used to predict diaphragm depth from the skin to within an average of 1.15 mm. Diaphragm depth from the skin can vary by more than 4 cm. When image guidance is not available to enhance accuracy and safety of diaphragm EMG, it is possible to reliably predict the depth of the diaphragm based on BMI. Copyright © 2013 Wiley Periodicals, Inc.
Superficial Dosimetry Imaging of Čerenkov Emission in Electron Beam Radiotherapy of Phantoms
Zhang, Rongxiao; Fox, Colleen J.; Glaser, Adam K.; Gladstone, David J.; Pogue, Brian W.
2014-01-01
Čerenkov emission is generated from ionizing radiation in tissue above 264keV energy. This study presents the first examination of this optical emission as a surrogate for the absorbed superficial dose. Čerenkov emission was imaged from the surface of flat tissue phantoms irradiated with electrons, using a range of field sizes from 6cm×6cm to 20cm×20cm, incident angles from 0 to 50 degrees, and energies from 6 to 18 MeV. The Čerenkov images were compared with estimated superficial dose in phantoms from direct diode measurements, as well as calculations by Monte Carlo and the treatment planning system. Intensity images showed outstanding linear agreement (R2=0.97) with reference data of the known dose for energies from 6MeV to 18MeV. When orthogonal delivery was done, the in-plane and cross-plane dose distribution comparisons indicated very little difference (±2~4% differences) between the different methods of estimation as compared to Čerenkov light imaging. For an incident angle 50 degrees, the Čerenkov images and Monte Carlo simulation show excellent agreement with the diode data, but the treatment planning system (TPS) had at a larger error (OPT=±1~2%, Diode=±2~3%, TPS=±6~8% differences) as would be expected. The sampling depth of superficial dosimetry based on Čerenkov radiation has been simulated in layered skin model, showing the potential of sampling depth tuning by spectral filtering. Taken together, these measurements and simulations indicate that Čerenkov emission imaging might provide a valuable way to superficial dosimetry imaging from incident radiotherapy beams of electrons. PMID:23880473
Prechsl, Ulrich E; Burri, Susanne; Gilgen, Anna K; Kahmen, Ansgar; Buchmann, Nina
2015-01-01
Temperate C3-grasslands are of high agricultural and ecological importance in Central Europe. Plant growth and consequently grassland yields depend strongly on water supply during the growing season, which is projected to change in the future. We therefore investigated the effect of summer drought on the water uptake of an intensively managed lowland and an extensively managed sub-alpine grassland in Switzerland. Summer drought was simulated by using transparent shelters. Standing above- and belowground biomass was sampled during three growing seasons. Soil and plant xylem waters were analyzed for oxygen (and hydrogen) stable isotope ratios, and the depths of plant water uptake were estimated by two different approaches: (1) linear interpolation method and (2) Bayesian calibrated mixing model. Relative to the control, aboveground biomass was reduced under drought conditions. In contrast to our expectations, lowland grassland plants subjected to summer drought were more likely (43-68%) to rely on water in the topsoil (0-10 cm), whereas control plants relied less on the topsoil (4-37%) and shifted to deeper soil layers (20-35 cm) during the drought period (29-48%). Sub-alpine grassland plants did not differ significantly in uptake depth between drought and control plots during the drought period. Both approaches yielded similar results and showed that the drought treatment in the two grasslands did not induce a shift to deeper uptake depths, but rather continued or shifted water uptake to even more shallower soil depths. These findings illustrate the importance of shallow soil depths for plant performance under drought conditions.
Lu, H F; Tsou, M F; Huang, S Y; Tsai, W C; Chung, J G; Cheng, K S
2001-09-01
A total of 20 water samples collected from the cooling towers at 20 different sites were analyzed under various conditions for the presence of Legionella pneumophila serogroup 1. A comparative assessment was performed to evaluate methods of sample collection (spray drops, beneath water at 20- to 40-cm depth, and water outlet), concentration (filtration and centrifugation), acid buffer treatment (no treatment, treatment for 3, 5, and 15 min), and CO2 incubation or candle jar incubation. The reduction in viable colonies and false negative rate were compared for the different factors. No quantitative differences in isolation of L. pneumophila serogroup 1 was found among samples collected from water at a depth of 20 to 40 cm, from water outlet, and from spray drops. Treatment in an acid buffer for 15 min significantly reduced the recovery rate, with a reduction in bacterial counts of about 40%, compared with a 3-min (12%) or a 5-min (25%) treatment. Acid buffer treatment for 3 or 5 min reduced the overgrowth of commensal flora. This treatment improved the selectivity but not the sensitivity for L. pneumophila serogroup 1. Colonies on plates incubated at 37 degrees C in a candle jar with a humidified atmosphere grew better than those incubated at 35 degrees C with 5% CO2. These results demonstrate that methods of sample collection, concentration, and incubation, but not collection site, can affect the isolation rate for L. pneumophila serogroup 1.
Bulk, rare earth, and other trace elements in Apollo 14 and 15 and Luna 16 samples.
NASA Technical Reports Server (NTRS)
Laul, J. C.; Wakita, H.; Showalter, D. L.; Boynton, W. V.; Schmitt, R. A.
1972-01-01
Measurement of 24 and 34 bulk, minor, and trace elements in lunar specimens by instrumental and radiochemical neutron activation analysis shows greater Al2O3, Na2O, and K2O abundances and higher TiO2, FeO, MnO and Cr2O3 depletions in Apollo 14 soil samples as compared to Apollo 11 samples and to most of Apollo 12 samples. The uniform abundances in 14230 core tube soils and three other Apollo 14 soils indicate that the regolith is uniform to at least 22 cm depth and within about 200 m from the lunar module.
Pierce, H.A.; Murray, J.B.
2009-01-01
The International Continental Scientific Drilling Program (ICDP) and the U.S. Geological Survey (USGS) drilled three core holes to a composite depth of 1766 m within the moat of the Chesapeake Bay impact structure. Core recovery rates from the drilling were high (??90%), but problems with core hole collapse limited the geophysical downhole logging to natural-gamma and temperature logs. To supplement the downhole logs, ??5% of the Chesapeake Bay impact structure cores was processed through the USGS GeoTek multisensor core logger (MSCL) located in Menlo Park, California. The measured physical properties included core thickness (cm), density (g cm-3), P-wave velocity (m s-1), P-wave amplitude (%), magnetic susceptibility (cgs), and resistivity (ohm-m). Fractional porosity was a secondary calculated property. The MSCL data-sampling interval for all core sections was 1 cm longitudinally. Photos of each MSCL sampled core section were imbedded with the physical property data for direct comparison. These data have been used in seismic, geologic, thermal history, magnetic, and gravity models of the Chesapeake Bay impact structure. Each physical property curve has a unique signature when viewed over the full depth of the Chesapeake Bay impact structure core holes. Variations in the measured properties reflect differences in pre-impact target-rock lithologies and spatial variations in impact-related deformation during late-stage crater collapse and ocean resurge. ?? 2009 The Geological Society of America.
Multitracing Experiment With Solved and Particulate Tracers In An Unsaturated Field Soil
NASA Astrophysics Data System (ADS)
Burkhardt, M.; Kasteel, R.; Vereecken, H.
Solute movement and colloid migration follow preferential flow paths in structured soils at the field scale. The use of microsphreres is a possible option to mimic colloid transport through the vadose zone into the groundwater. We present results of multi- tracing experiments conducted in an Orthic Luvisol using bromide (Br-), the reactive dye tracer Brilliant Blue (BB) and microspheres. The fluorescent microspheres (1 and 10 µm in diameter) were functionalized with a negative surface charge. Eight field plots (about 2 m2) were irrigated with 10 mm and 40 mm during 6 h. Four field plots were sampled directly after the irrgation, the others were exposed for 90 days to natural wheather conditions. Photographs of horizontal cross-sections and disturbed soil sam- ples were taken every 5 to 10 cm down to a depth of 160 cm. Image analysis was used to derive concentration distributions of BB using a calibration relationship between concentration and color spectra. The microspheres were quantified after desorption of the soil samples by fluorescent microscopy and image analysis. We used moment analysis to characterize transport phenomena. We found that transport through the soil matrix was affected by sorption, but all of the applied compounds were transported through preferential flow paths (earthworm burrows) down to a depth of 160 cm irre- spective of their chemical properties. Furthermore, this study shows that microspheres can be used to mimic colloid facilitated transport under unsaturated conditions in a field soil.
NASA Technical Reports Server (NTRS)
Markus, Thorsten; Masson, Robert; Worby, Anthony; Lytle, Victoria; Kurtz, Nathan; Maksym, Ted
2011-01-01
In October 2003 a campaign on board the Australian icebreaker Aurora Australis had the objective to validate standard Aqua Advanced Microwave Scanning Radiometer (AMSR-E) sea-ice products. Additionally, the satellite laser altimeter on the Ice, Cloud and land Elevation Satellite (ICESat) was in operation. To capture the large-scale information on the sea-ice conditions necessary for satellite validation, the measurement strategy was to obtain large-scale sea-ice statistics using extensive sea-ice measurements in a Lagrangian approach. A drifting buoy array, spanning initially 50 km 100 km, was surveyed during the campaign. In situ measurements consisted of 12 transects, 50 500 m, with detailed snow and ice measurements as well as random snow depth sampling of floes within the buoy array using helicopters. In order to increase the amount of coincident in situ and satellite data an approach has been developed to extrapolate measurements in time and in space. Assuming no change in snow depth and freeboard occurred during the period of the campaign on the floes surveyed, we use buoy ice-drift information as well as daily estimates of thin-ice fraction and rough-ice vs smooth-ice fractions from AMSR-E and QuikSCAT, respectively, to estimate kilometer-scale snow depth and freeboard for other days. The results show that ICESat freeboard estimates have a mean difference of 1.8 cm when compared with the in situ data and a correlation coefficient of 0.6. Furthermore, incorporating ICESat roughness information into the AMSR-E snow depth algorithm significantly improves snow depth retrievals. Snow depth retrievals using a combination of AMSR-E and ICESat data agree with in situ data with a mean difference of 2.3 cm and a correlation coefficient of 0.84 with a negligible bias.
Predicting active-layer soil thickness using topographic variables at a small watershed scale
Li, Aidi; Tan, Xing; Wu, Wei; Liu, Hongbin; Zhu, Jie
2017-01-01
Knowledge about the spatial distribution of active-layer (AL) soil thickness is indispensable for ecological modeling, precision agriculture, and land resource management. However, it is difficult to obtain the details on AL soil thickness by using conventional soil survey method. In this research, the objective is to investigate the possibility and accuracy of mapping the spatial distribution of AL soil thickness through random forest (RF) model by using terrain variables at a small watershed scale. A total of 1113 soil samples collected from the slope fields were randomly divided into calibration (770 soil samples) and validation (343 soil samples) sets. Seven terrain variables including elevation, aspect, relative slope position, valley depth, flow path length, slope height, and topographic wetness index were derived from a digital elevation map (30 m). The RF model was compared with multiple linear regression (MLR), geographically weighted regression (GWR) and support vector machines (SVM) approaches based on the validation set. Model performance was evaluated by precision criteria of mean error (ME), mean absolute error (MAE), root mean square error (RMSE), and coefficient of determination (R2). Comparative results showed that RF outperformed MLR, GWR and SVM models. The RF gave better values of ME (0.39 cm), MAE (7.09 cm), and RMSE (10.85 cm) and higher R2 (62%). The sensitivity analysis demonstrated that the DEM had less uncertainty than the AL soil thickness. The outcome of the RF model indicated that elevation, flow path length and valley depth were the most important factors affecting the AL soil thickness variability across the watershed. These results demonstrated the RF model is a promising method for predicting spatial distribution of AL soil thickness using terrain parameters. PMID:28877196
A Model for Remote Depth Estimation of Buried Radioactive Wastes Using CdZnTe Detector.
Ukaegbu, Ikechukwu Kevin; Gamage, Kelum A A
2018-05-18
This paper presents the results of an attenuation model for remote depth estimation of buried radioactive wastes using a Cadmium Zinc Telluride (CZT) detector. Previous research using an organic liquid scintillator detector system showed that the model is able to estimate the depth of a 329-kBq Cs-137 radioactive source buried up to 12 cm in sand with an average count rate of 100 cps. The results presented in this paper showed that the use of the CZT detector extended the maximum detectable depth of the same radioactive source to 18 cm in sand with a significantly lower average count rate of 14 cps. Furthermore, the model also successfully estimated the depth of a 9-kBq Co-60 source buried up to 3 cm in sand. This confirms that this remote depth estimation method can be used with other radionuclides and wastes with very low activity. Finally, the paper proposes a performance parameter for evaluating radiation detection systems that implement this remote depth estimation method.
59Ni Production Rates in Mesosiderites Measured with Accelerator Mass Spectrometry
NASA Astrophysics Data System (ADS)
Fink, D.; Tuniz, C.; Herzog, G. F.; Albrecht, A.; Fifield, L. K.; Allan, G. L.; Paul, M.
1993-07-01
The cosmogenic radionuclide ^59Ni (t(sub)1/2 = 76 ky) has great potential as a monitor of thermal neutrons in metal-rich extraterrestrial materials. In deep samples from larger meteoroids (which can support a big neutron flux) containing >1% or so of nickel, thermal neutron capture on ^58Ni (sigma(sub)th = 4.6 b) is the dominant production mechanism. Near the surface of mm-size bodies production occurs via primary proton, fast neutron, and alpha reaction channels on Fe, Co, and Ni. We have applied AMS to the measurement of ^59Ni activities (see ref [1] for details) in four samples from the metal phase of the mesosiderites Estherville (fall, 1879) and Budulan, a find. The activities range from 1.5 to 3.5 dpm/g-Ni. Related work is described in refs. [2,3]. To discuss neutron fluxes in Budulan, we must correct the measured ^59Ni activities for terrestrial age. By using measured ^41Ca activities (13-19 dpm/kg-Fe [4]) and a maximum production rate, P(sub)Fe(^41Ca), in stony irons of 21 dpm/kg-Fe [5] we deduce a maximum terrestrial age of 35 ky. After correction for this terrestrial age and normalization to L-chondritic composition [6], the production rates of ^59Ni, P(sub)Fe(^59Ni), range from 5-13 dpm/g-Ni; these values are 2-3 times greater than those reported in [7] for large irons and ~10 times those for chondrites. References [4,8] present ^41Ca data in the silicate and metal phases from the same Estherville and Budulan samples. If thermal neutron production were solely responsible for P(sub)Fe(^59Ni) and P(sub)Sil(^41Ca) (the latter corrected for spallation of oxidized iron in pyroxene), then the thermal neutron fluxes, phi, inferred from each nuclide in a sample should be the same. We deduce ratios of phi(^59Ni)/phi(^41Ca) that range from 0.75 to 1.65. Differences in epithermal yields can account for only a minor fraction of this variation as the ratio of the total resonant neutron absorption integrals for ^40Ca and ^58Ni is within 10% of the ratio of the thermal neutron cross-sections alone. A twofold change in Budulan's terrestrial age alters the flux ratio by 10% at most. Like ^41Ca [9,10], P(sub)Fe(^59Ni) can be used to estimate shielding depths and lower limits on the pre-atmospheric radius. Calculations by [11] give a maximum value for P(sub)Fe(^59Ni) of 22 atoms/min/g-Ni at the center of an L-chondrite with a radius of 300 g/cm^2. The ^10Be and ^26Al activities in Estherville [5] and respective semi-empirical production rate formulas [12] set a maximum meteoroid radius of 300 g/cm^2. Our measured value for ^59Ni implies a lower radius limit of 150 g/cm^2 and shielding depths of 60-150 g/cm^2. Similarly for Budulan, we suggest a radius of 200 < R < 400 g/cm^2 and shielding depths from 40-200 g/cm^2. We infer that the above samples originated at relatively large depths (except for perhaps Budulan-2428) in meteoroids with preatmospheric radii > 30 cm, assuming a mesosiderite density of 5.5 g/cm^3. Interestingly, those samples (Budulan-2357 and Estherville-3311) having ^41Ca production rates that indicate a higher degree of shielding, have flux ratios equal to or less than 1; the other two samples have ^41Ca contents typical of near-surface exposure and have ratios phi(^59Ni)/phi(^41Ca) larger than unity. This correlation indicates that P(sub)59 from fast neutron reactions on ^60,61Ni enhances ^59Ni production at near surface regions. References: [1] Paul M. et al. (1993) Nucl. Inst. Meth., submitted. [2] Kutschera W. et al. (1992) Nucl. Inst. Meth., in press. [3] Klein J. et al.(1993) Meteoritics (this issue). [4] Albrecht A. et al. (1992) LPS XXIII, 5-6. [5] Vogt S. et al. (1991) Meteoritics, 26, 403. [6] Fink D. et al.(1992) LPS XXIII, 355-356. [7] Honda et al. (1967) Handb. Physik. 46(2), 613-632. [8] Fink D. et al. (1991) EPSL, 107, 115-128. [9] Fink D. et al. (1990) Nucl. Inst. Meth., B47, 79-96. [10] Klein J. et al. (1991) Meteoritics, 26, 358. [11] Spergel M. et al.(1986) Proc. LPS 16th; J. Geophys. Res., 91, D483-D494. [12] Graf et al. (1992) GCA, 54, 2521-2534.
NASA Astrophysics Data System (ADS)
Snowball, Ian; Mellström, Anette; Ahlstrand, Emelie; Haltia, Eeva; Nilsson, Andreas; Ning, Wenxin; Muscheler, Raimund; Brauer, Achim
2013-11-01
We studied the paleomagnetic properties of relatively organic rich, annually laminated (varved) sediments of Holocene age in Gyltigesjön, which is a lake in southern Sweden. An age-depth model was based on a regional lead pollution isochron and Bayesian modelling of radiocarbon ages of bulk sediments and terrestrial macrofossils, which included a radiocarbon wiggle-matched series of 873 varves that accumulated between 3000 and 2000 Cal a BP (Mellström et al., 2013). Mineral magnetic data and first order reversal curves suggest that the natural remanent magnetization is carried by stable single-domain grains of magnetite, probably of magnetosomal origin. Discrete samples taken from overlapping piston cores were used to produce smoothed paleomagnetic secular variation (inclination and declination) and relative paleointensity data sets. Alternative temporal trends in the paleomagnetic data were obtained by correcting for paleomagnetic lock-in depths between 0 and 70 cm and taking into account changes in sediment accumulation rate. These temporal trends were regressed against reference curves for the same region (FENNOSTACK and FENNORPIS; Snowball et al., 2007). The best statistical matches to the reference curves are obtained when we apply lock-in depths of 21-34 cm to the Gyltigesjön paleomagnetic data, although these are most likely minimum estimates. Our study suggests that a significant paleomagnetic lock-in depth can affect the acquisition of post-depositional remanent magnetization even where bioturbation is absent and no mixed sediment surface layer exists.
NASA Astrophysics Data System (ADS)
Goos'kova, E.; Volkova, Y.; Piskarev, A.; Morner, N.-A.; Abrahamsen, N.; Dergachev, V.; Raspopov, O.
2003-04-01
Palaeomagnetic characteristics of cores from three boreholes (AK-56, AK-87, AK-98) collected in the northern part of the Barents sea (79-80 N) during the expedition of the Research Vessel "Academician Karpinsky" in 1998 have been studied. The cores were taken from depths of 329, 377, and 473 m, respectively. In all three cores, changes in inclination from -80 to -150 degrees were observed at a depth of 110-130 cm (in 6-8 core samples), which suggests that this phenomenon can be attributed to a geomagnetic field excursion. Basing on dating of the lithologic Holocene-Pleistocene boundary, the sedimentation rate in this part of the Barents Sea can be estimated to be 5-7 cm/1000 years. In this case the age of the excursion is about 24 000 BP, i.e., it corresponds to the Mono Lake excursion. In the Barents Sea sediments, the manifestation of this excursion was revealed for the first time in the ACB-2 core taken in the central part of the sea. At a depth of 150-180 cm, all three cores (in 8-10 samples) were found to have a layer with abnormally high natural remanent magnetization (up to 6-11 nT with a mean value of 1.5 nT) and magnetic susceptibility (up to 1.0-1.7 x 10-3 SI with a mean value of 0.4 x 10-3 SI). Basing on lithological data, the time of formation of this layer can be estimated as approximately 30 000 - 35 000 BP. A reference layer at the depth corresponding to the Holocene-Pleistocene boundary with similar changes in magnetic susceptibility attributed to climate change was found in the cores taken from the central part of the Barents sea earlier. It is likely that sharp changes in magnetic properties of sediments in the northern part of the Barents Sea about 30 000 - 35 000 BP are also attributable to a sharp climate change (warming) during that period of time. This work was supported by INTAS, Grant 97-31008 and PFBR, Grant 00-05-64921.
Influence of surface topography on depth profiles obtained with secondary-ion mass spectrometry
NASA Astrophysics Data System (ADS)
Walker, A. J.; Borchert, M. T.; Vriezema, C. J.; Zalm, P. C.
1990-11-01
Lithographically generated well-defined surface topography of submicron dimensions has been etched into silicon (100) previously implanted with 25 keV 11B to a fluence of 2×1014 atoms/cm2. The thus-obtained samples were depth profiled via secondary-ion mass spectrometry (SIMS). The boron concentration distributions measured were contrasted against those found on undisturbed flat parts of the target. From this intercomparison the otherwise trivial observation that surface topography causes profile distortion becomes suddenly alarming as an apparent improvement of depth resolution occurs. Scanning electron microscope images enable identification of the origin of this remarkable phenomenon. The present results imply that (i) the hitherto commonly accepted assumption in the interpretation of SIMS depth profiles that perceived gradients are never steeper than actual ones is subject to revision; (ii) it may prove very difficult, if not impossible, to construct SIMS equipment for reliable on-chip analysis of submicron details.
Meltwater storage in low-density near-surface bare ice in the Greenland ice sheet ablation zone
NASA Astrophysics Data System (ADS)
Cooper, Matthew G.; Smith, Laurence C.; Rennermalm, Asa K.; Miège, Clément; Pitcher, Lincoln H.; Ryan, Jonathan C.; Yang, Kang; Cooley, Sarah W.
2018-03-01
We document the density and hydrologic properties of bare, ablating ice in a mid-elevation (1215 m a.s.l.) supraglacial internally drained catchment in the Kangerlussuaq sector of the western Greenland ice sheet. We find low-density (0.43-0.91 g cm-3, μ = 0.69 g cm-3) ice to at least 1.1 m depth below the ice sheet surface. This near-surface, low-density ice consists of alternating layers of water-saturated, porous ice and clear solid ice lenses, overlain by a thin (< 0.5 m), even lower density (0.33-0.56 g cm-3, μ = 0.45 g cm-3) unsaturated weathering crust. Ice density data from 10 shallow (0.9-1.1 m) ice cores along an 800 m transect suggest an average 14-18 cm of specific meltwater storage within this low-density ice. Water saturation of this ice is confirmed through measurable water levels (1-29 cm above hole bottoms, μ = 10 cm) in 84 % of cryoconite holes and rapid refilling of 83 % of 1 m drilled holes sampled along the transect. These findings are consistent with descriptions of shallow, depth-limited aquifers on the weathered surface of glaciers worldwide and confirm the potential for substantial transient meltwater storage within porous low-density ice on the Greenland ice sheet ablation zone surface. A conservative estimate for the ˜ 63 km2 supraglacial catchment yields 0.009-0.012 km3 of liquid meltwater storage in near-surface, porous ice. Further work is required to determine if these findings are representative of broader areas of the Greenland ice sheet ablation zone, and to assess the implications for sub-seasonal mass balance processes, surface lowering observations from airborne and satellite altimetry, and supraglacial runoff processes.
NASA Astrophysics Data System (ADS)
Guo, Na; Wang, Aidong; Allan Degen, A.; Deng, Bin; Shang, Zhanhuan; Ding, Luming; Long, Ruijun
2018-02-01
Soil CO2 emission is a key part of the terrestrial carbon cycle. Grazing exclusion by fencing is often considered a beneficial grassland management option to restore degraded grassland, but its effect on soil CO2 emission on the northeastern Tibetan Plateau is equivocal and is the subject of this study. Using a closed static chamber, we measured diurnal soil CO2 flux weekly from July, 2008, to April, 2009, in response to grazing and grazing exclusion in the alpine meadow and alpine shrub meadow. Concomitantly, soil temperature was measured at depths of 5 cm, 10 cm, 15 cm and 20 cm with digital temperature sensors. It emerged that: 1) non-grazed grasslands emitted more soil CO2 than grazed grasslands over the growing season; 2) the alpine shrub meadow emitted more soil CO2 than the alpine meadow; the annual cumulative soil CO2 emissions of alpine meadow and alpine shrub meadow were 241.5-326.5 g C/m2 and 429.0-512.5 g C/m2, respectively; 3) seasonal patterns were evident with more soil CO2 flux in the growing than in the non-growing season; and 4) the diurnal soil CO2 flux exhibited a single peak across all sampling sites. In addition, soil CO2 flux was correlated positively with soil temperature at 5 cm, but not at the other depths. We concluded that grazing exclusion enhanced soil CO2 emission over the growing season, and decreased carbon sequestration of alpine meadow and alpine shrub meadow on the northeastern Tibetan Plateau. Since an increase in soil temperature increased soil CO2 flux, global warming could have an effect on soil CO2 emission in the future.
Development and validation of a new guidance device for lateral approach stereotactic breast biopsy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, K.; Kornecki, A.; Bax, J.
2009-06-15
Stereotactic breast biopsy (SBB) is the gold standard for minimally invasive breast cancer diagnosis. Current systems rely on one of two methods for needle insertion: A vertical approach (perpendicular to the breast compression plate) or a lateral approach (parallel to the compression plate). While the vertical approach is more frequently used, it is not feasible in patients with thin breasts (<3 cm thick after compression) or with superficial lesions. Further, existing SBB guidance hardware provides at most one degree of rotational freedom in the needle trajectory, and as such requires a separate skin incision for each biopsy target. The authorsmore » present a new design of lateral guidance device for SBB, which addresses the limitations of the vertical approach and provides improvements over the existing lateral guidance hardware. Specifically, the new device provides (1) an adjustable rigid needle support to minimize needle deflection within the breast and (2) an additional degree of rotational freedom in the needle trajectory, allowing the radiologist to sample multiple targets through a single skin incision. This device was compared to a commercial lateral guidance device in a series of phantom experiments. Needle placement error using each device was measured in agar phantoms for needle insertions at lateral depths of 2 and 5 cm. The biopsy success rate for each device was then estimated by performing biopsy procedures in commercial SBB phantoms. SBB performed with the new lateral guidance device provided reduced needle placement error relative to the commercial lateral guidance device (0.89{+-}0.22 vs 1.75{+-}0.35 mm for targets at 2 cm depth; 1.94{+-}0.20 vs 3.21{+-}0.31 mm for targets at 5 cm depth). The new lateral guidance device also provided improved biopsy accuracy in SBB procedures compared to the commercial lateral guidance device (100% vs 58% success rate). Finally, experiments were performed to demonstrate that the new device can accurately sample lesions within thin breast phantoms and multiple lesions through a single incision point. This device can be incorporated directly into the clinical SBB procedural workflow, with no additional electrical hardware, software, postprocessing, or image analysis.« less
Cheng-Fang, Li; Dan-Na, Zhou; Zhi-Kui, Kou; Zhi-Sheng, Zhang; Jin-Ping, Wang; Ming-Li, Cai; Cou-Gui, Cao
2012-01-01
Quantifying carbon (C) sequestration in paddy soils is necessary to help better understand the effect of agricultural practices on the C cycle. The objective of the present study was to assess the effects of tillage practices [conventional tillage (CT) and no-tillage (NT)] and the application of nitrogen (N) fertilizer (0 and 210 kg N ha(-1)) on fluxes of CH(4) and CO(2), and soil organic C (SOC) sequestration during the 2009 and 2010 rice growing seasons in central China. Application of N fertilizer significantly increased CH(4) emissions by 13%-66% and SOC by 21%-94% irrespective of soil sampling depths, but had no effect on CO(2) emissions in either year. Tillage significantly affected CH(4) and CO(2) emissions, where NT significantly decreased CH(4) emissions by 10%-36% but increased CO(2) emissions by 22%-40% in both years. The effects of tillage on the SOC varied with the depth of soil sampling. NT significantly increased the SOC by 7%-48% in the 0-5 cm layer compared with CT. However, there was no significant difference in the SOC between NT and CT across the entire 0-20 cm layer. Hence, our results suggest that the potential of SOC sequestration in NT paddy fields may be overestimated in central China if only surface soil samples are considered.
NASA Astrophysics Data System (ADS)
Lansdown, Katrina; Heppell, Kate; Ullah, Sami; Heathwaite, A. Louise; Trimmer, Mark; Binley, Andrew; Heaton, Tim; Zhang, Hao
2010-05-01
The dynamics of groundwater and surface water mixing and associated nitrogen transformations in the hyporheic zone have been investigated within a gaining reach of a groundwater-fed river (River Leith, Cumbria, UK). The regional aquifer consists of Permo-Triassic sandstone, which is overlain by varying depths of glaciofluvial sediments (~15 to 50 cm) to form the river bed. The reach investigated (~250m long) consists of a series of riffle and pool sequences (Käser et al. 2009), with other geomorphic features such as vegetated islands and marginal bars also present. A network of 17 piezometers, each with six depth-distributed pore water samplers based on the design of Rivett et al. (2008), was installed in the river bed in June 2009. An additional 18 piezometers with a single pore water sampler were installed in the riparian zone along the study reach. Water samples were collected from the pore water samplers on three occasions during summer 2009, a period of low flow. The zone of groundwater-surface water mixing within the river bed sediments was inferred from depth profiles (0 to 100 cm) of conservative chemical species and isotopes of water with the collected samples. Sediment cores collected during piezometer installation also enabled characterisation of grain size within the hyporheic zone. A multi-component mixing model was developed to quantify the relative contributions of different water sources (surface water, groundwater and bank exfiltration) to the hyporheic zone. Depth profiles of ‘predicted' nitrate concentration were constructed using the relative contribution of each water source to the hyporheic and the nitrate concentration of the end members. This approach assumes that the mixing of different sources of water is the only factor controlling the nitrate concentration of pore water in the river bed sediments. Comparison of predicted nitrate concentrations (which assume only mixing of waters with different nitrate concentrations) with actual nitrate concentrations (measured from samples collected in the field) then allows patches of biogeochemical activity to be identified. The depth of the groundwater-surface water mixing zone was not uniform along the study reach or over the three sampling periods, varying from <10 to 50 cm in depth. The influence of factors such as the strength of groundwater upwelling, channel geomorphology, substrate composition (permeability) and river discharge on the extent of groundwater-surface mixing have been investigated. During the three field campaigns conducted, groundwater nitrate concentrations (100 cm) were higher than surface water nitrate concentrations (3.7 ± 0.4 mg N/L versus 2.0 ± 0.03 mg N/L; p < 0.001; n = 27), indicating that throughout the reach investigated groundwater will supply nitrate to the overlying water column unless nitrate attenuation occurs along the upwelling flow path. Actual (measured) pore water nitrate concentrations often differed from concentrations predicted using the mixing model, which suggests that biogeochemical transformations also affected nitrate concentrations in the hyporheic zone. The initial field data suggested that there were regions of both nitrate production and nitrate consumption in the subsurface sediments, and that these zones may extend beyond the depths commonly associated with the hyporheic zone. This research demonstrates that a multi-component mixing model can be used to identify possible hotspots of nitrate production or consumption in the bed of a groundwater-fed river. Käser, DH, Binley, A, Heathwaite, AL and Krause, S (2009) Spatio-temporal variations of hyporheic flow in a riffle-pool sequence. Hydrological Processes 23: 2138 - 2149. Rivett, MO, Ellis, PA, Greswell, RB, Ward, RS, Roche, RS, Cleverly, MG, Walker, C, Conran, D, Fitzgerald, PJ, Willcox, T and Dowle, J (2008) Cost-effective mini drive-point piezometers and multilevel samplers for monitoring the hyporheic zone. Quarterly Journal of Engineering Geology and Hydrogeology 41: 49 - 60.
Long-term fate of depleted uranium at Aberdeen and Yuma Proving Grounds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ebinger, M.H.; Essington, E.H.; Gladney, E.S.
1990-06-01
The environmental fate of fragments of depleted uranium (DU) penetrators in soils and waters at Aberdeen Proving Ground (APG) and Yuma Proving Ground (YPG) is a concern to the Testing and Evaluation Command (TECOM) of the US Army. This report presents the information from preliminary soil and water samples that were collected from the humid woodlands of APG and the arid Sonoran Desert of YPG. Soil samples collected beneath a penetrator fragment of the firing range at APG showed approximately 12% DU by weight in the surface horizon and DU significantly above background to a depth of about 20 cm.more » Samples of surface water at APG showed U only at background levels, and bottom sediments showed background U levels but with isotopic ratios of DU instead of natural U. Soil samples beneath a penetrator fragment at YPG showed about 0.5% by weight U in the surface horizon, but only background concentrations and isotopic ratios of U between 8 and 20 cm depth. Results from this preliminary study indicate that DU at APG was redistributed primarily be dissolution and transport with water and possibly by migration of DU colloids or DU attached to small particles. Redistribution at YPG, however, was mainly due to erosion of DU fragments from the impact area and redeposition in washes that drain the area. Proposed work for FY90-FY92 includes additional field sampling, laboratory column studies, and the development of a computer model of DU redistribution at both sites. 39 refs., 11 figs., 5 tabs.« less
SU-F-T-142: An Analytical Model to Correct the Aperture Scattered Dose in Clinical Proton Beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, B; Liu, S; Zhang, T
2016-06-15
Purpose: Apertures or collimators are used to laterally shape proton beams in double scattering (DS) delivery and to sharpen the penumbra in pencil beam (PB) delivery. However, aperture-scattered dose is not included in the current dose calculations of treatment planning system (TPS). The purpose of this study is to provide a method to correct the aperture-scattered dose based on an analytical model. Methods: A DS beam with a non-divergent aperture was delivered using a single-room proton machine. Dose profiles were measured with an ion-chamber scanning in water and a 2-D ion chamber matrix with solid-water buildup at various depths. Themore » measured doses were considered as the sum of the non-contaminated dose and the aperture-scattered dose. The non-contaminated dose was calculated by TPS and subtracted from the measured dose. Aperture scattered-dose was modeled as a 1D Gaussian distribution. For 2-D fields, to calculate the scatter-dose from all the edges of aperture, a sum of weighted distance was used in the model based on the distance from calculation point to aperture edge. The gamma index was calculated between the measured and calculated dose with and without scatter correction. Results: For a beam with range of 23 cm and aperture size of 20 cm, the contribution of the scatter horn was ∼8% of the total dose at 4 cm depth and diminished to 0 at 15 cm depth. The amplitude of scatter-dose decreased linearly with the depth increase. The 1D gamma index (2%/2 mm) between the calculated and measured profiles increased from 63% to 98% for 4 cm depth and from 83% to 98% at 13 cm depth. The 2D gamma index (2%/2 mm) at 4 cm depth has improved from 78% to 94%. Conclusion: Using the simple analytical method the discrepancy between the measured and calculated dose has significantly improved.« less
Single Piezo-Actuator Rotary-Hammering (SPaRH) Drill
NASA Technical Reports Server (NTRS)
Sherrit, Stewart (Inventor); Bao, Xiaoqi (Inventor); Badescu, Mircea (Inventor); Bar-Cohen, Yoseph (Inventor)
2014-01-01
A Single Piezo-Actuator Rotary-Hammering (SPaRH) Drill includes a horn actuator having high power piezoelectric materials and a flexure pre-stress to increase the actuators effectiveness. The drill is a low mass, low power, compact coring drill measuring 20-cm high by 7-cm diameter and having a total weight of 2 kg including drive electronics. Using an average power of 50-Watts, the drill basalt is expected to cut basalt at a rate of 0.2 cm/min down to depth of 10-cm and create cuttings and an intact core. The drill is expected to operate under different environments including Martian ambient (6 Torr and down to -50 degree C), and liquid nitrogen temperatures (77 K) and low pressure (<<1 Torr) to simulate lunar polar and Europa conditions. Materials expected to be sampled include Kaolinite, Saddleback Basalt, Limestone, Volcanic Breccia, Siltstone, ice, permafrost and layered rocks with different hardness.
Polycyclic aromatic hydrocarbons in soil of the Canadian River floodplain in Oklahoma
Sartori, F.; Wade, T.L.; Sericano, J.L.; Mohanty, B.P.; Smith, K.A.
2010-01-01
The accumulation of polycyclic aromatic hydrocarbons (PAH) in soil, plants, and water may impart negative eff ects on ecosystem and human health. We quantified the concentration and distribution of 41 PAH (n = 32), organic C, total N, and S (n = 140) and investigated PAH sources using a chronosequence of floodplain soils under a natural vegetation succession. Soil samples were collected between 0- and 260-cm depth in bare land (the control), wetland, forest, and grassland areas near a closed municipal landfill and an active asphalt plant (the contaminant sources) in the north bank of the Canadian River near Norman, OK. Principal component, cluster, and correlation analyses were used to investigate the spatial distribution of PAH, in combination with diagnostic ratios to distinguish pyrogenic vs. petrogenic PAH suites. Total PAH concentration (??PAH) had a mean of 1300 ng g-1, minimum of 16 ng g-1, and maximum of 12,000 ng g-1. At 0- to 20-cm depth, ??PAH was 3500 ?? 1600 ng g-1 (mean ?? 1 SE) near the contaminant sources. The most common compounds were nonalkylated, high molecular weight PAH of pyrogenic origin, i.e., fluoranthene (17%), pyrene (14%), phenanthrene (9%), benzo(b)fluoranthene (7%), chrysene (6%), and benzo(a)anthracene (5%). ??PAH in the control (130 ?? 23 ng g -1) was comparable to reported concentrations for the rural Great Plains. Perylene had a unique distribution pattern suggesting biological inputs. The main PAH contamination mechanisms were likely atmospheric deposition due to asphalt production at the 0- to 20-cm depth and past landfill operations at deeper depths. Copyright ?? 2010 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.
Wireline Deep Drill for the Exploration of Icy Bodies
NASA Technical Reports Server (NTRS)
Paulsen, G.; Zacny, K.; Mellerowicz, B.; Craft, J.; Bar-Cohen, Y.; Beegle, L.; Sherrit, S.; Badescu, M.; Corsetti, F.; Ibarra, Y.
2013-01-01
One of the most pressing current questions in space science is whether life has ever arisen anywhere else in the universe. Water is a critical prerequisite for all life-as-we-know-it, thus the possible exploration targets for extraterrestrial life are bodies that have or had copious liquid: Mars, Europa, and Enceladus. Due to the oxidizing nature of Mars' surface, as well as subsurface liquid water reservoirs present on Europa and Enceladus, the search for evidence of existing life must likely focus on subsurface locations, at depths sufficient to support liquid water or retain biologic signatures. To address these questions, an Auto-Gopher sampler has been developed that is a wireline type drill. This drill is suspended on a tether and its motors and mechanisms are built into a tube that ends with a coring bit. The tether provides the mechanical connection to a rover/lander on a surface as well as power and data communication. Upon penetrating to a target depth, the drill is retracted from the borehole, the core is deposited into a sample transfer system, and the drill is lowered back into the hole. Wireline operation sidesteps one of the major drawbacks of traditional continuous drill string systems by obviating the need for multiple drill sections, which add significantly to the mass and the complexity of the system (i.e. penetration rate was 40 cm per hour). Drilling to 2 meter depth and recovering of cores every 10 cm took a total time of 15 hours (a single step of drilling 10 cm and retrieving the core was 45 minutes). Total energy to reach the 2 m depth was 500 Whr. The Weight on Bit was limited to less than 70 Newton. The core recovery was 100%.
Soil Biogeochemistry Case Study: Cold Springs, Nevada
NASA Astrophysics Data System (ADS)
Morgan, T. A.; Verburg, P.
2016-12-01
The University of Nevada, Reno (UNR) Soil Biogeochemistry class, mentored by Dr. Robert Blank, United States Department of Agriculture/ Agricultural Research Service/ Great Basin Rangelands Research Unit (USDA/ARS/GBRRU) soil scientist, examined lithospheric biogeochemical cycles in a sagebrush ecosystem in Cold Springs, Nevada. The Cold Springs, Nevada area was selected to examine soil nutrient cycling under four landscape conditions: playa (no vegetation), invasive species mix of annual grasses and forbs, rabbitbrush (Ericameria nauseosa) encroached area, and sagebrush (Artemisia tridentata) dominant area. Five soil pits were excavated to describe pedons under each of the four landscape conditions. Soil samples were collected every 20 cm throughout a one meter profile, and were brought to the USDA/ARS/GBRRU laboratory for chemical analysis and characterization of physical and nutrient properties. In playa soils, solution-phase Na+ and SO4-2 had the highest concentrations on the top 20 cm. The invasive species soils showed a reduced molar NH4+ in mineral N throughout the profile. These soils also demonstrated a strong correlation between Fe and organic C. In the Rabbitbrush soils, extracted diethylenetriaminepentaacetic acid (DTPA) Fe appears to be cycled by depth across four of the five sites. However, the remaining rabbitbrush site which had the highest concentration of DTPA Fe, did not decline with depth. This indicated a nutrient specific lack of biogeochemical cycling. The rabbitbrush site also had almost double the organic C of the other four sites. Solution-phase K and Bicarb P expressed the highest concentrations in the 40-60 cm depth range. In three of the five sagebrush soils, the DTPA Mn concentration was highest at the surface and declined with depth. The remaining two sagebrush sites displayed the opposite trend. This case study revealed considerable variation in nutrient concentrations and biogeochemical cycling between soils and vegetation type.
Yang, Bin; Wen, Xuefa; Sun, Xiaomin
2015-01-01
Agricultural irrigation in the middle reaches of the Heihe River Basin consumes approximately 80% of the total river water. Whether the irrigation depth matches the water uptake depth of crops is one of the most important factors affecting the efficiency of irrigation water use. Our results indicated that the influence of plastic film on soil water δ18O was restricted to 0–30 cm soil depth. Based on a Bayesian model (MixSIR), we found that irrigated maize acquired water preferentially from 0–10 cm soil layer, with a median uptake proportion of 87 ± 15%. Additionally, maize utilised a mixture of irrigation and shallow soil water instead of absorbing the irrigation water directly. However, only 24.7 ± 5.5% of irrigation water remained in 0–10 cm soil layer, whereas 29.5 ± 2.8% and 38.4 ± 3.3% of the irrigation water infiltrated into 10–40 cm and 40–80 cm layers. During the 4 irrigation events, approximately 39% of the irrigation and rainwater infiltrated into soil layers below 80 cm. Reducing irrigation amount and developing water-saving irrigation methods will be important strategies for improving the efficiency of irrigation water use in this area. PMID:26463010
Zhao, Wei; Song, Chun; Zhou, Pan; Wang, Jia Yu; Xui, Feng; Ye, Fang; Wang, Xiao Chun; Yang, Wen Yu
2018-04-01
In order to explore the advantage of intercropping on phosphorus (P) efficient utilization and the reduction of soil P loss, a field experiment in a maize-soybean intercropping system, which included three P application (P 2 O 5 ) rates (CP: 168 kg·hm -2 ; RP 1 : 135 kg·hm -2 ; RP 2 : 101 kg·hm -2 ) and three P application depths (D 1 : applied in 5 cm depth; D 2 : applied in 15 cm depth; D 3 : 1/2 of P fertilizer applied in 5 cm depth and another 1/2 in 15 cm depth) was carried out to analyze the effects of P application rates and depth on crop aboveground biomass, grain yield, crop P uptake, soil total and available P contents, and soil P adsorption-desorption characteristics. Compared with control treatment, the aboveground biomass, grain yield, crop P uptake, soil total P, and available P content were increased significantly by P application, regardless of P rate and application depth. Under the same application depth, RP 1 had similar grain yield but higher crop P uptake compared with CP, and thus higher P apparent utilization efficiency. Under the same P application rate, the application depth of D 2 had the highest crop aboveground biomass, grain yield, P uptake, soil total P, and available P. According to the characteristic of soil P adsorption-desorption, the treatment with the rate of RP 1 and the depth of D 2 had the strongest soil P retention capacity, which had advantage in alleviating P loss. These results suggested that reducing application rate but increasing application depth of P fertilizer could improve P use efficiency and reduce soil P loss without sacrifice in crop production in maize-soybean relay intercropping system.
NASA Astrophysics Data System (ADS)
Tavernier, Emma; Verdoodt, Ann; Cornelis, Wim; Delbecque, Nele; Tiebergijn, Lynn; Seynnaeve, Marleen; Gabriels, Donald
2015-04-01
The 'Heuvelland' region with a surface area of 94 km² is situated in the Province of West Flanders, Belgium, bordering with France. The region comprises a number of hills ("heuvel") on which a fast growing 'wine culture' is developing. Both professional as well as non-professional wine makers together cultivate about 19 ha of vineyards, and are still expanding. Grapes cultivated include Chardonnay, Pinot gris and Pinot noir among others. The small-scale, strongly dispersed vineyards are located in different landscape positions of variable aspect. The objective of our preliminary study was to assess the between-field and within-field variation in physico-chemical soil properties of these vineyards with the aim to better characterise the terroir(s) in Heuvelland and provide guidelines for soil management. Fourteen vineyards from five different wineries were selected for detailed soil sampling. Twenty-five sampling sites were chosen according to the topography, soil map units and observed variability in grape growth. The soil was sampled using 15 cm depth increments up to a depth of 60 cm or a shallower lithic contact. Composite samples of 5 sampling locations along the contour lines were taken per within-field zone. Besides the texture, pH, organic carbon, total nitrogen, available phosphorous and exchangeable base cations (Ca, Mg, K), also some micronutrients (Fe, B, Cu, Mn) were determined using standard laboratory procedures. The soils developed on Quaternary niveo-eolian sandy loam and loamy sediments of variable thickness covering marine sandy and clayey sediments of the Tertiary. Where the Tertiary clayey sediments occur at shallow depth, they can strongly influence the internal drainage. At higher positions in the landscape, iron-rich sandstone layers are found at shallow depth. Fragments of this iron-rich sandstone can also be found at lower positions (colluvial material). This iron sandstone is claimed to contribute to the unique character of this wine growing region. According to the soil map of Belgium (scale 1:20,000), the soils are characterized by variable depth, texture, internal drainage and profile development. As such, the 23 vineyards in Heuvelland are found on 21 different soil types; of which 12 different soil types are included within our sampling strategy. Our sampling furthermore revealed an even greater variability in physico-chemical soil properties than reflected by the soil map. This leads to a 'tentative' conclusion that Heuvelland cannot be considered as one natural terroir as such and that the wine growers can potentially improve their production by adapting their management to local soil properties using the improved knowledge on the vineyard soils.
Micro and macroscopic investigation to quantify tillage impact on soil hydrodynamic behaviour
NASA Astrophysics Data System (ADS)
Beckers, E.; Roisin, C.; Plougonven, E.; Deraedt, D.; Léonard, A.; Degré, A.
2012-04-01
Nowadays, tillage simplification is an increasing practice. Many advantages are cited in the literature, such as energy saving, soil conservation etc. Agricultural management practices influence soil structure, but consequent changes in soil hydrodynamic behaviour at the field scale are still not well understood. Many studies focus only on macroscopic measurements which do not provide mechanistic explanations. Moreover, research shows divergent conclusions over structure modification. The aim of this work is to fill this gap by quantifying soil structure modification depending on tillage intensity through both macroscopic and microscopic measurements, the latter improving our comprehension of the fundamental mechanisms involved. Our experiment takes place in Gentinnes (Walloon Brabant, Belgium), on a field organized in a Latin square scheme. Since 2004, plots have been cultivated in conventional tillage (CT) or in reduced tillage (RT). The latter consists in sowing after stubble ploughing of about 10cm. The crop rotation is sugar beet followed by winter wheat. The soil is mainly composed of silt loam and can be classified as a Luvisol. Macroscopic investigations consist in establishing pF and K(h) curves and 3D soil strength profiles. At the microscale, 3D morphologic parameters are measured using X-ray microtomography. Because of the variation of working depth between management practices (10cm for RT vs. 25cm for CT), two horizons were investigated: H1 between 0-10cm and H2 between 12-25cm. 3D soil strength profiles were established thanks to a fully automated penetrometer (30° angle cone with a base area of 10mm2) which covered a 160 × 80cm2 area with 5cm spacing between neighbouring points. At each node, penetration was performed and soil strength measurements were collected every 1cm from 5 to 55cm depth. K(h) curves were provided by 20cm diameter tension-infiltrometer measurements (Eijkelkamp Agrisearch Equipment). Undisturbed soil samples were removed from H1 and H2 for both management practices: 100cm3 samples were used to establish pF curves with the Richards procedure, and 35cm3 samples were used for X-ray microtomography investigation. Samples for microtomography were air-dried at 40°C in order to empty meso- and macroporosity and then scanned using a Skyscan-1172 high-resolution desktop micro-CT system (Skyscan, Kontich, Belgium). Macroscopic measurements show consistent results: penetrometry profiles confirm the presence of two different horizons for RT, with a permeable superficial horizon between 0 and 10cm and a compacted subjacent horizon. Despite the long-term experiment, the old plough pan is still observed. The superficial horizon is equivalent in terms of pF curves to CT. The second horizon in RT shows significant differences with CT: porosity and especially effective porosity are greater for CT than RT. Infiltration tests confirm these reports with a higher conductivity for CT than RT. In fact, the first permeable horizon for RT is thin and the second horizon impacts vertical infiltration. These observations will be completed with microtomograms analysis. Pore size distribution, but particularly morphological parameters like eccentricity, orientation, connectivity and anisotropy of the pore network will be quantified and connected with macroscopic measurements.
Effect of Periodic Burning on Soil Nitrogen Concentrations in Ponderosa Pine
W. W. Covington; S. S. Sackett
1986-01-01
To determine the effects of different burning intervals on soil N status in substands of sapling-, pole-, and sawtimber-sized ponderosa pine (Pinus ponderosa Laws.) we sampled plots burned at 1-, 2-, and 4-yr intervals by three strata at two depths (0-5 and 5-15 cm). Generally, NH4 +; and NO3 - concentrations were higher on plots repeatedly burned than on unburned...
NifH-Harboring Bacterial Community Composition across an Alaskan Permafrost Thaw Gradient
Penton, C. Ryan; Yang, Caiyun; Wu, Liyou; Wang, Qiong; Zhang, Jin; Liu, Feifei; Qin, Yujia; Deng, Ye; Hemme, Christopher L.; Zheng, Tianling; Schuur, Edward A. G.; Tiedje, James; Zhou, Jizhong
2016-01-01
Since nitrogen (N) is often limiting in permafrost soils, we investigated the N2-fixing genetic potential and the inferred taxa harboring those genes by sequencing nifH gene fragments in samples taken along a permafrost thaw gradient in an Alaskan boreal soil. Samples from minimally, moderately and extensively thawed sites were taken to a depth of 79 cm to encompass zones above and below the depth of the water table. NifH reads were translated with frameshift correction and 112,476 sequences were clustered at 5% amino acid dissimilarity resulting in 1,631 OTUs. Sample depth in relation to water table depth was correlated to differences in the NifH sequence classes with those most closely related to group I nifH-harboring Alpha- and Beta-Proteobacteria in higher abundance above water table depth while those related to group III nifH-harboring Delta Proteobacteria more abundant below. The most dominant below water table depth NifH sequences, comprising 1/3 of the total, were distantly related to Verrucomicrobia-Opitutaceae. Overall, these results suggest that permafrost thaw alters the class-level composition of N2-fixing communities in the thawed soil layers and that this distinction corresponds to the depth of the water table. These nifH data were also compared to nifH sequences obtained from a study at an Alaskan taiga site, and to those of other geographically distant, non-permafrost sites. The two Alaska sites were differentiated largely by changes in relative abundances of the same OTUs, whereas the non-Alaska sites were differentiated by the lack of many Alaskan OTUs, and the presence of unique halophilic, sulfate- and iron-reducing taxa in the Alaska sites. PMID:27933054
NifH-Harboring Bacterial Community Composition across an Alaskan Permafrost Thaw Gradient
Penton, C. Ryan; Yang, Caiyun; Wu, Liyou; ...
2016-11-24
Since nitrogen (N) is often limiting in permafrost soils, we investigated the N 2-fixing genetic potential and the inferred taxa harboring those genes by sequencing nifH gene fragments in samples taken along a permafrost thaw gradient in an Alaskan boreal soil. Samples from minimally, moderately and extensively thawed sites were taken to a depth of 79 cm to encompass zones above and below the depth of the water table. NifH reads were translated with frameshift correction and 112,476 sequences were clustered at 5% amino acid dissimilarity resulting in 1,631 OTUs. Sample depth in relation to water table depth was correlatedmore » to differences in the NifH sequence classes with those most closely related to group I nifH-harboring Alpha- and Beta-Proteobacteria in higher abundance above water table depth while those related to group III nifH-harboring Delta Proteobacteria more abundant below. The most dominant below water table depth NifH sequences, comprising 1/3 of the total, were distantly related to Verrucomicrobia-Opitutaceae. Overall, these results suggest that permafrost thaw alters the class-level composition of N 2-fixing communities in the thawed soil layers and that this distinction corresponds to the depth of the water table. These nifH data were also compared to nifH sequences obtained from a study at an Alaskan taiga site, and to those of other geographically distant, non-permafrost sites. The two Alaska sites were differentiated largely by changes in relative abundances of the same OTUs, whereas the non-Alaska sites were differentiated by the lack of many Alaskan OTUs, and the presence of unique halophilic, sulfate- and iron-reducing taxa in the Alaska sites.« less
NifH-Harboring Bacterial Community Composition across an Alaskan Permafrost Thaw Gradient
DOE Office of Scientific and Technical Information (OSTI.GOV)
Penton, C. Ryan; Yang, Caiyun; Wu, Liyou
Since nitrogen (N) is often limiting in permafrost soils, we investigated the N 2-fixing genetic potential and the inferred taxa harboring those genes by sequencing nifH gene fragments in samples taken along a permafrost thaw gradient in an Alaskan boreal soil. Samples from minimally, moderately and extensively thawed sites were taken to a depth of 79 cm to encompass zones above and below the depth of the water table. NifH reads were translated with frameshift correction and 112,476 sequences were clustered at 5% amino acid dissimilarity resulting in 1,631 OTUs. Sample depth in relation to water table depth was correlatedmore » to differences in the NifH sequence classes with those most closely related to group I nifH-harboring Alpha- and Beta-Proteobacteria in higher abundance above water table depth while those related to group III nifH-harboring Delta Proteobacteria more abundant below. The most dominant below water table depth NifH sequences, comprising 1/3 of the total, were distantly related to Verrucomicrobia-Opitutaceae. Overall, these results suggest that permafrost thaw alters the class-level composition of N 2-fixing communities in the thawed soil layers and that this distinction corresponds to the depth of the water table. These nifH data were also compared to nifH sequences obtained from a study at an Alaskan taiga site, and to those of other geographically distant, non-permafrost sites. The two Alaska sites were differentiated largely by changes in relative abundances of the same OTUs, whereas the non-Alaska sites were differentiated by the lack of many Alaskan OTUs, and the presence of unique halophilic, sulfate- and iron-reducing taxa in the Alaska sites.« less
Uncertainty assessment method for the Cs-137 fallout inventory and penetration depth.
Papadakos, G N; Karangelos, D J; Petropoulos, N P; Anagnostakis, M J; Hinis, E P; Simopoulos, S E
2017-05-01
Within the presented study, soil samples were collected in year 2007 at 20 different locations of the Greek terrain, both from the surface and also from depths down to 26 cm. Sampling locations were selected primarily from areas where high levels of 137 Cs deposition after the Chernobyl accident had already been identified by the Nuclear Engineering Laboratory of the National Technical University of Athens during and after the year of 1986. At one location of relatively higher deposition, soil core samples were collected following a 60 m by 60 m Cartesian grid with a 20 m node-to-node distance. Single or pair core samples were also collected from the remaining 19 locations. Sample measurements and analysis were used to estimate 137 Cs inventory and the corresponding depth migration, twenty years after the deposition on Greek terrain. Based on these data, the uncertainty components of the whole sampling-to-results procedure were investigated. A cause-and-effect assessment process was used to apply the law of error propagation and demonstrate that the dominating significant component of the combined uncertainty is that due to the spatial variability of the contemporary (2007) 137 Cs inventory. A secondary, yet also significant component was identified to be the activity measurement process itself. Other less-significant uncertainty parameters were sampling methods, the variation in the soil field density with depth and the preparation of samples for measurement. The sampling grid experiment allowed for the quantitative evaluation of the uncertainty due to spatial variability, also by the assistance of the semivariance analysis. Denser, optimized grid could return more accurate values for this component but with a significantly elevated laboratory cost, in terms of both, human and material resources. Using the hereby collected data and for the case of a single core soil sampling using a well-defined sampling methodology quality assurance, the uncertainty component due to spatial variability was evaluated to about 19% for the 137 Cs inventory and up to 34% for the 137 Cs penetration depth. Based on the presented results and also on related literature, it is argued that such high uncertainties should be anticipated for single core samplings conducted using similar methodology and employed as 137 Cs inventory and penetration depth estimators. Copyright © 2017 Elsevier Ltd. All rights reserved.
Seasonally frozen layer in natural and drained peatlands at the South of West Siberia, Russia
NASA Astrophysics Data System (ADS)
Dyukarev, Egor; Kiselev, Maxim; Voropay, Nadezhda; Preis, Yulia
2017-04-01
The temperature regime of soils in natural and drained peatlands at Bakchar bog located in the South Taiga zone of West Siberia is studied. Soil temperature for depths up to 320 cm was registered using autonomous temperature profile recorder during the period from August 2010 to September 2016. Maximal and minimal temperatures were registered at surface in July and February, consequently. Extreme soil temperatures at 320 cm depth shifts to December (maximum) and July (minimum) reducing absolute values. Annual peat soil temperature amplitude decrease with depth from 21,8 °C on surface to 1,1 °C at 320 cm. The analysis of daily, month and annual mean data of temperature in peat soil has shown that seasonally frozen layer was registered up to 20-60 cm depth. The duration of seasonally freeze layer existence varies from 130 to 180 days. Drained peatlands with the lowest water table have highest freeze depth. Soil at water-logged sedge-sphagnum fen in winter is warmer than soil in ryam ecosystem and mineral soil at upland. Maximal freezing depth in peatlands is up to 3 times lower than at drain areas.
Starr, James C.; Torgersen, Christian E.
2015-01-01
We compared the assemblage structure, spatial distributions, and habitat associations of mountain whitefish (Prosopium williamsoni) morphotypes and size classes. We hypothesised that morphotypes would have different spatial distributions and would be associated with different habitat features based on feeding behaviour and diet. Spatially continuous sampling was conducted over a broad extent (29 km) in the Calawah River, WA (USA). Whitefish were enumerated via snorkelling in three size classes: small (10–29 cm), medium (30–49 cm), and large (≥50 cm). We identified morphotypes based on head and snout morphology: a pinocchio form that had an elongated snout and a normal form with a blunted snout. Large size classes of both morphotypes were distributed downstream of small and medium size classes, and normal whitefish were distributed downstream of pinocchio whitefish. Ordination of whitefish assemblages with nonmetric multidimensional scaling revealed that normal whitefish size classes were associated with higher gradient and depth, whereas pinocchio whitefish size classes were positively associated with pool area, distance upstream, and depth. Reach-scale generalised additive models indicated that normal whitefish relative density was associated with larger substrate size in downstream reaches (R2 = 0.64), and pinocchio whitefish were associated with greater stream depth in the reaches farther upstream (R2 = 0.87). These results suggest broad-scale spatial segregation (1–10 km), particularly between larger and more phenotypically extreme individuals. These results provide the first perspective on spatial distributions and habitat relationships of polymorphic mountain whitefish.
Performance of slow rate systems for treatment of domestic wastewater.
Tzanakakis, V E; Paranychianakis, N V; Angelakis, A N
2007-01-01
The performance of slow rate (SR) systems in terms of treatment efficiency, environmental and health risks, and land sustainability was investigated over a three-year period in a rural community close to Iraklio, Greece. Four plant species (Acacia cyanophylla, Eucalyptus camandulensis, Populus nigra and Arundo donax) were used in order to investigate the role of vegetation in the treatment of wastewater and in biomass production. Wastewater effluent was pre-treated in a septic tank before its application to land. Applied hydraulic loading rates were based on crop water requirements which were determined separately for each plant species. The evaluation of treatment performance was accomplished by measuring COD, TKN, NH3-N, NO3-N, total and reactive P, TC and FC in soil solution samples taken at different depths (15, 30 and 60 cm). SR systems showed great potential for COD, TKN and NH4-N removal which reached 89, 90 and 94%, respectively at a depth of 15 cm. An outstanding removal was also observed for TC and FC which reached 99.99%. The concentration of both P and NO3-N in soil solution increased with the passage of time, but it was lower in winter. Despite the differences in the application rates among the SR systems planted with different plant species, the treatment efficiency was not affected. Moreover, increasing the soil depth from 15 to 60 cm had no effect on the treatment efficiency of the SR systems.
SU-E-T-216: TPS QC Supporting Program by a Third-Party Evaluation Agency in Japan.
Fukata, K; Minemura, T; Kurokawa, C; Miyagishi, T; Itami, J
2012-06-01
To equalize the quality of radiation therapy in Japan by supporting quality control of radiation treatment planning system. Center for Cancer Control and Information Service in National Cancer Center supports the QA-QC of the cancer core hospitals in Japan as a third-party evaluation agency. Recently, a program for assessing the quality of treatment planning system (TPS) began as a part of our QA-QC supporting activities. In this program, a questionnaire about TPS was sent to 45 prefectural cancer core hospitals in Japan. The object of this questionnaire is to assess the proper commissioning, implement and applications of TPSs. The contents of the questionnaire are as follows; 1) calculate MUs which deliver 1000 cGy to the point of SSD = 100 cm, 10 cm depth with field sizes ranging from 5×5 to 30 × 30 cm 2 , and obtain doses at several depths for the calculated MUs, 2) calculate MUs which deliver 1000 cGy to the point of SSD = 100 cm, 10 cm depth for wedge fields whose angles are from 15 to 60 degrees, and obtain doses at several depths with the MUs, 3) calculate MU which deliver 1000 cGy to the point of STD = 100 cm, 10 cm depth with 10×10 cm 2 field size and obtain doses at several depths with the MU. In this program, 179 beam data from 44 facilities were collected. Data were compared in terms of dose per MU, output factor, wedge factor and TMR. It was found that 90% of the data agreed within 2%. The quality of the treatment planning system was investigated through the questionnaire including the information of essential beam data. We compared 179 beam data in TPSs sent from 44 facilities and 90% of the data showed good agreement. © 2012 American Association of Physicists in Medicine.
Depth profiling of galvanoaluminium-nickel coatings on steel by UV- and VIS-LIBS
NASA Astrophysics Data System (ADS)
Nagy, T. O.; Pacher, U.; Giesriegl, A.; Weimerskirch, M. J. J.; Kautek, W.
2017-10-01
Laser-induced depth profiling was applied to the investigation of galvanised steel sheets as a typical modern multi-layer coating system for environmental corrosion protection. The samples were ablated stepwise by the use of two different wavelengths of a frequency-converted Nd:YAG-laser, 266 nm and 532 nm, with a pulse duration of τ = 4 ns at fluences ranging from F = 50 to 250 J cm-2. The emission light of the resulting plasma was analysed as a function of both penetration depth and elemental spectrum in terms of linear correlation analysis. Elemental depth profiles were calculated and compared to EDX-cross sections of the cut sample. A proven mathematical algorithm designed for the reconstruction of layer structures from distorted emission traces caused by the Gaussian ablation profile can even resolve thin intermediate layers in terms of depth and thickness. The obtained results were compared to a purely thermally controlled ablation model. Thereby light-plasma coupling is suggested to be a possible cause of deviations in the ablation behaviour of Al. The average ablation rate h as a function of fluence F for Ni ranges from 1 to 3.5 μm/pulse for λ = 266 nm as well as for λ = 532 nm. In contrast, the range of h for Al differs from 2 to 4 μm/pulse for λ = 532 nm and 4 to 8 μm/pulse for λ = 266 nm in the exact same fluence range on the exact same sample.
NASA Astrophysics Data System (ADS)
Darnell, K.; Flemings, P. B.; DiCarlo, D. A.
2016-12-01
In June 2016, seawater samples at sediment-seawater interface and sediment samples were collected by the he Jiaolong, China's manned submersible, at four sampling sites located in the Yap Trench. Seawater samples from different depths of the trench were also collected by CTD. Chemical parameters, including pH, alkanility, concentrations of dissolved inorganic carbon, dissolved and total organic carbon, methane, dimethylsulfoniopropionate, nutrients, carbohydrates, and amino acids were analyzed in the seawater samples. Concentrations of total organic carbon, six constant elements and nine trace elements were determined in the sediment samples. All the vertical profiles of the chemical parameters in the seawater have unique characteristics. Our resluts also showed that the carbonate compensation depth (CCD) was between 4500 m and 5000 m in the trench. The hadal sediment at 6500 m depth under the CCD line was siliceous ooze favored for the burial of orgaic carbon, attributed to accumulation of surface sediment by gravity flow. The abyssal sediment at the 4500 m depth was calcareous ooze. Various microfossils, such as discoasters and diatoms, were identified in different sediment layers of the sediment samples.Based on the ratios of Fe/Al and Ti/Al, and the correlation between different elements, the sediment in the Yap Trench were derived from biogenic, terrestrial, volcanic and autogenic sources. The ratios of Ni/Co and V/Cr showed that the deposition environment of the trench should be oxidative, arributed to inflow of the Antractic bottom oxygen-rich seawater.The high concentraiont of Ca in the sediment from the station 371-Yap-S02 below 4 cm depth indicated that there was no large-scale volcanic eruption in the research area and the volcanic materials in the sediment might orginated from the Mariana Volcanic Arc, and the Carolyn Ridge has been slowly sinking on the east side of the trench due to plate subduction. This study is the first systematic study of chemical characteristics in the seawater and sediment of the Yap Trench.
Chemical Characteristics of Seawater and Sediment in the Yap Trench
NASA Astrophysics Data System (ADS)
Ding, H.; Sun, C.; Yang, G.
2017-12-01
In June 2016, seawater samples at sediment-seawater interface and sediment samples were collected by the he Jiaolong, China's manned submersible, at four sampling sites located in the Yap Trench. Seawater samples from different depths of the trench were also collected by CTD. Chemical parameters, including pH, alkanility, concentrations of dissolved inorganic carbon, dissolved and total organic carbon, methane, dimethylsulfoniopropionate, nutrients, carbohydrates, and amino acids were analyzed in the seawater samples. Concentrations of total organic carbon, six constant elements and nine trace elements were determined in the sediment samples. All the vertical profiles of the chemical parameters in the seawater have unique characteristics. Our resluts also showed that the carbonate compensation depth (CCD) was between 4500 m and 5000 m in the trench. The hadal sediment at 6500 m depth under the CCD line was siliceous ooze favored for the burial of orgaic carbon, attributed to accumulation of surface sediment by gravity flow. The abyssal sediment at the 4500 m depth was calcareous ooze. Various microfossils, such as discoasters and diatoms, were identified in different sediment layers of the sediment samples.Based on the ratios of Fe/Al and Ti/Al, and the correlation between different elements, the sediment in the Yap Trench were derived from biogenic, terrestrial, volcanic and autogenic sources. The ratios of Ni/Co and V/Cr showed that the deposition environment of the trench should be oxidative, arributed to inflow of the Antractic bottom oxygen-rich seawater.The high concentraiont of Ca in the sediment from the station 371-Yap-S02 below 4 cm depth indicated that there was no large-scale volcanic eruption in the research area and the volcanic materials in the sediment might orginated from the Mariana Volcanic Arc, and the Carolyn Ridge has been slowly sinking on the east side of the trench due to plate subduction. This study is the first systematic study of chemical characteristics in the seawater and sediment of the Yap Trench.
Characterization of Site for Installing Open Loop Ground Source Heat Pump System
NASA Astrophysics Data System (ADS)
Yun, S. W.; Park, Y.; Lee, J. Y.; Yi, M. J.; Cha, J. H.
2014-12-01
This study was conducted to understand hydrogeological properties of site where open loop ground source heat pump system will be installed and operated. Groundwater level and water temperature were hourly measured at the well developed for usage of open loop ground source heat pump system from 11 October 2013 to 8 January 2014. Groundwater was sampled in January and August 2013 and its chemical and isotopic compositions were analyzed. The bedrock of study area is the Jurassic granodiorite that mainly consists of quartz (27.9 to 46.8%), plagioclase (26.0 to 45.5%), and alkali feldspar (9.5 to 18.7%). The groundwater level ranged from 68.30 to 68.94 m (above mean sea level). Recharge rate was estimated using modified watertable fluctuation method and the recharge ratios was 9.1%. The water temperature ranged from 14.8 to 15.0oC. The vertical Increase rates of water temperature were 1.91 to 1.94/100 m. The water temperature showed the significant seasonal variation above 50 m depth, but had constant value below 50 m depth. Therefore, heat energy of the groundwater can be used securely in open loop ground source heat pump system. Electrical conductivity ranged from 120 to 320 µS/cm in dry season and from 133 to 310 µS/cm in wet season. The electrical conductivity gradually decreased with depth. In particular, electrical conductivity in approximately 30 m depth decreased dramatically (287 to 249 µS/cm) in wet season. The groundwater was Ca-HCO3 type. The concentrations of dissolved components did not show the vertically significant variations from 0 to 250 m depth. The δ18O and δD ranged from -9.5 to -9.4‰ and from -69 to -68‰. This work is supported by the New and Renewable Energy of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government Ministry of Knowledge Economy (No.20123040110010).
40 CFR 258.4 - Research, development, and demonstration permits.
Code of Federal Regulations, 2012 CFR
2012-07-01
... leachate collection system designed and constructed to maintain less than a 30-cm depth of leachate on the..., or cause leachate depth on the liner to exceed 30-cm. (c) Any permit issued under this section must...
40 CFR 258.4 - Research, development, and demonstration permits.
Code of Federal Regulations, 2013 CFR
2013-07-01
... leachate collection system designed and constructed to maintain less than a 30-cm depth of leachate on the..., or cause leachate depth on the liner to exceed 30-cm. (c) Any permit issued under this section must...
40 CFR 258.4 - Research, development, and demonstration permits.
Code of Federal Regulations, 2014 CFR
2014-07-01
... leachate collection system designed and constructed to maintain less than a 30-cm depth of leachate on the..., or cause leachate depth on the liner to exceed 30-cm. (c) Any permit issued under this section must...
Yukihara, E G; Yoshimura, E M; Lindstrom, T D; Ahmad, S; Taylor, K K; Mardirossian, G
2005-12-07
The potential of using the optically stimulated luminescence (OSL) technique with aluminium oxide (Al(2)O(3):C) dosimeters for a precise and accurate estimation of absorbed doses delivered by high-energy photon beams was investigated. This study demonstrates the high reproducibility of the OSL measurements and presents a preliminary determination of the depth-dose curve in water for a 6 MV photon beam from a linear accelerator. The uncertainty of a single OSL measurement, estimated from the variance of a large sample of dosimeters irradiated with the same dose, was 0.7%. In the depth-dose curve obtained using the OSL technique, the difference between the measured and expected doses was < or =0.7% for depths between 1.5 and 10 cm, and 1.1% for a depth of 15 cm. The readout procedure includes a normalization of the response of the dosimeter with respect to a reference dose in order to eliminate variations in the dosimeter mass, dosimeter sensitivity, and the reader's sensitivity. This may be relevant for quality assurance programmes, since it simplifies the requirements in terms of personnel training to achieve the precision and accuracy necessary for radiotherapy applications. We concluded that the OSL technique has the potential to be reliably incorporated in quality assurance programmes and dose verification.
Atmakuru, Ramesh; Perumal Elumalai, Thirugnanam; Sivanandam, Sathiyanarayanan
2007-07-01
Long term stability of sulfosulfuron was investigated in subsoil under the natural wheat cropping conditions. Experiments were conducted by applying a commercial formulation of sulfosulfuron on soil at 50 g/ha and 100 g/ha. To understand the factors influencing the persistence of residues two different experiments were conducted. In one experiment wheat crop was cultivated once at the beginning of the two years study period and subsequently the plots were kept undisturbed for the remaining period. In another experiment cultivation of subsequent crops were continued during the study period. In both the cases sulfosulfuron was applied only once at the beginning of the study. Representative soil samples were collected from the depths viz., 0-5, 15, 30, 45, 60 and 90 cm on different pre determined sampling occasions 50, 100, 200, 300, 400, 500 and 600 days after the application of the herbicide. The collected soil samples were analyzed for the residues of sulfosulfuron. Under the influence of continuous cropping conditions residues of sulfosulfuron were found to be relatively low when compared with the soil samples collected from the agriculture plots maintained without any cultivation. The residues detected are in the range 0.001 to 0.017 microg/g. Samples collected from the depth, at 30 to 45 cm showed higher residual concentrations. Soil samples were also showed the presence of break down products. The data has been confirmed by LC-MS/MS. The relation between residue content of sulfosulfuron and the factors contributing the stability of herbicide concentration were also studied.
TDR Technique for Estimating the Intensity of Evapotranspiration of Turfgrasses.
Janik, Grzegorz; Wolski, Karol; Daniel, Anna; Albert, Małgorzata; Skierucha, Wojciech; Wilczek, Andrzej; Szyszkowski, Paweł; Walczak, Amadeusz
2015-01-01
The paper presents a method for precise estimation of evapotranspiration of selected turfgrass species. The evapotranspiration functions, whose domains are only two relatively easy to measure parameters, were developed separately for each of the grass species. Those parameters are the temperature and the volumetric moisture of soil at the depth of 2.5 cm. Evapotranspiration has the character of a modified logistic function with empirical parameters. It assumes the form ETR(θ (2.5 cm), T (2.5 cm)) = A/(1 + B · e (-C · (θ (2.5 cm) · T (2.5 cm)), where: ETR(θ (2.5 cm), T (2.5 cm)) is evapotranspiration [mm · h(-1)], θ (2.5 cm) is volumetric moisture of soil at the depth of 2.5 cm [m(3) · m(-3)], T (2.5 cm) is soil temperature at the depth of 2.5 cm [°C], and A, B, and C are empirical coefficients calculated individually for each of the grass species [mm · h(1)], and [-], [(m(3) · m(-3) · °C)(-1)]. The values of evapotranspiration calculated on the basis of the presented function can be used as input data for the design of systems for the automatic control of irrigation systems ensuring optimum moisture conditions in the active layer of lawn swards.
NASA Astrophysics Data System (ADS)
Kambey, B. I.; Perdana, A.; Pryambodho
2017-08-01
Central venous catheter (CVC) insertion is a routine procedure in either intensive care or in perioperative circumstances. A simple and accurate method or rule is needed to predict the optimum depth of the CVC. The aim of this study is to evaluate the position and depth of CVCs using Peres’ formula ([height/10]-2) and landmark measurements, as well as assessing the incidence of malpositions of CVC installation. This research was an analytic observational study. Fifty patients undergoing central venous catheter (CVC) installation with the right subclavian vein approach were divided into two groups: a Peres’ formula ([height/10]-2) and an anatomy topography measurement group. The results of the calculations were used to determine the boundary prediction of skin fixation. CVC depth was evaluated by measuring the distance between the distal end of the CVC and the carina, from chest radiographs. The measurement results were analyzed by a Bland and Altman plot. The patient’s characteristics were equal for both groups. In the Peres’ formula group we found that the mean of the distal CVC was 1.5 (0.82) cm under the carina (CI 95%: 1.2 to 1.9 cm), with the limit of agreement as 0.0 cm to 3.0 cm. The mean of the landmark group was 0.85 (0.73) cm (CI 95%: 0.5 to 1.1 cm) with the limit of agreement as -0.5 cm to 2.2 cm. The incidence of malposition was found to be similar in both groups. The results showed that both prediction methods are not accurate enough to predict the depth of CVC insertion in Indonesian people.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Di Sieno, Laura, E-mail: laura.disieno@polimi.it; Dalla Mora, Alberto; Contini, Davide
2016-03-15
We present a system for non-contact time-resolved diffuse reflectance imaging, based on small source-detector distance and high dynamic range measurements utilizing a fast-gated single-photon avalanche diode. The system is suitable for imaging of diffusive media without any contact with the sample and with a spatial resolution of about 1 cm at 1 cm depth. In order to objectively assess its performances, we adopted two standardized protocols developed for time-domain brain imagers. The related tests included the recording of the instrument response function of the setup and the responsivity of its detection system. Moreover, by using liquid turbid phantoms with absorbingmore » inclusions, depth-dependent contrast and contrast-to-noise ratio as well as lateral spatial resolution were measured. To illustrate the potentialities of the novel approach, the characteristics of the non-contact system are discussed and compared to those of a fiber-based brain imager.« less
Buried oxide and defects in oxygen implanted Si monitored by positron annihilation
NASA Astrophysics Data System (ADS)
Kruseman, A. C.; van Veen, A.; Schut, H.; Mijnarends, P. E.; Fujinami, M.
2001-08-01
One- and two-detector Doppler broadening measurements performed on low (˜1014 to 1015O+/cm2) and high dose (˜1017 to 1018O+/cm2) oxygen-irradiated Si using variable-energy slow positrons are analyzed in terms of S and W parameters. After annealing the low-dose samples at 800 °C, large VxOy complexes are formed at depths around 400 nm. These complexes produce a clear-cut signature when the ratio of S to that of defect-free bulk Si is plotted. Similar behavior is found for samples irradiated with 2 and 4×1017O+/cm2 and annealed at 1000 °C. After irradiation with 1.7×1018O+/cm2 and anneal at 1350 °C a 170 nm thick almost-bulk-quality Si surface layer is formed on top of a 430 nm thick buried oxide layer. This method of preparation is called separation by implantation of oxygen. S-W measurements show that the surface layer contains electrically inactive VxOy complexes not seen by electron microscopy. A method is presented to decompose the Doppler broadening line shape into contributions of the bulk, surface, and defect.
1987-11-01
and depth: Depression is 200cm in depth. Vegetation: Pasture/short grass. Depression full of chokecherries and trees. Ground surface visibility...Strata and depth: Unknown - likely 0-10cm. Vegetation: Dwarf juniper and chokecherry (Locus 1) and bunch grass and ball cactus (Locus 2). Ground surface...position: On the NE edge of a long, narrow ridge/erosional remnant or bluff. Site size: 6m2. Strata and depth: Unknown. Vegetation: Buckbrush, chokecherry
NASA Astrophysics Data System (ADS)
Klaus, J.; Zehe, E.; Palm, J.; Schroeder, B.
2009-04-01
Preferential flow in macropores is a key process which strongly affects infiltration and may cause rapid transport of pesticides into depths of 80 to 150 cm. At these depths they experience a much slower degradation, may leach into shallow groundwater or enter a tile-drain and are transported in surface water bodies. Therefore, preferential transport is an environ¬mental problem because the topsoil is bypassed, which has been originally thought to act as a filter to protect the subsoil and shallow groundwater. To get a better insight in the process of pesticide transport in agricultural soils an irrigation experiment was performed on a 400 m² field site. The experimental plot is located in the Weiherbach valley, south-west Germany, which basic geology consists of Loess and Keuper layers, the soil at the test site is a gleyic Colluvisol. The distance of the irrigation site to the Weiherbach brook is aprox. 12 m, the field is drained with a tile-drain in about 1.2 m depth and the shows runoff over the entire year. Three hours before the irrigation started the farmer applied a pesticide solution consisting of Isoproturon and Flufenacet according to conventional agricultural practice. The irrigation took place in three time blocks (80 min, 60 min, 80 min) and had a total irrigation rate of 33.6 mm measured with ten precipitation samplers. During the first block a tracer solution of 1600 g Bromide and 2000 g Brilliant Blue was irrigated on the test site. The drainage outlet was instrumented with a pressure probe to measure the water level. About 50 water samples were taken on the day of the experiment from the drainage outlet by hand, and in an eight hour interval for six days with an automatic sample procedure. Discharge at the drainage outlet showed two peaks in response irrigation. The breakthrough of the tracer into the brook is much faster then the reaction of the discharge on the precipitation impulse. To gain insight in the vertical transport behaviour three vertical soil profiles were excavated on the first day after the irrigation and two vertical profiles were excavated one week after the experiment. In those profiles soil samples were taken in a 10cm*10cm grid to analyse for the tracer concentrations. Based on that information the probability distribution function of the travel depths for each tracer could be calculated for two points in time. As burrows of deep digging earth worms often act as preferential pathways we counted the individuals of worm burrows using a nested sampling procedure. Though endogeic earthworms were apparent we didn't find any individuals of Lumbricus Terrestris nor macropores with diameter larger than 2 mm at a depth larger than 30-35 cm. So far we didn't identify those pathways that caused this rapid pesticide breakthrough into the tile drain, though a very small number macropores would suffice. Based on the collected data we will setup up a numerical model to simulate observed and flow and transport and test the hypothesis that earthworm burrows are the reason for this rapid breakthrough of pesticides into the tile drain.
Hailar crater - A possible impact structure in Inner Mongolia, China
NASA Astrophysics Data System (ADS)
Xiao, Zhiyong; Chen, Zhaoxu; Pu, Jiang; Xiao, Xiao; Wang, Yichen; Huang, Jun
2018-04-01
Hailar crater, a probable impact structure, is a circular depression about 300 m diameter in Inner Mongolia, northeast China. With broad elevated rims, the present rim-to-floor depth is 8-20 m. Regional geological background and geomorphological comparison suggest that this feature is likely not formed by surface processes such as salt diapir, karst, aeolian, glacial, or volcanic activity. Its unique occurrence in this region and well-preserved morphology are most consistent with it being a Cenozoic impact crater. Two field expeditions in 2016 and 2017 investigated the origin of this structure, recognizing that (1) no additional craters were identified around Hailar crater in the centimeter-scale digital topography models that were constructed using a drone imaging system and stereo photogrammetry; (2) no bedrock exposures are visible within or adjacent to the crater because of thick regolith coverage, and only small pieces of angular unconsolidated rocks are present on the crater wall and the gently-sloped crater rim, suggesting recent energetic formation of the crater; (3) most samples collected from the crater have identical lithology and petrographic characteristics with the background terrain, but some crater samples contain more abundant clasts and silicate hydrothermal veins, indicating that rocks from depths have been exposed by the crater; (4) no shock metamorphic features were found in the samples after thin section examinations; and (5) a systematic sample survey and iron detector scan within and outside of the crater found no iron-rich meteorites larger than 2 cm in size in a depth of 30 cm. Although no conclusive evidence for an impact origin is found yet, Hailar crater was most likely formed by an impact based on its unique occurrence and comparative geomorphologic study. We suggest that drilling in the crater center is required to verify the impact origin, where hypothesized melt-bearing impactites may be encountered.
Fate and Transport of Nitrogen and Phosphorus in Onsite Wastewater Treatment Systems
NASA Astrophysics Data System (ADS)
Toor, G.; De, M.; Danmowa, N.
2012-12-01
The contribution of nitrogen (N) and phosphorus (P) from onsite wastewater treatment systems (OWTS) to groundwater pollution is largely not quantified in most aquifers and watersheds in the world. Thus, the knowledge about the fate and transport of N and P from OWTS is needed to protect groundwater contamination. In Florida, porous sandy soils intensify the transport of N from drianfield of OWTS to shallow groundwater. To overcome this limitation, elevated disposal fields (commonly called mounds) on top of the natural soil are constructed to provide unsaturated conditions for wastewater treatment. Our objective was to investigate the dynamics of N and P transport in the vadose zone and groundwater in full scale OWTS. We constructed three mounds: (1) drip dispersal mound: 45 cm depth of sand below the emitters, followed by natural soil; (2) gravel trench mound: 45 cm depth of sand below the emitters, followed by 30 cm depth of gravels, and natural soil; and (3) advanced system mound: which contained aerobic (lingo-cellulosic) and anaerobic (sulfur) media for enhanced nitrification and denitrification before dispersing wastewater in the vadose zone. Each mound received 120 L of septic tank effluent (STE) per day (equivalent to maximum allowable rate of 3 L/ft2/day) from our facility (office and homes); STE was dosed 6 times at 4-hour intervals in a day. Soil water samples were collected from the mounds (vadose zone) by using suction cup lysimeters installed at 0.30, 0.60, and 1.05 m depth and groundwater samples were collected by using piezometers installed at 3-3.30 m depth below mounds. We collected samples during May-Aug 2012 before STE delivery (3 events at 3-day intervals) and after STE delivery (10 events at 3-day intervals; 13 events at 7-day intervals). Collected samples (STE, soil water, groundwater) were analysed for pH, EC, chloride (Cl), and organic and inorganic N and P fractions. The ranges of pH, EC, and Cl of STE (26 events) were 6.9-7.7, 1.01-1.33 dS/m, and 56-121 mg/l, respectively. Mean (n = 26) ammonium-N (NH4-N) and nitrate-N (NO3-N) concentrations in the STE were 53.4 and 0.06 mg/L, respectively, while concentrations of P in the STE were 5.2-13.8 mg/L. The pH (6.31-6.94) and EC (0.46-0.75 dS/m) in lysimeter samples were lower than STE. The pH (4.39-4.78) and EC (0.28-0.34 dS/m) of groundwater was much lower than both STE and soil water. Concentrations of NH4-N in all samples collected from lysimeters (0.02-0.45 mg/L) and piezometers (0.01-0.14 mg/L) were <0.50 mg/L; suggesting that >99% disappeared (primarily nitrified) in the vadose zone (<1.05 m soil profile depth). Higher residence time and presence of gravels apparently in gravel trench resulted in greater nitrification (82.3%) than drip dispersal mound (upto 66.4%). Concentrations of NO3-N were lower (0.02-6.14 mg/L) in the soil water at 0.30-1.05 m depth before STE delivery, but slowly increased after STE delivery. Concentrations of P in the lysimeters and piezometers were 0.041-1.68 mg/L and 0-0.113 mg/L, respectively; suggesting greater P attenuation in the vadose zone of all OWTS. Concentrations of Cl showed a distinct pattern of NO3-N breakthrough in vadose zone and groundwater. The groundwater NO3-N was elevated upto 19.2 mg/L after STE delivery.
NASA Technical Reports Server (NTRS)
Schrader, Christian M.; Rickman, Doug; Stoeser, Doug; Wentworth, Susan J.; Botha, Pieter WSK; Butcher, Alan R.; McKay, David; Horsch, Hanna; Benedictus, Aukje; Gottlieb, Paul
2008-01-01
We present modal data from QEMSCAN(registered TradeMark) beam analysis of Apollo 16 samples from drive core 64001/2. The analyzed lunar samples are thin sections 64002,6019 (5.0-8.0 cm depth) and 64001,6031 (50.0-53.1 cm depth) and sieved grain mounts 64002,262 and 64001,374 from depths corresponding to the thin sections, respectively. We also analyzed lunar highland regolith simulants NU-LHT-1M, -2M, and OB-1, low-Ti mare simulants JSC-1, -lA, -1AF, and FJS-1, and high-Ti mare simulant MLS-1. The preliminary results comprise the beginning of an internally consistent database of lunar regolith and regolith simulant mineral and glass information. This database, combined with previous and concurrent studies on phase chemistry, bulk chemistry, and with data on particle shape and size distribution, will serve to guide lunar scientists and engineers in choosing simulants for their applications. These results are modal% by phase rather than by particle type, so they are not directly comparable to most previously published lunar data that report lithic fragments, monomineralic particles, agglutinates, etc. Of the highland simulants, 08-1 has an integrated modal composition closer than NU-LHT-1M to that of the 64001/2 samples, However, this and other studies show that NU-LHT-1M and -2M have minor and trace mineral (e.g., Fe-Ti oxides and phosphates) populations and mineral and glass chemistry closer to these lunar samples. The finest fractions (0-20 microns) in the sieved lunar samples are enriched in glass relative to the integrated compositions by approx.30% for 64002,262 and approx.15% for 64001,374. Plagioclase, pyroxene, and olivine are depleted in these finest fractions. This could be important to lunar dust mitigation efforts and astronaut health - none of the analyzed simulants show this trend. Contrary to previously reported modal analyses of monomineralic grains in lunar regolith, these area% modal analyses do not show a systematic increase in plagiociase/pyroxene as size fraction decreases.
Oxygen Isotope Compositions of Meteoric Water Across an Elevation Gradient in Southern Peru
NASA Astrophysics Data System (ADS)
Xu, D. R.; White, E.; Cassel, E. J.; Lynch, B.; Yanites, B.; Breecker, D.
2017-12-01
The Central Andes is a prime example of elevated topography generated by oceanic plate subduction. Whereas previous stable isotope studies have investigated the paleoelevation of the Andean Eastern Cordillera, little is known about the paleoelevation of the Western Cordillera, where arc volcanism now occurs. As a first step towards studying the paleoelevation of this region, we investigated the change in δ18O values of modern soil waters across an elevation gradient from sea level to about 4725 meters in southern Peru. We sampled soil profiles from 5 to 80 cm in 15-20cm increments, and we sampled water from flowing natural streams at various elevations. We used cryogenic vacuum extraction to quantitatively remove non-structural water from soil samples. The δ18O values of water extracted from soil samples varies with the depth in the soil due to the diminishing effect of seasonality and evaporation. Every high elevation (>3500m) soil profile we measured had nearly constant δ18O values below 5cm and a total range of δ18O values between -12.8‰ and -17.1‰, apart from the Cusco profile. In the Cusco profile, the δ18O values ranged from -7.2 ‰ at 5 cm to -21.8 ‰ at 60 cm, defining a strong monotonic decrease not seen in other soil profiles. The δ18O trend in the Cusco profile may be different due to the impact of evaporation, soil hydrology, and/or seasonality in the δ18O values of precipitation. Further spatial analysis must be conducted to pinpoint a specific cause. Considering only the samples collected below 40cm, which are likely the best estimate of mean annual precipitation, the δ18O values decrease with increasing elevation at a rate higher than the global mean, suggesting that oxygen isotope paleoaltimetry can work in this study region.
Phosphogypsum capping depth affects revegetation and hydrology in Western Canada.
Jackson, Mallory E; Naeth, M Anne; Chanasyk, David S; Nichol, Connie K
2011-01-01
Phosphogypsum (PG), a byproduct of phosphate fertilizer manufacturing, is commonly stacked and capped with soil at decommissioning. Shallow (0, 8, 15, and 30 cm) and thick (46 and 91 cm) sandy loam caps on a PG stack near Fort Saskatchewan, Alberta, Canada, were studied in relation to vegetation establishment and hydrologic properties. Plant response was evaluated over two growing seasons for redtop ( L.), slender wheatgrass ( (Link) Malte ex H.F. Lewis), tufted hairgrass ( (L.) P. Beauv.), and sheep fescue ( L.) and for a mix of these grasses with alsike clover ( L.). Water content below the soil-PG interface was monitored with time-domain reflectometry probes, and leachate water quantity and quality at a depth of 30 cm was measured using lysimeters. Vegetation responded positively to all cap depths relative to bare PG, with few significant differences among cap depths. Slender wheatgrass performed best, and tufted hairgrass performed poorly. Soil caps <1 m required by regulation were sufficient for early revegetation. Soil water fluctuated more in shallow than in thick caps, and water content was generally between field capacity and wilting point regardless of cap depth. Water quality was not affected by cap depths ≤30 cm. Leachate volumes at 30 cm from distinct rainfall events were independent of precipitation amount and cap depth. The study period had lower precipitation than normal, yet soil caps were hospitable for plant growth in the first 2 yr of establishment. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Spatial analysis of soil organic carbon in Zhifanggou catchment of the Loess Plateau.
Li, Mingming; Zhang, Xingchang; Zhen, Qing; Han, Fengpeng
2013-01-01
Soil organic carbon (SOC) reflects soil quality and plays a critical role in soil protection, food safety, and global climate changes. This study involved grid sampling at different depths (6 layers) between 0 and 100 cm in a catchment. A total of 1282 soil samples were collected from 215 plots over 8.27 km(2). A combination of conventional analytical methods and geostatistical methods were used to analyze the data for spatial variability and soil carbon content patterns. The mean SOC content in the 1282 samples from the study field was 3.08 g · kg(-1). The SOC content of each layer decreased with increasing soil depth by a power function relationship. The SOC content of each layer was moderately variable and followed a lognormal distribution. The semi-variograms of the SOC contents of the six different layers were fit with the following models: exponential, spherical, exponential, Gaussian, exponential, and exponential, respectively. A moderate spatial dependence was observed in the 0-10 and 10-20 cm layers, which resulted from stochastic and structural factors. The spatial distribution of SOC content in the four layers between 20 and 100 cm exhibit were mainly restricted by structural factors. Correlations within each layer were observed between 234 and 562 m. A classical Kriging interpolation was used to directly visualize the spatial distribution of SOC in the catchment. The variability in spatial distribution was related to topography, land use type, and human activity. Finally, the vertical distribution of SOC decreased. Our results suggest that the ordinary Kriging interpolation can directly reveal the spatial distribution of SOC and the sample distance about this study is sufficient for interpolation or plotting. More research is needed, however, to clarify the spatial variability on the bigger scale and better understand the factors controlling spatial variability of soil carbon in the Loess Plateau region.
Curtosi, Antonio; Pelletier, Emilien; Vodopivez, Cristian L; Mac Cormack, Walter P
2007-09-20
Although Antarctica is still considered as one of the most pristine areas of the world, the growing tourist and fisheries activities as well as scientific operations and their related logistic support are responsible for an increasing level of pollutants in this fragile environment. Soils and coastal sediments are significantly affected near scientific stations particularly by polycyclic aromatic hydrocarbons (PAHs). In this work sediment and soil were sampled in two consecutive summer Antarctic expeditions at Potter Cove and peninsula, in the vicinity of Jubany Station (South Shetland Islands). Two- and 3-ring PAHs (methylnaphthalene, fluorene, phenanthrene and anthracene) were the main compounds found in most sites, although total PAH concentrations showed relatively low levels compared with other human-impacted areas in Antarctica. Pattern distribution of PAHs observed in samples suggested that low-temperature combustion processes such as diesel motor combustion and open-field garbage burning are the main sources of these compounds. An increase in PAH concentrations was observed from surface to depth into the active soil layer except for a unique sampling site where a fuel spill had been recently reported and where an inverted PAH concentration gradient was observed. The highest level was detected in the upper layer of permafrost followed by a sharp decrease in depth, showing this layer is acting as a barrier for downward PAH migration. When PAH levels in soil from both sampling programs were compared a significant decrease (p<0.01) was observed in summer 2005 (range at 75-cm depth: 12+/-1-153+/-22 ng/g) compared to summer 2004 (range at 75-cm depth: 162+/-15-1182+/-113 ng/g) whereas concentrations in surface sediment collected nearby the station PAHs increased drastically in 2005 (range: 36+/-3-1908+/-114 ng/g) compared to 2004 (range: 28+/-3-312+/-24 ng/g). Precipitation regime and water run off suggest that an important wash out of soil-PAHs occurred during the interval time between samplings. Results showed that the present PAH contamination level of Jubany Station is relatively low compared to other reported cases in Antarctica but also suggests that an increase in rain and in thawing processes caused by the global warming could result in an important soil-associated PAH mobilization with unpredictable consequences for the biota of Potter Cove.
Wojtkowska, Małgorzata; Karwowska, Ewa; Chmielewska, Iwona; Bekenova, Kundyz; Wanot, Ewa
2015-12-01
This research covered an evaluation of the copper and cadmium concentrations in bottom sediments dredged from one of the ponds in Warsaw. The samples of sediments, soil, and plants were analyzed in terms of Cu and Cd content. The research concerned the heap of dredged bottom sediments from Wyścigi Pond, Warsaw, Poland. Two boreholes were made to obtain sediment cores with depths of A 162.5 cm and B 190.0 cm. The cores were divided into 10 sub-samples with a thickness of about 15-20 cm. A control sample of soil was taken from the horse racecourse several hundred meters away from the heap. The vegetation was sampled directly from the heap. The predominating plants were tested: Urtica dioica, Glechoma hederacea, Euonymus verrucosus, and Drepanocladus aduncus. A control sample of U. dioica taken outside of the heap was also tested. The commercial PHYTOTOXKIT microbiotest was applied to evaluate the influence of heavy metal-contaminated sediments (used as soil) on germination and growth of the chosen test plants. The analyses of cadmium and copper concentrations revealed that the metal concentration in sediments was diverse at different depths of sampling, probably reflecting their concentration in stored layers of sediments. Moreover, the metal content in core A was four to five times lower than that in core B, which reveals heterogeneity of the sediments in the tested heap. In core A, the copper concentration ranged from 4.7 to 13.4 mg/kg d.w. (average 8.06 ± 0.71 mg/kg d.w.), while in core B, it ranged from 9.2 to 82.1 mg/kg d.w. (average 38.56 ± 2.6 mg/kg d.w.). One of the results of the heavy metal presence in soils is their bioaccumulation in plants. Comparing plant growth, more intensive growth of roots was observed in the case of plants growing on the control (reference) soil than those growing on sediments. The intensive development of both primary and lateral roots was noticed. During this early growth, metal accumulation in plants occurred.
Spatial Variability and Stocks of Soil Organic Carbon in the Gobi Desert of Northwestern China
Zhang, Pingping; Shao, Ming'an
2014-01-01
Soil organic carbon (SOC) plays an important role in improving soil properties and the C global cycle. Limited attention, though, has been given to assessing the spatial patterns and stocks of SOC in desert ecosystems. In this study, we quantitatively evaluated the spatial variability of SOC and its influencing factors and estimated SOC storage in a region (40 km2) of the Gobi desert. SOC exhibited a log-normal depth distribution with means of 1.6, 1.5, 1.4, and 1.4 g kg−1 for the 0–10, 10–20, 20–30, and 30–40 cm layers, respectively, and was moderately variable according to the coefficients of variation (37–42%). Variability of SOC increased as the sampling area expanded and could be well parameterized as a power function of the sampling area. Significant correlations were detected between SOC and soil physical properties, i.e. stone, sand, silt, and clay contents and soil bulk density. The relatively coarse fractions, i.e. sand, silt, and stone contents, had the largest effects on SOC variability. Experimental semivariograms of SOC were best fitted by exponential models. Nugget-to-sill ratios indicated a strong spatial dependence for SOC concentrations at all depths in the study area. The surface layer (0–10 cm) had the largest spatial dependency compared with the other layers. The mapping revealed a decreasing trend of SOC concentrations from south to north across this region of the Gobi desert, with higher levels close to an oasis and lower levels surrounded by mountains and near the desert. SOC density to depths of 20 and 40 cm for this 40 km2 area was estimated at 0.42 and 0.68 kg C m−2, respectively. This study provides an important contribution to understanding the role of the Gobi desert in the global carbon cycle. PMID:24733073
NASA Astrophysics Data System (ADS)
Tuo, D.; Gao, G.; Fu, B.
2017-12-01
Precipitation is one of the most important limit factor affect soil organic carbon (SOC) and total nitrogen (TN) following re-vegetation; however, the effect of precipitation on the C and N cycling in deep soils is poorly understood. This study was designed to measure SOC and TN stocks and C/N ratio to a depth of 300 cm following re-vegetation along a precipitation gradient (280 to 540 mm yr-1) on the Loess Plateau of China. The results showed that the relationship of soil C-N coupling after cropland abandoned was related to mean annual precipitation (MAP) and soil depth. SOC and TN stocks in the shallow layers of 0-100 cm were 3.8 and 0.41 kg m-2, respectively, and that in the deep layers of 100-300 cm can represent about 62.7-72.5% and 60.2-88.7% to a depth of 0-300 cm, respectively. Positive linearly relationships were obtained between MAP and SOC and TN stocks at most soil layers of 0-300 cm (p < 0.05). The relationships between the MAP and changes of SOC and TN stocks following short-term restoration were highly dependent on soil depth. Changes of SOC and TN stocks after re-vegetation in shallow soils (0-100 cm) were gaining at regional scale, but in deep soils (100-300 cm), which were losing at wetter sites (MAP > 400 mm). The initial soil C loss may be attributed to greater C decomposition and lower belowground C input. The change of C/N ratio had significantly negatively correlation with MAP in each soil depth, except for 0-20 cm, indicating the effect of soil N on C accumulation is higher at drier areas rather than wetter sites. Based on the investigated factors, precipitation, soil water and clay had a dominant control over the spatial distribution of SOC, TN and C/N ratio to a 300 cm soil depth. This information is helpful our understanding of the dynamics of soil C and N of deep soils following re-vegetation in the semiarid regions.
The Monitoring of Sallow CO2 Leakage From the CO2 Release Experiment in South Korea
NASA Astrophysics Data System (ADS)
Kim, H. J.; Han, S. H.; Kim, S.; Son, Y.
2017-12-01
This study was conducted to analyze the in-soil CO2 gas diffusion from the K-COSEM shallow CO2 release experiment. The study site consisting of five zones was built in Eumseong, South Korea, and approximately 1.8 t CO2 were injected from the perforated release well at Zones 1 to 4 from June 1 to 30, 2016. In-soil CO2 concentrations were measured once a day at 15 cm and 60 cm depths at 0 m, 2.5 m, 5.0 m, and 10.0 m away from the CO2 releasing well using a portable gas analyzer (GA5000) from May 11 to July 27, 2016. On June 4, CO2 leakage was simultaneously detected at 15 cm (8.8 %) and 60 cm (44.0 %) depths at 0 m from the well at Zone 3, and were increased up to about 30 % and 70 %, respectively. During the CO2 injection period, CO2 concentrations measured at 15 cm depth were significantly lower than those measured at 60 cm depth because of the atmospheric pressure effect. After stopping the CO2 injection, CO2 concentrations gradually decreased until July 27, but were still higher than the natural background concentration. This result suggested the possibility of long-term CO2 leakage. In addition, low levels of CO2 leakage were determined using CO2 regression analysis and CO2:O2 ratio. CO2 concentrations measured at 60 cm depth at 0 m from the well at Zones 1 to 4 consistently showed sigmoid increasing patterns with the injection time (R2=0.60-0.99). O2 concentrations at 15 cm and 60 cm depths from the CO2 release experiment were reached 0 % at about 76 % and 84 % of CO2 concentrations, respectively, whereas, those from biological reaction approached 0 % when CO2 increased to about 21 %. Therefore, deep underground monitoring would be able to detect CO2 leakage faster than near-surface monitoring, and CO2 regression and CO2:O2 ratio analyses seemed to be useful as clear indicators of CO2 leakage.
NASA Astrophysics Data System (ADS)
Sakaguchi, A.; Kadokura, A.; Steier, P.; Takahashi, Y.; Shizuma, K.; Yamamoto, M.
2012-04-01
137Cs (T1/2=30.2 y) has been spread all over the world as a fission product of atmospheric nuclear weapons tests in the 1960s. This nuclide has been used as a powerful tool for oceanography due to the well-defined origin and conservative behaviour in water . However, the number of atoms has decayed already to one thirds compared with its initial levels, and it will become more difficult to measure. In this situation, we focus on 236U (T1/2=2.342-107 y) as a candidate for a new isotopic tracer for oceanography. The detection of 236U in the environment has become possible only recently, by the development of measuring techniques with high sensitivity based on AMS. Our group showed that global fallout from bomb tests contains 236U, which might be produced as nuclear reactions of 235U(n,γ) and/or 238U(n,3n). So 236U has been therefore globally distributed in the surface environment. Thus, 236U has a similar potential as a tracer for environmental dynamics as 137Cs, especially for oceanography. In this study, a comprehensive attempt was made to measure the concentration of 236U in marine samples such as water, suspended solid and bottom sediments to clarify the environmental behaviour of this isotope. Furthermore, the discussion of the circulation of deep and bottom water in "Miniature Ocean", the Japan Sea, has been attempted. Bottom sediments (4 sites) and seawater samples (7 sites) were collected from the Japan Sea. The sediment core was cut into 1 cm segments from the surface to 5 cm in depth within a few hours after the sampling. About 20 L of seawater samples were collected from some depths in each site, and immediately after the sampling, the water was filtered with 0.45 μm pore-size membrane-filters. After the appropriate pre-treatment for each sample, uranium isotope and 137Cs were measured with AMS and Ge-detector, respectively. 236U was successfully detected for all seawater samples, and 236U/238U atom ratios in seawater were in the range of (0.19-1.75)-10-9. The dissolved 236U concentration showed a subsurface maximum and decreased steeply with depth. The minimum value was found at a depth of 2500 m and bottom (about 3000 m in depth) in the northern and the southern areas, respectively. These profiles are markedly different from that of natural 238U which is nearly constant over the depth, suggesting that 236U has not yet reached steady state. For the SS sample, 236U could not be detected in significant levels. The total 236U inventory of the water column was estimated at 1012-1013 atom/m2. This value is nearly the same as the global fallout level (17.8-1012 atom/m2). 236U was also found in the bottom sediments, and the inventory was about 1/40 compared with that in water column. All above characters are comparable with 137Cs which is anthropogenic conservative nuclide in ocean. Actually, the diffusion coefficients for both nuclides show the nearly same value. The detail discussion including the circulation of deep-water in the Japan Sea will be given in our presentation.
Vogel, Laura J; Edge, Thomas A; O'Carroll, Denis M; Solo-Gabriele, Helena M; Kushnir, Caitlin S E; Robinson, Clare E
2017-09-15
Fecal indicator bacteria (FIB) are known to accumulate in foreshore beach sand and pore water (referred to as foreshore reservoir) where they act as a non-point source for contaminating adjacent surface waters. While guidelines exist for sampling surface waters at recreational beaches, there is no widely-accepted method to collect sand/sediment or pore water samples for FIB enumeration. The effect of different sampling strategies in quantifying the abundance of FIB in the foreshore reservoir is unclear. Sampling was conducted at six freshwater beaches with different sand types to evaluate sampling methods for characterizing the abundance of E. coli in the foreshore reservoir as well as the partitioning of E. coli between different components in the foreshore reservoir (pore water, saturated sand, unsaturated sand). Methods were evaluated for collection of pore water (drive point, shovel, and careful excavation), unsaturated sand (top 1 cm, top 5 cm), and saturated sand (sediment core, shovel, and careful excavation). Ankle-depth surface water samples were also collected for comparison. Pore water sampled with a shovel resulted in the highest observed E. coli concentrations (only statistically significant at fine sand beaches) and lowest variability compared to other sampling methods. Collection of the top 1 cm of unsaturated sand resulted in higher and more variable concentrations than the top 5 cm of sand. There were no statistical differences in E. coli concentrations when using different methods to sample the saturated sand. Overall, the unsaturated sand had the highest amount of E. coli when compared to saturated sand and pore water (considered on a bulk volumetric basis). The findings presented will help determine the appropriate sampling strategy for characterizing FIB abundance in the foreshore reservoir as a means of predicting its potential impact on nearshore surface water quality and public health risk. Copyright © 2017 Elsevier Ltd. All rights reserved.
Cosmogenic 10Be Depth Profile in top 560 m of West Antarctic Ice Sheet Divide Ice Core
NASA Astrophysics Data System (ADS)
Welten, K. C.; Woodruff, T. E.; Caffee, M. W.; Edwards, R.; McConnell, J. R.; Bisiaux, M. M.; Nishiizumi, K.
2009-12-01
Concentrations of cosmogenic 10Be in polar ice samples are a function of variations in solar activity, geomagnetic field strength, atmospheric mixing and annual snow accumulation rates. The 10Be depth profile in ice cores also provides independent chronological markers to tie Antarctic to Greenland ice cores and to tie Holocene ice cores to the 14C dendrochronology record. We measured 10Be concentrations in 187 samples from depths of 0-560 m of the main WAIS Divide core, WDC06A. The ice samples are typically 1-2 kg and represent 2-4 m of ice, equivalent to an average temporal resolution of ~12 years, based on the preliminary age-depth scale proposed for the WDC core, (McConnell et al., in prep). Be, Al and Cl were separated using ion exchange chromatography techniques and the 10Be concentrations were measured by accelerator mass spectrometry (AMS) at PRIME lab. The 10Be concentrations range from 8.1 to 19.1 x 10^3 at/g, yielding an average of (13.1±2.1) x 10^3 at/g. Adopting an average snow accumulation rate of 20.9 cm weq/yr, as derived from the age-depth scale, this value corresponds to an average 10Be flux of (2.7±0.5) x 10^5 atoms/yr/cm2. This flux is similar to that of the Holocene part of the Siple Dome (Nishiizumi and Finkel, 2007) and Dome Fuji (Horiuchi et al. 2008) ice cores, but ~30% lower than the value of 4.0 x 10^5 atoms/yr/cm2 for GISP2 (Finkel and Nishiizumi, 1997). The periods of low solar activity, known as Oort, Wolf, Spörer, Maunder and Dalton minima, show ~20% higher 10Be concentrations/fluxes than the periods of average solar activity in the last millennium. The maximum 10Be fluxes during some of these periods of low solar activity are up to ~50% higher than average 10Be fluxes, as seen in other polar ice cores, which makes these peaks suitable as chronologic markers. We will compare the 10Be record in the WAIS Divide ice core with that in other Antarctic as well as Greenland ice cores and with the 14C treering record. Acknowledgment. This work was supported by NSF grants ANT-0538427, 0636815, 0636964 and 0739780. Finkel R. C. and Nishiizumi K. 1997. J. Geophys. Res. 102, 26,699-26,706. Horiuchi K., et al. 2008. Quatern. Geochron. 3, 253-261. Nishiizumi K. and Finkel R. C. 2007. Boulder, Colorado USA: National Snow and Ice Data Center. Digital media.
3D-Digital soil property mapping by geoadditive models
NASA Astrophysics Data System (ADS)
Papritz, Andreas
2016-04-01
In many digital soil mapping (DSM) applications, soil properties must be predicted not only for a single but for multiple soil depth intervals. In the GlobalSoilMap project, as an example, predictions are computed for the 0-5 cm, 5-15 cm, 15-30 cm, 30-60 cm, 60-100 cm, 100-200 cm depth intervals (Arrouays et al., 2014). Legacy soil data are often used for DSM. It is common for such datasets that soil properties were measured for soil horizons or for layers at varying soil depth and with non-constant thickness (support). This poses problems for DSM: One strategy is to harmonize the soil data to common depth prior to the analyses (e.g. Bishop et al., 1999) and conduct the statistical analyses for each depth interval independently. The disadvantage of this approach is that the predictions for different depths are computed independently from each other so that the predicted depth profiles may be unrealistic. Furthermore, the error induced by the harmonization to common depth is ignored in this approach (Orton et al. 2016). A better strategy is therefore to process all soil data jointly without prior harmonization by a 3D-analysis that takes soil depth and geographical position explicitly into account. Usually, the non-constant support of the data is then ignored, but Orton et al. (2016) presented recently a geostatistical approach that accounts for non-constant support of soil data and relies on restricted maximum likelihood estimation (REML) of a linear geostatistical model with a separable, heteroscedastic, zonal anisotropic auto-covariance function and area-to-point kriging (Kyriakidis, 2004.) Although this model is theoretically coherent and elegant, estimating its many parameters by REML and selecting covariates for the spatial mean function is a formidable task. A simpler approach might be to use geoadditive models (Kammann and Wand, 2003; Wand, 2003) for 3D-analyses of soil data. geoAM extend the scope of the linear model with spatially correlated errors to account for nonlinear effects of covariates by fitting componentwise smooth, nonlinear functions to the covariates (additive terms). REML estimation of model parameters and computing best linear unbiased predictions (BLUP) builds in the geoAM framework on the fact that both geostatistical and additive models can be parametrized as linear mixed models Wand, 2003. For 3D-DSM analysis of soil data, it is natural to model depth profiles of soil properties by additive terms of soil depth. Including interactions between these additive terms and covariates of the spatial mean function allows to model spatially varying depth profiles. Furthermore, with suitable choice of the basis functions of the additive term (e.g. polynomial regression splines), non-constant support of the soil data can be taken into account. Finally, boosting (Bühlmann and Hothorn, 2007) can be used for selecting covariates for the spatial mean function. The presentation will detail the geoAM approach and present an example of geoAM for 3D-analysis of legacy soil data. Arrouays, D., McBratney, A. B., Minasny, B., Hempel, J. W., Heuvelink, G. B. M., MacMillan, R. A., Hartemink, A. E., Lagacherie, P., and McKenzie, N. J. (2014). The GlobalSoilMap project specifications. In GlobalSoilMap Basis of the global spatial soil information system, pages 9-12. CRC Press. Bishop, T., McBratney, A., and Laslett, G. (1999). Modelling soil attribute depth functions with equal-area quadratic smoothing splines. Geoderma, 91(1-2), 27-45. Bühlmann, P. and Hothorn, T. (2007). Boosting algorithms: Regularization, prediction and model fitting. Statistical Science, 22(4), 477-505. Kammann, E. E. and Wand, M. P. (2003). Geoadditive models. Journal of the Royal Statistical Society. Series C: Applied Statistics, 52(1), 1-18. Kyriakidis, P. (2004). A geostatistical framework for area-to-point spatial interpolation. Geographical Analysis, 36(3), 259-289. Orton, T., Pringle, M., and Bishop, T. (2016). A one-step approach for modelling and mapping soil properties based on profile data sampled over varying depth intervals. Geoderma, 262, 174-186. Wand, M. P. (2003). Smoothing and mixed models. Computational Statistics, 18(2), 223-249.
NASA Astrophysics Data System (ADS)
Guidi, Claudia; Vesterdal, Lars; Cannella, David; Leifeld, Jens; Gianelle, Damiano; Rodeghiero, Mirco
2014-05-01
Grassland abandonment, followed by progressive forest expansion, is the dominant land-use change in the Southern Alps, Europe. Land-use change can affect not only the amount of organic matter (OM) in soil but also its composition and stability. Our objective was to investigate changes in organic matter properties after forest expansion on abandoned grasslands, combining analysis of carbohydrates, indicative of labile OM compounds with prevalent plant or microbial origin, with thermal analysis. Thermal analysis was used as a rapid assessment method for the characterization of SOM stability. A land-use gradient was investigated in four land-use types in the subalpine area of Trentino region, Italy: i) managed grassland, mown and fertilized for the past 100 years; ii) grassland abandoned since 10 years, with sparse shrubs and Picea abies saplings; iii) early-stage forest, dominated by P. abies and established on a grassland abandoned around 1970; iv) old forest, dominated by Fagus sylvatica and P. abies. Mineral soil was sampled at three subplots in each land use type with eight soil cores, which were subsequently pooled by depth (0-5 cm, 5-10 cm, 10-20 cm). Sugars were extracted from bulk soil samples through acid hydrolysis with H2SO4 (0.5 M). The analytical composition of sugar monomers was performed with HPAEC technology (Dionex ICS5000), equipped with PAD-detection. Thermal stability was assessed with a differential scanning calorimeter DSC100, heating soil samples up to 600°C at a heating rate of 10°C min-1 in synthetic air. Peak height (W g OC-1) of 1st DSC exotherm, dominated by burning of labile OM compounds, was used as thermal stability index. In the abandoned grassland, carbohydrates compounds accounted for a greater proportion of soil OC than in other land use types. Microbially derived sugars, as rhamnose and galactose, were more abundant in managed and abandoned grasslands compared with early-stage and old forest. The amount of thermally labile sugars, estimated as the peak height of the 1st exotherm, was higher in the abandoned grassland compared with managed grassland and old forest in 0-5 cm depth. Moreover, thermally labile compounds were higher in early-stage than in old forest in 0-5 cm depth. A highly significant correlation was found between thermally labile compounds and carbohydrate content in soil (P = 0.008, r = 0.725). The obtained results suggest that both thermally-labile compounds and carbohydrates are more abundant soon after grassland abandonment, which can lead to lower OM stability. The combination of chemical and thermal analysis of OM can thus provide useful insights on organic matter composition and stability.
How deep does disturbance go? The legacy of hurricanes on tropical forest soil biogeochemistry
NASA Astrophysics Data System (ADS)
Gutiérrez del Arroyo, O.; Silver, W. L.
2016-12-01
Ecosystem-scale disturbances, such as hurricanes and droughts, are periodic events with the capacity to cycle vast amounts of energy and matter. Such is the case of hurricanes in wet tropical forests, where intense winds defoliate the forest canopy and deposit large quantities of debris on the forest floor. These disturbances strongly affect soil biogeochemistry by altering soil moisture and temperature regimes, as well as litterfall, decomposition rates, and ultimately soil carbon (C) pools. Although these impacts are mostly concentrated near the soil surface, it is critical to consider the long-term effects on hurricanes on the deep soil profile, given the potential for soil C sequestration to occur at depth. Our study was conducted in the Canopy Trimming Experiment, an ongoing experiment within the Luquillo LTER in Puerto Rico. Ten years prior to our study, treatments including canopy trimming and debris deposition, independently and in combination, were imposed on 30 x 30 m plots within Tabonuco forests. We sampled 12 soil profiles (4 treatments, n=3) from 0 to 100 cm, at 10 cm intervals, and measured a suite of biogeochemical properties to explore treatment effects, as well as changes with depth. After a decade of recovery from the imposed treatments, there were no significant differences in soil moisture or soil pH among treatments at any depth, although significant changes with depth occurred for both variables. Iron concentrations, despite showing no treatment effects, decreased markedly with depth, highlighting the biogeochemical thresholds that occur along the soil profile. Notably, debris deposition resulted in significantly higher soil C, nitrogen (N), and phosphorus (P) concentrations in bulk soils, with effects being detected even at depths >50 cm. Moreover, density fractionation analyses of surface and deep soils revealed potential pathways for the measured increases in C, N, and P, including the accumulation of organic matter in the light fraction, as well as physiochemical interactions between organic molecules and minerals in the heavy fraction. Together, our data suggests that hurricane disturbances, by providing unusually large quantities of litterfall, can serve as a periodic subsidy of organic matter to the soil, which helps to maintain soil fertility and promote soil C sequestration.
A Model for Remote Depth Estimation of Buried Radioactive Wastes Using CdZnTe Detector
2018-01-01
This paper presents the results of an attenuation model for remote depth estimation of buried radioactive wastes using a Cadmium Zinc Telluride (CZT) detector. Previous research using an organic liquid scintillator detector system showed that the model is able to estimate the depth of a 329-kBq Cs-137 radioactive source buried up to 12 cm in sand with an average count rate of 100 cps. The results presented in this paper showed that the use of the CZT detector extended the maximum detectable depth of the same radioactive source to 18 cm in sand with a significantly lower average count rate of 14 cps. Furthermore, the model also successfully estimated the depth of a 9-kBq Co-60 source buried up to 3 cm in sand. This confirms that this remote depth estimation method can be used with other radionuclides and wastes with very low activity. Finally, the paper proposes a performance parameter for evaluating radiation detection systems that implement this remote depth estimation method. PMID:29783644
Abou-Taleb, W M; Hassan, M H; El Mallah, E A; Kotb, S M
2018-05-01
Photoneutron production, and the dose equivalent, in the head assembly of the 15 MV Elekta Precise medical linac; operating in the faculty of Medicine at Alexandria University were estimated with the MCNP5 code. Photoneutron spectra were calculated in air and inside a water phantom to different depths as a function of the radiation field sizes. The maximum neutron fluence is 3.346×10 -9 n/cm 2 -e for a 30×30 cm 2 field size to 2-4 cm-depth in the phantom. The dose equivalent due to fast neutron increases as the field size increases, being a maximum of 0.912 ± 0.05 mSv/Gy at depth between 2 and 4 cm in the water phantom for 40×40 cm 2 field size. Photoneutron fluence and dose equivalent are larger to 100 cm from the isocenter than to 35 cm from the treatment room wall. Copyright © 2018 Elsevier Ltd. All rights reserved.
Qingren Wang; Yuncong Li; Ying Ouyang
2011-01-01
Phosphorus (P) fractionation and distribution in sediments are of great concern in the Florida Everglades ecosystem because potential eutrophication of surface waters usually results from P external loading and stability. Intact core sediment samples were collected to a depth of 35 cm from wetlands and canals across Water Conservation Area 3 (WCAâ3) of the Florida...
Ch'ng, Huck-Ywih; Ahmed, Osumanu Haruna; Ab. Majid, Nik Muhamad
2011-01-01
Logging and poor shifting cultivation negatively affect initial soil carbon (C) storage, especially at the initial stage of deforestation, as these practices lead to global warming. As a result, an afforestation program is needed to mitigate this problem. This study assessed initial soil C buildup of rehabilitated forests using Fourier transform infrared (FTIR) spectroscopy. The relatively high E4/E6 values of humic acids (HAs) in the rehabilitated forest indicate prominence of aliphatic components, suggesting that the HAs were of low molecular weight. The total acidity, carboxylic (-COOH) and phenolic (-OH) of the rehabilitated forest were found to be consistent with the ranges reported by other researchers. The spectra of all locations were similar because there was no significant difference in the quantities of C in humic acids (CHA) regardless of forest age and soil depth. The spectra showed distinct absorbance at 3290, 1720, 1630, 1510, 1460, 1380, and 1270 cm-1. Increase of band at 1630 and 1510 cm-1 from 0–20 to 40–60 cm were observed, suggesting C buildup from the lowest depths 20–40 and 40–60 cm. However, the CHA content in the soil depths was not different. The band at 1630 cm-1 was assigned to carboxylic and aromatic groups. Increase in peak intensity at 1510 cm-1 was because C/N ratio increased with increasing soil depth. This indicates that decomposition rate decreased with increasing soil depth and decreased with CHA. The finding suggests that FTIR spectroscopy enables the assessment of C composition functional group buildup at different depths and ages. PMID:21403973
Paller, Vachel Gay V.; de Chavez, Emmanuel Ryan C.
2014-01-01
The extent of contamination of soils with soil transmitted helminthes (STH) eggs, particularly Toxocara, was determined in selected urban and rural towns of Laguna, Philippines. Soil samples were collected from public schools, house yards, and empty lots. Results revealed that, of the 1480 soil samples collected, 460 (31%) were positive for STH eggs. Toxocara sp. was the most prevalent (77%), followed by Ascaris sp. (11%), hookworms/strongyles/free-living nematodes (7%), and Trichuris sp. (5%). Some soil physicochemical parameters were also determined and associated with Toxocara eggs prevalence and density in soil. Results revealed that Toxocara sp. eggs were most prevalent in less acidic, relatively high temperature and high moisture soil conditions. They were also prevalent in sandy, silty, and loamy soil textures but less prevalent in clayey. No significant differences were found between depth 1 (0–5 cm) and depth 2 (6–10 cm). This study revealed that Toxocara sp. eggs are ubiquitous and the extent of contamination in soils from the selected towns of Laguna is relatively high. Hence, the data generated in this study can be used in promoting public awareness, particularly for pet owners and local health officials, for effective prevention and control of this parasitosis. PMID:25383372
Soil moisture variation patterns observed in Hand County, South Dakota
NASA Technical Reports Server (NTRS)
Jones, E. B.; Owe, M.; Schmugge, T. J. (Principal Investigator)
1981-01-01
Soil moisture data were taken during 1976 (April, June, October), 1977 (April, May, June), and 1978 (May, June, July) Hand County, South Dakota as part of the ground truth used in NASA's aircraft experiments to study the use of microwave radiometers for the remote sensing of soil moisture. The spatial variability observed on the ground during each of the sampling events was studied. The data reported are the mean gravimetric soil moisture contained in three surface horizon depths: 0 to 2.5, 0 to 5 and 0 to 10 cm. The overall moisture levels ranged from extremely dry conditions in June 1976 to very wet in May 1978, with a relatively even distribution of values within that range. It is indicated that well drained sites have to be partitioned from imperfectly drained areas when attempting to characterize the general moisture profile throughout an area of varying soil and cover type conditions. It is also found that the variability in moisture content is greatest in the 0 to 2.5 cm measurements and decreases as the measurements are integrated over a greater depth. It is also determined that the sampling intensity of 10 measurements per km is adequate to estimate the mean moisture with an uncertainty of + or - 3 percent under average moisture conditions in areas of moderate to good drainage.
Extracellular enzyme activity in a willow sewage treatment system.
Brzezinska, Maria Swiontek; Lalke-Porczyk, Elżbieta; Kalwasińska, Agnieszka
2012-12-01
This paper presents the results of studies on the activity of extra-cellular enzymes in soil-willow vegetation filter soil which is used in the post-treatment of household sewage in an onsite wastewater treatment system located in central Poland. Wastewater is discharged from the detached house by gravity into the onsite wastewater treatment system. It flows through a connecting pipe into a single-chamber septic tank and is directed by the connecting pipe to a control well to be further channelled in the soil-willow filter by means of a subsurface leaching system. Soil samples for the studies were collected from two depths of 5 cm and 1 m from three plots: close to the wastewater inflow, at mid-length of the plot and close to its terminal part. Soil samples were collected from May to October 2009. The activity of the extra-cellular enzymes was assayed by the fluorometric method using 4-methylumbelliferyl and 7-amido-4-methylcoumarin substrate. The ranking of potential activity of the assayed enzymes was the same at 5 cm and 1 m soil depths, i.e. esterase > phosphmomoesterase > leucine-aminopeptidase > β-glucosidase > α-glucosidase. The highest values of enzymatic activity were recorded in the surface layer of the soil at the wastewater inflow and decreased with increasing distance from that point.
Yu, Xing Xiu; Xui, Miao Miao; Zhao, Jin Hui; Zhang, Jia Peng; Wang, Wei; Guo, Ya Li; Xiao, Juan Hua
2018-04-01
The objective of this study was to investigate the rate of nitrogen mineralization in various soil layers (0-10, 10-20, and 20-30 cm) and its influencing factors under plastic film mulching ridge-furrow in a corn field of Wulongchi small watershed, Danjiangkou Reservoir Area. Results showed that the rate of soil ammonification decreased with soil depth during the entire maize growth period. The rate of nitrification in seedling, jointing, and heading stages decreased in the following order: 10-20 cm > 0-10 cm > 20-30 cm, while it increased with soil depth in maturation stage. The rate of soil nitrogen mineralization decreased with the increases in soil depth in the seedling, jointing and heading stages, whereas an opposite pattern was observed in maturation stage. Compared with non-filming, film mulching promoted the soil ammonification process in 0-10 cm and the soil nitrification and nitrogen mineralization processes in jointing, heading, and maturation stages in both 0-10 and 10-20 cm. However, the rates of soil nitrification and nitrogen mineralization under film mulching were much lower than those under non-filming in seedling stage. The stepwise regression analysis indicated that the main factors influencing soil nitrogen mineralization rate varied with soil depth. Soil moisture and total N content were the dominant controller for variation of soil nitrogen mineralization in 0-10 cm layer. Soil temperature, moisture, and total N content were dominant controller for that in 10-20 cm layer. Soil temperature drove the variation of soil nitrogen mineralization in 20-30 cm layer.
Duff, J.H.; Murphy, F.; Fuller, C.C.; Triska, F.J.
1998-01-01
A new method for collecting pore-water samples in sand and gravel streambeds is presented. We developed a mini drivepoint solution sampling (MINIPOINT) technique to collect pore-water samples at 2.5-cm vertical resolution. The sampler consisted of six small-diameter stainless steel drivepoints arranged in a 10-cm-diameter circular array. In a simple procedure, the sampler was installed in the streambed to preset drivepoint depths of 2.5, 5.0, 7.5, 10.0, 12.5, and 15.0 cm. Sampler performance was evaluated in the Shingobee River, Minnesota, and Pinal Creek, Arizona, by measuring the vertical gradient of chloride concentration in pore water beneath the streambed that was established by the uninterrupted injection to the stream for 3 d. Pore-water samples were withdrawn from all drivepoints simultaneously. In the first evaluation, the vertical chloride gradient was unchanged at withdrawal rates between 0.3 and 4.0 ml min-1 but was disturbed at higher rates. In the second evaluation, up to 70 ml of pore water was withdrawn from each drivepoint at a withdrawal rate of 2.5 ml min-1 without disturbing the vertical chloride gradient. Background concentrations of other solutes were also determined with MINIPOINT sampling. Steep vertical gradients were present for biologically reactive solutes such as DO, NH4/+, NO3/-, and dissolved organic C in the top 20 cm of the streambed. These detailed solute profiles in the hyporheic zone could not have been determined without a method for close interval vertical sampling that does not disturb natural hydrologic mixing between stream water and groundwater.
Simon, Nancy S.; Ingle, Sarah N.
2011-01-01
μThis study of phosphorus (P) cycling in eutrophic Upper Klamath Lake (UKL), Oregon, was conducted by the U.S. Geological Survey in cooperation with the U.S. Bureau of Reclamation. Lakebed sediments from the upper 30 centimeters (cm) of cores collected from 26 sites were characterized. Cores were sampled at 0.5, 1.5, 2.5, 3.5, 4.5, 10, 15, 20, 25, and 30 cm. Prior to freezing, water content and sediment pH were determined. After being freeze-dried, all samples were separated into greater than 63-micron (μm) particle-size (coarse) and less than 63-μm particle-size (fine) fractions. In the surface samples (0.5 to 4.5 cm below the sediment water interface), approximately three-fourths of the particles were larger than 63-μm. The ratios of the coarse particle-size fraction (>63 μm) and the fine particle-size fraction (<63 μm) were approximately equal in samples at depths greater than 10 cm below the sediment water interface. Chemical analyses included both size fractions of freeze-dried samples. Chemical analyses included determination of total concentrations of aluminum (Al), calcium (Ca), carbon (C), iron (Fe), poorly crystalline Fe, nitrogen (N), P, and titanium (Ti). Total Fe concentrations were the largest in sediment from the northern portion of UKL, Howard Bay, and the southern portion of the lake. Concentrations of total Al, Ca, and Ti were largest in sediment from the northern, central, and southernmost portions of the lake and in sediment from Howard Bay. Concentrations of total C and N were largest in sediment from the embayments and in sediment from the northern arm and southern portion of the lake in the general region of Buck Island. Concentrations of total C were larger in the greater than 63-μm particle-size fraction than in the less than 63-μm particle-size fraction. Sediments were sequentially extracted to determine concentrations of inorganic forms of P, including loosely sorbed P, P associated with poorly crystalline Fe oxides, and P associated with mineral phases. The difference between the concentration of total P and sum of the concentrations of inorganic forms of P is referred to as residual P. Residual P was the largest fraction of P in all of the sediment samples. In UKL, the correlation between concentrations of total P and total Fe in sediment is poor (R2<0.1). The correlation between the concentrations of total P and P associated with poorly crystalline Fe oxides is good (R2=0.43) in surface sediment (0.5-4.5 cm below the sediment water interface) but poor (R2<0.1) in sediments at depths between 10 cm and 30 cm. Phosphorus associated with poorly crystalline Fe oxides is considered bioavailable because it is released when sediment conditions change from oxidizing to reducing, which causes dissolution of Fe oxides.
A quantile count model of water depth constraints on Cape Sable seaside sparrows
Cade, B.S.; Dong, Q.
2008-01-01
1. A quantile regression model for counts of breeding Cape Sable seaside sparrows Ammodramus maritimus mirabilis (L.) as a function of water depth and previous year abundance was developed based on extensive surveys, 1992-2005, in the Florida Everglades. The quantile count model extends linear quantile regression methods to discrete response variables, providing a flexible alternative to discrete parametric distributional models, e.g. Poisson, negative binomial and their zero-inflated counterparts. 2. Estimates from our multiplicative model demonstrated that negative effects of increasing water depth in breeding habitat on sparrow numbers were dependent on recent occupation history. Upper 10th percentiles of counts (one to three sparrows) decreased with increasing water depth from 0 to 30 cm when sites were not occupied in previous years. However, upper 40th percentiles of counts (one to six sparrows) decreased with increasing water depth for sites occupied in previous years. 3. Greatest decreases (-50% to -83%) in upper quantiles of sparrow counts occurred as water depths increased from 0 to 15 cm when previous year counts were 1, but a small proportion of sites (5-10%) held at least one sparrow even as water depths increased to 20 or 30 cm. 4. A zero-inflated Poisson regression model provided estimates of conditional means that also decreased with increasing water depth but rates of change were lower and decreased with increasing previous year counts compared to the quantile count model. Quantiles computed for the zero-inflated Poisson model enhanced interpretation of this model but had greater lack-of-fit for water depths > 0 cm and previous year counts 1, conditions where the negative effect of water depths were readily apparent and fitted better with the quantile count model.
Catchment-scale snow depth monitoring with balloon photogrammetry
NASA Astrophysics Data System (ADS)
Durand, M. T.; Li, D.; Wigmore, O.; Vanderjagt, B. J.; Molotch, N. P.; Bales, R. C.
2016-12-01
Field campaigns and permanent in-situ facilities provide extensive measurements of snowpack properties at catchment (or smaller) scales, and have consistently improved our understanding of snow processes and the estimation of snow water resources. However, snow depth, one of the most important snow states, has been measured almost entirely with discrete point-scale samplings in field measurements; spatiotemporally continuous snow depth measurements are nearly nonexistent, mainly due to the high cost of airborne flights and the ban of Unmanned Aerial Systems in many areas (e.g. in all the national parks). In this study, we estimate spatially continuous snow depth from photogrammetric reconstruction of aerial photos taken from a weather balloon. The study was conducted in a 0.2 km2 watershed in Wolverton, Sequoia National Park, California. We tied a point-and-shoot camera on a helium-inflated weather balloon to take aerial images; the camera was scripted to automatically capture images every 3 seconds and to record the camera position and orientation at the imaging times using a built-in GPS. With the 2D images of the snow-covered ground and the camera position and orientation data, the 3D coordinates of the snow surface were reconstructed at 10 cm resolution using photogrammetry software PhotoScan. Similar measurements were taken for the snow-free ground after snowmelt, and the snow depth was estimated from the difference between the snow-on and snow-off measurements. Comparing the photogrammetric-estimated snow depths with the 32 manually measured depths, taken at the same time as the snow-on balloon flight, we find the RMSE of the photogrammetric snow depth is 7 cm, which is 2% of the long-term peak snow depth in the study area. This study suggests that the balloon photogrammetry is a repeatable, economical, simple, and environmental-friendly method to continuously monitor snow at small-scales. Spatiotemporally continuous snow depth could be regularly measured in future field measurements to supplement traditional snow property observations. In addition, since the process of collecting and processing balloon photogrammetry data is straightforward, the photogrammetric snow depth could be shared with the public in real time using our cloud platform that is currently under development.
Dependency of Ecosystem Respiration in a Cool Temperate Bog on Peat Temperature and Water Table
NASA Astrophysics Data System (ADS)
Moore, T.; Lafleur, P.; Roulet, N.; Frolking, S.
2003-12-01
We measured ecosystem respiration (ER) from nighttime net ecosystem exchange of carbon dioxide determined from an eddy covariance tower located in a large ombrotrophic bog near Ottawa, Canada. Measurements were made from May to October over 5 years, 1998 to 2002. Ecosystem respiration ranged from <0.05 mg CO2/m2/s in spring (May) and late fall (late October) to 0.10-0.15 mg CO2/m2/s during the summer (July-August). As anticipated, there was a strong relationship between ER and peat temperatures, such as at a depth of 5 cm (r2 = 0.63). Q10 over 5° to 15° C varied from 2.2 to 4.2 depending upon the choice of temperature level and location within a hummock or hollow. Unexpected for a wetland ecosystem, there was only a weak relationship between ER and water table position (r2 = 0.11). Comparison of ER in early and late summer, 2002 with similar surface temperature revealed no significant difference in ER. A laboratory incubation of peat cores at different moisture contents showed that CO2 production was reduced by drying in the surface samples, but there was little decrease in samples from below a depth of 30 cm. We believe that the lack of correlation between ER and water table position in this ecosystem results from an increase in CO2 production at depth compensating a decrease in production of CO2 by heterotrophic respiration in the near surface layers and autotrophic respiration in the moss community.
Changes in Soil Carbon and Moisture over the Six Year after Thinning of a Natural Oak Forest
NASA Astrophysics Data System (ADS)
Kim, S.; Han, S. H.; Li, G.; Chang, H.; Kim, H. J.; Son, Y.
2017-12-01
The objective of this study was to assess the effects of thinning on soil carbon (C) in a natural oak forest in central Korea. The study forest received three different thinning treatments consisting of un-thinned control (UTC) and two thinning intensities (15% and 30% basal area reductions) in March in 2010. Precipitation near the study forest maintained the normal level from 2010 to 2013 (average 1,400 mm year-1), but abnormally decreased from 2014 to 2016 (average 800 mm year-1). To measure total soil C stock and soil moisture conditions, soils were collected from 0-10, 10-20, and 20-30 cm depths in June, 2010, 2013, and 2016, respectively. Soil microbial biomass C and C-cycling enzymes (β-glucosidase, cellobiohydrolase, β-xylosidase, phenol oxidase, and peroxidase) at 0-10 cm depth were determined in June, 2016. Total soil C stock at 0-30 cm depth increased throughout the study period, whereas soil moisture decreased at all depths from 2013 to 2016. Both thinning treatments had higher total soil C stock at 0-30 cm depth and moisture at 10-20 and 20-30 cm depths than the UTC in 2013 and 2016, whereas the treatments showed no effects in 2010. Microbial biomass C at 0-10 cm depth in 2016 also increased because of the thinning treatments, which was positively correlated to total soil C stock. However, any effects of thinning on C-cycling enzymes were not significant. Our results indicate that thinning could contribute to relieving the impacts of decreasing precipitation by enhancing the storage of soil moisture. Furthermore, the change in total soil C stock under thinning might result from the stimulation of microbial potential for retaining organic C as a form of biomass. This study was supported by the Ministry of Environment (2014001810002) and the National Institute of Forest Science of Korea (FM0101-2009-01).
DOE Office of Scientific and Technical Information (OSTI.GOV)
LIU, B; Zhu, T
Purpose: The dose in the buildup region of a photon beam is usually determined by the transport of the primary secondary electrons and the contaminating electrons from accelerator head. This can be quantified by the electron disequilibrium factor, E, defined as the ratio between total dose and equilibrium dose (proportional to total kerma), E = 1 in regions beyond buildup region. Ecan be different among accelerators of different models and/or manufactures of the same machine. This study compares E in photon beams from different machine models/ Methods: Photon beam data such as fractional depth dose curve (FDD) and phantom scattermore » factors as a function of field size and phantom depth were measured for different Linac machines. E was extrapolated from these fractional depth dose data while taking into account inverse-square law. The ranges of secondary electron were chosen as 3 and 6 cm for 6 and 15 MV photon beams, respectively. The field sizes range from 2x2 to 40x40 cm{sup 2}. Results: The comparison indicates the standard deviations of electron contamination among different machines are about 2.4 - 3.3% at 5 mm depth for 6 MV and 1.2 - 3.9% at 1 cm depth for 15 MV for the same field size. The corresponding maximum deviations are 3.0 - 4.6% and 2 - 4% for 6 and 15 MV, respectively. Both standard and maximum deviations are independent of field sizes in the buildup region for 6 MV photons, and slightly decreasing with increasing field size at depths up to 1 cm for 15 MV photons. Conclusion: The deviations of electron disequilibrium factor for all studied Linacs are less than 3% beyond the depth of 0.5 cm for the photon beams for the full range of field sizes (2-40 cm) so long as they are from the same manufacturer.« less
Soil Organic Carbon Estimation and Mapping Using "on-the-go" VisNIR Spectroscopy
NASA Astrophysics Data System (ADS)
Brown, D. J.; Bricklemyer, R. S.; Christy, C.
2007-12-01
Soil organic carbon (SOC) and other soil properties related to carbon sequestration (eg. soil clay content and mineralogy) vary spatially across landscapes. To cost effectively capture this variability, new technologies, such as Visible and Near Infrared (VisNIR) spectroscopy, have been applied to soils for rapid, accurate, and inexpensive estimation of SOC and other soil properties. For this study, we evaluated an "on the go" VisNIR sensor developed by Veris Technologies, Inc. (Salinas, KS) for mapping SOC, soil clay content and mineralogy. The Veris spectrometer spanned 350 to 2224 nm with 8 nm spectral resolution, and 25 spectra were integrated every 2 seconds resulting in 3 -5 m scanning distances on the ground. The unit was mounted to a mobile sensor platform pulled by a tractor, and scanned soils at an average depth of 10 cm through a quartz-sapphire window. We scanned eight 16.2 ha (40 ac) wheat fields in north central Montana (USA), with 15 m transect intervals. Using random sampling with spatial inhibition, 100 soil samples from 0-10 cm depths were extracted along scanned transects from each field and were analyzed for SOC. Neat, sieved (<2 mm) soil sample materials were also scanned in the lab using an Analytical Spectral Devices (ASD, Boulder, CO, USA) Fieldspec Pro FR spectroradiometer with a spectral range of 350-2500 and spectral resolution of 2-10 nm. The analyzed samples were used to calibrate and validate a number of partial least squares regression (PLSR) VisNIR models to compare on-the-go scanning vs. higher spectral resolution laboratory spectroscopy vs. standard SOC measurement methods.
Tracheal palpation to assess endotracheal tube depth: an exploratory study.
McKay, William P; Klonarakis, Jim; Pelivanov, Vladko; O'Brien, Jennifer M; Plewes, Chris
2014-03-01
Correct placement of the endotracheal tube (ETT) occurs when the distal tip is in mid-trachea. This study compares two techniques used to place the ETT at the correct depth during intubation: tracheal palpation vs placement at a fixed depth at the patient's teeth. With approval of the Research Ethics Board, we recruited American Society of Anesthesiologists physical status I-II patients scheduled for elective surgery with tracheal intubation. Clinicians performing the tracheal intubations were asked to "advance the tube slowly once the tip is through the cords". An investigator palpated the patient's trachea with three fingers spread over the trachea from the larynx to the sternal notch. When the ETT tip was felt in the sternal notch, the ETT was immobilized and its position was determined by fibreoptic bronchoscopy. The position of the ETT tip was compared with our hospital standard, which is a depth at the incisors or gums of 23 cm for men and 21 cm for women. The primary outcome was the incidence of correct placement. Correct placement of the ETT was defined as a tip > 2.5 cm from the carina and > 3.5 cm below the vocal cords. Movement of the ETT tip was readily palpable in 77 of 92 patients studied, and bronchoscopy was performed in 85 patients. Placement by tracheal palpation resulted in more correct placements (71 [77%]; 95% confidence interval [CI] 74 to 81) than hospital standard depth at the incisors or gums (57 [61%]; 95% CI 58 to 66) (P = 0.037). The mean (SD) placement of the ETT tip in palpable subjects was 4.1 (1.7) cm above the carina, 1.9 cm (1.5-2.3 cm) below the ideal mid-tracheal position. Tracheal palpation requires no special equipment, takes only a few seconds to perform, and may improve ETT placement at the correct depth. Further studies are warranted.
TDR Technique for Estimating the Intensity of Evapotranspiration of Turfgrasses
Janik, Grzegorz; Wolski, Karol; Daniel, Anna; Albert, Małgorzata; Wilczek, Andrzej; Szyszkowski, Paweł; Walczak, Amadeusz
2015-01-01
The paper presents a method for precise estimation of evapotranspiration of selected turfgrass species. The evapotranspiration functions, whose domains are only two relatively easy to measure parameters, were developed separately for each of the grass species. Those parameters are the temperature and the volumetric moisture of soil at the depth of 2.5 cm. Evapotranspiration has the character of a modified logistic function with empirical parameters. It assumes the form ETR(θ 2.5 cm, T 2.5 cm) = A/(1 + B · e −C·(θ2.5 cm · T2.5 cm)), where: ETR(θ 2.5 cm, T 2.5 cm) is evapotranspiration [mm·h−1], θ 2.5 cm is volumetric moisture of soil at the depth of 2.5 cm [m3·m−3], T 2.5 cm is soil temperature at the depth of 2.5 cm [°C], and A, B, and C are empirical coefficients calculated individually for each of the grass species [mm·h1], and [—], [(m3·m−3·°C)−1]. The values of evapotranspiration calculated on the basis of the presented function can be used as input data for the design of systems for the automatic control of irrigation systems ensuring optimum moisture conditions in the active layer of lawn swards. PMID:26448964
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Grady, K; Davis, S D; Papaconstadopoulos, P
2014-08-15
A PTW microLion liquid ionization chamber and an Exradin A1SL air-filled ionization chamber have been modeled using the egs-chamber user code of the EGSnrc system to determine their perturbation effects in water in a 5 × 5 cm{sup 2} 18 MV photon beam. A model of the Varian CL21EX linear accelerator was constructed using the BEAMnrc Monte Carlo code, and was validated by comparing measured PDDs and profiles from the microLion and A1SL chambers to calculated results that included chamber models. Measured PDDs for a 5 × 5 cm{sup 2} field for the microLion chamber agreed with calculations to withinmore » 1.5% beyond a depth of 0.5 cm, and the A1SL PDDs agreed within 1.0% beyond 1.0 cm. Measured and calculated profiles at 10 cm depth agreed within 1.0% for both chambers inside the field, and within 4.0% near the field edge. Local percent differences increased up to 15% at 4 cm outside the field. The ratio of dose to water in the absence of the chamber relative to dose in the chamber's active volume as a function of off-axis distance was calculated using the egs-chamber correlated sampling technique. The dose ratio was nearly constant inside the field and consistent with the stopping power ratios of water to detector material, but varied up to 3.3% near the field edge and 5.2% at 4 cm outside the field. Once these perturbation effects are fully characterized for more field sizes and detectors, they could be applied to clinical water tank measurements for improved dosimetric accuracy.« less
Occurrence of microplastics in the beach sand of the Chinese inner sea: the Bohai Sea.
Yu, Xubiao; Peng, Jinping; Wang, Jundong; Wang, Kan; Bao, Shaowu
2016-07-01
The occurrence of microplastics in the beach sand of the Bohai Sea was investigated for the first time. The Bohai Sea is the largest Chinese inner sea and its coastal region is one of the most densely urbanized and industrialized zones of China. Samples from three costal sites (i.e., Bijianshan, Xingcheng and Dongdaihe) were collected, quantified and identified for microplastic analysis. Effects of sample depth and tourism activity were investigated. Surface samples (2 cm) contained higher microplastic concentrations than deep samples (20 cm). Samples from the bathing beach exhibited higher microplastic concentrations than the non-bathing beach, suggesting the direct contribution of microplastics from tourism activity. Of eight types of microplastics that were found, PEVA (polyethylene vinyl acetate), LDPE (light density polyethylene) and PS (polystyrene) were the largest in abundances. Moreover, the non-plastic items from samples were analyzed and results revealed that the majority abundance of the observed non-plastics were viscose cellulose fibers. Further studies are required to evaluate the environmental hazards of microplastics, especially as they may "act as a contaminant transporter" to the Bohai Sea ecosystem. Copyright © 2016 Elsevier Ltd. All rights reserved.
Development and evaluation of a boat-mounted RFID antenna for monitoring freshwater mussels
Fischer, Jesse R.; Neebling, Travis E.; Quist, Michael C.
2012-01-01
Development of radio frequency identification (RFID) technology and passive integrated transponder (PIT) tags has substantially increased the ability of researchers and managers to monitor populations of aquatic organisms. However, use of transportable RFID antenna systems (i.e., backpack-mounted) is currently limited to wadeable aquatic environments (<1.4 m water depth). We describe the design, construction, and evaluation of a boat-mounted RFID antenna to detect individually PIT-tagged benthic aquatic organisms (mussels). We evaluated the effects of tag orientation on detection distances in water with a 32-mm half-duplex PIT tag. Detection distances up to 50 cm from the antenna coils were obtained, but detection distance was dependent on tag orientation. We also evaluated detection distance of PIT tags beneath the sediment to simulate detection of burrowing mussels with 23- and 32-mm tags. In sand substrate, the maximum detection distance varied from 3.5 cm and 4.5 cm (vertical tag orientation) to 24.7 cm and 39.4 cm (45° tag orientation) for the 23- and 32-mm PIT tags, respectively. Our results suggest a 1.4-m total detection width for tagged mussels on the substrate surface by the boat-mounted antenna system regardless of tag orientation. However, burrowed mussels may require multiple passes to increase detection that would be influenced by depth, tag orientation, and tag size. Construction of the boat-mounted antenna was relatively low in cost (<500 USD) and had several advantages (less labor and time intensive, increased safety) over traditional mussel sampling techniques (diving, snorkeling) in nonwadeable habitats.
Blaha, U; Basavaiah, N; Deenadayalan, K; Borole, D V; Mohite, R D
2011-01-15
The onset and rise of urban and industrial pollution in the Mumbai region was reconstructed from an anthropogenically contaminated mudflat sediment profile from the adjacent Thane creek using magnetic parameters, polycyclic aromatic hydrocarbon (PAH) data, metal contents, and the (210)Pb dating technique. The 1.8 m vertical section at Airoli (Navi Mumbai) reveals an increase of magnetic susceptibility (χ) from background values of (20-50) to (75-100) × 10(-8) [m(3) kg(-1)] in the anthropogenically affected zone above ∼93 cm. A sharp rise of χ from (75-100) to (130-215) × 10(-8) [m(3) kg(-1)] subdivides the anthropogenically affected zone at a depth of ∼63 cm. Characterization with rock magnetic parameters (SIRM, Soft IRM, and S-ratio) reveals a significant contribution of ferri(o)magnetic phases in the upper zone. Based on the magnetic classification sampling intervals for cost-intensive PAH and metal analyses were determined. Steadily increasing contents of PAH and metals of anthropogenic origin are observed above the boundary depth at ∼93 cm. A sediment accumulation rate of 1.2 ± 0.3 cm/yr provided by (210)Pb dating dates the ∼63 cm boundary to 1951. Increasing industrial activity, including the establishment of a coal-fired power plant in 1956, and refineries between 1955 and 1960, correlates well with the substantial increase of χ, PAH, and metal contents. Scanning electron microscopy (SEM) investigation on magnetic extracts from the contaminated zone reveals the presence of magnetic spherules derived from industrial high-temperature processes.
NASA Astrophysics Data System (ADS)
Kim, In-Sup; Park, Duck-Gun; Byun, Thak-Sang; Hong, Jun-Hwa
1999-12-01
Effects of neutron dose on the mechanical and magnetic properties of a SA508-3 nuclear pressure vessel steel were investigated by using ball indentation test technique and magnetic Barkhausen noise (BN) measurements. The samples were irradiated in a research reactor up to 1018n/cm2 (E>1 MeV) at 70 °C. The yield strength and flow curve were evaluated from the indentation load-depth curves. The change of mechanical properties showed characteristic trend with respect to neutron dose, namely near plateau, rapid increase and slow increase. On the other hand, the BN varied in a reverse manner, a slow decrease up to a neutron dose of 1016n/cm2, followed by a rapid decrease up to a dose of 1018n/cm2.
Coutelot, F; Sappin-Didier, V; Keller, C; Atteia, O
2014-12-01
The unsaturated zone plays a major role in elemental fluxes in terrestrial ecosystems. A representative chemical analysis of soil pore water is required for the interpretation of soil chemical phenomena and particularly to assess Trace Elements (TEs) mobility. This requires an optimal sampling system to avoid modification of the extracted soil water chemistry and allow for an accurate estimation of solute fluxes. In this paper, the chemical composition of soil solutions sampled by Rhizon® samplers connected to a standard syringe was compared to two other types of suction probes (Rhizon® + vacuum tube and Rhizon® + diverted flow system). We investigated the effects of different vacuum application procedures on concentrations of spiked elements (Cr, As, Zn) mixed as powder into the first 20 cm of 100-cm columns and non-spiked elements (Ca, Na, Mg) concentrations in two types of columns (SiO2 sand and a mixture of kaolinite + SiO2 sand substrates). Rhizon® was installed at different depths. The metals concentrations showed that (i) in sand, peak concentrations cannot be correctly sampled, thus the flux cannot be estimated, and the errors can easily reach a factor 2; (ii) in sand + clay columns, peak concentrations were larger, indicating that they could be sampled but, due to sorption on clay, it was not possible to compare fluxes at different depths. The different samplers tested were not able to reflect the elemental flux to groundwater and, although the Rhizon® + syringe device was more accurate, the best solution remains to be the use of a lysimeter, whose bottom is kept continuously at a suction close to the one existing in the soil.
A sampler for coring sediments in rivers and estuaries
Prych, Edmund A.; Hubbell, D.W.
1966-01-01
A portable sampler developed to core submerged unconsolidated sediments collects cores that are 180 cm long and 4.75cm in diameter. The sampler is used from a 12-m boat in water depths up to 20 m and in flow velocities up to 1.5m per second to sample river and estuarine deposits ranging from silty clay to medium sand. Even in sand that cannot be penetrated with conventional corers, the sampler achieves easy penetration through the combined application of vibration, suction, and axial force. A piston in the core barrel creates suction, and the suspension system is arranged so that tension on the support cable produces both a downward force on the core barrel and a lateral support against overturning. Samples are usually retained because of slight compaction in the driving head; as a precaution, however, the bottom of the core barrel is covered by a plate that closes after the barrel is withdrawn from the bed. Tests show that sample-retainers placed within the driving head restrict penetration and limit core lengths. Stratification within cores is disrupted little as a result of the sampling process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsuo, Y.S.; Deng, X.J.; Smith, E.B.
We have studied the rehydrogenation and post-hydrogenation of a-Si:H using a Kaufman ion beam source. The achievement of an air-mass-one (AM1), photo-to-dark conductivity ratio of 5.6 x 10/sup 5/ with a rehydrogenated a-Si:H sample was reported earlier (Y. S. Tsuo, E. B. Smith, and S. K. Deb, Appl. Phys. Lett. 51, 1436 (1987)). In this communication we report recent results of the rehydrogenation study and new results of a study of the post-hydrogenation of amorphous silicon deposited by glow discharge at 480 /sup 0/C. AM1 photo-to-dark conductivity ratios as high as 9.5 x 10/sup 6/ (with a photoconductivity of 8.6more » x 10/sup -6/ ..cap omega.. cm/sup -1/) and 1.1 x 10/sup 5/ (with a photoconductivity of 6.3 x 10/sup -6/ ..cap omega.. cm/sup -1/) have been obtained with a rehydrogenated sample and a post-hydrogenated sample, respectively. We also report the results of the hydrogen depth profile and photostability measurements of these samples.« less
Intramuscular Heating Characteristics of Multihour Low-Intensity Therapeutic Ultrasound.
Rigby, Justin H; Taggart, Rebecca M; Stratton, Kelly L; Lewis, George K; Draper, David O
2015-11-01
The heating characteristics of a stationary device delivering sustained acoustic medicine with low-intensity therapeutic ultrasound (LITUS) are unknown. To measure intramuscular (IM) heating produced by a LITUS device developed for long-duration treatment of musculoskeletal injuries. Controlled laboratory study. University research laboratory. A total of 26 healthy volunteers (16 men, 10 women; age = 23.0 ± 2.1 years, height = 1.74 ± 0.09 m, mass = 73.48 ± 14.65 kg). Participants were assigned randomly to receive active (n = 20) or placebo (n = 6) LITUS at a frequency of 3 MHz and an energy intensity of 0.132 W/cm(2) continuously for 3 hours with a single transducer or dual transducers on the triceps surae muscle. We measured IM temperature using thermocouples inserted at 1.5- and 3-cm depths into muscle. Temperatures were recorded throughout treatment and 30 minutes posttreatment. We used 2-sample t tests to determine the heating curve of the LITUS treatment and differences in final temperatures between depth and number of transducers. A mild IM temperature increase of 1 °C was reached 10 ± 5 minutes into the treatment, and a more vigorous temperature increase of 4 °C was reached 80 ± 10 minutes into the treatment. The maximal steady-state IM temperatures produced during the final 60 minutes of treatment at the 1.5-cm depth were 4.42 °C ± 0.08 °C and 3.92 °C ± 0.06 °C using 1 and 2 transducers, respectively. At the 3.0-cm depth, the maximal steady-state IM temperatures during the final 60 minutes of treatment were 3.05 °C ± 0.09 °C and 3.17 °C ± 0.05 °C using 1 and 2 transducers, respectively. We observed a difference between the temperatures measured at each depth (t78 = -2.45, P = .02), but the number of transducers used to generate heating was not different (t78 = 1.79, P = .08). The LITUS device elicited tissue heating equivalent to traditional ultrasound but could be sustained for multiple hours. It is a safe and effective alternative tool for delivering therapeutic ultrasound and exploring dosimetry for desired physiologic responses.
NASA Astrophysics Data System (ADS)
Abrougui, Khaoula; Khemis, Chiheb; Cornelis, Wim; Chehaibi, Sayed
2017-04-01
To evaluate the impact of tillage systems on soil environment, it is necessary to quantify the modifications to physical, chemical and biological properties. The objective of this study was to evaluate the short-term impact of different tillage systems in organic farming on soil resistance to penetration, bulk density, microbial biomass, organic matter, and carbon and nitrogen stocks. The tillage systems included conventional tillage (CT), 'agronomic' tillage (AT) and superficial (shallow) tillage (ST), with ST being a non-inversion practice. Tests were carried out on alluvial poorly developed soil (10% clay, 57% silt, 33% sand) in the Higher Institute of Agronomy of Chott Meriem (Tunisia). The soil resistance to penetration was measured with a penetrologger till 50 cm depth along with soil water content measurements. Bulk density (g cm-3) was measured by a cylinder densimeter on samples collected every 10 cm till 30 cm depth. Microbial biomass is a determining factor in soil biological quality because of its role in the regulation, transformation and storage of nutrients. To count the germs, we used the method of enumeration after incorporation into agar. The Walkley and Black method was used for the determination of soil organic matter, and Kjeldahl's for the analysis of total nitrogen content. Carbon and nitrogen stocks (t ha-1) were then calculated as a function of carbon and nitrogen contents, bulk density and the horizon depth. Shallow tillage without inversion ST showed the best values in terms of soil resistance and bulk density. Indeed, soil resistance was 3.1, 2.4 and 2 MPa under CT, AT and ST respectively at 40 cm depth. By adopting this conservation technique, we noted an increase in organic matter with 53% as compared to CT (from 1.9% to 2.9%) and thus a significant increase in C (from 12.5 to 14.5 g kg-1) and N (from 5 to 8 g kg-1) stocks, particularly in the topsoil. In fact, the increase of organic matter in the topsoil constituted a reserve of essential nutrients which allowed the development and boosted the activity of living beings from 756 to 780 UFC g-1 x 105 in the topsoil as compared to CT. The overall increase of C stocks in the topsoil for ST significantly contributes to carbon sequestration.
Changes in Root Decomposition Rates Across Soil Depths
NASA Astrophysics Data System (ADS)
Hicks Pries, C.; Porras, R. C.; Castanha, C.; Torn, M. S.
2016-12-01
Over half of global soil organic carbon (SOC) is stored in subsurface soils (>30 cm). Turnover times of soil organic carbon (SOC) increases with depth as evidenced by radiocarbon ages of 1,000 to more than 10,000 years in many deep soil horizons but the reasons for this increase are unclear. Many factors that potentially control SOC decomposition change with depth such as increased protection of SOC in aggregates or organo-mineral complexes and increased spatial heterogeneity of SOC "hotspots" like roots, which limit the accessibility of SOC to microbes. Lower concentrations of organic matter at depth may inhibit microbial activity due to energy limitation, and the microbial community itself changes with depth. To investigate how SOC decomposition differs with depth, we inserted a 13C-labeled fine root substrate into three depths (15, 50, and 90 cm) in a coniferous forest Alfisol and measured the root carbon remaining in particulate (>2 mm), bulk (< 2mm), free light, and mineral soil fractions over 2.5 years. We also characterized how the microbial community and SOC changed with depth. Initial rates of decomposition were unaffected by soil depth—50% of root carbon was lost from all depths within the first year. However, after 2.5 years, decomposition rates were affected by soil depth with only 15% of the root carbon remaining at 15 cm while 35% remained at 90 cm. Microbial communities, based on phospholipid fatty acid analysis, changed with depth—fungal biomarkers decreased whereas actinomycetes biomarkers increased. However, the preferences of different microbial groups for the 13C-labeled root carbon were consistent with depth. In contrast, the amount of mineral-associated SOC did not change with depth. Thus, decreased decomposition rates in this deep soil are not due to mineral associations limiting SOC availability, but may instead be due to changes in microbial communities, particularly in the microbes needed to carry out the later stages of root decomposition.
Sandbox experiments on Uraninite Ore: ERT and SP measurments.
NASA Astrophysics Data System (ADS)
Singh, R. K.
2015-12-01
Nuclear energy, considering its own intrinsic merits, would be a leading source for meeting the energy requirement in present and future scenario. Concealed Uranium deposits under sedimentary cover, with poor surface indications calls for reorientation of survey with large inputs involving integrated geophysical approach. Sand Box experiments have been carried out over Uraninite ore. The tank is a glass fish tank (height 39 cm, length 75 cm, width 30 cm). It was filled with sand up to 35 cm high. The sand was saturated from below to minimize the entrapment of the gas bubbles. The average size for sand grains is ~ 0.295mm. The formation factor of the sand is 3.5, with a negligible surface conductivity because of the coarse nature of the sand grains. The dimension of considered Uraninite ore sample is 4cm x 4cm x 4cm. The depth of top of the ore sample is kept at 3cm. In this paper both resistivity and self-potential measurements were carried out for possible detection of Uraninite. The resistivity measurements were made with 64 non-polarizable electrodes using Electrical Resistivity Tomography (ERT) equipment of FlashRes Universal developed by ZZ Resistivity Imaging Pty. Ltd. We have used screws of length 3cm as electrodes. The separation between these electrodes are ~ 1cm. The resistivity tomography results clearly outlines the target Uraninite body. The resistivity tomography results also detects small heterogeneities associated with air bubbles possibly due to unsaturated pore spaces. SP measurements were made using two non-polarizing Pb/PbCl2 electrodes and a Fluke 289 voltmeter (sensitivity 0.001 mV, internal impedance 100 MOhm). The reference electrode was located on the corner of the sandbox. The other electrode was used to scan the electrical potential at the surface of the sand. SP measurements were made with a spacing of 3 cm over the same ERT profile. The SP results also shows a dip (or a low SP anomaly) over the target ore body sample. Thus, both SP and ERT results show the presence of Uraninite and could be used on the routine basis for possible detection of Uraninite.
Zhi-Kui, Kou; Zhi-Sheng, Zhang; Jin-Ping, Wang; Ming-Li, Cai; Cou-Gui, Cao
2012-01-01
Quantifying carbon (C) sequestration in paddy soils is necessary to help better understand the effect of agricultural practices on the C cycle. The objective of the present study was to assess the effects of tillage practices [conventional tillage (CT) and no-tillage (NT)] and the application of nitrogen (N) fertilizer (0 and 210 kg N ha−1) on fluxes of CH4 and CO2, and soil organic C (SOC) sequestration during the 2009 and 2010 rice growing seasons in central China. Application of N fertilizer significantly increased CH4 emissions by 13%–66% and SOC by 21%–94% irrespective of soil sampling depths, but had no effect on CO2 emissions in either year. Tillage significantly affected CH4 and CO2 emissions, where NT significantly decreased CH4 emissions by 10%–36% but increased CO2 emissions by 22%–40% in both years. The effects of tillage on the SOC varied with the depth of soil sampling. NT significantly increased the SOC by 7%–48% in the 0–5 cm layer compared with CT. However, there was no significant difference in the SOC between NT and CT across the entire 0–20 cm layer. Hence, our results suggest that the potential of SOC sequestration in NT paddy fields may be overestimated in central China if only surface soil samples are considered. PMID:22574109
Li, Yuan; Niu, Wenquan; Dyck, Miles; Wang, Jingwei; Zou, Xiaoyang
2016-01-01
This study investigated the effects of 4 aeration levels (varied by injection of air to the soil through subsurface irrigation lines) at two subsurface irrigation line depths (15 and 40 cm) on plant growth, yield and nutritional quality of greenhouse tomato. In all experiments, fruit number, width and length, yield, vitamin C, lycopene and sugar/acid ratio of tomato markedly increased in response to the aeration treatments. Vitamin C, lycopene, and sugar/acid ratio increased by 41%, 2%, and 43%, respectively, in the 1.5 times standard aeration volume compared with the no-aeration treatment. An interaction between aeration level and depth of irrigation line was also observed with yield, fruit number, fruit length, vitamin C and sugar/acid ratio of greenhouse tomato increasing at each aeration level when irrigation lines were placed at 40 cm depth. However, when the irrigation lines were 15 cm deep, the trend of total fruit yields, fruit width, fruit length and sugar/acid ratio first increased and then decreased with increasing aeration level. Total soluble solids and titrable acid decreased with increasing aeration level both at 15 and 40 cm irrigation line placement. When all of the quality factors, yields and economic benefit are considered together, the combination of 40 cm line depth and “standard” aeration level was the optimum combination. PMID:27995970
Hsu, Shu-Hui; Kulasekere, Ravi; Roberson, Peter L
2010-08-05
Film calibration is time-consuming work when dose accuracy is essential while working in a range of photon scatter environments. This study uses the single-target single-hit model of film response to fit the calibration curves as a function of calibration method, processor condition, field size and depth. Kodak XV film was irradiated perpendicular to the beam axis in a solid water phantom. Standard calibration films (one dose point per film) were irradiated at 90 cm source-to-surface distance (SSD) for various doses (16-128 cGy), depths (0.2, 0.5, 1.5, 5, 10 cm) and field sizes (5 × 5, 10 × 10 and 20 × 20 cm²). The 8-field calibration method (eight dose points per film) was used as a reference for each experiment, taken at 95 cm SSD and 5 cm depth. The delivered doses were measured using an Attix parallel plate chamber for improved accuracy of dose estimation in the buildup region. Three fitting methods with one to three dose points per calibration curve were investigated for the field sizes of 5 × 5, 10 × 10 and 20 × 20 cm². The inter-day variation of model parameters (background, saturation and slope) were 1.8%, 5.7%, and 7.7% (1 σ) using the 8-field method. The saturation parameter ratio of standard to 8-field curves was 1.083 ± 0.005. The slope parameter ratio of standard to 8-field curves ranged from 0.99 to 1.05, depending on field size and depth. The slope parameter ratio decreases with increasing depth below 0.5 cm for the three field sizes. It increases with increasing depths above 0.5 cm. A calibration curve with one to three dose points fitted with the model is possible with 2% accuracy in film dosimetry for various irradiation conditions. The proposed fitting methods may reduce workload while providing energy dependence correction in radiographic film dosimetry. This study is limited to radiographic XV film with a Lumisys scanner.
Impact of land management on soil structure and soil hydraulic properties
NASA Astrophysics Data System (ADS)
Kodesova, Radka; Jirku, Veronika; Nikodem, Antonin; Muhlhanselova, Marcela; Zigova, Anna
2010-05-01
Study is focused on a comparison of a soil structure and soil hydraulic properties within soil profiles of a same soil type under different land management. Study was performed in Haplic Luvisol in Hnevceves the Czech Republic. Two soil profiles, which were in close distance from each other, were chosen: 1. under the conventional tillage, 2. under the permanent (30 years) grass cover. Soil sampling and field experiments were carried out immediately after the harvest of winter barley in 2008. The micromorphological images were used to evaluate the soil structure of all Ap, Bt1, Bt2 and C diagnostic horizons. The hydraulic properties of the diagnostic horizons were studied in the laboratory using multistep outflow experiments performed on the undisturbed 100-cm3 soil samples. A tension disc infiltrometer (with a disc radius of 10 cm) and minidisc tension infiltrometers (with a disc radius of 2.2 cm) were used to measure cumulative water infiltration under unsaturated conditions created using a pressure head of -2 cm. Measurements were performed at a depths of 5, 45, 75 and 110 cm, which corresponded to the Ap, Bt1, Bt2 and C horizons of studied Haplic Luvisol at both locations. The Guelph permeameter was used to measure cumulative water flux under surface ponding conditions. The depth of the drilled well was 10, 50, 80 and 115 cm, the well radius was 3 cm, and the well ponding depth was 5 cm. Both tests were used to evaluate hydraulic conductivity (K for h=-2cm, and Ks) values. Results showed, that while properties in the Bt2 and C horizons of both soil profiles were relatively similar, properties in the Ap and Bt1 horizons were different. The fraction of gravitational pores (which may cause preferential flow) in the Ap and Bt1 horizons of the soil profile under the convectional tillage was large than those in the Ap and Bt1 horizons of the soil profile under the permanent grass. This influenced for instance the Ks values measured using the Guelph permeametr. The Ks values were higher and more variable in the soil profile under the convectional tillage than those in the soil profile under the permanent grass. On the other hand, due to the periodical tillage and consequent soil structure breakdown, the fraction of the large capillary pores were smaller in the Ap horizon of the soil profile under the convectional tillage than that in the Ap horizon of the soil profile under the permanent grass. As result the K (h=-2cm) values measured using the tension infiltrometer in the soil profile under the permanent grass was higher than those in the soil profile under the convectional tillage. However, the fraction of the large capillary pores and K (h=-2cm) values were similar in the Bt1 horizons of both soil profiles. Thus the land management impacted both macropores and matrix pores in the Ap horizon and macropores (prismatic structure and biopores) in the Bt1 horizon. Acknowledgement: Authors acknowledge the financial support of the Grant Agency of the Czech Republic (grant No. GA CR 526/08/0434) and the Ministry of Education, Youth and Sports of the Czech Republic (grant No. MSM 6046070901).
NASA Astrophysics Data System (ADS)
Steinweg, J. M.; Kostka, J. E.; Hanson, P. J.; Schadt, C. W.
2017-12-01
Northern peatlands have large amounts of soil organic matter due to reduced decomposition. Breakdown of organic matter is initially mediated by extracellular enzymes, the activity of which may be controlled by temperature, moisture, and substrate availability, all of which vary seasonally throughout the year and with depth. In typical soils the majority of the microbial biomass and decomposition occurs within the top 30cm due to reduced organic matter inputs in the subsurface however peatlands by their very nature contain large amounts of organic matter throughout their depth profile. We hypothesized that potential enzyme activity would be greatest at the surface of the peat due to a larger microbial biomass compared to 40cm and 175cm below the surface and that temperature sensitivity would be greatest at the surface during winter but lowest during the summer due to high temperatures and enzyme efficiency. Peat samples were collected in February, July, and August 2012 from the DOE Spruce and Peatland Responses Under Climatic and Environmental Change project at Marcell Experimental Forest S1 bog. We measured potential activity of hydrolytic enzymes involved in three different nutrient cycles: beta-glucosidase (carbon), leucine amino peptidase (nitrogen), and phosphatase (phosphorus) at 15 temperature points ranging from 3°C to 65°C. Enzyme activity decreased with depth as expected but there was no concurrent change in activation energy (Ea). The reduction in enzyme activity with depth indicates a smaller pool which coincided with a decreased microbial biomass. Differences in enzyme activity with depth also mirrored the changes in peat composition from the acrotelm to the catotelm. Season did play a role in temperature sensitivity with Ea of β-glucosidase and phosphatase being the lowest in August as expected but leucine amino peptidase (a nitrogen acquiring enzyme) Ea was not influenced by season. As temperatures rise, especially in winter months, enzymatic carbon and phosphorus acquisition in the Marcell bog may increase whereas nitrogen acquisition would remain unchanged. The lack of temperature response for leucine amino peptidase has been measured in other systems but may be less of a concern in the Marcell bog due to low microbial biomass and enzymatic activity at depth and relatively low peat C:N ratios.
Response of seasonal soil freeze depth to climate change across China
NASA Astrophysics Data System (ADS)
Peng, Xiaoqing; Zhang, Tingjun; Frauenfeld, Oliver W.; Wang, Kang; Cao, Bin; Zhong, Xinyue; Su, Hang; Mu, Cuicui
2017-05-01
The response of seasonal soil freeze depth to climate change has repercussions for the surface energy and water balance, ecosystems, the carbon cycle, and soil nutrient exchange. Despite its importance, the response of soil freeze depth to climate change is largely unknown. This study employs the Stefan solution and observations from 845 meteorological stations to investigate the response of variations in soil freeze depth to climate change across China. Observations include daily air temperatures, daily soil temperatures at various depths, mean monthly gridded air temperatures, and the normalized difference vegetation index. Results show that soil freeze depth decreased significantly at a rate of -0.18 ± 0.03 cm yr-1, resulting in a net decrease of 8.05 ± 1.5 cm over 1967-2012 across China. On the regional scale, soil freeze depth decreases varied between 0.0 and 0.4 cm yr-1 in most parts of China during 1950-2009. By investigating potential climatic and environmental driving factors of soil freeze depth variability, we find that mean annual air temperature and ground surface temperature, air thawing index, ground surface thawing index, and vegetation growth are all negatively associated with soil freeze depth. Changes in snow depth are not correlated with soil freeze depth. Air and ground surface freezing indices are positively correlated with soil freeze depth. Comparing these potential driving factors of soil freeze depth, we find that freezing index and vegetation growth are more strongly correlated with soil freeze depth, while snow depth is not significant. We conclude that air temperature increases are responsible for the decrease in seasonal freeze depth. These results are important for understanding the soil freeze-thaw dynamics and the impacts of soil freeze depth on ecosystem and hydrological process.
Heavy Metal Content in Soils under Different Wastewater Irrigation Patterns in Chihuahua, Mexico
Maldonado, V. M.; Rubio Arias, H. O.; Quintana, R.; Saucedo, R.A.; Gutierrez, M.; Ortega, J. A.; Nevarez, G.V.
2008-01-01
An area near the city of Chihuahua has been traditionally irrigated with wastewater to grow forage crops. It has been hypothesized that metal levels could be found in these soils high enough to cause potential health problems to the population. The objective of this study was to determine heavy metal concentrations in different soils due to irrigation practices. Four soil types were evaluated; a soil with a past and present history of wastewater irrigation (S1), a soil with a history of wastewater irrigation until 2003 (S2), a soil with no irrigation history (S3), and a soil similar to S1 and adjacent to the river where the wastewater is transported (S11). Three soil depths were evaluated; 0–15, 15–30 and 30–50 cm. Consequently, a total of 150 soil samples were analyzed evaluating pH, EC, OM and the following elements; Na, K, Cd, Pb, Ni, Cr, Cu and Fe. The pH (P=0.000) and EC (P=0.000) were different for each soil type but no differences were noted for soil depth and the interaction. Maximum pH levels were noted in S3 with a value of 8.74 while maximum EC was observed in S1 with a value of 0.850 dSm−1. The OM level was different for soil type (P=0.000), soil depth (P=0.005) and the interaction (P=0.014). S1 and S11 obtained maximum levels of OM while minimum levels were noted in S3. Maximum OM levels were observed at the 0–15 cm depth followed by the 15–30 cm depth and finally at the 30–50 cm depth. The highest concentration of metals was as follows: K in S1 (359.3 mg kg−1); Cd in S1 (4.48 mg kg−1); Pb in S11 (155.83 mg kg−1); Ni in S1 (10.74 mg kg−1); Cu in S1 (51.36 mg kg−1); B in S3 (41.5 mg kg−1); Fe in S3 (20,313.0 mg kg−1), Cr in S3 (44.26 mg kg−1) and Na in S3 (203.0 mg kg−1). The conclusion is that some metals are present in the soils due to anthropogenic activities but others are present in natural forms. PMID:19151441
NASA Astrophysics Data System (ADS)
Lobianco, Daniela; D'Orazio, Valeria; Miano, Teodoro; Zaccone, Claudio
2016-04-01
Floating mires are defined by the occurrence of emergent vegetation rooted in highly organic buoyant mats that rise and fall with changes in water level. Islands floating and moving on a lake naturally were already described by Pliny the Elder in his Naturalis historia almost two millennia ago. Actually, he devoted a whole chapter of Naturalis historia to "Of Islands Ever Floating and Swimming", reporting how certain isles were always waving and never stood still. The status of "flotant" has been defined transitory; in fact, these small isles often disappear, in most of the cases because of a transition from floating island to firm land during decades is likely to happen. That is why most of the floating islands described by Pliny the Elder (e.g., Lacus Fundanus, Lacus Cutiliensis, Lacus Mutinensis, Lacus Statoniensis, Lacus Tarquiniensis, Lydia Calaminae, Lacus Vadimonis) do not exist anymore. In the present study, peat formation and organic matter evolution were investigated in order to understand how these peculiar environments form, and how stable actually they are. In fact, it is hoped that peat-forming floating mires could provide an exceptional tool for environmental studies, since much of their evolution, as well as the changes of the surrounding areas, is recorded in their peat deposits. A complete, 4-m deep peat core was collected in July 2012 from the floating island of Posta Fibreno, a relic mire in the Central Italy. This floating island has a diameter of ca. 30 m, a submerged thickness of about 3 m, and the vegetation is organized in concentric belts, from the Carex paniculata palisade to the Sphagnum centre. Here, some of the southernmost Italian populations of Sphagnum palustre occur. The 14C age dating of organic sediments isolated from the sample at 385 cm of depth revealed that the island formed ca. 700 yrs ago (620±30 yr BP). The top 100 cm, consisting almost exclusively of Sphagnum mosses, show a very low bulk density (avg., 0.03±0.01 g cm-3), an ash content ranging from 0.8 and 7.4%, an average gravimetric water content of 26.6±7.7 gwater gdrypeat-1, and a pH generally increasing with depth (from 4.1 to 7.2). The C content along the profile ranged between 35 and 47% (avg., 41±4%), whereas the N between 0.3 and 1.1% (avg., 0.5±0.1%). Main atomic ratios (C/N, H/C and O/C) and FT-IR spectra seem to confirm what found during the visual inspection of the core, i.e., Sphagnum material so well preserved that it is hard to classify it as "peat". In fact, the 14C age dating suggests that the first 110 cm of Sphagnum material accumulated in ca. 55 yrs, thus resulting in an average growing rate of 2 cm yr-1. The remaining 300 cm (from 100 to 400 cm of depth), i.e., the submerged part of the island, consist of peat showing completely different botanical composition (reed-fen peat and silty peat rich in reeds) and physical and chemical properties. In particular, both bulk density (avg., 0.09±0.05 g cm-3) and ash content increase, reaching their maximum at 300-325 cm of depth (0.27 g cm-3 and 17%, respectively), whereas the average gravimetric water content significantly decreases (17.4±9.0 gwater gdrypeat-1). The pH ranges from 6.6 and 7.4. Both C and N along this section of the profile show higher average contents (44±3 and 1.3±0.6%, respectively) compared to those recorded in the upper 100 cm layer; furthermore, the decrease with depth of C/N, H/C and O/C atomic ratios, as well as main absorption bands of FT-IR spectra, clearly indicate the occurrence of an organic matter highly humified. The estimated accumulation rate for the bottom 300 cm of the island is 0.5 cm yr-1. At the best of our knowledge, this work represents the first characterization of a (4 m) deep floating mire profile. At Posta Fibreno, the deep water layer below the base of the island (7 m) and the movement on the water surface probably avoided the transition from floating island to firm land, thus allowing this island to float during the last centuries. The Authors thank the Municipality of Posta Fibreno (FR), Managing Authority of the Regional Natural Reserve of Lake Posta Fibreno, for allowing peat cores sampling.
Niles, Dana E; Duval-Arnould, Jordan; Skellett, Sophie; Knight, Lynda; Su, Felice; Raymond, Tia T; Sweberg, Todd; Sen, Anita I; Atkins, Dianne L; Friess, Stuart H; de Caen, Allan R; Kurosawa, Hiroshi; Sutton, Robert M; Wolfe, Heather; Berg, Robert A; Silver, Annemarie; Hunt, Elizabeth A; Nadkarni, Vinay M
2018-05-01
Pediatric in-hospital cardiac arrest cardiopulmonary resuscitation quality metrics have been reported in few children less than 8 years. Our objective was to characterize chest compression fraction, rate, depth, and compliance with 2015 American Heart Association guidelines across multiple pediatric hospitals. Retrospective observational study of data from a multicenter resuscitation quality collaborative from October 2015 to April 2017. Twelve pediatric hospitals across United States, Canada, and Europe. In-hospital cardiac arrest patients (age < 18 yr) with quantitative cardiopulmonary resuscitation data recordings. None. There were 112 events yielding 2,046 evaluable 60-second epochs of cardiopulmonary resuscitation (196,669 chest compression). Event cardiopulmonary resuscitation metric summaries (median [interquartile range]) by age: less than 1 year (38/112): chest compression fraction 0.88 (0.61-0.98), chest compression rate 119/min (110-129), and chest compression depth 2.3 cm (1.9-3.0 cm); for 1 to less than 8 years (42/112): chest compression fraction 0.94 (0.79-1.00), chest compression rate 117/min (110-124), and chest compression depth 3.8 cm (2.9-4.6 cm); for 8 to less than 18 years (32/112): chest compression fraction 0.94 (0.85-1.00), chest compression rate 117/min (110-123), chest compression depth 5.5 cm (4.0-6.5 cm). "Compliance" with guideline targets for 60-second chest compression "epochs" was predefined: chest compression fraction greater than 0.80, chest compression rate 100-120/min, and chest compression depth: greater than or equal to 3.4 cm in less than 1 year, greater than or equal to 4.4 cm in 1 to less than 8 years, and 4.5 to less than 6.6 cm in 8 to less than 18 years. Proportion of less than 1 year, 1 to less than 8 years, and 8 to less than 18 years events with greater than or equal to 60% of 60-second epochs meeting compliance (respectively): chest compression fraction was 53%, 81%, and 78%; chest compression rate was 32%, 50%, and 63%; chest compression depth was 13%, 19%, and 44%. For all events combined, total compliance (meeting all three guideline targets) was 10% (11/112). Across an international pediatric resuscitation collaborative, we characterized the landscape of pediatric in-hospital cardiac arrest chest compression quality metrics and found that they often do not meet 2015 American Heart Association guidelines. Guideline compliance for rate and depth in children less than 18 years is poor, with the greatest difficulty in achieving chest compression depth targets in younger children.
Rooting Depths of Red Maple (Acer Rubrum L.) on Various Sites in the Lake States
Carl L. Haag; James E. Johnson; Gayne G. Erdmann
1989-01-01
Rooting depth and habit of red maple were observed on 60 sites in northern Wisconsin and Michigan as part of a regional soil-site studay. Vertical woody root extension on dry, outwash sites averaged 174 cm, which was significantly greater than the extension on sites with fragipans (139 cm) and on wet sites (112 cm). Site index was higher on wet sites and non-woody...
The formation of microvoids in MgO by helium ion implantation and thermal annealing
NASA Astrophysics Data System (ADS)
van Veen, A.; Schut, H.; Fedorov, A. V.; Labohm, F.; Neeft, E. A. C.; Konings, R. J. M.
1999-01-01
The formation of microvoids in metal oxides by helium implantation and thermal annealing is observed under similar conditions as has been shown earlier for silicon. Cleaved MgO (1 0 0) single crystals were implanted with 30 keV 3He ions with doses varying from 10 15 to 10 16 cm -2 and subsequently thermally annealed from RT to 1500 K. Monitoring of the defect depth profile and the retained amount of helium was performed by positron beam analysis and neutron depth profiling, respectively. For a dose larger than 2 × 10 15 cm -2 annealing of the defects was observed in two stages: at 1000 K helium filled monovacancies dissociated, and other defects still retaining the helium were formed, and at 1300 K all helium left the sample while an increase of positron-valence-electron annihilations was observed, indicating an increase of the volume available in the defects. The voids of nm size were located at shallower depth than the implanted helium. At lower dose no voids were left after high temperature annealing. Voids can also be created, and even more effectively, by hydrogen or deuterium implantation. The voids are stable to temperatures of 1500 K. The use of the nanovoids as a precursor state for nanoprecipitates of metals or other species is discussed.
NASA Technical Reports Server (NTRS)
Campbell, B. A.; Stacy, N. J.; Campbell, D. B.; Zisk, S. H.; Thompson, T. W.; Hawke, B. R.
1992-01-01
Lunar pyroclastic deposits represent one of the primary anticipated sources of raw materials for future human settlements. These deposits are fine-grained volcanic debris layers produced by explosive volcanism contemporaneous with the early stage of mare infilling. There are several large regional pyroclastic units on the Moon (for example, the Aristarchus Plateau, Rima Bode, and Sulpicius Gallus formations), and numerous localized examples, which often occur as dark-halo deposits around endogenic craters (such as in the floor of Alphonsus Crater). Several regional pyroclastic deposits were studied with spectral reflectance techniques: the Aristarchus Plateau materials were found to be a relatively homogeneous blanket of iron-rich glasses. One such deposit was sampled at the Apollo 17 landing site, and was found to have ferrous oxide and titanium dioxide contents of 12 percent and 5 percent, respectively. While the areal extent of these deposits is relatively well defined from orbital photographs, their depths have been constrained only by a few studies of partially filled impact craters and by imaging radar data. A model for radar backscatter from mantled units applicable to both 70-cm and 12.6-cm wavelength radar data is presented. Depth estimates from such radar observations may be useful in planning future utilization of lunar pyroclastic deposits.
Tryggestad, E; Armour, M; Iordachita, I; Verhaegen, F; Wong, J W
2009-09-07
Our group has constructed the small animal radiation research platform (SARRP) for delivering focal, kilo-voltage radiation to targets in small animals under robotic control using cone-beam CT guidance. The present work was undertaken to support the SARRP's treatment planning capabilities. We have devised a comprehensive system for characterizing the radiation dosimetry in water for the SARRP and have developed a Monte Carlo dose engine with the intent of reproducing these measured results. We find that the SARRP provides sufficient therapeutic dose rates ranging from 102 to 228 cGy min(-1) at 1 cm depth for the available set of high-precision beams ranging from 0.5 to 5 mm in size. In terms of depth-dose, the mean of the absolute percentage differences between the Monte Carlo calculations and measurement is 3.4% over the full range of sampled depths spanning 0.5-7.2 cm for the 3 and 5 mm beams. The measured and computed profiles for these beams agree well overall; of note, good agreement is observed in the profile tails. Especially for the smallest 0.5 and 1 mm beams, including a more realistic description of the effective x-ray source into the Monte Carlo model may be important.
Carbon dioxide and methane fluxes from the transitional zone of a Virginia ephemeral wetland
NASA Astrophysics Data System (ADS)
Atkins, J. W.; Epstein, H. E.; Welsch, D. L.
2014-12-01
The spatial and temporal controls mediating the switch between anaerobic and aerobic respiration within soils located in transitional zones adjacent to ephemeral wetlands remains unclear. As ephemeral wetlands dry down, a soil moisture gradient develops in adjacent transitional zones resulting in changes to the soil environment—moving from anoxic to oxic conditions. Under oxic conditions, aerobic decomposition and CO2 fluxes should dominate, while under anoxic conditions, anaerobic decomposition and CH4 emissions should be more prominent. To investigate the spatial controls and temporal dynamics of anaerobic and aerobic respiration we ran three 20 m transects starting from the late spring peak wetland edge (June 1, 2014 max. lake extent) of Lake Arnold, an ephemeral wetland located at Blandy Experimental Farm in Boyce, Virginia. At 10 m intervals along each transect, high-resolution soil moisture and temperature sensors were installed at three depth levels in the soil (5 cm, 20 cm, and 50 cm). Soil surface CO2 efflux was measured weekly at 5 m intervals using a portable, infra-red gas analyzer and surface chamber (EGM-4 and SRC-1; PP Systems; Amherst, MA). CH4 emissions were sampled weekly using a non-steady state chamber at 10 m intervals along each transect and analyzed in the lab using gas chromatography. Redox potential was measured weekly at two soil depths (5 cm and 20 cm) at 5 m intervals using platinum electrodes and a Ag/Cl reference electrode. Lake Arnold water levels decreased at a rate of 18.16 mm day-1 during the month of July. Preliminary results show a distinct drop in soil moisture at 5 and 20 cm depths at the 0 and 10 m distances along each transect. At 50 cm, soil moisture shows no distinct trend. Late July measurements of redox potential ranged from -196 mV to 865 mV and was correlated with soil moisture (R2 = 0.52). Rates of soil CO2 efflux were diminished at volumetric water contents (VWC) above 45% (ranging from 2.45 - 7.3 µmol CO2 m-2 sec-1). Below 45% VWC, soil CO2 efflux rates ranged from 4.5 - 9.6 µmol CO2 m-2 sec-1.
Effect of water content on the water repellency for hydrophobized sands
NASA Astrophysics Data System (ADS)
Subedi, S.; Kawamoto, K.; Kuroda, T.; Moldrup, P.; Komatsu, T.
2011-12-01
Alternative earthen covers such as capillary barriers (CBs) and evapotranspirative covers are recognized as useful technical and low-cost solutions for limiting water infiltration and controlling seepage flow at solid waste landfills in semi-arid and arid regions. However, their application to the landfills at wet regions seems to be matter of concern due to loss of their impending capability under high precipitation. One of the possible techniques to enhance the impermeable properties of CBs is to alter soil grain surfaces to be water-repellent by mixing/coating hydrophobic agents (HAs). In order to examine a potential use of model sands hydrophobized with locally available and environmental-friendly HAs such as oleic acid (OA) and stearic acid (SA) for hydrophobic CBs. In the present study, we first characterized the effect of water content on the degree of water repellency (WR) for hydrophobized sands and volcanic ash soil at different depth. Secondly, the time dependency of the contact angle in hydrophobized sands and volcanic ash soils at different water content was evaluated. Further, the effects of hydrophobic organic matter contents on the WR of hydrophobized sands were investigated by horizontal infiltration test. We investigated the degree of WR as functions of volumetric water content (θ) of a volcanic ash soil samples from different depth and water adjusted hydrophobized sand samples with different ratio of HAs by using sessile drop method (SDM). The initial contact angle (αi) measured from SDM decreased gradually with increasing water content in OA and SA coated samples. Measured αi values for volcanic ash soils increased with increasing water content and reached a peak values of 111.7o at θ= 0.325 cm3 cm-3, where-after αi gradually decreased. Each test sample exhibited sharp decrease in contact angle with time at higher water content. Sorptivity values for oleic acid coated samples decreased with increasing HA content and reached the minimum value of 0.068 cm s-1/2 at 1 g HA kg-1 sand, and then gradually increased.
Fernandes, Sheryl Oliveira; Bharathi, P A Loka; Bonin, Patricia C; Michotey, Valérie D
2010-01-01
Net nitrous oxide production and denitrification activity were measured in two mangrove ecosystems of Goa, India. The relatively pristine site Tuvem was compared to Divar, which is prone to high nutrient input. Stratified sampling at 2-cm intervals within the 0- to 10-cm depth range showed that N2O production at both the locations decreased with depth. Elevated denitrification activity at Divar resulted in maximum production of up to 1.95 nmol N2O-N g(-1) h(-1) at 2 to 4 cm, which was three times higher than at Tuvem. Detailed investigations to understand the major pathway contributing to N2O production performed at Tuvem showed that incomplete denitrification was responsible for up to 43 to 93% of N2O production. Nitrous oxide production rates closely correlated to nitrite concentration (n = 15; r = -0.47; p < 0.05) and denitrifier abundance (r = 0.55; p < 0.05), suggesting that nitrite utilization by microbial activity leads to N2O production. Nitrous oxide production through nitrification was below detection, affirming that denitrification is the major pathway responsible for production of the greenhouse gas. Net N2O production in these mangrove systems are comparatively higher than those reported from other natural estuarine sediments and therefore warrant mitigation measures.
Waghmode, Tatoba R.; Chen, Shuaimin; Li, Jiazhen; Sun, Ruibo; Liu, Binbin; Hu, Chunsheng
2018-01-01
Soil microbial community plays an important role in terrestrial carbon and nitrogen cycling. However, the response of the soil nitrifier and denitrifier communities to climate warming is poorly understood. A long-term field warming experiment has been conducted for 8 years at Luancheng Experimental Farm Station on the North China Plain; we used this field to examine how soil microbial community structure, nitrifier, and denitrifier abundance respond to warming under regular irrigation (RI) and high irrigation (HI) at different soil depths (0–5, 5–10, and 10–20 cm). Nitrifier, denitrifier, and the total bacterial abundance were assessed by quantitative polymerase chain reaction of the functional genes and 16S rRNA gene, respectively. Bacterial community structure was studied through high throughput sequencing of the 16S rRNA gene. Under RI, warming significantly (P < 0.05) increased the potential nitrification rate and nitrate concentration and decreased the soil moisture. In most of the samples, warming increased the ammonia-oxidizing bacteria abundance but decreased the ammonia-oxidizing archaea (AOA) and denitrifier (nirK, nirS, and nosZ genes) abundance. Under HI, there was a highly increased AOA and 16S rRNA gene abundance and a slightly higher denitrifier abundance compared with RI. Warming decreased the bacterial diversity and species richness, and the microbial community structure differed greatly between the warmed and control plots. The decrease in bacterial diversity was higher in RI than HI and at the 0–5 cm depths than at the 5–10 and 10–20 cm soil depths. Warming led to an increase in the relative abundance of Actinobacteria, Bacteroidetes, and TM7 but a decrease in Acidobacteria, Alphaproteobacteria, Deltaproteobacteria, Nitrospira, and Planctomycetes. The greater shift in microbial community structure was observed only in RI at the 0–5 cm soil depth. This study provides new insight into our understanding of the nitrifier and denitrifier activity and microbial community response to climate warming in agricultural ecosystems. PMID:29593703
Soil Carbon Changes in Transitional Grain Crop Production Systems in South Dakota
NASA Astrophysics Data System (ADS)
Woodard, H. J.
2004-12-01
Corn-C (Zea Mays L.), soybean-S (Glycine max L.) and spring wheat-W (Triticum aestivum L.) crops were seeded as a component of either a C-S, S-W, or C-S-W crop rotation on silt-loam textured soils ranging from 3.0-5.0% organic matter. Conservation tillage(chisel plow-field cultivator) was applied to half of the plots. The other plots were direct seeded as a no-till (zero-tillage) treatment. Grain yield and surface crop residues were weighed from each treatment plot. Crop residue (stover and straw) was removed from half of the plots. After four years, soil samples were removed at various increments of depth and soil organic carbon (C) and nitrogen (N) was measured. The ranking of crop residue weights occurred by the order corn>>soybean>wheat. Surface residue accumulation was also greatest with residue treatments that were returned to the plots, those rotations in which maize was a component, and those without tillage. Mean soil organic carbon levels in the 0-7.5cm depth decreased from 3.41% to 3.19% (- 0.22%) with conventional tillage (chisel plow/field cultivator) as compared to a decrease from 3.19% to 3.05% (-0.14%) in plots without tillage over a four year period. Organic carbon in the 0-7.5cm depth decreased from 3.21% to 3.01% (- 0.20%) after residue removed as compared to a decrease from 3.39% to 3.23% (-0.17%) in plots without tillage applied after four years. The soil C:N ratio (0-7.5cm) decreased from 10.63 to 10.37 (-0.26 (unitless)) in the tilled plots over a four-year period. Soil C:N ratio at the 0-7.5cm depth decreased from 10.72 to 10.04 (-0.68) in the no-till plots over a four year period. Differences in the soil C:N ratio comparing residue removed and residue returned were similar (-0.51 vs. -0.43 respectively). These soils are highly buffered for organic carbon changes. Many cropping cycles are required to determine how soil carbon storage is significantly impacted by production systems.
Multi-instrument Method to Map Spatial and Temporal Patterns of Snowmelt Infiltration
NASA Astrophysics Data System (ADS)
Hyde, K.; Beverly, D.; Thayer, D.; Speckman, H. N.; Parsekian, A.; Kelleners, T.
2015-12-01
Mapping spatial patterns of relative soil moisture over time may improve understanding of snowmelt infiltration processes in heterogeneous systems. Conventional soil water measurement methods disturb soil properties and rocky materials generally limit installation of monitoring instruments to shallow depths in mountainous landscapes with snowmelt dominated hydrology. Modifications to existing technology combined with low impact installation methods provide high temporal and spatial resolution of relative soil moisture as well as a temperature profile and water table level. Closely spaced (10cm) electrical resistance pads are combined in a small diameter (2.54 cm) tube with temperature probes each 50cm, a pressure transducer, and a tube to extract groundwater for stable isotope analysis. This vertical probe array (VPA) extends 3.2m and is installed in a small diameter (4 cm) bore using a backpack drill limiting soil disturbance. Two VPAs are installed in the Snowy Range of Wyoming, one in a forested mountainous environment impacted by mortality by insects and disease and the other (limited to resistance pads only) in recently burned sagelands. Each VPA is co-located with meteorological stations. Eddy-covariance, sap flux, electrical resistivity, snowpack survey, and other hillslope eco-hydrology measurements accompany the fully instrumented VPA. Data are sampled and recorded at 5 or 15 minute intervals starting in December 2014. Over the winter both sites exhibit highly variable patterns of relatively dry soils with steady increase in wetness. Abrupt increases in relative wetness occurred with short periods of warming temperatures in Spring. Following a temperature increase in the forested site the relative moisture dramatically increased over a period of several hours at all depths as water level rose 1m within 8 hours. In contrast, following snowmelt relative moisture in the sageland site increased gradually and systematically with depth over a period of two weeks. The sage area also demonstrates sensitivity to rainfall events where the forested hillslope is insensitive to rain inputs. Long term monitoring at high temporal frequency will likely reveal other patterns expected to advance understanding of snowmelt infiltration processes at previously inaccessible depths within the vadose zone.
Depth of artificial Burrowing Owl burrows affects thermal suitability and occupancy
Nadeau, Christopher P.; Conway, Courtney J.; Rathbun, Nathan
2015-01-01
Many organizations have installed artificial burrows to help bolster local Burrowing Owl (Athene cunicularia) populations. However, occupancy probability and reproductive success in artificial burrows varies within and among burrow installations. We evaluated the possibility that depth below ground might explain differences in occupancy probability and reproductive success by affecting the temperature of artificial burrows. We measured burrow temperatures from March to July 2010 in 27 artificial burrows in southern California that were buried 15–76 cm below the surface (measured between the surface and the top of the burrow chamber). Burrow depth was one of several characteristics that affected burrow temperature. Burrow temperature decreased by 0.03°C per cm of soil on top of the burrow. The percentage of time that artificial burrows provided a thermal refuge from above-ground temperature decreased with burrow depth and ranged between 50% and 58% among burrows. The percentage of time that burrow temperature was optimal for incubating females also decreased with burrow depth and ranged between 27% and 100% among burrows. However, the percentage of time that burrow temperature was optimal for unattended eggs increased with burrow depth and ranged between 11% and 95% among burrows. We found no effect of burrow depth on reproductive success across 21 nesting attempts. However, occupancy probability had a non-linear relationship with burrow depth. The shallowest burrows (15 cm) had a moderate probability of being occupied (0.46), burrows between 28 and 40 cm had the highest probability of being occupied (>0.80), and burrows >53 cm had the lowest probability of being occupied (<0.43). Burrowing Owls may prefer burrows at moderate depths because these burrows provide a thermal refuge from above-ground temperatures, and are often cool enough to allow females to leave eggs unattended before the onset of full-time incubation, but not too cool for incubating females that spend most of their time in the burrow during incubation. Our results suggest that depth is an important consideration when installing artificial burrows for Burrowing Owls. However, additional study is needed to determine the possible effects of burrow depth on reproductive success and on possible tradeoffs between the effects of burrow depth on optimal temperature and other factors, such as minimizing the risk of nest predation.
Brantner, Justin S.; Haake, Zachary J.; Burwick, John E.; Menge, Christopher M.; Hotchkiss, Shane T.; Senko, John M.
2014-01-01
We evaluated the depth-dependent geochemistry and microbiology of sediments that have developed via the microbially-mediated oxidation of Fe(II) dissolved in acid mine drainage (AMD), giving rise to a 8–10 cm deep “iron mound” that is composed primarily of Fe(III) (hydr)oxide phases. Chemical analyses of iron mound sediments indicated a zone of maximal Fe(III) reducing bacterial activity at a depth of approximately 2.5 cm despite the availability of dissolved O2 at this depth. Subsequently, Fe(II) was depleted at depths within the iron mound sediments that did not contain abundant O2. Evaluations of microbial communities at 1 cm depth intervals within the iron mound sediments using “next generation” nucleic acid sequencing approaches revealed an abundance of phylotypes attributable to acidophilic Fe(II) oxidizing Betaproteobacteria and the chloroplasts of photosynthetic microeukaryotic organisms in the upper 4 cm of the iron mound sediments. While we observed a depth-dependent transition in microbial community structure within the iron mound sediments, phylotypes attributable to Gammaproteobacterial lineages capable of both Fe(II) oxidation and Fe(III) reduction were abundant in sequence libraries (comprising ≥20% of sequences) from all depths. Similarly, abundances of total cells and culturable Fe(II) oxidizing bacteria were uniform throughout the iron mound sediments. Our results indicate that O2 and Fe(III) reduction co-occur in AMD-induced iron mound sediments, but that Fe(II)-oxidizing activity may be sustained in regions of the sediments that are depleted in O2. PMID:24860562
NASA Astrophysics Data System (ADS)
Jacobson, A. R.; Jones, C. P.; Vasudeva, P.; Powelson, D.; Grossl, P.
2014-12-01
The Pariette Wetlands located in the Uinta Basin, UT, were developed by the BLM in part to mitigate salinity associated with irrigation drainage and runoff from flowing to the Green River, a tributary of the Colorado River. The wetlands are fed by runoff from upstream agricultural irrigation, and natural subsurface and overland flow through the Uintah formation, which is seleniferous, and saline. Concentrations of Total Dissolved Salts (TDS), boron (B) and selenium (Se) in the wetlands exceed the total maximum daily loads developed to meet the US EPA's water quality planning and management regulations (40CFR 130). This is of concern because the wetlands are home to populations of migratory birds, waterfowl, raptors, and numerous small mammals. A mass balance of the Se concentrations of water flowing into and out of the wetlands indicates that 80% of the Se is stored or lost within the system. Additional data suggest that the majority of the Se is associated with the sediments. Little information is available regarding the TDS and B. Therefore we will determine the whether B and other salts are accumulating in the wetland systems, and if so where. We sampled water, sediment, benthic organisms, and wetland plants, in 4 of the 23 ponds from the flood control inlet to water flowing out to the Green River. Sediments were collected at 3 depths (0-2 cm, 2-7 cm, and 7+ cm) at 3-4 locations within each pond including the inlet, outlet and at least one site near a major wetland plant community. Benthic organisms were sampled from the 0-2 cm and 2-7 cm sediment layers. Sediment and organism samples were digested with HNO3 and HClO4 prior to analysis of total Se by HGAAS. Hot water extractable B and DPTA extractable B were analyzed by ICP-AES. TDS was estimated from EC in the sediment and organisms extracts and direct analysis in the water. Preliminary results found that Se in the sediments decreases with depth. Se concentrations in the benthic organisms is approximately 4 times higher than in the associated sediments. Data from this study will contribute to a water quality risk assessment to the wetland fish and birds.
Ultrasonography in Acupuncture-Uses in Education and Research.
Leow, Mabel Qi He; Cui, Shu Li; Mohamed Shah, Mohammad Taufik Bin; Cao, Taige; Tay, Shian Chao; Tay, Peter Kay Chai; Ooi, Chin Chin
2017-06-01
This study aims to explore the potential use of ultrasound in locating the second posterior sacral foramen acupuncture point, quantifying depth of insertion and describing surrounding anatomical structures. We performed acupuncture needle insertion on a study team member. There were four steps in our experiment. First, the acupuncturist located the acupuncture point by palpation. Second, we used an ultrasound machine to visualize the structures surrounding the location of the acupuncture point and measure the depth required for needle insertion. Third, the acupuncturist inserted the acupuncture needle into the acupuncture point at an angle of 30°. Fourth, we performed another ultrasound scan to ensure that the needle was in the desired location. Results suggested that ultrasound could be used to locate the acupuncture point and estimate the depth of needle insertion. The needle was inserted to a depth of 4.0 cm to reach the surface of the sacral foramen. Based on Pythagoras theorem, taking a needle insertion angle of 30° and a needle insertion depth of 4.0 cm, the estimated perpendicular depth is 1.8 cm. An ultrasound scan corroborated the depth of 1.85 cm. The use of an ultrasound-guided technique for needle insertion in acupuncture practice could help standardize the treatment. Clinicians and students would be able to visualize and measure the depth of the sacral foramen acupuncture point, to guide the depth of needle insertion. This methodological guide could also be used to create a standard treatment protocol for research. A similar mathematical guide could also be created for other acupuncture points in future. Copyright © 2017. Published by Elsevier B.V.
Concentration of cadmium in cacao beans and its relationship with soil cadmium in southern Ecuador.
Chavez, E; He, Z L; Stoffella, P J; Mylavarapu, R S; Li, Y C; Moyano, B; Baligar, V C
2015-11-15
Cadmium (Cd) content in cacao beans above a critical level (0.6 mg kg(-1)) has raised concerns in the consumption of cacao-based chocolate. Little is available regarding Cd concentration in soil and cacao in Ecuador. The aim of this study was to determine the status of Cd in both, soils and cacao plants, in southern Ecuador. Soil samples were collected from 19 farms at 0-5, 5-15, 15-30, and 30-50 cm depths, whereas plant samples were taken from four nearby trees. Total recoverable and extractable Cd were measured at the different soil depths. Total recoverable Cd ranged from 0.88 to 2.45 and 0.06 to 2.59, averaged 1.54 and 0.85 mg kg(-1), respectively in the surface and subsurface soils whereas the corresponding values for M3-extractable Cd were 0.08 to 1.27 and 0.02 to 0.33 with mean values of 0.40 and 0.10 mg kg(-1). Surface soil in all sampling sites had total recoverable Cd above the USEPA critical level for agricultural soils (0.43 mg kg(-1)), indicating that Cd pollution occurs. Since both total recoverable and M3-extractable Cd significantly decreased depth wise, anthropogenic activities are more likely the source of contamination. Cadmium in cacao tissues decreased in the order of beans>shell>leaves. Cadmium content in cacao beans ranged from 0.02 to 3.00, averaged 0.94 mg kg(-1), and 12 out of 19 sites had bean Cd content above the critical level. Bean Cd concentration was highly correlated with M3- or HCl-extractable Cd at both the 0-5 and 5-15 cm depths (r=0.80 and 0.82 for M3, and r=0.78 and 0.82 for HCl; P<0.01). These results indicate that accumulation of Cd in surface layers results in excessive Cd in cacao beans and M3- or HCl-extractable Cd are suitable methods for predicting available Cd in the studied soils. Copyright © 2015 Elsevier B.V. All rights reserved.
Chauhan, Amit Kumar; Bhatia, Rohan; Agrawal, Sanjay
2018-01-01
The objective of the present study was to evaluate the skin-epidural space distance as assessed by ultrasonography and conventional loss of resistance (LOR) technique and to find the correlation of epidural depth with body mass index (BMI). Ninety-eight patients of either sex, American Society of Anesthesiology I/II, BMI <30 kg/m 2 requiring lumbar epidural for surgery were enrolled. The epidural space was assessed with a curvilinear ultrasound (US) probe, 2-5 MHz, in the transverse plane at L3-L4 intervertebral space. Thereafter, the epidural depth from skin was assessed with conventional LOR method while performing the epidural. The needle depth (ND) was measured using a sterile linear scale, and any change in the needle direction or intervertebral space was noted. The patients were demographically similar. Depth of epidural space measured by US depth (UD) was 3.96 ± 0.44 cm (range 3.18-5.44 cm) and by ND was 4.04 ± 0.52 cm (range 2.7-5.7 cm). The Pearson's correlation coefficient (r) between UD and ND was 0.935 (95% confidence interval: 0.72-0.92, r 2 = 0.874, P < 0.001), and Bland-Altman analysis revealed the 95% limits of agreement -0.494-0.652 cm. The present study demonstrates a good correlation between UD and ND and shows that the preprocedural US scan in transverse plane provides accurate needle entry site with a high success rate in single attempt for lumbar epidurals in patients with a BMI <30 kg/m 2 .
Zhou, Xiaoqi; Chen, Chengrong; Wang, Yanfen; Smaill, Simeon; Clinton, Peter
2013-01-01
Improved understanding of changes in soil recalcitrant organic carbon (C) in response to global warming is critical for predicting changes in soil organic C (SOC) storage. Here, we took advantage of a long-term field experiment with increased temperature and precipitation to investigate the effects of warming, increased precipitation and their interactions on SOC fraction in a semiarid Inner Mongolian grassland of northern China since April 2005. We quantified labile SOC, recalcitrant SOC and stable SOC at 0–10 and 10–20 cm depths. Results showed that neither warming nor increased precipitation affected total SOC and stable SOC at either depth. Increased precipitation significantly increased labile SOC at the 0–10 cm depth. Warming decreased labile SOC (P = 0.038) and marginally but significantly increased recalcitrant SOC at the 10–20 cm depth (P = 0.082). In addition, there were significant interactive effects of warming and increased precipitation on labile SOC and recalcitrant SOC at the 0–10 cm depth (both P<0.05), indicating that that results from single factor experiments should be treated with caution because of multi-factor interactions. Given that the absolute increase of SOC in the recalcitrant SOC pool was much greater than the decrease in labile SOC, and that the mean residence time of recalcitrant SOC is much greater, our results suggest that soil C storage at 10–20 cm depth may increase with increasing temperature in this semiarid grassland. PMID:23341995
NASA Astrophysics Data System (ADS)
Marin, N.; Farmer, J. D.; Zacny, K.; Sellar, R. G.; Nunez, J.
2011-12-01
This study seeks to understand variations in composition and texture of basaltic pyroclastic materials used in the 2010 International Lunar Surface Operation-In-Situ Resource Utilization Analogue Test (ILSO-ISRU) held on the slopes of Mauna Kea Volcano, Hawaii (1). The quantity and quality of resources delivered by ISRU depends upon the nature of the materials processed (2). We obtained a one-meter deep auger cuttings sample of a basaltic regolith at the primary site for feed stock materials being mined for the ISRU field test. The auger sample was subdivided into six, ~16 cm depth increments and each interval was sampled and characterized in the field using the Multispectral Microscopic Imager (MMI; 3) and a portable X-ray Diffractometer (Terra, InXitu Instruments, Inc.). Splits from each sampled interval were returned to the lab and analyzed using more definitive methods, including high resolution Powder X-ray Diffraction and Thermal Infrared (TIR) spectroscopy. The mineralogy and microtexture (grain size, sorting, roundness and sphericity) of the auger samples were determined using petrographic point count measurements obtained from grain-mount thin sections. NIH Image J (http://rsb.info.nih.gov/ij/) was applied to digital images of thin sections to document changes in particle size with depth. Results from TIR showed a general predominance of volcanic glass, along with plagioclase, olivine, and clinopyroxene. In addition, thin section and XRPD analyses showed a down core increase in the abundance of hydrated iron oxides (as in situ weathering products). Quantitative point count analyses confirmed the abundance of volcanic glass in samples, but also revealed olivine and pyroxene to be minor components, that decreased in abundance with depth. Furthermore, point count and XRD analyses showed a decrease in magnetite and ilmenite with depth, accompanied by an increase in Fe3+phases, including hematite and ferrihydrite. Image J particle analysis showed that the average grain size decreased down the depth profile. This decrease in average grain size and increase in hydrated iron oxides down hole suggests that the most favorable ISRU feedstock materials were sampled in the lower half-meter of the mine section sampled.
Surface buildup dose dependence on photon field delivery technique for IMRT
Yokoyama, Shigeru; Roberson, Peter L.; Litzenberg, Dale W.; Moran, Jean M.; Fraass, Benedick A.
2004-01-01
The more complex delivery techniques required for implementation of intensity‐modulated radiotherapy (IMRT) based on inverse planning optimization have changed the relationship between dose at depth and dose at buildup regions near the surface. Surface buildup dose is dependent on electron contamination primarily from the unblocked view of the flattening filter and secondarily from air and collimation systems. To evaluate the impact of beam segmentation on buildup dose, measurements were performed with 10×10 cm2 fields, which were delivered with 3 static 3.5×10 cm2 or 3×10 cm2 strips, 5 static 2×10 cm2 strips, 10 static 1×10 cm2 strips, and 1.1×10 cm2 dynamic delivery, compared with a 10×10 cm2 open field. Measurements were performed in water and Solid Water using parallel plate chambers, a stereotactic diode, and thermoluminescent dosimeters (TLDs) for a 6 MV X‐ray beam. Depth doses at 2 mm depth (relative to dose at 10 cm depth) were lower by 6%, 7%, 11%, and 10% for the above field delivery techniques, respectively, compared to the open field. These differences are most influenced by differences in multileaf collimator (MLC) transmission contributing to the useful beam. An example IMRT field was also studied to assess variations due to delivery technique (static vs. dynamic) and intensity level. Buildup dose is weakly dependent on the multileaf delivery technique for efficient IMRT fields. PACS numbers: 87.53.‐j, 87.53.Dq PMID:15738914
NASA Astrophysics Data System (ADS)
Alexander, H. D.; Davydov, S.; Zimov, N.; Mack, M. C.
2013-12-01
Global change models predict increased fire activity in boreal forests as climate warms and dries. We hypothesized that fire-driven decreases in soil organic layer (SOL) depth will (1) increase permafrost thaw by reducing the insulating capacity of the SOL and (2) improve seedbed conditions for tree regeneration. Over time, these changes will lead to altered patterns of above- and belowground carbon (C) accumulation. To test these hypotheses, we conducted plot-level experimental burns in July 2012 in a low-density, mature larch stand near the Northeast Science Station in Cherskii, Siberia. Dried fuels of naturally occurring vegetation were added to plots to achieve four burn severity treatments based on residual SOL depths: control, low (> 8 cm), moderate (5-8 cm), and high severity (2-5 cm). Pre-fire and during two growing seasons post-fire, we measured thaw depth, soil moisture, and soil temperature to determine severity effects on permafrost thaw. We also sowed larch seeds in fall 2012 and quantified germination rates the following growing season. By 1 wk post-fire, thaw depth was 15-25 cm deeper in plots burned at high severity (55 cm) compared to other treatments (30-40 cm). These differences in thaw depth with burn severity were maintained during the subsequent growing season and were associated with increased soil temperature and moisture. Larch regeneration was 10x higher on severely burned plots than those unburned. Our findings highlight the potential for increased fire severity to degrade permafrost and alter successional dynamics and patterns of C accumulation.
Barrientos, Zaidett
2012-09-01
Little is known about how restoration strategies affect aspects like leaf litter's quantity, depth and humidity. I analyzed leaf litter's quantity, depth and humidity yearly patterns in a primary tropical lower montane wet forest and two restored areas: a 15 year old secondary forest (unassisted restoration) and a 40 year old Cupressus lusitanica plantation (natural understory). The three habitats are located in the Rio Macho Forest Reserve, Costa Rica. Twenty litter samples were taken every three months (April 2009-April 2010) in each habitat; humidity was measured in 439g samples (average), depth and quantity were measured in five points inside 50x50cm plots. None of the restoration strategies reproduced the primary forest leaf litter humidity, depth and quantity yearly patterns. Primary forest leaf litter humidity was higher and more stable (mean=73.2), followed by secondary forest (mean=63.3) and cypress plantation (mean=52.9) (Kruskall-Wallis=77.93, n=232, p=0.00). In the primary (Kruskal-Wallis=31.63, n=78, p<0.001) and secondary (Kruskal-Wallis=11.79, n=75, p=0.008) forest litter accumulation was higher during April due to strong winds. In the primary forest (Kruskal-wallis=21.83, n=78, p<0.001) and the cypress plantation (Kruskal-wallis=39.99, n=80, p<0.001) leaf litter depth was shallow in October because heavy rains compacted it. Depth patterns were different from quantity patterns and described the leaf litter's structure in different ecosystems though the year. September 01.
NASA Astrophysics Data System (ADS)
Harrington, C.
2004-12-01
Studies using 137Cs were used to produce soil Cs profiles and to use them to determine erosion rates on interchannel divides of the Fortymile Wash alluvial fan over the last 50 years. Sample locations whose 137Cs profiles most resemble the reference-sample (stable surface) profiles are located on interchannel divide areas between distributary channels. These profiles are similar to the reference profiles that have low 137Cs values (in the range of 0.02 to 0.08 pCi/g) in the 3 to 6 cm layers. However, the surface layers (1-3 cm depth) typically have values much less than the reference samples from equivalent depths (range from 0.251 to 0.421 pCi/g). The data indicate that many of these interchannel divide areas have had part of the upper layer removed. Interchannel divide areas have the least likelihood of having been submerged during floods over the last fifty years. Thus, the loss of material from these otherwise stable surfaces appears to be due to eolian processes. Erosion of an interchannel divide area with little evidence of recent water movement is most easily explained by eolian removal. Evidence for wind erosion as the predominant process on the interchannel divide areas includes the lack of new or developing stream channels and the presence of modern coppice dunes near channels on interchannel divides. The presence of nearby Big Dune and other eolian deposits provides strong support for eolian erosion and transport. The amount of material removed from the interchannel divide areas was estimated by comparing the 137Cs value of the upper 3 cm layer to that of the reference value and calculating the thickness of the layer that would have to be removed to obtain the lower value. Applying this method across the interchannel divide sample locations indicates 1 to 2 cm of material has been removed from the interchannel divide surfaces in the last 50 years. This results in erosion rates that range from 0.02 to 0.04 cm/yr. These rates are similar to erosion rates of: (a) 0.019 cm/yr predicted to occur on farmland in Amargosa Valley (obtained from BSC 2004 [DIRS 169459], Section 6.4.2 by converting 0.19 kg/m2-yr using ash bulk density of 1 g/cm3; (b) 0.02 cm/yr estimated by the U.S. Department of Agriculture to have occurred on non-cultivated cropland and pastureland in Nevada (obtained from USDA 2000 [160548], Table 11 and calculated using 1 ton/acre-yr x 907 kg/ton x 2.47 x 10-4 acre/m x 0.001 m3/kg [bulk density] x 100 cm/m = 0.02 cm/yr). Overbank deposits on the interchannel divide areas indicative of periodic flooding are uncommon and restricted to narrow strips along the channel banks. The overbank and channel deposit samples have similar 137Cs signatures (the 3 to 6 cm layers and the 6 to 9 cm layers have nearly the same values in the 0.100-0.200 pCi/g range), indicating that the material from each environ was mixed during transport and deposited as a homogeneous sediment. The absence of many overbank deposits along the channel margins today indicates that flows sufficient to form extensive overbank flooding down Fortymile Wash and its distributary channels have not occurred in more than 50 years. Therefore, the channels currently transport most of their sediment load across the fan until it reaches the toe of the fan, where deposition occurs on the broad flats to the south or into the channel of the Amargosa River.
Deep horizons: Soil Carbon sequestration and storage potential in grassland soils
NASA Astrophysics Data System (ADS)
Torres-Sallan, Gemma; Schulte, Rogier; Lanigan, Gary J.; Byrne, Kenneth A.; Reidy, Brian; Creamer, Rachel
2016-04-01
Soil Organic Carbon (SOC) enhances soil fertility, holding nutrients in a plant-available form. It also improves aeration and water infiltration. Soils are considered a vital pool for C (Carbon) sequestration, as they are the largest pool of C after the oceans, and contain 3.5 more C than the atmosphere. SOC models and inventories tend to focus on the top 30 cm of soils, only analysing total SOC values. Association of C with microaggregates (53-250 μm) and silt and clay (<53 μm) is considered C sequestration as these fractions offer the greatest protection against mineralization. This study assessed the role of aggregation in C sequestration throughout the profile, down to 1 m depth, of 30 grassland sites divided in 6 soil types. One kg sample was collected for each horizon, sieved at 8 mm and dried at 40 °C. Through a wet sieving procedure, four aggregate sizes were isolated: large macroaggregates (>2000 μm); macroaggregates (250-2000 μm); microaggregates and silt & clay. Organic C associated to each aggregate fraction was analysed on a LECO combustion analyser. Sand-free C was calculated for each aggregate size. For all soil types, 84% of the SOC located in the first 30 cm was contained inside macroaggregates and large macroaggregates. Given that this fraction has a turnover time of 1 to 10 years, sampling at that depth only provides information on the labile fraction in soil, and does not consider the longer term C sequestration potential. Only when looking at the whole profile, two clear trends could be observed: 1) soils with a clay increase at depth had most of their C located in the silt and clay fractions, which indicate their enhanced C sequestration capacity, 2) free-draining soils had a bigger part of their SOC located in the macroaggregate fractions. These results indicate that current C inventories and models that focus on the top 30 cm, do not accurately measure soil C sequestration potential in soils, but rather the more labile fraction. However, at depth soil forming processes have been identified as a major factor influencing C sequestration potential in soils. This has a major impact in further quantifying and sustaining C sequestration into the future. Soils with a high sequestration potential at depth need to be managed to enhance the residence time to contribute to future off-setting of greenhouse gas emissions.
I.D. Yesilonis; R.V. Pouyat; N.K. Neerchal
2008-01-01
We investigated the spatial distribution of heavy metal above-background (anthropic) contents of Cd, Co, Cu, Cr, Fe, Mn, Ni, Pb, Ti, V, and Zn in Baltimore City surface soils and related these levels to potential contaminating sources. Composite soil samples (0?10 cm depth) were digested using a nitric and hydrochloric extraction technique. Slightly more than 10% of...
Manning, Andrew H.; Caine, Jonathan S.
2007-01-01
Bedrock groundwater in alpine watersheds is poorly understood, mainly because of a scarcity of wells in alpine settings. Groundwater noble gas, age, and temperature data were collected from springs and wells with depths of 3–342 m in Handcart Gulch, an alpine watershed in Colorado. Temperature profiles indicate active groundwater circulation to a maximum depth (aquifer thickness) of about 200 m, or about 150 m below the water table. Dissolved noble gas data show unusually high excess air concentrations (>0.02 cm3 STP/g, ΔNe > 170%) in the bedrock, consistent with unusually large seasonal water table fluctuations (up to 50 m) observed in the upper part of the watershed. Apparent 3H/3He ages are positively correlated with sample depth and excess air concentrations. Integrated samples were collected from artesian bedrock wells near the trunk stream and are assumed to approximate flow‐weighted samples reflecting bedrock aquifer mean residence times. Exponential mean ages for these integrated samples are remarkably consistent along the stream, four of five being from 8 to 11 years. The tracer data in combination with other hydrologic and geologic data support a relatively simple conceptual model of groundwater flow in the watershed in which (1) permeability is primarily a function of depth; (2) water table fluctuations increase with distance from the stream; and (3) recharge, aquifer thickness, and porosity are relatively uniform throughout the watershed in spite of the geological complexity of the Proterozoic crystalline rocks that underlie it.
SU-E-T-577: Commissioning of a Deterministic Algorithm for External Photon Beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, T; Finlay, J; Mesina, C
Purpose: We report commissioning results for a deterministic algorithm for external photon beam treatment planning. A deterministic algorithm solves the radiation transport equations directly using a finite difference method, thus improve the accuracy of dose calculation, particularly under heterogeneous conditions with results similar to that of Monte Carlo (MC) simulation. Methods: Commissioning data for photon energies 6 – 15 MV includes the percentage depth dose (PDD) measured at SSD = 90 cm and output ratio in water (Spc), both normalized to 10 cm depth, for field sizes between 2 and 40 cm and depths between 0 and 40 cm. Off-axismore » ratio (OAR) for the same set of field sizes was used at 5 depths (dmax, 5, 10, 20, 30 cm). The final model was compared with the commissioning data as well as additional benchmark data. The benchmark data includes dose per MU determined for 17 points for SSD between 80 and 110 cm, depth between 5 and 20 cm, and lateral offset of up to 16.5 cm. Relative comparisons were made in a heterogeneous phantom made of cork and solid water. Results: Compared to the commissioning beam data, the agreement are generally better than 2% with large errors (up to 13%) observed in the buildup regions of the FDD and penumbra regions of the OAR profiles. The overall mean standard deviation is 0.04% when all data are taken into account. Compared to the benchmark data, the agreements are generally better than 2%. Relative comparison in heterogeneous phantom is in general better than 4%. Conclusion: A commercial deterministic algorithm was commissioned for megavoltage photon beams. In a homogeneous medium, the agreement between the algorithm and measurement at the benchmark points is generally better than 2%. The dose accuracy for a deterministic algorithm is better than a convolution algorithm in heterogeneous medium.« less
Tamir, Raz; Lerner, Amit; Haspel, Carynelisa; Dubinsky, Zvy; Iluz, David
2017-02-10
The urbanization of the shores of the Gulf of Aqaba has exposed the marine environment there, including unique fringing coral reefs, to strong anthropogenic light sources. Here we present the first in situ measurements of artificial nighttime light under water in such an ecosystem, with irradiance measured in 12 wavelength bands, at 19 measurement stations spread over 44 square km, and at 30 depths down to 30-m depth. At 1-m depth, we find downwelling irradiance values that vary from 4.6 × 10 -4 μW cm -2 nm -1 500 m from the city to 1 × 10 -6 μW cm -2 nm -1 in the center of the gulf (9.5 km from the city) in the yellow channel (589-nm wavelength) and from 1.3 × 10 -4 μW cm -2 nm -1 to 4.3 × 10 -5 μW cm -2 nm -1 in the blue channel (443-nm wavelength). Down to 10-m depth, we find downwelling irradiance values that vary from 1 × 10 -6 μW cm -2 nm -1 to 4.6 × 10 -4 μW cm -2 nm -1 in the yellow channel and from 2.6 × 10 -5 μW cm -2 nm -1 to 1.3 × 10 -4 μW cm -2 nm -1 in the blue channel, and we even detected a signal at 30-m depth. This irradiance could influence such biological processes as the tuning of circadian clocks, the synchronization of coral spawning, recruitment and competition, vertical migration of demersal plankton, feeding patterns, and prey/predator visual interactions.
A Novel Method for Remote Depth Estimation of Buried Radioactive Contamination.
Ukaegbu, Ikechukwu Kevin; Gamage, Kelum A A
2018-02-08
Existing remote radioactive contamination depth estimation methods for buried radioactive wastes are either limited to less than 2 cm or are based on empirical models that require foreknowledge of the maximum penetrable depth of the contamination. These severely limits their usefulness in some real life subsurface contamination scenarios. Therefore, this work presents a novel remote depth estimation method that is based on an approximate three-dimensional linear attenuation model that exploits the benefits of using multiple measurements obtained from the surface of the material in which the contamination is buried using a radiation detector. Simulation results showed that the proposed method is able to detect the depth of caesium-137 and cobalt-60 contamination buried up to 40 cm in both sand and concrete. Furthermore, results from experiments show that the method is able to detect the depth of caesium-137 contamination buried up to 12 cm in sand. The lower maximum depth recorded in the experiment is due to limitations in the detector and the low activity of the caesium-137 source used. Nevertheless, both results demonstrate the superior capability of the proposed method compared to existing methods.
A Novel Method for Remote Depth Estimation of Buried Radioactive Contamination
2018-01-01
Existing remote radioactive contamination depth estimation methods for buried radioactive wastes are either limited to less than 2 cm or are based on empirical models that require foreknowledge of the maximum penetrable depth of the contamination. These severely limits their usefulness in some real life subsurface contamination scenarios. Therefore, this work presents a novel remote depth estimation method that is based on an approximate three-dimensional linear attenuation model that exploits the benefits of using multiple measurements obtained from the surface of the material in which the contamination is buried using a radiation detector. Simulation results showed that the proposed method is able to detect the depth of caesium-137 and cobalt-60 contamination buried up to 40 cm in both sand and concrete. Furthermore, results from experiments show that the method is able to detect the depth of caesium-137 contamination buried up to 12 cm in sand. The lower maximum depth recorded in the experiment is due to limitations in the detector and the low activity of the caesium-137 source used. Nevertheless, both results demonstrate the superior capability of the proposed method compared to existing methods. PMID:29419759
Fine Spatial Scale Variation of Soil Microbial Communities under European Beech and Norway Spruce
Nacke, Heiko; Goldmann, Kezia; Schöning, Ingo; Pfeiffer, Birgit; Kaiser, Kristin; Castillo-Villamizar, Genis A.; Schrumpf, Marion; Buscot, François; Daniel, Rolf; Wubet, Tesfaye
2016-01-01
The complex interactions between trees and soil microbes in forests as well as their inherent seasonal and spatial variations are poorly understood. In this study, we analyzed the effects of major European tree species (Fagus sylvatica L. and Picea abies (L.) Karst) on soil bacterial and fungal communities. Mineral soil samples were collected from different depths (0–10, 10–20 cm) and at different horizontal distances from beech or spruce trunks (0.5, 1.5, 2.5, 3.5 m) in early summer and autumn. We assessed the composition of soil bacterial and fungal communities based on 16S rRNA gene and ITS DNA sequences. Community composition of bacteria and fungi was most strongly affected by soil pH and tree species. Different ectomycorrhizal fungi (e.g., Tylospora) known to establish mutualistic associations with plant roots showed a tree species preference. Moreover, bacterial and fungal community composition showed spatial and seasonal shifts in soil surrounding beech and spruce. The relative abundance of saprotrophic fungi was higher at a depth of 0–10 vs. 10–20 cm depth. This was presumably a result of changes in nutrient availability, as litter input and organic carbon content decreased with soil depth. Overall bacterial community composition showed strong variations under spruce with increasing distance from the tree trunks, which might be attributed in part to higher fine root biomass near spruce trunks. Furthermore, overall bacterial community composition was strongly affected by season under deciduous trees. PMID:28066384
Fine Spatial Scale Variation of Soil Microbial Communities under European Beech and Norway Spruce.
Nacke, Heiko; Goldmann, Kezia; Schöning, Ingo; Pfeiffer, Birgit; Kaiser, Kristin; Castillo-Villamizar, Genis A; Schrumpf, Marion; Buscot, François; Daniel, Rolf; Wubet, Tesfaye
2016-01-01
The complex interactions between trees and soil microbes in forests as well as their inherent seasonal and spatial variations are poorly understood. In this study, we analyzed the effects of major European tree species ( Fagus sylvatica L. and Picea abies (L.) Karst) on soil bacterial and fungal communities. Mineral soil samples were collected from different depths (0-10, 10-20 cm) and at different horizontal distances from beech or spruce trunks (0.5, 1.5, 2.5, 3.5 m) in early summer and autumn. We assessed the composition of soil bacterial and fungal communities based on 16S rRNA gene and ITS DNA sequences. Community composition of bacteria and fungi was most strongly affected by soil pH and tree species. Different ectomycorrhizal fungi (e.g., Tylospora ) known to establish mutualistic associations with plant roots showed a tree species preference. Moreover, bacterial and fungal community composition showed spatial and seasonal shifts in soil surrounding beech and spruce. The relative abundance of saprotrophic fungi was higher at a depth of 0-10 vs. 10-20 cm depth. This was presumably a result of changes in nutrient availability, as litter input and organic carbon content decreased with soil depth. Overall bacterial community composition showed strong variations under spruce with increasing distance from the tree trunks, which might be attributed in part to higher fine root biomass near spruce trunks. Furthermore, overall bacterial community composition was strongly affected by season under deciduous trees.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cammin, J; Curcuru, A; Li, H
Purpose: To compare depth-dose and surface-dose measurements without and with the magnetic field in a 0.3T MR image-guided Co-60 treatment unit using MOSFET dosimeters. Methods: MOSFET dosimeters (Best Medical Canada, model TN-502RDH-10) were placed in a solid water phantom at 5cm depth with 8cm backscatter (with the MOSFET wires in different orientations to the couch long axis) and also on the surface of an 8cm solid water phantom. The phantoms were placed in an MR image-guided Co-60 treatment machine at an SAD of 105cm to the MOSFETs. Dose measurements were performed between 50 and 200cGy at 5cm depth in amore » 10.5cm × 10.5cm radiation field without the magnetic field (during a machine maintenance period) and with the nominal magnetic field of 0.3T. The dose linearity was measured at 5cm depth with an orthogonal field and the angular dose dependence was measured on the surface with an orthogonal field and oblique fields at +60 degrees and −60 degrees. Results: The measured MOSFET readings at 5cm depth were linear with dose with slopes of (2.97 +/− 0.01) mV/cGy and (3.01 +/− 0.02) mV/cGy without and with the magnetic field, respectively. No statistically significant difference was found. The surface dose measurements, however, were lower by 6.4% for the AP field (2.3 σ) with magnetic field, 4.9% for the −60 degree field (1.4 σ), and 0.4% different for the +60 degree field (0.2 σ). Conclusion: There is no statistically significant difference in the dose at depth without and with the magnetic field and different orientations of the MOSFET wires. There is a statistically significant difference for the surface dose due to the influence of the magnetic field on secondary electrons from head-scatter and the build-up region in certain field orientations. Clinical surface-dose dosimetry in a magnetic field should apply asymmetric angle-dependent corrections.« less
Edris, Fawaz E
2014-10-01
To assess the reliability of trans-vaginal-scan (TVS) in measuring the uterine depth (UD) in comparison with ultrasound-guided trial-transfer (UTT). This prospective study was conducted in 66 consecutive patients undergoing in-vitro fertilization and embryo transfer (IVF-ET). The study took place in a private IVF center in Jeddah, Saudi Arabia between November 2013 and January 2014. The patients underwent UD measurements using TVS and UTT, sequentially. All scans were performed by a single sonographer, and all UTT were carried out by a single physician who was blinded to the TVS measurement. The median (95% confidence interval) UD measurement using the TVS method was 6.9 cm (5.0-12.5) and UTT was 7.1 cm (5.9-13.5), (p<0.0001). Fifteen patients (22.7%) had a difference of >1 cm between the 2 measurement modalities (group-B). When measured by UTT, 93.3% of patients in group-B had UD >/-8cm, compared with 9.8% of patients in group-A, (p<0.0001). Group-B had a significantly longer uterine cavity when measured by UTT (p<0.0001), and a trend towards significance when measured by TVS (p=0.055). The TVS measurements generally underestimated UD when compared with UTT. Trans-vaginal-scan is less reliable than UTT and should not be used as a substitute. Larger sample-size studies involving different personnel, and equipment is needed.
Ma, Li; Yang, Lin-Zhang; Ci, En; Wang, Yan; Yin, Shi-Xue; Shen, Ming-Xing
2008-09-01
Soil samples were collected from an experimental paddy field with long-term (26 years) fertilization in Taihu Lake region of Jiangsu Province to study the effects of different fertilization on the organic carbon distribution and stable carbon isotope natural abundance (delta 13C) in the soil profile, and on the humus composition. The results showed that long-term fertilization increased the organic carbon content in top soil significantly, and there was a significantly negative exponential correlation between soil organic carbon content and soil depth (P < 0.01). The organic carbon content in 10-30 cm soil layer under chemical fertilizations and in 20-40 cm soil layer under organic fertilizations was relatively stable. Soil delta 13C increased gradually with soil depth, its variation range being from -24% per thousand to -28 per thousand, and had a significantly negative linear correlation with soil organic carbon content (P < 0.05). In 0-20 cm soil layer, the delta 13C in treatments organic manure (M), M + NP, M + NPK, M + straw (R) + N, and R + N decreased significantly; while in 30-50 cm soil layer, the delta 13C in all organic fertilization treatments except R + N increased significantly. Tightly combined humus (humin) was the main humus composition in the soil, occupying 50% or more, and the rest were loosely and stably combined humus. Long-term fertilization increased the content of loosely combined humus and the ratio of humic acid (HA) to fulvic acid (FA).
[Effect of long-term fertilizing regime on soil microbial diversity and soil property].
Li, Chenhua; Zhang, Caixia; Tang, Lisong; Xiong, Zhengqin; Wang, Baozhan; Jia, Zhongjun; Li, Yan
2014-03-04
To evaluate the effect of long-term fertilization on soil microbial community and soil chemical and physical properties. Using a high-throughput pyrosequencing technique, we studied microbial community in the 0-300 cm soil samples covering a 20-year field-experiment with different fertilization applications including inorganic fertilizer alone (N 300 kg/hm2, P2O5 150 kg/hm2 and K2O 60 kg/hm2) and inorganic fertilizer combined with straw (same application rate of N and P fertilizer combined with 5.4 t straw). Actinobacteria and alpha-proteobacteria were the predominant groups in the topsoil (0-20 cm). As the soil depth increased, the relative abundance of actinobacteria decreased whereas that of proteobacteria, especially gamma-proteobacteria and beta-proteobacteria increased and gradually became the dominant groups in the subsoil (20-300 cm). Long-term fertilizing applications significantly affected soil microbial communities throughout the soil profile, and increased the relative abundance of ammonia-oxidizing archaea at 0-40 cm depth. In addition, agriculture management, e. g. irrigation may be an important driving factor for the distribution of ammonia-oxidizing bacteria in soil profile. Total nitrogen and organic carbon contents were the most influential factors on microbial community in the topsoil and in the subsoil, respectively. Long-term fertilizer applications altered soil nutrient availability within the soil profile, which was likely to result in the different microbial community structure between the fertilizer treatments, especially for the subsoil.
Visual assessment of soil structure quality in an agroextractivist system in Southeastern Amazonia
NASA Astrophysics Data System (ADS)
Fernanda Simões da Silva, Laura; Stuchi Boschi, Raquel; Ortega Gomes, Matheus; Cooper, Miguel
2016-04-01
Soil structure is considered a key factor in the functioning of soil, affecting its ability to support plant and animal life, and moderate environmental quality. Numerous methods are available to evaluate soil structure based on physical, chemical and biological indicators. Among the physical indicators, the attributes most commonly used are soil bulk density, porosity, soil resistance to penetration, tensile strength of aggregates, soil water infiltration, and available water. However, these methods are expensive and generally time costly for sampling and laboratorial procedures. Recently, evaluations using qualitative and semi-quantitative indicators of soil structure quality have gained importance. Among these methods, the method known as Visual Evaluation of Soil Structure (VESS) (Ball et al., 2007; Guimarães et al., 2011) can supply this necessity in temperate and tropical regions. The study area is located in the Piranheira Praialta Agroextrativist Settlement Project in the county of Nova Ipixuna, Pará, Brazil. Two toposequences were chosen, one under native forest and the other under pasture. Pits were opened in different landscape positions (upslope, midslope and downslope) for soil morphological, micromorphological and physical characterization. The use of the soil visual evaluation method (SVE) consisted in collecting an undisturbed soil sample of approximately 25 cm in length, 20 cm in width and 10 cm in depth. 12 soil samples were taken for each land use. The samples were manually fragmented, respecting the fracture planes between the aggregates. The SVE was done comparing the fragmented sample with a visual chart and scores were given to the soil structure. The categories that define the soil structure quality (Qe) vary from 1 to 5. Lower scores mean better soil structure. The final score calculation was done using the classification key of Ball et al. (2007) adapted by Guimarães (2011). A change in soil structure was observed between forest and pasture. The presence of layers of different depths, and size and shape of aggregates resulted in a lower Qe in the forest soils (Qe= 2,04 ±0,4), followed by the pasture (Qe= 3,09 ± 1,3). These results indicate certain degradation in the soil structure in the pasture. The variability of the soil structure in the forest samples was lower. The pasture samples presented a worse soil structure when compared to the forest, although their Qe values can be considered good.
Aamir, Muhammad; Khan, Sardar; Niu, Lili; Zhu, Siyu; Khan, Anwarzeb
2017-08-01
Hexachlorocyclohexane (HCH) isomers and dichlorodiphenyltrichloroethane (DDT) metabolites were analyzed in sediments of three different depths (0-10, 10-20 and 20-30 cm) collected from Kabul River, Pakistan, in February 2014. The occurrence levels, enantiomer fractions and potential ecological risk of these organochlorine pesticides (OCPs) were evaluated. The total concentrations of ∑HCHs and ∑DDTs in surface sediments ranged from 4.9-23.9 ng g -1 and from 6.4-18.8 ng g -1 (dry weight basis), respectively. The vertical contamination profile of DDTs was found in order of 20-30 cm >10-20 cm >0-10 cm, indicated that the residue levels of DDTs gradually decreased after it was banned. The ratios of β-HCH/HCHs ranged from 0.04 to 0.73 (69 % of samples below 0.5) suggesting the fresh input of HCHs, while isomeric ratios of α-HCH/γ-HCH (ranged from 0.02 to 7.94), with 76 % of samples less than 3, indicating the cocktail use of technical grade HCH and lindane in the study area. The ratio of (DDE + DDD)/DDTs (ranged from 0.42 to 0.90) indicated long-term biodegradation of parent DDT. The enantiomer of α-HCH was generally racemic or close to racemic for most of the samples, with enantiomeric fraction (EF) value <0.5 for some of the samples indicated the preferential biodegradation of (+)-α-HCH enantiomer, while for o,p'-DDT the EF values >0.5 indicated the depletion of (-)-o,p'-DDT enantiomer in most of the samples. According to sediment quality guidelines (SQGs), HCH contamination is the main concern for ecotoxicological risk in Kabul River.
Suriyapee, S; Pitaxtarnin, N; Oonsiri, S; Jumpangern, C; Israngkul Na Ayuthaya, I
2008-01-01
Purpose: To investigate the optimal sensitometric curves of extended dose range (EDR2) radiographic film in terms of depth, field size, dose range and processing conditions for dynamic intensity modulated radiation therapy (IMRT) dosimetry verification with 6 MV X-ray beams. Materials and methods: A Varian Clinac 23 EX linear accelerator with 6 MV X-ray beam was used to study the response of Kodak EDR2 film. Measurements were performed at depths of 5, 10 and 15 cm in MedTec virtual water phantom and with field sizes of 2x2, 3x3, 10x10 and 15x15 cm2. Doses ranging from 20 to 450 cGy were used. The film was developed with the Kodak RP X-OMAT Model M6B automatic film processor. Film response was measured with the Vidar model VXR-16 scanner. Sensitometric curves were applied to the dose profiles measured with film at 5 cm in the virtual water phantom with field sizes of 2x2 and 10x10 cm2 and compared with ion chamber data. Scanditronix/Wellhofer OmniProTM IMRT software was used for the evaluation of the IMRT plan calculated by Eclipse treatment planning. Results: Investigation of the reproducibility and accuracy of the film responses, which depend mainly on the film processor, was carried out by irradiating one film nine times with doses of 20 to 450 cGy. A maximum standard deviation of 4.9% was found which decreased to 1.9% for doses between 20 and 200 cGy. The sensitometric curves for various field sizes at fixed depth showed a maximum difference of 4.2% between 2x2 and 15x15 cm2 at 5 cm depth with a dose of 450 cGy. The shallow depth tended to show a greater effect of field size responses than the deeper depths. The sensitometric curves for various depths at fixed field size showed slightly different film responses; the difference due to depth was within 1.8% for all field sizes studied. Both field size and depth effect were reduced when the doses were lower than 450 cGy. The difference was within 2.5% in the dose range from 20 to 300 cGy for all field sizes and depths studied. Dose profiles measured with EDR2 film were consistent with those measured with an ion chamber. The optimal sensitometric curve was acquired by irradiating film at a depth of 5 cm with doses ranging from 20 to 450 cGy with a 3×3 cm2 multileaf collimator. The optimal sensitometric curve allowed accurate determination of the absolute dose distribution. In almost 200 cases of dynamic IMRT plan verification with EDR2 film, the difference between measured and calculated dose was generally less than 3% and with 3 mm distance to agreement when using gamma value verification. Conclusion: EDR2 film can be used for accurate verification of composite isodose distributions of dynamic IMRT when the optimal sensitometric curve has been established. PMID:21614315
Suriyapee, S; Pitaxtarnin, N; Oonsiri, S; Jumpangern, C; Israngkul Na Ayuthaya, I
2008-01-01
To investigate the optimal sensitometric curves of extended dose range (EDR2) radiographic film in terms of depth, field size, dose range and processing conditions for dynamic intensity modulated radiation therapy (IMRT) dosimetry verification with 6 MV X-ray beams. A Varian Clinac 23 EX linear accelerator with 6 MV X-ray beam was used to study the response of Kodak EDR2 film. Measurements were performed at depths of 5, 10 and 15 cm in MedTec virtual water phantom and with field sizes of 2x2, 3x3, 10x10 and 15x15 cm(2). Doses ranging from 20 to 450 cGy were used. The film was developed with the Kodak RP X-OMAT Model M6B automatic film processor. Film response was measured with the Vidar model VXR-16 scanner. Sensitometric curves were applied to the dose profiles measured with film at 5 cm in the virtual water phantom with field sizes of 2x2 and 10x10 cm(2) and compared with ion chamber data. Scanditronix/Wellhofer OmniPro(TM) IMRT software was used for the evaluation of the IMRT plan calculated by Eclipse treatment planning. Investigation of the reproducibility and accuracy of the film responses, which depend mainly on the film processor, was carried out by irradiating one film nine times with doses of 20 to 450 cGy. A maximum standard deviation of 4.9% was found which decreased to 1.9% for doses between 20 and 200 cGy. The sensitometric curves for various field sizes at fixed depth showed a maximum difference of 4.2% between 2x2 and 15x15 cm(2) at 5 cm depth with a dose of 450 cGy. The shallow depth tended to show a greater effect of field size responses than the deeper depths. The sensitometric curves for various depths at fixed field size showed slightly different film responses; the difference due to depth was within 1.8% for all field sizes studied. Both field size and depth effect were reduced when the doses were lower than 450 cGy. The difference was within 2.5% in the dose range from 20 to 300 cGy for all field sizes and depths studied. Dose profiles measured with EDR2 film were consistent with those measured with an ion chamber. The optimal sensitometric curve was acquired by irradiating film at a depth of 5 cm with doses ranging from 20 to 450 cGy with a 3×3 cm(2) multileaf collimator. The optimal sensitometric curve allowed accurate determination of the absolute dose distribution. In almost 200 cases of dynamic IMRT plan verification with EDR2 film, the difference between measured and calculated dose was generally less than 3% and with 3 mm distance to agreement when using gamma value verification. EDR2 film can be used for accurate verification of composite isodose distributions of dynamic IMRT when the optimal sensitometric curve has been established.
NASA Astrophysics Data System (ADS)
Metzger, T. L.; Pizzuto, J. E.; Schook, D. M.; Hasse, T. R.; Affinito, R. A.
2017-12-01
Dendrochronological dating of buried trees precisely determines the germination year and identifies the stratigraphic context of germination for the trees. This recently developed application of dendrochronology provides accurate time-averaged sedimentation rates of overbank deposition along floodplains and can be used to identify burial events. Previous studies have demonstrated that tamarisk (Tamarix ramosissima) and sandbar willow (Salix exigua) develop anatomical changes within the tree rings (increased vessel size and decreased ring widths) on burial, but observations of plains cottonwood (Populus deltoides ssp. monilifera) are lacking. In September 2016 and June 2017, five buried plains cottonwoods were excavated along a single transect of the interior of a meander bend of the Powder River, Montana. Sediment samples were obtained near each tree for 210Pb and 137Cs dating, which will allow for comparison between dendrochronological and isotopic dating methods. The plains cottonwood samples collected exhibit anatomical changes associated with burial events that are observed in other species. All trees germinated at the boundary between thinly bedded fine sand and mud and coarse sand underlain by sand and gravel, indicating plains cottonwoods germinate on top of point bars prior to overbank deposition. The precise germination age and depth provide elevations and minimum age constraints for the point bar deposits and maximum ages for the overlying sediment, helping constrain past channel positions and overbank deposition rates. Germination years of the excavated trees, estimated from cores taken 1.5 m above ground level, range from 2014 to 1862. Accurate establishment years determined by cross-dating the buried section of the tree can add an additional 10 years to the cored age. The sedimentation rate and accumulation thickness varied with tree age. The germination year, total sediment accumulation, and average sedimentation rate at the five sampled trees is: 2011, 35 cm, 7.0 cm/year; 1973, 77 cm, 1.8 cm/year; 1962, 140 cm, 2.6 cm/year; 1960, 123 cm, 2.2 cm/year; and 1862, 112 cm, 0.7 cm/year. These sedimentation rates indicate that the cumulative sedimentation decreases as a power law with increasing tree age.
Soil organic carbon assessments in cropping systems using isotopic techniques
NASA Astrophysics Data System (ADS)
Martín De Dios Herrero, Juan; Cruz Colazo, Juan; Guzman, María Laura; Saenz, Claudio; Sager, Ricardo; Sakadevan, Karuppan
2016-04-01
Introduction of improved farming practices are important to address the challenges of agricultural production, food security, climate change and resource use efficiency. The integration of livestock with crops provides many benefits including: (1) resource conservation, (2) ecosystem services, (3) soil quality improvements, and (4) risk reduction through diversification of enterprises. Integrated crop livestock systems (ICLS) with the combination of no-tillage and pastures are useful practices to enhance soil organic carbon (SOC) compared with continuous cropping systems (CCS). In this study, the SOC and its fractions in two cropping systems namely (1) ICLS, and (2) CCS were evaluated in Southern Santa Fe Province in Argentina, and the use of delta carbon-13 technique and soil physical fractionation were evaluated to identify sources of SOC in these systems. Two farms inside the same soil cartographic unit and landscape position in the region were compared. The ICLS farm produces lucerne (Medicago sativa Merrill) and oat (Avena sativa L.) grazed by cattle alternatively with grain summer crops sequence of soybean (Glicine max L.) and corn (Zea mays L.), and the farm under continuous cropping system (CCS) produces soybean and corn in a continuous sequence. The soil in the area is predominantly a Typic Hapludoll. Soil samples from 0-5 and 0-20 cm depths (n=4) after the harvest of grain crops were collected in each system and analyzed for total organic carbon (SOC, 0-2000 μm), particulate organic carbon (POC, 50-100 μm) and mineral organic carbon (MOC, <50 μm). Delta carbon-13 was determined by isotopic ratio mass spectrometry. In addition, a site with natural vegetation (reference site, REF) was also sampled for delta carbon-13 determination. ANOVA and Tukey statistical analysis were carried out for all data. The SOC was higher in ICLS than in CCS at both depths (20.8 vs 17.7 g kg-1 for 0-5 cm and 16.1 vs 12.7 g kg-1 at 0-20 cm, respectively, P<0.05). MOC was similar at both depths, and POC was higher in CCS than in ICLS at 0-5 cm, while at 0-20 cm this trend was opposite. This is probably due to the presence of deep roots under pastures in ICLS. Delta carbon-13 values for 0-5 cm were -22.9, -21.2 and -19.9 per mil for REF, ICLS and CCS, respectively (P<0.05). The lower delta carbon-13 in REF soils is explained by the presence of tree species with high lignin content in natural vegetation. Lignin has lower delta carbon-13 compared to cellulose (dominating in crops and pastures), which is present in greater proportion in plant residues of ICLS and CCS. Delta carbon-13 for 0-20 cm depth was similar for both systems. This means that in CCS there was a higher C input from C4 plants than in ICLS and REF, reflecting corn-plant residue contribution to SOC, meanwhile the main component of SOC in ICLS derived from pasture-plant residues. Results showed that ICLS under no tillage improved SOC levels due to higher plant residue inputs derived mainly from pasture compared to continuous cropping systems.
The significance of visitors' pressure for soil status in an urban park in Tel-Aviv
NASA Astrophysics Data System (ADS)
Zhevelev, Helena; Sarah, Pariente; Oz, Atar
2010-05-01
A park is one of the most important elements of sustainable development and optimization of the urban environment. The equilibrium within the complex of natural and anthropogenic factors defines the status of a park's ecosystem. The seasonal dynamics and spatial variations of soil properties in areas under differing levels of visitors' pressure were studied in a park in Tel-Aviv. Soil was sampled twice a year, in wet (March) and dry (July) seasons, from three types of areas, subjected to differing levels of visitors' pressure: high, low and none (control). In each type of area samples were taken from two depths (0-2 cm and 5-10 cm), at 14-39 points. In total, 268 soil samples were taken. Before the soil sampling, penetration depth was determined at each point. In addition, the numbers of barbecue fires in each of the three areas were counted. Gravimetric soil moisture, organic matter, pH, electrical conductivity, and soluble ions were measured in 1:1 water extraction. Penetration depth and electrical conductivity, and organic matter, sodium, potassium and chlorite contents differed under differing levels of visitors' pressure, whereas soil moisture, pH and calcium content exhibited only minor differences. Soil moisture, electrical conductivity, and magnesium and chlorite contents exhibited strong seasonal changes, whereas the organic matter, potassium and pH levels were unaffected by seasonal dynamics. Calcium, organic matter, magnesium and chlorite contents, and electrical conductivity were significantly affected by the depth of soil sampling, whereas pH was not so affected. The seasonal changes in soil properties in the area subjected to high visitors' pressure were higher than in the one under low visitors' pressure. In most cases, visitors' pressure led to increases in variance and coefficient of variation. Different soil properties were differently affected by visitors' pressure, seasonal dynamics and soil depth. The surface of the soil was more sensitive to both seasonal dynamics and visitors' pressure, than the deeper layer. Visitors' pressure increased seasonal changes in the studied soil properties, and also increased the spatial heterogeneity of the soil. The differences in organic matter, electrical conductivity and soluble ions among the areas under differing visitors' pressure are attributed to anthropogenic additions, which accompanied the recreational activities in the urban parks: remnants of barbecue fires and meals, and excreta of urban animals. Addition of urban dust, enriched in CaCO3, minimized the effect of visitors' pressure on soil calcium content. All the above anthropogenic additions enhance the differentiation in soil layers. The notable effect of visitors' pressure on variations in soil properties highlighted its high significance for urban parks.
Carnie, J; Boden, J; Gao Smith, F
2002-07-01
In this single group observational study on 29 patients, we describe a technique that predicts the depth of the epidural space, calculated from the routine pre-operative chest computerised tomography (CT) scan using Pythagorean triangle trigonometry. We also compared the CT-derived depth of the epidural space with the actual depth of needle insertion. The CT-derived and the actual depths of the epidural space were highly correlated (r = 0.88, R2 = 0.78, p < 0.0001). The mean (95% CI) difference between CT-derived and actual depths was 0.26 (0.03-0.49) cm. Thus, the CT-derived depth tends to be greater than the actual depth by between 0.03 and 0.49 cm. There were no associations between either the CT-derived or the actual depth of the epidural space and age, weight, height or body mass index.
Li, Qingyun; Lim, Yun Mook; Flores, Katharine M; Kranjc, Kelly; Jun, Young-Shin
2015-05-19
To provide information on wellbore cement integrity in the application of geologic CO2 sequestration (GCS), chemical and mechanical alterations were analyzed for cement paste samples reacted for 10 days under GCS conditions. The reactions were at 95 °C and had 100 bar of either N2 (control condition) or CO2 contacting the reaction brine solution with an ionic strength of 0.5 M adjusted by NaCl. Chemical analyses showed that the 3.0 cm × 1.1 cm × 0.3 cm samples were significantly attacked by aqueous CO2 and developed layer structures with a total attacked depth of 1220 μm. Microscale mechanical property analyses showed that the hardness and indentation modulus of the carbonated layer were 2-3 times greater than for the intact cement, but those in the portlandite-dissolved region decreased by ∼50%. The strength and elastic modulus of the bulk cement samples were reduced by 93% and 84%, respectively. The properties of the microscale regions, layer structure, microcracks, and swelling of the outer layers combined to affect the overall mechanical properties. These findings improve understanding of wellbore integrity from both chemical and mechanical viewpoints and can be utilized to improve the safety and efficiency of CO2 storage.
NASA Astrophysics Data System (ADS)
Gangloff, Sophie; Stille, Peter; Pierret, Marie-Claire; Weber, Tiphaine; Chabaux, François
2014-04-01
Dissolved Organic Carbon (DOC) plays an important role in the behavior of major and trace elements in the soil and influences their transfer from soil to soil solution. The first objective of this study is to characterize different organic functional groups for the Water Extractable Organic Carbon (WEOC) fractions of a forest soil as well as their evolution with depth. The second objective is to clarify the influence of these organic functional groups on the migration of the trace elements in WEOC fractions compared to those in the soil solution obtained by lysimeter plates. All experiments have been performed on an acidic forest soil profile (five depths in the first meter) of the experimental spruce parcel in the Stengbach catchment. The Infra-red spectra of the freeze-dried WEOC fractions show a modification of the molecular structure with depth, i.e. a decrease of the polar compounds such as polysaccharides and an increase of the less polar hydro-carbon functional groups with a maximum value of the aromaticity at 30 cm depth. A Hierarchical Ascending Classification (HAC) of the evolution of Water Extractable Chemical Elements (WECE) with the evolution of the organic functional groups in the organic matter (OM) enriched soil compartments permits recognition of relationships between trace element behavior and the organic functional group variations. More specifically, Pb is preferentially bound to the carboxylic acid function of DOC mainly present in the upper soil compartment and rare earth elements (REE) show similar behavior to Fe, V and Cr with a good affinity to carboxy-phenolic and phenolic groups of DOC. The experimental results show that heavy REE compared to light REE are preferentially bound to the aromatic functional group. This different behavior fractionates the REE pattern of soil solutions at 30 cm depth due to the here observed aromaticity enrichment of DOC. These different affinities for the organic functional groups of the DOC explain some aspects of the behavior of trace elements in soil solutions and in the soil profile but, also the competition between trace elements in complexation with DOC. The results of this study are important for the understanding of the mobility and the migration of pollutants (as heavy metals or radionuclides) as well as nutrients in natural ecosystems. WE PrN/YbN is constant between 3 and 16 cm depth whereas SS PrN/YbN slightly decreases from 0.80 at 5 cm depth to 0.74 at 10 cm depth. This results from Pr (LREE) enrichment in the soil solution of the upper soil compartment caused by vegetation controlled LREE recycling and/or atmospheric depositions (see above). WE PrN/YbN and SS PrN/YbN show similar depth dependent distributions including the enrichment at 30 cm depth. It results from Yb depletion at this depth and enrichment in the deeper soil compartment compared to Pr. Similar to Marsac et al. (2012, 2013) one might suggest that there is competition between Fe3+, Al3+ and REE for the binding with DOC. They have a high affinity with the same organic functional groups which is confirmed by the classification scheme (Fig. 8). The studies of Marsac et al. suggest that at acidic pH and low metal/DOC ratios, Fe3+and Al3+ compete more with HREE than LREE; moreover, at high metal/DOC ratios and acidic pH, Al3+ competes with LREE. The Fig. 13 showing the variations of WECEN for Al and Fe in function of WECEN LREE and HREE confirms Marsac et al.’s observations. The slope of the extrapolation line resulting from WECEN Al and HREE values remains rather unchanged for the OM depleted and enriched soil compartments; thus, the change in the metal/DOC ratio in the soil does not change the extraction behavior of Al and HREE. However, the WECEN Fe strongly increase compared to the corresponding HREE values in the OM enriched compartment pointing to the competition between Fe and HREE. Alternatively, one observes that the WECEN Fe and LREE values in the OM enriched compartment plot on the extrapolation line derived from OM depleted soil samples. Thus, in this case, the change in the metal/DOC ratio does not affect the extraction behavior of Fe and LREE. However, the WECEN values for Al and corresponding LREE of samples from the OM enriched soil compartment plot below the extrapolation line and point to the competition between Al and LREE. These results are also in agreement with the REE distribution pattern of the soil solutions from the same site which are at greater depth LREE depleted (Stille et al., 2009).
Radiography and partial tomography of wood with thermal neutrons
NASA Astrophysics Data System (ADS)
Osterloh, K.; Fratzscher, D.; Schwabe, A.; Schillinger, B.; Zscherpel, U.; Ewert, U.
2011-09-01
The effective high neutron scattering absorption coefficient of hydrogen (48.5 cm 2/g) due to the scattering allows neutrons to reveal hydrocarbon structures with more contrast than X-rays, but at the same time limits the sample size and thickness that can be investigated. Many planar shaped objects, particularly wood samples, are sufficiently thin to allow thermal neutrons to transmit through the sample in a direction perpendicular to the planar face but not in a parallel direction, due to increased thickness. Often, this is an obstacle that prevents some tomographic reconstruction algorithms from obtaining desired results because of inadequate information or presence of distracting artifacts due to missing projections. This can be true for samples such as the distribution of glue in glulam (boards of wooden layers glued together), or the course of partially visible annual rings in trees where the features of interest are parallel to the planar surface of the sample. However, it should be possible to study these features by rotating the specimen within a limited angular range. In principle, this approach has been shown previously in a study with fast neutrons [2]. A study of this kind was performed at the Antares facility of FRM II in Garching with a 2.6×10 7/cm 2 s thermal neutron beam. The limit of penetration was determined for a wooden step wedge carved from a 2 cm×4 cm block of wood in comparison to other materials such as heavy metals and Lucite as specimens rich in hydrogen. The depth of the steps was 1 cm, the height 0.5 cm. The annual ring structures were clearly detectable up to 2 cm thickness. Wooden specimens, i.e. shivers, from a sunken old ship have been subjected to tomography. Not visible from the outside, clear radial structures have been found that are typical for certain kinds of wood. This insight was impaired in a case where the specimen had been soaked with ethylene glycol. In another large sample study, a planar board made of glulam has been studied to show the glued layers. This study shows not only the limits of penetration in wood but also demonstrates access to structures perpendicular to the surface in larger planar objects by tomography with fast neutrons, even with incomplete sets of projection data that covers an angular range of only 90° or even 60°.
Very heavy solar cosmic rays: Energy spectrum and implications for lunar erosion
NASA Technical Reports Server (NTRS)
Fleischer, R. L.; Hart, H. R., Jr.; Comstock, G. M.
1972-01-01
Particle tracks were investigated in the glass plate of a neutral density (clear flint) optical filter housed in the Surveyor 3 TV camera but exposed directly to space. The track density vs depth curve was determined and descends sharply from approximately 2.6 million tracks/sq cm at a depth of 3.6 mg/sq cm to about 35/sq cm at 700 mg/sq cm. Several tracks were of V-shapes characteristic of high energy induced fission. The erosion rate on the moon due to solar wind ions was determined from the energy spectrum, and was found to be low (0 to 2 x 10 to the minus 8th power cm/yr).
SALI chemical analysis of provided samples
NASA Technical Reports Server (NTRS)
Becker, Christopher H.
1993-01-01
SRI has completed the chemical analysis of all the samples supplied by NASA. The final batch of four samples consisted of: one inch diameter MgF2 mirror, control 1200-ID-FL3; one inch diameter neat resin, PMR-15, AO171-IV-55, half exposed and half unexposed; one inch diameter chromic acid anodized, EOIM-3 120-47 aluminum disc; and AO-exposed and unexposed samples of fullerene extract material in powdered form, pressed into In foil for analysis. Chemical analyses of the surfaces were performed by the surface analysis by laser ionization (SALI) method. The analyses emphasize surface contamination or general organic composition. SALI uses nonselective photoionization of sputtered or desorbed atoms and molecules above but close (approximately one mm) to the surface, followed by time-of-flight (TOF) mass spectrometry. In these studies, we used laser-induced desorption by 5-ns pulse-width 355-nm light (10-100 mJ/sq cm) and single-photon ionization (SPI) by coherent 118-nm radiation (at approximately 5 x 10(exp 5) W/sq cm). SPI was chosen primarily for its ability to obtain molecular information, whereas multiphoton ionization (not used in the present studies) is intended primarily for elemental and small molecule information. In addition to these four samples, the Au mirror (EOIM-3 200-11, sample four) was depth profiled again. Argon ion sputtering was used together with photoionization with intense 355-nm radiation (35-ps pulsewidths). Depth profiles are similar to those reported earlier, showing reproducibility. No chromium was found in the sample above noise level; its presence could at most be at the trace level. Somewhat more Ni appears to be present in the Au layer in the unexposed side, indicating thermal diffusion without chemical enhancement. The result of the presence of oxygen is apparently to tie-up/draw out the Ni as an oxide at the surface. The exposed region has a brownish tint appearance to the naked eye.
Depth of maturity in the Moon's regolith
NASA Astrophysics Data System (ADS)
Denevi, B. W.; Duck, A.; Klem, S.; Ravi, S.; Robinson, M. S.; Speyerer, E. J.
2017-12-01
The observed maturity of the lunar surface is a function of its exposure to the weathering agents of the space environment as well as the rates of regolith gardening and overturn. Regolith exposed on the surface weathers until it is buried below material delivered to the surface by impact events; weathering resumes when it is re-exposed to the surface environment by later impacts. This cycle repeats until a mature layer of some thickness develops. The gardening rate of the upper regolith has recently been shown to be substantially higher than previously thought, and new insights on the rates of space weathering and potential variation of these rates with solar wind flux have been gained from remote sensing as well as laboratory studies. Examining the depth to which the lunar regolith is mature across a variety of locations on the Moon can provide new insight into both gardening and space weathering. Here we use images from the Lunar Reconnaissance Orbiter Camera (LROC) with pixel scales less than approximately 50 cm to examine the morphology and reflectance of impact craters in the 2- to 100-m diameter size range. Apollo core samples show substantial variation, but suggest that the upper 50 cm to >1 m of regolith is mature at the sampled sites. These depths indicate that because craters excavate to a maximum depth of 10% of the transient crater diameter, craters with diameters less than 5-10 m will typically expose only mature material and this phenomenon should be observable in LROC images. Thus, we present the results of classifying craters by both morphology and reflectance to determine the size-frequency distribution of craters that expose immature material versus those that do not. These results are then compared to observations of reflectance values for the ejecta of craters that have formed during the LRO mission. These newly formed craters span a similar range of diameters, and there is no ambiguity about post-impact weathering because they are less than a decade old.
Detection of tightly closed flaws by nondestructive testing (NDT) methods in steel and titanium
NASA Technical Reports Server (NTRS)
Rummel, W. D.; Rathke, R. A.; Todd, P. H., Jr.; Tedrow, T. L.; Mullen, S. J.
1976-01-01
X-radiographic, liquid penetrant, ultrasonic, eddy current and magnetic particle testing techniques were optimized and applied to the evaluation of 4340 steel (180 KSI-UTS) and 6Al-4V titanium (STA) alloy specimens. Sixty steel specimens containing a total of 176 fatigue cracks and 60 titanium specimens containing a total of 135 fatigue cracks were evaluated. The cracks ranged in length from .043 cm (0.017 inch) to 1.02 cm (.400 inch) and in depth from .005 cm (.002 inch) to .239 cm (.094 inch) for steel specimens. Lengths ranged from .048 cm (0.019 inch) to 1.03 cm (.407 inch) and depths from 0.010 cm (.004 inch) to .261 cm (0.103 inch) for titanium specimens. Specimen thicknesses were nominally .152 cm (0.060 inch) and 0.635 cm (0.250 inch) and surface finishes were nominally 125 rms. Specimens were evaluated in the "as machined" surface condition, after etch surface and after proof loading in a randomized inspection sequence.
James, Joseph; Murukeshan, Vadakke Matham; Woh, Lye Sun
2014-07-01
The structural and molecular heterogeneities of biological tissues demand the interrogation of the samples with multiple energy sources and provide visualization capabilities at varying spatial resolution and depth scales for obtaining complementary diagnostic information. A novel multi-modal imaging approach that uses optical and acoustic energies to perform photoacoustic, ultrasound and fluorescence imaging at multiple resolution scales from the tissue surface and depth is proposed in this paper. The system comprises of two distinct forms of hardware level integration so as to have an integrated imaging system under a single instrumentation set-up. The experimental studies show that the system is capable of mapping high resolution fluorescence signatures from the surface, optical absorption and acoustic heterogeneities along the depth (>2cm) of the tissue at multi-scale resolution (<1µm to <0.5mm).
Ouchi, Kentaro; Sugiyama, Kazuna
2016-04-01
Incorrect endobronchial placement of the tracheal tube can lead to serious complications. Hence, it is necessary to determine the accuracy of tracheal tube positioning. Markers are included on tracheal tubes, in the process of their manufacture, as indicators of approximate intubation depth. In addition, continuous chest auscultation has been used for determining the proper position of the tube. We examined insertion depth using the cuff depth and continuous chest auscultation method (CC method), compared with insertion depth determined by the marker method, to assess the accuracy of these methods. After induction of anesthesia, tracheal intubation was performed in each patient. In the CC method, the depth of tube insertion was measured when the cuff had passed through the glottis, and again when breath sounds changed in quality; the depth of tube insertion was determined from these values. In the marker method, the depth of tube insertion was measured and determined when the marker of the tube had reached the glottis, using insertion depth according to the marker as an index. Insertion depth by the marker method was 26.6 ± 1.2 cm and by the CC method was 28.0 ± 1.2 cm (P < 0.0001). The CC method indicated a significantly greater depth than the marker method. This study determined the safe range of tracheal tube placement. Tube positions determined by the CC method were about 1 cm deeper than those determined by the marker. This information is important to prevent accidental one-lung ventilation and accidental extubation. UMIN No. UMIN000011375.
NASA Astrophysics Data System (ADS)
Coopersmith, Evan J.; Cosh, Michael H.; Bell, Jesse E.; Boyles, Ryan
2016-12-01
Surface soil moisture is a critical parameter for understanding the energy flux at the land atmosphere boundary. Weather modeling, climate prediction, and remote sensing validation are some of the applications for surface soil moisture information. The most common in situ measurement for these purposes are sensors that are installed at depths of approximately 5 cm. There are however, sensor technologies and network designs that do not provide an estimate at this depth. If soil moisture estimates at deeper depths could be extrapolated to the near surface, in situ networks providing estimates at other depths would see their values enhanced. Soil moisture sensors from the U.S. Climate Reference Network (USCRN) were used to generate models of 5 cm soil moisture, with 10 cm soil moisture measurements and antecedent precipitation as inputs, via machine learning techniques. Validation was conducted with the available, in situ, 5 cm resources. It was shown that a 5 cm estimate, which was extrapolated from a 10 cm sensor and antecedent local precipitation, produced a root-mean-squared-error (RMSE) of 0.0215 m3/m3. Next, these machine-learning-generated 5 cm estimates were also compared to AMSR-E estimates at these locations. These results were then compared with the performance of the actual in situ readings against the AMSR-E data. The machine learning estimates at 5 cm produced an RMSE of approximately 0.03 m3/m3 when an optimized gain and offset were applied. This is necessary considering the performance of AMSR-E in locations characterized by high vegetation water contents, which are present across North Carolina. Lastly, the application of this extrapolation technique is applied to the ECONet in North Carolina, which provides a 10 cm depth measurement as its shallowest soil moisture estimate. A raw RMSE of 0.028 m3/m3 was achieved, and with a linear gain and offset applied at each ECONet site, an RMSE of 0.013 m3/m3 was possible.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoenner, R.W.; Davis, R. Jr.; Bauer, M.
1973-01-01
The gas was extracted from the sample return container from the Apollo 16 and 17 missions by adsorption on charcoal and activated vanadium metal. The hydrogen, argon, and radon were separated and counted to give the tritium, /sup 37/Ar, /suyp 39/Ar, and /sup 222 /Rn activities. The tritium and argon activities observed could be explained by diffusive losses of these gases from the fine material in the container. There was no excess tritium present in the Apollo 17 containers that could be attributed to solar tritons remaining from the intense flare of August 4, 1972. The /sup 222/Rn observed inmore » the sample return container was interpreted as an emanation product from lunar fines and an emanation yield of 1 x 10/sup -4/ was calculated. This yield is consistent with the low radon content observed in the lunar atmosphere. The tritium, sup 37/Ar, / sup 39/Ar, and /sup 222/Rn activities and the K, Ca, Ti, Fe, and Mn contents were measured on a set of samples from the Apollo 16 deep drill stem at depths from 83 to 343 g/cm/sup 2/. The /sup 37/Ar and /sup 39/Ar activities combined with similar measurements at more shallow depth by Fireman and associates (SAO) give the complete activity proflle in the lunar regolith. Since /sup 37/Ar is produced mainly by the /sup 40/Ca(n, alpha )/su p 37/Ar reaction it is possible to determine the neutron production rate in the regolith as a function of the depth. The /sup 222/Rn extracted from the samples by vacuum melting was found to be lower than expected in some samples based upon their uranium contents. The hydrogen and helium contents of the drill stem samples were measured and found to be relatively uniform with depth in contrast to similar measurements on Apollo 15 and 17 drill stems. The H/He atom ratio was higher than the accepted solar-wind value by a factor of two, possibly due to water contamination. (auth)« less
Reeves, J. B.; Smith, D.B.
2009-01-01
In 2004, soils were collected at 220 sites along two transects across the USA and Canada as a pilot study for a planned soil geochemical survey of North America (North American Soil Geochemical Landscapes Project). The objective of the current study was to examine the potential of diffuse reflectance (DR) Fourier Transform (FT) mid-infrared (mid-IR) and near-infrared (NIRS) spectroscopy to reduce the need for conventional analysis for the determination of major and trace elements in such continental-scale surveys. Soil samples (n = 720) were collected from two transects (east-west across the USA, and north-south from Manitoba, Canada to El Paso, Texas (USA), n = 453 and 267, respectively). The samples came from 19 USA states and the province of Manitoba in Canada. They represented 31 types of land use (e.g., national forest, rangeland, etc.), and 123 different land covers (e.g., soybeans, oak forest, etc.). The samples represented a combination of depth-based sampling (0-5 cm) and horizon-based sampling (O, A and C horizons) with 123 different depths identified. The set was very diverse with few samples similar in land use, land cover, etc. All samples were analyzed by conventional means for the near-total concentration of 49 analytes (Ctotal, Ccarbonate and Corganic, and 46 major and trace elements). Spectra were obtained using dried, ground samples using a Digilab FTS-7000 FT spectrometer in the mid- (4000-400 cm-1) and near-infrared (10,000-4000 cm-1) at 4 cm-1 resolution (64 co-added scans per spectrum) using a Pike AutoDIFF DR autosampler. Partial least squares calibrations were develop using: (1) all samples as a calibration set; (2) samples evenly divided into calibration and validation sets based on spectral diversity; and (3) samples divided to have matching analyte concentrations in calibration and validation sets. In general, results supported the conclusion that neither mid-IR nor NIRS would be particularly useful in reducing the need for conventional analysis of soils from this continental-scale geochemical survey. The extreme sample diversity, likely caused by the widely varied parent material, land use at the site of collection (e.g., grazing, recreation, agriculture, etc.), and climate resulted in poor calibrations even for Ctotal, Corganic and Ccarbonate. The results indicated potential for mid-IR and NIRS to differentiate soils containing high concentrations (>100 mg/kg) of some metals (e.g., Co, Cr, Ni) from low-level samples (<50 mg/kg). However, because of the small number of high-level samples, it is possible that differentiation was based on factors other than metal concentration. Results for Mg and Sr were good, but results for other metals examined were fair to poor, at best. In essence, it appears that the great variation in chemical and physical properties seen in soils from this continental-scale survey resulted in each sample being virtually unique. Thus, suitable spectroscopic calibrations were generally not possible.
NASA Astrophysics Data System (ADS)
Ladd, M.; Wullschleger, S.; Hettich, R.
2017-12-01
Elucidating the chemical composition of low molecular weight (LMW) dissolved organic matter (DOM), and monitoring how this bioavailable pool varies over space and time, is critical to understanding the controlling mechanisms that underlie carbon release and storage in Arctic systems. Due to analytical challenges however, relatively little is known about how this complex mixture of small molecules varies with soil depth or how it may be influenced by vegetation. In this study, we evaluated an untargeted metabolomics approach for the characterization of LMW DOM in water extracts, and applied this approach in soil cores (10-cm diam., 30-cm depth), obtained near Barrow, Alaska (71° 16' N) from the organic-rich active layer where the aboveground vegetation was primarily either Carex aquatilis or Eriophorum angustifolium, two species commonly found in tundra systems. We hypothesized that by using a discovery-based approach, spatial patterns of chemical diversity could be identified, enabling the detection of biogeochemical hotspots across scales. LMW DOM profiles from triplicate water extracts were characterized using dual-separation, nano-liquid chromatography (LC) coupled to an electrospray Orbitrap mass spectrometer in positive and negative ion modes. Both LC separations—reversed-phase and hydrophilic interaction chromatography—were achieved with gradient elutions in 15 minutes. Using a precursor and fragment mass measurement accuracy of <5 ppm for singly charged ions, unique features not observed in the blank or control were compared across all samples. Statistically significant differences with depth and between vegetation were determined, and the resulting list of features was matched to online databases. Annotated classes of LMW DOM included plant and microbial metabolites, organic acids, osmolytes, sugars, and simple peptides. Based on the chemical profile, we were able to distinguish between samples at each depth and between vegetation types, suggesting that a molecularly-resolved, data-driven approach could allow for more reliable predictions of how biogeochemical processes occurring at the molecular-scale (e.g. plant-microbial competition for organic nutrients) impact carbon fluxes in the Arctic at the landscape-scale.
Stratigraphy and depositional history of the Apollo 17 drill core
NASA Technical Reports Server (NTRS)
Taylor, G. J.; Warner, R. D.; Keil, K.
1979-01-01
Lithologic abundances obtained from modal analyses of a continuous string of polished thin sections indicate that the Apollo 17 deep drill core can be divided into three main zones: An upper zone (0-19 cm depth) characterized by high abundances of agglutinates (30%) and a high ratio of mare to non-mare lithic fragments (less than 0.8); a coarse-grained layer (24-56 cm) rich in fragments of high-Ti mare basalts and mineral fragments derived from them, and poor in agglutinates (6%); and a lower zone (56-285 cm) characterized by variable but generally high agglutinate abundances (25%) and a low ratio of mare to nonmare lithic fragments (0.6). Using observations of the geology of the landing site, the principles of cratering dynamics, and the vast amount of data collected on the core, the following depositional history for the section of regolith sampled by the Apollo 17 drill core: was devised.
NASA Astrophysics Data System (ADS)
Fabian Sallesses, Leonardo; Aparicio, Virginia Carolina; Costa, Jose Luis
2017-04-01
The use of the soil in the Humid Pampa of Argentina has changed since the mid-1990s from agricultural-livestock production (that included pastures with direct grazing) to a purely agricultural production. Also, in recent years the area under irrigation by central pivot has been increased to 150%. The waters used for irrigation are sodium carbonates. The combination of irrigation and rain increases the sodium absorption ratio of soil (SARs), consequently raising the clay dispersion and reducing infiltration. This implies an increased risk of soil loss. A reduction in the development of white clover crop (Trifolium repens L.) was observed at an irrigation plot during 2015 campaign. The clover was planted in order to reduce the impact of two maize (Zea mays L.) campaigns under irrigation, which had increased soil SAR and deteriorated soil structure. SPOT-5 radiometric normalized difference vegetation index (NDVI) images were used to determine two zones of high and low production. In each zone, four random points were selected for further geo-referenced field sampling. Two geo-referenced measures of effective depth and surface soil sampling were carried out in each point. Texture of soil samples was determined by Pipette Method of Sedimentation Analysis. Data exploratory analysis showed that low production zone had a media effective depth = 80 cm and silty clay loam texture, while high production zone had a media effective depth > 140 cm and silt loam texture. The texture class of the low production zone did not correspond to prior soil studies carried out by the INTA (National Institute of Agricultural Technology), which showed that those soil textures were silt loam at surface and silty clay loam at sub-surface. The loss of the A horizon is proposed as a possible explanation, but further research is required. Besides, the need of a soil cartography actualization, which integrates new satellite imaging technologies and geo-referenced measurements with soil sensors is emphasized. Key words: soil use change, satellite images, erosion.
Kothapalli, Sri-Rajasekhar; Ma, Te-Jen; Vaithilingam, Srikant; Oralkan, Ömer
2014-01-01
In this paper, we demonstrate 3-D photoacoustic imaging (PAI) of light absorbing objects embedded as deep as 5 cm inside strong optically scattering phantoms using a miniaturized (4 mm × 4 mm × 500 µm), 2-D capacitive micromachined ultrasonic transducer (CMUT) array of 16 × 16 elements with a center frequency of 5.5 MHz. Two-dimensional tomographic images and 3-D volumetric images of the objects placed at different depths are presented. In addition, we studied the sensitivity of CMUT-based PAI to the concentration of indocyanine green dye at 5 cm depth inside the phantom. Under optimized experimental conditions, the objects at 5 cm depth can be imaged with SNR of about 35 dB and a spatial resolution of approximately 500 µm. Results demonstrate that CMUTs with integrated front-end amplifier circuits are an attractive choice for achieving relatively high depth sensitivity for PAI. PMID:22249594
2017-01-01
Inverted effective ONVMS for an M30 Bomb in a test-stand scenario. The target is oriented 45 degrees at a depth of 150 cm depth (top) and oriented...vertically at a depth of 210 cm (bottom). The red lines are the total ONVMS for a library AN M30 Bomb , and the other lines correspond to the...Centimeter DE Differential Evolution DLL Dynamic Link Libraries DoD Department of Defense EM Electromagnetic EMA Expectation
Leslie A. Viereck; Nancy R. Werdin-Pfisterer; Phyllis C. Adams; Kenji Yoshikawa
2008-01-01
Maximum thaw depths were measured annually in an unburned stand, a heavily burned stand, and a fireline in and adjacent to the 1971 Wickersham fire. Maximum thaw in the unburned black spruce stand ranged from 36 to 52 cm. In the burned stand, thaw increased each year to a maximum depth of 302 cm in 1995. In 1996, the entire layer of seasonal frost remained, creating a...
Assessment of Phytostabilization Success in Metalliferous Acid Mine Tailings
NASA Astrophysics Data System (ADS)
Wang, Y.; Root, R. A.; Hammond, C.; Amistadi, M. K.; Maier, R. M.; Chorover, J.
2014-12-01
Legacy mine tailings are a significant source of metal(loid)s due to wind and water erosion, especially in the arid southwest, and exposure to fugative dusts presents a health risk to surrounding populations. Compost assisted phytostabilization has been implemented to reduce off site emissions at the Iron King Mine U.S. Superfund Site in central Arizona, concurrent with a greenhouse mesocosm study for detailed study of subsurface mechanisms. Quantification of plant available toxic metal(loid)s in the amended tailings was accessed with a targeted single extraction of diethylenetriaminepentaactic acid (DTPA). Greenhouse mesocosms (1m dia, 0.4 m deep), run in triplicate, mimicked field treatments with: i) tailings only control (TO), ii) tailings plus 15 wt% compost (TC), iii) TC + quailbush seeds (TCA), and iv) TC + buffalo grass seeds (TCB). Core samples collected at 3-month intervals for 1 year were dissected by depth (10 cm each) for analysis. DTPA results indicated that compost treated samples decreased plant availability of Al, As, Cd, Cu, Fe, and Pb but increased Mn and Zn compared with TO. TCB decreased plant available metal(loid)s at all depths, whereas TCA plant available Al, As, Cd, Cu, Fe, Mn and Zn increased in the deeper 20-30cm and 30-40 cm relative to TCB. Samples from the greenhouse were compared to tailings from both the field site and tailings impacted soils used to grow vegetables. Mineral transformations and metal complexation, in the pre- and post-extracted tailings were analyzed by synchrotron transmission XRD and FTIR spectroscopy. The temporal change in plant available metal(loid)s in response to phytostabilization indicates mineralogical alteration that improves soil quality by reducing plant available metal(loid)s. These results will aid in the understanding and efficacy of phytostabilization as a means of remediating and reducing toxicity on mine tailings as well as providing information on health risk management in the region.
Characteristics of depth-sensing coplanar grid CdZnTe detectors
NASA Astrophysics Data System (ADS)
He, Zhong; Sturm, Ben W.
2005-12-01
The latest depth-sensing coplanar grid CdZnTe detectors have been tested. Two of these have dimensions 1.5×1.5×1.0 cm 3 and one is a cylindrical detector with 1.5 cm diameter and 1.0 cm length, all of them using the third-generation coplanar anode design. Energy resolutions of 2.0% and 2.4% FWHM at 662 keV γ-ray energies were obtained. Detector performance has been observed experimentally as a function of depth of the γ-ray interaction, and as a function of radial position near the anode surface. The measured results show the improvement of the third-generation anode design. Material uniformity of CdZnTe crystals manufactured by eV Products have been directly observed and compared on two 1.5×1.5×1.0 cm 3 detectors.
Stahl, Clément; Hérault, Bruno; Rossi, Vivien; Burban, Benoit; Bréchet, Claude; Bonal, Damien
2013-12-01
Though the root biomass of tropical rainforest trees is concentrated in the upper soil layers, soil water uptake by deep roots has been shown to contribute to tree transpiration. A precise evaluation of the relationship between tree dimensions and depth of water uptake would be useful in tree-based modelling approaches designed to anticipate the response of tropical rainforest ecosystems to future changes in environmental conditions. We used an innovative dual-isotope labelling approach (deuterium in surface soil and oxygen at 120-cm depth) coupled with a modelling approach to investigate the role of tree dimensions in soil water uptake in a tropical rainforest exposed to seasonal drought. We studied 65 trees of varying diameter and height and with a wide range of predawn leaf water potential (Ψpd) values. We confirmed that about half of the studied trees relied on soil water below 100-cm depth during dry periods. Ψpd was negatively correlated with depth of water extraction and can be taken as a rough proxy of this depth. Some trees showed considerable plasticity in their depth of water uptake, exhibiting an efficient adaptive strategy for water and nutrient resource acquisition. We did not find a strong relationship between tree dimensions and depth of water uptake. While tall trees preferentially extract water from layers below 100-cm depth, shorter trees show broad variations in mean depth of water uptake. This precludes the use of tree dimensions to parameterize functional models.
Accuracy of snow depth estimation in mountain and prairie environments by an unmanned aerial vehicle
NASA Astrophysics Data System (ADS)
Harder, Phillip; Schirmer, Michael; Pomeroy, John; Helgason, Warren
2016-11-01
Quantifying the spatial distribution of snow is crucial to predict and assess its water resource potential and understand land-atmosphere interactions. High-resolution remote sensing of snow depth has been limited to terrestrial and airborne laser scanning and more recently with application of structure from motion (SfM) techniques to airborne (manned and unmanned) imagery. In this study, photography from a small unmanned aerial vehicle (UAV) was used to generate digital surface models (DSMs) and orthomosaics for snow cover at a cultivated agricultural Canadian prairie and a sparsely vegetated Rocky Mountain alpine ridgetop site using SfM. The accuracy and repeatability of this method to quantify snow depth, changes in depth and its spatial variability was assessed for different terrain types over time. Root mean square errors in snow depth estimation from differencing snow-covered and non-snow-covered DSMs were 8.8 cm for a short prairie grain stubble surface, 13.7 cm for a tall prairie grain stubble surface and 8.5 cm for an alpine mountain surface. This technique provided useful information on maximum snow accumulation and snow-covered area depletion at all sites, while temporal changes in snow depth could also be quantified at the alpine site due to the deeper snowpack and consequent higher signal-to-noise ratio. The application of SfM to UAV photographs returns meaningful information in areas with mean snow depth > 30 cm, but the direct observation of snow depth depletion of shallow snowpacks with this method is not feasible. Accuracy varied with surface characteristics, sunlight and wind speed during the flight, with the most consistent performance found for wind speeds < 10 m s-1, clear skies, high sun angles and surfaces with negligible vegetation cover.
Long term effects of sewage sludge on chemical properties of a degraded soil profile
NASA Astrophysics Data System (ADS)
Guerrini, Irae; Goulart, Livia; Faria, Marianne; Spada, Grasiela; Carlos, Guilherme; Nalesso, Pedro; Harrison, Robert
2017-04-01
Degraded areas are characterized by the removal of their original vegetation and topsoil, leading to loss of organic matter (OM), alteration in soil physical properties and low availability of nutrients. The use of sewage sludge is an alternative for the recovery of these areas due to its content of OM, which acts as a soil conditioner, in addition to the high levels of macro and micronutrients and beneficial soil biology. The objective of this study was to verify the long term effect of the application of increasing doses of sewage sludge on the chemical properties of a degraded soil up to one meter deep, ten years after the application of the treatments. The experiment was installed at Fazenda Entre-Rios, Itatinga-SP, São Paulo, Brazil, in an area with a high level of degradation and compaction. Subsequently, the area was divided into 32 plots, with 8 treatments and 4 replicates, and planted with native species of the Atlantic Forest. The treatments were: diferent doses of sewage sludge (2.5; 5; 10; 15 and 20 t ha-1, with K supplementation); mineral fertilization (NPK+B+Zn); dose of K used as supplementation for the sludge and control treatment. After 10 years of application of the treatments, soil samples were collected every 20 cm depth (0-20, 20-40, 40-60, 60-80 and 80-100 cm) for chemical analysis. Levels of calcium (Ca) and magnesium (Mg) were not different in any depth. Significant differences occurred for sulfur (S) and some micronutrients, such as copper (Cu), iron (Fe) and zinc (Zn) at all depths evaluated. In addition, there were values with significant differences in only some layers: potassium (K) content, for example, in the 60-80 cm layer; phosphorus (P) content in the surface and the content of boron (B) and manganese (Mn) in greater depths
NASA Astrophysics Data System (ADS)
MacIntyre, S.; Kellman, L. M.; Gabriel, C. E.; Diochon, A.
2016-12-01
Due to their substantial pool size, changes in mineral soil carbon (C) stores have the potential to generate significant changes in forest soil C budgets. Harvesting represents a significant land use disturbance that can alter soil organic carbon (SOC) stores, with a number of field studies documenting large losses of SOC following clearcut harvesting. However, little is known about how the distribution of SOC changes amongst mineral-associated pools of differing crystallinity following this disturbance. The objective of this study was to quantify changes in mineral-associated SOC pool sizes through depth and time for podzol soils (mineral soil depths of 0-5, 5-10, 10-15, 15-20, 20-35, and 35-50 cm) of a temperate red spruce harvest chronosequence (representing stand ages of 1yr, 15yr, 45yr, 80yr, and 125+yr) in Nova Scotia, Canada. Samples were subjected to a 4-step sequential chemical dissolution to selectively extract C from mineral pools of increasing crystallinity: soluble minerals (deionized water), organo-metal complexes (Na-pyrophosphate), poorly crystalline minerals (hydroxylamine), and crystalline minerals (Na-dithionite HCl). Carbon concentrations were calculated for the solutions acquired during each stage of the selective dissolution process, providing a time series of changes in mineral-associated C through depth and time following harvesting. A loss of SOC from the organo-metal complexed pool following harvesting was observed, particularly in the deeper mineral soil (20-50cm), with this pool dominating the results. In the soluble and poorly crystalline pools, losses of C were also observed from the deeper mineral soil. Of the 5 sites, the 125+yr age class had the highest concentration of SOC associated with crystalline minerals, with the 0-5cm depth stratum holding a large portion of this C. This study may be useful as a model system for understanding how harvesting disturbance alters mineral pool SOM dynamics in humid temperate forest ecosystems.
James, Shelley A; Clearwater, Michael J; Meinzer, Frederick C; Goldstein, Guillermo
2002-03-01
Robust thermal dissipation sensors of variable length (3 to 30 cm) were developed to overcome limitations to the measurement of radial profiles of sap flow in large-diameter tropical trees with deep sapwood. The effective measuring length of the custom-made sensors was reduced to 1 cm at the tip of a thermally nonconducting shaft, thereby minimizing the influence of nonuniform sap flux density profiles across the sapwood. Sap flow was measured at different depths and circumferential positions in the trunks of four trees at the Parque Natural Metropolitano canopy crane site, Panama City, Republic of Panama. Sap flow was detected to a depth of 24 cm in the trunks of a 1-m-diameter Anacardium excelsum (Bertero & Balb. ex Kunth) Skeels tree and a 0.65-m-diameter Ficus insipida Willd. tree, and to depths of 7 cm in a 0.34-m-diameter Cordia alliodora (Ruiz & Pav.) Cham. trunk, and 17 cm in a 0.47-m-diameter Schefflera morototoni (Aubl.) Maguire, Steyerm. & Frodin trunk. Sap flux density was maximal in the outermost 4 cm of sapwood and declined with increasing sapwood depth. Considerable variation in sap flux density profiles was observed both within and among the trees. In S. morototoni, radial variation in sap flux density was associated with radial variation in wood properties, particularly vessel lumen area and distribution. High variability in radial and circumferential sap flux density resulted in large errors when measurements of sap flow at a single depth, or a single radial profile, were used to estimate whole-plant water use. Diurnal water use ranged from 750 kg H2O day-1 for A. excelsum to 37 kg H2O day-1 for C. alliodora.
90-year-old firn air from Styx glacier, East Antarctica
NASA Astrophysics Data System (ADS)
Jang, Y.; Ahn, J.; Buizert, C.; Lee, H. G.; Hong, S.; Han, Y.; Jun, S. J.; Hur, S. D.
2017-12-01
Firn is the upper part of the glacier that has not yet been completely changed to the ice. In this layer, firn air can move through the open pores and be pumped for sampling. We obtained firn air and ice cores from Styx glacier (73°51'95″ S, 163°41'217″ E, 1623m asl.), East Antarctica during 2014-2015. The Styx glacier is located near coast, and has an accumulation rate of 0.13 Mgm-2y-1 with a mean annual temperature of -31.7 °. We found that the lock-in depth (depth where gas diffusion starts to stop, "LID") is 52.4 m and bubble close-off depth (the depth to the snow-ice transition perfectly, "COD") is 65.1 m. Therefore lock-in zone (between LID and COD, "LIZ") is 52.4 - 65.1 m. Concentrations of greenhouse gases (CO2, CH4, n=13) in the firn air were analyzed at US National Oceanic and Atmospheric Administration (NOAA) and 15N of N2 was measured at the Scripps Institution of Oceanography (SIO). We find that the firn air ages are up to about 90 years, the oldest firn air ages observed among coastal glaciers. In order to better understand physical properties and chemical composition, methane concentration and total air content of the closed bubbles in the LIZ (3 cm resolution, n=124) were analyzed by a wet extraction method at Seoul National University. The CH4 concentration and total air content show large variations in cm-scale depth intervals, and they are anti-correlated with each other. The CH4 concentration changes in a few cm corresponds to up to 40 years in CH4 age. We also applied Centre for Ice and Climate (CIC) 1-dimensional diffusion model and simulated greenhouse gas concentration profiles to quantitatively understand how the air moves in the Styx firn column. We hypothesize that density variations in the firn may increase thickness of LIZ and consequently increase of firn gas ages.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simiele, E; Culberson, W
2015-06-15
Purpose: To investigate the effects of depth, fiber-optic cable bends, and incident radiation angle on Cerenkov production in the Standard Imaging Exradin W1. Methods: Measurements were completed using a Varian Clinac 21EX linear accelerator with an Exradin W1 scintillator as well as a cable-only scintillator (no scintillation material) to isolate the Cerenkov signal. The effects of cable bend radius and location were investigated by bending the fiber-optic cable into a circle with radii ranging from 1.0 to 10.8 cm and positioning the center of the coil at distances ranging from 10.0 to 175.0 cm from the photodiode. The effects ofmore » depth and incident radiation angle were investigated by performing measurements in water at depths ranging from 1.0 cm to 25.0 cm and angles ranging from 0° to 80°. Eclipse treatment-planning software was utilized to ensure a consistent dose was delivered to the W1 regardless of depth or angle. Results: Measured signal in both channels of the cable-only scintillator decreased as the bend radius decreased and as the distance between the bend and photodiode increased. A fiber bend of 1.0 cm radius produced a 17.1% decrease in the green channel response in the cable-only scintillator. The effect of depth was less severe; a maximum increase of 6.6% in the green channel response was observed at a depth of 25.0 cm in the W1. In the angular dependence investigation, the signal in both channels of the W1 peaked at an angle of 40°; which is in agreement with the nominal Cerenkov emission angle of 45°. Conclusion: The green channel response in the W1 (mainly Cerenkov signal) varied with depth, fiber-optic cable bends, and incident radiation angle. Fully characterizing Cerenkov production is essential to ensure it is properly accounted for in scintillator measurements. Research funding and materials received by Standard Imaging, Inc. (Middleton WI)« less
NASA Astrophysics Data System (ADS)
Salvador-Franch, Ferran; Salvà-Catarineu, Montserrat; Oliva, Marc; Gómez-Ortiz, Antonio
2016-04-01
Glaciers shaped the headwaters and valley floors in the Eastern Pyrenees during the Last Glaciation at elevations above 2100-2200 m. Since the deglaciation of these areas, periglacial processes have generated a wide range of periglacial landforms, such as rock glaciers, patterned ground and debris slopes. The role of soil temperatures is decisive for the degree of activity of periglacial processes: cryoturbation, solifluction, frost weathering, etc. Nowadays, periglacial processes in the Eastern Pyrenees are driven by a seasonal frozen layer extending 5-7 months. In general, at 2100 m the seasonal frost reaches 20 cm depth, while at 2700 m reaches 50 cm depth. However, soil temperatures, and thus, periglacial processes are strongly controlled by the large interannual variability of the snow cover. With the purpose of understanding the rhythm and intensity of soil freezing/thawing in 2003 we set up several monitoring sites along a vertical transect from the valley floors (1100 m) to the high plateaus (2700 m) across the southern slope of the Puigpedrós massif (2914 m), in the Eastern Pyrenees. The monitoring of soil temperatures has been conducted from 2003 to 2015 in different periglacial landforms using UTL and Hobo loggers. These loggers were installed at depths of 5, 20 and 50 cm at five sites: Calmquerdós (2730 m), Malniu (2230 m), La Feixa (2150 m), Meranges (1600 m) and Das (1097 m). Air temperatures used as reference come from two automatic stations of the Catalan Meteorological Survey in Malniu and Das, and with two loggers installed in La Feixa and Meranges. No permafrost regime was detected in none of the sites. Data shows evidence of the control of snow cover on the depth of the frozen layer and on the number of freeze-thaw cycles. Air temperatures at 2000-2200 m show a mean of 150 freeze-thaw cycles per year. In La Feixa, with very thin snow cover, only 67 cycles are recorded at 5 cm depth and 5 cycles at 50 cm depth. In Malniu, located at a higher elevation showing a thicker and longer snow cover, only 17 freeze-thaw cycles per year are recorded at 5 cm depth, with no cycles recorded at 50 cm depth. Soils remain unfrozen during years with a very thick snow cover. The snow cover is also largely conditioned by the microtopography and exposure to the dominant winds. These factors condition the distribution, duration and intensity of the frozen ground and, thus, determine the intensity of periglacial processes in these areas.
NASA Astrophysics Data System (ADS)
Salvador-Franch, Ferran; Salvà-Catarineu, Montserrat; Oliva, Marc; Gómez-Ortiz, Antonio
2015-04-01
During the Last Glaciation glaciers shaped the headwaters and valley floors in the Eastern Pyrenees above 2100-2200 m. Since the deglaciation of these high mountain environments, periglacial processes have generated rock glaciers, patterned ground and debris slopes. The role of soil temperatures is decisive regarding the contemporary activity of several processes: cryoturbation, solifluction, frost weathering, etc. Nowadays, periglacial processes are driven by a seasonal frozen layer extending 4-5 months. At 2100 m the seasonal frost reaches 20 cm depth, while at 2700 m reaches 50 cm depth. However, soil temperatures, and thus, periglacial processes are strongly controlled by the large interannual variability of the snow cover. With the purpose of understanding the rhythm and intensity of soil freezing/thawing we have set up several monitoring sites along a vertical transect from the high plateaus (2700 m) to the valley floors (1100 m) across the southern slope of the Puigpedrós massif (2914 m), in the Eastern Pyrenees. The monitoring of soil temperatures extends from 2003 to 2014. TinyTalk, UTL and Hobo loggers have been used in this study. These loggers were installed at depths of -5, -20 and -50 cm at five sites: Calmquerdós (2730 m), Malniu (2230 m), La Feixa (2150 m), Meranges (1600 m) and Das (1097 m). Air temperatures used as reference come from two automatic stations of the Catalan Meteorological Survey (Malniu, Das) as well as from two loggers installed in La Feixa and Meranges. Data shows the control of snow cover on the depth of the frozen layer and on the number of freeze-thaw cycles. Air temperatures at 2000-2200 m show a mean of 150 freeze-thaw cycles per year. In La Feixa, with very thin snow cover, only 67 cycles are recorded at 5 cm depth and 5 cycles at 50 cm depth. In Malniu, located at a higher elevation showing a thicker and longer snow cover, only 17 freeze-thaw cycles per year are recorded at 5 cm depth, with no cycles recorded at 50 cm depth. Soils remain unfrozen during years with a very thick snow cover. The snow cover is also largely conditioned by the microtopography and exposure to the dominant winds. These factors condition the distribution, duration and intensity of the frozen ground and, thus, determine the intensity of periglacial processes in these areas.
Influence of macroporosity on preferential solute and colloid transport in unsaturated field soils.
Cey, Edwin E; Rudolph, David L; Passmore, Joanna
2009-06-26
Transport of solutes and colloids in soils, particularly those subject to preferential flow along macropores, is important for assessing the vulnerability of shallow groundwater to contamination. The objective of this study was to investigate flow and transport phenomena for dissolved and colloid tracers during large infiltration events in partially saturated, macroporous soils. Controlled tracer infiltration tests were completed at two field sites in southern Ontario. A tension infiltrometer (TI) was used to infiltrate water with dissolved Brilliant Blue FCF dye simultaneously with 3.7 microm and 0.53 microm diameter fluorescent microspheres. Infiltration was conducted under maximum infiltration pressure heads ranging from -5.2 to -0.4 cm. All infiltration test sites were excavated to examine and photograph dye-stained flow patterns, map soil features, and collect samples for microsphere enumeration. Results indicated that preferential transport of dye and microspheres via macropores occurred when maximum pressure heads were greater than -3.0 cm, and the corresponding infiltration rates exceeded 2.0 cm h(-1). Dye and microspheres were detected at depths greater than 70 cm under the highest infiltration rates from both sites. Microsphere concentrations in the top 5-10 cm of soil decreased by more than two orders of magnitude relative to input concentrations, yet remained relatively constant with depth thereafter. There was some evidence for increased retention of the 3.7 microm microspheres relative to the 0.53 microm microspheres, particularly at lower infiltration pressures where straining and attachment mechanisms are most prevalent. Microspheres were observed within dye stained soil matrix surrounding individual macropores, illustrating the significance of capillary pressures in controlling the vertical migration of both tracers in the vicinity of the macropores. Overall, microsphere distributions closely followed the dye patterns, with microsphere concentrations at all depths directly related to the intensity (or concentration) of dye staining. It is concluded that the flow system influenced transport to a much greater degree than differences between dissolved and colloidal species, and hence a dye tracer could serve as a reasonable surrogate for colloid distributions in the vadose zone following individual infiltration events.
NASA Astrophysics Data System (ADS)
Salenbien, W.; Baker, P. A.; Fritz, S. C.; Guedron, S.
2014-12-01
Lake Titicaca is one of the most important archives of paleoclimate in tropical South America, and prior studies have elucidated patterns of climate variation at varied temporal scales over the past 0.5 Ma. Yet, slow sediment accumulation rates in the main deeper basin of the lake have precluded analysis of the lake's most recent history at high resolution. To obtain a paleoclimate record of the last few millennia at multi-decadal resolution, we obtained five short cores, ranging from 139 to 181 cm in length, from the shallower Wiñaymarka sub-basin of of Lake Titicaca, where sedimentation rates are higher than in the lake's main basin. Selected cores have been analyzed for their geochemical signature by scanning XRF, diatom stratigraphy, sedimentology, and for 14C age dating. A total of 72 samples were 14C-dated using a Gas Ion Source automated high-throughput method for carbonate samples (mainly Littoridina sp. and Taphius montanus gastropod shells) at NOSAMS (Woods Hole Oceanographic Institute) with an analytical precision higher than 2%. The method has lower analytical precision compared with traditional AMS radiocarbon dating, but the lower cost enables analysis of a larger number of samples, and the error associated with the lower precision is relatively small for younger samples (< ~8,000 years). A 172-cm-long core was divided into centimeter long sections, and 47 14C dates were obtained from 1-cm intervals, averaging one date every 3-4 cm. The other cores were radiocarbon dated with a sparser sampling density that focused on visual unconformities and shell beds. The high-resolution radiocarbon analysis reveals complex sedimentation patterns in visually continuous sections, with abundant indicators of bioturbated or reworked sediments and periods of very rapid sediment accumulation. These features are not evident in the sparser sampling strategy but have significant implications for reconstructing past lake level and paleoclimatic history.
Wang, Yuying; Hu, Chunsheng; Ming, Hua; Oenema, Oene; Schaefer, Douglas A.; Dong, Wenxu; Zhang, Yuming; Li, Xiaoxin
2014-01-01
The production and consumption of the greenhouse gases (GHGs) methane (CH4), carbon dioxide (CO2) and nitrous oxide (N2O) in soil profile are poorly understood. This work sought to quantify the GHG production and consumption at seven depths (0–30, 30–60, 60–90, 90–150, 150–200, 200–250 and 250–300 cm) in a long-term field experiment with a winter wheat-summer maize rotation system, and four N application rates (0; 200; 400 and 600 kg N ha−1 year−1) in the North China Plain. The gas samples were taken twice a week and analyzed by gas chromatography. GHG production and consumption in soil layers were inferred using Fick’s law. Results showed nitrogen application significantly increased N2O fluxes in soil down to 90 cm but did not affect CH4 and CO2 fluxes. Soil moisture played an important role in soil profile GHG fluxes; both CH4 consumption and CO2 fluxes in and from soil tended to decrease with increasing soil water filled pore space (WFPS). The top 0–60 cm of soil was a sink of atmospheric CH4, and a source of both CO2 and N2O, more than 90% of the annual cumulative GHG fluxes originated at depths shallower than 90 cm; the subsoil (>90 cm) was not a major source or sink of GHG, rather it acted as a ‘reservoir’. This study provides quantitative evidence for the production and consumption of CH4, CO2 and N2O in the soil profile. PMID:24892931
NASA Astrophysics Data System (ADS)
Shepard, C.; Holleran, M.; Lybrand, R. A.; Rasmussen, C.
2014-12-01
Understanding critical zone evolution and function requires an accurate assessment of local soil properties. Two-dimensional (2D) digital soil mapping provides a general assessment of soil characteristics across a sampled landscape, but lacks the ability to predict soil properties with depth. The utilization of mass-preserving spline functions enable the extrapolation of soil properties with depth, extending predictive functions to three-dimensions (3D). The present study was completed in the Marshall Gulch (MG) catchment, located in the Santa Catalina Mountains, 30 km northwest of Tucson, Arizona, as part of the Santa Catalina-Jemez Mountains Critical Zone Observatory. Twenty-four soil pits were excavated and described following standard procedures. Mass-preserving splines were used to extrapolate mass carbon (kg C m-2); percent clay, silt, and sand (%); sodium mass flux (kg Na m-2); and pH for 24 sampled soil pits in 1-cm depth increments. Saturated volumetric water content (θs) and volumetric water content at 10 kPa (θ10) were predicted using ROSETTA and established empirical relationships. The described profiles were all sampled to differing depths; to compensate for the unevenness of the profile descriptions, the soil depths were standardized from 0.0 to 1.0 and then split into five equal standard depth sections. A logit-transformation was used to normalize the target variables. Step-wise regressions were calculated using available environmental covariates to predict the properties of each variable across the catchment in each depth section, and interpolated model residuals added back to the predicted layers to generate the final soil maps. Logit-transformed R2 for the predictive functions varied widely, ranging from 0.20 to 0.79, with logit-transformed RMSE ranging from 0.15 to 2.77. The MG catchment was further classified into clusters with similar properties based on the environmental covariates, and representative depth functions for each target variable in each cluster calculated. Mass-preserving splines combined with stepwise regressions are an effective tool for predicting soil physical, chemical, and hydrological properties with depth, enhancing our understanding of the critical zone.
Effect of warm compress application on tissue temperature in healthy dogs.
Millard, Ralph P; Towle-Millard, Heather A; Rankin, David C; Roush, James K
2013-03-01
To measure the effect of warm compress application on tissue temperature in healthy dogs. 10 healthy mixed-breed dogs. Dogs were sedated with hydromorphone (0.1 mg/kg, IV) and diazepam (0.25 mg/kg, IV). Three 24-gauge thermocouple needles were inserted to a depth of 0.5 cm (superficial), 1.0 cm (middle), and 1.5 cm (deep) into a shaved, lumbar, epaxial region to measure tissue temperature. Warm (47°C) compresses were applied with gravity dependence for periods of 5, 10, and 20 minutes. Tissue temperature was recorded before compress application and at intervals for up to 80 minutes after application. Control data were collected while dogs received identical sedation but with no warm compress. Mean temperature associated with 5 minutes of heat application at the superficial, middle, and deep depths was significantly increased, compared with the control temperature. Application for 10 minutes significantly increased the temperature at all depths, compared with 5 minutes of application. Mean temperature associated with 20 minutes of application was not different at the superficial or middle depths, compared with 10 minutes of application. Temperature at the deep depth associated with 10 minutes of application was significantly higher, compared with 20 minutes of application, but all temperature increases at this depth were minimal. Results suggested that application of a warm compress should be performed for 10 minutes. Changes in temperature at a tissue depth of 1.5 cm were minimal or not detected. The optimal compress temperature to achieve therapeutic benefits was not determined.
NASA Astrophysics Data System (ADS)
Fukui, Yasuo; Hayakawa, Takahiro; Inoue, Tsuyoshi; Torii, Kazufumi; Okamoto, Ryuji; Tachihara, Kengo; Onishi, Toshikazu; Hayashi, Katsuhiro
2018-06-01
We carried out synthetic observations of interstellar atomic hydrogen at 21 cm wavelength by utilizing the magnetohydrodynamic numerical simulations of the inhomogeneous turbulent interstellar medium. The cold neutral medium (CNM) shows a significantly clumpy distribution with a small volume filling factor of 3.5%, whereas the warm neutral medium (WNM) has a distinctly different and smooth distribution with a large filling factor of 96.5%. In projection on the sky, the CNM exhibits a highly filamentary distribution with a subparsec width, whereas the WNM shows a smooth, extended distribution. In the H I optical depth, the CNM is dominant and the contribution of the WNM is negligibly small. The CNM has an area covering factor of 30% in projection, while the WNM has a covering factor of 70%. This means that the emission–absorption measurements toward radio continuum compact sources tend to sample the WNM with a probability of 70%, yielding a smaller H I optical depth and a smaller H I column density than those of the bulk H I gas. The emission–absorption measurements, which are significantly affected by the small-scale large fluctuations of the CNM properties, are not suitable for characterizing the bulk H I gas. Larger-beam emission measurements that are able to fully sample the H I gas will provide a better tool for that purpose, if a reliable proxy for hydrogen column density, possibly dust optical depth and gamma rays, is available. The present results provide a step toward precise measurements of the interstellar hydrogen with ∼10% accuracy. This will be crucial in interstellar physics, including identification of the proton–proton interaction in gamma-ray supernova remnants.
Contamination and human health risk of lead in soils around lead/zinc smelting areas in China.
Lei, Kai; Giubilato, Elisa; Critto, Andrea; Pan, Huiyun; Lin, Chunye
2016-07-01
Pb/Zn smelting, an important economic activity in China, has led to heavy environmental pollution. This research reviewed studies on soil Pb contamination at Pb/Zn smelting sites in China published during the period of 2000 to 2015 to clarify the total levels, spatial changes, and health risks for Pb contamination in soils at local and national scales. The results show that Pb contents in surface soils at 58 Pb/Zn smelting sites in China ranged from 7 to 312,452 mg kg(-1) with an arithmetic average, geometric average, and median of 1982, 404, and 428 mg kg(-1), respectively (n = 1011). Surface soil Pb content at these smelting sites decreased from an average of 2466 to 659 mg kg(-1), then to 463 mg kg(-1) as the distance from the smelters increased from <1000 to 1000∼2000 m, and then to >2000 m. With respect to variation with depth, the average soil Pb content at these sites gradually decreased from 986 mg kg(-1) at 0- to 20-cm depth to 144 mg kg(-1) at 80- to 100-cm depth. Approximately 78 % of the soil samples (n = 1011) at the 58 Pb/Zn smelting sites were classified as having high Pb pollution levels. Approximately 34.2 and 7.7 % of the soil samples (n = 1011) at the 58 Pb/Zn smelting sites might pose adverse health effects and high chronic risks to children, respectively. The Pb/Zn smelting sites in the southwest and southeast provinces of China, as well as Liaoning province, were most contaminated and thus should receive priority for remediation.
Sedimentation pulse in the NE Gulf of Mexico following the 2010 DWH blowout
Brooks, Gregg R.; Larson, Rebekka A.; Schwing, Patrick T.; ...
2015-07-14
The objective of this study was to investigate the impacts of the Deepwater Horizon (DWH) oil discharge at the seafloor as recorded in bottom sediments of the DeSoto Canyon region in the northeastern Gulf of Mexico. Through a close coupling of sedimentological, geochemical, and biological approaches, multiple independent lines of evidence from 11 sites sampled in November/December 2010 revealed that the upper ~1 cm depth interval is distinct from underlying sediments and results indicate that particles originated at the sea surface. Consistent dissimilarities in grain size over the surficial ~1 cm of sediments correspond to excess 234Th depths, which indicatesmore » a lack of vertical mixing (bioturbation), suggesting the entire layer was deposited within a 4–5 month period. In addition, a time series from four deep-sea sites sampled up to three additional times over the following two years revealed that excess 234Th depths, accumulation rates, and 234Th inventories decreased rapidly, within a few to several months after initial coring. The interpretation of a rapid sedimentation pulse is corroborated by stratification in solid phase Mn, which is linked to diagenesis and redox change, and the dramatic decrease in benthic formanifera density that was recorded in surficial sediments. Results are consistent with a brief depositional pulse that was also reported in previous studies of sediments, and marine snow formation in surface waters closer to the wellhead during the summer and fall of 2010. Although sediment input from the Mississippi River and advective transport may influence sedimentation on the seafloor in the DeSoto Canyon region, we conclude based on multidisciplinary evidence that the sedimentation pulse in late 2010 is the product of marine snow formation and is likely linked to the DWH discharge.« less
Sedimentation Pulse in the NE Gulf of Mexico following the 2010 DWH Blowout
Brooks, Gregg R.; Larson, Rebekka A.; Schwing, Patrick T.; Romero, Isabel; Moore, Christopher; Reichart, Gert-Jan; Jilbert, Tom; Chanton, Jeff P.; Hastings, David W.; Overholt, Will A.; Marks, Kala P.; Kostka, Joel E.; Holmes, Charles W.; Hollander, David
2015-01-01
The objective of this study was to investigate the impacts of the Deepwater Horizon (DWH) oil discharge at the seafloor as recorded in bottom sediments of the DeSoto Canyon region in the northeastern Gulf of Mexico. Through a close coupling of sedimentological, geochemical, and biological approaches, multiple independent lines of evidence from 11 sites sampled in November/December 2010 revealed that the upper ~1 cm depth interval is distinct from underlying sediments and results indicate that particles originated at the sea surface. Consistent dissimilarities in grain size over the surficial ~1 cm of sediments correspond to excess 234Th depths, which indicates a lack of vertical mixing (bioturbation), suggesting the entire layer was deposited within a 4–5 month period. Further, a time series from four deep-sea sites sampled up to three additional times over the following two years revealed that excess 234Th depths, accumulation rates, and 234Th inventories decreased rapidly, within a few to several months after initial coring. The interpretation of a rapid sedimentation pulse is corroborated by stratification in solid phase Mn, which is linked to diagenesis and redox change, and the dramatic decrease in benthic formanifera density that was recorded in surficial sediments. Results are consistent with a brief depositional pulse that was also reported in previous studies of sediments, and marine snow formation in surface waters closer to the wellhead during the summer and fall of 2010. Although sediment input from the Mississippi River and advective transport may influence sedimentation on the seafloor in the DeSoto Canyon region, we conclude based on multidisciplinary evidence that the sedimentation pulse in late 2010 is the product of marine snow formation and is likely linked to the DWH discharge. PMID:26172639
Impact of bottom trawling on deep-sea sediment properties along the flanks of a submarine canyon.
Martín, Jacobo; Puig, Pere; Masqué, Pere; Palanques, Albert; Sánchez-Gómez, Anabel
2014-01-01
The offshore displacement of commercial bottom trawling has raised concerns about the impact of this destructive fishing practice on the deep seafloor, which is in general characterized by lower resilience than shallow water regions. This study focuses on the flanks of La Fonera (or Palamós) submarine canyon in the Northwestern Mediterranean, where an intensive bottom trawl fishery has been active during several decades in the 400-800 m depth range. To explore the degree of alteration of surface sediments (0-50 cm depth) caused by this industrial activity, fishing grounds and control (untrawled) sites were sampled along the canyon flanks with an interface multicorer. Sediment cores were analyzed to obtain vertical profiles of sediment grain-size, dry bulk density, organic carbon content and concentration of the radionuclide 210Pb. At control sites, surface sediments presented sedimentological characteristics typical of slope depositional systems, including a topmost unit of unconsolidated and bioturbated material overlying sediments progressively compacted with depth, with consistently high 210Pb inventories and exponential decaying profiles of 210Pb concentrations. Sediment accumulation rates at these untrawled sites ranged from 0.3 to 1.0 cm y-1. Sediment properties at most trawled sites departed from control sites and the sampled cores were characterized by denser sediments with lower 210Pb surface concentrations and inventories that indicate widespread erosion of recent sediments caused by trawling gears. Other alterations of the physical sediment properties, including thorough mixing or grain-size sorting, as well as organic carbon impoverishment, were also visible at trawled sites. This work contributes to the growing realization of the capacity of bottom trawling to alter the physical properties of surface sediments and affect the seafloor integrity over large spatial scales of the deep-sea.
Impact of Bottom Trawling on Deep-Sea Sediment Properties along the Flanks of a Submarine Canyon
Martín, Jacobo; Puig, Pere; Masqué, Pere; Palanques, Albert; Sánchez-Gómez, Anabel
2014-01-01
The offshore displacement of commercial bottom trawling has raised concerns about the impact of this destructive fishing practice on the deep seafloor, which is in general characterized by lower resilience than shallow water regions. This study focuses on the flanks of La Fonera (or Palamós) submarine canyon in the Northwestern Mediterranean, where an intensive bottom trawl fishery has been active during several decades in the 400–800 m depth range. To explore the degree of alteration of surface sediments (0–50 cm depth) caused by this industrial activity, fishing grounds and control (untrawled) sites were sampled along the canyon flanks with an interface multicorer. Sediment cores were analyzed to obtain vertical profiles of sediment grain-size, dry bulk density, organic carbon content and concentration of the radionuclide 210Pb. At control sites, surface sediments presented sedimentological characteristics typical of slope depositional systems, including a topmost unit of unconsolidated and bioturbated material overlying sediments progressively compacted with depth, with consistently high 210Pb inventories and exponential decaying profiles of 210Pb concentrations. Sediment accumulation rates at these untrawled sites ranged from 0.3 to 1.0 cm y−1. Sediment properties at most trawled sites departed from control sites and the sampled cores were characterized by denser sediments with lower 210Pb surface concentrations and inventories that indicate widespread erosion of recent sediments caused by trawling gears. Other alterations of the physical sediment properties, including thorough mixing or grain-size sorting, as well as organic carbon impoverishment, were also visible at trawled sites. This work contributes to the growing realization of the capacity of bottom trawling to alter the physical properties of surface sediments and affect the seafloor integrity over large spatial scales of the deep-sea. PMID:25111298
Changes of Soil Aggregate C Isotopes in No-Till Corn Following Bromegrass.
NASA Astrophysics Data System (ADS)
Follett, R. F.; Varvel, G.; Vogel, K. P.
2007-12-01
This field study is near Ithaca, Nebraska, USA (lat. 41.151, long. 96.401) on a Filbert silt loam (fine, smectitic, mesic Vertic Argialboll). The site was in bromegrass since 1986. Corn was no-till seeded into the bromegrass sod in spring 1999. A randomized complete block design with three replicates was used. No-till corn was the main treatment with nitrogen (N) as subplots. N was broadcast at the start of each growing season at 60 or 120 kg N/ha as NH4NO3. Total biomass was measured by weighing 4.4 m of row in each plot. Soil samples were obtained in May 1999 (baseline sampling), Sept 1999, June 2000, Oct 2000, Sept 2001, Nov 2002, Sept 2003, and Oct 2005 from pre-selected areas by removal of plant material from the soil surface and removing the 0-5, 5- 10, and at 4 of the 8 harvests also sampling the 10-30 cm depths with a flat-bladed shovel. Soil bulk densities were determined on clods from each layer. The moist soil was passed through an 8 mm sieve before air drying and storing. Aggregate size fractions were obtained with a Yoder wet-aggregate method. Soil size fractions obtained were > 2, 1, 0.5, 0.25, 0.125, 0.045 and < 0.045 mm. Detritus was floated to the surface and skimmed off for transfer to a separate container. Aggregates were dried at 55°C, weighed, ground, and analyzed for total C and N and 13C:12C isotope ratio. Because soil organic carbon (SOC) was labeled with the bromegrass (C3 plant) isotope signature, then during the 77 months of this experiment the re-labeling of each fraction and the total SOC with the corn (C4 plant) isotope signature and the amounts of SOC lost from aggregate size fractions with conversion of the bromegrass sod to no-till corn was measured. During 6.5 years, total SOC decreased from 21.1, 17.0, and 55.8 t/ha in the 0-5, 5-10, and 10-30 cm depths to 20.1, 16.7, and 55.5 t/ha, respectively. However the SOC in the < 2, 0.5-2, and < 0.5 mm fractions of the 0 - 5 cm depth changed from 62, 21, and 16 % of the total SOC at the studies beginning to 31, 40, and 29 %, respectively, by the end of 77 months. Weight of SOC from C4 plants was 34.8, 49.8, and 73.2 % of total SOC in the 0-5, 5-10, and 0-30 cm depths, respectively at the beginning of the study, but after 77 months of no-till corn was 47.3, 59.0, and 71.8 % of total SOC for these same depths. In summary, it is important to evaluate losses or gains of SOC under cultivation. Use of the 13C:12C ratios, as influenced by reversing the growing sequence of C3 vs. C4 plants, allows losses of older SOC from C3 plants (bromegrass) vs. that added by growing C4 plants (corn) to be determined over time and allows rates of change of the SOC associated with various soil fractions to be evaluated.
Brassica cover crops for nitrogen retention in the Mid-Atlantic coastal plain.
Dean, Jill E; Weil, Ray R
2009-01-01
Brassica cover crops are new to the mid-Atlantic region, and limited information is available on their N uptake capabilities for effective N conservation. Forage radish (Raphanus sativus L. cv. Daikon), oilseed radish (Raphanus sativus L. cv. Adagio), and rape (Brassica napus L. cv. Dwarf Essex) were compared with rye (Secale cereale L. cv. Wheeler), a popular cover crop in the region, with regard to N uptake ability and potential to decrease N leaching at two sites in Maryland. Plants were harvested in fall and spring for dry matter and N analysis. Soil samples from 0 cm to 105 to 180 cm depth were obtained in fall and spring for NH(4)-N and NO(3)-N analyses. Ceramic cup tension lysimeters were installed at depths of 75 to 120 cm to monitor NO(3)-N in soil pore water. Averaged across 3 site-years, forage radish and rape shoots had greater dry matter production and captured more N in fall than rye shoots. Compared with a weedy fallow control, rape and rye caused similar decreases in soil NO(3)-N in fall and spring throughout the sampled profile. Cover crops had no effect on soil NH(4)-N. During the spring on coarse textured soil, pore water NO(3)-N concentrations in freeze-killed Brassica (radish) plots were greater than in control and overwintering Brassica (rape) and rye plots. On fine textured soil, all cover crops provided a similar decrease in pore water NO(3)-N concentration compared with control. On coarse textured soils, freeze-killed Brassica cover crops should be followed by an early-planted spring main crop.
Woody encroachment and soil carbon stocks in subalpine areas in the Central Spanish Pyrenees.
Nadal-Romero, E; Otal-Laín, I; Lasanta, T; Sánchez-Navarrete, P; Errea, P; Cammeraat, E
2018-05-01
Woody encroachment has been an ongoing process in the subalpine belt of Mediterranean mountains, after land abandonment, the disappearance of the transhumant system and the decrease of the livestock number. The main objectives of this study were: (i) to identify land use/land cover (LULC) changes from 1956 to 2015, and (ii) to investigate the effects of LULC changes in physical and chemical soil properties and soil organic carbon (SOC) and nitrogen (N) stocks. It is hypothesized that woody encroachment in the subalpine belt may lead to significant changes in soil properties, and will generate an increase in the SOC stocks. A land use gradient was identified in the subalpine belt of the Central Spanish Pyrenees: (i) subalpine grasslands, (ii) shrublands, (iii) young forests, and (iv) old forests. Mineral soil samples were collected every 10 cm, down to 40 cm, at three points per each LULC and a total of 48 samples were analyzed. The results showed that (i) woody encroachment has occurred from 1956 to 2015 due to the expansion of coniferous forests and shrublands (at the expense of grasslands), (ii) land cover and soil depth had significant effects on soil properties (except for pH), being larger in the uppermost 0-10 cm depth, (iii) SOC and N contents and stocks were higher in the grassland sites, and (iv) the woody encroachment process initially produced a decrease in the SOC stocks (shrublands), but no differences were observed considering the complete soil profile between grasslands and young and old forests. Further studies, describing SOC stabilization and quantifying above-ground carbon (shrub and tree biomass) are required. Copyright © 2018 Elsevier B.V. All rights reserved.
Li, Kankan; Ma, Dong; Wu, Juan; Chai, Chao; Shi, Yanxi
2016-12-01
The content of phthalate esters (PAEs) was investigated in 36 vegetable fields with plastic film mulching in Shandong Peninsula, East China. Soils at depths of 0-10 cm, 10-20 cm, and 20-40 cm were collected, and 16 PAEs were analyzed by gas chromatography-mass spectrometry. PAEs were detected in all the analyzed samples. The total contents of the 16 PAEs (Σ 16 PAEs) ranged from 1.374 to 18.810 mg/kg, with an average of 6.470 mg/kg. Among the four areas of Shandong Peninsula, including Qingdao, Weihai, Weifang, and Yantai, the highest Σ 16 PAE in the soil was observed in Weifang district (9.786 mg/kg), which is famous for large-scale vegetable production. Despite the significant differences among the Σ 16 PAEs, the PAE compositions in soils with plastic film mulching in Shandong Peninsula were comparable. Diethyl phthalate (DEP), diisobutyl phthalate, and di(4-methyl-2-pentyl) phthalate were present in all the samples, whereas di-n-hexyl phthalate was detected only in Qingdao (∼1%) and dicyclohexyl phthalate was observed only in Weifang (5.7-8.2%) in low proportions. The ratios of dimethyl phthalate, DEP, and di-n-butyl phthalate, which exceeded allowable concentrations, were 63.9-100% at different soil depths, indicating high PAE pollution. The concentration of butyl benzyl phthalate detected only in Weifang exceeded the recommended allowable soil concentration. Overall, the high PAE content in the soil with plastic film mulching in Shandong Peninsula is an issue of concern because of the large amounts of plastic film used. Copyright © 2016 Elsevier Ltd. All rights reserved.
Archaeal Diversity Associated with Deep Sea Whalefalls
NASA Astrophysics Data System (ADS)
Wilpiszeski, R.; Goffredi, S.; Turk, K.; Vrijenhoek, R.; House, C. H.; Orphan, V.
2005-12-01
Deep sea whale fall sites support a diverse population of organisms in an otherwise sparsely populated environment. While the macro- and megafauna of these ecosystems have been investigated in some detail, less is known about the nature of associated microbial populations. 16S rRNA gene surveys were used to evaluate the diversity of Archaea in the sediment below one such whale fall at 2800 m water depth and at a nearby control site. A variety of Archaea were identified, including diverse uncultured marine crenarchaeota, phylotypes related to hydrogenotrophic methanogens (Methanogenium spp.), and methylotrophic methanogens associated with the Methanococcoides. No methanogens were discovered at the control site, while hydrogenotrophic methanogens accounted for approximately 20% of the samples from surface sediments below the whale and 35% of the Archaea identified from 12.5 to 15 cm below the whale; the single methylotrophic methanogen was identified within the 12.5 to 15 cm depth sample. The presence of methanogenic phylotypes associated with the whale fall corroborates geochemical observations of elevated methane concentrations observed in the shallow sediments directly beneath the whale fall. This combined geochemical and microbiological evidence suggests that near surface organic matter remineralization is occurring via a methanogenic pathway within this deep sea whale fall habitat rather than the typical sulfidogenic dominated diagenesis commonly observed at other whale fall locations and within shallow marine sediments worldwide.
Depth Effects on the Decomposition Dynamics of Plant-derived C at Diverse Sites
NASA Astrophysics Data System (ADS)
Gregorich, E.; Ellert, B.; Janzen, H.; Beare, M.; Helgason, B. L.; Curtin, D.
2017-12-01
Decay of plant residues is tied to many ecosystem functions and affects atmospheric CO2, plant-available nutrients, microbial diversity, soil organic matter quality, among others. The rate of decay, in turn, is governed by soil type and management, location in the soil profile, and environmental variables, some of which may be changing in coming decades. Our objective in this study was to elucidate the decomposition dynamics of plant-derived C and N at different soil depths. To characterize the importance of these variables across a broad scale, we established a long-term study at two sites in Canada and one site in New Zealand. At each site, labelled barley straw (13C = 10.2 atom%,C = 37.9%; N = 0.95%; C:N = 40) was installed at 3 depths (5-10, 20-25 and 40-45 cm). Soil temperature was logged at each depth. Samples were collected at different times over 5-6 years after application of the residues. Results showed that substantial decay occurred at all depths within a relatively short time (< 1 year). Decay was greatest at the warmest site and depth affected the concentration of viable microbes. However, depth had no effect on residue decay after about 5 years.
NASA Astrophysics Data System (ADS)
Hubbart, J. A.; Zell, C.; Huang, D.
2012-12-01
Conversion of bottomland hardwood forest (BHF) to agricultural and urban land uses in the 19th and 20th centuries altered the hydrology of streams, floodplains, and remnant BHF. Broadened and steepened stream channels lead to increased channel instability, accelerated erosion, and reduced floodplain hydrologic connectivity. A case study was implemented to investigate floodplain and stream hydrogeomorphological processes comparing a remnant BHF and Ag site (sites = 0.90 km apart). 120 m2 grids were established to estimate canopy cover (LAI = 3.1), soil characteristics by the soil core method at depths of 0, 15, 30, 50, 75 and 100 cm (n = 302), and surface soil infiltration capacity (n = 42). 80 m2 grids (each site) were implemented with nine equally spaced piezometers to estimate shallow groundwater depth and flow. Stream bank erosion study sites were located adjacent to BHF and agricultural floodplain study sites using the erosion pin method (10 pin plots, n = 342 pins). Results indicate average porosity (n = 150) of 0.56 (SD = 0.04) and 0.59 (SD = 0.04) in agricultural and BHF sites, respectively. Average infiltration capacity was 44 cm/hr (SD = 38 cm/hr) and 59 cm/hr (SD = 54 cm/hr) in agricultural and BHF sites, respectively. Depth integrated calculations of equivalent depth of soil water (EDSW) were significantly different (CI = 99%) 33.3 cm/m (SD = 2.24 cm/m) and 36.9 cm/m (SD = 2.68 cm/m) between Ag and BHF sites, respectively. Shallow groundwater analyses (Water Year 2011) indicated that average head at the BHF and Ag sites increased by approximately 0.25 m, and 0.50 m, respectively 90 m inland from the streambank. Stream bank erosion results showed that during a drier (762 mm) than average (10yr avg = 1077 mm) rainfall year (Water Year 2011), 15.7 and 177.8 tonnes of soil erosion occurred on the right side (facing downstream) stream banks of the BHF and Ag sites, respectively. Average bank erosion depth measured at the BHF and Ag sites was 18 and 112 mm/yr respectively. The greatest average depth of erosion occurred during the winter season (44.7 mm), followed by summer (13.1 mm) and spring (6.3 mm) and fall with the lowest average erosion depth (1.1 mm). Results demonstrate the potential benefit of sustaining or re-establishing floodplain forests to enhance soil infiltration capacity, soil storage capacity, floodwave attenuation, and consumptive water use, thereby reducing flooding and mitigating stormwater runoff problems in rapidly developing urban environments. In addition, results hold important implications for land-use managers wishing to reduce bank erosion and improve land-use practices, water quality and aquatic natural resource sustainability in dynamic urbanizing watersheds.