Sample records for cm diameter field

  1. Performance of 10-kW class xenon ion thrusters

    NASA Technical Reports Server (NTRS)

    Patterson, Michael J.; Rawlin, Vincent K.

    1988-01-01

    Presented are performance data for laboratory and engineering model 30 cm-diameter ion thrusters operated with xenon propellant over a range of input power levels from approximately 2 to 20 kW. Also presented are preliminary performance results obtained from laboratory model 50 cm-diameter cusp- and divergent-field ion thrusters operating with both 30 cm- amd 50 cm-diameter ion optics up to a 20 kW input power. These data include values of discharge chamber propellant and power efficiencies, as well as values of specific impulse, thruster efficiency, thrust and power. The operation of the 30 cm- and 50 cm-diameter ion optics are also discussed.

  2. Scaling law in free walking of mice in circular open fields of various diameters.

    PubMed

    Shoji, Hiroto

    2016-03-01

    Open-field tests are routinely used to study locomotor activity in rodents. I studied the effects of apparatus size on rodent locomotor activity, specifically with respect to how resting and walking periods are interwoven. I explored the open-field behavior of mice utilizing circular open fields of various diameters. When the diameter of the test apparatus was greater than 75 cm, the durations of the resting and moving periods of free walking behavior obeyed bounded power-law distribution functions. I found that the properties of the scaling exponents and model selection became similar for test apparatus diameters greater than 75 cm. These results can provide a guide for the selection of the size of the test apparatus for use in the study of the open-field behavior of rodents.

  3. SU-E-T-586: Field Size Dependence of Output Factor for Uniform Scanning Proton Beams: A Comparison of TPS Calculation, Measurement and Monte Carlo Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Y; Singh, H; Islam, M

    2014-06-01

    Purpose: Output dependence on field size for uniform scanning beams, and the accuracy of treatment planning system (TPS) calculation are not well studied. The purpose of this work is to investigate the dependence of output on field size for uniform scanning beams and compare it among TPS calculation, measurements and Monte Carlo simulations. Methods: Field size dependence was studied using various field sizes between 2.5 cm diameter to 10 cm diameter. The field size factor was studied for a number of proton range and modulation combinations based on output at the center of spread out Bragg peak normalized to amore » 10 cm diameter field. Three methods were used and compared in this study: 1) TPS calculation, 2) ionization chamber measurement, and 3) Monte Carlos simulation. The XiO TPS (Electa, St. Louis) was used to calculate the output factor using a pencil beam algorithm; a pinpoint ionization chamber was used for measurements; and the Fluka code was used for Monte Carlo simulations. Results: The field size factor varied with proton beam parameters, such as range, modulation, and calibration depth, and could decrease over 10% from a 10 cm to 3 cm diameter field for a large range proton beam. The XiO TPS predicted the field size factor relatively well at large field size, but could differ from measurements by 5% or more for small field and large range beams. Monte Carlo simulations predicted the field size factor within 1.5% of measurements. Conclusion: Output factor can vary largely with field size, and needs to be accounted for accurate proton beam delivery. This is especially important for small field beams such as in stereotactic proton therapy, where the field size dependence is large and TPS calculation is inaccurate. Measurements or Monte Carlo simulations are recommended for output determination for such cases.« less

  4. Ion optics for high power 50-cm-diam ion thrusters

    NASA Technical Reports Server (NTRS)

    Rawlin, Vincent K.; Millis, Marc G.

    1989-01-01

    The process used at the NASA-Lewis to fabricate 30 and 50-cm-diameter ion optics is described. The ion extraction capabilities of the 30 and 50-cm diameter ion optics were evaluated on divergent field and ring-cusp discharge chambers and compared. Perveance was found to be sensitive to the effects of the type and power of the discharge chamber and to the accelerator electrode hole diameter. Levels of up to 0.64 N and 20 kW for thrust and input power, respectively, were demonstrated with the divergent-field discharge chamber. Thruster efficiencies and specific impulse values up to 79 percent and 5000 sec., respectively, were achieved with the ring-cusp discharge chamber.

  5. Correction factors for the ISO rod phantom, a cylinder phantom, and the ICRU sphere for reference beta radiation fields of the BSS 2

    NASA Astrophysics Data System (ADS)

    Behrens, R.

    2015-03-01

    The International Organization for Standardization (ISO) requires in its standard ISO 6980 that beta reference radiation fields for radiation protection be calibrated in terms of absorbed dose to tissue at a depth of 0.07 mm in a slab phantom (30 cm x 30 cm x 15 cm). However, many beta dosemeters are ring dosemeters and are, therefore, irradiated on a rod phantom (1.9 cm in diameter and 30 cm long), or they are eye dosemeters possibly irradiated on a cylinder phantom (20 cm in diameter and 20 cm high), or area dosemeters irradiated free in air with the conventional quantity value (true value) being defined in a sphere (30 cm in diameter, made of ICRU tissue (International Commission on Radiation Units and Measurements)). Therefore, the correction factors for the conventional quantity value in the rod, the cylinder, and the sphere instead of the slab (all made of ICRU tissue) were calculated for the radiation fields of 147Pm, 85Kr, 90Sr/90Y, and, 106Ru/106Rh sources of the beta secondary standard BSS 2 developed at PTB. All correction factors were calculated for 0° up to 75° (in steps of 15°) radiation incidence. The results are ready for implementation in ISO 6980-3 and have recently been (partly) implemented in the software of the BSS 2.

  6. Effect of lung and target density on small-field dose coverage and PTV definition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Higgins, Patrick D., E-mail: higgi010@umn.edu; Ehler, Eric D.; Cho, Lawrence C.

    We have studied the effect of target and lung density on block margin for small stereotactic body radiotherapy (SBRT) targets. A phantom (50 × 50 × 50 cm{sup 3}) was created in the Pinnacle (V9.2) planning system with a 23-cm diameter lung region of interest insert. Diameter targets of 1.6, 2.0, 3.0, and 4.0 cm were placed in the lung region of interest and centered at a physical depth of 15 cm. Target densities evaluated were 0.1 to 1.0 g/cm{sup 3}, whereas the surrounding lung density was varied between 0.05 and 0.6 g/cm{sup 3}. A dose of 100 cGy wasmore » delivered to the isocenter via a single 6-MV field, and the ratio of the average dose to points defining the lateral edges of the target to the isocenter dose was recorded for each combination. Field margins were varied from none to 1.5 cm in 0.25-cm steps. Data obtained in the phantom study were used to predict planning treatment volume (PTV) margins that would match the clinical PTV and isodose prescription for a clinical set of 39 SBRT cases. The average internal target volume (ITV) density was 0.73 ± 0.17, average local lung density was 0.33 ± 0.16, and average ITV diameter was 2.16 ± 0.8 cm. The phantom results initially underpredicted PTV margins by 0.35 cm. With this offset included in the model, the ratio of predicted-to-clinical PTVs was 1.05 ± 0.32. For a given target and lung density, it was found that treatment margin was insensitive to target diameter, except for the smallest (1.6-cm diameter) target, for which the treatment margin was more sensitive to density changes than the larger targets. We have developed a graphical relationship for block margin as a function of target and lung density, which should save time in the planning phase by shortening the design of PTV margins that can satisfy Radiation Therapy Oncology Group mandated treatment volume ratios.« less

  7. Feasibility of using a dose-area product ratio as beam quality specifier for photon beams with small field sizes.

    PubMed

    Pimpinella, Maria; Caporali, Claudio; Guerra, Antonio Stefano; Silvi, Luca; De Coste, Vanessa; Petrucci, Assunta; Delaunay, Frank; Dufreneix, Stéphane; Gouriou, Jean; Ostrowsky, Aimé; Rapp, Benjamin; Bordy, Jean-Marc; Daures, Josiane; Le Roy, Maïwenn; Sommier, Line; Vermesse, Didier

    2018-01-01

    To investigate the feasibility of using the ratio of dose-area product at 20 cm and 10 cm water depths (DAPR 20,10 ) as a beam quality specifier for radiotherapy photon beams with field diameter below 2 cm. Dose-area product was determined as the integral of absorbed dose to water (D w ) over a surface larger than the beam size. 6 MV and 10 MV photon beams with field diameters from 0.75 cm to 2 cm were considered. Monte Carlo (MC) simulations were performed to calculate energy-dependent dosimetric parameters and to study the DAPR 20,10 properties. Aspects relevant to DAPR 20,10 measurement were explored using large-area plane-parallel ionization chambers with different diameters. DAPR 20,10 was nearly independent of field size in line with the small differences among the corresponding mean beam energies. Both MC and experimental results showed a dependence of DAPR 20,10 on the measurement setup and the surface over which D w is integrated. For a given setup, DAPR 20,10 values obtained using ionization chambers with different air-cavity diameters agreed with one another within 0.4%, after the application of MC correction factors accounting for effects due to the chamber size. DAPR 20,10 differences among the small field sizes were within 1% and sensitivity to the beam energy resulted similar to that of established beam quality specifiers based on the point measurement of D w . For a specific measurement setup and integration area, DAPR 20,10 proved suitable to specify the beam quality of small photon beams for the selection of energy-dependent dosimetric parameters. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  8. Field Emission Study of Carbon Nanotubes: High Current Density from Nanotube Bundle Arrays

    NASA Technical Reports Server (NTRS)

    Bronikowski, Micheal J.; Manohara, Harish M.; Siegel, Peter H.; Hunt, Brian D.

    2004-01-01

    We have investigated the field emission behavior of lithographically patterned bundles of multiwalled carbon nanotubes arranged in a variety of array geometries. Such arrays of nanotube bundles are found to perform significantly better in field emission than arrays of isolated nanotubes or dense, continuous mats of nanotubes, with the field emission performance depending on the bundle diameter and inter-bundle spacing. Arrays of 2-micrometers diameter nanotube bundles spaced 5 micrometers apart (edge-to-edge spacing) produced the largest emission densities, routinely giving 1.5 to 1.8 A/cm(sup 2) at approximately 4 V/micrometer electric field, and greater than 6 A/cm(sup 2) at 20 V/micrometers.

  9. SU-E-P-34: Dose Perturbation Caused by Sun Nuclear QED Diode When Used for Very Small Electron Fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klash, S; Steinman, J; Stanley, T

    2015-06-15

    Purpose: Diodes are utilized by radiotherapy departments to help verify that treatment fields are being delivered correctly to the patient. Some treatment fields utilize electron beams along with a cerrobend cutout to shape the beam to the area to be treated. Cerrobend cutouts can sometimes be very small < 2×2-cm2. Some published work has addressed diode perturbation for cutout sizes down to 1.5-cm, this work addresses the diode perturbation of the Sun Nuclear QEDTM diode for cutouts as small as 0.5-cm in diameter. Methods: Measurements were taken with an A16 Exradin micro-chamber in Solid Water to 100-cm SSD. Dmax wasmore » determined for each cutout using various amounts of Solid Water in 1–2 mm increments to account for the dmax shifting in small fields. The diode was placed on top of the solid water to 100-cm SSD in the center of the cutout. Measurements were taken with no diode for comparison. The cutouts ranged in diameter from 0.5-cm to 5.0-cm and included the open 6×6 insert. Measurements were made for energies 6, 9, 12, 15,&18 MeV. Results: For 6 MeV, the percent dose reduction from the diode in the cutout field compared to the field without the diode ranged from 35% to 25% as a function of cutout size. For higher energies, this percentage decreased and generally was 25% to 15%. It was observed that dmax shifts significantly upstream for very small cutouts (<2-cm diameter) to less than 1 cm for all energies. Conclusion: The presence of diodes in small electron fields is enough to cause significant dose perturbation to the target volume. It is recommended that diodes for very small electron fields be used sparingly or possibly with a dose correction per treatment fraction(s), if the total projected delivered dose is going to be significantly different from that prescribed by the physician.« less

  10. Progress in HTS trapped field magnets: J(sub c), area, and applications

    NASA Technical Reports Server (NTRS)

    Weinstein, Roy; Ren, Yanru; Liu, Jianxiong; Sawh, Ravi; Parks, Drew; Foster, Charles; Obot, Victor; Arndt, G. Dickey; Crapo, Alan

    1995-01-01

    Progress in trapped field magnets is reported. Single YBCO grains with diameters of 2 cm are made in production quantities, while 3 cm, 4 1/2 cm and 6 cm diameters are being explored. For single grain tiles: J(sub c) is approximately 10,000 A/cm(exp 2) for melt textured grains; J(sub c) is approximately 40,000 A/cm2 for light ion irradiation; and J(sub c) is approximately 85,000 A/cm(exp 2) for heavy ion irradiation. Using 2 cm diameter tiles bombarded by light ions, we have fabricated a mini-magnet which trapped 2.25 Tesla at 77K, and 5.3 Tesla at 65K. A previous generation of tiles, 1 cm x 1 cm, was used to trap 7.0 Tesla at 55K. Unirradiated 2.0 cm tiles were used to provide 8 magnets for an axial gap generator, in a collaborative experiment with Emerson Electric Co. This generator delivered 100 Watts to a resistive load, at 2265 rpm. In this experiment activation of the TFMs was accomplished by a current pulse of 15 ms duration. Tiles have also been studied for application as a bumper-tether system for the soft docking of spacecraft. A method for optimizing tether forces, and mechanisms of energy dissipation are discussed. A bus bar was constructed by welding three crystals while melt-texturing, such that their a,b planes were parallel and interleaved. The bus bar, an area of approximately 2 cm(exp 2), carried a transport current of 1000 amps, the limit of the testing equipment available.

  11. Progress in HTS Trapped Field Magnets: J(sub c), Area, and Applications

    NASA Technical Reports Server (NTRS)

    Weinstein, Roy; Ren, Yanru; Liu, Jian-Xiong; Sawh, Ravi; Parks, Drew; Foster, Charles; Obot, Victor; Arndt, G. Dickey; Crapo, Alan

    1995-01-01

    Progress in trapped field magnets is reported. Single YBCO grains with diameters of 2 cm are made in production quantities, while 3 cm, 4 1/2 cm and 6 cm diameters are being explored. For single grain tiles: J(sub c) - 10,000 A/sq cm for melt textured grains; J(sub c) - 40,000 A/sq cm for light ion irradiation; and J(sub c) - 85,000 A/J(sub c) for heavy ion irradiation. Using 2 cm diameter tiles bombarded by light ions, we have fabricated a mini-magnet which trapped 2.25 Tesla at 77K, and 5.3 Tesla at 65K. A previous generation of tiles, 1 cm x 1 cm, was used to trap 7.0 Tesla at 55K. Unirradiated 2.0 cm tiles were used to provide 8 magnets for an axial gap generator, in a collaborative experiment with Emerson Electric Co. This generator delivered 100 Watts to a resistive load, at 2265 rpm. In this experiment, activation of the TFMs was accomplished by a current pulse of 15 ms duration. Tiles have also been studied for application as a bumper-tether system for the soft docking of spacecraft. A method for optimizing tether forces, and mechanisms of energy dissipation are discussed. A bus bar was constructed by welding three crystals while melt-texturing, such that their a,b planes were parallel and interleaved. The bus bar, of area approx. 2 sq cm, carried a transport current of 1000 amps, the limit of the testing equipment available.

  12. Commissioning of a PTW 34070 large-area plane-parallel ionization chamber for small field megavoltage photon dosimetry.

    PubMed

    Kupfer, Tom; Lehmann, Joerg; Butler, Duncan J; Ramanathan, Ganesan; Bailey, Tracy E; Franich, Rick D

    2017-11-01

    This study investigates a large-area plane-parallel ionization chamber (LAC) for measurements of dose-area product in water (DAP w ) in megavoltage (MV) photon fields. Uniformity of electrode separation of the LAC (PTW34070 Bragg Peak Chamber, sensitive volume diameter: 8.16 cm) was measured using high-resolution microCT. Signal dependence on angle α of beam incidence for square 6 MV fields of side length s = 20 cm and 1 cm was measured in air. Polarity and recombination effects were characterized in 6, 10, and 18 MV photons fields. To assess the lateral setup tolerance, scanned LAC profiles of a 1 × 1 cm 2 field were acquired. A 6 MV calibration coefficient, N D ,w, LAC , was determined in a field collimated by a 5 cm diameter stereotactic cone with known DAP w . Additional calibrations in 10 × 10 cm 2 fields at 6, 10, and 18 MV were performed. Electrode separation is uniform and agrees with specifications. Volume-averaging leads to a signal increase proportional to ~1/cos(α) in small fields. Correction factors for polarity and recombination range between 0.9986 to 0.9996 and 1.0007 to 1.0024, respectively. Off-axis displacement by up to 0.5 cm did not change the measured signal in a 1 × 1 cm 2 field. N D ,w, LAC was 163.7 mGy cm -2 nC -1 and differs by +3.0% from the coefficient derived in the 10 × 10 cm 2 6 MV field. Response in 10 and 18 MV fields increased by 1.0% and 2.7% compared to 6 MV. The LAC requires only small correction factors for DAP w measurements and shows little energy dependence. Lateral setup errors of 0.5 cm are tolerated in 1 × 1 cm 2 fields, but beam incidence must be kept as close to normal as possible. Calibration in 10 × 10 fields is not recommended because of the LAC's over-response. The accuracy of relative point-dose measurements in the field's periphery is an important limiting factor for the accuracy of DAP w measurements. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  13. Deep Borehole Field Test Laboratory and Borehole Testing Strategy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuhlman, Kristopher L.; Brady, Patrick V.; MacKinnon, Robert J.

    2016-09-19

    Deep Borehole Disposal (DBD) of high-level radioactive wastes has been considered an option for geological isolation for many years (Hess et al. 1957). Recent advances in drilling technology have decreased costs and increased reliability for large-diameter (i.e., ≥50 cm [19.7”]) boreholes to depths of several kilometers (Beswick 2008; Beswick et al. 2014). These advances have therefore also increased the feasibility of the DBD concept (Brady et al. 2009; Cornwall 2015), and the current field test design will demonstrate the DBD concept and these advances. The US Department of Energy (DOE) Strategy for the Management and Disposal of Used Nuclear Fuelmore » and High-Level Radioactive Waste (DOE 2013) specifically recommended developing a research and development plan for DBD. DOE sought input or expression of interest from States, local communities, individuals, private groups, academia, or any other stakeholders willing to host a Deep Borehole Field Test (DBFT). The DBFT includes drilling two boreholes nominally 200m [656’] apart to approximately 5 km [16,400’] total depth, in a region where crystalline basement is expected to begin at less than 2 km depth [6,560’]. The characterization borehole (CB) is the smaller-diameter borehole (i.e., 21.6 cm [8.5”] diameter at total depth), and will be drilled first. The geologic, hydrogeologic, geochemical, geomechanical and thermal testing will take place in the CB. The field test borehole (FTB) is the larger-diameter borehole (i.e., 43.2 cm [17”] diameter at total depth). Surface handling and borehole emplacement of test package will be demonstrated using the FTB to evaluate engineering feasibility and safety of disposal operations (SNL 2016).« less

  14. Wolter-Schwarzschild optics for the extreme-ultraviolet - The Berkeley stellar spectrometer and the EUV Explorer

    NASA Technical Reports Server (NTRS)

    Malina, R. F.; Bowyer, S.; Finley, D.; Cash, W.

    1979-01-01

    The design, fabrication and performance of two Wolter-Schwarzschild grazing incidence optics are described. Both telescopes have been figured by single point diamond turning and have achieved better than 15-arcsec on-axis imaging. The telescope for the stellar spectrometer is an f/10 Type II system with an effective area of 225 sq cm at 250 A and 300 cm2 at 500 A. The primary has a maximum diameter of 38 cm and was fabricated in three elements. The copper-plated aluminum substrate was diamond turned; following nickel plating, the surface was polished and coated with evaporated gold. The performance during a sounding rocket flight is discussed. The prototype telescope for the Extreme Ultraviolet Explorer is an f/1.24 Type I system with an effective field of view of 5.0-deg diameter. The telescope has a maximum diameter of 40 cm and was fabricated as a single element. The aluminum substrate is to be diamond turned; the nickel plated surface will be polished and electroplated with gold. The design choice and defocusing optimization aimed at maximizing the field of view and number of image pixels is examined.

  15. Turbulence and transport in high density, increased β LAPD plasmas

    NASA Astrophysics Data System (ADS)

    Rossi, Giovanni; Carter, Troy; Guice, Danny

    2014-10-01

    A new LaB6 cathode plasma source has recently been deployed on the Large Plasma Device (LAPD), allowing for the production of significantly higher plasma density (ne ~ 3 ×1013 cm-3) and temperature (Te ~ 12 eV and Ti ~ 6 eV). This source produces a smaller core plasma (~20cm diameter) that can be embedded in the lower temperature, lower density standard LAPD plasma (60 cm diameter, 1012 cm-3, Te ~ 5 eV, Ti ~ 1 eV). We will present first results from experiments exploring the nature of turbulence and transport produced by this high density core plasma. In contrast to the edge of the standard LAPD plasma, coherent fluctuations are observed in the edge of the high density core plasma. These coherent modes are dominant at low field (~400 G) with a transition to a more broadband spectrum at higher fields (~1 kG). The combination of increased density and temperature with lowered field in LAPD leads to significant increases in plasma β (in fact β ~ 1 can be achieved for B ~ 100 G). As the field is lowered, the strength of correlated magnetic fluctuations increases substantially.

  16. A comparison of TPS and different measurement techniques in small-field electron beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donmez Kesen, Nazmiye, E-mail: nazo94@gmail.com; Cakir, Aydin; Okutan, Murat

    In recent years, small-field electron beams have been used for the treatment of superficial lesions, which requires small circular fields. However, when using very small electron fields, some significant dosimetric problems may occur. In this study, dose distributions and outputs of circular fields with dimensions of 5 cm and smaller, for nominal energies of 6, 9, and 15 MeV from the Siemens ONCOR Linac, were measured and compared with data from a treatment planning system using the pencil-beam algorithm in electron beam calculations. All dose distribution measurements were performed using the Gafchromic EBT film; these measurements were compared with datamore » that were obtained from the Computerized Medical Systems (CMS) XiO treatment planning system (TPS), using the gamma-index method in the PTW VeriSoft software program. Output measurements were performed using the Gafchromic EBT film, an Advanced Markus ion chamber, and thermoluminescent dosimetry (TLD). Although the pencil-beam algorithm is used to model electron beams in many clinics, there is no substantial amount of detailed information in the literature about its use. As the field size decreased, the point of maximum dose moved closer to the surface. Output factors were consistent; differences from the values obtained from the TPS were, at maximum, 42% for 6 and 15 MeV and 32% for 9 MeV. When the dose distributions from the TPS were compared with the measurements from the Gafchromic EBT films, it was observed that the results were consistent for 2-cm diameter and larger fields, but the outputs for fields of 1-cm diameter and smaller were not consistent. In CMS XiO TPS, calculated using the pencil-beam algorithm, the dose distributions of electron treatment fields that were created with circular cutout of a 1-cm diameter were not appropriate for patient treatment and the pencil-beam algorithm is not convenient for monitor unit (MU) calculations in electron dosimetry.« less

  17. 23RD International Conference on Phenomena in Ionized Gases, Volume 5

    DTIC Science & Technology

    1998-12-01

    eNm.f, generated within the plasma is given by section with a 5-cm diameter. The magnetic field was Vof = wh Bt p i vn provided by an iron- core ...cylindrical tungsten probes, of 0.038cm. as impurities can be centrifuged as reported by diameter, insulated by thin glass tube except their tips Bonnevier...Norfolk, VA 213529 1. Discharge modes discharge begins, at several hundred Torr, to change from a hollow cathode discharge into what we Experimental

  18. Compact E x B mass separator for heavy ion beams.

    PubMed

    Wada, M; Hashino, T; Hirata, F; Kasuya, T; Sakamoto, Y; Nishiura, M

    2008-02-01

    A compact E x B mass separator that deflects beam by 30 degrees has been designed and built to prove its principle of operation. The main part of the separator is contained in a shielding box of 11 cm long, 9 cm wide, and 1.5 cm high. An electromagnet of 7 cm pole diameter produced variable magnetic field in the mass separation region instead of a couple of permanent magnets which is to be used in the final design. The experimental result agreed well with the theoretical prediction, and larger mass ions is bent with less magnetic field with the aid of the deflection electric field. The reduction in resolving power for mass separation due to the deflection electric field has been investigated experimentally.

  19. Growth characteristics of mangrove seedling in silvofishery pond – the allometric relationship of height, diameter and leaf abundance

    NASA Astrophysics Data System (ADS)

    Dwi Hastuti, Endah; Budi Hastuti, Rini

    2018-03-01

    Dynamic environment condition of the silvofishery pond should provide an effect on the growth of mangrove seedling. This research aimed to observe the morphometric growth rate of mangrove seedling of Avicennia marina and Rhizophora mucronata planted in the silvofishery pond and to analyze the morphometric growth relationship of height, diameter and leaf number development of mangrove seedling. The research was conducted through field experiment involving mangrove species of A. marina and R. mucronata for 18 months during March 2015 to September 2016, both single structured and mixed structure. The observation was conducted every 13 weeks including seedling height, diameter and number of leaves. Data analysis was conducted by regression to provide the statistical relation between the growth of diameter – height, diameter – number of leaves and height – number of leaves. The result showed that the growth rate of A. marina in single structured pond was ranged from 0.38 – 3.00 cm.wk-1, 0.0015 – 0.0969 cm.wk‑1 and 0.1 – 13.7 leaves.wk‑1 respectively for height, diameter and number of leaves, while in mixed structure was 0.23 – 1.69 cm.wk‑1, 0.0169 – 0.0731 cm.wk‑1 and 0.5 – 14.0 leaves.wk-. The growth of R. mucronata respectively in single and mixed structure were 0.08 – 2.00 cm.wk‑1 and 0.15 – 2.62 cm.wk‑1, 0.0031 – 0.1369 cm.wk‑1 and 0.0008 – 0.0831 cm.wk‑1 and 0.0 – 1.9 leaves.wk‑1 and 0.0 – 1.6 leaves.wk-1respectively for height, diameter and number of leaves. Data analysis showed that the growth of seedling height of Avicennia in the mixed structure was significantly affected by its diameter growth and the number of leaves of Avicennia in single structured was significantly affected by its diameter. While the height, diameter and number of leaves of R. mucronata both in mixed and single structured silvofishery ponds were independent to each other. This research concluded that mangrove seedling growth is varied among species and growth environment.

  20. Responses of buried corrugated metal pipes to earthquakes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, C.A.; Bardet, J.P.

    2000-01-01

    This study describes the results of field investigations and analyses carried out on 61 corrugated metal pipes (CMP) that were shaken by the 1994 Northridge earthquake. These CMPs, which include 29 small-diameter (below 107 cm) CMPs and 32 large-diameter (above 107 cm) CMPs, are located within a 10 km{sup 2} area encompassing the Van Normal Complex in the Northern San Fernando Valley, in Los Angeles, California. During the Northridge earthquake, ground movements were extensively recorded within the study area. Twenty-eight of the small-diameter CMPs performed well while the 32 large-diameter CMPs underwent performances ranging from no damage to complete collapse.more » The main cause of damage to the large-diameter CMPs was found to be the large ground strains. Based on this unprecedented data set, the factors controlling the seismic performance of the 32 large-diameter CMPs were identified and framed into a pseudostatic analysis method for evaluating the response of large diameter flexible underground pipes subjected to ground strain. The proposed analysis, which is applicable to transient and permanent strains, is capable of describing the observed performance of large-diameter CMPs during the 1994 Northridge earthquake. It indicates that peak ground velocity is a more reliable parameter for analyzing pipe damage than is peak ground acceleration. Results of this field investigation and analysis are useful for the seismic design and strengthening of flexible buried conduits.« less

  1. Accuracy of a dose-area product compared to an absorbed dose to water at a point in a 2 cm diameter field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dufreneix, S.; Ostrowsky, A.; Rapp, B.

    Purpose: Graphite calorimeters with a core diameter larger than the beam can be used to establish dosimetric references in small fields. The dose-area product (DAP) measured can theoretically be linked to an absorbed dose at a point by the determination of a profile correction. This study aims at comparing the DAP-based protocol to the usual absorbed dose at a point protocol in a 2 cm diameter field for which both references exist. Methods: Two calorimeters were used, respectively, with a sensitive volume of 0.6 cm (for the absorbed dose at a point measurement) and 3 cm diameter (for the DAPmore » measurement). Profile correction was calculated from a 2D dose mapping using three detectors: a PinPoint chamber, a synthetic diamond, and EBT3 films. A specific protocol to read EBT3 films was implemented and the dose-rate and energy dependences were studied to assure a precise measurement, especially in the penumbra and out-of-field regions. Results: EBT3 films were found independent on dose rates over the range studied but showed a strong under-response (18%) at low energies. Depending on the dosimeter used for calculating the profile correction, a deviation of 0.8% (PinPoint chamber), 0.9% (diamond), or 1.9% (EBT3 films) was observed between the calibration coefficient derived from DAP measurements and the one directly established in terms of absorbed dose to water at a point. Conclusions: The DAP method can currently be linked to the classical dosimetric reference system based in an absorbed dose at a point only with a confidence interval of 95% (k = 2). None of the detectors studied can be used to determine an absorbed dose to water at a point from a DAP measurement with an uncertainty smaller than 1.2%.« less

  2. A comparison of TPS and different measurement techniques in small-field electron beams.

    PubMed

    Donmez Kesen, Nazmiye; Cakir, Aydin; Okutan, Murat; Bilge, Hatice

    2015-01-01

    In recent years, small-field electron beams have been used for the treatment of superficial lesions, which requires small circular fields. However, when using very small electron fields, some significant dosimetric problems may occur. In this study, dose distributions and outputs of circular fields with dimensions of 5cm and smaller, for nominal energies of 6, 9, and 15MeV from the Siemens ONCOR Linac, were measured and compared with data from a treatment planning system using the pencil-beam algorithm in electron beam calculations. All dose distribution measurements were performed using the Gafchromic EBT film; these measurements were compared with data that were obtained from the Computerized Medical Systems (CMS) XiO treatment planning system (TPS), using the gamma-index method in the PTW VeriSoft software program. Output measurements were performed using the Gafchromic EBT film, an Advanced Markus ion chamber, and thermoluminescent dosimetry (TLD). Although the pencil-beam algorithm is used to model electron beams in many clinics, there is no substantial amount of detailed information in the literature about its use. As the field size decreased, the point of maximum dose moved closer to the surface. Output factors were consistent; differences from the values obtained from the TPS were, at maximum, 42% for 6 and 15MeV and 32% for 9MeV. When the dose distributions from the TPS were compared with the measurements from the Gafchromic EBT films, it was observed that the results were consistent for 2-cm diameter and larger fields, but the outputs for fields of 1-cm diameter and smaller were not consistent. In CMS XiO TPS, calculated using the pencil-beam algorithm, the dose distributions of electron treatment fields that were created with circular cutout of a 1-cm diameter were not appropriate for patient treatment and the pencil-beam algorithm is not convenient for monitor unit (MU) calculations in electron dosimetry. Copyright © 2015 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.

  3. DSTO Landmine Detection Test Targets

    DTIC Science & Technology

    2005-06-01

    cm diameter, 10 cm high. x x GS 32D50 Galvanised steel, pipe, hollow, 32 cm diameter, 50 cm long, ends capped x x GS 45D50 Galvanised Steel, pipe...hollow, 45 cm diameter, 50 cm long, ends capped x x GS 75D50 Galvanised Steel, pipe, hollow, 75 cm diameter, 50 cm long, ends capped x x

  4. Undisturbed soil columns for lysimetry II. Miscible displacement and field evaluation

    USDA-ARS?s Scientific Manuscript database

    Concerns about agriculture's effect on water quality and the expanding use of no-tillage, has produced a crucial need for in situ solute transport research of mobile nutrients as affected by tillage system. Eight undisturbed soil columns (41 cm diameter by 100 cm long) were sealed into PVC cylinder...

  5. Small field detector correction factors kQclin,Qmsr (fclin,fmsr) for silicon-diode and diamond detectors with circular 6 MV fields derived using both empirical and numerical methods.

    PubMed

    O'Brien, D J; León-Vintró, L; McClean, B

    2016-01-01

    The use of radiotherapy fields smaller than 3 cm in diameter has resulted in the need for accurate detector correction factors for small field dosimetry. However, published factors do not always agree and errors introduced by biased reference detectors, inaccurate Monte Carlo models, or experimental errors can be difficult to distinguish. The aim of this study was to provide a robust set of detector-correction factors for a range of detectors using numerical, empirical, and semiempirical techniques under the same conditions and to examine the consistency of these factors between techniques. Empirical detector correction factors were derived based on small field output factor measurements for circular field sizes from 3.1 to 0.3 cm in diameter performed with a 6 MV beam. A PTW 60019 microDiamond detector was used as the reference dosimeter. Numerical detector correction factors for the same fields were derived based on calculations from a geant4 Monte Carlo model of the detectors and the Linac treatment head. Semiempirical detector correction factors were derived from the empirical output factors and the numerical dose-to-water calculations. The PTW 60019 microDiamond was found to over-respond at small field sizes resulting in a bias in the empirical detector correction factors. The over-response was similar in magnitude to that of the unshielded diode. Good agreement was generally found between semiempirical and numerical detector correction factors except for the PTW 60016 Diode P, where the numerical values showed a greater over-response than the semiempirical values by a factor of 3.7% for a 1.1 cm diameter field and higher for smaller fields. Detector correction factors based solely on empirical measurement or numerical calculation are subject to potential bias. A semiempirical approach, combining both empirical and numerical data, provided the most reliable results.

  6. Electron Bernstein Wave Studies in MST

    NASA Astrophysics Data System (ADS)

    Seltzman, Andrew; Anderson, Jay; Forest, Cary; Nonn, Paul; Thomas, Mark; Almagri, Abdulgader; Chapman, Brett; Dubois, Ami; Goetz, John; McCollam, Karsten

    2015-11-01

    The RFP plasma is inaccessible to ECRH, requiring the electron Bernstein wave (EBW) for edge localized heating and current drive. MST is capable of generating RFPs or overdense tokamaks with Bt(0) ~ 0.08-0.14T in which a 5.55 GHz RF source (450kW, 2ms pulse) can heat at fundamental and harmonic EC resonances. The design of a suitable antenna is challenging in the RFP due to a magnetic field geometry that requires a low-field-side launch. The small vacuum gap between the close-fitting conducting shell and plasma leads to substantial antenna-plasma interaction. A minimized port hole size is required to limit error fields. Even so the port hole induced magnetic field perturbation in the antenna near-field that affects the mode conversion process and introduces EC resonances. A 5cm diameter cylindrical antenna centered in 5cm and 11cm diameter portholes is used. A multi-chord time-resolved x-ray detector and GENRAY ray tracing verifies EBW heating at higher harmonics in an MST tokamak with 10-40keV detected x-ray energies. Evidence of RF-induced emission from absorption at higher harmonics (4th / 5th) in low current RFP discharges has been observed. Simultaneous reflected power changes correspond to termination of x-ray emission indicating power limits. Work supported by USDOE.

  7. Effects of electric field on the maximum electro-spinning rate of silk fibroin solutions.

    PubMed

    Park, Bo Kyung; Um, In Chul

    2017-02-01

    Owing to the excellent cyto-compatibility of silk fibroin (SF) and the simple fabrication of nano-fibrous webs, electro-spun SF webs have attracted much research attention in numerous biomedical fields. Because the production rate of electro-spun webs is strongly dependent on the electro-spinning rate used, the electro-spinning rate becomes more important. In the present study, to improve the electro-spinning rate of SF solutions, various electric fields were applied during electro-spinning of SF, and its effects on the maximum electro-spinning rate of SF solution as well as diameters and molecular conformations of the electro-spun SF fibers were examined. As the electric field was increased, the maximum electro-spinning rate of the SF solution also increased. The maximum electro-spinning rate of a 13% SF solution could be increased 12×by increasing the electric field from 0.5kV/cm (0.25mL/h) to 2.5kV/cm (3.0mL/h). The dependence of the fiber diameter on the present electric field was not significant when using less-concentrated SF solutions (7-9% SF). On the other hand, at higher SF concentrations the electric field had a greater effect on the resulting fiber diameter. The electric field had a minimal effect of the molecular conformation and crystallinity index of the electro-spun SF webs. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. SU-E-T-370: Measurement of Conical Cone Output Factors for the Varian Edge Linear Accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, H; Kim, J; Gordon, J

    Purpose: To quantify the impact of detector type, SSD/depth, and intermediate reference on conical cone output factor (OF) measurements for the Varian Edge linac. Methods: OF's for 4, 5, 7.5, 10, 12.5, 15, and 17.5 mm diameter cones relative to 10cmx10cm field were measured for the 6X FFF and 10X FFF energies, with jaws set to 5cmx5cm. Measurements were performed with an Edge diode (0.8mmx0.8mmx0.03mm WxLxT), stereotatic diode SFD, photon diode, CC01 and pinpoint chambers (2mm diameter for both). 95cm SSD/5cm depth were used in a water tank. For the measurement with diodes, OF's were cross-referred to CC13 ion chambermore » measurements with 3cmx3cm field, as recommended, to help mitigate the energy variation in diode response with field size. Results were compared to the representative data from Varian measured with Edge detector. With SFD, OF's at 98.5cm SSD/1.5cm depth and 90cm SSD/10cm depth were also measured. Results: OF's measured with the Edge detector matched within 1.3% (max diff) with the representative data from Varian. For the SFD, OF's matched within 1.3% for the 4, 5 and 17.5 mm cones and within 3.7% for the other cones. OF's with photon diode were within 1.3% except for the 4 and 5 mm cones where they were 8.1% and 3.7%, respectively. OF's for the CC01 and pinpoint chamber deviated up to 36% and 44%, respectively for the 4 mm cone. OF's after intermediate reference with 3cmx3cm field changed by 3.7% for SFD, 0.8% for photon diode, and 0.6% for Edge detector. OF's at 98.5cm SSD/1.5cm depth were 10.8% higher than that at 95cm SSD/5cm depth, and OF's at 90cm SSD/1.5cm depth were 7.5% lower. Conclusion: OF's measured with the Edge detector appear to be reliable. CC01 and pinpoint chambers do not appear suitable for measuring the small cone OF's. SSD/depth affects OF measurements significantly.« less

  9. MR-guided radiofrequency ablation of hepatic malignancies at 1.5 T: initial results.

    PubMed

    Mahnken, Andreas H; Buecker, Arno; Spuentrup, Elmar; Krombach, Gabriele A; Henzler, Dietrich; Günther, Rolf W; Tacke, Josef

    2004-03-01

    To assess the feasibility of magnetic resonance (MR)-guided radiofrequency ablation (RFA) of hepatic malignancies using a high-field MR scanner. A total of 10 patients with 14 primary (N = 1) or secondary (N = 13) hepatic malignancies underwent MR-guided RFA using a closed-bore 1.5 T MR scanner. Lesion diameters ranged from 2.0 cm to 4.7 cm. RFA was performed using a 200-W generator in combination with a 3.5-cm LeVeen electrode applying a standardized energy protocol. RFA was technically feasible in all patients. Necrosis diameter ranged from 2.5 cm to 6.8 cm. The mean follow-up period is 12.2 (1-18) months. In nine out of 10 patients, local tumor control was achieved. For this purpose, a second CT-guided RFA was required in two patients. In four patients, multifocal hepatic tumor progression occurred, with the treated lesion remaining tumor-free in three of these patients. Two patients showed extrahepatic tumor progression. Four patients remained tumor-free. No major complications occurred. MR-guided RFA of hepatic malignancies in a closed-bore high-field MR scanner is technically feasible and safe. It can be advantageous in locations considered unfavorable for CT-guided puncture or in patients in which iodinated contrast material is contraindicated. Copyright 2004 Wiley-Liss, Inc.

  10. Evaluation of a small diameter baffled culvert for passing juvenile salmonids.

    Treesearch

    Mason D. Bryant

    1981-01-01

    A 90-cm-diameter culvert with off-set baffles was set at a 10-percent gradient in an artificial stream channel on Admiralty Island, Alaska. Coho salmon, Dolly Varden char, and cutthroat trout, all less than 120-mm fork length, were able to move up the 9-m culvert. Additional work is needed to determine an upper discharge limit and to evaluate field installations.

  11. Generation of Bright Phase-matched Circularly-polarized Extreme Ultraviolet High Harmonics

    DTIC Science & Technology

    2014-12-08

    circularly-polarized laser pulses field-ionize a gas in a hollow - core waveguide. We use this new light source for magnetic circular dichroism...polarized with opposite helicity in a gas-filled hollow waveguide (see Supplementary Section 6 for details on the important features of this source...mJ/pulse) driving lasers are focused into a 150-µm-diameter, 2-cm-long gas-filled hollow waveguide using lenses with focal lengths of 50 cm and 75 cm

  12. Evaluation of latent variances in Monte Carlo dose calculations with Varian TrueBeam photon phase-spaces used as a particle source

    NASA Astrophysics Data System (ADS)

    Alhakeem, Eyad; Zavgorodni, Sergei

    2018-01-01

    The purpose of this study was to evaluate the latent variance (LV) of Varian TrueBeam photon phase-space files (PSF) for open 10  ×  10 cm2 and small stereotactic fields and estimate the number of phase spaces required to be summed up in order to maintain sub-percent LV in Monte Carlo (MC) dose calculations. BEAMnrc/DOSXYZnrc software was used to transport particles from Varian phase-space files (PSFA) through the secondary collimators. Transported particles were scored into another phase-space located under the jaws (PSFB), or transported further through the cone collimators and scored straight below, forming PSFC. Phase-space files (PSFB) were scored for 6 MV-FFF, 6 MV, 10 MV-FFF, 10 MV and 15 MV beams with 10  ×  10 cm2 field size, and PSFC were scored for 6 MV beam under circular cones of 0.13, 0.25, 0.35, and 1 cm diameter. Both PSFB and PSFC were transported into a water phantom with particle recycling number ranging from 10 to 1000. For 10  ×  10 cm2 fields 0.5  ×  0.5  ×  0.5 cm3 voxels were used to score the dose, whereas the dose was scored in 0.1  ×  0.1  ×  0.5 cm3 voxels for beams collimated with small cones. In addition, for small 0.25 cm diameter cone-collimated 6 MV beam, phantom voxel size varied as 0.02  ×  0.02  ×  0.5 cm3, 0.05  ×  0.05  ×  0.5 cm3 and 0.1  ×  0.1  ×  0.5 cm3. Dose variances were scored in all cases and LV evaluated as per Sempau et al. For the 10  ×  10 cm2 fields calculated LVs were greatest at the phantom surface and decreased with depth until they reached a plateau at 5 cm depth. LVs were found to be 0.54%, 0.96%, 0.35%, 0.69% and 0.57% for the 6 MV-FFF, 6 MV, 10 MV-FFF, 10 MV and 15 MV energies, respectively at the depth of 10 cm. For the 6 MV phase-space collimated with cones of 0.13, 0.25, 0.35, 1.0 cm diameter, the LVs calculated at 1.5 cm depth were 75.6%, 25.4%, 17.6% and 8.0% respectively. Calculated LV for the 0.25 cm cone-collimated 6 MV beam were 61.2%, 40.7%, 22.5% in 0.02  ×  0.02  ×  0.5 cm3, 0.05  ×  0.05  ×  0.5 cm3 and 0.1  ×  0.1  ×  0.5 cm3 voxels respectively. In order to achieve sub-percent LV in open 10  ×  10 cm2 field MC simulations a single PSF can be used, whereas for small SRS fields (0.13-1.0 cm) more PSFs (66-8 PSFs) would have to be summed.

  13. Ion Thruster Discharge Performance Per Magnetic Field Topography

    NASA Technical Reports Server (NTRS)

    Wirz, Richard E.; Goebel, Dan

    2006-01-01

    DC-ION is a detailed computational model for predicting the plasma characteristics of rain-cusp ion thrusters. The advanced magnetic field meshing algorithm used by DC-ION allows precise treatment of the secondary electron flow. This capability allows self-consistent estimates of plasma potential that improves the overall consistency of the results of the discharge model described in Reference [refJPC05mod1]. Plasma potential estimates allow the model to predict the onset of plasma instabilities, and important shortcoming of the previous model for optimizing the design of discharge chambers. A magnetic field mesh simplifies the plasma flow calculations, for both the ions and the secondary electrons, and significantly reduces numerical diffusion that can occur with meshes not aligned with the magnetic field. Comparing the results of this model to experimental data shows that the behavior of the primary electrons, and the precise manner of their confinement, dictates the fundamental efficiency of ring-cusp. This correlation is evident in simulations of the conventionally sized NSTAR thruster (30 cm diameter) and the miniature MiXI thruster (3 cm diameter).

  14. Liquid Fertilizer Spraying Performance Using A Knapsack Power Sprayer On Soybean Field

    NASA Astrophysics Data System (ADS)

    Gatot, P.; Anang, R.

    2018-05-01

    An effort for increasing soybean production can be conducted by applying liquid fertilizer on soybean cultivation field. The objective of this research was to determine liquid fertilizer spraying performance using knapsack power sprayer TASCO TF-900 on a soybean cultivation field. Performances test were conducted in the Laboratory of Spraying Test and on a soybean cultivation field to determine (1) effective spraying width, (2) droplets diameter, (3) droplets density, (4) effective spraying discharge rate, and (5) effective field capacity of spraying. The research was conducted using 2 methods: (1) one-nozzle spraying, and (2) four- nozzles spraying. Results of the research showed that at a constant pressure of 900 kPa effective spraying width using one-nozzle spraying and four-nozzles spraying were 0.62 m and 1.10 m. A bigger effective spraying width was resulted in a bigger average effective spraying discharge rate and average effective spraying field capacity of 4.52 l/min and 83.92 m2/min on forward walking speed range of 0.94 m/s up to 1.77 m/s. On the contrary, bigger effective spraying width was result in bigger droplets diameter of 502.73 μm and a smaller droplets density of 98.39 droplets/cm2, whereas smaller effective spraying width was resulted in a smaller droplets diameter of 367.09 μm and a bigger droplets density of 350.53 droplets/cm2. One-nozzle spraying method produced a better spraying quality than four-nozzles spraying method, although four-nozzles spraying was resulted in a bigger effective field capacity of spraying.

  15. Experimental Observation of Near-Field Deterioration Induced by Stimulated Rotational Raman Scattering in Long Air Paths

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Zhang, Xiao-Min; Han, Wei; Li, Fu-Quan; Zhou, Li-Dan; Feng, Bin; Xiang, Yong

    2011-08-01

    We report the experimental investigation of a stimulated rotational Raman scattering effect in long air paths on SG-III TIL, with a 1053 nm, 20-cm-diameter, linearly polarized, 3 ns flat-topped laser pulse. An intense speckle pattern of near field with thickly dotted hot spots is observed at the end of propagation with an intensity-length product above 17TW/cm. The Stokes developing from the scattering of the laser beam by quantum fluctuations is characterized by a combination of high spatial frequency components. The observed speckle pattern with small-diameter hot spots results from the combination of the nonlinear Raman amplification and the linear diffraction propagation effect of the Stokes with a noise pattern arising from the spontaneous Raman scattering. A new promising suppression concept based on the special characteristic of the Stokes, called active and selective filtering of Stokes, is proposed.

  16. Semiconductor crystal growth in crossed electric and magnetic fields: Center Director's Discretionary Fund

    NASA Technical Reports Server (NTRS)

    Mazuruk, K.; Volz, M. P.

    1996-01-01

    A unique growth cell was designed in which crossed electric and magnetic fields could be separately or simultaneously applied during semiconductor crystal growth. A thermocouple was inserted into an InSb melt inside the growth cell to examine the temperature response of the fluid to applied electromagnetic fields. A static magnetic field suppressed time-dependent convection when a destabilizing thermal field was applied. The simultaneous application of electric and magnetic fields resulted in forced convection in the melt. The InSb ingots grown in the cell were polycrystalline. An InGaSb crystal, 0.5 cm in diameter and 23-cm long, was grown without electromagnetic fields applied. The axial composition results indicated that complete mixing in the melt occurred for this large aspect ratio.

  17. SU-G-JeP2-13: Spatial Accuracy Evaluation for Real-Time MR Guided Radiation Therapy Using a Novel Large-Field MRI Distortion Phantom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antolak, A; Bayouth, J; Bosca, R

    Purpose: Evaluate a large-field MRI phantom for assessment of geometric distortion in whole-body MRI for real-time MR guided radiation therapy. Methods: A prototype CIRS large-field MRI distortion phantom consisting of a PMMA cylinder (33 cm diameter, 30 cm length) containing a 3D-printed orthogonal grid (3 mm diameter rods, 20 mm apart), was filled with 6 mM NiCl{sub 2} and 30 mM NaCl solution. The phantom was scanned at 1.5T and 3.0T on a GE HDxt and Discovery MR750, respectively, and at 0.35T on a ViewRay system. Scans were obtained with and without 3D distortion correction to demonstrate the impact ofmore » such corrections. CT images were used as a reference standard for analysis of geometric distortion, as determined by a fully automated gradient-search method developed in Matlab. Results: 1,116 grid points distributed throughout a cylindrical volume 28 cm in diameter and 16 cm in length were identified and analyzed. With 3D distortion correction, average/maximum displacements for the 1.5, 3.0, and 0.35T systems were 0.84/2.91, 1.00/2.97, and 0.95/2.37 mm, respectively. The percentage of points with less than (1.0, 1.5, 2.0 mm) total displacement were (73%, 92%, 97%), (54%, 85%, 97%), and (55%, 90%, 99%), respectively. A reduced scan volume of 20 × 20 × 10 cm{sup 3} (representative of a head and neck scan volume) consisting of 420 points was also analyzed. In this volume, the percentage of points with less than (1.0, 1.5, 2.0 mm) total displacement were (90%, 99%, 100%), (63%, 95%, 100%), and (75%, 96%, 100%), respectively. Without 3D distortion correction, average/maximum displacements were 1.35/3.67, 1.67/4.46, and 1.51/3.89 mm, respectively. Conclusion: The prototype large-field MRI distortion phantom and developed software provide a thorough assessment of 3D spatial distortions in MRI. The distortions measured were acceptable for RT applications, both for the high field strengths and the system configuration developed by ViewRay.« less

  18. Processing of Bulk YBa2Cu3O(7-x) High Temperature Superconductor Materials for Gravity Modification Experiments and Performance Under AC Levitation

    NASA Technical Reports Server (NTRS)

    Koczor, Ronald; Noever, David; Hiser, Robert

    1999-01-01

    We have previously reported results using a high precision gravimeter to probe local gravity changes in the neighborhood of bulk-processed high temperature superconductor disks. Others have indicated that large annular disks (on the order of 25cm diameter) and AC levitation fields play an essential role in their observed experiments. We report experiments in processing such large bulk superconductors. Successful results depend on material mechanical characteristics, and pressure and heat treat protocols. Annular disks having rough dimensions of 30cm O.D., 7cm I.D. and 1 cm thickness have been routinely fabricated and tested under AC levitation fields ranging from 45 to 300OHz. Implications for space transportation initiatives and power storage flywheel technology will be discussed.

  19. Detection of Fatigue Cracks at Rivets with Self-Nulling Probe

    NASA Technical Reports Server (NTRS)

    Wincheski, Buzz; Fulton, Jim; Nath, Shridhar; Namkung, Min

    1994-01-01

    A new eddy current probe developed at NASA Langley Research Center has been used to detect small cracks at rivets in aircraft lap splices [1]. The device has earlier been used to detect isolated fatigue cracks with a minimum detectable flaw size of roughly 1/2 to 1/3 the diameter of the probe [2]. The present work shows that the detectable flaw size for cracks originating at rivets can be greatly improved upon from that of isolated flaws. The use of a rotating probe method combined with spatial filtering has been used to detect 0.18 cm EDM notches, as measured from the rivet shank, with a 1.27 cm diameter probe and to detect flaws buried under the rivet head, down to a length of 0.076 cm, using a 0.32 cm diameter probe. The Self-Nulling Electromagnetic Flaw Detector induces a high density eddy current ring in the sample under test. A ferromagnetic flux focusing lens is incorporated such that in the absence of any inhomogeneities in the material under test only a minimal magnetic field will reach the interior of the probe. A magnetometer (pickup coil) located in the center of the probe therefore registers a null voltage in the absence of material defects. When a fatigue crack or other discontinuity is present in the test article the path of the eddy currents in the material is changed. The magnetic field associated with these eddy currents then enter into the interior of the probe, producing a large output voltage across the pickup coil leads. Further

  20. Roll splitting for field processing of biomass

    Treesearch

    Dennis T. Curtin; Donald L. Sirois; John A. Sturos

    1987-01-01

    The concept of roll splitting wood originated in 1967 when the Tennessee Valley Authority (TVA) forest products specialists developed a wood fibrator. The objective of that work was to produce raw materials for reconstituted board products. More recently, TVA focused on roll splitting as a field process to accelerate drying of small trees (3-15 cm diameter), much...

  1. Weight and volume equations and tables for six upland hardwoods in southern Illinois.

    Treesearch

    David J. Polak; Donald Raisanen; Richard C. Schlesinger; Les Stortz

    1980-01-01

    This paper presents tables of total tree green weight, green weight to a 5 cm and a 10 cm top diameter, dry weight to both 5 cm and 10 cm top diameter, and green volume to a 5 cm and 10 cm top diameter for six upland hardwood species. Both metric and English unit tables are included.

  2. Charged particle measurements on a 30-CM diameter mercury ion engine thrust beam

    NASA Technical Reports Server (NTRS)

    Sellen, J. M., Jr.; Komatsu, G. K.; Hoffmaster, D. K.; Kemp, R. F.

    1974-01-01

    Measurements of both thrust ions and charge exchange ions were made in the beam of a 30 centimeter diameter electron bombardment mercury ion thruster. A qualitative model is presented which describes magnitudes of charge exchange ion formation and motions of these ions in the weak electric field structure of the neutralized thrust beam plasma. Areas of agreement and discrepancy between observed and modeled charge exchange properties are discussed.

  3. Monitoring moisture storage in trees using time domain reflectometry

    USGS Publications Warehouse

    Constantz, J.; Murphy, F.

    1990-01-01

    Laboratory and field tests were performed to examine the feasibility of using time domain reflectometry (TDR) to monitor changes in the moisture storage of the woody parts of trees. To serve as wave guides for the TDR signal, pairs of stainless steel rods (13 cm long, 0.32 cm in diameter, and 2.5 cm separation) were driven into parallel pilot holes drilled into the woody parts of trees, and a cable testing oscilloscope was used to determine the apparent dielectric constant. A laboratory calibration test was performed on two sapwood samples, so that the relation between the volumetric water content and the apparent dielectric constant of the sapwood could be determined over a range of water contents. The resulting calibration curve for these sapwood samples was significantly different than the general calibration curve used for soils, showing a smaller change in the apparent dielectric constant for a given change in the volumetric water content than is typical for soils. The calibration curve was used to estimate the average volumetric water content to a depth of 13 cm in living trees. One field experiment was conducted on an English walnut tree (Juglans regia) with a diameter of 40 cm, growing in a flood-irrigated orchard on a Hanford sandy loam near Modesto, California (U.S.A.). Rods were driven into the tree at about 50 cm above the soil surface and monitored hourly for the month of August, 1988. The moisture content determined by TDR showed a gradual decrease from 0.44 to 0.42 cm3 cm-3 over a two week period prior to flood irrigation, followed by a rapid rise to 0.47 cm3 cm-3 over a four day period after irrigation, then again a gradual decline approaching the next irrigation. A second field experiment was made on ten evergreen and deciduous trees with diameters ranging from 30 to 120 cm, growing in the foothills of the Coast Range of central California. Rods were driven into each tree at 50 to 100 cm above the soil surface and monitored on a biweekly to monthly basis for over a year. Most trees showed an early spring maximum in moisture content determined by TDR associated with leaf growth, and a late summer minimum in moisture content associated with the end of the dry season. Moisture contents ranged from 0.20 to 0.70 cm3 cm-3, with an annual percentage change in moisture of 15% to 70% depending on species and environmental conditions. A final field test was performed in northern New Mexico (U.S.A.) to examine the effect of trunk freezing on TDR measurements. This test confirmed that freezing conditions were recorded as a total loss of liquid water by the TDR method. These results suggest that further TDR calibration for wood, plus some understanding of the relation between tree moisture and physiological stress could be useful to several disciplines, ranging from irrigation scheduling to watershed management to forest ecology. ?? 1990.

  4. Monitoring moisture storage in trees using time domain reflectometry

    NASA Astrophysics Data System (ADS)

    Constantz, Jim; Murphy, Fred

    1990-11-01

    Laboratory and field tests were performed to examine the feasibility of using time domain reflectometry (TDR) to monitor changes in the moisture storage of the woody parts of trees. To serve as wave guides for the TDR signal, pairs of stainless steel rods (13 cm long, 0.32 cm in diameter, and 2.5 cm separation) were driven into parallel pilot holes drilled into the woody parts of trees, and a cable testing oscilloscope was used to determine the apparent dielectric constant. A laboratory calibration test was performed on two sapwood samples, so that the relation between the volumetric water content and the apparent dielectric constant of the sapwood could be determined over a range of water contents. The resulting calibration curve for these sapwood samples was significantly different than the general calibration curve used for soils, showing a smaller change in the apparent dielectric constant for a given change in the volumetric water content than is typical for soils. The calibration curve was used to estimate the average volumetric water content to a depth of 13 cm in living trees. One field experiment was conducted on an English walnut tree ( Juglans regia) with a diameter of 40 cm, growing in a flood-irrigated orchard on a Hanford sandy loam near Modesto, California (U.S.A.). Rods were driven into the tree at about 50 cm above the soil surface and monitored hourly for the month of August, 1988. The moisture content determined by TDR showed a gradual decrease from 0.44 to 0.42 cm 3 cm -3 over a two week period prior to flood irrigation, followed by a rapid rise to 0.47 cm 3 cm -3 over a four day period after irrigation, then again a gradual decline approaching the next irrigation. A second field experiment was made on ten evergreen and deciduous trees with diameters ranging from 30 to 120 cm, growing in the foothills of the Coast Range of central California. Rods were driven into each tree at 50 to 100 cm above the soil surface and monitored on a biweekly to monthly basis for over a year. Most trees showed an early spring maximum in moisture content determined by TDR associated with leaf growth, and a late summer minimum in moisture content associated with the end of the dry season. Moisture contents ranged from 0.20 to 0.70 cm 3 cm -3, with an annual percentage change in moisture of 15% to 70% depending on species and environmental conditions. A final field test was performed in northern New Mexico (U.S.A.) to examine the effect of trunk freezing on TDR measurements. This test confirmed that freezing conditions were recorded as a total loss of liquid water by the TDR method. These results suggest that further TDR calibration for wood, plus some understanding of the relation between tree moisture and physiological stress could be useful to several disciplines, ranging from irrigation scheduling to watershed management to forest ecology.

  5. An improved analytic function for predicting light fluence rate in circular fields on a semi-infinite geometry

    NASA Astrophysics Data System (ADS)

    Zhu, Timothy C.; Lu, Amy; Ong, Yi-Hong

    2016-03-01

    Accurate determination of in-vivo light fluence rate is critical for preclinical and clinical studies involving photodynamic therapy (PDT). This study compares the longitudinal light fluence distribution inside biological tissue in the central axis of a 1 cm diameter circular uniform light field for a range of in-vivo tissue optical properties (absorption coefficients (μa) between 0.01 and 1 cm-1 and reduced scattering coefficients (μs') between 2 and 40 cm-1). This was done using Monte-Carlo simulations for a semi-infinite turbid medium in an air-tissue interface. The end goal is to develop an analytical expression that would fit the results from the Monte Carlo simulation for both the 1 cm diameter circular beam and the broad beam. Each of these parameters is expressed as a function of tissue optical properties. These results can then be compared against the existing expressions in the literature for broad beam for analysis in both accuracy and applicable range. Using the 6-parameter model, the range and accuracy for light transport through biological tissue is improved and may be used in the future as a guide in PDT for light fluence distribution for known tissue optical properties.

  6. Developing a scalable inert gas ion thruster

    NASA Technical Reports Server (NTRS)

    James, E.; Ramsey, W.; Steiner, G.

    1982-01-01

    Analytical studies to identify and then design a high performance scalable ion thruster operating with either argon or xenon for use in large space systems are presented. The magnetoelectrostatic containment concept is selected for its efficient ion generation capabilities. The iterative nature of the bounding magnetic fields allows the designer to scale both the diameter and length, so that the thruster can be adapted to spacecraft growth over time. Three different thruster assemblies (conical, hexagonal and hemispherical) are evaluated for a 12 cm diameter thruster and performance mapping of the various thruster configurations shows that conical discharge chambers produce the most efficient discharge operation, achieving argon efficiencies of 50-80% mass utilization at 240-310 eV/ion and xenon efficiencies of 60-97% at 240-280 eV/ion. Preliminary testing of the large 30 cm thruster, using argon propellant, indicates a 35% improvement over the 12 cm thruster in mass utilization efficiency. Since initial performance is found to be better than projected, a larger 50 cm thruster is already in the development stage.

  7. [Effects of tillage rotation and fertilization on soil aggregates and organic carbon content in corn field in Weibei Highland].

    PubMed

    Wang, Li; Li, Jun; Li, Juan; Bai, Wei-Xia

    2014-03-01

    A field experiment on effects of tillage rotation and fertilization on corn continuous cropping-practiced lands was carried out in Heyang of Shaanxi in 2007-2012. The tillage types included annual rotation of no-tillage and subsoiling (NT-ST), subsoiling and conventional tillage (ST-CT), or conventional tillage and no-tillage (CT-NT), and yearly practice of no tillage (NT-NT), subsoiling (ST-ST) or conventional tillage (CT-CT). The fertilization treatments included balanced fertilization, low-rate fertilization and conventional fertilization, which were separately practiced against the different tillage types. The experiment investigated compositions, mean mass diameters (MWD), geometrical mean diameters (GMD) and fraction dimension numbers (D) of soil aggregates in 0-40 cm soil and contents of organic carbon in 0-60 cm soil. The results indicated that: 1) The increased tillage intensity caused the reduced mechanical stability and content of soil aggregates and increased soil organic carbon loss. No-tillage or tillage rotation increased the MWD, GMD and contents of soil organic carbon and soil aggregates with diameters of more than 0.25 mm, but decreased D. Under the same fertilization treatment, the contents of soil aggregates with diameters of more than 0.25 mm were ranked in the order of NT-NT>NT-ST>NT-CT>ST-ST>CT-ST>CT-CT, and under the same tillage rotations, the soil aggregates were more stable with the balanced or low- rate fertilization than with the conventional fertilization. 2) Mathematical fractal dimension fitting of soil aggregates indicated that the fractal dimension numbers of soil aggregates ranged within 2.247-2.681 by dry sieving and 2.897-2.976 by wet sieving. In 0-30 cm soil, the fractal dimension numbers of soil aggregates were significantly lower under no-tillage or tillage rotation than under conventional tillage, and in 0-40 cm soil, the fractal dimensions of soil aggregates increased with soil depth, and tended to stabilize at the soil depth of 40 cm. 3) The different fertilization treatments exerted significantly different influences on the contents of soil organic carbon (P < 0.05), which tended to decline with soil depth. Compared to the conventional fertilization, the balanced fertilization increased the content of soil organic carbon by 6.9%, and the contents of soil organic carbon increased as the diameters of soil aggregates increased. The correlation analysis showed that the contents of soil aggregates with diameters of 0.25-2 mm significantly affected the content of soil organic carbon, with the coefficient of determination being 0.848 (P < 0.01).

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lindsay, P. E., E-mail: Patricia.Lindsay@rmp.uhn.on.ca; Granton, P. V.; Hoof, S. van

    Purpose: To compare the dosimetric and geometric properties of a commercial x-ray based image-guided small animal irradiation system, installed at three institutions and to establish a complete and broadly accessible commissioning procedure. Methods: The system consists of a 225 kVp x-ray tube with fixed field size collimators ranging from 1 to 44 mm equivalent diameter. The x-ray tube is mounted opposite a flat-panel imaging detector, on a C-arm gantry with 360° coplanar rotation. Each institution performed a full commissioning of their system, including half-value layer, absolute dosimetry, relative dosimetry (profiles, percent depth dose, and relative output factors), and characterization ofmore » the system geometry and mechanical flex of the x-ray tube and detector. Dosimetric measurements were made using Farmer-type ionization chambers, small volume air and liquid ionization chambers, and radiochromic film. The results between the three institutions were compared. Results: At 225 kVp, with 0.3 mm Cu added filtration, the first half value layer ranged from 0.9 to 1.0 mm Cu. The dose-rate in-air for a 40 × 40 mm{sup 2} field size, at a source-to-axis distance of 30 cm, ranged from 3.5 to 3.9 Gy/min between the three institutions. For field sizes between 2.5 mm diameter and 40 × 40 mm{sup 2}, the differences between percent depth dose curves up to depths of 3.5 cm were between 1% and 4% on average, with the maximum difference being 7%. The profiles agreed very well for fields >5 mm diameter. The relative output factors differed by up to 6% for fields larger than 10 mm diameter, but differed by up to 49% for fields ≤5 mm diameter. The mechanical characteristics of the system (source-to-axis and source-to-detector distances) were consistent between all three institutions. There were substantial differences in the flex of each system. Conclusions: With the exception of the half-value layer, and mechanical properties, there were significant differences between the dosimetric and geometric properties of the three systems. This underscores the need for careful commissioning of each individual system for use in radiobiological experiments.« less

  9. A 12 coil superconducting bumpy torus magnet facility for plasma research

    NASA Technical Reports Server (NTRS)

    Roth, J. R.; Holmes, A. D.; Keller, T. A.; Krawczonek, W. M.

    1972-01-01

    A summary is presented of the performance of the two-coil superconducting pilot rig which preceded the NASA Lewis bumpy torus. This pilot rig was operated for 550 experimental runs over a period of 7 years. The NASA Lewis bumpy torus facility consists of 12 superconducting coils, each with a 19 cm in diameter and capable of producing magnetic field strengths of 3.0 teslas on their axes. The magnets are equally spaced around a major circumference 1.52 m in diameter, and are mounted with the major axis of the torus vertical in a single vacuum tank 2.59 m in diameter. The design value of maximum magnetic field on the magnetic axis (3.0 teslas) was reached and exceeded. A maximum magnetic field of 3.23 teslas was held for a period of 60 minutes, and the coils did not go to normal. When the coils were charged to a maximum magnetic field of 3.35 teslas, the coil system was driven normal without damage to the facility.

  10. Particle discrimination of NaI(Tl) scintillator under high-energy neutron field to measure the photon energy spectrum

    NASA Astrophysics Data System (ADS)

    Kamada, So; Takada, Masashi; Suzuki, Toshikazu

    2014-09-01

    Photons are measured separately from neutrons in high-energy neutron fields using a NaI(Tl) scintillator, 7.62 cm in diameter and 7.62 cm in length, combined with a pulse-shape discrimination method. The particle discrimination capability for this scintillator is confirmed using a time-of-flight method. Neutron fields were produced by irradiating Li targets with 40 and 80 MeV proton beams at the cyclotron facility in the National Institute of Radiological Sciences. Figures of merit corresponding to particle discrimination for the scintillator at the two neutron fields are improved with higher neutron energies. Photon energy spectra for energies over 6.5 MeV can be measured using the NaI(Tl) scintillator.

  11. Water sample filtration unit

    USGS Publications Warehouse

    Skougstad, M.W.; Scarbro, G.F.

    1968-01-01

    A readily portable, all plastic, pressure filtration unit is described which greatly facilitates rapid micropore membrane field filtration of up to several liters of water with a minimum risk of inorganic chemical alteration or contamination of the sample. The unit accommodates standard 10.2-cm. (4-inch) diameter filters. The storage and carrying case serves as a convenient filter stand for both field and laboratory use.

  12. Design and Assembly of the Magnetized Dusty Plasma Experiment (MDPX)

    NASA Astrophysics Data System (ADS)

    Fisher, Ross; Artis, Darrick; Lynch, Brian; Wood, Keith; Shaw, Joseph; Gilmore, Kevin; Robinson, Daniel; Polka, Christian; Konopka, Uwe; Thomas, Edward; Merlino, Robert; Rosenberg, Marlene

    2013-10-01

    Over the last two years, the Magnetized Dusty Plasma Experiment (MDPX) has been under construction at Auburn University. This new research device, whose assembly will be completed in late Summer, 2013, uses a four-coil, superconducting, high magnetic field system (|B | >= 4 Tesla) to investigate the confinement, charging, transport, and instabilities in a dusty plasma. A new feature of the MDPX device is the ability to operate the magnetic coils independently to allow a variety of magnetic configurations from highly uniform to quadrapole-like. Envisioned as a multi-user facility, the MDPX device features a cylindrical vacuum vessel whose primary experimental region is an octagonal chamber that has a 35.5 cm inner diameter and is 19 cm tall. There is substantial diagnostics and optical access through eight, 10.2 cm × 12.7 cm side ports. The chamber can also be equipped with two 15.2 cm diameter, 76 cm long extensions to allow long plasma column experiments, particularly long wavelength dust wave studies. This presentation will discuss the final design, assembly, and installation of the MDPX device and will describe its supporting laboratory facility. This work is supported by a National Science Foundation - Major Research Instrumentation (NSF-MRI) award, PHY-1126067.

  13. An apparatus for studying electrical breakdown in liquid helium at 0.4 K and testing electrode materials for the neutron electric dipole moment experiment at the Spallation Neutron Source

    NASA Astrophysics Data System (ADS)

    Ito, T. M.; Ramsey, J. C.; Yao, W.; Beck, D. H.; Cianciolo, V.; Clayton, S. M.; Crawford, C.; Currie, S. A.; Filippone, B. W.; Griffith, W. C.; Makela, M.; Schmid, R.; Seidel, G. M.; Tang, Z.; Wagner, D.; Wei, W.; Williamson, S. E.

    2016-04-01

    We have constructed an apparatus to study DC electrical breakdown in liquid helium at temperatures as low as 0.4 K and at pressures between the saturated vapor pressure and ˜600 Torr. The apparatus can house a set of electrodes that are 12 cm in diameter with a gap of 1-2 cm between them, and a potential up to ±50 kV can be applied to each electrode. Initial results demonstrated that it is possible to apply fields exceeding 100 kV/cm in a 1 cm gap between two electropolished stainless steel electrodes 12 cm in diameter for a wide range of pressures at 0.4 K. We also measured the current between two electrodes. Our initial results, I < 1 pA at 45 kV, correspond to a lower bound on the effective volume resistivity of liquid helium of ρV > 5 × 1018 Ω cm. This lower bound is 5 times larger than the bound previously measured. We report the design, construction, and operational experience of the apparatus, as well as initial results.

  14. An apparatus for studying electrical breakdown in liquid helium at 0.4 K and testing electrode materials for the neutron electric dipole moment experiment at the Spallation Neutron Source.

    PubMed

    Ito, T M; Ramsey, J C; Yao, W; Beck, D H; Cianciolo, V; Clayton, S M; Crawford, C; Currie, S A; Filippone, B W; Griffith, W C; Makela, M; Schmid, R; Seidel, G M; Tang, Z; Wagner, D; Wei, W; Williamson, S E

    2016-04-01

    We have constructed an apparatus to study DC electrical breakdown in liquid helium at temperatures as low as 0.4 K and at pressures between the saturated vapor pressure and ∼600 Torr. The apparatus can house a set of electrodes that are 12 cm in diameter with a gap of 1-2 cm between them, and a potential up to ±50 kV can be applied to each electrode. Initial results demonstrated that it is possible to apply fields exceeding 100 kV/cm in a 1 cm gap between two electropolished stainless steel electrodes 12 cm in diameter for a wide range of pressures at 0.4 K. We also measured the current between two electrodes. Our initial results, I < 1 pA at 45 kV, correspond to a lower bound on the effective volume resistivity of liquid helium of ρV > 5 × 10(18) Ω cm. This lower bound is 5 times larger than the bound previously measured. We report the design, construction, and operational experience of the apparatus, as well as initial results.

  15. A 12-coil superconducting 'bumpy torus' magnet facility for plasma research.

    NASA Technical Reports Server (NTRS)

    Roth, J. R.; Holmes, A. D.; Keller, T. A.; Krawczonek, W. M.

    1972-01-01

    A retrospective summary is presented of the performance of the two-coil superconducting pilot rig which preceded the NASA Lewis bumpy torus. The NASA Lewis bumpy torus facility consists of 12 superconducting coils, each with a 19 cm i.d. and capable of producing magnetic field strengths of 3.0 teslas on their axes. The magnets are equally spaced around a major circumference 1.52 m in diameter, and are mounted with the major axis of the torus vertical in a single vacuum tank 2.59 m in diameter. The design value of maximum magnetic field on the magnetic axis (3.0 T) has been reached and exceeded.

  16. Near-field vector intensity measurements of a small solid rocket motor.

    PubMed

    Gee, Kent L; Giraud, Jarom H; Blotter, Jonathan D; Sommerfeldt, Scott D

    2010-08-01

    Near-field vector intensity measurements have been made of a 12.7-cm diameter nozzle solid rocket motor. The measurements utilized a test rig comprised of four probes each with four low-sensitivity 6.35-mm pressure microphones in a tetrahedral arrangement. Measurements were made with the rig at nine positions (36 probe locations) within six nozzle diameters of the plume shear layer. Overall levels at these locations range from 135 to 157 dB re 20 microPa. Vector intensity maps reveal that, as frequency increases, the dominant source region contracts and moves upstream with peak directivity at greater angles from the plume axis.

  17. Effect of the thermoplastic masks on dose distribution in the build-up region for photon beams

    NASA Astrophysics Data System (ADS)

    Półtorak, Michał; Fujak, Edyta; Kukołowicz, Paweł

    2016-03-01

    The aim of the study was to investigate the influence of thermoplastic masks material (Klarity Medical&Equipment Co., Guangzhou, China) with different diameters of holes (ϕ 0.25 cm and ϕ 0.40 cm) on the dose distribution in the build-up region for photon beams. Measurements were made for external radiation beams produced by the linear accelerator (TrueBeam, Varian Medical Systems, Inc., Palo Alto, CA, USA) using the Markus parallel plane ionization chamber and the Unidos electrometer (both from PTW, Freiburg, Germany). Measurements were made in a solid water phantom for two photon energies 6 MV and 15 MV, at 90 cm source to skin distance, for four fields of 5 cm × 5 cm, 10 cm × 10 cm, 15 cm × 15 cm and 20 cm × 20 cm. Compared to the open field, the maximum dose with mask was closer to the surface of the phantom by about 1.4 mm and 1.2 mm for 6 MV and 15 MV X-Rays, respectively. The surface dose increase from 10% to 42% for 6 MV and from 5% to 28% for 15 MV X-Rays.

  18. Enhanced field emission properties of carbon nanotube bundles confined in SiO2 pits

    NASA Astrophysics Data System (ADS)

    Lim, Yu Dian; Grapov, Dmitry; Hu, Liangxing; Kong, Qinyu; Tay, Beng Kang; Labunov, Vladimir; Miao, Jianmin; Coquet, Philippe; Aditya, Sheel

    2018-02-01

    It has been widely reported that carbon nanotubes (CNTs) exhibit superior field emission (FE) properties due to their high aspect ratios and unique structural properties. Among the various types of CNTs, random growth CNTs exhibit promising FE properties due to their reduced inter-tube screening effect. However, growing random growth CNTs on individual catalyst islands often results in spread out CNT bundles, which reduces overall field enhancement. In this study, significant improvement in FE properties in CNT bundles is demonstrated by confining them in microfabricated SiO2 pits. Growing CNT bundles in narrow (0.5 μm diameter and 2 μm height) SiO2 pits achieves FE current density of 1-1.4 A cm-2, which is much higher than for freestanding CNT bundles (76.9 mA cm-2). From the Fowler Nordheim plots, confined CNT bundles show a higher field enhancement factor. This improvement can be attributed to the reduced bundle diameter by SiO2 pit confinement, which yields bundles with higher aspect ratios. Combining the obtained outcomes, it can be conclusively summarized that confining CNTs in SiO2 pits yields higher FE current density due to the higher field enhancement of confined CNTs.

  19. Profile Control by Biased Electrodes in Large Diameter RF Produced Pl asma

    NASA Astrophysics Data System (ADS)

    Shinohara, Shunjiro; Matsuoka, Norikazu; Yoshinaka, Toshiro

    1998-10-01

    Control of the plasma profile has been carried out, using the voltage biasing method in the large diameter (45 cm) RF (radio frequency) produced plasma in the presence of the uniform magnetic field (less than 1200 G). Under the low filling pressure condition of 0.16 mTorr, changing the biasing voltages to the three individual end plates with concentric circular ring shapes, the radial electron density (about 10^10 cm-3) profile could be changed from the hollow to the peaked one. On the contrary, the nearly flat electron temperature (several eV) profile did not change appreciably. The azimuthal rotation velocity measured by the Mach probe, i.e. directional probe, showed the different radial profiles (but nearly uniform along the axis) depending on the biasing voltage. This velocity became slower with the low magnetic field (less than 200 G) or in the higher pressure regime up to 20 mTorr with the higher electron density. The experimental results by other biasing methods will also be presented.

  20. Multipole gas thruster design. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Isaacson, G. C.

    1977-01-01

    The development of a low field strength multipole thruster operating on both argon and xenon is described. Experimental results were obtained with a 15-cm diameter multipole thruster and are presented for a wide range of discharge-chamber configurations. Minimum discharge losses were 300-350 eV/ion for argon and 200-250 eV/ion for xenon. Ion beam flatness parameters in the plane of the accelerator grid ranged from 0.85 to 0.93 for both propellants. Thruster performance is correlated for a range of ion chamber sizes and operating conditions as well as propellant type and accelerator system open area. A 30-cm diameter ion source designed and built using the procedure and theory presented here-in is shown capable of low discharge losses and flat ion-beam profiles without optimization. This indicates that by using the low field strength multipole design, as well as general performance correlation information provided herein, it should be possible to rapidly translate initial performance specifications into easily fabricated, high performance prototypes.

  1. 9.4T Human MRI: Preliminary Results

    PubMed Central

    Vaughan, Thomas; DelaBarre, Lance; Snyder, Carl; Tian, Jinfeng; Akgun, Can; Shrivastava, Devashish; Liu, Wanzahn; Olson, Chris; Adriany, Gregor; Strupp, John; Andersen, Peter; Gopinath, Anand; van de Moortele, Pierre-Francois; Garwood, Michael; Ugurbil, Kamil

    2014-01-01

    This work reports the preliminary results of the first human images at the new high-field benchmark of 9.4T. A 65-cm-diameter bore magnet was used together with an asymmetric 40-cm-diameter head gradient and shim set. A multichannel transmission line (transverse electromagnetic (TEM)) head coil was driven by a programmable parallel transceiver to control the relative phase and magnitude of each channel independently. These new RF field control methods facilitated compensation for RF artifacts attributed to destructive interference patterns, in order to achieve homogeneous 9.4T head images or localize anatomic targets. Prior to FDA investigational device exemptions (IDEs) and internal review board (IRB)-approved human studies, preliminary RF safety studies were performed on porcine models. These data are reported together with exit interview results from the first 44 human volunteers. Although several points for improvement are discussed, the preliminary results demonstrate the feasibility of safe and successful human imaging at 9.4T. PMID:17075852

  2. SU-F-T-74: Experimental Validation of Monaco Electron Monte Carlo Dose Calculation for Small Fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Varadhan; Way, S; Arentsen, L

    2016-06-15

    Purpose: To verify experimentally the accuracy of Monaco (Elekta) electron Monte Carlo (eMC) algorithm to calculate small field size depth doses, monitor units and isodose distributions. Methods: Beam modeling of eMC algorithm was performed for electron energies of 6, 9, 12 15 and 18 Mev for a Elekta Infinity Linac and all available ( 6, 10, 14 20 and 25 cone) applicator sizes. Electron cutouts of incrementally smaller field sizes (20, 40, 60 and 80% blocked from open cone) were fabricated. Dose calculation was performed using a grid size smaller than one-tenth of the R{sub 80–20} electron distal falloff distancemore » and number of particle histories was set at 500,000 per cm{sup 2}. Percent depth dose scans and beam profiles at dmax, d{sub 90} and d{sub 80} depths were measured for each cutout and energy with Wellhoffer (IBA) Blue Phantom{sup 2} scanning system and compared against eMC calculated doses. Results: The measured dose and output factors of incrementally reduced cutout sizes (to 3cm diameter) agreed with eMC calculated doses within ± 2.5%. The profile comparisons at dmax, d{sub 90} and d{sub 80} depths and percent depth doses at reduced field sizes agreed within 2.5% or 2mm. Conclusion: Our results indicate that the Monaco eMC algorithm can accurately predict depth doses, isodose distributions, and monitor units in homogeneous water phantom for field sizes as small as 3.0 cm diameter for energies in the 6 to 18 MeV range at 100 cm SSD. Consequently, the old rule of thumb to approximate limiting cutout size for an electron field determined by the lateral scatter equilibrium (E (MeV)/2.5 in centimeters of water) does not apply to Monaco eMC algorithm.« less

  3. Development of a vector-tensor system to measure the absolute magnetic flux density and its gradient in magnetically shielded rooms.

    PubMed

    Voigt, J; Knappe-Grüneberg, S; Gutkelch, D; Haueisen, J; Neuber, S; Schnabel, A; Burghoff, M

    2015-05-01

    Several experiments in fundamental physics demand an environment of very low, homogeneous, and stable magnetic fields. For the magnetic characterization of such environments, we present a portable SQUID system that measures the absolute magnetic flux density vector and the gradient tensor. This vector-tensor system contains 13 integrated low-critical temperature (LTc) superconducting quantum interference devices (SQUIDs) inside a small cylindrical liquid helium Dewar with a height of 31 cm and 37 cm in diameter. The achievable resolution depends on the flux density of the field under investigation and its temporal drift. Inside a seven-layer mu-metal shield, an accuracy better than ±23 pT for the components of the static magnetic field vector and ±2 pT/cm for each of the nine components of the gradient tensor is reached by using the shifting method.

  4. Development of a vector-tensor system to measure the absolute magnetic flux density and its gradient in magnetically shielded rooms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voigt, J.; Knappe-Grüneberg, S.; Gutkelch, D.

    2015-05-15

    Several experiments in fundamental physics demand an environment of very low, homogeneous, and stable magnetic fields. For the magnetic characterization of such environments, we present a portable SQUID system that measures the absolute magnetic flux density vector and the gradient tensor. This vector-tensor system contains 13 integrated low-critical temperature (LTc) superconducting quantum interference devices (SQUIDs) inside a small cylindrical liquid helium Dewar with a height of 31 cm and 37 cm in diameter. The achievable resolution depends on the flux density of the field under investigation and its temporal drift. Inside a seven-layer mu-metal shield, an accuracy better than ±23more » pT for the components of the static magnetic field vector and ±2 pT/cm for each of the nine components of the gradient tensor is reached by using the shifting method.« less

  5. All-optical intensity modulation based on graphene-coated microfibre waveguides

    NASA Astrophysics Data System (ADS)

    Wang, Ruiduo; Li, Diao; Jiang, Man; Wu, Hao; Xu, Xiang; Ren, Zhaoyu

    2018-03-01

    We investigate graphene-covered microfibre (GCM) waveguides, and analyse the microfibres' evanescent field distributions in different diameters and lengths by numerically simulation. According to the simulation results, we designed a graphene-based all-optical modulator using 980 nm and Amplified Spontaneous Emission (ASE) lasers, employing the microfibre's evanescent field induced light-graphene interaction. We studied the modulation effect that is influenced by the microfibre's diameter, number of graphene layers, and effective graphene length. Compared to a single graphene layer of shorter length, the double graphene layer with longer length presents stronger absorption and higher modulation depth. Using a 2- μm diameter microfibre covered by ∼0.3 cm double graphene sheets, we achieved a modulation depth of 8.45 dB. This modulator features ease of fabrication, low cost, and a controllable modulation depth.

  6. Low loss fusion splicing polarization-maintaining photonic crystal fiber and conventional polarization-maintaining fiber

    NASA Astrophysics Data System (ADS)

    Zuoming, Sun; Ningfang, Song; Jing, Jin; Jingming, Song; Pan, Ma

    2012-12-01

    An efficient and simple method of fusion splicing of a Polarization-Maintaining Photonic Crystal Fiber (PM-PCF) and a conventional Polarization-Maintaining Fiber (PMF) with a low loss of 0.65 dB in experiment is reported. The minimum bending diameter of the joint can reach 2 cm. Theoretical calculation of the splicing loss based on mode field diameters (MFDs) mismatch of the two kinds of fibers is given. All parameters affected the splicing loss were studied.

  7. SU-E-T-804: Verification of the BJR-25 Method of KQ Determination for CyberKnife Absolute Dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gersh, J; Spectrum Medical Physics, LLC - Greenville, SC; Willett, B

    2015-06-15

    Purpose: Absolute calibration of the CyberKnife is performed using a 6cm-diameter cone defined at 80cm SAD. Since kQ is defined using PDD values determined using 10×10 cm fields at 100cm SSD, the PDD must be corrected in order to correctly apply the quality conversion factor. The accepted method is based on equivalent field-size conversions of PDD values using BJR25. Using the new InCise MLC system, the CK is capable of generating a rectangular field equivalent to 10×10 cm square field. In this study, a comparison is made between kQ values determined using the traditional BJR25 method and the MLC methodmore » introduced herein. Methods: First, kQ(BJR) is determined: a PDD is acquired using a 6cm circular field at 100cm SSD, its field size converted to an equivalent square, and PDD converted to a 10×10cm field using the appropriate BJR25 table. Maintaining a consistent setup, the collimator is changed, and the MLC method is used. Finally, kQ is determined using PDDs acquired with a 9.71×10.31cm at 100cm SSD. This field is produced by setting the field to a size of 7.77×8.25cm (since it is defined at 80cm SAD). An exact 10×10cm field since field size is relegated to increments of its leaf width (0.25cm). This comparison is made using an Exradin A1SL, IBA CC08, IBA CC13, and an Exradin A19. For each detector and collimator type, the beam injector was adjusted to give 5 different beam qualities; representing a range of clinical systems. Results: Averaging across all beam qualities, kQ(MLC) differed from kQ(BJR) by less than 0.15%. The difference between the values increased with detector volume. Conclusion: For CK users with standard cone collimators, the BJR25 method has been verified. For CK users the MLC system, a technique is described to determine kQ. Primary author is the President/Owner of Spectrum Medical Physics, LLC, a company which maintains contracts with Siemens Healthcare and Standard Imaging, Inc.« less

  8. In vivo field-cycling relaxometry using an insert coil for magnetic field offset.

    PubMed

    Pine, Kerrin J; Goldie, Fred; Lurie, David J

    2014-11-01

    The T(1) of tissue has a strong dependence on the measurement magnetic field strength. T(1) -dispersion could be a useful contrast parameter, but is unavailable to clinical MR systems which operate at fixed magnetic field strength. The purpose of this work was to implement a removable insert magnet coil for field-cycling T(1) -dispersion measurements on a vertical-field MRI scanner, by offsetting the static field over a volume of interest. An insert magnet coil was constructed for use with a whole-body sized 59 milli-Tesla (mT) vertical-field, permanent-magnet based imager. The coil has diameter 38 cm and thickness 6.1 cm and a homogeneous region (± 5%) of 5 cm DSV, offset by 5 cm from the coil surface. Surface radiofrequency (RF) coils were also constructed. The insert coil was used in conjunction with a surface RF coil and a volume-localized inversion-recovery pulse sequence to plot T(1) -dispersion in a human volunteer's forearm over a range of field strengths from 1 mT to 70 mT. T(1) -dispersion measurements were demonstrated on a fixed-field MRI scanner, using an insert coil. This demonstrates the feasibility of relaxation dispersion measurements on an otherwise conventional MR imager, facilitating the exploitation of T(1) -dispersion contrast for enhanced diagnosis. Copyright © 2013 Wiley Periodicals, Inc.

  9. Ion ejection from a permanent-magnet mini-helicon thruster

    NASA Astrophysics Data System (ADS)

    Chen, Francis F.

    2014-09-01

    A small helicon source, 5 cm in diameter and 5 cm long, using a permanent magnet (PM) to create the DC magnetic field B, is investigated for its possible use as an ion spacecraft thruster. Such ambipolar thrusters do not require a separate electron source for neutralization. The discharge is placed in the far-field of the annular PM, where B is fairly uniform. The plasma is ejected into a large chamber, where the ion energy distribution is measured with a retarding-field energy analyzer. The resulting specific impulse is lower than that of Hall thrusters but can easily be increased to relevant values by applying to the endplate of the discharge a small voltage relative to spacecraft ground.

  10. Ion ejection from a permanent-magnet mini-helicon thruster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Francis F.

    2014-09-15

    A small helicon source, 5 cm in diameter and 5 cm long, using a permanent magnet (PM) to create the DC magnetic field B, is investigated for its possible use as an ion spacecraft thruster. Such ambipolar thrusters do not require a separate electron source for neutralization. The discharge is placed in the far-field of the annular PM, where B is fairly uniform. The plasma is ejected into a large chamber, where the ion energy distribution is measured with a retarding-field energy analyzer. The resulting specific impulse is lower than that of Hall thrusters but can easily be increased to relevant valuesmore » by applying to the endplate of the discharge a small voltage relative to spacecraft ground.« less

  11. High Power Light Gas Helicon Plasma Source for VASIMR

    NASA Technical Reports Server (NTRS)

    Squire, Jared P.; Chang-Diaz, Franklin R.; Glover, Timothy W.; Jacobson, Verlin T.; Baity, F. Wally; Carter, Mark D.; Goulding, Richard H.

    2004-01-01

    In the Advanced Space Propulsion Laboratory (ASPL) helicon experiment (VX-10) we have measured a plasma flux to input gas rate ratio near 100% for both helium and deuterium at power levels up to 10 kW. Recent results at Oak Ridge National Laboratory (ORNL) show enhanced efficiency operation with a high power density, over 5 kW in a 5 cm diameter tube. Our helicon is presently 9 cm in diameter and operates up to 10 kW of input power. The data here uses a Boswell double-saddle antenna design with a magnetic cusp just upstream of the antenna. Similar to ORNL, for deuterium at near 10 kW, we find an enhanced performance of operation at magnetic fields above the lower hybrid matching condition.

  12. 5.625 Gbps bidirectional laser communications measurements between the NFIRE satellite and an optical ground station

    NASA Astrophysics Data System (ADS)

    Fields, Renny A.; Kozlowski, David A.; Yura, Harold T.; Wong, Robert L.; Wicker, Josef M.; Lunde, Carl T.; Gregory, Mark; Wandernoth, Bernhard K.; Heine, Frank F.; Luna, Joseph J.

    2011-11-01

    5.625 Gbps bidirectional laser communication at 1064 nm has been demonstrated on a repeatable basis between a Tesat coherent laser communication terminal with a 6.5 cm diameter ground aperture mounted inside the European Space Agency Optical Ground Station dome at Izana, Tenerife and a similar space-based terminal (12.4 cm diameter aperture) on the Near-Field InfraRed Experiment (NFIRE) low-earth-orbiting spacecraft. Both night and day bidirectional links were demonstrated with the longest being 177 seconds in duration. Correlation with atmospheric models and preliminary atmospheric r0 and scintillation measurements have been made for the conditions tested, suggesting that such coherent systems can be deployed successfully at still lower altitudes without resorting to the use of adaptive optics for compensation.

  13. SU-G-TeP1-13: Reclined Total Skin Electron Treatment Technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mathew, D; Gerbi, B

    Purpose: The purpose is to describe a new reclined technique for treatment of weakened patients that require total skin electron irradiation. Methods: This technique is a modification of a previously published reclined technique differing in that all six patient positions are treated with the gantry angled 60° from vertically down. The patient is located at a treatment distance of 330 cm SSD along the CA of the beam. The 3/8′ thick Lexan beam spoiler is placed 25 cm from the most proximal surface of the patient for all patient treatment positions. To produce a flat, uniform field of ∼190 cmmore » length, the patient was moved longitudinally by an experimentally determined distance. Kodak EDR2 and EBT3 Radiochromic film were placed around the periphery of the phantom, and OSLs were placed every 30° around the phantom periphery to determine output and surface dose uniformity. A piece of Kodak EDR2 was sandwiched between the two slabs of the 30 cm diameter phantom to determine beam penetration. Results: Field uniformity shifting the patient ±75 cm was ±5% over a treatment span of 190 cm. The dose variation around the periphery of the 30 cm diameter phantom varied by <±5% with the maximum values observed at the 0°-300°, 60° locations with the minimum values at the 30°-330°, 60° locations. Results obtained using Kodak EDR2, EBT3 Radiochromic film, and OSLs agreed to within ±5%. Conclusion: This technique provides a very efficient and convenient means by which to treat the entire skin surface of patients incapable of standing for treatment. It provides a treatment field that is both large and uniform enough for adults along with a convenient way to treat four of the six patient treatment positions. The beam spoiler lies to the side of the patient allowing easy access for patient positioning.« less

  14. An apparatus for studying electrical breakdown in liquid helium at 0.4 K and testing electrode materials for the neutron electric dipole moment experiment at the Spallation Neutron Source

    DOE PAGES

    Ito, T. M.; Ramsey, J. C.; Yao, W.; ...

    2016-04-25

    In this study, we have constructed an apparatus to study DC electrical breakdown in liquid helium at temperatures as low as 0.4 K and at pressures between the saturated vapor pressure and ~600 Torr. The apparatus can house a set of electrodes that are 12 cm in diameter with a gap of 1–2 cm between them, and a potential up to ±50 kV can be applied to each electrode. Initial results demonstrated that it is possible to apply fields exceeding 100 kV/cm in a 1 cm gap between two electropolished stainless steel electrodes 12 cm in diameter for a widemore » range of pressures at 0.4 K. We also measured the current between two electrodes. Our initial results, I < 1 pA at 45 kV, correspond to a lower bound on the effective volume resistivity of liquid helium of ρ V > 5 × 10 18 Ω cm. This lower bound is 5 times larger than the bound previously measured. Finally, we report the design, construction, and operational experience of the apparatus, as well as initial results« less

  15. Design of A Large Oxide Coated Cathode Plasma Source for Operation in High Magnetic Fields at the New LAPD

    NASA Astrophysics Data System (ADS)

    Leneman, David

    2001-10-01

    We use a Barium Oxide coated cathode to supply accelerated electrons as an energy source to from our plasma. Oxide coated cathodes have been used for decades in vacuum tubes and plasma research. Most of these have been small (1 cm dia.) or designed to operate in a low magnetic field where the J×B \\unboldmath forces on them are negligible. At the new LAPD we will have large diameter plasma sources at both ends of the machine which must operate in a 3.5 kG ambient magnetic field. We have designed and built one such source which is 72 cm in diameter. It will supply up to 20 kA of pulsed beam current and uses a 1 m by 1 m, 2.5 kA (dc), 150 kW heater. Solutions to various engineering issues will be discussed. These pertain to differential thermal expansion over 1 m distances, J×B \\unboldmath forces on the heater and cathode, heat containment and uniformity of the oxide coating and of plasma production. These issues are important to any experimenter who plans to build an oxide coated plasma source.

  16. TH-AB-BRA-11: Using 3D Dosimeters for the Investigation of the Electron Return Effect (ERE) in MR-Guided Radiation Therapy: A Feasibility Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, G; Lee, H; Alqathami, M

    Purpose: To demonstrate the capability of 3D radiochromic PRESAGE and Fricke-type dosimeters to measure the influence of magnetic fields on dose distribution, including the electron return effect (ERE), for MR-guided radiation therapy applications. Methods: Short cylindrical 3D dosimeters with PRESAGE and Fricke-type formulations were created in-house prior to irradiations in a 1.5T/7MV MR-linac. Each dosimeter was prepared with a concentric cylindrical air cavity with diameters of 1.5 cm and 2.5 cm, and the diameters of the dosimeters were 7.2 cm and 8.8 cm for PRESAGE and Fricke-type respectively. The dosimeters were irradiated within the bore of the MR-linac with themore » flat face of the dosimeters perpendicular to the magnetic field. Dosimeters were irradiated to approximately 9 Gy and 29 Gy to the center of dosimeters with a 15×15 cm{sup 2} field. The PRESAGE dosimeter was scanned using an optical-CT 2 hours post-irradiation; the Fricke-type dosimeter was immediately imaged with the MR component of the MR-linac post-irradiation. Results: Axial slices of the dose distributions show a clear demonstration of the dose enhancement due to the ERE above the cavity and the region of reduced dose below the cavity. The regions of increased and reduced dose are rotated with respect to the radiation beam axis due to the average directional change of the electrons. Measurements from line profiles show the dose enhanced up to ∼0.5 cm around the cavity by up to a factor of 1.3 and 1.4 for PRESAGE and Fricke-type dosimeters respectively. Conclusion: PRESAGE and Fricke-type dosimeters are able to qualitatively measure the ERE with good agreement with previously published simulation and 2D dosimetry demonstrations of the ERE. Further investigation of these 3D dosimeters as promising candidates for quality assurance of MR-guided radiation therapy systems is encouraged to assess changes in response and measurement accuracy due to the magnetic field.« less

  17. Study of the Synchronous Operation of an Annular Field Reversed Configuration Plasma Device

    DTIC Science & Technology

    2008-05-05

    of pulsed diagnostics were developed to explore the operational characteristics of a 40 -cm outer diameter annular theta pinch and its pre-ionization...Optimized pre-ionization conditions, neutral gas densities, and plasma transition energies were determined for the 40 cm annulus in both argon and xenon...MSNW 100 25 10 10 150 Formation 1985 HBQM U Wash 300 22 5 5 30 Formation 1986 TRX-2 STI 100 24 13 10 100 Confinement 1987 CSS U Wash 100 45 3 40 60

  18. Behavior in normal and reduced gravity of an enclosed liquid/gas system with nonuniform heating from above

    NASA Technical Reports Server (NTRS)

    Ross, H. D.; Schiller, D. N.; Disimile, P.; Sirignano, W. A.

    1989-01-01

    The temperature and velocity fields have been investigated for a single-phase gas system and a two-layer gas-and-liquid system enclosed in a circular cylinder being heated suddenly and nonuniformly from above. The transient response of the gas, liquid, and container walls was modelled numerically in normal and reduced gravity (10 to the -5 g). Verification of the model was accomplished via flow visualization experiments in 10 cm high by 10 cm diameter plexiglass cylinders.

  19. Fast, High-Resolution Terahertz Radar Imaging at 25 Meters

    NASA Technical Reports Server (NTRS)

    Cooper, Ken B.; Dengler, Robert J.; Llombart, Nuria; Talukder, Ashit; Panangadan, Anand V.; Peay, Chris S.; Siegel, Peter H.

    2010-01-01

    We report improvements in the scanning speed and standoff range of an ultra-wide bandwidth terahertz (THz) imaging radar for person-borne concealed object detection. Fast beam scanning of the single-transceiver radar is accomplished by rapidly deflecting a flat, light-weight subreflector in a confocal Gregorian optical geometry. With RF back-end improvements also implemented, the radar imaging rate has increased by a factor of about 30 compared to that achieved previously in a 4 m standoff prototype instrument. In addition, a new 100 cm diameter ellipsoidal aluminum reflector yields beam spot diameters of approximately 1 cm over a 50x50 cm field of view at a range of 25 m, although some aberrations are observed that probably arise from misaligned optics. Through-clothes images of a concealed threat at 25 m range, acquired in 5 seconds, are presented, and the impact of reduced signal-to-noise from an even faster frame rate is analyzed. These results inform the system requirements for eventually achieving sub-second or video-rate THz radar imaging.

  20. Superconductor-Mediated Modification of Gravity? AC Motor Experiments with Bulk YBCO Disks in Rotating Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Noever, David A.; Koczor, Ronald J.; Roberson, Rick

    1998-01-01

    We have previously reported results using a high precision gravimeter to probe local gravity changes in the neighborhood of large bulk-processed high-temperature superconductors. Podkietnov, et al (Podkietnov, E. and Nieminen, R. (1992) A Possibility of Gravitational Force Shielding by Bulk YBa2 Cu3 O7-x Superconductor, Physica C, C203:441-444.) have indicated that rotating AC fields play an essential role in their observed distortion of combined gravity and barometric pressure readings. We report experiments on large (15 cm diameter) bulk YBCO ceramic superconductors placed in the core of a three-phase, AC motor stator. The applied rotating field produces up to a 12,000 revolutions per minute magnetic field. The field intensity decays rapidly from the maximum at the outer diameter of the superconducting disk (less than 60 Gauss) to the center (less than 10 Gauss). This configuration was applied with and without a permanent DC magnetic field levitating the superconducting disk, with corresponding gravity readings indicating an apparent increase in observed gravity of less than 1 x 10(exp -6)/sq cm, measured above the superconductor. No effect of the rotating magnetic field or thermal environment on the gravimeter readings or on rotating the superconducting disk was noted within the high precision of the observation. Implications for propulsion initiatives and power storage flywheel technologies for high temperature superconductors will be discussed for various spacecraft and satellite applications.

  1. Verification on the Dose Profile Variation of a 3-D—NIPAM Polymer Gel Dosimeter

    NASA Astrophysics Data System (ADS)

    Hsieh, Bor-Tsung; Wu, Jay; Chang, Yuan-Jen

    2013-04-01

    A gel dosimeter is a three-dimensional (3-D) device that is used in radiotherapy. It is more efficient than traditional one-dimensional and two-dimensional dosimeters because it can be used in complicated radiation therapy applications. However, the achievement of temporal and spatial stabilities for gel dosimeters remains challenging in clinical applications because the fabrication process affects the polymerization reaction during irradiation. This study investigated the dose profile variation of an N-isopropyl acrylamide (NIPAM) polymer gel dosimeter by using the 3-D optical computed tomography scanner OCTOPUSTM 10X (MGS Research Inc.). Two acrylic containers (diameter=10, height=10, and diameter=15, height=15cm ) filled with polymer gel (gelatin: 5%, NIPAM: 5%, Bis: 3%, THPC: 5 mM) were irradiated by using intensity-modulated radiotherapy (SIEMENS Oncor Impression, 6 MV Photo beam). The treatment field was a 3 cm 3 cm square field, and the prescribed dose was 5 Gy. The results of the reconstruction line profile showed that the uncertainty of non-irradiated gel is less than 1.3% when a container with 10 cm diameters cooled in a refrigerator with a water bath. The maximum uncertainties of the irradiated gel at 24 h, 48 h, and 72 h post-irradiation were 2.9%, 2.9%, and 3.1%, respectively. However, the maximum uncertainty of the non-irradiated gel dosimeter increased to 3% when a container with 15 cm diameter was cooled in the same refrigerator. After irradiation, the maximum uncertainties of the irradiated gel at 24 h, 48 h, and 72 h post-irradiation were 13.1%, 13.7%, and 12.95%, respectively. The uncertainty differences for gels at different container sizes were attributed to the different cooling rates that were applied to the gels. The time required for large gel containers to cool in the refrigerator was more than 10 h, whereas the cooling process only took 4.2 h for gels in a small container. The time difference produced different temperature histories for gels and may result in changes in gel sensitivity. Given the thermally induced pre-radiation polymerization, the time difference resulted in a deviation in dose profiles. This study reports that thermal control during gel preparation should be carefully performed for clinical applications to achieve a more accurate dose distribution in 3-D image reconstruction.

  2. Observation of Dust Particle Gyromotion in a Magnetized Dusty Plasma

    NASA Astrophysics Data System (ADS)

    Compton, C. S.; Amatucci, W. E.; Gatling, G.; Tejero, E.

    2008-11-01

    In dusty plasma research, gyromotion of the dust has been difficult to observe experimentally. Previous experiments by Amatucci et al. have shown gyromotion of a single dust particle [1]. This early work was performed with alumina dust that had a size distribution and non-uniformly shaped particles. In the current experiment, evidence of spherical, monodispersed, dust particles exhibiting gyromotion has been observed. Silica particles 0.97 micrometers in diameter are suspended in a DC glow discharge argon plasma. The experiment is performed in the Naval Research Laboratory's DUsty PLasma EXperiment (DUPLEX Jr.). DUPLEX is a 61-cm tall by 46-cm diameter acrylic chamber allowing full 360 degree optical access for diagnostics. The neutral pressure for the experiment is 230 mTorr with a 275 V bias between the circular electrodes. The electrodes have a separation of 4 cm. A strong magnetic field is created by 2 pairs of neodymium iron boride magnets placed above and below the anode and cathode respectively. The resulting field is 1.4 kG. The dust particles are illuminated with a 25 mW, 672 nm laser. Images are captured using an intensified CCD camera and a consumer digital video cassette recorder. Recent evidence of gyromotion of spherical, monodispersed, dust particles will be presented. [1] Amatucci, W.E., et al., Phys. Plasmas, 11, 2097 (2004)

  3. The CERN-EU high-energy reference field (CERF) facility for dosimetry at commercial flight altitudes and in space.

    PubMed

    Mitaroff, A; Cern, M Silari

    2002-01-01

    A reference facility for the calibration and intercomparison of active and passive detectors in broad neutron fields has been available at CERN since 1992. A positively charged hadron beam (a mixture of protons and pions) with momentum of 120 GeV/c hits a copper target, 50 cm thick and 7 cm in diameter. The secondary particles produced in the interaction traverse a shield, at 90 degrees with respect to the direction of the incoming beam. made of either 80 to 160 cm of concrete or 40 cm of iron. Behind the iron shield, the resulting neutron spectrum has a maximum at about 1 MeV, with an additional high-energy component. Behind the 80 cm concrete shield, the neutron spectrum has a second pronounced maximum at about 70 MeV and resembles the high-energy component of the radiation field created by cosmic rays at commercial flight altitudes. This paper describes the facility, reports on the latest neutron spectral measurements, gives an overview of the most important experiments performed by the various collaborating institutions over recent years and briefly addresses the possible application of the facility to measurements related to the space programme.

  4. High-displacement spiral piezoelectric actuators

    NASA Astrophysics Data System (ADS)

    Mohammadi, F.; Kholkin, A. L.; Jadidian, B.; Safari, A.

    1999-10-01

    A high-displacement piezoelectric actuator, employing spiral geometry of a curved piezoelectric strip is described. The monolithic actuators are fabricated using a layered manufacturing technique, fused deposition of ceramics, which is capable of prototyping electroceramic components with complex shapes. The spiral actuators (2-3 cm in diameter) consisted of 4-5 turns of a lead zirconate titanate ceramic strip with an effective length up to 28 cm. The width was varied from 0.9 to 1.75 mm with a height of 3 mm. When driven by the electric field applied across the width of the spiral wall, the tip of the actuator was found to displace in both radial and tangential directions. The tangential displacement of the tip was about 210 μm under the field of 5 kV/cm. Both the displacement and resonant frequency of the spirals could be tailored by changing the effective length and wall width. The blocking force of the actuator in tangential direction was about 1 N under the field of 5 kV/cm. These properties are advantageous for high-displacement low-force applications where bimorph or monomorph actuators are currently employed.

  5. An investigation of kV CBCT image quality and dose reduction for volume-of-interest imaging using dynamic collimation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parsons, David, E-mail: david.parsons@dal.ca, E-mail: james.robar@cdha.nshealth.ca; Robar, James L., E-mail: david.parsons@dal.ca, E-mail: james.robar@cdha.nshealth.ca

    2015-09-15

    Purpose: The focus of this work was to investigate the improvements in image quality and dose reduction for volume-of-interest (VOI) kilovoltage-cone beam CT (CBCT) using dynamic collimation. Methods: A prototype iris aperture was used to track a VOI during a CBCT acquisition. The current aperture design is capable of 1D translation as a function of gantry angle and dynamic adjustment of the iris radius. The aperture occupies the location of the bow-tie filter on a Varian On-Board Imager system. CBCT and planar image quality were investigated as a function of aperture radius, while maintaining the same dose to the VOI,more » for a 20 cm diameter cylindrical water phantom with a 9 mm diameter bone insert centered on isocenter. Corresponding scatter-to-primary ratios (SPR) were determined at the detector plane with Monte Carlo simulation using EGSnrc. Dose distributions for various sizes VOI were modeled using a dynamic BEAMnrc library and DOSXYZnrc. The resulting VOI dose distributions were compared to full-field distributions. Results: SPR was reduced by a factor of 8.4 when decreasing iris diameter from 21.2 to 2.4 cm (at isocenter). Depending upon VOI location and size, dose was reduced to 16%–90% of the full-field value along the central axis plane and down to 4% along the axis of rotation, while maintaining the same dose to the VOI compared to full-field techniques. When maintaining constant dose to the VOI, this change in iris diameter corresponds to a factor increase of approximately 1.6 in image contrast and a factor decrease in image noise of approximately 1.2. This results in a measured gain in contrast-to-noise ratio by a factor of approximately 2.0. Conclusions: The presented VOI technique offers improved image quality for image-guided radiotherapy while sparing the surrounding volume of unnecessary dose compared to full-field techniques.« less

  6. Quasipermanent magnets of high temperature superconductor - Temperature dependence

    NASA Technical Reports Server (NTRS)

    Chen, In-Gann; Liu, Jianxiong; Ren, Yanru; Weinstein, Roy; Kozlowski, Gregory; Oberly, Charles E.

    1993-01-01

    We report on persistent field in quasi-permanent magnets of high temperature superconductors. Magnets composed of irradiated Y(1+)Ba2Cu3O7 trapped field Bt = 1.52 T at 77 K and 1.9 T at lower temperature. However, the activation magnet limited Bt at lower temperature. We present data on Jc(H,T) for unirradiated materials, and calculate Bt at various T. Based upon data at 65 K, we calculate Bt in unirradiated single grains at 20 K and find that 5.2 T will be trapped for grain diameter d about 1.2 cm, and 7.9 T for d = 2.3 cm. Irradiated grains will trap four times these values.

  7. Fabrication of Large YBCO Superconducting Disks

    NASA Technical Reports Server (NTRS)

    Koczor, Ronald J.; Noever, David A.; Robertson, Glen A.

    1999-01-01

    We have undertaken fabrication of large bulk items to develop a repeatable process and to provide test articles in laboratory experiments investigating reported coupling of electromagnetic fields with the local gravity field in the presence of rotating superconducting disks. A successful process was developed which resulted in fabrication of 30 cm diameter annular disks. The disks were fabricated of the superconductor YBa2Cu3O(7-x). Various material parameters of the disks were measured.

  8. Performance of large area xenon ion thrusters for orbit transfer missions

    NASA Technical Reports Server (NTRS)

    Rawlin, Vincent K.

    1989-01-01

    Studies have indicated that xenon ion propulsion systems can enable the use of smaller Earth-launch vehicles for satellite placement which results in significant cost savings. These analyses have assumed the availability of advanced, high power ion thrusters operating at about 10 kW or higher. A program was initiated to explore the viability of operating 50 cm diameter ion thrusters at this power level. Operation with several discharge chamber and ion extraction grid set combinations has been demonstrated and data were obtained at power levels to 16 kW. Fifty cm diameter thrusters using state of the art 30 cm diameter grids or advanced technology 50 cm diameter grids allow discharge power and beam current densities commensurate with long life at power levels up to 10 kW. In addition, 50 cm diameter thrusters are shown to have the potential for growth in thrust and power levels beyond 10 KW.

  9. [Structure characteristics of natural nests and its implication to artificial nest frame design for Ciconia boyciana].

    PubMed

    Wei, Yi-qing; Cui, Guo-fa

    2014-12-01

    Artificial nest can improve the breeding success of birds in the field, and it has been proved to be more effective to endangered species. We surveyed the structure characteristics of natural nest and the status of the use of artificial nests for oriental white stork, Ciconia boyciana, in Honghe National Nature Reserve, Heilongjiang Province. Differences were investigated among the structure characteristics of the used and unused artificial nests, and natural nests based on one-way ANOVA. It was observed that significant differences in the diameter of nest branch, the vertical an- gle between nest branch, the height of the jointthe height of the nest above ground exited in different nest types. On account of the structure characteristics of the natural nests of C. boyciana, the suitable diameter of nest pillar for artificial nest frame should be 15.0-25.0 cm with the height of 5.0-12.0 m, which would be better if they were constructed by some acid-resistant materials, e.g., cement. The number of nest stands should be 3-4 individuals with the diameter of 9.0-12.0 cm, the vertical angle of 45 degrees-60 degrees, and the length of 90.0-140.0 cm.

  10. Characteristics and performance of a superconducting bumpy-torus magnet facility for plasma research

    NASA Technical Reports Server (NTRS)

    Roth, J. R.; Holmes, A. D.; Keller, T. A.; Krawczonek, W. M.

    1973-01-01

    The NASA Lewis bumpy-torus facility consists of 12 superconducting coils, each 19 cm i.d. and capable of 3.0 T on its axis. The coils are equally spaced around a toroidal array with a major diameter of 1.52 m; they are mounted with the major axis of the torus vertical in a single vacuum tank 2.6 m in diameter. Tests of the facility mapped out its magnetic, cryogenic, vacuum, mechanical, and electrical performance. The design value of the maximum magnetic field on the magnetic axis, 3.0 T, was reached and exceeded. A maximum magnetic field of 3.23 T was held for a period of 60 minutes. When the coils were charged to a maximum magnetic field of 3.35 T, the coil system went normal without apparent damage or degradation of performance.

  11. Thermodynamic, Transport and Chemical Properties of Reference JP-8

    DTIC Science & Technology

    2006-06-01

    external diameter, 0.18 cm internal diameter) that are sealed on one end with a stainless steel plug welded by a clean tungsten-inert-gas ( TIG ) 15...tubing with an internal diameter of 0.02 cm, also TIG welded to the cell. Each cell and valve is capable of withstanding a pressure in excess of 105... process . Each cell is connected to a high-pressure high-temperature valve at the other end with a short length of 0.16 cm diameter 316 stainless steel

  12. Dosimetric characteristics with spatial fractionation using electron grid therapy.

    PubMed

    Meigooni, A S; Parker, S A; Zheng, J; Kalbaugh, K J; Regine, W F; Mohiuddin, M

    2002-01-01

    Recently, promising clinical results have been shown in the delivery of palliative treatments using megavoltage photon grid therapy. However, the use of megavoltage photon grid therapy is limited in the treatment of bulky superficial lesions where critical radiosensitive anatomical structures are present beyond tumor volumes. As a result, spatially fractionated electron grid therapy was investigated in this project. Dose distributions of 1.4-cm-thick cerrobend grid blocks were experimentally determined for electron beams ranging from 6 to 20 MeV. These blocks were designed and fabricated at out institution to fit into a 20 x 20-cm(2) electron cone of a commercially available linear accelerator. Beam profiles and percentage depth dose (PDD) curves were measured in Solid Water phantom material using radiographic film, LiF TLD, and ionometric techniques. Open-field PDD curves were compared with those of single holes grid with diameters of 1.5, 2.0, 2.5, 3.0, and 3.5 cm to find the optimum diameter. A 2.5-cm hole diameter was found to be the optimal size for all electron energies between 6 and 20 MeV. The results indicate peak-to-valley ratios decrease with depth and the largest ratio is found at Dmax. Also, the TLD measurements show that the dose under the blocked regions of the grid ranged from 9.7% to 39% of the dose beneath the grid holes, depending on the measurement location and beam energy.

  13. Zonal Acoustic Velocimetry in 30-cm, 60-cm, and 3-m Laboratory Models of the Outer Core

    NASA Astrophysics Data System (ADS)

    Rojas, R.; Doan, M. N.; Adams, M. M.; Mautino, A. R.; Stone, D.; Lekic, V.; Lathrop, D. P.

    2016-12-01

    A knowledge of zonal flows and shear is key in understanding magnetic field dynamics in the Earth and laboratory experiments with Earth-like geometries. Traditional techniques for measuring fluid flow using visualization and particle tracking are not well-suited to liquid metal flows. This has led us to develop a flow measurement technique based on acoustic mode velocimetry adapted from helioseismology. As a first step prior to measurements in the liquid sodium experiments, we implement this technique in our 60-cm diameter spherical Couette experiment in air. To account for a more realistic experimental geometry, including deviations from spherical symmetry, we compute predicted frequencies of acoustic normal modes using the finite element method. The higher accuracy of the predicted frequencies allows the identification of over a dozen acoustic modes, and mode identification is further aided by the use of multiple microphones and by analyzing spectra together with those obtained at a variety of nearby Rossby numbers. Differences between the predicted and observed mode frequencies are caused by differences in flow patterns present in the experiment. We compare acoustic mode frequency splittings with theoretical predictions for stationary fluid and solid body flow condition with excellent agreement. We also use this technique to estimate the zonal shear in those experiments across a range of Rossby numbers. Finally, we report on initial attempts to use this in liquid sodium in the 3-meter diameter experiment and parallel experiments performed in water in the 30-cm diameter experiment.

  14. An in vitro study of magnetic particle targeting in small blood vessels

    NASA Astrophysics Data System (ADS)

    Udrea, Laura Elena; Strachan, Norval J. C.; Bădescu, Vasile; Rotariu, Ovidiu

    2006-10-01

    The magnetic guidance and capture of particles inside the human body, via the circulatory system, is a novel method for the targeted delivery of drugs. This experimental study confirms in vitro that a dipolar capturing device, based on high-energy magnets with an active space of 8.7 cm × 10 cm × 10 cm, retains colloidal magnetic particles (MPs) (<30 nm) injected in the capillary tubes, where flow velocities are comparable to that encountered in the capillary beds of tumours (<0.5 cm s-1). The build-up of the deposition of the MPs was investigated using video imaging techniques that enabled continuous monitoring of the blocking of the vessel whilst simultaneously recording the colloid's flow rate. The parameters of practical importance (length of MP deposit, time of capillary blocking) were estimated and were found to be dependent on the initial fluid velocity, the MP concentration and the distance between the capillary tube and the polar magnetic pieces. Although the tube used in this experiment is larger (diameter = 0.75 mm, length = 100 mm) than that of real capillaries (diameter = 0.01 mm, length ~1.5 mm), the flow velocities chosen were similar to those encountered in the capillary beds of tumours and the length/diameter ratio was approximately equal (133 for the present set-up, 100-150 for real capillaries). In these circumstances and using the same magnetic field conditions (intensity, gradient) and MPs, there is close similarity with magnetic capture in a microscopic capillary system. Moreover, the macroscopic system permits analysis of the distribution of MPs in the active magnetic space, and consequently the maximum targetable volume. This study revealed that the capture of particles within the active space was strongly influenced by the gradient of the magnetic field and the flow velocity. Thus, when the magnetic field gradient had medium values (0.1-0.3 T cm-1) and the fluid velocity was small (0.15 cm s-1), the particles were captured in small, compact and stable deposits (L < 4 cm) and the time necessary for blocking of the capillary was <150 s. Doubling the value for the flow velocity did not influence significantly either the length of MP deposits nor the blocking time. However, lower gradients (<0.1 T cm-1) and larger velocities (0.3-0.9 cm s-1) result in the formation of larger deposits (4 cm < L < 10 cm) that are unstable at the beginning of the capture process. These large deposits do become stable given sufficient time for the deposition process to take place in conjunction with a decrease in the flow rate. As a consequence, the time necessary for blocking of the capillary increased up to 450 s. Decreasing the MP concentration from 0.02 g cm-3 to 0.005 g cm-3 decreased the deposit lengths by approximately 20% and doubled the values of the blocking time. The maximum targetable volume obtained by the present method is ~350 cm3, which corresponds to medium-sized tumours. The capillary vessels were blocked only for the situation that occurs for microcirculation within a tumour. This reduces the concentration of MPs trapped within the normal tissues, which occurs when using particles of micrometre size. This work showed the potential of using colloidal MPs and dipolar magnetic devices for treatment of human patients, when the affected sites are positioned at medium distances from the surface of the body (e.g. head, neck, breast, hands and legs).

  15. Common iliac artery aneurysms in patients with abdominal aortic aneurysms.

    PubMed

    Armon, M P; Wenham, P W; Whitaker, S C; Gregson, R H; Hopkinson, B R

    1998-03-01

    To determine the incidence of common iliac artery (CIA) aneurysms in patients with abdominal aortic aneurysms (AAA) and to evaluate the relationship between AAA and CIA diameter. Spiral CT angiography was used to measure the maximum diameters of the abdominal aorta and the common iliac arteries of 215 patients with AAA. The median CIA diameter was 1.7 cm--significantly greater than the published mean of 1.25 (2 S.D. = 0.85-1.65) cm of an age-matched, non-vascular population. Thirty-four patients (16%) had unilateral and 26 patients (12%) bilateral CIA aneurysms > or = 2.4 cm diameter. Eight-six vessels (20%) were affected. Right CIA diameters were wider than left CIA diameters (p < 0.0001, Wilcoxon matched-pairs signed rank test). The correlation between AAA size and CIA diameter was weak. The AAA population has abnormally dilated common iliac arteries. In this population, common iliac artery aneurysms should be defined as those greater than 2.4 cm diameter. 20% of CIAs in patients with AAA are aneurysmal according to this definition.

  16. Gallium Arsenide detectors for X-ray and electron (beta particle) spectroscopy

    NASA Astrophysics Data System (ADS)

    Lioliou, G.; Barnett, A. M.

    2016-11-01

    Results characterizing GaAs p+-i-n+ mesa photodiodes with a 10 μm i layer for their spectral response under illumination of X-rays and beta particles are presented. A total of 22 devices, having diameters of 200 μm and 400 μm, were electrically characterized at room temperature. All devices showed comparable characteristics with a measured leakage current ranging from 4 nA/cm2 to 67 nA/cm2 at an internal electric field of 50 kV/cm. Their unintentionally doped i layers were found to be almost fully depleted at 0 V due to their low doping density. 55Fe X-ray spectra were obtained using one 200 μm diameter device and one 400 μm diameter device. The best energy resolution (FWHM at 5.9 keV) achieved was 625 eV using the 200 μm and 740 eV using the 400 μm diameter device, respectively. Noise analysis showed that the limiting factor for the energy resolution of the system was the dielectric noise; if this noise was eliminated by better design of the front end of the readout electronics, the achievable resolution would be 250 eV. 63Ni beta particle spectra obtained using the 200 μm diameter device showed the potential utility of these detectors for electron and beta particle detection. The development of semiconductor electron spectrometers is important particularly for space plasma physics; such devices may find use in future space missions to study the plasma environment of Jupiter and Europa and the predicted electron impact excitation of water vapor plumes from Europa hypothesized as a result of recent Hubble Space Telescope (HST) UV observations.

  17. Analysis of an adjustable field permanent magnet solenoid

    NASA Astrophysics Data System (ADS)

    Burris-Mog, T.; Burns, M.; Chavez, A.; Schillig, J.

    2017-10-01

    A feasibility study has been performed on an adjustable-field permanent magnet (PM) solenoid concept in an effort to reduce the dependence that linear induction accelerators have on large direct current power supplies and associated cooling systems. The concept relies on the ability to reorient sections of the PMs and thus redirect their magnetization vector to either add to or subtract from the on-axis magnetic field. This study concentrated on the focal strengths and emittance growths for two different designs, both with 19 cm bore diameters extending 53 cm in length. The first design is expected to produce peak magnetic fields ranging from 260 to 900 G (0.026 to 0.09 T) while the second design is expected to produce peak magnetic fields ranging from 580 to 2100 G (0.058 to 0.21 T). Although the PM configuration generates a variable magnetic field and the torques acting on PMs within the assembly appear manageable, the emittance growth is larger than that of a DC solenoid.

  18. Infrared spectrometer for Voyager

    NASA Technical Reports Server (NTRS)

    Hanel, R.; Crosby, D.; Herath, L.; Vanous, D.; Collins, D.; Creswick, H.; Harris, C.; Rhodes, M.

    1980-01-01

    The Voyager IR investigation is described, which uses a Michelson interferometer in the 180-2500/cm range, and a single-channel radiometer for the visible and near-IR, sharing a 50-cm diameter telescope. Emphasis is placed on the differences between the Voyager and the previous designs, including reductions in the field of view and in the noise equivalent spectral radiance of the instrument. Attention is given to the optical layout, the electronics module, power supply placement, thermal control heaters and flash heaters, data reduction, and calibration. A sample spectrum of Jupiter is also discussed.

  19. DESIGN STUDY OF 20 T, 15 CM BORE HYBRID MAGNET WITH RADIATION RESISTANT INSERT FOR PION CAPTURE.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    WEGGEL,R.J.; PEARSON,C.E.; KING,B.J.

    2001-06-18

    To capture pions the Neutrino Factory and Muon Collider Collaboration needs a field of {approx}20 T throughout a cylinder 15 cm in diameter and 60 cm long, falling over the next 18 m to 1.25 T, while the bore increases fourfold inversely as the square root of the field. We propose a hybrid system. The superconducting magnet is of world-class parameters, storing 600 MJ and including a coil to generate 14 T in a bore of {approx}1.3 m. Intercoil forces reach 100 MN. For high radiation resistance, the insert coil is of mineral-insulated hollow conductor, as developed for the Japanmore » Hadron Facility; it would require 12 MW to generate 6 T. Needed is research to develop a more efficient hollow conductor or radiation-resistant insulator for a Bitter coil.« less

  20. Synthesis and magnetic properties of nickel nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Jaiveer, E-mail: jaiveer24singh@gmail.com, E-mail: netramkaurav@yahoo.co.uk; Patel, Tarachand; Okram, Gunadhor S.

    2016-05-23

    Monodisperse nickel nanoparticles (Ni-NPs) were synthesized via a thermal decomposition process. The NPs were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). They were spherical with mean diameter of 4 nm. Zero field cooled (ZFC) and field cooled (FC) magnetization versus temperature data displayed interesting magnetic interactions. ZFC showed a peak at 4.49 K, indicating the super paramagnetic behavior. Magnetic anisotropic constant was estimated to be 4.62×10{sup 5} erg/cm{sup 3} and coercive field was 168 Oe at 3 K.

  1. Propagation of Some Local Fig (Ficus carica L.) Cultivars by Hardwood Cuttings under the Field Conditions in Tunisia

    PubMed Central

    Aljane, Fateh; Nahdi, Sabrine

    2014-01-01

    This research was carried out in Southeast of Tunisia in 2009 and 2010, in order to study the propagation of six (Ficus carica L.) cultivars by using hardwood cuttings under the field conditions. The effect of the cultivars and the type of buds, shoots age, shoots length, and shoots diameter were recorded. Ten cuttings per cultivar and/or cutting types with three replications were planted in rooting unit. Percentage of root emergence and six morphological parameters of young fig plants were measured. Results showed that the responses of cuttings as fig nursery plants presented a high variability among the five cultivars. The most widely varied characters were % root emergence (RE) and cumulative growth of young plant (CG). The first one ranged from 10% to 90%, the second varied within 32 and 112 cm. Concerning the ‘‘BITHER” cultivar, 6 cutting types with different age, length, and diameter were evaluated. Results showed a great variation in % of root emergence (0–90%), length of nursery plant (3–77 cm), and number of roots/nursery plant (0–29 roots). The present research showed that the hardwood cutting of local fig cultivars can be propagated under field conditions in Southeast of Tunisia. PMID:27437458

  2. Observations of flux motion in niobium films. [study of magnetic field trapped in superconducting coatings of gyroscope rotor

    NASA Technical Reports Server (NTRS)

    Xiao, Y. M.; Keiser, G. M.

    1991-01-01

    A magnetic field trapped in a superconducting sphere was examined at temperatures from 4.6 K to 5.5 K. The sphere was the rotor of a precision gyroscope and was made of fused quartz and coated with a sputtered niobium film. The rotor diameter was 3.8 cm. The film thickness was 2.5 microns. The tests were carried out at an ambient magnetic field of about 1 mG. Unexpected instability of the trapped field was observed. The experimental results and possible explanations are presented.

  3. Ultrafast electron radiography of magnetic fields in high-intensity laser-solid interactions.

    PubMed

    Schumaker, W; Nakanii, N; McGuffey, C; Zulick, C; Chyvkov, V; Dollar, F; Habara, H; Kalintchenko, G; Maksimchuk, A; Tanaka, K A; Thomas, A G R; Yanovsky, V; Krushelnick, K

    2013-01-04

    Using electron bunches generated by laser wakefield acceleration as a probe, the temporal evolution of magnetic fields generated by a 4 × 10(19) W/cm(2) ultrashort (30 fs) laser pulse focused on solid density targets is studied experimentally. Magnetic field strengths of order B(0) ~ 10(4) T are observed expanding at close to the speed of light from the interaction point of a high-contrast laser pulse with a 10-μm-thick aluminum foil to a maximum diameter of ~1 mm. The field dynamics are shown to agree with particle-in-cell simulations.

  4. The prevalence of cervical myelopathy among subjects with narrow cervical spinal canal in a population-based magnetic resonance imaging study: the Wakayama Spine Study.

    PubMed

    Nagata, Keiji; Yoshimura, Noriko; Hashizume, Hiroshi; Muraki, Shigeyuki; Ishimoto, Yuyu; Yamada, Hiroshi; Takiguchi, Noboru; Nakagawa, Yukihiro; Minamide, Akihito; Oka, Hiroyuki; Kawaguchi, Hiroshi; Nakamura, Kozo; Akune, Toru; Yoshida, Munehito

    2014-12-01

    A narrow cervical spinal canal (CSC) is a well-known risk factor for cervical myelopathy (CM). However, no epidemiologic data of the CSC based on a population-based cohort are available. The purpose of the study was to investigate the age-related differences in CSC diameters on plain radiographs and to examine the associated magnetic resonance imaging (MRI) abnormalities including cervical cord compression and increased signal intensity (ISI) as well as the clinical CM with the narrow CSC. This was a cross-sectional study. Data were obtained from the baseline survey of the Wakayama Spine Study that was performed from 2008 to 2010 in a western part of Japan. Finally, a total of 959 subjects (319 men and 640 women; mean age, 66.4 years) were included. The outcome measures included in the study were the CSC diameter at C5 level on plain radiographs, cervical cord compression and ISI on sagittal T2-weighted MRI, and physical signs related to CM (eg, the Hoffmann reflex, hyperreflexia of the patellar tendon, the Babinski reflex, sensory and motor function, and bowel/bladder symptoms). The age-related differences of CSC diameters in men and women were investigated by descriptive statistics. The prevalence of MRI abnormalities and clinical CM was compared among the groups divided by the CSC diameter (less than 13, 13-15, and 15 mm or more). In addition, a logistic regression analysis was performed to determine the association of the CSC diameter with cervical cord compression/clinical CM after overall adjustment for age, sex, and body mass index. The CSC diameter was narrower with increasing age in both men and women. The prevalence of cervical cord compression, ISI, and the clinical CM was significantly higher in the narrower CSC group. The prevalence of cervical cord compression, ISI, and CM among subjects with CSC diameter less than 13 mm was 38.0%, 5.4%, and 10.1%, respectively. In the logistic model, the CSC diameter was a significant predictive factor for the clinical CM (p<.0001). This study firstly confirmed the age-related differences in CSC diameters and the significant association of the narrow CSC diameter with CM in a population-based cohort. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Development of a long-slot microwave plasma source.

    PubMed

    Kuwata, Y; Kasuya, T; Miyamoto, N; Wada, M

    2016-02-01

    A 20 cm long 10 cm wide microwave plasma source was realized by inserting two 20 cm long 1.5 mm diameter rod antennas into the plasma. Plasma luminous distributions around the antennas were changed by magnetic field arrangement created by permanent magnets attached to the source. The distributions appeared homogeneous in one direction along the antenna when the spacing between the antenna and the source wall was 7.5 mm for the input microwave frequency of 2.45 GHz. Plasma density and temperature at a plane 20 cm downstream from the microwave shield were measured by a Langmuir probe array at 150 W microwave power input. The measured electron density and temperature varied over space from 3.0 × 10(9) cm(-3) to 5.8 × 10(9) cm(-3), and from 1.1 eV to 2.1 eV, respectively.

  6. Soil Water Effects on Blue Oak Seedling Establishment

    Treesearch

    Doria R. Gordon; Kevin J. Rice; Jeffrey M. Welker

    1991-01-01

    A field experiment was conducted to examine the effects of soil water availability on blue oak (Quercus douglasii) seedling establishment. Acorns were planted either into cleared plots of 0, 10, 20, or 40 cm diameter. The cleared plots were located in two grazed and one ungrazed site. Half of the plots received drip irrigation in a split plot design...

  7. Development of an inconel self powered neutron detector for in-core reactor monitoring

    NASA Astrophysics Data System (ADS)

    Alex, M.; Ghodgaonkar, M. D.

    2007-04-01

    The paper describes the development and testing of an Inconel600 (2 mm diameter×21 cm long) self-powered neutron detector for in-core neutron monitoring. The detector has 3.5 mm overall diameter and 22 cm length and is integrally coupled to a 12 m long mineral insulated cable. The performance of the detector was compared with cobalt and platinum detectors of similar dimensions. Gamma sensitivity measurements performed at the 60Co irradiation facility in 14 MR/h gamma field showed values of -4.4×10 -18 A/R/h/cm (-9.3×10 -24 A/ γ/cm 2-s/cm), -5.2×10 -18 A/R/h/cm (-1.133×10 -23 A/ γ/cm 2-s/cm) and 34×10 -18 A/R/h/cm (7.14×10 -23 A/ γ/cm 2-s/cm) for the Inconel, Co and Pt detectors, respectively. The detectors together with a miniature gamma ion chamber and fission chamber were tested in the in-core Apsara Swimming Pool type reactor. The ion chambers were used to estimate the neutron and gamma fields. With an effective neutron cross-section of 4b, the Inconel detector has a total sensitivity of 6×10 -23 A/nv/cm while the corresponding sensitivities for the platinum and cobalt detectors were 1.69×10 -22 and 2.64×10 -22 A/nv/cm. The linearity of the detector responses at power levels ranging from 100 to 200 kW was within ±5%. The response of the detectors to reactor scram showed that the prompt response of the Inconel detector was 0.95 while it was 0.7 and 0.95 for the platinum and cobalt self-powered detectors, respectively. The detector was also installed in the horizontal flux unit of 540 MW Pressurised Heavy Water Reactor (PHWR). The neutron flux at the detector location was calculated by Triveni code. The detector response was measured from 0.02% to 0.07% of full power and showed good correlation between power level and detector signals. Long-term tests and the dynamic response of the detector to shut down in PHWR are in progress.

  8. Development of a towing tank PIV system and a wake survey of a marine current turbine under steady conditions

    NASA Astrophysics Data System (ADS)

    Lust, Ethan; Luznik, Luksa; Flack, Karen

    2015-11-01

    A submersible particle image velocimetry (PIV) system was designed and built at the U.S. Naval Academy. The system was used to study the wake of a scale-independent horizontal axis marine current turbine. The turbine is a 1/25th scale model of the U.S. National Renewable Energy Laboratory's Reference Model 1 (RM1) tidal turbine. It is a two-bladed turbine measuring 0.8 m in diameter and featuring a NACA 63-618 airfoil cross-section. The wake survey was conducted over an area extending 0.25D forward of the turbine tip path to 2.0D aft to a depth of 1.0D beneath the turbine output shaft in the streamwise plane. Each field of view was approximately 30 cm by 30 cm, and each overlapped the adjacent fields of view by 5 cm. The entire flow field was then reconstructed by registering the resultant vector fields together into a single field of investigation. Results include the field of investigation from a representative case, for the mean velocity field averaged over approximately 1,000 realizations, and turbulent statistics including turbulence intensities, Reynolds shear stresses, and turbulent kinetic energy. This research was funded by the Office of Naval Research.

  9. Digital terrestrial photogrammetric methods for tree stem analysis

    Treesearch

    Neil A. Clark; Randolph H. Wynne; Daniel L. Schmoldt; Matt Winn

    2000-01-01

    A digital camera was used to measure diameters at various heights along the stem on 20 red oak trees. Diameter at breast height ranged from 16 to over 60 cm, and height to a 10-cm top ranged from 12 to 20 m. The chi-square maximum anticipated error of geometric mean diameter estimates at the 95 percent confidence level was within ±4 cm for all heights when...

  10. A study on the reproducibility and spatial uniformity of N-isopropylacrylamide polymer gel dosimetry using a commercial 10X fast optical-computed tomography scanner

    NASA Astrophysics Data System (ADS)

    Chang, Y. J.; Lin, J. Q.; Hsieh, B. T.; Chen, C. H.

    2013-06-01

    This study investigated the reproducibility and spatial uniformity of N-isopropylacrylamide (NIPAM) polymer gel as well as the reproducibility of a NIPAM polymer gel dosimeter. A commercial 10X fast optical computed tomography scanner (OCTOPUS-10X, MGS Research, Inc., Madison, CT, USA) was used as the readout tool of the NIPAM polymer gel dosimeter. A cylindrical NIPAM gel phantom measuring 10 cm (diameter) by 10 cm (height) by 3 mm (thickness) was irradiated by the four-field box treatment with a field size of 3 cm × 3 cm. The dose profiles were found to be consistent at the depths of 2.0 cm to 5.0 cm for two independent gel phantom batches, and the average uncertainty was less than 2%. The gamma pass rates were calculated to be between 94% and 95% at depths of 40 mm for two independent gel phantom batches using 4% dose difference and 4 mm distance-to-agreement criterion. The NIPAM polymer gel dosimeter was highly reproducible and spatially uniform. The results highlighted the potential of the NIPAM polymer gel dosimeter in radiotherapy.

  11. J-PET: A New Technology for the Whole-body PET Imaging

    NASA Astrophysics Data System (ADS)

    Niedźwiecki, S.; Białas, P.; Curceanu, C.; Czerwiński, E.; Dulski, K.; Gajos, A.; Głowacz, B.; Gorgol, M.; Hiesmayr, B. C.; Jasińska, B.; Kapłon, Ł.; Kisielewska-Kamińska, D.; Korcyl, G.; Kowalski, P.; Kozik, T.; Krawczyk, N.; Krzemień, W.; Kubicz, E.; Mohammed, M.; Pawlik-Niedźwiecka, M.; Pałka, M.; Raczyński, L.; Rudy, Z.; Sharma, N. G.; Sharma, S.; Shopa, R. Y.; Silarski, M.; Skurzok, M.; Wieczorek, A.; Wiślicki, W.; Zgardzińska, B.; Zieliński, M.; Moskal, P.

    The Jagiellonian Positron Emission Tomograph (J-PET) is the first PET built from plastic scintillators. J-PET prototype consists of 192 detection modules arranged axially in three layers forming a cylindrical diagnostic chamber with the inner diameter of 85 cm and the axial field-of-view of 50 cm. An axial arrangement of long strips of plastic scintillators, their small light attenuation, superior timing properties, and relative ease of the increase of the axial field-of-view opens promising perspectives for the cost effective construction of the whole-body PET scanner, as well as construction of MR and CT compatible PET inserts. Present status of the development of the J-PET tomograph will be presented and discussed.

  12. Lambda Probe Measurements of Laboratory Spheromaks

    NASA Astrophysics Data System (ADS)

    Jorne, E.; Bellan, P. M.; Hsu, S. C.; Moynihan, C.

    2003-10-01

    A combined current and magnetic probe (lambda probe) has been constructed and is being tested for the purpose of investigating the behavior of spheromaks formed by the Caltech planar spheromak gun. The probe consists of a 1.5cm diameter, 52 turn Rogowski coil and a single loop magnetic coil, housed in a ceramic shell attached to a 95cm long hollow, steel shaft. A high voltage power supply was used to test the probe's ability to measure pulsed currents with submicrosecond rise times. A calibrated current pulse was provided by a 1μF capacitor discharged by a krytron switch to a low inductance circuit. Magnetic calibration was obtained by using the capacitor bank to power a 16cm diameter Helmholtz coil. Both magnetic and current calibration were in good agreement with estimates based on geometry. An existing steel shaft will be replaced by a ceramic shaft in order to minimize undesired effects on the plasma by a conductor. Once sealed with epoxy, the probe will be ready for insertion into the vacuum chamber and used to measure the magnetic field and parallel current during spheromak formation.

  13. Thermoluminescence measurements of neutron dose around a medical linac.

    PubMed

    Barquero, R; Méndez, R; Iñiguez, M P; Vega, H R; Voytchev, M

    2002-01-01

    The photoncutron ambient dose around a 18 MV medical electron lineal accelerator has been measured with LiF:Mg,Ti chips of 3 x 3 x 1 mm inside moderating spheres. During the measurements a water phantom was irradiated in a field of 40 x 40 cm2. Two methods have been considered for comparison. In the first, a TLD-600/TLD-700 pair at the centre of a 25 cm diameter paraffine sphere was used, with the system behaving as a rem meter. In the second method, TLD-600/TLD-700 pairs, bare and at the centre of 7.6, 12.7, 20.3, 25.4, and 30.5 cm diameter polyethylene Bonner spheres were used to obtain the neutron spectrum. This was unfolded using the BUNKIUT code with the SPUNIT algorithm and the UTA4 and ARKI response functions. The neutron dose was followed by multiplying the unfolded neutron spectrum by the ambient dose equivalent to neutron fluence conversion factors. Both methods result in 0.5 mSv x Gy(-1) m away from the isocentre.

  14. Using narrow beam profiles to quantify focal spot size, for accurate Monte Carlo simulations of SRS/SRT systems

    NASA Astrophysics Data System (ADS)

    Kairn, T.; Crowe, S. B.; Charles, P. H.; Trapp, J. V.

    2014-03-01

    This study investigates the variation of photon field penumbra shape with initial electron beam diameter, for very narrow beams. A Varian Millenium MLC (Varian Medical Systems, Palo Alto, USA) and a Brainlab m3 microMLC (Brainlab AB. Feldkirchen, Germany) were used, with one Varian iX linear accelerator, to produce fields that were (nominally) 0.20 cm across. Dose profiles for these fields were measured using radiochromic film and compared with the results of simulations completed using BEAMnrc and DOSXYZnrc, where the initial electron beam was set to FWHM = 0.02, 0.10, 0.12, 0.15, 0.20 and 0.50 cm. Increasing the electron-beam FWHM produced increasing occlusion of the photon source by the closely spaced collimator leaves and resulted in blurring of the simulated profile widths from 0.24 to 0.58 cm, for the MLC, from 0.11 to 0.40 cm, for the microMLC. Comparison with measurement data suggested that the electron spot size in the clinical linear accelerator was between FWHM = 0.10 and 0.15 cm, encompassing the result of our previous output-factor based work, which identified a FWHM of 0.12 cm. Investigation of narrow-beam penumbra variation has been found to be a useful procedure, with results varying noticeably with linear accelerator spot size and allowing FWHM estimates obtained using other methods to be verified.

  15. Compression of an Applied Bz field by a z-pinch onto a Tamped DT Fiber for Inertial Confinement Fusion

    NASA Astrophysics Data System (ADS)

    Nash, Tom

    2009-11-01

    Simulations of a z-pinch compressing an applied 100 kG Bz field onto an on-axis DT fiber tamped with beryllium show the field reaching over 100 MG in the tamp, sufficient to confine DT alpha particles and to form a thermal barrier. The barrier allows the DT plasma to burn at a rho*r value as low as 0.045 g/cm^2, and at temperatures over 50 keV for a 63 MA drive current. Driving currents between 21 and 63 MA are considered with cryogenic DT fiber diameters between 600 μm and 1.6 mm. Pinch implosion times are 120 ns with a peak implosion velocity of 35 cm/μs. 1D simulations are of a foil pinch, but for improved stability we propose a nested wire-array. Simulated fusion yields with this system scale as the sixth power of the current, with burn fractions scaling as the fourth power of the current. At 63 MA the simulated yield is 521 MJ from 4.2 mg/cm of DT with a 37% burn fraction at a rho*r of only 0.18 g/cm^2.

  16. Characteristics of High-Density Helicon Plasma Sources and Their Application to Electrodeless Electric Propulsion

    NASA Astrophysics Data System (ADS)

    Shinohara, S.; Nishida, H.; Nakamura, T.; Mishio, A.; Ishii, H.; Teshigahara, N.; Fujitsuka, H.; Waseda, S.; Tanikawa, T.; Hada, T.; Otsuka, F.; Funaki, I.; Matsuoka, T.; Shamrai, K.; Rudenko, T.

    2012-10-01

    High-density but low temperature helicon plasmas have been proved to be very useful for fundamental research as well as for various applications. First, we introduce our very large helicon sources [1] with a diameter up to 74 cm. For the industrial and propulsion applications, we have reduced the aspect ratio (axial length-to-diameter) down to 0.075, and examined the discharge performance and wave characteristics. Then, we discuss our small helicon sources [1] for developing new electrodeless acceleration schemes. Some experimental and theoretical results [2] by applying the rotating magnetic (or electric) fields to the helicon plasma under the divergent magnetic field will be presented, along with other propulsion schemes. In addition, an initial plasma production experiment with very small diameter will be described.[4pt] [1] S. Shinohara et al., Jpn. J. Appl. Phys. 35 (1996) 4503; Rev. Sci. Instrum. 75 (2004) 1941; Phys. Plasmas 16 (2009) 057104.[0pt] [2] S. Shinohara et al., 32th Int. Electric Propul. Conf., IEPC-2011-056, 2011.

  17. Field emission from optimized structure of carbon nanotube field emitter array

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chouhan, V., E-mail: vchouhan@post.kek.jp, E-mail: vijaychouhan84@gmail.com; Noguchi, T.; Kato, S.

    The authors report a detail study on the emission properties of field emitter array (FEA) of micro-circular emitters of multiwall carbon nanotubes (CNTs). The FEAs were fabricated on patterned substrates prepared with an array of circular titanium (Ti) islands on titanium nitride coated tantalum substrates. CNTs were rooted into these Ti islands to prepare an array of circular emitters. The circular emitters were prepared in different diameters and pitches in order to optimize their structure for acquiring a high emission current. The pitch was varied from 0 to 600 μm, while a diameter of circular emitters was kept constant to bemore » 50 μm in order to optimize a pitch. For diameter optimization, a diameter was changed from 50 to 200 μm while keeping a constant edge-to-edge distance of 150 μm between the circular emitters. The FEA with a diameter of 50 μm and a pitch of 120 μm was found to be the best to achieve an emission current of 47 mA corresponding to an effective current density of 30.5 A/cm{sup 2} at 7 V/μm. The excellent emission current was attributed to good quality of CNT rooting into the substrate and optimized FEA structure, which provided a high electric field on a whole circular emitter of 50 μm and the best combination of the strong edge effect and CNT coverage. The experimental results were confirmed with computer simulation.« less

  18. Anatomic characteristics of ruptured abdominal aortic aneurysm on conventional CT scans: Implications for rupture risk.

    PubMed

    Fillinger, Mark F; Racusin, Jessica; Baker, Robert K; Cronenwett, Jack L; Teutelink, Arno; Schermerhorn, Marc L; Zwolak, Robert M; Powell, Richard J; Walsh, Daniel B; Rzucidlo, Eva M

    2004-06-01

    The purpose of this study was to analyze anatomic characteristics of patients with ruptured abdominal aortic aneurysms (AAAs), with conventional two-dimensional computed tomography (CT), including comparison with control subjects matched for age, gender, and size. Records were reviewed to identify all CT scans obtained at Dartmouth-Hitchcock Medical Center or referring hospitals before emergency AAA repair performed because of rupture or acute severe pain (RUP group). CT scans obtained before elective AAA repair (ELEC group) were reviewed for age and gender match with patients in the RUP group. More than 40 variables were measured on each CT scan. Aneurysm diameter matching was achieved by consecutively deleting the largest RUP scan and the smallest ELEC scan to prevent bias. CT scans were analyzed for 259 patients with AAAs: 122 RUP and 137 ELEC. Patients were well matched for age, gender, and other demographic variables or risk factors. Maximum AAA diameter was significantly different in comparisons of all patients (RUP, 6.5 +/- 2 cm vs ELEC, 5.6 +/- 1 cm; P <.0001), and mean diameter of ruptured AAAs was 5 mm smaller in female patients (6.1 +/- 2 cm vs 6.6 +/- 2 cm; P =.007). Two hundred patients were matched for diameter, gender, and age (100 from each group; maximum AAA diameter, 6.0 +/- 1 cm vs 6.0 +/- 1 cm). Analysis of diameter-matched AAAs indicated that most variables were statistically similar in the two groups, including infrarenal neck length (17 +/- 1 mm vs 19 +/- 1 mm; P =.3), maximum thrombus thickness (25 +/- 1 mm vs 23 +/- 1 mm, P =.4), and indices of body habitus, such as [(maximum AAA diameter)/(normal suprarenal aorta diameter)] or [(maximum AAA diameter)/(L3 transverse diameter)]. Multivariate analysis controlling for gender indicated that the most significant variables for rupture were aortic tortuosity (odds ratio [OR] 3.3, indicating greater risk with no or mild tortuosity), diameter asymmetry (OR, 3.2 for a 1-cm difference in major-minor axis), and current smoking (OR, 2.7, with the greater risk in current smokers). When matched for age, gender, and diameter, ruptured AAAs tend to be less tortuous, yet have greater cross-sectional diameter asymmetry. On conventional two-dimensional CT axial sections, it appears that when diameter asymmetry is associated with low aortic tortuosity, the larger diameter on axial sections more accurately reflects rupture risk, and when diameter asymmetry is associated with moderate or severe aortic tortuosity, the smaller diameter on axial sections more accurately reflects rupture risk. Current smoking is significantly associated with rupture, even when controlling for gender and AAA anatomy.

  19. Analysis of an Adjustable Field Permanent Magnet Solenoid

    DOE PAGES

    Burris-Mog, Trevor John; Burns, Michael James; Chavez, Mark Anthony; ...

    2017-07-12

    A feasibility study has been performed on an adjustable-field permanent magnet (PM) solenoid concept in an effort to reduce the dependence that linear induction accelerators have on large direct current power supplies and associated cooling systems. The concept relies on the ability to reorient sections of the PMs and thus redirect their magnetization vector to either add to or subtract from the on-axis magnetic field. This study concentrated on the focal strengths and emittance growths for two different designs, both with 19 cm bore diameters extending 53 cm in length. The first design is expected to produce peak magnetic fieldsmore » ranging from 260 to 900 G (0.026 to 0.09 T) while the second design is expected to produce peak magnetic fields ranging from 580 to 2100 G (0.058 to 0.21 T). Finally, although the PM configuration generates a variable magnetic field and the torques acting on PMs within the assembly appear manageable, the emittance growth is larger than that of a DC solenoid.« less

  20. Characteristics of ring-cusp discharge chambers

    NASA Technical Reports Server (NTRS)

    Matossian, J. N.; Beattie, J. R.

    1991-01-01

    Measurements have been obtained for the operating characteristics of a 30 cm diameter ring-cusp ion thruster (RCIT), quantitatively comparing its performance parameters to those of a divergent-field J-series cluster of the same size. The high level of performance established for the RCIT is due to its maintenance of both a higher primary-electron population and Maxwellian-electron temperature, as the beam-ion production cost is reduced to its baseline value. Ion losses to the discharge-chamber walls can be reduced by an applied electrostatic field.

  1. High-performance field emission device utilizing vertically aligned carbon nanotubes-based pillar architectures

    NASA Astrophysics Data System (ADS)

    Gupta, Bipin Kumar; Kedawat, Garima; Gangwar, Amit Kumar; Nagpal, Kanika; Kashyap, Pradeep Kumar; Srivastava, Shubhda; Singh, Satbir; Kumar, Pawan; Suryawanshi, Sachin R.; Seo, Deok Min; Tripathi, Prashant; More, Mahendra A.; Srivastava, O. N.; Hahm, Myung Gwan; Late, Dattatray J.

    2018-01-01

    The vertical aligned carbon nanotubes (CNTs)-based pillar architectures were created on laminated silicon oxide/silicon (SiO2/Si) wafer substrate at 775 °C by using water-assisted chemical vapor deposition under low pressure process condition. The lamination was carried out by aluminum (Al, 10.0 nm thickness) as a barrier layer and iron (Fe, 1.5 nm thickness) as a catalyst precursor layer sequentially on a silicon wafer substrate. Scanning electron microscope (SEM) images show that synthesized CNTs are vertically aligned and uniformly distributed with a high density. The CNTs have approximately 2-30 walls with an inner diameter of 3-8 nm. Raman spectrum analysis shows G-band at 1580 cm-1 and D-band at 1340 cm-1. The G-band is higher than D-band, which indicates that CNTs are highly graphitized. The field emission analysis of the CNTs revealed high field emission current density (4mA/cm2 at 1.2V/μm), low turn-on field (0.6 V/μm) and field enhancement factor (6917) with better stability and longer lifetime. Emitter morphology resulting in improved promising field emission performances, which is a crucial factor for the fabrication of pillared shaped vertical aligned CNTs bundles as practical electron sources.

  2. Characterization of the SAR-distribution of the Sigma-60 applicator for regional hyperthermia using a Schottky diode sheet.

    PubMed

    Van Rhoon, G C; Van Der Heuvel, D J; Ameziane, A; Rietveld, P J M; Volenec, K; Van Der Zee, J

    2003-01-01

    Characterization of the performance of an hyperthermia applicator by phantom experiments is an essential aspect of quality assurance in hyperthermia. The objective of this study was to quantitatively characterize the energy distribution of the Sigma-60 applicator of the BSD2000 phased array system operated within the normal frequency range of 70-120 MHz. Additionally, the accuracy of the flexible Schottky diode sheet to measure E-field distributions was assessed. The flexible Schottky diode sheet (SDS) consists of 64 diodes mounted on a flexible 125 microm thick polyester foil. The diodes are connected through high resistive wires to the electronic readout system. With the SDS E-field distributions were measured with a resolution of 2.5 x 2.5 cm in a cylindrical phantom, diameter of 26 cm and filled with saline water (2 g/l). The phantom was positioned symmetrically in the Sigma-60 applicator. RF-power was applied to the 4-channel applicator with increasing steps from 25W to a total output of 400 W. The complete system to measure the E-field distribution worked fine and reliably within the Sigma-60 applicator. The E-field distributions measured showed that the longitudinal length of the E-field distribution is more or less constant, e.g. 21-19 cm, over the frequency range of 70-120 MHz, respectively. As expected, the radial E-field distributions show a better focusing towards the centre of the phantom for higher frequencies, e.g. from 15.3-8.7 cm diameter for 70-120 MHz, respectively. The focusing target could be moved accurately from the left to the right side of the phantom. Further it was found that the sensitivity variation of nine diodes located at the centre of the phantom was very small, e.g. < 3% over the whole frequency range. The SAR distributions of the Sigma-60 applicator are in good agreement with theoretically expected values. The flexible Schottky diode sheet proves to be an excellent tool to make accurate, quantitative measurements of E-field distributions at low (25 W) and medium (400 W) power levels. An important feature of the SDS is that it enables one to significantly improve quantitative quality assurance procedures and to start quantitative comparisons of the performance of the different deep hyperthermia systems used by the various hyperthermia groups.

  3. SU-F-T-75: Dosimetry Considerations in the Use of Hanging-Eye Block for Lesions of the Conjunctiva

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grelewicz, Z; Lee, B; Cutright, D

    Purpose: Superficial lesions in the conjunctiva are frequently treated with en face electrons, using a hanging block to spare dose to the lens of the eye. Dose to the tumor and lens depend on the design and setup of the block and supporting apparatus. We performed in phantom measurements in order to characterize the dose sparing effects of the block as well as the under-dosing effect under the supporting apparatus for 6 MeV treatment. Methods: The commercial hanging block studied uses a 1.2 cm diameter tungsten cylinder supported by a 3 mm diameter acrylic rod. Point dose measurements under themore » hanging block, under an unblocked part of the field, and under the acrylic rod were performed using MOSFET detectors. In addition, EBT3 film was used for both PDD and profile measurements at a depth in phantom of 3 mm for both 105 and 103 cm SSD. Results: MOSFET measurements reported a dose reduction of 95% under the tungsten block when using an SSD of 103 cm, and 86% when using an SSD of 105 cm at a depth in phantom of 3 mm. Film measurements showed that the area under the acrylic rod may be under-dosed by as much as 30% when using 103 SSD. MOSFET measurements confirmed that when using an SSD of 103 cm, the area under the acrylic rod is under-dosed by up to 30% at 3mm depth, compared to the unblocked part of the field. Conclusion: The effectiveness of the commercial hanging block apparatus depends on setup, with 95% lens sparing possible with an SSD of 103 cm. This short SSD is necessary for sharp penumbra. At this SSD, substantial under-dosing under the acrylic support rod is possible. This must be mitigated with either feathering, or using an alternative method of support for the tungsten block.« less

  4. Magnetic levitation of condensed hydrogen

    NASA Technical Reports Server (NTRS)

    Paine, C. G.; Seidel, G. M.

    1991-01-01

    Liquid and solid molecular hydrogen has been levitated using a pair of small superconducting solenoids. The hydrogen samples, up to 3 mm in dimension, were trapped in a magnetic potential having either a discrete minimum or a minimum in the form of a ring 1 cm in diameter. The hydrogen could be moved about in the magnetic trap by applying an electric field.

  5. Inert gas thrusters

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.

    1976-01-01

    Inert gases are of interest as possible alternatives to the usual electric thruster propellants of mercury and cesium. The multipole discharge chamber investigated was shown capable of low discharge chamber losses and flat ion beam profiles with a minimum of optimization. Minimum discharge losses were 200 to 250 eV/ion for xenon and 300 to 350 eV/ion for argon, while flatness parameters in the plane of the accelerator grid were 0.85 to 0.95. The design used employs low magnetic field strengths, which permits the use of sheet-metal parts. The corner problem of the discharge chamber was resolved with recessed corner anodes, which approximately equalized both the magnetic field above the anodes and the electron currents to these anodes. Argon hollow cathodes were investigated at currents up to about 5 amperes using internal thermionic emitters. Cathode chamber diameter optimized in the 1.0 to 2.5 cm range, while orifices diameter optimized in the 0.5 to 5 mm range. The use of a bias voltage for the internal emitter extended the operating range and facilitated starting. The masses of 15 and 30 cm flight type thrusters were estimated at about 4.2 and 10.8 kg.

  6. Automated test-site radiometer for vicarious calibration

    NASA Astrophysics Data System (ADS)

    Li, Xin; Yin, Ya-peng; Liu, En-chao; Zhang, Yan-na; Xun, Li-na; Wei, Wei; Zhang, Zhi-peng; Qiu, Gang-gang; Zhang, Quan; Zheng, Xiao-bing

    2014-11-01

    In order to realize unmanned vicarious calibration, Automated Test-site Radiometer (ATR) was developed for surface reflectance measurements. ATR samples the spectrum from 400nm-1600 nm with 8 interference filters coupled with silicon and InGaAs detectors. The field of view each channel is 10 ° with parallel optical axis. One SWIR channel lies in the center and the other seven VNIR channels are on the circle of 4.8cm diameters which guarantee each channel to view nearly the same section of ground. The optical head as a whole is temperature controlled utilizing a TE cooler for greater stability and lower noise. ATR is powered by a solar panel and transmit its data through a BDS (China's BeiDou Navigation Satellite System) terminator for long-term measurements without personnel in site. ATR deployed in Dunhuang test site with ground field about 30-cm-diameter area for multi-spectral reflectance measurements. Other instruments at the site include a Cimel sunphotometer and a diffuser-to-globe irradiance meter for atmosphere observations. The methodology for band-averaged reflectance retrieval and hyperspectral reflectance fitting process are described. Then the hyperspectral reflectance and atmospheric parameters are put into 6s code to predict TOA radiance which compare with MODIS radiance.

  7. The 15 cm diameter ion thruster research

    NASA Technical Reports Server (NTRS)

    Wilbur, P. J.

    1974-01-01

    The startup reliability of a 15 cm diameter mercury bombardment ion thruster which employs a pulsed high voltage tickler electrode on the main and neutralizer cathodes is examined. Startup of the thruster is achieved 100% of the time on the main cathode and 98.7% of the time on the neutralizer cathode over a 3640 cycle test. The thruster was started from a 20 C initial condition and operated for an hour at a 600 mA beam current. An energy efficiency of 75% and a propellant utilization efficiency of 77% was achieved over the complete cycle. The effect of a single cusp magnetic field thruster length on its performance is discussed. Guidelines are formulated for the shaping of magnetic field lines in thrusters. A model describing double ion production in mercury discharges is presented. The production route is shown to occur through the single ionic ground state. Photographs of the interior of an operating-hollow cathode are presented. A cathode spot is shown to be present if the cathode is free of low work-function surfaces. The spot is observed if a low work-function oxide coating is applied to the cathode insert. Results show that low work-function oxide coatings tend to migrate during thruster operation.

  8. Economics of ingot slicing with an internal diameter saw for low-cost solar cells

    NASA Technical Reports Server (NTRS)

    Daud, T.; Liu, J. K.; Fiegl, G.

    1981-01-01

    Slicing of silicon ingots using diamond impregnated internal diameter blade saws has been a standard technology of the semiconductor industry. This paper describes work on improvements to this technology for 10 cm diameter ingot slicing. Ingot rotation, dynamic blade edge control with feedback, mechanized blade dressing and development of thinner blades are the approaches tried. A comparison of the results for wafering with and without ingot rotation is also made. A sensitivity analysis of the major cost elements in wafering is performed for 10 cm diameter ingot and extended to the 15 cm diameter ingot case. Various parameter values such as machine cost, feed rate and consumable materials cost are identified both for single and multiple ingot slicing.

  9. Virtual Vents: A Microbathymetrical Survey of the Niua South Hydrothermal Field, NE Lau Basin, Tonga

    NASA Astrophysics Data System (ADS)

    Kwasnitschka, T.; Köser, K.; Duda, A.; Jamieson, J. W.; Boschen, R.; Gartman, A.; Hannington, M. D.; Funganitao, C.

    2016-12-01

    At a diameter of 200 m, the 1100 m deep Niua South hydrothermal field (NE Lau Basin) was studied in an interdisciplinary approach during the SOI funded Virtual Vents cruise in March of 2016. On the grounds of a previously generated 50 cm resolution AUV multi beam map, the projects backbone is formed by a fully color textured, 5 cm resolution photogrammetrical 3D model. Several hundred smaller and about 15 chimneys larger than 3 m were surveyed including their basal mounds and surrounding environment interconnecting to each other. This model was populated through exhaustive geological, biological and fluid sampling as well as continuous Eh measurements, forming the basis for highly detailed geological structural and biological studies resulting in 3D maps of the entire field. At a reasonable effort, such surveys form the basis for repetitive time series analysis and have the potential of a new standard in seafloor monitoring.

  10. End-compensated magnetostatic cavity for polarized 3He neutron spin filters.

    PubMed

    McIver, J W; Erwin, R; Chen, W C; Gentile, T R

    2009-06-01

    We have expanded upon the "Magic Box" concept, a coil driven magnetic parallel plate capacitor constructed out of mu-metal, by introducing compensation sections at the ends of the box that are tuned to limit end-effects similar to those of short solenoids. This ability has reduced the length of the magic box design without sacrificing any loss in field homogeneity, making the device far more applicable to the often space limited neutron beam line. The appeal of the design beyond affording longer polarized 3He lifetimes is that it provides a vertical guide field, which facilitates neutron spin transport for typical polarized beam experiments. We have constructed two end-compensated magic boxes of dimensions 28.4 x 40 x 15 cm3 (length x width x height) with measured, normalized volume-averaged transverse field gradients ranging from 3.3 x 10(-4) to 6.3 x 10(-4) cm(-1) for cell sizes ranging from 8.1 x 6.0 to 12.0 x 7.9 cm2 (diameter x length), respectively.

  11. Comparison of skin responses from macroscopic and microscopic UV challenges

    NASA Astrophysics Data System (ADS)

    Seo, InSeok; Bargo, Paulo R.; Chu, Melissa; Ruvolo, Eduardo; Kollias, Nikiforos

    2011-03-01

    The minimal erythema dose induced by solar-simulated radiation is a useful measure of UV sensitivity of skin. Most skin phototests have been conducted by projecting a flat field of UV radiation onto the skin in an area greater than 15 cm × 15 cm with an increment of radiation doses. In this study, we investigated the responses of human skin to solar-simulated radiation of different field sizes. Twelve human subjects of skin phototype I-IV were exposed to solar-simulated radiation (SSR) on their upper inner arm or on their lower back with a series of doses in increments of 20% in order to determine the threshold dose to induce a minimal perceptible erythema response (MED). Each dose was delivered with a liquid light guide (8 mm diameter on the back or 6 mm on the upper inner arm) and with quartz optical fibers of 200 μm diameter. The resulting skin responses were evaluated visually and investigated with a reflectance confocal microscope and imaging. The erythema response to the microscopic challenge was always diffuse with no clear boundaries extending to several times the exposed site diameter at doses greater than 2 MED. The skin returned to normal appearance from the microscopic challenge after two weeks of exposure while change in appearance for the larger areas persisted for several weeks to months. This new modality of testing provides the possibility to study skin at the microscopic level with a rapid recovery following challenge.

  12. Seven-core neodymium-doped phosphate all-solid photonic crystal fibers

    NASA Astrophysics Data System (ADS)

    Wang, Longfei; He, Dongbing; Feng, Suya; Yu, Chunlei; Hu, Lili; Chen, Danping

    2016-01-01

    We demonstrate a single-mode seven-core Nd-doped phosphate photonic crystal fiber with all-solid structure with an effective mode field diameter of 108 μm. The multicore fiber is first theoretically investigated through the finite-difference time-domain method. Then the in-phase mode is selected experimentally by a far-field mode-filtering method. The obtained in-phase mode has 7 mrad mode field divergences, which approximately agrees with the predicted 5.6 mrad in seven-core fiber. Output power of 15.5 W was extracted from a 25 cm fiber with slope efficiency of 57%.

  13. Improved optical efficiency of bulk laser amplifiers with femtosecond written waveguides

    NASA Astrophysics Data System (ADS)

    Bukharin, Mikhail A.; Lyashedko, Andrey; Skryabin, Nikolay N.; Khudyakov, Dmitriy V.; Vartapetov, Sergey K.

    2016-04-01

    In the paper we proposed improved technique of three-dimensional waveguides writing with direct femtosecond laser inscription technology. The technique allows, for the first time of our knowledge, production of waveguides with mode field diameter larger than 200 μm. This result broadens field of application of femtosecond writing technology into bulk laser schemes and creates an opportunity to develop novel amplifiers with increased efficiency. We proposed a novel architecture of laser amplifier that combines free-space propagation of signal beam with low divergence and propagation of pump irradiation inside femtosecond written waveguide with large mode field diameter due to total internal reflection effect. Such scheme provides constant tight confinement of pump irradiation over the full length of active laser element (3-10 cm). The novel amplifier architecture was investigated numerically and experimentally in Nd:phosphate glass. Waveguides with 200 μm mode field diameter were written with high frequency femtosecond oscillator. Proposed technique of three-dimensional waveguides writing based on decreasing and compensation of spherical aberration effect due to writing in heat cumulative regime and dynamic pulse energy adjustment at different depths of writing. It was shown, that written waveguides could increase optical efficiency of amplifier up to 4 times compared with corresponding usual free-space schemes. Novelty of the results consists in technique of femtosecond writing of waveguides with large mode field diameter. Actuality of the results consists in originally proposed architecture allows to improve up to 4 times optical efficiency of conventional bulk laser schemes and especially ultrafast pulse laser amplifiers.

  14. The effect of impeller type on silica sol formation in laboratory scale agitated tank

    NASA Astrophysics Data System (ADS)

    Nurtono, Tantular; Suprana, Yayang Ade; Latif, Abdul; Dewa, Restu Mulya; Machmudah, Siti; Widiyastuti, Winardi, Sugeng

    2016-02-01

    The multiphase polymerization reaction of the silica sol formation produced from silicic acid and potassium hydroxide solutions in laboratory scale agitated tank was studied. The reactor is equipped with four segmental baffle and top entering impeller. The inside diameter of reactor is 9 cm, the baffle width is 0.9 cm, and the impeller position is 3 cm from tank bottom. The diameter of standard six blades Rushton and three blades marine propeller impellers are 5 cm. The silicic acid solution was made from 0.2 volume fraction of water glass (sodium silicate) solution in which the sodium ion was exchanged by hydrogen ion from cation resin. The reactor initially filled with 286 ml silicic acid solution was operated in semi batch mode and the temperature was kept constant in 60 °C. The 3 ml/minute of 1 M potassium hydroxide solution was added into stirred tank and the solution was stirred. The impeller rotational speed was varied from 100 until 700 rpm. This titration was stopped if the solution in stirred tank had reached the pH of 10-The morphology of the silica particles in the silica sol product was analyzed by Scanning Electron Microscope (SEM). The size of silica particles in silica sol was measured based on the SEM image. The silica particle obtained in this research was amorphous particle and the shape was roughly cylinder. The flow field generated by different impeller gave significant effect on particle size and shape. The smallest geometric mean of length and diameter of particle (4.92 µm and 2.42 µm, respectively) was generated in reactor with marine propeller at 600 rpm. The reactor with Rushton impeller produced particle which the geometric mean of length and diameter of particle was 4.85 µm and 2.36 µm, respectively, at 150 rpm.

  15. The effect of impeller type on silica sol formation in laboratory scale agitated tank

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nurtono, Tantular; Suprana, Yayang Ade; Latif, Abdul

    2016-02-08

    The multiphase polymerization reaction of the silica sol formation produced from silicic acid and potassium hydroxide solutions in laboratory scale agitated tank was studied. The reactor is equipped with four segmental baffle and top entering impeller. The inside diameter of reactor is 9 cm, the baffle width is 0.9 cm, and the impeller position is 3 cm from tank bottom. The diameter of standard six blades Rushton and three blades marine propeller impellers are 5 cm. The silicic acid solution was made from 0.2 volume fraction of water glass (sodium silicate) solution in which the sodium ion was exchanged by hydrogen ion from cationmore » resin. The reactor initially filled with 286 ml silicic acid solution was operated in semi batch mode and the temperature was kept constant in 60 °C. The 3 ml/minute of 1 M potassium hydroxide solution was added into stirred tank and the solution was stirred. The impeller rotational speed was varied from 100 until 700 rpm. This titration was stopped if the solution in stirred tank had reached the pH of 10-The morphology of the silica particles in the silica sol product was analyzed by Scanning Electron Microscope (SEM). The size of silica particles in silica sol was measured based on the SEM image. The silica particle obtained in this research was amorphous particle and the shape was roughly cylinder. The flow field generated by different impeller gave significant effect on particle size and shape. The smallest geometric mean of length and diameter of particle (4.92 µm and 2.42 µm, respectively) was generated in reactor with marine propeller at 600 rpm. The reactor with Rushton impeller produced particle which the geometric mean of length and diameter of particle was 4.85 µm and 2.36 µm, respectively, at 150 rpm.« less

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hellfeld, Daniel; Barton, Paul; Gunter, Donald

    Gamma-ray imaging facilitates the efficient detection, characterization, and localization of compact radioactive sources in cluttered environments. Fieldable detector systems employing active planar coded apertures have demonstrated broad energy sensitivity via both coded aperture and Compton imaging modalities. But, planar configurations suffer from a limited field-of-view, especially in the coded aperture mode. In order to improve upon this limitation, we introduce a novel design by rearranging the detectors into an active coded spherical configuration, resulting in a 4pi isotropic field-of-view for both coded aperture and Compton imaging. This work focuses on the low- energy coded aperture modality and the optimization techniquesmore » used to determine the optimal number and configuration of 1 cm 3 CdZnTe coplanar grid detectors on a 14 cm diameter sphere with 192 available detector locations.« less

  17. CT dose equilibration and energy absorption in polyethylene cylinders with diameters from 6 to 55 cm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xinhua; Zhang, Da; Liu, Bob, E-mail: bliu7@mgh.harvard.edu

    2015-06-15

    Purpose: ICRU Report No. 87 Committee and AAPM Task Group 200 designed a three-sectional polyethylene phantom of 30 cm in diameter and 60 cm in length for evaluating the midpoint dose D{sub L}(0) and its rise-to-the-equilibrium curve H(L) = D{sub L}(0)/D{sub eq} from computed tomography (CT) scanning, where D{sub eq} is the equilibrium dose. To aid the use of the phantom in radiation dose assessment and to gain an understanding of dose equilibration and energy absorption in polyethylene, the authors evaluated the short (20 cm) to long (60 cm) phantom dose ratio with a polyethylene diameter of 30 cm, assessedmore » H(L) in polyethylene cylinders of 6–55 cm in diameters, and examined energy absorption in these cylinders. Methods: A GEANT4-based Monte Carlo program was used to simulate the single axial scans of polyethylene cylinders (diameters 6–55 cm and length 90 cm, as well as diameter 30 cm and lengths 20 and 60 cm) on a clinical CT scanner (Somatom Definition dual source CT, Siemens Healthcare). Axial dose distributions were computed on the phantom central and peripheral axes. An average dose over the central 23 or 100 mm region was evaluated for modeling dose measurement using a 0.6 cm{sup 3} thimble chamber or a 10 cm long pencil ion chamber, respectively. The short (20 cm) to long (90 cm) phantom dose ratios were calculated for the 30 cm diameter polyethylene phantoms scanned at four tube voltages (80–140 kV) and a range of beam apertures (1–25 cm). H(L) was evaluated using the dose integrals computed with the 90 cm long phantoms. The resultant H(L) data were subsequently used to compute the fraction of the total energy absorbed inside or outside the scan range (E{sub in}/E or E{sub out}/E) on the phantom central and peripheral axes, where E = LD{sub eq} was the total energy absorbed along the z axis. Results: The midpoint dose in the 60 cm long polyethylene phantom was equal to that in the 90 cm long polyethylene phantom. The short-to-long phantom dose ratios changed with beam aperture and phantom axis but were insensitive to tube voltage. H(L) was insensitive to tube voltage and CT scanner model. As phantom diameter increased from 6 to 55 cm, E{sub in}/E generally decreased but asymptotically approached constant levels on the peripheral axes of large phantoms. The curve of E{sub in}/E versus scan length was almost identical to that of H(L). Similarly, E{sub out}/E increased with scan length and asymptotically approached the equilibrium for large scan lengths. E{sub out}/D{sub eq} was much less than the equilibrium length L{sub eq} where H(L) = 0.98, even with scan lengths much larger than L{sub eq}. Conclusions: The polyethylene phantom designed by ICRU Report No. 87 Committee and AAPM Task Group 200 is adequately long for assessing the midpoint dose and its equilibration in CT scanning. The short-to-long phantom dose ratios and the H(L) data provided in this paper allow easy evaluations of the midpoint dose, longitudinal dose distribution, and energy absorption in polyethylene phantoms. The results of dose equilibration and energy absorption presented herein may be insightful for the clinical CT scans with various subject sizes and scan lengths.« less

  18. Integration of the Electrodynamic Dust Shield on a Lunar Habitat Demonstration Unit

    NASA Technical Reports Server (NTRS)

    Calle, C. I.; Immer, C. D.; Ferreira, J.; Hogue, M. D.; Chen, A.; Csonka, M. W.; VanSuetendael, N.; Snyder, S. J.

    2010-01-01

    NASA is developing a Habitat Demonstration Unit (HDU) to investigate the feasibility of lunar surface technologies and lunar ground operations. The HDU will define and validate lunar scenario architecture through field analog testing. It will contain a four-port vertical habitat module with docking demonstration capabilities. The Electrodynamic Oust Shield (EDS) is being incorporated into the HDU to demonstrate dust removal from a viewport and from a door prior to docking procedures. In this paper, we will describe our efforts to scale up the EDS to protect a viewport 20 cm in diameter. We will also describe the development of several 20 cm x 25 cm EDS patches to demonstrate dust removal from one of the HDU doors.

  19. The 15 cm mercury ion thruster research 1975

    NASA Technical Reports Server (NTRS)

    Wilbur, P. J.

    1975-01-01

    Doubly charged ion current measurements in the beam of a SERT II thruster are shown to introduce corrections which bring its calculated thrust into close agreement with that measured during flight testing. A theoretical model of doubly charged ion production and loss in mercury electron bombardment thrusters is discussed and is shown to yield doubly-to-singly charged ion density ratios that agree with experimental measurements obtained on a 15 cm diameter thruster over a range of operating conditions. Single cusp magnetic field thruster operation is discussed and measured ion beam profiles, performance data, doubly charged ion densities, and discharge plasma characteristics are presented for a range of operating conditions and thruster geometries. Variations in the characteristics of this thruster are compared to those observed in the divergent field thruster and the cusped field thruster is shown to yield flatter ion beam profiles at about the same discharge power and propellant utilization operating point. An ion optics test program is described and the measured effects of grid system dimensions on ion beamlet half angle and diameter are examined. The effectiveness of hollow cathode startup using a thermionically emitting filament within the cathode is examined over a range of mercury flow rates and compared to results obtained with a high voltage tickler startup technique. Results of cathode plasma property measurement tests conducted within the cathode are presented.

  20. A study on the suitability of the PTW microDiamond detector for kilovoltage x-ray beam dosimetry.

    PubMed

    Damodar, Joshita; Odgers, David; Pope, Dane; Hill, Robin

    2018-05-01

    Kilovoltage x-ray beams are widely used in treating skin cancers and in biological irradiators. In this work, we have evaluated four dosimeters (ionization chambers and solid state detectors) in their suitability for relative dosimetry of kilovoltage x-ray beams in the energy range of 50 - 280kVp. The solid state detectors, which have not been investigated with low energy x-rays, were the PTW 60019 microDiamond synthetic diamond detector and the PTW 60012 diode. The two ionization chambers used were the PTW Advanced Markus parallel plate chamber and the PTW PinPoint small volume chamber. For each of the dosimeters, percentage depth doses were measured in water over the full range of x-ray beams and for field sizes ranging from 2cm diameter to 12 × 12cm. In addition, depth doses were measured for a narrow aperture (7mm diameter) using the PTW microDiamond detector. For comparison, the measured data was compared with Monte Carlo calculated doses using the EGSnrc Monte Carlo package. The depth dose results indicate that the Advanced Markus parallel plate and PinPoint ionization chambers were suitable for depth dose measurements in the beam quality range with an uncertainty of less than 3%, including in the regions closer to the surface of the water as compared with Monte Carlo depth dose data for all six energy beams. The response of the PTW Diode E detector was accurate to within 4% for all field sizes in the energy range of 50-125kVp but showed larger variations for higher energies of up to 12% with the 12 × 12cm field size. In comparison, the microDiamond detector had good agreement over all energies for both smaller and larger field sizes generally within 1% as compared to the Advanced Markus chamber field and Monte Carlo calculations. The only exceptions were in measuring the dose at the surface of the water phantom where larger differences were found. For the 7mm diameter field, the agreement between the microDiamond detector and Monte Carlo calculations was good being better than 1% except at the surface. Based on these results, the PTW microDiamond detector has shown to be a suitable detector for relative dosimetry of low energy x-ray beams over a wide range of x-ray beam energies. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Design study of steady-state 30-tesla liquid-neon-cooled magnet

    NASA Technical Reports Server (NTRS)

    Prok, G. M.; Brown, G. V.

    1976-01-01

    A design for a 30-tesla, liquid-neon-cooled magnet was reported which is capable of continuous operation. Cooled by nonboiling, forced-convection heat transfer to liquid neon flowing at 2.8 cu m/min in a closed, pressurized heat-transfer loop and structurally supported by a tapered structural ribbon, the tape-wound coils with a high-purity-aluminum conductor will produce over 30 teslas for 1 minute at 850 kilowatts. The magnet will have an inside diameter of 7.5 centimeters and an outside diameter of 54 centimeters. The minimum current density at design field will be 15.7 kA/sq cm.

  2. Measurement And Calculation of High-Energy Neutron Spectra Behind Shielding at the CERF 120-GeV/C Hadron Beam Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakao, N.; /SLAC; Taniguchi, S.

    Neutron energy spectra were measured behind the lateral shield of the CERF (CERN-EU High Energy Reference Field) facility at CERN with a 120 GeV/c positive hadron beam (a mixture of mainly protons and pions) on a cylindrical copper target (7-cm diameter by 50-cm long). An NE213 organic liquid scintillator (12.7-cm diameter by 12.7-cm long) was located at various longitudinal positions behind shields of 80- and 160-cm thick concrete and 40-cm thick iron. The measurement locations cover an angular range with respect to the beam axis between 13 and 133{sup o}. Neutron energy spectra in the energy range between 32 MeVmore » and 380 MeV were obtained by unfolding the measured pulse height spectra with the detector response functions which have been verified in the neutron energy range up to 380 MeV in separate experiments. Since the source term and experimental geometry in this experiment are well characterized and simple and results are given in the form of energy spectra, these experimental results are very useful as benchmark data to check the accuracies of simulation codes and nuclear data. Monte Carlo simulations of the experimental set up were performed with the FLUKA, MARS and PHITS codes. Simulated spectra for the 80-cm thick concrete often agree within the experimental uncertainties. On the other hand, for the 160-cm thick concrete and iron shield differences are generally larger than the experimental uncertainties, yet within a factor of 2. Based on source term simulations, observed discrepancies among simulations of spectra outside the shield can be partially explained by differences in the high-energy hadron production in the copper target.« less

  3. Dynamics and Morphology of Superfluid Helium Drops in a Microgravity Environment

    NASA Technical Reports Server (NTRS)

    Seidel, George M.; Maris, Humphrey J.

    2001-01-01

    We developed an apparatus that makes it possible to observe and study magnetically levitated drops of superfluid helium. The force on a diamagnetic substance in a magnetic field is proportional to the gradient of the square of the magnetic field B. For the magnetic force on helium to be equal to the gravitational force on Earth, it is necessary for the product of B with the field gradient dB/d z to be 21.5 T(exp 2)/cm. In addition, in order for the magnetic field to provide a stable trap, the value of B(exp 2) must increase in all directions in the horizontal plane that passes through the point where the field/field gradient product in the vertical direction has the critical value of 21.5 T(exp 2)/cm. A specially designed superconducting magnet that meets these specifications has been installed in a large helium dewar with optical access. Helium drops levitated by the magnet can be viewed along the axis of the solenoid. The sample chamber within the bore of the magnet is thermally isolated from the magnet and helium reservoir. Its temperature can be varied between 4 and 0.5 K, the lower part of the range being reached using a He-3 refrigerator. Liquid helium can be injected into the magnetic trap using a small capillary. Once a drop is contained in the trap it can be held there indefinitely. With this apparatus we have conducted a number of different types of experiments on helium drops so as to gain information necessary for performing experiments in space. With magnetically levitated drops we are limited to working with drops of 1 cm. or less in diameter. The shape of the drops larger than a few mm diameter can be distorted by the profile of the magnetic field. The study of phenomena such as the initial motion of the surfaces of two drops as they just make contact, requires the use large drops to resolve the behavior of interest. We have performed a detailed investigation of the shape oscillations of superfluid drops.

  4. Structuring by field enhancement of glass, Ag, Au, and Co thin films using short pulse laser ablation

    NASA Astrophysics Data System (ADS)

    Ulmeanu, M.; Zamfirescu, M.; Rusen, L.; Luculescu, C.; Moldovan, A.; Stratan, A.; Dabu, R.

    2009-12-01

    Single pulse laser ablation of glass, Ag, Au, and Co thin films was experimentally investigated with a laser pulse width of 400 ps at a wavelength of 532 nm both in the far and near fields. In the far-field regime, the electromagnetic field results from a focused laser beam, while the near-field regime is realized by a combination of the focused laser beam incident on a spherical colloidal particle. For the near-field experiments we have used polystyrene colloidal particles of 700 nm diameter self-assembled or spin coated on top of the surfaces. Laser fluences applied are in the range of 0.01-10 J/cm2. The diameter and the morphologies of the ablated holes were investigated by optical microscopy, profilometry, scanning electron microscopy, and atomic force microscopy. The dependence of the shape of the holes reflects the fluence regime and the thermophysical properties, i.e., melting temperature and thermal diffusivity of the surfaces involved in the experiments. We give quantitative data about the fluence threshold, diameter, and depth ablation dependence for the far and near fields and discuss their values with respect to the enhancement factor of the intensity of the electromagnetic field due to the use of the colloidal particles. Theoretical estimations of the intensity enhancement were done using the finite-difference time-domain method by using the RSOFT software. The application of near fields allows structuring of the surfaces with structure dimension in the order of 100 nm and even below.

  5. Proton Therapy At Siteman Cancer Center: The State Of The Art

    NASA Astrophysics Data System (ADS)

    Bloch, Charles

    2011-06-01

    Barnes-Jewish Hospital is on the verge of offering proton radiation therapy to its patients. Those treatments will be delivered from the first Monarch 250, a state-of-the-art cyclotron produced by Still River Systems, Inc., Littleton, MA. The accelerator is the world's first superconducting synchrocyclotron, with a field-strength of 10 tesla, providing the smallest accelerator for high-energy protons currently available. On May 14, 2010 it was announced that the first production unit had successfully extracted 250 MeV protons. That unit is scheduled for delivery to the Siteman Cancer Center, an NCI-designated Comprehensive Cancer Center at Washington University School of Medicine. At a weight of 20 tons and with a diameter of less than 2 meters the compact cyclotron will be mounted on a gantry, another first for proton therapy systems. The single-energy system includes 3 contoured scatterers and 14 different range modulators to provide 24 distinct beam delivery configurations. This allows proton fields up to 25 cm in diameter, with a maximum range from 5.5 to 32 cm and spread-out-Bragg-peak extent up to 20 cm. Monte Carlo simulations have been run using MCNPX to simulate the clinical beam properties. Those calculations have been used to commission a commercial treatment planning system prior to final clinical measurements. MCNPX was also used to calculate the neutron background generated by protons in the scattering system and patient. Additional details of the facility and current status will be presented.

  6. Intraspecific Phenotypic Variation and Ecological Genetics of Blue Oak (Quercus douglasii Hook. & Am.)

    Treesearch

    Kevin J. Rice; Doria R. Gordon; Jeanine L. Hardison; Jeffrey M. Welker

    1991-01-01

    A field experiment was conducted to examine the effects of soil water availability on blue oak (Quercus douglasii) seedling establishment. Acorns were planted either into cleared plots of 0, 10, 20, or 40 cm diameter. The cleared plots were located in two grazed and one ungrazed site. Half of the plots received drip irrigation in a split plot design...

  7. Distributed fiber optic intrusion sensor system for monitoring long perimeters

    NASA Astrophysics Data System (ADS)

    Juarez, Juan C.; Taylor, Henry F.

    2005-05-01

    The use of an optical fiber as a distributed sensor for detecting and locating intruders over long perimeters (>10 km) is described. Phase changes resulting from either the pressure of the intruder on the ground immediately above the buried fiber or from seismic disturbances in the vicinity are sensed by a phase-sensitive optical time-domain reflectometer (Φ-OTDR). Light pulses from a cw laser operating in a single longitudinal mode and with low (MHz/min range) frequency drift are injected into one end of the single mode fiber, and the backscattered light is monitored with a photodetector. In laboratory tests with 12 km of fiber on reels, the effects of localized phase perturbations induced by a piezoelectric fiber stretcher on Φ-OTDR traces were characterized. In field tests in which the sensing element is a single mode fiber in a 3-mm diameter cable buried in a 20-46 cm deep, 10 cm wide trench in clay soil, detection of intruders on foot up to 4.6 m from the cable line was achieved. In desert terrain field tests in which the sensing fiber is in a 4.5-mm diameter cable buried in a 30 cm deep, 75 cm wide trench filled with loose sand, high sensitivity and consistent detection of intruders on foot and of vehicles traveling down a road near the cable line was realized over a cable length of 8.5 km and a total fiber path of 19 km. Based on these results, this technology may be regarded as a candidate for providing low-cost perimeter security for nuclear power plants, electrical power distribution centers, storage facilities for fuel and volatile chemicals, communication hubs, airports, government offices, military bases, embassies, and national borders.

  8. Mode conversion and heating in a UCLA-high schools collaborative experiment

    NASA Astrophysics Data System (ADS)

    Smith, Miana; Buckley-Bonnano, Samuel; Pribyl, Patrick; Gekelman, Walter; Wise, Joe; Baker, Bob; Marmie, Ken

    2016-10-01

    A small plasma device is in operation for use by undergraduates and high school students at UCLA. Magnetic field up to 100 G, with density 108 <=ne <=1011cm-3 and temperature Te < 3eV are available in a 50 cm diameter plasma 2 meters long. The plasma is generated by an ICP source at one end operating at about 500 kHz. For this experiment, a small plate located near the edge of the plasma column is used as an electrostatic launcher. High frequency waves ωce < ω < 3ωce are launched radially from the plate in the low-density region, with electric field perpendicular to B and to the density gradient. A Langmuir probe located some distance away axially measures plasma heating along a field line that passes several cm in front of the launcher, localized in radius with δr 1cm Absorption and strong electron heating are observed at the plasma resonant layer. We explore the ``double resonance condition at which ωpe = 2ωce . Here strong interaction with electron Bernstein waves is expected. The Bernstein waves are also launched at low power and their dispersion relation verified. Work done at the BaPSF at UCLA which is supported by the DOE/NSF.

  9. Guided-Mode-Leaky-Mode-Guided-Mode Fiber Interferometer and Its High Sensitivity Refractive Index Sensing Technology.

    PubMed

    Wang, Qi; Li, Chunyue; Zhao, Chengwu; Li, Weizheng

    2016-06-01

    A cascaded symmetrical dual-taper Mach-Zehnder interferometer structure based on guided-mode and leaky-mode interference is proposed in this paper. Firstly, the interference spectrum characteristics of interferometer has been analyzed by the Finite Difference-Beam Propagation Method (FD-BPM). When the diameter of taper waist is 20 μm-30 μm, dual-taper length is 1 mm and taper distance is 4 cm-6 cm, the spectral contrast is higher, which is suitable for sensing. Secondly, experimental research on refractive index sensitivity is carried out. A refractive index sensitivity of 62.78 nm/RIU (refractive index unit) can achieved in the RI range of 1.3333-1.3792 (0%~25% NaCl solution), when the sensor structure parameters meet the following conditions: diameter of taper waist is 24 μm, dual-taper length is 837 μm and taper distance is 5.5 cm. The spectrum contrast is 0.8 and measurement resolution is 1.6 × 10(-5) RIU. The simulation analysis is highly consistent with experimental results. Research shows that the sensor has promising application in low RI fields where high-precision measurement is required due to its high sensitivity and stability.

  10. Band gap enhancement of glancing angle deposited TiO2 nanowire array

    NASA Astrophysics Data System (ADS)

    Chinnamuthu, P.; Mondal, A.; Singh, N. K.; Dhar, J. C.; Chattopadhyay, K. K.; Bhattacharya, Sekhar

    2012-09-01

    Vertically oriented TiO2 nanowire (NW) arrays were fabricated by glancing angle deposition technique. Field emission-scanning electron microscopy shows the formation of two different diameters ˜80 nm and ˜40 nm TiO2 NW for 120 and 460 rpm azimuthal rotation of the substrate. The x-ray diffraction and Raman scattering depicted the presence of rutile and anatase phase TiO2. The overall Raman scattering intensity decreased with nanowire diameter. The role of phonon confinement in anatase and rutile peaks has been discussed. The red (7.9 cm-1 of anatase Eg) and blue (7.4 cm-1 of rutile Eg, 7.8 cm-1 of rutile A1g) shifts of Raman frequencies were observed. UV-vis absorption measurements show the main band absorption at 3.42 eV, 3.48 eV, and ˜3.51 eV for thin film and NW prepared at 120 and 460 rpm, respectively. Three fold enhance photon absorption and intense light emission were observed for NW assembly. The photoluminescence emission from the NW assembly revealed blue shift in main band transition due to quantum confinement in NW structures.

  11. [Study of shear rate in modified airlift nitrifying bioreactor].

    PubMed

    Jin, Ren-cun; Zheng, Ping

    2006-06-01

    The characteristics of shear rate in an airlift nitrifying bioreactor and its influencing factors were studied. The results showed that the shear rate was different in different sections of the bioreactor. With inlet gas flowrate at 430 approximately 2700 L x h(-1), the overall shear rate was (0.702 approximately 3.13) x 10(5) s(-1), shear rate in riser was (1.07 approximately 31.3) x 10(5) s(-1) and in gas-liquid separator was (1.12 approximately 25.0) x 10(5) s(-1), respectively. It indicates that the highest shear rates prevailed in the riser part of bioreactor. The operational variables and the bioreactor configurations exerted a significant influence on the shear level of the bioreactor. When inlet gas flowrate was raised from 1300 to 2700 L x h(-1), shear rate in riser and separator ascended first and then descended subsequently. The diameter of draft tube (d) was negatively correlated with shear rate. When the draft tube with diameter of 5.5 cm was installed, the shear rates in riser, separator and overall shear rate were 85.5%, 82.3% and 80.6%, respectively less as compared with that with diameter of 4.0 cm. The number of static mixers (N) was positively correlated with the shear rate. When d was set at 4.0 cm, with N of 10 and 39, the shear rates in riser were 6.14 and 7.97 times higher respectively, than that of conventional bioreactor. The ratio of maximum local shear rate to overall shear rate was 3.68 approximately 7.66, and the homogeneity of the shear field in airlift bioreactors could be improved if d and N were set at 5.5 cm and 10 approximately 13, respectively.

  12. Review of Kaufman thruster development at the Lewis Research Center - 1973

    NASA Technical Reports Server (NTRS)

    Kerslake, W. R.

    1973-01-01

    Work on Kaufman thruster development completed during the years 1971 and 1972 is reviewed. Thrusters tested have ranged in size from 2.5-cm to 150-cm diameters, in thrust from 0.4 to 4300 mN, and in power from 0.03 to 203 kW. A 2.5-cm thruster was briefly tested and found to have surprisingly high thruster efficiency. Emphasis is placed on thruster system reliability and lifetime as previous work has increased thruster efficiency to a high level. Work also proceeds on definition of thruster-spacecraft interactions. Major R&D efforts are directed at present into two areas of thruster size: a 5-cm to 8-cm diameter thruster to be used for station keeping and attitude control of geosynchronous spacecraft; and a 30-cm diameter thruster to be used for primary propulsion in a 3- to 7-thruster array for solar electric propulsion of interplanetary spacecraft.

  13. Conducting Slug Tests in Mini-Piezometers.

    PubMed

    Fritz, Bradley G; Mackley, Rob D; Arntzen, Evan V

    2016-03-01

    Slug tests performed using mini-piezometers with internal diameters as small as 0.43 cm can provide a cost effective tool for hydraulic characterization. We evaluated the hydraulic properties of the apparatus in a laboratory environment and compared those results with field tests of mini-piezometers installed into locations with varying hydraulic properties. Based on our evaluation, slug tests conducted in mini-piezometers using the fabrication and installation approach described here are effective within formations where the hydraulic conductivity is less than 1 × 10(-3) cm/s. While these constraints limit the potential application of this method, the benefits to this approach are that the installation, measurement, and analysis is cost effective, and the installation can be completed in areas where other (larger diameter) methods might not be possible. Additionally, this methodology could be applied to existing mini-piezometers previously installed for other purposes. Such analysis of existing installations could be beneficial in interpreting previously collected data (e.g., water-quality data or hydraulic head data). © 2015, National Ground Water Association.

  14. Coupling quantum dots to optical fiber: Low pump threshold laser in the red with a near top hat beam profile

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, H., E-mail: harvey6117@gmail.com; Laboratory for Optical Physics and Engineering, Department of Electrical and Computer Engineering, University of Illinois, Urbana, Illinois 61801; Mironov, A. E.

    2015-02-23

    Direct coupling of the optical field in a ∼244 nm thick, CdSe/ZnS quantum dot film to an optical fiber has yielded lasing in the red (λ ∼ 644 nm) with a threshold pump energy density < 2.6 mJ cm{sup −2}. Comprising 28–31 layers of ∼8 nm diameter quantum dots deposited onto the exterior surface of a 125 μm diameter coreless silica fiber, this free-running oscillator produces 134 nJ in 3.6 ns FWHM pulses which correspond to 37 W of peak power from an estimated gain volume of ∼4.5 × 10{sup −7} cm{sup 3}. Lasing was confirmed by narrowing of the output optical radiation in both the spectral and temporal domains, and the lasermore » beam intensity profile approximates a top hat.« less

  15. Large-area PSPMT based gamma-ray imager with edge reclamation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ziock, K-P; Nakae, L

    2000-09-21

    We describe a coded aperture, gamma-ray imager which uses a CsI(Na) scintillator coupled to an Hamamatsu R3292 position-sensitive photomultiplier tube (PSPMT) as the position-sensitive detector. We have modified the normal resistor divider readout of the PSPMT to allow use of nearly the full 10 cm diameter active area of the PSPMT with a single scintillator crystal one centimeter thick. This is a significant performance improvement over that obtained with the standard readout technique where the linearity and position resolution start to degrade at radii as small as 3.5 cm with a crystal 0.75 crn thick. This represents a recovery ofmore » over 60% of the PSPMT active area. The performance increase allows the construction of an imager with a field of view 20 resolution elements in diameter with useful quantum efficiency from 60-700 keV. In this paper we describe the readout technique, its implementation in a coded aperture imager and the performance of that imager.« less

  16. Instrumentation development for an array of water Cherenkov detectors for extensive air shower experiments

    NASA Astrophysics Data System (ADS)

    Sheidaei, F.; Bahmanabadi, M.; Keivani, A.; Samimi, J.

    2009-11-01

    A new small array of Cherenkov detectors has been deployed in Tehran, 1200 m above sea level. This array contains four tanks of distilled water with a diameter of 64 cm and a height of 130 cm. The effective area of each tank is about 1382 cm2. They are used to detect air showers and to record the arrival time of the secondary particles. We have collected about 640 000 extensive air showers (EAS) in 8298 h of observation time from November 2006 to October 2007. The distribution of air showers in zenith and azimuth angles has been studied and a cosnθ distribution with n = 6.02 ± 0.01 was obtained for the zenith angle distribution. An asymmetry has been observed in the azimuthal distribution of EAS of cosmic rays due to geomagnetic field. The first and second amplitudes of the asymmetry are AI = 0.183 ± 0.001 and AII = 0.038 ± 0.001. Since the recent results are in good agreement with our previous results of scintillation detectors, and tanks of distilled water are cheaper, we prefer to use them instead of scintillators in a future larger array. By simulation, we have improved the size of the detectors to yield the highest efficiency. The best dimensions for each tank with a photomultiplier tube in the center of its lid are 40 cm in diameter and 60 cm in height.

  17. SU-F-T-86: Electron Dosimetric Effects of Bolus and Lens Shielding in Treating Superficial Eye Lesions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, L; Wootton, L; Gopan, O

    Purpose: Electron therapy for the treatment of ocular lymphomas requires the lens to be shielded to prevent secondary cataracts. This work evaluates the dosimetry under a suspended eyeshield with and without bolus for low energy electron fields. Methods: Film (GafChromic EBT3) dosimetry and relative output factors were measured for 6, 8, and 10 MeV electron energies. A customized 5 cm diameter circle electron orbital cutout was constructed for a 6×6 cm applicator with a lens shield, 1 cm diameter Cerrobend cylinder with 2.2 cm length, suspended from an XV film covering the open field. Relative output factors were measured usingmore » a Scanditronix electron diode in a solid water phantom. Depth dose profiles were collected for bolus thicknesses of 0, 3, and 5 mm in solid water at a source to surface distance (SSD) of 100 cm. These measurements were repeated in a Rando phantom. Results: At 5 mm, the approximate distance of the lens from the surface of the cornea, the estimated dose in solid water under the suspended lens shield was reduced to 16%, 14%, and 13% of the unblocked dose at the same depth, for electron energies of 6, 8, and 10 MeV, respectively. Applying bolus increased estimated doses under the block to 22% for 3-mm and 32% for 5-mm thicknesses for a 6 MeV incident electron beam. This effect is reduced for higher energies where the corresponding values were 15.5% and 18% for 3-mm and 5-mm for an 8 MeV electron beam. Conclusion: The application of bolus to treat superficial eye lesions of the conjunctiva increases lens dose at a depth of 5-mm under the shielding block with decreasing electron energy. Careful selection of electron energy is needed to account for electron scatter under the lens shield with the application of bolus in order to prevent cataracts.« less

  18. Charging and discharging Teflon

    NASA Technical Reports Server (NTRS)

    Passenheim, B. C.; Vanlint, V. A. J.

    1981-01-01

    The charging and discharging characteristics of several common satellite materials exposed to 0-30KV electrons are measured. Teflon is discussed because the charging characteristics are radically altered immediately after a spontaneous discharge. The exterior geometry of the test structure is shown. In all cases dielectric samples were 82 cm in diameter mounted on the front of a 120 cm diameter cylinder supported on an 85 cm, 0.95 cm thick plexiglass disc. Dielectric materials investigated were: back surface aluminized Kapton, back surface silvered Teflon, silicon alkyd white thermal control paint, and 50 cm by 50 cm array of 0.030 cm thick MgF2 coated fused silica solar cell cover slips.

  19. Characteristics of Air Core and Surface Velocity for Water Flow in a Vortex Sediment-Extraction Chamber Measured by Using Photo Images and PTV Technique.

    NASA Astrophysics Data System (ADS)

    Yao, Hou Chang; Chyan Deng, Jan; Chao, Hsu Yu; Chih Yuan, Yang

    2017-04-01

    A vortex sediment-extraction chamber, consisted of cylindrical chamber, inflow system, bottom orifice and overflow weir, is used to separate sediment from sediment-laden water flow. A tangential inflow is introduced into a cylindrical chamber with a bottom orifice; thus, a strong vortex flow is produced there. Under actions of gravity and centrifugal force, heavier sediment particles are forced to move towards the bottom orifice, and relatively clear water flows over through the top overflow weir. The flow field in the cylindrical chamber consists of forced vortex and free vortex. When the bottom orifice is opened during the sediment-extraction process, an air core appears and changes with different settings. In this study, the air core and water surface velocity in the cylindrical chamber were measured by using a photo image process and particle tracking velocimetry (PTV), as well as numerically simulated by using a commercial software, Flow-3D.Laboratory experiments were conducted in a vortex chamber, having height of 130 cm and diameter of 48 cm. Five kinds of bottom orifice size from 1.0 cm to 3.0 cm and four kinds of inflow water discharge from 1,300cm3/s to 1,700 cm3/s were used while the inflow pipe of 3 cm in diameter was kept the same for all experiments. The characteristics of the air core and water surface velocity, and the inflow and outflow ratios under different experimental arrangements were observed and discussed so as to provide a better design and application for a vortex sediment-extraction chamber in the future.

  20. A Spherical Active Coded Aperture for 4π Gamma-ray Imaging

    DOE PAGES

    Hellfeld, Daniel; Barton, Paul; Gunter, Donald; ...

    2017-09-22

    Gamma-ray imaging facilitates the efficient detection, characterization, and localization of compact radioactive sources in cluttered environments. Fieldable detector systems employing active planar coded apertures have demonstrated broad energy sensitivity via both coded aperture and Compton imaging modalities. But, planar configurations suffer from a limited field-of-view, especially in the coded aperture mode. In order to improve upon this limitation, we introduce a novel design by rearranging the detectors into an active coded spherical configuration, resulting in a 4pi isotropic field-of-view for both coded aperture and Compton imaging. This work focuses on the low- energy coded aperture modality and the optimization techniquesmore » used to determine the optimal number and configuration of 1 cm 3 CdZnTe coplanar grid detectors on a 14 cm diameter sphere with 192 available detector locations.« less

  1. Luminescence and Excitation Spectra of U 3+ doped RbY 2 Cl 7 Single Crystals

    DOE PAGES

    Karbowiak, M.; Murdoch, K.; Drożdżyński, J.; ...

    1996-08-01

    Uranium(3+) doped single crystals of RbY 2 Cl 7 with a uranium concentration of 0.05% and 0.2% were grown by the Bridgman-Stockbarger method using RbU 2 Cl 7 as the doping substance. Polished plates of ca. 5 mm in diameter were used for measurements of luminescence and excitation spectra. And since the U 3+ ions occupy two somewhat different site symmetries, a splitting of all observed f-f bands was observed. Furthermore, the analysis of the spectra enabled definitively an assignment of 22 crystal field bands for both site symmetries as well as the total crystal field splitting of the groundmore » level, equal to 473 cm -1 and 567 cm -1 for the first and second site symmetry, respectively.« less

  2. Dosimetry for Small Fields in Stereotactic Radiosurgery Using Gafchromic MD-V2-55 Film, TLD-100 and Alanine Dosimeters

    PubMed Central

    Massillon-JL, Guerda; Cueva-Prócel, Diego; Díaz-Aguirre, Porfirio; Rodríguez-Ponce, Miguel; Herrera-Martínez, Flor

    2013-01-01

    This work investigated the suitability of passive dosimeters for reference dosimetry in small fields with acceptable accuracy. Absorbed dose to water rate was determined in nine small radiation fields with diameters between 4 and 35 mm in a Leksell Gamma Knife (LGK) and a modified linear accelerator (linac) for stereotactic radiosurgery treatments. Measurements were made using Gafchromic film (MD-V2-55), alanine and thermoluminescent (TLD-100) dosimeters and compared with conventional dosimetry systems. Detectors were calibrated in terms of absorbed dose to water in 60Co gamma-ray and 6 MV x-ray reference (10×10 cm2) fields using an ionization chamber calibrated at a standards laboratory. Absorbed dose to water rate computed with MD-V2-55 was higher than that obtained with the others dosimeters, possibly due to a smaller volume averaging effect. Ratio between the dose-rates determined with each dosimeter and those obtained with the film was evaluated for both treatment modalities. For the LGK, the ratio decreased as the dosimeter size increased and remained constant for collimator diameters larger than 8 mm. The same behaviour was observed for the linac and the ratio increased with field size, independent of the dosimeter used. These behaviours could be explained as an averaging volume effect due to dose gradient and lack of electronic equilibrium. Evaluation of the output factors for the LGK collimators indicated that, even when agreement was observed between Monte Carlo simulation and measurements with different dosimeters, this does not warrant that the absorbed dose to water rate in the field was properly known and thus, investigation of the reference dosimetry should be an important issue. These results indicated that alanine dosimeter provides a high degree of accuracy but cannot be used in fields smaller than 20 mm diameter. Gafchromic film can be considered as a suitable methodology for reference dosimetry. TLD dosimeters are not appropriate in fields smaller than 10 mm diameters. PMID:23671677

  3. Theoretical Modeling of the Interior Ballistics of the Electrothermal Gun

    DTIC Science & Technology

    1993-07-01

    latter one 19 Table 2.1 Parameters Used for Nominal Data Base (after Oberle [2]). Chamber Volume 97.108 cm 3 Projectile Travel 145 cm Bore Diameter 14...at the time when the plasma supply is completed. When this occurs in the case of instantaneous mixing one has the projectile travel reduced by... Travel 400.0 cm Bore Diameter 4.0 cm Projectile Hass 160 g Plasma Energy 2000000 J Plasma Mass 0.0 g Working Fluid 420 g of H20 Density I g/cm. Bulk

  4. Grid-translation beam deflection systems for 5-cm and 30-cm diameter Kaufman thrusters.

    NASA Technical Reports Server (NTRS)

    Lathem, W. C.

    1972-01-01

    A 5-cm grid translation mechanism has been developed capable of 10-deg beam deflection. A 2026-hour endurance test was run at a preset 10-deg deflection angle, and an extrapolated lifetime of better than 10,000 hours was obtained. Response time data for grid translation are presented. Preliminary results for a 30-cm diameter system are given, and results of a theoretical analysis of a dished grid system are discussed.

  5. Grid-translation beam deflection systems for 5-cm and 30-cm diameter Kaufman thrusters

    NASA Technical Reports Server (NTRS)

    Lathem, W. C.

    1972-01-01

    A 5-cm grid translation mechanism has been developed capable of 10 deg beam deflection. A 2026-hour endurance test was run at a preset 10 deg deflection angle and an extrapolated lifetime of better than 10,000 hours obtained. Response time data for grid translation are presented. Preliminary results for a 30-cm diameter system are given and results of a theoretical analysis of a dished grid system are discussed.

  6. Acoustic test and analyses of three advanced turboprop models

    NASA Technical Reports Server (NTRS)

    Brooks, B. M.; Metzger, F. B.

    1980-01-01

    Results of acoustic tests of three 62.2 cm (24.5 inch) diameter models of the prop-fan (a small diameter, highly loaded. Multi-bladed variable pitch advanced turboprop) are presented. Results show that there is little difference in the noise produced by unswept and slightly swept designs. However, the model designed for noise reduction produces substantially less noise at test conditions simulating 0.8 Mach number cruise speed or at conditions simulating takeoff and landing. In the near field at cruise conditions the acoustically designed. In the far field at takeoff and landing conditions the acoustically designed model is 5 db quieter than unswept or slightly swept designs. Correlation between noise measurement and theoretical predictions as well as comparisons between measured and predicted acoustic pressure pulses generated by the prop-fan blades are discussed. The general characteristics of the pulses are predicted. Shadowgraph measurements were obtained which showed the location of bow and trailing waves.

  7. Brown rot in inner heartwood: why large logs support characteristics saproxylic beetle assemblages of conservation concern

    Treesearch

    Marie Yee; Simon J. Grove; Alastair M.M. Richardson; Caroline L. Mohammed

    2006-01-01

    It is not clear why large diameter logs generally host saproxylic beetle assemblages that are different from those of small diameter logs. In a study in Tasmanian wet eucalypt forest, two size-classes of Eucalyptus obliqua logs (>100cm and 30-60cm diameter) were destructively sampled to assess their beetle fauna and the associations of this fauna...

  8. A comparison of pine height models for the Crossett Experimental Forest

    Treesearch

    D. Bragg

    2008-01-01

    Many models to predict tree height from diameter have been developed, but not all are equally useful. This study compared a set of height diameter models for loblolly (Pinus taeda) and shortleaf (Pinus echinata) pines from Ashley County, Arkansas. Almost 560 trees ranging in diameter at breast height (DBH) from 0.3 cm (both species) to 91.9 cm (for shortleaf) or 108.2...

  9. LBA-ECO TG-07 Ground-based Biometry Data at km 83 Site, TapajosNational Forest: 1997

    Treesearch

    M.M. Keller; M.W. Palace

    2009-01-01

    A field inventory of trees was conducted in March of 1997 in a logging concession at the Tapajos National Forest, south of Santarem, Para, Brazil. The inventory was conducted by the foresters and technicians of the Tropical Forest Foundation (FFT) and included all trees with diameter at breast height greater than or equal to 35 cm. Four blocks of approximately 100 ha...

  10. Non-invasive monitoring of below ground cassava storage root bulking by ground penetrating radar technology

    NASA Astrophysics Data System (ADS)

    Ruiz Vera, U. M.; Larson, T. H.; Mwakanyamale, K. E.; Grennan, A. K.; Souza, A. P.; Ort, D. R.; Balikian, R. J.

    2017-12-01

    Agriculture needs a new technological revolution to be able to meet the food demands, to overcome weather and natural hazards events, and to monitor better crop productivity. Advanced technologies used in other fields have recently been applied in agriculture. Thus, imagine instrumentation has been applied to phenotype above-ground biomass and predict yield. However, the capability to monitor belowground biomass is still limited. There are some existing technologies available, for example the ground penetrating radar (GPR) which has been used widely in the area of geology and civil engineering to detect different kind of formations under the ground without the disruption of the soil. GPR technology has been used also to monitor tree roots but as yet not crop roots. Some limitation are that the GPR cannot discern roots smaller than 2 cm in diameter, but it make it feasible for application in tuber crops like Cassava since harvest diameter is greater than 4 cm. The objective of this research is to test the availability to use GPR technology to monitor the growth of cassava roots by testing this technique in the greenhouse and in the field. So far, results from the greenhouse suggest that GPR can detect mature roots of cassava and this data could be used to predict biomass.

  11. Coupled microstrip line transverse electromagnetic resonator model for high-field magnetic resonance imaging.

    PubMed

    Bogdanov, G; Ludwig, R

    2002-03-01

    The performance modeling of RF resonators at high magnetic fields of 4.7 T and more requires a physical approach that goes beyond conventional lumped circuit concepts. The treatment of voltages and currents as variables in time and space leads to a coupled transmission line model, whereby the electric and magnetic fields are assumed static in planes orthogonal to the length of the resonator, but wave-like along its longitudinal axis. In this work a multiconductor transmission line (MTL) model is developed and successfully applied to analyze a 12-element unloaded and loaded microstrip line transverse electromagnetic (TEM) resonator coil for animal studies. The loading involves a homogeneous cylindrical dielectric insert of variable radius and length. This model formulation is capable of estimating the resonance spectrum, field distributions, and certain types of losses in the coil, while requiring only modest computational resources. The boundary element method is adopted to compute all relevant transmission line parameters needed to set up the transmission line matrices. Both the theoretical basis and its engineering implementation are discussed and the resulting model predictions are placed in context with measurements. A comparison between a conventional lumped circuit model and this distributed formulation is conducted, showing significant departures in the resonance response at higher frequencies. This MTL model is applied to simulate two small-bore animal systems: one of 7.5-cm inner diameter, tuned to 200 MHz (4.7 T for proton imaging), and one of 13.36-cm inner diameter, tuned to both 200 and 300 MHz (7 T). Copyright 2002 Wiley-Liss, Inc.

  12. Selectable-Tip Corrosion-Testing Electrochemical Cell

    NASA Technical Reports Server (NTRS)

    Lomness, Janice; Hintze, Paul

    2008-01-01

    The figure depicts aspects of an electrochemical cell for pitting- corrosion tests of material specimens. The cell is designed to generate a region of corrosion having a pit diameter determined by the diameter of a selectable tip. The average depth of corrosion is controlled by controlling the total electric charge passing through the cell in a test. The cell is also designed to produce minimal artifacts associated with crevice corrosion. There are three selectable tips, having diameters of 0.1 in. (0.254 cm), 0.3 in. (0.762 cm), and 0.6 in. (1.524 cm), respectively.

  13. A new radiotherapy surface dose detector:the MOSFET.

    PubMed

    Butson, M J; Rozenfeld, A; Mathur, J N; Carolan, M; Wong, T P; Metcalfe, P E

    1996-05-01

    Radiotherapy x-ray and electron beam surface doses are accurately measurable by use of a MOS-FET detector system. The MOSFET (Metal Oxide Semiconductor Field Effect Transistor) is approximately 200-microns in diameter and consists of a 0.5-microns Al electrode on top of a 1-microns SiO2 and 300-microns Si substrate. Results for % surface dose were within +/- 2% compared to the Attix chamber and within +/- 3% of TLD extrapolation results for normally incident beams. Detectors were compared using different energies, field size, and beam modifying devices such as block trays and wedges. Percentage surface dose for 10 x 10-cm and 40 x 40-cm field size for 6-MV x rays at 100-cm SSD using the MOSFET were 16% and 42% of maximum, respectively. Factors such as its small size, immediate retrieval of results, high accuracy attainable from low applied doses, and as the MOSFET records its dose history make it a suitable in vivo dosimeter where surface and skin doses need to be determined. This can be achieved within part of the first fraction of dose (i.e., only 10 cGy is required.)

  14. Nonaligned carbon nanotubes anchored on porous alumina: formation, process modeling, gas-phase analysis, and field-emission properties.

    PubMed

    Lysenkov, Dmitry; Engstler, Jörg; Dangwal, Arti; Popp, Alexander; Müller, Günter; Schneider, Jörg J; Janardhanan, Vinod M; Deutschmann, Olaf; Strauch, Peter; Ebert, Volker; Wolfrum, Jürgen

    2007-06-01

    We have developed a chemical vapor deposition (CVD) process for the catalytic growth of carbon nanotubes (CNTs), anchored in a comose-type structure on top of porous alumina substrates. The mass-flow conditions of precursor and carrier gases and temperature distributions in the CVD reactor were studied by transient computational fluid dynamic simulation. Molecular-beam quadrupole mass spectroscopy (MB-QMS) has been used to analyze the gas phase during ferrocene CVD under reaction conditions (1073 K) in the boundary layer near the substrate. Field-emission (FE) properties of the nonaligned CNTs were measured for various coverages and pore diameters of the alumina. Samples with more dense CNT populations provided emitter-number densities up to 48,000 cm(-2) at an electric field of 6 V microm(-1). Samples with fewer but well-anchored CNTs in 22-nm pores yielded the highest current densities. Up to 83 mA cm(-2) at 7 V microm(-1) in dc mode and more than 200 mA cm(-2) at 11 V microm(-1) in pulsed diode operation have been achieved from a cathode size of 24 mm2.

  15. [C57BL/6 mice open field behaviour qualitatively depends on arena size].

    PubMed

    Lebedev, I V; Pleskacheva, M G; Anokhin, K V

    2012-01-01

    Open field behavior is well known to depend on physical characteristics of the apparatus. However many of such effects are poorly described especially with using of modern methods of behavioral registration and analysis. The previous results of experiments on the effect of arena size on behavior are not numerous and contradictory. We compared the behavioral scores of four groups of C57BL/6 mice in round open field arenas of four different sizes (diameter 35, 75, 150 and 220 cm). The behavior was registered and analyzed using Noldus EthoVision, WinTrack and SegmentAnalyzer software. A significant effect of arena size was found. Traveled distance and velocity increased, but not in proportion to increase of arena size. Moreover a significant effect on segment characteristics of the trajectory was revealed. Detailed behavior analysis revealed drastic differences in trajectory structure and number of rears between smaller (35 and 75 cm) and bigger (150 and 220 cm) arenas. We conclude, that the character of exploration in smaller and bigger arenas depends on relative size of central open zone in arena. Apparently its extension increases the motivational heterogeneity of space, that requires another than in smaller arenas, strategy of exploration.

  16. Experimental Results for an Acoustic Driver for MTF

    NASA Astrophysics Data System (ADS)

    Laberge, Michel

    2009-06-01

    General Fusion is planning to form an FRC or spheromak of 1017 cm-3, 100 eV, 40 cm diameter by merging two spheromaks with reverse or co-helicity. This target will be further compressed in a 3 m diameter tank filled with liquid PbLi with the plasma in the center. The tank is surrounded with pneumatically powered impact pistons that will send a convergent shock wave in the liquid to compress the plasma to 1020 cm-3, 10 keV, 4 cm diameter for 7 μs. General Fusion has built a 500 kJ, 80 μs, 6 GW pneumatic impact piston capable of developing 2 GPa (300 kpsi). In this paper we will present the performances achieved to date.

  17. Automated estimation of abdominal effective diameter for body size normalization of CT dose.

    PubMed

    Cheng, Phillip M

    2013-06-01

    Most CT dose data aggregation methods do not currently adjust dose values for patient size. This work proposes a simple heuristic for reliably computing an effective diameter of a patient from an abdominal CT image. Evaluation of this method on 106 patients scanned on Philips Brilliance 64 and Brilliance Big Bore scanners demonstrates close correspondence between computed and manually measured patient effective diameters, with a mean absolute error of 1.0 cm (error range +2.2 to -0.4 cm). This level of correspondence was also demonstrated for 60 patients on Siemens, General Electric, and Toshiba scanners. A calculated effective diameter in the middle slice of an abdominal CT study was found to be a close approximation of the mean calculated effective diameter for the study, with a mean absolute error of approximately 1.0 cm (error range +3.5 to -2.2 cm). Furthermore, the mean absolute error for an adjusted mean volume computed tomography dose index (CTDIvol) using a mid-study calculated effective diameter, versus a mean per-slice adjusted CTDIvol based on the calculated effective diameter of each slice, was 0.59 mGy (error range 1.64 to -3.12 mGy). These results are used to calculate approximate normalized dose length product values in an abdominal CT dose database of 12,506 studies.

  18. Radio-frequency ring applicator: energy distributions measured in the CDRH phantom.

    PubMed

    van Rhoon, G C; Raskmark, P; Hornsleth, S N; van den Berg, P M

    1994-11-01

    SAR distributions were measured in the CDRH phantom, a 1 cm fat-equivalent shell filled with an abdomen-equivalent liquid (sigma = 0.4-1.0 S m-1; dimensions 22 x 32 x 57 cm) to demonstrate the feasibility of the ring applicator to obtain deep heating. The ring electrodes were fixed in a PVC tube; diameter 48 cm, ring width 20 cm and gap width between both rings 31.6 cm. Radio-frequency energy was fed to the electrodes at eight points. The medium between the electrodes and the phantom was deionised water. The SAR distribution in the liquid tissue volume was obtained by a scanning E-field probe measuring the E-field in all three directions. With equal amplitude and phase applied to all feeding points, a uniform SAR distribution was measured in the central cross-section at 30 MHz. With RF energy supplied to only four adjacent feeding points (others were connected to a 50 omega load), the feasibility to perform amplitude steering was demonstrated; SAR values above 50% of the maximum SAR were measured in one quadrant only. SAR distributions obtained at 70 MHz showed an improved focusing ability; a maximum at the centre exists for an electric conductivity of the abdomen-equivalent tissue of 0.6 and 0.4 S m-1.

  19. Evaluation of the dosimetric properties of a diode detector for small field proton radiosurgery.

    PubMed

    McAuley, Grant A; Teran, Anthony V; Slater, Jerry D; Slater, James M; Wroe, Andrew J

    2015-11-08

    The small fields and sharp gradients typically encountered in proton radiosurgery require high spatial resolution dosimetric measurements, especially below 1-2 cm diameters. Radiochromic film provides high resolution, but requires postprocessing and special handling. Promising alternatives are diode detectors with small sensitive volumes (SV) that are capable of high resolution and real-time dose acquisition. In this study we evaluated the PTW PR60020 proton dosimetry diode using radiation fields and beam energies relevant to radiosurgery applications. Energies of 127 and 157 MeV (9.7 to 15 cm range) and initial diameters of 8, 10, 12, and 20mm were delivered using single-stage scattering and four modulations (0, 15, 30, and 60mm) to a water tank in our treatment room. Depth dose and beam profile data were compared with PTW Markus N23343 ionization chamber, EBT2 Gafchromic film, and Monte Carlo simulations. Transverse dose profiles were measured using the diode in "edge-on" orientation or EBT2 film. Diode response was linear with respect to dose, uniform with dose rate, and showed an orientation-dependent (i.e., beam parallel to, or perpendicular to, detector axis) response of less than 1%. Diodevs. Markus depth-dose profiles, as well as Markus relative dose ratio vs. simulated dose-weighted average lineal energy plots, suggest that any LET-dependent diode response is negligible from particle entrance up to the very distal portion of the SOBP for the energies tested. Finally, while not possible with the ionization chamber due to partial volume effects, accurate diode depth-dose measurements of 8, 10, and 12 mm diameter beams were obtained compared to Monte Carlo simulations. Because of the small SV that allows measurements without partial volume effects and the capability of submillimeter resolution (in edge-on orientation) that is crucial for small fields and high-dose gradients (e.g., penumbra, distal edge), as well as negligible LET dependence over nearly the full the SOBP, the PTW proton diode proved to be a useful high-resolution, real-time metrology device for small proton field radiation measurements such as would be encountered in radiosurgery applications.

  20. Comparison of epidermal/dermal damage between the long-pulsed 1064 nm Nd:YAG and 755 nm alexandrite lasers under relatively high fluence conditions: quantitative and histological assessments.

    PubMed

    Lee, Ju Hwan; Park, So Ra; Jo, Jeong Ho; Park, Sung Yun; Seo, Young Kwon; Kim, Sung Min

    2014-07-01

    The purpose of this study was to compare degrees of epidermal/dermal tissue damage quantitatively and histologically after laser irradiation, to find ideal treatment conditions with relatively high fluence for skin rejuvenation. A number of recent studies have evaluated the clinical efficacy and safety of therapeutic lasers under relatively low fluence conditions. We transmitted the long-pulsed 1064 nm Nd:YAG and 755 nm Alexandrite lasers into pig skin according to different fluences and spot diameters, and estimated epidermal/dermal temperatures. Pig skin specimens were stained with hematoxylin and eosin for histological assessments. The fluence conditions comprised 26, 30, and 36 J/cm2, and the spot diameter conditions were 5, 8, and 10 mm. Pulse duration was 30 ms for all experiments. Both lasers produced reliable thermal damage on the dermis without any serious epidermal injuries, under relatively high fluence conditions. The 1064 nm laser provided more active fibrous formations than the 755 nm laser, while higher risks for tissue damages simultaneously occurred. The ideal treatment conditions for skin rejuvenation were 8 mm diameter with 30 J/cm2 and 10 mm diameter with 26 J/cm2 for the 1064 nm laser, and 8 mm diameter with 36 J/cm2 and 10 mm diameter with 26 J/cm2 for the 755 nm laser.

  1. Pilot study: safety and effectiveness of simple ultrasound-guided high-intensity focused ultrasound ablating uterine leiomyoma with a diameter greater than 10 cm.

    PubMed

    Hou, Ruijie; Wang, Liwei; Li, Shaoping; Rong, Fengmin; Wang, Yuanyuan; Qin, Xuena; Wang, Shijin

    2018-02-01

    The study aimed to prospectively investigate whether uterine leiomyoma greater than 10 cm in diameter could be treated with simple ultrasound-guided high-intensity focused ultrasound (USgHIFU) in one-time treatment. A total of 36 patients with 36 symptomatic uterine leiomyoma greater than 10 cm in diameter who underwent simple USgHIFU treatment alone were analysed. Enhanced MRI was performed before and after HIFU treatment, and all patients had follow-up for 6 months after treatment. Symptom severity scores, treatment time, treatment speed, ablation rate, energy effect ratio, uterine leiomyoma regression rate, adverse events, liver and kidney functions, coagulation function and routine blood count were included in the study endpoints. The mean diameter of uterine leiomyoma was 11.2 ± 1.3 cm (10.0-14.3 cm). The median treatment time and treatment speed were 104.0 min (90.0-140.0 min) and 118.8 cm 3  h -1  (86.2-247.1 cm 3  h -1 ), respectively. The ablation rate of uterine leiomyoma was 71.9 ± 20.4% (32.1-100.0%), and the regression rate of uterine leiomyoma was 40.8 ± 7.5% (25.6-59.9%) at 6 months after treatment. The mean symptom severity scores decreased by an average of approximately 8.6 ± 2.3 (5-14) points. There were no significant changes in haemogram and blood chemical indexes of patients, except for the transient elevation of aspartate aminotransferase, total bilirubin and white blood cells after treatment. No serious adverse reactions occurred. According to our preliminary results, simple USgHIFU is a safe and effective single-treatment method of treating uterine leiomyoma greater than 10 cm in diameter and is an almost innocuous alternative therapeutic strategy. Advances in knowledge: The conclusions indicate simple USgHIFU is safe and effective as one-time treatment of uterine leiomyoma greater than 10 cm in diameter, it could be a promising therapeutic strategy.

  2. How feasible is remote 3D dosimetry for MR guided Radiation Therapy (MRgRT)?

    NASA Astrophysics Data System (ADS)

    Mein, S.; Rankine, L.; Miles, D.; Juang, T.; Cai, B.; Curcuru, A.; Mutic, S.; Fenoli, J.; Adamovics, J.; Li, H.; Oldham, M.

    2017-05-01

    To develop and apply a remote dosimetry protocol with PRESAGE® radiochromic plastic and optical-CT readout in the validation of MRI guided radiation therapy (MRgRT) treatments (MRIdian® by ViewRay®). Through multi-institutional collaboration we performed PRESAGE® dosimetry studies in 4ml cuvettes to investigate dose-response linearity, MR-compatibility, and energy-independence. An open calibration field and symmetrical 3-field plans were delivered to 10cm diameter PRESAGE® to examine percent depth dose and response uniformity under a magnetic field. Evidence of non-linear dose response led to a large volume PRESAGE® study where small corrections were developed for temporally- and spatially-dependent behaviors observed between irradiation and delayed readout. TG-119 plans were created in the MRIdian® TPS and then delivered to 14.5cm 2kg PRESAGE® dosimeters. Through the domestic investigation of an off-site MRgRT system, a refined 3D remote dosimetry protocol is presented capable of validation of advanced MRgRT radiation treatments.

  3. Er:YLF-laser microperforation of the nail plate for drug delivery

    NASA Astrophysics Data System (ADS)

    Belikov, Andrey V.; Skrypnik, Alexei V.; Sergeev, Andrey N.; Smirnov, Sergey N.; Tavalinskaya, Anastasia D.

    2018-04-01

    Laser microperforation of a human nail plate is an effective method to increase the speed of local drugs delivery in the treatment of nail diseases. In this paper we present the study results of the influence of spatial parameters of Er:YLFlaser- produced microhole array in human nail plate (the diameter of microholes and their packing density) on the rate (vsp) of 0.25 % water-alcohol solution of methylene blue penetration through a single microhole and on the time (Tmp) required for uniform distribution of this drug under the nail plate. In experiments, the diameter of microholes was 220 +/- 10 μm, 300 +/- 10 μm or 350 +/- 10 μm. The packing density for microholes of each of these diameters was 100 μholes/cm2, 400 μholes/cm2 and 950 μholes/cm2. It is shown that vsp is mainly determined by the microhole diameter, and the packing density does not have a significant influence on it. It was experimentally established that the rate vsp is maximal for microholes with 350 μm diameter at packing density of 950 μholes/cm2 and reaches a value of 6.3 μm/s, and the time Tmp is minimal and equal to 180 +/- 10 s at the same values of microhole diameter and packing density.

  4. Further development of chemical vapor deposition process for production of large diameter carbon-base monofilaments

    NASA Technical Reports Server (NTRS)

    Hough, R. L.; Richmond, R. D.

    1974-01-01

    The development of large diameter carbon-base monofilament in the 50 micron to 250 micron diameter range using the chemical vapor deposition process is described. The object of this program was to determine the critical process variables which control monofilament strength, monofilament modulus, and monofilament diameter. It was confirmed that wide scatter in the carbon substrate strength is primarily responsible for the scatter in the monofilament strength. It was also shown through etching experiments that defective substrate surface conditions which can induce low strength modular growth in the monofilament layers are best controlled by processing improvements during the synthesis of the substrate. Modulus was found to be linearily proportional to monofilament boron content. Filament modulus was increased to above 27.8MN/sq cm but only by a considerable increase in monofilament boron content to 60 wt. % or more. Monofilament diameter depended upon dwell time in the synthesis apparatus. A monofilament was prepared using these findings which had the combined properties of a mean U.T.S. of 398,000 N/sq cm, a modulus of 18.9 MN/sq cm (24,000,000 psi), and a diameter of 145 microns. Highest measured strength for this fiber was 451,000 N/sq cm (645,000 psi).

  5. Portal vein aneurysm associated with Budd-Chiari syndrome treated with transjugular intrahepatic portosystemic shunt: a case report.

    PubMed

    Tsauo, Jiaywei; Li, Xiao

    2015-03-07

    A 65-year-old woman with Budd-Chiari syndrome (BCS) presented with right upper quadrant pain. A computed tomography (CT) scan showed a saccular aneurysm located at the extrahepatic portal vein main branch measuring 3.2 cm in height and 2.5 cm × 2.4 cm in diameter. The aneurysm was thought to be associated with BCS as there was no preceding history of trauma and it had not been present on Doppler ultrasound examination performed 3 years previously. Because of increasing pain and concern for complications due to aneurysm size, the decision was made to relieve the hepatic venous outflow obstruction. Transjugular intrahepatic portosystemic shunt (TIPS) was created without complications. She had complete resolution of her abdominal pain within 2 d and remained asymptomatic after 1 year of follow-up. CT scans obtained after TIPS showed that the aneurysm had decreased in size to 2.4 cm in height and 2.0 cm × 1.9 cm in diameter at 3 mo, and had further decreased to 1.9 cm in height and 1.6 cm × 1.5 cm in diameter at 1 year.

  6. Dimensional analysis of human saphenous vein grafts: Implications for external mesh support.

    PubMed

    Human, Paul; Franz, Thomas; Scherman, Jacques; Moodley, Lovendran; Zilla, Peter

    2009-05-01

    Constrictive external mesh support of vein grafts was shown to mitigate intimal hyperplasia in animal experiments. To determine the degree of constriction required for the elimination of dimensional irregularities in clinically used vein grafts, a detailed anatomic study of human saphenous veins was conducted. In 200 consecutive patients having coronary artery bypass grafting, harvested saphenous veins (length 34.4 +/- 10.8 cm) were analyzed regarding diameter irregularities, side branch distribution, and microstructure. The mean outer diameter of surgically distended saphenous veins was 4.2 +/- 0.6 mm (men, 4.3 +/- 0.6 mm vs women, 3.9 +/- 0.5 mm; P < .0001). Although the outer diameter significantly decreased over the initial 18 cm (-7.6%; P < .0001), the overall increase between malleolus and thigh was not significant (+11.2%). Smaller-diameter veins (<3.5 mm) had more pronounced diameter fluctuations than larger veins (31.8% +/- 11.0% vs 21.2% +/- 8.8%; P < .0001), with more than 71% of all veins showing caliber changes of more than 20%. There was 1 side branch every 5.4 +/- 4.3 cm, with a significantly higher incidence between 20 and 32 cm from the malleolus (P < .0001 to distal, P < .0004 to proximal). Generally, women had more side branches than men (0.30 +/- 0.15 cm(-1) vs 0.25 +/- 0.12 cm(-1); P = .0190). Thick-walled veins (565.7 +/- 138.4 mum) had a significantly higher number of large side branches (P < .0001), and thin-walled veins (398.7 +/- 123.2 mum) had significantly more small side branches (P < .0001). Pronounced intimal thickening ("cushions") was found in 28% of vessels (119.8 +/- 28.0 mum vs 40.1 +/- 18.2 mum; P < .0001). Although the preferential location of side branches may be addressed by the deliberate discarding of infragenicular vein segments, a diameter constriction of 27% on average would eliminate diameter irregularities in 98% of vein grafts.

  7. Ecological Importance of Small-Diameter Trees to the Structure, Diversity and Biomass of a Tropical Evergreen Forest at Rabi, Gabon.

    PubMed

    Memiaghe, Hervé R; Lutz, James A; Korte, Lisa; Alonso, Alfonso; Kenfack, David

    2016-01-01

    Tropical forests have long been recognized for their biodiversity and ecosystem services. Despite their importance, tropical forests, and particularly those of central Africa, remain understudied. Until recently, most forest inventories in Central Africa have focused on trees ≥10 cm in diameter, even though several studies have shown that small-diameter tree population may be important to demographic rates and nutrient cycling. To determine the ecological importance of small-diameter trees in central African forests, we used data from a 25-ha permanent plot that we established in the rainforest of Gabon to study the diversity and dynamics of these forests. Within the plot, we censused 175,830 trees ≥1 cm dbh from 54 families, 192 genera, and 345 species. Average tree density was 7,026 trees/ha, basal area 31.64 m2/ha, and above-ground biomass 369.40 Mg/ha. Fabaceae, Ebenaceae and Euphorbiaceae were the most important families by basal area, density and above-ground biomass. Small-diameter trees (1 cm ≥ dbh <10 cm) comprised 93.7% of the total tree population, 16.5% of basal area, and 4.8% of the above-ground biomass. They also had diversity 18% higher at family level, 34% higher at genus level, and 42% higher at species level than trees ≥10 cm dbh. Although the relative contribution of small-diameter trees to biomass was comparable to other forests globally, their contribution to forest density, and diversity was disproportionately higher. The high levels of diversity within small-diameter classes may give these forests high levels of structural resilience to anthropogenic/natural disturbance and a changing climate.

  8. Ecological Importance of Small-Diameter Trees to the Structure, Diversity and Biomass of a Tropical Evergreen Forest at Rabi, Gabon

    PubMed Central

    Memiaghe, Hervé R.; Lutz, James A.; Korte, Lisa; Alonso, Alfonso; Kenfack, David

    2016-01-01

    Tropical forests have long been recognized for their biodiversity and ecosystem services. Despite their importance, tropical forests, and particularly those of central Africa, remain understudied. Until recently, most forest inventories in Central Africa have focused on trees ≥10 cm in diameter, even though several studies have shown that small-diameter tree population may be important to demographic rates and nutrient cycling. To determine the ecological importance of small-diameter trees in central African forests, we used data from a 25-ha permanent plot that we established in the rainforest of Gabon to study the diversity and dynamics of these forests. Within the plot, we censused 175,830 trees ≥1 cm dbh from 54 families, 192 genera, and 345 species. Average tree density was 7,026 trees/ha, basal area 31.64 m2/ha, and above-ground biomass 369.40 Mg/ha. Fabaceae, Ebenaceae and Euphorbiaceae were the most important families by basal area, density and above-ground biomass. Small-diameter trees (1 cm ≥ dbh <10 cm) comprised 93.7% of the total tree population, 16.5% of basal area, and 4.8% of the above-ground biomass. They also had diversity 18% higher at family level, 34% higher at genus level, and 42% higher at species level than trees ≥10 cm dbh. Although the relative contribution of small-diameter trees to biomass was comparable to other forests globally, their contribution to forest density, and diversity was disproportionately higher. The high levels of diversity within small-diameter classes may give these forests high levels of structural resilience to anthropogenic/natural disturbance and a changing climate. PMID:27186658

  9. Influence of multiple brain metastases’ size and number on the quality of SRS - VMAT dose delivery

    NASA Astrophysics Data System (ADS)

    Prentou, G.; Koutsouveli, E.; Pantelis, E.; Papagiannis, P.; Georgiou, E.; Karaiskos, P.

    2017-11-01

    Stereotactic radiosurgery with volumetric modulated arc therapy (SRS-VMAT) has recently been introduced for treatment of multiple brain metastases with a single isocenter. The technique’s high efficiency is nevertheless dependent of metastatic tumors’ characteristics such as size and number. In this work the impact of the metastases’ size and number on the plan quality indices clinically used for plan evaluation and acceptance is investigated. Fifteen targets with a diameter of 1 cm and average volume of 0.7 cm3 and ten targets with a diameter of 2 cm and average volume of 6.5 cm3 were contoured on an anonymized patient CT dataset, in Monaco (Elekta) treatment planning system. VMAT plans for different target volumes (1 and 2 cm in diameter) and various target numbers (1-15) were generated using four non-coplanar arcs and the Agility (Elekta) linear accelerator (5 mm MLC width) using a Monte Carlo dose calculation algorithm and 1mm dose calculation grid resolution. Conformity index (CI), gradient index (GI) and heterogeneity index (HI) were determined for each target. High quality plans were created for both 1 cm and 2 cm in diameter targets for limited (<6) number of targets per plan. For increased number of irradiated targets (>6) both CI and GI, clinically used for plan evaluation and acceptance, were found to deteriorate.

  10. Formation of Annular Protofibrillar Assembly by Cysteine Tripeptide: Unraveling the Interactions with NMR, FTIR, and Molecular Dynamics.

    PubMed

    Banerji, Biswadip; Chatterjee, Moumita; Pal, Uttam; Maiti, Nakul C

    2017-07-06

    Both hydrogen-bonding and hydrophobic interactions play a significant role in molecular assembly, including self-assembly of proteins and peptides. In this study, we report the formation of annular protofibrillar structure (diameter ∼500 nm) made of a newly synthesized s-benzyl-protected cysteine tripeptide, which was primarily stabilized by hydrogen-bonding and hydrophobic interactions. Atomic force microscopy and field emission scanning electron microscopy analyses found small oligomers (diameter ∼60 nm) to bigger annular (outer diameter ∼300 nm; inner diameter, 100 nm) and protofibrillar structures after 1-2 days of incubation. Rotating-frame Overhauser spectroscopic (ROESY) analysis revealed the presence of several nonbonded proton-proton interactions among the residues, such as amide protons with methylene group, aromatic protons with tertiary butyl group, and methylene protons with tertiary butyl group. These added significant stability to bring the peptides closer to form a well-ordered assembled structure. Hydrogen-deuterium exchange NMR measurement further suggested that two individual amide protons among the three amide groups were strongly engaged with the adjacent tripeptide via H-bond interaction. However, the remaining amide proton was found to be exposed to solvent and remained noninteracting with other tripeptide molecules. In addition to chemical shift values, a significant change in amide bond vibrations of the tripeptide was found due to the formation of the self-assembled structure. The amide I mode of vibrations involving two amide linkages appeared at 1641 and 1695 cm -1 in the solid state. However, in the assembled state, the stretching band at 1695 cm -1 became broad and slightly shifted to ∼1689 cm -1 . On the contrary, the band at 1641 cm -1 shifted to 1659 cm -1 and indicated that the -C═O bond associated with this vibration became stronger in the assembled state. These changes in Fourier transform infrared spectroscopy frequency clearly indicated changes in the amide backbone conformation and the associated hydrogen-bonding pattern due to the formation of the assembled structure. In addition to hydrogen bonding, molecular dynamics simulation indicated that the number of π-π interactions also increased with increasing number of tripeptides participated in the self-assembly process. Combined results envisaged a cross β-sheet assembly unit consisting of four intermolecular hydrogen bonds. Such noncovalent peptide assemblies glued by hydrogen-bonding and other weak forces may be useful in developing nanocapsule and related materials.

  11. Triggering regime of oil-filled trigatron dischargers

    NASA Astrophysics Data System (ADS)

    Kapishnikov, N. K.; Muratov, V. M.

    1986-11-01

    A comparative analysis made in [1, 2] of different types of regulable high-voltage dischargers with liquid insulation showed that trigatrons are currently the most promising for use in high-voltage pulse-operated devices due to their simplicity and reliability. Two basic mechanisms of discharge initiation can be realized in trigatrons — initiation by intensification of the field in the region of the control electrode [2, 3], and triggering by a spark in the ignition gap [4, 5]. The first type of trigatron has been studied sufficiently only for short voltage periods [3, 6, 7], so it is used mainly in switching the pulse-shaping lines of powerful nanosecond pulse generators with “rapid” (0.5 1.5 μsec) charging [8, 9]. Almost no use is now made of the second type of trigatron switch in high-voltage pulse technology due to its unsatisfactory time characteristics. Here we report results of a study of the time characteristics of both types of oil-filled trigatrons operating in a regime whereby they form the leading edge of rectangular voltage pulses with amplitudes up to 800 kV and durations of 1 100 μsec. The goal is to find the optimum conditions for triggering of trigatron dischargers with liquid insulation in the region of microsecond voltage discharges. Experiments were conducted on the unit in [10]. The test discharger was placed in a cylindrical chamber 45 cm in diameter and 27 cm in length. The high-voltage electrode of the discharger was in the form of a cylinder 20 cm in diameter positioned coaxially inside the chamber. The 10-mm-diameter ground electrode was positioned radially in a branch pipe 8 cm long. The control electrode was placed in a 2-cm-diameter hole in the center of the ground electrode. The chamber with the test discharge was filled with transformer oil with a breakdown voltage of about 50 kV. The oil was not replaced or cleaned during the experiment. We did not find that contamination of the oil by discharge products had any effect on the time characteristics of either type of discharger. The results were analyzed by the least squares method, with 50 measurements to a point (it was found that time lag of the discharger triggering conforms approximately to a normal distribution law for both types of discharger).

  12. A vacuum-sealed miniature X-ray tube based on carbon nanotube field emitters

    NASA Astrophysics Data System (ADS)

    Heo, Sung Hwan; Kim, Hyun Jin; Ha, Jun Mok; Cho, Sung Oh

    2012-05-01

    A vacuum-sealed miniature X-ray tube based on a carbon nanotube field-emission electron source has been demonstrated. The diameter of the X-ray tube is 10 mm; the total length of the tube is 50 mm, and no external vacuum pump is required for the operation. The maximum tube voltage reaches up to 70 kV, and the X-ray tube generates intense X-rays with the air kerma strength of 108 Gy·cm2 min-1. In addition, X-rays produced from the miniature X-ray tube have a comparatively uniform spatial dose distribution.

  13. Acoustic tests of a 15.2 centimeter-diameter potential flow convergent nozzle

    NASA Technical Reports Server (NTRS)

    Karchmer, A. M.; Dorsch, R. G.; Friedman, R.

    1974-01-01

    An experimental investigation of the jet noise radiated to the far field from a 15.2-cm-diam potential flow convergent nozzle has been conducted. Tests were made with unheated airflow over a range of subsonic nozzle exhaust velocities from 62 to 310m/sec. Mean and turbulent velocity measurements in the flow field of the nozzle exhaust indicated no apparent flow anomalies. Acoustic measurements yielded data uncontaminated by internal and/or background noise to velocities as low as 152m/sec. Finally, no significantly different acoustic characteristics between the potential flow nozzle and simple convergent nozzles were found.

  14. Magnetic Fields of the Cerebral Cortex,

    DTIC Science & Technology

    1980-06-15

    with worm gears on two separate horizontal shafts . One shaft (the declination axle ) near the end of the frame rotates the dewar. The other near the...carriage is fabricated from fiberglass or wood wherever possible. Vertical movement of the dewar is permitted by a 6 cm diameter cylindrical axle of...hardwood that runs between sets of aluminum rollers having double conical shape. The axle is supported by four strands of nylon parachute cord, each

  15. Extinction measurements with low-power hsrl systems—error limits

    NASA Astrophysics Data System (ADS)

    Eloranta, Ed

    2018-04-01

    HSRL measurements of extinction are more difficult than backscatter measurements. This is particularly true for low-power, eye-safe systems. This paper looks at error sources that currently provide an error limit of 10-5 m-1 for boundary layer extinction measurements made with University of Wisconsin HSRL systems. These eye-safe systems typically use 300mW transmitters and 40 cm diameter receivers with a 10-4 radian field-of-view.

  16. Effect of textile industrial effluent on tree plantation and soil chemistry.

    PubMed

    Singh, G; Bala, N; Rathod, T R; Singh, B

    2001-01-01

    A field study was conducted at Arid Forest Research Institute to study the effect of textile industrial effluent on the growth of forest trees and associated soil properties. The effluent has high pH, electrical conductivity (EC), sodium adsorption ratio (SAR) and residual sodium carbonate (RSC) whereas the bivalent cations were in traces. Eight months old seedlings of Acacia nilotica, Acacia tortilis, Albizia lebbeck, Azadirachta indica, Parkinsonia aculeata and Prosopis juliflora were planted in July 1993. Various treatment regimes followed were; irrigation with effluent only (W1), effluent mixed with canal water in 1:1 ratio (W2), irrigation with gypsum treated effluent (W3), gypsum treated soil irrigated with effluent (W4) and wood ash treated soil irrigated with effluent (W5). Treatment regime W5 was found the best where plants attained (mean of six species) 173 cm height, 138 cm crown diameter and 9.2 cm collar girth at the age of 28 months. The poorest growth was observed under treatment regime of W3. The growth of the species varied significantly and the maximum growth was recorded for P. juliflora (188 cm height, 198 cm crown diameter and 10.0 cm collar girth). The minimum growth was recorded for A. lebbeck. Irrigation with effluent resulted in increase in percent organic matter as well as in EC. In most of the cases there were no changes in soil pH except in W5 where it was due to the effect of wood ash. Addition of wood ash influenced plant growth. These results suggest that tree species studied (except A. lebbeck) can be established successfully using textile industrial wastewater in arid region.

  17. Toward 20 T magnetic resonance for human brain studies: opportunities for discovery and neuroscience rationale

    PubMed Central

    Bird, Mark D.; Frydman, Lucio; Long, Joanna R.; Mareci, Thomas H.; Rooney, William D.; Rosen, Bruce; Schenck, John F.; Schepkin, Victor D.; Sherry, A. Dean; Sodickson, Daniel K.; Springer, Charles S.; Thulborn, Keith R.; Uğurbil, Kamil; Wald, Lawrence L.

    2017-01-01

    An initiative to design and build magnetic resonance imaging (MRI) and spectroscopy (MRS) instruments at 14 T and beyond to 20 T has been underway since 2012. This initiative has been supported by 22 interested participants from the USA and Europe, of which 15 are authors of this review. Advances in high temperature superconductor materials, advances in cryocooling engineering, prospects for non-persistent mode stable magnets, and experiences gained from large-bore, high-field magnet engineering for the nuclear fusion endeavors support the feasibility of a human brain MRI and MRS system with 1 ppm homogeneity over at least a 16-cm diameter volume and a bore size of 68 cm. Twelve neuroscience opportunities are presented as well as an analysis of the biophysical and physiological effects to be investigated before exposing human subjects to the high fields of 14 T and beyond. PMID:27194154

  18. Toward 20 T magnetic resonance for human brain studies: opportunities for discovery and neuroscience rationale.

    PubMed

    Budinger, Thomas F; Bird, Mark D; Frydman, Lucio; Long, Joanna R; Mareci, Thomas H; Rooney, William D; Rosen, Bruce; Schenck, John F; Schepkin, Victor D; Sherry, A Dean; Sodickson, Daniel K; Springer, Charles S; Thulborn, Keith R; Uğurbil, Kamil; Wald, Lawrence L

    2016-06-01

    An initiative to design and build magnetic resonance imaging (MRI) and spectroscopy (MRS) instruments at 14 T and beyond to 20 T has been underway since 2012. This initiative has been supported by 22 interested participants from the USA and Europe, of which 15 are authors of this review. Advances in high temperature superconductor materials, advances in cryocooling engineering, prospects for non-persistent mode stable magnets, and experiences gained from large-bore, high-field magnet engineering for the nuclear fusion endeavors support the feasibility of a human brain MRI and MRS system with 1 ppm homogeneity over at least a 16-cm diameter volume and a bore size of 68 cm. Twelve neuroscience opportunities are presented as well as an analysis of the biophysical and physiological effects to be investigated before exposing human subjects to the high fields of 14 T and beyond.

  19. Testing Moderating Detection Systems with {sup 252}Cf-Based Reference Neutron Fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hertel, Nolan E.; Sweezy, Jeremy; Sauber, Jeremiah S.

    Calibration measurements were carried out on a probe designed to measure ambient dose equivalent in accordance with ICRP Pub 60 recommendations. It consists of a cylindrical {sup 3}He proportional counter surrounded by a 25-cm-diameter spherical polyethylene moderator. Its neutron response is optimized for dose rate measurements of neutrons between thermal energies and 20 MeV. The instrument was used to measure the dose rate in four separate neutron fields: unmoderated {sup 252}Cf, D{sub 2}O-moderated {sup 252}Cf, polyethylene-moderated {sup 252}Cf, and WEP neutron howitzer with {sup 252}Cf at its center. Dose equivalent measurements were performed at source-detector centerline distances from 50 tomore » 200 cm. The ratio of air-scatter- and room-return-corrected ambient dose equivalent rates to ambient dose equivalent rates calculated with the code MCNP are tabulated.« less

  20. High-powered microwave ablation with a small-gauge, gas-cooled antenna: initial ex vivo and in vivo results.

    PubMed

    Lubner, Meghan G; Hinshaw, J Louis; Andreano, Anita; Sampson, Lisa; Lee, Fred T; Brace, Christopher L

    2012-03-01

    To evaluate the performance of a gas-cooled, high-powered microwave system. Investigators performed 54 ablations in ex vivo bovine livers using three devices-a single 17-gauge cooled radiofrequency(RF) electrode; a cluster RF electrode; and a single 17-gauge, gas-cooled microwave (MW) antenna-at three time points (n = 6 at 4 minutes, 12 minutes, and 16 minutes). RF power was applied using impedance-based pulsing with maximum 200 W generator output. MW power of 135 W at 2.45 GHz was delivered continuously. An approved in vivo study was performed using 13 domestic pigs. Hepatic ablations were performed using single applicators and the above-mentioned MW and RF generator systems at treatment times of 2 minutes (n = 7 MW, n = 6 RF), 5 minutes (n = 23 MW, n = 8 RF), 7 minutes (n = 11 MW, n = 6 RF), and 10 minutes (n = 7 MW, n = 9 RF). Mean transverse diameter and length of the ablation zones were compared using analysis of variance (ANOVA) with post-hoc t tests and Wilcoxon rank-sum tests. Single ex vivo MW ablations were larger than single RF ablations at all time points (MW mean diameter range 3.5-4.8 cm 4-16 minutes; RF mean diameter range 2.6-3.1 cm 4-16 minutes) (P < .05). There was no difference in mean diameter between cluster RF and MW ablations (RF 3.3-4.4 cm 4-16 minutes; P = .4-.9). In vivo lesion diameters for MW (and RF) were as follows: 2.6 cm ± 0.72 (RF 1.5 cm ± 0.14), 3.6 cm ± 0.89 (RF 2.0 cm ± 0.4), 3.4 cm ± 0.87 (RF 1.8 cm ± 0.23), and 3.8 cm ± 0.74 (RF 2.1 cm ± 0.3) at 2 minutes, 5 minutes, 7 minutes, and 10 minutes (P < .05 all time points). Gas-cooled, high-powered MW ablation allows the generation of large ablation zones in short times. Copyright © 2012 SIR. Published by Elsevier Inc. All rights reserved.

  1. Ceramic backup ring prevents undesirable weld-metal buildup

    NASA Technical Reports Server (NTRS)

    Leonard, G. E.

    1971-01-01

    Removable ceramic backup material butted against weld zone back prevents weld metal buildup at that site. Method is successful with manual tungsten-inert gas /TIG/ welding of 316 corrosion resistant steel /CRES/ pieces with 0.76 cm throat diameter and 1.57 cm pipe internal diameter.

  2. Small field electron beam dosimetry using MOSFET detector.

    PubMed

    Amin, Md Nurul; Heaton, Robert; Norrlinger, Bern; Islam, Mohammad K

    2010-10-04

    The dosimetry of very small electron fields can be challenging due to relative shifts in percent depth-dose curves, including the location of dmax, and lack of lateral electronic equilibrium in an ion chamber when placed in the beam. Conventionally a small parallel plate chamber or film is utilized to perform small field electron beam dosimetry. Since modern radiotherapy departments are becoming filmless in favor of electronic imaging, an alternate and readily available clinical dosimeter needs to be explored. We have studied the performance of MOSFET as a relative dosimeter in small field electron beams. The reproducibility, linearity and sensitivity of a high-sensitivity microMOSFET were investigated for clinical electron beams. In addition, the percent depth doses, output factors and profiles have been measured in a water tank with MOSFET and compared with those measured by an ion chamber for a range of field sizes from 1 cm diameter to 10 cm × 10 cm for 6, 12, 16 and 20 MeV beams. Similar comparative measurements were also per-formed with MOSFET and films in solid water phantom. The MOSFET sensitivity was found to be practically constant over the range of field sizes investigated. The dose response was found to be linear and reproducible (within ± 1% for 100 cGy). An excellent agreement was observed among the central axis depth dose curves measured using MOSFET, film and ion chamber. The output factors measured with MOSFET for small fields agreed to within 3% with those measured by film dosimetry. Overall results indicate that MOSFET can be utilized to perform dosimetry for small field electron beam.

  3. Design and Construction of an X-ray Lightning Camera

    NASA Astrophysics Data System (ADS)

    Schaal, M.; Dwyer, J. R.; Rassoul, H. K.; Uman, M. A.; Jordan, D. M.; Hill, J. D.

    2010-12-01

    A pinhole-type camera was designed and built for the purpose of producing high-speed images of the x-ray emissions from rocket-and-wire-triggered lightning. The camera consists of 30 7.62-cm diameter NaI(Tl) scintillation detectors, each sampling at 10 million frames per second. The steel structure of the camera is encased in 1.27-cm thick lead, which blocks x-rays that are less than 400 keV, except through a 7.62-cm diameter “pinhole” aperture located at the front of the camera. The lead and steel structure is covered in 0.16-cm thick aluminum to block RF noise, water and light. All together, the camera weighs about 550-kg and is approximately 1.2-m x 0.6-m x 0.6-m. The image plane, which is adjustable, was placed 32-cm behind the pinhole aperture, giving a field of view of about ±38° in both the vertical and horizontal directions. The elevation of the camera is adjustable between 0 and 50° from horizontal and the camera may be pointed in any azimuthal direction. In its current configuration, the camera’s angular resolution is about 14°. During the summer of 2010, the x-ray camera was located 44-m from the rocket-launch tower at the UF/Florida Tech International Center for Lightning Research and Testing (ICLRT) at Camp Blanding, FL and several rocket-triggered lightning flashes were observed. In this presentation, I will discuss the design, construction and operation of this x-ray camera.

  4. An array of Eiffel-tower-shape AlN nanotips and its field emission properties

    NASA Astrophysics Data System (ADS)

    Tang, Yongbing; Cong, Hongtao; Chen, Zhigang; Cheng, Huiming

    2005-06-01

    An array of Eiffel-tower-shape AlN nanotips has been synthesized and assembled vertically with Si substrate by a chemical vapor deposition method at 700 °C. The single-crystalline AlN nanotips along [001] direction, including sharp tips with 10-100 nm in diameter and submicron-sized bases, are distributed uniformly with density of 106-107tips/cm2. Field emission (FE) measurements show that its turn on field is 4.7 V/μm, which is comparable to that of carbon nanotubes, and the fluctuation of FE current is as small as 0.74% for 4 h. It is revealed this nanostructure is available to optimize the FE properties and make the array a promising field emitter.

  5. Fresnel-region fields and antenna noise-temperature calculations for advanced microwave sounding units

    NASA Technical Reports Server (NTRS)

    Schmidt, R. F.

    1982-01-01

    A transition from the antenna noise temperature formulation for extended noise sources in the far-field or Fraunhofer-region of an antenna to one of the intermediate near field or Fresnel-region is discussed. The effort is directed toward microwave antenna simulations and high-speed digital computer analysis of radiometric sounding units used to obtain water vapor and temperature profiles of the atmosphere. Fresnel-region fields are compared at various distances from the aperture. The antenna noise temperature contribution of an annular noise source is computed in the Fresnel-region (D squared/16 lambda) for a 13.2 cm diameter offset-paraboloid aperture at 60 GHz. The time-average Poynting vector is used to effect the computation.

  6. Study on the role of active radicals on plasma sterilization inside small diameter flexible polymeric tubes

    NASA Astrophysics Data System (ADS)

    Mstsuura, Hiroto; Fujiyama, Takatomo; Okuno, Yasuki; Furuta, Masakazu; Okuda, Shuichi; Takemura, Yuichiro

    2015-09-01

    Recently, atmospheric pressure discharge plasma has gathered attention in various fields. Among them, plasma sterilization with many types of plasma source has studied for decades and its mechanism is still an open question. If active radicals produced in plasma has main contribution of killing bacterias, direct contact of the so-called plasma flame might not be necessary. To confirm this, sterilization inside small diameter flexible polymeric tubes is studied in present work. DBD type plasma jet is produce by flowing helium gas in a glass tube. A long polymeric tube is connected and plasma jet is introduced into it. Plasma flame length depends on helium gas flow rate, but limited to about 10 cm in our experimental condition. E.colis set at the exit plasma source is easily killed during 10 min irradiation. At the tube end (about 20 cm away from plasma source exit), sterilization is possible with 30 min operation. This result shows that active radical is produced with helium plasma and mist contained in sample, and it can be transferred more than 20 cm during it life time. More plasma diagnostic data will also be shown at the conference. This work was partially supported by the ''ZE Research Program, IAE(ZE27B-4).

  7. Walnut Twig Beetle (Coleoptera: Curculionidae: Scolytinae) Colonization of Eastern Black Walnut Nursery Trees

    PubMed Central

    Klingeman, William E.; Mayfield, Albert; Myers, Scott; Taylor, Adam

    2017-01-01

    Thousand cankers disease, caused by the invasive bark beetle Pityophthorus juglandis Blackman and an associated fungal pathogen Geosmithia morbida M.Kolařík, E. Freeland, C. Utley, N. Tisserat, currently threatens the health of eastern black walnut (Juglans nigra L.) in North America. Both the beetle and pathogen have expanded beyond their native range via transport of infested walnut wood. Geosmithia morbida can develop in seedlings following inoculation, but the ability of P. juglandis to colonize young, small diameter trees has not been investigated. This study assessed the beetle’s colonization behavior on J. nigra nursery trees. Beetles were caged directly onto the stems of walnut seedlings from five nursery sources representing a range of basal stem diameter classes. Seedlings were also exposed to P. juglandis in a limited choice, field-based experiment comparing pheromone-baited and unbaited stems. When beetles were caged directly onto stems, they probed and attempted to colonize seedlings across the range of diameters and across sources tested, including stems as small as 0.5 cm in diameter. In the field experiment, beetles only attempted to colonize seedlings that were baited with a pheromone lure and appeared to prefer (though not statistically significant) the larger diameter trees. Despite several successful penetrations into the phloem, there was no evidence of successful progeny development within the young trees in either experiment. Further investigation is recommended to better elucidate the risk nursery stock poses as a pathway for thousand cankers disease causal organisms. PMID:28973569

  8. NUMERICAL CALCULATIONS ON REVERSED FIELD HEATING IN THE THETATRON

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niblett, G.B.F.; Fisher, D.L.

    1962-03-01

    Numerical solutions of the two-fluid hydromagnetic equations designed to study the effect of trapped magnetic fields on the properties of a plasma compressed in the theta are discussed. Conditions typical of the AWRE Maggi condenser banks were selected: deuterium at an initial pressure of lOO mu contained in a tube 4 cm in diameter is compressed by a field rising to 100 kilogauss in 2.5 mu sec. Initial bias fields of between +5 and --5 kilogauss were used, and the effects of preheat and rate of compression were assessed. The calculations showed that rapid joule heating is niaintained by themore » large field gradients characteristic of reversed field discharges, and for an initial bias field of --5 kg a peak electron temperature of 1.3 kev was predicted. (auth)« less

  9. EMI survey for maritime satellite 1535-1645-MHz shipboard terminal

    NASA Technical Reports Server (NTRS)

    Taylor, R. E.; Brandel, D. L.; Hill, J. S.

    1977-01-01

    A 15,690-ton commercial container ship was selected as lead ship for an onboard electromagnetic-interference (EMI) survey prior to installation of 1535-1645-MHz (L-Band) shipboard terminals for communication via a maritime satellite. In general, the EMI survey revealed tolerable interference levels on board ship. Radiometer measurements indicate antenna-noise temperatures less than 70 K at elevation angles of 5 deg and greater at 1559 MHz at the output terminals of the 1.2-m diameter parabolic-dish antenna for the L-band shipboard terminal. Other EMI measurements include field intensity from 3-cm and 10-cm wavelength pulse radars, and conducted-emission tests of primary power lines to both onboard radars.

  10. Comparison of Epidermal/Dermal Damage Between the Long-Pulsed 1064 nm Nd:YAG and 755 nm Alexandrite Lasers Under Relatively High Fluence Conditions: Quantitative and Histological Assessments

    PubMed Central

    Lee, Ju Hwan; Park, So Ra; Jo, Jeong Ho; Park, Sung Yun; Seo, Young Kwon

    2014-01-01

    Abstract Objective: The purpose of this study was to compare degrees of epidermal/dermal tissue damage quantitatively and histologically after laser irradiation, to find ideal treatment conditions with relatively high fluence for skin rejuvenation. Background data: A number of recent studies have evaluated the clinical efficacy and safety of therapeutic lasers under relatively low fluence conditions. Methods: We transmitted the long-pulsed 1064 nm Nd:YAG and 755 nm Alexandrite lasers into pig skin according to different fluences and spot diameters, and estimated epidermal/dermal temperatures. Pig skin specimens were stained with hematoxylin and eosin for histological assessments. The fluence conditions comprised 26, 30, and 36 J/cm2, and the spot diameter conditions were 5, 8, and 10 mm. Pulse duration was 30 ms for all experiments. Results: Both lasers produced reliable thermal damage on the dermis without any serious epidermal injuries, under relatively high fluence conditions. The 1064 nm laser provided more active fibrous formations than the 755 nm laser, while higher risks for tissue damages simultaneously occurred. Conclusions: The ideal treatment conditions for skin rejuvenation were 8 mm diameter with 30 J/cm2 and 10 mm diameter with 26 J/cm2 for the 1064 nm laser, and 8 mm diameter with 36 J/cm2 and 10 mm diameter with 26 J/cm2 for the 755 nm laser. PMID:24992273

  11. Long-term diameter growth for trees in the Cinnamon Bay Watershed

    Treesearch

    Peter L. Weaver

    2009-01-01

    From 1983 to 2008, the mean annual diameter growth (MAI) for 1,402 surviving stems of 62 species in the Cinnamon Bay watershed was 0.08¡À0.002 cm yr-1. Long-term MAI ranged from 0.02 cm yr-1 for Randia aculeata to 0.23 cm yr-1 for Inga laurina. Of the 30 species with ¡Ý8 surviving stems, eight averaged ¡Ý0.10 cm yr-1. Hurricane Hugo in 1989, Hurricane Marilyn in 1995,...

  12. Modeling and process optimization of electrospinning of chitosan-collagen nanofiber by response surface methodology

    NASA Astrophysics Data System (ADS)

    Amiri, Nafise; Moradi, Ali; Abolghasem Sajjadi Tabasi, Sayyed; Movaffagh, Jebrail

    2018-04-01

    Chitosan-collagen composite nanofiber is of a great interest to researchers in biomedical fields. Since the electrospinning is the most popular method for nanofiber production, having a comprehensive knowledge of the electrospinning process is beneficial. Modeling techniques are precious tools for managing variables in the electrospinning process, prior to the more time- consuming and expensive experimental techniques. In this study, a central composite design of response surface methodology (RSM) was employed to develop a statistical model as well as to define the optimum condition for fabrication of chitosan-collagen nanofiber with minimum diameter. The individual and the interaction effects of applied voltage (10–25 kV), flow rate (0.5–1.5 mL h‑1), and needle to collector distance (15–25 cm) on the fiber diameter were investigated. ATR- FTIR and cell study were done to evaluate the optimized nanofibers. According to the RSM, a two-factor interaction (2FI) model was the most suitable model. The high regression coefficient value (R 2 ≥ 0.9666) of the fitted regression model and insignificant lack of fit (P = 0.0715) indicated that the model was highly adequate in predicting chitosan-collagen nanofiber diameter. The optimization process showed that the chitosan-collagen nanofiber diameter of 156.05 nm could be obtained in 9 kV, 0.2 ml h‑1, and 25 cm which was confirmed by experiment (155.92 ± 18.95 nm). The ATR-FTIR and cell study confirmed the structure and biocompatibility of the optimized membrane. The represented model could assist researchers in fabricating chitosan-collagen electrospun scaffolds with a predictable fiber diameter, and optimized chitosan-collagen nanofibrous mat could be a potential candidate for wound healing and tissue engineering.

  13. Performance optimization in electric field gradient focusing.

    PubMed

    Sun, Xuefei; Farnsworth, Paul B; Tolley, H Dennis; Warnick, Karl F; Woolley, Adam T; Lee, Milton L

    2009-01-02

    Electric field gradient focusing (EFGF) is a technique used to simultaneously separate and concentrate biomacromolecules, such as proteins, based on the opposing forces of an electric field gradient and a hydrodynamic flow. Recently, we reported EFGF devices fabricated completely from copolymers functionalized with poly(ethylene glycol), which display excellent resistance to protein adsorption. However, the previous devices did not provide the predicted linear electric field gradient and stable current. To improve performance, Tris-HCl buffer that was previously doped in the hydrogel was replaced with a phosphate buffer containing a salt (i.e., potassium chloride, KCl) with high mobility ions. The new devices exhibited stable current, good reproducibility, and a linear electric field distribution in agreement with the shaped gradient region design due to improved ion transport in the hydrogel. The field gradient was calculated based on theory to be approximately 5.76 V/cm(2) for R-phycoerythrin when the applied voltage was 500 V. The effect of EFGF separation channel dimensions was also investigated; a narrower focused band was achieved in a smaller diameter channel. The relationship between the bandwidth and channel diameter is consistent with theory. Three model proteins were resolved in an EFGF channel of this design. The improved device demonstrated 14,000-fold concentration of a protein sample (from 2 ng/mL to 27 microg/mL).

  14. Stripping the Sheath From Stranded Cables

    NASA Technical Reports Server (NTRS)

    Prisk, A. L.; Rotta, J. W.

    1985-01-01

    Device similar to tubing cutter removes tough plastic cover. Insulation stripper is 3 in. (7.6 cm) long and 1.5 (3.8 cm) in diameter. Two rollers are small-diameter bearings. Cutter blade journaled for rotation between pair of similar bearings. Bearings either pin or ball types of suitable dimensions.

  15. NMR spectroscopy up to 35.2T using a series-connected hybrid magnet.

    PubMed

    Gan, Zhehong; Hung, Ivan; Wang, Xiaoling; Paulino, Joana; Wu, Gang; Litvak, Ilya M; Gor'kov, Peter L; Brey, William W; Lendi, Pietro; Schiano, Jeffrey L; Bird, Mark D; Dixon, Iain R; Toth, Jack; Boebinger, Gregory S; Cross, Timothy A

    2017-11-01

    The National High Magnetic Field Laboratory has brought to field a Series-Connected Hybrid magnet for NMR spectroscopy. As a DC powered magnet it can be operated at fields up to 36.1T. The series connection between a superconducting outsert and a resistive insert dramatically minimizes the high frequency fluctuations of the magnetic field typically observed in purely resistive magnets. Current-density-grading among various resistive coils was used for improved field homogeneity. The 48mm magnet bore and 42mm outer diameter of the probes leaves limited space for conventional shims and consequently a combination of resistive and ferromagnetic shims are used. Field maps corrected for field instabilities were obtained and shimming achieved better than 1ppm homogeneity over a cylindrical volume of 1cm diameter and height. The magnetic field is regulated within 0.2ppm using an external 7 Li lock sample doped with paramagnetic MnCl 2 . The improved field homogeneity and field regulation using a modified AVANCE NEO console enables NMR spectroscopy at 1 H frequencies of 1.0, 1.2 and 1.5GHz. NMR at 1.5GHz reflects a 50% increase in field strength above the highest superconducting magnets currently available. Three NMR probes have been constructed each equipped with an external lock rf coil for field regulation. Initial NMR results obtained from the SCH magnet using these probes illustrate the very exciting potential of ultra-high magnetic fields. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. NMR spectroscopy up to 35.2 T using a series-connected hybrid magnet

    NASA Astrophysics Data System (ADS)

    Gan, Zhehong; Hung, Ivan; Wang, Xiaoling; Paulino, Joana; Wu, Gang; Litvak, Ilya M.; Gor'kov, Peter L.; Brey, William W.; Lendi, Pietro; Schiano, Jeffrey L.; Bird, Mark D.; Dixon, Iain R.; Toth, Jack; Boebinger, Gregory S.; Cross, Timothy A.

    2017-11-01

    The National High Magnetic Field Laboratory has brought to field a Series-Connected Hybrid magnet for NMR spectroscopy. As a DC powered magnet it can be operated at fields up to 36.1 T. The series connection between a superconducting outsert and a resistive insert dramatically minimizes the high frequency fluctuations of the magnetic field typically observed in purely resistive magnets. Current-density-grading among various resistive coils was used for improved field homogeneity. The 48 mm magnet bore and 42 mm outer diameter of the probes leaves limited space for conventional shims and consequently a combination of resistive and ferromagnetic shims are used. Field maps corrected for field instabilities were obtained and shimming achieved better than 1 ppm homogeneity over a cylindrical volume of 1 cm diameter and height. The magnetic field is regulated within 0.2 ppm using an external 7Li lock sample doped with paramagnetic MnCl2. The improved field homogeneity and field regulation using a modified AVANCE NEO console enables NMR spectroscopy at 1H frequencies of 1.0, 1.2 and 1.5 GHz. NMR at 1.5 GHz reflects a 50% increase in field strength above the highest superconducting magnets currently available. Three NMR probes have been constructed each equipped with an external lock rf coil for field regulation. Initial NMR results obtained from the SCH magnet using these probes illustrate the very exciting potential of ultra-high magnetic fields.

  17. Structural-electromagnetic bidirectional coupling analysis of space large film reflector antennas

    NASA Astrophysics Data System (ADS)

    Zhang, Xinghua; Zhang, Shuxin; Cheng, ZhengAi; Duan, Baoyan; Yang, Chen; Li, Meng; Hou, Xinbin; Li, Xun

    2017-10-01

    As used for energy transmission, a space large film reflector antenna (SLFRA) is characterized by large size and enduring high power density. The structural flexibility and the microwave radiation pressure (MRP) will lead to the phenomenon of structural-electromagnetic bidirectional coupling (SEBC). In this paper, the SEBC model of SLFRA is presented, then the deformation induced by the MRP and the corresponding far field pattern deterioration are simulated. Results show that, the direction of the MRP is identical to the normal of the reflector surface, and the magnitude is proportional to the power density and the square of cosine incident angle. For a typical cosine function distributed electric field, the MRP is a square of cosine distributed across the diameter. The maximum deflections of SLFRA linearly increase with the increasing microwave power densities and the square of the reflector diameters, and vary inversely with the film thicknesses. When the reflector diameter becomes 100 m large and the microwave power density exceeds 102 W/cm2, the gain loss of the 6.3 μm-thick reflector goes beyond 0.75 dB. When the MRP-induced deflection degrades the reflector performance, the SEBC should be taken into account.

  18. Proof of principle experiments for helicon discharges in hydrogen

    NASA Astrophysics Data System (ADS)

    Briefi, Stefan; Fantz, Ursel

    2013-09-01

    In order to reduce the amount of power required for generating CW hydrogen discharges with high electron densities and a high degree of dissociation via RF coupling, the helicon concept is investigated. For this purpose a small laboratory experiment (length of the discharge vessel 40 cm, diameter 10 cm) has been built up. The RF generator has a maximum power of 600 W (frequency 13.56 MHz) and a Nagoya type III antenna is applied. As water cooling was avoided in constructing the experiment for simplicity, the induction coils can only generate a rather low magnetic field up to 14 mT. The performed investigations cover a variation of the RF power and the magnetic field in a pressure range between 0.3 and 10 Pa. Around a magnetic field of 3 mT the low field peak which is typical for helicon discharges could be observed. As the high density mode of helicon discharges has not yet been reached, a different RF generator (2 MHz, 2 KW) and water cooled induction coils will be applied in a next step in order to increase the available power and the magnetic field.

  19. Performance of a 12-coil superconducting bumpy torus magnet facility

    NASA Technical Reports Server (NTRS)

    Roth, J. R.; Holmes, A. D.; Keller, T. A.; Krawczonek, W. M.

    1972-01-01

    The bumpy torus facility consists of 12 superconducting coils, each 19 cm i.d. and capable of 3.0 teslas on their axes. The coils are equally spaced around a toroidal array with a major diameter of 1.52 m, and are mounted with the major axis of the torus vertical in a single vacuum tank 2.6 m in diameter. Final shakedown tests of the facility mapped out its magnetic, cryogenic, vacuum, mechanical, and electrical performance. The facility is now ready for use as a plasma physics research facility. A maximum magnetic field on the magnetic axis of 3.23 teslas was held for a period of more than sixty minutes without a coil normalcy. The design field was 3.00 teslas. The steady-state liquid helium boil-off rate was 87 liters per hour of liquid helium without the coils charged. The coil array was stable when subjected to an impulsive loading, even with the magnets fully charged. When the coils were charged to a maximum magnetic field of 3.35 teslas, the system was driven normal without damage.

  20. Printing of highly conductive solution by alternating current electrohydrodynamic direct-write

    NASA Astrophysics Data System (ADS)

    Jiang, Jiaxin; Zheng, Gaofeng; Wang, Xiang; Zheng, Jianyi; Liu, Juan; Liu, Yifang; Li, Wenwang; Guo, Shumin

    2018-03-01

    Electrohydrodynamic Direct-Write (EDW) is a novel technology for the printing of micro/nano structures. In this paper, Alternating Current (AC) electrical field was introduced to improve the ejection stability of jet with highly conductive solution. By alternating the electrical field, the polarity of free charges on the surface of jet was changed and the average density of charge, as well as the repulsive force, was reduced to stabilize the jet. When the frequency of AC electrical field increased, the EDW process became more stable and the shape of deposited droplets became more regular. The diameter of printed droplets decreased and the deposition frequency increased with the increase of voltage frequency. The phenomenon of corona discharge was overcome effectively as well. To further evaluate the performance of AC EDW for highly conductive solution, more NaCl was added to the solution and the conductivity was increased to 2810μs/cm. With such high conductivity, the problem of serious corona discharge could still be prevented by AC EDW, and the diameter of printed droplets decreased significantly. This work provides an effective way to accelerate industrial applications of EDW.

  1. Performance of a 12-coil superconducting 'bumpy torus' magnet facility.

    NASA Technical Reports Server (NTRS)

    Roth, J. R.; Holmes, A. D.; Keller, T. A.; Krawczonek, W. M.

    1972-01-01

    The NASA-Lewis 'bumpy torus' facility consists of 12 superconducting coils, each 19 cm ID and capable of 3.0 tesla on their axes. The coils are equally spaced around a toroidal array with a major diameter of 1.52 m, and are mounted with the major axis of the torus vertical in a single vacuum tank 2.6 m in diameter. Final shakedown tests of the facility mapped out its magnetic, cryogenic, vacuum, mechanical, and electrical performance. The facility is now ready for use as a plasma physics research facility. A maximum magnetic field on the magnetic axis of 3.23 teslas has been held for a period of more than sixty minutes without a coil normalcy.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ibrahim, Illani; Sekak, Khairunnadim Ahmad; Hasbullah, Norazurean

    Researches on the fabrication of nanostructured based membrane have attracted great attention amongst scientists due to their wide potential applications on medical application. In this work, Chitosan and Aloe Vera sol-gel solution were electrospun using 20 kV DC supply at room temperature. Morphological structure and functional group of nanofibers were characterized using field emission scanning electron microscopy (FESEM) and Fourier-transform infrared spectroscopy (FT-IR) respectively. The optimum parameter obtained at 90% concentration of acetic acid, 0.3 ml/h of solution flow rate and 10 cm distance of nozzle to collector. The fiber diameters were analyzed using the ImageJ software. Average diameters of the Chitosan/Aloe Veramore » composite nanofibers is 183nm in ranges of 140–260nm.« less

  3. Preparation and characterization of chitosan/Aloe Vera composite nanofibers generated by electrostatic spinning

    NASA Astrophysics Data System (ADS)

    Ibrahim, Illani; Sekak, Khairunnadim Ahmad; Hasbullah, Norazurean

    2015-08-01

    Researches on the fabrication of nanostructured based membrane have attracted great attention amongst scientists due to their wide potential applications on medical application. In this work, Chitosan and Aloe Vera sol-gel solution were electrospun using 20 kV DC supply at room temperature. Morphological structure and functional group of nanofibers were characterized using field emission scanning electron microscopy (FESEM) and Fourier-transform infrared spectroscopy (FT-IR) respectively. The optimum parameter obtained at 90% concentration of acetic acid, 0.3 ml/h of solution flow rate and 10 cm distance of nozzle to collector. The fiber diameters were analyzed using the ImageJ software. Average diameters of the Chitosan/Aloe Vera composite nanofibers is 183nm in ranges of 140-260nm.

  4. Characterization of the onboard imaging unit for the first clinical magnetic resonance image guided radiation therapy system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Yanle, E-mail: Hu.Yanle@mayo.edu; Rankine, Leith; Green, Olga L.

    Purpose: To characterize the performance of the onboard imaging unit for the first clinical magnetic resonance image guided radiation therapy (MR-IGRT) system. Methods: The imaging performance characterization included four components: ACR (the American College of Radiology) phantom test, spatial integrity, coil signal to noise ratio (SNR) and uniformity, and magnetic field homogeneity. The ACR phantom test was performed in accordance with the ACR phantom test guidance. The spatial integrity test was evaluated using a 40.8 × 40.8 × 40.8 cm{sup 3} spatial integrity phantom. MR and computed tomography (CT) images of the phantom were acquired and coregistered. Objects were identifiedmore » around the surfaces of 20 and 35 cm diameters of spherical volume (DSVs) on both the MR and CT images. Geometric distortion was quantified using deviation in object location between the MR and CT images. The coil SNR test was performed according to the national electrical manufacturers association (NEMA) standards MS-1 and MS-9. The magnetic field homogeneity test was measured using field camera and spectral peak methods. Results: For the ACR tests, the slice position error was less than 0.10 cm, the slice thickness error was less than 0.05 cm, the resolved high-contrast spatial resolution was 0.09 cm, the resolved low-contrast spokes were more than 25, the image intensity uniformity was above 93%, and the percentage ghosting was less than 0.22%. All were within the ACR recommended specifications. The maximum geometric distortions within the 20 and 35 cm DSVs were 0.10 and 0.18 cm for high spatial resolution three-dimensional images and 0.08 and 0.20 cm for high temporal resolution two dimensional cine images based on the distance-to-phantom-center method. The average SNR was 12.0 for the body coil, 42.9 for the combined torso coil, and 44.0 for the combined head and neck coil. Magnetic field homogeneities at gantry angles of 0°, 30°, 60°, 90°, and 120° were 23.55, 20.43, 18.76, 19.11, and 22.22 ppm, respectively, using the field camera method over the 45 cm DSV. Conclusions: The onboard imaging unit of the first commercial MR-IGRT system meets ACR, NEMA, and vendor specifications.« less

  5. Characterization of the onboard imaging unit for the first clinical magnetic resonance image guided radiation therapy system.

    PubMed

    Hu, Yanle; Rankine, Leith; Green, Olga L; Kashani, Rojano; Li, H Harold; Li, Hua; Nana, Roger; Rodriguez, Vivian; Santanam, Lakshmi; Shvartsman, Shmaryu; Victoria, James; Wooten, H Omar; Dempsey, James F; Mutic, Sasa

    2015-10-01

    To characterize the performance of the onboard imaging unit for the first clinical magnetic resonance image guided radiation therapy (MR-IGRT) system. The imaging performance characterization included four components: ACR (the American College of Radiology) phantom test, spatial integrity, coil signal to noise ratio (SNR) and uniformity, and magnetic field homogeneity. The ACR phantom test was performed in accordance with the ACR phantom test guidance. The spatial integrity test was evaluated using a 40.8 × 40.8 × 40.8 cm(3) spatial integrity phantom. MR and computed tomography (CT) images of the phantom were acquired and coregistered. Objects were identified around the surfaces of 20 and 35 cm diameters of spherical volume (DSVs) on both the MR and CT images. Geometric distortion was quantified using deviation in object location between the MR and CT images. The coil SNR test was performed according to the national electrical manufacturers association (NEMA) standards MS-1 and MS-9. The magnetic field homogeneity test was measured using field camera and spectral peak methods. For the ACR tests, the slice position error was less than 0.10 cm, the slice thickness error was less than 0.05 cm, the resolved high-contrast spatial resolution was 0.09 cm, the resolved low-contrast spokes were more than 25, the image intensity uniformity was above 93%, and the percentage ghosting was less than 0.22%. All were within the ACR recommended specifications. The maximum geometric distortions within the 20 and 35 cm DSVs were 0.10 and 0.18 cm for high spatial resolution three-dimensional images and 0.08 and 0.20 cm for high temporal resolution two dimensional cine images based on the distance-to-phantom-center method. The average SNR was 12.0 for the body coil, 42.9 for the combined torso coil, and 44.0 for the combined head and neck coil. Magnetic field homogeneities at gantry angles of 0°, 30°, 60°, 90°, and 120° were 23.55, 20.43, 18.76, 19.11, and 22.22 ppm, respectively, using the field camera method over the 45 cm DSV. The onboard imaging unit of the first commercial MR-IGRT system meets ACR, NEMA, and vendor specifications.

  6. Potential errors in relative dose measurements in kilovoltage photon beams due to polarity effects in plane-parallel ionisation chambers

    NASA Astrophysics Data System (ADS)

    Dowdell, S.; Tyler, M.; McNamara, J.; Sloan, K.; Ceylan, A.; Rinks, A.

    2016-12-01

    Plane-parallel ionisation chambers are regularly used to conduct relative dosimetry measurements for therapeutic kilovoltage beams during commissioning and routine quality assurance. This paper presents the first quantification of the polarity effect in kilovoltage photon beams for two types of commercially available plane-parallel ionisation chambers used for such measurements. Measurements were performed at various depths along the central axis in a solid water phantom and for different field sizes at 2 cm depth to determine the polarity effect for PTW Advanced Markus and Roos ionisation chambers (PTW-Freiburg, Germany). Data was acquired for kilovoltage beams between 100 kVp (half-value layer (HVL)  =  2.88 mm Al) and 250 kVp (HVL  =  2.12 mm Cu) and field sizes of 3-15 cm diameter for 30 cm focus-source distance (FSD) and 4  ×  4 cm2-20  ×  20 cm2 for 50 cm FSD. Substantial polarity effects, up to 9.6%, were observed for the Advanced Markus chamber compared to a maximum 0.5% for the Roos chamber. The magnitude of the polarity effect was observed to increase with field size and beam energy but was consistent with depth. The polarity effect is directly influenced by chamber design, with potentially large polarity effects for some plane-parallel ionisation chambers. Depending on the specific chamber used, polarity corrections may be required for output factor measurements of kilovoltage photon beams. Failure to account for polarity effects could lead to an incorrect dose being delivered to the patient.

  7. Differential in vivo urodynamic measurement in a single thin catheter based on two optical fiber pressure sensors

    NASA Astrophysics Data System (ADS)

    Poeggel, Sven; Duraibabu, Dineshbabu; Tosi, Daniele; Leen, Gabriel; Lewis, Elfed; McGrath, Deirdre; Fusco, Ferdinando; Sannino, Simone; Lupoli, Laura; Ippolito, Juliet; Mirone, Vincenzo

    2015-03-01

    Urodynamic analysis is the predominant method for evaluating dysfunctions in the lower urinary tract. The exam measures the pressure during the filling and voiding process of the bladder and is mainly interested in the contraction of the bladder muscles. The data arising out of these pressure measurements enables the urologist to arrive at a precise diagnosis and prescribe an adequate treatment. A technique based on two optical fiber pressure and temperature sensors with a resolution of better than 0.1 cm H2O (˜10 Pa), a stability better than 1 cm H2O/hour, and a diameter of 0.2 mm in a miniature catheter with a diameter of only 5 Fr (1.67 mm), was used. This technique was tested in vivo on four patients with a real-time urodynamic measurement system. The optical system presented showed a very good correlation to two commercially available medical reference sensors. Furthermore, the optical urodynamic system demonstrated a higher dynamic and better sensitivity to detect small obstructions than both pre-existing medical systems currently in use in the urodynamic field.

  8. Differential in vivo urodynamic measurement in a single thin catheter based on two optical fiber pressure sensors.

    PubMed

    Poeggel, Sven; Duraibabu, Dineshbabu; Tosi, Daniele; Leen, Gabriel; Lewis, Elfed; McGrath, Deirdre; Fusco, Ferdinando; Sannino, Simone; Lupoli, Laura; Ippolito, Juliet; Mirone, Vincenzo

    2015-03-01

    Urodynamic analysis is the predominant method for evaluating dysfunctions in the lower urinary tract. The exam measures the pressure during the filling and voiding process of the bladder and is mainly interested in the contraction of the bladder muscles. The data arising out of these pressure measurements enables the urologist to arrive at a precise diagnosis and prescribe an adequate treatment. A technique based on two optical fiber pressure and temperature sensors with a resolution of better than 0.1 cm H₂O (∼10 Pa), a stability better than 1 cm H₂O/hour, and a diameter of 0.2 mm in a miniature catheter with a diameter of only 5 Fr (1.67 mm), was used. This technique was tested in vivo on four patients with a real-time urodynamic measurement system. The optical system presented showed a very good correlation to two commercially available medical reference sensors. Furthermore, the optical urodynamic system demonstrated a higher dynamic and better sensitivity to detect small obstructions than both pre-existing medical systems currently in use in the urodynamic field.

  9. Conducting Slug Tests in Mini-Piezometers: B.G. Fritz Ground Water xx, no. x: x-xx

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fritz, Bradley G.; Mackley, Rob D.; Arntzen, Evan V.

    Slug tests performed using mini-piezometers with diameters as small as 0.43 cm can provide a cost effective tool for hydraulic characterization. We evaluated the hydraulic properties of the apparatus in an infinite hydraulic conductivity environment and compared those results with field tests of mini-piezometers installed into locations with varying hydraulic properties. Based on our evaluation, slug tests conducted in mini-piezometers using the fabrication and installation approach described here are effective within formations where the hydraulic conductivity is less than 1 x 10-3 cm/s. While these constraints limit the potential application of this method, the benefits to this approach are thatmore » the installation, measurement and analysis is extremely cost effective, and the installation can be completed in areas where other (larger diameter) methods might not be possible. Additionally, this methodology could be applied to existing mini-piezometers previously installed for other purposes. Such analysis of existing installations could be beneficial in interpreting previously collected data (e.g. water quality data or hydraulic head data).« less

  10. Lizard locomotion in heterogeneous granular media

    NASA Astrophysics Data System (ADS)

    Schiebel, Perrin; Goldman, Daniel

    2014-03-01

    Locomotion strategies in heterogeneous granular environments (common substrates in deserts), are relatively unexplored. The zebra-tailed lizard (C. draconoides) is a useful model organism for such studies owing to its exceptional ability to navigate a variety of desert habitats at impressive speed (up to 50 body-lengths per second) using both quadrapedal and bidepal gaits. In laboratory experiments, we challenge the lizards to run across a field of boulders (2.54 cm diameter glass spheres or 3.8 cm 3D printed spheres) placed in a lattice pattern and embedded in a loosely packed granular medium of 0.3 mm diameter glass particles. Locomotion kinematics of the lizard are recorded using high speed cameras, with and without the scatterers. The data reveals that unlike the lizard's typical quadrupedal locomotion using a diagonal gait, when scatterers are present the lizard is most successful when using a bipedal gait, with a raised center of mass (CoM). We propose that the kinematics of bipedal running in conjunction with the lizard's long toes and compliant hind foot are the keys to this lizard's successful locomotion in the presence of such obstacles. NSF PoLS

  11. Performance and safety of holmium: YAG laser optical fibers.

    PubMed

    Knudsen, Bodo E; Glickman, Randolph D; Stallman, Kenneth J; Maswadi, Saher; Chew, Ben H; Beiko, Darren T; Denstedt, John D; Teichman, Joel M H

    2005-11-01

    Lower-pole ureteronephroscopy requires transmission of holmium:YAG energy along a deflected fiber. Current ureteroscopes are capable of high degrees of deflection, which may stress laser fibers beyond safe limits during lower-pole use. We hypothesized that optical fiber and safety measures differ among manufacturers. Small (200-273-microm) and medium-diameter (300-400-microm) Ho:YAG fibers were tested in a straight and 180 degrees bent configuration. Energy transmission was measured by an energy detector. Fiber durability was assessed by firing the laser in sequentially tighter bending diameters. The fibers were bent to 180 degrees with a diameter of 6 cm and run at 200- to 4000-mJ pulse energy to determine the minimum energy required to fracture the fiber. The bending diameter was decreased by 1-cm increments and testing repeated until a bending diameter of 1 cm was reached. The maximum deflection of the ACMI DUR-8E ureteroscope with each fiber in the working channel was recorded. The flow rate through the working channel of the DUR-8E was measured for each fiber. The mean energy transmission differed among fibers (P < 0.001). The Lumenis SL 200 and the InnovaQuartz 400 were the best small and medium-diameter fibers, respectively, in resisting thermal breakdown (P < 0.01). The Dornier Lightguide Super 200 fractured repeatedly at a bend diameter of 2 cm and with the lowest energy (200 mJ). The other small fibers fractured only at a bend diameter of 1 cm. The Sharplan 200 and InnovaQuartz Sureflex 273T were the most flexible fibers, the Lumenis SL 365 the least. The flow rate was inversely proportional to four times the power of the diameter of the fiber. Optical performance and safety differ among fibers. Fibers transmit various amounts of energy to their cladding when bent. During lower-pole nephroscopy with the fiber deflected, there is a risk of fiber fracture from thermal breakdown and laser-energy transmission to the endoscope. Some available laser fibers carry a risk of ureteroscope damage.

  12. Discrimination between neoplastic and non-neoplastic lesions in cirrhotic liver using contrast-enhanced ultrasound

    PubMed Central

    Xu, H-X; Lu, M-D; Liu, L-N; Zhang, Y-F; Guo, L-H; Xu, J-M; Liu, C

    2012-01-01

    Objectives To assess the value of contrast-enhanced ultrasound (CEUS) in differentiating hepatocellular carcinoma (HCC) from non-neoplastic lesion in cirrhotic liver in comparison with baseline ultrasound. Methods A total of 147 nodules (diameter ≤5.0 cm) in 133 cirrhotic patients (mean age±standard deviation: 52±13 years, range 20–82 years; gender: 111 males and 22 females) were examined with CEUS. There were 116 HCCs, 26 macroregenerative nodules and 5 high-grade dysplastic nodules. CEUS was performed with a real-time contrast-specific mode and a sulphur hexafluoride-filled microbubble contrast agent. Results Hypervascularity was observed in 94.8% (110/116) HCCs, 3.8% (1/26) macroregenerative nodules and 60.0% (3/5) high-grade dysplastic nodules during arterial phase on CEUS. Detection rates of typical vascular pattern (i.e. hypervascularity during arterial phase and subsequent washout) in HCCs with a diameter of ≤2.0 cm, 2.1–3.0 cm and 3.1–5.0 cm were 69.2% (27/39), 97.1% (33/34) and 100.0% (43/43), respectively. CEUS significantly improved the sensitivity [88.8% (103/116) vs 37.1% (43/116), p<0.001], negative predictive value [70.5% (31/44) vs 31.5% (29/92), p<0.001], and accuracy [91.2% (134/147) vs 49.0% (72/147), p<0.001] in differentiating HCCs from non-neoplastic lesions when compared with baseline ultrasound. However, the sensitivity and accuracy of CEUS for HCCs ≤2.0 cm in diameter were significantly lower than those for HCCs of 2.1–3.0 cm and 3.1–5.0 cm in diameter. Conclusions CEUS improves diagnostic performance in differentiating HCCs from non-neoplastic nodules in cirrhotic patients compared with baseline ultrasound. Diagnosis of HCCs ≤2.0 cm diameter by CEUS is still a clinical concern, and thus needs further investigation. PMID:22553290

  13. A 20000-hour endurance test of a structurally and thermally integrated 5-cm diameter ion thruster main cathode

    NASA Technical Reports Server (NTRS)

    Wintucky, E. G.

    1975-01-01

    A 5-cm diameter mercury ion thruster main cathode has completed over 20,000 hours of operation in an ongoing lifetime endurance test. The cathode operating parameters remained at acceptable performance levels throughout the test, the first 9175 hours of which were part of a thruster endurance test. After 20,000 hours, the cathode discharge was easily restarted, the tip orifice indicated negligible erosion and the tip heater showed no degradation. The cathode-isolator- vaporizer assembly, a major thruster subsystem, has thus successfully demonstrated an operational lifetime capability of 20,000 hours, which is the lifetime goal of the 8-cm diameter auxiliary propulsion ion thruster.

  14. ATLAS 10 GHz ECR ions source upgrade project.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moehs, D. P.; Pardo, R. C.; Vondrasek, R.

    1999-08-10

    A major upgrade of the first ATLAS 10 GHz ECR ion source, which began operations in 1987, is in the planning and procurement phase. The new design will convert the old two-stage source into a single-stage source with an electron donor disk and high gradient magnetic field that preserves radial access for solid material feeds and pumping of the plasma chamber. The new magnetic field profile allows for the possibility of a second ECR zone at a frequency of 14 GHz. An open hexapole configuration, using a high energy-product Nd-Fe-B magnet material, having an inner diameter of 8.8 cm andmore » pole gaps of 2.4 cm has been adopted. Models indicate that the field strengths at the chamber wall, 4 cm in radius, will be 9.3 kG along the magnet poles and 5.6 kG along the pole gaps. The individual magnet bars will be housed in austenitic stainless steel allowing the magnet housing within the aluminum plasma chamber to be used as a water channel for direct cooling of the magnets. Eight solenoid coils from the existing ECR will be enclosed in an iron yoke to produce the axial mirror. Based on a current of 500 A, the final model predicts a minimum B field of 3 kG with injection and extraction mirror ratios of 4.4 and 2.9 respectively.« less

  15. Gate simulation of Compton Ar-Xe gamma-camera for radionuclide imaging in nuclear medicine

    NASA Astrophysics Data System (ADS)

    Dubov, L. Yu; Belyaev, V. N.; Berdnikova, A. K.; Bolozdynia, A. I.; Akmalova, Yu A.; Shtotsky, Yu V.

    2017-01-01

    Computer simulations of cylindrical Compton Ar-Xe gamma camera are described in the current report. Detection efficiency of cylindrical Ar-Xe Compton camera with internal diameter of 40 cm is estimated as1-3%that is 10-100 times higher than collimated Anger’s camera. It is shown that cylindrical Compton camera can image Tc-99m radiotracer distribution with uniform spatial resolution of 20 mm through the whole field of view.

  16. Effect of mixed pinning landscapes produced by 6 MeV oxygen irradiation on the resulting critical current densities Jc in 1.3 μm thick GdBa2Cu3O7-d coated conductors grown by co-evaporation

    NASA Astrophysics Data System (ADS)

    Haberkorn, N.; Suárez, S.; Pérez, P. D.; Troiani, H.; Granell, P.; Golmar, F.; Lee, Jae-Hun; Moon, S. H.

    2017-11-01

    We report the influence of crystalline defects introduced by 6 MeV 16O3+ irradiation on the critical current densities Jc and flux creep rates in 1.3 μm thick GdBa2Cu3O7-δ coated conductor produced by co-evaporation. Pristine films with pinning produced mainly by random nanoparticles with diameter close to 50 nm were irradiated with doses between 2 × 1013 cm-2 and 4 × 1014 cm-2. The irradiations were performed with the ion beam perpendicular to the surface of the samples. The Jc and the flux creep rates were analyzed for two magnetic field configurations: magnetic field applied parallel (H║c) and at 45° (H║45°) to the c-axis. The results show that at temperatures below 40 K the in-field Jc dependences can be significantly improved by irradiation. For doses of 1 × 1014 cm-2 the Jc values at μ0H = 5 T are doubled without affecting significantly the Jc at small fields. Analyzing the flux creep rates as function of the temperature in both magnetic field configurations, it can be observed that the irradiation suppresses the peak associated with double-kink relaxation and increases the flux creep rates at intermediate and high temperatures. Under 0.5 T, the flux relaxation for H‖c and H||45° in pristine films presents characteristic glassy exponents μ = 1.63 and μ = 1.45, respectively. For samples irradiated with 1 × 1014 cm-2, these values drop to μ = 1.45 and μ = 1.24, respectively

  17. Standardized 2D ultrasound versus 3D/4D ultrasound and image fusion for measurement of aortic aneurysm diameter in follow-up after EVAR.

    PubMed

    Pfister, Karin; Schierling, Wilma; Jung, Ernst Michael; Apfelbeck, Hanna; Hennersperger, Christoph; Kasprzak, Piotr M

    2016-01-01

    To compare standardised 2D ultrasound (US) to the novel ultrasonographic imaging techniques 3D/4D US and image fusion (combined real-time display of B mode and CT scan) for routine measurement of aortic diameter in follow-up after endovascular aortic aneurysm repair (EVAR). 300 measurements were performed on 20 patients after EVAR by one experienced sonographer (3rd degree of the German society of ultrasound (DEGUM)) with a high-end ultrasound machine and a convex probe (1-5 MHz). An internally standardized scanning protocol of the aortic aneurysm diameter in B mode used a so called leading-edge method. In summary, five different US methods (2D, 3D free-hand, magnetic field tracked 3D - Curefab™, 4D volume sweep, image fusion), each including contrast-enhanced ultrasound (CEUS), were used for measurement of the maximum aortic aneurysm diameter. Standardized 2D sonography was the defined reference standard for statistical analysis. CEUS was used for endoleak detection. Technical success was 100%. In augmented transverse imaging the mean aortic anteroposterior (AP) diameter was 4.0±1.3 cm for 2D US, 4.0±1.2 cm for 3D Curefab™, and 3.9±1.3 cm for 4D US and 4.0±1.2 for image fusion. The mean differences were below 1 mm (0.2-0.9 mm). Concerning estimation of aneurysm growth, agreement was found between 2D, 3D and 4D US in 19 of the 20 patients (95%). Definitive decision could always be made by image fusion. CEUS was combined with all methods and detected two out of the 20 patients (10%) with an endoleak type II. In one case, endoleak feeding arteries remained unclear with 2D CEUS but could be clearly localized by 3D CEUS and image fusion. Standardized 2D US allows adequate routine follow-up of maximum aortic aneurysm diameter after EVAR. Image Fusion enables a definitive statement about aneurysm growth without the need for new CT imaging by combining the postoperative CT scan with real-time B mode in a dual image display. 3D/4D CEUS and image fusion can improve endoleak characterization in selected cases but are not mandatory for routine practice.

  18. Thirty-Eight Years of Autogenic, Woody Understory Dynamics in a Mature, Temperate Pine-Oak Forest

    Treesearch

    Michael D. Cain; Michael G. Shelton

    1997-01-01

    In 1935, 32 ha of a pine-hardwood forest were set aside from future timber management in southern Arkansas, U.S.A. Old-growth timber had been cut to a 36-cm stump diameter before 1915. Between 1952 and 1993, four inventories were made of the overstory and midstory components (number of live trees 29 cm in diameter breast height (DBH) taken at 1.37 m, by 2.54-cm DBH...

  19. Volumetric Growth of the Liver in the Human Fetus: An Anatomical, Hydrostatic, and Statistical Study.

    PubMed

    Szpinda, Michał; Paruszewska-Achtel, Monika; Woźniak, Alina; Mila-Kierzenkowska, Celestyna; Elminowska-Wenda, Gabriela; Dombek, Małgorzata; Szpinda, Anna; Badura, Mateusz

    2015-01-01

    Using anatomical, hydrostatic, and statistical methods, liver volumes were assessed in 69 human fetuses of both sexes aged 18-30 weeks. No sex differences were found. The median of liver volume achieved by hydrostatic measurements increased from 6.57 cm(3) at 18-21 weeks through 14.36 cm(3) at 22-25 weeks to 20.77 cm(3) at 26-30 weeks, according to the following regression: y = -26.95 + 1.74 × age ± Z × (-3.15 + 0.27 × age). The median of liver volume calculated indirectly according to the formula liver volume = 0.55 × liver length × liver transverse diameter × liver sagittal diameter increased from 12.41 cm(3) at 18-21 weeks through 28.21 cm(3) at 22-25 weeks to 49.69 cm(3) at 26-30 weeks. There was a strong relationship (r = 0.91, p < 0.001) between the liver volumes achieved by hydrostatic (x) and indirect (y) methods, expressed by y = -0.05 + 2.16x ± 7.26. The liver volume should be calculated as follows liver volume = 0.26 × liver length × liver transverse diameter × liver sagittal diameter. The age-specific liver volumes are of great relevance in the evaluation of the normal hepatic growth and the early diagnosis of fetal micro- and macrosomias.

  20. Use of disposable graduated biopsy forceps improves accuracy of polyp size measurements during endoscopy.

    PubMed

    Jin, Hei-Ying; Leng, Qiang

    2015-01-14

    To determine the accuracy of endoscopic polyp size measurements using disposable graduated biopsy forceps (DGBF). Gradations accurate to 1 mm were assessed with the wire of disposable graduated biopsy forceps. When a polyp was noted, endoscopists determined the width of the polyp; then, the graduated biopsy forceps was inserted and the largest diameter of the tumor was measured. After excision, during surgery or endoscopy, the polyp was measured using the vernier caliper. One hundred and thirty-three colorectal polyps from 119 patients were studied. The mean diameter, by post-polypectomy measurement, was 0.92 ± 0.69 cm; 83 were < 1 cm, 36 were between 1 and 2 cm, and 14 were > 2 cm. The mean diameter, by visual estimation, was 1.15 ± 0.88 cm; compared to the actual size measured using vernier calipers, the difference was statistically significant. The mean diameter measured using the DGBF was 0.93 ± 0.68 cm; compared to the actual size measured using vernier calipers, this difference was not statistically significant. The ratio between the mean size estimated by visual estimation and the actual size was significantly different from that between the mean size estimated using the DGBF and the actual size (1.26 ± 0.30 vs 1.02 ± 0.11). The accuracy of polyp size estimation was low by visual assessment; however, it improved when the DGBF was used.

  1. Single Mode Air-Clad Single Crystal Sapphire Optical Fiber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hill, Cary; Homa, Dan; Yu, Zhihao

    The observation of single mode propagation in an air-clad single crystal sapphire optical fiber at wavelengths at and above 783 nm is presented for the first time. A high-temperature wet acid etching method was used to reduce the diameter of a 10 cm length of commercially-sourced sapphire fiber from 125 micrometers to 6.5 micrometers, and far-field imaging provided modal information at intervals as the fiber diameter decreased. Modal volume was shown to decrease with decreasing diameter, and single mode behavior was observed at the minimum diameter achieved. While weakly-guiding approximations are generally inaccurate for low modal volume optical fiber withmore » high core-cladding refractive index disparity, consistency between these approximations and experimental results was observed when the effective numerical aperture was measured and substituted for the theoretical numerical aperture in weakly-guiding approximation calculations. With the demonstration of very low modal volume in sapphire at fiber diameters much larger than anticipated by legacy calculations, the resolution of sapphire fiber distributed sensors may be increased and other sensing schemes requiring very low modal volume, such as fiber Bragg gratings, may be realized in extreme environment applications.« less

  2. Single Mode Air-Clad Single Crystal Sapphire Optical Fiber

    DOE PAGES

    Hill, Cary; Homa, Dan; Yu, Zhihao; ...

    2017-05-03

    The observation of single mode propagation in an air-clad single crystal sapphire optical fiber at wavelengths at and above 783 nm is presented for the first time. A high-temperature wet acid etching method was used to reduce the diameter of a 10 cm length of commercially-sourced sapphire fiber from 125 micrometers to 6.5 micrometers, and far-field imaging provided modal information at intervals as the fiber diameter decreased. Modal volume was shown to decrease with decreasing diameter, and single mode behavior was observed at the minimum diameter achieved. While weakly-guiding approximations are generally inaccurate for low modal volume optical fiber withmore » high core-cladding refractive index disparity, consistency between these approximations and experimental results was observed when the effective numerical aperture was measured and substituted for the theoretical numerical aperture in weakly-guiding approximation calculations. With the demonstration of very low modal volume in sapphire at fiber diameters much larger than anticipated by legacy calculations, the resolution of sapphire fiber distributed sensors may be increased and other sensing schemes requiring very low modal volume, such as fiber Bragg gratings, may be realized in extreme environment applications.« less

  3. A new linear plasma device for the study of plasma waves in the electron magnetohydrodynamics regime

    NASA Astrophysics Data System (ADS)

    Joshi, Garima; Ravi, G.; Mukherjee, S.

    2018-06-01

    A new, user-friendly, linear plasma device has been developed in our laboratory where a quiescent (Δ n/n ≈ 1%), low temperature (1-10 eV), pulsed (3-10 ms) plasma can be produced over a large uniform region of 30-40 cm diameter and 40 cm length. Salient features of the device include the flexibility of tuning the plasma density in the range of 10^{10} to 10^{12} cm^{-3} and capability of scanning the plasma and field parameters in two dimensions with a precision of < 1 mm. The plasma is produced by a multifilamentary cathode and external magnetic field by Helmholtz coils, both designed and constructed in-house. The plasma parameters can be measured by Langmuir probes and electromagnetic field parameters by miniature magnetic probes and Rogowski coils. The plasma produced is uniform and essentially unbounded for performing experiments on waves and turbulence. The whole device can be operated single-handedly by undergraduate or graduate students. The device can be opened, serviced, new antennas/probes installed and ready for operation in a matter of hours. Some results on the excitation of electromagnetic structures in the context of electron magnetohydrodynamics (EMHD) are also presented to demonstrate the suitability of the device for carrying out such experiments.

  4. Wake Survey of a Marine Current Turbine Under Steady Conditions

    NASA Astrophysics Data System (ADS)

    Lust, Ethan; Luznik, Luksa; Flack, Karen

    2016-11-01

    A submersible particle image velocimetry (PIV) system was used to study the wake of a horizontal axis marine current turbine. The turbine was tested in a large tow tank facility at the United States Naval Academy. The turbine is a 1/25th scale model of the U.S. National Renewable Energy Laboratory's Reference Model 1 (RM1) tidal turbine. It is a two-bladed turbine measuring 0.8 m in diameter and featuring a NACA 63-618 airfoil cross section. Separate wind tunnel testing has shown the foil section used on the turbine to be Reynolds number independent with respect to lift at the experimental parameters of tow carriage speed (Utow = 1 . 68 m/s) and tip speed ratio (TSR = 7). The wake survey was conducted over an area extending 0.25D forward of the turbine tip path to 2.0D aft, and to a depth of 1.0D beneath the turbine output shaft in the streamwise plane. Each field of view was approximately 30 cm by 30 cm, and each overlapped the adjacent fields of view by 5 cm. The entire flow field was then reconstructed into a single field of investigation. Results include streamwise and vertical ensemble average velocity fields averaged over approximately 1,000 realizations, as well as higher-order statistics. Turbine tip vortex centers were identified and plotted showing increasing aperiodicity with wake age. keywords: horizontal axis marine current turbine, particle image velocimetry, towing tank, wake survey

  5. Multitracing Experiment With Solved and Particulate Tracers In An Unsaturated Field Soil

    NASA Astrophysics Data System (ADS)

    Burkhardt, M.; Kasteel, R.; Vereecken, H.

    Solute movement and colloid migration follow preferential flow paths in structured soils at the field scale. The use of microsphreres is a possible option to mimic colloid transport through the vadose zone into the groundwater. We present results of multi- tracing experiments conducted in an Orthic Luvisol using bromide (Br-), the reactive dye tracer Brilliant Blue (BB) and microspheres. The fluorescent microspheres (1 and 10 µm in diameter) were functionalized with a negative surface charge. Eight field plots (about 2 m2) were irrigated with 10 mm and 40 mm during 6 h. Four field plots were sampled directly after the irrgation, the others were exposed for 90 days to natural wheather conditions. Photographs of horizontal cross-sections and disturbed soil sam- ples were taken every 5 to 10 cm down to a depth of 160 cm. Image analysis was used to derive concentration distributions of BB using a calibration relationship between concentration and color spectra. The microspheres were quantified after desorption of the soil samples by fluorescent microscopy and image analysis. We used moment analysis to characterize transport phenomena. We found that transport through the soil matrix was affected by sorption, but all of the applied compounds were transported through preferential flow paths (earthworm burrows) down to a depth of 160 cm irre- spective of their chemical properties. Furthermore, this study shows that microspheres can be used to mimic colloid facilitated transport under unsaturated conditions in a field soil.

  6. Eight-cm mercury ion thruster system technology

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The technology status of 8 cm diameter electron bombardment ion thrusters is presented. Much of the technology resulting from the 5 cm diameter thruster has been adapted and improved upon to increase the reliability, durability, and efficiency of the 8 cm thruster. Technology discussed includes: dependence of neutralizer tip erosion upon neutralizer flow rate; impregnated and rolled-foil insert cathode performance and life testing; neutralizer position studies; thruster ion beam profile measurements; high voltage pulse ignition; high utilization ion machined accelerator grids; deposition internal and external to the thruster; thruster vectoring systems; thruster cycling life testing and thruster system weights for typical mission applications.

  7. Dosimetric effects of saline- versus water-filled balloon applicators for IORT using the model S700 electronic brachytherapy source.

    PubMed

    Redler, Gage; Templeton, Alistair; Zhen, Heming; Turian, Julius; Bernard, Damian; Chu, James C H; Griem, Katherine L; Liao, Yixiang

    The Xoft Axxent Electronic Brachytherapy System (Xoft, Inc., San Jose, CA) is a viable option for intraoperative radiation therapy (IORT) treatment of early-stage breast cancer. The low-energy (50-kVp) X-ray source simplifies shielding and increases relative biological effectiveness but increases dose distribution sensitivity to medium composition. Treatment planning systems typically assume homogenous water for brachytherapy dose calculations, including precalculated atlas plans for Xoft IORT. However, Xoft recommends saline for balloon applicator filling. This study investigates dosimetric differences due to increased effective atomic number (Z eff ) for saline (Z eff  = 7.56) versus water (Z eff  = 7.42). Balloon applicator diameters range from 3 to 6 cm. Monte Carlo N-Particle software is used to calculate dose at the surface (D s ) of and 1 cm away (D 1cm ) from the water-/saline-filled balloon applicator using a single dwell at the applicator center as a simple estimation of the dosimetry and multiple dwells simulating the clinical dose distributions for the atlas plans. Single-dwell plans show a 4.4-6.1% decrease in D s for the 3- to 6-cm diameter applicators due to the saline. Multidwell plans show similar results: 4.9% and 6.4% D s decrease, for 4-cm and 6-cm diameter applicators, respectively. For the single-dwell plans, D 1cm decreases 3.6-5.2% for the 3- to 6-cm diameter applicators. For the multidwell plans, D 1cm decreases 3.3% and 5.3% for the 4-cm and 6-cm applicators, respectively. The dosimetric effect introduced by saline versus water filling for Xoft balloon applicator-based IORT treatments is ∼5%. Users should be aware of this in the context of both treatment planning and patient outcome studies. Copyright © 2017 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  8. Sensitivity calibration procedures in optical-CT scanning of BANG 3 polymer gel dosimeters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Y.; Wuu, Cheng-Shie; Maryanski, Marek J.

    2010-02-15

    The dose response of the BANG 3 polymer gel dosimeter (MGS Research Inc., Madison, CT) was studied using the OCTOPUS laser CT scanner (MGS Research Inc., Madison, CT). Six 17 cm diameter and 12 cm high Barex cylinders, and 18 small glass vials were used to house the gel. The gel phantoms were irradiated with 6 and 10 MV photons, as well as 12 and 16 MeV electrons using a Varian Clinac 2100EX. Three calibration methods were used to obtain the dose response curves: (a) Optical density measurements on the 18 glass vials irradiated with graded doses from 0 tomore » 4 Gy using 6 or 10 MV large field irradiations; (b) optical-CT scanning of Barex cylinders irradiated with graded doses (0.5, 1, 1.5, and 2 Gy) from four adjacent 4x4 cm{sup 2} photon fields or 6x6 cm{sup 2} electron fields; and (c) percent depth dose (PDD) comparison of optical-CT scans with ion chamber measurements for 6x6 cm{sup 2}, 12 and 16 MeV electron fields. The dose response of the BANG 3 gel was found to be linear and energy independent within the uncertainties of the experimental methods (about 3%). The slopes of the linearly fitted dose response curves (dose sensitivities) from the four field irradiations (0.0752{+-}3%, 0.0756{+-}3%, 0.0767{+-}3%, and 0.0759{+-}3% cm{sup -1} Gy{sup -1}) and the PDD matching methods (0.0768{+-}3% and 0.0761{+-}3% cm{sup -1} Gy{sup -1}) agree within 2.2%, indicating a good reproducibility of the gel dose response within phantoms of the same geometry. The dose sensitivities from the glass vial approach are different from those of the cylindrical Barex phantoms by more than 30%, owing probably to the difference in temperature inside the two types of phantoms during gel formation and irradiation, and possible oxygen contamination of the glass vial walls. The dose response curve obtained from the PDD matching approach with 16 MeV electron field was used to calibrate the gel phantom irradiated with the 12 MeV, 6x6 cm{sup 2} electron field. Three-dimensional dose distributions from the gel measurement and the Eclipse planning system (Varian Corporation, Palo Alto, CA) were compared and evaluated using 3% dose difference and 2 mm distance-to-agreement criteria.« less

  9. Microwave transmission measurements through a magnetic photonic crystal

    NASA Astrophysics Data System (ADS)

    Radwan, Mohamed Zein; Dewar, Graeme

    We have measured the 12 - 18 GHz microwave transmission through, and the reflection from, a nickel zinc ferrite penetrated by a wire lattice. The metamaterial efficiently transmitted microwaves under conditions for which the index of refraction was negative. The wires, 0.29 mm in diameter, were threaded through Teflon tubes and centered in holes 1.7 mm in diameter drilled through the ferrite. The holes formed a square array with a lattice constant of 3.0 mm. A ferrite sample containing the wire array filled a length of 3.0 cm inside standard WR-62 waveguide and a static magnetic field between 0.042 and 13.0 kOe was applied parallel to the wires. We measured the transmission relative to an open waveguide and the reflection relative to a reflective metal plate across the waveguide face. We observed transmission modes at combinations of magnetic field and microwave frequency for which both the permeability of the ferrite and permittivity of the wire array were negative.

  10. Effective count rates for PET scanners with reduced and extended axial field of view

    NASA Astrophysics Data System (ADS)

    MacDonald, L. R.; Harrison, R. L.; Alessio, A. M.; Hunter, W. C. J.; Lewellen, T. K.; Kinahan, P. E.

    2011-06-01

    We investigated the relationship between noise equivalent count (NEC) and axial field of view (AFOV) for PET scanners with AFOVs ranging from one-half to twice those of current clinical scanners. PET scanners with longer or shorter AFOVs could fulfill different clinical needs depending on exam volumes and site economics. Using previously validated Monte Carlo simulations, we modeled true, scattered and random coincidence counting rates for a PET ring diameter of 88 cm with 2, 4, 6, and 8 rings of detector blocks (AFOV 7.8, 15.5, 23.3, and 31.0 cm). Fully 3D acquisition mode was compared to full collimation (2D) and partial collimation (2.5D) modes. Counting rates were estimated for a 200 cm long version of the 20 cm diameter NEMA count-rate phantom and for an anthropomorphic object based on a patient scan. We estimated the live-time characteristics of the scanner from measured count-rate data and applied that estimate to the simulated results to obtain NEC as a function of object activity. We found NEC increased as a quadratic function of AFOV for 3D mode, and linearly in 2D mode. Partial collimation provided the highest overall NEC on the 2-block system and fully 3D mode provided the highest NEC on the 8-block system for clinically relevant activities. On the 4-, and 6-block systems 3D mode NEC was highest up to ~300 MBq in the anthropomorphic phantom, above which 3D NEC dropped rapidly, and 2.5D NEC was highest. Projected total scan time to achieve NEC-density that matches current clinical practice in a typical oncology exam averaged 9, 15, 24, and 61 min for the 8-, 6-, 4-, and 2-block ring systems, when using optimal collimation. Increasing the AFOV should provide a greater than proportional increase in NEC, potentially benefiting patient throughput-to-cost ratio. Conversely, by using appropriate collimation, a two-ring (7.8 cm AFOV) system could acquire whole-body scans achieving NEC-density levels comparable to current standards within long, but feasible, scan times.

  11. Nesting biology of Trypoxylon (Trypargilum) lactitarse Saussure (Hymenoptera, Crabronidae) in trap-nests in Southern Brazil.

    PubMed

    Buschini, M L T; Niesing, F; Wolff, L L

    2006-08-01

    This study was carried in the Parque Municipal das Araucárias in the municipality of Guarapuava, state of Paraná, Southern Brazil. Three hundred and sixty five nests of T. lactitarse were obtained using trap-nests of 0.7, 1.0, and 1.3 cm in diameter. All of them had similar architecture, regardless of the diameter of the trap-nest. Completed nests consisted of a linear series of brood cells whose average number per nest was of 3.3, 4.0 and 3.6 for the nests with 0.7 cm, 1.0 cm and 1.3 cm in diameter, respectively. They were constructed more often during the summer. T. lactitarse had two types of life cycles: direct development (without diapause), and delayed development (with diapause during winter). Natural enemies included Chrysididae, Sarcophagidae, Dolichopodidae and Ichneumonidae. Out of 1,353 identified spider prey, 1,313 belonged to the Araneidae family.

  12. Current and Near-Term Future Measurements of the Orbital Debris Environment at NASA

    NASA Technical Reports Server (NTRS)

    Stansbery, Gene; Liou, J.-C.; Mulrooney, M.; Horstman, M

    2010-01-01

    The NASA Orbital Debris Program Office places great emphasis on obtaining and understanding direct measurements of the orbital debris environment. The Orbital Debris Program Office's environmental models are all based on these measurements. Because OD measurements must cover a very wide range of sizes and altitudes, one technique realistically cannot be used for all measurements. In general, radar measurements have been used for lower altitudes and optical measurements for higher altitude orbits. For very small debris, in situ measurements such as returned spacecraft surfaces are utilized. In addition to receiving information from large debris (> 5-10 cm diameter) from the U.S. Space Surveillance Network, NASA conducts statistical measurements of the debris population for smaller sizes. NASA collects data from the Haystack and Goldstone radars for debris in low Earth orbit as small as 2- 4 mm diameter and from the Michigan Orbital DEbris Survey Telescope for debris near geosynchronous orbit altitude for sizes as small as 30-60 cm diameter. NASA is also currently examining the radiator panel of the Hubble Space Telescope Wide Field Planetary Camera 2 which was exposed to space for 16 years and was recently returned to Earth during the STS- 125 Space Shuttle mission. This paper will give an overview of these on-going measurement programs at NASA as well as discuss progress and plans for new instruments and techniques in the near future.

  13. Heat dissipation sensors of variable length for the measurement of sap flow in trees with deep sapwood.

    PubMed

    James, Shelley A; Clearwater, Michael J; Meinzer, Frederick C; Goldstein, Guillermo

    2002-03-01

    Robust thermal dissipation sensors of variable length (3 to 30 cm) were developed to overcome limitations to the measurement of radial profiles of sap flow in large-diameter tropical trees with deep sapwood. The effective measuring length of the custom-made sensors was reduced to 1 cm at the tip of a thermally nonconducting shaft, thereby minimizing the influence of nonuniform sap flux density profiles across the sapwood. Sap flow was measured at different depths and circumferential positions in the trunks of four trees at the Parque Natural Metropolitano canopy crane site, Panama City, Republic of Panama. Sap flow was detected to a depth of 24 cm in the trunks of a 1-m-diameter Anacardium excelsum (Bertero & Balb. ex Kunth) Skeels tree and a 0.65-m-diameter Ficus insipida Willd. tree, and to depths of 7 cm in a 0.34-m-diameter Cordia alliodora (Ruiz & Pav.) Cham. trunk, and 17 cm in a 0.47-m-diameter Schefflera morototoni (Aubl.) Maguire, Steyerm. & Frodin trunk. Sap flux density was maximal in the outermost 4 cm of sapwood and declined with increasing sapwood depth. Considerable variation in sap flux density profiles was observed both within and among the trees. In S. morototoni, radial variation in sap flux density was associated with radial variation in wood properties, particularly vessel lumen area and distribution. High variability in radial and circumferential sap flux density resulted in large errors when measurements of sap flow at a single depth, or a single radial profile, were used to estimate whole-plant water use. Diurnal water use ranged from 750 kg H2O day-1 for A. excelsum to 37 kg H2O day-1 for C. alliodora.

  14. Technical note: estimating absorbed doses to the thyroid in CT.

    PubMed

    Huda, Walter; Magill, Dennise; Spampinato, Maria V

    2011-06-01

    To describe a method for estimating absorbed doses to the thyroid in patients undergoing neck CT examinations. Thyroid doses in anthropomorphic phantoms were obtained for all 23 scanner dosimetry data sets in the ImPACT CT patient dosimetry calculator. Values of relative thyroid dose [R(thy)(L)], defined as the thyroid dose for a given scan length (L) divided by the corresponding thyroid dose for a whole body scan, were determined for neck CT scans. Ratios of the maximum thyroid dose to the corresponding CTDI(vol) and [D'(thy)], were obtained for two phantom diameters. The mass-equivalent water cylinder of any patient can be derived from the neck cross-sectional area and the corresponding average Hounsfield Unit, and compared to the 16.5-cm diameter water cylinder that models the ImPACT anthropomorphic phantom neck. Published values of relative doses in water cylinders of varying diameter were used to adjust thyroid doses in the anthropomorphic phantom to those of any sized patient. Relative thyroid doses R(thy)(L) increase to unity with increasing scan length and with very small difference between scanners. A 10-cm scan centered on the thyroid would result in a dose that is, nearly 90% of the thyroid dose from a whole body scan when performed using the constant radiographic techniques. At 120 kV, the average value of D'(thy) for the 16-cm diameter was 1.17 +/- 0.05 and was independent of CT vendor and year of CT scanner, and choice of x-ray tube voltage. The corresponding average value of D'(thy) in the 32-cm diameter phantom was 2.28 +/- 0.22 and showed marked variations depending on vendor, year of introduction into clinical practice as well as x-ray tube voltage. At 120 kV, a neck equivalent to a 10-cm diameter cylinder of water would have thyroid doses 36% higher than those in the ImPACT phantom, whereas a neck equivalent to a 25-cm cylinder diameter would have thyroid doses 35% lower. Patient thyroid doses can be estimated by taking into account the amount of radiation used to perform the CT examination (CTDI(vol)) and accounting for scan length and patient anatomy (i.e., neck diameter) at the thyroid location.

  15. Verde plant bug (Hemiptera: Miridae) feeding injury to cotton bolls characterized by boll age, size, and damage ratings.

    PubMed

    Armstrong, J Scott; Brewer, Michael J; Parker, Roy D; Adamczyk, J J

    2013-02-01

    The verde plant bug, Creontiades signatus (Distant), has been present in south Texas for several years but has more recently been documented as an economic threat to cultivated cotton, (Gossypium hirsutum L. Our studies over 2 yr (2009 and 2010) and two locations (Weslaco and Corpus Christi, TX) investigated feeding-injury of the verde plant bug to a range of cotton boll age classes defined by boll diameter and accumulated degree-days (anthesis to the time of infesting) for first-position cotton bolls infested with the plant bugs. The most detrimental damage to younger cotton holls from verde plant bug feeding was boll abscission. Cotton bolls <04 accumulating daily degree-days (ACDD), or a boll diameter of 1.3 cm were subject to 60-70% higher boll abscission when compared with the noninfested controls. Significantly higher boll abscission occurred from verde plant bug injured bolls compared with the controls up to 162 ACDD or a mean boll diameter 2.0 cm. Cotton seed weights were significantly reduced up to 179 ACDD or a boll diameter of 2.0 cm at Weslaco in 2009, and up to 317 ACDD or boll diameter 2.6 cm for Weslaco in 2010 when compared with the noninfested controls. Lint weight per cotton boll for infested and noninfested bolls was significantly reduced up to 262 ACDD or boll diameter 2.5 for Corpus Christi in 2010 and up to 288 ACCD or boll diameter 2.6 cm for Weslaco, TX, in 2010. Damage ratings (dependant variable) regressed against infested and noninfested seed-cotton weights showed that in every instance, the infested cotton bolls had a strong and significant relationship with damage ratings for all age classes of bolls. Damage ratings for the infested cotton bolls that did not abscise by harvest showed visual signs of verde plant bug feeding injury and the subsequent development ofboll rot; however, these two forms of injury causing lint and seed mass loss are hard to differentiate from open or boll-locked cotton bolls. Based on the results of both lint and seed loss over 2 yr and four studies cotton bolls should be protected up to approximately 300 ACDD or a boll diameter of 2.5 cm. This equilibrates to bolls that are 12-14 d of age dependent upon daily maximum and minimum temperatures.

  16. Bending effects and temperature dependence of magnetic properties in a Fe-rich amorphous wire

    NASA Astrophysics Data System (ADS)

    Bordin, G.; Buttino, G.; Poppi, M.

    2001-08-01

    Amorphous wires with composition Fe 77.5Si 7.5B 15 exhibit a very peculiar magnetization process characterized by a single and quite large Barkhausen jump. This gives rise to a squared hysteresis loop at a critical magnetic field. The bistable behaviour, widely studied in wires with typical length of 10 cm and diameter of 125 μm, appears above a length of about 7 cm in straight wires and disappears for curvature radius within the range 2-12 cm in bent wires. In this work it is shown that bistability occurs in bent wires, whatever their curvature is, provided the wires are long enough. To this purpose spiral-shaped samples with several turns are considered. However, when the wire length is not a integer number of turns the magnetization reverses through many large Barkhausen jumps. In this condition, varying the measuring temperature can activate the energy barriers for the jumps.

  17. An automated BPM characterization system for LEDA

    NASA Astrophysics Data System (ADS)

    Shurter, R. B.; Gilpatrick, J. D.; Ledford, J.; O'Hara, J.; Power, J.

    1998-12-01

    An automated and highly accurate system for "mapping" 5 cm-diameter beam position monitors (BPMs) used in the Low Energy Demonstrator Accelerator (LEDA) at Los Alamos is described. Two-dimensional data is accumulated from the four micro-stripline electrodes in the probe by sweeping an antenna driven at the LEDA bunching frequency of 350 MHz in discrete steps across the aperture. These data are then used to determine the centroid, first- and third-order sensitivities of the BPM. These probe response coefficients are then embedded in the LEDA control system database to provide normalized beam position information to the operators. A short summary of previous systems we have fielded is given, along with their attributes and deficiencies that had a bearing on this latest design. Lessons learned from this system will, in turn, be used on the next mappers that are currently being designed for 15 cm and 2.5 cm BPMs.

  18. Wind tunnel and field assessment of pollen dispersal in soybean [Glycine max (L.) Merr.].

    PubMed

    Yoshimura, Yasuyuki

    2011-01-01

    Although genetically modified (GM) soybean has never been cultivated commercially in Japan, it is essential to set up the isolation distance required to prevent out-crossing between GM and conventional soybean in preparation for any future possibility of pollen transfer. The airborne soybean pollen was sampled using some Durham pollen samplers located in the range of 20 m from the field edge. In addition, the dispersal distance was assessed in a wind tunnel under constant air flow and then it was compared with the anticipated distances based on the pollen diameter. In the field, the maximum pollen density per day observed was 1.235 grains cm(-2) day(-1) at three observation points within 2.5 m from the field and inside the field the mean density did not reach the rate of 1 grain cm(-2 )day(-1) during 19 flowering days. The results of the wind tunnel experiment also showed that the plants had almost no airborne release of pollen and the dispersal distance was shorter than theoretical value due to clustered dispersal. This study showed little airborne pollen in and around the soybean field and the dispersal is restricted to a small area. Therefore, wind-mediated pollination appears to be negligible.

  19. Fine woody fuel particle diameters for improved planar intersect fuel loading estimates in Southern Rocky Mountain ponderosa pine forests

    Treesearch

    Emma Vakili; Chad M. Hoffman; Robert E. Keane

    2016-01-01

    Fuel loading estimates from planar intersect sampling protocols for fine dead down woody surface fuels require an approximation of the mean squared diameter (d2) of 1-h (0-0.63 cm), 10-h (0.63-2.54 cm), and 100-h (2.54-7.62 cm) timelag size classes. The objective of this study is to determine d2 in ponderosa pine (Pinus ponderosa) forests of New Mexico and Colorado,...

  20. Design and fabrication of novel anode flow-field for commercial size solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Canavar, Murat; Timurkutluk, Bora

    2017-04-01

    In this study, nickel based woven meshes are tested as not only anode current collecting meshes but also anode flow fields instead of the conventional gas channels fabricated by machining. For this purpose, short stacks with different anode flow fields are designed and built by using different number of meshes with various wire diameters and widths of opening. A short stack with classical machined flow channels is also constructed. Performance and impedance measurements of the short stacks with commercial size cells of 81 cm2 active area are performed and compared. The results reveal that it is possible to create solid oxide fuel cell anode flow fields with woven meshes and obtain acceptable power with a proper selection of the mesh number, type and orientation.

  1. SU-E-T-506: Intercomparison Study On Small Field Output Factor Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Talamonti, C; Casati, M; Compagnucci, A

    2015-06-15

    Purpose In radiotherapy, uncertainties due to small field measurements (SFM) introduce systematic errors to the treatment process and the development of new dosimeters for quality assurance programs is a challenge. In this work we analyze the behavior of seven detectors measuring output factors of 6MV photon beam. Methods The dosimeters employed are: a single cristal diamond detector (SCCD) developed at the University of Rome Tor Vergata, a silicon diode developed within the project MAESTRO, a IBA Razor silicon diode, A1SL and A26 Exradin ion chambers, an EBT3 Gafchromic film and the Exradin W1 Scintillator.Diamond sensitive volume is a cylinder 2.2mmmore » in diameter and 1μm thick. MAESTRO diode is 2×2mm2 active area. Razor sensitive volume is a cylinder 0.6 mm in diameter and 0.02 mm thick. A16 and A1Sl have a collecting volume of 0,015cc and 0,053cc. The W1 is an optical fiber with an active volume of 0.002cc. All measurements were performed in a water phantom, with detector positioned at the isocenter (SSD=90cm, d=10cm), MAESTRO diode being sandwiched in solid water to obtain an equivalent experimental setup. Results These measurements are challenging due to the absence of charged particle equilibrium conditions, detector size and positioning problems. They are in good agreement among each other, especially GAF, Razor, W1 and SCDD. Maximum deviations reported are related to the field 0.8×0.8cm2 for MAESTRO and chambers data with respect to EBT3: around 15% (A1SLvsEBT3), 16% (MAESTROvsEBT3). Razor and W1 show a deviation around 3% with respect to SCDD. Conclusion In this work measurements made with a variety of detectors are compared. These study show the possibility to choose different detectors for SFM and that smaller ion chambers are still not competitive with solid state detectors. Silicon, diamond and optical fiber dosimeters show a similar behavior with minor discrepancies for the smallest field.« less

  2. Mapping the electromagnetic field confinement in the gap of germanium nanoantennas with plasma wavelength of 4.5 micrometers

    NASA Astrophysics Data System (ADS)

    Calandrini, Eugenio; Venanzi, Tommaso; Appugliese, Felice; Badioli, Michela; Giliberti, Valeria; Baldassarre, Leonetta; Biagioni, Paolo; De Angelis, Francesco; Klesse, Wolfgang M.; Scappucci, Giordano; Ortolani, Michele

    2016-09-01

    We study plasmonic nanoantennas for molecular sensing in the mid-infrared made of heavily doped germanium, epitaxially grown with a bottom-up doping process and featuring free carrier density in excess of 1020 cm-3. The dielectric function of the 250 nm thick germanium film is determined, and bow-tie antennas are designed, fabricated, and embedded in a polymer. By using a near-field photoexpansion mapping technique at λ = 5.8 μm, we demonstrate the existence in the antenna gap of an electromagnetic energy density hotspot of diameter below 100 nm and confinement volume 105 times smaller than λ3.

  3. Small field electron beam dosimetry using MOSFET detector

    PubMed Central

    Heaton, Robert; Norrlinger, Bern; Islam, Mohammad K.

    2010-01-01

    The dosimetry of very small electron fields can be challenging due to relative shifts in percent depth‐dose curves, including the location of dmax, and lack of lateral electronic equilibrium in an ion chamber when placed in the beam. Conventionally a small parallel plate chamber or film is utilized to perform small field electron beam dosimetry. Since modern radiotherapy departments are becoming filmless in favor of electronic imaging, an alternate and readily available clinical dosimeter needs to be explored. We have studied the performance of MOSFET as a relative dosimeter in small field electron beams. The reproducibility, linearity and sensitivity of a high‐sensitivity microMOSFET were investigated for clinical electron beams. In addition, the percent depth doses, output factors and profiles have been measured in a water tank with MOSFET and compared with those measured by an ion chamber for a range of field sizes from 1 cm diameter to 10 cm× 10 cm for 6, 12, 16 and 20 MeV beams. Similar comparative measurements were also performed with MOSFET and films in solid water phantom. The MOSFET sensitivity was found to be practically constant over the range of field sizes investigated. The dose response was found to be linear and reproducible (within ±1% for 100 cGy). An excellent agreement was observed among the central axis depth dose curves measured using MOSFET, film and ion chamber. The output factors measured with MOSFET for small fields agreed to within 3% with those measured by film dosimetry. Overall results indicate that MOSFET can be utilized to perform dosimetry for small field electron beam. PACS number: 87.55.Qr

  4. Antarctic meteorite descriptions, 1980

    NASA Technical Reports Server (NTRS)

    Score, R.; Schwarz, C. M.; Mason, B.; Bogard, D. D.

    1982-01-01

    Specimens found in the Alan Hills area include 361 ordinary chondrites, 4 carbonaceous chondrites, 6 achondrites, and 2 irons. Thirteen specimens measured over 11 cm in diameter and 69 between 5 to 10 cm in diameter are reported. The remainder of the finds were small, and many were paired. One of the irons was estimated to weigh about 20 kilograms.

  5. Proof of the Feasibility of Coherent and Incoherent Schemes for Pumping a Gamma-ray Laser

    DTIC Science & Technology

    1992-12-31

    the Texas-X was investigated by using metallic indium disks 1.0 cm in diameter and 0.127 mm thick as well as plastic planchettes 5.0 cm in diameter and...Spectral Distribution The spectral distribution was examined by irradiating the full set of the calibration nuclides listed in Table 1. Planchettes

  6. High purity low dislocation GaAs single crystals

    NASA Technical Reports Server (NTRS)

    Chen, R. T.; Holmes, D. E.; Kirkpatrick, C. G.

    1982-01-01

    Recent advances in GaAs bulk crystal growth using the LEC (liquid encapsulated Czochralski) technique are described. The dependence of the background impurity concentration and the dislocation density distribution on the materials synthesis and growth conditions were investigated. Background impurity concentrations as low as 4 x 10 to the 15th power were observed in undoped LEC GaAs. The dislocation density in selected regions of individual ingots was very low, below the 3000 cm .3000/sq cm threshold. The average dislocation density over a large annular ring on the wafers fell below the 10000/sq cm level for 3 inch diameter ingots. The diameter control during the program advanced to a diameter variation along a 3 inch ingot less than 2 mm.

  7. Numerical investigation of forced convection of nano fluid flow in horizontal U-longitudinal finned tube heat exchanger

    NASA Astrophysics Data System (ADS)

    Qasim, S. M.; Sahar, A. F. A.; Firas, A. A.

    2015-11-01

    A numerical study has been carried out to investigate the heat transfer by laminar forced convection of nanofluid taking Titania (TiO2) and Alumina (Al2O3) as nanoparticles and the water as based fluid in a three dimensional plain and U-longitudinal finned tube heat exchanger. A Solid WORKS PREMIUM 2012 is used to draw the geometries of plain tube heat exchanger or U-longitudinal copper finned tube heat exchanger. Four U-longitudinal copper fins have 100 cm long, 3.8cm height and 1mm thickness are attached to a straight copper tube of 100 cm length, 2.2 cm inner diameter and 2.39 cm outer diameter. The governing equations which used as continuity, momentum and energy equations under assumptions are utilized to predict the flow field, temperature distribution, and heat transfer of the heat exchanger. The finite volume approach is used to obtain all the computational results using commercial ANSYS Fluent copy package 14.0 with assist of solid works and Gambit software program. The effect of various parameters on the performance of heat exchanger are investigated numerically such as Reynolds' number (ranging from 270 to 1900), volume consternation of nanoparticles (0.2%, 0.4%, 0.6%, 0.8%), type of nanoparticles, and mass flow rate of nanofluid in the hot region of heat exchanger. For 0.8% consternation of nanoparticles, heat transfer has significant enhancement in both nanofluids. It can be found about 7.3% for TiO2 and about 7.5% for Al2O3 compared with the water only as a working fluid.

  8. Quantitative, nondestructive estimates of coarse root biomass in a temperate pine forest using 3-D ground-penetrating radar (GPR)

    NASA Astrophysics Data System (ADS)

    Molon, Michelle; Boyce, Joseph I.; Arain, M. Altaf

    2017-01-01

    Coarse root biomass was estimated in a temperate pine forest using high-resolution (1 GHz) 3-D ground-penetrating radar (GPR). GPR survey grids were acquired across a 400 m2 area with varying line spacing (12.5 and 25 cm). Root volume and biomass were estimated directly from the 3-D radar volume by using isometric surfaces calculated with the marching cubes algorithm. Empirical relations between GPR reflection amplitude and root diameter were determined for 14 root segments (0.1-10 cm diameter) reburied in a 6 m2 experimental test plot and surveyed at 5-25 cm line spacing under dry and wet soil conditions. Reburied roots >1.4 cm diameter were detectable as continuous root structures with 5 cm line separation. Reflection amplitudes were strongly controlled by soil moisture and decreased by 40% with a twofold increase in soil moisture. GPR line intervals of 12.5 and 25 cm produced discontinuous mapping of roots, and GPR coarse root biomass estimates (0.92 kgC m-2) were lower than those obtained previously with a site-specific allometric equation due to nondetection of vertical roots and roots <1.5 cm diameter. The results show that coarse root volume and biomass can be estimated directly from interpolated 3-D GPR volumes by using a marching cubes approach, but mapping of roots as continuous structures requires high inline sampling and line density (<5 cm). The results demonstrate that 3-D GPR is viable approach for estimating belowground carbon and for mapping tree root architecture. This methodology can be applied more broadly in other disciplines (e.g., archaeology and civil engineering) for imaging buried structures.

  9. Physical Properties of Venous Stents: An Experimental Comparison.

    PubMed

    Dabir, Darius; Feisst, Andreas; Thomas, Daniel; Luetkens, Julian A; Meyer, Carsten; Kardulovic, Ana; Menne, Matthias; Steinseifer, Ulrich; Schild, Hans H; Kuetting, Daniel L R

    2018-06-01

    Iliocaval obstruction is a substantial contributor to chronic venous insufficiency and is increasingly being treated endovascularly with angioplasty and stent placement. Utilization of an appropriate stent for treatment is pivotal; however, until today, mechanical properties of venous stents remain unknown. We analyzed the radial resistive force, the chronic outward force, as well as the crush resistance of seven stent models [Zilver Vena (Cook, Bjaeverskov, Denmark), Sinus Venous, Sinus Obliquus and Sinus XL Flex (Optimed, Ettlingen, Germany), Vici (Veniti; St. Louis, USA), Wallstent (Boston Scientific, Marlborough, USA), and Venovo (Bard, Tempe, USA)] in vitro using a radial force testing machine (RX-650, Machine Solutions Inc., Flagstaff, AZ, USA) and a hardness testing machine (zwickiLine, Zwick Roell, Ulm, Germany). The Sinus Obliquus revealed the highest radial resistive force (19.41 N/cm) and the highest chronic outward force at 50 and 30% nominal diameter (7.93 N/cm at 50%, 16.97 N/cm at 30%) while the Venovo revealed the highest chronic outward force at 90 and 80% nominal diameter (4.83 N/cm at 90%, 5.37 N/cm at 80%). The radial resistive force and the chronic outward force of the Wallstent greatly depended on whether the stent ends were fixated. The Wallstent revealed the highest crush resistance at nominal diameters of 90% (0.46 N/cm) to 60% (1.16 N/cm). The Sinus Obliquus revealed the highest crush resistance at a nominal diameter of 50% (1.41 N/cm). Venous stents greatly differ regarding their mechanical properties. These results should be considered when choosing an appropriate stent for the treatment of venous obstruction.

  10. Status of MSBS Study at NAL in 1995

    NASA Technical Reports Server (NTRS)

    Sawada, Hideo; Suenaga, Hisasi; Kunimasu, Tetuya; Kohno, Takashi

    1996-01-01

    Magnetic field intensity and currents passing through the coils of the National Aerospace Laboratory (NAL) 1O cm Magnetic Suspension and Balance System (MSBS) were measured while a cylindrical model was oscillated along x,y,z and also about y and z axes, respectively. The model was made of alnico 5 and was 8 mm in diameter and 60 mm long. Two kinds of tests were carried out. Amplitude of the oscillation was varied at a frequency of 10 Hz. Frequency was varied from 1 to 50 Hz in the other test. Results of the tests show that the relation between coil currents and magnetic force acting on the model is affected by frequency. They also show that the relation between measured magnetic field intensity and the force in vertical direction is independent of the frequency below 30 Hz. Using the measured magnetic field intensity, the vertical force can be evaluated at the MSBS instantaneously when a model moves at frequencies below 30 Hz. A static drag force calibration test was carried out at the 60 cm MSBS. Obtained relationships between measured drag coil currents and loads shows large hysteresis.

  11. Evaluation of the dosimetric properties of a diode detector for small field proton radiosurgery

    PubMed Central

    Teran, Anthony V.; Slater, Jerry D.; Slater, James M.; Wroe, Andrew J.

    2015-01-01

    The small fields and sharp gradients typically encountered in proton radiosurgery require high spatial resolution dosimetric measurements, especially below 1–2 cm diameters. Radiochromic film provides high resolution, but requires postprocessing and special handling. Promising alternatives are diode detectors with small sensitive volumes (SV) that are capable of high resolution and real‐time dose acquisition. In this study we evaluated the PTW PR60020 proton dosimetry diode using radiation fields and beam energies relevant to radiosurgery applications. Energies of 127 and 157 MeV (9.7 to 15 cm range) and initial diameters of 8, 10, 12, and 20 mm were delivered using single‐stage scattering and four modulations (0, 15, 30, and 60 mm) to a water tank in our treatment room. Depth dose and beam profile data were compared with PTW Markus N23343 ionization chamber, EBT2 Gafchromic film, and Monte Carlo simulations. Transverse dose profiles were measured using the diode in "edge‐on" orientation or EBT2 film. Diode response was linear with respect to dose, uniform with dose rate, and showed an orientation‐dependent (i.e., beam parallel to, or perpendicular to, detector axis) response of less than 1%. Diode vs. Markus depth‐dose profiles, as well as Markus relative dose ratio vs. simulated dose‐weighted average lineal energy plots, suggest that any LET‐dependent diode response is negligible from particle entrance up to the very distal portion of the SOBP for the energies tested. Finally, while not possible with the ionization chamber due to partial volume effects, accurate diode depth‐dose measurements of 8, 10, and 12 mm diameter beams were obtained compared to Monte Carlo simulations. Because of the small SV that allows measurements without partial volume effects and the capability of submillimeter resolution (in edge‐on orientation) that is crucial for small fields and high‐dose gradients (e.g., penumbra, distal edge), as well as negligible LET dependence over nearly the full the SOBP, the PTW proton diode proved to be a useful high‐resolution, real‐time metrology device for small proton field radiation measurements such as would be encountered in radiosurgery applications. PACS numbers: 87.56.‐v, 87.56.jf, 87.56.Fc PMID:26699554

  12. Pulsed-coil magnet systems for applying 10-30 Tesla Fields to cm-scale targets on Sandia's Z facility

    DOE PAGES

    Rovang, Dean C.; Lamppa, Derek C.; Cuneo, Michael Edward; ...

    2014-12-04

    We have successfully integrated the capability to apply uniform, high magnetic fields (10–30 T) to high energy density experiments on the Z facility. This system uses an 8-mF, 15-kV capacitor bank to drive large-bore (5 cm diameter), high-inductance (1–3 mH) multi-turn, multi-layer electromagnets that slowly magnetize the conductive targets used on Z over several milliseconds (time to peak field of 2–7 ms). This system was commissioned in February 2013 and has been used successfully to magnetize more than 30 experiments up to 10 T that have produced exciting and surprising physics results. These experiments used split-magnet topologies to maintain diagnosticmore » lines of sight to the target. We then describe the design, integration, and operation of the pulsed coil system into the challenging and harsh environment of the Z Machine. We also describe our plans and designs for achieving fields up to 20 T with a reduced-gap split-magnet configuration, and up to 30 T with a solid magnet configuration in pursuit of the Magnetized Liner Inertial Fusion concept.« less

  13. Dosimetry of cone-defined stereotactic radiosurgery fields with a commercial synthetic diamond detector.

    PubMed

    Morales, Johnny E; Crowe, Scott B; Hill, Robin; Freeman, Nigel; Trapp, J V

    2014-11-01

    Small field x-ray beam dosimetry is difficult due to lack of lateral electronic equilibrium, source occlusion, high dose gradients, and detector volume averaging. Currently, there is no single definitive detector recommended for small field dosimetry. The objective of this work was to evaluate the performance of a new commercial synthetic diamond detector, namely, the PTW 60019 microDiamond, for the dosimetry of small x-ray fields as used in stereotactic radiosurgery (SRS). Small field sizes were defined by BrainLAB circular cones (4-30 mm diameter) on a Novalis Trilogy linear accelerator and using the 6 MV SRS x-ray beam mode for all measurements. Percentage depth doses (PDDs) were measured and compared to an IBA SFD and a PTW 60012 E diode. Cross profiles were measured and compared to an IBA SFD diode. Field factors, ΩQclin,Qmsr (fclin,fmsr) , were calculated by Monte Carlo methods using BEAMnrc and correction factors, kQclin,Qmsr (fclin,fmsr) , were derived for the PTW 60019 microDiamond detector. For the small fields of 4-30 mm diameter, there were dose differences in the PDDs of up to 1.5% when compared to an IBA SFD and PTW 60012 E diode detector. For the cross profile measurements the penumbra values varied, depending upon the orientation of the detector. The field factors, ΩQclin,Qmsr (fclin,fmsr) , were calculated for these field diameters at a depth of 1.4 cm in water and they were within 2.7% of published values for a similar linear accelerator. The corrections factors, kQclin,Qmsr (fclin,fmsr) , were derived for the PTW 60019 microDiamond detector. The authors conclude that the new PTW 60019 microDiamond detector is generally suitable for relative dosimetry in small 6 MV SRS beams for a Novalis Trilogy linear equipped with circular cones.

  14. Influence of beam efficiency through the patient-specific collimator on secondary neutron dose equivalent in double scattering and uniform scanning modes of proton therapy.

    PubMed

    Hecksel, D; Anferov, V; Fitzek, M; Shahnazi, K

    2010-06-01

    Conventional proton therapy facilities use double scattering nozzles, which are optimized for delivery of a few fixed field sizes. Similarly, uniform scanning nozzles are commissioned for a limited number of field sizes. However, cases invariably occur where the treatment field is significantly different from these fixed field sizes. The purpose of this work was to determine the impact of the radiation field conformity to the patient-specific collimator on the secondary neutron dose equivalent. Using a WENDI-II neutron detector, the authors experimentally investigated how the neutron dose equivalent at a particular point of interest varied with different collimator sizes, while the beam spreading was kept constant. The measurements were performed for different modes of dose delivery in proton therapy, all of which are available at the Midwest Proton Radiotherapy Institute (MPRI): Double scattering, uniform scanning delivering rectangular fields, and uniform scanning delivering circular fields. The authors also studied how the neutron dose equivalent changes when one changes the amplitudes of the scanned field for a fixed collimator size. The secondary neutron dose equivalent was found to decrease linearly with the collimator area for all methods of dose delivery. The relative values of the neutron dose equivalent for a collimator with a 5 cm diameter opening using 88 MeV protons were 1.0 for the double scattering field, 0.76 for rectangular uniform field, and 0.6 for the circular uniform field. Furthermore, when a single circle wobbling was optimized for delivery of a uniform field 5 cm in diameter, the secondary neutron dose equivalent was reduced by a factor of 6 compared to the double scattering nozzle. Additionally, when the collimator size was kept constant, the neutron dose equivalent at the given point of interest increased linearly with the area of the scanned proton beam. The results of these experiments suggest that the patient-specific collimator is a significant contributor to the secondary neutron dose equivalent to a distant organ at risk. Improving conformity of the radiation field to the patient-specific collimator can significantly reduce secondary neutron dose equivalent to the patient. Therefore, it is important to increase the number of available generic field sizes in double scattering systems as well as in uniform scanning nozzles.

  15. Use of disposable graduated biopsy forceps improves accuracy of polyp size measurements during endoscopy

    PubMed Central

    Jin, Hei-Ying; Leng, Qiang

    2015-01-01

    AIM: To determine the accuracy of endoscopic polyp size measurements using disposable graduated biopsy forceps (DGBF). METHODS: Gradations accurate to 1 mm were assessed with the wire of disposable graduated biopsy forceps. When a polyp was noted, endoscopists determined the width of the polyp; then, the graduated biopsy forceps was inserted and the largest diameter of the tumor was measured. After excision, during surgery or endoscopy, the polyp was measured using the vernier caliper. RESULTS: One hundred and thirty-three colorectal polyps from 119 patients were studied. The mean diameter, by post-polypectomy measurement, was 0.92 ± 0.69 cm; 83 were < 1 cm, 36 were between 1 and 2 cm, and 14 were > 2 cm. The mean diameter, by visual estimation, was 1.15 ± 0.88 cm; compared to the actual size measured using vernier calipers, the difference was statistically significant. The mean diameter measured using the DGBF was 0.93 ± 0.68 cm; compared to the actual size measured using vernier calipers, this difference was not statistically significant. The ratio between the mean size estimated by visual estimation and the actual size was significantly different from that between the mean size estimated using the DGBF and the actual size (1.26 ± 0.30 vs 1.02 ± 0.11). CONCLUSION: The accuracy of polyp size estimation was low by visual assessment; however, it improved when the DGBF was used. PMID:25605986

  16. Volumetric Growth of the Liver in the Human Fetus: An Anatomical, Hydrostatic, and Statistical Study

    PubMed Central

    Szpinda, Michał; Paruszewska-Achtel, Monika; Mila-Kierzenkowska, Celestyna; Elminowska-Wenda, Gabriela; Dombek, Małgorzata; Szpinda, Anna; Badura, Mateusz

    2015-01-01

    Using anatomical, hydrostatic, and statistical methods, liver volumes were assessed in 69 human fetuses of both sexes aged 18–30 weeks. No sex differences were found. The median of liver volume achieved by hydrostatic measurements increased from 6.57 cm3 at 18–21 weeks through 14.36 cm3 at 22–25 weeks to 20.77 cm3 at 26–30 weeks, according to the following regression: y = −26.95 + 1.74 × age ± Z  × (−3.15 + 0.27 × age). The median of liver volume calculated indirectly according to the formula liver volume = 0.55 × liver length × liver transverse diameter × liver sagittal diameter increased from 12.41 cm3 at 18–21 weeks through 28.21 cm3 at 22–25 weeks to 49.69 cm3 at 26–30 weeks. There was a strong relationship (r = 0.91, p < 0.001) between the liver volumes achieved by hydrostatic (x) and indirect (y) methods, expressed by y = −0.05 + 2.16x  ± 7.26. The liver volume should be calculated as follows liver volume = 0.26 × liver length × liver transverse diameter × liver sagittal diameter. The age-specific liver volumes are of great relevance in the evaluation of the normal hepatic growth and the early diagnosis of fetal micro- and macrosomias. PMID:26413551

  17. SU-E-T-757: TMRs Calculated From PDDs Versus the Direct Measurements for Small Field SRS Cones

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, H; Zhong, H; Song, K

    2015-06-15

    Purpose: To investigate the variation of TMR for SRS cones obtained by TMR scanning, calculation from PDDs, and point measurements. The obtained TMRs were also compared to the representative data from the vendor. Methods: TMRs for conical cones of 4, 5, 7.5, 10, 12.5, 15, and 17.5 mm diameter (jaws set to 5×5 cm) were obtained for 6X FFF and 10X FFF energies on a Varian Edge linac. TMR scanning was performed with a Sun Nuclear 3D scanner and Edge detector at 100 cm SDD. TMR point measurements were measured with a Wellhofer tank and Edge detector, at multiple depthsmore » from 0.5 to 20 cm and 100 cm SDD. PDDs for converting to TMR were scanned with a Wellhofer system and SFD detector. The formalism of converting PDD to TMR, given in Khan’s book (4th Edition, p.161) was applied. Sp values at dmax were obtained by measuring Scp and Sc of the cones (jaws set to 5×5 cm) using the Edge detector, and normalized to the 10×10 cm field. Results: Along the central axis beyond dmax, the RMS and maximum percent difference of TMRs obtained with different methods were as follows: (a) 1.3% (max=3.5%) for the calculated TMRs from PDDs versus direct scanning; (b) 1.2% (max=3.3%) for direct scanning versus point measurement; (c) 1.8% (max=5.1%) for the calculated versus point measurements; (d) 1.0% (max=3.6%) for direct scanning versus vendor data; (e) 1.6% (max=7.2%) for the calculated versus vendor data. Conclusion: The overall accuracy of TMRs calculated from PDDs was comparable with that of direct scanning. However, the uncertainty at depths greater than 20 cm, increased up to 5% when compared to point measurements. This issue must be considered when developing a beam model for small field SRS planning using cones.« less

  18. Error rate of automated calculation for wound surface area using a digital photography.

    PubMed

    Yang, S; Park, J; Lee, H; Lee, J B; Lee, B U; Oh, B H

    2018-02-01

    Although measuring would size using digital photography is a quick and simple method to evaluate the skin wound, the possible compatibility of it has not been fully validated. To investigate the error rate of our newly developed wound surface area calculation using digital photography. Using a smartphone and a digital single lens reflex (DSLR) camera, four photographs of various sized wounds (diameter: 0.5-3.5 cm) were taken from the facial skin model in company with color patches. The quantitative values of wound areas were automatically calculated. The relative error (RE) of this method with regard to wound sizes and types of camera was analyzed. RE of individual calculated area was from 0.0329% (DSLR, diameter 1.0 cm) to 23.7166% (smartphone, diameter 2.0 cm). In spite of the correction of lens curvature, smartphone has significantly higher error rate than DSLR camera (3.9431±2.9772 vs 8.1303±4.8236). However, in cases of wound diameter below than 3 cm, REs of average values of four photographs were below than 5%. In addition, there was no difference in the average value of wound area taken by smartphone and DSLR camera in those cases. For the follow-up of small skin defect (diameter: <3 cm), our newly developed automated wound area calculation method is able to be applied to the plenty of photographs, and the average values of them are a relatively useful index of wound healing with acceptable error rate. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Maximal aortic diameter affects outcome after endovascular repair of abdominal aortic aneurysms.

    PubMed

    Huang, Ying; Gloviczki, Peter; Duncan, Audra A; Kalra, Manju; Oderich, Gustavo S; Fleming, Mark D; Harmsen, William S; Bower, Thomas C

    2017-05-01

    The purpose of this study was to evaluate whether maximal aortic diameter affects outcome after endovascular aneurysm repair (EVAR) of abdominal aortic aneurysm (AAA). Clinical data of patients undergoing EVAR between 1997 and 2011 for nonruptured asymptomatic AAAs in a tertiary center were reviewed. Patients were classified according to diameter of AAA: group 1, <5.0 cm; group 2, 5.0 to 5.4 cm; group 3, 5.5 to 5.9 cm; and group 4, ≥6.0 cm. The primary end point was all-cause mortality; secondary end points were complications, reinterventions, and ruptures. There were 874 patients studied (female, 108 [12%]; group 1, 119; group 2, 246; group 3, 243; group 4, 266); mean age was 76 ± 7.2 years. The 30-day mortality rate was 1.0%, not significantly different between groups (P = .22); complication and reintervention rates were 13% and 4.1%, respectively, similar between groups (P < .05). Five-year survival was 68%; freedom from complications and reinterventions was 65% and 74%, respectively; rupture rate was 0.5%. Multivariate analysis revealed that factors associated with all-cause mortality included maximal aortic diameter, age, gender, surgical risk, cancer history, and endograft type (P < .05). Group 4 had increased risks of mortality (hazard ratio [HR], 2.0; 95% confidence interval [CI], 1.38-2.85; P = .002) and complications (HR, 1.6; 95% CI, 1.2-2.7; P = .009) relative to group 1. Reinterventions were more frequent for aneurysms ≥6.0 cm (HR, 2.0; 95% CI, 1.2-3.3; P = .01). Late rupture rate after EVAR was not different between groups. Maximal aortic diameter is associated with long-term outcomes after elective EVAR. Patients with large AAAs (≥6.0 cm) have higher all-cause mortality, complication, and reintervention rates after EVAR than those with smaller aneurysms. We continue to recommend that AAAs be repaired when they reach 5.5 cm as recommended by the guidelines of the Society for Vascular Surgery. On the basis of our data, EVAR should be considered even in high-risk patients with a maximal aortic diameter between 5.5 and 6.0 cm because surgical risk with aneurysm size above 6.0 cm will increase significantly. Copyright © 2016 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.

  20. Probe for Sampling of Interstitial Fluid From Bone

    NASA Technical Reports Server (NTRS)

    Janle, Elsa M.

    2004-01-01

    An apparatus characterized as both a membrane probe and a bone ultrafiltration probe has been developed to enable in vivo sampling of interstitial fluid in bone. The probe makes it possible to measure the concentration of calcium and other constituents of the fluid that may be relevant to bone physiology. The probe could be especially helpful in experimental studies of microgravitational bone loss and of terrestrial bone-loss disease states, including osteoporosis. The probe can be implanted in the bone tissue of a living animal and can be used to extract samples of the interstitial bone fluid from time to time during a long-term study. The probe includes three 12-cm-long polyacrylonitrile fibers configured in a loop form and attached to polyurethane tubing [inside diameter 0.025 in. (0.64 mm), outside diameter 0.040 in. (1 mm)]; the attachment is made by use of a 1-cm-long connecting piece of polyurethane tubing [inside diameter 0.035 0.003 in. (0.89 0.08 mm), outside diameter 0.060 0.003 in. (1.52 0.08 mm)]. At the distal end, a 2-cm-long piece of polyurethane tubing of the same inner and outer diameters serves as a connector to a hub. A 1-cm long piece of expanded poly (tetrafluoroethylene) tubing over the joint between the fibers and the connecting tubing serves as a tissue-in-growth site.

  1. Nonlinear Vibration of a Magnetic Spring

    ERIC Educational Resources Information Center

    Zhong, Juhua; Cheng, Zhongqi; Ge, Ziming; Zhang, Yuelan; Lu, Wenqiang; Song, Feng; Li, Chuanyong

    2012-01-01

    To demonstrate the different vibration characteristics of a magnetic spring compared with those of a metal one, a magnetic spring apparatus was constructed from a pair of circular magnets of the same size with an inside diameter of 2.07 cm and an outside diameter of 4.50 cm. To keep the upper magnet in a suspension state, the two magnets were…

  2. Large Mode Area Yb-Doped Photonic Bandgap Fiber Lasers

    DTIC Science & Technology

    2015-02-08

    was estimated to be 1 dB/m at a pump wavelength of 976 nm. Approximately 11 m of this fiber was mounted on a cold spool possessing a diameter of 53 cm...Approximately 11 m of this fiber was mounted on a cold spool possessing a diameter of 53 cm. The PBGF was pumped in a counter-propagating configuration

  3. Angular and radial dependence of the energy response factor for LIF-TLD micro-rods in 125L permanent implant source.

    PubMed

    Mobit, Paul; Badragan, Iulian

    2006-01-01

    EGSnrc Monte Carlo simulations were used to calculate the angular and radial dependence of the energy response factor for LiF-thermoluminescence dosemeters (TLDs) irradiated with a commercially available (125)I permanent brachytherapy source. The LiF-TLDs were modelled as cylindrical micro-rods of length 6 mm and with diameters of 1 mm and 5 mm. The results show that for a LiF-TLD micro-rod of 1 mm diameter, the energy response relative to (60)Co gamma rays is 1.406 +/- 0.3% for a polar angle of 90 degrees and radial distance of 1.0 cm. When the diameter of the micro-rod is increased from 1 to 5 mm, the energy response decreases to 1.32 +/- 0.3% at the same point. The variation with position of the energy response factor is not >5% in a 6 cm x 6 cm x 6 cm calculation grid for the 5 mm diameter micro-rod. The results show that there is a change in the photon spectrum with angle and radial distance, which causes the variation of the energy response.

  4. Composite propulsion feedlines for cryogenic space vehicles, volume 1

    NASA Technical Reports Server (NTRS)

    Hall, C. A.; Laintz, D. J.; Phillips, J. M.

    1973-01-01

    Thin metallic liners that provide leak-free service in cryogenic propulsion systems are overwrapped with a glass-fiber composite that provides strength and protection from handling damage. The resultant tube is lightweight, strong and has a very low thermal flux. Several styles of tubing ranging from 5 to 38 cm in diameter and up to 305 cm long were fabricated and tested at operating temperatures from 294 to 21 K and operating pressures up to 259 N/sq cm. The primary objective for the smaller sizes was thermal performance optimization of the propulsion system while the primary objective of the larger sizes was weight optimization and to prove fabricability. All major program objectives were met resulting in a design concept that is adaptable to a wide range of aerospace vehicle requirements. Major items of development included: bonding large diameter aluminum end fittings to the thin Inconel liner; fabrication of a 38 cm diameter tube from 0.008 cm thick Inconel; and evaluation of tubing which provides essentially zero quality propellant in a very short period of time resulting in a lower mass of propellant expended in chilldown.

  5. Conjugate Cassegrain telescopes for thermal source FTIR spectral radiometric calibration

    NASA Astrophysics Data System (ADS)

    Wolk, Martin; McGillicuddy, Robert J.; Zurlinden, Joseph E.

    1998-08-01

    Two Cassegrain telescopes were constructed to function as sender and receiver for an FTIR spectrometer primarily for the purpose of obtaining spectral data for analysis of military night vision emission targets, and spectral calibration of external variable temperature thermal radiation sources, utilizing freezing-point type blackbodies for primary radiation temperature standards. The sender and receiver telescopes, F/7 and F/5, respectively, each employ 0.30 m (12 in) diameter primary and 0.15 m (6 in) diameter secondary, protected Ag coated Zerodur mirrors. In operation, a thermal target image formed by the sender, whose optical axis is aligned with that of the receiver and spectrometer, is transmitted to and brought to a focus at the spectrometer entrance aperture by the receiver telescope. With (lambda) /8 p-v optical surface accuracy at 633 nm, telescope system tests indicate near diffraction- limited performance in the visible, and 2.81 mrad (full) FOV with further reduction achieved with field stops. Wavelength range capability of the commercially available FTIR instrument employed is approximately 0.22 micrometers (55000 cm-1) to 22 micrometers (450 cm-1) with wavenumber resolution of about 0.013 cm-1 in the IR to 0.769 micrometers (13000 cm-1). In this paper, the techniques and tests employed for the telescope mirror construction are described. An innovative technique for secondary alignment for Hindle's tests of a Cassegrain utilizing a He-Ne laser is presented. Telescope mountings for positioning and alignment with the FTIR are briefly discussed, as well as radiometric and calibration parameters for the integrated system.

  6. Percutaneous Renal Cryoablation: Short-Axis Ice-Ball Margin as a Predictor of Outcome.

    PubMed

    Ge, Benjamin H; Guzzo, Thomas J; Nadolski, Gregory J; Soulen, Michael C; Clark, Timothy W I; Malkowicz, Stanley B; Wein, Alan J; Hunt, Stephen J; Stavropoulos, S William

    2016-03-01

    To determine if CT characteristics of intraprocedural ice balls correlate with outcomes after cryoablation. A retrospective review was performed on 63 consecutive patients treated with renal cryoablation. Preprocedural and intraprocedural images were used to identify the size and location of renal tumors and ice balls as well as the tumor coverage and ice-ball margins. Review of follow-up imaging (1 mo and then 3-6-mo intervals) distinguished successful ablations from cases of residual tumor. Patients who underwent successful ablation (n = 50; 79%) had a mean tumor diameter of 2.5 cm (range, 0.9-4.3 cm) and mean ice-ball margin of 0.4 cm (range, 0.2-1.2 cm). Patients with residual tumor (n = 13; 21%) had a mean tumor diameter of 3.8 cm (range, 1.8-4.5 cm) and mean ice-ball margin of -0.4 cm (range, -0.9 to 0.4 cm). Residual and undertreated tumors were larger and had smaller ice-ball margins than successfully treated tumors (P < .01). Ice-ball diameters were significantly smaller after image reformatting (P < .01). Ice-ball margins of 0.15 cm had 90% sensitivity, 92% specificity, and 98% positive predictive value for successful ablation. Success was independent of tumor location or number of cryoprobes. Ice-ball margin and real-time intraprocedural reformatting could be helpful in predicting renal cryoablation outcomes. Although a 0.5-cm margin is preferred, a well-centered ice ball with a short-axis margin greater than 0.15 cm strongly correlated with successful ablation. Copyright © 2016 SIR. Published by Elsevier Inc. All rights reserved.

  7. Impact of magnetic field strength and receiver coil in ocular MRI: a phantom and patient study.

    PubMed

    Erb-Eigner, K; Warmuth, C; Taupitz, M; Willerding, G; Bertelmann, E; Asbach, P

    2013-09-01

    Generally, high-resolution MRI of the eye is performed with small loop surface coils. The purpose of this phantom and patient study was to investigate the influence of magnetic field strength and receiver coils on image quality in ocular MRI. The eyeball and the complex geometry of the facial bone were simulated by a skull phantom with swine eyes. MR images were acquired with two small loop surface coils with diameters of 4 cm and 7 cm and with a multi-channel head coil at 1.5 and 3 Tesla, respectively. Furthermore, MRI of the eye was performed prospectively in 20 patients at 1.5 Tesla (7 cm loop surface coil) and 3 Tesla (head coil). These images were analysed qualitatively and quantitatively and statistical significance was tested using the Wilcoxon-signed-rank test (a p-value of less than 0.05 was considered to indicate statistical significance). The analysis of the phantom images yielded the highest mean signal-to-noise ratio (SNR) at 3 Tesla with the use of the 4 cm loop surface coil. In the phantom experiment as well as in the patient studies the SNR was higher at 1.5 Tesla by applying the 7 cm surface coil than at 3 Tesla by applying the head coil. Concerning the delineation of anatomic structures no statistically significant differences were found. Our results show that the influence of small loop surface coils on image quality (expressed in SNR) in ocular MRI is higher than the influence of the magnetic field strength. The similar visibility of detailed anatomy leads to the conclusion that the image quality of ocular MRI at 3 Tesla remains acceptable by applying the head coil as a receiver coil. © Georg Thieme Verlag KG Stuttgart · New York.

  8. MCNP simulation of radiation doses distributions in a water phantoms simulating interventional radiology patients

    NASA Astrophysics Data System (ADS)

    He, Wenjun; Mah, Eugene; Huda, Walter; Selby, Bayne; Yao, Hai

    2011-03-01

    Purpose: To investigate the dose distributions in water cylinders simulating patients undergoing Interventional Radiological examinations. Method: The irradiation geometry consisted of an x-ray source, dose-area-product chamber, and image intensifier as currently used in Interventional Radiology. Water cylinders of diameters ranging between 17 and 30 cm were used to simulate patients weighing between 20 and 90 kg. X-ray spectra data with peak x-ray tube voltages ranging from 60 to 120 kV were generated using XCOMP3R. Radiation dose distributions inside the water cylinder (Dw) were obtained using MCNP5. The depth dose distribution along the x-ray beam central axis was normalized to free-in-air air kerma (AK) that is incident on the phantom. Scattered radiation within the water cylinders but outside the directly irradiated region was normalized to the dose at the edge of the radiation field. The total absorbed energy to the directly irradiated volume (Ep) and indirectly irradiated volume (Es) were also determined and investigated as a function of x-ray tube voltage and phantom size. Results: At 80 kV, the average Dw/AK near the x-ray entrance point was 1.3. The ratio of Dw near the entrance point to Dw near the exit point increased from ~ 26 for the 17 cm water cylinder to ~ 290 for the 30 cm water cylinder. At 80 kV, the relative dose for a 17 cm water cylinder fell to 0.1% at 49 cm away from the central ray of the x-ray beam. For a 30 cm water cylinder, the relative dose fell to 0.1% at 53 cm away from the central ray of the x-ray beam. At a fixed x-ray tube voltage of 80 kV, increasing the water cylinder diameter from 17 to 30 cm increased the Es/(Ep+Es) ratio by about 50%. At a fixed water cylinder diameter of 24 cm, increasing the tube voltage from 60 kV to 120 kV increased the Es/(Ep+Es) ratio by about 12%. The absorbed energy from scattered radiation was between 20-30% of the total energy absorbed by the water cylinder, and was affected more by patient size than x-ray beam energy. Conclusion: MCNP offers a powerful tool to study the absorption and transmission of x-ray energy in phantoms that can be designed to represent patients undergoing Interventional Radiological procedures. This ability will permit a systematic investigation of the relationship between patient dose and diagnostic image quality, and thereby keep patient doses As Low As Reasonably Achievable (ALARA).

  9. Status, technology and development of silicon solar cells at INER

    NASA Astrophysics Data System (ADS)

    Jao, S. S.; Tseng, H. H.; Cheng, C.; Tzeng, Y. C.; Chang, H. H.; Hwang, H. L.

    Test runs using 200 5-cm-diameter silicon wafers are carried out, yielding 87% with an AM1 conversion efficiency greater than 11.5%. The highest efficiency is 12.7%. Concentrator solar cells of 2 x 2 sq cm are made with an AM1 efficiency of 14%. Solar cells with a diameter of 7.5 cm have attained AM1 efficiencies of more than 11.3%, and texturized solar cells of the same diameter fabricated from rejected wafers show AM1 efficiencies of 9.5-10.5%. It is noted that solar panels comprising 68 cells with a maximum output power of 13.5 W have been manufactured. The results of a 6-month test of a photovoltaic charge station for electric motorcycles are reported.

  10. Hot ion plasma production in HIP-1 using water-cooled hollow cathodes

    NASA Technical Reports Server (NTRS)

    Reinmann, J. J.; Lauver, M. R.; Patch, R. W.; Layman, R. W.; Snyder, A.

    1975-01-01

    The paper reports on hot-ion plasma experiments conducted in a magnetic mirror facility. A steady-state E x B plasma was formed by applying a strong radially inward dc electric field near the mirror throats. Most of the results were for hydrogen, but deuterium and helium plasmas were also studied. Three water-cooled hollow cathodes were operated in the hot-ion plasma mode with the following results: (1) thermally emitting cathodes were not required to achieve the hot-ion mode; (2) steady-state operation (several minutes) was attained; (3) input powers greater than 40 kW were achieved; (4) cathode outside diameters were increased from 1.2 cm (uncooled) to 4.4 cm (water-cooled); (5) steady-state hydrogen plasmas with ion temperatures from 185 to 770 eV and electron temperatures from 5 to 21 eV were produced. Scaling relations were empirically obtained for discharge current, ion temperature, electron temperature, and relative ion density as a function of hydrogen gas feed rate, magnetic field, and cathode voltage.

  11. Acoustic field of a wedge-shaped section of a spherical cap transducer

    NASA Astrophysics Data System (ADS)

    Ketterling, Jeffrey A.

    2003-12-01

    The acoustic pressure field at an arbitrary point in space is derived for a wedge-shaped section of a spherical cap transducer using the spatial impulse response (SIR) method. For a spherical surface centered at the origin, a wedge shape is created by taking cuts in the X-Y and X-Z planes and removing the smallest surface component. Analytic expressions are derived for the SIR based on spatial location. The expressions utilize the SIR solutions for a spherical cap transducer [Arditi et al., Ultrason. Imaging 3, 37-61 (1981)] with additional terms added to account for the reduced surface area of the wedge. Results from the numerical model are compared to experimental measurements from a wedge transducer with an 8-cm outer diameter and 9-cm geometric focus. The experimental and theoretical -3-dB beamwidths agreed to within 10%+/-5%. The SIR model for a wedge-shaped transducer is easily extended to other spherically curved transducer geometries that consist of combinations of wedge sections and spherical caps.

  12. Acoustic field of a wedge-shaped section of a spherical cap transducer.

    PubMed

    Ketterling, Jeffrey A

    2003-12-01

    The acoustic pressure field at an arbitrary point in space is derived for a wedge-shaped section of a spherical cap transducer using the spatial impulse response (SIR) method. For a spherical surface centered at the origin, a wedge shape is created by taking cuts in the X-Y and X-Z planes and removing the smallest surface component. Analytic expressions are derived for the SIR based on spatial location. The expressions utilize the SIR solutions for a spherical cap transducer [Arditi et al., Ultrason. Imaging 3, 37-61 (1981)] with additional terms added to account for the reduced surface area of the wedge. Results from the numerical model are compared to experimental measurements from a wedge transducer with an 8-cm outer diameter and 9-cm geometric focus. The experimental and theoretical -3-dB beamwidths agreed to within 10% +/- 5%. The SIR model for a wedge-shaped transducer is easily extended to other spherically curved transducer geometries that consist of combinations of wedge sections and spherical caps.

  13. Influence of surface gravity waves on near wake development behind a towed model horizontal axis marine current turbine

    NASA Astrophysics Data System (ADS)

    Luznik, Luksa; Flack, Karen; Lust, Ethan

    2016-11-01

    2D PIV measurements in the near wake flow field (x/D<2) are presented for a 1/25 scale, 0.8 m diameter (D) two bladed horizontal axis tidal turbine. All measurements were obtained in the USNA 380 ft tow tank with turbine towed at a constant carriage speed (Utow = 1.68 m/s), at the nominal tip speed ratio (TSR) of 7 and incoming regular waves with a period of 2.3 seconds and 0.18 m wave height. Near wake mapping is accomplished by "tiling" phase locked individual 2D PIV fields of view (nominally 30x30 cm2) with approximately 5 cm overlap. The discussion will focus on the downstream evolution of coherent tip vortices shed by the rotor blades and their vertical/horizontal displacements by the wave induced fluctuations. This observed phenomena ultimately results in significantly increased downstream wake expansion in comparison with the same conditions without waves. Office of Naval Research.

  14. Experimental research of different plasma cathodes for generation of high-current electron beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shafir, G.; Kreif, M.; Gleizer, J. Z.

    2015-11-21

    The results of experimental studies of different types of cathodes—carbon-epoxy rods, carbon-epoxy capillary, edged graphite, and metal-dielectric—under the application of high-voltage pulses with an amplitude of several hundreds of kV and pulse duration of several nanoseconds are presented. The best diode performance was achieved with the edged graphite and carbon-epoxy-based cathodes characterized by uniform and fast (<1 ns) formation of explosive emission plasma spots and quasi-constant diode impedance. This result was achieved for both annular cathodes in a strong magnetic field and planar cathodes of a similar diameter (∼2 cm) with no external magnetic field. The cathodes based on carbon-epoxy rods andmore » carbon-epoxy capillaries operating with an average current density up to 1 kA/cm{sup 2} showed insignificant erosion along 10{sup 6} pulses of the generator and the generated electron beam current showed excellent reproducibility in terms of the amplitude and waveform.« less

  15. Fiber-optic annular detector array for large depth of field photoacoustic macroscopy.

    PubMed

    Bauer-Marschallinger, Johannes; Höllinger, Astrid; Jakoby, Bernhard; Burgholzer, Peter; Berer, Thomas

    2017-03-01

    We report on a novel imaging system for large depth of field photoacoustic scanning macroscopy. Instead of commonly used piezoelectric transducers, fiber-optic based ultrasound detection is applied. The optical fibers are shaped into rings and mainly receive ultrasonic signals stemming from the ring symmetry axes. Four concentric fiber-optic rings with varying diameters are used in order to increase the image quality. Imaging artifacts, originating from the off-axis sensitivity of the rings, are reduced by coherence weighting. We discuss the working principle of the system and present experimental results on tissue mimicking phantoms. The lateral resolution is estimated to be below 200 μm at a depth of 1.5 cm and below 230 μm at a depth of 4.5 cm. The minimum detectable pressure is in the order of 3 Pa. The introduced method has the potential to provide larger imaging depths than acoustic resolution photoacoustic microscopy and an imaging resolution similar to that of photoacoustic computed tomography.

  16. Fabrication and properties of multifilamentary MgB 2 wires by in-situ powder-in-tube process

    NASA Astrophysics Data System (ADS)

    Wang, Q. Y.; Jiao, G. F.; Liu, G. Q.; Xiong, X. M.; Yan, S. C.; Zhang, P. X.; Sulpice, A.; Mossang, E.; Feng, Y.; Yan, G.

    2010-11-01

    We have fabricated the long TiC-doped MgB2 wires with 6 filaments by in-situ powder-in-tube method using Nb as the barrier and copper as the stabilizer. To improve the strength of wires, the Nb-core was used as the central filament. The transport engineering critical current density (Jce) of the samples sintered at different temperature were measured, which reaches 2.5 × 104 A/cm2 at 4.2 K, 5 T. 100 m MgB2 wires with different diameter were wound into coils and the transport critical current (Ic) of the coil were measured at 30 K in self-field. The Jce value 100 m coil achieves 1.1 × 104 A/cm2 in 1.2 mm wire. The reasons leading to the enhancement of high field Jce were discussed. The results show a good potential to fabricate high performance MgB2 wires and tapes at ambient pressure on an industrial scale.

  17. Effects of neutral distribution and external magnetic field on plasma momentum in electrodeless plasma thrusters

    NASA Astrophysics Data System (ADS)

    Takase, Kazuki; Takahashi, Kazunori; Takao, Yoshinori

    2018-02-01

    The effects of neutral distribution and an external magnetic field on plasma distribution and thruster performance are numerically investigated using a particle-in-cell simulation with Monte Carlo collisions (PIC-MCC) and the direct simulation Monte Carlo (DSMC) method. The modeled thruster consists of a quartz tube 1 cm in diameter and 3 cm in length, where a double-turn rf loop antenna is wound at the center of the tube and a solenoid is placed between the loop antenna and the downstream tube exit. A xenon propellant is introduced from both the upstream and downstream sides of the thruster, and the flow rates are varied while maintaining the total gas flow rate of 30 μg/s. The PIC-MCC calculations have been conducted using the neutral distribution obtained from the DSMC calculations, which were applied with different strengths of the magnetic field. The numerical results show that both the downstream gas injection and the external magnetic field with a maximum strength near the thruster exit lead to a shift of the plasma density peak from the upstream to the downstream side. Consequently, a larger total thrust is obtained when increasing the downstream gas injection and the magnetic field strength, which qualitatively agrees with a previous experiment using a helicon plasma source.

  18. Proceedings of the International Conference on Electrorheological Fluids (4th) Held in Feldkirch (Austria) on 20-23 July 1993

    DTIC Science & Technology

    1994-01-01

    which predicts that cylinder diameter or spacing has any influence on the dielctric spectra once the concer~tration of cylinders is fixed, and thus...differences in column girth and spacing . Furthermore, in applying the Sillars’ model to the present situation no precise meaning is attached to his end...cm). The test cell comprises two duralumin electrodes 9 cm in diameter spaced by 1.4 cm. Thu planar section of the upper half sphere, solid with a

  19. Blast Wave Experiments at Z

    DTIC Science & Technology

    2007-06-01

    radiation flows upward, it passes though a 1.7-mm high, tapered, 25-μm thick gold wall cone that is filled 20 ± 3 mg/cm3 silica aerogel (SiO2). Above...this cone is a 20 ± 3 mg/cm3 silica aerogel filled, 1-mm high, 2.4-mm inner diameter, 25-μm thick gold wall cylinder. On the cylinder rests a 4-mm...diameter gold platform that supports a higher density (40-60 mg/cm3) silica aerogel . This aerogel is the region where the blast wave forms after

  20. Focal Hydrothermal Ablation: Preliminary Investigation of a New Concept

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roy, Sumit, E-mail: sumit.roy@online.no

    2013-08-01

    PurposeTo determine whether focal tissue ablation is possible with interstitial instillation of steam.MethodsFresh swine livers were used. Through a 20 gauge needle, steam was instilled every 5 s, 3 (n = 5), 6 (n = 5), 9 (n = 5), or 12 (n = 5 + 5) times in a liver lobe. The ablated zones were sectioned parallel (n = 20) or perpendicular (n = 5) to the needle track. The longitudinal long and short axis diameters, or transverse long and short axis diameters of areas with discoloration on macroscopic examination, were measured. The experiment was repeated in vivo onmore » a pig. Steam instillation was performed once every 5 s for 5 min in the liver (n = 3) and in muscle (n = 4), and temperature changes at three neighboring sites were monitored. Long and short axis diameters of the discolored areas were measured.ResultsA well-defined area of discoloration was invariably present at the site of steam instillation. The median longitudinal long axis diameter were 2.0, 2.5, 2.5, and 3.5 cm for 3, 6, 9, and 12 steam instillations in vitro, while median short axis diameters were 1.0, 1.5, 1.5, and 1.5 cm, respectively. Six attempts at ablation in vivo could be successfully completed. The long axis diameters of the ablated zones in the liver were 7.0 and 8.0 cm, while in muscle it ranged from 5.5 to 7.0 cm.ConclusionInstillation of steam in the liver in vitro and in vivo, and in muscle in vivo rapidly leads to circumscribed zones of coagulation necrosis.« less

  1. Wavelet-based algorithm to the evaluation of contrasted hepatocellular carcinoma in CT-images after transarterial chemoembolization.

    PubMed

    Alvarez, Matheus; de Pina, Diana Rodrigues; Romeiro, Fernando Gomes; Duarte, Sérgio Barbosa; Miranda, José Ricardo de Arruda

    2014-07-26

    Hepatocellular carcinoma is a primary tumor of the liver and involves different treatment modalities according to the tumor stage. After local therapies, the tumor evaluation is based on the mRECIST criteria, which involves the measurement of the maximum diameter of the viable lesion. This paper describes a computed methodology to measure through the contrasted area of the lesions the maximum diameter of the tumor by a computational algorithm. 63 computed tomography (CT) slices from 23 patients were assessed. Non-contrasted liver and HCC typical nodules were evaluated, and a virtual phantom was developed for this purpose. Optimization of the algorithm detection and quantification was made using the virtual phantom. After that, we compared the algorithm findings of maximum diameter of the target lesions against radiologist measures. Computed results of the maximum diameter are in good agreement with the results obtained by radiologist evaluation, indicating that the algorithm was able to detect properly the tumor limits. A comparison of the estimated maximum diameter by radiologist versus the algorithm revealed differences on the order of 0.25 cm for large-sized tumors (diameter > 5 cm), whereas agreement lesser than 1.0 cm was found for small-sized tumors. Differences between algorithm and radiologist measures were accurate for small-sized tumors with a trend to a small decrease for tumors greater than 5 cm. Therefore, traditional methods for measuring lesion diameter should be complemented non-subjective measurement methods, which would allow a more correct evaluation of the contrast-enhanced areas of HCC according to the mRECIST criteria.

  2. Permanent superconducting magnets for space applications

    NASA Technical Reports Server (NTRS)

    Weinstein, Roy

    1994-01-01

    Work has been done to develop superconducting trapped field magnets (TFM's) and to apply them to a bumper-tether device for magnetic docking of spacecraft. The quality parameters for TFM's are J(c), the critical current of the superconductor, and d, the diameter of the superconducting tile. During this year we have doubled d, for production models, from 1 cm to 2 cm. This was done by means of seeding, an improved temperature profile in processing, and the addition of 1 percent Pt to the superconductor chemistry. Using these tiles we have set increasing records for the fields' permanent magnets. Magnets fabricated from old 1 cm tiles trapped 1.52 Tesla at 77K, 4.0T at 65K and 7.0T at 55K. The second of these fields broke a 17 year old record set at Stanford. The third field broke our own record. More recently using 2 cm tiles, we have trapped 2.3T at 77K, and 5.3T at 65K. We expect to trap lOT at 55K in this magnet in the near future. We have also achieved increases in J(c) using a method we developed for seeding U-235, and subsequently bombarding with neutrons. This method doubles J(c). We have not yet fabricated magnets from these tiles. During this year we have increased production yields from 15 percent to 95 percent. We have explored the properties of a magnetic bumper-tether for spacecraft. We have measured the bumper forces, and their dependence on time, distance, and the field of the ordinary ferromagnet (used together with a TFM). We have accounted for 85 percent of the collision energy, and its transformation to magnetic energy and heat energy. We have learned to control the relative bumper and tether forces by controlling TFM and ferromagnetic field strengths.

  3. SU-E-T-441: Comparison of Dose Distributions for Spot-Scanned Pencil-Beam and Scattered-Beam Proton Treatments of Ocular Tumors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deisher, A; Whitaker, T; Kruse, J

    2014-06-01

    Purpose: To study the cross-field and depth dose profiles of spot-scanned pencil beam configurations for the treatment of ocular tumors and to compare their performance to a simulated scattered beam. Methods: Dose distributions in a cubic water phantom were compared for beams that passed through a final 24mm diameter aperture to deposit maximum dose at 2.4cm depth. The pencil-beam spots formed a hexagonally-packed ring with a center-to-center spacing of 4mm. The protons exited the nozzle with energy 95.5MeV, traversed a 4.5cm water-equivalent range shifter, and travelled either 42.5cm or 100cm to the phantom surface. The aperture-to-phantom distance (APD) was 5.7cmmore » to allow room for eye-tracking hardware. A configuration with APD=0 was also tested. The scattered beam was generated with energy 159MeV, passed through 127mm of Lexan, exited the final aperture, and travelled 5.7cm to the phantom surface. This latter configuration is comparable to the MGH single scattered beamline. All beams were modelled with TOPAS1.0-beta6 compiled with GEANT4.9.6p2. Results: The modeled scattered beam produced a distal fall-off along the central axis of zd90%-zd10%=3.6mm. For the pencil beam, the zd90%-zd10% was 1.6mm in all configurations. The scattered beam's cross-field penumbra at depth of maximum dose was r90%- r10%=1.9mm. For the spot-scanned configuration with the range-shifter-tophantom distance (RsPD) of 100cm, similar cross-field profiles were achieved with r90%-r10%=2.0mm. At shorter RsPD of 42.5cm, the crossfield penumbras were 5.6mm and 7.7mm for APD=0cm and APD=5.7cm, respectively. Conclusion: For proton treatments employing a range shifter, the cross-field and central axis dose profiles depend on the quality of the original beam, the size of the range shifter, the distance from the range shifter exit to the patient, and the distance from the final aperture to the patient. A spot-scanned pencil beam configuration can achieve cross-field penumbras equal to a scattered beam and superior distal gradients.« less

  4. Laser-Free Cold-Atom Gymnastics

    NASA Astrophysics Data System (ADS)

    Gould, Harvey; Feinberg, Benedict; Munger, Charles T., Jr.; Nishimura, Hiroshi

    2017-01-01

    We have performed beam transport simulations on ultra cold (2 μK) and cold (130 μK) neutral Cs atoms in the F = M = + 4 (magnetic weak-field seeking) ground state. We use inhomogeneous magnetic fields to focus and accelerate the atoms. Acceleration of neutral atoms by an inhomogeneous magnetic field was demonstrated by Stern and Gerlach in 1922. In the simulations, a two mm diameter cloud of atoms is released to fall under gravity. A magnetic coil focuses the falling atoms. After falling 41 cm, the atoms are reflected in the magnetic fringe field of a solenoid. They return to their starting height, about 0.7 s later, having passed a second time through the focusing coil. The simulations show that > 98 % of ultra cold Cs atoms and > 70 % of cold Cs atoms will survive at least 15 round trips (assuming perfect vacuum). More than 100 simulations were run to optimize coil currents and focusing coil diameter and height. Simulations also show that atoms can be launched into a fountain. An experimental apparatus to test the simulations, is being constructed. This technique may find application in atomic fountain clocks, interferometers, and gravitometers, and may be adaptable for use in microgravity. It may also work with Bose-Einstein condensates of paramagnetic atoms.

  5. Inward electrostatic precipitation of interplanetary particles

    NASA Technical Reports Server (NTRS)

    Rulison, Aaron J.; Flagan, Richard C.; Ahrens, Thomas J.

    1993-01-01

    An inward precipitator collects particles initially dispersed in a gas throughout either a cylindrical or spherical chamber onto a small central planchet. The instrument is effective for particle diameters greater than about 1 micron. One use is the collection of interplanetary dust particles (IDPs) which are stopped in a noble gas (xenon) by drag and ablation after perforating the wall of a thin-walled spacecraft-mounted chamber. First, the particles are positively charged for several seconds by the corona production of positive xenon ions from inward facing needles placed on the chamber wall. Then an electric field causes the particles to migrate toward the center of the instrument and onto the planchet. The collection time (on the order of hours for a 1 m radius spherical chamber) is greatly reduced by the use of optimally located screens which reapportion the electric field. Some of the electric field lines terminate on the wires of the screens so a fraction of the total number of particles in the chamber is lost. The operation of the instrument is demonstrated by experiments which show the migration of carbon soot particles with radius of approximately 1 micron in a 5 cm diameter cylindrical chamber with a single field enhancing screen toward a 3.2 mm central collection rod.

  6. SOME PRACTICAL MODIFICATIONS ON HIGH FREQUENCY ION SOURCES (in Hungarian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagy, J.; Gombos, P.

    1962-05-01

    A radiofrequency ion source was constructed for the 800-kv cascade type accelerator and 300-kv neutron generator built in the Institute. Besides the usual transversal magnetic field of 50 gauss, an axial magnetic field of 250 gauss intensity was also applied in the immediate neighborhood of the probe. As a result of this, the service life of the discharge tube was increased by several hundred hours but in comparison with the measurements of other authors the percentage of protons underwent no change. The quartz calyx which was built to surround the probe, contributed considerably to an increase of the service life.more » Measurements concerning the selection of the pre-focusing lens are summarized. With a probe of 1.3-mm canal diameter, a maximum 1.9 ma pre-focused ion current was obtained in H/sub 2/ with a gas consumption of 8 to 10 cm/sup 3//hr, (With a probe of 1.7-mm canal diameter, at a gas consumption of 25 cm/sup 3//hr, 2.7 ma current was obtained.) The total consumption of the ion source amounted to 800 w with prefocusing. The energy-spread of the ion beam was found to be 200 ev. Having built it into the cascade type accelerator 1 ma current was measured on the target at an accelerating voltage of 500 kv, where this amount included the secondary electrons as well. (auth)« less

  7. The Atacama B-mode Search: An Experiment to Probe Inflation by Measuring the Cosmic Microwave Background Polarization

    NASA Astrophysics Data System (ADS)

    Niemack, Michael; Appel, J.; Cho, H. M.; Essinger-Hileman, T.; Fowler, J.; Halpern, M.; Irwin, K. D.; Marriage, T. A.; Page, L.; Parker, L. P.; Pufu, S.; Staggs, S. T.; Visnjic, K.; Yoon, K. W.; Zhao, Y.

    2009-12-01

    The Atacama B-mode Seach (ABS) is a new experiment to test the prediction that inflation during the early universe resulted in stochastic gravitational waves. The predicted signature of these inflationary gravitational waves is the introduction of a B-mode, or curl, component into the primordial cosmic microwave background (CMB) polarization field, which is dominated by curl-free E-modes. ABS is designed to measure the CMB polarization on large angular scales over a wide frequency band centered at 145 GHz. ABS comprises a 60 cm diameter telescope in the crossed Mizuguchi-Dragone configuration, which illuminates a large focal plane of 200 feedhorns coupled to polarization sensitive bolometric detectors. The detectors are fabricated at NIST and include planar ortho-mode transducers, band defining filters, microstrip tranmission lines and two transition-edge sensors (TES) to provide measurements of the polarization and total power from each feed simultaneously. The telescope mirrors are cooled to 4 K to control systematic effects, and the bolometers are cooled to 0.3 K to achieve sufficiently high saturation power while maintaining low detector noise. The polarization signals are modulated by a 33 cm diameter rotating half-wave plate (HWP) in front of the telescope. The HWP limits the mirror illumination, resulting in 0.5 degree angular resolution over a 20 degree field of view. ABS will begin observing at a high-altitude site in the Atacama Desert, Chile in 2009.

  8. Piezo-Operated Shutter Mechanism Moves 1.5 cm

    NASA Technical Reports Server (NTRS)

    Glaser, Robert; Bamford, Robert

    2005-01-01

    The figure shows parts of a shutter mechanism designed to satisfy a number of requirements specific to its original intended application as a component of an atomic clock to be flown in outer space. The mechanism may also be suitable for use in laboratory and industrial vacuum systems on Earth for which there are similar requirements. The requirements include the following: a) To alternately close, then open, a 1.5-cm-diameter optical aperture twice per second, with a stroke time of no more than 15 ms, during a total operational lifetime of at least a year; b) To attenuate light by a factor of at least 1012 when in the closed position; c) To generate little or no magnetic field; d) To be capable of withstanding bakeout at a temperature of 200 C to minimize outgassing during subsequent operation in an ultrahigh vacuum; and e) To fit within a diameter of 12 in. (=305 mm) a size limit dictated by the size of an associated magnetic shield. The light-attenuation requirement is satisfied by use of overlapping shutter blades. The closure of the aperture involves, among other things, insertion of a single shutter blade between a pair of shutter blades. The requirement to minimize the magnetic field is satisfied by use of piezoelectric actuators. Because piezoelectric actuators cannot withstand bakeout, they must be mounted outside the vacuum chamber, and, hence, motion must be transmitted from the actuators to the shutter levers via a vacuum-chamber-wall diaphragm.

  9. Optimization of the Magnetic Field Structure for Sustained Plasma Gun Helicity Injection for Magnetic Turbulence Studies at the Bryn Mawr Plasma Laboratory

    NASA Astrophysics Data System (ADS)

    Cartagena-Sanchez, C. A.; Schaffner, D. A.; Johnson, H. K.; Fahim, L. E.

    2017-10-01

    A long-pulsed magnetic coaxial plasma gun is being implemented and characterized at the Bryn Mawr Plasma Laboratory (BMPL). A cold cathode discharged between the cylindrical electrodes generates and launches plasma into a 24cm diameter, 2m long chamber. Three separately pulsed magnetic coils are carefully positioned to generate radial magnetic field between the electrodes at the gun edge in order to provide stuffing field. Magnetic helicity is continuously injected into the flux-conserving vacuum chamber in a process akin to sustained slow-formation of spheromaks. The aim of this source, however, is to supply long pulses of turbulent magnetized plasma for measurement rather than for sustained spheromak production. The work shown here details the optimization of the magnetic field structure for this sustained helicity injection.

  10. Ground-layer plant community responses to even-age and uneven-age silvicultural treatments in Wisconsin northern hardwood forests

    Treesearch

    Cristel C. Kern; Brian J. Palik; Terry F. Strong

    2006-01-01

    We evaluated ground-layer plant diversity and community composition in northern hardwood forests among uncut controls and stands managed with even-age or uneven-age silvicultural systems. Even-age treatments included diameter-limit cuttings (20-cm diameter at 30-cm stem height) in 1952 and shelterwood removals in 1964. Uneven-age treatments included three intensities...

  11. Evaluation of right ventricular function in early period following transcatheter closure of atrial septal defect.

    PubMed

    Ağaç, Mustafa Tarık; Akyüz, Ali Rıza; Acar, Zeydin; Akdemir, Ramazan; Korkmaz, Levent; Kırış, Abdülkadir; Erkuş, Emre; Erkan, Hakan; Celik, Sükrü

    2012-03-01

    There is limited data on alterations in novel right ventricular (RV) function indices like tricuspid annular plane systolic excursion (TAPSE) and tricuspid annular systolic velocity (TASV) after transcatheter atrial septal defect (ASD) closure. We aimed to evaluate RV function by echocardiography (ECG) with these novel indices in early period in patients with secundum-type ASD that was closed percutaneously. Patients were enrolled to study if they had secundum-type ASD that was suitable for percutaneous closure. Patient population consisted of 4 men and 16 women. Echocardiography was performed before and 1 month after closure. Mean age was 37 ± 16. Mean diameter of ASD and total atrial septum length measured by ECG were 19 ± 6 mm and 49 ± 7 mm, respectively. Mean diameter of defect in transesophageal echocardiography was 20 ± 6 mm. Stretched mean diameter in catheterization was 23 ± 6 mm. One month after closure, there were statistically significant decreases in RV end-diastolic diameters (43.3 ± 10.7 mm vs. 34.9 ± 5.5 mm; P < 0.001), RV/left ventricular (LV) end-diastolic diameter ratio (1.1 ± 0.3 vs. 0.87 ± 0.1; P < 0.001), TASV (16.9 ± 3.2 cm/sec vs. 14.3 ± 3.3 cm/sec; P < 0.05), early diastolic tricuspid annular velocity (15.3 ± 3.1 cm/sec vs. 13.4 ± 2.4 cm/sec P <0.05), late diastolic tricuspid annular velocity (16.2 ± 5.4 cm/sec vs. 14.3 ± 6.3 cm/sec; P < 0.05), and TAPSE (29.9 ± 6.2 mm vs. 22.4 ± 7.4 mm; P < 0.001). LV end-diastolic diameter (38.0 ± 6.9 mm and 40.0 ± 4.5 P < 0.05) was increased, whereas there was no change in LV ejection fraction. Closure of ASD by using Amplatzer devices led to decrease in right heart chamber size, tissue Doppler-derived tricuspid annular velocities and TAPSE in early period. © 2011, Wiley Periodicals, Inc.

  12. Design of a Long-Stroke Noncontact Electromagnetic Actuator for Active Vibration Isolation

    NASA Technical Reports Server (NTRS)

    Banerjee, Bibhuti; Allaire, Paul E.

    1996-01-01

    A long-stroke moving coil Lorentz Actuator was designed for use in a microgravity vibration isolation experiment. The final design had a stroke of 5.08 cm (2 in) and enough force capability to isolate a mass of the order of 22.7-45.4 kg. A simple dynamic magnetic circuit analysis, using an electrical analog, was developed for the initial design of the actuator. A neodymium-iron-boron material with energy density of 278 T-kA/m (35 MGOe) was selected to supply the magnetic field. The effect of changes in the design parameters of core diameter, shell outer diameter, pole face length, and coil wire layers were investigated. An extensive three-dimensional finite element analysis was carried out to accurately determine linearity with regard to axial position of the coil and coil current levels. The actuator was constructed and tested on a universal testing machine. Example plots are shown, indicating good linearity over the stroke of approximately 5.08 cm (2 in) and a range of coil currents from -1.5 A to +1.5 A. The actuator was then used for the microgravity vibration isolation experiments, described elsewhere.

  13. Induction magnetometer using a high-Tc superconductor coil

    NASA Astrophysics Data System (ADS)

    Sasada, Ichiro

    2010-05-01

    An induction magnetometer consisting of a search coil and an inverting operational amplifier is simple in structure and in signal transferring mechanism from the magnetic field input to the voltage output. Because this magnetometer is based on Faraday's law of induction, it has a lower cutoff frequency r/(2πL), where r is the resistance of the coil and L is its inductance. An attempt has been made to lower the cutoff frequency of the induction magnetometer by using a high-Tc superconductor coil. With a pancake coil (inner diameter ≈18 cm and outer diameter ≈23 cm, 92 turns, 3.23 mH) made of a Bismuth strontium calcium copper oxide (BSCCO) superconductor tape of 5 mm in width and 0.23 mm in thickness, the cutoff frequency achieved was 1.7 Hz which is much lower than that obtained with a bulky copper search coil which is typically in the range of 10-20 Hz. In the experiment, an inverting amplifier was made with a complementary metal-oxide semiconductor operational amplifier and was immersed in liquid nitrogen together with a BSCCO high-Tc superconducting coil. Discussion is made on the resolution of the induction magnetometer using a high-Tc superconductor search coil.

  14. A microfabricated hybrid device for DNA sequencing.

    PubMed

    Liu, Shaorong

    2003-11-01

    We have created a hybrid device of a microfabricated round-channel twin-T injector incorporated with a separation capillary in order to extend the straight separation distance for high speed and long readlength DNA sequencing. Semicircular grooves on glass wafers are obtained using a photomask with a narrow line-width and a standard isotropic photolithographic etching process. Round channels are made when two etched wafers are face-to-face aligned and bonded. A two-mask fabrication process has been developed to make channels of two different diameters. The twin-T injector is formed by the smaller channels whose diameter matches the bore of the separation capillary, and the "usual" separation channel, now called the connection channel, is formed by the larger ones whose diameter matches the outer diameter of the separation capillary. The separation capillary is inserted through the connection channel all the way to the twin-T injector to allow the capillary bore flush with the twin-T injector channels. The total dead-volume of the connection is estimated to be approximately 5 pL. To demonstrate the efficiency of this hybrid device, we have performed four-color DNA sequencing on it. Using a 200 microm twin-T injector coupled with a separation capillary of 20 cm effective separation distance, we have obtained readlengths of 800 plus bases at an accuracy of 98.5% in 56 min, compared to about 650 bases in 100 min on a conventional 40 cm long capillary sequencing machine under similar conditions. At an increased separation field strength and using a diluted sieving matrix, the separation time has been reduced to 20 min with a readlength of 700 bases at 98.5% base-calling accuracy.

  15. Simultaneous acquisition of magnetic resonance spectroscopy (MRS) data and positron emission tomography (PET) images with a prototype MR-compatible, small animal PET imager

    NASA Astrophysics Data System (ADS)

    Raylman, Raymond R.; Majewski, Stan; Velan, S. Sendhil; Lemieux, Susan; Kross, Brian; Popov, Vladimir; Smith, Mark F.; Weisenberger, Andrew G.

    2007-06-01

    Multi-modality imaging (such as PET-CT) is rapidly becoming a valuable tool in the diagnosis of disease and in the development of new drugs. Functional images produced with PET, fused with anatomical images created by MRI, allow the correlation of form with function. Perhaps more exciting than the combination of anatomical MRI with PET, is the melding of PET with MR spectroscopy (MRS). Thus, two aspects of physiology could be combined in novel ways to produce new insights into the physiology of normal and pathological processes. Our team is developing a system to acquire MRI images and MRS spectra, and PET images contemporaneously. The prototype MR-compatible PET system consists of two opposed detector heads (appropriate in size for small animal imaging), operating in coincidence mode with an active field-of-view of ˜14 cm in diameter. Each detector consists of an array of LSO detector elements coupled through a 2-m long fiber optic light guide to a single position-sensitive photomultiplier tube. The use of light guides allows these magnetic field-sensitive elements of the PET imager to be positioned outside the strong magnetic field of our 3T MRI scanner. The PET scanner imager was integrated with a 12-cm diameter, 12-leg custom, birdcage coil. Simultaneous MRS spectra and PET images were successfully acquired from a multi-modality phantom consisting of a sphere filled with 17 brain relevant substances and a positron-emitting radionuclide. There were no significant changes in MRI or PET scanner performance when both were present in the MRI magnet bore. This successful initial test demonstrates the potential for using such a multi-modality to obtain complementary MRS and PET data.

  16. In vivo 1D and 2D correlation MR spectroscopy of the soleus muscle at 7T

    PubMed Central

    Ramadan, Saadallah; Ratai, Eva-Maria; Wald, Lawrence L.; Mountford, Carolyn E.

    2013-01-01

    Aim This study aims to (1) undertake and analyse 1D and 2D MR correlation spectroscopy from human soleus muscle in vivo at 7T, and (2) determine T1 and T2 relaxation time constants at 7T field strength due to their importance in sequence design and spectral quantitation. Method Six healthy, male volunteers were consented and scanned on a 7T whole-body scanner (Siemens AG, Erlangen, Germany). Experiments were undertaken using a 28 cm diameter detunable birdcage coil for signal excitation and an 8.5 cm diameter surface coil for signal reception. The relaxation time constants, T1 and T2 were recorded using a STEAM sequence, using the ‘progressive saturation’ method for the T1 and multiple echo times for T2. The 2D L-Correlated SpectroscopY (L-COSY) method was employed with 64 increments (0.4 ms increment size) and eight averages per scan, with a total time of 17 min. Results T1 and T2 values for the metabolites of interest were determined. The L-COSY spectra obtained from the soleus muscle provided information on lipid content and chemical structure not available, in vivo, at lower field strengths. All molecular fragments within multiple lipid compartments were chemically shifted by 0.20–0.26 ppm at this field strength. 1D and 2D L-COSY spectra were assigned and proton connectivities were confirmed with the 2D method. Conclusion In vivo 1D and 2D spectroscopic examination of muscle can be successfully recorded at 7T and is now available to assess lipid alterations as well as other metabolites present with disease. T1 and T2 values were also determined in soleus muscle of male healthy volunteers. PMID:20206561

  17. [Effects of different tillage patterns on soil properties, maize yield and water use efficiency in Weibei Highland, China.

    PubMed

    Liu, Dan; Zhang, Xia; Li, Jun; Wang, Xu-Dong

    2018-02-01

    An eight-year field experiment of straw returning was conducted on dark loessial soil in Weibei Highland to investigate the effects of tillage patterns on soil aggregate, soil organic carbon (SOC), corn yield and soil water use efficiency (WUE). There were six tillage patterns, including conventional tillage (CT/CT), no-tillage (NT/NT), subsoiling tillage (ST/ST), no-tillage/subsoiling tillage (NT/ST), conventional tillage/no-tillage (CT/NT) and conventional tillage/subsoiling tillage (CT/ST). The results showed that compared with CT/CT, the patterns of NT/NT, ST/ST and the rotational tillage patterns (NT/ST, CT/NT and CT/ST) decreased the mean mass diameter of soil mechanical stable aggregate. The patterns of NT/NT, ST/ST and NT/ST increased the content of soil water-stable aggregate with the particle size >0.25 mm (WR 0.25 ) and their mean mass diameter, especially in the depth of 20-50 cm. These patterns reduced the proportion of aggregate destruction (PAD). Compared with CT/CT, the patterns of NT/ST, CT/NT, NT/NT and ST/ST increased the content of SOC in 0-10 cm soil layer. The content of SOC decreased as the increases of soil depth for all tillage patterns, but the decrease in SOC of three single tillage patterns (ST/ST, NT/NT and CT/CT) was larger than that of three rotational tillage patterns. Compared with CT/CT, the other five tillage patterns increased soil water storage in 0-200 cm soil profile, crop yield and WUE in maize. The yield and WUE in NT/ST pattern were significantly increased by 15.1% and 27.5%, respectively. Both corn yield and WUE were significantly and positively correlated with soil water storage in 0-200 cm soil profile in field during the cropping and fallow periods. Moreover, soil water storage during the cropping period was positively correlated with WR 0.25 , but negatively correlated with PAD in 0-50 cm soil layer. Particularly, maize yield, WUE and soil water storage during the cropping period were closely related to WR 0.25 in 20-50 cm soil layer and PAD. Both WUE and soil water storage during the cropping period was correlated with the SOC content in 0-10 cm soil layer. With respect to the soil properties, crop yield and WUE, the tillage pattern of NT/ST was the best stratety in dark loessial soil for spring maize growth in Weibei Highland.

  18. [Study on accuracy of endoscopic polyp size measurement by disposable graduated biopsy forceps].

    PubMed

    Liu, Ping; Zhang, Xiu; Lin, Hui-ping; Jin, Hei-jing; Leng, Qiang; Zhang, Jin-hao; Zhang, Yang; Yao, Hang; Wu, Kun-lan

    2013-12-01

    To study the accuracy of endoscopic polyp size measurement by disposable graduated biopsy forceps (DGBF). Accurate gradation of 1 mm was made in the wire of disposable graduated biopsy forceps, which was used to measure the size of tumors under endoscopy. Fifty-eight polyps from 43 patients underwent endoscopy in our department from May to June 2013 were enrolled. Size of polyp was measured and compared among DGBF, routine estimation and direct measurement after resection. The accuracy of polyp size measurement was investigated by four colonoscopists who had finished at least 2000 procedures of colonoscopy. The mean diameter of post-polypectomy measurement was (1.02±0.84) cm. Diameter was less than 1 cm in 36 polyps, 1 to 2 cm in 15, and over 2 cm in 7. The mean diameter of visual estimation was (1.29±1.07) cm, and the difference was significant as compared with actual size (P=0.000). The mean diameter measured by DGBF was (1.02±0.82) cm, and the difference was not significant as compared with actual size (P=0.775). The ratio of visual estimation to actual size was 1.29±0.31, and DGBF estimation to actual size was 1.02±0.11 with significant difference (P=0.000). The accurate rate of DGBF in estimating polyp size was 77.6% (45/58), which was obviously higher as compared to visual estimation [19.0% (11/58), P=0.000]. The accuracy of DGBF as a scale in the estimation of poly size increases as compared to visual estimation.

  19. Stabilized Acoustic Levitation of Dense Materials Using a High-Powered Siren

    NASA Technical Reports Server (NTRS)

    Gammell, P. M.; Croonquist, A.; Wang, T. G.

    1982-01-01

    Stabilized acoustic levitation and manipulation of dense (e.g., steel) objects of 1 cm diameter, using a high powered siren, was demonstrated in trials that investigated the harmonic content and spatial distribution of the acoustic field, as well as the effect of sample position and reflector geometries on the acoustic field. Although further optimization is possible, the most stable operation achieved is expected to be adequate for most containerless processing applications. Best stability was obtained with an open reflector system, using a flat lower reflector and a slightly concave upper one. Operation slightly below resonance enhances stability as this minimizes the second harmonic, which is suspected of being a particularly destabilizing influence.

  20. Space Technology 5 Observations of Auroral Field-Aligned Currents

    NASA Technical Reports Server (NTRS)

    Slavin, James

    2008-01-01

    During its three month long technology validation mission, Space Technology 5 (ST-5) returned high quality multi-point measurements of the near-Earth magnetic field. Its three micro-satellites were launched into a 300 x 4500 km, dawn - dusk, sun synchronous orbit (inclination = 105.60) orbit with a period of 138 min by a Pegasus launch vehicle on March 22, 2006. The spacecraft were maintained in a "pearls on a sting" constellation with controlled spacings ranging from just over 5000 km down to under 50 km. The individual micro-satellites were 48 cm tall octagons with diameters of 50 cm. They were spin-stabilized at approximately 20 rpm at deployment and slowly spun-down to about 15 rpm by the end of the mission. Each spacecraft carried a miniature tri-axial fluxgate magnetometer (MAG) provided by the University of California at Los Angeles mounted at the end of a ultra-low mass 72 cm boom. These data allow, for the first time, the separation of temporal and spatial variations in field-aligned current (FAC) perturbations measured in low-Earth orbit on time scales of 10 sec to 10 min. The constellation measurements are used to directly determine field-aligned current sheet motion, thickness. and current density. Two multi-point methods for the inference of FAC current density that have not previously been possible in low-Earth orbit are demonstrated: 1) the -standard method." based upon s/c velocity, but corrected for FAC current sheet motion. and 2) the "gradiometer method" which uses simultaneous magnetic field measurements at two points with known separation. Future studies will apply these methods to the entire ST-5 data sct and expand to include horizontal ionospheric currents. ULF waves and geomagnetic field gradient analyses.

  1. Mastitis outcomes on pre-ovulatory follicle diameter, estradiol concentrations, subsequent luteal profiles and conception rate in Buffaloes.

    PubMed

    Mansour, Mohamed Mohsen; Zeitoun, Moustafa M; Hussein, Fekry M

    2017-06-01

    The objectives of this study was to investigate the outcome of mastitis, in its clinical or subclinical forms, on the mean diameter of pre-ovulatory follicle (POF), plasma estradiol concentration on the day of estrus, subsequent luteal profile and subsequent conception rate in buffaloes. Sixty dairy buffalo (Bubalus bubalus) conducted in this study were divided into three groups {healthy (H), n=20; subclinical mastitis (SCM), n=18; and clinical mastitis (CM), n=22}. Ultrasonography of ovaries revealed that mean diameter of POF was larger (P<0.05) in H buffalo (14.35mm) compared to SCM (12.40mm) and CM (10.25mm). Also, plasma estradiol concentration on the day of estrus was higher (P<0.05) in H buffalo compared to SCM and CM counterparts; 34.95 vs. 32.87 and 27.50pg/ml, respectively. Besides, positive correlation was observed between the POF diameter with plasma estradiol concentration in H, SCM and CM buffaloes (r=0.64, 0.74, 0.72 respectively, P<0.05). Moreover, positive correlations (P<0.01) were found on days 9, 12, 16, and 21 post-ovulation between POF diameter and luteal profile. Thus, the conception rate in H buffalo was higher (P<0.05) compared with SCM and CM counterparts; 55% vs. 38.89 and 18.18%, respectively. In conclusion, mastitis in its clinical or subclinical forms disrupts the functioning of the pre-ovulatory follicle on the day of estrus, associated with low follicular estradiol production, resulting in suppression to subsequent luteal profile leading to substantial decrease in pregnancy consequence of buffaloes. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Potential of Cerbera odollam as a bio-fungicide for post-harvest pathogen Penicilium digitatum

    NASA Astrophysics Data System (ADS)

    Singh, Harbant; Yin-Chu, Sue; Al-Samarrai, Ghassan; Syarhabil, Muhammad

    2015-05-01

    Postharvest diseases due to fungal infection contribute to economic losses in agriculture industry during storage, transportation or in the market. Penicillium digitatum is one of the common pathogen responsible for the postharvest rot in fruits. This disease is currently being controlled by synthetic fungicides such as Guazatine and Imazalil. However, heavy use of fungicides has resulted in environmental pollution, such as residue in fruit that expose a significant risk to human health. Therefore, there is a strong need to develop alternatives to synthetic fungicide to raise customer confidence. In the current research, different concentrations (500 to 3000 ppm) of ethanol extract of Cerbera odollam or commonly known as Pong-pong were compared with Neem and the controls (Positive control/Guazatine; Negative control/DMSO) for the anti-fungicide activity in PDA media contained in 10 cm diameter Petri dishes, using a modification of Ruch and Worf's method. The toxicity (Lc50) of the C.odollam extract was determined by Brine-shrimp test (BST). The results of the research indicated that crude extraction from C.odollam showed the highest inhibition rate (93%) and smallest colony diameter (0.63 cm) at 3000 ppm in vitro compared with Neem (inhibition rate: 88%; colony diameter: 1.33 cm) and control (Positive control/Guazatine inhibition rate: 79%, colony diameter: 1.9 cm; Negative control/DMSO inhibition rate: 0%, colony diameter: 9.2 cm). C.odollam recorded Lc50 value of 5 µg/ml which is safe but to be used with caution (unsafe level: below 2 µg/ml). The above anti-microbial activity and toxicity value results indicate that C.odollam has a potential of being a future bio-fungicide that could be employed as an alternative to synthetic fungicide.

  3. [Indication for limited surgery on small lung cancer tumors measuring 1cm or less in diameter on preoperative computed tomography and long-term results].

    PubMed

    Togashi, K; Koike, T; Emura, I; Usuda, H

    2008-07-01

    Non-invasive lung cancers showed a good prognosis after limited surgery. But it is still uncertain about invasive lung cancers. We investigated the indications for limited surgery for small lung cancer tumors measuring 1 cm or less in diameter on preoperative computed tomography (CT). This study retrospectively analyzed of 1,245 patients who underwent complete resection of lung cancer between 1989 and 2004 in our hospital. Sixty-two patients (5%) had tumors measuring 1 cm or less in diameter. The probability of survival was calculated using the Kaplan-Meier method. All diseases were detected by medical checkup, 52 % of the patients were not definitively diagnosed with lung cancer before surgery. Adenocarcinoma was histologically diagnosed in 49 patients (79%). Other histologic types included squamous cell carcinoma (8), large cell carcinoma (1), small cell carcinoma (1), carcinoid (2), and adenosquamous cell carcinoma (1). Fifty-seven patients (92%) showed pathologic stage IA. The other stages were IB (2), IIA (1), and IIIB (2). There were 14 bronchioloalveolar carcinomas (25% of IA diseases). The 5-year survival rates of IA patients were 90%. The 5-year survival rate of patients with tumors measuring 1cm or less diameter was 91% after lobectomy or pneumonectomy, and 90% after wedge resection or segmentectomy. There were 3 deaths from cancer recurrence, while there were no deaths in 14 patients with bronchioloalveolar carcinoma After limited surgery, non-invasive cancer showed good long-term results, while invasive cancer showed a recurrence rate of 2.3% to 79% even though the tumor measured 1 cm or less in diameter on preoperative CT.

  4. Note: Simulation and test of a strip source electron gun.

    PubMed

    Iqbal, Munawar; Islam, G U; Misbah, I; Iqbal, O; Zhou, Z

    2014-06-01

    We present simulation and test of an indirectly heated strip source electron beam gun assembly using Stanford Linear Accelerator Center (SLAC) electron beam trajectory program. The beam is now sharply focused with 3.04 mm diameter in the post anode region at 15.9 mm. The measured emission current and emission density were 1.12 A and 1.15 A/cm(2), respectively, that corresponds to power density of 11.5 kW/cm(2), at 10 kV acceleration potential. The simulated results were compared with then and now experiments and found in agreement. The gun is without any biasing, electrostatic and magnetic fields; hence simple and inexpensive. Moreover, it is now more powerful and is useful for accelerators technology due to high emission and low emittance parameters.

  5. Hollow cathode restartable 15 cm diameter ion thruster

    NASA Technical Reports Server (NTRS)

    Wilbur, P. J.

    1973-01-01

    The effects of substituting high perveance dished grids for low perveance flat ones on performance variables and plasma properties within a 15 cm modified SERT II thruster are discussed. Results suggest good performance may be achieved as an ion thruster is throttled if the screen grid transparency is decreased with propellant flow rate. Thruster startup tests, which employ a pulsed high voltage tickler electrode between the keeper and the cathode to initiate the discharge, are described. High startup reliability at cathode tip temperatures of about 500 C without excessive component wear over 2000 startup cycles is demonstrated. Testing of a single cusp magnetic field concept of discharge plasma containment is discussed. A theory which explains the observed behavior of the device is presented and proposed thruster modifications and future testing plans are discussed.

  6. HIFU Transducer Characterization Using a Robust Needle Hydrophone

    NASA Astrophysics Data System (ADS)

    Howard, Samuel M.; Zanelli, Claudio I.

    2007-05-01

    A robust needle hydrophone has been developed for HIFU transducer characterization and reported on earlier. After a brief review of the hydrophone design and performance, we demonstrate its use to characterize a 1.5 MHz, 10 cm diameter, F-number 1.5 spherically focused source driven to exceed an intensity of 1400 W/cm2at its focus. Quantitative characterization of this source at high powers is assisted by deconvolving the hydrophone's calibrated frequency response in order to accurately reflect the contribution of harmonics generated by nonlinear propagation in the water testing environment. Results are compared to measurements with a membrane hydrophone at 0.3% duty cycle and to theoretical calculations, using measurements of the field at the source's radiating surface as input to a numerical solution of the KZK equation.

  7. Canister cryogenic system for cooling germanium semiconductor detectors in borehole and marine probes

    USGS Publications Warehouse

    Boynton, G.R.

    1975-01-01

    High resolution intrinsic and lithium-drifted germanium gamma-ray detectors operate at about 77-90 K. A cryostat for borehole and marine applications has been designed that makes use of prefrozen propane canisters. Uses of such canisters simplifies cryostat construction, and the rapid exchange of canisters greatly reduces the time required to restore the detector to full holding-time capability and enhances the safety of a field operation where high-intensity 252Cf or other isotopic sources are used. A holding time of 6 h at 86 K was achieved in the laboratory in a simulated borehole probe in which a canister 3.7 cm diameter by 57 cm long was used. Longer holding times can be achieved by larger volume canisters in marine probes. ?? 1975.

  8. Utilization of bio-degradable fermented tapioca to synthesized low toxicity of carbon nanotubes for drug delivery applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nurulhuda, I., E-mail: nurulnye@gmail.com; Poh, R.; Mazatulikhma, M. Z.

    Carbon nanotubes (CNT) have potential biomedical applications, and investigations are shifting towards the production of such nanotubes using renewable natural sources. CNTs were synthesized at various temperatures of 700, 750, 800, 850 and 900 °C, respectively, using a local fermented food known as “tapai ubi” or fermented tapioca as a precursor. The liquid part of this fermented food was heated separately at 80°C and channeled directly into the furnace system that employs the thermal chemical vapor deposition (CVD) method. Ferrocene, which was the catalyst was placed in furnace 1 in the thermal CVD process. The resulting CNTs produced from themore » process were studied using field emission scanning electron microscopy (FESEM) and Raman spectroscopy. The FESEM images showed the growth morphology of the CNTs at the different temperatures employed. It was observed that the higher the synthesis temperature up to a point, the diameter of CNTs produced, after which the diameter increased. CNTs with helical structures were observed at 700 °C with a diameter range of 111 - 143 nm. A more straightened structure was observed at 750 °C with a diameter range of 59 - 121 nm. From 800 °C onwards, the diameters of the CNTs were less than 60 nm. Raman analysis revealed the present of D, G and G’ peak were observed at 1227-1358, 1565-1582, and 2678-2695 cm{sup −1}, respectively. The highest degree of crystallity of the carbon nanotubes synthesized were obtained at 800 °C. The radial breathing mode (RBM) were in range between 212-220 and 279-292 cm{sup −1}. Carbon nanotubes also being functionalized with Polyethylene bis(amine) Mw2000 (PEG 2000-NH2) and showed highly cells viability compared to non-functionalized CNT. The nanotubes synthesized will be applied as drug delivery in future study.« less

  9. A new technique for augmentation phalloplasty: albugineal surgery with bilateral saphenous grafts--three years of experience.

    PubMed

    Austoni, E; Guarneri, A; Cazzaniga, A

    2002-09-01

    Penile augmentation surgery is a highly controversial issue due to the low level of standardisation of surgical techniques. The aim of the study is to illustrate a new technique to solve the problem of enlarging the penis by means of additive surgery on the albuginea of the corpora cavernosa, guaranteeing a real increase in size of the erect penis. Between 1995 and 1997, 39 patients who requested an increase in the diameter of their penises underwent augmentation phalloplasty with bilateral saphena grafts. The patients considered eligible for surgery were patients with either hypoplasia of the penis or functional penile dysmorphophobia. All the patients included in our study presented normal erection at screening. The average penis diameter in a flaccid state and during erection was found to be 2.1cm (1.6-2.7 cm) and 2.9 cm (2.2-3.7 cm), respectively. Before surgery the patients were informed of the experimental nature of the surgical procedure. The increase in volume of the corpora cavernosa was achieved by applying saphena grafts to longitudinal openings made bilaterally in the albuginea along the whole length of the penis. No major complications and specifically no losses of sensitivity of the penis or erection deficiencies occurred during the post-operative follow-up period. All the patients resumed their sexual activity in 4 months. A measurement of the penile dimensions was carried out 9 months after surgery. No clinical meaningful increases in the diameter of the flaccid penis were documented. The average penis diameter during erection was found to be 4.2 cm (3.4-4.9) with post-surgery increases in diameter varying from 1.1 to 2.1cm (p<0.01). The penile enlargement phalloplasty technique with albuginea surgery suggested by the authors definitely is indicated for increasing the volume of the corpora cavernosa during erection. Albuginea surgery with saphena grafts has been found to be free from aesthetic and functional complications with excellent patient satisfaction.

  10. Transport of atrazine and dicamba through silt and loam soils

    USGS Publications Warehouse

    Tindall, James A.; Friedel, Michael J.

    2016-01-01

    The objectives of this research were to determine the role of preferential flow paths in the transport of atrazine (2-chloro-4-(ethylamino)-6-(isopropylamino)-s-triazine) and dicamba (3-6-dichloro-2-methoxybenzoic acid) through silt and loam soils overlying the High Plains aquifer in Nebraska. In a previous study, 3 of 6 study areas demonstrated high percentages of macropores; those three areas were used in this study for analysis of chemical transport. As a subsequent part of the study, 12 intact soil cores (30-cm diameter by 40-cm height), were excavated sequentially, two from each of the following depths: 0-40cm and 40-80cm. These cores were used to study preferential flow characteristics using dye staining and to determine hydraulic properties. Two undisturbed experimental field plots, each with a 3-m2 surface area, were installed in three study areas in Nebraska. Each was instrumented with suction lysimeters and tensiometers at depths of 10cm to 80cm in 10-cm increments. Additionally, each plot was planted with corn (Zea mays). A neutron probe access tube was installed in each plot to determine soil w ater content at 15-cm intervals. All plots were enclosed w ith a raised frame (of 8-cm height) to prevent surface runoff. All suction lysimeters were purged monthly for three months and were sampled immediately prior to pre-plant herbicide application to obtain background chemical concentrations. Atrazine and dicamba moved rapidly through the soil, but only after a heavy rainfall event, probably owing to the presence of preferential flow paths and lack of microbial degradation in these soil areas. Staining of laboratory cores showed a positive correlation between the percent area stained by depth and the subsequent breakthrough of Br- in the laboratory and leaching of field-applied herbicides owing to large rainfall events. Suction lysimeter samples in the field showed increases in concentrations of herbicides at depths where laboratory data indicated greater percentages of what appeared to be preferential flow paths. Concentrations of atrazine and dicamba exceeding 0.30 and 0.05µg m1-1 were observed at depths of 10-30cm and 50-70cm after two months following heavy rainfall events. It appears from the laboratory experiment that preferential flow paths were a significant factor in transport of atrazine and dicamba.

  11. Effect of facility variation on the acoustic characteristics of three single stream nozzles

    NASA Technical Reports Server (NTRS)

    Gutierrez, O. A.

    1980-01-01

    The characteristics of the jet noise produced by three single stream nozzles were investigated statistically at the NASA-Lewis Research Center outdoor jet acoustic facility. The nozzles consisted of a 7.6 cm diameter convergent conical, a 10.2 cm diameter convergent conical and an 8-lobe daisy nozzle with 7.6 cm equivalent diameter flow area. The same nozzles were tested previously at cold flow conditions in other facilities such as the Royal Aircraft Establishment (RAE) 7.3 m acoustic wind tunnel. The acoustic experiments at NASA covered pressure ratios from 1.4 to 2.5 at total temperatures of 811 K and ambient. The data obtained with four different microphone arrays are compared. The results are also compared with data taken at the RAE facility and with a NASA prediction procedure.

  12. Optimization of Acetalated Dextran-Based Nanocomposite Microparticles for Deep Lung Delivery of Therapeutics via Spray-Drying.

    PubMed

    Wang, Zimeng; Meenach, Samantha A

    2017-12-01

    Nanocomposite microparticle (nCmP) systems exhibit promising potential in the application of therapeutics for pulmonary drug delivery. This work aimed at identifying the optimal spray-drying condition(s) to prepare nCmP with specific drug delivery properties including small aerodynamic diameter, effective nanoparticle (NP) redispersion upon nCmP exposure to an aqueous solution, high drug loading, and low water content. Acetalated dextran (Ac-Dex) was used to form NPs, curcumin was used as a model drug, and mannitol was the excipient in the nCmP formulation. Box-Behnken design was applied using Design-Expert software for nCmP parameter optimization. NP ratio (NP%) and feed concentration (Fc) are significant parameters that affect the aerodynamic diameters of nCmP systems. NP% is also a significant parameter that affects the drug loading. Fc is the only parameter that influenced the water content of the particles significantly. All nCmP systems could be completely redispersed into the parent NPs, indicating that none of the factors have an influence on this property within the design range. The optimal spray-drying condition to prepare nCmP with a small aerodynamic diameter, redispersion of the NPs, low water content, and high drug loading is 80% NP%, 0.5% Fc, and an inlet temperature lower than 130°C. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  13. The Effect of Stone Composition on the Efficacy of Retrograde Intrarenal Surgery: Kidney Stones 1 - 3 cm in Diameter.

    PubMed

    Xue, Yuquan; Zhang, Peng; Yang, Xiaojie; Chong, Tie

    2015-05-01

    The goal of this study was to analyze the effect of stone composition on the efficacy of retrograde intrarenal surgery (RIRS) with kidney stones of 1-3 cm, 1-2 cm, and 2-3 cm in diameter. We undertook a retrospective analysis of 74 patients with kidney stones who underwent RIRS. The patients were divided into two groups based on stone composition: Group I (n=47) (calcium oxalate monohydrate and calcium phosphate) was the hard to fragment stone group and group II (n=27) (calcium oxalate dihydrate, magnesium ammonium phosphate, and uric acid) was the easy to fragment stone group. Forty-six patients with kidney stones 1 to 2 cm in diameter were divided into group A (n=30) (smaller than 20 mm, hard to fragment stones) and group B (n=16) (smaller than 20 mm, easy to fragment stones). Twenty-eight patients with stones 2 to 3 cm in diameter were divided into group C (n=17) (larger than 20 mm, hard to fragment stones) and group D (n=11) (larger than 20 mm, easy-to-crush stones). The stone clearance rates of group I and group II were 66.0% and 88.9%, respectively (P<0.05). The stone clearance rates of group A and group B were 73.3% and 100% (P<0.05). The stone clearance rates of group C and group D were 52.9% and 72.7%, respectively. Stone composition has a significant impact on the efficacy of RIRS in the management of 1 to 3 cm kidney stones. For 2-3 cm calcium oxalate dihydrate stones, uric acid stones, and magnesium ammonium phosphate stones, the outcome of RIRS treatment was relatively good, and RIRS is recommended.

  14. 77 FR 15798 - Notice of Intent To Repatriate Cultural Items: San Francisco State University, San Francisco, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-16

    ... height and 10.5 cm in diameter and is made of deer grass, sedge, redbud and bracken fern root. There are... deer grass, saw grass, redbud and bracken fern root. A tag attached to the basket was labeled... height with a maximum diameter of 18 cm and is made of deer grass, sedge, redbud and bracken fern root. A...

  15. Flow rate of some pharmaceutical diluents through die-orifices relevant to mini-tableting.

    PubMed

    Kachrimanis, K; Petrides, M; Malamataris, S

    2005-10-13

    The effects of cylindrical orifice length and diameter on the flow rate of three commonly used pharmaceutical direct compression diluents (lactose, dibasic calcium phosphate dihydrate and pregelatinised starch) were investigated, besides the powder particle characteristics (particle size, aspect ratio, roundness and convexity) and the packing properties (true, bulk and tapped density). Flow rate was determined for three different sieve fractions through a series of miniature tableting dies of different orifice diameter (0.4, 0.3 and 0.2 cm) and thickness (1.5, 1.0 and 0.5 cm). It was found that flow rate decreased with the increase of the orifice length for the small diameter (0.2 cm) but for the large diameter (0.4 cm) was increased with the orifice length (die thickness). Flow rate changes with the orifice length are attributed to the flow regime (transitional arch formation) and possible alterations in the position of the free flowing zone caused by pressure gradients arising from the flow of self-entrained air, both above the entrance in the die orifice and across it. Modelling by the conventional Jones-Pilpel non-linear equation and by two machine learning algorithms (lazy learning, LL, and feed-forward back-propagation, FBP) was applied and predictive performance of the fitted models was compared. It was found that both FBP and LL algorithms have significantly higher predictive performance than the Jones-Pilpel non-linear equation, because they account both dimensions of the cylindrical die opening (diameter and length). The automatic relevance determination for FBP revealed that orifice length is the third most influential variable after the orifice diameter and particle size, followed by the bulk density, the difference between bulk and tapped densities and the particle convexity.

  16. From tissue iron retention to low systemic haemoglobin levels, new pathophysiological biomarkers of human abdominal aortic aneurysm.

    PubMed

    Martinez-Pinna, R; Lindholt, J S; Madrigal-Matute, J; Blanco-Colio, L M; Esteban-Salan, M; Torres-Fonseca, M M; Lefebvre, T; Delbosc, S; Laustsen, J; Driss, F; Vega de Ceniga, M; Gouya, L; Weiss, G; Egido, J; Meilhac, O; Michel, J-B; Martin-Ventura, J

    2014-07-03

    Iron deposits are observed in tissue of abdominal aortic aneurysm (AAA) patients, although the underlying mechanisms are not completely elucidated. Therefore we explored circulating markers of iron metabolism in AAA patients, and tested if they could serve as biomarkers of AAA. Increased red blood cell (RBC)-borne iron retention and transferrin, transferrin receptor and ferritin expression was observed in AAA tissue compared to control aorta (immunohistochemistry and western blot). In contrast, decreased circulating iron, transferrin, mean corpuscular haemoglobin concentration (MCHC) and haemoglobin concentration, along with circulating RBC count, were observed in AAA patients (aortic diameter >3 cm, n=114) compared to controls (aortic diameter <3 cm, n=88) (ELISA), whereas hepcidin concentrations were increased in AAA subjects (MS/MS assay). Moreover, iron, transferrin and haemoglobin levels were negatively, and hepcidin positively, correlated with aortic diameter in AAA patients. The association of low haemoglobin with AAA presence or aortic diameter was independent of specific risk factors. Moreover, MCHC negatively correlated with thrombus area in another cohort of AAA patients (aortic diameter 3-5 cm, n=357). We found that anaemia was significantly more prevalent in AAA patients (aortic diameter >5 cm, n=8,912) compared to those in patients with atherosclerotic aorto-iliac occlusive disease (n=17,737) [adjusted odds ratio=1.77 (95% confidence interval: 1.61;1.93)]. Finally, the mortality risk among AAA patients with anaemia was increased by almost 30% [adjusted hazard ratio: 1.29 (95% confidence interval: 1.16;1.44)] as compared to AAA subjects without anaemia. In conclusion, local iron retention and altered iron recycling associated to high hepcidin and low transferrin systemic concentrations could lead to reduced circulating haemoglobin levels in AAA patients. Low haemoglobin levels are independently associated to AAA presence and clinical outcome.

  17. Ultrasonography of umbilical structures in clinically normal foals.

    PubMed

    Reef, V B; Collatos, C

    1988-12-01

    The umbilical arteries, urachus, and umbilical vein were scanned ultrasonographically in 13 clinically normal foals that ranged in age from 6 hours to 4 weeks. Sonograms were obtained using a 7.5-MHz sector scanner transducer placed across the midline of the ventral portion of the foal's abdominal wall. The umbilical vein was scanned from the umbilical stalk to its entrance into the hepatic parenchyma. The mean (+/- SD) diameter of the umbilical vein was 0.61 +/- 0.20 cm immediately cranial to the umbilical stalk, 0.52 +/- 0.19 cm midway between the umbilicus and liver, and 0.6 +/- 0.19 cm at the liver. The urachus and umbilical arteries were scanned from the umbilical stalk to the apex of the urinary bladder and had a mean total diameter of 1.75 +/- 0.37 cm at the bladder apex. The umbilical arteries also were scanned along either side of the bladder and had a mean diameter of 0.85 +/- 0.21 cm. These measurements and the ultrasonographic appearance of the internal umbilical structures from clinically normal foals can be used as references to diagnose abnormalities of the umbilical structures in neonatal foals.

  18. Image mottle in abdominal CT.

    PubMed

    Ende, J F; Huda, W; Ros, P R; Litwiller, A L

    1999-04-01

    To investigate image mottle in conventional CT images of the abdomen as a function of radiographic technique factors and patient size. Water-filled phantoms simulating the abdomens of adult (32 cm in diameter) and pediatric (16 cm in diameter) patients were used to investigate image mottle in CT as a function of x-ray tube potential and mAs. CT images from 39 consecutive patients with noncontrast liver scans and 49 patients with iodine contrast scans were analyzed retrospectively. Measurements were made of the mean liver parenchyma Hounsfield unit value and the corresponding image mottle. For a given water phantom and x-ray tube potential, image mottle was proportional to the mAs-0.5. Increasing the phantom diameter from 16 cm (pediatric) to 32 cm increased the mottle by a factor of 2.4, and increasing the x-ray tube potential from 80 kVp to 140 kVp reduced the mottle by a factor of 2.5. All patients were scanned at 120 kVp, with no correlation between patient size and the x-ray tube mAs. The mean mottle level was 7.8 +/- 2.2 and 10.0 +/- 2.5 for the noncontrast and contrast studies, respectively. An increase in patient diameter of 3 cm would require approximately 65% more mAs to maintain the same level of image mottle. The mottle in abdominal CT images may be controlled by adjusting radiographic technique factors, which should be adjusted to take into account the size of the patient undergoing the examination.

  19. Purpura

    MedlinePlus

    Blood spots; Skin hemorrhages ... and 10 mm (millimeters) in diameter. When purpura spots are less than 4 mm in diameter, they are called petechiae . Purpura spots larger than 1 cm (centimeter) are called ecchymoses. ...

  20. Piezoelectric effect in non-uniform strained carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Ilina, M. V.; Blinov, Yu F.; Ilin, O. I.; Rudyk, N. N.; Ageev, O. A.

    2017-10-01

    The piezoelectric effect in non-uniform strained carbon nanotubes (CNTs) has been studied. It is shown that the magnitude of strained CNTs surface potential depends on a strain value. It is established that the resistance of CNT also depends on the strain and internal electric field, which leads to the hysteresis in the current-voltage characteristics. Analysis of experimental studies of the non-uniform strained CNT with a diameter of 92 nm and a height of 2.1 μm allowed us to estimate the piezoelectric coefficient 0.107 ± 0.032 C/m2.

  1. A high-precision CdS photodetector for sun sensor applications. [for Mariner Jupiter-Saturn flyby

    NASA Technical Reports Server (NTRS)

    Chamberlain, F. R.

    1975-01-01

    A sun detector developed for the Mariner Jupiter/Saturn mission is described. Redundant photopotentiometers for both pitch and yaw axes, positioned below slit apertures, provide spacecraft stabilization and biased operation over plus or minus 20-deg fields of view. The biased (off-sun) operation is required for pointing the 366-cm-diameter (spacecraft-fixed) radio antenna toward earth. Configuration and fabrication processes are presented, along with a summary of development history. Particular attention is given to the properties of cadmium sulfide as these affect adaptation to this application.

  2. A high-powered siren for stable acoustic levitation of dense materials in the earth's gravity

    NASA Technical Reports Server (NTRS)

    Gammel, Paul M.; Croonquist, Arvid P.; Wang, Taylor G.

    1988-01-01

    Levitation of large dense samples (e.g., 1-cm diameter steel balls) has been performed in a 1-g environment. A siren was used to study the effects of reflector geometry and variable-frequency operation in order to attain stable acoustic positioning. The harmonic content and spatial distribution of the acoustic field have been investigated. The best stability was obtained with an open reflector system, using a flat lower reflector and a slightly concave upper reflector while operating at a frequency slightly below resonance.

  3. Experimental determination of gamma-ray discrimination in pillar-structured thermal neutron detectors under high gamma-ray flux

    DOE PAGES

    Shao, Qinghui; Conway, Adam M.; Voss, Lars F.; ...

    2015-08-04

    Silicon pillar structures filled with a neutron converter material ( 10B) are designed to have high thermal neutron detection efficiency with specific dimensions of 50 μm pillar height, 2 μm pillar diameter and 2 μm spacing between adjacent pillars. In this paper, we have demonstrated such a detector has a high neutron-to-gamma discrimination of 10 6 with a high thermal neutron detection efficiency of 39% when exposed to a high gamma-ray field of 10 9 photons/cm 2s.

  4. Note: Arc discharge plasma source with plane segmented LaB{sub 6} cathode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akhmetov, T. D., E-mail: t.d.akhmetov@inp.nsk.su; Davydenko, V. I.; Ivanov, A. A.

    2016-05-15

    A plane cathode composed of close-packed hexagonal LaB{sub 6} (lanthanum hexaboride) segments is described. The 6 cm diameter circular cathode is heated by radiation from a graphite foil flat spiral. The cathode along with a hollow copper anode is used for the arc discharge plasma production in a newly developed linear plasma device. A separately powered coil located around the anode is used to change the magnetic field strength and geometry in the anode region. Different discharge regimes were realized using this coil.

  5. Development of large volume double ring penning plasma discharge source for efficient light emissions.

    PubMed

    Prakash, Ram; Vyas, Gheesa Lal; Jain, Jalaj; Prajapati, Jitendra; Pal, Udit Narayan; Chowdhuri, Malay Bikas; Manchanda, Ranjana

    2012-12-01

    In this paper, the development of large volume double ring Penning plasma discharge source for efficient light emissions is reported. The developed Penning discharge source consists of two cylindrical end cathodes of stainless steel having radius 6 cm and a gap 5.5 cm between them, which are fitted in the top and bottom flanges of the vacuum chamber. Two stainless steel anode rings with thickness 0.4 cm and inner diameters 6.45 cm having separation 2 cm are kept at the discharge centre. Neodymium (Nd(2)Fe(14)B) permanent magnets are physically inserted behind the cathodes for producing nearly uniform magnetic field of ~0.1 T at the center. Experiments and simulations have been performed for single and double anode ring configurations using helium gas discharge, which infer that double ring configuration gives better light emissions in the large volume Penning plasma discharge arrangement. The optical emission spectroscopy measurements are used to complement the observations. The spectral line-ratio technique is utilized to determine the electron plasma density. The estimated electron plasma density in double ring plasma configuration is ~2 × 10(11) cm(-3), which is around one order of magnitude larger than that of single ring arrangement.

  6. Large area Czochralski silicon

    NASA Technical Reports Server (NTRS)

    Rea, S. N.; Gleim, P. S.

    1977-01-01

    The overall cost effectiveness of the Czochralski process for producing large-area silicon was determined. The feasibility of growing several 12 cm diameter crystals sequentially at 12 cm/h during a furnace run and the subsequent slicing of the ingot using a multiblade slurry saw were investigated. The goal of the wafering process was a slice thickness of 0.25 mm with minimal kerf. A slice + kerf of 0.56 mm was achieved on 12 cm crystal using both 400 grit B4C and SiC abrasive slurries. Crystal growth experiments were performed at 12 cm diameter in a commercially available puller with both 10 and 12 kg melts. Several modifications to the puller hoz zone were required to achieve stable crystal growth over the entire crystal length and to prevent crystallinity loss a few centimeters down the crystal. The maximum practical growth rate for 12 cm crystal in this puller design was 10 cm/h, with 12 to 14 cm/h being the absolute maximum range at which melt freeze occurred.

  7. Experimental Study of RF Sheaths due to Shear Alfvén Waves in the LAPD

    NASA Astrophysics Data System (ADS)

    Martin, Michael; Gekelman, Walter; van Compernolle, Bart; Pribyl, Patrick; Carter, Troy

    2014-10-01

    Ion cyclotron resonance heating (ICRH) is an important tool in current fusion heating experiments and will be an essential part of heating power in ITER. Radio frequency (RF) sheaths in the near-field (at the antenna) and in the far-field (e.g. the divertor region) form during ICRH and may cause deleterious effects, such as destruction of wall materials and plasma impurity generation. In this study a shear Alfvén wave is launched from an antenna in the LAPD bulk plasma (ne ~ 1012 cm-3, Te ~ 5 eV, B0 = 1.8 kG, diameter = 60 cm, length = 18 m) and forms an RF sheath on a limiter plate. Plasma potential rectification is observed with an emissive probe in the bulk plasma only on field lines connected to the limiter. The largest enhancement occurs inside the current channel of the Alfvén wave. Plasma potential measurements at various axial distances from the limiter show the rectification decreases with distance. 2-D maps of plasma potential as well as E = - ∇Φ will be presented. The scaling of sheath potential with wave power and plasma parameters will also be shown.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Cheng-Cheng; Wang, Ru-Zhi, E-mail: wrz@bjut.edu.cn; Zhu, Man-Kang

    GaN nanofilms (NFs) with different structures are grown on SiC substrates by pulsed laser deposition under different conditions. The synthesized GaN NFs are studied by X-ray diffraction, field-emission (FE) scanning electron microscopy, X-ray photoelectron spectroscopy, and atomic force microscopy. The GaN NFs are composed of diversified GaN nanoparticles with a diameter of 9–38 nm, thickness of 10–50 nm, and roughness of 0.22–13.03 nm. FE from the GaN NFs is structure dependent, which is explained by stress changing the band gap of the NFs. By structure modulation, the turn-on field of GaN NFs can be as low as 0.66 V/μm at a current density ofmore » 1 μA/cm{sup 2}, with a current density of up to 1.1 mA/cm{sup 2} at a field of 4.18 V/μm. Fowler-Nordheim curves of some samples contain multiple straight lines, which originate from the structural change and diversification of GaN nanoparticles under an applied field. Overall, our results suggest that GaN NFs with excellent FE properties can be prepared on SiC substrates, which provides a new route to fabricate high-efficiency FE nanodevices.« less

  9. Initial Results from the Magnetized Dusty Plasma Experiment (MDPX)

    NASA Astrophysics Data System (ADS)

    Thomas, Edward; Konopka, Uwe; Lynch, Brian; Adams, Stephen; Leblanc, Spencer; Artis, Darrick; Dubois, Ami; Merlino, Robert; Rosenberg, Marlene

    2014-10-01

    The MDPX device is envisioned as a flexible, multi-user, research instrument that can perform a wide range of studies in fundamental and applied plasma physics. The MDPX device consists of two main components. The first is a four-coil, open bore, superconducting magnet system that is designed to produce uniform magnetic fields of up to 4 Tesla and non-uniform magnetic fields with gradients up to up to 2 T/m configurations. Within the warm bore of the magnet is placed an octagonal vacuum chamber that has a 46 cm outer diameter and is 22 cm tall. The primary missions of the MDPX device are to: (1) investigate the structural, thermal, charging, and collective properties of a plasma as the electrons, ions, and finally charged microparticles become magnetized; (2) study the evolution of a dusty plasma containing magnetic particles (paramagnetic, super-paramagnetic, or ferromagnetic particles) in the presence of uniform and non-uniform magnetic fields; and, (3) explore the fundamental properties of strongly magnetized plasmas (``i.e., dust-free'' plasmas). This presentation will summarize the initial characterization of the magnetic field structure, initial plasma parameter measurements, and the development of in-situ and optical diagnostics. This work is supported by funding from the NSF and the DOE.

  10. Surface Tension Driven Convection Experiment (STDCE)

    NASA Technical Reports Server (NTRS)

    Ostrach, Simon; Kamotani, Y.; Pline, A.

    1994-01-01

    Results are reported of the Surface Tension Driven Convection Experiment (STDCE) aboard the USML-1 (first United States Microgravity Laboratory) Spacelab which was launched on June 25, 1992. In the experiment 10 cSt silicone oil was placed in an open circular container which was 10 cm wide by 5 cm deep. The fluid was heated either by a cylindrical heater (1.11 cm dia.) located along the container centerline or by a CO2 laser beam to induce thermocapillary flow. The flow field was studied by flow visualization. Several thermistor probes were placed in the fluid to measure the temperature distribution. The temperature distribution along the liquid free surface was measured by an infrared imager. Tests were conducted over a range of heating powers, laser beam diameters, and free surface shapes. In conjunction with the experiments an extensive numerical modeling of the flow was conducted. In this paper some results of the velocity and temperature measurements with flat and curved free surfaces are presented and they are shown to agree well with the numerical predictions.

  11. The starting transient of solid propellant rocket motors with high internal gas velocities. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Peretz, A.; Caveny, L. H.; Kuo, K. K.; Summerfield, M.

    1973-01-01

    A comprehensive analytical model which considers time and space development of the flow field in solid propellant rocket motors with high volumetric loading density is described. The gas dynamics in the motor chamber is governed by a set of hyperbolic partial differential equations, that are coupled with the ignition and flame spreading events, and with the axial variation of mass addition. The flame spreading rate is calculated by successive heating-to-ignition along the propellant surface. Experimental diagnostic studies have been performed with a rectangular window motor (50 cm grain length, 5 cm burning perimeter and 1 cm hydraulic port diameter), using a controllable head-end gaseous igniter. Tests were conducted with AP composite propellant at port-to-throat area ratios of 2.0, 1.5, 1.2, and 1.06, and head-end pressures from 35 to 70 atm. Calculated pressure transients and flame spreading rates are in very good agreement with those measured in the experimental system.

  12. Application Prospects of Multilayer Film Shields for Space Research Instrumentation

    NASA Astrophysics Data System (ADS)

    Nyunt, P. W.; Vlasik, K. F.; Grachev, V. M.; Dmitrenko, V. V.; Novikov, A. S.; Petrenko, D. V.; Ulin, S. E.; Uteshev, Z. M.; Chernysheva, I. V.; Shustov, A. E.

    We have studied the magnetic properties of multilayer film cylindrical configuration shields (MFS) based on NiFe / Cu. The studied samples were prepared by electrode position. MFS were constituted by alternating layers of NiFe and Cu, deposited on an aluminum cylinder with diameter of 4 cm, length of 13 cm and 0.5 cm thickness. The thickness of each ferromagnetic layer varied from 10 to 150 μm, and the thickness of Cu layers was 5 μm. Five-samples in which the number of ferromagnetic layers varied from 3 to 45 and copper - from 2 to 44 were tested. The best shielding efficiency was achieved at the maximum number of layers and comprised about 102. Permalloy multilayer foil shield at the same total thickness has several times less efficiency in comparison with MFS. The description of a prototype of the charged particles telescope for space application is presented. Results of its testing regarding sensitivity to the constant magnetic field are described.

  13. The development of an 85-kW (thermal) steam Rankine solar receiver

    NASA Technical Reports Server (NTRS)

    Wright, C. C.; Bank, H.

    1981-01-01

    The receiver is a once-through monotube boiler designed for steam/electric and process steam applications at pressures up to 17.24 MPa (2500 psia) and temperatures up to 704 C (1300 F). The unit is 76.2 cm (30.0 in.) in diameter and 95.8 cm (37.7 in.) in length; it weighs 220 kg (485 lb). Its heat transfer surface, which is 45.7 cm (18 in.) in diameter by 57 cm (22.4 in.) long, is an Inconel 625, cylindrical, tube-coil assembly composed of primary and reheat sections. A test unit was successfully operated at up to 6.9 MPa (1000 psia) and 704 C (1300 F) with solar input from a 11-m-dia parabolic dish concentrator.

  14. Multipolar radiofrequency ablation with internally cooled electrodes: experimental study in ex vivo bovine liver with mathematic modeling.

    PubMed

    Clasen, Stephan; Schmidt, Diethard; Boss, Andreas; Dietz, Klaus; Kröber, Stefan M; Claussen, Claus D; Pereira, Philippe L

    2006-03-01

    To evaluate the size and geometry of thermally induced coagulation by using multipolar radiofrequency (RF) ablation and to determine a mathematic model to predict coagulation volume. Multipolar RF ablations (n = 80) were performed in ex vivo bovine livers by using three internally cooled bipolar applicators with two electrodes on the same shaft. Applicators were placed in a triangular array (spacing, 2-5 cm) and were activated in multipolar mode (power output, 75-225 W). The size and geometry of the coagulation zone, together with ablation time, were assessed. Mathematic functions were fitted, and the goodness of fit was assessed by using r(2). Coagulation volume, short-axis diameter, and ablation time were dependent on power output and applicator distance. The maximum zone of coagulation (volume, 324 cm(3); short-axis diameter, 8.4 cm; ablation time, 193 min) was induced with a power output of 75 W at an applicator distance of 5 cm. Coagulation volume and ablation time decreased as power output increased. Power outputs of 100-125 W at applicator distances of 2-4 cm led to a reasonable compromise between coagulation volume and ablation time. At 2 cm (100 W), coagulation volume, short-axis diameter, and ablation time were 66 cm(3), 4.5 cm, and 19 min, respectively; at 3 cm (100 W), 90 cm(3), 5.2 cm, and 22 min, respectively; at 4 cm (100 W), 132 cm(3), 6.1 cm, and 27 min, respectively; at 2 cm (125 W), 56 cm(3), 4.2 cm, and 9 min, respectively; at 3 cm (125 W), 73 cm(3), 4.9 cm, and 12 min, respectively; and at 4 cm (125 W), 103 cm(3), 5.5 cm, and 16 min, respectively. At applicator distances of 4 cm (>125 W) and 5 cm (>100 W), the zones of coagulation were not confluent. Coagulation volume (r(2) = 0.80) and RF ablation time (r(2) = 0.93) were determined by using the mathematic model. Multipolar RF ablation with three bipolar applicators may produce large volumes of confluent coagulation ex vivo. A compromise is necessary between prolonged RF ablations at lower power outputs, which produce larger volumes of coagulation, and faster RF ablations at higher power outputs, which produce smaller volumes of coagulation. Copyright RSNA, 2006.

  15. Triamcinolone Acetonide Selectively Inhibits Angiogenesis in Small Blood Vessels and Decreases Vessel Diameter within the Vascular Tree

    NASA Technical Reports Server (NTRS)

    McKay, Terri L.; Gredeon, Dan J.; Vickerman, Mary B.; Hylton, alan G.; Ribita, Daniela; Olar, Harry H.; Kaiser, Peter K.; Parsons-Wingerter, Patricia

    2007-01-01

    The steroid triamcinolone acetonide (TA) is a potent anti-angiogenesis drug used to treat retinal vascular diseases that include diabetic retinopathy, vascular occlusions and choroidal neovascularization. To quantify the effects of TA on branching morphology within the angiogenic microvascular tree of the chorioallantoic membrane (CAM) of quail embryos. Increasing concentrations of TA (0-16 ng/ml) were applied topically on embryonic day 7 (E7) to the chorioallantoic membrane (CAM) of quail embryos cultured in Petri dishes, and incubated for an additional 24 or 48 hours until fixation. Binary (black/white) microscopic images of arterial end points were quantified by VESGEN software (for Generational Analysis of Vessel Branching) to obtain major vascular parameters that include vessel diameter (Dv), fractal dimension (Df), tortuosity (Tv) and densities of vessel area, length, number and branch point (Av, Lv, Nv and Brv). For assessment of specific changes in vascular morphology induced by TA, the VESGEN software automatically segmented the vascular tree into branching generations (G1...G10) according to changes in vessel diameter and branching. Vessel density decreased significantly up to 34% as the function of increasing concentration of TA according to Av, Lv, Brv, Nv and Df. TA selectively inhibited the growth of new, small vessels, because Lv decreased from 13.14plus or minus 0.61 cm/cm2 for controls to 8.012 plus or minus 0.82 cm/cm2 at 16 ng TA/ml in smaller branching generations (G7-G10), and for Nv from 473.83 plus or minus 29.85 cm(-)2 to 302.32 plus or minus 33.09 cm-()2. In contrast, vessel diameter (Dv) decreased throughout the vascular tree (G1-G10).

  16. [The sural medial perforator flap: Anatomical bases, surgical technique and indications in head and neck reconstruction].

    PubMed

    Struk, S; Schaff, J-B; Qassemyar, Q

    2018-04-01

    The medial sural artery perforator (MSAP) flap is defined as a thin cutaneo-adipose perforator flap harvested on the medial aspect of the leg. The aims of this study were to describe the anatomical basis as well as the surgical technique and discuss the indications in head and neck reconstructive surgery. We harvested 10 MSAP flap on 5 fresh cadavers. For each case, the number and the location of the perforators were recorded. For each flap, the length of pedicle, the diameter of source vessels and the thickness of the flap were studied. Finally, we performed a clinical application of a MSAP flap. A total of 23 perforators with a diameter superior than 1mm were dissected on 10 legs. The medial sural artery provided between 1 and 4 musculocutaneous perforators. Perforators were located in average at 10.3cm±2cm from the popliteal fossa and at 3.6cm±1cm from the median line of the calf. The mean pedicle length was 12.1cm±2.5cm. At its origin, the source artery diameter was 1.8mm±0.25mm and source veins diameters were 2.45mm±0.9mm in average. There was no complication in our clinical application. This study confirms the reliability of previous anatomical descriptions of the medial sural artery perforator flap. This flap was reported as thin and particularly adapted for oral cavity reconstruction and for facial or limb resurfacing. Sequelae might be reduced as compared to those of the radial forearm flap with comparable results. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  17. An assessment of the utility of a non-metric digital camera for measuring standing trees

    Treesearch

    Neil Clark; Randolph H. Wynne; Daniel L. Schmoldt; Matthew F. Winn

    2000-01-01

    Images acquired with a commercially available digital camera were used to make measurements on 20 red oak (Quercus spp.) stems. The ranges of diameter at breast height (DBH) and height to a 10 cm upper-stem diameter were 16-66 cm and 12-20 m, respectively. Camera stations located 3, 6, 9, 12, and 15 m from the stem were studied to determine the best distance to be...

  18. A mechanical property and stress corrosion evaluation of 431 stainless steel alloy

    NASA Technical Reports Server (NTRS)

    Montano, J. W.

    1973-01-01

    The mechanical properties of type 431 stainless steel in two conditions: annealed bar and hardened and tempered bar are presented. Test specimens, manufactured from approximately 1.0 inch (2.54 cm) diameter bar stock, were tested at temperatures of 80 F (+26.7 C), 0 F (-17.8 C), -100 F (-73 C), and -200 F (-129 C). The test data indicated excellent tensile strength, notched/unnotched tensile ratio, ductility, shear, and impact properties at all testing temperatures. Results of the alternate immersion stress corrosion tests on stressed and unstressed longitudinal tensile specimens 0.1250 inch (0.3175 cm) diameter and transverse C-ring specimens, machined from 1.0 inch (2.54 cm) diameter bar stock, indicated that the material is not susceptible to stress corrosion cracking when tested in a 3.5 percent NaCl solution for 180 days.

  19. A compact ion source for intense neutron generation

    NASA Astrophysics Data System (ADS)

    Perkins, Luke Torrilhon

    Today, numerous applications for neutrons, beyond those of the nuclear power industry, are beginning to emerge and become viable. From neutron radiography which, not unlike conventional X-rays, can provide an in-depth image through various materials, to neutron radiotherapy, for the treatment of certain forms of cancer, all these applications promise to improve our quality of life. To meet the growing need for neutrons, greater demands are being made on the neutron 'generator' technology, demands for improved neutron output and reliability at reduced physical sizes and costs. One such example in the field of borehole neutron generators, where, through neutron activation analysis, the elemental composition, concentration and location in the surrounding borehole media can be ascertained. These generators, which commonly rely on the fusion of deuterium (D) and tritium (T) at energies of the order of one hundred thousand Volts, seem to defy their physical limitations to provide neutron outputs approaching a billion per second in packages no greater than two inches in diameter. In an attempt to answer this demand, we, at Lawrence Berkeley National Laboratory (LBNL), have begun developing a new generation of neutron generators making use of recent developments in ion source technology. The specific application which motivates this development is in the environmental monitoring field, where pollutants and their concentrations in the subsurface must be assessed. To achieve the desired direction of low-level concentrations and obtain a better directional sensitivity, a neutron output of 109 to 1010 D-T neutrons per second was targeted for generator package which can fit inside a ~5 cm diameter borehole. To accomplish this performance, a radio-frequency (RF)- driven ion source developed at LBNL was adapted to the requirements of this application. The advantages of this type of ion source are its intrinsic ability to tailor the delivery of RF power to the ion source and therefore control the neutron output (pulse width, repetition rate and magnitude) while operating at low pressures (~5 mTorr). In the experimental testing presented herein, a prototype, 5 cm-diameter, inductively driven ion source has produced unsaturated hydrogen beam current densities in excess of 1 A/cm2 and monatomic species fractions in excess of 90%. This satisfactory performance, with respect to the targeted neutron output, was achieved with a 2 MHz, 60 kW pulse of RF to produce a ~20μs plasma pulse at <100 Hz.

  20. The Importance of Large-Diameter Trees to Forest Structural Heterogeneity

    PubMed Central

    Lutz, James A.; Larson, Andrew J.; Freund, James A.; Swanson, Mark E.; Bible, Kenneth J.

    2013-01-01

    Large-diameter trees dominate the structure, dynamics and function of many temperate and tropical forests. However, their attendant contributions to forest heterogeneity are rarely addressed. We established the Wind River Forest Dynamics Plot, a 25.6 ha permanent plot within which we tagged and mapped all 30,973 woody stems ≥1 cm dbh, all 1,966 snags ≥10 cm dbh, and all shrub patches ≥2 m2. Basal area of the 26 woody species was 62.18 m2/ha, of which 61.60 m2/ha was trees and 0.58 m2/ha was tall shrubs. Large-diameter trees (≥100 cm dbh) comprised 1.5% of stems, 31.8% of basal area, and 17.6% of the heterogeneity of basal area, with basal area dominated by Tsuga heterophylla and Pseudotsuga menziesii. Small-diameter subpopulations of Pseudotsuga menziesii, Tsuga heterophylla and Thuja plicata, as well as all tree species combined, exhibited significant aggregation relative to the null model of complete spatial randomness (CSR) up to 9 m (P≤0.001). Patterns of large-diameter trees were either not different from CSR (Tsuga heterophylla), or exhibited slight aggregation (Pseudotsuga menziesii and Thuja plicata). Significant spatial repulsion between large-diameter and small-diameter Tsuga heterophylla suggests that large-diameter Tsuga heterophylla function as organizers of tree demography over decadal timescales through competitive interactions. Comparison among two forest dynamics plots suggests that forest structural diversity responds to intermediate-scale environmental heterogeneity and disturbances, similar to hypotheses about patterns of species richness, and richness- ecosystem function. Large mapped plots with detailed within-plot environmental spatial covariates will be required to test these hypotheses. PMID:24376579

  1. The importance of large-diameter trees to forest structural heterogeneity.

    PubMed

    Lutz, James A; Larson, Andrew J; Freund, James A; Swanson, Mark E; Bible, Kenneth J

    2013-01-01

    Large-diameter trees dominate the structure, dynamics and function of many temperate and tropical forests. However, their attendant contributions to forest heterogeneity are rarely addressed. We established the Wind River Forest Dynamics Plot, a 25.6 ha permanent plot within which we tagged and mapped all 30,973 woody stems ≥ 1 cm dbh, all 1,966 snags ≥ 10 cm dbh, and all shrub patches ≥ 2 m(2). Basal area of the 26 woody species was 62.18 m(2)/ha, of which 61.60 m(2)/ha was trees and 0.58 m(2)/ha was tall shrubs. Large-diameter trees (≥ 100 cm dbh) comprised 1.5% of stems, 31.8% of basal area, and 17.6% of the heterogeneity of basal area, with basal area dominated by Tsuga heterophylla and Pseudotsuga menziesii. Small-diameter subpopulations of Pseudotsuga menziesii, Tsuga heterophylla and Thuja plicata, as well as all tree species combined, exhibited significant aggregation relative to the null model of complete spatial randomness (CSR) up to 9 m (P ≤ 0.001). Patterns of large-diameter trees were either not different from CSR (Tsuga heterophylla), or exhibited slight aggregation (Pseudotsuga menziesii and Thuja plicata). Significant spatial repulsion between large-diameter and small-diameter Tsuga heterophylla suggests that large-diameter Tsuga heterophylla function as organizers of tree demography over decadal timescales through competitive interactions. Comparison among two forest dynamics plots suggests that forest structural diversity responds to intermediate-scale environmental heterogeneity and disturbances, similar to hypotheses about patterns of species richness, and richness- ecosystem function. Large mapped plots with detailed within-plot environmental spatial covariates will be required to test these hypotheses.

  2. Development of high-density helicon plasma sources and their applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shinohara, Shunjiro; Hada, Tohru; Motomura, Taisei

    2009-05-15

    We report on the development of unique, high-density helicon plasma sources and describe their applications. Characterization of one of the largest helicon plasma sources yet constructed is made. Scalings of the particle production efficiency are derived from various plasma production devices in open literature and our own data from long and short cylinder devices, i.e., high and low values of the aspect ratio A (the ratio of the axial length to the diameter), considering the power balance in the framework of a simple diffusion model. A high plasma production efficiency is demonstrated, and we clarify the structures of the excitedmore » waves in the low A region down to 0.075 (the large device diameter of 73.8 cm with the axial length as short as 5.5 cm). We describe the application to plasma propulsion using a new concept that employs no electrodes. A very small diameter (2.5 cm) helicon plasma with 10{sup 13} cm{sup -3} density is produced, and the preliminary results of electromagnetic plasma acceleration are briefly described.« less

  3. Clinical Tumor Dimensions May Be Useful to Prevent Geographic Miss in Conventional Radiotherapy of Uterine Cervix Cancer-A Magnetic Resonance Imaging-Based Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Justino, Pitagoras Baskara; Baroni, Ronaldo; Blasbalg, Roberto

    2009-06-01

    Purpose: To evaluate the risk of geographic miss associated with the classic four-field 'box' irradiation technique and to define the variables that predict this risk. Materials and Methods: The study population consisted of 80 patients with uterine cervix cancer seen between 2001 and 2006. Median age was 55 years (23-82 years), and 72 (90%) presented with squamous cell carcinoma. Most patients (68.7%) presented with locally advanced disease (IIb or more). Magnetic resonance imaging findings from before treatment were compared with findings from simulation of the conventional four-field 'box' technique done with rectal contrast. Study variables included tumor volume; involvement ofmore » vagina, parametrium, bladder, or rectum; posterior displacement of the anterior rectal wall; and tumor anteroposterior diameter (APD). Margins were considered adequate when the target volume (primary tumor extension, whole uterine body, and parametrium) was included within the field limits and were at least 1 cm in width. Results: Field limits were inadequate in 45 (56%) patients: 29 (36%) patients at the anterior and 28 (35%) at the posterior border of the lateral fields. Of these, 12 patients had both anterior and posterior miss, and this risk was observed in all stages of the disease (p = 0.076). Posterior displacement of the anterior rectal wall beyond S2-S3 was significantly correlated with the risk of geographic miss (p = 0.043). Larger tumors (APD 6 cm or above and volume above 50 cm{sup 3}) were also significantly correlated with this risk (p = 0.004 and p = 0.046, respectively). Conclusions: Posterior displacement of the anterior rectal wall, tumor APD, and volume can be used as guidance in evaluating the risk of geographic miss.« less

  4. Performance tests for ray-scan 64 PET/CT based on NEMA NU-2 2007

    NASA Astrophysics Data System (ADS)

    Li, Suying; Zhou, Kun; Zhang, Qiushi; Zhang, Jinming; Yang, Kun; Xu, Baixuan; Ren, Qiushi

    2015-03-01

    This paper focuses on evaluating the performance of the Ray-Scan 64 PET/CT system, a newly developed PET/CT in China. It combines a 64 slice helical CT scanner with a high resolution PET scanner based on BGO crystals assembled in 36 rings. The energy window is 350~ 650 keV, and the coincidence window is set at 12 ns in both 2D and 3D mode. The transaxial field of view (FOV) is 600 mm in diameter, and the axial FOV is 163 mm. Method: Performance measurements were conducted focusing on PET scanners based on NEMA NU-2 2007 standard. We reported the full characterization (spatial resolution, sensitivity, count rate performance, scatter fraction, accuracy of correction, and image quality) in both 2D and 3D mode. In addition, the clinical images from two patients of different types of tumor were presented to further demonstrate this PET/CT system performance in clinical application. Results: using the NEMA NU-2 2007 standard, the main results: (1) the transaxial resolution at 1cm from the gantry center for 2D and 3D was both 4.5mm (FWHM), and at 10cm from the gantry center, the radial (tangential) resolution were 5.6mm (5.3mm) and 5.4mm (5.2mm) in 2D and 3D mode respectively. The axial resolution at 1cm and 10cm off axis was 3.4mm (4.8mm) and 5.5mm (5.8mm) in 2D (3D) mode respectively; (2) the sensitivity for the radial position R0(r=0mm) and R100(r=100mm) were 1.741 kcps/MBq and 1.767 kcps/MBq respectively in 2D mode and 7.157 kcps/MBq and 7.513 kcps/MBq in 3D mode; (3) the scatter fraction was calculated as 18.36% and 42.92% in 2D and 3D mode, respectively; (4) contrast of hot spheres in the image quality phantom in 2D mode was 50.33% (52.87%), 33.34% (40.86%), 20.64% (26.36%), and 10.99% (15.82%), respectively, in N=4 (N=8). Besides, in clinical study, the diameter of lymph tumor was about 2.4 cm, and the diameter of lung cancer was 4.2 cm. This PET/CT system can distinguish the position of cancer easily. Conclusion: The results show that the performance of the newly developed PET/CT system is of high resolution, and low scatter characteristics, and is suitable for clinical applications.

  5. Parallel nanomanufacturing via electrohydrodynamic jetting from microfabricated externally-fed emitter arrays

    NASA Astrophysics Data System (ADS)

    Ponce de Leon, Philip J.; Hill, Frances A.; Heubel, Eric V.; Velásquez-García, Luis F.

    2015-06-01

    We report the design, fabrication, and characterization of planar arrays of externally-fed silicon electrospinning emitters for high-throughput generation of polymer nanofibers. Arrays with as many as 225 emitters and with emitter density as large as 100 emitters cm-2 were characterized using a solution of dissolved PEO in water and ethanol. Devices with emitter density as high as 25 emitters cm-2 deposit uniform imprints comprising fibers with diameters on the order of a few hundred nanometers. Mass flux rates as high as 417 g hr-1 m-2 were measured, i.e., four times the reported production rate of the leading commercial free-surface electrospinning sources. Throughput increases with increasing array size at constant emitter density, suggesting the design can be scaled up with no loss of productivity. Devices with emitter density equal to 100 emitters cm-2 fail to generate fibers but uniformly generate electrosprayed droplets. For the arrays tested, the largest measured mass flux resulted from arrays with larger emitter separation operating at larger bias voltages, indicating the strong influence of electrical field enhancement on the performance of the devices. Incorporation of a ground electrode surrounding the array tips helps equalize the emitter field enhancement across the array as well as control the spread of the imprints over larger distances.

  6. [Phantom studies of ultrasound equipment for quality improvement in breast diagnosis].

    PubMed

    Madjar, H; Mundinger, A; Lattermann, U; Gufler, H; Prömpeler, H J

    1996-04-01

    According to the German guidelines for quality control of ultrasonic equipment, the following conditions are required for breast ultrasound: A transducer frequency between 5-7.5 MHz and a minimum field of view of 5 cm. Satisfactory images must be obtained in a depth between 0.5 and 4 cm with a wide tolerance of the focal zones. This allows the use of poor quality equipment which does not produce satisfactory image quality and it excludes a number of high frequency and high resolution transducers with a field of view below 5 cm. This study with a test phantom was performed to define image quality objectively. Sixteen ultrasound instruments in different price categories were used to perform standardized examinations on a breast phantom model 550 (ATS Laboratories, Bridgeport, USA). Contrast and spatial resolution in different penetration depths were investigated on cyst phantoms from 1-4 mm diameter and wire targets with defined distances between 0.5-3 mm 4 investigations reported the images. A positive correlation was seen between price category and image quality. This study demonstrates that transducer frequency and image geometry do not allow sufficient quality control. An improvement of ultrasound diagnosis is only possible if equipment guidelines are based on standard examinations with test phantoms.

  7. Preoperative tumor size at MRI predicts deep myometrial invasion, lymph node metastases, and patient outcome in endometrial carcinomas.

    PubMed

    Ytre-Hauge, Sigmund; Husby, Jenny A; Magnussen, Inger J; Werner, Henrica M J; Salvesen, Øyvind O; Bjørge, Line; Trovik, Jone; Stefansson, Ingunn M; Salvesen, Helga B; Haldorsen, Ingfrid S

    2015-03-01

    The aim of this study was to explore the relation between preoperative tumor size based on magnetic resonance imaging (MRI) and the surgical pathologic staging parameters (deep myometrial invasion, cervical stroma invasion, and metastatic lymph nodes) and to assess the prognostic impact of tumor size in endometrial carcinomas. Interobserver variability for the different tumor size measurements was also assessed. Preoperative pelvic MRI of 212 patients with histologically confirmed endometrial carcinomas was read independently by 3 radiologists. Maximum tumor diameters were measured in 3 orthogonal planes (anteroposterior, transverse, and craniocaudal planes [CC]), and tumor volumes were estimated. Tumor size was analyzed in relation to surgical staging results and patient survival. The multivariate analyses were adjusted for preoperative risk status based on endometrial biopsy. Intraclass correlation coefficients and receiver operating characteristics curves for the different tumor measurements were also calculated. Anteroposterior tumor diameter independently predicted deep myometrial invasion (P < 0.001), whereas CC tumor diameter tended to independently predict lymph node metastases (P = 0.06). Based on receiver operating characteristic curves, the following tumor size cutoff values were identified: anteroposterior diameter greater than 2 cm predicted deep myometrial invasion (unadjusted odds ratio [OR], 12.4; P < 0.001; adjusted OR, 6.7; P < 0.001) and CC diameter greater than 4 cm predicted lymph node metastases (unadjusted OR, 6.2; P < 0.001; adjusted OR, 4.9; P = 0.009). Large tumor size was associated with reduced progression/recurrence-free survival (P ≤ 0.005 for all size parameters), and CC diameter had an independent impact on survival (adjusted hazards ratio, 1.04; P = 0.009). The interobserver variability for the different size measurements was very low (intraclass correlation coefficient, 0.78-0.85). Anteroposterior tumor diameter greater than 2 cm predicts deep myometrial invasion, and CC tumor diameter greater than 4 cm predicts lymph node metastases. Tumor size is a strong prognostic factor in endometrial carcinomas. Preoperative tumor measurements based on MRI may potentially improve preoperative risk stratification models and thus enable better tailored surgical treatment in endometrial cancer.

  8. 3D PIC-MCC simulations of positive streamers in air gaps

    NASA Astrophysics Data System (ADS)

    Jiang, M.; Li, Y.; Wang, H.; Liu, C.

    2017-10-01

    Simulation of positive streamer evolution is important for understanding the microscopic physical process in discharges. Simulations described in this paper are done using a 3D Particle-In-Cell, Monte-Carlo-Collision code with photoionization. Three phases of a positive streamer evolution, identified as initiation, propagation, and branching are studied during simulations. A homogeneous electric field is applied between parallel-flat electrodes forming a millimeter air gap to make simulations and analysis more simple and general. Free electrons created by the photoionization process determine initiation, propagation, and branching of the streamers. Electron avalanches form a positive streamer tip, when the space charge of ions at the positive tip dominates the local electric field. The propagation of the positive tip toward a cathode is the result of combinations of the positive tip and secondary avalanches ahead of it. A curved feather-like channel is formed without obvious branches when the electric field between electrodes is 50 kV/cm. However, a channel is formed with obvious branches when the electric field increases up to 60 kV/cm. In contrast to the branches around a sharp needle electrode, branches near the flat anode are formed at a certain distance away from it. Simulated parameters of the streamer such as diameter, maximum electric field, propagation velocity, and electron density at the streamer tip are in a good agreement with those published earlier.

  9. The evaluation of 6 and 18 MeV electron beams for small animal irradiation

    NASA Astrophysics Data System (ADS)

    Chao, T. C.; Chen, A. M.; Tu, S. J.; Tung, C. J.; Hong, J. H.; Lee, C. C.

    2009-10-01

    A small animal irradiator is critical for providing optimal radiation dose distributions for pre-clinical animal studies. This paper focuses on the evaluation of using 6 or 18 MeV electron beams as small animal irradiators. Compared with all other prototypes which use photons to irradiate small animals, an electron irradiator has many advantages in its shallow dose distribution. Two major approaches including simulation and measurement were used to evaluate the feasibility of applying electron beams in animal irradiation. These simulations and measurements were taken in three different fields (a 6 cm × 6 cm square field, and 4 mm and 30 mm diameter circular fields) and with two different energies (6 MeV and 18 MeV). A PTW Semiflex chamber in a PTW-MP3 water tank, a PTW Markus chamber type 23343, a PTW diamond detector type 60003 and KODAK XV films were used to measure PDDs, lateral beam profiles and output factors for either optimizing parameters of Monte Carlo simulation or to verify Monte Carlo simulation in small fields. Results show good agreement for comparisons of percentage depth doses (<=2.5% for 6 MeV e; <=1.8% for 18 MeV e) and profiles (FWHM <= 0.5 mm) between simulations and measurements on the 6 cm field. Greater deviation can be observed in the 4 mm field, which is mainly caused by the partial volume effects of the detectors. The FWHM of the profiles for the 18 MeV electron beam is 32.6 mm in the 30 mm field, and 4.7 mm in the 4 mm field at d90. It will take 1-13 min to complete one irradiation of 5-10 Gy. In addition, two different digital phantoms were also constructed, including a homogeneous cylindrical water phantom and a CT-based heterogeneous mouse phantom, and were implemented into Monte Carlo to simulate dose distribution with different electron irradiations.

  10. LDRD final report on confinement of cluster fusion plasmas with magnetic fields.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Argo, Jeffrey W.; Kellogg, Jeffrey W.; Headley, Daniel Ignacio

    2011-11-01

    Two versions of a current driver for single-turn, single-use 1-cm diameter magnetic field coils have been built and tested at the Sandia National Laboratories for use with cluster fusion experiments at the University of Texas in Austin. These coils are used to provide axial magnetic fields to slow radial loss of electrons from laser-produced deuterium plasmas. Typical peak field strength achievable for the two-capacitor system is 50 T, and 200 T for the ten-capacitor system. Current rise time for both systems is about 1.7 {mu}s, with peak current of 500 kA and 2 MA, respectively. Because the coil must bemore » brought to the laser, the driver needs to be portable and drive currents in vacuum. The drivers are complete but laser-plasma experiments are still in progress. Therefore, in this report, we focus on system design, initial tests, and performance characteristics of the two-capacitor and ten-capacitors systems. The questions of whether a 200 T magnetic field can retard the breakup of a cluster-fusion plasma, and whether this field can enhance neutron production have not yet been answered. However, tools have been developed that will enable producing the magnetic fields needed to answer these questions. These are a two-capacitor, 400-kA system that was delivered to the University of Texas in 2010, and a 2-MA ten-capacitor system delivered this year. The first system allowed initial testing, and the second system will be able to produce the 200 T magnetic fields needed for cluster fusion experiments with a petawatt laser. The prototype 400-kA magnetic field driver system was designed and built to test the design concept for the system, and to verify that a portable driver system could be built that delivers current to a magnetic field coil in vacuum. This system was built copying a design from a fixed-facility, high-field machine at LANL, but made to be portable and to use a Z-machine-like vacuum insulator and vacuum transmission line. This system was sent to the University of Texas in Austin where magnetic fields up to 50 T have been produced in vacuum. Peak charge voltage and current for this system have been 100 kV and 490 kA. It was used this last year to verify injection of deuterium and surrogate clusters into these small, single-turn coils without shorting the coil. Initial test confirmed the need to insulate the inner surface of the coil, which requires that the clusters must be injected through small holes in an insulator. Tests with a low power laser confirmed that it is possible to inject clusters into the magnetic field coils through these holes without destroying the clusters. The university team also learned the necessity of maintaining good vacuum to avoid insulator, transmission line, and coil shorting. A 200-T, 2 MA system was also constructed using the experience from the first design to make the pulsed-power system more robust. This machine is a copy of the prototype design, but with ten 100-kV capacitors versus the two used in the prototype. It has additional inductance in the switch/capacitor unit to avoid breakdown seen in the prototype design. It also has slightly more inductance at the cable connection to the vacuum chamber. With this design we have been able to demonstrate 1 MA current into a 1 cm diameter coil with the vacuum chamber at air pressure. Circuit code simulations, including the additional inductance with the new design, agree well with the measured current at a charge voltage of 40 kV with a short circuit load, and at 50 kV with a coil. The code also predicts that with a charge voltage of 97 kV we will be able to get 2 MA into a 1 cm diameter coil, which will be sufficient for 200 T fields. Smaller diameter or multiple-turn coils will be able to achieve even higher fields, or be able to achieve 200-T fields with lower charge voltage. Work is now proceeding at the university under separate funding to verify operation at the 2-MA level, and to address issues of debris mitigation, measurement of the magnetic field, and operation in vacuum. We anticipate operation at full current with single-turn, magnetic field coils this fall, with 200 T experiments on the Texas Petawatt laser in the spring of 2012.« less

  11. Generation of disc-like plasma from laser-matter interaction in the presence of a strong external magnetic field

    NASA Astrophysics Data System (ADS)

    Ivanov, V. V.; Maximov, A. V.; Betti, R.; Wiewior, P. P.; Hakel, P.; Sherrill, M. E.

    2017-08-01

    Dynamics of laser produced plasma in a strong magnetic field was studied using a 1 MA pulsed power generator coupled to an intense, high-energy laser. A 2-2.5 MG magnetic field was generated on the surface of a rod load 0.8-1.2 mm in diameter. A sub-nanosecond laser pulse with intensity of 3 × 1015 W cm-2 was focused on the rod load surface. Side-on laser diagnostics showed the generation of two collimated jets 1-3 mm long on the front and rear sides of the load. End-on laser diagnostics reveal that the laser produced plasma in the MG magnetic field takes the form of a thin disc as the plasma propagates along the magnetic field lines. The disc-like plasma expands radially across the magnetic field with a velocity of 250 km s-1. An electron temperature of 400 eV was measured in the laser-produced plasma on the rod load.

  12. The outcome of laparoscopic Heller myotomy for achalasia is not influenced by the degree of esophageal dilatation.

    PubMed

    Sweet, Matthew P; Nipomnick, Ian; Gasper, Warren J; Bagatelos, Karen; Ostroff, James W; Fisichella, Piero M; Way, Lawrence W; Patti, Marco G

    2008-01-01

    In the past, a Heller myotomy was considered to be ineffective in patients with achalasia and a markedly dilated or sigmoid-shaped esophagus. Esophagectomy was the standard treatment. The aims of this study were (a) to evaluate the results of laparoscopic Heller myotomy and Dor fundoplication in patients with achalasia and various degrees of esophageal dilatation; and (b) to assess the role of endoscopic dilatation in patients with postoperative dysphagia. One hundred and thirteen patients with esophageal achalasia were separated into four groups based on the maximal diameter of the esophageal lumen and the shape of the esophagus: group A, diameter<4.0 cm, 46 patients; group B, esophageal diameter 4.0-6.0 cm, 32 patients; group C, diameter>6.0 cm and straight axis, 23 patients; and group D, diameter>6.0 cm and sigmoid-shaped esophagus, 12 patients. All had a laparoscopic Heller myotomy and Dor fundoplication. The median length of follow-up was 45 months (range 7 months to 12.5 years). The postoperative recovery was similar among the four groups. Twenty-three patients (20%) had postoperative dilatations for dysphagia, and five patients (4%) required a second myotomy. Excellent or good results were obtained in 89% of group A and 91% of groups B, C, and D. None required an esophagectomy to maintain clinically adequate swallowing. These data show that (a) a laparoscopic Heller myotomy relieved dysphagia in most patients with achalasia, even when the esophagus was dilated; (b) about 20% of patients required additional treatment; (c) in the end, swallowing was good in 90%.

  13. The prevalence of incidental simple ovarian cysts >or= 3 cm detected by transvaginal sonography in early pregnancy.

    PubMed

    Glanc, Phyllis; Brofman, Nicole; Salem, Shia; Kornecki, Anat; Abrams, Jason; Farine, Dan

    2007-06-01

    To determine the prevalence of simple ovarian cysts of >or= 3 cm diameter detected by transvaginal sonography (TVS) in a population of asymptomatic women in early pregnancy. We conducted a retrospective review of 10,830 consecutive women presenting prior to 14 weeks' gestational age (GA) for early dating TVS. The records of all women with simple cysts >or= 3 cm in diameter were included. The study population was divided into five groups by GA: >or= 6 weeks; 6.1-8 weeks; 8.1-10 weeks; 10.1-12 weeks; and 12.1-14 weeks. A simple cyst >or= 3 cm in diameter was present in 4.9% of women at >or= 6 weeks' gestation, in 5.1% between 6.1 and 8 weeks, in 5.3% between 8.1 and 10 weeks, in 3.2% between 10.1. and 12 weeks, and in 1.5% between 12 and 14 weeks. Overall, a simple cyst >or= 3 cm was present in 516 women (4.8%). Prior to 10 weeks, 5.1% had simple cysts >or= 3 cm, dropping to 2.7% after 10 weeks, a statistically significant decrease (P<0.0001). Between 10.1 weeks and 12 weeks, the prevalence dropped to 3.2%, and then to 1.5% in the 12.1-14 week group. This investigation provides reference data on the prevalence of detecting simple ovarian cysts >or= 3 cm by TVS in an asymptomatic early pregnancy population. A progressive decline in the frequency of detecting simple ovarian cysts >or= 3 cm begins after 10 weeks' gestational age.

  14. Using a whole-body 31P birdcage transmit coil and 16-element receive array for human cardiac metabolic imaging at 7T

    PubMed Central

    Dragonu, Iulius; Almujayyaz, Salam; Batzakis, Alex; Young, Liam A. J.; Purvis, Lucian A. B.; Clarke, William T.; Wichmann, Tobias; Lanz, Titus; Neubauer, Stefan; Robson, Matthew D.; Klomp, Dennis W. J.; Rodgers, Christopher T.

    2017-01-01

    Purpose Cardiac phosphorus magnetic resonance spectroscopy (31P-MRS) provides unique insight into the mechanisms of heart failure. Yet, clinical applications have been hindered by the restricted sensitivity of the surface radiofrequency-coils normally used. These permit the analysis of spectra only from the interventricular septum, or large volumes of myocardium, which may not be meaningful in focal disease. Löring et al. recently presented a prototype whole-body (52 cm diameter) transmit/receive birdcage coil for 31P at 7T. We now present a new, easily-removable, whole-body 31P transmit radiofrequency-coil built into a patient-bed extension combined with a 16-element receive array for cardiac 31P-MRS. Materials and methods A fully-removable (55 cm diameter) birdcage transmit coil was combined with a 16-element receive array on a Magnetom 7T scanner (Siemens, Germany). Electro-magnetic field simulations and phantom tests of the setup were performed. In vivo maps of B1+, metabolite signals, and saturation-band efficiency were acquired across the torsos of eight volunteers. Results The combined (volume-transmit, local receive array) setup increased signal-to-noise ratio 2.6-fold 10 cm below the array (depth of the interventricular septum) compared to using the birdcage coil in transceiver mode. The simulated coefficient of variation for B1+ of the whole-body coil across the heart was 46.7% (surface coil 129.0%); and the in vivo measured value was 38.4%. Metabolite images of 2,3-diphosphoglycerate clearly resolved the ventricular blood pools, and muscle tissue was visible in phosphocreatine (PCr) maps. Amplitude-modulated saturation bands achieved 71±4% suppression of phosphocreatine PCr in chest-wall muscles. Subjects reported they were comfortable. Conclusion This easy-to-assemble, volume-transmit, local receive array coil combination significantly improves the homogeneity and field-of-view for metabolic imaging of the human heart at 7T. PMID:29073228

  15. Field Demonstration of Acetone Pretreatment and Composting of Particulate-TNT-Contaminated Soil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radtke, Corey William; Smith, D.; Owen, S.

    2002-02-01

    Solid fragments of explosives in soil are common in explosives testing and training areas. In this study we initially sieved the upper 6 in of contaminated soil through a 3-mm mesh, and found 2, 4, 6-trinitrotoluene (TNT) fragments. These contributed to an estimated concentration of 1.7 kg per cubic yard soil, or for 2000 ppm TNT in the soil. Most of the fragments ranged 4 mm to 10 mm diameter in size, but explosives particles weighing up to 56 g (about 4 cm diameter) were frequently observed. An acetone pretreatment/composting system was then demonstrated at field scale. The amount ofmore » acetone required for a TNT-dissolving slurry process was controlled by the viscosity of the soil/acetone mix rather than the TNT dissolution rate. The amount needed was estimated at about 55 gallons acetone per cubic yard soil. Smaller, 5- to 10-mm-diameter fragments went into solution in less than 15 min at a mixer speed of 36 rpm, with a minimum of 2 g TNT going into solution per 30 min for the larger chunks. The slurries were than mixed with compost starting materials and composted in a vented 1 yd3 container. After 34 days incubation time TNT was below the site-specific regulatory threshold of 44 ppm. TNT metabolites and acetone were also below their regulatory thresholds established for the site.« less

  16. Controlling diameter distribution of catalyst nanoparticles in arc discharge.

    PubMed

    Li, Jian; Volotskova, Olga; Shashurin, Alexey; Keidar, Michael

    2011-11-01

    It is demonstrated that the diameter distribution of catalyst nanoparticles in arc discharge can be controlled by a magnetic field. The magnetic field affects the arc shape, shortens the diffusing time of the catalyst nanoparticles through the nucleation zone, and consequentially reduces the average diameters of nanoparticles. The average diameter is reduced from about 7.5 nm without magnetic field to about 5 nm is the case of a magnetic field. Decrease of the catalyst nanoparticle diameter with magnetic field correlates well with decrease in the single-wall carbon nanotube and their bundles diameters.

  17. [Value of asymmetry criterion in MRI for the diagnosis of small pelvic lymphadenopathies (inferior or equal to 1 cm)].

    PubMed

    Roy, C; Le Bras, Y; Mangold, L; Tuchmann, C; Vasilescu, C; Saussine, C; Jacqmin, D

    1996-12-01

    The purpose of this study was to determine if lymph node asymmetry in small (< 1.0 cm) pelvic nodes was a significant prognostic feature in determining metastatic disease. 216 patients who presented pelvic carcinoma underwent MR imaging. They were correlated to pathological findings obtained by surgery. We considered on the axial plan the maximum diameter (MAD) of both round or oval-shaped suspicious masses. Two different cut-off values were determined: node diameter superior to 1.0 cm (criterion 1) and node diameter superior to 0.5 cm with asymmetry relative to the opposite side for nodes ranging from 0.5 cm to 1.0 cm (criterion 2). With criterion 1 MR Imaging had an accuracy of 88%, a sensitivity of 65%, a specificity of 96%, a PPV of 88% and a NPV of 88% in detection of pelvic node metastasis. By considering criterion 2, MR Imaging had an accuracy of 85%, a sensitivity of 75%, a specificity of 89%, a PPV of 71% and a NPV of 91%. Normal small asymmetric lymph nodes were present in 5.6% of cases. Asymmetry of normal or inflammatory pelvic nodes is not uncommon. It cannot be relied on to diagnose metastatic involvement in cases of small suspicious lymph nodes, especially because of its low specificity and positive predictive value.

  18. Removal of Pb, Cd, and Cr in a water purification system using modified mineral waste materials and activated carbon derived from waste materials

    NASA Astrophysics Data System (ADS)

    Lu, H. R.; Su, L. C.; Ruan, H. D.

    2016-08-01

    This study attempts to find out and optimize the removal efficiency of heavy metals in a water purification unit using a low-cost waste material and modified mineral waste materials (MMWM) accompanied with activated carbon (AC) derived from waste materials. The factors of the inner diameter of the purification unit (2.6-5cm), the height of the packing materials (5-20cm), the size of AC (200-20mesh), the size of MMWM (1-0.045mm), and the ratio between AC and MMWM in the packing materials (1:0 - 0:1) were examined based on a L18 (5) 3 orthogonal array design. In order to achieve an optimally maximum removal efficiency, the factors of the inner diameter of the purification unit (2.6-7.5cm), the height of the packing materials (10-30cm), and the ratio between AC and MMWM in the packing materials (1:4-4:1) were examined based on a L16 (4) 3 orthogonal array design. A height of 25cm, inner diameter of 5cm, ratio between AC and MMWM of 3:2 with size of 60-40mesh and 0.075-0.045mm, respectively, were the best conditions determined by the ICP-OES analysis to perform the adsorption of heavy metals in this study.

  19. Surgical outcomes of lung cancer measuring less than 1 cm in diameter.

    PubMed

    Hamatake, Daisuke; Yoshida, Yasuhiro; Miyahara, So; Yamashita, Shin-ichi; Shiraishi, Takeshi; Iwasaki, Akinori

    2012-11-01

    The increased use of computed tomography has led to an increasing proportion of lung cancers that are identified when still less than 1 cm in diameter. However, there is no defined treatment strategy for such cases. The aim of this study was to investigate the surgical outcomes of small lung cancers. A total of 143 patients were retrospectively evaluated, who had undergone a complete surgical resection for lung cancer less than 1 cm in diameter between January 1995 and December 2011. The 143 study subjects included 62 male and 81 female patients. The mean age was 64.0 years (43-82 years). The mean tumour size was 0.8 cm (0.3-1.0 cm). Seventy-seven patients (53.8%) underwent lobectomy. Thirty-two patients (22.4%) underwent segmentectomy and 34 patients (23.8%) underwent wedge resection. The 3-, 5- and 10-year survival rates were 95.7, 92.2 and 85.7%, respectively, after resection for sub-centimetre lung cancer. There were no significant differences between sub-lobar resection and lobectomy. However, two patients (1.4%) had recurrent cancer and seven (4.9%) had lymph node metastasis. The selection of the surgical procedure is important and a long-term follow-up is mandatory, because lung cancer of only 1 cm or less can be associated with lymph node metastasis and distant metastatic recurrence.

  20. Impact of the MLC on the MRI field distortion of a prototype MRI-linac

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kolling, Stefan; Keall, Paul; Oborn, Brad

    2013-12-15

    Purpose: To cope with intrafraction tumor motion, integrated MRI-linac systems for real-time image guidance are currently under development. The multileaf collimator (MLC) is a key component in every state-of-the-art radiotherapy treatment system, allowing for accurate field shaping and tumor tracking. This work quantifies the magnetic impact of a widely used MLC on the MRI field homogeneity for such a modality.Methods: The finite element method was employed to model a MRI-linac assembly comprised of a 1.0 T split-bore MRI magnet and the key ferromagnetic components of a Varian Millennium 120 MLC, namely, the leaves and motors. Full 3D magnetic field maps ofmore » the system were generated. From these field maps, the peak-to-peak distortion within the MRI imaging volume was evaluated over a 30 cm diameter sphere volume (DSV) around the isocenter and compared to a maximum preshim inhomogeneity of 300 μT. Five parametric studies were performed: (1) The source-to-isocenter distance (SID) was varied from 100 to 200 cm, to span the range of a compact system to that with lower magnetic coupling. (2) The MLC model was changed from leaves only to leaves with motors, to determine the contribution to the total distortion caused by MLC leaves and motors separately. (3) The system was configured in the inline or perpendicular orientation, i.e., the linac treatment beam was oriented parallel or perpendicular to the magnetic field direction. (4) The treatment field size was varied from 0 × 0 to 20×20 cm{sup 2}, to span the range of clinical treatment fields. (5) The coil currents were scaled linearly to produce magnetic field strengths B{sub 0} of 0.5, 1.0, and 1.5 T, to estimate how the MLC impact changes with B{sub 0}.Results: (1) The MLC-induced MRI field distortion fell continuously with increasing SID. (2) MLC leaves and motors were found to contribute to the distortion in approximately equal measure. (3) Due to faster falloff of the fringe field, the field distortion was generally smaller in the perpendicular beam orientation. The peak-to-peak DSV distortion was below 300 μT at SID≥130 cm (perpendicular) and SID≥140 cm (inline) for the 1.0 T design. (4) The simulation of different treatment fields was identified to cause dynamic changes in the field distribution. However, the estimated residual distortion was below 1.2 mm geometric distortion at SID≥120 cm (perpendicular) and SID≥130 cm (inline) for a 10 mT/m frequency-encoding gradient. (5) Due to magnetic saturation of the MLC materials, the field distortion remained constant at B{sub 0}>1.0 T.Conclusions: This work shows that the MRI field distortions caused by the MLC cannot be ignored and must be thoroughly investigated for any MRI-linac system. The numeric distortion values obtained for our 1.0 T magnet may vary for other magnet designs with substantially different fringe fields, however the concept of modest increases in the SID to reduce the distortion to a shimmable level is generally applicable.« less

  1. The evaluation of support performance for tunnels with different diameters excavated in weak graphitic shists

    NASA Astrophysics Data System (ADS)

    Posluk, Evren; Oğul, Kenan

    2015-04-01

    2. stage (İnönü-Köseköy) of Ankara-İstanbul High-Speed Train Project (YHT) is 150 km-long and includes 25 tunnels with total length of nearly 58 km. The 7765 m-long part of these tunnels between Bozüyük and Bilecik was excavated in the metamorphic units of Pazarcık Structural Complex which have different thicknesses and form horizontal and vertical transitions to each other. The folded weak graphitic schists with thin schistosity planes affect the tunnel support performance negatively. In this study, the tunnels with 13.5, 8.2 and 4 m-diameters excavated in the weak-very weak graphitic schists by the conventional methods and the reasons of the problems (overbreak, deformation higher than estimated, wreckage etc.) are examined. The most common problems in the tunnel construction are overbreak and deformations higher than estimated before. Upsizing the fore-polling diameters, injection with pressure and carving the tunnel face were the first applied methods for decreasing the overbreak in the wide tunnels. Although these methods decreased the overbreak, the deformations in the tunnel couldn't be prevented. In this context, the data derived from the rod and tape extensometers was examined, the elastic and plastic zones were determined, the creep behaviour was locally observed on the support elements during 65 days. Also the mass parameters (GSI, weight per unit of volume, uniaxial compression, modulus of elasticity, modulus of deformation etc.) of the weak-very weak rocks were evaluated again. By the help of the compiled data it was determined that when the tunnel diameter increases, the deformation and overbreak increase. For example, while there are approximately two overbreaks at each 100 m in a 4 m-diameter tunnel, it is three in a 8.2 m-diameter tunnel and six in a 13.5 m-diameter tunnel. The deformations were estimated as 8 cm in a 4 m-diameter tunnel, 15 cm in a 8.2 m-diameter tunnel, 20 cm in a 13.5 m-diameter tunnel. However they are respectively 7.1, 15.8 and 31.9 cm. On the purpose of decreasing the stability problems during excavation, it was concluded that the excavation should proceed step by step as long as the diameter increases and the time connected rock mass behaviour should be examined in order to determine the weak-very weak rock mass support system.

  2. Measurements of stem diameter: implications for individual- and stand-level errors.

    PubMed

    Paul, Keryn I; Larmour, John S; Roxburgh, Stephen H; England, Jacqueline R; Davies, Micah J; Luck, Hamish D

    2017-08-01

    Stem diameter is one of the most common measurements made to assess the growth of woody vegetation, and the commercial and environmental benefits that it provides (e.g. wood or biomass products, carbon sequestration, landscape remediation). Yet inconsistency in its measurement is a continuing source of error in estimates of stand-scale measures such as basal area, biomass, and volume. Here we assessed errors in stem diameter measurement through repeated measurements of individual trees and shrubs of varying size and form (i.e. single- and multi-stemmed) across a range of contrasting stands, from complex mixed-species plantings to commercial single-species plantations. We compared a standard diameter tape with a Stepped Diameter Gauge (SDG) for time efficiency and measurement error. Measurement errors in diameter were slightly (but significantly) influenced by size and form of the tree or shrub, and stem height at which the measurement was made. Compared to standard tape measurement, the mean systematic error with SDG measurement was only -0.17 cm, but varied between -0.10 and -0.52 cm. Similarly, random error was relatively large, with standard deviations (and percentage coefficients of variation) averaging only 0.36 cm (and 3.8%), but varying between 0.14 and 0.61 cm (and 1.9 and 7.1%). However, at the stand scale, sampling errors (i.e. how well individual trees or shrubs selected for measurement of diameter represented the true stand population in terms of the average and distribution of diameter) generally had at least a tenfold greater influence on random errors in basal area estimates than errors in diameter measurements. This supports the use of diameter measurement tools that have high efficiency, such as the SDG. Use of the SDG almost halved the time required for measurements compared to the diameter tape. Based on these findings, recommendations include the following: (i) use of a tape to maximise accuracy when developing allometric models, or when monitoring relatively small changes in permanent sample plots (e.g. National Forest Inventories), noting that care is required in irregular-shaped, large-single-stemmed individuals, and (ii) use of a SDG to maximise efficiency when using inventory methods to assess basal area, and hence biomass or wood volume, at the stand scale (i.e. in studies of impacts of management or site quality) where there are budgetary constraints, noting the importance of sufficient sample sizes to ensure that the population sampled represents the true population.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mullins, JP; Deufel, CL

    Purpose: Bile duct cancer affects 2–3 thousand people annually in the United States. Radiation therapy has been shown to double median survival, with combined external beam and intraluminal high dose-rate (HDR) brachytherapy being most effective. Endoscopic retrograde cholangiopancreatography (ERCP) biliary HDR, a less-invasive alternative to trans-hepatic brachytherapy, is delivered through a catheter that travels a tortuous path from nose to bile duct, requiring wire drive force and dexterity beyond typical afterloader performance specifications. Thus, specific afterloader quality assurance(QA) is recommended for this procedure. Our aim was to create a device and process for Varisource afterloader clearance QA with objectives thatmore » it be quantitative and can monitor afterloader performance over time, compare performance between two distinct afterloaders and potentially Result in a predictive nomogram for patient-specific clearance. Methods: Based on retrospective reconstruction of 20 ERCP patient anatomies, we designed a phantom to test afterloader ability to drive the source wire along an intended treatment path. The ability of the afterloader to fully extend the intended treatment path is a function of number and diameters of turns. We have determined experimentally that relative position of the turns does not impact performance. Results: Both patient and QA paths involve three common turns/loops: a large turn representing the stomach(10.8cm±2.0cm), an elliptical loop representing the duodenum(7.3cm±1.5cmx4.8cm±0.7cm), and a final turn at the end of the bile duct that may be tight for some patient-specific anatomies and absent in others(3.7cm±0.7cm, where present). Our phantom design uses anatomical average turn diameters for the stomach and duodenum then terminates in a turn of quantitatively selectable diameter. The smallest final turn diameter that an afterloader can pass is recorded as the QA parameter. Conclusion: With this device and QA process, we have the ability to quantitatively evaluate and track our afterloader performance for a technically challenging ERCP brachytherapy procedure.« less

  4. Preventive medicine for von Hippel-Lindau disease-associated pancreatic neuroendocrine tumors.

    PubMed

    Krauss, Tobias; Ferrara, Alfonso Massimiliano; Links, Thera P; Wellner, Ulrich; Bancos, Irina; Kvachenyuk, Andrey; Villar Gómez de Las Heras, Karina; Yukina, Marina; Petrov, Roman; Bullivant, Garrett; von Duecker, Laura; Jadhav, Swati S; Ploeckinger, Ursula; Welin, Staffan; Schalin-Jantti, Camilla; Gimm, Oliver; Pfeifer, Marija; Ngeow, Joanne; Hasse-Lazar, Kornelia; Sanso, Gabriela; Qi, Xiao-Ping; Ugurlu, Umit; Diaz, Rene Eduardo; Wohllk, Nelson; Peczkowska, Mariola; Aberle, Jens; Lourenço, Delmar Muniz; Pereira, Maria Adelaide; Fragoso, Maria Candida Barisson Villares; Hoff, Ana O; Almeida, Madson Queiroz; Violante, Alice H D; Quidute, Ana R P; Zhang, Zheiwei; Recasens, Monica; Robles Diaz, Luis; Kunavisarut, Tada; Wannachalee, Taweesak; Sirinvaravong, Sirinart; Jonasch, Eric; Grozinsky-Glasberg, Simona; Fraenkel, Merav; Beltsevich, Dmitry; Egorov, Viacheslav I; Bausch, Dirk; Schott, Matthias; Tiling, Nikolaus; Pennelli, Gianmaria; Zschiedrich, Stefan; Därr, Roland; Ruf, Juri; Denecke, Timm; Link, Karl-Heinrich; Zovato, Stefania; von Dobschuetz, Ernst; Yaremchuk, Svetlana; Amthauer, Holger; Makay, Ozer; Patocs, Attila; Walz, Martin K; Huber, Tobias B; Seufert, Jochen; Hellman, Per; Kim, Raymond H; Kuchinskaya, Ekaterina; Schiavi, Francesca; Malinoc, Angelica; Reisch, Nicole; Jarzab, Barbara; Barontini, Marta; Januszewicz, Andrzej; Shah, Nalini; Young, William; Opocher, Giuseppe; Eng, Charis; Neumann, Hartmut P H; Bausch, Birke

    2018-05-10

    Pancreatic neuroendocrine tumors (PanNETs) are rare in von Hippel-Lindau disease (VHL) but cause serious morbidity and mortality. Management guidelines for VHL-PanNETs continue to be based on limited evidence, and survival data to guide surgical management are lacking. We established the European-American-Asian-VHL-PanNET-Registry to assess data for risks for metastases, survival and long-term outcomes to provide best management recommendations. Of 2,330 VHL patients, 273 had a total of 484 PanNETs. Median age at diagnosis of PanNET was 35 years (range 10-75). Fifty-five (20%) patients had metastatic PanNETs. Metastatic PanNETs were significantly larger (median size 5 vs 2 cm; P<0.001) and tumor volume doubling time (TVDT) was faster (22 vs 126 months; P=0.001). All metastatic tumors were ≥2.8 cm. Codons 161 and 167 were hotspots for VHL germline mutations with enhanced risk for metastatic PanNETs. Multivariate prediction modeling disclosed maximum tumor diameter and TVDT as significant predictors for metastatic disease (positive and negative predictive values of 51% and 100% for diameter cutoff ≥2.8 cm, 44% and 91% for TVDT cutoff of ≤24 months). In 117/273 patients, PanNETs >1.5 cm in diameter were operated. Ten-year survival was significantly longer in operated vs non-operated patients, in particular for PanNETs <2.8cm vs ≥2.8 cm (94% vs 85% by 10 years; P=0.020; 80% vs 50% at 10 years; P=0.030). This study demonstrates that patients with PanNET approaching the cut-off diameter of 2.8 cm should be operated. Mutations in exon 3, especially of codons 161/167 are at enhanced risk for metastatic PanNETs. Survival is significantly longer in operated non-metastatic VHL-PanNETs.

  5. Note: Simulation and test of a strip source electron gun

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iqbal, Munawar, E-mail: muniqbal.chep@pu.edu.pk; Institute of High Energy Physics, Chinese Acedemy of Sciences, Beijing 100049; Islam, G. U.

    We present simulation and test of an indirectly heated strip source electron beam gun assembly using Stanford Linear Accelerator Center (SLAC) electron beam trajectory program. The beam is now sharply focused with 3.04 mm diameter in the post anode region at 15.9 mm. The measured emission current and emission density were 1.12 A and 1.15 A/cm{sup 2}, respectively, that corresponds to power density of 11.5 kW/cm{sup 2}, at 10 kV acceleration potential. The simulated results were compared with then and now experiments and found in agreement. The gun is without any biasing, electrostatic and magnetic fields; hence simple and inexpensive.more » Moreover, it is now more powerful and is useful for accelerators technology due to high emission and low emittance parameters.« less

  6. The New Millenium Program ST-5 Mission: Nanosatellite Constellation Trailblazer

    NASA Technical Reports Server (NTRS)

    Slavin, James A.

    1999-01-01

    NASA's New Millenium Program has recently selected the Nanosatellite Constellation Trailblazer (NCT) as its fifth mission (ST-5). NCT will consist of 3 small, very capable and highly autonomous satellites which will be operated as a single "constellation" with minimal ground operations support. Each spacecraft will be approximately 40 cm in diameter by 20 cm in height and weigh only 20 kg. These small satellites will incorporate 8 new technologies essential to the further miniaturization of space science spacecraft which need space flight validation. In this talk we will describe in greater detail the NCT mission concept and goals, the exciting new technologies it will validate, and the role of miniaturized particles and fields sensors in this project. Finally, NCT's pathfinder function for such future NASA missions as Magnetotail Constellation and Inner Magnetosphere Constellation will be discussed.

  7. Nuclear magnetic resonance imaging at microscopic resolution

    NASA Astrophysics Data System (ADS)

    Johnson, G. Allan; Thompson, Morrow B.; Gewalt, Sally L.; Hayes, Cecil E.

    Resolution limits in NMR imaging are imposed by bandwidth considerations, available magnetic gradients for spatial encoding, and signal to noise. This work reports modification of a clinical NMR imaging device with picture elements of 500 × 500 × 5000 μm to yield picture elements of 50 × 50 × 1000 μm. Resolution has been increased by using smaller gradient coils permitting gradient fields >0.4 mT/cm. Significant improvements in signal to noise are achieved with smaller rf coils, close attention to choice of bandwidth, and signal averaging. These improvements permit visualization of anatomical structures in the rat brain with an effective diameter of 1 cm with the same definition as is seen in human imaging. The techniques and instrumentation should open a number of basic sciences such as embryology, plant sciences, and teratology to the potentials of NMR imaging.

  8. Trapping and dynamic manipulation with magnetomotive photoacoustic imaging of targeted microspheres mimicking metastatic cancer cells trafficking in the vasculature

    NASA Astrophysics Data System (ADS)

    Wei, Chenwei; Xia, Jinjun; Pelivanov, Ivan; Hu, Xiaoge; Gao, Xiaohu; O'Donnell, Matthew

    2012-02-01

    Trapping and manipulation of micro-scale objects mimicking metastatic cancer cells in a flow field have been demonstrated with magnetomotive photoacoustic (mmPA) imaging. Coupled contrast agents combining gold nanorods (15 nm × 50 nm; absorption peak around 730 nm) with 15 nm diameter magnetic nanospheres were targeted to 10 μm polystyrene beads recirculating in a 1.6 mm diameter tube mimicking a human peripheral vessel. Targeted objects were then trapped by an external magnetic field produced by a dual magnet system consisting of two disc magnets separated by 6 cm to form a polarizing field (0.04 Tesla in the tube region) to magnetize the magnetic contrast agents, and a custom designed cone magnet array with a high magnetic field gradient (about 0.044 Tesla/mm in the tube region) producing a strong trapping force to magnetized contrast agents. Results show that polystyrene beads linked to nanocomposites can be trapped at flow rates up to 12 ml/min. It is shown that unwanted background in a photoacoustic image can be significantly suppressed by changing the position of the cone magnet array with respect to the tube, thus creating coherent movement of the trapped objects. This study makes mmPA imaging very promising for differential visualization of metastatic cells trafficking in the vasculature.

  9. Floral characteristics affect susceptibility of hybrid tea roses, Rosa x hybrida, to Japanese beetles (Coleoptera: Scarabaeidae).

    PubMed

    Held, David W; Potter, Daniel A

    2004-04-01

    The Japanese beetle, Popillia japonica Newman, feeds on the flowers and foliage of roses. Rosa x hybrida. Beetles attracted to roses land almost exclusively on the flowers. This study evaluated characteristics of rose flowers including color, size, petal count and fragrance, as well as height of plants and blooms within plant as factors in attractiveness to Japanese beetles. Artificial flowers that had been painted to match the spectral reflectance of real blooms were attached to potted nonflowering rose plants in the field and the number of beetles that landed on each model was recorded. More beetles landed on the yellow- and white-colored flower models than on the five other bloom colors that were tested. Large (15 cm diameter) yellow flower models attracted more beetles than did smaller (8 cm diameter) yellow models. There was no difference in beetle response to yellow flower models of the same size that differed in bloom complexity (i.e., number of petals). Experiments in which blooming rose plants were elevated above controls, or in which flower models were placed at different heights within plant canopies, failed to support the hypothesis that height per se accounts for beetles' attraction to flowers over leaves. Attractiveness of selected rose cultivars that varied in fragrance and flower color also was evaluated in the field. Yellow-flowered cultivars were more susceptible than those with red flowers, regardless of fragrance intensity as rated by breeders. Growing cultivars of roses that have relatively dark and small-sized blooms may have some benefit in reducing Japanese beetles' attraction to roses.

  10. Space Astrometry JASMINE

    NASA Astrophysics Data System (ADS)

    Yano, T.; Gouda, N.; Kobayashi, Y.; Yamada, Y.; Tsujimoto, T.; Suganuma, M.; Niwa, Y.; Yamauchi, M.

    2008-07-01

    JASMINE is the acronym of the Japan Astrometry Satellite Mission for INfrared (z-band: 0.9 micron) Exploration, and is planned to be launched around 2017. The main objective of JASMINE is to study the fundamental structure and evolution of the Milky Way bulge components. In order to accomplish these objectives, JASMINE will measure trigonometric parallaxes, positions and proper motions of about ten million stars in the Galactic bulge with a precision of 10 microarcsec at z = 14mag. The primary mirror for the telescope has a diameter of 75cm with a focal length of 22.5m. The back-illuminated CCD is fabricated on a 300 micron thick substrate which is fully depleted. These thick devices have extended near infrared response. The size of the detector for z-band is 3cm×3cm with 2048×2048 pixels. The size of the field of view is about 0.6deg×0.6deg by using 64 detectors on the focal plane. The telescope is designed to have only one field of view, which is different from the designs of other astrometric satellites. JASMINE will observe overlapping fields without gaps to survey a total area of about 20deg×10 deg around the Galactic bulge. Accordingly we make a “large frame” of 20deg×10 deg by linking the small frames using stars in overlapping regions. JASMINE will observe the Galactic bulge repeatedly during the mission life of about 5 years.

  11. Phased Array Focusing for Acoustic Wireless Power Transfer.

    PubMed

    Tseng, Victor Farm-Guoo; Bedair, Sarah S; Lazarus, Nathan

    2018-01-01

    Wireless power transfer (WPT) through acoustic waves can achieve higher efficiencies than inductive coupling when the distance is above several times the transducer size. This paper demonstrates the use of ultrasonic phased arrays to focus power to receivers at arbitrary locations to increase the power transfer efficiency. Using a phased array consisting of 37 elements at a distance nearly 5 times the receiver transducer diameter, a factor of 2.6 increase in efficiency was achieved when compared to a case equivalent to a single large transducer with the same peak efficiency distance. The array has a total diameter of 7 cm, and transmits through air at 40 kHz to a 1.1-cm diameter receiver, achieving a peak overall efficiency of 4% at a distance of 5 cm. By adjusting the focal distance, the efficiency can also be maintained relatively constant at distances up to 9 cm. Numerical models were developed and shown to closely match the experimental energy transfer behavior; modeling results indicate that the efficiency can be further doubled by increasing the number of elements. For comparison, an inductive WPT system was also built with the diameters of the transmitting and receiving coils equivalent to the dimensions of the transmitting ultrasonic phased array and receiver transducer, and the acoustic WPT system achieved higher efficiencies than the inductive WPT system when the transmit-to-receive distance is above 5 cm. In addition, beam angle steering was demonstrated by using a simplified seven-element 1-D array, achieving power transfer less dependent on receiver placement.

  12. Management of the high-order mode content in large (40 microm) core photonic bandgap Bragg fiber laser.

    PubMed

    Gaponov, D A; Février, S; Devautour, M; Roy, P; Likhachev, M E; Aleshkina, S S; Salganskii, M Y; Yashkov, M V; Guryanov, A N

    2010-07-01

    Very large-mode-area Yb(3+)-doped single-mode photonic bandgap (PBG) Bragg fiber oscillators are considered. The transverse hole-burning effect is numerically modeled, which helps properly design the PBG cladding and the Yb(3+)-doped region for the high-order mode content to be carefully controlled. A ratio of the Yb(3+)-doped region diameter to the overall core diameter of 40% allows for single-mode emission, even for small spool diameters of 15 cm. Such a fiber was manufactured and subsequently used as the core element of a cw oscillator. Very good beam quality parameter M(2)=1.12 and slope efficiency of 80% were measured. Insensitivity to bending, exemplified by the absence of temporal drift of the beam, was demonstrated for curvature diameter as small as 15 cm.

  13. Recent Progress of the Series-Connected Hybrid Magnet Projects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adkins, Todd; Bole, Scott

    2010-01-01

    The National High Magnetic Field Laboratory (NHMFL) in Tallahassee, Florida has designed and is now constructing two Series Connected Hybrid (SCH) magnets, each connecting a superconducting outsert coil and a resistive Florida Bitter insert coil electrically in series. The SCH to be installed at the NHMFL will produce 36 T and provide 1 ppm maximum field inhomogeneity over a 1 cm diameter spherical volume. The SCH to be installed at the Helmholtz Center Berlin (HZB) in combination with a neutron source will produce 25 T to 30 T depending on the resistive insert. The two magnets have a common designmore » for their cable-in-conduit conductor (CICC) and superconducting outsert coils. The CICC outsert coil winding packs have an inner diameter of 0.6 m and contribute 13.1 T to the central field using three grades of CICC conductors. Each conductor grade carries 20 kA and employs the same type of Nb{sub 3}Sn superconducting wire, but each grade contains different quantities of superconducting wires, different cabling patterns and different aspect ratios. The cryostats and resistive insert coils for the two magnets are different. This paper discusses the progress in CIC conductor and coil fabrication over the last year including specification, qualification and production activities for wire, cable, conductor and coil processing.« less

  14. 29 CFR 1926.57 - Ventilation.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... shall be cleaned up promptly. Aisles and walkways shall be kept clear of steel shot or similar abrasive... not more than one forty-eighth of their diameter for those up to, and including, 20 inches (50.8 cm) in diameter, and not more than one-sixtieth of their diameter for those larger than 20 inches (50.8...

  15. [The penis prolongation and augmentation combined with autologous granular fat injection and silicone implantation].

    PubMed

    Xie, Yang-chun; Zhang, Yang; Fan, Jin-cai; Liu, Yuan-bo; Liu, Li-qiang; Wang, Qian

    2007-07-01

    To prevent the retraction of the penis after prolongation and augmentation. After all the superficial and part of the deep suspensory ligament amputation, we implanted the silicon sheet (the length 2.3-3.6 cm, the width 1.5-2.5 cm, the thickness 2-3 mm) and injected autologous granular fat (30-48 ml) into penis. 16 patients (age 22-63 years, averagely 38 years) underwent this kind operation, the prolongation length is 1.8-5.1 cm, the average was 2.91 cm, the increased diameter of penis was 0.6-1 cm, the average is 0.85 cm, the following period is 3 months to 2 years. The results are satisfactory with the penis retraction less than 8%, and less than 10% decrease in diameter. This method is an ideal way of the penis prolongation and augmentation, the implantation of the silicon sheet is effective way to prevent the retraction of the penis.

  16. Design of ultrasonic attenuation sensor with focused transmitter for density measurements of a slurry in a large steel pipeline

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greenwood, Margaret Stautberg

    2015-12-01

    To design an ultrasonic sensor to measure the attenuation and density of a slurry carried by a large steel pipeline (diameter up to 70 cm) is the goal of this research. The pitch-catch attenuation sensor, placed in a small section of the pipeline, contains a send unit with a focused transducer that focuses the ultrasound to a small region of the receive unit on the opposite wall. The focused transducer consists of a section of a sphere (base ~12 cm) on the outer side of the send unit and a 500 kHz piezoelectric shell of PZT5A epoxied to it. Themore » Rayleigh surface integral is used to calculate the pressure in steel and in water (slurry). An incremental method to plot the paths of ultrasonic rays shows that the rays focus where expected. Further, there is a region where the parallel rays are perpendicular to the wall of the receive unit. Designs for pipeline diameters of 25 cm and 71 cm show that the pressure in water at the receive transducer is about 17 times that for a pitch-catch system using 5 cm diameter disk transducers. The enhanced signal increases the sensitivity of the measurements and improves the signal-to-noise ratio.« less

  17. Body size and substrate type modulate movement by the western Pacific crown-of-thorns starfish, Acanthaster solaris.

    PubMed

    Pratchett, Morgan S; Cowan, Zara-Louise; Nadler, Lauren E; Caballes, Ciemon F; Hoey, Andrew S; Messmer, Vanessa; Fletcher, Cameron S; Westcott, David A; Ling, Scott D

    2017-01-01

    The movement capacity of the crown-of-thorns starfishes (Acanthaster spp.) is a primary determinant of both their distribution and impact on coral assemblages. We quantified individual movement rates for the Pacific crown-of-thorns starfish (Acanthaster solaris) ranging in size from 75-480 mm total diameter, across three different substrates (sand, flat consolidated pavement, and coral rubble) on the northern Great Barrier Reef. The mean (±SE) rate of movement for smaller (<150 mm total diameter) A. solaris was 23.99 ± 1.02 cm/ min and 33.41 ± 1.49 cm/ min for individuals >350 mm total diameter. Mean (±SE) rates of movement varied with substrate type, being much higher on sand (36.53 ± 1.31 cm/ min) compared to consolidated pavement (28.04 ± 1.15 cm/ min) and slowest across coral rubble (17.25 ± 0.63 cm/ min). If average rates of movement measured here can be sustained, in combination with strong directionality, displacement distances of adult A. solaris could range from 250-520 m/ day, depending on the prevailing substrate. Sustained movement of A. solaris is, however, likely to be highly constrained by habitat heterogeneity, energetic constraints, resource availability, and diurnal patterns of activity, thereby limiting their capacity to move between reefs or habitats.

  18. Hot ion plasma production in HIP-1 using water-cooled hollow cathodes

    NASA Technical Reports Server (NTRS)

    Reinmann, J. J.; Lauver, M. R.; Patch, R. W.; Layman, R. W.; Snyder, A.

    1975-01-01

    A steady-state ExB plasma was formed by applying a strong radially inward dc electric field near the mirror throats. Most of the results were for hydrogen, but deuterium and helium plasmas were also studied. Three water-cooled hollow cathodes were operated in the hot-ion plasma mode with the following results: (1) thermally emitting cathodes were not required to achieve the hot-ion mode; (2) steady-state operation (several minutes) was attained; (3) input powers greater than 40 kW were achieved; (4) cathode outside diameters were increased from 1.2 cm (uncooled) to 4.4 cm (water-cooled); (5) steady-state hydrogen plasma with ion temperatures from 185 to 770 eV and electron temperatures from 5 to 21 eV were produced. Scaling relations were empirically obtained for discharge current, ion temperature, electron temperature, and relative ion density as a function of hydrogen gas feed rate, magnetic field, and cathode voltage. Neutrons were produced from deuterium plasma, but it was not established whether thay came from the plasma volume or from the electrode surfaces.

  19. Experiments on Alfv'en waves in high beta plasmas

    NASA Astrophysics Data System (ADS)

    Gekelman, Walter; Pribyl, Patrick; Cooper, Chris; Vincena, Stephen

    2008-11-01

    The propagation of Alfv'en waves in high beta plasmas is of great interest in solar wind studies as well as in astrophysical plasmas. Alfv'en wave propagation in a high beta plasma is studied on the axis of a toroidal device at UCLA. The vacuum vessel is 30 meters in circumference, 2 meters wide and 3 meters tall. The plasma has a cross sectional area of 20 cm^2 and can be as long as 120 m which is hundreds of parallel Alfv'en wavelengths. The waves are launched using two orthogonal 5-turn , 5.7 cm diameter loops. The AC currents (10 kHz < f < 250 kHz) to the loops are as high as 2 kA p-p, producing fields of 1 kG on the axis of the antenna. The antenna coils are independently driven such that waves with arbitrary polarization can be launched. Movable three axis magnetic pickup loops detect the wave and are used to construct field maps in the machine. Wave propagation results as a function of plasma beta and input wave energy will be presented.

  20. Optical tools and techniques for aligning solar payloads with the SPARCS control system. [Solar Pointing Aerobee Rocket Control System

    NASA Technical Reports Server (NTRS)

    Thomas, N. L.; Chisel, D. M.

    1976-01-01

    The success of a rocket-borne experiment depends not only on the pointing of the attitude control system, but on the alignment of the attitude control system to the payload. To ensure proper alignment, special optical tools and alignment techniques are required. Those that were used in the SPARCS program are described and discussed herein. These tools include theodolites, autocollimators, a 38-cm diameter solar simulator, a high-performance 1-m heliostat to provide a stable solar source during the integration of the rocket payload, a portable 75-cm sun tracker for use at the launch site, and an innovation called the Solar Alignment Prism. Using the real sun as the primary reference under field conditions, the Solar Alignment Prism facilitates the coalignment of the attitude sun sensor with the payload. The alignment techniques were developed to ensure the precise alignment of the solar payloads to the SPARCS attitude sensors during payload integration and to verify the required alignment under field conditions just prior to launch.

  1. Compact ECR ion source with permanent magnets for carbon therapy

    NASA Astrophysics Data System (ADS)

    Muramatsu, M.; Kitagawa, A.; Sakamoto, Y.; Sato, Y.; Yamada, S.; Ogawa, H.; Drentje, A. G.; Biri, S.; Yoshida, Y.

    2004-05-01

    Ion sources for the medical facilities should have the following characteristics of easy maintenance, low electric power, good stability, and long operation time without trouble (1 year or longer). For this, a 10 GHz compact electron cyclotron resonance ion source (ECRIS) with all permanent magnets was developed. The beam intensity and stability for C4+ were 280 e μA and better than 6% during 20 h with no adjustment of any source parameters. These results were acceptable for the medical requirements. Recently, many plans were proposed to construct the next generation cancer treatment facility. For such a facility we have designed an all permanent magnet ECRIS, in which a high magnetic field is chosen for increasing the beam intensity. The maximum mirror magnetic fields on the beam axis are 0.59 T at the extraction side and 0.87 T at the gas injection side, while the minimum B strength is 0.25 T. The source has a diameter of 32 cm and a length of 29.5 cm. Details of the design of this source and its background are described in this article.

  2. A 1372-element Large Scale Hemispherical Ultrasound Phased Array Transducer for Noninvasive Transcranial Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Junho; Hynynen, Kullervo; Medical Biophysics, University of Toronto, ON, M4N 3M5

    2009-04-14

    Noninvasive transcranial therapy using high intensity focused ultrasound transducers has attracted high interest as a promising new modality for the treatments of brain related diseases. We describe the development of a 1372 element large scale hemispherical ultrasound phased array transducer operating at a resonant frequency of 306 kHz. The hemispherical array has a diameter of 31 cm and a 15.5 cm radius of curvature. It is constructed with piezoelectric (PZT-4) tube elements of a 10 mm in diameter, 6 mm in length and 1.4 mm wall thickness. Each element is quasi-air backed by attaching a cork-rubber membrane on the backmore » of the element. The acoustic efficiency of the element is determined to be approximately 50%. The large number of the elements delivers high power ultrasound and offers better beam steering and focusing capability. Comparisons of sound pressure-squared field measurements with theoretical calculations in water show that the array provides good beam steering and tight focusing capability over an efficient volume of approximately 100x100x80 mm{sup 3} with nominal focal spot size of approximately 2.3 mm in diameter at -6 dB. We also present its beam steering and focusing capability through an ex vivo human skull by measuring pressure-squared amplitude after phase corrections. These measurements show the same efficient volume range and focal spot sizes at -6 dB as the ones in water without the skull present. These results indicate that the array is sufficient for use in noninvasive transcranial ultrasound therapy.« less

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bazalova, M; Ahmad, M; Fahrig, R

    Purpose: To evaluate x-ray fluorescence computed tomography induced with proton beams (pXFCT) for imaging of gold contrast agent. Methods: Proton-induced x-ray fluorescence was studied by means of Monte Carlo (MC) simulations using TOPAS, a MC code based on GEANT4. First, proton-induced K-shell and L-shell fluorescence was studied as a function of proton beam energy and 1) depth in water and 2) size of contrast object. Second, pXFCT images of a 2-cm diameter cylindrical phantom with four 5- mm diameter contrast vials and of a 20-cm diameter phantom with 1-cm diameter vials were simulated. Contrast vials were filled with water andmore » water solutions with 1-5% gold per weight. Proton beam energies were varied from 70-250MeV. pXFCT sinograms were generated based on the net number of gold K-shell or L-shell x-rays determined by interpolations from the neighboring 0.5keV energy bins of spectra collected with an idealized 4π detector. pXFCT images were reconstructed with filtered-back projection, and no attenuation correction was applied. Results: Proton induced x-ray fluorescence spectra showed very low background compared to x-ray induced fluorescence. Proton induced L-shell fluorescence had a higher cross-section compared to K-shell fluorescence. Excitation of L-shell fluorescence was most efficient for low-energy protons, i.e. at the Bragg peak. K-shell fluorescence increased with increasing proton beam energy and object size. The 2% and 5% gold contrast vials were accurately reconstructed in K-shell pXFCT images of both the 2-cm and 20-cm diameter phantoms. Small phantom L-shell pXFCT image required attenuation correction and had a higher sensitivity for 70MeV protons compared to 250MeV protons. With attenuation correction, L-shell pXFCT might be a feasible option for imaging of small size (∼2cm) objects. Imaging doses for all simulations were 5-30cGy. Conclusion: Proton induced x-ray fluorescence CT promises to be an alternative quantitative imaging technique to the commonly considered XFCT imaging with x-ray beams.« less

  4. Designing an extended energy range single-sphere multi-detector neutron spectrometer

    NASA Astrophysics Data System (ADS)

    Gómez-Ros, J. M.; Bedogni, R.; Moraleda, M.; Esposito, A.; Pola, A.; Introini, M. V.; Mazzitelli, G.; Quintieri, L.; Buonomo, B.

    2012-06-01

    This communication describes the design specifications for a neutron spectrometer consisting of 31 thermal neutron detectors, namely Dysprosium activation foils, embedded in a 25 cm diameter polyethylene sphere which includes a 1 cm thick lead shell insert that degrades the energy of neutrons through (n,xn) reactions, thus allowing to extension of the energy range of the response up to hundreds of MeV neutrons. The new spectrometer, called SP2 (SPherical SPectrometer), relies on the same detection mechanism as that of the Bonner Sphere Spectrometer, but with the advantage of determining the whole neutron spectrum in a single exposure. The Monte Carlo transport code MCNPX was used to design the spectrometer in terms of sphere diameter, number and position of the detectors, position and thickness of the lead shell, as well as to obtain the response matrix for the final configuration. This work focuses on evaluating the spectrometric capabilities of the SP2 design by simulating the exposure of SP2 in neutron fields representing different irradiation conditions (test spectra). The simulated SP2 readings were then unfolded with the FRUIT unfolding code, in the absence of detailed pre-information, and the unfolded spectra were compared with the known test spectra. The results are satisfactory and allowed approving the production of a prototypal spectrometer.

  5. Development of a Magnetic Nanoparticle Susceptibility Magnitude Imaging Array

    PubMed Central

    Ficko, Bradley W.; Nadar, Priyanka M.; Hoopes, P. Jack; Diamond, Solomon G.

    2014-01-01

    There are several emerging diagnostic and therapeutic applications of magnetic nanoparticles (mNPs) in medicine. This study examines the potential for developing an mNP imager that meets these emerging clinical needs with a low cost imaging solution that uses arrays of digitally controlled drive coils in a multiple-frequency, continuous-wave operating mode and compensated fluxgate magnetometers. The design approach is described and a mathematical model is developed to support measurement and imaging. A prototype is used to demonstrate active compensation of up to 185 times the primary applied magnetic field, depth sensitivity up to 2.5 cm (p < 0.01), and linearity over 5 dilutions (R2 > 0.98, p <0.001). System frequency responses show distinguishable readouts for iron oxide mNPs with single magnetic domain core diameters of 10 nm and 40 nm, and multi-domain mNPs with a hydrodynamic diameter of 100 nm. Tomographic images show a contrast-to-noise ratio of 23 for 0.5 ml of 12.5 mg Fe/ml mNPs at 1 cm depth. A demonstration involving the injection of mNPs into pork sausage shows the potential for use in biological systems. These results indicate that the proposed mNP imaging approach can potentially be extended to a larger array system with higher-resolution. PMID:24504184

  6. Optical fiber sensors-based temperature distribution measurement in ex vivo radiofrequency ablation with submillimeter resolution.

    PubMed

    Macchi, Edoardo Gino; Tosi, Daniele; Braschi, Giovanni; Gallati, Mario; Cigada, Alfredo; Busca, Giorgio; Lewis, Elfed

    2014-01-01

    Radiofrequency thermal ablation (RFTA) induces a high-temperature field in a biological tissue having steep spatial (up to 6°C∕mm) and temporal (up to 1°C∕s) gradients. Applied in cancer care, RFTA produces a localized heating, cytotoxic for tumor cells, and is able to treat tumors with sizes up to 3 to 5 cm in diameter. The online measurement of temperature distribution at the RFTA point of care has been previously carried out with miniature thermocouples and optical fiber sensors, which exhibit problems of size, alteration of RFTA pattern, hysteresis, and sensor density worse than 1 sensor∕cm. In this work, we apply a distributed temperature sensor (DTS) with a submillimeter spatial resolution for the monitoring of RFTA in porcine liver tissue. The DTS demodulates the chaotic Rayleigh backscattering pattern with an interferometric setup to obtain the real-time temperature distribution. A measurement chamber has been set up with the fiber crossing the tissue along different diameters. Several experiments have been carried out measuring the space-time evolution of temperature during RFTA. The present work showcases the temperature monitoring in RFTA with an unprecedented spatial resolution and is exportable to in vivo measurement; the acquired data can be particularly useful for the validation of RFTA computational models.

  7. Ichnological evidence of jökulhlaup deposit recolonization from the Touchet Beds, Mabton, WA, USA

    NASA Astrophysics Data System (ADS)

    MacEachern, James A.; Roberts, Michael C.

    2013-01-01

    The late Wisconsinan Touchet Beds section at Mabton, Washington reveals at least seven stacked jökulhlaup deposits, five showing evidence of post-flood recolonization by vertebrates. Tracemakers are attributed to voles or pocket mice (1-3 cm diameter burrows) and pocket gophers or ground squirrels (3-6 cm diameter burrows). The Mount St. Helens S tephra deposited between flood beds contains the invertebrate-generated burrows Naktodemasis and Macanopsis. Estimates of times between floods are based on natal dispersal distances of the likely vertebrate tracemakers (30-50 m median distances; 127-525 m maximum distances) from upland areas containing surviving populations to the Mabton area, a distance of about 7.9 km. Tetrapods would have required at least two to three decades to recolonize these flood beds, based on maximum dispersal distances. Invertebrate recolonization was limited by secondary succession and estimated at only a few years to a decade. These ichnological data support multiple floods from failure of the ice dam at glacial Lake Missoula, separated by hiatal surfaces on the order of decades in duration. Ichnological recolonization times are consistent with published estimates of refill times for glacial Lake Missoula, and complement the other field evidence that points to repeated, autogenically induced flood discharge.

  8. Guided-Mode-Leaky-Mode-Guided-Mode Fiber Interferometer and Its High Sensitivity Refractive Index Sensing Technology

    PubMed Central

    Wang, Qi; Li, Chunyue; Zhao, Chengwu; Li, Weizheng

    2016-01-01

    A cascaded symmetrical dual-taper Mach-Zehnder interferometer structure based on guided-mode and leaky-mode interference is proposed in this paper. Firstly, the interference spectrum characteristics of interferometer has been analyzed by the Finite Difference-Beam Propagation Method (FD-BPM). When the diameter of taper waist is 20 μm–30 μm, dual-taper length is 1 mm and taper distance is 4 cm–6 cm, the spectral contrast is higher, which is suitable for sensing. Secondly, experimental research on refractive index sensitivity is carried out. A refractive index sensitivity of 62.78 nm/RIU (refractive index unit) can achieved in the RI range of 1.3333–1.3792 (0%~25% NaCl solution), when the sensor structure parameters meet the following conditions: diameter of taper waist is 24 μm, dual-taper length is 837 μm and taper distance is 5.5 cm. The spectrum contrast is 0.8 and measurement resolution is 1.6 × 10−5 RIU. The simulation analysis is highly consistent with experimental results. Research shows that the sensor has promising application in low RI fields where high-precision measurement is required due to its high sensitivity and stability. PMID:27258281

  9. Electroform replication of grazing incidence X-ray optics. [spaceborne telescopes

    NASA Technical Reports Server (NTRS)

    Ulmer, M. P.; Purcell, W. R.; Bedford, D.; Simnett, G. R.

    1985-01-01

    Work to produce mirrors via electroform replication is reported. Work on small (6 cm by 9 cm) cylindrical pieces and on 40 cm long by 12 cm wide Wolter shaped mirrors is summarized. It is shown that electroforming is a viable technique for producing relatively inexpensive grazing incidence X-ray optics, as long as modest resolution (1 min of arc) and size (12 cm diameter by 40 cm long) are specified.

  10. Predicting through-focus visual acuity with the eye's natural aberrations.

    PubMed

    Kingston, Amanda C; Cox, Ian G

    2013-10-01

    To develop a predictive optical modeling process that utilizes individual computer eye models along with a novel through-focus image quality metric. Individual eye models were implemented in optical design software (Zemax, Bellevue, WA) based on evaluation of ocular aberrations, pupil diameter, visual acuity, and accommodative response of 90 subjects (180 eyes; 24-63 years of age). Monocular high-contrast minimum angle of resolution (logMAR) acuity was assessed at 6 m, 2 m, 1 m, 67 cm, 50 cm, 40 cm, 33 cm, 28 cm, and 25 cm. While the subject fixated on the lowest readable line of acuity, total ocular aberrations and pupil diameter were measured three times each using the Complete Ophthalmic Analysis System (COAS HD VR) at each distance. A subset of 64 mature presbyopic eyes was used to predict the clinical logMAR acuity performance of five novel multifocal contact lens designs. To validate predictability of the design process, designs were manufactured and tested clinically on a population of 24 mature presbyopes (having at least +1.50 D spectacle add at 40 cm). Seven object distances were used in the validation study (6 m, 2 m, 1 m, 67 cm, 50 cm, 40 cm, and 25 cm) to measure monocular high-contrast logMAR acuity. Baseline clinical through-focus logMAR was shown to correlate highly (R² = 0.85) with predicted logMAR from individual eye models. At all object distances, each of the five multifocal lenses showed less than one line difference, on average, between predicted and clinical normalized logMAR acuity. Correlation showed R² between 0.90 and 0.97 for all multifocal designs. Computer-based models that account for patient's aberrations, pupil diameter changes, and accommodative amplitude can be used to predict the performance of contact lens designs. With this high correlation (R² ≥ 0.90) and high level of predictability, more design options can be explored in the computer to optimize performance before a lens is manufactured and tested clinically.

  11. [Measures of occupational exposure to time-varying low frequency magnetic fields of non-uniform spatial distribution in the light of international guidelines and electrodynamic exposure effects in the human body].

    PubMed

    Karpowicz, Jolanta; Zradziński, Patryk; Gryz, Krzysztof

    2012-01-01

    The aim of study was to analyze by computer simulations the electrodynamic effects of magnetic field (MF) on workers, to harmonize the principles of occupational hazards assessment with international guidelines. Simulations involved 50 Hz MF of various spatial distributions, representing workers' exposure in enterprises. Homogeneous models of sigma = 0.2 S/m conductivity and dimensions of body parts - palm, head and trunk - were located at 50 cm ("hand-distance") or 5 cm (adjacent) from the source (circle conductor of 20 cm or 200 cm in diameter). Parameters of magnetic flux density (B(i)) affecting the models were the exposure measures, and the induced electric field strength (E(in)) was the measure of MF exposure effects. The ratio E(in)/B(i) in the analyzed cases ranged from 2.59 to 479 (V/m)/T. The strongest correlation (p < 0.001) between B(i) and E(in) was found for parameters characterizing MF at the surface of body models. Parameters characterizing the averaged value of the field affecting models (measures of non-uniform field exposure following ICNIRP guidelines), were less correlated with exposure effects (p < 0.005). E(in)(trunk)/E(in) (palm) estimated from E(in) calculations was 3.81-4.56 but estimated from parameters representing B(i) measurement accounted for 3.96-9.74. It is justified to accept 3.96-9.74 times higher exposure to limb than that to trunk. This supports the regulation of labor law in Poland, which provides that the ceiling value for limb exposure to MF below 800 kHz is fivefold higher than that of the trunk. High uncertainty in assessing the effects of non-uniform fields exposure, resulting from a strong dependence of the E(in)/B(i) ratio on the conditions of exposure and its applied measures, requires special caution when defining the permissible MF levels and the principles of exposure assessment at workplace.

  12. Internal erosion rates of a 10-kW xenon ion thruster

    NASA Technical Reports Server (NTRS)

    Rawlin, Vincent K.

    1988-01-01

    A 30 cm diameter divergent magnetic field ion thruster, developed for mercury operation at 2.7 kW, was modified and operated with xenon propellant at a power level of 10 kW for 567 h to evaluate thruster performance and lifetime. The major differences between this thruster and its baseline configuration were elimination of the three mercury vaporizers, use of a main discharge cathode with a larger orifice, reduction in discharge baffle diameter, and use of an ion accelerating system with larger acceleration grid holes. Grid thickness measurement uncertainties, combined with estimates of the effects of reactive residual facility background gases gave a minimum screen grid lifetime of 7000 h. Discharge cathode orifice erosion rates were measured with three different cathodes with different initial orifice diameters. Three potential problems were identified during the wear test: the upstream side of the discharge baffle eroded at an unacceptable rate; two of the main cathode tubes experienced oxidation, deformation, and failure; and the accelerator grid impingement current was more than an order of magnitude higher than that of the baseline mercury thruster. The charge exchange ion erosion was not quantified in this test. There were no measurable changes in the accelerator grid thickness or the accelerator grid hole diameters.

  13. Zonal Flow Velocimetry in Spherical Couette Flow using Acoustic Modes

    NASA Astrophysics Data System (ADS)

    Adams, Matthew M.; Mautino, Anthony R.; Stone, Douglas R.; Triana, Santiago A.; Lekic, Vedran; Lathrop, Daniel P.

    2015-11-01

    We present studies of spherical Couette flows using the technique of acoustic mode Doppler velocimetry. This technique uses rotational splittings of acoustic modes to infer the azimuthal velocity profile of a rotating flow, and is of special interest in experiments where direct flow visualization is impractical. The primary experimental system consists of a 60 cm diameter outer spherical shell concentric with a 20 cm diameter sphere, with air or nitrogen gas serving as the working fluid. The geometry of the system approximates that of the Earth's core, making these studies geophysically relevant. A turbulent shear flow is established in the system by rotating the inner sphere and outer shell at different rates. Acoustic modes of the fluid volume are excited using a speaker and measured via microphones, allowingdetermination of rotational splittings. Preliminary results comparing observed splittings with those predicted by theory are presented. While the majority of these studies were performed in the 60 cm diameter device using nitrogen gas, some work has also been done looking at acoustic modes in the 3 m diameter liquid sodium spherical Couette experiment. Prospects for measuring zonal velocity profiles in a wide variety of experiments are discussed.

  14. Growth and yield model for non-timber forest product of kemenyan (Styrax sumatrana J.J. Sm) in Tapanuli, North Sumatra

    NASA Astrophysics Data System (ADS)

    Aswandi; Kholibrina, C. R.

    2018-02-01

    Kemenyan is Styrax tree resin, the main of non-timber forest product commodity in Lake Toba catchment area, North Sumatra since hundreds years ago. However, there are lack of information about the growth and yield prediction for this tree species. The objective of study is to construct the growth and yield models for Styrax sumatrana in Tapanuli region, North Sumatra. Measurement data from 20 temporary plots were used to formulate stand diameter and height equations, and to project the incense production. The highest Current Annual Increment (CAI) of diameter occurs in the stand’s age 21 to 25 years (1.00 cm/year). The growth of diameter declines significantly to 0.48 cm/year in age 46 to 50 years, and decrease to 0.26 cm/year at age 50 years up. The intersection of CAI and MAI curves occur in stand age 31 to 35 years. It shows that the optimal growth occurs in this period. The average of incenses production was 318.59 g/tree/year. The optimum incense production was achieved when the diameter growth was maximal and tapping scars accumulation was limited.

  15. A single axis electrostatic beam deflection system for a 5-cm diameter ion thruster

    NASA Technical Reports Server (NTRS)

    Lathem, W. C.

    1972-01-01

    A single-axis electrostatic beam deflection system has been tested on a 5-cm diameter mercury ion thruster at a thrust level of about 0.43 mlb (25 mA beam current at 1400 volts). The accelerator voltage was 500 volts. Beam deflection capability of plus or minus 10 deg was demonstrated. A life test of 1367 hours was run at the above conditions. Results of the test indicated that the system could possibly perform for upwards of 10,000 hours.

  16. Transport of atrazine, 2,4-D, and dicamba through preferential flowpaths in an unsaturated claypan soil near Centralia, Missouri

    NASA Astrophysics Data System (ADS)

    Tindall, James A.; Vencill, William K.

    1995-03-01

    The objectives were to determine how atrazine (2-chloro-4-(ethylamino)-6-(isopropylamino)- s-triazine), dicamba (3-6-dichloro-2-methoxybenzoic acid), and 2,4-D (2,4-dichlorophenoxy-acetic acid) move through claypan soils (fine montmorillonitic, mesic Udollic Ochraqualf Mollic albaqualf, Mexico silty loam) at the Missouri Management System Evaluation Area (MSEA) near Centralia in Boone County, Missouri, and the role of preferential flowpaths in that movement. Twelve intact soil cores (30 cm diameter by 40 cm height), were excavated sequentially, four from each of the following depths: 0-40 cm, 40-80 cm, and 80-120 cm. These cores were used to study preferential flow characteristics using dye staining experiments and to determine hydraulic properties. Six undisturbed experimental field plots, with a 1 m 2 surface area (two sets of three each), were instrumented at the Missouri MSEA on 11 May 1991: 1 m 2 zero-tension pan lysimeters were installed at 1.35 m depths in Plots 1-3 and at 1.05 m depths in Plots 4-6. Additionally, each plot was planted with soybeans ( Glycine max L.) and instrumented with suction lysimeters and tensiometers at 15 cm depth increments. A neutron probe access tube was installed in each plot to determine soil water content at 15 cm intervals. All plots were enclosed with a raised frame (of 8 cm height) to prevent surface runoff, and were allowed to equilibrate for a year before data collection. During this waiting period, all suction and pan lysimeters were purged monthly and were sampled immediately prior to herbicide application in May 1992 to obtain background concentrations. Atrazine, 2,4-D, and dicamba moved rapidly through the soil, probably owing to the presence of preferential flowpaths. Staining of laboratory cores showed a positive correlation between the per cent area stained by depth and the subsequent breakthrough of Br - in the laboratory and leaching of field-applied herbicides owing to large rainfall events. Suction lysimeter samples in the field showed increases in concentrations of herbicides at depths where laboratory data indicated greater percentages of what appeared to be preferential flowpaths. Concentrations of atrazine, 2,4-D, and dicamba exceeding 0.50, 0.1, and 0.15 μg ml -1 were observed with depth (45-135 cm, 60-125 cm and 60-135 cm) after several months following rainfall events. Preferential flowpaths were a major factor in transport of atrazine, 2,4-D, and dicamba at the site.

  17. Pressure-volume characteristics of dielectric elastomer diaphragms

    NASA Astrophysics Data System (ADS)

    Tews, Alyson M.; Pope, Kimberly L.; Snyder, Alan J.

    2003-07-01

    With the ultimate goal of constructing diaphragm-type pumps, we have measured pressure-volume characteristics of single-layer dielectric elastomers diaphragms. Circular dielectric elastomer diaphragms were prepared by biaxial stretching of 3M VHB 4905 polyacrylate, or spin casting and modest or no biaxial stretching of silicone rubber films, followed by mounting to a sealed chamber having a 3.8 cm diameter opening. Pressure-volume characteristics were measured at voltages that provided field strengths up to 80 MV/m in un-deformed VHB films and 50-75 MV/m in silicone films. The most highly pre-strained VHB diaphragms were found to have linear pressure-volume characteristics whose slopes (diaphragm compliance) depended sensitively upon applied field at higher field strengths. Compliance of unstretched silicone diaphragms was nearly independent of field strength at the fields tested, but pressure-volume characteristics shifted markedly. For both kinds of dielectric elastomers, pressure-volume work loops of significant size can be obtained for certain operating pressures. Each type of diaphragm may have advantages in certain applications.

  18. Bearing capacity of helical pile foundation in peat soil from different, diameter and spacing of helical plates

    NASA Astrophysics Data System (ADS)

    Fatnanta, F.; Satibi, S.; Muhardi

    2018-03-01

    In an area dominated by thick peat soil layers, driven piles foundation is often used. These piles are generally skin friction piles where the pile tips do not reach hard stratum. Since the bearing capacity of the piles rely on the resistance of their smooth skin, the bearing capacity of the piles are generally low. One way to increase the bearing capacity of the piles is by installing helical plates around the pile tips. Many research has been performed on helical pile foundation. However, literature on the use of helical pile foundation on peat soil is still hardly found. This research focus on the study of axial bearing capacity of helical pile foundation in peat soil, especially in Riau Province. These full-scale tests on helical pile foundation were performed in a rectangular box partially embedded into the ground. The box is filled with peat soil, which was taken from Rimbo Panjang area in the district of Kampar, Riau Province. Several helical piles with different number, diameter and spacing of the helical plates have been tested and analysed. The tests result show that helical pile with three helical plates of uniform diameter has better bearing capacity compared to other helical piles with varying diameter and different number of helical plates. The bearing capacity of helical pile foundation is affected by the spacing between helical plates. It is found that the effective helical plates spacing for helical pile foundation with diameter of 15cm to 35cm is between 20cm to 30cm. This behaviour may be considered to apply to other type of helical pile foundations in peat soil.

  19. Effects of Mitral Annulus Remodeling Following MitraClip Procedure on Reduction of Functional Mitral Regurgitation.

    PubMed

    Hidalgo, Francisco; Mesa, Dolores; Ruiz, Martín; Delgado, Mónica; Rodríguez, Sara; Pardo, Laura; Pan, Manuel; López, Amador; Romero, Miguel A; Suárez de Lezo, José

    2016-11-01

    The percutaneous mitral valve repair procedure (MitraClip) appears to reduce mitral annulus diameter in patients with functional mitral regurgitation, but the relationship between this and regurgitation severity has not been demonstrated. The aim of this study was to determine the effect of mitral annulus remodeling on the reduction of mitral regurgitation in patients with functional etiology. The study included all patients with functional mitral regurgitation treated with MitraClip at our hospital until January 2015. Echocardiogram (iE33 model, Philips) was performed in all patients immediately after device positioning. Changes in the mitral annulus correlated with mitral regurgitation severity, as assessed using the effective regurgitant orifice area. The study included 23 patients (age, 65±14 years; 74% men; left ventricular ejection fraction, 31%±13%; systolic pulmonary artery pressure, 47±10 mmHg). After the procedure, the regurgitant orifice area decreased by 0.30 cm 2 ±0.04 cm 2 (P<.0005), from a baseline of 0.49 cm 2 ±0.09 cm 2 . Anteroposterior diameter decreased by 3.14 mm±1.01 mm (P<.0005) from a baseline of 28.27 mm±4.9 mm, with no changes in the intercommissural diameter (0.50 mm±0.91 mm vs 40.68 mm±4.7 mm; P=.26). A significant association was seen between anteroposterior diameter reduction and regurgitant orifice area reduction (r=.49; P=.020). In patients with functional mitral regurgitation, the MitraClip device produces an immediate reduction in the anteroposterior diameter. This remodeling may be related to the reduction in mitral regurgitation. Copyright © 2016 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.

  20. 50 CFR 665.165 - Size restrictions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... its base to its most distal extremity. The stem diameter of a living coral specimen shall be determined by measuring the greatest diameter of the stem at a point no less than 1 inch (2.54 cm) from the... from any precious coral permit area must have attained either a minimum stem diameter of 1 inch (2.54...

  1. 50 CFR 665.265 - Size restrictions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... its base to its most distal extremity. The stem diameter of a living coral specimen shall be determined by measuring the greatest diameter of the stem at a point no less than 1 inch (2.54 cm) from the... from any precious coral permit area must have attained either a minimum stem diameter of 1 inch (2.54...

  2. Planetary cratering mechanics

    NASA Technical Reports Server (NTRS)

    Okeefe, John D.; Ahrens, Thomas J.

    1992-01-01

    To obtain a quantitative understanding of the cratering process over a broad range of conditions, we have numerically computed the evolution of impact induced flow fields and calculated the time histories of the major measures of crater geometry (e.g., depth diameter, lip height ...) for variations in planetary gravity (0 to 10 exp 9 cm/sq seconds), material strength (0 to 140 kbar), thermodynamic properties, and impactor radius (0.05 to 5000 km). These results were fit into the framework of the scaling relations of Holsapple and Schmidt (1987). We describe the impact process in terms of four regimes: (1) penetration; (2) inertial; (3) terminal; and (4) relaxation.

  3. Development of Methodology and Technology for Identifying and Quantifying Emission Products from Open Burning and Open Detonation Thermal Treatment Methods. Field Test Series A, B, and C. Volume 2, Part A. Quality Assurance and Quality Control

    DTIC Science & Technology

    1992-01-01

    instrument logbook was maintained, but all calibration printouts for the SFC/MS were put in a dedicated loose- leaf notebook. The temperature of the...to-date temperature - monitoring sheets were located at the freezer. Each worker maintained a project-specific personal logbook to enter data...driven 10-cm-diameter gate valve into a 1.5-m3 carbon-impregnated polyethylene ( Velostat 7") sampling bag. The bag, constructed of electrically

  4. Virtual phantom magnetic resonance imaging (ViP MRI) on a clinical MRI platform.

    PubMed

    Saint-Jalmes, Hervé; Bordelois, Alejandro; Gambarota, Giulio

    2018-01-01

    The purpose of this study was to implement Virtual Phantom Magnetic Resonance Imaging (ViP MRI), a technique that allows for generating reference signals in MR images using radiofrequency (RF) signals, on a clinical MR system and to test newly designed virtual phantoms. MRI experiments were conducted on a 1.5 T MRI scanner. Electromagnetic modelling of the ViP system was done using the principle of reciprocity. The ViP RF signals were generated using a compact waveform generator (dimensions of 26 cm × 18 cm × 16 cm), connected to a homebuilt 25 mm-diameter RF coil. The ViP RF signals were transmitted to the MRI scanner bore, simultaneously with the acquisition of the signal from the object of interest. Different types of MRI data acquisition (2D and 3D gradient-echo) as well as different phantoms, including the Shepp-Logan phantom, were tested. Furthermore, a uniquely designed virtual phantom - in the shape of a grid - was generated; this newly proposed phantom allows for the investigations of the vendor distortion correction field. High quality MR images of virtual phantoms were obtained. An excellent agreement was found between the experimental data and the inverse cube law, which was the expected functional dependence obtained from the electromagnetic modelling of the ViP system. Short-term time stability measurements yielded a coefficient of variation in the signal intensity over time equal to 0.23% and 0.13% for virtual and physical phantom, respectively. MR images of the virtual grid-shaped phantom were reconstructed with the vendor distortion correction; this allowed for a direct visualization of the vendor distortion correction field. Furthermore, as expected from the electromagnetic modelling of the ViP system, a very compact coil (diameter ~ cm) and very small currents (intensity ~ mA) were sufficient to generate a signal comparable to that of physical phantoms in MRI experiments. The ViP MRI technique was successfully implemented on a clinical MR system. One of the major advantages of ViP MRI over previous approaches is that the generation and transmission of RF signals can be achieved with a self-contained apparatus. As such, the ViP MRI technique is transposable to different platforms (preclinical and clinical) of different vendors. It is also shown here that ViP MRI could be used to generate signals whose characteristics cannot be reproduced by physical objects. This could be exploited to assess MRI system properties, such as the vendor distortion correction field. © 2017 American Association of Physicists in Medicine.

  5. Characterization of a high-temperature superconducting conductor on round core cables in magnetic fields up to 20 T

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    van der Laan, D. C.; Noyes, P. D.; Miller, G. E.

    2013-02-13

    The next generation of high-ï¬eld magnets that will operate at magnetic ï¬elds substantially above 20 T, or at temperatures substantially above 4.2 K, requires high-temperature superconductors (HTS). Conductor on round core (CORC) cables, in which RE-Ba{sub 2}Cu{sub 3}O{sub 7-{delta}} (RE = rare earth) (REBCO) coated conductors are wound in a helical fashion on a flexible core, are a practical and versatile HTS cable option for low-inductance, high-field magnets. We performed the first tests of CORC magnet cables in liquid helium in magnetic fields of up to 20 T. A record critical current I{sub c} of 5021 A was measured atmore » 4.2 K and 19 T. In a cable with an outer diameter of 7.5 mm, this value corresponds to an engineering current density J{sub e} of 114 A mm{sup -2} , the highest J{sub e} ever reported for a superconducting cable at such high magnetic fields. Additionally, the first magnet wound from an HTS cable was constructed from a 6 m-long CORC cable. The 12-turn, double-layer magnet had an inner diameter of 9 cm and was tested in a magnetic field of 20 T, at which it had an I{sub c} of 1966 A. The cables were quenched repetitively without degradation during the measurements, demonstrating the feasibility of HTS CORC cables for use in high-field magnet applications.« less

  6. 50 CFR 223.207 - Approved TEDs.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... with a minimum outside diameter of 1 inch (2.54 cm) and a minimum wall thickness of 1/8 inch (0.32 cm... the TED frame minus 4 inches (10.2 cm) on both sides of the grid, when measured as a straight line... opening cannot be narrower than the outside width of the grid minus 4 inches (10.2 cm) on both sides of...

  7. Riffles as barriers to interpool movement by three cyprinids (Notropis boops, Campostoma anomalum and Cyprinella venusta)

    Treesearch

    Jacob Schaefer

    2001-01-01

    The effects of riffles as bamers to movement of stream fish was investigated in a set of eight large, outdoor aficial streams. Pools were 183 cm in diameter and 45 cm deep; riffles were 183 cm long and 43 cm wide. Rates of movement of three species of minnows (Cyprinidae) (Campostoma anomalum, Cyprinella venusta...

  8. Use of vacuum arc plasma guns for a metal puff Z-pinch system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rousskikh, A. G.; Zhigalin, A. S.; Oreshkin, V. I.

    The performance of a metal puff Z-pinch system has been studied experimentally. In this type of system, the initial cylindrical shell 4 cm in diameter was produced by ten plasma guns. Each gun initiates a vacuum arc operating between magnesium electrodes. The net current of the guns was 80 kA. The arc-produced plasma shell was compressed by using a 450-kA, 450-ns driver, and as a result, a plasma column 0.3 cm in diameter was formed. The electron temperature of the plasma reached 400 eV at an average ion concentration of 1.85 {center_dot} 10{sup 18} cm{sup -3}. The power of themore » Mg K-line radiation emitted by the plasma for 15-30 ns was 300 MW/cm.« less

  9. Thermal neutron flux mapping in a head phantom

    NASA Astrophysics Data System (ADS)

    Lee, C. L.; Zhou, X.-L.; Harmon, J. F.; Bartholomay, R. W.; Harker, Y. D.; Kudchadker, R. J.

    1999-02-01

    Boron neutron capture therapy (BNCT) is a binary cancer treatment modality in which a boron-containing compound is preferentially loaded into a tumor, followed by irradiation by thermal neutrons. In accelerator-based BNCT, neutrons are produced by charged particle-induced reactions such as 7Li(p, n) 7Be. For deeply seated brain tumors, epithermal (1 eV to 10 kev) neutrons are needed to penetrate the skull cap and subsequently thermalize at the tumor location. Cell damage in BNCT is caused by the high linear energy transfer (LET) products from the 10B(n, α) 7Li reaction. Because the cross section for this reaction is of 1/ v character, the dose due to 10B has essentially the same spatial distribution as the thermal neutron flux. A cylindrical acrylic head phantom (15.24 cm diameter by 21.59 cm length) has been constructed to simulate the patient's head and neck, and acrylic spacers of varying width allow placement of small (active sizes: 0.635 cm diameter by 1.27 cm length and 1.5875 cm diameter by 2.54 cm length) BF 3 proportional counters at nearly all radial and axial locations. Measurements of the thermal flux have also been benchmarked with gold and indium foils (bare and cadmium covered), as well as MCNP simulations. Measurement of the thermal neutron flux using these small BF 3 counters is shown to be adequate for experimentally determining the spatial variation of the 10B dose in head phantoms for accelerator-based BNCT.

  10. Hydraulic properties of coarsely and finely ground woodchips

    NASA Astrophysics Data System (ADS)

    Subroy, Vandana; Giménez, Daniel; Qin, Mingming; Krogmann, Uta; Strom, Peter F.; Miskewitz, Robert J.

    2014-09-01

    Recent evidence suggests that leachate from woodchips stockpiled at recycling facilities could negatively impact water quality. Models that can be used to simulate water movement/leachate production require information on water retention and hydraulic conductivity functions of the stockpiled material. The objectives of this study were to (1) determine water retention and hydraulic conductivity functions of woodchips with particle size distributions (PSDs) representative of field stockpiled material by modeling multistep outflow and (2) assess the performance of three pore structure models for their ability to simulate outflow. Six samples with contrasting PSDs were assessed in duplicate. Samples were packed in cylindrical columns (15.3 cm high, 12.1 cm wide) to measure saturated hydraulic conductivity (Ks), cumulative outflow and water content at equilibrium with pressure potentials of -2, -10 and -40 cm. Water retention at pressure potentials between -200 and -10,000 cm were obtained using pressure plate extractors and used to supplement data from the outflow experiment. Hydraulic parameters of the pore models were derived from these measurements using HYDRUS-1D run by DREAM(ZS). Ks was independent of PSD with values between 55 and 80 cm/h. Cumulative outflow at each pressure potential was correlated with the PSD geometric mean diameters, and was best predicted by a model having two interacting pore domains, each with separate hydraulic conductivity and water retention functions (DPeM). Unsaturated conductivities were predicted to drop on an average to 0.24 cm/h at -10 cm and 3 × 10-3 cm/h at -50 cm for the DPeM model, suggesting that water would move slowly through stockpiles except during intense rainfalls.

  11. The portable autonomous device on the basis straw-chambers for studying secondary space radiation in a soft x-ray range on board ISS

    NASA Astrophysics Data System (ADS)

    Bondarenko, Valery; Shurshakov, Vyacheslav; Bondarenko, Valentina; Markina, Irina

    The portable autonomous device for detection of soft x-ray radiation is described. Source of x-ray radiation is transition and brake radiations high-energy particles at passage through a material of a wall of the ISS and internal covering of the ship. A detecting elements of the device are gas proportional chambers of type straw in diameter 10 mm, length 140 mm. The wall chambers (cathode) is made from capton by thickness 70 microns. The anode of the chamber represents the gold-plated tungsten wire in diameter 30 microns. The general sensitive area of the detector is equal 110 cm2. Straw of the chambers (8 pieces) are connected consistently and are continuously blown by a gas mixture with a speed of 0,1 cm3/minute. The gas balloon in capacity of 200 cm3 under pressure 8 atm is used for flow. The device is capable to work long time in radiating fields. High radiating stability of the detector is reached by application of a radiation-steady material for manufacturing of chambers, constant gas flow during an irradiation and use of a clearing mixture on the basis of CF4. The electronic part of the device consists of the preamplifiers connected to chambers, the adder -splitter of analog signals, the spectrometer amplifier and amplitude - digitizer converter (ADC). From a splitter the signal acts on the discriminator for management ADC. Use of the discriminator allows to cut out registration of high-energy particles. The information is written on silicon disk.

  12. Performance evaluation of the Trans-PET®BioCaliburn® SH system

    NASA Astrophysics Data System (ADS)

    Zhu, Jun; Wang, Luyao; Kao, Chien-Min; Kim, Heejong; Xie, Qingguo

    2015-03-01

    The Trans-PET®BioCaliburn® SH system, recently introduced by the Raycan Technology Co. Ltd. (Suzhou, China), is a commercial positron emission tomography (PET) system designed for rodent imaging. The system contains 6 basic detector modules (BDMs) arranged on a 10.8 cm diameter ring to provide a transaxial field of view (FOV) of 6.5 cm and an axial FOV of 5.3 cm. In this paper, we report on its performance properties in accordance with the National Electrical Manufacturers Association (NEMA) 2008 NU-4 standards with modifications. The measured spatial resolution at the center of the FOV was 1.05 mm, 1.12 mm and 1.13 mm in the tangential, radial and axial directions, respectively. The measured system sensitivity was 3.29% for a point source at the center of the FOV when using a 350-650 keV energy window and a 5 ns coincidence time window. When a wider 250-750 keV energy window was used, it increased to 4.21%. For mouse- and rat-sized phantoms, the scatter fraction was 10.7% and 16.1%, respectively. The peak noise equivalent count rate were 36 kcps@8.52 MBq for the mouse-sized phantom and 16 kcps@6.79 MBq for the rat-sized phantom. The Derenzo phantom image showed that the system can resolve 1.0 mm diameter rods. The measured performance properties of the system indicate that the Trans-PET®BioCaliburn® SH is a versatile imaging device that can provide high spatial resolution for rodent imaging while offering competitive sensitivity and count-rate performance.

  13. [Spatial structural characteristics of natural Populus davidiana - Betula platyphylla secondary forest].

    PubMed

    Shao, Fang-Li; Yu, Xin-Xiao; Song, Si-Ming; Zhao, Yang

    2011-11-01

    This paper analyzed the spatial structural characteristics of natural Populus davidiana - Betula platyphylla secondary forest in a 4 hm2 plot of Mulan Paddock, based on the diameter distribution and the spatial structure parameters mingling degree, neighborhood comparison, and angle index. In the forest, the diameter distribution of the stands presented as an inverse 'J' curve, the average mingling degree was 0.4, with the individuals at weak and zero mingling degree reached 51.6%, and the average mingling degree of P. davidiana and B. platyphylla was 0.25 and 0.39, respectively. The neighborhood comparison based on the diameter at breast height (DBH) and tree height was almost the same, suggesting that the P. davidiana and B. platyphylla were in the transition state from subdominant to middle. The horizontal distribution pattern had a close relation to the minimum measured DBH, being clustered when the DBH was > or = 1 cm and < 6 cm, and random when the DBH was > or = 6 cm.

  14. SPRUCE Tree Growth Assessments of Picea and Larix in S1-Bog Plots and SPRUCE Experimental Plots beginning in 2011

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanson, P.J.,; Phillips, J.R.; Wullschelger, S.D.

    This data set reports tree growth measurements of mature Picea mariana and Larix laricina located in the S1-Bog permanent plots and the SPRUCE experimental study plots, Annual data collections were initiated in February of 2011and have been continued on an annual basis during mid-winter observation periods at the end of February or early March. Data collections are anticipated to continue through February of 2025 and this data set will be appended annually. Initial observations in 2011 included measurements of circumference at 1.3 m (diameter at breast height assessments; DBH) above the nominal bog hollow surface, tree heights and crown diameters.more » Subsequent annual measurements have focused on the measures of circumference at DBH. Circumference measurements to the nearest 0.1 cm are converted to DBH in cm and basal area at DBH in (cm2). Tree height and crown diameter are measured to the nearest 0.1 m.« less

  15. Autoignition Chamber for Remote Testing of Pyrotechnic Devices

    NASA Technical Reports Server (NTRS)

    Harrington, Maureen L.; Steward, Gerald R.; Dartez, Toby W.

    2009-01-01

    The autoignition chamber (AIC) performs by remotely heating pyrotechnic devices that can fit the inner diameter of the tube furnace. Two methods, a cold start or a hot start, can be used with this device in autoignition testing of pyrotechnics. A cold start means extending a pyrotechnic device into the cold autoignition chamber and then heating the device until autoignition occurs. A hot start means heating the autoignition chamber to a specified temperature, and then extending the device into a hot autoignition chamber until autoignition occurs. Personnel are remote from the chamber during the extension into the hot chamber. The autoignition chamber, a commercially produced tubular furnace, has a 230-V, single-phase, 60-Hz electrical supply, with a total power output of 2,400 W. It has a 6-in. (15.2-cm) inner diameter, a 12-in. (30.4-cm) outer diameter and a 12-in.- long (30.4-cm), single-zone, solid tubular furnace (element) capable of heating to temperatures up to 2,012 F (1,100 C) in air.

  16. A lunar/Martian anchor emplacement system

    NASA Astrophysics Data System (ADS)

    Clinton, Dustin; Holt, Andrew; Jantz, Erik; Kaufman, Teresa; Martin, James; Weber, Reed

    On the Moon or Mars, it is necessary to have an anchor, or a stable, fixed point able to support the forces necessary to rescue a stuck vehicle, act as a stake for a tent in a Martian gale, act as a fulcrum in the erection of general construction poles, or support tent-like regolith shields. The anchor emplacement system must be highly autonomous. It must supply the energy and stability for anchor deployment. The goal of the anchor emplacement system project is to design and build a prototype anchor and to design a conceptual anchor emplacement system. Various anchors were tested in a 1.3 cubic meter test bed containing decomposed granite. A simulated lunar soil was created by adjusting the moisture and compaction characteristics of the soil. We conducted tests on emplacement torque, amount of force the anchor could withstand before failure, anchor pull out force at various angles, and soil disturbances caused by placing the anchor. A single helix auger anchor performed best in this test bed based on energy to emplace, and the ultimate holding capacity. The anchor was optimized for ultimate holding capacity, minimum emplacement torque, and minimum soil disturbance in sandy soils yielding the following dimensions: helix diameter (4.45 cm), pitch (1.27 cm), blade thickness (0.15 cm), total length (35.56 cm), shaft diameter (0.78 cm), and a weight of 212.62 g. The experimental results showed that smaller diameter, single-helix augers held more force than larger diameter augers for a given depth. The emplacement system consists of a flywheel and a motor for power, sealed in a protective box supported by four legs. The flywheel system was chosen over a gear system based on its increased reliability in the lunar environment.

  17. A lunar/Martian anchor emplacement system

    NASA Technical Reports Server (NTRS)

    Clinton, Dustin; Holt, Andrew; Jantz, Erik; Kaufman, Teresa; Martin, James; Weber, Reed

    1993-01-01

    On the Moon or Mars, it is necessary to have an anchor, or a stable, fixed point able to support the forces necessary to rescue a stuck vehicle, act as a stake for a tent in a Martian gale, act as a fulcrum in the erection of general construction poles, or support tent-like regolith shields. The anchor emplacement system must be highly autonomous. It must supply the energy and stability for anchor deployment. The goal of the anchor emplacement system project is to design and build a prototype anchor and to design a conceptual anchor emplacement system. Various anchors were tested in a 1.3 cubic meter test bed containing decomposed granite. A simulated lunar soil was created by adjusting the moisture and compaction characteristics of the soil. We conducted tests on emplacement torque, amount of force the anchor could withstand before failure, anchor pull out force at various angles, and soil disturbances caused by placing the anchor. A single helix auger anchor performed best in this test bed based on energy to emplace, and the ultimate holding capacity. The anchor was optimized for ultimate holding capacity, minimum emplacement torque, and minimum soil disturbance in sandy soils yielding the following dimensions: helix diameter (4.45 cm), pitch (1.27 cm), blade thickness (0.15 cm), total length (35.56 cm), shaft diameter (0.78 cm), and a weight of 212.62 g. The experimental results showed that smaller diameter, single-helix augers held more force than larger diameter augers for a given depth. The emplacement system consists of a flywheel and a motor for power, sealed in a protective box supported by four legs. The flywheel system was chosen over a gear system based on its increased reliability in the lunar environment.

  18. SU-E-I-22: Dependence On Calibration Phantom and Field Area of the Conversion Factor Used to Calculate Skin Dose During Neuro-Interventional Fluoroscopic Procedures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rana, V K; Vijayan, S; Rudin, S R

    Purpose: To determine the appropriate calibration factor to use when calculating skin dose with our real-time dose-tracking system (DTS) during neuro-interventional fluoroscopic procedures by evaluating the difference in backscatter from different phantoms and as a function of entrance-skin field area. Methods: We developed a dose-tracking system to calculate and graphically display the cumulative skin-dose distribution in real time. To calibrate the DTS for neuro-interventional procedures, a phantom is needed that closely approximates the scattering properties of the head. We compared the x-ray backscatter from eight phantoms: 20-cm-thick solid water, 16-cm diameter water-filled container, 16-cm CTDI phantom, modified-ANSI head phantom, 20-cm-thickmore » PMMA, Kyoto-Kagaku PBU- 50 head, Phantom-Labs SK-150 head, and RSD RS-240T head. The phantoms were placed on the patient table with the entrance surface at 15 cm tube-side from the isocenter of a Toshiba Infinix C-arm, and the entrance-skin exposure was measured with a calibrated 6-cc PTW ionization chamber. The measurement included primary radiation, backscatter from the phantom and forward scatter from the table and pad. The variation in entrance-skin exposure was also measured as a function of the skin-entrance area for a 30x30 cm by 20-cm-thick PMMA phantom and the SK-150 head phantom using four different added beam filters. Results: The entranceskin exposure values measured for eight different phantoms differed by up to 12%, while the ratio of entrance exposure of all phantoms relative to solid water showed less than 3% variation with kVp. The change in entrance-skin exposure with entrance-skin area was found to differ for the SK-150 head compared to the 20-cm PMMA phantom and the variation with field area was dependent on the added beam filtration. Conclusion: To accurately calculate skin dose for neuro-interventional procedures with the DTS, the phantom for calibration should be carefully chosen since different phantoms can contribute different backscatter for identical exposure parameters. Research supported in part by Toshiba Medical Systems and NIH Grants R43FD0158401, R44FD0158402 and R01EB002873.« less

  19. Neutron spectra measurement and calculations using data libraries CIELO, JEFF-3.2 and ENDF/B-VII.1 in iron benchmark assemblies

    NASA Astrophysics Data System (ADS)

    Jansky, Bohumil; Rejchrt, Jiri; Novak, Evzen; Losa, Evzen; Blokhin, Anatoly I.; Mitenkova, Elena

    2017-09-01

    The leakage neutron spectra measurements have been done on benchmark spherical assemblies - iron spheres with diameter of 20, 30, 50 and 100 cm. The Cf-252 neutron source was placed into the centre of iron sphere. The proton recoil method was used for neutron spectra measurement using spherical hydrogen proportional counters with diameter of 4 cm and with pressure of 400 and 1000 kPa. The neutron energy range of spectrometer is from 0.1 to 1.3 MeV. This energy interval represents about 85 % of all leakage neutrons from Fe sphere of diameter 50 cm and about of 74% for Fe sphere of diameter 100 cm. The adequate MCNP neutron spectra calculations based on data libraries CIELO, JEFF-3.2 and ENDF/B-VII.1 were done. Two calculations were done with CIELO library. The first one used data for all Fe-isotopes from CIELO and the second one (CIELO-56) used only Fe-56 data from CIELO and data for other Fe isotopes were from ENDF/B-VII.1. The energy structure used for calculations and measurements was 40 gpd (groups per decade) and 200 gpd. Structure 200 gpd represents lethargy step about of 1%. This relatively fine energy structure enables to analyze the Fe resonance neutron energy structure. The evaluated cross section data of Fe were validated on comparisons between the calculated and experimental spectra.

  20. Effects of Blood Flow and/or Ventilation Restriction on Radiofrequency Coagulation Size in the Lung: An Experimental Study in Swine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anai, Hiroshi; Uchida, Barry T.; Pavcnik, Dusan, E-mail: pavcnikd@ohsu.edu

    2006-10-15

    The purpose of this study was to investigate how the restriction of blood flow and/or ventilation affects the radiofrequency (RF) ablation coagulation size in lung parenchyma. Thirty-one RF ablations were done in 16 normal lungs of 8 living swine with 2-cm LeVeen needles. Eight RF ablations were performed as a control (group G1), eight with balloon occlusion of the ipsilateral mainstem bronchus (G2), eight with occlusion of the ipsilateral pulmonary artery (G3), and seven with occlusion of both the ipsilateral bronchus and pulmonary artery (G4). Coagulation diameters and volumes of each ablation zone were compared on computed tomography (CT) andmore » gross specimen examinations. Twenty-six coagulation zones were suitable for evaluation: eight in G1, five in G2, seven in G3, and six in G4 groups. In G1, the mean coagulation diameter was 21.5 {+-} 3.5 mm on CT and 19.5 {+-} 1.78 mm on gross specimen examination. In G2, the mean diameters were 26.5 {+-} 5.1 mm and 23.0 {+-} 2.7 mm on CT and gross specimen examination, respectively. In G3, the mean diameters were 29.4 {+-} 2.2 mm and 27.4 {+-} 2.9 mm on CT and gross specimen examination, respectively, and in G4, they were 32.6 {+-} 3.33 mm and 28.8 {+-} 2.6 mm, respectively. The mean coagulation volumes were 3.39 {+-} l.52 cm{sup 3} on CT and 3.01 {+-} 0.94 cm{sup 3} on gross examinations in G1, 6.56 {+-} 2.47 cm{sup 3} and 5.22 {+-} 0.85 cm{sup 3} in G2, 10.93 {+-} 2.17 cm{sup 3} and 9.97 {+-} 2.91 cm{sup 3} in G3, and 13.81 {+-} 3.03 cm{sup 3} and 11.06 {+-} 3.27 cm{sup 3} in G4, respectively. The mean coagulation diameters on gross examination and mean coagulation volumes on CT and gross examination with G3 and G4 were significantly larger than those in G1 (p < 0.0001, p < 0.0001, p < 0.0001, respectively) or in G2 (p < 0.05, p < 0.005, p < 0.005, respectively). Pulmonary collapse occurred in one lung in G2 and pulmonary artery thrombus in two lungs of G3 and two lungs of G4. The coagulation size of RF ablation of the lung parenchyma is increased by ventilation and particularly by pulmonary artery blood flow restriction. The value of these restrictions for potential clinical use needs to be explored in experimentally induced lung tumors.« less

  1. Automated Figuring and Polishing of Replication Mandrels for X-Ray Telescopes

    NASA Technical Reports Server (NTRS)

    Krebs, Carolyn (Technical Monitor); Content, David; Fleetwood, Charles; Wright, Geraldine; Arsenovic, Petar; Collela, David; Kolos, Linette

    2003-01-01

    In support of the Constellation X mission the Optics Branch at Goddard Space Flight Center is developing technology for precision figuring and polishing of mandrels used to produce replicated mirrors that will be used in X-Ray telescopes. Employing a specially built machine controlled in 2 axes by a computer, we are doing automated polishing/figuring of 15 cm long, 20 cm diameter cylindrical, conical and Wolter mandrels. A battery of tests allow us to fully characterize all important aspects of the mandrels, including surface figure and finish, mid-frequency errors, diameters and cone angle. Parts are currently being produced with surface roughnesses at the .5nm RMS level, and half-power diameter slope error less than 2 arcseconds.

  2. Excited argon 1s5 production in micro-hollow cathode discharges for use as potential rare gas laser sources

    NASA Astrophysics Data System (ADS)

    Peterson, Richard D.; Eshel, Ben; Rice, Christopher A.; Perram, Glen P.

    2018-02-01

    The diode-pumped rare gas laser (DPRGL) has been suggested as a potential high-gain, high-energy laser which requires densities on the order of 1013 cm-3 at pressures around 1 atmosphere for efficient operation. Argon 1s5 number densities have been measured in micro-hollow cathode discharges with electrode gaps of 127 and 254 μm and hole diameters from 100-400 μm. The dependency of the metastable argon (1s5) density on total gas pressure, electrode gap distance and hole diameter were explored. The measured densities were all in the range of 0.5 - 2 × 1013 cm-3 with the 400 μm hole diameters being the lowest.

  3. The Vector Electric Field Instrument on the C/NOFS Satellite

    NASA Technical Reports Server (NTRS)

    Pfaff, R.; Kujawski, J.; Uribe, P.; Bromund, K.; Fourre, R.; Acuna, M.; Le, G.; Farrell, W.; Holzworth, R.; McCarthy, M.; hide

    2008-01-01

    We provide an overview of the Vector Electric Field Instrument (VEFI) on the Air Force Communication/Navigation Outage Forecasting System (C/NOFS) satellite, a mission designed to understand, model, and forecast the presence of equatorial ionospheric irregularities. VEFI is a NASA GSFC instrument designed 1) to investigate the role of the ambient electric fields in initiating nighttime ionospheric density depletions and turbulence; 2) to determine the electric fields associated with abrupt, large amplitude, density depletions and 3) to quantify the spectrum of the wave electric fields and plasma densities (irregularities) associated with density depletions or Equatorial Spread-F. The VEFI instrument includes a vector electric field double probe detector, a Langmuir trigger probe, a flux gate magnetometer, a lightning detector and associated electronics. The heart of the instrument is the set of double probe detectors designed to measure DC and AC electric fields using 6 identical, mutually orthogonal, deployable 9.5 m booms tipped with 10 cm diameter spheres containing embedded preamplifiers. A description of the instrument and its sensors will be presented. If available, representative measurements will be provided.

  4. Polarised Multiangular Reflectance Measurements Using the Finnish Geodetic Institute Field Goniospectrometer

    PubMed Central

    Suomalainen, Juha; Hakala, Teemu; Peltoniemi, Jouni; Puttonen, Eetu

    2009-01-01

    The design, operation, and properties of the Finnish Geodetic Institute Field Goniospectrometer (FIGIFIGO) are presented. FIGIFIGO is a portable instrument for the measurement of surface Bidirectional Reflectance Factor (BRF) for samples with diameters of 10 – 50 cm. A set of polarising optics enable the measurement of linearly polarised BRF over the full solar spectrum (350 – 2,500 nm). FIGIFIGO is designed mainly for field operation using sunlight, but operation in a laboratory environment is also possible. The acquired BRF have an accuracy of 1 – 5% depending on wavelength, sample properties, and measurement conditions. The angles are registered at accuracies better than 2°. During 2004 – 2008, FIGIFIGO has been used in the measurement of over 150 samples, all around northern Europe. The samples concentrate mostly on boreal forest understorey, snow, urban surfaces, and reflectance calibration surfaces. PMID:22412342

  5. The ISOMAX Magnetic Rigidity Spectrometer

    NASA Astrophysics Data System (ADS)

    Hams, Thomas

    1999-08-01

    The Isotope Magnet Experiment, (ISOMAX), is a balloon-borne superconducting magnetic spectrometer with a time-of-flight system and aerogel Cherenkov counters. Its purpose is to measure the isotopic composition of the light elements (3 < Z < 8) in the cosmic radiation. Particle mass is derived from a velocity vs. magnetic rigidity (momentum/charge) technique. The experiment had its first flight in August 1998. The precision magnetic spectrometer uses advanced drift-chamber tracking and a large, high-field, superconducting magnet. The drift-chamber system consists of three chambers with 24 layers of hexagonal drift cells (16 bending, 8 non-bending) and a vertical extent of 1.4 m. Pure CO2 gas is used. The magnet is a split-pair design with 79 cm diameter coils and a separation of 80 cm. During the 1998 flight, the central field was 0.8 T (60% of the full design field). Presented are results from flight data, for a range of incident particle Z, on the spatial resolution and efficiency of the tracking system, and on the maximum detectable rigidity (MDR) of the spectrometer. For in-flight data, spatial resolutions of 54 mm for Z=2 and 45 mm for Z=4 are obtained. An MDR of 970 GV/c is achieved for Z=2.

  6. Design of the Helicity Injected Torus with Steady Inductive Helicity Injection (HIT-SI)

    NASA Astrophysics Data System (ADS)

    Sieck, P. E.; Gu, P.; Hamp, W. T.; Izzo, V. A.; McCollam, K. J.; Jarboe, T. R.; Nelson, B. A.; Redd, A. J.; Rogers, J. A.; Shumlak, U.

    2000-10-01

    Steady Inductive Helicity Injection (SIHI) is an inductive current drive method that injects helicity at a nearly constant rate, without open field lines, and without removing any helicity or magnetic energy from the plasma(T.R. Jarboe, Fusion Technology 36), p. 85, 1999. SIHI directly produces a rotating magnetic field structure, and the current profile is nearly time independent in the frame of the rotating field. The Helicity Injected Torus with SIHI (HIT-SI) is a ``bow tie'' spheromak designed to implement SIHI so that the current profile in the rotating frame is optimized. SIHI is accomplished using two inductive helicity injectors that operate 90^o out of phase with each other. Each helicity injector is a 180^o segment of a ZT-P size (a ≈ 8cm, R ≈ 32cm) RFP. The presence of a spheromak equilibrium will be readily apparent on several diagnostics, including the surface magnetic probes. The design of HIT-SI is presented, including the manufacturing techniques and metallurgical processes being used in the construction of the one-meter diameter close-fitting flux conserver. Several small prototype tests have been performed to prove the vacuum seal and electrical insulation capabilities of the design, and a finite element stress analysis of the flux conserver will be presented.

  7. Oscillating plasma bubble and its associated nonlinear studies in presence of low magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Megalingam, Mariammal; Sarma, Bornali; Mitra, Vramori

    Oscillating plasma bubbles have been created around a cylindrical mesh grid of 75% optical transparency in a DC plasma system with a low magnetic field. Plasma bubbles are created by developing ion density gradient around a cylindrical grid of 20 cm in diameter and 25 cm in height, inserted into the plasma. Relaxation and contraction of the plasma bubbles in the presence of external conditions, such as magnetic field and pressure, have been studied. A Langmuir probe has been used to detect the plasma floating potential fluctuations at different imposed experimental conditions. Nonlinear behavior of the system has been characterized by adoptingmore » nonlinear techniques such as Fast Fourier Transform, Phase Space Plot, and Recurrence Plot. It shows that the system creates highly nonlinear phenomena associated with the plasma bubble under the imposed experimental conditions. A theoretical and numerical model has also been developed to satisfy the observed experimental analysis. Moreover, observations are extended further to study the growth of instability associated with the plasma bubbles. The intention of the present work is to correlate the findings about plasma bubbles and their related instability with the one existing in the equatorial F-region of the ionosphere.« less

  8. Composite ceramic superconducting wires for electric motor applications

    NASA Astrophysics Data System (ADS)

    Holloran, John W.

    1989-07-01

    Progress is described on developing Y-123 wire for an HTSC motor. The wire development involves synthesis of Y-123 powder, spinning polymer containing green fiber, heat treating the fiber to produce metallized superconducting filaments, and characterizing the electrical properties. A melt spinning process was developed for producing 125-micron diameter green fiber containing 50 vol percent Y-123. This fiber can be braided for producing transposed multifilamentary wire. A process was developed to coat green fiber with silver alloys which can be continuous sintering. A second process for multifilamentary ribbon wire is also being developed. The Y-123 filaments have 77 deg self-field Jc values up to 2600 A/sq cm, but Jc is reduced to 10 A/cm squared at 800 G. Preliminary data is presented on mechanical properties. A dc homopolar motor with an iron magnetic circuit is being designed to operate with early HTSC wire.

  9. Development of a Strain Energy Deployable Boom for the Space Technology 5 Mission

    NASA Technical Reports Server (NTRS)

    Meyers, Stew; Sturm, James

    2004-01-01

    The Space Technology 5 (ST5) mission is one of a series of technology demonstration missions for the New Millennium Program. This mission will fly three fully functional 25-kilogram micro-class spacecraft in formation through the Earth's magnetosphere; the primary science instrument is a very sensitive magnetometer. The constraints of a 25-kg Micosat resulted in a spin stabilized, octagonal spacecraft that is 30 cm tall by 50 cm diameter and has state-of-the-art solar cells on all eight sides. A non-magnetic boom was needed to place the magnetometer as far from the spacecraft and its residual magnetic fields as possible. The ST-5 spacecraft is designed to be spun up and released from its deployer with the boom and magnetometer stowed for later release. The deployer is the topic of another paper. This paper describes the development efforts and resulting self-deploying magnetometer boom.

  10. Development of a Strain Energy Deployable Boom for the Space Technology 5 Mission

    NASA Technical Reports Server (NTRS)

    Meyers, Stew; Sturm, James

    2004-01-01

    The Space Technology 5 (ST5) mission is one of a series of technology demonstration missions for the New Millennium Program. This mission will fly three fully functional 25 kilogram micro class spacecraft in formation through the Earth s magnetosphere; the primary science instrument is a very sensitive magnetometer. The constraints of a 25 kg "Micosat" resulted in a spin stabilized, octagonal spacecraft that is 30 cm tall by 50 cm diameter and has state of the art solar cells on all eight sides. A non-magnetic boom was needed to place the magnetometer as far from the spacecraft and its residual magnetic fields as possible. The ST-5 spacecraft is designed to be spun up and released from its deployer with the boom and magnetometer stowed for later release. The deployer is the topic of another paper, This paper describes the development efforts and resulting self-deploying magnetometer boom.

  11. High energy X-ray pinhole imaging at the Z facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McPherson, L. Armon; Ampleford, David J.; Coverdale, Christine A.

    A new high photon energy (hv > 15 keV) time-integrated pinhole camera (TIPC) has become available at the Z facility for diagnostic applications. This camera employs five pinholes in a linear array for recording five images at once onto an image plate detector. Each pinhole may be independently filtered to yield five different spectral responses. The pinhole array is fabricated from a 1-cm thick tungsten block and is available with either straight pinholes or conical pinholes. Each pinhole within the array block is 250 μm in diameter. The five pinholes are splayed with respect to each other such that theymore » point to the same location in space, and hence present the same view of the target load at the Z facility. The fielding distance is 66 cm and the nominal image magnification is 0.374. Initial experimental results are shown to illustrate the performance of the camera.« less

  12. Measured current drainage through holes in various dielectrics up to 2 kilovolts in a dilute plasma

    NASA Technical Reports Server (NTRS)

    Grier, N. T.; Mckinzie, D. J., Jr.

    1972-01-01

    The electron current drained from a plasma through approximately 0.05 cm diameter holes in eight possible space applicable dielectrics placed on a probe biased at voltages up to 2000 V dc have been determined both theoretically and experimentally. The dielectrics tested were Parylene C and N, Teflon FEP type C, Teflon TFE, Nomex, quartz 7940 Corning Glass, Mylar A, and Kapton H polymide film. A Laplace field was used to predict an upper limit for the drainage current. The measured current was less than the computed current for quartz, Teflon FEP, and the 0.0123 cm thick sample of Parylene N for all voltages tested. The drainage current through the other dielectrics became equal to or greater than the computed current at a voltage below 2000 V. The magnitudes of the currents were between 0.1 and 10 microamperes for most of the dielectrics.

  13. A pulsed supersonic gas jet target for precision spectroscopy at the HITRAP facility at GSI

    NASA Astrophysics Data System (ADS)

    Tiedemann, D.; Stiebing, K. E.; Winters, D. F. A.; Quint, W.; Varentsov, V.; Warczak, A.; Malarz, A.; Stöhlker, Th.

    2014-11-01

    A pulsed supersonic gas jet target for experiments at the HITRAP facility at the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt has been designed and built as a multi-purpose installation for key experiments on fundamental atomic physics in strong fields. This setup is currently installed at the Institut für Kernphysik of Goethe-University, Frankfurt am Main (IKF), in order to explore its operation prior to its installation at the HITRAP facility. Design and performance of the target are described. The measured target densities of 5.9×1012 atoms/cm3 for helium and 8.1×1012 atoms/cm³ for argon at the stagnation pressure of 30 bar match the required values. The target-beam diameter of 0.9 mm and the pulsed operation mode (jet built-up-time ≤15 ms) are well suited for the use at HITRAP.

  14. Target with a frozen nuclear polarization for experiments at low energies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borisov, N.S.; Matafonov, V.N.; Neganov, A.B.

    1995-09-01

    The short history of the development of frozen spin polarized targets at the Laboratory of Nuclear Problems JINR is given. The latest development is the target with a frozen spin polarization of protons in 1,2- propanediol with a paramagnetic Cr{sup {ital V}} impurity, intended for polarization parameter studies in np-scattering at approximately 15 MeV neutron energy. The target of cylindrical shape of 2 cm diameter and 6 cm long with an initial polarization of 95{plus_minus}3{percent} obtainable by the dynamic polarization technique is placed at a temperature about 20 mK in a magnetic field of 0.37 T generated by a magneticmore » system, which provides a large aperture for scattered particles. The relaxation time for the spin polarization is about 1000 hours. {copyright} {ital 1995 American Institute of Physics.}« less

  15. High energy X-ray pinhole imaging at the Z facility

    DOE PAGES

    McPherson, L. Armon; Ampleford, David J.; Coverdale, Christine A.; ...

    2016-06-06

    A new high photon energy (hv > 15 keV) time-integrated pinhole camera (TIPC) has become available at the Z facility for diagnostic applications. This camera employs five pinholes in a linear array for recording five images at once onto an image plate detector. Each pinhole may be independently filtered to yield five different spectral responses. The pinhole array is fabricated from a 1-cm thick tungsten block and is available with either straight pinholes or conical pinholes. Each pinhole within the array block is 250 μm in diameter. The five pinholes are splayed with respect to each other such that theymore » point to the same location in space, and hence present the same view of the target load at the Z facility. The fielding distance is 66 cm and the nominal image magnification is 0.374. Initial experimental results are shown to illustrate the performance of the camera.« less

  16. Size Constancy in Infants: 4-Month-Olds' Responses to Physical versus Retinal Image Size

    ERIC Educational Resources Information Center

    Granrud, Carl E.

    2006-01-01

    This study tested whether 4-month-old infants respond primarily to objects' physical or retinal image sizes. In the study's main experiment, infants were habituated to either a 6-cm-diameter disk at a distance of 18 cm or a 10-cm disk at 50 cm. They were then given 2 test trials in which the 6- and 10-cm disks were presented side by side at a…

  17. Normal limits in relation to age, body size and gender of two-dimensional echocardiographic aortic root dimensions in persons ≥15 years of age.

    PubMed

    Devereux, Richard B; de Simone, Giovanni; Arnett, Donna K; Best, Lyle G; Boerwinkle, Eric; Howard, Barbara V; Kitzman, Dalane; Lee, Elisa T; Mosley, Thomas H; Weder, Alan; Roman, Mary J

    2012-10-15

    Nomograms to predict normal aortic root diameter for body surface area (BSA) in broad ranges of age have been widely used but are limited by lack of consideration of gender effects, jumps in upper limits of aortic diameter among age strata, and data from older teenagers. Sinus of Valsalva diameter was measured by American Society of Echocardiography convention in normal-weight, nonhypertensive, nondiabetic subjects ≥15 years old without aortic valve disease from clinical or population-based samples. Analyses of covariance and linear regression with assessment of residuals identified determinants and developed predictive models for normal aortic root diameter. In 1,207 apparently normal subjects ≥15 years old (54% women), aortic root diameter was 2.1 to 4.3 cm. Aortic root diameter was strongly related to BSA and height (r = 0.48 for the 2 comparisons), age (r = 0.36), and male gender (+2.7 mm adjusted for BSA and age, p <0.001 for all comparisons). Multivariable equations using age, gender, and BSA or height predicted aortic diameter strongly (R = 0.674 for the 2 comparisons, p <0.001) with minimal relation of residuals to age or body size: for BSA 2.423 + (age [years] × 0.009) + (BSA [square meters] × 0.461) - (gender [1 = man, 2 = woman] × 0.267), SEE 0.261 cm; for height 1.519 + (age [years] × 0.010) + (height [centimeters] × 0.010) - (gender [1 = man, 2 = woman] × 0.247), SEE 0.215 cm. In conclusion, aortic root diameter is larger in men and increases with body size and age. Regression models incorporating body size, age, and gender are applicable to adolescents and adults without limitations of previous nomograms. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Thermal probe design for Europa sample acquisition

    NASA Astrophysics Data System (ADS)

    Horne, Mera F.

    2018-01-01

    The planned lander missions to the surface of Europa will access samples from the subsurface of the ice in a search for signs of life. A small thermal drill (probe) is proposed to meet the sample requirement of the Science Definition Team's (SDT) report for the Europa mission. The probe is 2 cm in diameter and 16 cm in length and is designed to access the subsurface to 10 cm deep and to collect five ice samples of 7 cm3 each, approximately. The energy required to penetrate the top 10 cm of ice in a vacuum is 26 Wh, approximately, and to melt 7 cm3 of ice is 1.2 Wh, approximately. The requirement stated in the SDT report of collecting samples from five different sites can be accommodated with repeated use of the same thermal drill. For smaller sample sizes, a smaller probe of 1.0 cm in diameter with the same length of 16 cm could be utilized that would require approximately 6.4 Wh to penetrate the top 10 cm of ice, and 0.02 Wh to collect 0.1 g of sample. The thermal drill has the advantage of simplicity of design and operations and the ability to penetrate ice over a range of densities and hardness while maintaining sample integrity.

  19. Effect of manure and plants spacing on yield and flavonoid content of Elephantopus scaber L.

    NASA Astrophysics Data System (ADS)

    Riyana, D.; Widiyastuti, Y.; Widodo, H.; Purwanto, E.; Samanhudi

    2018-03-01

    This experiment is aimed to observe the growth and flavonoid contain of Tapak Liman (Elephantopus scaber L.) with different manure types and plants spacing treatment. This experiment is conducted at Tegal Gede Village, Karanganyar District on June until August 2016. The analysis of secondary metabolism was done in B2P2TOOT, Tawangamangu. This experiment is conducted with Randomized Complete Block Design (RCBD) with two treatment factors, those are manure and plants spacing. Animal manure treatment had 3 levels, those are without manure, cow manure with 20 ton/ha dose, and chicken manure with 20 ton/ha dose. Plants spacing treatment had 3 phrase, those are 20 cm × 20 cm; 30 × 30 cm; 40 cm × 40 cm. The result of this experiment shows that chicken manure with 20 ton/ha dosage increase the development of leaves’ lengthiness, header’s diameter, plant’s fresh weight, and plant’s dry weight. Plants spacing 40 cm × 40 cm increase for the development of leaves’ lengthiness, header’s diameter, plant’s wet weight, and plant’s dry weight. The combination between chicken manure with 20 ton/ha dose and plants spacing 40 cm × 40cm treatments show the highest amount of tapak liman extract and alleged having the biggest amount of flavonoid substance.

  20. Significant bed elevation changes related to Gulf Stream dynamics on the South Carolina continental shelf

    USGS Publications Warehouse

    Gelfenbaum, G.; Noble, M.

    1993-01-01

    Photographs of the seabed taken from an instrumented bottom tripod located approximately 100 km east of Charleston, South Carolina, reveal bed elevation changes of over 20 cm between July and November 1978. The tripod was in 85 m of water and was equipped with two current meters at 38.7 and 100 cm from the bed, a pressure sensor, a transmissometer, which fouled early during the deployment, a temperature sensor and a camera. The sediment under the tripod was composed of poorly sorted sand, some shell debris and numerous small biological tubes. Bed roughness varied throughout the deployment from biologically-produced mounds (2-5 cm high and 5-20 cm diameter) to streaks to a smooth bed, depending upon the frequency and magnitude of the sediment transporting events. Even though these events were common, especially during the later part of the deployment, the bed was rarely rippled, and there was no evidence of large bedforms such as dunes or sand waves migrating through the field of view of the camera. Photographs did clearly show, however, a gradual net deposition of the bed of nearly 20 cm, followed by erosion of approximately 5 cm. The flow field near the bed was dominated by sub-tidal period currents. Hourly-averaged currents at 100 cm from the bed typically varied between 10 and 30 cm s-1 and occasionally were as high as 60 cm s-1. The large flow events were predominantly toward the southwest along the shelf in the opposite direction of the northeast flowing Gulf Stream. The cross-shore component of the flow near the bed was predominantly directed offshore due to a local topographic steering effect. Current, temperature and satellite data suggest that the largest flow events were associated with the advection of Gulf Stream filaments past the tripod. Erosion events, as seen from the photographs, were highly correlated with the passage of these Gulf Stream filaments past the tripod. Gradual deposition of sediment, which occurred during the first half of the deployment, appears to have been associated with the convergence of the near-bed sediment flux near the shelf break. ?? 1993.

  1. [Complete Resection of Non-seminomatous Germ Cell Tumor with Plastron Approach].

    PubMed

    Suzuki, Jun; Oizumi, Hiroyuki; Kato, Hirohisa; Endoh, Makoto; Watarai, Hikaru; Hamada, Akira; Suzuki, Katsuyuki; Nakahashi, Kenta; Sasage, Takayuki; Sadahiro, Mitsuaki

    2016-07-01

    A 17-year-old man was admitted to our hospital for the abnormal chest shadow. Chest computed tomography(CT) demonstrated mediastinal tumor, measuring 13 cm in diameter with high serum level of alpha fetoprotein (AFP) and human chorionic gonadotropin (hCG). The lesions were diagnosed as mixed germ cell tumors including a non-seminomatous malignant component by CT guided needle biopsy. After 5 courses of chemotherapy, the serum AFP and hCG were decreased almost normal level but the tumor size was not changed. Because it seemed to be difficult to get sufficient operating field with standard median sternotomy and patient wanted to treat funnel chest, we selected tumor resection with plastron approach. The tumor was completely resected with a good operation field by this procedure.

  2. A novel optical detector concept for dedicated and multi-modality in vivo small animal imaging

    NASA Astrophysics Data System (ADS)

    Peter, Jörg; Schulz, Ralf B.; Unholtz, Daniel; Semmler, Wolfhard

    2007-07-01

    An optical detector suitable for inclusion in tomographic arrangements for non-contact in vivo bioluminescence and fluorescence imaging applications is proposed. It consists of a microlens array (MLA) intended for field-of-view definition, a large-field complementary metal-oxide-semiconductor (CMOS) chip for light detection, a septum mask for cross-talk suppression, and an exchangeable filter to block excitation light. Prototype detector units with sensitive areas of 2.5 cm x 5 cm each were assembled. The CMOS sensor constitutes a 512 x 1024 photodiode matrix at 48 μm pixel pitch. Refractive MLAs with plano-convex lenses of 480 μm in diameter and pitch were selected resulting in a 55 x 105 lens matrix. The CMOS sensor is aligned on the focal plane of the MLA at 2.15mm distance. To separate individual microlens images an opaque multi-bore septum mask of 2.1mm in thickness and bore diameters of 400 μm at 480 μm pitch, aligned with the lens pattern, is placed between MLA and CMOS. Intrinsic spatial detector resolution and sensitivity was evaluated experimentally as a function of detector-object distance. Due to its small overall dimensions such detectors can be favorably packed for tomographic imaging (optical diffusion tomography, ODT) yielding complete 2 π field-of-view coverage. We also present a design study of a device intended to simultaneously image positron labeled substrates (positron emission tomography, PET) and optical molecular probes in small animals such as mice and rats. It consists of a cylindrical allocation of optical detector units which form an inner detector ring while PET detector blocks are mounted in radial extension, those gaining complementary information in a single, intrinsically coregistered experimental data acquisition study. Finally, in a second design study we propose a method for integrated optical and magnetic resonance imaging (MRI) which yields in vivo functional/molecular information that is intrinsically registered with the anatomy of the image object.

  3. Fifteen cm mercury ion thruster research, 1976. [performance as effected by the use of shag optics at 33 v discharge voltage

    NASA Technical Reports Server (NTRS)

    Wilbur, P. J.

    1976-01-01

    Improvements in 15 cm diameter, SERT II, mercury ion thruster performance effected by the use of SHAG optics at 33 V discharge voltage were discussed. At a 200 eV/ion discharge power, 90 percent propellant utilization and 660 mA beam current condition a doubly-to-singly charged ion current ratio of about 4 percent was measured. Performance of the 15 cm multipole mercury thruster (optimized for length and the point of electron injection) was compared to that of divergent (SERT II) and cusped field designs and found to be comparable. The need for a magnetic baffle in the multipole thruster was identified and the preferred point of electron injection was at the upstream end of the discharge chamber. Results of preliminary tests on the effects of discharge voltage and total accelerating voltage on perveance and beam divergence characteristics of two grid ion optics were examined. Experimental data showing the effect of target temperature on sputtering rates in a mercury discharge environment were presented and a deficiency in the tests procedure was identified.

  4. 46 CFR 164.008-3 - Testing procedure.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... means of wire clips to a 10 cm. × 10 cm. frame of 1 mm. diameter. A wire handle approximately 75 cm. long attached to the frame would facilitate its use on the specimen. (3) When testing for cracks or... located approximately in the center of each quadrant of the steel plate (four thermocouples total). (ii...

  5. 46 CFR 164.008-3 - Testing procedure.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... means of wire clips to a 10 cm. × 10 cm. frame of 1 mm. diameter. A wire handle approximately 75 cm. long attached to the frame would facilitate its use on the specimen. (3) When testing for cracks or... located approximately in the center of each quadrant of the steel plate (four thermocouples total). (ii...

  6. Performance Evaluation and Initial Clinical Test of the Positron Emission Mammography System (PEMi)

    NASA Astrophysics Data System (ADS)

    Li, Lin; Gu, Xiao-Yue; Li, Dao-Wu; Huang, Xian-Chao; Chai, Pei; Feng, Bao-Tong; Wang, Pei-Lin; Yun, Ming-Kai; Dai, Dong; Zhang, Zhi-Ming; Yin, Peng-Fei; Xu, Wen-Gui; Wei, Long

    2015-10-01

    A new polygon positron emission mammography imaging system (PEMi) was developed in 2009 by the Institute of High Energy Physics, Chinese Academy of Sciences. PEMi is constructed in a polygon structure with lutetium yttrium orthosilicate crystal arrays mounted on a position-sensitive photomultiplier. The system consists of 64 blocks and each block is arranged in 16 ×16 crystal arrays with a pixel size of 1.9 ×1.9 ×15 mm. The diameter of the detector ring is 166 mm, and the axial length is 128 mm. The transaxial field of view of PEMi is 110 mm. The goal of the initial study was to test PEMi's performance and the clinical imaging ability with a small group of selected subjects. The detectors have a measured intrinsic spatial resolution averaging 1.67 mm. The axial and tangential resolution remained under 2.5-mm full width at half maximum within the central 5-cm diameter of the field of view. The hot rods with a diameter of 1.7 mm can be clearly identified, and the structure of the region containing 1.35-mm diameter rods can also be observed. Using a 6-ns coincidence timing window and a 360 660-keV energy window, the peak sensitivity of the tomograph is 6.88%. The noise-equivalent count rate peak is 110 766 cps for a breast-like cylindrical phantom of 100 mm in diameter at an activity concentration of 0.03 MBq/cc. The recovery coefficients ranged from 0.21 to 0.85 for rods between 1 mm and 5 mm in the image-quality phantom. The reconstructed image resolution achieved an improvement compared with whole-body positron emission tomography (PET), which might reduce the lower threshold on detectable lesion size. Example patient images demonstrate that PEMi is clinically feasible. And more detailed structure information was obtained with PEMi than with the whole-body PET imaging.

  7. Numerical modelling of iron-pnictide bulk superconductor magnetization

    NASA Astrophysics Data System (ADS)

    Ainslie, Mark D.; Yamamoto, Akiyasu; Fujishiro, Hiroyuki; Weiss, Jeremy D.; Hellstrom, Eric E.

    2017-10-01

    Iron-based superconductors exhibit a number of properties attractive for applications, including low anisotropy, high upper critical magnetic fields (H c2) in excess of 90 T and intrinsic critical current densities above 1 MA cm-2 (0 T, 4.2 K). It was shown recently that bulk iron-pnictide superconducting magnets capable of trapping over 1 T (5 K) and 0.5 T (20 K) can be fabricated with fine-grain polycrystalline Ba0.6K0.4Fe2As2 (Ba122). These Ba122 magnets were processed by a scalable, versatile and low-cost method using common industrial ceramic processing techniques. In this paper, a standard numerical modelling technique, based on a 2D axisymmetric finite-element model implementing the H -formulation, is used to investigate the magnetisation properties of such iron-pnictide bulk superconductors. Using the measured J c(B, T) characteristics of a small specimen taken from a bulk Ba122 sample, experimentally measured trapped fields are reproduced well for a single bulk, as well as a stack of bulks. Additionally, the influence of the geometric dimensions (thickness and diameter) on the trapped field is analysed, with a view of fabricating larger samples to increase the magnetic field available from such trapped field magnets. It is shown that, with current state-of-the-art superconducting properties, surface trapped fields >2 T could readily be achieved at 5 K (and >1 T at 20 K) with a sample of diameter 50 mm. Finally, an aspect ratio of between 1 and 1.5 for R/H (radius/thickness) would be an appropriate compromise between the accessible, surface trapped field and volume of superconducting material for bulk Ba122 magnets.

  8. Honeycomblike large area LaB6 plasma source for Multi-Purpose Plasma facility

    NASA Astrophysics Data System (ADS)

    Woo, Hyun-Jong; Chung, Kyu-Sun; You, Hyun-Jong; Lee, Myoung-Jae; Lho, Taihyeop; Choh, Kwon Kook; Yoon, Jung-Sik; Jung, Yong Ho; Lee, Bongju; Yoo, Suk Jae; Kwon, Myeon

    2007-10-01

    A Multi-Purpose Plasma (MP2) facility has been renovated from Hanbit mirror device [Kwon et al., Nucl. Fusion 43, 686 (2003)] by adopting the same philosophy of diversified plasma simulator (DiPS) [Chung et al., Contrib. Plasma Phys. 46, 354 (2006)] by installing two plasma sources: LaB6 (dc) and helicon (rf) plasma sources; and making three distinct simulators: divertor plasma simulator, space propulsion simulator, and astrophysics simulator. During the first renovation stage, a honeycomblike large area LaB6 (HLA-LaB6) cathode was developed for the divertor plasma simulator to improve the resistance against the thermal shock fragility for large and high density plasma generation. A HLA-LaB6 cathode is composed of the one inner cathode with 4in. diameter and the six outer cathodes with 2in. diameter along with separate graphite heaters. The first plasma is generated with Ar gas and its properties are measured by the electric probes with various discharge currents and magnetic field configurations. Plasma density at the middle of central cell reaches up to 2.6×1012 cm-3, while the electron temperature remains around 3-3.5eV at the low discharge current of less than 45A, and the magnetic field intensity of 870G. Unique features of electric property of heaters, plasma density profiles, is explained comparing with those of single LaB6 cathode with 4in. diameter in DiPS.

  9. Honeycomblike large area LaB6 plasma source for Multi-Purpose Plasma facility.

    PubMed

    Woo, Hyun-Jong; Chung, Kyu-Sun; You, Hyun-Jong; Lee, Myoung-Jae; Lho, Taihyeop; Choh, Kwon Kook; Yoon, Jung-Sik; Jung, Yong Ho; Lee, Bongju; Yoo, Suk Jae; Kwon, Myeon

    2007-10-01

    A Multi-Purpose Plasma (MP(2)) facility has been renovated from Hanbit mirror device [Kwon et al., Nucl. Fusion 43, 686 (2003)] by adopting the same philosophy of diversified plasma simulator (DiPS) [Chung et al., Contrib. Plasma Phys. 46, 354 (2006)] by installing two plasma sources: LaB(6) (dc) and helicon (rf) plasma sources; and making three distinct simulators: divertor plasma simulator, space propulsion simulator, and astrophysics simulator. During the first renovation stage, a honeycomblike large area LaB(6) (HLA-LaB(6)) cathode was developed for the divertor plasma simulator to improve the resistance against the thermal shock fragility for large and high density plasma generation. A HLA-LaB(6) cathode is composed of the one inner cathode with 4 in. diameter and the six outer cathodes with 2 in. diameter along with separate graphite heaters. The first plasma is generated with Ar gas and its properties are measured by the electric probes with various discharge currents and magnetic field configurations. Plasma density at the middle of central cell reaches up to 2.6 x 10(12) cm(-3), while the electron temperature remains around 3-3.5 eV at the low discharge current of less than 45 A, and the magnetic field intensity of 870 G. Unique features of electric property of heaters, plasma density profiles, is explained comparing with those of single LaB(6) cathode with 4 in. diameter in DiPS.

  10. Spectral characterization of porous dielectric subwavelength THz fibers fabricated using a microstructured molding technique.

    PubMed

    Dupuis, Alexandre; Mazhorova, Anna; Désévédavy, Frédéric; Rozé, Mathieu; Skorobogatiy, Maksim

    2010-06-21

    We report two novel fabrication techniques, as well as THz spectral transmission and propagation loss measurements of subwavelength plastic wires with highly porous (up to 86%) and non-porous transverse geometries. The two fabrication techniques we describe are based on the microstructured molding approach. In one technique the mold is made completely from silica by stacking and fusing silica capillaries to the bottom of a silica ampoule. The melted material is then poured into the silica mold to cast the microstructured preform. Another approach uses a microstructured mold made of a sacrificial plastic which is co-drawn with a cast preform. Material from the sacrificial mold is then dissolved after fi ber drawing. We also describe a novel THz-TDS setup with an easily adjustable optical path length, designed to perform cutback measurements using THz fibers of up to 50 cm in length. We fi nd that while both porous and non-porous subwavelength fibers of the same outside diameter have low propagation losses (alpha

  11. New determination of the solar apex

    NASA Astrophysics Data System (ADS)

    Fehrenbach, Ch.; Duflot, M.; Burnage, R.

    2001-04-01

    Many studies recently have been performed to determine the velocity vector of the Sun, mainly using the latest data on proper motions and parallaxes given by the Hipparcos satellite. We wished to carry out a similar study using totally independent data: the numerous radial velocities (RV) obtained with the Fehrenbach Objective Prisms (PO). This method allows the determination of the RVs of all the stars contained in the same field. These RVs are relative to each other but are linked to the IAU standard system by means of at least two calibration stars of known RV belonging to that field. These data are very homogeneous. We discuss the precision of the results, and deduce that this material is relevant for the computation of the movement of the Sun towards its Apex. We have performed several studies: 1) With 6965 stars of magnitudes ranging from 7 to 10, measured with the small PO of 15 cm diameter (PPO), with the whole sample and with the same sample split into blue and red stars. 2) With 11 978 stars of magnitudes ranging from 7 to 11, by adding to the previous sample the stars measured with the 60 cm diameter PO associated with the Schmidt telescope of Observatoire de Haute Provence (SPO). The results of both studies are consistent. 3) We have estimated the distance D of all stars studied and determined U, V, W and S for four groups of stars selected according to their distances: D<100, ~ 100500 parsecs. We have determined the variation of U, V, W and S with respect to the distance of the stars. The variation of U, V and S is linear up to 500 parsecs. We can consider that W is constant.

  12. Medicolegal aspects of atypical firearm injuries: a case report.

    PubMed

    Gürses, Murat Serdar; Akan, Okan; Eren, Bülent; Durak, Dilek; Türkmen, Nursel; Cetin, Selçuk

    2014-01-01

    Our case was a twenty year-old man, who was injured during the military duty with G3 infantry rifle in the training area. An atypical firearm entry wound on the left side of sternum which was 4.5 cm in diameter, and was surrounded by six irregular skin burn wounds by a flash-suppressor and a 0.7 cm diameter firearm exit wound at space on the left midscapular line. Our case emphasizes that the interpretation of properties of these atypical firearm entry wounds need to be carefully assessed by physicians.

  13. Endocardial fibrosarcoma in a reticulated python (Python reticularis).

    PubMed

    Gumber, Sanjeev; Nevarez, Javier G; Cho, Doo-Youn

    2010-11-01

    A female, reticulated python (Python reticularis) of unknown age was presented with a history of lethargy, weakness, and distended coelom. Physical examination revealed severe dystocia and stomatitis. The reticulated python was euthanized due to a poor clinical prognosis. Postmortem examination revealed marked distention of the reproductive tract with 26 eggs (10-12 cm in diameter), pericardial effusion, and a slightly firm, pale tan mass (3-4 cm in diameter) adhered to the endocardium at the base of aorta. Based on histopathologic and transmission electron microscopic findings, the diagnosis of endocardial fibrosarcoma was made.

  14. Studies of dished accelerator grids for 30-cm ion thrusters

    NASA Technical Reports Server (NTRS)

    Rawlin, V. K.

    1973-01-01

    Eighteen geometrically different sets of dished accelerator grids were tested on five 30-cm thrusters. The geometric variation of the grids included the grid-to-grid spacing, the screen and accelerator hole diameters and thicknesses, the screen and accelerator open area fractions, ratio of dish depth to dish diameter, compensation, and aperture shape. In general, the data taken over a range of beam currents for each grid set included the minimum total accelerating voltage required to extract a given beam current and the minimum accelerator grid voltage required to prevent electron backstreaming.

  15. Dust Cloud Modeling and Propagation Effects for Radar and Communications Codes

    DTIC Science & Technology

    1978-11-01

    particles can be described by a power law probabi 1it Y d i st r i ut i on with a power exponent of 4. Four is a typical value for dust particlIs from...loose unconsolidated soils such as desert alluviun, blust ,eera ted from a nuclear cratering explosion in rock and cohes ive soil s haN pO,,e r exponent ...da p = power law exponent amin = minimum particle diameter in the distribution (cm) a = maximum particle diameter in the distribution (cm).max The log

  16. Macrosegregation during plane front directional solidification of Csl-1 wt. percent Tll alloy

    NASA Technical Reports Server (NTRS)

    Sidawi, I. M. S.; Tewari, S. N.

    1991-01-01

    Macrosegregation produced during vertical Bridgeman directional solidification of Csl-1 wt. pct. Tll in crucibles of varying diameter, from 0.5 to 2.0 cm, was examined. Gravity driven convection is present in the melt even in the smallest crucible diameter of 0.5 cm. Observed solutal profiles are in agreement with the analytical boundary layer model of Favier which describes macrosegregation in the presence of convection. The scintillation efficiency of Csl decreases along the specimen length as the thallium iodide content of the alloy increases.

  17. Treatment of Post-Stent Gastroesophageal Reflux by Anti-Reflux Z-Stent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davies, Roger Philip; Kew, Jacqueline; Byrne, Peter D.

    2000-11-15

    Severe symptoms of heartburn and retrosternal pain consistent with gastro-esophageal reflux (GER) developed in a patient following placement of a conventional self-expanding 16-24-mm-diameter x 12-cm-long esophageal stent across the gastroesophageal junction to treat an obstructing esophageal carcinoma. A second 18-mm-diameter x 10-cm-long esophageal stent with anti-reflux valve was deployed coaxially and reduced symptomatic GER immediately. Improvement was sustained at 4-month follow-up. An anti-reflux stent can be successfully used to treat significant symptomatic GER after conventional stenting.

  18. A 5000-hour test of a grid-translation beam-deflection system for a 5-cm diameter Kaufman thruster

    NASA Technical Reports Server (NTRS)

    Lathem, W. C.

    1973-01-01

    A grid-translation type beam deflection system was tested on a 5-cm diameter mercury ion thruster for 5000 hours at a thrust level of about 0.36 mlb. During the first 2000 hours the beam was vectored 10 degrees in one direction. No erosion damage attributable to beam deflection was detected. Results indicate a possible lifetime of 15,000 to 20,000 hours. An optimized neutralizer position was used which eliminated the sputter erosion groove observed on the SERT 2 thrusters.

  19. Two normal incidence collimators designed for the calibration of the extreme ultraviolet explorer

    NASA Technical Reports Server (NTRS)

    Jelinsky, Sharon R.; Welsh, Barry; Jelinsky, Patrick; Spiller, Eberhard

    1988-01-01

    Two Dall-Kirkham, normal incidence collimators have been designed to calibrate the imaging properties of the Extreme Ultraviolet Explorer over the wavelength region from 114 to 2000 A. The mirrors of the short-wavelength, 25-cm diameter collimator are superpolished Zerodur which have been multilayer coated for optimal reflectivity at 114 A. The mirrors of the long-wavelength, 41.25-cm diameter collimator are gold coated Zerodur for high reflectance above 300 A. The design, performance, and future use of these collimators in the extreme ultra-violet is discussed.

  20. Low-frequency wide-field fluorescence lifetime imaging using a high-power near-infrared light-emitting diode light source

    PubMed Central

    Gioux, Sylvain; Lomnes, Stephen J.; Choi, Hak Soo; Frangioni, John V.

    2010-01-01

    Fluorescence lifetime imaging (FLi) could potentially improve exogenous near-infrared (NIR) fluorescence imaging, because it offers the capability of discriminating a signal of interest from background, provides real-time monitoring of a chemical environment, and permits the use of several different fluorescent dyes having the same emission wavelength. We present a high-power, LED-based, NIR light source for the clinical translation of wide-field (larger than 5 cm in diameter) FLi at frequencies up to 35 MHz. Lifetime imaging of indocyanine green (ICG), IRDye 800-CW, and 3,3′-diethylthiatricarbocyanine iodide (DTTCI) was performed over a large field of view (10 cm by 7.5 cm) using the LED light source. For comparison, a laser diode light source was employed as a gold standard. Experiments were performed both on the bench by diluting the fluorescent dyes in various chemical environments in Eppendorf tubes, and in vivo by injecting the fluorescent dyes mixed in Matrigel subcutaneously into CD-1 mice. Last, measured fluorescence lifetimes obtained using the LED and the laser diode sources were compared with those obtained using a state-of-the-art time-domain imaging system and with those previously described in the literature. On average, lifetime values obtained using the LED and the laser diode light sources were consistent, exhibiting a mean difference of 3% from the expected values and a coefficient of variation of 12%. Taken together, our study offers an alternative to laser diodes for clinical translation of FLi and explores the use of relatively low frequency modulation for in vivo imaging. PMID:20459250

  1. Field soil aggregate stability kit for soil quality and rangeland health evaluations

    USGS Publications Warehouse

    Herrick, J.E.; Whitford, W.G.; de Soyza, A. G.; Van Zee, J. W.; Havstad, K.M.; Seybold, C.A.; Walton, M.

    2001-01-01

    Soil aggregate stability is widely recognized as a key indicator of soil quality and rangeland health. However, few standard methods exist for quantifying soil stability in the field. A stability kit is described which can be inexpensively and easily assembled with minimal tools. It permits up to 18 samples to be evaluated in less than 10 min and eliminates the need for transportation, minimizing damage to soil structure. The kit consists of two 21??10.5??3.5 cm plastic boxes divided into eighteen 3.5??3.5 cm sections, eighteen 2.5-cm diameter sieves with 1.5-mm distance openings and a small spatula used for soil sampling. Soil samples are rated on a scale from one to six based on a combination of ocular observations of slaking during the first 5 min following immersion in distilled water, and the percent remaining on a 1.5-mm sieve after five dipping cycles at the end of the 5-min period. A laboratory comparison yielded a correlation between the stability class and percent aggregate stability based on oven dry weight remaining after treatment using a mechanical sieve. We have applied the method in a wide variety of agricultural and natural ecosystems throughout western North America, including northern Mexico, and have found that it is highly sensitive to differences in management and plant community composition. Although the field kit cannot replace the careful laboratory-based measurements of soil aggregate stability, it can clearly provide valuable information when these more intensive procedures are not possible.

  2. Preparation of 2-in.-diameter (001) β-Ga2O3 homoepitaxial wafers by halide vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Thieu, Quang Tu; Wakimoto, Daiki; Koishikawa, Yuki; Sasaki, Kohei; Goto, Ken; Konishi, Keita; Murakami, Hisashi; Kuramata, Akito; Kumagai, Yoshinao; Yamakoshi, Shigenobu

    2017-11-01

    The homoepitaxial growth of thick β-Ga2O3 layers on 2-in.-diameter (001) wafers was demonstrated by halide vapor phase epitaxy. Growth rates of 3 to 4 µm/h were confirmed for growing intentionally Si-doped n-type layers. A homoepitaxial layer with an average thickness and carrier concentration of 10.9 µm and 2.7 × 1016 cm-3 showed standard deviations of 1.8 µm (16.5%) and 0.5 × 1016 cm-3 (19.7%), respectively. Ni Schottky barrier diodes fabricated directly on a 5.3-µm-thick homoepitaxial layer with a carrier concentration of 3.4 × 1016 cm-3 showed reasonable reverse and forward characteristics, i.e., breakdown voltages above 200 V and on-resistances of 3.8-7.7 mΩ cm2 at room temperature.

  3. Generation of disc-like plasma from laser-matter interaction in the presence of a strong external magnetic field

    DOE PAGES

    Ivanov, V. V.; Maximov, A. V.; Betti, R.; ...

    2017-05-16

    Dynamics of laser produced plasma in a strong magnetic field was studied here using a 1 MA pulsed power generator coupled to an intense, high-energy laser. A 2–2.5 MG magnetic field was generated on the surface of a rod load 0.8–1.2 mm in diameter. A sub-nanosecond laser pulse with intensity of 3 × 10 15 W cm -2 was focused on the rod load surface. Side-on laser diagnostics showed the generation of two collimated jets 1–3 mm long on the front and rear sides of the load. End-on laser diagnostics reveal that the laser produced plasma in the MG magneticmore » field takes the form of a thin disc as the plasma propagates along the magnetic field lines. The disc-like plasma expands radially across the magnetic field with a velocity of 250 km s -1. An electron temperature of 400 eV was measured in the laser-produced plasma on the rod load.« less

  4. Generation of disc-like plasma from laser-matter interaction in the presence of a strong external magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ivanov, V. V.; Maximov, A. V.; Betti, R.

    Dynamics of laser produced plasma in a strong magnetic field was studied here using a 1 MA pulsed power generator coupled to an intense, high-energy laser. A 2–2.5 MG magnetic field was generated on the surface of a rod load 0.8–1.2 mm in diameter. A sub-nanosecond laser pulse with intensity of 3 × 10 15 W cm -2 was focused on the rod load surface. Side-on laser diagnostics showed the generation of two collimated jets 1–3 mm long on the front and rear sides of the load. End-on laser diagnostics reveal that the laser produced plasma in the MG magneticmore » field takes the form of a thin disc as the plasma propagates along the magnetic field lines. The disc-like plasma expands radially across the magnetic field with a velocity of 250 km s -1. An electron temperature of 400 eV was measured in the laser-produced plasma on the rod load.« less

  5. A systematic Monte Carlo simulation study of the primitive model planar electrical double layer over an extended range of concentrations, electrode charges, cation diameters and valences

    NASA Astrophysics Data System (ADS)

    Valiskó, Mónika; Kristóf, Tamás; Gillespie, Dirk; Boda, Dezső

    2018-02-01

    The purpose of this study is to provide data for the primitive model of the planar electrical double layer, where ions are modeled as charged hard spheres, the solvent as an implicit dielectric background (with dielectric constant ɛ = 78.5), and the electrode as a smooth, uniformly charged, hard wall. We use canonical and grand canonical Monte Carlo simulations to compute the concentration profiles, from which the electric field and electrostatic potential profiles are obtained by solving Poisson's equation. We report data for an extended range of parameters including 1:1, 2:1, and 3:1 electrolytes at concentrations c = 0.0001 - 1 M near electrodes carrying surface charges up to σ = ±0.5 Cm-2. The anions are monovalent with a fixed diameter d- = 3 Å, while the charge and diameter of cations are varied in the range z+ = 1, 2, 3 and d+ = 1.5, 3, 6, and 9 Å (the temperature is 298.15 K). We provide all the raw data in the supplementary material (ftp://ftp.aip.org/epaps/aip_advances/E-AAIDBI-8-084802">supplementary material).

  6. Monte Carlo modeling of ultrasound probes for image guided radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bazalova-Carter, Magdalena, E-mail: bazalova@uvic.ca; Schlosser, Jeffrey; Chen, Josephine

    2015-10-15

    Purpose: To build Monte Carlo (MC) models of two ultrasound (US) probes and to quantify the effect of beam attenuation due to the US probes for radiation therapy delivered under real-time US image guidance. Methods: MC models of two Philips US probes, an X6-1 matrix-array transducer and a C5-2 curved-array transducer, were built based on their megavoltage (MV) CT images acquired in a Tomotherapy machine with a 3.5 MV beam in the EGSnrc, BEAMnrc, and DOSXYZnrc codes. Mass densities in the probes were assigned based on an electron density calibration phantom consisting of cylinders with mass densities between 0.2 andmore » 8.0 g/cm{sup 3}. Beam attenuation due to the US probes in horizontal (for both probes) and vertical (for the X6-1 probe) orientation was measured in a solid water phantom for 6 and 15 MV (15 × 15) cm{sup 2} beams with a 2D ionization chamber array and radiographic films at 5 cm depth. The MC models of the US probes were validated by comparison of the measured dose distributions and dose distributions predicted by MC. Attenuation of depth dose in the (15 × 15) cm{sup 2} beams and small circular beams due to the presence of the probes was assessed by means of MC simulations. Results: The 3.5 MV CT number to mass density calibration curve was found to be linear with R{sup 2} > 0.99. The maximum mass densities in the X6-1 and C5-2 probes were found to be 4.8 and 5.2 g/cm{sup 3}, respectively. Dose profile differences between MC simulations and measurements of less than 3% for US probes in horizontal orientation were found, with the exception of the penumbra region. The largest 6% dose difference was observed in dose profiles of the X6-1 probe placed in vertical orientation, which was attributed to inadequate modeling of the probe cable. Gamma analysis of the simulated and measured doses showed that over 96% of measurement points passed the 3%/3 mm criteria for both probes placed in horizontal orientation and for the X6-1 probe in vertical orientation. The X6-1 probe in vertical orientation caused the highest attenuation of the 6 and 15 MV beams, which at 10 cm depth accounted for 33% and 43% decrease compared to the respective (15 × 15) cm{sup 2} open fields. The C5-2 probe in horizontal orientation, on the other hand, caused a dose increase of 10% and 53% for the 6 and 15 MV beams, respectively, in the buildup region at 0.5 cm depth. For the X6-1 probe in vertical orientation, the dose at 5 cm depth for the 3-cm diameter 6 MV and 5-cm diameter 15 MV beams was attenuated compared to the corresponding open fields to a greater degree by 65% and 43%, respectively. Conclusions: MC models of two US probes used for real-time image guidance during radiotherapy have been built. Due to the high beam attenuation of the US probes, the authors generally recommend avoiding delivery of treatment beams that intersect the probe. However, the presented MC models can be effectively integrated into US-guided radiotherapy treatment planning in cases for which beam avoidance is not practical due to anatomy geometry.« less

  7. On the use of helium-filled soap bubbles for large-scale tomographic PIV in wind tunnel experiments

    NASA Astrophysics Data System (ADS)

    Scarano, Fulvio; Ghaemi, Sina; Caridi, Giuseppe Carlo Alp; Bosbach, Johannes; Dierksheide, Uwe; Sciacchitano, Andrea

    2015-02-01

    The flow-tracing fidelity of sub-millimetre diameter helium-filled soap bubbles (HFSB) for low-speed aerodynamics is studied. The main interest of using HFSB in relation to micron-size droplets is the large amount of scattered light, enabling larger-scale three-dimensional experiments by tomographic PIV. The assessment of aerodynamic behaviour closely follows the method proposed in the early work of Kerho and Bragg (Exp Fluids 50:929-948, 1994) who evaluated the tracer trajectories around the stagnation region at the leading edge of an airfoil. The conclusions of the latter investigation differ from the present work, which concludes sub-millimetre HFSB do represent a valid alternative for quantitative velocimetry in wind tunnel aerodynamic experiments. The flow stagnating ahead of a circular cylinder of 25 mm diameter is considered at speeds up to 30 m/s. The tracers are injected in the free-stream and high-speed PIV, and PTV are used to obtain the velocity field distribution. A qualitative assessment based on streamlines is followed by acceleration and slip velocity measurements using PIV experiments with fog droplets as a term of reference. The tracing fidelity is controlled by the flow rates of helium, liquid soap and air in HFSB production. A characteristic time response, defined as the ratio of slip velocity and the fluid acceleration, is obtained. The feasibility of performing time-resolved tomographic PIV measurements over large volumes in aerodynamic wind tunnels is also studied. The flow past a 5-cm-diameter cylinder is measured over a volume of 20 × 20 × 12 cm3 at a rate of 2 kHz. The achieved seeding density of <0.01 ppp enables resolving the Kármán vortices, whereas turbulent sub-structures cannot be captured.

  8. Qualified measurement setup of polarization extinction ratio for Panda PMF with LC/UPC connector

    NASA Astrophysics Data System (ADS)

    Thongdaeng, Rutsuda; Worasucheep, Duang-rudee; Ngiwprom, Adisak

    2018-03-01

    Polarization Extinction Ratio (PER) is one of the key parameters for Polarization Maintaining Fiber (PMF) connector. Based on our previous studies, the bending radius of fiber greater than 1.5 cm will not affect the insertion loss of PMF [1]. Moreover, the measured PER of Panda PMF with LC/UPC connectors is more stable when that PMF is coiled around a hot rod with a minimum of 3-cm in diameter at 75°C temperature [2]. Hence, the hot rod with less constrained 6-cm in diameter at constant 75°C was selected for this PER measurement. Two PER setups were verified and compared for measuring LC/UPC PMF connectors. The Polarized Laser Source (PLS) at 1550 nm wavelength and PER meter from OZ Optics were used in both setups, in which the measured connector was connected to PLS at 0° angle while the other end was connected to PER meter. In order to qualify our setups, the percentage of Repeatability and Reproducibility (%R&R) were tested and calculated. In each setup, the PER measurement was repeated 3 trials by 3 appraisers using 10 LC/UPC PMF connectors (5 LC/UPC PMF patchcords with 3.5+/-0.5 meters in length) in random order. The 1st setup, PMF was coiled at a larger 20-cm diameter for 3 to 5 loops and left in room temperature during the test. The 2nd setup, PMF was coiled around a hot rod at constant 75°C with 6-cm diameter for 8 to 10 loops for at least 5 minutes before testing. There are 3 ranges of %R&R acceptation guide line: <10% is acceptable, between 10% - 30% is marginal, and <30% is unacceptable. According to our results, the %R&R of the 1st PER test setup was 16.2% as marginality, and the 2nd PER test setup was 8.9% as acceptance. Thus, providing the better repeatability and reproducibility, this 2nd PER test setup having PMF coiled around a hot rod at constant 75°C with 6-cm diameter was selected for our next study of the impact of hot temperature on PER in LC/UPC PMF connector.

  9. Controlling stimulation strength and focality in electroconvulsive therapy via current amplitude and electrode size and spacing: comparison with magnetic seizure therapy.

    PubMed

    Deng, Zhi-De; Lisanby, Sarah H; Peterchev, Angel V

    2013-12-01

    Understanding the relationship between the stimulus parameters of electroconvulsive therapy (ECT) and the electric field characteristics could guide studies on improving risk/benefit ratio. We aimed to determine the effect of current amplitude and electrode size and spacing on the ECT electric field characteristics, compare ECT focality with magnetic seizure therapy (MST), and evaluate stimulus individualization by current amplitude adjustment. Electroconvulsive therapy and double-cone-coil MST electric field was simulated in a 5-shell spherical human head model. A range of ECT electrode diameters (2-5 cm), spacing (1-25 cm), and current amplitudes (0-900 mA) was explored. The head model parameters were varied to examine the stimulus current adjustment required to compensate for interindividual anatomical differences. By reducing the electrode size, spacing, and current, the ECT electric field can be more focal and superficial without increasing scalp current density. By appropriately adjusting the electrode configuration and current, the ECT electric field characteristics can be made to approximate those of MST within 15%. Most electric field characteristics in ECT are more sensitive to head anatomy variation than in MST, especially for close electrode spacing. Nevertheless, ECT current amplitude adjustment of less than 70% can compensate for interindividual anatomical variability. The strength and focality of ECT can be varied over a wide range by adjusting the electrode size, spacing, and current. If desirable, ECT can be made as focal as MST while using simpler stimulation equipment. Current amplitude individualization can compensate for interindividual anatomical variability.

  10. Palm top plasma focus device as a portable pulsed neutron source.

    PubMed

    Rout, R K; Niranjan, Ram; Mishra, P; Srivastava, R; Rawool, A M; Kaushik, T C; Gupta, Satish C

    2013-06-01

    Development of a palm top plasma focus device generating (5.2 ± 0.8) × 10(4) neutrons∕pulse into 4π steradians with a pulse width of 15 ± 3 ns is reported for the first time. The weight of the system is less than 1.5 kg. The system comprises a compact capacitor bank, a triggered open air spark gap switch, and a sealed type miniature plasma focus tube. The setup is around 14 cm in diameter and 12.5 cm in length. The energy driver for the unit is a capacitor bank of four cylindrical commercially available electrolytic capacitors. Each capacitor is of 2 μF capacity, 4.5 cm in diameter, and 9.8 cm in length. The cost of each capacitor is less than US$ 10. The internal diameter and the effective length of the plasma focus unit are 2.9 cm and 5 cm, respectively. A DC to DC converter power supply powered by two rechargeable batteries charges the capacitor bank to the desired voltage and also provides a trigger pulse of -15 kV to the spark gap. The maximum energy of operation of the device is 100 J (8 μF, 5 kV, 59 kA) with deuterium gas filling pressure of 3 mbar. The neutrons have also been produced at energy as low as 36 J (3 kV) of operation. The neutron diagnostics are carried out with a bank of (3)He detectors and with a plastic scintillator detector. The device is portable, reusable, and can be operated for multiple shots with a single gas filling.

  11. Palm top plasma focus device as a portable pulsed neutron source

    NASA Astrophysics Data System (ADS)

    Rout, R. K.; Niranjan, Ram; Mishra, P.; Srivastava, R.; Rawool, A. M.; Kaushik, T. C.; Gupta, Satish C.

    2013-06-01

    Development of a palm top plasma focus device generating (5.2 ± 0.8) × 104 neutrons/pulse into 4π steradians with a pulse width of 15 ± 3 ns is reported for the first time. The weight of the system is less than 1.5 kg. The system comprises a compact capacitor bank, a triggered open air spark gap switch, and a sealed type miniature plasma focus tube. The setup is around 14 cm in diameter and 12.5 cm in length. The energy driver for the unit is a capacitor bank of four cylindrical commercially available electrolytic capacitors. Each capacitor is of 2 μF capacity, 4.5 cm in diameter, and 9.8 cm in length. The cost of each capacitor is less than US 10. The internal diameter and the effective length of the plasma focus unit are 2.9 cm and 5 cm, respectively. A DC to DC converter power supply powered by two rechargeable batteries charges the capacitor bank to the desired voltage and also provides a trigger pulse of -15 kV to the spark gap. The maximum energy of operation of the device is 100 J (8 μF, 5 kV, 59 kA) with deuterium gas filling pressure of 3 mbar. The neutrons have also been produced at energy as low as 36 J (3 kV) of operation. The neutron diagnostics are carried out with a bank of 3He detectors and with a plastic scintillator detector. The device is portable, reusable, and can be operated for multiple shots with a single gas filling.

  12. Vehicular air pollution, playgrounds, and youth athletic fields.

    PubMed

    Rundell, Kenneth W; Caviston, Renee; Hollenbach, Amanda M; Murphy, Kerri

    2006-07-01

    In spite of epidemiological evidence concerning vehicular air pollution and adverse respiratory/cardiovascular health, many athletic fields and school playgrounds are adjacent to high traffic roadways and could present long-term health risks for exercising children and young adults. Particulate matter (PM(1),0.02-1.0 microm diameter) number counts were taken serially at four elementary school athletic/playground fields and at one university soccer field. Elementary school PM1 measurements were taken over 17 days; measurements at the university soccer field were taken over 62 days. The high-traffic-location elementary school field demonstrated higher 17-day [PM1] than the moderate and 2 low traffic elementary school fields (48,890 +/- 34,260, 16,730 +/- 10,550, 11,960 +/- 6680, 10,030 +/- 6280, respective mean counts; p < .05). The 62-day mean PM1 values at the university soccer field ranged from 115,000 to 134,000 particles cm(-3). Lowest mean values were recorded at measurement sites furthest from the highway (approximately 34,000 particles cm(-3)) and followed a second-order logarithmic decay (R2 = .999) with distance away from the highway. Mean NO2 and SO2 levels were below 100 ppb, mean CO was 0.33 +/- 1.87 ppm, and mean O3 was 106 +/- 47 ppb. Ozone increased with rising temperature and was highest in the warmer afternoon hours (R = .61). Although the consequence of daily recess play and athletic activities by school children and young athletes in high ambient [PM1] conditions has not yet been clearly defined, this study is a critical component to evaluating functional effects of chronic combustion-derived PM exposure on these exercising schoolchildren and young adults. Future studies should examine threshold limits and mechanistic actions of real-world particle exposure.

  13. Fabrication, Polarization of Electrospun Polyvinylidene Fluoride Electret Fibers and Effect on Capturing Nanoscale Solid Aerosols †

    PubMed Central

    Lolla, Dinesh; Lolla, Manideep; Abutaleb, Ahmed; Shin, Hyeon U.; Reneker, Darrell H.; Chase, George G.

    2016-01-01

    Electrospun polyvinylidene fluoride (PVDF) fiber mats with average fiber diameters (≈200 nm, ≈2000 nm) were fabricated by controlled electrospinning conditions. These fiber mats were polarized using a custom-made device to enhance the formation of the electret β-phase ferroelectric property of the fibers by simultaneous uniaxial stretching of the fiber mat and heating the mat to the Curie temperature of the PVDF polymer in a strong electric field of 2.5 kV/cm. Scanning electron microscopy, Fourier transform infrared spectroscopy, thermal gravimetric analysis, differential scanning calorimetry and Brunauer-Emmett-Teller (BET) surface area analyses were performed to characterize both the internal and external morphologies of the fiber mat samples to study polarization-associated changes. MATLAB simulations revealed the changes in the paths of the electric fields and the magnetic flux inside the polarization field with inclusion of the ferroelectric fiber mats. Both polarized and unpolarized fiber mats were challenged as filters against NaCl particles with average particle diameters of about 150 nm using a TSI 8130 to study capture efficiencies and relative pressure drops. Twelve filter experiments were conducted on each sample at one month time intervals between experiments to evaluate the reduction of the polarization enhancement over time. The results showed negligible polarization loss for the 200-nm fiber sample. The polarized mats had the highest filter efficiencies and lowest pressure drops. PMID:28773798

  14. Brazing of beryllium for structural applications

    NASA Technical Reports Server (NTRS)

    Vogan, J. W.

    1972-01-01

    Progress made in fabricating a beryllium compression tube structure and a stiffened beryllium panel. The compression tube was 7.6cm in diameter and 30.5cm long with titanium end fittings. The panel was 203cm long and stiffened with longitudinal stringers. Both units were assembled by brazing with BAg-18 braze alloy. The detail parts were fabricated by hot forming 0.305cm beryllium sheet and the brazing parameters established.

  15. Modeling Czochralski growth of oxide crystals for piezoelectric and optical applications

    NASA Astrophysics Data System (ADS)

    Stelian, C.; Duffar, T.

    2018-05-01

    Numerical modeling is applied to investigate the impact of crystal and crucible rotation on the flow pattern and crystal-melt interface shape in Czochralski growth of oxide semi-transparent crystals used for piezoelectric and optical applications. Two cases are simulated in the present work: the growth of piezoelectric langatate (LGT) crystals of 3 cm in diameter in an inductive furnace, and the growth of sapphire crystals of 10 cm in diameter in a resistive configuration. The numerical results indicate that the interface shape depends essentially on the internal radiative heat exchanges in the semi-transparent crystals. Computations performed by applying crystal/crucible rotation show that the interface can be flattened during LGT growth, while flat-interface growth of large diameter sapphire crystals may not be possible.

  16. Relation of supplementary feeding to resumptions of menstruation and ovulation in lactating postpartum women.

    PubMed

    Li, Wei; Qiu, Yi

    2007-05-20

    Resumption of menstrual cycles is one of the indicators for restoration of reproductive capability in postpartum women. However, menstruation does not necessarily mean that ovulation has taken place. The aim of this study was to investigate the relation of supplementary feeding to return of menstruation and ovulation after delivery. A questionnaire was used to obtain data from 101 breastfeeding mothers. The following elements were analyzed: age, education level, breastfeeding practice, time of return of menstruation, contraceptive practice, and starting time of supplementary feeding during the lactation at intervals of 6 weeks to 18 months after delivery. The ovulation was continuously monitored by ultrasonography and basal body temperature (BBT) measurement. By ultrasonography, 53 of the 101 women (52.5%) had the first ovulation (follicle > 1.8 cm in diameter) within 154 days after delivery on average, among whom 11 (10.9%, 11/101) had restoration of ovulation within 4 months and 42 (41.6%, 42/101) had it after 4 months. In women with follicles > 1.8 cm in diameter (n = 53), the menstruation resumed (138 +/- 84) days after delivery, and the supplementary feeding was started at (4.0 +/- 1.1) months, which were significantly earlier than those in the women with follicular diameter < 1.7 cm (n = 48; (293 +/- 88) days, (5.1 +/- 1.3) months; t = 9.003, P < 0.01 and t = 4.566, P < 0.01). In the women with follicles < 1.8 cm in diameter, 30 had return of menstruation before the end of ultrasonographic monitoring, while only 8 in the women with follicular diameter < 1.7 cm had menstrual resumption at the same time (chi(2) = 16.91, P < 0.01). The starting time of supplementary feeding was positively correlated with the time of the restoration of menstruation (n = 100, r = 0.4764, P < 0.01) and first ovulation after delivery (n = 53, r = 0.5554, P < 0.01). In this series, no woman had pregnancy within 18 months postpartum. Supplementary feeding can affect the restoration of menstrual cycles and ovulation in lactating postpartum women.

  17. Forcing lateral electron disequilibrium to spare lung tissue: a novel technique for stereotactic body radiation therapy of lung cancer

    NASA Astrophysics Data System (ADS)

    Disher, Brandon; Hajdok, George; Gaede, Stewart; Mulligan, Matthew; Battista, Jerry J.

    2013-10-01

    Stereotactic body radiation therapy (SBRT) has quickly become a preferred treatment option for early-stage lung cancer patients who are ineligible for surgery. This technique uses tightly conformed megavoltage (MV) x-ray beams to irradiate a tumour with ablative doses in only a few treatment fractions. Small high energy x-ray fields can cause lateral electron disequilibrium (LED) to occur within low density media, which can reduce tumour dose. These dose effects may be challenging to predict using analytic dose calculation algorithms, especially at higher beam energies. As a result, previous authors have suggested using low energy photons (<10 MV) and larger fields (>5 × 5 cm2) for lung cancer patients to avoid the negative dosimetric effects of LED. In this work, we propose a new form of SBRT, described as LED-optimized SBRT (LED-SBRT), which utilizes radiotherapy (RT) parameters designed to cause LED to advantage. It will be shown that LED-SBRT creates enhanced dose gradients at the tumour/lung interface, which can be used to manipulate tumour dose, and/or normal lung dose. To demonstrate the potential benefits of LED-SBRT, the DOSXYZnrc (National Research Council of Canada, Ottawa, ON) Monte Carlo (MC) software was used to calculate dose within a cylindrical phantom and a typical lung patient. 6 MV or 18 MV x-ray fields were focused onto a small tumour volume (diameter ˜1 cm). For the phantom, square fields of 1 × 1 cm2, 3 × 3 cm2, or 5 × 5 cm2 were applied. However, in the patient, 3 × 1 cm2, 3 × 2 cm2, 3 × 2.5 cm2, or 3 × 3 cm2 field sizes were used in simulations to assure target coverage in the superior-inferior direction. To mimic a 180° SBRT arc in the (symmetric) phantom, a single beam profile was calculated, rotated, and beams were summed at 1° segments to accumulate an arc dose distribution. For the patient, a 360° arc was modelled with 36 equally weighted (and spaced) fields focused on the tumour centre. A planning target volume (PTV) was generated by considering the extent of tumour motion over the patient's breathing cycle and set-up uncertainties. All patient dose results were normalized such that at least 95% of the PTV received at least 54 Gy (i.e. D95 = 54 Gy). Further, we introduce ‘LED maps’ as a novel clinical tool to compare the magnitude of LED resulting from the various SBRT arc plans. Results from the phantom simulation suggest that the best lung sparing occurred for RT parameters that cause severe LED. For equal tumour dose coverage, normal lung dose (2 cm outside the target region) was reduced from 92% to 23%, comparing results between the 18 MV (5 × 5 cm2) and 18 MV (1 × 1 cm2) arc simulations. In addition to reduced lung dose for the 18 MV (1 × 1 cm2) arc, maximal tumour dose increased beyond 125%. Thus, LED can create steep dose gradients to spare normal lung, while increasing tumour dose levels (if desired). In the patient simulation, a LED-optimized arc plan was designed using either 18 MV (3 × 1 cm2) or 6 MV (3 × 3cm2) beams. Both plans met the D95 dose coverage requirement for the target. However, the LED-optimized plan increased the maximum, mean, and minimum dose within the PTV by as much as 80 Gy, 11 Gy, and 3 Gy, respectively. Despite increased tumour dose levels, the 18 MV (3 × 1 cm2) arc plan improved or maintained the V20, V5, and mean lung dose metrics compared to the 6 MV (3 × 3 cm2) simulation. We conclude that LED-SBRT has the potential to increase dose gradients, and dose levels within a small lung tumour. The magnitude of tumour dose increase or lung sparing can be optimized through manipulation of RT parameters (e.g. beam energy and field size).

  18. Design of ultrasonic attenuation sensor with focused transmitter for density measurements of a slurry in a large steel pipeline.

    PubMed

    Greenwood, Margaret Stautberg

    2015-12-01

    To design an ultrasonic sensor to measure the attenuation and density of slurry carried by a large steel pipeline (diameter up to 70 cm) is the goal of this research. The pitch-catch attenuation sensor, placed in a small section of the pipeline, contains a send unit with a focused transducer that focuses the ultrasound to a small region of the receive unit on the opposite wall. The focused transducer consists of a section of a sphere (base ∼12 cm) on the outer side of the send unit and a 500 kHz piezoelectric shell of lead zirconate titanate epoxied to it. The Rayleigh surface integral is used to calculate the pressure in steel and in water (slurry). An incremental method to plot the paths of ultrasonic rays shows that the rays focus where expected. Further, there is a region where the parallel rays are perpendicular to the wall of the receive unit. Designs for pipeline diameters of 25 and 71 cm show that the pressure in water at the receive transducer is about 17 times that for a pitch-catch system using 5 cm diameter disk transducers. The enhanced signal increases the sensitivity of the measurements and improves the signal-to-noise ratio.

  19. Multidetector row computed tomography evaluation of the micropig kidney as a potential renal donor.

    PubMed

    Yoon, Woong; Lee, Min Young; Ryu, Jung Min; Moon, Yong Ju; Lee, Sang Hun; Park, Jae Hong; Yun, Seung Pil; Jang, Min Woo; Park, Sung Su; Han, Ho Jae

    2010-03-01

    Multidetector row computed tomography (MDCT) provides anatomical information about the kidney and other internal organs. Presently, the suitability of 64-channel MDCT to assess the kidney of healthy micropigs was evaluated. Morphological evaluations of the kidney and the major renal vessels of six healthy micropigs were carried out using MDCT, recording kidney volume and the diameter and length of renal arteries and veins. The mean diameters and lengths of the renal artery were 0.44 +/- 0.05 and 4.51 +/- 0.55 cm on the right side and 0.46 +/- 0.06 and 3.36 +/- 0.27 cm on the left side, respectively. The mean diameters and lengths of the renal vein were 1.44 +/- 0.52 and 4.22 +/- 1.29 cm on the right side and 1.38 +/- 0.17 and 5.15 +/- 0.87 cm on the left side, respectively. The mean volume of the right kidney was 79.3 +/- 14.5 mL and of the left kidney was 78.0 +/- 13.9 mL. The data presented in this study suggest that the MDCT offers a noninvasive, rapid, and accurate method for the evaluation of the renal anatomy in living kidney donors. It also provides sufficient information about extra-renal anatomy important for donor surgery and determination of organ suitability.

  20. Dose enhancement in radiotherapy of small lung tumors using inline magnetic fields: A Monte Carlo based planning study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oborn, B. M., E-mail: brad.oborn@gmail.com; Ge, Y.; Hardcastle, N.

    2016-01-15

    Purpose: To report on significant dose enhancement effects caused by magnetic fields aligned parallel to 6 MV photon beam radiotherapy of small lung tumors. Findings are applicable to future inline MRI-guided radiotherapy systems. Methods: A total of eight clinical lung tumor cases were recalculated using Monte Carlo methods, and external magnetic fields of 0.5, 1.0, and 3 T were included to observe the impact on dose to the planning target volume (PTV) and gross tumor volume (GTV). Three plans were 6 MV 3D-CRT plans while 6 were 6 MV IMRT. The GTV’s ranged from 0.8 to 16 cm{sup 3}, whilemore » the PTV’s ranged from 1 to 59 cm{sup 3}. In addition, the dose changes in a 30 cm diameter cylindrical water phantom were investigated for small beams. The central 20 cm of this phantom contained either water or lung density insert. Results: For single beams, an inline magnetic field of 1 T has a small impact in lung dose distributions by reducing the lateral scatter of secondary electrons, resulting in a small dose increase along the beam. Superposition of multiple small beams leads to significant dose enhancements. Clinically, this process occurs in the lung tissue typically surrounding the GTV, resulting in increases to the D{sub 98%} (PTV). Two isolated tumors with very small PTVs (3 and 6 cm{sup 3}) showed increases in D{sub 98%} of 23% and 22%. Larger PTVs of 13, 26, and 59 cm{sup 3} had increases of 9%, 6%, and 4%, describing a natural fall-off in enhancement with increasing PTV size. However, three PTVs bounded to the lung wall showed no significant increase, due to lack of dose enhancement in the denser PTV volume. In general, at 0.5 T, the GTV mean dose enhancement is around 60% lower than that at 1 T, while at 3 T, it is 5%–60% higher than 1 T. Conclusions: Monte Carlo methods have described significant and predictable dose enhancement effects in small lung tumor plans for 6 MV radiotherapy when an external inline magnetic field is included. Results of this study indicate that future clinical inline MRI-guided radiotherapy systems will be able to deliver a dosimetrically superior treatment to small (PTV < 15 cm{sup 3}), isolated lung tumors over non-MRI-Linac systems. This increased efficacy coincides with the reimbursement in the United States of lung CT screening and the likely rapid growth in the number of patients with small lung tumors to be treated with radiotherapy.« less

Top