The use of the Artelon CMC Spacer for osteoarthritis of the basal joint of the thumb.
Richard, Marc J; Lunich, Julie A; Correll, Gretchen R
2014-01-01
Favorable clinical outcomes have been reported with the Artelon CMC Spacer, however, several studies have documented complications with the device. The purpose of this study is to review a single surgeon's experience with the Artelon CMC Spacer for the treatment of basal joint arthritis of the thumb. Five thumbs in 6 patients with symptomatic osteoarthritis of the thumb carpometacarpal (CMC) joint were treated with the Artelon CMC Spacer. The mean age of the patients was 60.8 years old. Patients were followed for a mean of 39.3 months (6-63) post-operatively. Complications occurred in 4 of the 6 thumbs and half of the thumbs required at least one secondary operative procedure. A documented foreign-body reaction was present in 2 of the 6 thumbs. The Artelon CMC Spacer is an interposition material that acts as a biologic spacer for arthritic joints while maintaining mechanical strength. Due to an unacceptably high complication rate, we no longer use the Artelon CMC Spacer for the management of basal joint arthritis of the thumb. 4. Copyright © 2014 Hanley & Belfus. Published by Elsevier Inc. All rights reserved.
Blount, Andrew L; Armstrong, Shannon D; Yuan, Frank; Burgess, Scott D
2013-09-01
To examine outcomes and complications of the porous polyurethaneurea (Artelon; Small Bone Innovations, Morrisville, PA) spacer compared to traditional surgical treatment of trapeziectomy with ligament reconstruction and tendon interposition (LRTI). A retrospective chart review was undertaken of patients with carpometacarpal (CMC) arthritis who had either placement of an Artelon spacer or LRTI. Patients were brought back to clinic for interview and functional testing. Pain was graded using a visual analog scale. Grip and pinch strength, as well as range of motion at the first CMC joint, were measured. Nine-hole peg, Moberg pickup, and Jebson-Taylor tests were performed. Research and Development 36, Michigan Hand Outcomes, and Quick Disabilities of the Arm, Shoulder, and Hand questionnaires were administered. Thirty-eight patients received Artelon implants into the CMC joint, and 6 were lost to follow-up. Twelve of 32 patients (37%) required revision surgery with removal of implant and salvage arthroplasty. Twenty patients with nonrevised Artelon implants were compared with 10 patients who received 13 LRTI procedures. Patients with Artelon had significantly less pain improvement compared to those receiving the LRTI procedure. In addition, satisfaction was significantly decreased. There was no significant difference in any other functional or quality of life measures. In our practice, use of the Artelon joint spacer resulted in an explantation rate of 37%. Due to these findings, we have abandoned its use for treatment of basilar thumb osteoarthritis. In contrast to previous studies, pain and satisfaction are worse in patients with intact Artelon spacers than those who had received LRTI. Copyright © 2013 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.
Complications with the use of Artelon in thumb CMC joint arthritis.
Clarke, Sylvan; Hagberg, William; Kaufmann, Robert A; Grand, Aaron; Wollstein, Ronit
2011-09-01
Complications with the use of the Artelon spacer in thumb carpometacarpal (CMC) joint arthritis include inflammation, osteolysis, and persistent pain. We evaluated our short-term results and complications. A retrospective review of 29 patients was performed. Pre- and postoperative radiographs, operative techniques, complications, and subsequent surgeries were analyzed. Pearson's and chi-squared testing was used to identify associations between complications and surgical technique or preoperative radiographic criteria. The average age was age 51 ± 7.7 (34-66), average follow-up was 8 months (1-26). Twelve patients sustained complications. Nine patients displayed postoperative osteolysis. Four patients underwent conversion to CMC suspensionplasty due to persistent pain. The rate of revision surgery and radiographic postoperative osteolysis were not significantly associated with preoperative arthritis grade, metacarpal subluxation, or surgical techniques: fixation method, the bony surface(s) involved in the osteotomy, or spacer modifications. Our study found a significant short-term complication rate following Artelon spacer arthroplasty of the CMC joint. This is higher than previously described. We could not identify any factors that were significantly associated with the complications. It is possible that the inherent instability of the joint or the material of the spacer is involved in implant failure. Further study is necessary to better define the indications for use and specific techniques for the use of the implant.
Bergström, L Magnus; Tehrani-Bagha, Alireza; Nagy, Gergely
2015-04-28
Micelles formed by novel gemini esterquat surfactants have been investigated with small-angle neutron scattering (SANS). The growth behavior of the micelles is found to differ conspicuously depending on the length of the gemini surfactant spacer group. The gemini surfactant with a long spacer form rather small triaxial ellipsoidal tablet-shaped micelles that grow weakly with surfactant concentration in the entire range of measured concentrations. Geminis with a short spacer, on the other hand, form weakly growing oblates or tablets at low concentrations that start to grow much more strongly into polydisperse rodlike or wormlike micelles at higher concentrations. The latter behavior is consistent with the presence of a second CMC that marks the transition from the weakly to the strongly growing regime. It is found that the growth behavior in terms of aggregation number as a function of surfactant concentration always appear concave in weakly growing regimes, while switching to convex behavior in strongly growing regimes. As a result, we are able to determine the second CMC of the geminis with short spacer by means of suggesting a rather precise definition of it, located at the point of inflection of the growth curve that corresponds to the transition from concave to convex growth behavior. Our SANS results are rationalized by comparison with the recently developed general micelle model. In particular, this theory is able to explain and reproduce the characteristic appearances of the experimental growth curves, including the presence of a second CMC and the convex strongly growing regime beyond. By means of optimizing the agreement between predictions from the general micelle model and results from SANS experiments, we are able to determine the three bending elasticity constants spontaneous curvature, bending rigidity, and saddle-splay constant for each surfactant.
Yoshimura, Tomokazu; Okada, Mari; Matsuoka, Keisuke
2016-10-01
Quaternary ammonium salt-type cationic surfactants with an adamantyl group (hydrocarbon-type; C n AdAB, fluorocarbon-type; C m F C 3 AdAB, bola-type; Ad-s-Ad, where n, m and s represent hydrocarbon chain lengths of 8-16, fluorocarbon chain lengths of 4-8, and spacer chain length of 10-12) were synthesized via quaternization of N, N-dimethylaminoadamantane and n-alkyl bromide or 1, n-dibromoalkane. Conductivity and surface tension were measured to characterize the solution properties of the synthesized adamantyl group-containing cationic surfactants. In addition, the effects of hydrocarbon and fluorocarbon chain lengths and spacer chain length between headgroups on the measured properties were evaluated by comparison with those of conventional cationic surfactants. The critical micelle concentration (CMC) of C n AdAB and Ad-s-Ad was 2/5 of that for the corresponding conventional surfactants C n TAB and bola-type surfactants with similar number of carbons in the alkyl or alkylene chain; this was because of the increased hydrophobicity due to the adamantyl group. A linear relationship between the logarithm of CMC and the hydrocarbon chain length for C n AdAB was observed, as well as for C n TAB. The slope of the linear correlation for both surfactants was almost the same, indicating that the adamantyl group does not affect the CMC with variations in the hydrocarbon chain length. Similar to conventional surfactants C n TAB, the hydrocarbon-type C n AdAB is highly efficient in reducing the surface tension of water, despite the large occupied area per molecule resulting from the relatively bulky structure of the adamantane skeleton. On the other hand, the bola-type Ad-s-Ad resulted in increased surface tension compared to C n AdAB, indicating that the curved chain between adamantyl groups leads to poor adsorption and orientation at the air-water interface.
Patil, Sachin Vasant; Patil, Sanyukta Arun; Pratap, Amit Prabhakar
2016-09-01
A series of diester containing zwitterionic gemini surfactants, N,N-dimethyl-N-alkyl-2-[[hydroxy (alkoxy) phosphinyl]oxy]-alkylammonium designated as C8(-)-S-Cn(+), S = 2 and 3, n = 12, 14 and 16, were synthesized and characterized by instrumental techniques namely FT-IR, (1)H NMR, (13)C NMR, (31)P NMR and Mass spectral studies. These new gemini surfactants further investigated for their various surfactant properties. The critical micelle concentration (cmc) and the effectiveness of surface tension reduction (Πcmc) were determined as a function of surfactant concentration by means of surface tension measurement. Micellization and viscosity properties were investigated by surface tension, electrical conductivity, dye micellization and rheology techniques. The findings of the aqueous surfactant system obtained were impacted by polarity, size and the nature of zwitterions as the surface. The thermodynamic and viscosity properties of these surfactants found to be based on the structures of gemini surfactants.
Guise, R; Filipe-Ribeiro, L; Nascimento, D; Bessa, O; Nunes, F M; Cosme, F
2014-08-01
Carboxylmethylcellulose (CMC) is authorised to prevent wine tartaric instability. The effect of CMC structural characteristics on their effectiveness is not well understood. The main purpose of this study was to compare the impact of CMC's with different degrees of substitution and molecular weight, on tartaric stability, tartaric acid, mineral concentration, phenolic compounds, chromatic and sensory characteristics in white wines, and compare its effectiveness with other oenological additives. Mini-contact test showed that all CMC's and metatartaric acid stabilized the wines; however, some arabic gums and mannoproteins do not stabilized the wines. CMC's had no significant effect on tartaric acid, potassium, calcium and sensory attributes. Tartaric stabilization effectiveness depends on CMC's degree of substitution, but also on wine matrix, probably its initial potassium content. Results suggest that CMC is a good alternative to white wine tartaric stabilization; nevertheless deeper structure knowledge is necessary in order to choose the appropriate CMC for a given tartaric instability. Copyright © 2014 Elsevier Ltd. All rights reserved.
Huang, Siqi; Yu, Zhiming; Zhang, Yang; Qi, Chusheng; Zhang, Shifeng
2017-01-01
In order to fabricate antimicrobial carboxymethyl chitosan-nanosilver (CMC-Ag) hybrids with controlled silver release, this study demonstrated comparable formation via three synthetic protocols: 1) carboxymethyl chitosan (CMC) and glucose (adding glucose after AgNO 3 ), 2) CMC and glucose (adding glucose before AgNO 3 ), and 3) CMC only. Under principles of green chemistry, the synthesis was conducted in an aqueous medium exposed to microwave irradiation for 10 minutes with nontoxic chemicals. The structure and formation mechanisms of the three CMC-Ag hybrids were explored using X-ray diffraction, ultraviolet-visible spectroscopy, transmission electron microscopy, and Fourier-transform infrared analyses. Additionally, antimicrobial activity and in vitro silver release of the three synthesized hybrids were investigated in detail. The results revealed that a large number of stable, uniform, and small silver nanoparticles (AgNPs) were synthesized in situ on CMC chains via protocol 1. AgNPs were well dispersed with narrow size distribution in the range of 6-20 nm, with mean diameter only 12.22±2.57 nm. The addition of glucose resulted in greater AgNP synthesis. The order of addition of glucose and AgNO 3 significantly affected particle size and size distribution of AgNPs. Compared to CMC alone and commercially available AgNPs, the antimicrobial activities of three hybrids were significantly improved. Of the three hybrids, CMC-Ag1 synthesized via protocol 1 exhibited better antimicrobial activity than CMC-Ag2 and CMC-Ag3, and showed more effective inhibition of Staphylococcus aureus than Escherichia coli . Due to strong coordination and electrostatic interactions between CMC and silver and good steric protection provided by CMC, CMC-Ag1 displayed stable and continuous silver release and better performance in retaining silver for prolonged periods than CMC-Ag2 and CMC-Ag3.
Huang, Siqi; Yu, Zhiming; Zhang, Yang; Qi, Chusheng; Zhang, Shifeng
2017-01-01
In order to fabricate antimicrobial carboxymethyl chitosan–nanosilver (CMC-Ag) hybrids with controlled silver release, this study demonstrated comparable formation via three synthetic protocols: 1) carboxymethyl chitosan (CMC) and glucose (adding glucose after AgNO3), 2) CMC and glucose (adding glucose before AgNO3), and 3) CMC only. Under principles of green chemistry, the synthesis was conducted in an aqueous medium exposed to microwave irradiation for 10 minutes with nontoxic chemicals. The structure and formation mechanisms of the three CMC-Ag hybrids were explored using X-ray diffraction, ultraviolet-visible spectroscopy, transmission electron microscopy, and Fourier-transform infrared analyses. Additionally, antimicrobial activity and in vitro silver release of the three synthesized hybrids were investigated in detail. The results revealed that a large number of stable, uniform, and small silver nanoparticles (AgNPs) were synthesized in situ on CMC chains via protocol 1. AgNPs were well dispersed with narrow size distribution in the range of 6–20 nm, with mean diameter only 12.22±2.57 nm. The addition of glucose resulted in greater AgNP synthesis. The order of addition of glucose and AgNO3 significantly affected particle size and size distribution of AgNPs. Compared to CMC alone and commercially available AgNPs, the antimicrobial activities of three hybrids were significantly improved. Of the three hybrids, CMC-Ag1 synthesized via protocol 1 exhibited better antimicrobial activity than CMC-Ag2 and CMC-Ag3, and showed more effective inhibition of Staphylococcus aureus than Escherichia coli. Due to strong coordination and electrostatic interactions between CMC and silver and good steric protection provided by CMC, CMC-Ag1 displayed stable and continuous silver release and better performance in retaining silver for prolonged periods than CMC-Ag2 and CMC-Ag3. PMID:28458539
Laffleur, Flavia; Bacher, Lukas; Netsomboon, Kesinee
2016-01-01
To design a novel preactived carboxymethyl cellulose derivative. First, carboxymethyl cellulose (CMC) was chemically modified by amide bond formation between primary amino group of cysteine (CYS) and carboxylic moiety of CMC mediated by carbodiimide. Second, obtained CMCCYS was preactivated with 2,2'-dithiodinicotinic acid. Designed CMC-S-S-MNA was characterized by FT-IR. Furthermore, cytotoxicity was conducted on Caco-2 cell line. Swelling behavior, erosion and release of novel CMC-S-S-MNA were performed compared with thiolated and unmodified cellulose, respectively. CMC-S-S-MNA showed no harmful effect on cells. CMC-S-S-MNA exhibited 2.13-fold higher stability in comparison to unmodified cellulose. Furthermore, preactivated carboxymethyl cellulose-cysteine revealed 1.9-fold controlled released compared with respective unmodified carboxymethyl cellulose. Novel preactivated carboxymethyl cellulose represents a versatile excipient for drug delivery.
Leitao, Mario M; Natenzon, Anna; Abu-Rustum, Nadeem R; Chi, Dennis S; Sonoda, Yukio; Levine, Douglas A; Gardner, Ginger J; Barakat, Richard R
2009-11-01
To determine whether HA-CMC was associated with the development of postoperative intra-abdominal collections in patients undergoing laparotomy for ovarian, fallopian tube, or primary peritoneal malignancies. We retrospectively identified all laparotomies performed for these malignancies from March 1, 2005 to December 31, 2007. The use of HA-CMC was identified. Laparotomies for malignant bowel obstruction or repair of fistulae were excluded. Intra-abdominal collections, non-infected and infected, were defined as localized intraperitoneal fluid accumulations in the absence of re-accumulating ascites. All other complications were also captured. Appropriate statistical tests were applied using SPSS 15.0. We identified 219 laparotomies with HA-CMC and 204 without HA-CMC. Upper abdominal resections were performed in 65/219 (30%) HA-CMC cases compared to 39/204 (19%) cases without HA-CMC (P=0.01). The rates of large bowel and/or rectal resections were similar in both cohorts. Intra-abdominal collections were seen in 18/219 (8.2%) HA-CMC cases compared to 5/204 (2.5%) cases without HA-CMC (P=0.009). HA-CMC was independently associated with the diagnosis of a postoperative intra-abdominal collection (P=0.01). All but 2 collections developed in patients undergoing debulking procedures. HA-CMC appears to be associated with a higher rate of postoperative intra-abdominal collections. This seems to be greatest in patients who are undergoing a debulking procedure.
2015-01-01
Cell membrane chromatography (CMC) derived from pathological tissues is ideal for screening specific components acting on specific diseases from complex medicines owing to the maximum simulation of in vivo drug-receptor interactions. However, there are no pathological tissue-derived CMC models that have ever been developed, as well as no visualized affinity comparison of potential active components between normal and pathological CMC columns. In this study, a novel comparative normal/failing rat myocardium CMC analysis system based on online column selection and comprehensive two-dimensional (2D) chromatography/monolithic column/time-of-flight mass spectrometry was developed for parallel comparison of the chromatographic behaviors on both normal and pathological CMC columns, as well as rapid screening of the specific therapeutic agents that counteract doxorubicin (DOX)-induced heart failure from Acontium carmichaeli (Fuzi). In total, 16 potential active alkaloid components with similar structures in Fuzi were retained on both normal and failing myocardium CMC models. Most of them had obvious decreases of affinities on failing myocardium CMC compared with normal CMC model except for four components, talatizamine (TALA), 14-acetyl-TALA, hetisine, and 14-benzoylneoline. One compound TALA with the highest affinity was isolated for further in vitro pharmacodynamic validation and target identification to validate the screen results. Voltage-dependent K+ channel was confirmed as a binding target of TALA and 14-acetyl-TALA with high affinities. The online high throughput comparative CMC analysis method is suitable for screening specific active components from herbal medicines by increasing the specificity of screened results and can also be applied to other biological chromatography models. PMID:24731167
Yang, Han Na; Park, Ji Sun; Jeon, Su Yeon; Park, Keun-Hong
2015-05-20
Specific vehicles are necessary for safe and efficient gene transfection into cells. Nano-type hydrogels (nanogel) comprising carboxymethylcellulose (CMC) complexed with branched type cationic poly(ethleneimine) (bPEI) were used as gene delivery vehicles. When complexes of CMC and bPEI were used in vitro, CMC showed nano-gel type properties, as shown by the results of a viscosity test, and bPEI showed low cytotoxicity comparing to bPEI alone. Together, these properties are shown to maintain high gene transfection efficiency. In viability experiments using three types of adult stem cells, cell viability varied depending on the branch form of PEI and whether or not it is in a complex with CMC. The gene delivery efficacy showed that the CMC nanogel complexed with bPEI (CMC-bPEI) showed more uptaking and gene transfection ability in hMSCs comparing to bPEI alone. In osteogenesis, the CMC-bPEI complexed with OSX pDNA showed more easy internalization than bPEI alone complexed with OSX pDNA in hMSCs. Specific genes and proteins related in osteogenic differentiation were expressed in hMSCs when the CMC-bPEI complexed with OSX pDNA was used. Copyright © 2015 Elsevier Ltd. All rights reserved.
Effect of CMC Molecular Weight on Acid-Induced Gelation of Heated WPI-CMC Soluble Complex.
Huan, Yan; Zhang, Sha; Vardhanabhuti, Bongkosh
2016-02-01
Acid-induced gelation properties of heated whey protein isolate (WPI) and carboxymethylcellulose (CMC) soluble complex were investigated as a function of CMC molecular weight (270, 680, and 750 kDa) and concentrations (0% to 0.125%). Heated WPI-CMC soluble complex with 6% protein was made by heating biopolymers together at pH 7.0 and 85 °C for 30 min and diluted to 5% protein before acid-induced gelation. Acid-induced gel formed from heated WPI-CMC complexes exhibited increased hardness and decreased water holding capacity with increasing CMC concentrations but gel strength decreased at higher CMC content. The highest gel strength was observed with CMC 750 k at 0.05%. Gels with low CMC concentration showed homogenous microstructure which was independent of CMC molecular weight, while increasing CMC concentration led to microphase separation with higher CMC molecular weight showing more extensive phase separation. When heated WPI-CMC complexes were prepared at 9% protein the acid gels showed improved gel hardness and water holding capacity, which was supported by the more interconnected protein network with less porosity when compared to complexes heated at 6% protein. It is concluded that protein concentration and biopolymer ratio during complex formation are the major factors affecting gel properties while the effect of CMC molecular weight was less significant. © 2016 Institute of Food Technologists®
ERIC Educational Resources Information Center
Sarré, Cédric
2011-01-01
Despite the amount of published research on the use of text-based computer-mediated communication (CMC) in second language acquisition (SLA), very little attention has been paid to voice-based CMC (audioconferencing and videoconferencing) and to how it compares with the better known text-based CMC modes. This chapter investigates and compares the…
de Vries, J F; Zwaan, C M; De Bie, M; Voerman, J S A; den Boer, M L; van Dongen, J J M; van der Velden, V H J
2012-02-01
We investigated whether the newly developed antibody (Ab) -targeted therapy inotuzumab ozogamicin (CMC-544), consisting of a humanized CD22 Ab linked to calicheamicin, is effective in pediatric primary B-cell precursor acute lymphoblastic leukemia (BCP-ALL) cells in vitro, and analyzed which parameters determine its efficacy. CMC-544 induced dose-dependent cell kill in the majority of BCP-ALL cells, although IC(50) values varied substantially (median 4.8 ng/ml, range 0.1-1000 ng/ml at 48 h). The efficacy of CMC-544 was highly dependent on calicheamicin sensitivity and CD22/CMC-544 internalization capacity of BCP-ALL cells, but hardly on basal and renewed CD22 expression. Although CD22 expression was essential for uptake of CMC-544, a repetitive loop of CD22 saturation, CD22/CMC-544 internalization and renewed CD22 expression was not required to achieve intracellular threshold levels of calicheamicin sufficient for efficient CMC-544-induced apoptosis in BCP-ALL cells. This is in contrast to studies with the comparable CD33 immunotoxin gemtuzumab ozogamicin (Mylotarg) in acute myeloid leukemia (AML) patients, in which complete and prolonged CD33 saturation was required for apoptosis induction. These data suggest that CMC-544 treatment may result in higher response rates in ALL compared with response rates obtained in AML with Mylotarg, and that therefore clinical studies in ALL, preferably with multiple low CMC-544 dosages, are warranted.
Leitao, Mario M; Byrum, Graham V; Abu-Rustum, Nadeem R; Brown, Carol L; Chi, Dennis S; Sonoda, Yukio; Levine, Douglas A; Gardner, Ginger J; Barakat, Richard R
2010-11-01
A prior analysis of patients undergoing laparotomy for ovarian malignancies at our institution revealed an increased rate of intra-abdominal collections using HA-CMC film during debulking surgery. The primary objective of the current study was to determine whether the use of HA-CMC is associated with the development of postoperative intra-abdominal collections in patients undergoing laparotomy for uterine or cervical malignancies. We retrospectively identified all laparotomies performed for these malignancies from 3/1/05 to 12/31/07. We identified cases involving the use of HA-CMC via billing records and operative reports. Intra-abdominal collections were defined as localized intraperitoneal fluid accumulations in the absence of re-accumulating ascites. We noted incidences of intra-abdominal collections, as well as other complications. Appropriate statistical tests were applied using SPSS 15.0. We identified 169 laparotomies in which HA-CMC was used and 347 in which HA-CMC was not used. The following were statistically similar in both cohorts: age, body mass index (BMI), primary site, surgery for recurrent disease, prior intraperitoneal surgery, and extent of current surgery. Intra-abdominal collections were seen in 6 (3.6%) of 169 HA-CMC cases compared to 10 (2.9%) of 347 non-HA-CMC cases (p=0.7). The rate of infected collections was similar in both groups (1.2% vs. 1.4%). In the subgroup that underwent tumor debulking, intra-abdominal collections were seen in 3 (11.5%) of 26 HA-CMC cases compared to 2 (5.4%) of 37 non-HA-CMC cases (p=0.6). HA-CMC use does not appear to be associated with postoperative intra-abdominal collections in patients undergoing laparotomy for uterine or cervical cancer. Copyright © 2010 Elsevier Inc. All rights reserved.
Surfactants at the Design Limit.
Czajka, Adam; Hazell, Gavin; Eastoe, Julian
2015-08-04
This article analyzes how the individual structural elements of surfactant molecules affect surface properties, in particular, the point of reference defined by the limiting surface tension at the aqueous cmc, γcmc. Particular emphasis is given to how the chemical nature and structure of the hydrophobic tails influence γcmc. By comparing the three different classes of surfactants, fluorocarbon, silicone, and hydrocarbon, a generalized surface packing index is introduced which is independent of the chemical nature of the surfactants. This parameter ϕcmc represents the volume fraction of surfactant chain fragments in a surface film at the aqueous cmc. It is shown that ϕcmc is a useful index for understanding the limiting surface tension of surfactants and can be useful for designing new superefficient surfactants.
Wallerstein, Avi; Jackson, W Bruce; Chambers, Jeffrey; Moezzi, Amir M; Lin, Hugh; Simmons, Peter A
2018-01-01
Purpose To compare the efficacy and safety of a preservative-free, multi-ingredient formulation of carboxymethylcellulose 0.5%, hyaluronic acid 0.1%, and organic osmolytes (CMC-HA), to preservative-free carboxymethylcellulose 0.5% (CMC) in the management of postoperative signs and symptoms of dry eye following laser-assisted in situ keratomileusis (LASIK). Methods This was a double-masked, randomized, parallel-group study conducted in 14 clinical centers in Canada and Australia. Subjects with no more than mild dry eye instilled CMC-HA or CMC for 90 days post-LASIK. Ocular Surface Disease Index© (OSDI; primary efficacy measure), corneal staining, tear break-up time (TBUT), Schirmer’s test, acceptability/tolerability surveys, and visual acuity were assessed at screening and days 2, 10, 30, 60, and 90 post-surgery. Safety analyses included all enrolled. Results A total of 148 subjects (CMC-HA, n=75; CMC, n=73) were enrolled and assigned to receive treatment, and 126 subjects completed the study without any protocol violations. Post-LASIK, dry eye signs/symptoms peaked at 10 days. OSDI scores for both groups returned to normal with no differences between treatment groups at day 90 (P=0.775). Corneal staining, Schirmer’s test, TBUT, and survey results were comparable. Higher mean improvements in uncorrected visual acuity were observed in the CMC-HA group at all study visits, reaching statistical significance at day 30 (P=0.013). Both treatments were well tolerated. Conclusion CMC-HA-containing artificial tears relieved post-LASIK ocular dryness as well as CMC alone, and demonstrated incremental benefit in uncorrected vision, with a favorable safety profile. Results support use of CMC-HA eye drops to reduce signs and symptoms of ocular dryness post-LASIK. PMID:29765198
Greeff, A E; Robillard, B; du Toit, W J
2012-01-01
Crystal formation in bottled wine occurs due to the over-saturation of wine with potassium bitartrate (KHT) salt when exposed to low temperatures. In this study, special focus was given to the efficiency of a crystallisation-inhibiting additive, carboxymethylcellulose (CMC), which is widely used in the food industry. In 2008, CMC was authorised by the International Organisation of Vine and Wine (OIV) for use in white and sparkling wines, but is not yet officially permitted in all wine-producing countries. The use of CMC could be of economical importance to the wine industry because energy costs due to cooling can be reduced. Unlike traditional cooling methods, the use of CMC theoretically prevents the loss of acidity. In this study, the short- and long-term efficiencies of CMC were investigated in South African white, rosé and red wines. Efficiency was determined primarily by measuring changes in potassium (K(+)) and tartaric acid (H(2)T) concentrations and visual crystal formation. As part of this study CMC's efficiency was compared with several other crystal inhibition treatments, and was also evaluated for its temperature stability over a year. CMC's effect on colour and total phenols was also assessed. The results reveal a high efficiency in preventing losses in K(+) and H(2)T concentrations in white wines, even with an ageing period of up to 12 months. The addition of CMC to rosé wines also delivered certain positive results, but less so for red wine. Three different commercial CMCs were also compared with mannoproteins to prevent changes in K(+) and H(2)T concentrations in three different wines. Furthermore, sensory evaluation was performed to determine certain organoleptic changes as a result of CMC treatments.
Standard Biocompatibility Studies Do Not Predict All Effects of PVA/CMC Anti-Adhesive Gel in vivo.
Freytag, Christiane; Odermatt, Erich K
2016-01-01
PVA/CMC (polyvinyl alcohol/carboxymethyl cellulose) hydrogel fulfills various physiochemical properties required for an adhesion barrier and has shown good anti-adhesion properties in previous in vivo studies. In this investigation, we assessed the in vitro and in vivo biocompatibility of PVA/CMC gel and compared this to the functionality and promotion of wound healing for two surgical indications. Standardized ISO10993 in vitro and in vivo biocompatibility studies, comprising cytotoxicity, genotoxicity, acute systemic toxicity, delayed contact and maximization sensitization test, intracutaneous reactivity and local muscle implantation, were performed on PVA/CMC gel. In the functional studies, PVA/CMC gel was applied - on the one hand - to a rabbit abdominal wall model enforced with a polypropylene mesh for testing the anti-adhesion properties and - on the other hand - to an end- to-end anastomosis model that was selected for surveying potential influences of different dosages of PVA/CMC gel on anastomotic wound healing. The ISO10993 methods indicated generally good biocompatibility properties, such as the absence of cytotoxic and mutagenic effects as well as no signs of systemic toxicity and sensitization potentials. No irritation effects were observed after the intracutaneous injection of lipophilic PVA/CMC sesame oil extract. However, the injection of hydrophilic PVA/CMC physiologic saline extract induced slight irritation. Following rabbit muscle implantation of the PVA membrane for 2, 4, 12, 26 and 52 weeks, a slight irritant effect was observed at 12 weeks due to the peak of phagocytosis. In the functionality tests, PVA/CMC gel showed good anti-adhesive effects in the abdominal wall model enforced with the mesh, with significantly lower and less tense adhesions compared to the untreated control. However, moderate signs of inflammation, especially in the spleen were observed after the intra-abdominal implantation of 3.3 ml PVA/CMC gel per kg body weight. In the end-to-end anastomosis model, PVA/CMC gel had no influence on wound healing. For dosages of 1-6 ml gel per treatment, no signs of intestinal leaks were detected, and tensile strength was equal to that of the untreated control, but again more moderate signs of inflammation in the spleen were observed at a dosage >3 ml. Comparing the standardized ISO10993 methods, anti-adhesive PVA/CMC gel displays good biocompatibility. However, those methods do not seem to be sensitive enough because the rabbit abdominal wall and the end-to-end anastomosis models display more effects with respect to the dosage and routes of the intra-abdominal resorption of PVA/CMC gel - with the recommended <2 ml PVA/CMC gel per kg body weight as a secure dosage. © 2016 S. Karger AG, Basel.
Zhang, Runyuan; Zhang, Nuanqin; Fang, Zhanqiang
2018-03-01
In this study, the remediation experiments were performed outdoors in natural conditions. Carboxymethyl cellulose (CMC)-stabilized nanoscale zero-valent iron (CMC-nZVI), biochar (BC) and CMC-stabilized nanoscale zero-valent iron composited with biochar (CMC-nZVI/BC) were synthesized and investigated for their effect on the in situ remediation of hexavalent chromium [Cr(VI)] contaminated soil and the concentration of available iron was tested after the remediation, compared with the untreated soil. The results of toxicity characteristic leaching procedure (TCLP) test showed that CMC-nZVI and CMC-nZVI/BC used as remediation materials could obviously improve the remediation rate of Cr contaminated soil and when the ratio of CMC-nZVI to Fe 0 was 2.5 g/Kg, the leachability of Cr(VI) and Cr total can be reduced by 100% and 95.8% simultaneously. Moreover, sequential extraction procedure (SEP) showed that most exchangeable Cr converted to carbonate-bound and Fe-Mn oxides-bound, reducing the availability and leachability of Cr in the soil.
Attachment of Free Filament Thermocouples for Temperature Measurements on CMC
NASA Technical Reports Server (NTRS)
Lei, Jih-Fen; Cuy, Michael D.; Wnuk, Stephen P.
1997-01-01
Ceramic Matrix Composites (CMC) are being developed for use as enabling materials for advanced aeropropulsion engine and high speed civil transport applications. The characterization and testing of these advanced materials in hostile, high-temperature environments require accurate measurement of the material temperatures. Commonly used wire Thermo-Couples (TC) can not be attached to this ceramic based material via conventional spot-welding techniques. Attachment of wire TC's with commercially available ceramic cements fail to provide sufficient adhesion at high temperatures. While advanced thin film TC technology provides minimally intrusive surface temperature measurement and has good adhesion on the CMC, its fabrication requires sophisticated and expensive facilities and is very time consuming. In addition, the durability of lead wire attachments to both thin film TC's and the substrate materials requires further improvement. This paper presents a newly developed attachment technique for installation of free filament wire TC's with a unique convoluted design on ceramic based materials such as CMC's. Three CMC's (SiC/SiC CMC and alumina/alumina CMC) instrumented with type IC, R or S wire TC's were tested in a Mach 0.3 burner rig. The CMC temperatures measured from these wire TC's were compared to that from the facility pyrometer and thin film TC's. There was no sign of TC delamination even after several hours exposure to 1200 C. The test results proved that this new technique can successfully attach wire TC's on CMC's and provide temperature data in hostile environments. The sensor fabrication process is less expensive and requires very little time compared to that of the thin film TC's. The same installation technique/process can also be applied to attach lead wires for thin film sensor systems.
Qiu, Lei; Shao, Ziqiang; Wang, Daxiong; Wang, Wenjun; Wang, Feijun; Wang, Jianquan
2014-10-13
Novel water-based binder CMC-Li is synthesized using cotton as raw material. The mechanism of the CMC-Li as a binder is reported. Electrochemical properties of batteries cathodes based on commercially available lithium iron phosphate (LiFePO4, LFP) and CMC-Li as a water-soluble binder are investigated. CMC-Li is a novel lithium-ion binder. Compare with conventional poly(vinylidene fluoride) (PVDF) binder, and the battery with CMC-Li as the binder retained 97.8% of initial reversible capacity after 200 cycles at 176 mAh g(-1), which is beyond the theoretical specific capacity of LFP. Constant current charge-discharge test results demonstrate that the LFP electrode using CMC-Li as the binder has the highest rate capability, follow closely by that using PVDF binder. The batteries have good electrochemical property, outstanding pollution-free and excellent stability. Copyright © 2014 Elsevier Ltd. All rights reserved.
Motion deficit of the thumb in CMC joint arthritis.
Gehrmann, Sebastian V; Tang, Jie; Li, Zong Ming; Goitz, Robert J; Windolf, Joachim; Kaufmann, Robert A
2010-09-01
Idiopathic osteoarthritis (OA) of the thumb carpometacarpal (CMC) joint is a common disabling disease that often causes pain and motion loss. The aims of this study were to characterize the multidimensional motion capability of the thumb CMC joint in a group with severe CMC OA and to compare it with a control group. We included 15 subjects with stage III/IV CMC OA according to the Eaton/Littler classification, and 15 control subjects. A motion analysis system using surface markers was employed to quantify the maximum boundary of the thumb circumduction envelope during repetitive thumb movements. We measured the area enclosed by the angular circumduction envelope and the ranges of motion (ROM) in multiple directions for the thumb CMC joint. Thumb osteoarthritis of the CMC joint stage III/IV resulted in a significantly smaller ROM in flexion/extension (45 degrees +/- 11 degrees for the CMC OA group, 59 degrees +/- 10 degrees for the controls), abduction-adduction (37 degrees +/- 6 degrees for the CMC OA group, 63 degrees +/- 13 degrees for the controls), and pronation-supination (49 degrees +/- 10 degrees for the CMC OA group, 62 degrees +/- 11 degrees for the controls) (p < .01). When analyzing the motion directions in flexion-extension and abduction-adduction separately, there was only a loss of extension and adduction (p < .01). Severe stages of thumb CMC OA cause an asymmetrical motion deficit with decreased ROM in extension and adduction, leading to decreased capability of counteropposition. Copyright 2010. Published by Elsevier Inc.
Bak, J H; Yoo, B
2018-04-12
The effect of CMC on the steady and dynamic shear rheological properties of binary mixtures of XG and GG was examined at different mixing ratios. All XG-GG-CMC ternary mixtures had high shear-thinning behavior and the n value of the sample with 5% CMC was the smallest compared with those of other samples. A marked increase in K and η a,50 values was observed for ternary mixtures at a lower content (5%) of CMC, indicating that the synergistic interactions of the XG-GG binary mixture were affected by the content of CMC. The effect of temperature on the η a,50 was well described by the Arrhenius equation for all samples. The activation energy values of all ternary gum mixtures are higher than that of binary gum mixture, and these values also decreased with an increase in CMC content from 5 to 15%. The dynamic moduli of ternary gum mixtures decreased with an increase in CMC content. The tan δ value of the ternary gum mixture with 5% CMC was much lower than those of other ternary mixtures. In general, these results suggest that the flow and dynamic shear rheological properties of XG-GG binary mixtures are strongly influenced by a small addition of CMC. Copyright © 2018. Published by Elsevier B.V.
Adsorption properties of congo red from aqueous solution onto N,O-carboxymethyl-chitosan.
Wang, Li; Wang, Aiqin
2008-03-01
N,O-carboxymethyl-chitosans (N,O-CMC) with different degree of substitution (DS) were synthesized under heterogeneous conditions by controlling the reaction temperature. The factors influencing adsorption capacity of N,O-CMC such as the DS of N,O-CMC, initial pH value of the dye solution and adsorption temperature for anionic dye congo red (CR) were investigated. Compared with chitosan (78.90 mg/g), N,O-CMC with the DS of 0.35 exhibited much higher adsorption capacity (330.62 mg/g) for CR at the same adsorption conditions. The adsorption kinetics and isotherms showed that the sorption processes were better fitted by pseudo-second-order equation and the Langmuir equation, respectively. The adsorption mechanism of N,O-CMC was also discussed by means of IR and XPS spectra. The results in this study indicated that N,O-CMC was an attractive candidate for removing CR from the dye wastewater.
Active biopolymer film based on carboxymethyl cellulose and ascorbic acid for food preservation
NASA Astrophysics Data System (ADS)
Halim, Al Luqman Abdul; Kamari, Azlan
2017-05-01
In the present study, an active biopolymer film based on carboxymethyl cellulose (CMC) and ascorbic acid (AA) was synthesised at an incorporation rate of 15% (w/w). Several analytical instruments such as Fourier Transform Infrared Spectrometer (FTIR), Thermogravimetry Analyser (TGA), UV-Visible Spectrophotometer (UV-Vis), Scanning Electron Microscope (SEM) and Universal Testing Machine were used to characterise the physical and chemical properties of CMC-AA film. The addition of AA significantly reduced elongation at break (322%) and tensile strength (10 MPa) of CMC-AA film. However, CMC-AA film shows a better antimicrobial property against two bacteria, namely Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) as compared to CMC film. The CMC-AA film was able to preserve cherry tomato with low weight loss and browning index. Overall, results from this study highlight the feasibility of CSAA film for food preservation.
Design of amphoteric chitosan flocculants for phosphate and turbidity removal in wastewater.
Agbovi, Henry K; Wilson, Lee D
2018-06-01
An amphoteric flocculant (CMC-CTA) was synthesized by grafting 3-chloro-2-hydroxypropyl trimethylammonium chloride onto carboxymethyl chitosan (CMC). The turbidity and orthophosphate (P i ) removal properties of chitosan (CHI), CMC, and CMC-CTA were compared in the presence (and absence) of FeCl 3 coagulant. At a fixed FeCl 3 dosage, the effects of flocculant dosage, pH and settling time were evaluated. Turbidity removal (%) and optimal dosage (FeCl 3 ; mg/L) was determined: CMC-CTA (95.8%;5), CHI (88.8%;7.0) and CMC (68.8%;9.0). The corresponding P i removal (%) and dosage (mg/L) are listed: (93.4%;10), (90.6%;10), and (67.4%;5). Optimal turbidity and P i removal occurred at pH 4, where CMC-CTA had greater efficiency over CMC and CHI. The turbidity removal kinetics was described by the pseudo-second-order model, while P i removal followed the pseudo-first-order model. The removal process involves cooperative Coulombic interactions between the biopolymer/Fe(III)/P i and/or kaolinite colloids, along with polymer bridging effects. Copyright © 2018 Elsevier Ltd. All rights reserved.
DiJoseph, John F; Dougher, Maureen M; Evans, Deborah Y; Zhou, Bin-Bing; Damle, Nitin K
2011-04-01
CMC-544 (inotuzumab ozogamicin) is a CD22-specific immunoconjugate of calicheamicin currently being evaluated in patients with non-Hodgkin's B-cell lymphoma (BCL). CHOP and CVP represent untargeted combination chemotherapy comprised of cyclophosphamide, vincristine and prednisone with or without doxorubicin, commonly used in the treatment of NHL. Here, we describe anti-tumor efficacy of CMC-544, CHOP or CVP against human BCL xenografts. In vitro, human BCLs were cultured with CMC-544 or individual constituents of CHOP for inhibition of their growth. In vivo, immunocompromised mice with established BCL xenografts were administered CHOP, CVP or CMC-544 to monitor their survival and BCL growth. In vitro, CMC-544 was more potent in causing growth inhibition of various BCL than cyclophosphamide, doxorubicin, vincristine or dexamethasone. In vivo, treatment with CHOP or CVP inhibited growth of BCL xenografts for up to 40 days after which BCL relapsed. Tumor growth inhibition by CMC-544 (>100 days) lasted longer than that by CHOP or CVP. BCL xenografts that relapsed after the treatment with CHOP or CVP were far less responsive to CHOP or CVP re-treatment but regressed upon subsequent treatment with CMC-544. CVP could be co-administered with suboptimal doses of CMC-544, while CHOP could be administered on alternant days with CMC-544 to cause enhanced regression of established BCL xenografts. Preclinically, CMC-544 provides greater therapeutic benefit than CVP or CHOP against BCL xenografts. CMC-544 may also be co-administered with standard chemotherapeutic regimens in the treatment of B-NHL for superior anti-tumor activity.
Kjeken, Ingvild; Eide, Ruth Else Mehl; Klokkeide, Åse; Matre, Karin Hoegh; Olsen, Monika; Mowinckel, Petter; Andreassen, Øyvor; Darre, Siri; Nossum, Randi
2016-11-15
In the absence of disease-modifying interventions for hand osteoarthritis (OA), occupational therapy (OT) comprising patient education, hand exercises, assistive devices and orthoses are considered as core treatments, whereas surgery are recommended for those with severe carpometacarpal (CMC1) OA. However, even though CMC1 surgery may reduce pain and improve function, the risk of adverse effects is high, and randomized controlled trials comparing surgery with non-surgical interventions are warranted. This multicentre randomized controlled trial aims to address the following questions: Does OT in the period before surgical consultation reduce the need for surgery in CMC1-OA? What are patients' motivation and reasons for wanting CMC1-surgery? Are there differences between departments of rheumatology concerning the degree of CMC1-OA, pain and functional limitations in patients who are referred for surgical consultation for CMC1 surgery? Is the Measure of Activity Performance of the Hand a reliable measure in patients with CMC1-OA? Do patients with CMC1-OA with and without affection of the distal and proximal interphalangeal finger joints differ with regard to symptoms and function? Do the degree of CMC1-OA, symptoms and functional limitations significantly predict improvement after 2 years following OT or CMC1-surgery? Is OT more cost-effective than surgery in the management of CMC1-OA? All persons referred for surgical consultation due to their CMC1-OA at one of three Norwegian departments of rheumatology are invited to participate. Those who agree attend a clinical assessment and report their symptoms, function and motivation for surgery in validated outcome measures, before they are randomly selected to receive OT in the period before surgical consultation (estimated n = 180). The primary outcome will be the number of participants in each group who have received surgical treatment after 2 years. Secondary and tertiary outcomes are pain, function and satisfaction with care over the 2-year trial period. Outcomes will be collected at baseline, 4, 18 and 24 months. The main analysis will be on an intention-to-treat basis, using logistic regression, comparing the number of participants in each group who have received surgical treatment after 2 years. The findings will improve the evidence-based management of HOA. NCT01794754 . First registrated February 15 th 2013.
NASA Astrophysics Data System (ADS)
Hussain, Peerzada R.; Suradkar, Prashant P.; Wani, Ali M.; Dar, Mohd A.
2015-02-01
Carboxymethyl cellulose (CMC) coatings alone and in combination with gamma irradiation was tested for maintaining the storage quality and extending shelf-life of plum. Matured green plums were CMC coated at levels 0.5-1.0% w/v and gamma irradiated at 1.5 kGy. The treated fruit including control was stored under ambient (temperature 25±2 °C, RH 70%) and refrigerated (temperature 3±1 °C, RH 80%) conditions. In fruits treated with individual treatments of 1.0% w/v CMC; 1.5 kGy irradiation and combination of 1.0% w/v CMC and 1.5 kGy irradiation, no decay was recorded up to 11, 17 and 21 days of ambient storage. Irradiation alone at 1.5 kGy gave 8 days extension in shelf-life of plum compared to 5 days by 1.0% w/v CMC coating following 45 days of refrigeration. All combinatory treatments of CMC coating and irradiation proved beneficial in maintaining the storage quality as well as delaying the decaying of plum during post-refrigerated storage at 25±2 °C, RH 70% but, combination of CMC at 1.0% w/v and 1.5 kGy irradiation was found significantly (p≤0.05) superior to all other treatments in maintaining the storage quality and delaying the decaying of plum. CMC coating of plums at 1.0% w/v followed by irradiation at 1.5 kGy resulted in chlorophyll retention of 19.4% after 16 days compared to 10% in control after 8 days of ambient storage. Under refrigerated conditions, same treatment gave retention of 67.6% in chlorophyll compared to 10.6% in control after 35 days of storage. The above combinatory treatment resulted in extension of 11 days in shelf-life of plum during post-refrigerated storage at 25±2 °C, RH 70% following 45 days of refrigeration. Based on microbial analysis, irradiation alone at 1.5 kGy and in combination with 1.0% w/v CMC resulted in 2.0 and 1.8 log reduction in yeast and mold count of plum fruit after 20 and 35 days of ambient and refrigerated storage, thereby ensuring consumer safety.
NASA Astrophysics Data System (ADS)
Kwak, Young Jun; Choi, Eunho; Song, Myoung Youp
2018-03-01
The addition of carboxymethylcellulose, sodium salt (CMC) might improve the hydrogen uptake and release properties of Mg since it has a relatively low melting point and the melting of CMC during milling in hydrogen (reaction-accompanying milling) may make the milled samples be in good states to absorb and release hydrogen rapidly and to have a large hydrogen-storage capacity. Samples with compositions of 95 w/o Mg + 5 w/o CMC (named Mg-5CMC) and 90 w/o Mg + 10 w/o CMC (named Mg-10CMC) were prepared by adding CMC via reaction-accompanying milling. Activation of Mg-10CMC was completed after about 3 hydrogen uptake-release cycles. Mg-10CMC had a higher initial hydrogen uptake rate and a larger amount of hydrogen absorbed in 60 min, U (60 min), than Mg-5CMC before and after activation. At the cycle number of three (CN = 3), Mg-10CMC had a very high initial hydrogen uptake rate (1.56 w/o H/min) and a large U (60 min) (5.57 w/o H) at 593 K in hydrogen of 12 bar, showing that the activated Mg-10CMC has an effective hydrogen-storage capacity of about 5.6 w/o at 593 K in hydrogen of 12 bar at CN = 3. At CN = 2, Mg-10CMC released 1.00 w/o H in 2.5 min, 4.67 w/o H in 10 min, and 4.76 w/o H in 60 min at 648 K in hydrogen of 1.0 bar. The milling in hydrogen of Mg with CMC is believed to generate imperfections and cracks and reduce the particle size. The addition of 10 w/o CMC was more effective on the initial hydrogen uptake rate and U (60 min) compared with the 10 w/o additions of NbF5, TaF5, Fe2O3, and MnO, and the 10 w/o simultaneous addition of Ni, Fe, and Ti. To the best of our knowledge, this study is the first in which a polymer CMC is added to Mg by reaction-accompanying milling to improve the hydrogen storage properties of Mg.
Sub-CMC solubilization of dodecane by rhamnolipid in saturated porous media
NASA Astrophysics Data System (ADS)
Yang, X.; Zhong, H.; Zhang, H.; Brusseau, M. L.
2016-12-01
Sub-CMC solubilization of dodecane by rhamnolipid in saturated porous mediaXin Yang1,Hua Zhong1, 2, 3 *, Hui Zhang1, Mark L Brusseau31 College of Environmental Science and Engineering, Hunan University, Changsha 410082, China;2 School of Water Resources and Hydropower Engineering, Wuhan University, Wuhan 430072, China;3 Department of Soil, Water and Environmental Science, University of Arizona, Tucson, Arizona 85721;*Corresponding author, E-mail: zhonghua@hnu.edu.cn, Tel: +86-731-88664182Purpose: Investigate solubilization of dodecane by monorhamnolipid at sub-CMC concentrations in porous media under dynamic flow conditions. Testify aggregate formation mechanism for the solubilization. Methods:One-dimension column experiment was implemented to test dodecane solubilization in glass beads by rhamnolipid at sub-CMC concentrations, and the effect of solubilization on the residual NAPL morphology was examined using X-ray tomography. A two-dimension flow cell was used to examine mobilization and solubilization of dodecane in quartz sand by sub-CMC rhamnolipid. The result of solubilization was compared to that of two synthetic surfactants, SDBS and Triton X-100, and a solvent, ethanol. Size, zeta potential and the morphology of particles in the effluent were also examined. Results: Results of the column and 2-D flow cell studies show enhancement of dodecane solubility by sub-CMC monorhamnolipid in the porous medium. Retention of rhamnolipid and detection of nano-size aggregates show that the solubilization is based on a sub-CMC aggregate-formation mechanism. The rhamnolipid is more efficient for the solubilization compared to the synthetic surfactants and ethanol, and significant solubilization could occur at a rhamnolipid concentration that did not cause mobilization. Conclusions:Results of the study demonstrate the aggregate-based solubilization of dodecane in porous media by rhamnolipid at sub-CMC concentrations. These results indicate a strategy of employing low concentrations of rhamnolipid for surfactant-enhanced aquifer remediation (SEAR), which may promote the cost-effectiveness of rhamnolipid application and overcome the drawbacks of using surfactants at hyper-CMC concentrations.
Sub-CMC solubilization of dodecane by rhamnolipid in saturated porous media.
Zhong, Hua; Zhang, Hui; Liu, Zhifeng; Yang, Xin; Brusseau, Mark L; Zeng, Guangming
2016-09-13
Experiments were conducted with a two-dimensional flow cell to examine the effect of monorhamnolipid surfactant at sub-CMC concentrations on solubilization of dodecane in porous media under dynamic flow conditions. Quartz sand was used as the porous medium and artificial groundwater was used as the background solution. The effectiveness of the monorhamnolipid was compared to that of SDBS, Triton X-100, and ethanol. The results demonstrated the enhancement of dodecane solubility by monorhamnolipid surfactant at concentrations lower than CMC. The concentrations (50-210 μM) are sufficiently low that they do not cause mobilization of the dodecane. Retention of rhamnolipid in the porous medium and detection of nano-size aggregates in the effluent show that the solubilization is based on a sub-CMC aggregate-formation mechanism, which is significantly stronger than the solubilization caused by the co-solvent effect. The rhamnolipid biosurfactant is more efficient for the solubilization compared to the synthetic surfactants. These results indicate a strategy of employing low concentrations of rhamnolipid for surfactant-enhanced aquifer remediation (SEAR), which may overcome the drawbacks of using surfactants at hyper-CMC concentrations.
Synthesis and characterization of CMC from water hyacinth for lithium-ion battery applications
NASA Astrophysics Data System (ADS)
Hidayat, Sahrul; Susanty, Riveli, Nowo; Suroto, Bambang Joko; Rahayu, Iman
2018-02-01
Recently, the most dominating power supply on the mobile electronics market are rechargeable Lithium-ion batteries. This is because of a higher energy density and longer lifetime compared to similar rechargeable battery systems. One of the components that determine the performance of a lithium ion battery is the binder material, whether at the anode or the cathode. In commercial batteries, the material used as the binder is Polyvinylidene Difluoride (PVDF), with n-methyl-2-phyrrolidone (NMP) as the solvent. Both are synthetic materials that are expensive, toxic and harmful to the environment. An alternative binder material for lithium-ion battery electrodes is CMC (carboxymethyl cellulose) in a water solvent. CMC is cheaper than PVDF, non-toxic and more environmental friendly. CMC can be synthesized from several types of plants, such as water hyacinth, which is a weed plant with high cellulose content. The synthesis of CMC consists of three main steps, namely 1) the isolation process from water hyacinth, 2) the alkalization and carboxymethylation process and 3) the purification process to obtain CMC in high purity. FTIR characterization of the CMC shows five region of absorption bands. The bands in the region 1330-1400 cm-1 are due to symmetrical deformations of CH2 and OH groups. The ether bonds in CMC occur in the fingerprint region of 1250-1060 cm-1. The presence of new and strong absorption band around 1600 cm-1 is confirmed to the stretching vibration of the carboxyl group (COO-), while the one around 1415 cm-1 is assigned to carboxyl groups as it salts. The broad absorption band above 3400 cm-1 is due to the stretching frequency of the hydroxyl group (-OH). Purity test on three samples (CMC mesh-100, CMC mesh-60 and CMC, mesh-40) gives purity values of 99.89%, 99.99% and 99.89%, respectively. This proves that CMC have actually been formed with high purity.
Kim, JiSu; Kim, Mi-Ja; Lee, JaeHwan
2018-09-30
Effects of different moisture contents and oxidised compounds on the critical micelle concentration (CMC) of lecithin were determined in bulk oils and in medium-chain triacylglycerols (MCT). CMC of lecithin in MCT was significantly higher than that in other vegetable oils including olive, soybean, corn, and rapeseed oils (p < 0.05). Presence of moisture significantly affected the CMC of lecithin in MCT (p < 0.05). CMC of lecithin was high when the moisture content was below 900 ppm, whereas at a moisture content of 1000 ppm, CMC of lecithin decreased significantly (p < 0.05), and then started to increase. Addition of total polar materials (TPM), which are oxidation products, at 3 and 5% concentrations, decreased CMC of lecithin significantly (p < 0.05) in MCT, compared to when 0, 1, and 1.5% of TPM was added to MCT. As the degree of oxidation increased in corn oil, CMC of lecithin gradually decreased. Additionally, under different moisture contents, corn oils showed a similar pattern of CMC of lecithin in MCT, whereas oxidised corn oil had a little lower CMC of lecithin than unoxidised corn oil. The results clearly showed that the concentration of lecithin for the formation of micelles is greatly influenced by the presence of oxidation products and the moisture content in bulk oils. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Nasution, T. I.; Balyan, M.; Nainggolan, I.
2018-02-01
A Water vapor cell based on chitosan film has been successfully fabricated in film form to convert water vapor to electrical power. In order to improve the lifetime of water vapor cell, Carboxymethyl Cellulose (CMC) was added into 1% chitosan solution within concentration variations of 0.01, 0.05, 0.1 and 0.5%. The result showed that the lifetime of water vapor cell increased higher by adding the higher concentration of Carboxymethyl cellulose. The highest lifetime was evidenced by adding 0.5%CMC which maintained for 48 weeks. However, the average electrical power became lower to 4.621 µW. This electrical power lower than the addition of 0.1%CMC which maintained for 5.167 µW. While, the lifetime of chitosan-0.1%CMC film of 44 weeks is shorter compared to chitosan-0.5%CMC film. Based on FTIR characterization, it was founded that the chitosan structure did not change until the addition of 0.1%CMC. This caused the electrical power of water vapor cell degenerated. Therefore, chitosan-0.5%CMC film has excellent lifetime in converting water vapor to electrical power.
2018-01-01
Background: Blacks’ diminished return is defined as smaller protective effects of socioeconomic status (SES) on health of African Americans compared to Whites. Aim: Using a nationally representative sample, the current study aimed to examine if the protective effect of income on chronic medical conditions (CMC) differs for African Americans compared to Whites. Methods: With a cross-sectional design, the National Survey of American Life (NSAL), 2003, included 3570 non-Hispanic African Americans and 891 non-Hispanic Whites. The dependent variable was CMC, treated as a continuous measure. The independent variable was income. Race was the focal moderator. Age, education, and marital status were covariates. Linear regressions were used to test if the protective effect of income against CMC varies by race. Results: High income was associated with a lower number of CMC in the pooled sample. We found a significant interaction between race and income, suggesting that income has a smaller protective effect against CMC for African Americans than it does for Whites. Conclusion: Blacks’ diminished return also holds for the effects of income on CMC. Blacks’ diminished return is a contributing mechanism to the racial disparities in health in the United States that is often overlooked. More research is needed on the role of diminished health return of SES resources among other minority groups. PMID:29315227
Perpetration of teen dating violence in a networked society.
Korchmaros, Josephine D; Ybarra, Michele L; Langhinrichsen-Rohling, Jennifer; Boyd, Danah; Lenhart, Amanda
2013-08-01
Teen dating violence (TDV) is a serious form of youth violence that youth fairly commonly experience. Although youth extensively use computer-mediated communication (CMC), the epidemiology of CMC-based TDV is largely unknown. This study examined how perpetration of psychological TDV using CMC compares and relates to perpetration using longer-standing modes of communication (LSMC; e.g., face-to-face). Data from the national Growing up with Media study involving adolescents aged 14-19 collected from October 2010 to February 2011 and analyzed May 2012 are reported. Analyses focused on adolescents with a history of dating (n=615). Forty-six percent of youth daters had perpetrated psychological TDV. Of those who perpetrated in the past 12 months, 58% used only LSMC, 17% used only CMC, and 24% used both. Use of both CMC and LSMC was more likely among perpetrators who used CMC than among perpetrators who used LSMC. In addition, communication mode and type of psychological TDV behavior were separately related to frequency of perpetration. Finally, history of sexual intercourse was the only characteristic that discriminated between youth who perpetrated using different communication modes. Results suggest that perpetration of psychological TDV using CMC is prevalent and is an extension of perpetration using LSMC. Prevention should focus on preventing perpetration of LSMC-based TDV as doing so would prevent LSMC as well as CMC-based TDV.
Haftka, Joris J-H; Scherpenisse, Peter; Oetter, Günter; Hodges, Geoff; Eadsforth, Charles V; Kotthoff, Matthias; Hermens, Joop L M
2016-09-01
The amphiphilic nature of surfactants drives the formation of micelles at the critical micelle concentration (CMC). Solid-phase microextraction (SPME) fibers were used in the present study to measure CMC values of 12 nonionic, anionic, cationic, and zwitterionic surfactants. The SPME-derived CMC values were compared to values determined using a traditional surface tension method. At the CMC of a surfactant, a break in the relationship between the concentration in SPME fibers and the concentration in water is observed. The CMC values determined with SPME fibers deviated by less than a factor of 3 from values determined with a surface tension method for 7 out of 12 compounds. In addition, the fiber-water sorption isotherms gave information about the sorption mechanism to polyacrylate-coated SPME fibers. A limitation of the SPME method is that CMCs for very hydrophobic cationic surfactants cannot be determined when the cation exchange capacity of the SPME fibers is lower than the CMC value. The advantage of the SPME method over other methods is that CMC values of individual compounds in a mixture can be determined with this method. However, CMC values may be affected by the presence of compounds with other chain lengths in the mixture because of possible mixed micelle formation. Environ Toxicol Chem 2016;35:2173-2181. © 2016 SETAC. © 2016 SETAC.
Comparative study of in vitro and in vivo drug effects on cell-mediated cytotoxicity.
Borel, J F
1976-01-01
Cell-mediated cytolysis (CMC) was assayed in a system using spleen cells from mice (C57BL/6) sensitized with allogeneic tumour cells (DBA/2 mastocytoma P-815). Anti-inflammatory drugs, immunosuppressives, inhibitors of cell division and other agents were investigated for their capacity to inhibit CMC in three different ways. First, inhibition of CMC after in vitro addition of drug was observed with corticosteroids, some immunosuppressives and inhibitors of cell division. Secondly, suppression of CMC after a single drug administration to sensitized mice shortly before being killed was found with corticosteroids, several immunosuppressives and irradiation. Thirdly, prevention of development of CMC by repeated drug treatment (immunosuppressive schedule) was achieved with most immunosuppressives and cytostatic drugs. Non-steroidal anti-inflammatory drugs were inactive in these tests. Correlation of effects between the three procedures was very poor and it is suggested that various mechanisms may be involved in the different assays. PMID:824198
Chen, Zhe; Song, John; Chu, Wei; Soons, Johannes A; Zhao, Xuezeng
2017-11-01
The Congruent Matching Cells (CMC) method was invented at the National Institute of Standards and Technology (NIST) for accurate firearm evidence identification and error rate estimation. The CMC method is based on the principle of discretization. The toolmark image of the reference sample is divided into correlation cells. Each cell is registered to the cell-sized area of the compared image that has maximum surface topography similarity. For each resulting cell pair, one parameter quantifies the similarity of the cell surface topography and three parameters quantify the pattern congruency of the registration position and orientation. An identification (declared match) requires a significant number of CMCs, that is, cell pairs that meet both similarity and pattern congruency requirements. The use of cell correlations reduces the effects of "invalid regions" in the compared image pairs and increases the correlation accuracy. The identification accuracy of the CMC method can be further improved by considering a feature named "convergence," that is, the tendency of the x-y registration positions of the correlated cell pairs to converge at the correct registration angle when comparing same-source samples at different relative orientations. In this paper, the difference of the convergence feature between known matching (KM) and known non-matching (KNM) image pairs is characterized, based on which an improved algorithm is developed for breech face image correlations using the CMC method. Its advantage is demonstrated by comparison with three existing CMC algorithms using four datasets. The datasets address three different brands of consecutively manufactured pistol slides, with significant differences in the distribution overlap of cell pair topography similarity for KM and KNM image pairs. For the same CMC threshold values, the convergence algorithm demonstrates noticeably improved results by reducing the number of false-positive or false-negative CMCs in a comparison. Published by Elsevier B.V.
Baran, Talat
2018-07-01
This study describes (i) an eco-friendly approach for design of Pd(0) nanoparticles on a natural composite, which is composed of carboxymethyl cellulose/agar polysaccharides (CMC/AG), without using any toxic reducing agents and (ii) development of ultrasound assisted simple protocol for synthesis of biphenyl compounds. Chemical characterization studies of Pd(0) nanoparticles (Pd NPs@CMC/AG) revealed that size of the particles were in the range of 37-55 nm. Catalytic performance of Pd NPs@CMC/AG was evaluated in synthesis of various biphenyl compounds by using the ultrasound-assisted method that was developed in this study. Pd NPs@CMC/AG exhibited excellent catalytic performance by producing high reaction yields. In addition, Pd NPs@CMC/AG was successfully used up to six reaction cycles without losing its catalytic activity, indicating high reproducibility of Pd NPs@CMC/AG. Additionally, compared to conventional the methods, new ultrasound-assisted synthesis technique that was followed in this study exhibited some advantages such as shorter reaction time, greener reaction conditions, higher yields and easier work-up. Copyright © 2018 Elsevier B.V. All rights reserved.
Takeshita, Akihiro; Shinjo, Kaori; Yamakage, Nozomi; Ono, Takaaki; Hirano, Isao; Matsui, Hirotaka; Shigeno, Kazuyuki; Nakamura, Satoki; Tobita, Tadasu; Maekawa, Masato; Ohnishi, Kazunori; Sugimoto, Yoshikazu; Kiyoi, Hitoshi; Naoe, Tomoki; Ohno, Ryuzo
2009-06-01
The effect of CMC-544, a calicheamicin-conjugated anti-CD22 monoclonal antibody, was analysed in relation to CD22 and P-glycoprotein (P-gp) in B-cell chronic lymphocytic leukaemia (CLL) and non-Hodgkin lymphoma (NHL) in vitro. The cell lines used were CD22-positive parental Daudi and Raji, and their P-gp positive sublines, Daudi/MDR and Raji/MDR. Cells obtained from 19 patients with B-cell CLL or NHL were also used. The effect of CMC-544 was analysed by viable cell count, morphology, annexin-V staining, and cell cycle distribution. A dose-dependent, selective cytotoxic effect of CMC-544 was observed in cell lines that expressed CD22. CMC-544 was not effective on Daudi/MDR and Raji/MDR cells compared with their parental cells. The MDR modifiers, PSC833 and MS209, restored the cytotoxic effect of CMC-544 in P-gp-expressing sublines. In clinical samples, the cytotoxic effect of CMC-544 was inversely related to the amount of P-gp (P = 0.003), and to intracellular rhodamine-123 accumulation (P < 0.001). On the other hand, the effect positively correlated with the amount of CD22 (P = 0.010). The effect of CMC-544 depends on the levels of CD22 and P-gp. Our findings will help to predict the clinical effectiveness of this drug on these B-cell malignancies, suggesting a beneficial effect with combined use of CMC-544 and MDR modifiers.
Ceramic Matrix Composites for Rotorcraft Engines
NASA Technical Reports Server (NTRS)
Halbig, Michael C.
2011-01-01
Ceramic matrix composite (CMC) components are being developed for turbine engine applications. Compared to metallic components, the CMC components offer benefits of higher temperature capability and less cooling requirements which correlates to improved efficiency and reduced emissions. This presentation discusses a technology develop effort for overcoming challenges in fabricating a CMC vane for the high pressure turbine. The areas of technology development include small component fabrication, ceramic joining and integration, material and component testing and characterization, and design and analysis of concept components.
Approaches to polymer-derived CMC matrices
NASA Technical Reports Server (NTRS)
Hurwitz, Frances I.
1992-01-01
The use of polymeric precursors to ceramics permits the fabrication of large, complex-shaped ceramic matrix composites (CMC's) at temperatures which do not degrade the fiber. Processing equipment and techniques readily available in the resin matrix composite industry can be adapted for CMC fabrication using this approach. Criteria which influence the choice of candidate precursor polymers, the use of fillers, and the role of fiber architecture and ply layup are discussed. Three polymer systems, polycarbosilanes, polysilazanes, and polysilsesquioxanes, are compared as candidate ceramic matrix precursors.
Lequeux, C; Lhoste, A; Rovere, M R; Montastier, C; Damour, O
2011-01-01
The aim was to test the influence of dedifferentiated Crithmum maritimum cells (dCMC), totipotent vegetal stem cells, on epidermal regeneration in perfect homeostasis using a skin equivalent (SE) model. SE are prepared by seeding fibroblasts on a collagen-glycosaminoglycan-chitosan dermal substrate (DS) epidermalized by keratinocytes 3 weeks later. The originality of this present study lies in the systemic administration of dCMC from the moment when fibroblasts are seeded in the DS right through to the reconstruction of the SE. The thickness of the epidermis as well as the number of proliferating cells expressing Ki-67 and layers expressing terminal differentiation marker (filaggrin) were compared in the dCMC-treated SE versus an untreated control group. dCMC accelerated the complete regeneration and differentiation of the epidermis compared to the negative control (35 days instead of 42 days). Histology showed a multilayered, thick and differentiated epithelium after 35 days of culture. The basal and suprabasal layers had increased 4.88 ± 0.41 times versus the negative control (Mann-Whitney U test: p < 0.001). This result was attributed to the greater proliferation of basal cells because the cell numbers expressing the Ki-67 proliferation marker had increased significantly compared to the negative control (Mann-Whitney U test: p < 0.001). Moreover, dCMC allowed the differentiated epithelium to recover because only treated SE expressed the terminal differentiation marker filaggrin. Our data show that dCMC enhance epidermal cell grafts by stimulating their regeneration and differentiation in perfect homeostasis. They allow the epidermis to recover its structure for protective functions faster than the negative control. Copyright © 2010 S. Karger AG, Basel.
Walter, Jonathan P; Pandy, Marcus G
2017-10-01
The aim of this study was to perform multi-body, muscle-driven, forward-dynamics simulations of human gait using a 6-degree-of-freedom (6-DOF) model of the knee in tandem with a surrogate model of articular contact and force control. A forward-dynamics simulation incorporating position, velocity and contact force-feedback control (FFC) was used to track full-body motion capture data recorded for multiple trials of level walking and stair descent performed by two individuals with instrumented knee implants. Tibiofemoral contact force errors for FFC were compared against those obtained from a standard computed muscle control algorithm (CMC) with a 6-DOF knee contact model (CMC6); CMC with a 1-DOF translating hinge-knee model (CMC1); and static optimization with a 1-DOF translating hinge-knee model (SO). Tibiofemoral joint loads predicted by FFC and CMC6 were comparable for level walking, however FFC produced more accurate results for stair descent. SO yielded reasonable predictions of joint contact loading for level walking but significant differences between model and experiment were observed for stair descent. CMC1 produced the least accurate predictions of tibiofemoral contact loads for both tasks. Our findings suggest that reliable estimates of knee-joint loading may be obtained by incorporating position, velocity and force-feedback control with a multi-DOF model of joint contact in a forward-dynamics simulation of gait. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.
Krill, Lauren S; Ueda, Stefanie M; Gerardi, Melissa; Bristow, Robert E
2011-02-01
To evaluate the risk of postoperative complications related to HA-CMC use in patients undergoing optimal cytoreductive surgery for primary and recurrent ovarian, fallopian tube, and peritoneal cancers. A single institution retrospective review identified all patients undergoing optimal (≤1 cm) cytoreductive surgery for primary or recurrent ovarian, fallopian tube, and peritoneal cancers between 1/95 and 12/08. Operative details and post-operative complications (<30 days) were extracted from the medical record. Fisher's exact test, Mann-Whitney-U, and multiple regression analyses were performed to identify factors, including HA-CMC use, associated with post-operative complications. Three hundred seventy-five cases were analyzed: HA-CMC was utilized in 168 debulking procedures. There was no difference in the incidence of overall morbidity for patients with HA-CMC compared to those without HA-CMC (OR 1.07; 95% CI: 0.68-1.67). On univariate analysis, application of HA-CMC increased the risk of pelvic abscess (OR 2.66; 95% CI: 1.21-5.86), particularly in the primary surgery setting (OR 4.65; 95% CI: 1.67-12.98) and in patients undergoing hysterectomy (OR 3.36; 95% CI: 1.18-9.53). After controlling for confounding factors using multiple linear regression, HA-CMC use approached statistical significance in predicting an increased risk of pelvic abscess but not major postoperative morbidity. HA-CMC adhesion barrier placement at the time of optimal cytoreductive surgery for ovarian, fallopian tube, and peritoneal cancer is not associated with major postoperative complications but may be associated with increased risk of pelvic abscess. Copyright © 2010 Elsevier Inc. All rights reserved.
Kocur, Chris M D; Lomheim, Line; Boparai, Hardiljeet K; Chowdhury, Ahmed I A; Weber, Kela P; Austrins, Leanne M; Edwards, Elizabeth A; Sleep, Brent E; O'Carroll, Denis M
2015-07-21
A pilot scale injection of nanoscale zerovalent iron (nZVI) stabilized with carboxymethyl cellulose (CMC) was performed at an active field site contaminated with a range of chlorinated volatile organic compounds (cVOC). The cVOC concentrations and microbial populations were monitored at the site before and after nZVI injection. The remedial injection successfully reduced parent compound concentrations on site. A period of abiotic degradation was followed by a period of enhanced biotic degradation. Results suggest that the nZVI/CMC injection created conditions that stimulated the native populations of organohalide-respiring microorganisms. The abundance of Dehalococcoides spp. immediately following the nZVI/CMC injection increased by 1 order of magnitude throughout the nZVI/CMC affected area relative to preinjection abundance. Distinctly higher cVOC degradation occurred as a result of the nZVI/CMC injection over a 3 week evaluation period when compared to control wells. This suggests that both abiotic and biotic degradation occurred following injection.
Physical and mechanical properties of modified bacterial cellulose composite films
NASA Astrophysics Data System (ADS)
Indrarti, Lucia; Indriyati, Syampurwadi, Anung; Pujiastuti, Sri
2016-02-01
To open wide range application opportunities of Bacterial Cellulose (BC) such as for agricultural purposes and edible film, BC slurries were blended with Glycerol (Gly), Sorbitol (Sor) and Carboxymethyl Cellulose (CMC). The physical and mechanical properties of BC composites were investigated to gain a better understanding of the relationship between BC and the additive types. Addition of glycerol, sorbitol and CMC influenced the water solubility of BC composite films. FTIR analysis showed the characteristic bands of cellulose. Addition of CMC, glycerol, and sorbitol slightly changed the FTIR spectrum of the composites. Tensile test showed that CMC not only acted as cross-linking agent where the tensile strength doubled up to 180 MPa, but also acted as plasticizer with the elongation at break increased more than 100% compared to that of BC film. On the other hand, glycerol and sorbitol acted as plasticizers that decreased the tensile strength and increased the elongation. Addition of CMC can improve film transparency, which is quite important in consumer acceptance of edible films in food industry.
Two Studies Examining Argumentation in Asynchronous Computer Mediated Communication
ERIC Educational Resources Information Center
Joiner, Richard; Jones, Sarah; Doherty, John
2008-01-01
Asynchronous computer mediated communication (CMC) would seem to be an ideal medium for supporting development in student argumentation. This paper investigates this assumption through two studies. The first study compared asynchronous CMC with face-to-face discussions. The transactional and strategic level of the argumentation (i.e. measures of…
Fouling resilient perforated feed spacers for membrane filtration.
Kerdi, Sarah; Qamar, Adnan; Vrouwenvelder, Johannes S; Ghaffour, Noreddine
2018-04-24
The improvement of feed spacers with optimal geometry remains a key challenge for spiral-wound membrane systems in water treatment due to their impact on the hydrodynamic performance and fouling development. In this work, novel spacer designs are proposed by intrinsically modifying cylindrical filaments through perforations. Three symmetric perforated spacers (1-Hole, 2-Hole, and 3-Hole) were in-house 3D-printed and experimentally evaluated in terms of permeate flux, feed channel pressure drop and membrane fouling. Spacer performance is characterized and compared with standard no perforated (0-Hole) design under constant feed pressure and constant feed flow rate. Perforations in the spacer filaments resulted in significantly lowering the net pressure drop across the spacer filled channel. The 3-Hole spacer was found to have the lowest pressure drop (50%-61%) compared to 0-Hole spacer for various average flow velocities. Regarding permeate flux production, the 0-Hole spacer produced 5.7 L m -2 .h -1 and 6.6 L m -2 .h -1 steady state flux for constant pressure and constant feed flow rate, respectively. The 1-Hole spacer was found to be the most efficient among the perforated spacers with 75% and 23% increase in permeate production at constant pressure and constant feed flow, respectively. Furthermore, membrane surface of 1-Hole spacer was found to be cleanest in terms of fouling, contributing to maintain higher permeate flux production. Hydrodynamic understanding of these perforated spacers is also quantified by performing Direct Numerical Simulation (DNS). The performance enhancement of these perforated spacers is attributed to the formation of micro-jets in the spacer cell that aided in producing enough unsteadiness/turbulence to clean the membrane surface and mitigate fouling phenomena. In the case of 1-Hole spacer, the unsteadiness intensity at the outlet of micro-jets and the shear stress fluctuations created inside the cells are higher than those observed with other perforated spacers, resulting in the cleanest membrane surface. Copyright © 2018 Elsevier Ltd. All rights reserved.
Villafañe, Jorge H; Valdes, Kristin; Angulo-Diaz-Parreño, Santiago; Pillastrini, Paolo; Negrini, Stefano
2015-06-01
Grip testing is commonly used as an objective measure of strength in the hand and upper extremity and is frequently used clinically as a proxy measure of function. Increasing knowledge of hand biomechanics, muscle strength, and prehension patterns can provide us with a better understanding of the functional capabilities of the hand. The objectives of this study were to determine the contribution of ulnar digits to overall grip strength in individuals with thumb carpometacarpal (CMC) osteoarthritis (OA). Thirty-seven subjects participated in the study. This group consisted of 19 patients with CMC OA (aged 60-88 years) and 18 healthy subjects (60-88 years). Three hand configurations were used by the subjects during grip testing: use of the entire hand (index, middle, ring, and little fingers) (IMRL); use of the index, middle, and ring fingers (IMR); and use of only the index and middle fingers (IM). Grip strength findings for the two groups found that compared to their healthy counterparts, CMC OA patients had, on average, a strength deficiency of 45.6, 35.5, and 28.8 % in IMRL, IMR, and IM, respectively. The small finger contribution to grip is 14.3 % and the ring and small finger contribute 34 % in subjects with CMC OA. Grip strength decreases as the number of digits contributing decreased in both groups. The ulnar digits contribution to grip strength is greater than one third of total grip strength in subjects with CMC OA. Individuals with CMC OA demonstrate significantly decreased grip strength when compared to their healthy counterparts.
Evaluation of a Novel Artificial Tear in the Prevention and Treatment of Dry Eye in an Animal Model.
She, Yujing; Li, Jinyang; Xiao, Bing; Lu, Huihui; Liu, Haixia; Simmons, Peter A; Vehige, Joseph G; Chen, Wei
2015-11-01
To evaluate effects of a novel multi-ingredient artificial tear formulation containing carboxymethylcellulose (CMC) and hyaluronic acid (HA) in a murine dry eye model. Dry eye was induced in mice (C57BL/6) using an intelligently controlled environmental system (ICES). CMC+HA (Optive Fusion™), CMC-only (Refresh Tears(®)), and HA-only (Hycosan(®)) artificial tears and control phosphate-buffered saline (PBS) were administered 4 times daily and compared with no treatment (n = 64 eyes per group). During regimen 1 (prevention regimen), mice were administered artificial tears or PBS for 14 days (starting day 0) while they were exposed to ICES, and assessed on days 0 and 14. During regimen 2 (treatment regimen), mice exposed to ICES for 14 days with no intervention were administered artificial tears or PBS for 14 days (starting day 14) while continuing exposure to ICES, and assessed on days 0, 14, and 28. Corneal fluorescein staining and conjunctival goblet cell density were measured. Artificial tear-treated mice had significantly better outcomes than control groups on corneal staining and goblet cell density (P < 0.01). Mice administered CMC+HA also showed significantly lower corneal fluorescein staining and higher goblet cell density, compared with CMC (P < 0.01) and HA (P < 0.05) in both regimens 1 and 2. The artificial tear formulation containing CMC and HA was effective in preventing and treating environmentally induced dry eye. Improvements observed for corneal fluorescein staining and conjunctival goblet cell retention suggest that this combination may be a viable treatment option for dry eye disease.
Analysis of X-ray structures of matrix metalloproteinases via chaotic map clustering.
Giangreco, Ilenia; Nicolotti, Orazio; Carotti, Angelo; De Carlo, Francesco; Gargano, Gianfranco; Bellotti, Roberto
2010-10-08
Matrix metalloproteinases (MMPs) are well-known biological targets implicated in tumour progression, homeostatic regulation, innate immunity, impaired delivery of pro-apoptotic ligands, and the release and cleavage of cell-surface receptors. With this in mind, the perception of the intimate relationships among diverse MMPs could be a solid basis for accelerated learning in designing new selective MMP inhibitors. In this regard, decrypting the latent molecular reasons in order to elucidate similarity among MMPs is a key challenge. We describe a pairwise variant of the non-parametric chaotic map clustering (CMC) algorithm and its application to 104 X-ray MMP structures. In this analysis electrostatic potentials are computed and used as input for the CMC algorithm. It was shown that differences between proteins reflect genuine variation of their electrostatic potentials. In addition, the analysis has been also extended to analyze the protein primary structures and the molecular shapes of the MMP co-crystallised ligands. The CMC algorithm was shown to be a valuable tool in knowledge acquisition and transfer from MMP structures. Based on the variation of electrostatic potentials, CMC was successful in analysing the MMP target family landscape and different subsites. The first investigation resulted in rational figure interpretation of both domain organization as well as of substrate specificity classifications. The second made it possible to distinguish the MMP classes, demonstrating the high specificity of the S1' pocket, to detect both the occurrence of punctual mutations of ionisable residues and different side-chain conformations that likely account for induced-fit phenomena. In addition, CMC demonstrated a potential comparable to the most popular UPGMA (Unweighted Pair Group Method with Arithmetic mean) method that, at present, represents a standard clustering bioinformatics approach. Interestingly, CMC and UPGMA resulted in closely comparable outcomes, but often CMC produced more informative and more easy interpretable dendrograms. Finally, CMC was successful for standard pairwise analysis (i.e., Smith-Waterman algorithm) of protein sequences and was used to convincingly explain the complementarity existing between the molecular shapes of the co-crystallised ligand molecules and the accessible MMP void volumes.
COMPARISON OF PRESSURE DROP PRODUCED BY SPIRAL WRAPS, COOKIE CUTTERS AND OTHER ROD BUNDLE SPACERS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noyes, R.C.
The problem of predicting pressure drop due to various fuel bundle spacers is considered in some detail. Three sets of experimental data are reviewed and presented in reduced form. These data are compared to several semitheoretical approaches to pressure drop prediction and a best method is selected to make the required predictions. The comparison between predictions for the ASCR spiral wrap spacer and cookie cutter spacer shows that both types of spacers produce about the same pressure drop. Spacer pressure drop is shown to be strongly dependent on spacer frontal area and pitch. (auth)
A device for characterising the mechanical properties of the plantar soft tissue of the foot.
Parker, D; Cooper, G; Pearson, S; Crofts, G; Howard, D; Busby, P; Nester, C
2015-11-01
The plantar soft tissue is a highly functional viscoelastic structure involved in transferring load to the human body during walking. A Soft Tissue Response Imaging Device was developed to apply a vertical compression to the plantar soft tissue whilst measuring the mechanical response via a combined load cell and ultrasound imaging arrangement. Accuracy of motion compared to input profiles; validation of the response measured for standard materials in compression; variability of force and displacement measures for consecutive compressive cycles; and implementation in vivo with five healthy participants. Static displacement displayed average error of 0.04 mm (range of 15 mm), and static load displayed average error of 0.15 N (range of 250 N). Validation tests showed acceptable agreement compared to a Houndsfield tensometer for both displacement (CMC > 0.99 RMSE > 0.18 mm) and load (CMC > 0.95 RMSE < 4.86 N). Device motion was highly repeatable for bench-top tests (ICC = 0.99) and participant trials (CMC = 1.00). Soft tissue response was found repeatable for intra (CMC > 0.98) and inter trials (CMC > 0.70). The device has been shown to be capable of implementing complex loading patterns similar to gait, and of capturing the compressive response of the plantar soft tissue for a range of loading conditions in vivo. Copyright © 2015. Published by Elsevier Ltd.
Guilbert, Theresa W; Colice, Gene; Grigg, Jonathan; van Aalderen, Wim; Martin, Richard J; Israel, Elliot; Postma, Dirkje S; Roche, Nicolas; Phipatanakul, Wanda; Hillyer, Elizabeth V; Evans, Jennifer M; Dolovich, Myrna B; Price, David B
Spacers are often used with pressurized metered-dose inhalers (pMDIs) to eliminate the need for coordinating inhalation with actuation. To investigate the real-life effectiveness of spacers prescribed for use with either extrafine- or fine-particle inhaled corticosteroids (ICSs). This historical matched cohort study examined anonymous medical record data over 2 years (1-year baseline, 1-year outcome) for patients with asthma aged 12 to 80 years initiating ICSs by pMDI with or without prescribed spacer. We compared outcomes for spacer versus no-spacer arms, matched for key baseline and asthma-related characteristics, within 2 ICS cohorts: (1) extrafine-particle ICS (beclomethasone) and (2) fine-particle ICS (fluticasone). Effectiveness end points were compared using conditional regression methods. Matched spacer and no-spacer arms of the extrafine-particle ICS cohort each included 2090 patients (69% females; median age, 46-47 years) and the 2 arms of the fine-particle ICS cohort each included 444 patients (67% females; median age, 45 years). With extrafine-particle ICS, we observed no significant difference between spacer and no-spacer arms in severe exacerbation rate (primary end point): adjusted rate ratio, 1.01 (95% CI, 0.83-1.23). With fine-particle ICS, the severe exacerbation rate ratio with spacers was 0.77 (0.47-1.25). Oropharyngeal candidiasis incidence was low and similar in spacer and no-spacer arms for both ICS cohorts. We found no evidence that prescribed spacer devices are associated with improved asthma outcomes for extrafine- or fine-particle ICS administered by pMDI. These findings challenge long-standing assumptions that spacers should improve pMDI effectiveness and indicate the need for pragmatic trials of spacers in clinical practice. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.
Han, Yingying; Wang, Lijuan
2017-03-01
Antibacterial films were prepared using sodium alginate (SA) and carboxymethyl cellulose (CMC) as a matrix, glycerin as a plasticizer and CaCl 2 as a cross-linking agent, and by incorporating the natural antibacterial agent pyrogallic acid (PA). The present study describes the microstructure and the physical, barrier, mechanical, optical and antibacterial properties of blended films prepared by incorporating different concentrations of PA into the SA/CMC matrix. The microstructure of the films was investigated by Fourier transform infrared spectroscopy and scanning electron microscopy, which revealed that PA interacts with the SA/CMC matrix through hydrogen bonding. Moreover, the incorporation of PA increased the moisture content, water vapor permeability and oxygen permeability of SA/CMC films. Films containing 40 g kg -1 of PA had the highest elongation at break result (39.60%). Compared with pure SA/CMC films, the incorporation of PA improved the barrier properties against ultraviolet light; however, it decreased the color parameter L* value and increased the a* and b* values of the films. Furthermore, films with PA, especially at higher concentrations, were more effective against Escherichia coli and Staphylococcus aureus. Antibacterial SA/CMC films incorporating PA appear to have good potential to enhance the safety of foods and food products. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Esteghlal, Sara; Niakousari, Mehrdad; Hosseini, Seyed Mohammad Hashem
2018-07-15
The objective of current study was to examine the electrostatic interactions between gelatin and carboxymethyl cellulose (CMC) as a function of pH and mixing ratio (MR) and to observe how the physical and mechanical properties of gelatin-CMC composite films are affected by these interactions. The interaction between biopolymers was studied using turbidometric analysis at different gelatin: CMC MRs and pH values. A reduction in pH and MR enhanced the electrostatic interactions; while, decreased the relative viscosity of mixed system. Physical and mechanical properties of resultant composite films were examined and compared with those of control gelatin films. Changes in the intensity of interactions between the two biopolymers resulted in films with different properties. Polymer complexation led to formation of resistant film networks of less solubility and swellability. Water vapor permeability (WVP) was not significantly (P≤0.05) influenced by incorporating CMC into continuous gelatin films. Composite films prepared at MR of 9:1 and pH opt (corresponding to the maximum amount of interaction) revealed different characteristics such as maximum amounts of WVP and swelling and minimum amounts of tensile strength and solubility. FTIR spectra of composite films confirmed that gelatin and CMC were not covalently bonded. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Basu, Probal; Saha, Nabanita; Bandyopadhyay, Smarak; Saha, Petr
2017-05-01
Bacterial cellulose (BC) based hydrogels (BC-PVP and BC-CMC) are modified with β-tri-calcium phosphate (β-TCP) and hydroxyapatite (HA) to improve the structural and functional properties of the existing hydrogel scaffolds. The modified hydrogels are then biomineralized with CaCO3 following liquid diffusion technique, where salt solutions of Na2CO3 (5.25 g/100 mL) and CaCl2 (7.35 g/100 mL) were involved. The BC-PVP and BC-CMC are being compared with the non-mineralized (BC-PVP-β-TCP/HA and BC-CMC-β-TCP/HA) and biomineralized (BC-PVP-β-TCP/HA-CaCO3 and BC-CMC-β-TCP/HA-CaCO3) hydrogels on the basis of their structural and rheological properties. The Fourier Transform Infrared (FTIR) spectral analysis demonstrated the presence of BC, CMC, PVP, β-TCP, HA in the non-mineralized and BC, CMC, PVP, β-TCP, HA and CaCO3 in the biomineralized samples. Interestingly, the morphological property of non-mineralized and biomineralized, hydrogels are different than that of BC-PVP and BC-CMC based novel biomaterials. The Scanning Electron Microscopic (SEM) images of the before mentioned samples reveal the denser structures than BC-PVP and BC-CMC, which exhibits the changes in their pore sizes. Concerning rheological analysis point of view, all the non-mineralized and biomineralized hydrogel scaffolds have shown significant elastic property. Additionally, the complex viscosity (η*) values have also found in decreasing order with the increase of angular frequency (ω) 0.1 rad.sec-1 to 100 rad.sec-1. All these BC based hydrogel scaffolds are elastic in nature, can be recommended for their application as an implant for bone tissue engineering.
Tan, Annie; Argenta, Peter; Ramirez, Rose; Bliss, Robin; Geller, Melissa
2009-02-01
Concerns exist regarding the safety of sodium hyaluronate-carboxymethylcellulose (HA-CMC, Seprafilm) adhesion barrier in regard to cancer survival as a result of in vitro data demonstrating that hyaluronan, a component of HA-CMC, may promote tumor growth. We sought to determine whether use of HA-CMC is associated with duration of disease-free or overall survival and rates of immediate complication in patients with gynecologic malignancies. We identified 202 consecutive patients with epithelial ovarian, fallopian tube, and primary peritoneal cancer who underwent initial surgical staging or interval debulking at the University of Minnesota between January 2001 and December 2004. Information on patients' demographics, medical history, surgical procedures, postoperative complications, disease stage, histology, adjuvant therapy, and disease-free and overall survival was collected from medical records. Survival curves were compared between patients receiving or not receiving HA-CMC by stratified Cox regression models, log rank, and Wilcoxon tests. The level of significance was set to alpha = .05 for each test. Eighty patients received intraoperative placement of HA-CMC and 122 did not. Immediate postoperative complication rates were equivalent in both groups. Median follow-up was 2.1 years. There was no difference in disease-free survival (5-year estimate 23.6% vs. 33.3%, P = .80) or overall survival (5-year estimate 29.7% vs. 40.3%, P = .75) between those who received HA-CMC and those who did not. Our retrospective analysis suggests that HA-CMC adhesion barrier does not affect disease-free survival or overall survival; nor does it increase the immediate postoperative complication rates in patients undergoing abdominal surgery for ovarian, fallopian tube, and primary peritoneal carcinomas.
2014-01-01
Background Hyaluronic acid is a prognostic factor in ovarian cancers. It is also a component of Hyaluronic Acid-Carboxymethyl Cellulose (HA-CMC) barrier, an anti-adhesion membrane widely used during abdominal surgeries in particular for ovarian carcinosis. 70% of patients who undergo ovarian surgery will relapse due to the persistence of cancer cells. This study’s objective was to determine the oncological risk from use of this material, in the presence of residual disease, despite the benefit gained by it decreasing post-surgical adhesions in order to provide an unambiguous assessment of its appropriateness for use in ovarian surgical management. Methods We assessed the effects of HA-CMC barrier on the in vitro proliferation of human ovarian tumor cell lines (OVCAR-3, IGROV-1 and SKOV-3). We next evaluated, in vivo in nude mice, the capacity of this biomaterial to regulate the tumor progression of subcutaneous and intraperitoneal models of ovarian tumor xenografts. Results We showed that HA-CMC barrier does not increase in vitro proliferation of ovarian cancer cell lines compared to control. In vivo, HA-CMC barrier presence with subcutaneous xenografts induced neither an increase in tumor volume nor cell proliferation (Ki67 and mitotic index). With the exception of an increased murine carcinosis score in peritoneum, the presence of HA-CMC barrier with intraperitoneal xenografts modified neither macro nor microscopic tumor growth. Finally, protein analysis of survival (Akt), proliferation (ERK) and adhesion (FAK) pathways highlighted no activation on the xenografts imputable to HA-CMC barrier. Conclusions For the most part, our results support the lack of tumor progression activation due to HA-CMC barrier. We conclude that the benefits gained from using HA-CMC barrier membrane during ovarian cancer surgeries seem to outweigh the potential oncological risks. PMID:24739440
Ballabio, Davide; Consonni, Viviana; Mauri, Andrea; Todeschini, Roberto
2010-01-11
In multivariate regression and classification issues variable selection is an important procedure used to select an optimal subset of variables with the aim of producing more parsimonious and eventually more predictive models. Variable selection is often necessary when dealing with methodologies that produce thousands of variables, such as Quantitative Structure-Activity Relationships (QSARs) and highly dimensional analytical procedures. In this paper a novel method for variable selection for classification purposes is introduced. This method exploits the recently proposed Canonical Measure of Correlation between two sets of variables (CMC index). The CMC index is in this case calculated for two specific sets of variables, the former being comprised of the independent variables and the latter of the unfolded class matrix. The CMC values, calculated by considering one variable at a time, can be sorted and a ranking of the variables on the basis of their class discrimination capabilities results. Alternatively, CMC index can be calculated for all the possible combinations of variables and the variable subset with the maximal CMC can be selected, but this procedure is computationally more demanding and classification performance of the selected subset is not always the best one. The effectiveness of the CMC index in selecting variables with discriminative ability was compared with that of other well-known strategies for variable selection, such as the Wilks' Lambda, the VIP index based on the Partial Least Squares-Discriminant Analysis, and the selection provided by classification trees. A variable Forward Selection based on the CMC index was finally used in conjunction of Linear Discriminant Analysis. This approach was tested on several chemical data sets. Obtained results were encouraging.
Small deformation viscoelastic and thermal behaviours of pomegranate seed pips CMC gels.
Savadkoohi, Sobhan; Farahnaky, Asgar
2015-07-01
The current investigation presents an exploration in phase behaviour of carboxymethyl cellulose (CMC) produced from pomegranate seed pips compared to low and high viscosity CMCs (LMCMC and HMCMC) primarily at low solid concentrations. Cellulose was extracted with 10 % NaOH at 35 °C for 22 h from pomegranate seed pips and converted to CMC by etherification process. Thermomechanical analysis and micro-imaging were carried out using small deformation dynamic oscillation in shear, modulated differential scanning calorimetry (MDSC) and scanning electron microscopy (SEM). The results emphasize the importance of molecular interaction and the degree of substitution in produced CMC. Thermal gravimetric analysis (TGA) thermograms showed an initial weight loss in pomegranate seed pips CMC (PSCMC) sample, which we attribute to presence of amount of moisture in sample powder. MDSC analysis of PSCMC showed five different peaks at 84, 104, 173, 307 and 361 °C. Moreover, G' and G" changes were found to be dependent on both concentration and frequency. The results of frequency sweep and tan δ indicate that PSCMC solutions can be classified as weak gels.
The impact of countermeasure propagation on the prevalence of computer viruses.
Chen, Li-Chiou; Carley, Kathleen M
2004-04-01
Countermeasures such as software patches or warnings can be effective in helping organizations avert virus infection problems. However, current strategies for disseminating such countermeasures have limited their effectiveness. We propose a new approach, called the Countermeasure Competing (CMC) strategy, and use computer simulation to formally compare its relative effectiveness with three antivirus strategies currently under consideration. CMC is based on the idea that computer viruses and countermeasures spread through two separate but interlinked complex networks-the virus-spreading network and the countermeasure-propagation network, in which a countermeasure acts as a competing species against the computer virus. Our results show that CMC is more effective than other strategies based on the empirical virus data. The proposed CMC reduces the size of virus infection significantly when the countermeasure-propagation network has properties that favor countermeasures over viruses, or when the countermeasure-propagation rate is higher than the virus-spreading rate. In addition, our work reveals that CMC can be flexibly adapted to different uncertainties in the real world, enabling it to be tuned to a greater variety of situations than other strategies.
Gautam, Arvind; Rani, A Bhargavi; Callejas, Miguel A; Acharyya, Swati Ghosh; Acharyya, Amit; Biswas, Dwaipayan; Bhandari, Vasundhra; Sharma, Paresh; Naik, Ganesh R
2016-08-01
In this paper we introduce Shape Memory Alloy (SMA) for designing the tibial part of Total Knee Arthroplasty (TKA) by exploiting the shape-memory and pseudo-elasticity property of the SMA (e.g. NiTi). This would eliminate the drawbacks of the state-of-the art PMMA based knee-spacer including fracture, sustainability, dislocation, tilting, translation and subluxation for tackling the Osteoarthritis especially for the aged people of 45-plus or the athletes. In this paper a Computer Aided Design (CAD) model using SolidWorks for the knee-spacer is presented based on the proposed SMA adopting the state-of-the art industry-standard geometry that is used in the PMMA based spacer design. Subsequently Ansys based Finite Element Analysis is carried out to measure and compare the performance between the proposed SMA based model with the state-of-the art PMMA ones. 81% more bending is noticed in the PMMA based spacer compared to the proposed SMA that would eventually cause fracture and tilting or translation of spacer. Permanent shape deformation of approximately 58.75% in PMMA based spacer is observed compared to recoverable 11% deformation in SMA when same load is applied on both separately.
The effect of carrier type on bone regeneration of demineralized bone matrix in vivo.
Tavakol, Shima; Khoshzaban, Ahad; Azami, Mahmoud; Kashani, Iraj Ragerdi; Tavakol, Hani; Yazdanifar, Mahbube; Sorkhabadi, Seyed Mahdi Rezayat
2013-11-01
Demineralized bone matrix (DBM) is a bone substitute biomaterial used as an excellent grafting material. Some factors such as carrier type might affect the healing potential of this material. The background data discuss the present status of the field: Albumin as a main protein in blood and carboxymethyl cellulose (CMC) were applied frequently in the DBM gels. We investigated the bone-repairing properties of 2 DBMs with different carriers. Bone regeneration in 3 groups of rat calvaria treated with DBM from the Iranian Tissue Bank Research and Preparation Center, DBM from Hans Biomed Corporation, and an empty cavity was studied. Albumin and CMC as carriers were used. The results of bone regeneration in the samples after 1, 4, and 8 weeks of implantation were compared. The block of the histologic samples was stained with hematoxylin and eosin, and the percentage area of bone formation was calculated using the histomorphometry method. The results of in vivo tests showed a significantly stronger new regenerated bone occupation in the DBM with albumin carrier compared with the one with CMC 8 weeks after the implantation. The 2 types of DBM had a significant difference in bone regeneration. This difference is attributed to the type of carriers. Albumin could improve mineralization and bioactivity compared with CMC.
Goltz, Daniel E; Sutter, E Grant; Bolognesi, Michael P; Wellman, Samuel S
2018-03-30
In 2-stage revision of total knee arthroplasty (TKA) infection, articulating antibiotic spacers show similar eradication rates and superior range of motion compared with static spacers. This study evaluated infection control and other outcomes in articulating spacers with an autoclaved index femoral component. We reviewed 59 patients who underwent 2-stage treatment of TKA infection using articulating antibiotic spacers with an autoclaved femoral component with at least 2-year follow-up (mean: 5.0 years) from spacer placement. Reinfection was defined as any subsequent infection; recurrence was defined as reinfection with the same organism, need for chronic antibiotics, or conversion directly to amputation/arthrodesis. Nine patients (15%) experienced a recurrence and 22 patients (37%) experienced a reinfection. Incidence of diabetes mellitus was significantly higher in patients who became reinfected. Other comorbidities, revision history, prior spacer, or presence of virulent organisms did not predict infection recurrence. Forty-seven spacers underwent reimplantation, 6 (13%) of these went on to above-knee amputation, 6 (13%) received another 2-stage procedure, and 3 (6%) underwent subsequent irrigation and debridement. Three patients (5%) proceeded directly from spacer to above-knee amputation (2) or arthrodesis (1). Nine spacers (15%) in 7 patients were retained indefinitely (mean: 3.4 years), with overall good motion and function. Accounting for methodology, articulating spacers with autoclaved femoral components provide similar infection control to previous reports. Most patients with reinfection grew different organisms compared with initial infection, suggesting that some subsequent infections may be host related. Some patients retained spacers definitively with overall good patient satisfaction. Copyright © 2018 Elsevier Inc. All rights reserved.
Success of Two-Stage Reimplantation in Patients Requiring an Interim Spacer Exchange.
George, Jaiben; Miller, Evan M; Curtis, Gannon L; Klika, Alison K; Barsoum, Wael K; Mont, Michael A; Higuera, Carlos A
2018-03-23
Some patients undergoing a 2-stage revision for a periprosthetic joint infection require a repeat spacer in the interim (removal of existing spacer with insertion of a new spacer or spacer exchange) due to persistent infection. The objectives of this study are to (1) determine the factors associated with patients who receive a repeat spacer and (2) compare the infection-free survival (overall and stratified by joint type) of reimplantation in patients who did or did not receive a repeat spacer. From 2001 to 2014, 347 hip or knee 2-stage revisions that finally underwent reimplantation and had a minimum 2-year follow-up were identified. An interim spacer exchange was performed in 59 (17%) patients (exchange cohort). Patient-related and organism-related factors were compared between the exchange and non-exchange cohorts. Kaplan-Meier survival curves were performed to assess the success (absence of signs of infection, reoperation for infection, periprosthetic joint infection-related mortality) of both cohorts. Patients in the exchange group had higher comorbidity score (P = .020), prolonged time to reimplantation (P < .001), and higher prevalence of resistant organisms, though not statistically significant (P = .091). The 5-year infection-free survival rates were 64% (knee 62%, hip 64%) in the exchange cohort, and 78% (knee 77%, hip 78%) in the non-exchange cohort (P = .020). Patients requiring an interim spacer exchange were found to have more comorbidities, prolonged treatment period, and were more likely to be infected with a resistant organism. About one-third of such patients became reinfected within 5 years compared to only one-fifth of the patients without an interim spacer exchange. Copyright © 2018 Elsevier Inc. All rights reserved.
Scholz, Norman; Behnke, Thomas; Resch-Genger, Ute
2018-01-01
Micelles are of increasing importance as versatile carriers for hydrophobic substances and nanoprobes for a wide range of pharmaceutical, diagnostic, medical, and therapeutic applications. A key parameter indicating the formation and stability of micelles is the critical micelle concentration (CMC). In this respect, we determined the CMC of common anionic, cationic, and non-ionic surfactants fluorometrically using different fluorescent probes and fluorescence parameters for signal detection and compared the results with conductometric and surface tension measurements. Based upon these results, requirements, advantages, and pitfalls of each method are discussed. Our study underlines the versatility of fluorometric methods that do not impose specific requirements on surfactants and are especially suited for the quantification of very low CMC values. Conductivity and surface tension measurements yield smaller uncertainties particularly for high CMC values, yet are more time- and substance consuming and not suitable for every surfactant.
Worku, Bogale; Kassie, Assaye
2005-04-01
A randomized controlled trial was conducted over a 1-year period (November 2001-November 2002) in Addis Ababa to study the effectiveness of early Kangaroo mother care before stabilization of low birthweight infants as compared with the conventional method of care. There were 259 babies weighing less than 2000 g during the study period and a total of 123 (47.5 per cent) low birthweight infants were included in to the study. Sixty-two infants were enrolled as Kangaroo Mother Care (KMC) and the remaining 61 were Conventional Method of Care (CMC) cases. The demographic and socioeconomic characteristics for both groups were comparable. The mean age at the time of enrollment was 10 and 9.8 h for KMC and CMC, respectively (p>0.05 with 95 per cent confidence interval). The mean birthweight was 1514.8 g (range 1000-1900 g) for KMC and 1471.8 g (range 930-1900 g) for CMC (p>0.05 with 95 per cent CI) and the mean gestational age was 32.42 and 31.59 weeks for KMC and CMC cases, respectively. Fifty-eight per cent of KMC and 52 per cent of CMC cases were on i.v. fluid. Twenty-one of 62 (34 per cent) of KMC and 23/61 (37 per cent) of CMC babies were on oxygen through nasopharyngeal catheter. The mean age at exit from the study was 4.6 days for KMC and 5.4 days for CMC. Ninety-one per cent and 88 per cent of babies in KMC and CMC were discharged from the study in the first 7 days of life, respectively. The study showed that 14/62 (22.5 per cent) of KMC vs. 24/63 (38 per cent) CMC babies died during the study (p<0.05 and CI of 95 per cent.) The majority of deaths occurred during the first 12 h of life. Survival for the preterm low birthweight infants was remarkably better for the early kangaroo mother care group than the babies in the conventional method of care in the first 12 h and there after. More than 95 per cent of mothers reported that they were happy to care for their low birthweight babies using the early Kangaroo mother method. It was recommended to study the feasibility and effectiveness of Kangaroo mother care at the community level.
Leelathipkul, Lalit; Tanticharoenwiwat, Pattara; Ithiawatchakul, Jutinan; Prommin, Danu; Sirisalee, Pasu; Junhunee, Parinya; Poachanukoon, Orapan
2016-07-01
Inhaled bronchodilator treatment given via the pressurized metered-dose inhaler (pMDI) with spacer has been recommended for an acute asthma treatment. Unfortunately, most of commercially available spacers are at high cost while a do-it-yourself (DIY) spacer has lower cost as it is made from plastic bottle and siphon pump which are inexpensive and easilyfound materials. This study aims to compare treatment response in nebulizer and DIY spacer used for asthmatic children. A prospective, randomized control study was conducted in children aged 1-15 years old hospitalized for mild to moderate asthmatic attack at Thammasat University Hospital between June 2014 and March 2015. The patients were divided into 2 groups, receiving β2-agonist via nebulization and via pMDI with DIY spacer. Their vital signs and oxygen saturation were monitored and asthma scores were also recorded at admission, 24 hours, 48 hours, and before discharge. The satisfaction of equipment use was evaluated employing questionnaires. 40 childrens were enrolled with male at 72.5% and mean age at 3.1±1.6 years old. There was no significant difference in efficacy of β2-agonist among 2 groups when comparing in consideration of vital signs, oximetry, asthma scores and hospital stay. However, there were significantly different on side effect in which the DIY spacer had less tachycardia and agitation. Satisfaction of parents and healthcare workers were higher in DIY spacer. MDI with DIY spacer was able to be used effectively when compared with nebulization to treat mild to moderate acute exacerbations of asthma in children admitted in hospital.
Gum cordia as carrier of antioxidants: effects on lipid oxidation of peanuts.
Haq, Muhammad Abdul; Azam, Mahmood; Hasnain, Abid
2015-04-01
Performance of antioxidants is improved by incorporating them into polymer matrix such as polysaccharides based edible coatings. Gum cordia, an anionic polysaccharide extracted from the fruits of Cordia.myxa could be used as carrier of antioxidants by virtue of its strong adhering and emulsifying properties. This study aimed to explore the potential of gum cordia as carrier of antioxidants when applied as edible coating on peanuts. Gum Cordia was compared with carboxymethyl cellulose (CMC) in delivering of antioxidants: butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT) and ascorbic acid (AA). Coated and uncoated peanuts were stored at 35 °C for 126 days and coating carrier effectiveness was measured by following lipid oxidation using chemical parameters (peroxide value and thiobarbituric acid reactive species) and sensory evaluation (oxidized flavor). Significant differences (p < 0.05) between coated and uncoated samples were observed. Gum cordia was found better than CMC to deliver the antioxidants. Gum cordia based coating in combination with BHA/BHT exhibited highest protection (290 % higher shelf life than control) based on peroxide value (40 meq.O2 kg(-1)) followed by gum codia plus BHT (244 %), gum cordia plus BHA (232 %), CMC plus BHA/BHT (184 %), CMC plus BHA (139 %), CMC plus BHT (119 %), gum cordia plus AA (96 %) and CMC plus AA (46 %).
Kangaroo mother care for low birth weight infants: a randomized controlled trial.
Suman, Rao P N; Udani, Rekha; Nanavati, Ruchi
2008-01-01
To compare the effect of Kangaroo mother care (KMC) and conventional methods of care (CMC) on growth in LBW babies (> 2000 g). Randomized controlled trial. Level III NICU of a teaching institution in western India. 206 neonates with birth weight < 2000 g. The subjects were randomized into two groups: the intervention group (KMC-103) received Kangaroo mother care. The control group (CMC: 103) received conventional care. Growth, as measured by average daily weight gain and by other anthropometrical parameters at 40 weeks postmenstrual age in preterm babies and at 2500 g in term SGA infants was assessed. The KMC babies had better average weight gain per day (KMC: 23.99 g vs CMC: 15.58 g, P< 0.0001). The weekly increments in head circumference (KMC: 0.75 cm vs CMC: 0.49 cm, P = 0.02) and length (KMC: 0.99 cm vs CMC: 0.7 cm, P = 0.008) were higher in the KMC group. A significantly higher number of babies in the CMC group suffered from hypothermia, hypoglycemia, and sepsis. There was no effect on time to discharge. More KMC babies were exclusively breastfed at the end of the study (98% vs 76%). KMC was acceptable to most mothers and families at home. Kangaroo mother care improves growth and reduces morbidities in low birth weight infants. It is simple, acceptable to mothers and can be continued at home.
Messere, A; Turturici, M; Millo, G; Roatta, S
2017-06-01
Animal studies have shown that the rapid hyperemic response to external muscle compression undergoes inactivation upon repetitive stimulation, but this phenomenon has never been observed in humans. The aim of the present study was to determine whether 1) the vascular mechano-sensitivity underlying muscle compression-induced hyperemia is inactivated in an inter-stimulus interval (ISI)-dependent fashion upon repetitive stimulation, as suggested by animal studies, and 2) whether such inactivation also attenuates contraction-induced hyperemia. Brachial artery blood flow was measured by echo Doppler sonography in 13 healthy adults in response to 1) single and repetitive cuff muscle compression (CMC) of the forearm (20 CMCs, 1 s ISI); 2) a sequence of CMC delivered at decreasing ISI from 120 to 2 s; and 3) electrically-stimulated contraction of the forearm muscles before and after repetitive CMC. The peak amplitude of hyperemia in response to CMC normalized to baseline decreased from 2.2 ± 0.6 to 1.4 ± 0.4 after repetitive CMC and, in general, was decreased at ISI < 240 s. The peak amplitude of contraction-induced hyperemia was attenuated after as compared to before repeated CMC (1.7 ± 0.4 and 2.6 ± 0.6, respectively). Mechano-sensitivity of the vascular network can be conditioned by previous mechanical stimulation, and such preconditioning may substantially decrease contraction-induced hyperemia.
Ozerhan, Ismail Hakkı; Urkan, Murat; Meral, Ulvi Mehmet; Unlu, Aytekin; Ersöz, Nail; Demirag, Funda; Yagci, Gokhan
2016-01-01
Intra-abdominal adhesions (IA) may occur after abdominal surgery and also may lead to complications such as infertility, intestinal obstruction and chronic pain. The aim of this study was to compare the effects of Mitomycin-C (MM-C) and sodium hyaluronate/carboxymethylcellulose [NH/CMC] on abdominal adhesions in a cecal abrasion model and to investigate the toxicity of MM-C on complete blood count (CBC) and bone marrow analyses. The study comprised forty rats in four groups (Control, Sham, Cecal abrasion + MM-C, and Cecal abrasion + NH/CMC). On postoperative day 21, all rats except for the control (CBC + femur resection) group, were sacrificed. Macroscopical and histopathological evaluations of abdominal adhesions were performed. In order to elucidate the side effects of MM-C; CBC analyses and femur resections were performed to examine bone marrow cellularity. CBC analyses and bone marrow cellularity assessment revealed no statistically significant differences between MM-C, NH/CMC and control groups. No significant differences in inflammation scores were observed between the groups. The MM-C group had significantly lower fibrosis scores compared to the NH/CMC and sham groups. Although the adhesion scores were lower in the MM-C group, the differences were not statistically significant. Despite its potential for systemic toxicity, MM-C may show some anti-fibrosis and anti-adhesive effects. MM-C is a promising agent for the prevention of IAs, and as such, further trials are warranted to study efficacy.
Re-Examining the Effects and Affects of Electronic Peer Reviews in a First-Year Composition Class
ERIC Educational Resources Information Center
Xu, Yi
2007-01-01
While many researchers have studied the application of computer-mediated communication (CMC) in peer review activities in L2 composition classes, few have directly compared the effect of asynchronous CMC (ACMC) versus written comments. This paper describes a small-scale project carried out in an ESL composition class to reexamine the effects and…
Xu, Hui; Li, Pei Xun; Ma, Kun; Thomas, Robert K; Penfold, Jeffrey; Lu, Jian Ren
2013-07-30
This is a second paper responding to recent papers by Menger et al. and the ensuing discussion about the application of the Gibbs equation to surface tension (ST) data. Using new neutron reflection (NR) measurements on sodium dodecylsulfate (SDS) and sodium dodecylmonooxyethylene sulfate (SLES) above and below their CMCs and with and without added NaCl, in conjunction with the previous ST measurements on SDS by Elworthy and Mysels (EM), we conclude that (i) ST measurements are often seriously compromised by traces of divalent ions, (ii) adsorption does not generally reach saturation at the CMC, making it difficult to obtain the limiting Gibbs slope, and (iii) the significant width of micellization may make it impossible to apply the Gibbs equation in a significant range of concentration below the CMC. Menger et al. proposed ii as a reason for the difficulty of applying the Gibbs equation to ST data. Conclusions i and iii now further emphasize the failings of the ST-Gibbs analysis for determining the limiting coverage at the CMC, especially for SDS. For SDS, adsorption increases above the CMC to a value of 10 × CMC, which is about 25% greater than at the CMC and about the same as at the CMC in the presence of 0.1 M NaCl. In contrast, the adsorption of SLES reaches a limit at the CMC with no further increase up to 10 × CMC, but the addition of 0.1 M NaCl increases the surface excess by 20-25%. The results for SDS are combined with earlier NR results to generate an adsorption isotherm from 2 to 100 mM. The NR results for SDS are compared to the definitive surface tension (ST) measurements of EM, and the surface excesses agree over the range where they can safely be compared, from 2 to 6 mM. This confirms that the anomalous decrease in the slope of EM's σ - ln c curve between 6 mM and the CMC at 8.2 mM results from changes in activity associated with a significant width of micellization. This anomaly shows that it is impossible to apply the Gibbs equation usefully from 6 to 8.2 mM (i.e., the lack of knowledge of the activity in this range is the same as above the CMC (8.2 mM)). It was found that a mislabeling of the original data in EM may have prevented the use of this excellent ST data as a standard by other authors. Although NR and ST results for SDS in the absence of added electrolyte show that the discrepancies can be rationalized, ST is generally shown to be less accurate and more vulnerable to impurities, especially divalent ions, than NR. The radiotracer technique is shown to be less accurate than ST-Gibbs in that the four radiotracer measurements of the surface excess are consistent neither with each other nor with ST and NR. It is also shown that radiotracer results on aerosol-OT are likely to be incorrect. Application of the mass action (MA) model of micellization to the ST curves of SDS and SLES through and above the CMC shows that they can be explained by this model and that they depend on the degree of dissociation of the micelle, which leads to a larger change in the mean activity, and hence the adsorption, for the more highly dissociated SDS micelles than for SLES. Previous measurements of the activity of SDS above the CMC were found to be semiquantitatively consistent with the change in mean activity predicted by the MA model but inconsistent with the combined ST, NR, and Gibbs equation results.
Experts' Perspectives Toward a Population Health Approach for Children With Medical Complexity.
Barnert, Elizabeth S; Coller, Ryan J; Nelson, Bergen B; Thompson, Lindsey R; Chan, Vincent; Padilla, Cesar; Klitzner, Thomas S; Szilagyi, Moira; Chung, Paul J
2017-08-01
Because children with medical complexity (CMC) display very different health trajectories, needs, and resource utilization than other children, it is unclear how well traditional conceptions of population health apply to CMC. We sought to identify key health outcome domains for CMC as a step toward determining core health metrics for this distinct population of children. We conducted and analyzed interviews with 23 diverse national experts on CMC to better understand population health for CMC. Interviewees included child and family advocates, health and social service providers, and research, health systems, and policy leaders. We performed thematic content analyses to identify emergent themes regarding population health for CMC. Overall, interviewees conveyed that defining and measuring population health for CMC is an achievable, worthwhile goal. Qualitative themes from interviews included: 1) CMC share unifying characteristics that could serve as the basis for population health outcomes; 2) optimal health for CMC is child specific and dynamic; 3) health of CMC is intertwined with health of families; 4) social determinants of health are especially important for CMC; and 5) measuring population health for CMC faces serious conceptual and logistical challenges. Experts have taken initial steps in defining the population health of CMC. Population health for CMC involves a dynamic concept of health that is attuned to individual, health-related goals for each child. We propose a framework that can guide the identification and development of population health metrics for CMC. Copyright © 2017 Academic Pediatric Association. Published by Elsevier Inc. All rights reserved.
Transport of polymer stabilized nano-scale zero-valent iron in porous media
NASA Astrophysics Data System (ADS)
Mondal, Pulin K.; Furbacher, Paul D.; Cui, Ziteng; Krol, Magdalena M.; Sleep, Brent E.
2018-05-01
This study presents a set of laboratory-scale transport experiments and numerical simulations evaluating carboxymethyl cellulose (CMC) polymer stabilized nano-scale zero-valent iron (nZVI) transport. The experiments, performed in a glass-walled two-dimensional (2D) porous medium system, were conducted to identify the effects of water specific discharge and CMC concentration on nZVI transport and to produce data for model validation. The transport and movement of a tracer lissamine green B® (LGB) dye, CMC, and CMC-nZVI were evaluated through analysis of the breakthrough curves (BTCs) at the outlets, the time-lapsed images of the plume, and retained nZVI in the sandbox. The CMC mass recovery was > 95% when injected alone and about 65% when the CMC-nZVI mixture was used. However, the mean residence time of CMC was significantly higher than that of LGB. Of significance for field implementation, viscous fingering was observed in water displacement of previously injected CMC and CMC-nZVI. The mass recovery of nZVI was lower (< 50%) than CMC recovery due to attachment onto sand grain surfaces. Consecutive CMC-nZVI injections showed higher nZVI recovery in the second injection, a factor to be considered in field trials with successive CMC-nZVI injections. Transport of LGB, CMC, and nZVI were modeled using a flow and transport model considering LGB and CMC as solutes, and nZVI as a colloid, with variable solution viscosity due to changes in CMC concentrations. The simulation results matched the experimental observations and provided estimates of transport parameters, including attachment efficiency, that can be used to predict CMC stabilized nZVI transport in similar porous media, although the extent of viscous fingering may be underpredicted. The experimental and simulation results indicated that increasing specific discharge had a greater effect on decreasing CMC-nZVI attachment efficiency (corresponding to greater possible travel distances in the field) than increasing CMC concentration.
The Chocuhaler: sweet deliverance in asthma management.
Hayden, M J; Wildhaber, J H; Eber, E; Devadason, S G
To determine the characteristics of a new cocoa-based edible spacer device for the delivery of aerosol bronchodilator. In-vitro comparison of two spacer devices (standard and edible) and determination of bronchodilator response using the edible spacer. A university children's hospital in Western Australia. Two volunteers with moderate asthma. Compared with a standard spacer, the edible spacer delivered significantly more bronchodilator in droplets of a size likely to enter the respiratory tract. A significant bronchodilator response occurred in two out of two subjects when salbutamol was inhaled orally via the chocolate spacer. No significant bronchodilator response occurred in either subject when the spacer was eaten at the end of the study. The chocolate spacer used in this study is a suitable device to deliver salbutamol by inhalation. However, there may be potential drawbacks of weight gain in some patients and meltdown in hot climates.
Antheunis, Marjolijn L; Valkenburg, Patti M; Peter, Jochen
2007-12-01
The aims of this study were (a) to investigate the influence of computer-mediated communication (CMC) on interpersonal attraction and (b) to examine two underlying processes in the CMC-interpersonal attraction relationship. We identified two variables that may mediate the influence of CMC on interpersonal attraction: self-disclosure and direct questioning. Focusing on these potential mediating variables, we tested two explanatory hypotheses: the CMC-induced direct questioning hypothesis and the CMC-induced self-disclosure hypothesis. Eighty-one cross-sex dyads were randomly assigned to one of three experimental conditions: text-only CMC, visual CMC, and face-to-face communication. We did not find a direct effect of CMC on interpersonal attraction. However, we did find two positive indirect effects of text-only CMC on interpersonal attraction: text-only CMC stimulated both self-disclosure and direct questioning, both of which in turn enhanced interpersonal attraction. Results are discussed in light of uncertainty reduction theory and CMC theories.
Varaprasad, Kokkarachedu; Jayaramudu, Tippabattini; Sadiku, Emmanuel Rotimi
2017-05-15
Carboxymethyl cellulose has been used for the design of novel engineered hydrogels in order to obtain effective three-dimensional structures for industrial applications. In this work, dye removal carboxymethyl cellulose-acrylamide-graphene oxide (CMC-AM-GO) hydrogels were prepared by a free-radical polymerization method. The GO was developed by the modified Hummers method. The CMC-AM-GO and GO were characterized by FTIR, XRD and SEM. The swelling and swelling kinetics were calculated using gravimetric process. The kinetic parameter, swelling exponent values [n=0.59-0.7507] explained the fact that the CMC-AM-GO hydrogles have super Case II diffusion transport mechanism. CMCx-AM-GO (x=1-4) and CMC-AM hydrogels were used for removal of Acid Blue-133. The result explains that composite hydrogels significantly removed the acid blue when compared to the neat hydrogel. The maximum AB absorption (185.45mg/g) capacity was found in the case of CMC 2 -AM-GO hydrogel. Therefore, cellulose-based GO hydrogels can be termed as smart systems for the abstraction of dye in water purification applications. Copyright © 2017 Elsevier Ltd. All rights reserved.
Nagesh, Bolla; Jeevani, Eppala; Sujana, Varri; Damaraju, Bharagavi; Sreeha, Kaluvakolanu; Ramesh, Penumaka
2016-01-01
The purpose of this study was to evaluate the sealing ability of mineral trioxide aggregate (MTA) and EndoSequence with chitosan and carboxymethyl chitosan (CMC) as retrograde smear layer removing agents using scanning electron microscopy (SEM). Forty human single rooted teeth were taken. Crowns were decoronated and canals were obturated. Apically roots were resected and retrograde cavities were done. Based on the type of retrograde material placed and the type of smear layer removal agent used for retrograde cavities, they were divided into four groups (N = 10): Group I chitosan with EndoSequence, group II chitosan with MTA, group III CMC with EndoSequence, and Group IV CMC with MTA. All the samples were longitudinally sectioned, and the SEM analysis was done for marginal adaptation. Kruskal-Wallis and Mann-Witney analysis tests. SEM images showed the presence of less gaps in group III, i.e., CMC with EndoSequence when compared to other groups with statistically significant difference. Within the limited scope of this study, it was concluded that EndoSequence as retrograde material showed better marginal sealing ability.
Schuh, Valerie; Allard, Karin; Herrmann, Kurt; Gibis, Monika; Kohlus, Reinhard; Weiss, Jochen
2013-02-01
Inclusion of fibers, such as carboxymethyl cellulose (CMC) and microcrystalline cellulose (MCC), at the expense of fat or protein in meat batters could be used to produce healthier sausages while lowering production costs. To study the impact of CMC/MCC on structural/functional characteristics of emulsified sausages, standard-fat Lyoner-style sausages were formulated with CMC/MCC at concentrations of 0.3-2.0%. Methods of analysis included rheology, water binding capacity (WBC), texture measurements, and Confocal Laser Scanning Microscopy (CLSM). WBC, texture measurements, and rheology all indicated that addition of CMC (>0.7%) led to destabilization of the batter, which upon heating could no longer be converted into a coherent protein network, a fact that was also revealed in CLSM images. In contrast, MCC was highly compatible with the matrix and improved firmness (1405-1651N/100g) with increasing concentration compared to control (1381N/100g) while keeping WBC (4.6-5.9%) with <2% MCC at the level of the control (4.8%). Results were discussed in terms of molecular interactions of meat proteins with celluloses. Copyright © 2012 Elsevier Ltd. All rights reserved.
Reductive dechlorination of chlorobenzenes in surfactant-amended sediment slurries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Hoof, P.L.; Jafvert, C.T.
1996-11-01
Microbial anaerobic dechlorination of hexachlorobenzene (HCB) was examined in sediment slurries amended with two classes of nonionic surfactant, polyoxyethylene (POE) sorbitan fatty acid esters (Tweens) and POE alcohols (Brijs). The rationale for surfactant addition was to increase the bioavailability of highly sorbed organic pollutants to degrading microorganisms by enhancing their solubility. The solubility of HCB was initially enhanced via micellar partitioning; however, primary degradation of most surfactants occurred within 10 d. Dechlorination activity was significantly reduced at POE alcohol concentrations above the critical micelle concentration (cmc), with or without the occurrence of surfactant degradation. Tween 80 decreased HCB dechlorination atmore » concentrations significantly above the cmc. At concentrations closer to the cmc, Tween 80 increased dechlorination rate constants four- to fivefold in acclimated slurries. Additions of Tween 80 at or below the cmc stimulated dechlorination activity in unacclimated slurries that exhibited very little activity in unamended controls. An average of 89% of HCB was dechlorinated after 90 d, compared to 20% in unamended sediments. No effect was observed for POE alcohols at these sub-cmc levels. The lack of a stimulated response for the POE alcohols suggests that Tween 80 may not be acting simply as a source of carbon or energy.« less
NASA Technical Reports Server (NTRS)
Kiser, James D.; Bansal, Narottam P.; Szelagowski, J.; Sokhey, J.; Heffernan, T.; Clegg, J.; Pierluissi, A.; Riedell, J.; Atmur, S.; Wyen, T.;
2015-01-01
Rolls-Royce North American Technologies, Inc. (LibertyWorksLW) began considering the development of CMC exhaust forced mixers in 2008, as a means of obtaining reduced weight and hotter operating temperature capability, while minimizing shape distortion during operation, which would improve mixing efficiency and reduce fuel burn. Increased component durability, enhanced ability to fabricate complex-shaped components, and engine noise reduction are other potential advantages of CMC mixers (compared to metallic mixers). In 2010, NASA was pursuing the reduction of NOx emissions, fuel burn, and noise from turbine engines in Phase I of the Environmentally Responsible Aviation (ERA) Project. ERA subtasks, including those focused on CMC components, were formulated with the goal of maturing technology from proof of concept validation (TRL 3) to a systemsubsystem or prototype demonstration in a relevant environment (TRL 6). In April 2010, the NASA Glenn Research Center (GRC) and LibertyWorks jointly initiated a CMC Exhaust System Validation Program within the ERA Project, teaming on CMC exhaust mixer development for subsonic jet engines capable of operating with increased performance. Our initial focus was on designing, fabricating, and characterizing the thrust and acoustic performance of a roughly quarter-scale 16-lobe oxide oxide CMC mixer and tail cone along with a conventional low bypass exhaust nozzle. Support Services, LLC (Allendale, MI) and ATK COI Ceramics, Inc. (COIC, in San Diego, CA) supported the design of a subscale nozzle assembly that consisted of an oxide oxide CMC mixer and center body, with each component mounted on a metallic attachment ring. That design was based upon the operating conditions a mixer would experience in a turbofan engine. Validation of the aerodynamic and acoustic performance of the subscale mixer via testing and the achievement of TRL 4 encouraged the NASALWCOIC team to move to the next phase where a full scale CMC mixer sized for a RR AE3007 engine and a compatible attachment flange were designed, followed by CMC component fabrication by COIC, and vibration testing at GRC under conditions simulating the structural and dynamic environment encountered during engine operation. AFRL (WPAFB) supported this testing by performing 3D laser vibrometry to identify the mixer mode shapes and modal frequencies. The successful fabrication and testing of such a component has been achieved. The CMC mixer demonstrated good durability during vibration testing at room and elevated temperature (TRL5). This has cleared the article for a ground-based test on a Rolls-Royce AE3007 engine, where the performance and benefits of the component can be further assessed.
Long length of hospital stay in children with medical complexity.
Gold, Jessica M; Hall, Matt; Shah, Samir S; Thomson, Joanna; Subramony, Anupama; Mahant, Sanjay; Mittal, Vineeta; Wilson, Karen M; Morse, Rustin; Mussman, Grant M; Hametz, Patricia; Montalbano, Amanda; Parikh, Kavita; Ishman, Stacey; O'Neill, Margaret; Berry, Jay G
2016-11-01
Hospitalizations of children with medical complexity (CMC) account for one-half of hospital days in children, with lengths of stays (LOS) that are typically longer than those for children without medical complexity. The objective was to assess the impact of, risk factors for, and variation across children's hospitals regarding long LOS (≥10 days) hospitalizations in CMC. A retrospective study of 954,018 CMC hospitalizations, excluding admissions for neonatal and cancer care, during 2013 to 2014 in 44 children's hospitals. CMC were identified using 3M's Clinical Risk Group categories 6, 7, and 9, representing children with multiple and/or catastrophic chronic conditions. Multivariable regression was used to identify demographic and clinical characteristics associated with LOS ≥10 days. Hospital-level risk-adjusted rates of long LOS generated from these models were compared using a covariance test of the hospitals' random effect. Among CMC, LOS ≥10 days accounted for 14.9% (n = 142,082) of all admissions and 61.8% ($13.7 billion) of hospital costs. The characteristics most strongly associated with LOS ≥10 days were use of intensive care unit (ICU) (odds ratio [OR]: 3.5, 95% confidence interval [CI]: 3.4-3.5), respiratory complex chronic condition (OR: 2.7, 95% CI: 2.6-2.7), and transfer from another medical facility (OR: 2.1, 95% CI: 2.0-2.1). After adjusting for severity, there was significant (P < 0.001) variation in the prevalence of LOS ≥10 days for CMC across children's hospitals (range, 10.3%-21.8%). Long hospitalizations for CMC are costly. Their prevalence varies significantly by type of chronic condition and across children's hospitals. Efforts to reduce hospital costs in CMC might benefit from a focus on prolonged LOS. Journal of Hospital Medicine 2016;11:750-756. © 2016 Society of Hospital Medicine. © 2016 Society of Hospital Medicine.
Urano, Hideki; Iwatsuki, Katsuyuki; Yamamoto, Michiro; Ohnisi, Tetsuro; Kurimoto, Shigeru; Endo, Nobuyuki; Hirata, Hitoshi
2016-01-01
We developed a novel hydrogel derived from sodium carboxymethylcellulose (CMC) in which phosphatidylethanolamine (PE) was introduced into the carboxyl groups of CMC to prevent perineural adhesions. This hydrogel has previously shown excellent anti-adhesive effects even after aggressive internal neurolysis in a rat model. Here, we confirmed the effects of the hydrogel on morphological and physiological recovery after nerve decompression. We prepared a rat model of chronic sciatic nerve compression using silicone tubing. Morphological and physiological recovery was confirmed at one, two, and three months after nerve decompression by assessing motor conduction velocity (MCV), the wet weight of the tibialis anterior muscle and morphometric evaluations of nerves. Electrophysiology showed significantly quicker recovery in the CMC-PE group than in the control group (24.0 ± 3.1 vs. 21.0± 2.1 m/s (p < 0.05) at one months and MCV continued to be significantly faster thereafter. Wet muscle weight at one month significantly differed between the CMC-PE (BW) and control groups (0.148 ± 0.020 vs. 0.108 ± 0.019%BW). The mean wet muscle weight was constantly higher in the CMC-PE group than in the control group throughout the experimental period. The axon area at one month was twice as large in the CMC-PE group compared with the control group (24.1 ± 17.3 vs. 12.3 ± 9 μm2) due to the higher ratio of axons with a larger diameter. Although the trend continued throughout the experimental period, the difference decreased after two months and was not statistically significant at three months. Although anti-adhesives can reduce adhesion after nerve injury, their effects on morphological and physiological recovery after surgical decompression of chronic entrapment neuropathy have not been investigated in detail. The present study showed that the new anti-adhesive CMC-PE gel can accelerate morphological and physiological recovery of nerves after decompression surgery.
Clavenna, Andrew L; Beutler, William J; Gudipally, Manasa; Moldavsky, Mark; Khalil, Saif
2012-02-01
Anterior cervical plating increases stability and hence improves fusion rates to treat cervical spine pathologies, which are often symptomatic at multiple levels. However, plating is not without complications, such as dysphagia, injury to neural elements, and plate breakage. The biomechanics of a spacer with integrated plate system combined with posterior instrumentation (PI), in two-level and three-level surgical models, has not yet been investigated. The purpose of the study was to biomechanically evaluate the multidirectional rigidity of spacer with integrated plate (SIP) at multiple levels as comparable to traditional spacers and plating. An in vitro cervical cadaveric model. Eight fresh human cervical (C2-C7) cadaver spines were tested under pure moments of ±1.5 Nm on spine simulator test frame. Each spine was tested in intact condition, with only anterior fixation and with both anterior and PI. Range of motion (ROM) was measured using Optotrak Certus (NDI, Inc., Waterloo, Ontario, Canada) motion analysis system in flexion-extension (FE), lateral bending (LB), and axial rotation (AR) at the instrumented levels (C3-C6). Repeated-measures analysis of variance was used for statistical analysis. All the surgical constructs showed significant reduction in motion compared with intact condition. In two-level fusion, SIP (C4-C6) construct significantly reduced ROM by 66.5%, 65.4%, and 60.3% when compared with intact in FE, LB, and AR, respectively. In three-level fusion, SIP (C3-C6) construct significantly reduced ROM by 65.8%, 66%, and 49.6% when compared with intact in FE, LB, and AR, respectively. Posterior instrumentation showed significant stability only in three-level fusion when compared with their respective anterior constructs. In both two-level and three-level fusion, SIP showed comparable stability to traditional spacer and plate constructs in all loading modes. The anatomically profiled spacer with integrated plate allows treatment of cervical disorders with fewer steps and less impact to cervical structures. In this biomechanical study, spacer with integrated plate construct showed comparable stability to traditional spacer and plate for two-level and three-level fusion. Posterior instrumentation showed significant effect only in three-level fusion. Clinical data are required for further validation of using spacer with integrated plate at multiple levels. Copyright © 2012 Elsevier Inc. All rights reserved.
Groß, Dorothea; Childs, Marc; Piaton, Jean-Marie
2018-01-01
Eye drops containing 0.1% hyaluronic acid (HA) and 0.5% carboxymethylcellulose (CMC) applied one drop three times a day per affected eye were compared in patients with moderate keratitis or keratoconjunctivitis related to dry eye disease (DED). This was a prospective, randomized, multicenter, Phase IIIB noninferiority study, with a single-masked phase in parallel mode with two groups over 84 days. The primary efficacy outcome was change in ocular surface (OS) staining between day 0 (D0) and day 35 (D35). The conjunctiva and cornea were stained with lissamine green and fluorescein. Secondary efficacy measures at day 84 (D84) were OS-staining score (SS), ocular comfort index, tear-film breakup time and how patients and investigators rated treatment efficacy and safety. At D35, 0.1% HA achieved a 46.6% reduction in OS-SS (-2.03±1.35 points, n=39 patients) and 0.5% CMC treatment, followed by a 34.9% reduction (-1.61±1.69 points, n=38 patients) compared to D0. At D84, the SS difference to D0 improved by -2.58±1.45 points (-59.2%) for 0.1% HA and -2.59±2.27 points (-54.4%) for 0.5% CMC. Ocular comfort-index scores improved, with significantly lower (better) values for stinging and itching on D84 for 0.1% HA. Patients assessed treatment with 0.1% HA as significantly better than 0.5% CMC (Likert scale, 4.82 vs 3.97; P =0.018). Four adverse events (AEs) occurred in four of 41 patients (9.8%) treated with 0.1% HA, and three AEs in two of 39 patients (5.1%) treated with 0.5% CMC. No serious AEs were noted. DED signs and symptoms of DED significantly improved with both eye drops. OS staining improved >54% at D84. Treatment was well tolerated, with only minor AEs <10%. 0.1% HA and 0.5% CMC were equally safe and effective. Significant and nonsignificant results were constantly in favor of 0.1% HA.
Riveros, Cecilia G; Nepote, Valeria; Grosso, Nelson R
2016-01-15
Sunflower seeds are susceptible to developing rancidity and off-flavours through lipid oxidation. Edible coatings and essential oils have proven antioxidant properties in different food products. The purpose of this study was to evaluate the combined effect of using an edible coating and thyme and basil essential oils to preserve the chemical and sensory quality parameters of roasted sunflower seeds during storage. 50% DPPH inhibitory concentration (IC50) values of 0.278 and 0.0997 µg mL(-1) were observed for thyme and basil, respectively. On storage day 40, peroxide values were 80.68, 70.28, 68.43, 49.31 and 33.87 mEq O2 kg(-1) in roasted sunflower seeds (RS), roasted sunflower seeds coated with carboxymethyl cellulose (CMC) (RS-CMC), roasted sunflower seeds coated with CMC added with basil (RS-CMC-A), thyme (RS-CMC-T) and butylated hydroxytoluene (RS-CMC-BHT), respectively. RS-CMC-T and RS-CMC-BHT presented the lowest peroxide values, conjugated dienes and p-anisidine values during storage. RS-CMC-BHT, RS-CMC-T, and RS-CMC-A showed the lowest oxidized and cardboard flavour intensity ratings. On storage day 40, roasted sunflower flavour intensity ratings were higher in RS-CMC-T and RS-CMC-A. Thyme and basil essential oils added to the CMC coating improved the sensory stability of this product during storage, but only thyme essential oil increased their chemical stability. © 2015 Society of Chemical Industry.
Labetoulle, Marc; Messmer, Elisabeth M; Pisella, Pierre-Jean; Ogundele, Abayomi; Baudouin, Christophe
2017-04-01
To demonstrate non-inferiority of a hydroxypropyl guar/polyethylene glycol/propylene glycol lubricating eye-drop (HPG/PEG/PG) compared with an osmoprotective carboxymethylcellulose/glycerine eye-drop (O/CMC) for ocular surface staining. This was a multicentre, randomised, observer-masked, parallel-group study. Adults with dry eye instilled HPG/PEG/PG/ or O/CMC 4 times daily for 35 days and then as needed through day 90. Total ocular surface staining (TOSS) score changes from baseline and Impact of Dry Eye on Everyday Life (IDEEL) treatment satisfaction module scores were assessed. Non-inferiority, based on TOSS score change from baseline, was concluded if the upper limit of the 2-sided CI was <2 units. Mean±SD patient age was 64.4±13.7 years; 94 patients were randomised to treatment (HPG/PEG/PG, n=46; O/CMC, n=48). Mean±SE TOSS score change from baseline to day 35 was -2.2±0.33 with HPG/PEG/PG and -1.7±0.47 with O/CMC (treatment difference, -0.47±0.47; p=0.38), and the non-inferiority criterion was met. IDEEL treatment satisfaction scores were similar between groups at day 35 and day 90. The most frequently reported adverse event was eye irritation (HPG/PEG/PG, n=2; O/CMC, n=3). HPG/PEG/PG and O/CMC reduced ocular surface damage, and HPG/PEG/PG was non-inferior to O/CMC. Both treatments were effective, convenient and well tolerated. NCT01863368, Results. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Influence of carboxymethyl cellulose and sodium alginate on sweetness intensity of Aspartame.
Han, Xue; Xu, Shu-Zhen; Dong, Wen-Rui; Wu, Zhai; Wang, Ren-Hai; Chen, Zhong-Xiu
2014-12-01
Sensory evaluation of Aspartame in the presence of sodium carboxymethyl cellulose (CMC-L) and sodium alginate (SA) revealed that only CMC-L showed a suppression effect, while SA did not. By using an artificial taste receptor model, we found that the presence of SA or CMC-L resulted in a decrease in association constants. Further investigation of CMC-L solution revealed that the decrease in water mobility and diffusion also contribute to the suppression effect. In the case of SA, the decreased viscosity and comparatively higher amount of free water facilitated the diffusion of sweetener, which might compensate for the decreased binding constant between Aspartame and receptor. This may suppress the impact of SA on sweetness intensity. The results suggest that exploring the binding affinity of taste molecules with the receptor, along with water mobility and diffusion in hydrocolloidal structures, provide sufficient information for understanding the mechanism behind the effect of macromolecular hydrocolloids on taste. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Rui; Feng, Lili; Yang, Wenrong; Zhang, Yinyin; Zhang, Yanli; Bai, Wei; Liu, Bo; Zhang, Wei; Chuan, Yongming; Zheng, Ziguang; Guan, Hongjin
2017-10-01
When testing the electrochemical performance of metal oxide anode for lithium-ion batteries (LIBs), binder played important role on the electrochemical performance. Which binder was more suitable for preparing transition metal oxides anodes of LIBs has not been systematically researched. Herein, five different binders such as polyvinylidene fluoride (PVDF) HSV900, PVDF 301F, PVDF Solvay5130, the mixture of styrene butadiene rubber and sodium carboxymethyl cellulose (SBR+CMC), and polyacrylonitrile (LA133) were studied to make anode electrodes (compared to the full battery). The electrochemical tests show that using SBR+CMC and LA133 binder which use water as solution were significantly better than PVDF. The SBR+CMC binder remarkably improve the bonding capacity, cycle stability, and rate performance of battery anode, and the capacity retention was about 87% after 50th cycle relative to the second cycle. SBR+CMC binder was more suitable for making transition metal oxides anodes of LIBs.
Romanò, C L; Gala, L; Logoluso, N; Romanò, D; Drago, L
2012-12-01
The best method for treating chronic periprosthetic knee infection remains controversial. Randomized, comparative studies on treatment modalities are lacking. This systematic review of the literature compares the infection eradication rate after two-stage versus one-stage revision and static versus articulating spacers in two-stage procedures. We reviewed full-text papers and those with an abstract in English published from 1966 through 2011 that reported the success rate of infection eradication after one-stage or two-stage revision with two different types of spacers. In all, 6 original articles reporting the results after one-stage knee exchange arthoplasty (n = 204) and 38 papers reporting on two-stage revision (n = 1,421) were reviewed. The average success rate in the eradication of infection was 89.8% after a two-stage revision and 81.9% after a one-stage procedure at a mean follow-up of 44.7 and 40.7 months, respectively. The average infection eradication rate after a two-stage procedure was slightly, although significantly, higher when an articulating spacer rather than a static spacer was used (91.2 versus 87%). The methodological limitations of this study and the heterogeneous material in the studies reviewed notwithstanding, this systematic review shows that, on average, a two-stage procedure is associated with a higher rate of eradication of infection than one-stage revision for septic knee prosthesis and that articulating spacers are associated with a lower recurrence of infection than static spacers at a comparable mean duration of follow-up. IV.
Comparison of dual-k spacer and single-k spacer for single NWFET and 3-stack NWFET
NASA Astrophysics Data System (ADS)
Ko, Hyungwoo; Kim, Jongsu; Kim, Minsoo; Kang, Myounggon; Shin, Hyungcheol
2018-02-01
The investigation of the Dual-k spacer through comparative analysis of single nanowire-FET(NWFET)/3-stack NWFET and underlap/overlap channel is conducted. It is known that the dug 3-stack NWFET has better delay characteristics than single NWFET with the use of high permittivity material of Cin in Dual-k spacer structure. In addition, there is no difference of delay between overlap and underlap channel when it used Dual-k spacer structure but underlap channel of Dual-k 3-stack NWFET shows better short channel immunity.
Fabrication and Testing of Ceramic Matrix Composite Propulsion Components
NASA Technical Reports Server (NTRS)
Effinger, Michael R.; Clinton, R. G., Jr.; Dennis, Jay; Elam, Sandy; Genge, Gary; Eckel, Andy; Jaskowiak, Martha H.; Kiser, J. Douglas; Lang, Jerry
2000-01-01
A viewgraph presentation outlines NASA's goals for the Second and Third Generation Reusable Launch Vehicles, placing emphasis on improving safety and decreasing the cost of transporting payloads to orbit. The use of ceramic matrix composite (CMC) technology is discussed. The development of CMC components, such as the Simplex CMC Blisk, cooled CMC nozzle ramps, cooled CMC thrust chambers, and CMC gas generators, are described, including challenges, test results, and likely future developments.
Dong, Feng; Wang, Xiaolin
2017-11-01
The present study was aimed to determine the effects of carboxymethyl cellulose (CMC)/garlic essential oil (GEO) composite coatings in improving the quality of strawberries stored at 20°C and 35-40% RH. To find the effects of CMC/GEO composite coatings, strawberries were coated with CMC, CMC+GEO (1%), CMC+GEO (2%), CMC+GEO (3%) and stored, while the uncoated strawberries were taken as control during storing. The effectiveness of CMC/GEO composite coatings was evaluated by measuring their weight loss, decay percentage, ascorbic acid, total phenols, anthocyanins, titratable acidity, total soluble solids and sensory evaluation. After 6days of storage, CMC+GEO (2%) composite coatings was found very effective in decreasing the senescence and maintaining the nutritional contents of strawberries. Results of this study confirm that CMC/GEO composite coatings can be used to improve the quality of strawberries. Copyright © 2017. Published by Elsevier B.V.
Kim, Hak-Jun; Park, Kyeongsoon; Kim, Sung Eun; Song, Hae-Ryong
2014-01-01
The objective of this study was to assess whether carboxymethyl cellulose- (CMC-) based hydrogel containing BioC (biphasic calcium phosphate (BCP); tricalcium phosphate (TCP) : hydroxyapatite (Hap) = 70 : 30) and bone morphogenic protein-2 (BMP-2) led to greater bone formation than CMC-based hydrogel containing BioC without BMP-2. In order to demonstrate bone formation at 4 and 8 weeks, plain radiographs, microcomputed tomography (micro-CT) evaluation, and histological studies were performed after implantation of all hybrid materials on an 8 mm defect of the right tibia in rats. The plain radiographs and micro-CT analyses revealed that CMC/BioC/BMP-2 (0.5 mg) led to much greater mineralization at 4 and 8 weeks than did CMC/BioC or CMC/Bio/BMP-2 (0.1 mg). Likewise, bone formation and bone remodeling studies revealed that CMC/BioC/BMP-2 (0.5 mg) led to a significantly greater amount of bone formation and bone remodeling at 4 and 8 weeks than did CMC/BioC or CMC/BioC/BMP-2 (0.1 mg). Histological studies revealed that mineralized bone tissue was present around the whole circumference of the defect site with CMC/BioC/BMP-2 (0.5 mg) but not with CMC/BioC or CMC/BioC/BMP-2 (0.1 mg) at 4 and 8 weeks. These results suggest that CMC/BioC/BMP-2 hybrid materials induced greater bone formation than CMC/BioC hybrid materials. Thus, CMC/BioC/BMP-2 hybrid materials may be used as an injectable substrate to regenerate bone defects. PMID:24804202
Synthesis and properties evaluation of sulfobetaine surfactant with double hydroxyl
NASA Astrophysics Data System (ADS)
Zhou, Ming; Luo, Gang; Zhang, Ze; Li, Sisi; Wang, Chengwen
2017-09-01
A series of sulfobetaine surfactants {N-[(3-alkoxy-2-hydroxyl)propoxy] ethyl-N,N-dimethyl-N-(2-hydroxyl)propyl sulfonate} ammonium chloride were synthesized with raw materials containing linear saturated alcohol, N,N-dimethylethanolamine, sodium 3-chloro-2-hydroxyl propane sulfonic acid and epichlorohydrin. The molecule structures of sulfobetaine surfactants were characterized by FTIR, 1HNMR and elemental analysis. Surface tension measurements can provide us information about the surface tension at the CMC (γCMC), pC20, Γmax and Amin. The pC20 values of sulfobetaine surfactants increase with the hydrophobic chain length increasing. Amin values of the surfactants decrease with increasing hydrophobic chain length from 10 to 14. The critical micelle concentration (CMC) and surface tension (γCMC) values of the sulfobetaine surfactants decrease with increasing hydrophobic chain length from 10 to 16. The lipophilicity of surfactant was enhanced with the increase of the carbon chain, however, the ability of anti-hard water was weakened. The minimum oil/water interfacial tension of four kinds of sulfobetaine surfactants is 10-2-10-3 mN/m magnitude, which indicates that the synthesized bis-hydroxy sulfobetaine surfactants have a great ability to reduce interfacial tension in the surfactant flooding system. The surface tension (γCMC) values of synthesized surfactants were lower compared with conventional anionic surfactant sodium dodecyl sulfonate.
Looman, Wendy S; Antolick, Megan; Cady, Rhonda G; Lunos, Scott A; Garwick, Ann E; Finkelstein, Stanley M
2015-01-01
The purpose of this study was to evaluate the effect of advanced practice registered nurse (APRN) telehealth care coordination for children with medical complexity (CMC) on family caregiver perceptions of health care. Families with CMC ages 2 to 15 years (N = 148) were enrolled in a three-armed, 30-month randomized controlled trial to test the effects of adding an APRN telehealth care coordination intervention to an existing specialized medical home for CMC. Satisfaction with health care was measured using items from the Consumer Assessment of Healthcare Providers and Systems survey at baseline and after 1 and 2 years. The intervention was associated with higher ratings on measures of the child's provider, provider communication, overall health care, and care coordination adequacy, compared with control subjects. Higher levels of condition complexity were associated with higher ratings of overall health care in some analyses. APRN telehealth care coordination for CMC was effective in improving ratings of caregiver experiences with health care and providers. Additional research with CMC is needed to determine which children benefit most from high-intensity care coordination. Copyright © 2015 National Association of Pediatric Nurse Practitioners. Published by Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Kitade, Keiko
2006-01-01
Based on recent studies, computer-mediated communication (CMC) has been considered a tool to aid in language learning on account of its distinctive interactional features. However, most studies have referred to "synchronous" CMC and neglected to investigate how "asynchronous" CMC contributes to language learning. Asynchronous CMC possesses…
Assadian, Ojan; Arnoldo, Brett; Purdue, Gary; Burris, Agnes; Skrinjar, Edda; Duschek, Nikolaus; Leaper, David J
2015-06-01
This prospective, randomised study compares a new transforming methacrylate dressing (TMD) with a silver-containing carboxymethylcellulose dressing (CMC-Ag) after application to split-thickness skin graft (STSG) donor sites. This was an unblinded, non-inferiority, between-patient, comparison study that involved patients admitted to a single-centre burn unit who required two skin graft donor sites. Each patient's donor sites were covered immediately after surgery: one donor site with TMD and the other with CMC-Ag. The donor sites were evaluated until healing or until 24 days post-application, whichever came first. Study endpoints were time to healing, daily pain scores, number of dressing changes, patient comfort and physicians' and patients' willingness to use the dressings in the future. Nineteen patients had both the dressings applied. No statistically significant difference was noted in time to healing between the two dressings (14·2 days using TMD compared with 13·2 days using CMC-Ag). When pain scores were compared, TMD resulted in statistically significantly less pain at three different time periods (2-5 days, 6-10 days and 11-15 days; P < 0·001 at all time periods). Patients also reported greater comfort with TMD (P < 0·001). Users rated TMD as being less easy to use because of the time and technique required for application. Reductions in pain and increased patient comfort with the use of the TMD dressing, compared with CMC-Ag, were seen as clinical benefits as these are the major issues in donor site management. © 2013 The Authors. International Wound Journal © 2013 Medicalhelplines.com Inc and John Wiley & Sons Ltd.
SiC-CMC-Zircaloy-4 Nuclear Fuel Cladding Performance during 4-Point Tubular Bend Testing
DOE Office of Scientific and Technical Information (OSTI.GOV)
IJ van Rooyen; WR Lloyd; TL Trowbridge
2013-09-01
The U.S. Department of Energy Office of Nuclear Energy (DOE NE) established the Light Water Reactor Sustainability (LWRS) program to develop technologies and other solutions to improve the reliability, sustain the safety, and extend the life of current reactors. The Advanced LWR Nuclear Fuel Development Pathway in the LWRS program encompasses strategic research focused on improving reactor core economics and safety margins through the development of an advanced fuel cladding system. Recent investigations of potential options for “accident tolerant” nuclear fuel systems point to the potential benefits of silicon carbide (SiC) cladding. One of the proposed SiC-based fuel cladding designsmore » being investigated incorporates a SiC ceramic matrix composite (CMC) as a structural material supplementing an internal Zircaloy-4 (Zr-4) liner tube, referred to as the hybrid clad design. Characterization of the advanced cladding designs will include a number of out-of-pile (nonnuclear) tests, followed by in-pile irradiation testing of the most promising designs. One of the out-of-pile characterization tests provides measurement of the mechanical properties of the cladding tube using four point bend testing. Although the material properties of the different subsystems (materials) will be determined separately, in this paper we present results of 4-point bending tests performed on fully assembled hybrid cladding tube mock-ups, an assembled Zr-4 cladding tube mock-up as a standard and initial testing results on bare SiC-CMC sleeves to assist in defining design parameters. The hybrid mock-up samples incorporated SiC-CMC sleeves fabricated with 7 polymer impregnation and pyrolysis (PIP) cycles. To provide comparative information; both 1- and 2-ply braided SiC-CMC sleeves were used in this development study. Preliminary stress simulations were performed using the BISON nuclear fuel performance code to show the stress distribution differences for varying lengths between loading points and clad configurations. The 2-ply sleeve samples show a higher bend momentum compared to those of the 1-ply sleeve samples. This is applicable to both the hybrid mock-up and bare SiC-CMC sleeve samples. Comparatively both the 1- and 2-ply hybrid mock-up samples showed a higher bend stiffness and strength compared with the standard Zr-4 mock-up sample. The characterization of the hybrid mock-up samples showed signs of distress and preliminary signs of fraying at the protective Zr-4 sleeve areas for the 1-ply SiC-CMC sleeve. In addition, the microstructure of the SiC matrix near the cracks at the region of highest compressive bending strain shows significant cracking and flaking. The 2-ply SiC-CMC sleeve samples showed a more bonded, cohesive SiC matrix structure. This cracking and fraying causes concern for increased fretting during the actual use of the design. Tomography was proven as a successful tool to identify open porosity during pre-test characterization. Although there is currently insufficient data to make conclusive statements regarding the overall merit of the hybrid cladding design, preliminary characterization of this novel design has been demonstrated.« less
NASA Astrophysics Data System (ADS)
Roy, Debapriya; Biswas, Abhijit
2017-10-01
Using extensive numerical analysis we investigate effects of asymmetric sidewall spacers on various device parameters of 20-nm double gate MOSFETs associated with analog/RF applications. Our studies show that the device with underlap drain-side spacer length LED of 10 nm and source-side spacer length LES of 5 nm shows improvement in terms of the peak value of transconductance efficiency, voltage gain Av, unity-gain cut-off frequency fT and maximum frequency of oscillations fMAX by 8.6%, 51.7%, 5% and 10.3%, respectively compared to the symmetric 5 nm underlap spacer device with HfO2 spacer of dielectric constant k = 22. Additionally, a higher spacer dielectric constant increases the peak Av while decreasing both peak fT and fMAX. The detailed physical insight is exploited to design a cascode amplifier which yields an ultra-wide gain bandwidth of 2.48 THz at LED = 10 nm with a SiO2 spacer.
Berdah, Stéphane V; Mariette, Christophe; Denet, Christine; Panis, Yves; Laurent, Christophe; Cotte, Eddy; Huten, Nöel; Le Peillet Feuillet, Eliane; Duron, Jean-Jacques
2014-10-27
Intra-peritoneal adhesions are frequent following abdominal surgery and are the most common cause of small bowel obstructions. A hyaluronic acid/carboxymethylcellulose (HA/CMC) film adhesion barrier has been shown to reduce adhesion formation in abdominal surgery. An HA/CMC powder formulation was developed for application during laparoscopic procedures. This was an exploratory, prospective, randomised, single-blind, parallel-group, Phase IIIb, multicentre study conducted at 15 hospitals in France to assess the safety of HA/CMC powder versus no adhesion barrier following laparoscopic colorectal surgery. Subjects ≥18 years of age who were scheduled for colorectal laparoscopy (Mangram contamination class I‒III) within 8 weeks of selection were eligible, regardless of aetiology. Participants were randomised 1:1 to the HA/CMC powder or no adhesion barrier group using a centralised randomisation list. Patients assigned to HA/CMC powder received a single application of 1 to 10 g on adhesion-prone areas. In the no adhesion barrier group, no adhesion barrier or placebo was applied. The primary safety assessments were the incidence of adverse events, serious adverse events, and surgical site infections (SSIs) for 30 days following surgery. Between-group comparisons were made using Fisher's exact test. Of those randomised to the HA/CMC powder (n = 105) or no adhesion barrier (n = 104) groups, one patient in each group discontinued prior to the study end (one death in each group). Adverse events were more frequent in the HA/CMC powder group versus the no adhesion barrier group (63% vs. 39%; P <0.001), as were serious adverse events (28% vs. 11%; P <0.001). There were no statistically significant differences between the HA/CMC powder group and the no adhesion barrier group in SSIs (21% vs. 14%; P = 0.216) and serious SSIs (12% vs. 9%; P = 0.38), or in the most frequent serious SSIs of pelvic abscess (5% and 2%; significance not tested), anastomotic fistula (3% and 4%), and peritonitis (2% and 3%). This exploratory study found significantly higher rates of adverse events and serious adverse events in the HA/CMC powder group compared with the no adhesion barrier group in laparoscopic colorectal resection. ClinicalTrials.gov NCT00813397. Registered 19 December 2008.
Preliminary evaluation of shilajit as a suspending agent in antacid suspensions.
Shahjahan, M; Islam, I
1998-11-01
The efficacy of shilajit, a gummy exudate of the plant Styrax officinalis Linn (Family: Styraceae), was evaluated as a suspending agent for the formulation of antacid preparations. Shilajit produced effects on sedimentation volume similar to those produced by sodium carboxymethyl cellulose (CMC), but at lower concentrations. It induced better flocculation with a moderate increase in viscosity compared to CMC. It did not interfere with the acid-consuming capacity of the suspensions.
Biomechanical Analysis of an Expandable Lumbar Interbody Spacer.
Soriano-Baron, Hector; Newcomb, Anna G U S; Malhotra, Devika; Palma, Atilio E; Martinez-Del-Campo, Eduardo; Crawford, Neil R; Theodore, Nicholas; Kelly, Brian P; Kaibara, Taro
2018-06-01
Recently developed expandable interbody spacers are widely accepted in spinal surgery; however, the resulting biomechanical effects of their use have not yet been fully studied. We analyzed the biomechanical effects of an expandable polyetheretherketone interbody spacer inserted through a bilateral posterior approach with and without different modalities of posterior augmentation. Biomechanical nondestructive flexibility testing was performed in 7 human cadaveric lumbar (L2-L5) specimens followed by axial compressive loading. Each specimen was tested under 6 conditions: 1) intact, 2) bilateral L3-L4 cortical screw/rod (CSR) alone, 3) WaveD alone, 4) WaveD + CSR, 5) WaveD + bilateral L3-L4 pedicle screw/rod (PSR), and 6) WaveD + CSR/PSR, where CSR/PSR was a hybrid construct comprising bilateral cortical-level L3 and pedicle-level L4 screws interconnected by rods. The range of motion (ROM) with the interbody spacer alone decreased significantly compared with the intact condition during flexion-extension (P = 0.02) but not during lateral bending or axial rotation (P ≥ 0.19). The addition of CSR or PSR to the interbody spacer alone condition significantly decreased the ROM compared with the interbody spacer alone (P ≤ 0.002); and WaveD + CSR, WaveD + PSR, and WaveD + CSR/PSR (hybrid) (P ≥ 0.29) did not differ. The axial compressive stiffness (resistance to change in foraminal height during compressive loading) with the interbody spacer alone did not differ from the intact condition (P = 0.96), whereas WaveD + posterior instrumentation significantly increased compressive stiffness compared with the intact condition and the interbody spacer alone (P ≤ 0.001). The WaveD alone significantly reduced ROM during flexion-extension while maintaining the axial compressive stiffness. CSR, PSR, and CSR/PSR hybrid constructs were all effective in augmenting the expandable interbody spacer system and improving its stability. Copyright © 2018 Elsevier Inc. All rights reserved.
Lyu, Honghong; Zhao, Hang; Tang, Jingchun; Gong, Yanyan; Huang, Yao; Wu, Qihang; Gao, Bin
2018-03-01
Biochar supported carboxymethyl cellulose (CMC)-stabilized nanoscale iron sulfide (FeS) composite (CMC-FeS@biochar) was prepared and tested for immobilization of hexavalent chromium Cr(VI) in soil. Results of UV-vis and transmission electron microscopy (TEM) showed that the backbone of biochar suppressed the aggregation of FeS, resulting in smaller particle size and more sorption sites than bare FeS. The composite at a dosage of 2.5 mg per gram soil displayed an enhanced Cr(VI) immobilization efficiency (a 94.7% reduction in the toxicity characteristic leaching procedure (TCLP) based leachability and a 95.6% reduction in the CaCl 2 extraction) compared to plain biochar and bare FeS. Sequential extraction procedure (SEP) and X-ray photoelectron spectroscopy (XPS) analysis suggested that CMC-FeS@biochar promoted the conversion of more accessible Cr (exchangeable and carbonate-bound fractions) into the less accessible forms (iron-manganese oxides-bound, organic material-bound, and residual fractions) to reduce the toxicity of Cr(VI) and that surface sorption and reduction were dominant mechanisms for Cr(VI) immobilization. CMC-FeS@biochar greatly reduced the bioavailability of Cr(VI) to wheat and earthworms (Eisenia fetida). Moreover, the application of CMC-FeS@biochar enhanced soil organic matter content and microbial activity. This work highlighted the potential of CMC-FeS@biochar composite as a low-cost, "green", and effective amendment for immobilizing Cr(VI) in contaminated soils and improving soil properties. Copyright © 2017 Elsevier Ltd. All rights reserved.
Jena, Sunil K; Samal, Sanjaya K; Kaur, Shamandeep; Chand, Mahesh; Sangamwar, Abhay T
2017-04-01
Recent studies showed an enhanced oral bioavailability of tamoxifen (TMX) by hydrophobically modified α-tocopherol succinate-g-carboxymethyl chitosan (Cmc-TS) micelles. As a continued effort, here we evaluated TMX-loaded polymeric micelles (TMX-PMs) for its enhanced permeability with increased anticancer efficacy and decreased hepatotoxicity. We employed co-solvent evaporation technique to encapsulate TMX into Cmc-TS. Apparent permeability assay of TMX-PMs was performed on Caco-2 cell line. The absorptive transport of TMX increased significantly about 3.8-fold when incorporated into Cmc-TS PMs. Cytotoxicity of Cmc-TS PMs was studied on MCF-7 cell line by MTT and; confocal microscopy was used for cellular uptake. Confocal microscopy revealed that Cmc-TS PMs could effectively accumulate in the cytosol of MCF-7 cell lines. In vitro data was further validated using N-methyl-N-nitrosourea (MNU)-induced mammary carcinogenesis model in Sprague-Dawley rats. Hepatotoxicity profiles of TMX-PMs at three different doses were also evaluated against the free drug TMX. TMX-PMs were more effective in suppressing breast tumor in MNU-induced mammary carcinoma model than free TMX with better safety profile. In addition, histological data shows that tumors are "benign" in TMX-PMs treated group compared with "malignant" tumors in free TMX treated and control groups. Overall, the results implicate that our Cmc-TS PMs may serve as a promising carrier for the intracellular delivery of anticancer drug molecules via oral route. Copyright © 2017. Published by Elsevier B.V.
Pham, Tho X; Lee, Ji-Young
2016-06-01
We previously showed that the organic extract of a blue-green alga, Spirulina platensis (SPE), had potent anti-inflammatory effects in macrophages. As the interplay between macrophages and adipocytes is critical for adipocyte functions, we investigated the contribution of the anti-inflammatory effects of SPE in macrophages to adipogenesis/lipogenesis in 3T3-L1 adipocytes. 3T3-L1 preadipocytes were treated with 10% conditioned medium from lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages (CMC) or LPS-stimulated, but SPE-pretreated, macrophages (CMS) at different stages of adipocyte differentiation. The expression of adipocyte differentiation markers, such as CCAAT/enhancer-binding protein α, peroxisome proliferator-activated receptor γ, and perilipin, was significantly repressed by CMC when added on day 3, while the repression was attenuated by CMS. Oil Red O staining confirmed that adipocyte maturation in CMS-treated cells, but not in CMC-treated cells, was equivalent to that of control cells. Nuclear translocation of nuclear factor κB (NF-κB) p65 was decreased by CMS compared to CMC. In lipid-laden adipocytes, CMC promoted the loss of lipid droplets, while CMS had minimal effects. Histone deacetylase 9 mRNA and protein levels were increased during adipocyte maturation, which were decreased by CMC. In conclusion, by cross-talking with adipocytes, the anti-inflammatory effects of SPE in macrophages promoted adipocyte differentiation/maturation, at least in part, by repressing the activation of NF-κB inflammatory pathways, which otherwise can be compromised in inflammatory conditions.
The conditional moment closure method for modeling lean premixed turbulent combustion
NASA Astrophysics Data System (ADS)
Martin, Scott Montgomery
Natural gas fired lean premixed gas turbines have become the method of choice for new power generation systems due to their high efficiency and low pollutant emissions. As emission regulations for these combustion systems become more stringent, the use of numerical modeling has become an important a priori tool in designing clean and efficient combustors. Here a new turbulent combustion model is developed in an attempt to improve the state of the art. The Conditional Moment Closure (CMC) method is a new theory that has been applied to non-premixed combustion with good success. The application of the CMC method to premixed systems has been proposed, but has not yet been done. The premixed CMC method replaces the species mass fractions as independent variables with the species mass fractions that are conditioned on a reaction progress variable (RPV). Conservation equations for these new variables are then derived and solved. The general idea behind the CMC method is that the behavior of the chemical species is closely coupled to the reaction progress variable. Thus, species conservation equations that are conditioned on the RPV will have terms involving the fluctuating quantities that are much more likely to be negligible. The CMC method accounts for the interaction between scalar dissipation (micromixing) and chemistry, while de-coupling the kinetics from the bulk flow (macromixing). Here the CMC method is combined with a commercial computational fluid dynamics program, which calculates the large-scale fluid motions. The CMC model is validated by comparison to 2-D reacting backward facing step data. Predicted species, temperature and velocity fields are compared to experimental data with good success. The CMC model is also validated against the University of Washington's 3-D jet stirred reactor (JSR) data, which is an idealized lean premixed combustor. The JSR results are encouraging, but not as good as the backward facing step. The largest source of error is from the turbulence models, which are inadequate for the variable density and recirculating flows modeled here. The limitations of the turbulence models affected the calculation of the flow statistics, which are used to calculate the variance of the RPV, the scalar dissipation and the PDF.
Safety and Efficacy of Alginate Adhesion Barrier Gel in Compromised Intestinal Anastomosis.
Chaturvedi, Ankit A; Yauw, Simon T K; Lomme, Roger M L M; Hendriks, Thijs; van Goor, Harry
For any anti-adhesive barrier developed for abdominal surgery, the use under conditions in which anastomotic healing is compromised needs to be investigated. The current study evaluates the effect of a new ultrapure alginate gel on early healing of high-risk anastomoses in the ileum and compares this with the gold standard used in clinical practice. In 75 adult male Wistar rats, a 5 mm ileal segment was resected and continuity was restored by construction of an inverted anastomosis. Rats were divided randomly into a control group and groups receiving either alginate gel or a sodium hyaluronate carboxymethylcellulose (HA/CMC) film around the anastomosis (n = 25 each). Carprofen, given in a daily dose of 1.25 mg/kg, was used to compromise anastomotic healing. At day three, animals were killed and scored for signs of anastomotic leakage and the presence of adhesions. The incidence of adhesion formation was 95% in the HA/CMC film group, which was significantly higher than in the controls (64%, p = 0.010) and the alginate gel group (52%, p = 0.004). The adhesion score was nearly 40% lower in the alginate gel group compared with the HA/CMC film group. The incidence of ileal leakage in the HA/CMC film group (92%) was significantly higher than in the controls (68%, p = 0.016). Leakage rate did not differ between the alginate gel and control groups. There was no significant difference between groups in either incision bursting pressure or incision breaking strength. Ultrapure alginate gel does not interfere with repair of ileal anastomoses constructed under conditions in which chances of anastomotic dehiscence are high. The alginate gel performs better than the HA/CMC film.
Chitprasert, Pakamon; Sudsai, Polin; Rodklongtan, Akkaratch
2012-09-01
This research aimed to enhance the survival of Lactobacillus reuteri KUB-AC5 from heat conditioning by using microencapsulation with aluminum carboxymethyl cellulose-rice bran (AlCMC-RB) composites of different weight ratios of 1:0, 1:1, and 1:1.5. The cell/polymer suspension was crosslinked with aluminum chloride at different agitation speeds of 1200, 1500, and 2100 rpm. The AlCMC microcapsules had significantly higher encapsulation efficiency, but lower microcapsule yield than the AlCMC-RB microcapsules (p≤0.05). Scanning electron microscopy revealed the complexation between AlCMC and RB. Fourier transform infrared spectroscopy showed hydrogen bondings between AlCMC, RB, and cells. The AlCMC-RB microcapsules had significantly lower aluminum ion and moisture contents than the AlCMC ones. After heat exposure, the viability of non-encapsulated and microencapsulated cells in the AlCMC matrix dramatically declined, while that of microencapsulated cells in the AlCMC-RB matrix was about 8 log CFU/g. The results showed the promising potential of the AlCMC-RB composite microcapsules for the protection of probiotics against heat. Copyright © 2012 Elsevier Ltd. All rights reserved.
Pre-form ceramic matrix composite cavity and a ceramic matrix composite component
DOE Office of Scientific and Technical Information (OSTI.GOV)
Monaghan, Philip Harold; Delvaux, John McConnell; Taxacher, Glenn Curtis
A pre-form CMC cavity and method of forming pre-form CMC cavity for a ceramic matrix component includes providing a mandrel, applying a base ply to the mandrel, laying-up at least one CMC ply on the base ply, removing the mandrel, and densifying the base ply and the at least one CMC ply. The remaining densified base ply and at least one CMC ply form a ceramic matrix component having a desired geometry and a cavity formed therein. Also provided is a method of forming a CMC component.
Idiotype vaccination in patients with myeloma reduced circulating myeloma cells (CMC).
Abdalla, A O; Kokhaei, P; Hansson, L; Mellstedt, H; Osterborg, A
2008-06-01
Circulating myeloma cells (CMC), exhibiting the same immunoglobulin heavy-chain gene rearrangements as the plasma cells, are part of the myeloma clone. In this study, we evaluated the effect of idiotype (Id) vaccination on CMC. Eleven patients were immunized with the autologous Id in combinations with granulocyte-macrophage colony-stimulating factor and interleukin 12, and followed for CMC by quantitative real-time allele-specific PCR. Id-specific T cells were monitored by proliferation assay, enzyme-linked immunospot (interferon-gamma) assay, and quantitative real-time PCR for cytokines. Regulatory T (T(reg)) cells were analyzed by flow cytometry. CMC were detected in 9 of 11 patients at start of vaccination. In four patients, CMC declined and two had a complete molecular remission. Further two patients had stable levels of CMC during follow-up, while in three patients CMC progressively increased. Six patients had a vaccine-induced Id-specific T-cell response. A significant correlation was observed between reduced/stable levels of CMC and the Id-specific T cells (P < 0.02). The frequency of T(reg) cells was decreased in immune responders, but increased in immune nonresponders (P < 0.05). No significant change in the serum M-protein concentration was, however, observed in any patient. Id vaccination reduced CMC, which correlated with vaccine-induced Id-specific T cells. Further studies are warranted to analyze the clinical significance of CMC and clinical effects of Id vaccination.
Chiou, C.T.; Kile, D.E.; Rutherford, D.W.
1991-01-01
Apparent water solubilities of 1,1-bis(p-chlorophenyl)-2,2,2-trichloroethane (DDT), 2,4,5,2???,5???-penta-chlorobiphenyl (PCB), and 1,2,3-trichlorobenzene (TCB) were determined at room temperature in aqueous solutions of commercial linear alkylbenzenesulfonate (LAS), oil-free (solvent-extracted) LAS, and single-molecular 4-dodecyl-benzenesulfonate. The extent of solute solubility enhancement by commercial LAS is markedly greater than that by other ionic surfactants below the measured critical micelle concentration (CMC); above the CMC, the enhancement data with LAS are comparable with other surfactants as micelles. The small amount of neutral oils in commercial LAS (1.7%), comprising linear alkylbenzenes (LABs) and bis(alkylphenyl) sulfones, contributes significantly to the enhanced solubility of DDT and PCB below the CMC; the effect is ascribed to formation of oil-surfactant emulsions. The oil-surfactant emulsion formed corresponds to ???9-10% of the commercial LAS below the CMC. The data suggest that discharge of wastewater containing a significant level of oils and surface-active agents could lead to potential mobilization of organic pollutants and LABs in aquatic environments.
Computations of turbulent lean premixed combustion using conditional moment closure
NASA Astrophysics Data System (ADS)
Amzin, Shokri; Swaminathan, Nedunchezhian
2013-12-01
Conditional Moment Closure (CMC) is a suitable method for predicting scalars such as carbon monoxide with slow chemical time scales in turbulent combustion. Although this method has been successfully applied to non-premixed combustion, its application to lean premixed combustion is rare. In this study the CMC method is used to compute piloted lean premixed combustion in a distributed combustion regime. The conditional scalar dissipation rate of the conditioning scalar, the progress variable, is closed using an algebraic model and turbulence is modelled using the standard k-ɛ model. The conditional mean reaction rate is closed using a first order CMC closure with the GRI-3.0 chemical mechanism to represent the chemical kinetics of methane oxidation. The PDF of the progress variable is obtained using a presumed shape with the Beta function. The computed results are compared with the experimental measurements and earlier computations using the transported PDF approach. The results show reasonable agreement with the experimental measurements and are consistent with the transported PDF computations. When the compounded effects of shear-turbulence and flame are strong, second order closures may be required for the CMC.
Ahmad, N H; Isa, M I N
2016-02-10
Two solid biopolymer electrolytes (SBEs) systems of carboxymethyl cellulose doped ammonium chloride (CMC-AC) and propylene carbonate plasticized (CMC-AC-PC) were prepared via solution casting technique. The ionic conductivity of SBEs were analyzed using electrical impedance spectroscopy (EIS) in the frequency range of 50 Hz-1 MHz at ambient temperature (303K). The highest ionic conductivity of CMC-AC SBE is 1.43 × 10(-3)S/cm for 16 wt.% of AC while the highest conductivity of plasticized SBE system is 1.01 × 10(-2)S/cm when added with 8 wt.% of PC. TGA/DSC showed that the addition of PC had increased the decomposition temperature compared of CMC-AC SBE. Fourier transform infrared (FTIR) spectra showed the occurrence of complexation between the SBE components and it is proved successfully executed by Gaussian software. X-ray diffraction (XRD) indicated that amorphous nature of SBEs. It is believed that the PC is one of the most promising plasticizer to enhance the ionic conductivity and performance for SBE system. Copyright © 2015 Elsevier Ltd. All rights reserved.
Albiin, Nils; Kartalis, Nikolaos; Bergquist, Annika; Sadigh, Bita; Brismar, Torkel B
2012-10-01
To evaluate the efficacy of three dose levels of the oral hepatobiliary manganese-based magnetic resonance imaging (MRI) contrast agent CMC-001, and assess its safety profile and patient acceptability. After ethics committee approval, 32 healthy volunteers (males/females: 18/14) were included. Liver MRI was performed before and 3 h after ingestion of 0.8, 0.4, and 0.2 g of CMC-001 on separate occasions. Liver-to-muscle signal intensity (SI) ratio from baseline to post-contrast and image quality was assessed. Adverse drug reactions/adverse events (ADRs/AEs) and clinico-laboratory tests were monitored. The increase in liver-to-muscle SI ratio was significantly higher after 0.8 g (0.696) compared to 0.4 g (0.458) and 0.2 g (0.223) (in all pair-wise comparisons, P < 0.0001). The overall image quality was superior after 0.8 g. ADRs/AEs were dose-related and predominantly of mild intensity. Liver MRI using 0.8 g CMC-001 has the highest efficacy and still acceptable ADRs and should therefore be preferred.
The reactivity of Fe/Ni colloid stabilized by carboxymethylcellulose (CMC-Fe/Ni) toward chloroform.
Jin, Xin; Li, Qun; Yang, Qi
2018-05-16
The use of stabilizers can prevent the reactivity loss of nanoparticles due to aggregation. In this study, carboxymethylcellulose (CMC) was selected as the stabilizer to synthesize a highly stable CMC-stabilized Fe/Ni colloid (CMC-Fe/Ni) via pre-aggregation stabilization. The reactivity of CMC-Fe/Ni was evaluated via the reaction of chloroform (CF) degradation. The effect of background solution which composition was affected by the preparation of Fe/Ni (Fe/Ni precursors, NaBH 4 dosage) and the addition of solute (common ions, sulfur compounds) on the reactivity of CMC-Fe/Ni was also investigated. Additionally, the dried CMC-Fe/Ni was used for characterization in terms of scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The experimental results indicated that CMC stabilization greatly improved the reactivity of Fe/Ni bimetal and CF (10 mg/L) could be completely degraded by CMC-Fe/Ni (0.1 g/L) within 45 min. The use of different Fe/Ni precursors resulting in the variations of background solution seemed to have no obvious influence on the reactivity of CMC-Fe/Ni, whereas the dosage of NaBH 4 in background solution showed a negative correlation with the reactivity of CMC-Fe/Ni. Besides, the individual addition of external solutes into background solution all had an adverse effect on the reactivity of CMC-Fe/Ni, of which the poisoning effect of sulfides (Na 2 S, Na 2 S 2 O 4 ) was significant than common ions and sulfite.
NASA Astrophysics Data System (ADS)
Kocur, C. M.; Lomheim, L.; Boparai, H. K.; Chowdhury, A. I.; Weber, K.; Austrins, L. M.; Sleep, B.; O'Carroll, D. M.; Edwards, E.
2014-12-01
Injection of carboxymethyl-cellulose stabilized nanoscale Zero Valent Iron (CMC/nZVI) has received significant attention in the last decade as an emerging alternative for in-situ remediation of chlorinated solvents and other recalcitrant compounds. There has also been some indication that injection of nZVI will create conditions that will stimulate in-situ microbial populations, leading to further contaminant degradation. Carboxy-methyl cellulose (CMC) is commonly used for nZVI synthesis as it provides steric stabilization for the nanoparticles, however, the CMC is equally important as a subsurface amendment as it may act as a fermentable substrate for microorganisms in-situ. In this study, microbial communities were monitored over a 2.5 year period following the injection of CMC/nZVI at a chlorinated solvent remediation site. Dehalococcoides spp. genetic markers and vinyl chloride reductase genes (vcrA) were targeted in the 16s RNA using quantitative polymerase chain reaction (qPCR). This analysis was complimented with a suite of aqueous chlorinated ethene, ethane, and methane compounds to monitor degradation. Following the injection of CMC/nZVI a decline of parent chlorinated compound concentrations was observed as well as the emergence of daughter products. A period of abiotic nZVI oxidation is believed to be responsible for a portion of the degradation at the site, however, a prolonged period of contaminant degradation followed and is believed to be the result of organohalide-respiring microorganisms native to the site. Further analysis was performed on the microbial samples using 454 pyrotag sequencing of amplified 16S rRNA genes to obtain the genetic profile of the microbial community. Of particular interest within this large genomic profile is the characterization of the stable population of important organohalide-respiring microorganisms on site. Results suggest that there is a distinctly different response in the organohalide-respiring microbial community in areas of the site where CMC/nZVI amendments were injected compared to a background response.
Vollmann, Dirk; Lüthje, Lars; Seegers, Joachim; Sohns, Christian; Sossalla, Samuel; Sohns, Jan; Röver, Christian; Hasenfuß, Gerd; Zabel, Markus
2014-10-01
Remote magnetic navigation (RMN) is utilized for catheter guidance during pulmonary vein ablation (PVA). We aimed to determine whether the additional use of a circular mapping catheter (CMC) influences efficacy and outcome of RMN-guided PVA. A total of 80 consecutive subjects (65 % male, age 62 ± 9 years) underwent circumferential PVA with a 3D mapping system and an RMN-guided irrigated catheter. Procedural endpoint was complete PV isolation (PVI), total radiofrequency (RF) time >60 min, or procedure duration >5 h. PVI was defined as an entrance and/or exit block, diagnosed with a CMC within the PV ostium or by pacing via the roving RMN-guided catheter (single-catheter technique). Prolonged Holter monitoring after 3 and 6 months was used to detect atrial tachyarrhythmia (AT/AF) recurrences. Complete PVI was achieved in 56 % (45/80) of all subjects (isolated PVs per patient, 3.1 ± 1.2; RF time, 56.3 ± 17.2 min; procedure duration, 3.8 ± 0.8 h). Prospective validation of the single-catheter technique for diagnosing PVI demonstrated high concordance (94 %) with blinded CMC results. CMC use in first-time PVA was associated with similar total RF and procedure times but higher PV isolation rate. Upon multivariate analysis, CMC use, female gender, left PV, smaller PV ostium and repeat PVA predicted PVI during RMN-guided ablation. Persistent AF and mitral regurgitation at baseline and the number of non-isolated PVs predicted AT/AF recurrence during follow-up. Concomitant CMC use for first-time, RMN-guided PVA is associated with similar procedure duration but higher PV isolation rates as compared to a single-catheter approach. Since the number of isolated PVs predicts freedom from AT/AF, CMC utilization appears advisable for first-time, RMN-guided PVA.
Obata, Yosuke; Saito, Shunsuke; Takeda, Naoya; Takeoka, Shinji
2009-05-01
We have synthesized a series of cationic amino acid-based lipids having a spacer between the cationic head group and hydrophobic moieties and examined the influence of the spacer on a liposome gene delivery system. As a comparable spacer, a hydrophobic spacer with a hydrocarbon chain composed of 0, 3, 5, 7, or 11 carbons, and a hydrophilic spacer with an oxyethylene chain (10 carbon and 3 oxygen molecules) were investigated. Plasmid DNA (pDNA)-encapsulating liposomes were prepared by mixing an ethanol solution of the lipids with an aqueous solution of pDNA. The zeta potentials and cellular uptake efficiency of the cationic liposomes containing each synthetic lipid were almost equivalent. However, the cationic lipids with the hydrophobic spacer were subject to fuse with biomembrane-mimicking liposomes. 1,5-Dihexadecyl-N-lysyl-N-heptyl-l-glutamate, having a seven carbon atom spacer, exhibited the highest fusogenic potential among the synthetic lipids. Increased fusion potential correlated with enhanced gene expression efficiency. By contrast, an oxyethylene chain spacer showed low gene expression efficiency. We conclude that a hydrophobic spacer between the cationic head group and hydrophobic moieties is a key component for improving pDNA delivery.
Graphite//LiNi0.5 Mn1.5 O4 Cells Based on Environmentally Friendly Made-in-Water Electrodes.
De Giorgio, Francesca; Laszczynski, Nina; von Zamory, Jan; Mastragostino, Marina; Arbizzani, Catia; Passerini, Stefano
2017-01-20
The performance of graphite//LiNi 0.5 Mn 1.5 O 4 (LNMO) cells, both electrodes of which are made using water-soluble sodium carboxymethyl cellulose (CMC) binder, is reported for the first time. The full cell performed outstandingly over 400 cycles in the conventional electrolyte ethylene carbonate/dimethyl carbonate-1 m LiPF 6 , and the delivered specific energy at the 100th, 200th, 300th, and 400th cycle corresponded to 82, 78, 73, and 66 %, respectively, of the initial energy value of 259 Wh kg -1 (referring to the sum of the two electrode-composite weights). The good stability of high-voltage, LNMO-CMC-based electrodes upon long-term cycling is discussed and the results are compared to those of LNMO-composite electrodes with polyvinylidene fluoride (PVdF). LNMO-CMC electrodes outperformed those with PVdF binder, displaying a capacity retention of 83 % compared to 62 % for the PVdF-based electrodes after 400 cycles at 1 C. CMC promotes a more compact and stable electrode surface than PVdF; undesired interfacial reactions at high operating voltages are mitigated, and the thickness of the passivation layer on the LNMO surface is reduced, thereby enhancing its cycling stability. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Monaghan, Philip Harold; Delvaux, John McConnell; Taxacher, Glenn Curtis
2015-06-09
A pre-form CMC cavity and method of forming pre-form CMC cavity for a ceramic matrix component includes providing a mandrel, applying a base ply to the mandrel, laying-up at least one CMC ply on the base ply, removing the mandrel, and densifying the base ply and the at least one CMC ply. The remaining densified base ply and at least one CMC ply form a ceramic matrix component having a desired geometry and a cavity formed therein. Also provided is a method of forming a CMC component.
NASA Astrophysics Data System (ADS)
Tian, Yunfeng; Shen, Zheng-Kang
2016-02-01
We develop a spatial filtering method to remove random noise and extract the spatially correlated transients (i.e., common-mode component (CMC)) that deviate from zero mean over the span of detrended position time series of a continuous Global Positioning System (CGPS) network. The technique utilizes a weighting scheme that incorporates two factors—distances between neighboring sites and their correlations of long-term residual position time series. We use a grid search algorithm to find the optimal thresholds for deriving the CMC that minimizes the root-mean-square (RMS) of the filtered residual position time series. Comparing to the principal component analysis technique, our method achieves better (>13% on average) reduction of residual position scatters for the CGPS stations in western North America, eliminating regional transients of all spatial scales. It also has advantages in data manipulation: less intervention and applicable to a dense network of any spatial extent. Our method can also be used to detect CMC irrespective of its origins (i.e., tectonic or nontectonic), if such signals are of particular interests for further study. By varying the filtering distance range, the long-range CMC related to atmospheric disturbance can be filtered out, uncovering CMC associated with transient tectonic deformation. A correlation-based clustering algorithm is adopted to identify stations cluster that share the common regional transient characteristics.
Zhang, Man; Bacik, Deborah B; Roberts, Christopher B; Zhao, Dongye
2013-07-01
In this work, we developed and tested a new class of supported Pd catalysts by immobilizing CMC (carboxymethyl cellulose) stabilized Pd nanoparticles onto alumina support. The alumina supported Pd nanoparticles were able to facilitate rapid and complete hydrodechlorination of TCE (trichloroethylene) without intermediate by-products detected. With a Pd mass loading of 0.33 wt% of the alumina mass, the observed pseudo first order reaction rate constant, k(obs), for the catalyst was increased from 28 to 109 L/min/g when CMC concentration was raised from 0.005 to 0.15 wt%. The activity increase was in accord with an increase of the Pd dispersion (measured via CO chemisorption) from 30.4% to 45.1%. Compared to the commercial alumina supported Pd, which has a lower Pd dispersion of 21%, our CMC-stabilized Pd nanoparticles offered more than 7 times greater activity. Pre-calcination treatment of the supported catalyst resulted in minor drop in activity, yet greatly reduced bleeding (<6%) of the Pd nanoparticles from the support during multiple cycles of applications. The presence of DOM (dissolved organic matter) at up to 10 mg/L as TOC had negligible effect on the catalytic activity. The alumina supported CMC-stabilized Pd nanoparticles may serve as a class of more effective catalysts for water treatment uses. Copyright © 2013 Elsevier Ltd. All rights reserved.
Barbieri, Federica; Thellung, Stefano; Ratto, Alessandra; Carra, Elisa; Marini, Valeria; Fucile, Carmen; Bajetto, Adriana; Pattarozzi, Alessandra; Würth, Roberto; Gatti, Monica; Campanella, Chiara; Vito, Guendalina; Mattioli, Francesca; Pagano, Aldo; Daga, Antonio; Ferrari, Angelo; Florio, Tullio
2015-04-07
Cancer stem cells (CSCs) are considered the cell subpopulation responsible for breast cancer (BC) initiation, growth, and relapse. CSCs are identified as self-renewing and tumor-initiating cells, conferring resistance to chemo- and radio-therapy to several neoplasias. Nowadays, th (about 10mM)e pharmacological targeting of CSCs is considered an ineludible therapeutic goal. The antidiabetic drug metformin was reported to suppress in vitro and in vivo CSC survival in different tumors and, in particular, in BC preclinical models. However, few studies are available on primary CSC cultures derived from human postsurgical BC samples, likely because of the limited amount of tissue available after surgery. In this context, comparative oncology is acquiring a relevant role in cancer research, allowing the analysis of larger samples from spontaneous pet tumors that represent optimal models for human cancer. Isolation of primary canine mammary carcinoma (CMC) cells and enrichment in stem-like cell was carried out from fresh tumor specimens by culturing cells in stem-permissive conditions. Phenotypic and functional characterization of CMC-derived stem cells was performed in vitro, by assessment of self-renewal, long-lasting proliferation, marker expression, and drug sensitivity, and in vivo, by tumorigenicity experiments. Corresponding cultures of differentiated CMC cells were used as internal reference. Metformin efficacy on CMC stem cell viability was analyzed both in vitro and in vivo. We identified a subpopulation of CMC cells showing human breast CSC features, including expression of specific markers (i.e. CD44, CXCR4), growth as mammospheres, and tumor-initiation in mice. These cells show resistance to doxorubicin but were highly sensitive to metformin in vitro. Finally, in vivo metformin administration significantly impaired CMC growth in NOD-SCID mice, associated with a significant depletion of CSCs. Similarly to the human counterpart, CMCs contain stem-like subpopulations representing, in a comparative oncology context, a valuable translational model for human BC, and, in particular, to predict the efficacy of antitumor drugs. Moreover, metformin represents a potential CSC-selective drug for BC, as effective (neo-)adjuvant therapy to eradicate CSC in mammary carcinomas of humans and animals.
Botter, Alberto; Bourguignon, Mathieu; Jousmäki, Veikko; Hari, Riitta
2015-01-01
Cortex-muscle coherence (CMC) reflects coupling between magnetoencephalography (MEG) and surface electromyography (sEMG), being strongest during isometric contraction but absent, for unknown reasons, in some individuals. We used a novel nonmagnetic high-density sEMG (HD-sEMG) electrode grid (36 mm × 12 mm; 60 electrodes separated by 3 mm) to study effects of sEMG recording site, electrode derivation, and rectification on the strength of CMC. Monopolar sEMG from right thenar and 306-channel whole-scalp MEG were recorded from 14 subjects during 4-min isometric thumb abduction. CMC was computed for 60 monopolar, 55 bipolar, and 32 Laplacian HD-sEMG derivations, and two derivations were computed to mimic “macroscopic” monopolar and bipolar sEMG (electrode diameter 9 mm; interelectrode distance 21 mm). With unrectified sEMG, 12 subjects showed statistically significant CMC in 91–95% of the HD-sEMG channels, with maximum coherence at ∼25 Hz. CMC was about a fifth stronger for monopolar than bipolar and Laplacian derivations. Monopolar derivations resulted in most uniform CMC distributions across the thenar and in tightest cortical source clusters in the left rolandic hand area. CMC was 19–27% stronger for HD-sEMG than for “macroscopic” monopolar or bipolar derivations. EMG rectification reduced the CMC peak by a quarter, resulted in a more uniformly distributed CMC across the thenar, and provided more tightly clustered cortical sources than unrectifed sEMGs. Moreover, it revealed CMC at ∼12 Hz. We conclude that HD-sEMG, especially with monopolar derivation, can facilitate detection of CMC and that individual muscle anatomy cannot explain the high interindividual CMC variability. PMID:26354317
Ernstberger, T; Buchhorn, G; Heidrich, G
2010-03-01
Intervertebral spacers are made of different materials, which can affect the postfusion magnetic resonance imaging (MRI) scans. Susceptibility artifacts, especially for metallic implants, can decrease the image quality. This study aimed to determine whether magnesium as a lightweight and biocompatible metal is suitable as a biomaterial for spinal implants based on its MRI artifacting behavior. To compare artifacting behaviors, we implanted into one porcine cadaveric spine different test spacers made of magnesium, titanium, and CFRP. All test spacers were scanned using two T1-TSE MRI sequences. The artifact dimensions were traced on all scans and statistically analyzed. The total artifact volume and median artifact area of the titanium spacers were statistically significantly larger than magnesium spacers (P < 0.001), while magnesium and CFRP spacers produced almost identical artifacting behaviors (P > 0.05). Our results suggest that spinal implants made with magnesium alloys will behave more like CFRP devices in MRI scans.
Briner, Alexandra E; Barrangou, Rodolphe
2014-02-01
Clustered regularly interspaced short palindromic repeats (CRISPR) in combination with associated sequences (cas) constitute the CRISPR-Cas immune system, which uptakes DNA from invasive genetic elements as novel "spacers" that provide a genetic record of immunization events. We investigated the potential of CRISPR-based genotyping of Lactobacillus buchneri, a species relevant for commercial silage, bioethanol, and vegetable fermentations. Upon investigating the occurrence and diversity of CRISPR-Cas systems in Lactobacillus buchneri genomes, we observed a ubiquitous occurrence of CRISPR arrays containing a 36-nucleotide (nt) type II-A CRISPR locus adjacent to four cas genes, including the universal cas1 and cas2 genes and the type II signature gene cas9. Comparative analysis of CRISPR spacer content in 26 L. buchneri pickle fermentation isolates associated with spoilage revealed 10 unique locus genotypes that contained between 9 and 29 variable spacers. We observed a set of conserved spacers at the ancestral end, reflecting a common origin, as well as leader-end polymorphisms, reflecting recent divergence. Some of these spacers showed perfect identity with phage sequences, and many spacers showed homology to Lactobacillus plasmid sequences. Following a comparative analysis of sequences immediately flanking protospacers that matched CRISPR spacers, we identified a novel putative protospacer-adjacent motif (PAM), 5'-AAAA-3'. Overall, these findings suggest that type II-A CRISPR-Cas systems are valuable for genotyping of L. buchneri.
Kim, Su-Jong; Shin, Jae-Min; Lee, Eun Jung; Park, Il-Ho; Lee, Heung-Man; Kim, Kyung-Su
2017-10-01
Adhesion is a major complication of endoscopic sinus surgery that may lead to recurrence of chronic rhinosinusitis, necessitating revision surgery. The purpose of this study was to evaluate the effect of hyaluronic acid and hydroxyethyl starch (HA-HES) relative to hyaluronic acid and carboxymethylcellulose (HA-CMC) with regard to anti-adhesion effect. In this multi-center, prospective, single-blind, randomized controlled study, 77 consecutive patients who underwent bilateral endoscopic sinus surgery were enrolled between March 2014 and March 2015. HA-HES and HA-CMC were applied to randomly assigned ethmoidectomized cavities after the removal of middle meatal packing. At the 1st, 2nd and 4th weeks after surgery, the presence and grades of adhesion, edema, and infection were, respectively, examined via endoscopy by a blinded assessor. The incidence and grades of adhesion at the 2-week follow-up were significantly less in the HA-CMC group than in the HA-HES group (p < 0.05). However, with the exception of week 2, there were no significant differences in the incidence or grades of adhesion, edema, and infection between the two groups. When the primary endpoint-the presence of adhesion at the 4-week follow-up-was compared between two groups, the incidence of adhesion in HA-HES group at the 4-week follow-up was 32% and in HA-CMC was 41.3%, indicating that HA-HES was not inferior to HA-CMC in terms of anti-adhesive effect. No severe adverse reactions were noted during the study period. In conclusion, HA-HES is a safe substitutional anti-adhesion agent that has equivalent effect as HA-CMC after endoscopic sinus surgery.
Rationale for Haze Formation after Carboxymethyl Cellulose (CMC) Addition to Red Wine.
Sommer, Stephan; Dickescheid, Christian; Harbertson, James F; Fischer, Ulrich; Cohen, Seth D
2016-09-14
The aim of this study was to identify the source of haze formation in red wine after the addition of carboxymethyl cellulose (CMC) and to characterize the dynamics of precipitation. Ninety commercial wines representing eight grape varieties were collected, tested with two commercial CMC products, and analyzed for susceptibility to haze formation. Seventy-four of these wines showed a precipitation within 14 days independent of the CMC product used. The precipitates of four representative samples were further analyzed for elemental composition (CHNS analysis) and solubility under different conditions to determine the nature of the solids. All of the precipitates were composed of approximately 50% proteins and 50% CMC and polyphenols. It was determined that the interactions between CMC and bovine serum albumin are pH dependent in wine-like model solution. Furthermore, it was found that the color loss associated with CMC additions required the presence of proteins and cannot be observed with CMC and anthocyanins alone.
NASA Astrophysics Data System (ADS)
Popescu (Hoştuc), Ioana-Carmen; Filip, Petru; Humelnicu, Doina; Humelnicu, Ionel; Scott, Thomas Bligh; Crane, Richard Andrew
2013-11-01
Carboxy-methyl-cellulose (CMC), a common "delivery vehicle" for the subsurface deployment of iron nanoparticles (INP) has been tested in the current work for the removal of aqueous uranium from synthetic water samples. A comparison of the removal of aqueous uranium from solutions using carboxy-methyl-cellulose with and without iron nanoparticles (CMC-INP and CMC, respectively) was tested over a 48 h reaction period. Analysis of liquid samples using spectrophotometry determined a maximum sorption capacity of uranium, Qmax, of 185.18 mg/g and 322.58 mg/g for CMC and CMC-INP respectively, providing strong evidence of an independent aqueous uranium removal ability exhibited by CMC. The results point out that CMC provides an additional capacity for aqueous uranium removal. Further tests are required to determine whether similar behaviour will be observed for other aqueous contaminant species and if the presence of CMC within a INP slurry inhibits or aids the reactivity, reductive capacity and affinity of INP for aqueous contaminant removal.
McGhee, Gayle C.; Sundin, George W.
2012-01-01
Clustered regularly interspaced short palindromic repeats (CRISPRs) comprise a family of short DNA repeat sequences that are separated by non repetitive spacer sequences and, in combination with a suite of Cas proteins, are thought to function as an adaptive immune system against invading DNA. The number of CRISPR arrays in a bacterial chromosome is variable, and the content of each array can differ in both repeat number and in the presence or absence of specific spacers. We utilized a comparative sequence analysis of CRISPR arrays of the plant pathogen Erwinia amylovora to uncover previously unknown genetic diversity in this species. A total of 85 E. amylovora strains varying in geographic isolation (North America, Europe, New Zealand, and the Middle East), host range, plasmid content, and streptomycin sensitivity/resistance were evaluated for CRISPR array number and spacer variability. From these strains, 588 unique spacers were identified in the three CRISPR arrays present in E. amylovora, and these arrays could be categorized into 20, 17, and 2 patterns types, respectively. Analysis of the relatedness of spacer content differentiated most apple and pear strains isolated in the eastern U.S. from western U.S. strains. In addition, we identified North American strains that shared CRISPR genotypes with strains isolated on other continents. E. amylovora strains from Rubus and Indian hawthorn contained mostly unique spacers compared to apple and pear strains, while strains from loquat shared 79% of spacers with apple and pear strains. Approximately 23% of the spacers matched known sequences, with 16% targeting plasmids and 5% targeting bacteriophage. The plasmid pEU30, isolated in E. amylovora strains from the western U.S., was targeted by 55 spacers. Lastly, we used spacer patterns and content to determine that streptomycin-resistant strains of E. amylovora from Michigan were low in diversity and matched corresponding streptomycin-sensitive strains from the background population. PMID:22860008
McGhee, Gayle C; Sundin, George W
2012-01-01
Clustered regularly interspaced short palindromic repeats (CRISPRs) comprise a family of short DNA repeat sequences that are separated by non repetitive spacer sequences and, in combination with a suite of Cas proteins, are thought to function as an adaptive immune system against invading DNA. The number of CRISPR arrays in a bacterial chromosome is variable, and the content of each array can differ in both repeat number and in the presence or absence of specific spacers. We utilized a comparative sequence analysis of CRISPR arrays of the plant pathogen Erwinia amylovora to uncover previously unknown genetic diversity in this species. A total of 85 E. amylovora strains varying in geographic isolation (North America, Europe, New Zealand, and the Middle East), host range, plasmid content, and streptomycin sensitivity/resistance were evaluated for CRISPR array number and spacer variability. From these strains, 588 unique spacers were identified in the three CRISPR arrays present in E. amylovora, and these arrays could be categorized into 20, 17, and 2 patterns types, respectively. Analysis of the relatedness of spacer content differentiated most apple and pear strains isolated in the eastern U.S. from western U.S. strains. In addition, we identified North American strains that shared CRISPR genotypes with strains isolated on other continents. E. amylovora strains from Rubus and Indian hawthorn contained mostly unique spacers compared to apple and pear strains, while strains from loquat shared 79% of spacers with apple and pear strains. Approximately 23% of the spacers matched known sequences, with 16% targeting plasmids and 5% targeting bacteriophage. The plasmid pEU30, isolated in E. amylovora strains from the western U.S., was targeted by 55 spacers. Lastly, we used spacer patterns and content to determine that streptomycin-resistant strains of E. amylovora from Michigan were low in diversity and matched corresponding streptomycin-sensitive strains from the background population.
Hossieni-Aghdam, Seyed Jamal; Foroughi-Nia, Behrouz; Zare-Akbari, Zhila; Mojarad-Jabali, Solmaz; Motasadizadeh, Hamidreza; Farhadnejad, Hassan
2018-02-01
The main aim of the present study was to design pH-sensitive bionanocomposite hydrogel beads based on CMC and HNT-AT nanohybrid and evaluate whether prepared bionanocomposite beads have the potential to be used in drug delivery applications. Atenolol (AT), as a model drug, was incorporated into the lumen of HA nanotubes via the co-precipitation technique. HNT/AT nanohybrid and CMC/HNT-AT beads were characterized via XRD, SEM, TGA, and FT-IR techniques. Drug loading and encapsulation efficiency was found to be high for CMC/HNT3 beads. Moreover, the swelling and drug release properties of the prepared CMC/HA-AT beads were investigated, and showed a pH sensitive swelling behavior with maximum its content at pH 6.8. Also, it was found that the swelling ratio of CMC/HNT beads was lower than that of pristine CMC beads. Drug release behavior of CMC/HNT-AT bionanocomposite hydrogel beads were investigated. A more sustained and controlled drug releases were observed for CMC/HNT-AT beads. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Mondal, P.; Krol, M.; Sleep, B. E.
2015-12-01
A wide variety of groundwater contaminants can be treated with nano-scale zero valent iron (nZVI). However, delivery of nZVI in the subsurface to the treatment zones is challenging as the bare nZVI particles have a higher tendency to agglomerate. The subsurface mobility of nZVI can be enhanced by stabilizing nZVI with polymer, such as carboxymethyl cellulose (CMC). In this study, numerical simulations were conducted to evaluate CMC stabilized nZVI transport behavior in porous media. The numerical simulations were based on a set of laboratory-scale transport experiments that were conducted in a two-dimensional water-saturated glass-walled sandbox (length - 55 cm; height - 45 cm; width - 1.4 cm), uniformly packed with silica sand. In the transport experiments: CMC stabilized nZVI and a non-reactive dye tracer Lissamine Green B (LGB) were used; water specific discharge and CMC concentration were varied; movements of LGB, and CMC-nZVI in the sandbox were tracked using a camera, a light source and a dark box. The concentrations of LGB, CMC, and CMC-nZVI at the sandbox outlet were analyzed. A 2D multiphase flow and transport model was applied to simulate experimental results. The images from LGB dye transport experiments were used to determine the pore water velocities and media permeabilities in various layers in the sand box. These permeability values were used in the subsequent simulations of CMC-nZVI transport. The 2D compositional simulator, modified to include colloid filtration theory (CFT), treated CMC as a solute and nZVI as a colloid. The simulator included composition dependent viscosity to account for CMC injection and mixing, and attachment efficiency as a fitting parameter for nZVI transport modeling. In the experiments, LGB and CMC recoveries were greater than 95%; however, CMC residence time was significantly higher than the LGB residence time and the higher CMC concentration caused higher pressure drops in the sandbox. The nZVI recovery was lower than 40% in all experiments. The simulation results were found to be in good agreement with the experimental results, implying that the compositional simulator including CFT-modified transport equations could be utilized for the estimation of CMC-stabilized nZVI transport in porous media and design of field scale implementations of CMC-nZVI for remediation.
Impact of ZnO embedded feed spacer on biofilm development in membrane systems.
Ronen, Avner; Semiat, Raphael; Dosoretz, Carlos G
2013-11-01
The concept of suppressing biofouling formation using an antibacterial feed spacer was investigated in a bench scale-cross flow system mimicking a spiral wound membrane configuration. An antibacterial composite spacer containing zinc oxide-nanoparticles was constructed by modification of a commercial polypropylene feed spacer using sonochemical deposition. The ability of the modified spacers to repress biofilm development on membranes was evaluated in flow-through cells simulating the flow conditions in commercial spiral wound modules. The experiments were performed at laminar flow (Re = 300) with a 200 kDa molecular weight cut off polysulfone ultrafiltration membrane using Pseudomonas putida S-12 as model biofilm bacteria. The modified spacers reduced permeate flux decrease at least by 50% compared to the unmodified spacers (control). The physical properties of the modified spacer and biofilm development were evaluated using high resolution/energy dispersive spectrometry-scanning electron microscopy, atomic force microscopy and confocal laser scanning microscopy imaging (HRSEM, EDS, AFM and CLSM). HRSEM images depicted significantly less bacteria attached to the membranes exposed to the modified spacer, mainly scattered and in a sporadic monolayer structure. AFM analysis indicated the influence of the modification on the spacer surface including a phase change on the upper surface. Dead-live staining assay by CLSM indicated that most of the bacterial cells attached on the membranes exposed to the modified spacer were dead in contrast to a developed biofilm which was predominant in the control samples. Copyright © 2013 Elsevier Ltd. All rights reserved.
von Carlowitz-Ghori, K; Bayraktaroglu, Z; Waterstraat, G; Curio, G; Nikulin, V V
2015-04-02
Corticomuscular coherence (CMC) relates to synchronization between activity in the motor cortex and the muscle activity. The strength of CMC can be affected by motor behavior. In a proof-of-principle study, we examined whether independent of motor output parameters, healthy subjects are able to voluntarily modulate CMC in a neurofeedback paradigm. Subjects received visual online feedback of their instantaneous CMC strength, which was calculated between an optimized spatial projection of multichannel electroencephalography (EEG) and electromyography (EMG) in an individually defined target frequency range. The neurofeedback training consisted of either increasing or decreasing CMC strength using a self-chosen mental strategy while performing a simple motor task. Evaluation of instantaneous coherence showed that CMC strength was significantly larger when subjects had to increase than when to decrease CMC; this difference between the two task conditions did not depend on motor performance. The exclusion of confounding factors such as motor performance, attention and task complexity in study design provides evidence that subjects were able to voluntarily modify CMC independent of motor output parameters. Additional analysis further strengthened the assumption that the subjects' response was specifically shaped by the neurofeedback. In perspective, we suggest that CMC-based neurofeedback could provide a therapeutic approach in clinical conditions, such as motor stroke, where CMC is altered. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.
Takeshita, A; Yamakage, N; Shinjo, K; Ono, T; Hirano, I; Nakamura, S; Shigeno, K; Tobita, T; Maekawa, M; Kiyoi, H; Naoe, T; Ohnishi, K; Sugimoto, Y; Ohno, R
2009-07-01
We studied the effect of CMC-544, the calicheamicin-conjugated anti-CD22 monoclonal antibody, used alone and in combination with rituximab, analyzing the quantitative alteration of target molecules, that is, CD20, CD22, CD55 and CD59, in Daudi and Raji cells as well as in cells obtained from patients with B-cell malignancies (BCM). Antibody inducing direct antiproliferative and apoptotic effect, complement-dependent cytotoxicity (CDC) and antibody-dependent cellular cytotoxicity (ADCC) were tested separately. In Daudi and Raji cells, the CDC effect of rituximab significantly increased within 12 h following incubation with CMC-544. The levels of CD22 and CD55 were significantly reduced (P<0.001 in both cells) after incubation with CMC-544, but CD20 level remained constant or increased for 12 h. Similar results were obtained in cells from 12 patients with BCM. The antiproliferative and apoptotic effect of CMC-544 were greater than that of rituximab. The ADCC of rituximab was not enhanced by CMC-544. Thus, the combination of CMC-544 and rituximab increased the in vitro cytotoxic effect in BCM cells, and sequential administration for 12 h proceeded by CMC-544 was more effective. The reduction of CD55 and the preservation of CD20 after incubation with CMC-544 support the rationale for the combined use of CMC-544 and rituximab.
Dijoseph, J F; Dougher, M M; Armellino, D C; Evans, D Y; Damle, N K
2007-11-01
CMC-544 (inotuzumab ozogamicin) is a CD22-specific cytotoxic immunoconjugate of calicheamicin intended for the treatment of B-lymphoid malignancies. This preclinical study investigated antitumor activity of CMC-544 against CD22+ acute lymphoblastic leukemia (ALL). CMC-544 inhibited in vitro growth of ALL cell lines more potently than that of Ramos B-lymphoma cells. When administered to nude mice with established sc xenografts of REH ALL, CMC-544 caused dose-dependent inhibition of xenograft growth producing complete tumor regression and cures in tumor-bearing mice at the highest dose of 160 microg/kg of conjugated calicheamicin. In contrast, a nonbinding control conjugate was 16-fold less effective than CMC-544 in inhibiting growth of REH ALL xenografts. When REH cells were injected intravenously in scid mice and allowed to disseminate systemically, mice developed hind-limb paralysis that was effectively prevented by treatment with CMC-544. Flow cytometric analysis of cells recovered from the bone marrow from mice with disseminated disease verified the presence of engrafted ALL cells. Significantly reduced numbers of ALL cells were recovered from the bone marrow of CMC-544-treated mice than from vehicle-treated mice with disseminated disease. The anti-leukemia activity of CMC-544 demonstrated here further supports clinical evaluation of CMC-544 for the treatment of CD22+ leukemia.
CMC`s research in Europe and the future potential of CMC`s in industry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van de Voorde, M.H.; Nedele, M.R.
1996-12-31
CMC`s (Ceramics Matrix Composites) have been developed for high temperature applications in aerospace and military industries. In general, the CMC`s should be capable of outperforming the best available superalloys. Great efforts are being given to pinpoint spin-off technologies i.e. applications in modern fossil fuel power plants, gas turbines, petrochemistry etc. In these applications, the CMC`s have to operate at temperatures up to 1400{degrees}C, in corrosive environments for long durations. These developments will provoke a breakthrough for this new group of CMC-materials. The paper will: (i) give an overview of the CMC`s research in Europe; processing, and characterization of physical, chemicalmore » and engineering properties at high temperatures; (ii) pinpoint the R&D needs to achieve the potential growth; and (iii) review the industrial potentials.« less
Constant mean curvature slicings of Kantowski-Sachs spacetimes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heinzle, J. Mark
2011-04-15
We investigate existence, uniqueness, and the asymptotic properties of constant mean curvature (CMC) slicings in vacuum Kantowski-Sachs spacetimes with positive cosmological constant. Since these spacetimes violate the strong energy condition, most of the general theorems on CMC slicings do not apply. Although there are in fact Kantowski-Sachs spacetimes with a unique CMC foliation or CMC time function, we prove that there also exist Kantowski-Sachs spacetimes with an arbitrary number of (families of) CMC slicings. The properties of these slicings are analyzed in some detail.
Effect of carboxymethylcellulose on fibril formation of collagen in vitro.
Ding, Cuicui; Shi, Ronghui; Zheng, Zhigong; Zhang, Min
2018-01-01
The effect of carboxymethylcellulose (CMC) on the fibril formation of collagen in vitro was studied by turbidity measurements and atomic force microscopy (AFM). The kinetics curves of fibril formation indicated that the rate of collagen fibrillogenesis was decreased with the addition of CMC, meanwhile the final turbidity was obviously increased as the CMC/collagen ratio reached 30%. The AFM images of collagen-CMC solutions showed that the number of nucleation sites of collagen fibrillogenesis was significantly increased with the presence of CMC, while the diameter of immature collagen fibrils was obviously decreased. Moreover, the thermal stability of collagen fibril hydrogels was obviously improved with the presence of CMC. In addition, the morphologies of collagen fibrils observed by AFM revealed that the adjacent fibril segments or fibrils were intertwisted and even tightly merged, probably due to the hydrogen bonding and molecular entanglement interactions between CMC and collagen molecules.
Development of CMC hydrogels loaded with silver nano-particles for medical applications.
Hebeish, Ali; Hashem, M; El-Hady, M M Abd; Sharaf, S
2013-01-30
Innovative CMC-based hydrogels with great potentials for usage in medical area were principally synthesized as per two strategies .The first involved reaction of epichlorohydrin in alkaline medium containing silver nitrate to yield silver nano-particles (AgNPs)-loaded CMC hydrogel. While CMC acted as stabilizing for AgNPs, trisodium citrate was added to the reaction medium to assist CMC in establishing reduction of Ag(+) to AgNPs. The second strategy entailed preparation of CMC hydrogel which assists the in situ preparation of AgNPs under the same conditions. In both strategies, factors affecting the characterization of AgNPs-loaded CMC hydrogels were studied. Analysis and characterization of the so obtained hydrogels were performed through monitoring swelling behavior, FTIR spectroscopy, SEM, EDX, UV-vis spectrophotometer and TEM. Antimicrobial activity of the hydrogels was examined and mechanisms involved in their synthesis were reported. Copyright © 2012 Elsevier Ltd. All rights reserved.
Characterizing the Properties of a Woven SiC/SiC Composite Using W-CEMCAN Computer Code
NASA Technical Reports Server (NTRS)
Murthy, Pappu L. N.; Mital, Subodh K.; DiCarlo, James A.
1999-01-01
A micromechanics based computer code to predict the thermal and mechanical properties of woven ceramic matrix composites (CMC) is developed. This computer code, W-CEMCAN (Woven CEramic Matrix Composites ANalyzer), predicts the properties of two-dimensional woven CMC at any temperature and takes into account various constituent geometries and volume fractions. This computer code is used to predict the thermal and mechanical properties of an advanced CMC composed of 0/90 five-harness (5 HS) Sylramic fiber which had been chemically vapor infiltrated (CVI) with boron nitride (BN) and SiC interphase coatings and melt-infiltrated (MI) with SiC. The predictions, based on the bulk constituent properties from the literature, are compared with measured experimental data. Based on the comparison. improved or calibrated properties for the constituent materials are then developed for use by material developers/designers. The computer code is then used to predict the properties of a composite with the same constituents but with different fiber volume fractions. The predictions are compared with measured data and a good agreement is achieved.
Concurrent validation of Xsens MVN measurement of lower limb joint angular kinematics.
Zhang, Jun-Tian; Novak, Alison C; Brouwer, Brenda; Li, Qingguo
2013-08-01
This study aims to validate a commercially available inertial sensor based motion capture system, Xsens MVN BIOMECH using its native protocols, against a camera-based motion capture system for the measurement of joint angular kinematics. Performance was evaluated by comparing waveform similarity using range of motion, mean error and a new formulation of the coefficient of multiple correlation (CMC). Three dimensional joint angles of the lower limbs were determined for ten healthy subjects while they performed three daily activities: level walking, stair ascent, and stair descent. Under all three walking conditions, the Xsens system most accurately determined the flexion/extension joint angle (CMC > 0.96) for all joints. The joint angle measurements associated with the other two joint axes had lower correlation including complex CMC values. The poor correlation in the other two joint axes is most likely due to differences in the anatomical frame definition of limb segments used by the Xsens and Optotrak systems. Implementation of a protocol to align these two systems is necessary when comparing joint angle waveforms measured by the Xsens and other motion capture systems.
Gender and CMC: A Review on Conflict and Harassment
ERIC Educational Resources Information Center
Li, Qing
2005-01-01
This paper reviews the literature related to gender and communication in CMC environments. A brief summary of gender related literature concerning general communication patterns in CMC is outlined first, to set the stage. Then, a review of literature in gender and CMC with a specific focus on conflict and harassment is presented. Comments upon…
Ren, Huixue; Gao, Zhimin; Wu, Daoji; Jiang, Jiahui; Sun, Youmin; Luo, Congwei
2016-02-10
Alginate-carboxymethyl cellulose (CMC) gel beads were prepared in this study using sodium alginate (SA) and sodium CMC through blending and cross-linking. The specific surface area and aperture of the prepared SA-CMC gel beads were tested. The SA-CMC structure was characterized and analyzed via infrared spectroscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. Static adsorption experiment demonstrated that Pb(II) adsorption of SA-CMC exceeded 99% under the optimized conditions. In addition, experiments conducted under the same experimental conditions showed that the lead ion removal efficiency of SA-CMC was significantly higher than that of conventional adsorbents. The Pb(II) adsorption process of SA-CMC followed the Langmuir adsorption isotherm, and the dynamic adsorption model could be described through a pseudo-second-order rate equation. Pb(II) removal mechanisms of SA-CMC, including physical, chemical, and electrostatic adsorptions, were discussed based on microstructure analysis and adsorption kinetics. Chemical adsorption was the main adsorption method among these mechanisms. Copyright © 2015 Elsevier Ltd. All rights reserved.
Mohammadi, Hamid; Kamkar, Abolfazl; Misaghi, Ali
2018-02-01
This work examined the physico mechanical parameters and antibacterial activity of CMC/okra mucilage (OM) blend films containing ZnO nanoparticles (NPs). Different proportions of CMC and okra mucilage (100/0; 70/30; 60/40 and 50/50 respectively), were mixed and casted to posterior analysis of formed films. The more colored films were obtained by higher contents of okra mucilage and adding ZnO nanoparticles. The incorporation of ZnO NPs into CMC film decreased the elongation at the break (EB) value of the films and increased the tensile strength (TS) value of the film. With increase in CMC concentration in the films, higher water vapor permeability and higher solubility in water were achieved. Microstructure analysis using SEM showed a smooth and compact surface morphology, homogeneous structure, and a rough surface for CMC, CMC+ZnO, and CMC/OM30%+ZnO, respectively. Nanocomposite films presented antibacterial activity against tested bacteria. Films contained okra mucilage showed more antibacterial activity. The inhibitory activities of resultant films were stronger against S. aureus than E. coli. Copyright © 2017 Elsevier Ltd. All rights reserved.
Injectable CMC/PEI gel as an in vivo scaffold for demineralized bone matrix.
Kim, Kyung Sook; Kang, Yun Mi; Lee, Ju Young; Kim, E Sle; Kim, Chun Ho; Min, Byoung Hyun; Lee, Hai Bang; Kim, Jae Ho; Kim, Moon Suk
2009-01-01
A number of materials have been considered as sources of grafts to repair bone defects. Here, we examined the possibility of creating in situ-forming gels from sodium carboxymethylcellulose (CMC) and poly(ethyleneimine) (PEI) for use as an in vivo carrier of demineralized bone matrix (DBM). The interaction between anionic CMC and cationic PEI was examined by evaluating phase transition behavior and viscosity of CMC solutions containing 0-30 wt% PEI. CMC solutions containing 10 wt% PEI exhibited a sol-to-gel phase transition at temperatures greater than 35 degrees C. The phase transition is caused by electrostatic crosslinking of the CMC/PEI solution to form a gel with a three-dimensional network structure. In situ-formed gel implants were successfully fabricated in vivo by simple subcutaneous injection of the CMC/PEI (90/10) solution (with and without DBM) into Fisher rats. The resulting in situ-formed implant maintained its shape for 28 days in vitro and in vivo. Our results show that in situ-forming CMC/PEI gels can serve as a DBM carrier that can be delivered with a minimally invasive procedure.
NASA Astrophysics Data System (ADS)
Yang, Fang; Li, Gang; Qi, Jian; Zhang, Song-Mei; Liu, Rong
2010-10-01
A series of trimeric n-alkylphenol polyoxyethylene surfactants (TAP) were successfully synthesized and the molecular structure were confirmed by NMR, FTIR spectrum and elemental analysis. Using the same synthesis route, the trimeric nonylphenol polyoxyethylene surfactant (TNP) was synthesized using industrial product nonylphenol and paraformaldehyde, and its molecular structure was characterized by 1HNMR, FTIR spectrum and elemental analysis. The optimal reaction conditions were established. The surface activity properties of TAP and TNP (such as the critical micelle concentration (cmc), the values of surface tension at the cmc ( γcmc), the maximum surface excess concentration ( Γcmc), and the minimum surface area per surfactant molecule ( Acmc)), were determined by means of Wilhelmy plate method and steady-state fluorescence probe method, respectively. The experimental results show that the lengths of the hydrophilic group oxyethylene (EO) chains and hydrophobic group methylene chains have an influence on the cmc, γcmc, Γcmc, and Acmc of series of surfactants. Furthermore, TAP are arranged to staggered three-dimensional array mode at the air-water interface, which has exhibited better surface properties, such as low cmc values, strong adsorption affinities and wet abilities.
Siddiqui, A; Lehmann, S; Bucs, Sz S; Fresquet, M; Fel, L; Prest, E I E C; Ogier, J; Schellenberg, C; van Loosdrecht, M C M; Kruithof, J C; Vrouwenvelder, J S
2017-03-01
Feed spacers are an essential part of spiral-wound reverse osmosis (RO) and nanofiltration (NF) membrane modules. Geometric modification of feed spacers is a potential option to reduce the impact of biofouling on the performance of membrane systems. The objective of this study was to evaluate the biofouling potential of two commercially available reference feed spacers and four modified feed spacers. The spacers were compared on hydraulic characterization and in biofouling studies with membrane fouling simulators (MFSs). The virgin feed spacer was characterized hydraulically by their resistance, measured in terms of feed channel pressure drop, performed by operating MFSs at varying feed water flow rates. Short-term (9 days) biofouling studies were carried out with nutrient dosage to the MFS feed water to accelerate the biofouling rate. Long-term (96 days) biofouling studies were done without nutrient dosage to the MFS feed water. Feed channel pressure drop was monitored and accumulation of active biomass was quantified by adenosine tri phosphate (ATP) determination. The six feed spacers were ranked on pressure drop (hydraulic characterization) and on biofouling impact (biofouling studies). Significantly different trends in hydraulic resistance and biofouling impact for the six feed spacers were observed. The same ranking for biofouling impact on the feed spacers was found for the (i) short-term biofouling study with nutrient dosage and the (ii) long-term biofouling study without nutrient dosage. The ranking for hydraulic resistance for six virgin feed spacers differed significantly from the ranking of the biofouling impact, indicating that hydraulic resistance of clean feed spacers does not predict the hydraulic resistance of biofouled feed spacers. Better geometric design of feed spacers can be a suitable approach to minimize impact of biofouling in spiral wound membrane systems. Copyright © 2016 Elsevier Ltd. All rights reserved.
Evaluation of Ceramic Matrix Composite Technology for Aircraft Turbine Engine Applications
NASA Technical Reports Server (NTRS)
Halbig, Michael C.; Jaskowiak, Martha H.; Kiser, James D.; Zhu, Dongming
2013-01-01
The goals of the NASA Environmentally Responsible Aviation (ERA) Project are to reduce the NO(x) emissions, fuel burn, and noise from turbine engines. In order to help meet these goals, commercially-produced ceramic matrix composite (CMC) components and environmental barrier coatings (EBCs) are being evaluated as parts and panels. The components include a CMC combustor liner, a CMC high pressure turbine vane, and a CMC exhaust nozzle as well as advanced EBCs that are tailored to the operating conditions of the CMC combustor and vane. The CMC combustor (w/EBC) could provide 2700 F temperature capability with less component cooling requirements to allow for more efficient combustion and reductions in NOx emissions. The CMC vane (w/EBC) will also have temperature capability up to 2700 F and allow for reduced fuel burn. The CMC mixer nozzle will offer reduced weight and improved mixing efficiency to provide reduced fuel burn. The main objectives are to evaluate the manufacturability of the complex-shaped components and to evaluate their performance under simulated engine operating conditions. Progress in CMC component fabrication, evaluation, and testing is presented in which the goal is to advance from the proof of concept validation (TRL 3) to a system/subsystem or prototype demonstration in a relevant environment (TRL 6).
Potential Activity of 3-(2-Chlorophenyl)-1-phenyl-propenonein Accelerating Wound Healing in Rats
Dhiyaaldeen, Summaya M.; Alshawsh, Mohammed A.; Salama, Suzy M.; Alwajeeh, Nahla S. I.
2014-01-01
Wound healing involves inflammation followed by granular tissue development and scar formation. In this study, synthetic chalcone 3-(2-Chlorophenyl)-1-phenyl-propenone (CPPP) was investigated for a potential role in enhancing wound healing and closure. Twenty-four male rats were divided randomly into 4 groups: carboxymethyl cellulose (CMC) (0.2 mL), Intrasite gel, and CPPP (25 or 50 mg/mL). Gross morphology, wounds treatment with the CPPP, and Intrasite gel accelerate the rate of wound healing compared to CMC group. Ten days after surgery, the animals were sacrificed. Histological assessment revealed that the wounds treated with CPPP showed that wound closure site contained little amount of scar and the granulation tissue contained more collagen and less inflammatory cells than wound treated with CMC. This finding was confirmed with Masson's trichrome staining. The antioxidant defence enzymes catalase (CAT) and superoxide dismutase (SOD) were significantly increased in the wound homogenates treated with CPPP (P < 0.05) compared to CMC treated group. However, in the CPPP treatment group, lipid peroxidation (MDA) was significantly decreased (P < 0.05), suggesting that the CPPP also has an important role in protection against lipid peroxidation-induced skin injury after ten days of treatment with CPPP, which is similar to the values of cytokines TGF-β and TNF-α in tissue homogenate. Finally the administration of CPPP at a dosage of 25 and 50 mg/kg was suitable for the stimulation of wound healing. PMID:24587992
Connection Map for Compounds (CMC): A Server for Combinatorial Drug Toxicity and Efficacy Analysis.
Liu, Lei; Tsompana, Maria; Wang, Yong; Wu, Dingfeng; Zhu, Lixin; Zhu, Ruixin
2016-09-26
Drug discovery and development is a costly and time-consuming process with a high risk for failure resulting primarily from a drug's associated clinical safety and efficacy potential. Identifying and eliminating inapt candidate drugs as early as possible is an effective way for reducing unnecessary costs, but limited analytical tools are currently available for this purpose. Recent growth in the area of toxicogenomics and pharmacogenomics has provided with a vast amount of drug expression microarray data. Web servers such as CMap and LTMap have used this information to evaluate drug toxicity and mechanisms of action independently; however, their wider applicability has been limited by the lack of a combinatorial drug-safety type of analysis. Using available genome-wide drug transcriptional expression profiles, we developed the first web server for combinatorial evaluation of toxicity and efficacy of candidate drugs named "Connection Map for Compounds" (CMC). Using CMC, researchers can initially compare their query drug gene signatures with prebuilt gene profiles generated from two large-scale toxicogenomics databases, and subsequently perform a drug efficacy analysis for identification of known mechanisms of drug action or generation of new predictions. CMC provides a novel approach for drug repositioning and early evaluation in drug discovery with its unique combination of toxicity and efficacy analyses, expansibility of data and algorithms, and customization of reference gene profiles. CMC can be freely accessed at http://cadd.tongji.edu.cn/webserver/CMCbp.jsp .
Adams, Julie E; O'Brien, Virginia; Magnusson, Erik; Rosenstein, Benjamin; Nuckley, David J
2018-01-01
Therapy programs to treat thumb carpometacarpal (CMC) arthritis may engage selective activation and reeducation of thenar muscles, particularly the first dorsal interosseous (FDI) and opponens pollicis (OP) to reduce subluxation of the joint. We describe the effect of simulated selective activation of the FDI and OP muscles upon radiographic subluxation of the thumb CMC joint. In a cadaver model of CMC subluxation, loads were applied to the FDI, the OP, and then concomitantly at 0%, 25%, 50%, 75%, and 100% maximal loads and radial subluxation of the joint and reduction in subluxation was measured. Selective activation of the OP, alone, improved the subluxation ratio (SR) in a dose-dependent manner. Selective activation of FDI, alone, demonstrated minimal effects on SR. Concomitant activation of OP and FDI improved the SR across all loading states, and activation of 75% and greater, when compared with FDI activation alone, resulted in a statistically significant improvement in SR to within 10% of the presubluxed joint. Concomitant activation of the FDI and OP acts to reduce subluxation of the thumb CMC joint in a dose-dependent fashion. The OP is likely the predominant reducing force. Hand therapy programs that focus on selective strengthening programs likely function in part to encourage patients to activate the easily palpable and easily understood FDI. Concomitant coactivation of the OP may be the major reducing force to elicit clinical and radiographic reduction of subluxation, improved thumb positioning, and reduction of pain and arthritic symptoms.
Spaans, Anne J; Minnen, L Paul van; Braakenburg, Assa; Mink van der Molen, Aebele B
2017-08-01
The purpose of this pilot study was to evaluate the feasibility of joint distraction of the first carpometacarpal (CMC1) joint in patients with CMC1 osteoarthritis (OA). An external joint distractor was placed over the CMC1 joint by K-wire fixation in the trapezium and the metacarpal. The joint was distracted 3 mm during surgery. The device was then kept in place for 8 weeks. Disabilities of the Arm, Shoulder, and Hand (DASH) score, Michigan Hand Outcome Questionnaire (MHQ), Visual Analogue Scale (VAS), and grip strength were recorded preoperatively and at set postoperative intervals. Five female patients with an average age of 53 years (range = 41-61) were included. One year postoperatively, average DASH, MHQ, and VAS scores improved compared to preoperative values; DASH 53 to 27, MHQ 48 to 76, and VAS pain 48 to 14. There were no technical problems associated with the device. One patient had a local pin site infection treated successfully with oral antibiotics. This study concludes that joint distraction of the osteoarthritic CMC1 joint is technically feasible. In this small, prospective pilot study the majority of the results were favourable during short-term follow-up.
Rodrigues, Cristiano; de Assis, Adriano M.; Moura, Dinara J.; Halmenschlager, Graziele; Saffi, Jenifer; Xavier, Léder Leal; da Cruz Fernandes, Marilda; Wink, Márcia Rosângela
2014-01-01
Lesions with great loss of skin and extensive burns are usually treated with heterologous skin grafts, which may lead rejection. Cell therapy with mesenchymal stem cells is arising as a new proposal to accelerate the healing process. We tested a new therapy consisting of sodium carboxymethylcellulose (CMC) as a biomaterial, in combination with adipose-derived stem cells (ADSCs), to treat skin lesions in an in vivo rat model. This biomaterial did not affect membrane viability and induced a small and transient genotoxicity, only at the highest concentration tested (40 mg/mL). In a rat wound model, CMC at 10 mg/mL associated with ADSCs increased the rate of cell proliferation of the granulation tissue and epithelium thickness when compared to untreated lesions (Sham), but did not increase collagen fibers nor alter the overall speed of wound closure. Taken together, the results show that the CMC is capable to allow the growth of ADSCs and is safe for this biological application up to the concentration of 20 mg/mL. These findings suggest that CMC is a promising biomaterial to be used in cell therapy. PMID:24788779
McKissick, Holly D; Cady, Rhonda G; Looman, Wendy S; Finkelstein, Stanley M
The purpose of this analysis was to evaluate the effects of an advanced practice nurse-delivered telehealth intervention on health care use by children with medical complexity (CMC). Because CMC account for a large share of health care use costs, finding effective ways to care for them is an important challenge requiring exploration. This was a secondary analysis of data from a randomized clinical trial with a control group and two intervention groups. The focus of the analysis was planned and unplanned clinical and therapy visits by CMC over a 30-month data collection period. Nonparametric tests were used to compare visit counts among and within the three groups. The number of unplanned visits decreased over time across all groups, with the greatest decrease in the video telehealth intervention group. Planned visits were higher in the video telehealth group across all time periods. Advanced practice registered nurse-delivered telehealth care coordination may support a shift from unplanned to planned health care service use among CMC. Copyright © 2016 National Association of Pediatric Nurse Practitioners. Published by Elsevier Inc. All rights reserved.
CMC-modified cellulose biointerface for antibody conjugation.
Orelma, Hannes; Teerinen, Tuija; Johansson, Leena-Sisko; Holappa, Susanna; Laine, Janne
2012-04-09
In this Article, we present a new strategy for preparing an antihemoglobin biointerface on cellulose. The preparation method is based on functionalization of the cellulose surface by the irreversible adsorption of CMC, followed by covalent linking of antibodies to CMC. This would provide the means for affordable and stable cellulose-based biointerfaces for immunoassays. The preparation and characterization of the biointerface were studied on Langmuir-Schaefer cellulose model surfaces in real time using the quartz crystal microbalance with dissipation and surface plasmon resonance techniques. The stable attachment of antihemoglobin to adsorbed CMC was achieved, and a linear calibration of hemoglobin was obtained. CMC modification was also observed to prevent nonspecific protein adsorption. The antihemoglobin-CMC surface regenerated well, enabling repeated immunodetection cycles of hemoglobin on the same surface.
Shao, Dadong; Jiang, Zhongqing; Wang, Xiangke; Li, Jiaxing; Meng, Yuedong
2009-01-29
Carboxymethyl cellulose (CMC) is grafted on multiwalled carbon nanotubes (MWCNT) by using plasma techniques. The CMC grafted MWCNT (MWCNT-g-CMC) is characterized by using Fourier transform infrared spectra (FT-IR), Raman spectra, powder X-ray diffraction (XRD), thermogravimetric analysis (TGA)-differential thermal analysis (DTA), scanning electron microscopy (SEM), and N(2)-BET methods in detail. The application of MWCNT-g-CMC in the removal of UO(2)(2+) from aqueous solution is investigated. MWCNT-g-CMC has much higher sorption ability in the removal of UO(2)(2+) than raw MWCNT. The MWCNT-g-CMC is a suitable material in the preconcentration and solidification of heavy metal ions from large volume of aqueous solutions.
Tong, Min-Ji; Xiang, Guang-Heng; He, Zi-Li; Chen, De-Heng; Tang, Qian; Xu, Hua-Zi; Tian, Nai-Feng
2017-08-01
Anterior cervical diskectomy and fusion with plate-screw construct has been gradually applied for multilevel cervical spondylotic myelopathy in recent years. However, long cervical plate was associated with complications including breakage or loosening of plate and screws, trachea-esophageal injury, neurovascular injury, and postoperative dysphagia. To reduce these complications, the zero-profile spacer has been introduced. This meta-analysis was performed to compare the clinical and radiologic outcomes of zero-profile spacer versus cage-plate construct for the treatment of multilevel cervical spondylotic myelopathy. We systematically searched MEDLINE, Springer, and Web of Science databases for relevant studies that compared the clinical and radiologic outcomes of zero-profile spacer versus cage and plate for multilevel cervical spondylotic myelopathy. Risk of bias in included studies was assessed. Pooled estimates and corresponding 95% confidence intervals were calculated. On the basis of predefined inclusion criteria, 7 studies with a total of 409 patients were included in this analysis. The pooled data revealed that zero-profile spacer was associated with a decreased dysphagia rate at 2, 3, and 6 months postoperatively when compared with the cage-plate group. Both techniques had similar perioperative outcomes, functional outcome, radiologic outcome, and dysphagia rate immediately and at >1-year after operation. On the basis of available evidence, zero-profile spacer was more effective in reducing postoperative dysphagia rate for multilevel cervical spondylotic myelopathy. Both devices were safe in anterior cervical surgeries, and they had similar efficacy in improving the functional and radiologic outcomes. More randomized controlled trials are needed to compare these 2 devices. Copyright © 2017 Elsevier Inc. All rights reserved.
[Aerosol deposition and clinical performance verified with a spacer device made in Brazil
Camargos, P A; Rubim, J A; Simal, C J; Lasmar, L M
2000-01-01
OBJECTIVE: To assess the lung deposition pattern of radioaerosol and the clinical performance of a spacer developed and made in Brazil. METHODS: Qualitative - in a patient with cystic fibrosis - and semi-quantitative - in two healthy volunteers - assessment of pulmonary deposition of (99)mtechnetium was done using the Aerogama Medical oxigen driven nebulizer system attached to the spacer and a gama-camera (Siemens, model Orbiter) connected to a microcomputer. In the next step, clinical assessment was carried out in 50 asthmatic children, aged from four months to 13 years old with an acute attack, using conventional doses of albuterol through a metered dose inhaler attached to the spacer device. RESULTS: Qualitative assessment revealed a lung silhouette comparable with those obtained in the inhalation scintigraphy and semiquantitative assessment reveals that 7.5% to 8.0% of the inhaled (99m)technetium reached the volunteerś lungs. Statistically significant differences (p < 0.001) were observed comparing clinical scores at admission with those verified 20 and 40 minutes after albuterol inhalation; conversely, no significance was obtained for scores taken at 60 and 80 minutes. CONCLUSIONS: Although we used an alternative method, the scintigraphic assessment reveals an expected pattern of pulmonary deposition. Similarly, clinical performance in the treatment of an acute attack showed results comparable with those obtained with other spacers devices.
Ocular pharmacokinetics of 0.45% ketorolac tromethamine
Attar, Mayssa; Schiffman, Rhett; Borbridge, Lisa; Farnes, Quinn; Welty, Devin
2010-01-01
Purpose A new carboxymethylcellulose (CMC)-containing ophthalmic formulation of 0.45% ketorolac, pH 6.8 (Acuvail®) was recently developed for treatment of inflammation and pain after cataract surgery. This study compared pharmacokinetics of the new formulation with that of a prior formulation, 0.4% ketorolac, pH 7.4 (Acular LS®). Methods Ketorolac formulations were administered bilaterally (35 μL) to female New Zealand White rabbits. Samples from aqueous humor and iris-ciliary body were collected at multiple time points, and ketorolac was quantified using liquid chromatography-tandem mass spectrometry. Results In aqueous humor, the peak concentration (Cmax) and area under the concentration-time curve (AUC0–τ) of ketorolac were, respectively, 389 ng/mL and 939 ng·h/mL following administration of the CMC-containing 0.45% ketorolac, pH 6.8, and 211 ng/mL and 465 ng·hr/mL following administration of the 0.4% ketorolac, pH 7.4. In iris-ciliary body, Cmax and AUC0–τ of ketorolac were, respectively 450 ng/g and 2040 ng·h/g after administration of the CMC-containing 0.45% ketorolac, pH 6.8, and 216 ng/g and 699 ng·h/g after administration of the 0.4% ketorolac, pH 7.4. PK simulations predicted an AUC0–τ of 2910 ng·h/g for twice daily, CMC-containing 0.45% ketorolac, pH 6.8, compared to 725 ng·h/g for 4 times daily, 0.4% ketorolac, pH 7.4. Conclusions The CMC-containing formulation of 0.45% ketorolac, pH 6.8, increased ketorolac bioavailability by 2-fold in aqueous humor and by 3-fold in iris-ciliary body in comparison to the 0.4% ketorolac, pH 7.4, allowing a reduced dosing schedule from 4 times daily to twice daily. PMID:21179226
Ocular pharmacokinetics of 0.45% ketorolac tromethamine.
Attar, Mayssa; Schiffman, Rhett; Borbridge, Lisa; Farnes, Quinn; Welty, Devin
2010-12-01
A new carboxymethylcellulose (CMC)-containing ophthalmic formulation of 0.45% ketorolac, pH 6.8 (Acuvail(®)) was recently developed for treatment of inflammation and pain after cataract surgery. This study compared pharmacokinetics of the new formulation with that of a prior formulation, 0.4% ketorolac, pH 7.4 (Acular LS(®)). Ketorolac formulations were administered bilaterally (35 μL) to female New Zealand White rabbits. Samples from aqueous humor and iris-ciliary body were collected at multiple time points, and ketorolac was quantified using liquid chromatography-tandem mass spectrometry. In aqueous humor, the peak concentration (C(max)) and area under the concentration-time curve (AUC(0-τ)) of ketorolac were, respectively, 389 ng/mL and 939 ng·h/mL following administration of the CMC-containing 0.45% ketorolac, pH 6.8, and 211 ng/mL and 465 ng·hr/mL following administration of the 0.4% ketorolac, pH 7.4. In iris-ciliary body, C(max) and AUC(0-τ) of ketorolac were, respectively 450 ng/g and 2040 ng·h/g after administration of the CMC-containing 0.45% ketorolac, pH 6.8, and 216 ng/g and 699 ng·h/g after administration of the 0.4% ketorolac, pH 7.4. PK simulations predicted an AUC(0-τ) of 2910 ng·h/g for twice daily, CMC-containing 0.45% ketorolac, pH 6.8, compared to 725 ng·h/g for 4 times daily, 0.4% ketorolac, pH 7.4. The CMC-containing formulation of 0.45% ketorolac, pH 6.8, increased ketorolac bioavailability by 2-fold in aqueous humor and by 3-fold in iris-ciliary body in comparison to the 0.4% ketorolac, pH 7.4, allowing a reduced dosing schedule from 4 times daily to twice daily.
NASA Astrophysics Data System (ADS)
Chen, Zhen; Kim, Guk-Tae; Chao, Dongliang; Loeffler, Nicholas; Copley, Mark; Lin, Jianyi; Shen, Zexiang; Passerini, Stefano
2017-12-01
This work reports the performance of LiNi0.4Co0.2Mn0.4O2 electrodes employing sodium carboxymethyl cellulose as the binder (CMC/NCM). Compared with conventional organic PVDF-based electrodes, the CMC/NCM electrodes display very uniform distribution of NCM and carbon particles together with strong adhesion among the particles and with the current collector, leading to significantly mitigated crack formation and delamination of the electrode upon repeated delithiation/lithiation processes. Additionally, these electrodes offer enhanced Li+ diffusion kinetics, reduced polarization, therefore, excellent high C-rate capability, and extremely stable cycling performance even at elevated temperature (60 °C). Benefiting from the features of low cost, environmentally friendliness, and easy disposability-recyclability, the water-soluble CMC is a promising binder for practical application in energy storage systems.
An ecotoxicological characterization of nanocrystalline cellulose (NCC).
Kovacs, Tibor; Naish, Valerie; O'Connor, Brian; Blaise, Christian; Gagné, Francois; Hall, Lauren; Trudeau, Vance; Martel, Pierre
2010-09-01
The pulp and paper industry in Canada is developing technology for the production and use of nanocrystalline cellulose (NCC). A key component of the developmental work is an assessment of potential environmental risks. Towards this goal, NCC samples as well as carboxyl methyl cellulose (CMC), a surrogate of the parent cellulosic material, were subjected to an ecotoxicological evaluation. This involved toxicity tests with rainbow trout hepatocytes and nine aquatic species. The hepatocytes were most sensitive (EC20s between 10 and 200 mg/l) to NCC, although neither NCC nor CMC caused genotoxicity. In tests with the nine species, NCC affected the reproduction of the fathead minnow at (IC25) 0.29 g/l, but no other effects on endpoints such as survival and growth occurred in the other species at concentrations below 1 g/l, which was comparable to CMC. Based on this ecotoxicological characterization, NCC was found to have low toxicity potential and environmental risk.
Kim, Hong Gun; Kim, Yong Sun; Kwac, Lee Ku; Chae, Su-Hyeong; Shin, Hye Kyoung
2018-01-01
Carbon foams were prepared by carbonization of carboxymethyl cellulose (CMC)/waste artificial marble powder (WAMP) composites obtained via electron beam irradiation (EBI); these composites were prepared by mixing eco-friendly CMC with WAMP as the fillers for improved their poor mechanical strength. Gel fractions of the CMC/WAMP composites obtained at various EBI doses were investigated, and it was found that the CMC/WAMP composites obtained at an EBI dose of 80 kGy showed the highest gel fraction (95%); hence, the composite prepared at this dose was selected for preparing the carbon foam. The thermogravimetric analysis of the CMC/WAMP composites obtained at 80 kGy; showed that the addition of WAMP increased the thermal stability and carbon residues of the CMC/WAMP composites at 900 °C. SEM images showed that the cell walls of the CMC/WAMP carbon foams were thicker more than those of the CMC carbon foam. In addition, energy dispersive X-ray spectroscopy showed that the CMC/WAMP carbon foams contained small amounts of aluminum, derived from WAMP. The results confirmed that the increased WAMP content and hence increased aluminum content improved the thermal conductivity of the composites and their corresponding carbon foams. Moreover, the addition of WAMP increased the compressive strength of CMC/WAMP composites and hence the strength of their corresponding carbon foams. In conclusion, this synthesis method is encouraging, as it produces carbon foams of pore structure with good mechanical properties and thermal conductivity. PMID:29565300
Nayak, Atul; Das, Diganta B; Vladisavljević, Goran T
2014-05-01
Lidocaine hydrochloride (LidH) was formulated in sodium carboxymethyl cellulose/ gelatine (NaCMC/GEL) hydrogel and a 'poke and patch' microneedle delivery method was used to enhance permeation flux of LidH. The microparticles were formed by electrostatic interactions between NaCMC and GEL macromolecules within a water/oil emulsion in paraffin oil and the covalent crosslinking was by glutaraldehyde. The GEL to NaCMC mass ratio was varied between 1.6 and 2.7. The LidH encapsulation yield was 1.2 to 7% w/w. LidH NaCMC/GEL was assessed for encapsulation efficiency, zeta potential, mean particle size and morphology. Subsequent in vitro skin permeation studies were performed via passive diffusion and microneedle assisted permeation of LidH NaCMC/GEL to determine the maximum permeation rate through full thickness skin. LidH 2.4% w/w NaCMC/GEL 1:1.6 and 1:2.3 respectively, possessed optimum zeta potential. LidH 2.4% w/w NaCMC/GEL 1:2.3 and 1:2.7 demonstrate higher pseudoplastic behaviour. Encapsulation efficiency (14.9-17.2%) was similar for LidH 2.4% w/w NaCMC/GEL 1:1.6-1:2.3. Microneedle assisted permeation flux was optimum for LidH 2.4% w/w NaCMC/GEL 1:2.3 at 6.1 μg/ml/h. LidH 2.4% w/w LidH NaCMC/GEL 1:2.3 crossed the minimum therapeutic drug threshold with microneedle skin permeation in less than 70 min.
Karakashev, Stoyan I; Smoukov, Stoyan K
2017-09-01
The critical micelle concentration (CMC) of various surfactants is difficult to predict accurately, yet often necessary to do in both industry and science. Hence, quantum-chemical software packages for precise calculation of CMC were developed, but they are expensive and time consuming. We show here an easy method for calculating CMC with a reasonable accuracy. Firstly, CMC 0 (intrinsic CMC, absent added salt) was coupled with quantitative structure - property relationship (QSPR) with defined by us parameter "CMC predictor" f 1 . It can be easily calculated from a number of tabulated molecular parameters - the adsorption energy of surfactant's head, the adsorption energy of its methylene groups, its number of carbon atoms, the specific adsorption energy of its counter-ions, their valency and bare radius. We applied this method to determine CMC 0 to a test set of 11 ionic surfactants, yielding 7.5% accuracy. Furthermore, we calculated CMC in the presence of added salts using the advanced version of Corrin-Harkins equation, which accounts for both the intrinsic and the added counter-ions. Our salt-saturation multiplier, accounts for both the type and concentration of the added counter-ions. We applied our theory to a test set containing 11 anionic/cationic surfactant+salt systems, achieving 8% accuracy. Copyright © 2017 Elsevier Inc. All rights reserved.
Fiber Contraction Approaches for Improving CMC Proportional Limit
NASA Technical Reports Server (NTRS)
DiCarlo, James A.; Yun, Hee Mann
1997-01-01
The fact that the service life of ceramic matrix composites (CMC) decreases dramatically for stresses above the CMC proportional limit has triggered a variety of research activities to develop microstructural approaches that can significantly improve this limit. As discussed in a previous report, both local and global approaches exist for hindering the propagation of cracks through the CMC matrix, the physical source for the proportional limit. Local approaches include: (1) minimizing fiber diameter and matrix modulus; (2) maximizing fiber volume fraction, fiber modulus, and matrix toughness; and (3) optimizing fiber-matrix interfacial shear strength; all of which should reduce the stress concentration at the tip of cracks pre existing or created in the matrix during CMC service. Global approaches, as with pre-stressed concrete, center on seeking mechanisms for utilizing the reinforcing fiber to subject the matrix to in-situ compressive stresses which will remain stable during CMC service. Demonstrated CMC examples for the viability of this residual stress approach are based on strain mismatches between the fiber and matrix in their free states, such as, thermal expansion mismatch and creep mismatch. However, these particular mismatch approaches are application limited in that the residual stresses from expansion mismatch are optimum only at low CMC service temperatures and the residual stresses from creep mismatch are typically unidirectional and difficult to implement in complex-shaped CMC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joshi, Gyanesh, E-mail: joshig@icfre.org; Naithani, Sanjay; Varshney, V.K.
2015-04-15
Highlights: • Carboxymethyl cellulose (CMC) was successfully prepared from waste paper. • CMC had maximum degree of substitution (DS) 1.07. • Rheological studies of CMC (DS, 1.07) showed non-Newtonian pseudoplastic behavior. • Characterization of CMC was done by FT-IR and NMR techniques. • Morphology of prepared CMC was studied by SEM. - Abstract: In the present study, functionalization of mixed office waste (MOW) paper has been carried out to synthesize carboxymethyl cellulose, a most widely used product for various applications. MOW was pulped and deinked prior to carboxymethylation. The deinked pulp yield was 80.62 ± 2.0% with 72.30 ± 1.50%more » deinkability factor. The deinked pulp was converted to CMC by alkalization followed by etherification using NaOH and ClCH{sub 2}COONa respectively, in an alcoholic medium. Maximum degree of substitution (DS) (1.07) of prepared CMC was achieved at 50 °C with 0.094 M and 0.108 M concentrations of NaOH and ClCH{sub 2}COONa respectively for 3 h reaction time. The rheological characteristics of 1–3% aqueous solution of optimized CMC product showed the non-Newtonian pseudoplastic behavior. Fourier transform infra red (FTIR), nuclear magnetic resonance (NMR) and scanning electron microscope (SEM) study were used to characterize the CMC product.« less
Contact urticaria from carboxymethylcellulose in white chalk.
Moreau, Linda; Alomer, Ghanima; Dubé, Normand; Sasseville, Denis
2006-03-01
Carboxymethylcellulose (CMC) is widely used in consumer goods, foods, and medicaments as a binder, emulsifier, and viscosity enhancer. Cases of immediate and delayed allergic reactions to this anionic cellulose polymer have been reported. To report a case of contact urticaria from CMC in chalk, with possible cross-reaction to methyl hydroxyethylcellulose (MHEC). Patch tests with readings at 48 and 96 hours were performed with the North American Contact Dermatitis Group standard series and benzisothiazolinone. Open and prick tests with readings after 30 minutes were performed with two brands of chalk as well as with various petrolatum and aqueous dilutions of CMC, MHEC, oleic acid, and calcium carbonate. The patient developed strong urticarial reactions during open tests with both powdered chalks and had milder reactions to the open test with CMC 10% aqueous (aq) and to prick testing with CMC 0.1% aq. No reaction to MHEC or any of the other ingredients of the chalks was observed. No relevant delayed reaction was noted. CMC can cause contact urticaria. It remains unclear why our patient reacted more strongly to the chalk than to CMC itself. We speculate that the abrasive nature of the chalk enhances the cutaneous penetration of CMC or that calcium carbonate, the main ingredient of the chalk, acts as an adjuvant. It is also possible that CMC and MHEC cross-react and that our negative results with MHEC may be due to improper testing technique or concentrations.
Orthognathic model surgery with LEGO key-spacer.
Tsang, Alfred Chee-Ching; Lee, Alfred Siu Hong; Li, Wai Keung
2013-12-01
A new technique of model surgery using LEGO plates as key-spacers is described. This technique requires less time to set up compared with the conventional plaster model method. It also retains the preoperative setup with the same set of models. Movement of the segments can be measured and examined in detail with LEGO key-spacers. Copyright © 2013 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Abbasi Pour, Sajjad; Shaterian, Hamid Reza; Afradi, Mojgan; Yazdani-Elah-Abadi, Afshin
2017-09-01
We synthesized Co0.25Cu0.25Mn0.5Fe2O4@CMC (CCMFe2O4@CMC) nanorods as a new dual-modal simultaneous for magnetic resonance imaging contrast agent and nanocarrier for drug delivery system. Impact of CCMFe2O4@CMC nanorods were investigated on the longitudinal (T1), transverse (T2) and transverse (T2∗) relaxation times for in vitro MRI contrast agent in water and also for drug delivery system, L-dopa was coated on CCMFe2O4@CMC nanorods and then in vitro drug release test was carried out at three PHs values and different temperatures. In vitro MR imaging demonstrated that r2 value of CCMFe2O4@CMC nanorods is 138.33 mM-1 s-1, CCMFe2O4@CMC is useful as T2 contrast agent relative to other T2 contrast agants. In vitro drug release test shows the amount of released L-dopa from CCMFe2O4@CMC nanorods at medium with pH = 1.2 is more than pH = 5.3 and 7.4.
Synthesis and Characterization of Carboxymethylcellulose-Methacrylate Hydrogel Cell Scaffolds
Reeves, Robert; Ribeiro, Andreia; Lombardo, Leonard; Boyer, Richard; Leach, Jennie B.
2012-01-01
Many carbohydrates pose advantages for tissue engineering applications due to their hydrophilicity, degradability, and availability of chemical groups for modification. For example, carboxymethylcellulose (CMC) is a water-soluble cellulose derivative that is degradable by cellulase. Though this enzyme is not synthesized by mammalian cells, cellulase and the fragments derived from CMC degradation are biocompatible. With this in mind, we created biocompatible, selectively degradable CMC-based hydrogels that are stable in routine culture, but degrade when exposed to exogenous cellulase. Solutions of CMC-methacrylate and polyethylene glycol dimethacrylate (PEG-DM) were co-crosslinked to form stable hydrogels; we found that greater CMC-methacrylate content resulted in increased gel swelling, protein diffusion and rates of degradation by cellulase, as well as decreased gel shear modulus. CMC-methacrylate/PEG-DM gels modified with the adhesive peptide RGD supported fibroblast adhesion and viability. We conclude that hydrogels based on CMC-methacrylate are suitable for bioengineering applications where selective degradability may be favorable, such as cell scaffolds or controlled release devices. PMID:22708058
Gregorova, Adriana; Saha, Nabanita; Kitano, Takeshi; Saha, Petr
2015-03-06
The PVP-CMC hydrogel film is biodegradable, transparent, flexible, hygroscopic and breathable material which can be used as a food packaging material. The hygroscopic character of CMC and PVP plays a big role in the changing of their mechanical properties where load carrying capacity is one of important criteria for packaging materials. This paper reports about the hydrothermal effect on the mechanical and viscoelastic properties of neat CMC, and PVP-CMC (20:80) hydrogel films under the conditions of combined multiple stress factors such as temperature, time, load, frequency and humidity. The dry films were studied by transient and dynamic oscillatory experiments using dynamic mechanical analyser combined with relative humidity chamber (DMA-RH). The mechanical properties of PVP-CMC hydrogel film at room temperature (25 °C), in the range of 0-30%RH remain steady. The 20 wt% of PVP in PVP-CMC hydrogel increases the stiffness of CMC from 2940 to 3260 MPa at 25 °C and 10%RH. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Sleep, Brent; Mondal, Pulin; Furbacher, Paul; Cui, Ziteng; Krol, Magdalena
2015-04-01
Nano-scale zero valent iron (nZVI) is capable of reacting with a wide variety of groundwater contaminants. Therefore, during the last decade nZVI has received significant attention for application in subsurface remediation, particularly for sites contaminated with chlorinated compounds and heavy metals. However, due to agglomeration of the nZVI, delivery into the contaminated subsurface zones is challenging. Polymer stabilization of nZVI can enhance the mobility of the iron particles in the subsurface. In this study, a set of laboratory-scale transport experiments and numerical simulations were performed to evaluate carboxymethyl cellulose (CMC) polymer stabilized nZVI transport in porous media. Experiments were conducted in a two-dimensional water-saturated lab-scale glass-walled sandbox, uniformly packed with silica sand, to identify the effects of water specific discharge and CMC concentration on nZVI transport. Experiments were also performed using Lissamine Green B (LGB) dye as a non-reactive tracer to characterize the sand media. The CMC stabilized nZVI was synthesized freshly at a concentration of 1000 mg/L before each transport experiment. The synthesized CMC-nZVI mixture was characterized using transmission electron microscopy, dynamic light scattering, and UV-visual spectrophotometry. The movement of the LGB dye and nZVI in the sandbox during the experiments was monitored using time-lapsed images captured using a light source and a dark box. The transport of LGB, CMC, and CMC-nZVI was evaluated through analysis of the breakthrough curves at the outlet and the retained nZVI in the sandbox. The LGB, CMC, and nZVI transport was also modeled using a multiphase flow and transport model considering LGB and CMC as solutes, and nZVI as a colloid. Analysis of the breakthrough data showed that the mass recovery of LGB and CMC was greater than 95 % indicating conservative transport in silica sand. However, the mean residence time of CMC was significantly higher than that of LGB due to CMC viscosity effects. Increasing the CMC concentration from 0.2 % to 0.8 % increased nZVI stability, but caused higher pressure drops in the sand box, indicating that use of high CMC concentration may limit the injection rates. The images captured during transport experiments and the total iron analysis of the sand after the transport experiments showed that a significant amount of nZVI was retained in the sandbox. The mass recovery of nZVI was lower than 40 % due to the attachment onto the sand surfaces. The simulation results of LGB, CMC, and nZVI matched the experimental observations and allowed estimation of transport parameters that could be used to predict CMC stabilized nZVI transport under a variety of conditions.
Gautam, Arvind; Callejas, Miguel A; Acharyya, Amit; Acharyya, Swati Ghosh
2018-05-01
This study introduced a shape memory alloy (SMA)-based smart knee spacer for total knee arthroplasty (TKA). Subsequently, a 3D CAD model of a smart tibial component of TKA was designed in Solidworks software, and verified using a finite element analysis in ANSYS Workbench. The two major properties of the SMA (NiTi), the pseudoelasticity (PE) and shape memory effect (SME), were exploited, modelled, and analysed for a TKA application. The effectiveness of the proposed model was verified in ANSYS Workbench through the finite element analysis (FEA) of the maximum deformation and equivalent (von Mises) stress distribution. The proposed model was also compared with a polymethylmethacrylate (PMMA)-based spacer for the upper portion of the tibial component for three subjects with body mass index (BMI) of 23.88, 31.09, and 38.39. The proposed SMA -based smart knee spacer contained 96.66978% less deformation with a standard deviation of 0.01738 than that of the corresponding PMMA based counterpart for the same load and flexion angle. Based on the maximum deformation analysis, the PMMA-based spacer had 30 times more permanent deformation than that of the proposed SMA-based spacer for the same load and flexion angle. The SME property of the lower portion of the tibial component for fixation of the spacer at its position was verified by an FEA in ANSYS. Wherein, a strain life-based fatigue analysis was performed and tested for the PE and SME built spacers through the FEA. Therefore, the SMA-based smart knee spacer eliminated the drawbacks of the PMMA-based spacer, including spacer fracture, loosening, dislocation, tilting or translation, and knee subluxation. Copyright © 2018. Published by Elsevier Ltd.
Jaekel, David J; Day, Judd S; Klein, Gregg R; Levine, Harlan; Parvizi, Javad; Kurtz, Steven M
2012-09-01
Implantation of an antibiotic bone cement spacer is used to treat infection of a TKA. Dynamic spacers fashioned with cement-on-cement articulating surfaces potentially facilitate patient mobility and reduce bone loss as compared with their static counterparts, while consisting of a biomaterial not traditionally used for load-bearing articulations. However, their direct impact on patient mobility and wear damage while implanted remains poorly understood. We characterized patient activity, surface damage, and porous structure of dynamic cement-on-cement spacers. We collected 22 dynamic and 14 static knee antibiotic cement spacers at revision surgeries at times ranging from 0.5 to 13 months from implantation. For these patients, we obtained demographic data and UCLA activity levels. We characterized surface damage using the Hood damage scoring method and used micro-CT analysis to observe the internal structure, cracking, and porosity of the cement. The average UCLA score was higher for patients with dynamic spacers than for patients with static spacers, with no differences in BMI or age. Burnishing was the only prevalent damage mode on all the bearing surfaces. Micro-CT analysis revealed the internal structure of the spacers was porous and highly inhomogeneous, including heterogeneous dispersion of radiopaque material and cavity defects. The average porosity was 8% (range, 1%-29%) and more than ½ of the spacers had pores greater than 1 mm in diameter. Our observations suggest dynamic, cement-on-cement spacers allow for increased patient activity without catastrophic failure. Despite the antibiotic loading and internal structural inhomogeneity, burnishing was the only prevalent damage mode that could be consistently classified with no evidence of fracture or delamination. The porous structure of the spacers varied highly across the surfaces without influencing the material failure.
Optimized Design of Spacer in Electrodialyzer Using CFD Simulation Method
NASA Astrophysics Data System (ADS)
Jia, Yuxiang; Yan, Chunsheng; Chen, Lijun; Hu, Yangdong
2018-06-01
In this study, the effects of length-width ratio and diversion trench of the spacer on the fluid flow behavior in an electrodialyzer have been investigated through CFD simulation method. The relevant information, including the pressure drop, velocity vector distribution and shear stress distribution, demonstrates the importance of optimized design of the spacer in an electrodialysis process. The results show width of the diversion trench has a great effect on the fluid flow compared with length. Increase of the diversion trench width could strength the fluid flow, but also increase the pressure drop. Secondly, the dead zone of the fluid flow decreases with increase of length-width ratio of the spacer, but the pressure drop increases with the increase of length-width ratio of the spacer. So the appropriate length-width ratio of the space should be moderate.
Three years of lightning impulse charge moment change measurements in the United States
NASA Astrophysics Data System (ADS)
Cummer, Steven A.; Lyons, Walter A.; Stanley, Mark A.
2013-06-01
We report and analyze 3 years of lightning impulse charge moment change (iCMC) measurements obtained from an automated, real time lightning charge moment change network (CMCN). The CMCN combines U.S. National Lightning Detection Network (NLDN) lightning event geolocations with extremely low frequency (≲1 kHz) data from two stations to provide iCMC measurements across the entire United States. Almost 14 million lightning events were measured in the 3 year period. We present the statistical distributions of iCMC versus polarity and NLDN-measured peak current, including corrections for the detection efficiency of the CMCN versus peak current. We find a broad distribution of iCMC for a given peak current, implying that these parameters are at best only weakly correlated. Curiously, the mean iCMC does not monotonically increase with peak current, and in fact, drops for positive CG strokes above +150 kA. For all positive strokes, there is a boundary near 20 C km that separates seemingly distinct populations of high and low iCMC strokes. We also explore the geographic distribution of high iCMC lightning strokes. High iCMC positive strokes occur predominantly in the northern midwest portion of the U.S., with a secondary peak over the gulf stream region just off the U.S. east coast. High iCMC negative strokes are also clustered in the midwest, although somewhat south of most of the high iCMC positive strokes. This is a region far from the locations of maximum occurrence of high peak current negative strokes. Based on assumed iCMC thresholds for sprite production, we estimate that approximately 35,000 positive polarity and 350 negative polarity sprites occur per year over the U.S. land and near-coastal areas. Among other applications, this network is useful for the nowcasting of sprite-producing storms and storm regions.
Yanar, Numan; Son, Moon; Yang, Eunmok; Kim, Yeji; Park, Hosik; Nam, Seung-Eun; Choi, Heechul
2018-07-01
Recently, feed spacer research for improving the performance of a membrane module has adopted three-dimensional (3D) printing technology. This study aims to improve the performance of membrane feed spacers by using various materials and incorporating 3D printing. The samples were fabricated after modeling with 3D computer-aided design (CAD) software to investigate the mechanical strength, water flux, reverse solute flux, and fouling performances. This research was performed using acrylonitrile butadiene styrene (ABS), polypropylene (PP), and natural polylactic acid (PLA) as printing material, and the spacer model was produced using a diamond-shaped feed spacer, with a commercially available product as a reference. The 3D printed samples were initially compared in terms of size and precision with the 3D CAD model, and deviations were observed between the products and the CAD model. Then, the spacers were tested in terms of mechanical strength, water flux, reverse solute flux, and fouling (alginate-based waste water was used as a model foulant). Although there was not much difference among the samples regarding the water flux, better performances than the commercial product were obtained for reverse solute flux and fouling resistance. When comparing the prominent performance of natural PLA with the commercial product, PLA was found to have approximately 10% less fouling (based on foulant volume per unit area and root mean square roughness values), although it showed similar water flux. Thus, another approach has been introduced for using bio-degradable materials for membrane spacers. Copyright © 2018 Elsevier Ltd. All rights reserved.
Nabavi, Reza; Conneely, Brendan; McCarthy, Elaine; Good, Barbara; Shayan, Parviz; DE Waal, Theo
2014-09-01
Accurate identification of sheep nematodes is a critical point in epidemiological studies and monitoring of drug resistance in flocks. However, due to a close morphological similarity between the eggs and larval stages of many of these nematodes, such identification is not a trivial task. There are a number of studies showing that molecular targets in ribosomal DNA (Internal transcribed spacer 1, 2 and Intergenic spacer) are suitable for accurate identification of sheep bursate nematodes. The objective of present study was to compare the ITS1, ITS2 and IGS regions of Iranian common bursate nematodes in order to choose best target for specific identification methods. The first and second internal transcribed spacers (ITS1and ITS2) and intergenic spacer (IGS) of the ribosomal DNA (rDNA) of 5 common Iranian bursate nematodes of sheep were sequenced. The sequences of some non-Iranian isolates were used for comparison in order to evaluate the variation in sequence homology between geographically different nematode populations. Comparison of the ITS1 and ITS2 sequences of Iranian nematodes showed greatest similarity among Teladorsagia circumcincta and Marshallagia marshalli of 94% and 88%, respectively. While Trichostrongylus colubriformis and M. marshalli showed the highest homology (99%) in the IGS sequences. Comparison of the spacer sequences of Iranian with non-Iranian isolates showed significantly higher variation in Haemonchus contortus compared to the other species. Both the ITS1 and ITS2 sequences are convenient targets to have species-specific identification of Iranian bursate nematodes. On the other hand the IGS region may be a less suitable molecular target.
Effect of a freeze-dried CMC/PLGA microsphere matrix of rhBMP-2 on bone healing.
Schrier, J A; Fink, B F; Rodgers, J B; Vasconez, H C; DeLuca, P P
2001-10-07
The hypothesis of this research was that implants of poly(lactide-co-glycolide) (PLGA) microspheres loaded with bone morphogenetic protein-2 (rhBMP-2) and distributed in a freeze-dried carboxymethylcellulose (CMC) matrix would produce more new bone than would matrix implants of non-protein-loaded microspheres or matrix implants of only CMC. To test this hypothesis it was necessary to fashion microsphere-loaded CMC implants that were simple to insert, fit precisely into a defect, and would not elicit swelling. Microspheres were produced via a water-in-oil-in-water double-emulsion system and were loaded with rhBMP-2 by soaking them in a buffered solution of the protein at a concentration of 5.4 mg protein per gram of PLGA. Following recovery of the loaded microspheres by lyophilization, matrices for implantation were prepared by lyophilizing a suspension of the microspheres in 2% CMC in flat-bottom tissue culture plates. Similar matrices were made with 2% CMC and with 2% CMC containing blank microspheres. A full-thickness calvarial defect model in New Zealand white rabbits was used to assess bone growth. Implants fit the defect well, allowing for direct application. Six weeks postsurgery, defects were collected and processed for undecalcified histology. In vitro, 60% of the loaded rhBMP-2 released from devices or microspheres in 5 to 7 days, with the unembedded microspheres releasing faster than those embedded in CMC. In vivo, the rhBMP-2 microspheres greatly enhanced bone healing, whereas nonloaded PLGA microspheres in the CMC implants had little effect. The results showed that a lyophilized device of rhBMP-2/PLGA microspheres in CMC was an effective implantable protein-delivery system for use in bone repair.
ULNAR NERVE COMPONENT TO INNERVATION OF THUMB CARPOMETACARPAL JOINT
Miki, Roberto Augusto; Kam, Check C; Gennis, Elisabeth R; Barkin, Jodie A; Riel, Ryan U; Robinson, Philip G; Owens, Patrick W
2011-01-01
Purpose Thumb carpometacarpal (CMC) joint arthritis is one of the most common problems addressed by hand surgeons. The gold standard of treatment for thumb CMC joint arthritis is trapeziectomy, ligament reconstruction and tendon interposition. Denervation of the thumb CMC joint is not currently used to treat arthritis in this joint due to the failure of the procedure to yield significant symptomatic relief. The failure of denervation is puzzling, given that past anatomic studies show the radial nerve is the major innervation of the thumb CMC joint with the lateral antebrachial nerve and the median nerve also innervating this joint. Although no anatomic study has ever shown that the ulnar nerve innervates the CMC joint, due to both the failure of denervation and the success of arthroscopic thermal ablation, we suspect that previous anatomic studies may have overlooked innervation of the thumb CMC joint via the ulnar nerve. Methods We dissected 19 formalin-preserved cadaveric hand-to-mid-forearm specimens. The radial, median and ulnar nerves were identified in the proximal forearm and then followed distally. Any branch heading toward the radial side of the hand were followed to see if they innervated the thumb CMC joint. Results Eleven specimens (58%) had superficial radial nerve innervation to the thumb CMC joint. Nine specimens (47%) had median nerve innervation from the motor branch. Nine specimens (47%) had ulnar nerve innervation from the motor branch. Conclusions We believe this is the first study to demonstrate that the ulnar nerve innervates the thumb CMC joint This finding may explain the poor results seen in earlier attempts at denervation of the thumb CMC, but the more favorable results with techniques such as arthroscopy with thermal ablation. PMID:22096446
Myer, Gregory D; Bates, Nathaniel A; DiCesare, Christopher A; Barber Foss, Kim D; Thomas, Staci M; Wordeman, Samuel C; Sugimoto, Dai; Roewer, Benjamin D; Medina McKeon, Jennifer M; Di Stasi, Stephanie L; Noehren, Brian W; McNally, Michael; Ford, Kevin R; Kiefer, Adam W; Hewett, Timothy E
2015-05-01
Due to the limitations of single-center studies in achieving appropriate sampling with relatively rare disorders, multicenter collaborations have been proposed to achieve desired sampling levels. However, documented reliability of biomechanical data is necessary for multicenter injury-prevention studies and is currently unavailable. To measure the reliability of 3-dimensional (3D) biomechanical waveforms from kinetic and kinematic variables during a single-leg landing (SLL) performed at 3 separate testing facilities. Multicenter reliability study. 3 laboratories. 25 female junior varsity and varsity high school volleyball players who visited each facility over a 1-mo period. Subjects were instrumented with 43 reflective markers to record 3D motion as they performed SLLs. During the SLL the athlete balanced on 1 leg, dropped down off of a 31-cm-high box, and landed on the same leg. Kinematic and kinetic data from both legs were processed from 2 trials across the 3 laboratories. Coefficients of multiple correlations (CMC) were used to statistically compare each joint angle and moment waveform for the first 500 ms of landing. Average CMC for lower-extremity sagittal-plane motion was excellent between laboratories (hip .98, knee .95, ankle .99). Average CMC for lower-extremity frontal-plane motion was also excellent between laboratories (hip .98, knee .80, ankle .93). Kinetic waveforms were repeatable in each plane of rotation (3-center mean CMC ≥.71), while knee sagittal-plane moments were the most consistent measure across sites (3-center mean CMC ≥.94). CMC waveform comparisons were similar relative to the joint measured to previously published reports of between-sessions reliability of sagittal- and frontal-plane biomechanics performed at a single institution. Continued research is needed to further standardize technology and methods to help ensure that highly reliable results can be achieved with multicenter biomechanical screening models.
NASA Astrophysics Data System (ADS)
Schichtel, Bret A.; Barna, Michael G.; Gebhart, Kristi A.; Malm, William C.
The Big Bend Regional Aerosol and Visibility Observational (BRAVO) study was designed to determine the sources of haze at Big Bend National Park, Texas, using a combination of source and receptor models. BRAVO included an intensive monitoring campaign from July to October 1999 that included the release of perfluorocarbon tracers from four locations at distances 230-750 km from Big Bend and measured at 24 sites. The tracer measurements near Big Bend were used to evaluate the dispersion mechanisms in the REMSAD Eulerian model and the CAPITA Monte Carlo (CMC) Lagrangian model used in BRAVO. Both models used 36 km MM5 wind fields as input. The CMC model also used a combination of routinely available 80 and 190 km wind fields from the National Weather Service's National Centers for Environmental Prediction (NCEP) as input. A model's performance is limited by inherent uncertainties due to errors in the tracer concentrations and a model's inability to simulate sub-resolution variability. A range in the inherent uncertainty was estimated by comparing tracer data at nearby monitoring sites. It was found that the REMSAD and CMC models, using the MM5 wind field, produced performance statistics generally within this inherent uncertainty. The CMC simulation using the NCEP wind fields could reproduce the timing of tracer impacts at Big Bend, but not the concentration values, due to a systematic underestimation. It appears that the underestimation was partly due to excessive vertical dilution from high mixing depths. The model simulations were more sensitive to the input wind fields than the models' different dispersion mechanisms. Comparisons of REMSAD to CMC tracer simulations using the MM5 wind fields had correlations between 0.75 and 0.82, depending on the tracer, but the tracer simulations using the two wind fields in the CMC model had correlations between 0.37 and 0.5.
Huang, Yu-Chih; Huang, Kuen-Yu; Yang, Bing-Yuan
2016-01-01
An antiadhesion barrier membrane is an important biomaterial for protecting tissue from postsurgical complications. However, there is room to improve these membranes. Recently, carboxymethylcellulose (CMC) incorporated with hyaluronic acid (HA) as an antiadhesion barrier membrane and drug delivery system has been reported to provide excellent tissue regeneration and biocompatibility. The aim of this study was to fabricate a novel hydrogel membrane composed of berberine-enriched CMC prepared from bark of the P. amurense tree and HA (PE-CMC/HA). In vitro anti-inflammatory properties were evaluated to determine possible clinical applications. The PE-CMC/HA membranes were fabricated by mixing PE-CMC and HA as a base with the addition of polyvinyl alcohol to form a film. Tensile strength and ultramorphology of the membrane were evaluated using a universal testing machine and scanning electron microscope, respectively. Berberine content of the membrane was confirmed using a UV-Vis spectrophotometer at a wavelength of 260 nm. Anti-inflammatory property of the membrane was measured using a Griess reaction assay. Our results showed that fabricated PE-CMC/HA releases berberine at a concentration of 660 μg/ml while optimal plasticity was obtained at a 30 : 70 PE-CMC/HA ratio. The berberine-enriched PE-CMC/HA had an inhibited 60% of inflammation stimulated by LPS. These results suggest that the PE-CMC/HA membrane fabricated in this study is a useful anti-inflammatory berberine release system. PMID:28119926
Estimating error rates for firearm evidence identifications in forensic science
Song, John; Vorburger, Theodore V.; Chu, Wei; Yen, James; Soons, Johannes A.; Ott, Daniel B.; Zhang, Nien Fan
2018-01-01
Estimating error rates for firearm evidence identification is a fundamental challenge in forensic science. This paper describes the recently developed congruent matching cells (CMC) method for image comparisons, its application to firearm evidence identification, and its usage and initial tests for error rate estimation. The CMC method divides compared topography images into correlation cells. Four identification parameters are defined for quantifying both the topography similarity of the correlated cell pairs and the pattern congruency of the registered cell locations. A declared match requires a significant number of CMCs, i.e., cell pairs that meet all similarity and congruency requirements. Initial testing on breech face impressions of a set of 40 cartridge cases fired with consecutively manufactured pistol slides showed wide separation between the distributions of CMC numbers observed for known matching and known non-matching image pairs. Another test on 95 cartridge cases from a different set of slides manufactured by the same process also yielded widely separated distributions. The test results were used to develop two statistical models for the probability mass function of CMC correlation scores. The models were applied to develop a framework for estimating cumulative false positive and false negative error rates and individual error rates of declared matches and non-matches for this population of breech face impressions. The prospect for applying the models to large populations and realistic case work is also discussed. The CMC method can provide a statistical foundation for estimating error rates in firearm evidence identifications, thus emulating methods used for forensic identification of DNA evidence. PMID:29331680
Dynamics of corticospinal motor control during overground and treadmill walking in humans.
Roeder, Luisa; Boonstra, Tjeerd Willem; Smith, Simon S; Kerr, Graham K
2018-05-30
Increasing evidence suggests cortical involvement in the control of human gait. However, the nature of corticospinal interactions remains poorly understood. We performed time-frequency analysis of electrophysiological activity acquired during treadmill and overground walking in 22 healthy, young adults. Participants walked at their preferred speed (4.2, SD 0.4 km h -1 ), which was matched across both gait conditions. Event-related power, corticomuscular coherence (CMC) and inter-trial coherence (ITC) were assessed for EEG from bilateral sensorimotor cortices and EMG from the bilateral tibialis anterior (TA) muscles. Cortical power, CMC and ITC at theta, alpha, beta and gamma frequencies (4-45 Hz) increased during the double support phase of the gait cycle for both overground and treadmill walking. High beta (21-30 Hz) CMC and ITC of EMG was significantly increased during overground compared to treadmill walking, as well as EEG power in theta band (4-7 Hz). The phase spectra revealed positive time lags at alpha, beta and gamma frequencies, indicating that the EEG response preceded the EMG response. The parallel increases in power, CMC and ITC during double support suggest evoked responses at spinal and cortical populations rather than a modulation of ongoing corticospinal oscillatory interactions. The evoked responses are not consistent with the idea of synchronization of ongoing corticospinal oscillations, but instead suggest coordinated cortical and spinal inputs during the double support phase. Frequency-band dependent differences in power, CMC and ITC between overground and treadmill walking suggest differing neural control for the two gait modalities, emphasizing the task-dependent nature of neural processes during human walking.
Estimating error rates for firearm evidence identifications in forensic science.
Song, John; Vorburger, Theodore V; Chu, Wei; Yen, James; Soons, Johannes A; Ott, Daniel B; Zhang, Nien Fan
2018-03-01
Estimating error rates for firearm evidence identification is a fundamental challenge in forensic science. This paper describes the recently developed congruent matching cells (CMC) method for image comparisons, its application to firearm evidence identification, and its usage and initial tests for error rate estimation. The CMC method divides compared topography images into correlation cells. Four identification parameters are defined for quantifying both the topography similarity of the correlated cell pairs and the pattern congruency of the registered cell locations. A declared match requires a significant number of CMCs, i.e., cell pairs that meet all similarity and congruency requirements. Initial testing on breech face impressions of a set of 40 cartridge cases fired with consecutively manufactured pistol slides showed wide separation between the distributions of CMC numbers observed for known matching and known non-matching image pairs. Another test on 95 cartridge cases from a different set of slides manufactured by the same process also yielded widely separated distributions. The test results were used to develop two statistical models for the probability mass function of CMC correlation scores. The models were applied to develop a framework for estimating cumulative false positive and false negative error rates and individual error rates of declared matches and non-matches for this population of breech face impressions. The prospect for applying the models to large populations and realistic case work is also discussed. The CMC method can provide a statistical foundation for estimating error rates in firearm evidence identifications, thus emulating methods used for forensic identification of DNA evidence. Published by Elsevier B.V.
Büyükkale, Songül; Çıtak, Necati; İşgörücü, Özgür; Sayar, Adnan
2017-12-01
We aimed to examine effectiveness of sodium hyaluronate-carboxymethly cellulose (NaH/CMC) for sealing pulmonary air leaks during postoperative period. The study was conducted in 16 male Sprague-Dawley rats. A linear insicion (length= 0.2 cm, depth= 0.1 cm) to the lung parenchyma on the inflated by a cutter was made. The animals were randomly divided; the control group (n= 8) and NaH/CMC-treated group (the study group, n= 8). Control group was left for physiologic healing while a NaH/CMC membrane was applied over the the incisional area in the study group. Then the pressure point where the air leakage observed was noted. No polymorphonucleer leucocytes (PMNL) infiltration was detected in control group, whereas PMNL infiltration was 0.38 ± 0.5 cell per 100 high field in study group (p= 0.234). The degree of macrophage, lymphocyte infiltration and the mean fibroblast count were found to be higher in study group compared with control group (p= 0.007, p= 0.02, p= 0.05, respectively). The mean pressure value for air leak to occur in the control group was 43.50 ± 9.55 mmHg whereas it was 73.75 ± 16.68 mmHg in the study group (p< 0.001). The data revealed that bioabsorbable NaH/CMC membrane accelerates healing with preserving the expansile character of lung parenchyma even in high ventilation pressures. However, further studies are required to assess the prevent impact of the pulmonary air-leak for NaH/CMC membrane.
Naudí, Alba; Jové, Mariona; Cacabelos, Daniel; Ayala, Victoria; Cabre, Rosanna; Caro, Pilar; Gomez, José; Portero-Otín, Manuel; Barja, Gustavo; Pamplona, Reinald
2013-02-01
Maillard reaction contributes to the chemical modification and cross-linking of proteins. This process plays a significant role in the aging process and determination of animal longevity. Oxidative conditions promote the Maillard reaction. Mitochondria are the primary site of oxidants due to the reactive molecular species production. Mitochondrial proteome cysteine residues are targets of oxidative attack due to their specific chemistry and localization. Their chemical, non-enzymatic modification leads to dysfunctional proteins, which entail cellular senescence and organismal aging. Previous studies have consistently shown that caloric and methionine restrictions, nutritional interventions that increase longevity, decrease the rate of mitochondrial oxidant production and the physiological steady-state levels of markers of oxidative damage to macromolecules. In this scenario, we have detected S-(carboxymethyl)-cysteine (CMC) as a new irreversible chemical modification in mitochondrial proteins. CMC content in mitochondrial proteins significantly correlated with that of the lysine-derived analog N (ε)-(carboxymethyl)-lysine. The concentration of CMC is, however, one order of magnitude lower compared with CML likely due in part to the lower content of cysteine with respect to lysine of the mitochondrial proteome. CMC concentrations decreases in liver mitochondrial proteins of rats subjected to 8.5 and 25 % caloric restriction, as well as in 40 and 80 % methionine restriction. This is associated with a concomitant and significant increase in the protein content of sulfhydryl groups. Data presented here evidence that CMC, a marker of Cys-AGE formation, could be candidate as a biomarker of mitochondrial damage during aging.
Self-aligned quadruple patterning using spacer on spacer integration optimization for N5
NASA Astrophysics Data System (ADS)
Thibaut, Sophie; Raley, Angélique; Mohanty, Nihar; Kal, Subhadeep; Liu, Eric; Ko, Akiteru; O'Meara, David; Tapily, Kandabara; Biolsi, Peter
2017-04-01
To meet scaling requirements, the semiconductor industry has extended 193nm immersion lithography beyond its minimum pitch limitation using multiple patterning schemes such as self-aligned double patterning, self-aligned quadruple patterning and litho-etch / litho etch iterations. Those techniques have been declined in numerous options in the last few years. Spacer on spacer pitch splitting integration has been proven to show multiple advantages compared to conventional pitch splitting approach. Reducing the number of pattern transfer steps associated with sacrificial layers resulted in significant decrease of cost and an overall simplification of the double pitch split technique. While demonstrating attractive aspects, SAQP spacer on spacer flow brings challenges of its own. Namely, material set selections and etch chemistry development for adequate selectivities, mandrel shape and spacer shape engineering to improve edge placement error (EPE). In this paper we follow up and extend upon our previous learning and proceed into more details on the robustness of the integration in regards to final pattern transfer and full wafer critical dimension uniformity. Furthermore, since the number of intermediate steps is reduced, one will expect improved uniformity and pitch walking control. This assertion will be verified through a thorough pitch walking analysis.
NASA Technical Reports Server (NTRS)
Hamilton, M. H.
1971-01-01
The data links for use with the guidance system operations plan for manned command module earth orbital and lunar missions using program Colossus 3 are presented. The subjects discussed are: (1) digital uplink to CMC, (2) command module contiguous block update, (3) CMC retrofire external data update, (4) CMC digital downlink, and (5) CMC entry update.
Factors Controlling Stress Rupture of Fiber-Reinforced Ceramic Composites
NASA Technical Reports Server (NTRS)
DiCarlo, J. A.; Yun, H. M.
1999-01-01
The successful application of fiber-reinforced ceramic matrix composites (CMC) depends strongly on maximizing material rupture life over a wide range of temperatures and applied stresses. The objective of this paper is to examine the various intrinsic and extrinsic factors that control the high-temperature stress rupture of CMC for stresses below and above those required for cracking of the 0 C plies (Regions I and II, respectively). Using creep-rupture results for a variety of ceramic fibers and rupture data for CMC reinforced by these fibers, it is shown that in those cases where the matrix carries little structural load, CMC rupture conditions can be predicted very well from the fiber behavior measured under the appropriate test environment. As such, one can then examine the intrinsic characteristics of the fibers in order to develop design guidelines for selecting fibers and fiber microstructures in order to maximize CMC rupture life. For those cases where the fiber interfacial coatings are unstable in the test environment, CMC lives are generally worse than those predicted by fiber behavior alone. For those cases where the matrix can support structural load, CMC life can even be greater provided matrix creep behavior is properly controlled. Thus the achievement of long CMC rupture life requires understanding and optimizing the behavior of all constituents in the proper manner.
Sumitomo, Tomoko; Nakata, Masanobu; Yamaguchi, Masaya; Terao, Yutaka; Kawabata, Shigetada
2012-01-01
Streptococcus pneumoniae is a major pathogen of respiratory infections that utilizes platelet-activating factor receptor (PAFR) for firm adherence to host cells. The mucolytic agent S-carboxymethylcysteine (S-CMC) has been shown to exert inhibitory effects against infection by several respiratory pathogens including S. pneumoniae in vitro and in vivo. Moreover, clinical studies have implicated the benefits of S-CMC in preventing exacerbation of chronic obstructive pulmonary disease, which is considered to be related to respiratory infections. In this study, to assess whether the potency of S-CMC is attributable to inhibition of pneumococcal adherence to host cells, an alveolar epithelial cell line stimulated with interleukin-1α was used as a model of inflamed epithelial cells. Despite upregulation of PAFR by inflammatory activation, treatment with S-CMC efficiently inhibited pneumococcal adherence to host epithelial cells. In order to gain insight into the inhibitory mechanism, the effects of S-CMC on PAFR expression were also investigated. Following treatment with S-CMC, PAFR expression was reduced at both mRNA and post-transcriptional levels. Interestingly, S-CMC was also effective in inhibiting pneumococcal adherence to cells transfected with PAFR small interfering RNAs. These results indicate S-CMC as a probable inhibitor targeting numerous epithelial receptors that interact with S. pneumoniae.
Experimental and QSAR study on the surface activities of alkyl imidazoline surfactants
NASA Astrophysics Data System (ADS)
Kong, Xiangjun; Qian, Chengduo; Fan, Weiyu; Liang, Zupei
2018-03-01
15 alkyl imidazoline surfactants with different structures were synthesized and their critical micelle concentration (CMC) and surface tension under the CMC (σcmc) in aqueous solution were measured at 298 K. 54 kinds of molecular structure descriptors were selected as independent variables and the quantitative structure-activity relationship (QSAR) between surface activities of alkyl imidazoline and molecular structure were built through the genetic function approximation (GFA) method. Experimental results showed that the maximum surface excess of alkyl imidazoline molecules at the gas-liquid interface increased and the area occupied by each surfactant molecule and the free energies of micellization ΔGm decreased with increasing carbon number (NC) of the hydrophobic chain or decreasing hydrophilicity of counterions, which resulted in a CMC and σcmc decrease, while the log CMC and NC had a linear relationship and a negative correlation. The GFA-QSAR model, which was generated by a training set composed of 13 kinds of alkyl imidazoline though GFA method regression analysis, was highly correlated with predicted values and experimental values of the CMC. The correlation coefficient R was 0.9991, which means high prediction accuracy. The prediction error of 2 kinds of alkyl imidazoline CMCs in the Validation Set that quantitatively analyzed the influence of the alkyl imidazoline molecular structure on the CMC was less than 4%.
Aggregate-based sub-CMC Solubilization of n-Alkanes by Monorhamnolipid Biosurfactant.
Zhong, Hua; Yang, Xin; Tan, Fei; Brusseau, Mark L; Yang, Lei; Liu, Zhifeng; Zeng, Guangming; Yuan, Xingzhong
2016-03-01
Solubilization of n -decane, dodecane, tetradecane and hexadecane by monorhamnolipid biosurfactant (monoRL) at concentrations near the critical micelle concentration (CMC) was investigated. The apparent solubility of all the four alkanes increases linearly with increasing monoRL concentration either below or above CMC. The capacity of solubilization presented by the molar solubilization ratio (MSR), however, is stronger at monoRL concentrations below CMC than above CMC. The MSR decreases following the order dodecane > decane > tetradecane > hexadecane at monoRL concentration below CMC. Formation of aggregates at sub-CMC monoRL concentrations was demonstrated by dynamic light scattering (DLS) and cryo-transmission electron microscopy examination. DLS-based size ( d ) and zeta potential of the aggregates decrease with increasing monoRL concentration. The surface excess ( Γ ) of monoRL calculated based on alkane solubility and aggregate size data increases rapidly with increasing bulk monoRL concentration, and then asymptotically approaches the maximum surface excess ( Γ max ). Relation between Γ and d indicates that the excess of monoRL molecules at the aggregate surface greatly impacts the surface curvature. The results demonstrate formation of aggregates for alkane solubilization at monoRL concentrations below CMC, indicating the potential of employing low-concentration rhamnolipid for enhanced solubilization of hydrophobic organic compounds.
Hwang, In Sun; Oh, Eom-Ji; Kim, Donghyuk; Oh, Chang-Sik
2018-02-01
Clavibacter michiganensis ssp. capsici is a Gram-positive plant-pathogenic bacterium causing bacterial canker disease in pepper. Virulence genes and mechanisms of C. michiganensis ssp. capsici in pepper have not yet been studied. To identify virulence genes of C. michiganensis ssp. capsici, comparative genome analyses with C. michiganensis ssp. capsici and its related C. michiganensis subspecies, and functional analysis of its putative virulence genes during infection were performed. The C. michiganensis ssp. capsici type strain PF008 carries one chromosome (3.056 Mb) and two plasmids (39 kb pCM1 Cmc and 145 kb pCM2 Cmc ). The genome analyses showed that this bacterium lacks a chromosomal pathogenicity island and celA gene that are important for disease development by C. michiganensis ssp. michiganensis in tomato, but carries most putative virulence genes in both plasmids. Virulence of pCM1 Cmc -cured C. michiganensis ssp. capsici was greatly reduced compared with the wild-type strain in pepper. The complementation analysis with pCM1 Cmc -located putative virulence genes showed that at least five genes, chpE, chpG, ppaA1, ppaB1 and pelA1, encoding serine proteases or pectate lyase contribute to disease development in pepper. In conclusion, C. michiganensis ssp. capsici has a unique genome structure, and its multiple plasmid-borne genes play critical roles in virulence in pepper, either separately or together. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.
Lightweight, Ultra-High-Temperature, CMC-Lined Carbon/Carbon Structures
NASA Technical Reports Server (NTRS)
Wright, Matthew J.; Ramachandran, Gautham; Williams, Brian E.
2011-01-01
Carbon/carbon (C/C) is an established engineering material used extensively in aerospace. The beneficial properties of C/C include high strength, low density, and toughness. Its shortcoming is its limited usability at temperatures higher than the oxidation temperature of carbon . approximately 400 C. Ceramic matrix composites (CMCs) are used instead, but carry a weight penalty. Combining a thin laminate of CMC to a bulk structure of C/C retains all of the benefits of C/C with the high temperature oxidizing environment usability of CMCs. Ultramet demonstrated the feasibility of combining the light weight of C/C composites with the oxidation resistance of zirconium carbide (ZrC) and zirconium- silicon carbide (Zr-Si-C) CMCs in a unique system composed of a C/C primary structure with an integral CMC liner with temperature capability up to 4,200 F (.2,315 C). The system effectively bridged the gap in weight and performance between coated C/C and bulk CMCs. Fabrication was demonstrated through an innovative variant of Ultramet fs rapid, pressureless melt infiltration processing technology. The fully developed material system has strength that is comparable with that of C/C, lower density than Cf/SiC, and ultra-high-temperature oxidation stability. Application of the reinforced ceramic casing to a predominantly C/C structure creates a highly innovative material with the potential to achieve the long-sought goal of long-term, cyclic high-temperature use of C/C in an oxidizing environment. The C/C substructure provided most of the mechanical integrity, and the CMC strengths achieved appeared to be sufficient to allow the CMC to perform its primary function of protecting the C/C. Nozzle extension components were fabricated and successfully hot-fire tested. Test results showed good thermochemical and thermomechanical stability of the CMC, as well as excellent interfacial bonding between the CMC liner and the underlying C/C structure. In particular, hafnium-containing CMCs on C/C were shown to perform well at temperatures exceeding 3,500 F (.1,925 C). The melt-infiltrated CMC-lined C/C composites offered a lower density than Cf/SiC. The melt-infiltrated composites offer greater use temperature than Cf/SiC because of the more refractory ceramic matrices and the C/C substructure provides greater high-temperature strength. The progress made in this work will allow multiple high-temperature components used in oxidizing environments to take advantage of the low density and high strength of C/C combined with the high-temperature oxidation resistance of melt-infiltrated CMCs.
Apparatus and method to reduce wear and friction between CMC-to-metal attachment and interface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cairo, Ronald Ralph; Parolini, Jason Robert; Delvaux, John McConnell
An apparatus to reduce wear and friction between CMC-to-metal attachment and interface, including a metal layer configured for insertion between a surface interface between a CMC component and a metal component. The surface interface of the metal layer is compliant relative to asperities of the surface interface of the CMC component. A coefficient of friction between the surface interface of the CMC component and the metal component is about 1.0 or less at an operating temperature between about 300.degree. C. to about 325.degree. C. and a limiting temperature of the metal component.
Sivakumar, Balasubramanian; Aswathy, Ravindran Girija; Nagaoka, Yutaka; Suzuki, Masashi; Fukuda, Takahiro; Yoshida, Yasuhiko; Maekawa, Toru; Sakthikumar, Dasappan Nair
2013-03-12
A multifunctional biocompatible nanovector based on magnetic nanoparticle and carboxymethyl cellulose (CMC) was developed. The nanoparticles have been characterized using TEM, SEM, DLS, FT-IR spectra, VSM, and TGA studies. We found that the synthesized carboxymethyl cellulose magnetic nanoparticles (CMC MNPs) were spherical in shape with an average size of 150 nm having low aggregation and superparamagnetic properties. We found that the folate-tagged CMC MNPs were delivered to cancer cells by a folate-receptor-mediated endocytosis mechanism. 5-FU was encapsulated as a model drug for delivering cytotoxicity, and we could demonstrate the sustained release of 5-FU. It was also observed that the FITC-labeled CMC MNPs could effectively enter cells, and the fate of nanoparticles was tracked with Lysotracker. The CMC MNPs could induce significant cell death when an alternating magnetic field was applied. These results indicate that the multifunctional CMC MNPs possess a high drug loading efficiency and high biocompatibility and with low cell cytotoxicity and can be considered to be promising candidates for CMC-based targeted drug delivery, cellular imaging, and magnetic hyperthermia (MHT).
Thermal stability enhancement of modified carboxymethyl cellulose films using SnO2 nanoparticles.
Baniasad, Arezou; Ghorbani, Mohsen
2016-05-01
In this study, in-situ and ex-situ hydrothermal synthesis procedures were applied to synthesize novel CMC/porous SnO2 nanocomposites from rice husk extracted carboxymethyl cellulose (CMC) biopolymer. In addition, the effects of SnO2 nanoparticles on thermal stability of the prepared nanocomposite were specifically studied. Products were investigated in terms of morphology, particle size, chemical structure, crystallinity and thermal stability by using field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and thermogravimetric analysis (TGA), respectively. Presence of characteristic bands in the FTIR spectra of samples confirmed the successful formation of CMC and CMC/SnO2 nanocomposites. In addition, FESEM images revealed four different morphologies of porous SnO2 nanoparticles including nanospheres, microcubes, nanoflowers and olive-like nanoparticles with hollow cores which were formed on CMC. These nanoparticles possessed d-spacing values of 3.35Å. Thermal stability measurements revealed that introduction of SnO2 nanoparticles in the structure of CMC enhanced stability of CMC to 85%. Copyright © 2016 Elsevier B.V. All rights reserved.
Boyle, Andrea M; O'Sullivan, Lucia F
2016-05-01
Little is known about the features, depth, and quality of communication in heterosexual dating relationships that include computer-mediated communication (CMC). This study examined these features as well as CMC's potential to facilitate self-disclosure and information-seeking. It also evaluated whether partner CMC interactions play a role in partner intimacy and communication quality. Young adults (N = 359; 18-24) attending postsecondary education institutions completed an online survey about their CMC use. To be included in the study, all participants were in established dating relationships at the time of the study and reported daily communication with their partner. CMC was linked to partners' disclosure of nonintimate information. This personal self-disclosure was linked positively to relationship intimacy and communication quality, beyond contributions from face-to-face interactions. Breadth (not depth) of self-disclosure and positively valenced interactions, in particular, proved key to understanding greater levels of intimacy in dating relationships and better communication quality as a function of CMC. CMC provides opportunities for partners to stay connected and to improve the overall quality of their intimacy and communication.
Zhong, Xin; Duan, Fei
2015-05-19
A surfactant-induced autophobic effect has been observed to initiate an intense depinning behavior at the initial stage of evaporation in both pure water and nanofluid sessile droplets. The cationic surfactant adsorbing to the negatively charged silicon wafer makes the solid surface more hydrophobic. The autophobing-induced depinning behavior, leading to an enlarged contact angle and a shortened base diameter, takes place only when the surfactant concentration is below its critical micelle concentration (cmc). The initial spreading degree right before the droplet retraction, the retracting velocity of the contact line, and the duration of the initial droplet retraction are shown to depend negatively on the surfactant concentration below the cmc. An unexpected enhancement in the initial depinning has been found in the nanofluid droplets, possibly resulting from the hydrophilic interplay between the graphite nanoparticle deposition and the surfactant molecules. Such promotion of the initial depinning due to the nanoparticle deposition makes the droplet retract even at a surfactant concentration higher than the cmc (1.5 cmc). The resulting deposition formed in the presence of the depinning behavior has great enhancement for coffee-ring formation as compared to the one free of surfactant, implying that the formation of a coffee ring does not require the pinning of the contact line during the entire drying process.
U.S. Department of Energy Accident Resistant SiC Clad Nuclear Fuel Development
DOE Office of Scientific and Technical Information (OSTI.GOV)
George W. Griffith
2011-10-01
A significant effort is being placed on silicon carbide ceramic matrix composite (SiC CMC) nuclear fuel cladding by Light Water Reactor Sustainability (LWRS) Advanced Light Water Reactor Nuclear Fuels Pathway. The intent of this work is to invest in a high-risk, high-reward technology that can be introduced in a relatively short time. The LWRS goal is to demonstrate successful advanced fuels technology that suitable for commercial development to support nuclear relicensing. Ceramic matrix composites are an established non-nuclear technology that utilizes ceramic fibers embedded in a ceramic matrix. A thin interfacial layer between the fibers and the matrix allows formore » ductile behavior. The SiC CMC has relatively high strength at high reactor accident temperatures when compared to metallic cladding. SiC also has a very low chemical reactivity and doesn't react exothermically with the reactor cooling water. The radiation behavior of SiC has also been studied extensively as structural fusion system components. The SiC CMC technology is in the early stages of development and will need to mature before confidence in the developed designs can created. The advanced SiC CMC materials do offer the potential for greatly improved safety because of their high temperature strength, chemical stability and reduced hydrogen generation.« less
Nagarpita, M V; Roy, Pratik; Shruthi, S B; Sailaja, R R N
2017-09-01
Chitosan/carboxy methyl chitosan (CMC) grafted sodium acrylate-co-acrylamide/nanoclay superabsorbent nanocomposites have been synthesized in this study by following conventional and microwave assisted grafting methods. Microwave assisted grafting method showed higher grafting yield with enhanced reaction rate. Effect of nanoclay on water adsorption and swelling behaviour of both the composites in acidic, neutral and alkaline medium has been studied. Results showed enhanced swelling rate and water adsorption of both composites after adding 5% of silane treated nanoclay. Dye adsorption capacity of both the composites has been investigated for crystal violet, napthol green and sunset yellow dyes. It was observed that addition of 5% nanoclay enhanced the dye adsorption in both the composites. Langmuir and Freundlich isotherm models have been used to explain the dye adsorption capabilities. The chitosan and CMC nanocomposites follow both the models with R 2 value more than 0.97. Both the composites showed enhanced dye adsorption with 5% nanoclay. Effect of pH on dye adsorption has also been studied in both the composites. Chitosan nanocomposites showed better performance in dye removal as compared to CMC nanocomposites. Copyright © 2017 Elsevier B.V. All rights reserved.
Muscle optimization techniques impact the magnitude of calculated hip joint contact forces.
Wesseling, Mariska; Derikx, Loes C; de Groote, Friedl; Bartels, Ward; Meyer, Christophe; Verdonschot, Nico; Jonkers, Ilse
2015-03-01
In musculoskeletal modelling, several optimization techniques are used to calculate muscle forces, which strongly influence resultant hip contact forces (HCF). The goal of this study was to calculate muscle forces using four different optimization techniques, i.e., two different static optimization techniques, computed muscle control (CMC) and the physiological inverse approach (PIA). We investigated their subsequent effects on HCFs during gait and sit to stand and found that at the first peak in gait at 15-20% of the gait cycle, CMC calculated the highest HCFs (median 3.9 times peak GRF (pGRF)). When comparing calculated HCFs to experimental HCFs reported in literature, the former were up to 238% larger. Both static optimization techniques produced lower HCFs (median 3.0 and 3.1 pGRF), while PIA included muscle dynamics without an excessive increase in HCF (median 3.2 pGRF). The increased HCFs in CMC were potentially caused by higher muscle forces resulting from co-contraction of agonists and antagonists around the hip. Alternatively, these higher HCFs may be caused by the slightly poorer tracking of the net joint moment by the muscle moments calculated by CMC. We conclude that the use of different optimization techniques affects calculated HCFs, and static optimization approached experimental values best. © 2014 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Al-Baarri, A. N.; Legowo, A. M.; Widayat; Abduh, S. B. M.; Lestari, F. P.; Desnasari, D.; Santoso, I. P. M.
2018-02-01
L-fucose has been understood as sulfated polysaccharides and it could be extracted and fractionated from brown algae. These polysaccharides contains carbohydrate, sulfate, and protein that may be used as emulsifier. This research was aimed to study the emulsification properties of L-fucose through the determination of total dissolved solids (TDS), color CIE L*a*b* and stability of oil-in-water emulsion. As much as 0.5% of high concentrated L-fucose and 0.5% of carboxymethyl cellulose (CMC) were used as emulsifier in a 10% (v/v) oil-in-water (O/W) emulsion. The emulsifier was added to O/W emulsions and then heated at 72°C. Result of stability emulsion and TDS showed that L-fucose was comparable to the CMC but remarkable changed the color of O/W emulsion. Heating process significantly reduced the stability O/W emulsion when L-fucose was applied. As conclusion, L-fucose might be used as natural emulsifier in O/W emulsion but in the low heat treatment of food processing. This study may provide valuable information for utilizing natural emulsifier from abundant resources from nature.
Fabrication and Testing of Ceramic Matrix Composite Rocket Propulsion Components
NASA Technical Reports Server (NTRS)
Effinger, M. R.; Clinton, R. C., Jr.; Dennis, J.; Elam, S.; Genge, G.; Eckel, A.; Jaskowiak, M. H.; Kiser, J. D.; Lang, J.
2001-01-01
NASA has established goals for Second and Third Generation Reusable Launch Vehicles. Emphasis has been placed on significantly improving safety and decreasing the cost of transporting payloads to orbit. Ceramic matrix composites (CMC) components are being developed by NASA to enable significant increases in safety and engineer performance, while reducing costs. The development of the following CMC components are being pursued by NASA: (1) Simplex CMC Blisk; (2) Cooled CMC Nozzle Ramps; (3) Cooled CMC Thrust Chambers; and (4) CMC Gas Generator. These development efforts are application oriented, but have a strong underpinning of fundamental understanding of processing-microstructure-property relationships relative to structural analyses, nondestructive characterization, and material behavior analysis at the coupon and component and system operation levels. As each effort matures, emphasis will be placed on optimizing and demonstrating material/component durability, ideally using a combined Building Block Approach and Build and Bust Approach.
Polyaniline-carboxymethyl cellulose nanocomposite for cholesterol detection.
Barik, Abdul; Solanki, Pratima R; Kaushik, Ajeet; Ali, Azahar; Pandey, M K; Kim, C G; Malhotra, B D
2010-10-01
Cholesterol oxidase (ChOx) has been covalently immobilized onto polyaniline-carboxymethyl cellulose (PANI-CMC) nanocomposite film deposited onto indium-tin-oxide (ITO) coated glass plate using glutaraldehyde as a cross-linker. Fourier transform infrared (FTIR) spectroscopic and electrochemical studies have been used to characterize the PANI-CMC/ITO nanocomposite electrode and ChOx/PANI-CMC/ITO bioelectrode. Scanning electron microscopy (SEM) studies reveal the formation of PANI-CMC nanocomposite fibers of size approximately 150 nm in diameter. The ChOx/PANI-CMC/ITO bioelectrode exhibits linearity as 0.5-22 mM, detection limit as 1.31 mM, sensitivity as 0.14 mA/mM cm2, response time as 10 s and shelf-life of about 10 weeks when bioelectrode is stored at 4 degrees C. The low value of Michaelis-Menten constant (K(m)) obtained as 2.71 mM reveals high affinity of immobilized ChOx for PANI-CMC/ITO nanocomposite electrode.
Lv, Shenghua; Zhu, Linlin; Li, Ying; Jia, Chunmao; Sun, Shiyu
2017-01-11
Graphene oxide nanosheets (GONs)/carboxymethyl chitosan (CMC)/Fe₃O₄ magnetic composite microspheres (MCMs) were prepared by enclosing Fe₃O₄ particles with CMC and GONs in turn. The microstructures of GONs and GONs/CMC/Fe₃O₄ MCMs were characterized by FTIR, XRD, TEM, and SEM. The effects of GON content, pH value, and adsorption time on the adsorption capacity of the MCMs were investigated. The results show that the GONs/CMC/Fe₃O₄ MCMs have a greater specific surface area and a strong adsorption capacity for dye wastewater. Meanwhile, the adsorption mechanism was investigated, and the results accorded with the pseudo-second-order kinetic model and the Freundlich isotherm model. The search results indicate that GONs/CMC/Fe₃O₄ MCMs can be used to purify dye wastewater and has an important potential use in the practical purification of dye wastewater.
Mechanism of interactions between CMC binder and Si single crystal facets.
Vogl, U S; Das, P K; Weber, A Z; Winter, M; Kostecki, R; Lux, S F
2014-09-02
Interactions of the active material particles with the binder are crucial in tailoring the properties of composite electrodes used in lithium-ion batteries. The dependency of the protonation degree of the carboxyl group in the carboxymethyl cellulose (CMC) structure on the pH value of the preparation solution was investigated by Fourier transform infrared spectroscopy (FTIR). Three different distinctive chemical states of CMC binder were chosen (protonated, deprotonated, and half-half), and their interactions with different silicon single crystal facets were investigated. The different Si surface orientations display distinct differences of strength of interactions with the CMC binder. The CMC/Si adhesion forces in solution and Si wettability of the silicon are also strongly dependent on the protonation degree of the CMC. This work provides an insight into the nature of these interactions, which determine the electrochemical performance of silicon composite electrodes.
Effect of electron beam irradiation on the viscosity of carboxymethylcellulose solution
NASA Astrophysics Data System (ADS)
Choi, Jong-il; Lee, Hee-Sub; Kim, Jae-Hun; Lee, Kwang-Won; Chung, Young-Jin; Byun, Myung-Woo; Lee, Ju-Woon
2008-12-01
In this study, the effects of an electron beam irradiation on the viscosity of a carboxymethylcellulose (CMC) solution were investigated. The viscosity of the CMC solution was decreased with an increase in the irradiation dose. Interestingly, the extent of the degradation of the CMC was found to decrease with an increase of the CMC concentration in the solution. The change of the average molar mass confirmed the decrease in the viscosity due to the degradation of the polymer. The energy of the electron beam also affected the degradation of the CMC. Lower degradation of the CMC was obtained with a decreasing electron beam energy due to its lower penetration. Addition of vitamin C as a radical scavenger to the solution and an irradiation at -70 °C were shown to be moderately effective in preventing a decrease in the viscosity of the solution by irradiation.
Lopez-Sanchez, Maria-José; Sauvage, Elisabeth; Da Cunha, Violette; Clermont, Dominique; Ratsima Hariniaina, Elisoa; Gonzalez-Zorn, Bruno; Poyart, Claire; Rosinski-Chupin, Isabelle; Glaser, Philippe
2012-09-01
Clustered regularly interspaced short palindromic repeats (CRISPR) confer immunity against mobile genetic elements (MGEs) in prokaryotes. Streptococcus agalactiae, a leading cause of neonatal infections contains in its genome two CRISPR/Cas systems. We show that type 1-C CRISPR2 is present in few strains but type 2-A CRISPR1 is ubiquitous. Comparative sequence analysis of the CRISPR1 spacer content of 351 S. agalactiae strains revealed that it is extremely diverse due to the acquisition of new spacers, spacer duplications and spacer deletions that witness the dynamics of this system. The spacer content profile mirrors the S. agalactiae population structure. Transfer of a conjugative transposon targeted by CRISPR1 selected for spacer rearrangements, suggesting that deletions and duplications pre-exist in the population. The comparison of protospacers located within MGE or the core genome and protospacer-associated motif-shuffling demonstrated that the GG motif is sufficient to discriminate self and non-self and for spacer selection and integration. Strikingly more than 40% of the 949 different CRISPR1 spacers identified target MGEs found in S. agalactiae genomes. We thus propose that the S. agalactiae type II-A CRISPR1/Cas system modulates the cohabitation of the species with its mobilome, as such contributing to the diversity of MGEs in the population. © 2012 Blackwell Publishing Ltd.
Current Computational Challenges for CMC Processes, Properties, and Structures
NASA Technical Reports Server (NTRS)
DiCarlo, James
2008-01-01
In comparison to current state-of-the-art metallic alloys, ceramic matrix composites (CMC) offer a variety of performance advantages, such as higher temperature capability (greater than the approx.2100 F capability for best metallic alloys), lower density (approx.30-50% metal density), and lower thermal expansion. In comparison to other competing high-temperature materials, CMC are also capable of providing significantly better static and dynamic toughness than un-reinforced monolithic ceramics and significantly better environmental resistance than carbon-fiber reinforced composites. Because of these advantages, NASA, the Air Force, and other U.S. government agencies and industries are currently seeking to implement these advanced materials into hot-section components of gas turbine engines for both propulsion and power generation. For applications such as these, CMC are expected to result in many important performance benefits, such as reduced component cooling air requirements, simpler component design, reduced weight, improved fuel efficiency, reduced emissions, higher blade frequencies, reduced blade clearances, and higher thrust. Although much progress has been made recently in the development of CMC constituent materials and fabrication processes, major challenges still remain for implementation of these advanced composite materials into viable engine components. The objective of this presentation is to briefly review some of those challenges that are generally related to the need to develop physics-based computational approaches to allow CMC fabricators and designers to model (1) CMC processes for fiber architecture formation and matrix infiltration, (2) CMC properties of high technical interest such as multidirectional creep, thermal conductivity, matrix cracking stress, damage accumulation, and degradation effects in aggressive environments, and (3) CMC component life times when all of these effects are interacting in a complex stress and service environment. To put these computational issues in perspective, the various modeling needs within these three areas are briefly discussed in terms of their technical importance and their key controlling mechanistic factors as we know them today. Emphasis is placed primarily on the SiC/SiC ceramic composite system because of its higher temperature capability and enhanced development within the CMC industry. A brief summary is then presented concerning on-going property studies aimed at addressing these CMC modeling needs within NASA in terms of their computational approaches and recent important results. Finally an overview perspective is presented on those key areas where further CMC computational studies are needed today to enhance the viability of CMC structural components for high-temperature applications.
Chronic mucocutaneous candidiasis disease associated with inborn errors of IL-17 immunity
Okada, Satoshi; Puel, Anne; Casanova, Jean-Laurent; Kobayashi, Masao
2016-01-01
Chronic mucocutaneous candidiasis (CMC) is characterized by recurrent or persistent infections affecting the nails, skin and oral and genital mucosae caused by Candida spp., mainly Candida albicans. CMC is an infectious phenotype in patients with inherited or acquired T-cell deficiency. Patients with autosomal-dominant (AD) hyper IgE syndrome (HIES), AD signal transducer and activator of transcription 1 (STAT1) gain-of-function, autosomal-recessive (AR) deficiencies in interleukin (IL)-12 receptor β1 (IL-12Rβ1), IL-12p40, caspase recruitment domain-containing protein 9 (CARD9) or retinoic acid-related orphan receptor γT (RORγT) or AR autoimmune polyendocrinopathy–candidiasis–ectodermal dystrophy (APECED) develop CMC as a major infectious phenotype that is categorized as Syndromic CMC. In contrast, CMC disease (CMCD) is typically defined as CMC in patients in the absence of any other prominent clinical signs. This definition is not strict; thus, CMCD is currently used to refer to patients presenting with CMC as the main clinical phenotype. The etiology of CMCD is not related to genes that cause severe combined immunodeficiency or combined immunodeficiency, nor to genes responsible for Syndromic CMC. Four genetic etiologies, AR IL-17 receptor A, IL-17 receptor C and ACT1 deficiencies, and AD IL-17F deficiency, are reported to underlie CMCD. Each of these gene defects directly has an impact on IL-17 signaling, suggesting their nonredundant role in host mucosal immunity to Candida. Here, we review current knowledge focusing on IL-17 signaling and the genetic etiologies responsible for, and associated with, CMC. PMID:28090315
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belz, J; Kumar, R; Sridhar, S
Purpose: We propose an innovative combinatorial treatment strategy of Local ChemoRadiation Therapy (LCRT) using a sustained drug delivery platform in the form of a spacer to locally radio-sensitize the prostate with Docetaxel (DTX) enabling a synergistic cure with the use of lower radiation doses. These biodegradable spacers are physically similar to the inert spacers routinely used in prostate brachytherapy but are now loaded with formulations of DTX. Methods: Spacers were loaded with ∼500µg Docetaxel (DTX) for prostate cancer studies. The implants were characterized in vitro using SEM and HPLC. The release kinetic studies were carried out in buffer (pH 6.0)more » at 37°C. Subcutaneous PC3 tumors were xenografted in nude mice. Prostate cancer studies were done with and without radiation using SARRP at 5Gy, 10Gy, and 15Gy. Drug-loaded implants were injected once intratumorally using an 18G brachytherapy needle. Results: The release study in vitro showed a highly sustained release for multiple weeks at therapeutically relevant doses. The monotherapy with local DTX spacer showed sustained tumor inhibition compared to empty implants and an equivalent DTX dose given systemically. At 40 days, 89% survival was observed for mice treated with DTX implants compared with 0% in all other treatment groups. The combined treatment with local DTX spacer and radiation (10Gy) showed the highest degree of tumor suppression (significant tumor growth inhibition by day 90). The control mice showed continuous tumor growth and were scarified by day 56. Groups of mice treated with DTX-spacer or radiation alone showed initial tumor suppression but growth continued after day 60. A larger experiment is ongoing. Conclusion: This approach provides localized delivery of the chemotherapeutic sensitizer directly to the tumor and avoids the toxicities associated with both brachytherapy and current systemic delivery of docetaxel. Sustained release of DTX is an effective chemotherapy option alone or in combination with radiation therapy.« less
Corona, Pablo S; Barro, Victor; Mendez, Marye; Cáceres, Enric; Flores, Xavier
2014-03-01
Industrially preformed antibiotic-loaded cement spacers are useful to facilitate the second stage of two-stage exchange arthroplasty for infected THAs and TKAs. However, whether gentamicin alone or a combination of antibiotics (such as vancomycin and gentamicin) is more effective is not known. We therefore sought to compare industrially prefabricated spacers containing either gentamicin or gentamicin and vancomycin with respect to (1) infection control, (2) complications, and (3) quality of life, pain, and patient satisfaction. We performed a review of 51 patients with chronic infections treated at one center using either gentamicin or vancomycin and gentamicin-prefabricated spacers. The former were used exclusively from January 2006 until May 2009, and the latter from June 2009 until July 2011, and there was no overlap. We collected data on demographics, immunologic status (McPherson classification), prosthetic joint infection location, type of prosthesis, microbiologic results, and time between stages. We evaluated the primary outcome of infection control or recurrence after at least 12 months followup. We also recorded complications. Each patient completed a quality-of-life survey, VAS, and a self-administered satisfaction scale. The overall infection control rate was 83% after a mean followup of 35 months (range, 12.4-64.7 months). There were no differences between gentamicin and vancomycin and gentamicin spacers in terms of infection eradication (80 % versus 85 %, respectively; p = 0.73), nor in terms of complications, quality of life, pain, or satisfaction scores. Prefabricated, antibiotic-loaded cement spacers has been proven effective for infection control in TKAs and THAs but with the numbers available, we did not find any differences between a gentamicin or vancomycin and gentamicin-prefabricated spacer, and therefore, we are unable to validate the superiority of the combination of vancomycin and gentamicin over gentamicin alone. Because of the higher costs involved with vancomycin and gentamicin spacers, and the potential risks of unselective use of vancomycin, further comparative studies are necessary to evaluate their role in the treatment of infected THAs or TKAs. Level III, therapeutic study. See the Instructions for Authors for a complete description of levels of evidence.
A case study of learning writing in service-learning through CMC
NASA Astrophysics Data System (ADS)
Li, Yunxiang; Ren, LiLi; Liu, Xiaomian; Song, Yinjie; Wang, Jie; Li, Jiaxin
2011-06-01
Computer-mediated communication ( CMC ) through online has developed successfully with its adoption by educators. Service Learning is a teaching and learning strategy that integrates community service with academic instruction and reflection to enrich students further understanding of course content, meet genuine community needs, develop career-related skills, and become responsible citizens. This study focuses on an EFL writing learning via CMC in an online virtual environment of service places by taking the case study of service Learning to probe into the scoring algorithm in CMC. The study combines the quantitative and qualitative research to probe into the practical feasibility and effectiveness of EFL writing learning via CMC in service learning in China.
The Delicate Balance of Preorganisation and Adaptability in Multiply Bonded Host-Guest Complexes.
von Krbek, Larissa K S; Achazi, Andreas J; Schoder, Stefan; Gaedke, Marius; Biberger, Tobias; Paulus, Beate; Schalley, Christoph A
2017-02-24
Rigidity and preorganisation are believed to be required for high affinity in multiply bonded supramolecular complexes as they help reduce the entropic penalty of the binding event. This comes at the price that such rigid complexes are sensitive to small geometric mismatches. In marked contrast, nature uses more flexible building blocks. Thus, one might consider putting the rigidity/high-affinity notion to the test. Multivalent crown/ammonium complexes are ideal for this purpose as the monovalent interaction is well understood. A series of divalent complexes with different spacer lengths and rigidities has thus been analysed to correlate chelate cooperativities and spacer properties. Too long spacers reduce chelate cooperativity compared to exactly matching ones. However, in contrast to expectation, flexible guests bind with chelate cooperativities clearly exceeding those of rigid structures. Flexible spacers adapt to small geometric host-guest mismatches. Spacer-spacer interactions help overcome the entropic penalty of conformational fixation during binding and a delicate balance of preorganisation and adaptability is at play in multivalent complexes. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
CMC Research at NASA Glenn in 2014: Recent Progress and Plans
NASA Technical Reports Server (NTRS)
Grady, Joseph E.
2014-01-01
As part of NASA's Aeronautical Sciences project, Glenn Research Center has developed advanced fiber and matrix constituents for a 2700F CMC for turbine engine applications. Fiber, matrix and CMC development activities will be reviewed and the improvements in the properties and durability of each will be summarized. Plans for 2014 will be summarized, including fabrication and durability testing of the 2700F CMC and status updates on research collaborations underway with AFRL and DOE
Plyduang, Thipapun; Lomlim, Luelak; Yuenyongsawad, Supreeya; Wiwattanapatapee, Ruedeekorn
2014-10-01
Several curcumin derivatives are now becoming increasingly of interest because of their bioactive attributes, especially their action as antioxidants and anti-carcinogenic activities. Tetrahydrocurcumin (THC), an active metabolite of curcumin, was selected to be a proper starting material for the work presented here as it is stable in physiological pH and has the typical pharmacological properties of curcumin. We have now reported that novel synthesized water-soluble polymeric macromolecule prodrugs can specifically deliver the drug to the colon. To study the drug loading and drug release, THC was conjugated with a hydrophilic polymer, carboxymethylcellulose (CMC) with the degree of substitution (DS) values of 0.7 and 1.2. THC was also attached to two different spacers including p-aminobenzoic acid (PABA) and p-aminohippuric acid (PAH) via an azo bond that was cleaved by the azoreductase activities of colonic bacteria. The novel active molecule, 4-amino-THC, was readily released from the conjugates in the colon (>62% within 24h) with only very small amounts released in the upper GI tract (<12% over 12h). The polymer conjugates showed chemical stability at various pH values along the gastrointestinal tract and increased water solubility of up to 5mg/mL. 4-Amino-THC demonstrated cytotoxic ability against the human colon adenocarcinoma cell lines (HT-29) with an IC50 of 28.67 ± 1.01 μg/mL, and even greater selectivity (∼ 4 folds) to inhibit HT-29 cells than to normal human colon epithelial cell lines while curcumin was a non-selective agent against both cell lines. Our study has demonstrated that the use of THC-CMC conjugates may be a promising colon-specific drug delivery system with its sustained release in the colon to be an effective treatment for colonic cancer. Copyright © 2014 Elsevier B.V. All rights reserved.
Briner, Alexandra E.
2014-01-01
Clustered regularly interspaced short palindromic repeats (CRISPR) in combination with associated sequences (cas) constitute the CRISPR-Cas immune system, which uptakes DNA from invasive genetic elements as novel “spacers” that provide a genetic record of immunization events. We investigated the potential of CRISPR-based genotyping of Lactobacillus buchneri, a species relevant for commercial silage, bioethanol, and vegetable fermentations. Upon investigating the occurrence and diversity of CRISPR-Cas systems in Lactobacillus buchneri genomes, we observed a ubiquitous occurrence of CRISPR arrays containing a 36-nucleotide (nt) type II-A CRISPR locus adjacent to four cas genes, including the universal cas1 and cas2 genes and the type II signature gene cas9. Comparative analysis of CRISPR spacer content in 26 L. buchneri pickle fermentation isolates associated with spoilage revealed 10 unique locus genotypes that contained between 9 and 29 variable spacers. We observed a set of conserved spacers at the ancestral end, reflecting a common origin, as well as leader-end polymorphisms, reflecting recent divergence. Some of these spacers showed perfect identity with phage sequences, and many spacers showed homology to Lactobacillus plasmid sequences. Following a comparative analysis of sequences immediately flanking protospacers that matched CRISPR spacers, we identified a novel putative protospacer-adjacent motif (PAM), 5′-AAAA-3′. Overall, these findings suggest that type II-A CRISPR-Cas systems are valuable for genotyping of L. buchneri. PMID:24271175
NASA Astrophysics Data System (ADS)
Glesener, G. B.; Vican, L.
2015-12-01
Physical analog models and demonstrations can be effective educational tools for helping instructors teach abstract concepts in the Earth, planetary, and space sciences. Reducing the learning challenges for students using physical analog models and demonstrations, however, can often increase instructors' workload and budget because the cost and time needed to produce and maintain such curriculum materials is substantial. First, this presentation describes a working model for the Modeling and Educational Demonstrations Laboratory Curriculum Materials Center (MEDL-CMC) to support instructors' use of physical analog models and demonstrations in the science classroom. The working model is based on a combination of instructional resource models developed by the Association of College & Research Libraries and by the Physics Instructional Resource Association. The MEDL-CMC aims to make the curriculum materials available for all science courses and outreach programs within the institution where the MEDL-CMC resides. The sustainability and value of the MEDL-CMC comes from its ability to provide and maintain a variety of physical analog models and demonstrations in a wide range of science disciplines. Second, the presentation then reports on the development, progress, and future of the MEDL-CMC at the University of California Los Angeles (UCLA). Development of the UCLA MEDL-CMC was funded by a grant from UCLA's Office of Instructional Development and is supported by the Department of Earth, Planetary, and Space Sciences. Other UCLA science departments have recently shown interest in the UCLA MEDL-CMC services, and therefore, preparations are currently underway to increase our capacity for providing interdepartmental service. The presentation concludes with recommendations and suggestions for other institutions that wish to start their own MEDL-CMC in order to increase educational effectiveness and decrease instructor workload. We welcome an interuniversity collaboration to further develop the MEDL-CMC model.
Large thermal protection system panel
NASA Technical Reports Server (NTRS)
Weinberg, David J. (Inventor); Myers, Franklin K. (Inventor); Tran, Tu T. (Inventor)
2003-01-01
A protective panel for a reusable launch vehicle provides enhanced moisture protection, simplified maintenance, and increased temperature resistance. The protective panel includes an outer ceramic matrix composite (CMC) panel, and an insulative bag assembly coupled to the outer CMC panel for isolating the launch vehicle from elevated temperatures and moisture. A standoff attachment system attaches the outer CMC panel and the bag assembly to the primary structure of the launch vehicle. The insulative bag assembly includes a foil bag having a first opening shrink fitted to the outer CMC panel such that the first opening and the outer CMC panel form a water tight seal at temperatures below a desired temperature threshold. Fibrous insulation is contained within the foil bag for protecting the launch vehicle from elevated temperatures. The insulative bag assembly further includes a back panel coupled to a second opening of the foil bag such that the fibrous insulation is encapsulated by the back panel, the foil bag, and the outer CMC panel. The use of a CMC material for the outer panel in conjunction with the insulative bag assembly eliminates the need for waterproofing processes, and ultimately allows for more efficient reentry profiles.
Griffin, L R; Browning, K L; Lee, S Y; Skoda, M W A; Rogers, S; Clarke, S M
2016-12-13
Using specular neutron reflection, the adsorption of sodium and calcium salts of the surfactant bis(2-ethylhexyl) sulfosuccinate (Aerosol-OT or AOT) has been studied at the mica/water interface at concentrations between 0.1 and 2 CMC. The pH dependence of the adsorption was also probed. No evidence of the adsorption of Na(AOT) was found even at the critical micelle concentration (CMC) while the calcium salt was found to adsorb significantly at concentrations of 0.5 CMC and above. This interesting and somewhat unexpected finding demonstrates that counterion identity may be used to tune the adsorption of anionic surfactants on anionic surfaces. At the CMC, three condensed bilayers of Ca(AOT) 2 were adsorbed at pH 7 and 9 and four bilayers adsorbed at pH 4. Multilayering at the CMC of Ca(AOT) 2 on the mica surface is an unusual feature of this surfactant/surface combination. Only single bilayer adsorption has been observed at other surfaces at the CMC. We suggest this arises from the high charge density of mica which must provide an excellent template for the surfactant.
NASA Astrophysics Data System (ADS)
Murthy, Uday S.
A variety of Web-based low cost computer-mediated communication (CMC) tools are now available for use by small and medium-sized enterprises (SME). These tools invariably incorporate chat systems that facilitate simultaneous input in synchronous electronic meeting environments, allowing what is referred to as “electronic brainstorming.” Although prior research in information systems (IS) has established that electronic brainstorming can be superior to face-to-face brainstorming, there is a lack of detailed guidance regarding how CMC tools should be optimally configured to foster creativity in SMEs. This paper discusses factors to be considered in using CMC tools for creativity brainstorming and proposes recommendations for optimally configuring CMC tools to enhance creativity in SMEs. The recommendations are based on lessons learned from several recent experimental studies on the use of CMC tools for rich brainstorming tasks that require participants to invoke domain-specific knowledge. Based on a consideration of the advantages and disadvantages of the various configuration options, the recommendations provided can form the basis for selecting a CMC tool for creativity brainstorming or for creating an in-house CMC tool for the purpose.
Sainitya, R; Sriram, M; Kalyanaraman, V; Dhivya, S; Saravanan, S; Vairamani, M; Sastry, T P; Selvamurugan, N
2015-09-01
Scaffold based bone tissue engineering utilizes a variety of biopolymers in different combinations aiming to deliver optimal properties required for bone regeneration. In the current study, we fabricated bio-composite scaffolds containing chitosan (CS), carboxymethylcellulose (CMC) with varied concentrations of mesoporous wollastonite (m-WS) particles by the freeze drying method. The CS/CMC/m-WS scaffolds were characterized by the SEM, EDS and FT-IR studies. Addition of m-WS particles had no effect on altering the porosity of the scaffolds. m-WS particles at 0.5% concentration in the CS/CMC scaffolds showed significant improvement in the bio-mineralization and protein adsorption properties. Addition of m-WS particles in the CS/CMC scaffolds significantly reduced their swelling and degradation properties. The CS/CMC/m-WS scaffolds also showed cyto-friendly nature to human osteoblastic cells. The osteogenic potential of CS/CMC/m-WS scaffolds was confirmed by calcium deposition and expression of an osteoblast specific microRNA, pre-mir-15b. Thus, the current investigations support the use of CS/CMC/m-WS scaffolds for bone tissue engineering applications. Copyright © 2015 Elsevier B.V. All rights reserved.
Shahzadi, Kiran; Mohsin, Imran; Wu, Lin; Ge, Xuesong; Jiang, Yijun; Li, Hui; Mu, Xindong
2017-01-24
Demands for high strength integrated materials have substantially increased across various kinds of industries. Inspired by the relationship of excellent integration of mechanical properties and hierarchical nano/microscale structure of the natural nacre, a simple and facile method to fabricate high strength integrated artificial nacre based on sodium carboxymethylcellulose (CMC) and borate cross-linked graphene oxide (GO) sheets has been developed. The tensile strength and toughness of cellulose-based hybrid material reached 480.5 ± 13.1 MPa and 11.8 ± 0.4 MJm -3 by a facile in situ reduction and cross-linking reaction between CMC and GO (0.7%), which are 3.55 and 6.55 times that of natural nacre. This hybrid film exhibits better thermal stability and flame retardancy. More interestingly, the hybrid material showed good water stability compared to that in the original water-soluble CMC. This type of hybrid has great potential applications in aerospace, artificial muscle, and tissue engineering.
Shahbazi, Yasser
2018-06-01
The aim of the present study was to investigate the effects of carboxymethyl cellulose (CMC) and chitosan (CH) coatings containing Mentha spicata essential oil (MSO 0.1 and 0.2%) on survival of Listeria monocytogenes, and physicochemical (weight loss, titratable acidity and pH), microbial (total viable count, psychrotrophic bacteria as well as yeasts and molds) and sensory (appearance, color, texture and overall acceptability) properties of fresh strawberries during refrigerated storage. The treatments of fruits with CH+MSO 0.2% and CMC+MSO 0.2% resulted in the best microbial, physicochemical and organoleptic properties after 12days storage. The final population of L. monocytogenes in treated samples was decreased by 3.92-3.69 compared to control groups. It can be concluded that CH and CMC coatings enriched with MSO can be used as appropriate active packaging materials to preserve fresh strawberries in the food industry. Copyright © 2018 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weber, Damien C., E-mail: damien.weber@unige.ch; Zilli, Thomas; Vallee, Jean Paul
2012-11-01
Purpose: Rectal toxicity is a serious adverse effect in early-stage prostate cancer patients treated with curative radiation therapy (RT). Injecting a spacer between Denonvilliers' fascia increases the distance between the prostate and the anterior rectal wall and may thus decrease the rectal radiation-induced toxicity. We assessed the dosimetric impact of this spacer with advanced delivery RT techniques, including intensity modulated RT (IMRT), volumetric modulated arc therapy (VMAT), and intensity modulated proton beam RT (IMPT). Methods and Materials: Eight prostate cancer patients were simulated for RT with or without spacer. Plans were computed for IMRT, VMAT, and IMPT using the Eclipsemore » treatment planning system using both computed tomography spacer+ and spacer- data sets. Prostate {+-} seminal vesicle planning target volume [PTV] and organs at risk (OARs) dose-volume histograms were calculated. The results were analyzed using dose and volume metrics for comparative planning. Results: Regardless of the radiation technique, spacer injection decreased significantly the rectal dose in the 60- to 70-Gy range. Mean V{sub 70Gy} and V{sub 60Gy} with IMRT, VMAT, and IMPT planning were 5.3 {+-} 3.3%/13.9 {+-} 10.0%, 3.9 {+-} 3.2%/9.7 {+-} 5.7%, and 5.0 {+-} 3.5%/9.5 {+-} 4.7% after spacer injection. Before spacer administration, the corresponding values were 9.8 {+-} 5.4% (P=.012)/24.8 {+-} 7.8% (P=.012), 10.1 {+-} 3.0% (P=.002)/17.9 {+-} 3.9% (P=.003), and 9.7 {+-} 2.6% (P=.003)/14.7% {+-} 2.7% (P=.003). Importantly, spacer injection usually improved the PTV coverage for IMRT. With this technique, mean V{sub 70.2Gy} (P=.07) and V{sub 74.1Gy} (P=0.03) were 100 {+-} 0% to 99.8 {+-} 0.2% and 99.1 {+-} 1.2% to 95.8 {+-} 4.6% with and without Spacer, respectively. As a result of spacer injection, bladder doses were usually higher but not significantly so. Only IMPT managed to decrease the rectal dose after spacer injection for all dose levels, generally with no observed increase to the bladder dose. Conclusions: Regardless of the radiation technique, a substantial decrease of rectal dose was observed after spacer injection for curative RT to the prostate.« less
Advanced satellite communication system
NASA Technical Reports Server (NTRS)
Staples, Edward J.; Lie, Sen
1992-01-01
The objective of this research program was to develop an innovative advanced satellite receiver/demodulator utilizing surface acoustic wave (SAW) chirp transform processor and coherent BPSK demodulation. The algorithm of this SAW chirp Fourier transformer is of the Convolve - Multiply - Convolve (CMC) type, utilizing off-the-shelf reflective array compressor (RAC) chirp filters. This satellite receiver, if fully developed, was intended to be used as an on-board multichannel communications repeater. The Advanced Communications Receiver consists of four units: (1) CMC processor, (2) single sideband modulator, (3) demodulator, and (4) chirp waveform generator and individual channel processors. The input signal is composed of multiple user transmission frequencies operating independently from remotely located ground terminals. This signal is Fourier transformed by the CMC Processor into a unique time slot for each user frequency. The CMC processor is driven by a waveform generator through a single sideband (SSB) modulator. The output of the coherent demodulator is composed of positive and negative pulses, which are the envelopes of the chirp transform processor output. These pulses correspond to the data symbols. Following the demodulator, a logic circuit reconstructs the pulses into data, which are subsequently differentially decoded to form the transmitted data. The coherent demodulation and detection of BPSK signals derived from a CMC chirp transform processor were experimentally demonstrated and bit error rate (BER) testing was performed. To assess the feasibility of such advanced receiver, the results were compared with the theoretical analysis and plotted for an average BER as a function of signal-to-noise ratio. Another goal of this SBIR program was the development of a commercial product. The commercial product developed was an arbitrary waveform generator. The successful sales have begun with the delivery of the first arbitrary waveform generator.
Effect of novel antibacterial gallium-carboxymethyl cellulose on Pseudomonas aeruginosa.
Valappil, Sabeel P; Yiu, Humphrey H P; Bouffier, Laurent; Hope, Christopher K; Evans, Gary; Claridge, John B; Higham, Susan M; Rosseinsky, Matthew J
2013-02-07
Gallium has emerged as a new therapeutic agent due partly to the scarcity in development of new antibiotics. In this study, a novel antibacterial gallium exchanged carboxymethyl cellulose (Ga-CMC) has been developed and tested for the susceptibility on a common bacteria, Pseudomonas aeruginosa. The results show that an increase in average molecular weight (MW) from 90 k, 250 k to 700 k of Ga-CMC caused a decrease in antimicrobial activity against planktonic P. aeruginosa. Gallium loading of the Ga-CMC (250 k) samples was altered by varying the amount of functionality (0.7, 0.9 and 1.2 acid groups per mole of carbohydrate) which affected also its antimicrobial activity against planktonic P. aeruginosa. Further, the ability to prevent the growth of biofilms of P. aeruginosa was tested on MW = 250 k samples with 0.9 acid groups per mole of carbohydrate as this sample showed the most promising activity against planktonic P. aeruginosa. Gallium was found to reduce biofilm growth of P. aeruginosa with a maximum effect (0.85 log(10) CFU reduction compared to sodium-carboxymethyl cellulose, Na-CMC) after 24 h. Results of the solubility and ion exchange studies show that this compound is suitable for the controlled release of Ga(3+) upon their breakdown in the presence of bacteria. SEM EDX analysis confirmed that Ga(3+) ions are evenly exchanged on the cellulose surface and systematic controls were carried out to ensure that antibacterial activity is solely due to the presence of gallium as samples intrinsic acidity or nature of counterion did not affect the activity. The results presented here highlight that Ga-CMC may be useful in controlled drug delivery applications, to deliver gallium ions in order to prevent infections due to P. aeruginosa biofilms.
Grenier, Marie-Lyne; Mendonca, Rochelle; Dalley, Peter
2016-01-01
The study was a retrospective cohort analysis for a 19-month period from May 2013 to December 2014. Although the use of orthoses has long been a staple of conservative treatment measures for individuals with osteoarthritis of the thumb carpometacarpal (CMC) joint, there remains little evidence exploring its effectiveness in improving functional outcomes for this client population. The purpose of this study was to assess the effectiveness of 3 frequently used orthoses in improving the functional pinch strength of adults with a diagnosis of thumb CMC joint osteoarthritis. A retrospective cohort analysis was conducted to determine whether pinch strength improved after orthotic fabrication, and fitting in patients referred to a hand therapy clinic. Patients who received a Colditz design orthosis had a mean increase of 2.64 lb with regard to functional pinch strength after orthotic fabrication and fitting. Patients who received a Comfort Cool orthosis (North Coast Medical, Morgan Hill, CA) had a mean increase of 2.47 lb, whereas patients who received a Thumb Spica orthosis had a mean increase of 3.25 lb. There was no evidence of any statistically significant difference in the average improvements in pinch strength between the Colditz design orthosis and the Comfort Cool orthosis. Results from this study demonstrate that orthosis wear consistently increases the functional pinch strength of individuals with thumb CMC joint osteoarthritis. Large-scale multisite research studies comparing various orthotic designs are necessary to help therapists determine best practice interventions for the conservative management of thumb CMC joint osteoarthritis. 2(c). Copyright © 2016 Hanley & Belfus. Published by Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Bansal, Narottam P.
2008-01-01
BN/SiC-coated Hi-Nicalon fiber-reinforced celsian matrix composites (CMC) were annealed for 100 h in air at various temperatures to 1200 C, followed by flexural strength measurements at room temperature. Values of yield stress and strain, ultimate strength, and composite modulus remain almost unchanged for samples annealed up to 1100 C. A thin porous layer formed on the surface of the 1100 C annealed sample and its density decreased from 3.09 to 2.90 g/cu cm. The specimen annealed at 1200 C gained 0.43 wt%, was severely deformed, and was covered with a porous layer of thick shiny glaze which could be easily peeled off. Some gas bubbles were also present on the surface. This surface layer consisted of elongated crystals of monoclinic celsian and some amorphous phase(s). The fibers in this surface ply of the CMC had broken into small pieces. The fiber-matrix interface strength was characterized through fiber push-in technique. Values of debond stress, alpha(sub d), and frictional sliding stress, tau(sub f), for the as-fabricated CMC were 0.31+/-0.14 GPa and 10.4+/-3.1 MPa, respectively. These values compared with 0.53+/-0.47 GPa and 8.33+/-1.72 MPa for the fibers in the interior of the 1200 C annealed sample, indicating hardly any change in fiber-matrix interface strength. The effects of thermal aging on microstructure were investigated using scanning electron microscopy. Only the surface ply of the 1200 C annealed specimens had degraded from oxidation whereas the bulk interior part of the CMC was unaffected. A mechanism is proposed explaining the various steps involved during the degradation of the CMC on annealing in air at 1200 C.
Nölker, Georg; Schwagten, Bruno; Deville, J Brian; Burkhardt, J David; Horton, Rodney P; Sha, Qun; Tomassoni, Gery
2016-03-01
Circular mapping catheters (CMC) are an essential tool in most atrial fibrillation ablation procedures. The Vdrive™ with V-Loop™ system enables a physician to remotely manipulate a CMC during electrophysiology studies. Our aim was to compare the clinical performance of the system to conventional CMC navigation according to efficiency and safety endpoints. A total of 120 patients scheduled to undergo a CMC study followed by pulmonary vein isolation (PVI) were included. Treatment allocation was randomized 2:1, remote navigation:manual navigation. The primary effectiveness endpoint was assessed based on both successful navigation to the targeted pulmonary vein (PV) and successful recording of PV electrograms. All PVs were treated independently within and between patients. The primary safety endpoint was assessed based on the occurrence of major adverse events (MAEs) through seven days after the study procedure. Primary effectiveness endpoints were achieved in 295/302 PVs in the Vdrive arm (97.7%) and 167/167 PVs in the manual arm (100%). Effectiveness analysis indicates Vdrive non-inferiority (pnon-inferiority = 0.0405; δ = -0.05) per the Cochran-Mantel-Haenszel test adjusted for PV correlation. Five MAEs related to the ablation procedure occurred (three in the Vdrive arm-3.9%; two in the manual arm-2.33%). No device-related MAEs were observed; safety analysis indicates Vdrive non-inferiority (pnon-inferiority = 0.0441; δ = 0.07) per the normal Z test. Remote navigation of a CMC is equivalent to manual in PVI in terms of safety and effectiveness. This allows for single-operator procedures in conjunction with a magnetically guided ablation catheter. © 2016 Wiley Periodicals, Inc.
NASA Technical Reports Server (NTRS)
Kiser, J. Douglas; Bansal, Narottam P.; Szelagowski, James; Sokhey, Jagdish; Heffernan, Tab; Clegg, Joseph; Pierluissi, Anthony; Riedell, Jim; Wyen, Travis; Atmur, Steven;
2015-01-01
LibertyWorks®, a subsidiary of Rolls-Royce Corporation, first studied CMC (ceramic matrix composite) exhaust mixers for potential weight benefits in 2008. Oxide CMC potentially offered weight reduction, higher temperature capability, and the ability to fabricate complex-shapes for increased mixing and noise suppression. In 2010, NASA was pursuing the reduction of NOx emissions, fuel burn, and noise from turbine engines in Phase I of the Environmentally Responsible Aviation (ERA) Project (within the Integrated Systems Research Program). ERA subtasks, including those focused on CMC components, were being formulated with the goal of maturing technology from Proof of Concept Validation (Technology Readiness Level 3 (TRL 3)) to System/Subsystem or Prototype Demonstration in a Relevant Environment (TRL 6). LibertyWorks®, a subsidiary of Rolls-Royce Corporation, first studied CMC (ceramic matrix composite) exhaust mixers for potential weight benefits in 2008. Oxide CMC potentially offered weight reduction, higher temperature capability, and the ability to fabricate complex-shapes for increased mixing and noise suppression. In 2010, NASA was pursuing the reduction of NOx emissions, fuel burn, and noise from turbine engines in Phase I of the Environmentally Responsible Aviation (ERA) Project (within the Integrated Systems Research Program). ERA subtasks, including those focused on CMC components, were being formulated with the goal of maturing technology from Proof of Concept Validation (Technology Readiness Level 3 (TRL 3)) to System/Subsystem or Prototype Demonstration in a Relevant Environment (TRL 6). Oxide CMC component at both room and elevated temperatures. A TRL˜5 (Component Validation in a Relevant Environment) was attained and the CMC mixer was cleared for ground testing on a Rolls-Royce AE3007 engine for performance evaluation to achieve TRL 6.
Fan, Wen-jing; Cheng, Yue; Yu, Shu-zhen; Fan, Xiao-feng
2015-06-01
The coated nanoscale zero-valent iron (coated CMC-Fe0) was synthesized with cheap and environment friendly CMC as the coating agent using rheological phase reaction. The sample was characterized by means of XRD, SEM, TEM and N2 adsorption-stripping and used to study reductive dechlorination of TCE. The experimental results indicated that the removal rate of TCE was about 100% when the CMC-Fe0 dosage was 6 g x L(-1), the initial TCE concentration was 5 mg x L(-1) and the reaction time was 40 h. The TCE degradation reaction of coated CMC-Fe0 followed a pseudo-first-order kinetic model. Finally, the product could be simply recovered.
Characterization and optimization of flexible dual mode sensor based on Carbon Micro Coils
NASA Astrophysics Data System (ADS)
Dat Nguyen, Tien; Kim, Taeseung; Han, Hyoseung; Shin, Hyun Yeong; Nguyen, Canh Toan; Phung, Hoa; Ryeol Choi, Hyouk
2018-01-01
Carbon Microcoils (CMCs) is a 3D helical micro structure grown via a chemical vapor deposition process. It is noted that composites in which CMCs are embedded in polymer matrixes, called CMC sheets, experience a drastic change of electrical impedance depending on the proximity and contact of external objects. In this paper, a dual functional sensor, that is, tactile and proximity sensor fabricated with CMC/silicone composite is presented to demonstrate the advanced characteristics of CMCs sheets. Characteristics of sensor responses depending on CMC compositions are investigated and optimal conditions are determined. The candidates of polymer matrices are also investigated. As the results, the CMC sheet consisting of Ecoflex 30, CMC 30 {{wt}} % , and multiwall carbon nanotubes 1 {{wt}} % shows the most appropriate tactile sensing characteristics with more than 1 mm of thickness. The proximity sensing capability is the maximum when the 1.5 {{wt}} % CMC content is mixed with Dragon skin 30 silicone substrate. Finally, multiple target objects are recognized with the results and their feasibilities are experimentally validated.
Qiu, Lei; Shao, Ziqiang; Xiang, Pan; Wang, Daxiong; Zhou, Zhenwen; Wang, Feijun; Wang, Wenjun; Wang, Jianquan
2014-09-22
Novel cellulose derivative CMC-Li was synthesized by cotton as raw material. The mechanism of the CMC-Li modified electrode materials by electrospinning was reported. CMC-Li/lithium iron phosphate (LiFePO4, LFP) composite fiber coated with LFP and CMC-Li nanofibers was successfully obtained by electrospinning. Then, CMC-Li/LFP nano-composite fiber was carbonized under nitrogen at a high temperature formed CNF/LFP/Li (CLL) composite nanofibers as cathode material. It can increase the contents of Li+, and improving the diffusion efficiency and specific capacity. The battery with CLL as cathode material retained close to 100% of initial reversible capacity after 200 cycles at 168 mAh g(-1), which was nearly the theoretical specific capacity of LFP. The cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), X-ray diffraction (XRD) and scanning electron microscope (SEM) were characterizing material performance. The batteries have good electrochemical property, outstanding pollution-free, excellent stability. Copyright © 2014 Elsevier Ltd. All rights reserved.
Lv, Shenghua; Zhu, Linlin; Li, Ying; Jia, Chunmao; Sun, Shiyu
2017-01-01
Graphene oxide nanosheets (GONs)/carboxymethyl chitosan (CMC)/Fe3O4 magnetic composite microspheres (MCMs) were prepared by enclosing Fe3O4 particles with CMC and GONs in turn. The microstructures of GONs and GONs/CMC/Fe3O4 MCMs were characterized by FTIR, XRD, TEM, and SEM. The effects of GON content, pH value, and adsorption time on the adsorption capacity of the MCMs were investigated. The results show that the GONs/CMC/Fe3O4 MCMs have a greater specific surface area and a strong adsorption capacity for dye wastewater. Meanwhile, the adsorption mechanism was investigated, and the results accorded with the pseudo-second-order kinetic model and the Freundlich isotherm model. The search results indicate that GONs/CMC/Fe3O4 MCMs can be used to purify dye wastewater and has an important potential use in the practical purification of dye wastewater. PMID:28772419
Preparation of CMC-modified melamine resin spherical nano-phase change energy storage materials.
Hu, Xiaofeng; Huang, Zhanhua; Zhang, Yanhua
2014-01-30
A novel carboxymethyl cellulose (CMC)-modified melamine-formaldehyde (MF) phase change capsule with excellent encapsulation was prepared by in situ polymerization. Effects of CMC on the properties of the capsules were studied by Fourier transformation infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), scanning electronic microscopy (SEM), X-ray diffractometry (XRD), and thermogravimetric analysis (TGA). The results showed that the CMC-modified capsules had an average diameter of about 50nm and good uniformity. The phase change enthalpy of the capsules was increased and the cracking ratio decreased by incorporating a suitable amount of CMC. The optimum phase change enthalpy of the nanocapsules was 83.46J/g, and their paraffin content was 63.1%. The heat resistance of the capsule shells decreased after CMC modification. In addition, the nanocapsule cracking ratio of the nanocapsules was 11.0%, which is highly attractive for their application as nano phase change materials. Copyright © 2013 Elsevier Ltd. All rights reserved.
Mokhtarzadeh, Hossein; Perraton, Luke; Fok, Laurence; Muñoz, Mario A; Clark, Ross; Pivonka, Peter; Bryant, Adam L
2014-09-22
The aim of this paper was to compare the effect of different optimisation methods and different knee joint degrees of freedom (DOF) on muscle force predictions during a single legged hop. Nineteen subjects performed single-legged hopping manoeuvres and subject-specific musculoskeletal models were developed to predict muscle forces during the movement. Muscle forces were predicted using static optimisation (SO) and computed muscle control (CMC) methods using either 1 or 3 DOF knee joint models. All sagittal and transverse plane joint angles calculated using inverse kinematics or CMC in a 1 DOF or 3 DOF knee were well-matched (RMS error<3°). Biarticular muscles (hamstrings, rectus femoris and gastrocnemius) showed more differences in muscle force profiles when comparing between the different muscle prediction approaches where these muscles showed larger time delays for many of the comparisons. The muscle force magnitudes of vasti, gluteus maximus and gluteus medius were not greatly influenced by the choice of muscle force prediction method with low normalised root mean squared errors (<48%) observed in most comparisons. We conclude that SO and CMC can be used to predict lower-limb muscle co-contraction during hopping movements. However, care must be taken in interpreting the magnitude of force predicted in the biarticular muscles and the soleus, especially when using a 1 DOF knee. Despite this limitation, given that SO is a more robust and computationally efficient method for predicting muscle forces than CMC, we suggest that SO can be used in conjunction with musculoskeletal models that have a 1 or 3 DOF knee joint to study the relative differences and the role of muscles during hopping activities in future studies. Copyright © 2014 Elsevier Ltd. All rights reserved.
Graziadio, S; Tomasevic, L; Assenza, G; Tecchio, F; Eyre, J A
2012-12-01
Bilateral changes in the hemispheric reorganisation have been observed chronically after unilateral stroke. Our hypotheses were that activity dependent competition between the lesioned and non-lesioned corticospinal systems would result in persisting asymmetry and be associated with poor recovery. Eleven subjects (medium 6.5 years after stroke) were compared to 9 age-matched controls. The power spectral density (PSD) of the sensorimotor electroencephalogram (SM1-EEG) and electromyogram (EMG) and corticomuscular coherence (CMC) were studied during rest and isometric contraction of right or left opponens pollicis (OP). Global recovery was assessed using NIH score. There was bilateral loss of beta frequency activity in the SM1-EEGs and OP-EMGs in strokes compared to controls. There was no difference between strokes and controls in symmetry indices estimated between the two corticospinal systems for SM1-EEG, OP-EMG and CMC. Performance correlated with preservation of beta frequency power in OP-EMG in both hands. Symmetry indices for the SM1-EEG, OP-EMG and CMC correlated with recovery. Significant changes occurred at both cortical and spinomuscular levels after stroke but to the same degree and in the same direction in both the lesioned and non-lesioned corticospinal systems. Global recovery correlated with the degree of symmetry between corticospinal systems at all three levels - cortical and spinomuscular levels and their connectivity (CMC), but not with the absolute degree of abnormality. Re-establishing balance between the corticospinal systems may be important for overall motor function, even if it is achieved at the expense of the non-lesioned system. Copyright © 2012 Elsevier Inc. All rights reserved.
Haidari, A H; Heijman, S G J; van der Meer, W G J
2016-12-01
It is widely accepted that our understanding about the membrane process increases by investigation of the hydraulic conditions of membranes. While numerical studies have been broadly used for this purpose, the experimental studies of a comparable resolution are scarce. In this study, we compared the pressure drop, the temporal and the spatial velocity maps of a spacer-filled channel and an empty channel of the same size to determine the effect of presence of the feeds spacer on hydraulic conditions. The velocity maps are obtained experimentally by using of the Particle Image Velocimetry (PIV) technique. Application of the feed spacer caused 2-8.5 higher pressure drop increase in the experimental conditions in this research. The flow had a spatial distribution in the form of a unimodal symmetric curve of normal distribution in the empty channel and a bimodal asymmetric curve in the spacer-filled channel. The bimodal curve indicates the presence of high- and low-velocity zones. Additionally, the low-velocity zones showed also a lower variation of velocity in time, which indicates the high fouling potential of these locations. The results from this study may be uses for validation of numerical studies. Copyright © 2016 Elsevier Ltd. All rights reserved.
Turbine Airfoil With CMC Leading-Edge Concept Tested Under Simulated Gas Turbine Conditions
NASA Technical Reports Server (NTRS)
Robinson, R. Craig; Hatton, Kenneth S.
2000-01-01
Silicon-based ceramics have been proposed as component materials for gas turbine engine hot-sections. When the Navy s Harrier fighter experienced engine (Pegasus F402) failure because of leading-edge durability problems on the second-stage high-pressure turbine vane, the Office of Naval Research came to the NASA Glenn Research Center at Lewis Field for test support in evaluating a concept for eliminating the vane-edge degradation. The High Pressure Burner Rig (HPBR) was selected for testing since it could provide temperature, pressure, velocity, and combustion gas compositions that closely simulate the engine environment. The study focused on equipping the stationary metal airfoil (Pegasus F402) with a ceramic matrix composite (CMC) leading-edge insert and evaluating the feasibility and benefits of such a configuration. The test exposed the component, with and without the CMC insert, to the harsh engine environment in an unloaded condition, with cooling to provide temperature relief to the metal blade underneath. The insert was made using an AlliedSignal Composites, Inc., enhanced HiNicalon (Nippon Carbon Co. LTD., Yokohama, Japan) fiber-reinforced silicon carbide composite (SiC/SiC CMC) material fabricated via chemical vapor infiltration. This insert was 45-mils thick and occupied a recessed area in the leading edge and shroud of the vane. It was designed to be free floating with an end cap design. The HPBR tests provided a comparative evaluation of the temperature response and leading-edge durability and included cycling the airfoils between simulated idle, lift, and cruise flight conditions. In addition, the airfoils were aircooled, uniquely instrumented, and exposed to the exact set of internal and external conditions, which included gas temperatures in excess of 1370 C (2500 F). In addition to documenting the temperature response of the metal vane for comparison with the CMC, a demonstration of improved leading-edge durability was a primary goal. First, the metal vane was tested for a total of 150 cycles. Both the leading edge and trailing edge of the blade exhibited fatigue cracking and burn-through similar to the failures experienced in service by the F402 engine. Next, an airfoil, fitted with the ceramic leading edge insert, was exposed for 200 cycles. The temperature response of those HPBR cycles indicated a reduced internal metal temperature, by as much as 600 F at the midspan location for the same surface temperature (2100 F). After testing, the composite insert appeared intact, with no signs of failure on either the vane s leading or trailing edge. Only a slight oxide scale, as would be expected, was noted on the insert. Overall, the CMC insert performed similarly to a thick thermal barrier coating. With a small air gap between the metal and the SiC/SiC leading edge, heat transfer from the CMC to the metal alloy was low, effectively lowering the temperatures. The insert's performance has proven that an uncooled CMC can be engineered and designed to withstand the thermal up-shock experienced during the severe lift conditions in the Pegasus engine. The design of the leading-edge insert, which minimized thermal stresses in the SiC/SiC CMC, showed that the CMC/metal assembly can be engineered to be a functioning component.
Enhanced removal of As (V) from aqueous solution using modified hydrous ferric oxide nanoparticles
Huo, Lijuan; Zeng, Xibai; Su, Shiming; Bai, Lingyu; Wang, Yanan
2017-01-01
Hydrous ferric oxide (HFO) is most effective with high treatment capacity on arsenate [As(V)] sorption although its transformation and aggregation nature need further improvement. Here, HFO nanoparticles with carboxymethyl cellulose (CMC) or starch as modifier was synthesized for the purpose of stability improvement and As(V) removal from water. Comparatively, CMC might be the optimum stabilizer for HFO nanoparticles because of more effective physical and chemical stability. The large-pore structure, high surface specific area, and the non-aggregated nature of CMC-HFO lead to increased adsorption sites, and thus high adsorption capacities of As(V) without pre-treatment (355 mg·g−1), which is much greater than those reported in previous studies. Second-order equation and dual-mode isotherm model could be successfully used to interpret the sorption kinetics and isotherms of As(V), respectively. FTIR, XPS and XRD analyses suggested that precipitation and surface complexation were primary mechanisms for As(V) removal by CMC modified HFO nanoparticles. A surface complexation model (SCM) was used to simulate As adsorption over pH 2.5–10.4. The predominant adsorbed arsenate species were modeled as bidentate binuclear surface complexes at low pH and as monodentate complexes at high pH. The immobilized arsenic remained stable when aging for 270 d at room temperature. PMID:28098196
Enhanced removal of As (V) from aqueous solution using modified hydrous ferric oxide nanoparticles
NASA Astrophysics Data System (ADS)
Huo, Lijuan; Zeng, Xibai; Su, Shiming; Bai, Lingyu; Wang, Yanan
2017-01-01
Hydrous ferric oxide (HFO) is most effective with high treatment capacity on arsenate [As(V)] sorption although its transformation and aggregation nature need further improvement. Here, HFO nanoparticles with carboxymethyl cellulose (CMC) or starch as modifier was synthesized for the purpose of stability improvement and As(V) removal from water. Comparatively, CMC might be the optimum stabilizer for HFO nanoparticles because of more effective physical and chemical stability. The large-pore structure, high surface specific area, and the non-aggregated nature of CMC-HFO lead to increased adsorption sites, and thus high adsorption capacities of As(V) without pre-treatment (355 mg·g-1), which is much greater than those reported in previous studies. Second-order equation and dual-mode isotherm model could be successfully used to interpret the sorption kinetics and isotherms of As(V), respectively. FTIR, XPS and XRD analyses suggested that precipitation and surface complexation were primary mechanisms for As(V) removal by CMC modified HFO nanoparticles. A surface complexation model (SCM) was used to simulate As adsorption over pH 2.5-10.4. The predominant adsorbed arsenate species were modeled as bidentate binuclear surface complexes at low pH and as monodentate complexes at high pH. The immobilized arsenic remained stable when aging for 270 d at room temperature.
Benchapattarapong, N; Anderson, W A; Bai, F; Moo-Young, M
2005-07-01
A physico-chemical, two phase simulated pseudoplastic fermentation (SPF) broth was investigated in which Solka Floc cellulose fibre was used to simulate the filamentous biomass, and a mixture of 0.1% (w/v) carboxymethyl cellulose (CMC) and 0.15 M aqueous sodium chloride was used to simulate the liquid fraction of the fermentation broth. An investigation of the rheological behaviour and hydrodynamic properties of the SPF broth was carried out, and compared to both a fungal Tolypocladium inflatum fermentation broth and a CMC solution in a 50 L stirred tank bioreactor equipped with conventional Rushton turbines. The experimental data confirmed the ability of the two phase SPF broth to mimic both the T. inflatum broth bulk rheology as well as the mixing and mass transfer behaviour. In contrast, using a homogeneous CMC solution with a similar bulk rheology to simulate the fermentation resulted in a significant underestimation of the mass transfer and mixing times. The presence of the solid phase and its microstructure in the SPF broth appear to play a significant role in gas holdup and bubble size, thus leading to the different behaviours. The SPF broth seems to be a more accurate simulation fluid that can be used to predict the bioreactor mixing and mass transfer performance in filamentous fermentations, in comparison with CMC solutions used in some previous studies.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-27
... antidumping duty administrative review of purified carboxymethylcellulose (CMC) from the Netherlands, covering...) (Preliminary Results). The merchandise covered by the order is purified CMC, as described in the ``Scope of the... duty order on purified CMC from the Netherlands. See Preliminary Results. The respondent under review...
Synchronous versus Asynchronous CMC and Transfer to Japanese Oral Performance
ERIC Educational Resources Information Center
Hirotani, Maki
2009-01-01
This study investigated the effects of synchronous and asynchronous CMC (computer-mediated communication)on the development of linguistic features of learners' speech in Japanese. Using learners from fourth-semester Japanese classes, the following research questions were examined: (a) Does CMC have positive effects on the development of oral…
ESL Students' Computer-Mediated Communication Practices: Context Configuration
ERIC Educational Resources Information Center
Shin, Dong-Shin
2006-01-01
This paper examines how context is configured in ESL students' language learning practices through computer-mediated communication (CMC). Specifically, I focus on how a group of ESL students jointly constructed the context of their CMC activities through interactional patterns and norms, and how configured affordances within the CMC environment…
CMC Research at NASA Glenn in 2017: Recent Progress and Plans
NASA Technical Reports Server (NTRS)
Grady, Joseph E.
2017-01-01
As part of NASA's Aeronautics research mission, Glenn Research Center has developed advanced constituents for 2700F CMC turbine engine applications. In this presentation, fiber and matrix development and characterization for SiCSiC composites will be reviewed and resulting improvements in CMC durability and mechanical properties will be summarized. Progress toward the development and validation of models predicting the effects of the engine environment on durability of CMC and Environmental Barrier Coatings will be summarized and plans for research and collaborations in 2017 will be summarized.
Improving Kinematic Accuracy of Soft Wearable Data Gloves by Optimizing Sensor Locations
Kim, Dong Hyun; Lee, Sang Wook; Park, Hyung-Soon
2016-01-01
Bending sensors enable compact, wearable designs when used for measuring hand configurations in data gloves. While existing data gloves can accurately measure angular displacement of the finger and distal thumb joints, accurate measurement of thumb carpometacarpal (CMC) joint movements remains challenging due to crosstalk between the multi-sensor outputs required to measure the degrees of freedom (DOF). To properly measure CMC-joint configurations, sensor locations that minimize sensor crosstalk must be identified. This paper presents a novel approach to identifying optimal sensor locations. Three-dimensional hand surface data from ten subjects was collected in multiple thumb postures with varied CMC-joint flexion and abduction angles. For each posture, scanned CMC-joint contours were used to estimate CMC-joint flexion and abduction angles by varying the positions and orientations of two bending sensors. Optimal sensor locations were estimated by the least squares method, which minimized the difference between the true CMC-joint angles and the joint angle estimates. Finally, the resultant optimal sensor locations were experimentally validated. Placing sensors at the optimal locations, CMC-joint angle measurement accuracies improved (flexion, 2.8° ± 1.9°; abduction, 1.9° ± 1.2°). The proposed method for improving the accuracy of the sensing system can be extended to other types of soft wearable measurement devices. PMID:27240364
Tso, Chih-Ping; Shih, Yang-Hsin
2017-01-15
Polybrominated diphenyl ethers (PBDEs) are commonly used brominated flame retardants in many products. They have accumulated in the environment and become widely dispersed. In this study, carboxymethylcellulose (CMC) was applied to modify nanoscale zerovalent iron (NZVI) and bimetallic Ni/Fe nanoparticles (NPs) to prevent NP aggregation. In this study the removal kinetics of the decabrominated diphenyl ethers (DBDE) with CMC-stabilized Fe NPs were evaluated. CMC-stabilized Ni/Fe NPs with an average size of 86.7nm contained metallic Fe 0 and reduced Ni. The colloidal stability decreased with a decrease in pH, which was further accompanied by a change in the removal rate of DBDE. Our results showed that anions do not change the removal rates of DBDE, with the exception of 10mM NO 3 - , which induced the formation of Fe (hydro)oxides on the Fe NP surface, which could further coagulate with DBDE. This study provides important information for our understanding of the influence of CMC coatings on the reactivity of Fe NPs. Because CMC coatings prevent the passivation of Fe in the presence of anions, CMC-coated Fe NPs show potential for the in-situ remediation of PBDEs in the environment. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Geng, Xiang F.; Hu, Xing Q.; Xia, Ji J.; Jia, Xue C.
2013-04-01
A series of novel di-hydroxyl-sulfate-betaine-type zwitterionic gemini surfactants of 1,2-bis[N-ethyl-N-(2-hydroxyl-3-sulfopropyl)-alkylammonium] alkyl betaines (DBAs-n, where s and n represent the spacer length of 2, 4 and 6 and the hydrocarbon chain length of 8, 12, 14, 16 and 18, respectively) were synthesized by reacting alkylamine with sodium 3-chloro-2-hydroxypropanesulfonate (the alternative sulphonated agent), followed by the reactions with а,ω-dibromoalkyl and then ethyl bromide. Their adsorption and aggregation properties were investigated by means of equilibrium surface tension, dynamic light-scattering (DLS) and transmission electron microscopy (TEM). DBAs-n gemini surfactants showed excellent surface activities and packed tightly at the interface. For example, the minimum CMC value for DBAs-n series was of the order of 10-5 M and the surface tension of water can be decreased as low as 22.2 mN/m. It was also found that the aggregates of DBAs-n solutions were significantly dependent on their hydrocarbon chain lengths. The aggregates changed from vesicles to entangled fiber-like micelles as the chain length increased from dodecyl to tetradecyl.
Nose-to-brain transport of melatonin from polymer gel suspensions: a microdialysis study in rats.
Jayachandra Babu, R; Dayal, Pankaj Patrick; Pawar, Kasturi; Singh, Mandip
2011-11-01
Exogenous melatonin (MT) has significant neuroprotective roles in Alzheimer's and Parkinson's diseases. This study investigates the delivery MT to brain via nasal route as a polymeric gel suspension using central brain microdialysis in anesthetized rats. Micronized MT suspensions using polymers [carbopol, carboxymethyl cellulose (CMC)] and polyethylene glycol 400 (PEG400) were prepared and characterized for nasal administration. In vitro permeation of the formulations was measured across a three-dimensional tissue culture model EpiAirway(™). The central brain delivery into olfactory bulb of nasally administered MT gel suspensions was studied using brain microdialysis in male Wistar rats. The MT content of microdialysis samples was analyzed by high performance liquid chromatography (HPLC) using electrochemical detection. The nose-to-brain delivery of MT formulations was compared with intravenously administered MT solution. MT suspensions in carbopol and CMC vehicles have shown significantly higher permeability across Epiairway(™) as compared to control, PEG400 (P < 0.05). The brain (olfactory bulb) levels of MT after intranasal administration were 9.22, 6.77 and 4.04-fold higher for carbopol, CMC and PEG400, respectively, than that of intravenous MT in rats. In conclusion, microdialysis studies demonstrated increased brain levels of MT via nasal administration in rats.
Nose-to-brain transport of melatonin from polymer gel suspensions: a microdialysis study in rats
Babu, R. Jayachandra; Dayal, Pankaj Patrick; Pawar, Kasturi; Singh, Mandip
2012-01-01
Purpose Exogenous melatonin (MT) has significant neuroprotective roles in Alzheimer’s and Parkinson’s diseases. This study investigates the delivery MT to brain via nasal route as a polymeric gel suspension using central brain microdialysis in anesthetized rats. Methods Micronized MT suspensions using polymers [carbopol, carboxymethyl cellulose (CMC)] and polyethylene glycol 400 (PEG400) were prepared and characterized for nasal administration. In vitro permeation of the formulations was measured across a three-dimensional tissue culture model EpiAirway™. The central brain delivery into olfactory bulb of nasally administered MT gel suspensions was studied using brain microdialysis in male Wistar rats. The MT content of microdialysis samples was analyzed by high performance liquid chromatography (HPLC) using electrochemical detection. The nose-to-brain delivery of MT formulations was compared with intravenously administered MT solution. Results MT suspensions in carbopol and CMC vehicles have shown significantly higher permeability across Epiairway™ as compared to control, PEG400 (P < 0.05). The brain (olfactory bulb) levels of MT after intranasal administration were 9.22, 6.77 and 4.04-fold higher for carbopol, CMC and PEG400, respectively, than that of intravenous MT in rats. In conclusion, microdialysis studies demonstrated increased brain levels of MT via nasal administration in rats. PMID:21428693
Trimethyl and carboxymethyl chitosan carriers for bio-active polymer-inorganic nanocomposites.
Geisberger, Georg; Gyenge, Emina Besic; Maake, Caroline; Patzke, Greta R
2013-01-02
The carrier properties of carboxymethyl chitosan (CMC) and trimethyl chitosan (TMC) in combination with polyoxometalates (POMs) as inorganic drug prototypes are compared with respect to the influence of polymer matrix charge and structure on the emerging composites. A direct crosslinking approach with TMC and K(6)H(2)[CoW(11)TiO(40)]·13H(2)O ({CoW(11)TiO(40)}) as a representative anticancer POM affords nanocomposites with a size range of 50-90nm. The obtained POM-chitosan composites are characterized with a wide range of analytical methods, and POM encapsulation into positively charged TMC brings forward different nanocomposite morphologies and properties than CMC as a carrier material. Furthermore, uptake of fluorescein isothiocyanate (FITC) labeled POM-CMC and POM-TMC by HeLa cells was monitored, and the influence of chlorpromazine (CP) as inhibitor of the clathrin mediated pathway revealed different cellular uptake behavior of composites and pristine carriers. TMC/{CoW(11)TiO(40)} nanocomposites are taken up by HeLa cells after short incubation times around 30 min at low concentrations. The anticancer activity of pristine {CoW(11)TiO(40)} and its TMC-nanocomposites was investigated in vitro with MTT assays and compared to a reference POM. Copyright © 2012 Elsevier Ltd. All rights reserved.
Hafezi, Mohammad-Javad; Sharif, Farhad
2015-11-01
Study on the effect of amphiphilic copolymers structure on their self assembly is an interesting subject, with important applications in the area of drug delivery and biological system treatments. Brownian dynamics simulations were performed to study self-assembly of the linear amphiphilic block copolymers with the same hydrophilic head, but hydrophobic tails of different lengths. Critical micelle concentration (CMC), gyration radius distribution, micelle size distribution, density profiles of micelles, shape anisotropy, and dynamics of micellization were investigated as a function of tail length. Simulation results were compared with predictions from theory and simulation for mixed systems of block copolymers with long and short hydrophobic tail, reported in our previous work. Interestingly, the equilibrium structural and dynamic parameters of pure and mixed block copolymers were similarly dependant on the intrinsic/apparent hydrophobic block length. Log (CMC) was, however; proportional to the tail length and had a different behavior compared to the mixed system. The power law scaling relation of equilibrium structural parameters for amphiphilic block copolymers predicts the same dependence for similar hydrophobic tail lengths, but the power law prediction of CMC is different, which is due to its simplifying assumptions as discussed here. Copyright © 2015 Elsevier Inc. All rights reserved.
Wu, Shengfan; Li, Sihua; Sun, Qi; Huang, Chenchao; Fung, Man-Keung
2016-01-01
Ultrathin emissive layers (UEMLs) of phosphorescent materials with a layer thickness of less than 0.3 nm were introduced for high-efficiency organic light-emitting diodes (OLEDs). All the UEMLs for white OLEDs can be prepared without the use of interlayers or spacers. Compared with devices fabricated with interlayers inserted in-between the UEMLs, our spacer-free structure not only significantly improves device efficiency, but also simplifies the fabrication process, thus it has a great potential in lowering the cost of OLED panels. In addition, its spacer-free structure decreases the number of interfaces which often introduce unnecessary energy barriers in these devices. In the present work, UEMLs of red, green and blue-emitting phosphorescent materials and yellow and blue phosphorescent emitters are utilized for the demonstration of spacer-free white OLEDs. Upon optimization of the device structure, we demonstrated spacer-free and simple-structured white-emitting OLEDs with a good device performance. The current and power efficiencies of our white-emitting devices are as high as 56.0 cd/A and 55.5 lm/W, respectively. These efficiencies are the highest ever reported for OLEDs fabricated with the UEML approach. PMID:27170543
Wu, Shengfan; Li, Sihua; Sun, Qi; Huang, Chenchao; Fung, Man-Keung
2016-05-12
Ultrathin emissive layers (UEMLs) of phosphorescent materials with a layer thickness of less than 0.3 nm were introduced for high-efficiency organic light-emitting diodes (OLEDs). All the UEMLs for white OLEDs can be prepared without the use of interlayers or spacers. Compared with devices fabricated with interlayers inserted in-between the UEMLs, our spacer-free structure not only significantly improves device efficiency, but also simplifies the fabrication process, thus it has a great potential in lowering the cost of OLED panels. In addition, its spacer-free structure decreases the number of interfaces which often introduce unnecessary energy barriers in these devices. In the present work, UEMLs of red, green and blue-emitting phosphorescent materials and yellow and blue phosphorescent emitters are utilized for the demonstration of spacer-free white OLEDs. Upon optimization of the device structure, we demonstrated spacer-free and simple-structured white-emitting OLEDs with a good device performance. The current and power efficiencies of our white-emitting devices are as high as 56.0 cd/A and 55.5 lm/W, respectively. These efficiencies are the highest ever reported for OLEDs fabricated with the UEML approach.
NASA Astrophysics Data System (ADS)
Wu, Shengfan; Li, Sihua; Sun, Qi; Huang, Chenchao; Fung, Man-Keung
2016-05-01
Ultrathin emissive layers (UEMLs) of phosphorescent materials with a layer thickness of less than 0.3 nm were introduced for high-efficiency organic light-emitting diodes (OLEDs). All the UEMLs for white OLEDs can be prepared without the use of interlayers or spacers. Compared with devices fabricated with interlayers inserted in-between the UEMLs, our spacer-free structure not only significantly improves device efficiency, but also simplifies the fabrication process, thus it has a great potential in lowering the cost of OLED panels. In addition, its spacer-free structure decreases the number of interfaces which often introduce unnecessary energy barriers in these devices. In the present work, UEMLs of red, green and blue-emitting phosphorescent materials and yellow and blue phosphorescent emitters are utilized for the demonstration of spacer-free white OLEDs. Upon optimization of the device structure, we demonstrated spacer-free and simple-structured white-emitting OLEDs with a good device performance. The current and power efficiencies of our white-emitting devices are as high as 56.0 cd/A and 55.5 lm/W, respectively. These efficiencies are the highest ever reported for OLEDs fabricated with the UEML approach.
Li, Wan; Bian, Xin; Evivie, Smith Etareri; Huo, Gui-Cheng
2016-09-01
The CRISPR-Cas (CRISPR together with CRISPR-associated proteins) modules are the adaptive immune system, acting as an adaptive and heritable immune system in bacteria and archaea. CRISPR-based immunity acts by integrating short virus sequences in the cell's CRISPR locus, allowing the cell to remember, recognize, and clear infections. In this study, the homology of CRISPRs sequence in BIMs (bacteriophage-insensitive mutants) of Streptococcus thermophilus St-I were analyzed. Secondary structures of the repeats and the PAMs (protospacer-associated motif) of each CRISPR locus were also predicted. Results showed that CRISPR1 has 27 repeat-spacer units, 5 of them had duplicates; CRISPR2 has one repeat-spacer unit; CRISPR3 has 28 repeat-spacer units. Only BIM1 had a new spacer acquisition in CRISPR3, while BIM2 and BIM3 had no new spacers' insertion, thus indicating that while most CRISPR1 were more active than CRISPR3, new spacer acquisition occurred just in CRSPR3 in some situations. These findings will help establish the foundation for the study of CRSPR-Cas systems in lactic acid bacteria.
NASA Astrophysics Data System (ADS)
Miyakita, Takeshi; Hatakenaka, Ryuta; Sugita, Hiroyuki; Saitoh, Masanori; Hirai, Tomoyuki
2014-11-01
For conventional Multi-Layer Insulation (MLI) blankets, it is difficult to control the layer density and the thermal insulation performance degrades due to the increase in conductive heat leak through interlayer contacts. At low temperatures, the proportion of conductive heat transfer through MLI blankets is large compared to that of radiative heat transfer, hence the decline in thermal insulation performance is significant. A new type of MLI blanket using new spacers; the Non-Interlayer-Contact Spacer MLI (NICS MLI) has been developed. This new MLI blanket uses small discrete spacers and can exclude uncertain interlayer contact between films. It is made of polyetheretherketone (PEEK) making it suitable for space use. The cross-sectional area to length ratio of the spacer is 1.0 × 10-5 m with a 10 mm diameter and 4 mm height. The insulation performance is measured with a boil-off calorimeter. Because the NICS MLI blanket can exclude uncertain interlayer contact, the test results showed good agreement with estimations. Furthermore, the NICS MLI blanket shows significantly good insulation performance (effective emissivity is 0.0046 at ordinary temperature), particularly at low temperatures, due to the high thermal resistance of this spacer.
Development of a material property database on selected ceramic matrix composite materials
NASA Technical Reports Server (NTRS)
Mahanta, Kamala
1996-01-01
Ceramic Matrix Composites, with fiber/whisker/particulate reinforcement, possess the attractive properties of ceramics such as high melting temperature, high strength and stiffness at high temperature, low density, excellent environmental resistance, combined with improved toughness and mechanical reliability. These unique properties have made these composites an enabling technology for thermomechanically demanding applications in high temperature, high stress and aggressive environments. On a broader scale, CMC's are anticipated to be applicable in aircraft propulsion, space propulsion, power and structures, in addition to ground based applications. However, it is also true that for any serious commitment of the material toward any of the intended critical thermo-mechanical applications to materialize, vigorous research has to be conducted for a thorough understanding of the mechanical and thermal behavior of CMC's. The high technology of CMC'S is far from being mature. In view of this growing need for CMC data, researchers all over the world have found themselves drawn into the characterization of CMC's such as C/SiC, SiC/SiC, SiC/Al203, SiC/Glass, SiC/C, SiC/Blackglas. A significant amount of data has been generated by the industries, national laboratories and educational institutions in the United States of America. NASA/Marshall Space Flight Center intends to collect the 'pedigreed' CMC data and store those in a CMC database within MAPTIS (Materials and Processes Technical Information System). The task of compilation of the CMC database is a monumental one and requires efforts in various directions. The project started in the form of a summer faculty fellowship in 1994 and has spilled into the months that followed and into the summer faculty fellowship of 1995 and has the prospect of continuing into the future for a healthy growth, which of course depends to a large extent on how fast CMC data are generated. The 10-week long summer fellowship has concentrated, basically, on establishing the procedure for a smooth transfer of data into a CMC database on MAPTIS which is a vital part of the following broader picture of the project.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jozaki, K.; Kuriu, A.; Hirota, S.
1991-03-01
When fibroblast cell lines were cultured in contact with bone marrow-derived cultured mast cells (CMC), both NIH/3T3 and BALB/3T3 cell lines supported the proliferation of CMC. In contrast, when contact between fibroblasts and CMC was prohibited by Biopore membranes or soft agar, only BALB/3T3 fibroblasts supported CMC proliferation, suggesting that BALB/3T3 but not NIH/3T3 cells secreted a significant amount of a mast cell growth activity. Moreover, the BALB/3T3-derived growth activity induced the incorporation of (3H)thymidine by CMC and the clonal growth of peritoneal mast cells in methylcellulose. The mast cell growth activity appeared to be different from interleukin 3 (IL-3)more » and interleukin 4 (IL-4), because mRNAs for these interleukins were not detectable in BALB/3T3 fibroblasts. Although mast cells are genetically deficient in tissues of W/Wv mice, CMC did develop when bone marrow cells of W/Wv mice were cultured with pokeweed mitogen-stimulated spleen cell-conditioned medium. Because BALB/3T3 fibroblast-conditioned medium (BALB-FCM) did not induce the incorporation of (3H)thymidine by W/Wv CMC, the growth activity in BALB-FCM appeared to be a ligand for the receptor encoded by the W (c-kit) locus. Because CMC and peritoneal mast cells are obtained as homogeneous suspensions rather easily, these cells may be potentially useful as targets for the fibroblast-derived mast cell growth activity.« less
NASA Astrophysics Data System (ADS)
Wu, Liping; Lin, Xiaoyan; Zhou, Xingbao; Luo, Xuegang
2016-10-01
A novel dual functional microsphere adsorbent of alginate/carboxymethyl cellulose sodium composite loaded with calcium and aluminum (SA/CMC-Ca-Al) is prepared by an injection device to remove fluoride and uranium, respectively, from fluoro-uranium mixed aqueous solution. Batch experiments are performed at different conditions: pH, temperature, initial concentration and contact time. The results show that the maximum adsorption amount for fluoride is 35.98 mg/g at pH 2.0, 298.15 K concentration 100 mg/L, while that for uranium is 101.76 mg/g at pH 4.0, 298.15 K concentration 100 mg/L. Both of the adsorption process could be well described by Langmuir model. The adsorption kinetic data is fitted well with pseudo-first-order model for uranium and pseudo-second-order model for fluoride. Thermodynamic parameters are also evaluated, indicating that the adsorption of uranium on SA/CMC-Ca-Al is a spontaneous and exothermic process, while the removal of fluoride is non-spontaneous and endothermic process. The mechanism of modification and adsorption process on SA/CMC-Ca-Al is characterized by FT-IR, SEM, EDX and XPS. The results show that Ca (II) and Al (III) are loaded on SA/CMC through ion-exchange of sodium of SA/CMC. The coordination reaction and ion-exchange happen during the adsorption process between SA/CMC-Ca-Al and uranium, fluoride. Results suggest that the SA/CMC-Ca-Al adsorbent has a great potential in removing uranium and fluoride from aqueous solution.
Wiergowski, Marek; Aszyk, Justyna; Kaliszan, Michał; Wilczewska, Kamila; Anand, Jacek Sein; Kot-Wasik, Agata; Jankowski, Zbigniew
2017-01-15
This paper describes cases of poisoning caused by new psychoactive substances such as: 25B-NBOMe (2-(4-bromo-2,5-dimethoxyphenyl)-N-[(2-methoxyphenyl)methyl]ethanamine) and 4-CMC (1-(4-chlorophenyl)-2-(methylamino)-1-propanone). The analytical procedure includes rapid and selective method for the extraction and determination of 4-CMC and 25B-NBOMe in blood samples using UPLC-MS/MS technique. To the best of our knowledge, this is the first report, that involves a fully validated method for quantification of new-designer drug - 4-CMC in postmortem blood samples. The biological material was also analyzed with the use of routine analytical methods: immunochemical techniques, gas chromatography with flame ionization detection and gas chromatography with electron impact mass spectrometry. The results of real samples analyses correspond to possible toxicological effects: death resulting from 25B-NBOMe - mediated hallucinations (661ng/mL of 25B-NBOMe and 0.887ng/mL of 4-CMC), fatal overdose of 25B-NBOMe and 4-CMC (66.5ng/mL of 25B-NBOMe and 2.14ng/mL of 4-CMC) and non-fatal intoxication of these drugs (38.4ng/mL of 25B NBOMe and 0.181ng/mL of 4-CMC). Additionally, O-demethylathed O, O-bis-demethylathed and glucuronidated metabolites of 25B-NBOMe in biological specimens were detected. Copyright © 2016 Elsevier B.V. All rights reserved.
Measurements and sensitivities of LWR in poly spacers
NASA Astrophysics Data System (ADS)
Ayal, Guy; Shauly, Eitan; Levi, Shimon; Siany, Amit; Adan, Ofer; Shacham-Diamand, Yosi
2010-03-01
LER and LWR have long been considered a primary issue in process development and monitoring. Development of a low power process flavors emphasizes the effect of LER, LWR on different aspects of the device. Gate level performance, particularly leakage current at the front end of line, resistance and reliability in the back-end layers. Traditionally as can be seen in many publications, for the front end of line the focus is mainly on Poly and Active area layers. Poly spacers contribution to the gate leakage, for example, is rarely discussed. Following our research done on sources of gate leakage, we found leakage current (Ioff) in some processes to be highly sensitive to changes in the width of the Poly spacers - even more strongly to the actual Poly gate CDs. Therefore we decided to measure Poly spacers LWR, its correlation to the LWR in the poly, and its sensitivity to changes in layout and OPC. In our last year publication, we defined the terms LLER (Local Line Edge Roughness) and LLWR (Local Line Width Roughness). The local roughness is measured as the 3-sigma value of the line edge/width in a 5-nm segment around the measurement point. We will use these terms in this paper to evaluate the Poly roughness impact on Poly spacer's roughness. A dedicated test chip was designed for the experiments, having various transistors layout configurations with different densities to cover the all range of process design rules. Applied Materials LER and LWR innovative algorithms were used to measure and characterize the spacer roughness relative to the distance from the active edges and from other spaces. To accurately measure all structures in a reasonable time, the recipes were automatically generated from CAD. On silicon, after poly spacers generation, the transistors no longer resemble the Poly layer CAD layout, their morphology is different compared with Photo/Etch traditional structures , and dimensions vary significantly. In this paper we present metrology and characterization of poly spacer LLWR and LLER compared to that of the poly gate in various transistor shapes, showing that the relation between them depends on the transistor architecture (final layout, including OPC). We will show how the spacer deposition may reduce, keep or even enlarge the roughness measured on Poly, depending on transistor layout , but surprisingly, not dependent on proximity effects.
ERIC Educational Resources Information Center
Vincent, Peter
2000-01-01
Examines the outcomes of a two-year trial of computer-mediated conferencing (CMC) conducted at a British university during the final-year undergraduate course in glacial and periglacial geomorphology. Discusses the issues related to CMC and describes the experience over the last two years of using CMC conferencing. (CMK)
Computer-Mediated Communication as Experienced by Korean Women Students in US Higher Education
ERIC Educational Resources Information Center
Baek, Mikyung; Damarin, Suzanne K.
2008-01-01
Having grown up in an age of rapidly developing electronic communication technology, today's students come to higher education with high levels of comfort and familiarity with computer-mediated communication (CMC, hereafter). The students' level of comfort with CMC, coupled with CMC's promises of enabling supplemental class discussion as well as…
32 CFR 724.305 - Functions of the CMC and CNO.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 32 National Defense 5 2013-07-01 2013-07-01 false Functions of the CMC and CNO. 724.305 Section 724.305 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY PERSONNEL NAVAL... of the CMC and CNO. In the case of Navy, CNMPC, under the CNP, shall discharge responsibilities of...
32 CFR 724.305 - Functions of the CMC and CNO.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 32 National Defense 5 2010-07-01 2010-07-01 false Functions of the CMC and CNO. 724.305 Section 724.305 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY PERSONNEL NAVAL... of the CMC and CNO. In the case of Navy, CNMPC, under the CNP, shall discharge responsibilities of...
ERIC Educational Resources Information Center
Çardak, Çigdem Suzan
2016-01-01
This article focusses on graduate level students' interactions during asynchronous CMC activities of an online course about the teaching profession in Turkey. The instructor of the course designed and facilitated a semester-long asynchronous CMC on forum discussions, and investigated the interaction of learners in multiple perspectives: learners'…
32 CFR 724.305 - Functions of the CMC and CNO.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 32 National Defense 5 2014-07-01 2014-07-01 false Functions of the CMC and CNO. 724.305 Section 724.305 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY PERSONNEL NAVAL... of the CMC and CNO. In the case of Navy, CNMPC, under the CNP, shall discharge responsibilities of...
32 CFR 724.305 - Functions of the CMC and CNO.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 32 National Defense 5 2012-07-01 2012-07-01 false Functions of the CMC and CNO. 724.305 Section 724.305 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY PERSONNEL NAVAL... of the CMC and CNO. In the case of Navy, CNMPC, under the CNP, shall discharge responsibilities of...
32 CFR 724.305 - Functions of the CMC and CNO.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 32 National Defense 5 2011-07-01 2011-07-01 false Functions of the CMC and CNO. 724.305 Section 724.305 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY PERSONNEL NAVAL... of the CMC and CNO. In the case of Navy, CNMPC, under the CNP, shall discharge responsibilities of...
Oral Computer-Mediated Interaction between L2 Learners: It's about Time!
ERIC Educational Resources Information Center
Yanguas, Inigo
2010-01-01
This study explores task-based, synchronous oral computer-mediated communication (CMC) among intermediate-level learners of Spanish. In particular, this paper examines (a) how learners in video and audio CMC groups negotiate for meaning during task-based interaction, (b) possible differences between both oral CMC modes and traditional face-to-face…
Li, Xiaozhou; Lv, Junping; Li, Dehuai; Wang, Lin
2017-08-01
Agricultural plastic films capable of shielding UV, filtering visible light and antifog are important to prolong their life and protect safeties of agriculturists and crops. In this work, high stable and small size TiO 2 @polymer nanoparticles (NPs) were prepared by an efficient one-pot microwave synthesis using titanic sulfate as Ti resource, carboxymethyl cellulose sodium (CMC) as complexing agent and stabilizer. The TiO 2 @CMC NPs obtained were then utilized to fabricate poly(ethylene imine) (PEI)/TiO 2 @CMC coatings on the surface of polypropylene films by a layer-by-layer assembly technique. The TiO 2 @CMC NPs show rapid deposition rate because small, spherical and anion-rich TiO 2 @CMC NPs possess large specific surface area and fast diffusion rate. More importantly, property experiments confirm that (PEI/TiO 2 @CMC)*15 coatings can not only effectively shield UV rays, filter visible light and prevent fogging but also delay the aging of their supports. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Taghizadeh, Mohammad Taghi; Sabouri, Narges
2013-09-01
The focus of this work is to study the effect of sodium montmorillonite (MMT-Na) clay content on the rate and extent of enzymatic hydrolysis polyvinyl alcohol (PVA)/starch (S)/carboxymethyl cellulose (CMC) blends using enzyme cellulase. The rate of glucose production from each nanocomposite substrates was most rapid for the substrate without MMT-Na and decreased with the addition of MMT-Na for PVA/S/CMC blend (51.5 μg/ml h), PVA/S/CMC/1% MMT (45.4 μg/ml h), PVA/S/CMC/3% MMT (42.8 μg/ml h), and PVA/S/CMC/5% MMT (39.2 μg/ml h). The results of this study have revealed that films with MMT-Na content at 5 wt.% exhibited a significantly reduced rate and extent of hydrolysis. Enzymatic degradation behavior of MMT-Na containing nanocomposites of PVA/S/CMC was based on the determinations of weight loss and the reducing sugars. The degraded residues have been characterized by various analytical techniques, such as Fourier transform infrared spectroscopy, scanning electronic microscopy, and UV-vis spectroscopy.
Lin, Bijin; Liu, Xiaoping; Zhang, Zhuan; Chen, Yang; Liao, Xiaojian; Li, Yiqun
2017-07-01
A very easy sequential metathesis for the synthesis of Pd(II)-CMC@Ce(OH) 4 organic/inorganic hybrid and its application as effective pre-catalyst for the Suzuki-Miyaura reaction have been reported. It was found that the Pd nanoparticles (Pd NPs) were formed in situ in the course of the Suzuki-Miyaura couplings when Pd(II)-CMC@Ce(OH) 4 was used as a pre-catalyst. The activity of the Pd NPs in the reaction was enhanced synergistically by the unique redox properties (Ce 3+ /Ce 4+ ) of Ce(OH) 4 and coordination with carboxyl groups as well as free hydroxyl groups of the hybrid of CMC@Ce(OH) 4 . The results exhibit the Pd(0)-CMC@Ce(OH) 4 is super over Pd(II)@CMC, Pd(II)@CeO 2 , and Pd(II)@Ce(OH) 4 catalysts in the Suzuki-Miyaura reaction. Moreover, the catalyst could be easily separated by simple filtration and reused at least seven runs without losing its activity. Copyright © 2017 Elsevier Inc. All rights reserved.
Wei, Liangming; Chen, Changxin; Hou, Zhongyu; Wei, Hao
2016-01-01
The design of novel binder systems is required for the high capacity silicon (Si) anodes which usually undergo huge volume change during the charge/discharge cycling. Here, we introduce a poly (acrylic acid sodium)-grafted-carboxymethyl cellulose (NaPAA-g-CMC) copolymer as an excellent binder for Si anode in lithium ion batteries (LIBs). The NaPAA-g-CMC copolymer was prepared via a free radical graft polymerization method by using CMC and acrylic acid as precursors. Unlike the linear, one-dimensional binders, the NaPAA-g-CMC copolymer binder is expected to present multi-point interaction with Si surface, resulting in enhanced binding ability with Si particles as well as with the copper (Cu) current collectors, and building a stable solid electrolyte interface (SEI) layer on the Si surface. The NaPAA-g-CMC based Si anode shows much better cycle stability and higher coulombic efficiency than those made with the well-known linear polymeric binders such as CMC and NaPPA. PMID:26786315
[Computer mediated discussion and attitude polarization].
Shiraishi, Takashi; Endo, Kimihisa; Yoshida, Fujio
2002-10-01
This study examined the hypothesis that computer mediated discussions lead to more extreme decisions than face-to-face (FTF) meeting. Kiesler, Siegel, & McGuire (1984) claimed that computer mediated communication (CMC) tended to be relatively uninhibited, as seen in 'flaming', and that group decisions under CMC using Choice Dilemma Questionnaire tended to be more extreme and riskier than FTF meetings. However, for the same reason, CMC discussions on controversial social issues for which participants initially hold strongly opposing views, might be less likely to reach a consensus, and no polarization should occur. Fifteen 4-member groups discussed a controversial social issue under one of three conditions: FTF, CMC, and partition. After discussion, participants rated their position as a group on a 9-point bipolar scale ranging from strong disagreement to strong agreement. A stronger polarization effect was observed for FTF groups than those where members were separated with partitions. However, no extreme shift from their original, individual positions was found for CMC participants. There results were discussed in terms of 'expertise and status equalization' and 'absence of social context cues' under CMC.
Kathiravan, Arunkumar; Srinivasan, Venkatesan; Khamrang, Themmila; Velusamy, Marappan; Jaccob, Madhavan; Pavithra, Nagaraj; Anandan, Sambandam; Velappan, Kandavelu
2017-01-25
Pyrene derivatives show immense potential as sensitizers for dye-sensitized solar cells (DSCs). Therefore, this work focuses on the impact of π-spacers on the photophysical, electrochemical and photovoltaic properties of pyrene based D-π-A dyes, since the insertion of π-spacers is one of the doable strategies to improve the light harvesting properties of the dye. In this respect, three new pyrene based D-π-A dyes have been synthesized and characterized by 1 H, 13 C NMR, and elemental analyses and EI-MS spectrometry. The selected π-spacers are benzene, thiophene and furan. Compared with a benzene spacer, the introduction of a heterocyclic ring spacer reduces the band gap of the dye and brings about the broadening of the absorption spectra to the longer wavelength region through intramolecular charge-transfer (ICT). Combined experimental and theoretical studies were performed to investigate the ICT process involved in the pyrene derivatives. The profound solvatochromism with increased nonradiative rate constants (k nr ) has been construed in terms of ICT from the pyrene core to rhodanine-3-acetic acid via conjugated π-spacers. Electrochemical data also reveal that the HOMO and LUMO energy levels are fine-tuned by incorporating different π-spacers between pyrene and rhodanine-3-acetic acid. On the basis of the optimized DSC test conditions, the best performance was found for PBRA, in which a benzene group is the conjugated π-spacer. The divergence in the photovoltaic behaviors of these dyes was further explicated by femtosecond fluorescence and electrochemical impedance spectroscopy.
Thumb carpometacarpal joint congruence during functional tasks and thumb range-of-motion activities
Halilaj, Eni; Moore, Douglas C; Patel, Tarpit K; Laidlaw, David H; Ladd, Amy L; Weiss, Arnold-Peter C; Crisco, Joseph J
2017-01-01
Joint incongruity is often cited as a possible etiological factor for the high incidence of thumb carpometacarpal (CMC) joint osteoarthritis (OA) in older women. There is evidence suggesting that biomechanics plays a role in CMC OA progression, but little is known about how CMC joint congruence, specifically, differs among different cohorts. The purpose of this in vivo study was to determine if CMC joint congruence differs with sex, age, and early stage OA for different thumb positions. Using CT data from 155 subjects and a congruence metric that is based on both articular morphology and joint posture, we did not find any differences in CMC joint congruence with sex or age group, but found that patients in the early stages of OA exhibit lower congruence than healthy subjects of the same age group. PMID:25570956
Thumb carpometacarpal joint congruence during functional tasks and thumb range-of-motion activities.
Halilaj, Eni; Moore, Douglas C; Patel, Tarpit K; Laidlaw, David H; Ladd, Amy L; Weiss, Arnold-Peter C; Crisco, Joseph J
2014-01-01
Joint incongruity is often cited as a possible etiological factor for the high incidence of thumb carpometacarpal (CMC) joint osteoarthritis (OA) in older women. There is evidence suggesting that biomechanics plays a role in CMC OA progression, but little is known about how CMC joint congruence, specifically, differs among different cohorts. The purpose of this in vivo study was to determine if CMC joint congruence differs with sex, age, and early stage OA for different thumb positions. Using CT data from 155 subjects and a congruence metric that is based on both articular morphology and joint posture, we did not find any differences in CMC joint congruence with sex or age group, but found that patients in the early stages of OA exhibit lower congruence than healthy subjects of the same age group.
Computer-mediated communication and the Gallaudet University community: a preliminary report.
Hogg, Nanette M; Lomicky, Carol S; Weiner, Stephen F
2008-01-01
The study examined the use of computer-mediated communication (CMC) among individuals involved in a conflict sparked by the appointment of an administrator as president-designate of Gallaudet University in 2006. CMC was defined as forms of communication used for transmitting (sharing) information through networks with digital devices. There were 662 survey respondents. Respondents reported overwhelmingly (98%) that they used CMC to communicate. Students and alumni reported CMC use in larger proportions than any other group. The favorite devices among all respondents were Sidekicks, stationary computers, and laptops. Half of all respondents also reported using some form of video device. Nearly all reported using e-mail; respondents also identified Web surfing, text messaging, and blogging as popular CMC activities. The authors plan another article reporting on computer and electronic technology use as a mechanism connecting collective identity to social movements.
Performance and Durability of Environmental Barrier Coatings on SiC/SiC Ceramic Matrix Composites
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Harder, Bryan; Bhatt, Ramakrishna
2016-01-01
This presentation highlights advanced environmental barrier coating (EBC) and SiC-SiC Ceramic Matrix Composites (CMC) systems for next generation turbine engines. The emphasis will be placed on fundamental coating and CMC property evaluations; and the integrated system performance and degradation mechanisms in simulated laboratory turbine engine testing environments. Long term durability tests in laser rig simulated high heat flux the rmomechanical creep and fatigue loading conditions will also be presented. The results can help improve the future EBC-CMC system designs, validating the advanced EBC-CMC technologies for hot section turbine engine applications.
Stable Boron Nitride Interphases for Ceramic Matrix Composites
NASA Technical Reports Server (NTRS)
Morscher, Gregory N.
1999-01-01
Ceramic matrix composites (CMC's) require strong fibers for good toughness and weak interphases so that cracks which are formed in the matrix debond and deflect around the fibers. If the fibers are strongly bonded to the matrix, CMC's behave like monolithic ceramics (e.g., a ceramic coffee cup), and when subjected to mechanical loads that induce cracking, such CMC's fail catastrophically. Since CMC's are being developed for high temperature corrosive environments such as the combustor liner for advanced High Speed Civil Transport aircraft, the interphases need to be able to withstand the environment when the matrix cracks.
Panchal, Ripul R; Kim, Kee D; Eastlack, Robert; Lopez, John; Clavenna, Andrew; Brooks, Daina M; Joshua, Gita
2017-03-01
To compare radiologic and clinical outcomes, including rates of dysphagia and dysphonia, using a no-profile stand-alone intervertebral spacer with integrated screw fixation versus an anterior cervical plate and spacer construct for single-level anterior cervical discectomy and fusion (ACDF) procedures. This multicenter, randomized, prospective study included 54 patients with degenerative disc disease requiring ACDF at a single level at C3-C7. Twenty-six patients underwent single-level ACDF with stand-alone spacers, and 28 with plate fixation and spacers. Analyses were based on comparison of perioperative outcomes, radiologic and clinical metrics, and incidence of dysphagia and/or dysphonia. Mean patient age was 48.8 ± 10.1years (53.7% female). No significant differences were observed between groups in operative time (101.8 ± 34.4 minutes, 114.4 ± 31.5 minutes), estimated blood loss (44.8 ± 76.5 mL, 82.5 ± 195.1 mL), or length of hospital stay (1.2 ± 0.6 days, 1.3 ± 0.6 days). Mean visual analog scale pain scores and Neck Disability Index scores improved significantly from preoperative to last follow-up (10.8 ± 2.6 months) in both groups (P < 0.05). Mean Voice Handicap Index and Eating Assessment Tool scores improved significantly from discharge to last follow-up in both groups (P < 0.05). From discharge to 6 months, the stand-alone spacers group consistently demonstrated greater improvement in Voice Handicap Index. Preoperative intervertebral disc and neuroforaminal heights increased significantly across treatment groups (P < 0.01), and no cases required surgical revision at index or adjacent levels. Anterior cervical discectomy and fusion with stand-alone spacers resulted in similar clinical and radiologic outcomes as compared with plate and spacers and may help minimize postoperative dysphonia. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Bajul, Audrey; Gerbaud, Vincent; Teychene, Sébastien; Devatine, Audrey; Bajul, Gilles
2017-08-01
Instability in bottled wines refer to tartaric salts crystallization such as potassium bitartrate (KHT). It is not desirable as consumers see the settled salts as an evidence of a poor quality control. In some cases, it causes excessive gushing in sparkling wine. We investigate the effect of two oenological carboxymethylcellulose (CMC) for KHT inhibition in a model solution of white wine by studying the impact of some properties of CMC such as the degree of polymerization, the degree of substitution, and the apparent dissociation constant determined by potentiometric titration. Polyelectrolyte adsorption is used for determining the surface and total charge and for providing information about the availability of CMC charged groups for interacting with KHT crystal faces. The inhibitory efficiency of CMC on model solution is evaluated by measuring the induction time with the help of conductimetric methods. Crystals growth with and without CMC are studied by observation with MEB and by thermal analysis using DSC. The results confirm the effectiveness of CMC as an inhibitor of KHT crystallization in a model solution. The main hypothesis of the mechanism lies in the interaction of dissociated anionic carboxymethyl groups along the cellulose backbone with positively charged layers on KHT faces like the {0 1 0} face. Key factors such as pH, CMC chain length and total charge are discusses.
Tong, Mingsi; Song, John; Chu, Wei; Thompson, Robert M
2014-01-01
The Congruent Matching Cells (CMC) method for ballistics identification was invented at the National Institute of Standards and Technology (NIST). The CMC method is based on the correlation of pairs of small correlation cells instead of the correlation of entire images. Four identification parameters – TCCF, Tθ, Tx and Ty are proposed for identifying correlated cell pairs originating from the same firearm. The correlation conclusion (matching or non-matching) is determined by whether the number of CMC is ≥ 6. This method has been previously validated using a set of 780 pair-wise 3D topography images. However, most ballistic images stored in current local and national databases are in an optical intensity (grayscale) format. As a result, the reliability of applying the CMC method on optical intensity images is an important issue. In this paper, optical intensity images of breech face impressions captured on the same set of 40 cartridge cases are correlated and analyzed for the validation test of CMC method using optical images. This includes correlations of 63 pairs of matching images and 717 pairs of non-matching images under top ring lighting. Tests of the method do not produce any false identification (false positive) or false exclusion (false negative) results, which support the CMC method and the proposed identification criterion, C = 6, for firearm breech face identifications using optical intensity images. PMID:26601045
Roohina, Fatemeh; Mohammadi, Maedeh; Najafpour, Ghasem D
2016-09-01
Cheese whey fermentation to ethanol using immobilized Kluyveromyces marxianus cells was investigated in batch and continuous operation. In batch fermentation, the yeast cells were immobilized in carboxymethyl cellulose (CMC) polymer and also synthesized graft copolymer of CMC with N-vinyl-2-pyrrolidone, denoted as CMC-g-PVP, and the efficiency of the two developed cell entrapped beads for lactose fermentation to ethanol was examined. The yeast cells immobilized in CMC-g-PVP performed slightly better than CMC with ethanol production yields of 0.52 and 0.49 g ethanol/g lactose, respectively. The effect of supplementation of cheese whey with lactose (42, 70, 100 and 150 g/l) on fermentative performance of K. marxianus immobilized in CMC beads was considered and the results were used for kinetic studies. The first order reaction model was suitable to describe the kinetics of substrate utilization and modified Gompertz model was quite successful to predict the ethanol production. For continuous ethanol fermentation, a packed-bed immobilized cell reactor (ICR) was operated at several hydraulic retention times; HRTs of 11, 15 and 30 h. At the HRT of 30 h, the ethanol production yield using CMC beads was 0.49 g/g which implies that 91.07 % of the theoretical yield was achieved.
Aggregate-based sub-CMC Solubilization of Hexadecane by Surfactants.
Zhong, Hua; Yang, Lei; Zeng, Guangming; Brusseau, Mark L; Wang, Yake; Li, Yang; Liu, Zhifeng; Yuan, Xingzhong; Tan, Fei
Solubilization of hexadecane by two surfactants, SDBS and Triton X-100, at concentrations near the critical micelle concentration (CMC) and the related aggregation behavior was investigated in this study. Solubilization was observed at surfactant concentrations lower than CMC, and the apparent solubility of hexadecane increased linearly with surfactant concentration for both surfactants. The capacity of SDBS to solubilize hexadecane is stronger at concentrations below CMC than above CMC. In contrast, Triton X-100 shows no difference. The results of dynamic light scattering (DLS) and cryogenic TEM analysis show aggregate formation at surfactant concentrations lower than CMC. DLS-based size of the aggregates ( d ) decreases with increasing surfactant concentration. Zeta potential of the SDBS aggregates decreases with increasing SDBS concentration, whereas it increases for Triton X-100. The surface excess (Γ) of SDBS calculated based on hexadecane solubility and aggregate size data increases rapidly with increasing bulk concentration, and then asymptotically approaches the maximum surface excess (Γ max ). Conversely, there is only a minor increase in Γ for Triton X-100. Comparison of Γ and d indicates that excess of surfactant molecules at aggregate surface has great impact on surface curvature. The results of this study demonstrate formation of aggregates at surfactant concentrations below CMC for hexadecane solubilization, and indicate the potential of employing low-concentration strategy for surfactant application such as remediation of HOC contaminated sites.
Tong, Mingsi; Song, John; Chu, Wei; Thompson, Robert M
2014-01-01
The Congruent Matching Cells (CMC) method for ballistics identification was invented at the National Institute of Standards and Technology (NIST). The CMC method is based on the correlation of pairs of small correlation cells instead of the correlation of entire images. Four identification parameters - T CCF, T θ, T x and T y are proposed for identifying correlated cell pairs originating from the same firearm. The correlation conclusion (matching or non-matching) is determined by whether the number of CMC is ≥ 6. This method has been previously validated using a set of 780 pair-wise 3D topography images. However, most ballistic images stored in current local and national databases are in an optical intensity (grayscale) format. As a result, the reliability of applying the CMC method on optical intensity images is an important issue. In this paper, optical intensity images of breech face impressions captured on the same set of 40 cartridge cases are correlated and analyzed for the validation test of CMC method using optical images. This includes correlations of 63 pairs of matching images and 717 pairs of non-matching images under top ring lighting. Tests of the method do not produce any false identification (false positive) or false exclusion (false negative) results, which support the CMC method and the proposed identification criterion, C = 6, for firearm breech face identifications using optical intensity images.
CMC Technologies for Teaching Foreign Languages: What's on the Horizon?
ERIC Educational Resources Information Center
Lafford, Peter A.; Lafford, Barbara A.
2005-01-01
Computer-mediated communication (CMC) technologies have begun to play an increasingly important role in the teaching of foreign/second (L2) languages. Its use in this context is supported by a growing body of CMC research that highlights the importance of the negotiation of meaning and computer-based interaction in the process of second language…
ERIC Educational Resources Information Center
AbuSeileek, Ali Farhan; Qatawneh, Khaleel
2013-01-01
This study aimed to explore the effects of synchronous and asynchronous computer mediated communication (CMC) oral discussions on question types and strategies used by English as a Foreign Language (EFL) learners. The participants were randomly assigned to two treatment conditions/groups; the first group used synchronous CMC, while the second…
ERIC Educational Resources Information Center
Sherblom, John C.
2010-01-01
There is a "prevalence of computer-mediated communication (CMC) in education," and a concern for its negative psychosocial consequences and lack of effectiveness as an instructional tool. This essay identifies five variables in the CMC research literature and shows their moderating effect on the psychosocial, instructional expevrience of the CMC…
32 CFR 701.117 - Changes to PA systems of records.
Code of Federal Regulations, 2012 CFR
2012-07-01
... records. CNO (DNS-36) is the approval authority for Navy/DON PA systems of records actions. CMC (ARSF) is... create, alter, amend, or delete systems should contact CNO (DNS-36) or CMC (ARSF), who will assist in... contact CNO (DNS-36) (regarding Navy system of records) or CMC (ARSF) (regarding Marine Corps system of...
32 CFR 701.117 - Changes to PA systems of records.
Code of Federal Regulations, 2011 CFR
2011-07-01
... records. CNO (DNS-36) is the approval authority for Navy/DON PA systems of records actions. CMC (ARSF) is... create, alter, amend, or delete systems should contact CNO (DNS-36) or CMC (ARSF), who will assist in... contact CNO (DNS-36) (regarding Navy system of records) or CMC (ARSF) (regarding Marine Corps system of...
32 CFR 701.117 - Changes to PA systems of records.
Code of Federal Regulations, 2013 CFR
2013-07-01
... records. CNO (DNS-36) is the approval authority for Navy/DON PA systems of records actions. CMC (ARSF) is... create, alter, amend, or delete systems should contact CNO (DNS-36) or CMC (ARSF), who will assist in... contact CNO (DNS-36) (regarding Navy system of records) or CMC (ARSF) (regarding Marine Corps system of...
Managing CMC-Based Task through Text-Based Dialogue: An Exploratory Study in a Chinese EFL Context
ERIC Educational Resources Information Center
Yu, Lianfen; Zeng, Gang
2011-01-01
This paper examines EFL learners' dialogic interaction in the implementation of a computer-mediated communication (CMC) task. Within the framework of sociocultural theory, the research focuses on how learners working in pairs collaboratively perform task management and build relationship in the synchronous CMC context. Sixteen Chinese tertiary EFL…
32 CFR 701.117 - Changes to PA systems of records.
Code of Federal Regulations, 2014 CFR
2014-07-01
... records. CNO (DNS-36) is the approval authority for Navy/DON PA systems of records actions. CMC (ARSF) is... create, alter, amend, or delete systems should contact CNO (DNS-36) or CMC (ARSF), who will assist in... contact CNO (DNS-36) (regarding Navy system of records) or CMC (ARSF) (regarding Marine Corps system of...
A Spoken Genre Gets Written: Online Football Commentaries in English, French, and Spanish
ERIC Educational Resources Information Center
Perez-Sabater, Carmen; Pena-Martinez, Gemma; Turney, Ed; Montero-Fleta, Begona
2008-01-01
Many recent studies on computer-mediated communication (CMC) have addressed the question of orality and literacy. This article examines a relatively recent subgenre of CMC, that of written online sports commentary, that provides us with written CMC that is clearly based on firmly established oral genres, those of radio and television sports…
O'Rourke, Sean; Eskritt, Michelle; Bosacki, Sandra
2018-06-01
We explored Canadian adolescents', emergent adults', and adults' understandings of deception in computer mediated communication (CMC) compared to face to face (FtF). Participants between 13 and 50 years read vignettes of different types of questionable behaviour that occurred online or in real life, and were asked to judge whether deception was involved, and the acceptability of the behaviour. Age groups evaluated deception similarly; however, adolescents held slightly different views from adults about what constitutes deception, suggesting that the understanding of deception continues to develop into adulthood. Furthermore, CMC behaviour was rated as more deceptive than FtF in general, and participants scoring higher on compassion perceived vignettes to be more deceptive. This study is a step towards better understanding the relationships between perceptions of deception across adolescence into adulthood, mode of communication, and compassion, and may have implications for how adults communicate with youth about deception in CMC and FtF contexts. Copyright © 2018 The Foundation for Professionals in Services for Adolescents. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Saafi, Kais
The aerodynamic model of the aircraft L1011-500 was designed and simulated in Matlab and Simulink by Bombardier to serve the Esterline-CMC Electronics Company in its goals to improve the Flight Management System FMS. In this model implemented in FLSIM by CMC-Electronics Esterline, a longitudinal instability appears during the approach phase and when flaps have a higher or equal angle to 4 degrees. The global project at LARCASE consisted in the improvement of the L1011-500 aerodynamic model stability under Matlab / Simulink and mainly for flaps angles situated between 4 degrees and 22 degrees. The L1011-500 global model was finalized in order to visualize and analyze its dynamic behavior. When the global model of the aircraft L1011-500 was generated, corrections were added to the lift coefficient (CL), the drag coefficient (CD) and the pitching moment coefficient (CM) to ensure the trim of the aircraft. The obtained results are compared with the flight tests data delivered by CMC Electronics-Esterline to validate our numerical studies.
Wang, Dongyao; Lv, Diya; Chen, Xiaofei; Liu, Yue; Ding, Xuan; Jia, Dan; Chen, Langdong; Zhu, Zhenyu; Cao, Yan; Chai, Yifeng
2015-12-01
Evaluating the biological activities of small molecules represents an important part of the drug discovery process. Cell membrane chromatography (CMC) is a well-developed biological chromatographic technique. In this study, we have developed combined SMMC-7721/CMC and HepG2/CMC with high-performance liquid chromatography and time-of-flight mass spectrometry to establish an integrated screening platform. These systems was subsequently validated and used for evaluating the activity of quinazoline compounds, which were designed and synthesized to target vascular endothelial growth factor receptor 2. The inhibitory activities of these compounds towards this receptor were also tested using a classical caliper mobility shift assay. The results revealed a significant correlation between these two methods (R(2) = 0.9565 or 0.9420) for evaluating the activities of these compounds. Compared with traditional methods of evaluating the activities analogous compounds, this integrated cell membrane chromatography screening system took less time and was more cost effective, indicating that it could be used as a practical method in drug discovery. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Tran, Thu Hong; Okabe, Hirotaka; Hidaka, Yoshiki; Hara, Kazuhiro
2017-02-10
Sodium Carboxymethyl Cellulose (CMCNa)/Sodium Styrene Sulfonate (SSS) hydrogels with grafted and crosslinked polymeric networks were prepared by γ-radiation at atmosphere condition. The obtained hydrogels were characterized by gel fraction, swelling ratio, TGA and FTIR spectroscopy. The results showed the ratio of CMC and SSS 1:0 gave the highest gel fraction, compared with other ratios. The swelling capacity increased by increasing SSS content due to the presence of SO 3 Na, OH groups in gel structure. The FTIR spectrum of CMC/SSS gel showed the new absorption peaks at 1034 and 1012cm -1 corresponds to SO 3 Na group. The metal ion adsorption capacity of CMC/SSS gel was investigated. The grafted gel effectively removed metal ions, especially Cr and Pb. The effects of hydrogel composition, contact time, and initial concentration on the adsorption capacity of the grafted hydrogels were studied. The adsorption kinetics and equilibrium isotherms were investigated using pseudo-second-order model and Langmuir model. Copyright © 2016. Published by Elsevier Ltd.
Rahimi, Jamshid; Singh, Ashutosh; Adewale, Peter Olusola; Adedeji, Akinbode A.; Ngadi, Michael O.; Raghavan, Vijaya
2013-01-01
The effect of different concentrations of sugar solution (hypertonic) (30%, 45% and 60% w/v) and carboxyl methyl cellulose (CMC) (0%, 1% and 2% w/v) coating on freeze drying of apple slices was studied. In total, nine treatments with respect to concentrations of hypertonic solution and coating layer were prepared to analyze their influence on the physical and chemical properties of freeze dried apple slices. It was observed that increase in the sugar solution concentration, decreased the moisture content of the apple slices significantly impacting its water activity, texture and sugar gain. Application of different concentrations of CMC coating had no significant effect on the properties of dried apple slices. A significant change was observed for color of CMC coated freeze dried apple slices pretreated with 60% sugar solution. Drying kinetics of pretreated apple slices were fitted by using two drying models, Newton’s and Page’s. Page’s model showed higher R-square and lower root mean square error (RSME) compared to Newton’s model. PMID:28239107
Aparna, V; Melge, Anu Rohit; Rajan, V K; Biswas, Raja; Jayakumar, R; Gopi Mohan, C
2018-04-15
Intercellular Candida glabrata infections are difficult to treat due to poor penetration of drugs into the fungal niche. Delivering amphotericin B (Amp B) into the macrophages where the pathogen inhabits is an effective solution. We are studying the macrophage targeting proficiency of ɩ-carrageenan for the delivery of Amp B using gelatin A nanoparticles (GNPs). The choice of gelatin A was the outcome of in silico inspections where the amino functionalized polymer having the best docking score with Amp B was selected. We prepared a sustained release formulation of amp B loaded carboxymethyl ɩ-carrageenan conjugated gelatin nanoparticles (CMC-Amp B-GNPs) with size 343±12nm and -25±5.3mV zeta potential. The formulations were found to be stable, biocompatible and non-haemolytic. Flow cytometry analysis showed 3 fold higher uptake of CMC-GNPs compared to the GNPs by RAW 264.7 cells. CMC-Amp B-GNPs showed enhanced antifungal activity than bare Amp B and Amp B-GNPs. Copyright © 2017 Elsevier B.V. All rights reserved.
Cecotti, Martina; Coppotelli, Bibiana M; Mora, Verónica C; Viera, Marisa; Morelli, Irma S
2018-09-01
Shifts in the bacterial-community dynamics, bioavailability, and biodegradation of polycyclic aromatic hydrocarbons (PAHs) of chronically contaminated soil were analyzed in Triton X-100-treated microcosms at the critical micelle concentration (T-CMC) and at two sub-CMC doses. Only the sub-CMC-dose microcosms reached sorbed-PAH concentrations significantly lower than the control: 166±32 and 135±4mgkg -1 dry soil versus 266±51mgkg -1 ; consequently an increase in high- and low-molecular-weight PAHs biodegradation was observed. After 63days of incubation pyrosequencing data evidenced differences in diversity and composition between the surfactant-modified microcosms and the control, with those with sub-CMC doses containing a predominance of the orders Sphingomonadales, Acidobacteriales, and Gemmatimonadales (groups of known PAHs-degrading capability). The T-CMC microcosm exhibited a lower richness and diversity index with a marked predominance of the order Xanthomonadales, mainly represented by the Stenotrophomonas genus, a PAHs- and Triton X-100-degrading bacterium. In the T-CMC microcosm, whereas the initial surface tension was 35mNm -1 , after 63days of incubation an increase up to 40mNm -1 was registered. The previous observation and the gas-chromatography data indicated that the surfactant may have been degraded at the CMC by a highly selective bacterial community with a consequent negative impact on PAHs biodegradation. This work obtained strong evidence for the involvement of physicochemical and biologic influences determining the different behaviors of the studied microcosms. The results reported here contribute significantly to an optimization of, surfactant-enhanced bioremediation strategies for chronically contaminated soil since the application of doses below the CMC would reduce the overall costs. Copyright © 2018 Elsevier B.V. All rights reserved.
Namiki, N; Yokoyama, H; Moriya, K; Fukuda, M; Takashima, T; Uchida, Y; Yuasa, H; Kanaya, Y
1986-11-01
For the purpose of preventing suppuration of wounds of the oral cavity and throat, we attempted to develop a viscous solution of dibekacin sulfate (DKB) as a suitable medication. Solutions of different viscosity and antibacterial potency were prepared by mixing DKB, sodium carboxymethyl cellulose (CMC-Na), and water in varying proportions. Studies were then performed to ascertain relationships between the concentration of CMC-Na pH and viscosity, and between the viscosity and diffusion of DKB. The concentration of CMC-Na giving rise to optimal clinical efficacy was determined, and the concentration of DKB necessary for clinical treatment was estimated on the basis of the ionic binding constant between DKB and CMC-Na. As a result, the optimum CMC-Na concentration was found to be 2%, while the optimum DKB concentration was estimated to be 100 micrograms/ml.
NASA Technical Reports Server (NTRS)
Effinger, Michael; Ellingson, Bill; Spohnholtz, Todd; Koenig, John
2000-01-01
Damping measurements have been taken on ceramic matrix composite (CMC) turbopump blisks in the as fabricated, post proof testing, and post turbopump testing conditions. These results indicate that damping is able to quantify fatigue of the CMC blisk. This gives hope for the potential of determining the actual and residual life of CMC materials using a combination of nondestructive techniques. If successful, then this new paradigm for life prediction of CMCs could revolutionize the approach for designing and servicing CMC components, thereby significantly reducing costs for design, development, health monitoring, and maintenance of CMC components and systems. The Nondestructive Characterization (NDC) life prediction approach would complement life prediction using micromechanics and continuum finite element models. This paper reports on the initial concept of NDC life prediction and how changes in damping and ultrasonic elastic modulus data have established the concept as a possibility.
Jonnadula, RaviChand; Imran, Md; Poduval, Preethi B; Ghadi, Sanjeev C
2018-03-01
Microbulbifer strain CMC-5 produces agarase, alginate lyase, xylanase, carboxymethyl cellulase and carrageenase. The extracellular production of the above carbohydrases was investigated by growing Microbulbifer strain CMC-5 in a sea water based medium containing homologous/heterologous polysaccharides as a single substrate or as a combination of mixed assorted substrate. Presence of singular homologous polysaccharides in the growth medium induces respective carbohydrase at high levels. Any two polysaccharides in various combinations produced high level of homologous carbohydrase and low level of other heterologous carbohydrase. All five carbohydrases were consistently produced by strain CMC-5, when carboxymethyl cellulose was included as one of the substrate in dual substrate combination, or in presence of mix blends of all five polysaccharides. Interestingly, thalli of Gracilaria sp. that contain agar and cellulose predominantly in their cell wall induces only agarase expression in strain CMC-5.
Carli, Alberto V; Sethuraman, Arvinth S; Bhimani, Samrath J; Ross, Frederick P; Bostrom, Mathias P G
2018-06-01
Antibiotic use in polymethylmethacrylate (PMMA) spacers has historically been limited to those which are "heat-stable" and thus retain their antimicrobial properties after exposure to the high temperatures which occur during PMMA curing. This study examines the requirement of "heat stability" by measuring temperatures of Palacos and Simplex PMMA as they cure inside commercial silicone molds of the distal femur and proximal tibia. Temperature probes attached to thermocouples were placed at various depths inside the molds and temperatures were recorded for 20 minutes after PMMA introduced and a temperature curve for each PMMA product was determined. A "heat-stable" antibiotic, vancomycin, and a "heat-sensitive" antibiotic, ceftazidime, were placed in a programmable thermocycler and exposed to the same profile of PMMA curing temperatures. Antimicrobial activity against Staphylococcus aureus was compared for heat-treated antibiotics vs room temperature controls. Peak PMMA temperatures were significantly higher in tibial (115.2°C) vs femoral (85.1°C; P < .001) spacers. In the hottest spacers, temperatures exceeded 100°C for 3 minutes. Simplex PMMA produced significantly higher temperatures (P < .05) compared with Palacos. Vancomycin bioactivity did not change against S aureus with heat exposure. Ceftazidime bioactivity did not change when exposed to femoral temperature profiles and was reduced only 2-fold with tibial profiles. The curing temperatures of PMMA in knee spacers are not high enough or maintained long enough to significantly affect the antimicrobial efficacy of ceftazidime, a known "heat-sensitive" antibiotic. Future studies should investigate if more "heat-sensitive" antibiotics could be used clinically in PMMA spacers. Copyright © 2018 Elsevier Inc. All rights reserved.
The application of zero-profile anchored spacer in anterior cervical discectomy and fusion.
Wang, Zhiwen; Jiang, Weimin; Li, Xuefeng; Wang, Heng; Shi, Jinhui; Chen, Jie; Meng, Bin; Yang, Huilin
2015-01-01
We aimed to analyze the clinical efficacy of the zero-profile anchored spacers in the treatment of one-level or two-level cervical degenerative disc disease. From April 2011 to April 2013, a total of 63 consecutive patients with cervical degenerative disc disease who underwent one- or two-level ACDF using either the zero-profile anchored spacer or the stand-alone cages and a titanium plate fixation were reviewed for the radiological and clinical outcomes and complications. The zero-profile anchored spacers were used in 30 patients (anchored group) and stand-alone cages with an anterior cervical plate were implanted in 33 cases (non-anchored group). Operative time, intraoperative blood loss, clinical and radiological results were compared between the anchored group and the non-anchored group. All patients were followed up for at least 12 months. There were not bolt loosening or rupture of anchoring clips, screws or titanium plates observed in two groups during follow-up period. There were no significant difference in neck disability index scores, Japanese Orthopedic Association scores, fusion rate, and cervical lordosis during follow-up between two groups (P > 0.05), but significant difference in the operation time, blood loss and the presence of dysphagia were found (P < 0.05). There were no adjacent disc degeneration and instability observed in two groups. The zero-profile anchored spacer achieved similar clinical outcomes compared to ACDF with anterior plating for the treatment of the cervical degenerative disc disease. However, zero-profile anchored spacer was associated with a lower risk of postoperative dysphagia, shorter operation time, less blood loss, and relatively greater simplicity than the stand-alone cage with a titanium plate.
Monier, M; Abdel-Latif, D A
2013-09-12
In this work, the surface ion-imprinting technique was employed for the preparation of surface ion-imprinted chelating microspheres resin based on modified salicylaldehyde-carboxymethyl cellulose (U-CMC-SAL) in presence of uranyl ions as a template and formaldehyde as a cross-linker. Various instrumental techniques such as elemental analysis, scanning electron microscope (SEM), FTIR and X-ray diffraction spectra were utilized for full characterization of the prepared polymeric samples. The prepared resin exhibited a higher capability for selective removal of UO₂²⁺ when compared to the non-imprinted resin (N-CMC-SAL). Also, different important parameters such as pH, temperature, time and initial metal ion concentration were examined in order to evaluate the optimum condition for the adsorption process. The results indicated that pH 5 was the best for the UO₂²⁺ uptake, in addition, the adsorption was exothermic in nature, follows the second-order kinetics and the adsorption isotherm showed the best fit with Langmuir isotherm model with maximum adsorption capacity of 180 ± 1 and 97 ± 1 mg/g for both U-CMC-SAL and N-CMC-SAL respectively. Desorption and regeneration were carried out using 0.5M HNO3 solution and the results confirmed that the resin keeps about 92% of its original efficiency after five consecutive adsorption-desorption operations. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Maskal, Alan B.
Spacer grids maintain the structural integrity of the fuel rods within fuel bundles of nuclear power plants. They can also improve flow characteristics within the nuclear reactor core. However, spacer grids add reactor coolant pressure losses, which require estimation and engineering into the design. Several mathematical models and computer codes were developed over decades to predict spacer grid pressure loss. Most models use generalized characteristics, measured by older, less precise equipment. The study of OECD/US-NRC BWR Full-Size Fine Mesh Bundle Tests (BFBT) provides updated and detailed experimental single and two-phase results, using technically advanced flow measurements for a wide range of boundary conditions. This thesis compares the predictions from the mathematical models to the BFBT experimental data by utilizing statistical formulae for accuracy and precision. This thesis also analyzes the effects of BFBT flow characteristics on spacer grids. No single model has been identified as valid for all flow conditions. However, some models' predictions perform better than others within a range of flow conditions, based on the accuracy and precision of the models' predictions. This study also demonstrates that pressure and flow quality have a significant effect on two-phase flow spacer grid models' biases.
ERIC Educational Resources Information Center
Lin, Huifen
2015-01-01
This meta-analysis reports the results of a systematic synthesis of primary studies on the effectiveness of computer-mediated communication (CMC) in second language acquisition (SLA) for the period 2000-2012. By extracting information on 21 features from each primary study, this meta-analysis intends to summarize the CMC research literature for…
Computer-Mediated Communication (CMC) in L2 Oral Proficiency Development: A Meta-Analysis
ERIC Educational Resources Information Center
Lin, Huifen
2015-01-01
The ever growing interest in the development of foreign or second (L2) oral proficiency in a computer-mediated communication (CMC) classroom has resulted in a large body of studies looking at both the direct and indirect effects of CMC interventions on the acquisition of oral competences. The present study employed a quantitative meta-analytic…
Thin Film Heat Flux Sensor Development for Ceramic Matrix Composite (CMC) Systems
NASA Technical Reports Server (NTRS)
Wrbanek, John D.; Fralick, Gustave C.; Hunter, Gary W.; Zhu, Dongming; Laster, Kimala L.; Gonzalez, Jose M.; Gregory, Otto J.
2010-01-01
The NASA Glenn Research Center (GRC) has an on-going effort for developing high temperature thin film sensors for advanced turbine engine components. Stable, high temperature thin film ceramic thermocouples have been demonstrated in the lab, and novel methods of fabricating sensors have been developed. To fabricate thin film heat flux sensors for Ceramic Matrix Composite (CMC) systems, the rough and porous nature of the CMC system posed a significant challenge for patterning the fine features required. The status of the effort to develop thin film heat flux sensors specifically for use on silicon carbide (SiC) CMC systems with these new technologies is described.
CMC Technology Advancements for Gas Turbine Engine Applications
NASA Technical Reports Server (NTRS)
Grady, Joseph E.
2013-01-01
CMC research at NASA Glenn is focused on aircraft propulsion applications. The objective is to enable reduced engine emissions and fuel consumption for more environmentally friendly aircraft. Engine system studies show that incorporation of ceramic composites into turbine engines will enable significant reductions in emissions and fuel burn due to increased engine efficiency resulting from reduced cooling requirements for hot section components. This presentation will describe recent progress and challenges in developing fiber and matrix constituents for 2700 F CMC turbine applications. In addition, ongoing research in the development of durable environmental barrier coatings, ceramic joining integration technologies and life prediction methods for CMC engine components will be reviewed.
Qi, Xian-Ming; Liu, Shi-Yun; Chu, Fang-Bing; Pang, Shuai; Liang, Yan-Ru; Guan, Ying; Peng, Feng; Sun, Run-Cang
2015-01-01
Utilization of hemicelluloses from biomass energy is an important approach to explore renewable resources. A convenient, quick, and inexpensive method for the preparation of blended films from quaternized hemicelluloses (QH) and carboxymethyl cellulose (CMC) was introduced into this study. QH and CMC solution were first mixed to form homogeneous suspension, and then were dried under vacuum to fabricate the blended films. The FT-IR and XRD results indicated that the linkage between QH and CMC was due to the hydrogen bonding and electrostatic interaction. From the results of mechanical properties and water vapor permeability (WVP), the tensile strength of the blended films increased with the QH/CMC content ratio increasing in appropriate range, and the WVP of the blended films decreased. The maximum value of tensile strength of blend film achieved was 27.4 MPa. In addition, the transmittances of the blended films increased with the decreasing of QH/CMC content ratio. When the weight ratio (QH: CMC) was 1:1.5, the blend film showed the best light transmittance (45%). All the results suggested that the blended films could be used in areas of application in the coating and packaging fields from the good tensile strength, transmittance, and low WVP. PMID:28787804
Qi, Xian-Ming; Liu, Shi-Yun; Chu, Fang-Bing; Pang, Shuai; Liang, Yan-Ru; Guan, Ying; Peng, Feng; Sun, Run-Cang
2015-12-23
Utilization of hemicelluloses from biomass energy is an important approach to explore renewable resources. A convenient, quick, and inexpensive method for the preparation of blended films from quaternized hemicelluloses (QH) and carboxymethyl cellulose (CMC) was introduced into this study. QH and CMC solution were first mixed to form homogeneous suspension, and then were dried under vacuum to fabricate the blended films. The FT-IR and XRD results indicated that the linkage between QH and CMC was due to the hydrogen bonding and electrostatic interaction. From the results of mechanical properties and water vapor permeability (WVP), the tensile strength of the blended films increased with the QH/CMC content ratio increasing in appropriate range, and the WVP of the blended films decreased. The maximum value of tensile strength of blend film achieved was 27.4 MPa. In addition, the transmittances of the blended films increased with the decreasing of QH/CMC content ratio. When the weight ratio (QH: CMC) was 1:1.5, the blend film showed the best light transmittance (45%). All the results suggested that the blended films could be used in areas of application in the coating and packaging fields from the good tensile strength, transmittance, and low WVP.
Kłosowska-Chomiczewska, I E; Mędrzycka, K; Hallmann, E; Karpenko, E; Pokynbroda, T; Macierzanka, A; Jungnickel, C
2017-02-15
Relationships between the purity, pH, hydrophobicity (logK ow ) of the carbon substrate, and the critical micelle concentration (CMC) of rhamnolipid type biosurfactants (RL) were investigated using a quantitative structure-property relationship (QSPR) approach and are presented here for the first time. Measured and literature CMC values of 97 RLs, representing biosurfactants at different stages of purification, were considered. An arbitrary scale for RLs purity was proposed and used in the modelling. A modified evolutionary algorithm was used to create clusters of equations to optimally describe the relationship between CMC and logK ow , pH and purity (the optimal equation had an R 2 of 0.8366). It was found that hydrophobicity of the carbon substrate used for the biosynthesis of the RL had the most significant influence on the final CMC of the RL. Purity of the RLs was also found to have a significant impact, where generally the less pure the RL the higher the CMC. These results were in accordance with our experimental data. Therefore, our model equation may be used for controlling the biosynthesis of biosurfactants with properties targeted for specific applications. Copyright © 2016 Elsevier Inc. All rights reserved.
Comparing Participation in Activities among Children with Disabilities
ERIC Educational Resources Information Center
Masse, Louise C.; Miller, Anton R.; Shen, Jane; Schiariti, Veronica; Roxborough, Lori
2012-01-01
Introduction: Compared to typically developing peers, children with disabilities due to neurodevelopmental disorders and disabilities (NDD/D) and to chronic medical conditions (CMC) have reduced participation in activities. The extent to which these two groups of children have different levels of participation is unknown and was examined in this…
NASA Astrophysics Data System (ADS)
Putri, Rr. Dewi Artanti; Setiawan, Aji; Anggraini, Puji D.
2017-03-01
The use of synthetic plastic should be limited because it causes the plastic waste that can not be decomposed quickly, triggering environmental problems. The solution of the plastic usage is the use of biodegradable plastic as packaging which is environmentally friendly. Synthesis of edible film can be done with a variety of components. The component mixture of starch and cellulose derivative products are one of the methods for making edible film. Sorghum is a species of cereal crops containing starch amounted to 80.42%, where the use of sorghum in Indonesia merely fodder. Therefore, sorghum is a potential material to be used as a source of starch synthesis edible film. This research aims to study the characteristics of edible starch films Sorghum and assess the effect of CMC (Carboxymethyl Cellulose) as additional materials on the characteristics of biopolymers edible film produced sorghum starch. This study is started with the production of sorghum starch, then the film synthesizing with addition of CMC (5, 10, 15, 20, and 25% w/w starch), and finally the hydrophobicity characteristics test (water uptake test and water solubility test). The addition of CMC will decrease the percentage of water absorption to the film with lowest level of 65.8% in the degree of CMC in 25% (w/w starch). The addition of CMC also influences the water solubility of film, where in the degree of 25% CMC (w/w starch) the solubility of water was the lowest, which was 28.2% TSM.
The dynamic magnetoviscoelastic properties of biomineralized (Fe3O4) PVP-CMC hydrogel
NASA Astrophysics Data System (ADS)
Ray, Ayan; Saha, Nabanita; Saha, Petr
2017-05-01
The Polyvinylpyrrolidone (PVP) and carboxymethylcellulose (CMC) based polymer matrix was used as a template for the preparation of magnetic hydrogel. This freshly prepared PVP-CMC hydrogel template was successfully mineralized by in situ synthesis of magnetic nanoparticles (Fe3O4) via chemical co-precipitation reaction using liquid diffusion method. The present study emphasizes on the rheological behavior of non-mineralized and mineralized PVP-CMC hydrogels. Scanning Electron Microscopy (SEM), transmission electron microscopy (TEM), X-ray Diffraction (XRD) pattern, Fourier transform infrared spectroscopy (FT-TR), Vibrating sample magnetometer (VSM) and dynamic magneto rheometer were used to study the morphological, physical, chemical and magnetic properties of nanoparticle (Fe3O4) filled PVP-CMC hydrogel respectively in order to monitor how Fe3O4 magnetic nanoparticles affects the mechanical properties of the hydrogel network. The storage (G') and loss (G") moduli with a complex viscosity of the system was measured using a parallel plate rheometer. Frequency and amplitude sweep with temperature variation was performed to determine the frequency and amplitude dependent magneto viscoelastic moduli for both hydrogel samples. A strong shear thinning effect was observed in both (non-mineralized and mineralized) PVP-CMC hydrogels, which confirm that Fe3O4 filled magnetic hydrogels, are pseudoplastic in nature. This Fe3O4 filled PVP-CMC hydrogel can be considered as stimuli-responsive soft matter that may be used as an actuator in medical devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boateng, F; Ngwa, W; Harvard Medical School, Boston, MA
Purpose: Brachytherapy application with in situ dose-painting using gold nanoparticles (GNP) released from GNP-loaded brachytherapy spacers has been proposed as an innovative approach to increase therapeutic efficacy during brachytherapy. This work investigates the dosimetric impact of slow versus burst release of GNP from next generation biodegradable spacers. Methods: Mathematical models were developed based on experimental data to study the release of GNP from a spacer designed with FDA approved poly(lactic-co-glycolic acid) (PLGA) polymer. The diffusion controlled released process and PLGA polymer degradation kinetics was incorporated in the calculations for the first time. An in vivo determined diffusion coefficient was usedmore » for determining the concentration profiles and corresponding dose enhancement based on initial GNP-loading concentrations of 7 mg/g. Results: The results showed that there is significant delay before the concentration profile of GNP diffusion in the tumor is similar to that when burst release is assumed as in previous studies. For example, in the case of burst release after spacer administration, it took up to 25 days for all the GNP to be released from the spacer using diffusion controlled release process only. However, it took up to 45 days when a combined model for both diffusion and polymer degradation processes was used. Based on the tumor concentration profiles, a significant dose enhancement factor (DEF >20%), could be attained at a tumor distances of 5 mm from a spacer loaded with 10 nm GNP sizes. Conclusion: The results highlight the need to take the slow release of GNP from spacers and factors such as biodegradation of polymers into account in research development of GNP-eluting spacers for brachytherapy applications with in-situ dose-painting using gold nanoparticles. The findings suggest that I-125 may be the more appropriate for such applications given the relatively longer half-live compared to other radioisotopes like Pd-103 and Cs-131.« less
Cattaneo, A; Davanzo, R; Worku, B; Surjono, A; Echeverria, M; Bedri, A; Haksari, E; Osorno, L; Gudetta, B; Setyowireni, D; Quintero, S; Tamburlini, G
1998-09-01
A randomized controlled trial was carried out for 1 y in three tertiary and teaching hospitals, in Addis Ababa (Ethiopia), Yogyakarta (Indonesia) and Merida (Mexico), to study the effectiveness, feasibility, acceptability and cost of kangaroo mother care (KMC) when compared to conventional methods of care (CMC). About 29% of 649 low birthweight infants (LBWI; 1000-1999 g) died before eligibility. Of the survivors, 38% were excluded for various reasons, 149 were randomly assigned to KMC (almost exclusive skin-to-skin care after stabilization), and 136 to CMC (warm room or incubator care). There were three deaths in each group and no difference in the incidence of severe disease. Hypothermia was significantly less common in KMC infants in Merida (13.5 vs 31.5 episodes/100 infants/d) and overall (10.8 vs 14.6). Exclusive breastfeeding at discharge was more common in KMC infants in Merida (80% vs 16%) and overall (88% vs 70%). KMC infants had a higher mean daily weight gain (21.3 g vs 17.7 g) and were discharged earlier (13.4 vs 16.3 d after enrolment). KMC was considered feasible and presented advantages over CMC in terms of maintenance of equipment. Mothers expressed a clear preference for KMC and health workers found it safe and convenient. KMC was cheaper than CMC in terms of salaries (US$ 11,788 vs US$ 29,888) and other running costs (US$ 7501 vs US$ 9876). This study confirms that hospital KMC for stabilized LBWI 1000-1999 g is at least as effective and safe as CMC, and shows that it is feasible in different settings, acceptable to mothers of different cultures, and less expensive. Where exclusive breastfeeding is uncommon among LBWI, KMC may bring about an increase in its prevalence and duration, with consequent benefits for health and growth. For hospitals in low-income countries KMC may represent an appropriate use of scarce resources.
Chen, Ying-Chen; Ho, Hsiu-O; Liu, Der-Zen; Siow, Wen-Shian; Sheu, Ming-Thau
2015-01-01
The aim of this study was to characterize the swelling and floating behaviors of gastroretentive drug delivery system (GRDDS) composed of hydroxyethyl cellulose (HEC) and sodium carboxymethyl cellulose (NaCMC) and to optimize HEC/NaCMC GRDDS to incorporate three model drugs with different solubilities (metformin, ciprofloxacin, and esomeprazole). Various ratios of NaCMC to HEC were formulated, and their swelling and floating behaviors were characterized. Influences of media containing various NaCl concentrations on the swelling and floating behaviors and drug solubility were also characterized. Finally, release profiles of the three model drugs from GRDDS formulation (F1-4) and formulation (F1-1) were examined. Results demonstrated when the GRDDS tablets were tested in simulated gastric solution, the degree of swelling at 6 h was decreased for each formulation that contained NaCMC in comparison to those in de-ionized water (DIW). Of note, floating duration was enhanced when in simulated gastric solution compared to DIW. Further, the hydration of tablets was found to be retarded as the NaCl concentration in the medium increased resulting in smaller gel layers and swelling sizes. Dissolution profiles of the three model drugs in media containing various concentrations of NaCl showed that the addition of NaCl to the media affected the solubility of the drugs, and also their gelling behaviors, resulting in different mechanisms for controlling a drug’s release. The release mechanism of the freely water-soluble drug, metformin, was mainly diffusion-controlled, while those of the water-soluble drug, ciprofloxacin, and the slightly water-soluble drug, esomeprazole, were mainly anomalous diffusion. Overall results showed that the developed GRDDS composed of HEC 250HHX and NaCMC of 450 cps possessed proper swelling extents and desired floating periods with sustained-release characteristics. PMID:25617891
Lipoamino acid-based micelles as promising delivery vehicles for monomeric amphotericin B.
Serafim, Cláudia; Ferreira, Inês; Rijo, Patrícia; Pinheiro, Lídia; Faustino, Célia; Calado, António; Garcia-Rio, Luis
2016-01-30
Lipoamino acid-based micelles have been developed as delivery vehicles for the hydrophobic drug amphotericin B (AmB). The micellar solubilisation of AmB by a gemini lipoamino acid (LAA) derived from cysteine and its equimolar mixtures with the bile salts sodium cholate (NaC) and sodium deoxycholate (NaDC), as well as the aggregation sate of the drug in the micellar systems, was studied under biomimetic conditions (phosphate buffered-saline, pH 7.4) using UV-vis spectroscopy. Pure surfactant systems and equimolar mixtures were characterized by tensiometry and important parameters were determined, such as critical micelle concentration (CMC), surface tension at the CMC (γCMC), maximum surface excess concentration (Γmax), and minimum area occupied per molecule at the water/air interface (Amin). Rheological behaviour from viscosity measurements at different shear rates was also addressed. Solubilisation capacity was quantified in terms of molar solubilisation ratio (χ), micelle-water partition coefficient (KM) and Gibbs energy of solubilisation (ΔGs°). Formulations of AmB in micellar media were compared in terms of drug loading, encapsulation efficiency, aggregation state of AmB and in vitro antifungal activity against Candida albicans. The LAA-containing micellar systems solubilise AmB in its monomeric and less toxic form and exhibit in vitro antifungal activity comparable to that of the commercial formulation Fungizone. Copyright © 2015 Elsevier B.V. All rights reserved.
Removal of Mercury by Foam Fractionation Using Surfactin, a Biosurfactant
Chen, Hau-Ren; Chen, Chien-Cheng; Reddy, A. Satyanarayana; Chen, Chien-Yen; Li, Wun Rong; Tseng, Min-Jen; Liu, Hung-Tsan; Pan, Wei; Maity, Jyoti Prakash; Atla, Shashi B.
2011-01-01
The separation of mercury ions from artificially contaminated water by the foam fractionation process using a biosurfactant (surfactin) and chemical surfactants (SDS and Tween-80) was investigated in this study. Parameters such as surfactant and mercury concentration, pH, foam volume, and digestion time were varied and their effects on the efficiency of mercury removal were investigated. The recovery efficiency of mercury ions was highly sensitive to the concentration of the surfactant. The highest mercury ion recovery by surfactin was obtained using a surfactin concentration of 10 × CMC, while recovery using SDS required < 10 × CMC and Tween-80 >10 × CMC. However, the enrichment of mercury ions in the foam was superior with surfactin, the mercury enrichment value corresponding to the highest metal recovery (10.4%) by surfactin being 1.53. Dilute solutions (2-mg L−1 Hg2+) resulted in better separation (36.4%), while concentrated solutions (100 mg L−1) enabled only a 2.3% recovery using surfactin. An increase in the digestion time of the metal solution with surfactin yielded better separation as compared with a freshly-prepared solution, and an increase in the airflow rate increased bubble production, resulting in higher metal recovery but low enrichment. Basic solutions yielded higher mercury separation as compared with acidic solutions due to the precipitation of surfactin under acidic conditions. PMID:22174661
Removal of mercury by foam fractionation using surfactin, a biosurfactant.
Chen, Hau-Ren; Chen, Chien-Cheng; Reddy, A Satyanarayana; Chen, Chien-Yen; Li, Wun Rong; Tseng, Min-Jen; Liu, Hung-Tsan; Pan, Wei; Maity, Jyoti Prakash; Atla, Shashi B
2011-01-01
The separation of mercury ions from artificially contaminated water by the foam fractionation process using a biosurfactant (surfactin) and chemical surfactants (SDS and Tween-80) was investigated in this study. Parameters such as surfactant and mercury concentration, pH, foam volume, and digestion time were varied and their effects on the efficiency of mercury removal were investigated. The recovery efficiency of mercury ions was highly sensitive to the concentration of the surfactant. The highest mercury ion recovery by surfactin was obtained using a surfactin concentration of 10 × CMC, while recovery using SDS required < 10 × CMC and Tween-80 >10 × CMC. However, the enrichment of mercury ions in the foam was superior with surfactin, the mercury enrichment value corresponding to the highest metal recovery (10.4%) by surfactin being 1.53. Dilute solutions (2-mg L(-1) Hg(2+)) resulted in better separation (36.4%), while concentrated solutions (100 mg L(-1)) enabled only a 2.3% recovery using surfactin. An increase in the digestion time of the metal solution with surfactin yielded better separation as compared with a freshly-prepared solution, and an increase in the airflow rate increased bubble production, resulting in higher metal recovery but low enrichment. Basic solutions yielded higher mercury separation as compared with acidic solutions due to the precipitation of surfactin under acidic conditions.
NASA Astrophysics Data System (ADS)
Shi, Xiangyang; Wu, Yuanyuan; Wang, Ding; Su, Juan; Liu, Jie; Yang, Wenxian; Xiao, Meng; Tan, Wei; Lu, Shulong; Zhang, Jian
2017-12-01
We demonstrate both theoretically and experimentally that the power density of resonant tunneling diode (RTD) can be enhanced by optimizing emitter spacer layer thickness, in addition to reducing barrier thickness. Compared to the widely used epitaxial structure with ultrathin emitter spacer layer thickness, appropriate increasing the thickness will increase the voltage drop in accumulation region, leading to larger voltage widths of negative differential resistance region. By measuring J-V characteristics, the specific contact resistivity, and the self-capacitance, we theoretically analyze the maximum output power of the fabricated RTDs. It shows that the optimized In0.8Ga0.2As/AlAs RTD with 20 nm emitter spacer thickness and 5 μm2 mesa area theoretically possesses the capability to reach 3.1 mW at 300 GHz and 1.8 mW at 600 GHz.
NASA Astrophysics Data System (ADS)
Mitsionis, Anastasios I.; Vaimakis, Tiverios C.
2012-09-01
Critical micelle concentration (CMC) of two anionic surfactants in methanol was estimated using conductometry, viscometry and pyrene fluorescence spectroscopy methods. The surfactants used, were sodium bis(2-ethylhexyl) sulfosuccinate (Aerosol-OT, AOT) and sodium dodecyl sulfate (SDS) dispersed in pure methanol. The CMC determination was evaluated in room temperature. The results have shown nearly similar concentrations.
Methodological Hurdles in Capturing CMC Data: The Case of the Missing Self-Repair
ERIC Educational Resources Information Center
Smith, Bryan
2008-01-01
This paper reports on a study of the use of self-repair among learners of German in a task-based CMC environment. The purpose of the study was two-fold. The first goal sought to establish how potential interpretations of CMC data may be very different depending on the method of data collection and evaluation employed. The second goal was to…
Corticomuscular synchronization with small and large dynamic force output
Andrykiewicz, Agnieszka; Patino, Luis; Naranjo, Jose Raul; Witte, Matthias; Hepp-Reymond, Marie-Claude; Kristeva, Rumyana
2007-01-01
Background Over the last few years much research has been devoted to investigating the synchronization between cortical motor and muscular activity as measured by EEG/MEG-EMG coherence. The main focus so far has been on corticomuscular coherence (CMC) during static force condition, for which coherence in beta-range has been described. In contrast, we showed in a recent study [1] that dynamic force condition is accompanied by gamma-range CMC. The modulation of the CMC by various dynamic force amplitudes, however, remained uninvestigated. The present study addresses this question. We examined eight healthy human subjects. EEG and surface EMG were recorded simultaneously. The visuomotor task consisted in isometric compensation for 3 forces (static, small and large dynamic) generated by a manipulandum. The CMC, the cortical EEG spectral power (SP), the EMG SP and the errors in motor performance (as the difference between target and exerted force) were analyzed. Results For the static force condition we found the well-documented, significant beta-range CMC (15–30 Hz) over the contralateral sensorimotor cortex. Gamma-band CMC (30–45 Hz) occurred in both small and large dynamic force conditions without any significant difference between both conditions. Although in some subjects beta-range CMC was observed during both dynamic force conditions no significant difference between conditions could be detected. With respect to the motor performance, the lowest errors were obtained in the static force condition and the highest ones in the dynamic condition with large amplitude. However, when we normalized the magnitude of the errors to the amplitude of the applied force (relative errors) no significant difference between both dynamic conditions was observed. Conclusion These findings confirm that during dynamic force output the corticomuscular network oscillates at gamma frequencies. Moreover, we show that amplitude modulation of dynamic force has no effect on the gamma CMC in the low force range investigated. We suggest that gamma CMC is rather associated with the internal state of the sensorimotor system as supported by the unchanged relative error between both dynamic conditions. PMID:18042289
MetaCRAST: reference-guided extraction of CRISPR spacers from unassembled metagenomes.
Moller, Abraham G; Liang, Chun
2017-01-01
Clustered regularly interspaced short palindromic repeat (CRISPR) systems are the adaptive immune systems of bacteria and archaea against viral infection. While CRISPRs have been exploited as a tool for genetic engineering, their spacer sequences can also provide valuable insights into microbial ecology by linking environmental viruses to their microbial hosts. Despite this importance, metagenomic CRISPR detection remains a major challenge. Here we present a reference-guided CRISPR spacer detection tool ( Meta genomic C RISPR R eference- A ided S earch T ool-MetaCRAST) that constrains searches based on user-specified direct repeats (DRs). These DRs could be expected from assembly or taxonomic profiles of metagenomes. We compared the performance of MetaCRAST to those of two existing metagenomic CRISPR detection tools-Crass and MinCED-using both real and simulated acid mine drainage (AMD) and enhanced biological phosphorus removal (EBPR) metagenomes. Our evaluation shows MetaCRAST improves CRISPR spacer detection in real metagenomes compared to the de novo CRISPR detection methods Crass and MinCED. Evaluation on simulated metagenomes show it performs better than de novo tools for Illumina metagenomes and comparably for 454 metagenomes. It also has comparable performance dependence on read length and community composition, run time, and accuracy to these tools. MetaCRAST is implemented in Perl, parallelizable through the Many Core Engine (MCE), and takes metagenomic sequence reads and direct repeat queries (FASTA or FASTQ) as input. It is freely available for download at https://github.com/molleraj/MetaCRAST.
Zhang, Dezhi; Hegab, Hisham E.; Lvov, Yuri; ...
2016-01-20
Cellulase was immobilized onto silica gel surfaces pretreated with (3-aminopropyl) triethoxy-silane (3-APTES), and glutaraldehyde (GA) was used as a cross-linker. A carboxymethyl cellulose sodium salt (CMC) solution was used for activity experiments. Protein assay was performed to determine the mass immobilized and compare with free enzyme. Cellulase was successfully demonstrated to be immobilized on the modified silica gel surface, and no detectable amount of enzyme was stripped off during the hydrolysis of the CMC solution. The specific activity of the immobilized cellulase is 7 ± 2 % compared to the similar amount of free cellulase. Significant activity over multiple reusesmore » was observed. The seventh batch achieved 82 % activity of the initial batch, and the fifteenth batch retained 31 %. Lastly, it was observed that the immobilized cellulase retained 48 % of its initial activity after 4 days, and 22 % even after 14 days.« less
Carli, Alberto V; Bhimani, Samrath; Yang, Xu; de Mesy Bentley, Karen L; Ross, F Patrick; Bostrom, Mathias P G
2018-06-06
Periprosthetic joint infection (PJI) remains a devastating complication following total joint arthroplasty. Current animal models of PJI do not effectively recreate the clinical condition and thus provide limited help in understanding why treatments fail. We developed a mouse model of the first-stage surgery of a 2-stage revision for PJI involving a 3-dimensionally printed Ti-6Al-4V implant and a mouse-sized cement spacer that elutes vancomycin. Vancomycin was mixed with polymethylmethacrylate (PMMA) cement and inserted into custom-made mouse-sized spacer molds. Twenty C57BL/6 mice received a proximal tibial implant and an intra-articular injection of 3 × 10 colony-forming units of Staphylococcus aureus Xen36. At 2 weeks, 9 mice underwent irrigation and debridement of the leg with revision of the implant to an articulating vancomycin-loaded PMMA spacer. Postoperatively, mice underwent radiography and serum inflammatory-marker measurements. Following euthanasia of the mice at 6 weeks, bone and soft tissues were homogenized to quantify bacteria within periprosthetic tissues. Implants and articulating spacers were either sonicated to quantify adherent bacteria or examined under scanning electron microscopy (SEM) to characterize the biofilm. Vancomycin-loaded PMMA spacers eluted vancomycin for ≤144 hours and retained antimicrobial activity. Control mice had elevated levels of inflammatory markers, radiographic evidence of septic loosening of the implant, and osseous destruction. Mice treated with a vancomycin-loaded PMMA spacer had significantly lower levels of inflammatory markers (p < 0.01), preserved tibial bone, and no intra-articular purulence. Retrieved vancomycin-loaded spacers exhibited significantly lower bacterial counts compared with implants (p < 0.001). However, bacterial counts in periprosthetic tissue did not significantly differ between the groups. SEM identified S. aureus encased within biofilm on control implants, while vancomycin-loaded spacers contained no bacteria. This animal model is a clinically representative model of PJI treatment. The results suggest that the antimicrobial effects of PMMA spacers are tightly confined to the articular space and must be utilized in conjunction with thorough tissue debridement and systemic antibiotics. These data provide what we believe to be the first insight into the effect of antibiotic-loaded cement spacers in a clinically relevant animal model and justify the adjunctive use of intravenous antibiotics when performing a 2-stage revision for PJI.
Investigation into the optimal prosthetic material for wound healing of abdominal wall defects
Akcakaya, Adem; Aydogdu, Ibrahim; Citgez, Bulent
2018-01-01
The purpose of this experimental study is to investigate and compare the effects of prosthetic materials used for wound healing of abdominal wall hernias. A total of 60 rats were divided into five equal groups: Group I, control subjected to laparotomy; group II, abdominal wall defect 3×2 cm+polypropylene (PP) mesh; group III, abdominal wall defect 3×2 cm+PP mesh+hyaluronate and carboxymethylcellulose (H-CMC; Seprafilm®); group IV, abdominal wall defect 3×2 cm+polytetrafluoroethylene (PTFE; Composix™); and group V, abdominal wall defect 3×2 cm+polyethylene terephthalate (PET; Dacron®). A total of 14 days after the surgery, rats were sacrificed and the meshes with the surrounding tissue were extracted in block. The breaking strength of the mesh from the fascia was recorded. The healing tissue was examined with the index of histopathology and the hydroxyproline value was analyzed using the Switzer method. Both the breaking strength and histopathological index of the wound healing were significantly improved in groups II and III compared with that in groups IV and V (P<0.001). Hydroxyproline values were the highest in group I (P<0.001). There was also a statistically significant difference between groups II and IV, and group V and the other groups (P<0.001). The present findings demonstrated that PP mesh and PP mesh+H-CMC had a superior breaking strength and improved histopathologic indices compared with PTFE and PET. Furthermore, hydroxyproline values were the lowest in the PET group. In conclusion, wound healing was improved in the PP mesh group and the PP mesh+H-CMC group compared with the PTFE and PET groups according to the present study parameters. PMID:29399133
Postoperative Therapy for Chronic Thumb Carpometacarpal (CMC) Joint Dislocation.
Wollstein, Ronit; Michael, Dafna; Harel, Hani
2016-01-01
Surgical arthroplasty of thumb carpometacarpal (CMC) joint osteoarthritis is commonly performed. Postoperative therapeutic protocols aim to improve range of motion and function of the revised thumb. We describe a case in which the thumb CMC joint had been chronically dislocated before surgery, with shortening of the soft-tissue dynamic and static stabilizers of the joint. The postoperative protocol addressed the soft tissues using splinting and exercises aimed at lengthening and strengthening these structures, with good results. It may be beneficial to evaluate soft-tissue tension and the pattern of thumb use after surgery for thumb CMC joint osteoarthritis to improve postoperative functional results. Copyright © 2016 by the American Occupational Therapy Association, Inc.
CMCpy: Genetic Code-Message Coevolution Models in Python
Becich, Peter J.; Stark, Brian P.; Bhat, Harish S.; Ardell, David H.
2013-01-01
Code-message coevolution (CMC) models represent coevolution of a genetic code and a population of protein-coding genes (“messages”). Formally, CMC models are sets of quasispecies coupled together for fitness through a shared genetic code. Although CMC models display plausible explanations for the origin of multiple genetic code traits by natural selection, useful modern implementations of CMC models are not currently available. To meet this need we present CMCpy, an object-oriented Python API and command-line executable front-end that can reproduce all published results of CMC models. CMCpy implements multiple solvers for leading eigenpairs of quasispecies models. We also present novel analytical results that extend and generalize applications of perturbation theory to quasispecies models and pioneer the application of a homotopy method for quasispecies with non-unique maximally fit genotypes. Our results therefore facilitate the computational and analytical study of a variety of evolutionary systems. CMCpy is free open-source software available from http://pypi.python.org/pypi/CMCpy/. PMID:23532367
Silver/polysaccharide-based nanofibrous materials synthesized from green chemistry approach.
Martínez-Rodríguez, M A; Garza-Navarro, M A; Moreno-Cortez, I E; Lucio-Porto, R; González-González, V A
2016-01-20
In this contribution a novel green chemistry approach for the synthesis of nanofibrous materials based on blends of carboxymethyl-cellulose (CMC)-silver nanoparticles (AgNPs) composite and polyvinyl-alcohol (PVA) is proposed. These nanofibrous materials were obtained from the electrospinning of blends of aqueous solutions of CMC-AgNPs composite and PVA, which were prepared at different CMC/PVA weight ratios in order to electrospin nanofibers applying a constant tension of 15kV. The synthesized materials were characterized by means of transmission electron microscopy, scanning electron microscopy; as well as Fourier-transform infrared, ultraviolet and Raman spectroscopic techniques. Experimental evidence suggests that the diameter of the nanofibers is thinner than any other reported in the literature regarding the electrospinning of CMC. This feature is related to the interactions of AgNPs with carboxyl functional groups of the CMC, which diminish those between the later and acetyl groups of PVA. Copyright © 2015 Elsevier Ltd. All rights reserved.
Lo, Yung-Chung; Bai, Ming-Der; Chen, Wen-Ming; Chang, Jo-Shu
2008-11-01
In this study, cellulose hydrolysis activity of two mixed bacterial consortia (NS and QS) was investigated. Combination of NS culture and BHM medium exhibited better hydrolytic activity under the optimal condition of 35 degrees C, initial pH 7.0, and 100rpm agitation. The NS culture could hydrolyze carboxymethyl cellulose (CMC), rice husk, bagasse and filter paper, among which CMC gave the best hydrolysis performance. The CMC hydrolysis efficiency increased with increasing CMC concentration from 5 to 50g/l. With a CMC concentration of 10g/l, the total reducing sugar (RS) production and the RS producing rate reached 5531.0mg/l and 92.9mg/l/h, respectively. Furthermore, seven H2-producing bacterial isolates (mainly Clostridium species) were used to convert the cellulose hydrolysate into H2 energy. With an initial RS concentration of 0.8g/l, the H2 production and yield was approximately 23.8ml/l and 1.21mmol H2/g RS (0.097mmol H2/g cellulose), respectively.
An Improved Algorithm of Congruent Matching Cells (CMC) Method for Firearm Evidence Identifications
Tong, Mingsi; Song, John; Chu, Wei
2015-01-01
The Congruent Matching Cells (CMC) method was invented at the National Institute of Standards and Technology (NIST) for firearm evidence identifications. The CMC method divides the measured image of a surface area, such as a breech face impression from a fired cartridge case, into small correlation cells and uses four identification parameters to identify correlated cell pairs originating from the same firearm. The CMC method was validated by identification tests using both 3D topography images and optical images captured from breech face impressions of 40 cartridge cases fired from a pistol with 10 consecutively manufactured slides. In this paper, we discuss the processing of the cell correlations and propose an improved algorithm of the CMC method which takes advantage of the cell correlations at a common initial phase angle and combines the forward and backward correlations to improve the identification capability. The improved algorithm is tested by 780 pairwise correlations using the same optical images and 3D topography images as the initial validation. PMID:26958441
Ma, Weina; Yang, Liu; Lv, Yanni; Fu, Jia; Zhang, Yanmin; He, Langchong
2017-06-23
The equilibrium dissociation constant (K D ) of drug-membrane receptor affinity is the basic parameter that reflects the strength of interaction. The cell membrane chromatography (CMC) method is an effective technique to study the characteristics of drug-membrane receptor affinity. In this study, the K D value of CMC relative standard method for the determination of drug-membrane receptor affinity was established to analyze the relative K D values of drugs binding to the membrane receptors (Epidermal growth factor receptor and angiotensin II receptor). The K D values obtained by the CMC relative standard method had a strong correlation with those obtained by the frontal analysis method. Additionally, the K D values obtained by CMC relative standard method correlated with pharmacological activity of the drug being evaluated. The CMC relative standard method is a convenient and effective method to evaluate drug-membrane receptor affinity. Copyright © 2017 Elsevier B.V. All rights reserved.
Trends in Thumb Carpometacarpal Interposition Arthroplasty in the United States, 2005-2011.
Werner, Brian C; Bridgforth, Andrew B; Gwathmey, F Winston; Dacus, A Rashard
2015-08-01
We conducted a study to investigate current trends in carpometacarpal (CMC) interposition arthroplasty across time, sex, age, and region of the United States; per-patient charges and reimbursements; and the association between this procedure and concomitantly performed carpal tunnel syndrome (CTS) and carpal tunnel release (CTR). Patients who underwent CMC interposition arthroplasty (N = 41,171) were identified in a national database. Between 2005 and 2011, the number of patients who had CMC interposition arthroplasty increased 46.2%. Females had the procedure more frequently than males at all time points, though the percentage of patients who were male increased throughout the study period. Of the patients who had CMC interposition arthroplasty, 40.9% also had a diagnosis of CTS. Between 15.5% and 17.3% of these patients had CTR performed concomitantly. Despite a lack of evidence that thumb CMC interposition arthroplasty is superior to other surgical treatment options, the number of patients who are having this procedure has increased significantly. The impetus for these trends requires additional investigation.
Ceramic Matrix Composites (CMC) Life Prediction Method Development
NASA Technical Reports Server (NTRS)
Levine, Stanley R.; Calomino, Anthony M.; Ellis, John R.; Halbig, Michael C.; Mital, Subodh K.; Murthy, Pappu L.; Opila, Elizabeth J.; Thomas, David J.; Thomas-Ogbuji, Linus U.; Verrilli, Michael J.
2000-01-01
Advanced launch systems (e.g., Reusable Launch Vehicle and other Shuttle Class concepts, Rocket-Based Combine Cycle, etc.), and interplanetary vehicles will very likely incorporate fiber reinforced ceramic matrix composites (CMC) in critical propulsion components. The use of CMC is highly desirable to save weight, to improve reuse capability, and to increase performance. CMC candidate applications are mission and cycle dependent and may include turbopump rotors, housings, combustors, nozzle injectors, exit cones or ramps, and throats. For reusable and single mission uses, accurate prediction of life is critical to mission success. The tools to accomplish life prediction are very immature and not oriented toward the behavior of carbon fiber reinforced silicon carbide (C/SiC), the primary system of interest for a variety of space propulsion applications. This paper describes an approach to satisfy the need to develop an integrated life prediction system for CMC that addresses mechanical durability due to cyclic and steady thermomechanical loads, and takes into account the impact of environmental degradation.
An Improved Algorithm of Congruent Matching Cells (CMC) Method for Firearm Evidence Identifications.
Tong, Mingsi; Song, John; Chu, Wei
2015-01-01
The Congruent Matching Cells (CMC) method was invented at the National Institute of Standards and Technology (NIST) for firearm evidence identifications. The CMC method divides the measured image of a surface area, such as a breech face impression from a fired cartridge case, into small correlation cells and uses four identification parameters to identify correlated cell pairs originating from the same firearm. The CMC method was validated by identification tests using both 3D topography images and optical images captured from breech face impressions of 40 cartridge cases fired from a pistol with 10 consecutively manufactured slides. In this paper, we discuss the processing of the cell correlations and propose an improved algorithm of the CMC method which takes advantage of the cell correlations at a common initial phase angle and combines the forward and backward correlations to improve the identification capability. The improved algorithm is tested by 780 pairwise correlations using the same optical images and 3D topography images as the initial validation.
Salama, Ahmed
2018-01-01
A novel superadsorbent anionic hydrogel was synthesized by grafting of poly (3-sulfopropyl methacrylate), P(SPMA), onto carboxymethyl cellulose (CMC). CMC-g-P(SPMA) superadsorbent hydrogel was applied as an efficient and sustainable adsorbent to remove methylene blue (MB) from waste water. Batch adsorption experiments showed that the solution pH had an obvious effect on the adsorption capacity with an optimal sorption pH at 6. The CMC-g-P(SPMA) hydrogel had rapid adsorption kinetics for MB and the adsorption equilibrium reached within 40min. The adsorption kinetics were more accurately described by pseudo second-order model and the Langmuir-fitted adsorption isotherms revealed a maximum capacity of 1675mg/g. The current anionic hydrogel is reusable as the adsorption capacity remained at 89% level after five adsorption-desorption cycles. CMC-g-P(SPMA) hydrogel was presented as a sustainable promising adsorbent with high adsorption capacity and good regenerability for effective cationic dyes removal. Copyright © 2017 Elsevier B.V. All rights reserved.
A way to motivate Danish GPs to implement a new national service.
Kristensen, Alice; Wengler, Bente
2012-01-01
The Common Medicine card (CMC) is a new national service in Denmark which aim is to ensure better patient care and minimize medication errors. All health professionals as well as authorities have to use this system. CMC requires changing the organization of work for both physicians and clinical staff in General Practice (GP). Commissioning of CMC in GP requires a significant effort beyond the technical installation of the solution. Finding the right way to implement a new service in a busy GP has been the main focus of the national project organization MedCom. MedCom has in collaboration with the five regions in Denmark, established a joint plan and has created an implementation model contraining various initiatives including "after hours" meetings for each service provider of EMR (Electronic Medicine Records) in order to disseminate and support the new CMC service. This paper shows the status of the "after hours" meetings effect in dissemination of CMC from August to November 2011.
Wound Healing Studies Using Punica granatum Peel: An Animal Experimental Study.
Zekavat, Omidreza; Amanat, Aida; Karami, Mohammadyasin; Paydar, Shahram; Gramizadeh, Bita; Zareian-Jahromi, Maryam
2016-05-01
The goal of the present study was to evaluate the effects of hydroalcoholic extract-based carboxy methyl cellulose (CMC) gel of Punica granatum peel (PCMC) and CMC on healing of full-thickness skin wounds. Forty-two rats were studied. Each rat had 3 wounds that were treated topically with PCMC as the case, CMC as the positive control, and sterile saline as the negative control. All 3 wounds of each rat were photographed during the wound healing period at days 0 (onset of wound surgery), 3, 6, 9, and 12.The wound area was calculated using Adobe Photoshop CS (version 5) software (Adobe Systems Inc, San Jose, California). Electrocardiogram paper was used for reference scale. The results of this study show that macroscopic and microscopic wound healing took a significantly longer time in wounds treated with normal saline than those treated with PCMC (grossly) and CMC gel (grossly and significantly). The authors' findings show that anti-inflammatory, antihemorrhagic, and antinecrotic effects of CMC lead to early healing of skin wounds.
Habibi, Neda
2014-10-15
The preparation and characterization of magnetite-carboxymethyl cellulose nano-composite (M-CMC) material is described. Magnetite nano-particles were synthesized by a modified co-precipitation method using ferrous chloride tetrahydrate and ferric chloride hexahydrate in ammonium hydroxide solution. The M-CMC nano-composite particles were synthesized by embedding the magnetite nanoparticles inside carboxymethyl cellulose (CMC) using a freshly prepared mixture of Fe3O4 with CMC precursor. Morphology, particle size, and structural properties of magnetite-carboxymethyl cellulose nano-composite was accomplished using X-ray powder diffraction (XRD), transmission electron microscopy (TEM), Fourier transformed infrared (FTIR) and field emission scanning electron microscopy (FESEM) analysis. As a result, magnetite nano-particles with an average size of 35nm were obtained. The biocompatible Fe3O4-carboxymethyl cellulose nano-composite particles obtained from the natural CMC polymers have a potential range of application in biomedical field. Copyright © 2014 Elsevier B.V. All rights reserved.
Overview of CMC Research at NASA Glenn Research Center
NASA Technical Reports Server (NTRS)
Grady, Joseph E.
2011-01-01
CMC technology development in the Ceramics Branch at NASA Glenn Research Center addresses Aeronautics propulsion goals across subsonic, supersonic and hypersonic flight regimes. Combustor, turbine and exhaust nozzle applications of CMC materials will enable NASA to demonstrate reduced fuel consumption, emissions, and noise in advanced gas turbine engines. Applications ranging from basic Fundamental Aeronautics research activities to technology demonstrations in the new Integrated Systems Research Program will be discussed.
NASA Technical Reports Server (NTRS)
Murphy, Daniel J.; Pinelli, Thomas E.
1994-01-01
This paper discusses the use of computers as a medium for communication (CMC) used by aerospace engineers and scientists to obtain and/or provide technical information related to research and development activities. The data were obtained from a questionnaire survey that yielded 1006 mail responses. In addition to communication media, the research also investigates degrees of task uncertainty, environmental complexity, and other relevant variables that can affect aerospace workers' information-seeking strategies. While findings indicate that many individuals report CMC is an important function in their communication patterns, the research indicates that CMC is used less often and deemed less valuable than other more conventional media, such as paper documents, group meetings, telephone and face-to-face conversations. Fewer than one third of the individuals in the survey account for nearly eighty percent of the reported CMC use, and another twenty percent indicate they do not use the medium at all, its availability notwithstanding. These preliminary findings suggest that CMC is not as pervasive a communication medium among aerospace workers as the researcher expect a priori. The reasons underlying the reported media use are not yet fully known, and this suggests that continuing research in this area may be valuable.
Development of the Virginia Tech Department of Geosciences MEDL-CMC
NASA Astrophysics Data System (ADS)
Glesener, G. B.
2016-12-01
In 2015 the Virginia Tech Department of Geosciences took a leading role in increasing the level of support for Geoscience instructors by investing in the development of the Geosciences Modeling and Educational Demonstrations Laboratory Curriculum Materials Center (MEDL-CMC). The MEDL-CMC is an innovative curriculum materials center designed to foster new collaborative teaching and learning environments by providing hands-on physical models combined with education technology for instructors and outreach coordinators. The mission of the MEDL-CMC is to provide advanced curriculum material resources for the purpose of increasing and sustaining high impact instructional capacity in STEM education for both formal and informal learning environments. This presentation describes the development methods being used to implement the MEDL-CMC. Major development methods include: (1) adopting a project management system to support collaborations with stakeholders, (2) using a diversified funding approach to achieve financial sustainability and the ability to evolve with the educational needs of the community, and (3) establishing a broad collection of systems-based physical analog models and data collection tools to support integrated sciences such as the geosciences. Discussion will focus on how these methods are used for achieving organizational capacity in the MEDL-CMC and on their intended role in reducing instructor workload in planning both classroom activities and research grant broader impacts.
Chen, Zhen; Cao, Shansong; Wang, Haorong; Li, Yanqiu; Kishen, Anil; Deng, Xuliang; Yang, Xiaoping; Wang, Yinghui; Cong, Changhong; Wang, Huajun; Zhang, Xu
2015-01-01
Currently, it is still a tough task for dentists to remineralize dentine in deep caries. The aim of this study was to remineralize demineralized dentine in a tooth model of deep caries using nanocomplexes of carboxymethyl chitosan/amorphous calcium phosphate (CMC/ACP) based on mimicking the stabilizing effect of dentine matrix protein 1 (DMP1) on ACP in the biomineralization of dentine. The experimental results indicate that CMC can stabilize ACP to form nanocomplexes of CMC/ACP, which is able to be processed into scaffolds by lyophilization. In the single-layer collagen model, ACP nanoparticles are released from scaffolds of CMC/ACP nanocomplexes dissolved and then infiltrate into collagen fibrils via the gap zones (40 nm) to accomplish intrafibrillar mineralization of collagen. With this method, the completely demineralized dentine was partially remineralized in the tooth mode. This is a bottom-up remineralizing strategy based on non-classical crystallization theory. Since nanocomplexes of CMC/ACP show a promising effect of remineralization on demineralized dentine via biomimetic strategy, thereby preserving dentinal tissue to the maximum extent possible, it would be a potential indirect pulp capping (IPC) material for the management of deep caries during vital pulp therapy based on the concept of minimally invasive dentistry (MID).
Chen, Zhen; Cao, Shansong; Wang, Haorong; Li, Yanqiu; Kishen, Anil; Deng, Xuliang; Yang, Xiaoping; Wang, Yinghui; Cong, Changhong; Wang, Huajun; Zhang, Xu
2015-01-01
Currently, it is still a tough task for dentists to remineralize dentine in deep caries. The aim of this study was to remineralize demineralized dentine in a tooth model of deep caries using nanocomplexes of carboxymethyl chitosan/amorphous calcium phosphate (CMC/ACP) based on mimicking the stabilizing effect of dentine matrix protein 1 (DMP1) on ACP in the biomineralization of dentine. The experimental results indicate that CMC can stabilize ACP to form nanocomplexes of CMC/ACP, which is able to be processed into scaffolds by lyophilization. In the single-layer collagen model, ACP nanoparticles are released from scaffolds of CMC/ACP nanocomplexes dissolved and then infiltrate into collagen fibrils via the gap zones (40 nm) to accomplish intrafibrillar mineralization of collagen. With this method, the completely demineralized dentine was partially remineralized in the tooth mode. This is a bottom-up remineralizing strategy based on non-classical crystallization theory. Since nanocomplexes of CMC/ACP show a promising effect of remineralization on demineralized dentine via biomimetic strategy, thereby preserving dentinal tissue to the maximum extent possible, it would be a potential indirect pulp capping (IPC) material for the management of deep caries during vital pulp therapy based on the concept of minimally invasive dentistry (MID). PMID:25587986
Design Considerations for Ceramic Matrix Composite Vanes for High Pressure Turbine Applications
NASA Technical Reports Server (NTRS)
Boyle, Robert J.; Parikh, Ankur H.; Nagpal, Vinod K.; Halbig, Michael C.
2013-01-01
Issues associated with replacing conventional metallic vanes with Ceramic Matrix Composite (CMC) vanes in the first stage of the High Pressure Turbine (HPT) are explored. CMC materials have higher temperature capability than conventional HPT vanes, and less vane cooling is required. The benefits of less vane coolant are less NOx production and improved vane efficiency. Comparisons between CMC and metal vanes are made at current rotor inlet temperatures and at an vane inlet pressure of 50 atm.. CMC materials have directionally dependent strength characteristics, and vane designs must accommodate these characteristics. The benefits of reduced NOx and improved cycle efficiency obtainable from using CMC vanes. are quantified Results are given for vane shapes made of a two dimensional CMC weave. Stress components due to thermal and pressure loads are shown for all configurations. The effects on stresses of: (1) a rib connecting vane pressure and suction surfaces; (2) variation in wall thickness; and (3) trailing edge region cooling options are discussed. The approach used to obtain vane temperature distributions is discussed. Film cooling and trailing edge ejection were required to avoid excessive vane material temperature gradients. Stresses due to temperature gradients are sometimes compressive in regions where pressure loads result in high tensile stresses.
Scientific Grid activities and PKI deployment in the Cybermedia Center, Osaka University.
Akiyama, Toyokazu; Teranishi, Yuuichi; Nozaki, Kazunori; Kato, Seiichi; Shimojo, Shinji; Peltier, Steven T; Lin, Abel; Molina, Tomas; Yang, George; Lee, David; Ellisman, Mark; Naito, Sei; Koike, Atsushi; Matsumoto, Shuichi; Yoshida, Kiyokazu; Mori, Hirotaro
2005-10-01
The Cybermedia Center (CMC), Osaka University, is a research institution that offers knowledge and technology resources obtained from advanced researches in the areas of large-scale computation, information and communication, multimedia content and education. Currently, CMC is involved in Japanese national Grid projects such as JGN II (Japan Gigabit Network), NAREGI and BioGrid. Not limited to Japan, CMC also actively takes part in international activities such as PRAGMA. In these projects and international collaborations, CMC has developed a Grid system that allows scientists to perform their analysis by remote-controlling the world's largest ultra-high voltage electron microscope located in Osaka University. In another undertaking, CMC has assumed a leadership role in BioGrid by sharing its experiences and knowledge on the system development for the area of biology. In this paper, we will give an overview of the BioGrid project and introduce the progress of the Telescience unit, which collaborates with the Telescience Project led by the National Center for Microscopy and Imaging Research (NCMIR). Furthermore, CMC collaborates with seven Computing Centers in Japan, NAREGI and National Institute of Informatics to deploy PKI base authentication infrastructure. The current status of this project and future collaboration with Grid Projects will be delineated in this paper.
Matsushima, Toshio; Kawashima, Masatou; Inoue, Kohei; Matsushima, Ken; Miki, Koichi
2014-11-01
To clarify microsurgical anatomic features of the cerebellomedullary fissure (CMF), the natural cleavage plane between the cerebellum and the medulla, and its relationship to the cerebellomedullary cistern (CMC) and to describe a surgical technique that uses the unilateral trans-CMF approach for CMC surgeries. In the anatomic study, 2 formalin-fixed cadaver heads were used. In the clinical study, 3 patients with vertebral artery-posterior inferior cerebellar artery aneurysms and 3 patients with glossopharyngeal neuralgia were surgically treated through the unilateral trans-CMF approach combined with the transcondylar fossa approach, which is a lateral foramen magnum approach. The CMC was present at the lateral end of the CMF. The CMF was closed by arachnoidal adhesion, and the cerebellar hemisphere was superiorly attached to the cerebellar peduncle. After the unilateral CMF was completely opened, the cerebellar hemisphere was easily retracted rostrodorsally. Clinically, almost completely opening the unilateral CMF markedly enabled the retraction of the biventral lobule to obtain a wide surgical field safely for vascular CMC lesions. We present 2 representative cases. Combined unilateral trans-CMF/lateral foramen magnum approaches provide a wide and close surgical field in the CMC, allowing easy and safe CMC surgery. Copyright © 2014 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yin, Wong Swee; Hassan, Jumiah; Hashim, Mansor
Ceramic matrix composites (CMC) combine reinforcing ceramic phases, CaCu{sub 3}Ti{sub 4}O{sub 12} (CCTO) with a ceramic matrix, kaolinite to create materials with new and superior properties. 10% and 20% CCTO were prepared by using a conventional solid state reaction method. CMC samples were pre-sintered at 800 deg. C and sintered at 1000 deg. C. The dielectric properties of samples were measured using HP 4192A LF Impedance Analyzer. Microstructures of the samples were observed using an optical microscope. XRD was used to determine the crystalline structure of the samples. The AFM showed the morphology of the samples. The results showed thatmore » the dielectric constant and dielectric loss factor of both samples are frequency dependent. At 10 Hz, the dielectric constant is 10{sup 11} for both samples. The CMC samples were independent with temperature with low dielectric constant in the frequency range of 10{sup 4}-10{sup 6} Hz. Since the CMC samples consist of different amount of kaolinite, so each sample exhibit different defect mechanism. Different reaction may occur for different composition of material. The effects of processing conditions on the microstructure and electrical properties of CMC are also discussed.« less
NASA Astrophysics Data System (ADS)
Hastuti, Budi; Siswanta, Dwi; Mudasir; Triyono
2018-01-01
Pectin and chitosan are biodegradable polymers, potentially applied as a heavy metal adsorbents. Unfortunately both biosorbents pectin and chitosan have a weakness in acidic media. For this purpose required modified pectin and chitosan. The modified adsorben is intended to obtain a stable adsorbent and resistance under acid. The research was done by experimental method in laboratory. The stages of this research are the synthesis of carboxymethyl chitosan (CMC), synthesis of Pec-CMC-PEGDE film adsorbent, stabily test under acid, the characterization of active group using FTIR, stability characterization of Pec-CMC-PEGDE powder adsorbent using XRD, termo stability using DTA-TGA. The results of the research have shown that: pectin and CMC can be cross-linked using PEGDE crosslinking agent, the film adsorbent was stable under HCl 1 M, the film adsorbent have active group comprise of carboxylate and amine groups. The result of characterization using XRD, shows that the adsorbent is semi-crystalline. Base on termo stability, the film adsorbent Pec-CMC-PEGDE stable up to 600°C. The film can be applied as an adsobent of Pb (II) ion remediation. The optimum pH of pec-CMC-PEGDE in adsorbed of Pb(II) was reached at pH 5 with 99.99% absorbent adsorbed and of and adsorption capacity was 46.11 mg/g.
Kuno, Sotaro; Yoshida, Takashi; Kaneko, Takakazu; Sako, Yoshihiko
2012-08-01
Clustered regularly interspaced short palindromic repeats (CRISPR) confer sequence-dependent, adaptive resistance in prokaryotes against viruses and plasmids via incorporation of short sequences, called spacers, derived from foreign genetic elements. CRISPR loci are thus considered to provide records of past infections. To describe the host-parasite (i.e., cyanophages and plasmids) interactions involving the bloom-forming freshwater cyanobacterium Microcystis aeruginosa, we investigated CRISPR in four M. aeruginosa strains and in two previously sequenced genomes. The number of spacers in each locus was larger than the average among prokaryotes. All spacers were strain specific, except for a string of 11 spacers shared in two closely related strains, suggesting diversification of the loci. Using CRISPR repeat-based PCR, 24 CRISPR genotypes were identified in a natural cyanobacterial community. Among 995 unique spacers obtained, only 10 sequences showed similarity to M. aeruginosa phage Ma-LMM01. Of these, six spacers showed only silent or conservative nucleotide mutations compared to Ma-LMM01 sequences, suggesting a strategy by the cyanophage to avert CRISPR immunity dependent on nucleotide identity. These results imply that host-phage interactions can be divided into M. aeruginosa-cyanophage combinations rather than pandemics of population-wide infectious cyanophages. Spacer similarity also showed frequent exposure of M. aeruginosa to small cryptic plasmids that were observed only in a few strains. Thus, the diversification of CRISPR implies that M. aeruginosa has been challenged by diverse communities (almost entirely uncharacterized) of cyanophages and plasmids.
Kuno, Sotaro; Kaneko, Takakazu; Sako, Yoshihiko
2012-01-01
Clustered regularly interspaced short palindromic repeats (CRISPR) confer sequence-dependent, adaptive resistance in prokaryotes against viruses and plasmids via incorporation of short sequences, called spacers, derived from foreign genetic elements. CRISPR loci are thus considered to provide records of past infections. To describe the host-parasite (i.e., cyanophages and plasmids) interactions involving the bloom-forming freshwater cyanobacterium Microcystis aeruginosa, we investigated CRISPR in four M. aeruginosa strains and in two previously sequenced genomes. The number of spacers in each locus was larger than the average among prokaryotes. All spacers were strain specific, except for a string of 11 spacers shared in two closely related strains, suggesting diversification of the loci. Using CRISPR repeat-based PCR, 24 CRISPR genotypes were identified in a natural cyanobacterial community. Among 995 unique spacers obtained, only 10 sequences showed similarity to M. aeruginosa phage Ma-LMM01. Of these, six spacers showed only silent or conservative nucleotide mutations compared to Ma-LMM01 sequences, suggesting a strategy by the cyanophage to avert CRISPR immunity dependent on nucleotide identity. These results imply that host-phage interactions can be divided into M. aeruginosa-cyanophage combinations rather than pandemics of population-wide infectious cyanophages. Spacer similarity also showed frequent exposure of M. aeruginosa to small cryptic plasmids that were observed only in a few strains. Thus, the diversification of CRISPR implies that M. aeruginosa has been challenged by diverse communities (almost entirely uncharacterized) of cyanophages and plasmids. PMID:22636003
Substance P stimulates the opossum sphincter of Oddi in vitro.
Parodi, J E; Cho, N; Zenilman, M E; Barteau, J A; Soper, N J; Becker, J M
1990-09-01
We have previously shown that substance P (SP) regulates sphincter of Oddi (SO) motility in vivo. However, its mechanism of action remains unclear. Our aim was to develop an in vitro model to measure spikeburst (SB) an contractile frequency (CMC) of the SO and to characterize further SP effects. In 16 opossums, SO rings were excised, mounted within a Kreb's tissue bath with bipolar electrodes and force transducers, allowed to equilibrate, and exposed to increasing SP concentrations with washout between each test solution. Spikeburst and CMC frequencies were recorded on a polygraph, quantitated, expressed as differences before and during SP, and statistically analyzed with Student's test. Although SP induced a significant concentration-dependent increase in phasic SB frequency and CMC, the amplitude of concentrations was not affected by SP. A close correlation was found between basal and SP-stimulated SB and CMC, suggesting myoelectric and mechanical coupling. Previous exposure of SO to SP antagonist [D-Arg1, D-Pro2, D-Trp7,9, Leu11]-SP significantly decreased the response to SP. Tetrodotoxin (TTX), did not affect the delta CMC response to SP. In conclusion an in vitro preparation was developed to study the effect of SP on the SO. Substance P increased SB and CMC of the SO in a concentration-dependent fashion, thus acting as a stimulatory peptide. Perfusion of SO rings with SP antagonist had no effect on basal CMC but significantly inhibited the action of SP in a competitive manner. The effect of SP was not altered by TTX. These data suggest that the action of SP on the SO is primarily myogenic.
2011-01-01
Background Cassava starch, the economically important agricultural commodity in Thailand, can readily be cast into films. However, the cassava starch film is brittle and weak, leading to inadequate mechanical properties. The properties of starch film can be improved by adding plasticizers and blending with the other biopolymers. Results Cassava starch (5%w/v) based films plasticized with glycerol (30 g/100 g starch) were characterized with respect to the effect of carboxymethyl cellulose (CMC) concentrations (0, 10, 20, 30 and 40%w/w total solid) and relative humidity (34 and 54%RH) on the mechanical properties of the films. Additionally, intermolecular interactions were determined by Fourier transform infrared spectroscopy (FT-IR), melting temperature by differential scanning calorimetry (DSC), and morphology by scanning electron microscopy (SEM). Water solubility of the films was also determined. Increasing concentration of CMC increased tensile strength, reduced elongation at break, and decreased water solubility of the blended films. FT-IR spectra indicated intermolecular interactions between cassava starch and CMC in blended films by shifting of carboxyl (C = O) and OH groups. DSC thermograms and SEM micrographs confirmed homogeneity of cassava starch-CMC films. Conclusion The addition of CMC to the cassava starch films increased tensile strength and reduced elongation at break of the blended films. This was ascribed to the good interaction between cassava starch and CMC. Cassava starch-CMC composite films have the potential to replace conventional packaging, and the films developed in this work are suggested to be suitable for low moisture food and pharmaceutical products. PMID:21306655
Improvement of Fish Sauce Quality by Strain CMC5-3-1: A Novel Species of Staphylococcus sp.
Udomsil, Natteewan; Rodtong, Sureelak; Tanasupawat, Somboon; Yongsawatdigul, Jirawat
2015-09-01
Staphylococcus sp. CMC5-3-1 and CMS5-7-5 isolated from fermented fish sauce at 3 to 7 mo, respectively, showed different characteristics on protein hydrolysis and volatile formation. These Gram-positive cocci were able to grow in up to 15% NaCl with the optimum at 0.5% to 5% NaCl in tryptic soy broth. Based on ribosomal 16S rRNA gene sequences, Staphylococcus sp. CMC5-3-1 and CMS5-7-5 showed 99.0% similarity to that of Staphylococcus piscifermentans JCM 6057(T) , but DNA-DNA relatedness was <30%, indicating that they were likely to be new species. DNA relatedness between these 2 strains was only 65%, suggesting that they also belonged to different species. The α-amino group content of 6-month-old fish sauce inoculated with Staphylococcus sp. CMC5-3-1 was 740.5 mM, which was higher than that inoculated by the strain CMS5-7-5 (662.14 mM, P < 0.05). Histamine was not produced during fermentations with both strains. Fish sauce inoculated with Staphylococcus sp. CMC5-3-1 showed the highest content of total glutamic acid (P < 0.05). The major volatile compound detected in fish sauce inoculated with Staphylococcus sp. CMC5-3-1 was 2-methypropanal, contributing to the desirable dark chocolate note. Staphylococcus sp. CMC5-3-1 could be applied as a starter culture to improve the umami and aroma of fish sauce. © 2015 Institute of Food Technologists®
NASA Astrophysics Data System (ADS)
Holst, Michael; Meier, Caleb
2015-01-01
In this article we further develop the solution theory for the Einstein constraint equations on an n-dimensional, asymptotically Euclidean manifold M with interior boundary Σ. Building on recent results for both the asymptotically Euclidean and compact with boundary settings, we show the existence of far-from-CMC and near-CMC solutions to the conformal formulation of the Einstein constraints when nonlinear Robin boundary conditions are imposed on Σ, similar to those analyzed previously by Dain (2004 Class. Quantum Grav. 21 555-73), by Maxwell (2004, 2005 Commun. Math. Phys. 253 561-83), and by Holst and Tsogtgerel (2013 Class. Quantum Grav. 30 205011) as a model of black holes in various CMC settings, and by Holst et al (2013 Non-CMC solutions to the einstein constraint equations with apparent horizon boundaries arXiv:1310.2302v1) in the setting of far-from-CMC solutions on compact manifolds with boundary. These ‘marginally trapped surface’ Robin conditions ensure that the expansion scalars along null geodesics perpendicular to the boundary region Σ are non-positive, which is considered the correct mathematical model for black holes in the context of the Einstein constraint equations. Assuming a suitable form of weak cosmic censorship, the results presented in this article guarantee the existence of initial data that will evolve into a space-time containing an arbitrary number of black holes. A particularly important feature of our results are the minimal restrictions we place on the mean curvature, giving both near- and far-from-CMC results that are new.
Impact of spacer thickness on biofouling in forward osmosis.
Valladares Linares, R; Bucs, Sz S; Li, Z; AbuGhdeeb, M; Amy, G; Vrouwenvelder, J S
2014-06-15
Forward osmosis (FO) indirect desalination systems integrate wastewater recovery with seawater desalination. Niche applications for FO systems have been reported recently, due to the demonstrated advantages compared to conventional high-pressure membrane processes such as nanofiltration (NF) and reverse osmosis (RO). Among them, wastewater recovery has been identified to be particularly suitable for practical applications. However, biofouling in FO membranes has rarely been studied in applications involving wastewater effluents. Feed spacers separating the membrane sheets in cross-flow systems play an important role in biofilm formation. The objective of this study was to determine the influence of feed spacer thickness (28, 31 and 46 mil) on biofouling development and membrane performance in a FO system, using identical cross-flow cells in parallel studies. Flux development, biomass accumulation, fouling localization and composition were determined and analyzed. For all spacer thicknesses, operated at the same feed flow and the same run time, the same amount of biomass was found, while the flux reduction decreased with thicker spacers. These observations are in good agreement with biofouling studies for RO systems, considering the key differences between FO and RO. Our findings contradict previous cross-flow studies on particulate/colloidal fouling, where higher cross-flow velocities improved system performance. Thicker spacers reduced the impact of biofouling on FO membrane flux. Copyright © 2014 Elsevier Ltd. All rights reserved.
Muthuraman, Muthuraman; Tamás, Gertrúd; Hellriegel, Helge; Deuschl, Günther; Raethjen, Jan
2012-01-01
We hypothesized that post-movement beta synchronization (PMBS) and cortico-muscular coherence (CMC) during movement termination relate to each other and have similar role in sensorimotor integration. We calculated the parameters and estimated the sources of these phenomena.We measured 64-channel EEG simultaneously with surface EMG of the right first dorsal interosseus muscle in 11 healthy volunteers. In Task1, subjects kept a medium-strength contraction continuously; in Task2, superimposed on this movement, they performed repetitive self-paced short contractions. In Task3 short contractions were executed alone. Time-frequency analysis of the EEG and CMC was performed with respect to the offset of brisk movements and averaged in each subject. Sources of PMBS and CMC were also calculated.High beta power in Task1, PMBS in Task2-3, and CMC in Task1-2 could be observed in the same individual frequency bands. While beta synchronization in Task1 and PMBS in Task2-3 appeared bilateral with contralateral predominance, CMC in Task1-2 was strictly a unilateral phenomenon; their main sources did not differ contralateral to the movement in the primary sensorimotor cortex in 7 of 11 subjects in Task1, and in 6 of 9 subjects in Task2. In Task2, CMC and PMBS had the same latency but their amplitudes did not correlate with each other. In Task2, weaker PMBS source was found bilaterally within the secondary sensory cortex, while the second source of CMC was detected in the premotor cortex, contralateral to the movement. In Task3, weaker sources of PMBS could be estimated in bilateral supplementary motor cortex and in the thalamus. PMBS and CMC appear simultaneously at the end of a phasic movement possibly suggesting similar antikinetic effects, but they may be separate processes with different active functions. Whereas PMBS seems to reset the supraspinal sensorimotor network, cortico-muscular coherence may represent the recalibration of cortico-motoneuronal and spinal systems.
Fang, Aiping; Cathala, Bernard
2011-01-01
This paper reports a microfluidic synthesis of biopolymer microparticles aiming at smart swelling. Monodisperse aqueous emulsion droplets comprising biopolymer and its cross-linking agent were formed in mineral oil and solidified in the winding microfluidic channels by in situ chaotic mixing, which resulted in internal chemical gelation for hydrogels. The achievement of pectin microparticles from in situ mixing pectin with its cross-linking agent, calcium ions, successfully demonstrates the reliability of this microfluidic synthesis approach. In order to achieve hydrogels with smart swelling, the following parameters and their impacts on the swelling behaviour, stability and morphology of microparticles were investigated: (1) the type of biopolymers (alginate or mixture of alginate and carboxymethylcellulose, A-CMC); (2) rapid mixing; (3) concentration and type of cross-linking agent. Superabsorbent microparticles were obtained from A-CMC mixture by using ferric chloride as an additional external cross-linking agent. The in situ encapsulation of a model protein, bovine serum albumin (BSA), was also carried out. As a potential protein drug-delivery system, the BSA release behaviours of the biopolymer particles were studied in simulated gastric and intestinal fluids. Compared with alginate and A-CMC microparticles cross-linked with calcium ions, A-CMC microparticles cross-linked with both calcium and ferric ions demonstrate a significantly delayed release. The controllable release profile, the facile encapsulation as well as their biocompatibility, biodegradability, mucoadhesiveness render this microfluidic approach promising in achieving biopolymer microparticles as protein drug carrier for site-specific release. Copyright © 2010 Elsevier B.V. All rights reserved.
Direct microscopic observation of forward osmosis membrane fouling.
Wang, Yining; Wicaksana, Filicia; Tang, Chuyang Y; Fane, Anthony G
2010-09-15
This study describes the application of a noninvasive direct microscopic observation method for characterizing fouling of a forward osmosis (FO) membrane. The effect of the draw solution concentration, membrane orientation, and feed spacer on FO fouling was systematically investigated in a cross-flow setup using latex particles as model foulant in the feedwater. Higher draw solution (DS) concentrations (and thus increased flux levels) resulted in dramatic increase in the surface coverage by latex particles, suggesting that the critical flux concept might be applicable even for the osmotically driven FO process. Under identical draw solution concentrations, the active-layer-facing-the-feed-solution orientation (AL-FS) experienced significantly less fouling compared to the alternative orientation. This may be explained by the lower water flux in AL-FS, which is consistent with the critical flux concept. The use of a feed spacer not only dramatically enhanced the initial flux of the FO membrane, but also significantly improved the flux stability during FO fouling. Despite such beneficial effects of using the feed spacer, a significant amount of particle accumulation was found near the spacer filament, suggesting further opportunities for improved spacer design. To the best of the authors' knowledge, this is the first direct microscopic observation study on FO fouling.
Genetic recombination events between sympatric Clade A and Clade C lice in Africa.
Veracx, Aurélie; Boutellis, Amina; Raoult, Didier
2013-09-01
Human head and body lice have been classified into three phylogenetic clades (Clades A, B, and C) based on mitochondrial DNA. Based on nuclear markers (the 18S rRNA gene and the PM2 spacer), two genotypes of Clade A head and body lice, including one that is specifically African (Clade A2), have been described. In this study, we sequenced the PM2 spacer of Clade C head lice from Ethiopia and compared these sequences with sequences from previous works. Trees were drawn, and an analysis of genetic diversity based on the cytochrome b gene and the PM2 spacer was performed for African and non-African lice. In the tree drawn based on the PM2 spacer, the African and non-African lice formed separate clusters. However, Clade C lice from Ethiopia were placed within the African Clade A subcluster (Clade A2). This result suggests that recombination events have occurred between Clade A2 lice and Clade C lice, reflecting the sympatric nature of African lice. Finally, the PM2 spacer and cytochrome b gene sequences of human lice revealed a higher level of genetic diversity in Africa than in other regions.
Thin-walled reinforcement lattice structure for hollow CMC buckets
de Diego, Peter
2017-06-27
A hollow ceramic matrix composite (CMC) turbine bucket with an internal reinforcement lattice structure has improved vibration properties and stiffness. The lattice structure is formed of thin-walled plies made of CMC. The wall structures are arranged and located according to high stress areas within the hollow bucket. After the melt infiltration process, the mandrels melt away, leaving the wall structure to become the internal lattice reinforcement structure of the bucket.
Composite Matrix Cooling Scheme for Small Gas Turbine Combustors
NASA Technical Reports Server (NTRS)
Paskin, Marc D.; Ross, Phillip T.; Mongia, Hukam C.; Acosta, Waldo A.
1990-01-01
The design, manufacture, and testing of a compliant metal/ceramic (CMC) wall cooling concept-implementing combustor for small gas turbine engines has been undertaken by a joint U.S. Army/NASA technology development program. CMC in principle promises greater wall cooling effectiveness than conventional designs and materials, thereby facilitating a substantial reduction in combustor cooling air requirements and furnishing greater airflow for the control of burner outlet temperature patterns as well as improving thermodynamic efficiency and reducing pollutant emissions and smoke levels. Rig test results have confirmed the projected benefits of the CMC concept at combustor outlet temperatures of the order of 2460 F, at which approximately 80 percent less cooling air than conventionally required was being employed by the CMC combustor.
Olson, Kaitlyn B
2017-05-04
The optimal care of children with medical complexity (CMC) requires involvement from a network of professionals that includes physicians, nurses, ancillary service providers, and educators. Pediatric health care providers typically have early and frequent contact with the families of CMC. Therefore, they are in a unique position to connect families to developmental, educational, and psychosocial supports. This article reviews important government and community programs that support CMC living in the United States. It outlines the educational rights of children with disabilities and offers practical tips for collaborating with Early Intervention and the public school system. The article also provides an overview of financial assistance programs, respite care services, and support groups that are beneficial to CMC and their families.
Binh, Nguyen Duy; Imsapsangworn, Chaiyaporn; Kim Oanh, Nguyen Thi; Parkpian, Preeda; Karstensen, Kare; Giao, Pham Huy; DeLaune, Ronald D
2016-01-01
Enriched microorganisms in sediment collected from a dioxin-contaminated site in Vietnam (Bien Hoa airbase) were used for examining the effectiveness in biological treatment of 2,3,7,8-Tetrachlorodibenzo-p-dioxin in soil. Four bio-treatments were investigated using a sequential anaerobic (17 weeks) followed by an aerobic (6 weeks) incubation. The maximum removal efficiency was approximately 60% even at an extremely low pH (approx. 3.6) condition. Surfactant Tween-80 was added to enhance the bioavailability of dioxin in two treatments, but it appeared to biostimulate methanogens rather than dechlorinators. As a result, methane production was the highest while the dioxin removal efficiency was the lowest, as compared with the other bio-treatments. Carboxymethylcellulose (CMC) coated on nanoscale zero valent iron (nZVI) surface used in two treatments could prevent the direct contact between bacterial cell surface and nZVI which prevented cell death and lysis, hence enhancing dioxin removal. The presence of CMC--_nZVI in bio-treatments gradually released H2 required for microbiological processes, but the amount used in the experiments were likely too high to maintain optimum H2 levels for biostimulating dechlorinators rather than methanogens.
Liao, Xueming; Gao, Zhinong; Xia, Yan; Niu, Fei; Zhai, Wenzhong
2017-04-04
A series of carboxylate gemini surfactants (CGS, C n -Φ-C n , n = 12, 14, 16, 18) with diphenyl ketone as a spacer group were prepared using a simple and feasible synthetic method. These CGS exhibited an excellent surface activity with extremely low critical micelle concentration (CMC) value (approximately 10 -5 mol/L), good performance in reducing surface tension (nearly 30 mN/m), and the ability of molecular self-assembly into different aggregate morphologies via adjusting the concentrations, which is attributed to the introduction of diphenyl ketone and carboxylic acid ammonium salt in the molecular structure. Moreover, the surface activity and self-assembly ability of CGS were further optimized by tuning the length of the tail chain. These excellent properties imply that CGS can be a soft template to prepare nanomaterials, especially in morphology-controllable synthesis. By adjusting the concentration of one of CGS (C 12 -Φ-C 12 ), nano-La 2 O 3 particles with diverse morphologies were obtained, including spherical shape, bead-chain shape, rod shape, velvet-antler shape, cedar shape, and bowknot shape. This work offers a vital insight into the rational design of template agents for the development of morphology-controllable nanomaterials.
NASA Astrophysics Data System (ADS)
Murage, Francis Ndwiga
The stated research problem of this study was to examine the relationship between motivational factors and the degree to which the higher education faculty integrate CMC tools into their courses. The study population and sample involved higher education faculty teaching in science departments at one public university and three public colleges in the state of West Virginia (N = 153). A Likert-type rating scale survey was used to collect data based on the research questions. Two parts of the survey were adopted from previous studies while the other two were self-constructed. Research questions and hypothesis were analyzed using both descriptive and inferential analyses. The study results established a positive relationship between motivational factors and the degree the higher education faculty integrate CMC tools in their courses. The results in addition established that faculty are highly motivated to integrate CMC tools by intrinsic factors, moderately motivated by environmental factors and least motivated by extrinsic factors. The results also established that the most integrated CMC tools were those that support asynchronous methods of communication while the least integrated were those that support synchronous methods of communication. A major conclusion made was that members of higher education faculty are more likely to be motivated to integrate CMC tools into their courses by intrinsic factors rather than extrinsic or environmental factors. It was further concluded that intrinsic factors that supported and enhanced student learning as well as those that were altruistic in nature significantly influenced the degree of CMC integration. The study finally concluded that to larger extent, there is a relationship between motivational factors and the degree to which the higher education faculty integrate CMC tools in their courses. A major implication of this study was that institutions that wish to promote integration of CMC technologies should provide as much evidence as possible that the new mode of teaching will improve learning and meet the teaching needs of individual faculty. Further, institutional leadership should recognize and consider individual differences among faculty, especially acknowledging that locus of motivation is not the same for everyone and that it changes overtime depending on internal and external factors.
Zero-profile Anchored Spacer Reduces Rate of Dysphagia Compared With ACDF With Anterior Plating.
Hofstetter, Christoph P; Kesavabhotla, Kartik; Boockvar, John A
2015-06-01
Retrospective cohort study. To study clinical and radiologic outcomes after anterior cervical discectomy and fusion (ACDF) using a zero-profile anchored spacer compared with a standard interposition graft with anterior plating. Anterior plating increases fusion rates in ACDF but is associated with higher rates of postoperative dysphagia. Reduction of plate thickness or zero-profile fixation of the interposition graft have been suggested to decrease the incidence of postoperative dysphagia. Retrospective cohort study of 70 consecutive patients of whom the first 35 patients underwent ACDF with anterior plating and the remaining patients received an LDR device. Patient demographics, operative details, neurological impairment, complications, and radiographic imaging were reviewed. Dysphagia occurring in the immediate postoperative period and lasting for >3 months was recorded. Both the zero-profile anchored spacer and a standard interposition graft with anterior plating resulted in improvement of neurological outcome at a mean follow-up time of 13.9 months. Fusion rates were found to be similar between ACDF with anterior plating (96.0%) and LDR (95.2%). Evaluation of postoperative radiographs revealed significantly more swelling of the prevertebral space (20.4±0.9 mm) after implantation of an anterior locking plate compared with a zero-profile device (15.6±0.7 mm, P<0.001). This difference remained significant at 6-month follow-up (P=0.035). Seven patients (20%) with ACDF and plating complained about swallowing difficulties beyond 3 months compared with only 1 patient with the LDR device (P=0.027). The severity of dysphagia was mild in all but 2 patients. Both patients with moderate and severe swallowing difficulties had undergone ACDF with anterior plating. Zero-profile anchored spacers lead to similar clinical and radiographic outcomes compared with ACDF with plating and may carry a lower risk of postoperative dysphagia.
Hori, Tomohiro; Ohnishi, Hidenori; Teramoto, Takahide; Tsubouchi, Kohji; Naiki, Takafumi; Hirose, Yoshinobu; Ohara, Osamu; Seishima, Mariko; Kaneko, Hideo; Fukao, Toshiyuki; Kondo, Naomi
2012-12-01
To describe a case of autosomal-dominant (AD)-chronic mucocutaneous candidiasis (CMC) with a signal transducer and activator of transcription (STAT) 1 gene mutation, and some of the important complications of this disease such as chronic hepatitis. We present a 23-year-old woman with CMC, chronic active hepatitis, and hypothyroidism. Her father also had CMC. We performed several immunological analyses of blood and liver samples, and searched for gene mutations for CMC in the patient and her father. We identified the heterozygous substitution c.821 G > A (p.Arg274Gln) in the STAT1 gene of both the patient and her father. The level of β-glucan induced interferon (IFN)-γ in her blood cells was significantly low. Immunoblot analysis detected serum anti-interleukin (IL)-17 F autoantibody. She was found to have increased (low-titer) antibodies related to her hypothyroidism and hepatitis. Her serum IL-18 levels fluctuated with her AST and ALT levels. Liver biopsy revealed CD68-positive cell infiltration and IL-18 expression in the sinusoidal regions. These results suggest that the chronic active hepatitis in this patient may be exacerbated by the excessive IL-18 accumulation caused by recurrent mucocutaneous fungal infection, and decreased IFN-γ production. AD-CMC is known to be caused by a gain-of-function mutation of the STAT1 gene. Chronic active hepatitis is a rare complication of AD-CMC, with currently unknown pathogenesis. It seems that the clinical phenotype in this patient is modified by autoimmune mechanisms and cytokine dysregulation. AD-CMC can be complicated by various immune disorders including autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy.
The Role of Carrageenan and Carboxymethylcellulose in the Development of Intestinal Inflammation
Martino, John Vincent; Van Limbergen, Johan; Cahill, Leah E.
2017-01-01
Although the exact pathophysiology remains unknown, the development of inflammatory bowel disease (IBD) is influenced by the interplay between genetics, the immune system, and environmental factors such as diet. The commonly used food additives, carrageenan and carboxymethylcellulose (CMC), are used to develop intestinal inflammation in animal models. These food additives are excluded from current dietary approaches to induce disease remission in Crohn’s disease such as exclusive enteral nutrition (EEN) using a polymeric formula. By reviewing the existing scientific literature, this review aims to discuss the role that carrageenan and CMC may play in the development of IBD. Animal studies consistently report that carrageenan and CMC induce histopathological features that are typical of IBD while altering the microbiome, disrupting the intestinal epithelial barrier, inhibiting proteins that provide protection against microorganisms, and stimulating the elaboration of pro-inflammatory cytokines. Similar trials directly assessing the influence of carrageenan and CMC in humans are of course unethical to conduct, but recent studies of human epithelial cells and the human microbiome support the findings from animal studies. Carrageenan and CMC may trigger or magnify an inflammatory response in the human intestine but are unlikely to be identified as the sole environmental factor involved in the development of IBD or in disease recurrence after treatment. However, the widespread use of carrageenan and CMC in foods consumed by the pediatric population in a “Western” diet is on the rise alongside a corresponding increase in IBD incidence, and questions are being raised about the safety of frequent usage of these food additives. Therefore, further research is warranted to elucidate the role of carrageenan and CMC in intestinal inflammation, which may help identify novel nutritional strategies that hinder the development of the disease or prevent disease relapse post-EEN treatment. PMID:28507982
Nano-scale zero valent iron transport in a variable aperture dolomite fracture and a glass fracture
NASA Astrophysics Data System (ADS)
Mondal, P.; Sleep, B. E.; Cui, Z.; Zhou, Z.
2014-12-01
Experiments and numerical simulations are being performed to understand the transport behavior of carboxymethyl cellulose polymer stabilized nano-scale zero valent iron (nZVI) in a variable aperture dolomite rock fracture and a variable aperture glass replica of a fractured slate. The rock fracture was prepared by artificially inducing a fracture in a dolomite block along a stylolite, and the glass fracture was prepared by creating molds with melted glass on two opposing sides of a fractured slate rock block. Both of the fractures were 0.28 m in length and 0.21 m in width. Equivalent hydraulic apertures are about 110 microns for the rock fracture and 250 microns for the glass replica fracture. Sodium bromide and lissamine green B (LGB) serve as conservative tracers in the rock fracture and glass replica fracture, respectively. A dark box set-up with a light source and digital camera is being used to visualize the LGB and CMC-nZVI movement in the glass fracture. Experiments are being performed to determine the effects of water specific discharge and CMC concentration on nZVI transport in the fractures. Transmission electron microscopy, dynamic light scattering, and UV-visual spectrophotometry were performed to determine the stability and characteristics of the CMC-nZVI mixture. The transport of bromide, LGB, CMC, and CMC-nZVI in both fractures is being evaluated through analysis of the effluent concentrations. Time-lapse images are also being captured for the glass fracture. Bromide, LGB, and CMC recoveries have exceeded 95% in both fractures. Significant channeling has been observed in the fractures for CMC transport due to viscous effects.
Antimicrobial particles from cationic lipid and polyelectrolytes.
Melo, Letícia D; Mamizuka, Elsa M; Carmona-Ribeiro, Ana M
2010-07-20
Hybrid nanoparticles from cationic lipid and polymers were prepared and characterized regarding physical properties and antimicrobial activity. Carboxymethylcellulose (CMC) and polydiallyldimethylammonium chloride (PDDA) were sequentially added to cationic bilayer fragments (BF) prepared from ultrasonic dispersion in water of the synthetic and cationic lipid dioctadecyldimethylammonium bromide (DODAB). Particles thus obtained were characterized by dynamic light-scattering for determination of z-average diameter (Dz) and zeta-potential (zeta). Antimicrobial activity of the DODAB BF/CMC/PDDA particles against Pseudomonas aeruginosa or Staphylococcus aureus was determined by plating and CFU counting over a range of particle compositions. DODAB BF/CMC/PDDA particles exhibited sizes and zeta-potentials strictly dependent on DODAB, CMC, and PDDA concentrations. At 0.1 mM DODAB, 0.1 mg/mL CMC, and 0.1 mg/mL PDDA, small cationic particles with Dz = 100 nm and zeta = 30 mV were obtained. At 0.5 mM DODAB, 0.5 mg/mL CMC and 0.5 mg/mL PDDA, large cationic particles with Dz = 470 nm and zeta = 50 mV were obtained. Both particulates were highly reproducible regarding physical properties and yielded 0% of P. aeruginosa viability (10(7) CFU/mL) at 1 or 2 microg/mL PDDA dissolved in solution or in form of particles, respectively. 99% of S. aureus cells died at 10 microg/mL PDDA alone or in small or large DODAB BF/CMC/PDDA particles. The antimicrobial effect was dependent on the amount of positive charge on particles and independent of particle size. A high microbicide potency for PDDA over a range of nanomolar concentrations was disclosed. P. aeruginosa was more sensitive to all cationic assemblies than S. aureus.
Colloidal properties of single component naphthenic acids and complex naphthenic acid mixtures.
Mohamed, Mohamed H; Wilson, Lee D; Peru, Kerry M; Headley, John V
2013-04-01
Tensiometry was used to provide estimates of the critical micelle concentration (cmc) values for three sources of naphthenic acids (NAs) and three examples of single component NAs (S1-S3) in aqueous solution at pH 10.5 and 295 K. Two commercially available mixtures of NAs and an industrially derived mixture of NAs obtained from Alberta oil sands process water (OSPW) were investigated. The three examples of single component NAs (C(n)H(2n+z)O2) were chosen with variable z-series to represent chemical structures with 0-2 rings, as follows: 2-hexyldecanoic acid (z=0; S1), trans-4-pentylcyclohexanecarboxylic acid (z=-2; S2) and dicyclohexylacetic acid (z=-4; S3). The estimated cmc values for S1 (35.6 μM), S2 (0.545 mM), and S3 (4.71 mM) vary over a wide range according to their relative lipophile characteristics of each carboxylate anion. The cmc values for the three complex mixtures of NAs were evaluated. Two disctinct cmc values were observed (second listed in brackets) as follows: Commercial sample 1; 50.9 μM (109 μM), Commercial sample 2; 22.3 μM (52.2 μM), and Alberta derived OSPW; 154 μM (417 μM). These results provide strong support favouring two general classes of NAs in the mixtures investigated with distinct cmc values. We propose that the two groups may be linked to a recalcitrant fraction with a relatively large range of cmc values (52.2-417 μM) and a readily biodegradable fraction with a relatively low range of cmc values (22.3-154 μM) depending on the source of NAs in a given mixture. Copyright © 2013 Elsevier Inc. All rights reserved.
Chen, Xiaobing; Di, Panpan; Wang, Hongming; Li, Bailin; Pan, Yingjie; Yan, Shuling; Wang, Yongjie
2015-01-01
Chinese mitten crab (CMC, Eriocheir sinensis) is an economically valuable species in South-East Asia that has been widely farmed in China. Characterization of the intestinal bacterial diversity of CMC will provide insights into the aquaculturing of CMCs. Based on the analysis of cloned 16S rRNA genes from culture-independent CMC gut bacteria, 124 out of 128 different clones reveal >95% nucleotide similarity to the species belonging to the four phyla of Tenericutes, Bacteroidetes, Firmicutes and Proteobacteria; one clone shows 91% sequence similarity to the member of TM7 (a candidate phylum without cultured representatives). Fluorescent in situ hybridization also reveals the abundance of Bacteroidetes in crab intestine. Electron micrographs show that spherical and filamentous bacteria are closely associated with the microvillus brush border of the midgut epithelium and are often inserted into the space between the microvilli using a stalk-like cell appendage. In contrast, the predominant rod-shaped bacteria in the hindgut are tightly attached to the epithelium surface by an unusual pili-like structure. Both 16S rRNA gene denaturing gel gradient electrophoresis and metagenome library indicate that the CMC Mollicutes group 2 appears to be present in both the midgut and hindgut with no significant difference in abundance. The CMC Mollicutes group 1, however, was found mostly in the midgut of CMCs. The CMC gut Mollicutes phylotypes appear to be most closely related to Mollicutes symbionts detected in the gut of isopods (Crustacea: Isopoda). Overall, the results suggest that CMCs harbor diverse, novel and specific gut bacteria, which are likely to live in close relationships with the CMC host. PMID:25875449
Rytting, Michael; Triche, Lisa; Thomas, Deborah; O'Brien, Susan; Kantarjian, Hagop
2014-02-01
Survival is poor in pediatric patients with relapsed or refractory acute B-cell lymphoblastic leukemia (ALL) and therapeutic options are limited. CMC-544 (inotuzumab ozogamicin) has shown significant activity in adult patients with relapsed and refractory ALL. We evaluated CMC-544 in pediatric patients with multiply relapsed ALL. Five children 4-15 years old with relapsed, CD 22 positive B-cell ALL were enrolled on a phase II non-randomized trial of CMC-544. CMC-544 was initially administered at 1.3 mg/m(2) every 3 weeks. The dose then increased to 1.8 mg/m(2) every 3 weeks. Subsequently, a weekly schedule of CMC-544 given as 0.8 mg/m(2) on day 1 followed by 0.5 mg/m(2) on days 8 and 15 was administered. All five patients had refractory relapsed B-cell ALL. Lymphoblasts for all patients highly expressed CD22. Four patients had two or more relapses before starting the study drug. One patient achieved a complete remission in the bone marrow and normal peripheral counts, and two patients achieved bone marrow morphologic remission with absolute neutrophils >1,000/µl but platelets <100,000/µl. Two patients had no response to the drug. Toxicities consisted of fever, sepsis, and liver enzyme elevation. Single agent CMC-544 given at the single dose of 1.8 mg/m(2) every 3 weeks or given as a split, weekly dose was generally well tolerated considering the inherent risks in this population of patients and showed promising activity in pediatric patients with relapsed and refractory ALL. © 2013 Wiley Periodicals, Inc.
Jousset, Florian; Maguy, Ange; Rohr, Stephan; Kucera, Jan P.
2016-01-01
Fibrotic myocardial remodeling is typically accompanied by the appearance of myofibroblasts (MFBs). In vitro, MFBs were shown to slow conduction and precipitate ectopic activity following gap junctional coupling to cardiomyocytes (CMCs). To gain further mechanistic insights into this arrhythmogenic MFB-CMC crosstalk, we performed numerical simulations in cell-based high-resolution two-dimensional tissue models that replicated experimental conditions. Cell dimensions were determined using confocal microscopy of single and co-cultured neonatal rat ventricular CMCs and MFBs. Conduction was investigated as a function of MFB density in three distinct cellular tissue architectures: CMC strands with endogenous MFBs, CMC strands with coating MFBs of two different sizes, and CMC strands with MFB inserts. Simulations were performed to identify individual contributions of heterocellular gap junctional coupling and of the specific electrical phenotype of MFBs. With increasing MFB density, both endogenous and coating MFBs slowed conduction. At MFB densities of 5–30%, conduction slowing was most pronounced in strands with endogenous MFBs due to the MFB-dependent increase in axial resistance. At MFB densities >40%, very slow conduction and spontaneous activity was primarily due to MFB-induced CMC depolarization. Coating MFBs caused non-uniformities of resting membrane potential, which were more prominent with large than with small MFBs. In simulations of MFB inserts connecting two CMC strands, conduction delays increased with increasing insert lengths and block appeared for inserts >1.2 mm. Thus, electrophysiological properties of engineered CMC-MFB co-cultures depend on MFB density, MFB size and their specific positioning in respect to CMCs. These factors may influence conduction characteristics in the heterocellular myocardium. PMID:27833567
Biodegradation of PVP-CMC hydrogel film: a useful food packaging material.
Roy, Niladri; Saha, Nabanita; Kitano, Takeshi; Saha, Petr
2012-06-20
Hydrogels can offer new opportunities for the design of efficient packaging materials with desirable properties (i.e. durability, biodegradability and mechanical strength). It is a promising and emerging concept, as most of the biopolymer based hydrogels are supposed to be biodegradable, they can be considered as alternative eco-friendly packaging materials. This article reports about synthetic (polyvinylpyrrolidone (PVP)) and biopolymer (carboxymethyl cellulose (CMC)) based a novel hydrogel film and its nature of biodegradability under controlled environmental condition. The dry hydrogel films were prepared by solution casting method and designated as 'PVP-CMC hydrogel films'. The hydrogel film containing PVP and CMC in a ratio of 20:80 shows best mechanical properties among all the test samples (i.e. 10:90, 20:80, 50:50, 80:20 and 90:10). Thus, PVP-CMC hydrogel film of 20:80 was considered as a useful food packaging material and further experiments were carried out with this particular hydrogel film. Biodegradation of the PVP-CMC hydrogel films were studied in liquid state (Czapec-Dox liquid medium+soil extracts) until 8 weeks. Variation in mechanical, viscoelastic properties and weight loss of the hydrogel films with time provide the direct evidence of biodegradation of the hydrogels. About 38% weight loss was observed within 8 weeks. FTIR spectra of the hydrogel films (before and after biodegradation) show shifts of the peaks and also change in the peak intensities, which refer to the physico-chemical change in the hydrogel structure and SEM views of the hydrogels show how internal structure of the PVP-CMC film changes in the course of biodegradation. Copyright © 2012 Elsevier Ltd. All rights reserved.
CMC Research at NASA Glenn in 2015: Recent Progress and Plans
NASA Technical Reports Server (NTRS)
Grady, Joseph E.
2015-01-01
As part of NASAs Aeronautical Sciences project, Glenn Research Center has developed advanced fiber and matrix constituents for a 2700F CMC for turbine engine applications. Fiber and matrix development and characterization will be reviewed. Resulting improvements in CMC mechanical properties and durability will be summarized. Plans for 2015 will be described, including development and validation of models predicting effects of the engine environment on durability of SiC/SiC composites with Environmental Barrier Coatings
Sankararamakrishnan, Nalini; Sharma, Ajit Kumar; Sanghi, Rashmi
2007-09-05
Chitosan was chemically modified by introducing xanthate group onto its backbone using carbondisulfide under alkaline conditions. The chemically modified chitosan flakes (CMC) was used as an adsorbent for the removal of cadmium ions from electroplating waste effluent under laboratory conditions. CMC was found to be far more efficient than the conventionally used adsorbent activated carbon. The maximum uptake of cadmium by CMC in batch studies was found to be 357.14 mg/g at an optimum pH of 8.0 whereas for plain chitosan flakes it was 85.47 mg/g. Since electroplating wastewater contains cyanide in appreciable concentrations, interference of cyanide ions in cadmium adsorption was found to be very significant. This problem could be easily overcome by using higher doses of CMC, however, activated carbon was not found to be effective even at higher doses. Due to the high formation constant of cadmium with xanthate and adsorption was carried out at pH 8, cations like Pb(II), Cu(II), Ni(II) and Zn(II) did not interfere in the adsorption. Dynamics of the sorption process were studied and the values of rate constant of adsorption were calculated. Desorption of the bound cadmium from CMC was accomplished with 0.01 N H(2)SO(4). The data from regeneration efficiencies for 10 cycles evidenced the reusability of CMC in the treatment of cadmium-laden wastewater.
Saha, Shyamali; Tomaro-Duchesneau, Catherine; Daoud, Jamal T; Tabrizian, Maryam; Prakash, Satya
2013-11-01
Oral health is influenced by the mouth's resident microorganisms. Dental caries and periodontitis are oral disorders caused by imbalances in the oral microbiota. Probiotics have potential for the prevention and treatment of oral disorders. Current formulations, including supplements and foods, have limitations for oral delivery including short storage time, low residence time in the mouth, effects on food consistency, and low patient compliance. Oral thin films (OTFs) may be efficient in delivering probiotics to the mouth. This research aims to develop a novel carboxymethyl cellulose (CMC)-probiotic-OTF to deliver probiotics for the treatment/prevention of oral disorders. CMC-OTFs were developed with varying CMC concentration (1.25 - 10 mg/mL), weight (5 - 40 g), thickness (16 - 262 μm), hygroscopicity (30.8 - 78.9 mg/cm(2) film), and dissolving time (135 - 600 s). The 10 g 5 mg/mL CMC-OTF was selected and used to incorporate Lactobacillus fermentum NCIMB 5221 (6.75 × 10(8) cells/film), a probiotic with anti-inflammatory potential for periodontitis treatment and capable of inhibiting microorganisms responsible for dental caries and oral candidiasis. The CMC-OTF maintained probiotic viability and antioxidant activity following 150 days of storage with a production of 549.52 ± 26.08 μM Trolox equivalents. This research shows the successful development and characterization of a novel probiotic-CMC-OTF with potential as an oral health biotherapeutic.
Aeron, Abhinav; Khare, Ekta; Kumar Arora, Naveen; Kumar Maheshwari, Dinesh
2012-01-01
In many parts of the world Mucuna pruriens is used as an important medicinal, forage and green manure crop. In the present investigation the effect of the addition of CMC in carrier during development of bioformulation on shelflife, plant growth promotive and biocontrol activity against Macrophomina phaseolina was screened taking M. pruriens as a test crop. Ensifer meliloti RMP6(Ery+Kan+) and Bradyrhizobium sp. BMP7(Tet+Kan+) (kanamycin resistance engineered by Tn5 transposon mutagenesis) used in the study showed production of siderophore, IAA, solubilizing phosphate and biocontrol of M. phaseolina. RMP6(Ery+Kan+) also showed ACC deaminase activity. The survival of both the strains in sawdust-based bioformulation was enhanced with an increase in the concentration of CMC from 0 to 1%. At 0% CMC Bradyrhizobium sp. BMP7(Tet+Kan+) showed more increase in nodule number/plant (500.00%) than E. meliloti RMP6(Ery+Kan+) (52.38%), over the control in M. phaseolina-infested soil. There was 185.94% and 59.52% enhancement in nodule number/plant by RMP6(Ery+Kan+) and BMP7(Tet+Kan+) with an increase in the concentration of CMC from 0% to 1% in the bioformulations. However further increase in concentration of CMC did not result in enhancement in survival of either the strains or nodule number/plant.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gregory Corman; Krishan Luthra; Jill Jonkowski
2011-01-07
This report covers work performed under the Advanced Materials for Advanced Industrial Gas Turbines (AMAIGT) program by GE Global Research and its collaborators from 2000 through 2010. A first stage shroud for a 7FA-class gas turbine engine utilizing HiPerComp{reg_sign}* ceramic matrix composite (CMC) material was developed. The design, fabrication, rig testing and engine testing of this shroud system are described. Through two field engine tests, the latter of which is still in progress at a Jacksonville Electric Authority generating station, the robustness of the CMC material and the shroud system in general were demonstrated, with shrouds having accumulated nearly 7,000more » hours of field engine testing at the conclusion of the program. During the latter test the engine performance benefits from utilizing CMC shrouds were verified. Similar development of a CMC combustor liner design for a 7FA-class engine is also described. The feasibility of using the HiPerComp{reg_sign} CMC material for combustor liner applications was demonstrated in a Solar Turbines Ceramic Stationary Gas Turbine (CSGT) engine test where the liner performed without incident for 12,822 hours. The deposition processes for applying environmental barrier coatings to the CMC components were also developed, and the performance of the coatings in the rig and engine tests is described.« less
[PLA-O-CMC nanoparticles: HGF loading and delivery behaviors in vitro].
Li, Zhifeng; Chen, Zhong; Chang, Ren'an
2011-04-01
This paper is aimed to observe the hepatocyte growth factor (HGF) loading and delivery ability of polylactic acid and oxygen carboxymethylated chitosan copolyer nanoparticles (PLA-O-CMC NPs). We prepared PLA-O-CMC NPs loaded with HGF by ultrasound in combination with magnetic stirring method. The NPs were characterized by transmission electron microscopy, embedding ratio; drug loading and drug delivery behaviors were observed by ELISA. The characteristics of PLA-O-CMC NPs loaded with HGF showed that the mean size was 139. 82 nm, polydispersity was 0.108, maximal HGF-embedding ratio was 76. 32%. The cumulative HGF release gradually increased in the first 24 hours in vitro, with sharp increasing in the first 7 hours, and moderate and steady increasing in the following 17 hours. The HGF had a burst release in the first 24 hours, and in this process the released HGF took up 36.7% of the whole release. From the second day,the HGF release decreased obviously, while it kept on releasing steadily (45-55 ng/d) for quite long time up to 30 days. The experiment proved that PLA-O-CMC NPs is a favourable carrier of HGF. PLA-O-CMC NPs loaded with HGF could rapidly release HGF in vitro. The released HGF reached the effective drug concentration and maintained the certain effective drug concentration for a long time.
Lin, Xi; Yan, Shu-Zhen; Qi, Shan-Shan; Xu, Qiao; Han, Shuang-Shuang; Guo, Ling-Yuan; Zhao, Ning; Chen, Shuang-Lin; Yu, Shu-Qin
2017-01-01
Photodynamic therapy (PDT) has emerged as a potent novel therapeutic modality that induces cell death through light-induced activation of photosensitizer. But some photosensitizers have characteristics of poor water-solubility and non-specific tissue distribution. These characteristics become main obstacles of PDT. In this paper, we synthesized a targeting drug delivery system (TDDS) to improve the water-solubility of photosensitizer and enhance the ability of targeted TFR positive tumor cells. TDDS is a transferrin-modified Poly(D,L-Lactide-co-glycolide (PLGA) and carboxymethyl chitosan (CMC) nanoparticle loaded with a photosensitizer hypocrellin A (HA), named TF-HA-CMC-PLGA NPs. Morphology, size distribution, Fourier transform infrared (FT-IR) spectra, encapsulation efficiency, and loading capacity of TF-HA-CMC-PLGA NPs were characterized. In vitro TF-HA-CMC-PLGA NPs presented weak dark cytotoxicity and significant photo-cytotoxicity with strong reactive oxygen species (ROS) generation and apoptotic cancer cell death. In vivo photodynamic antitumor efficacy of TF-HA-CMC-PLGA NPs was investigated with an A549 (TFR positive) tumor-bearing model in male athymic nude mice. TF-HA-CMC-PLGA NPs caused tumor delay with a remarkable tumor inhibition rate of 63% for 15 days. Extensive cell apoptosis in tumor tissue and slight side effects in normal organs were observed. The results indicated that TDDS has great potential to enhance PDT therapeutic efficacy. PMID:29209206
Predicting muscle forces during the propulsion phase of single leg triple hop test.
Alvim, Felipe Costa; Lucareli, Paulo Roberto Garcia; Menegaldo, Luciano Luporini
2018-01-01
Functional biomechanical tests allow the assessment of musculoskeletal system impairments in a simple way. Muscle force synergies associated with movement can provide additional information for diagnosis. However, such forces cannot be directly measured noninvasively. This study aims to estimate muscle activations and forces exerted during the preparation phase of the single leg triple hop test. Two different approaches were tested: static optimization (SO) and computed muscle control (CMC). As an indirect validation, model-estimated muscle activations were compared with surface electromyography (EMG) of selected hip and thigh muscles. Ten physically healthy active women performed a series of jumps, and ground reaction forces, kinematics and EMG data were recorded. An existing OpenSim model with 92 musculotendon actuators was used to estimate muscle forces. Reflective markers data were processed using the OpenSim Inverse Kinematics tool. Residual Reduction Algorithm (RRA) was applied recursively before running the SO and CMC. For both, the same adjusted kinematics were used as inputs. Both approaches presented similar residuals amplitudes. SO showed a closer agreement between the estimated activations and the EMGs of some muscles. Due to inherent EMG methodological limitations, the superiority of SO in relation to CMC can be only hypothesized. It should be confirmed by conducting further studies comparing joint contact forces. The workflow presented in this study can be used to estimate muscle forces during the preparation phase of the single leg triple hop test and allows investigating muscle activation and coordination. Copyright © 2017 Elsevier B.V. All rights reserved.
Radiation synthesis of superabsorbent CMC based hydrogels for agriculture applications
NASA Astrophysics Data System (ADS)
Raafat, Amany I.; Eid, Mona; El-Arnaouty, Magda B.
2012-07-01
A series of superabsorbent hydrogel based on carboxymethylcellulose (CMC) and polyvinylpyrrolidone (PVP) crosslinked with gamma irradiation have been proposed for agriculture application. The effect of preparation conditions such as feed solution composition and absorbed irradiation dose on the gelation and swelling degree was evaluated. The structure and the morphology of the superabsorbent CMC/PVP hydrogel were characterized using Fourier transform infrared spectroscopy technique (FTIR), and scanning electron microscope (SEM). Effect of ionic strength and cationic and anionic kinds on the swelling behavior of the obtained hydrogel was investigated. Urea as an agrochemical model was loaded onto the obtained hydrogel to provide nitrogen (N) nutrients. The water retention capability and the urea release behavior of the CMC/PVP hydrogels were investigated. It was found that, the obtained CMC/PVP hydrogels have good swelling degree that greatly affected by its composition and absorbed dose. The swelling was also extremely sensitive to the ionic strength and cationic kind. Owing to its considerable slow urea release, good water retention capacity, being economical, and environment-friendly, it might be useful for its application in agriculture field.
Casalegno, Mosè; Castiglione, Franca; Passarello, Marco; Mele, Andrea; Passerini, Stefano; Raos, Guido
2016-07-21
Carboxymethylcellulose (CMC) has been proposed as a polymeric binder for electrodes in environmentally friendly Li-ion batteries. Its physical properties and interaction with Li(+) ions in water are interesting not only from the point of view of electrode preparation-processability in water is one of the main reasons for its environmental friendliness-but also for its possible application in aqueous Li-ion batteries. We combine molecular dynamics simulations and variable-time pulsed field gradient spin-echo (PFGSE) NMR spectroscopy to investigate Li(+) transport in CMC-based solutions. Both the simulations and experimental results show that, at concentrations at which Li-CMC has a gel-like consistency, the Li(+) diffusion coefficient is still very close to that in water. These Li(+) ions interact preferentially with the carboxylate groups of CMC, giving rise to a rich variety of coordination patterns. However, the diffusion of Li(+) in these systems is essentially unrestricted, with a fast, nanosecond-scale exchange of the ions between CMC and the aqueous environment. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Gibis, Monika; Schuh, Valerie; Allard, Karin; Weiss, Jochen
2017-03-01
Four carboxymethyl celluloses (CMCs) differing in molecular weight (M W ) and degree of substitution (°DS) were initially characterized in NaCl solution (0.1 M) and on properties of emulsion-type sausage models. The impact of the different CMCs (0-2 wt%) on the rheological behavior and firmness of an emulsion-type sausage models containing 1.8wt% NaCl was studied. Rheology (unheated/heated) and firmness (heated) showed an increasing effect with increasing CMC concentrations. Addition of>1wt% CMC led to a decrease in storage modulus of the unheated/heated batter and to a decrease in firmness of heated independent of the CMC-type used. CLSM revealed that high amounts of CMCs prevented formation of a coherent protein matrix. Water-binding capacity indicated that CMC contributed to the water-retention capability of sausage batters. Small differences between the CMCs were observed using various °DS and similar M W. Results indicate that the addition of low CMC concentrations (≤0.5wt%) may help to reduce fat content. Copyright © 2016 Elsevier Ltd. All rights reserved.
Postural responses of head and foot cutaneous microvascular flow and their sensitivity to bed rest
NASA Technical Reports Server (NTRS)
Aratow, Michael; Hargens, Alan R.; Meyer, J.-UWE; Arnaud, Sara B.
1991-01-01
To explore the mechanism for facial puffiness, headache, and nasal congestion associated with microgravity and cephalad fluid shifts, the postural responses of the cutaneous microcirculation (CMC) in the forehead and dorsum of the foot of eight healthy men were studied by changing body position on a tilt table and measuring blood flows with a laser Doppler flowmeter. Increasing arterial pressure in the feet by moving from a -6-deg head-down tilt to a 60-deg head-up posture decreased foot CMC by 46.5 + or - 12.0 percent. Raising arterial pressure in the head increased forehead CMC by 25.5 + or - 0.7 percent (p less than 0.05). To investigate the possibility that these opposite responses could be modified by simulated microgravity, tilt test were repeated after 7 d of -6-deg head-down-tilt bed rest. The responses were not significantly different from those recorded before bed rest. Therefore, CMC in the feet is well regulated to prevent edema when shifting to an upright position, whereas there is less regulation in the head CMC.
Viscoplastic properties of laponite-CMC mixes.
Tarhini, Z; Jarny, S; Texier, A
2017-04-01
In this dataset, 15 samples of laponite-CMC mixes were realized and their viscoplastic properties are determined. Rheological parameters are then expressed as a function of age and components concentrations.
NASA Astrophysics Data System (ADS)
Alam, Md. Sayem; Mohammed Siddiq, A.; Mandal, Asit Baran
2017-12-01
By the conductivity measurements the effects of fructose and temperature (293-308 K) on the micellization of a cationic gemini surfactant (GS), pentanediyl-1,5-bis(dimethylcetylammonium) bromide in aqueous solutions have been investigated. The critical micelle concentration (CMC) of GS was measured at the different temperatures and fructose concentrations. An increasing trend of the CMC values is with addition of fructose. With increasing temperature, the CMC values are in a similar increasing trend. The CMC of GS by dye solubilization method at room temperature have been determined. The standard Gibbs energy, enthalpy and entropy of GS micellization have been evaluated. From these thermodynamic parameters, it was found that in presence of fructose, the stability of the GS aqueous solutions decreases.
Optimization of preparation of NDV F Gene encapsulated in N-2-HACC-CMC nanoparticles
NASA Astrophysics Data System (ADS)
Li, S. S.; Zhang, Y.; Zhao, K.; Wang, X. H.
2018-01-01
In this study, the biodegradable materials N-2-hydroxypropyl trimethyl ammonium chloride chitosan (N-2-HACC) and N, O-carboxymethyl chitosan (CMC) are used as delivery carrier for the pVAX I -F(o)-C3d6. The optimal preparation condition is as follows: concentration of N-2-HACC is 1.0 mg/ml, concentration of CMC is 0.85 mg/ml, concentration of pVAX I -F(o)-C3d6 is 100 μg ml. The results show that the prepared N-2-HACC-CMC/pFDNA NPs have regular round shape, smooth surface and good dispersion, the particle size is 310 nm, Zeta potential is 50 mV, the entrapment efficiency is 92 %, the loading capacity is 51 % (n=3).
Overview of CMC (Ceramic Matrix Composite) Research at the NASA Glenn Research Center
NASA Technical Reports Server (NTRS)
Kiser, J. Douglas; Grady, Joseph E.; Bhatt, Ramakrishna T.; Wiesner, Valerie L.; Zhu, Dongming
2016-01-01
In support of NASAs Aeronautics Research Mission, the Glenn Research Center has developed and assessed various constituents for a high temperature (2700F) SiCSiC CMC system for turbine engine applications. Combinations of highly creep-resistant SiC fibers, advanced 3D weaves, durable environmental barrier coatings (EBCs), and a 2700F-capable hybrid SiC matrix are being developed evaluated. The resulting improvements in CMC mechanical properties and durability will be summarized. The development and validation of models for predicting the effects of the environment on the durability of CMCs and EBCs and other operating-environment challenges including the effect of CMAS (calcium magnesium aluminosilicate) degradation of EBCs will be discussed. Progress toward the development of CMC joining technology for 2400F joint applications will also be reviewed.
Designing lipids for selective partitioning into liquid ordered membrane domains.
Momin, Noor; Lee, Stacey; Gadok, Avinash K; Busch, David J; Bachand, George D; Hayden, Carl C; Stachowiak, Jeanne C; Sasaki, Darryl Y
2015-04-28
Self-organization of lipid molecules into specific membrane phases is key to the development of hierarchical molecular assemblies that mimic cellular structures. While the packing interaction of the lipid tails should provide the major driving force to direct lipid partitioning to ordered or disordered membrane domains, numerous examples show that the headgroup and spacer play important but undefined roles. We report here the development of several new biotinylated lipids that examine the role of spacer chemistry and structure on membrane phase partitioning. The new lipids were prepared with varying lengths of low molecular weight polyethylene glycol (EGn) spacers to examine how spacer hydrophilicity and length influence their partitioning behavior following binding with FITC-labeled streptavidin in liquid ordered (Lo) and liquid disordered (Ld) phase coexisting membranes. Partitioning coefficients (Kp Lo/Ld) of the biotinylated lipids were determined using fluorescence measurements in studies with giant unilamellar vesicles (GUVs). Compared against DPPE-biotin, DPPE-cap-biotin, and DSPE-PEG2000-biotin lipids, the new dipalmityl-EGn-biotin lipids exhibited markedly enhanced partitioning into liquid ordered domains, achieving Kp of up to 7.3 with a decaethylene glycol spacer (DP-EG10-biotin). We further demonstrated biological relevance of the lipids with selective partitioning to lipid raft-like domains observed in giant plasma membrane vesicles (GPMVs) derived from mammalian cells. Our results found that the spacer group not only plays a pivotal role for designing lipids with phase selectivity but may also influence the structural order of the domain assemblies.
2012-04-18
of Employment. Official Message. (CMC WASHINGTON DC PPO POE), DTG: 291447Z Mar 2010. 28 Military Sealift Command, Combat Logistics Force Webpage...Ammunition Ship (F-AKE) Concept of Employment. Official Message. (CMC WASHINGTON DC PPO POE), DTG: 291447Z Mar 2010. 28 30 Headquarters u.s. Marine Corps...Maritime Prepositioning Force (MPF) Auxiliary Dry Cargo/Ammunition Ship (I’-AKE) Concept of Employment. Official Message. (CMC WASHINGTON DC PPO POE
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Ghosn, Louis J.
2014-01-01
Topics covered include: Environmental barrier coating system development: needs, challenges and limitations; Advanced environmental barrier coating systems (EBCs) for CMC airfoils and combustors; NASA EBC systems and material system evolutions, Current turbine and combustor EBC coating emphases, Advanced development, processing, testing and modeling, EBC and EBC bond coats: recent advances; Design tool and life prediction of coated CMC components; Advanced CMC-EBC rig demonstrations; Summary and future directions.
CMC Research at NASA Glenn in 2016: Recent Progress and Plans
NASA Technical Reports Server (NTRS)
Grady, Joseph E.
2016-01-01
As part of NASA's Aeronautical Sciences project, Glenn Research Center has developed advanced fiber and matrix constituents for a 2700 degrees Fahrenheit CMC (Ceramic Matrix Composite) for turbine engine applications. Fiber and matrix development and characterization will be reviewed. Resulting improvements in CMC mechanical properties and durability will be summarized. Plans for 2015 will be described, including development and validation of models predicting effects of the engine environment on durability of SiCSiC composites with Environmental Barrier Coatings (EBCs).
NASA Astrophysics Data System (ADS)
Tsai, Chun-Chien; Lee, Yao-Jen; Chiang, Ko-Yu; Wang, Jyh-Liang; Lee, I.-Che; Chen, Hsu-Hsin; Wei, Kai-Fang; Chang, Ting-Kuo; Chen, Bo-Ting; Cheng, Huang-Chung
2007-11-01
In this paper, location-controlled silicon crystal grains are fabricated by the excimer laser crystallization method which employs amorphous silicon spacer structure and prepatterned thin films. The amorphous silicon spacer in nanometer-sized width formed using spacer technology is served as seed crystal to artificially control superlateral growth phenomenon during excimer laser irradiation. An array of 1.8-μm-sized disklike silicon grains is formed, and the n-channel thin-film transistors whose channels located inside the artificially-controlled crystal grains exhibit higher performance of field-effect-mobility reaching 308cm2/Vs as compared with the conventional ones. This position-manipulated silicon grains are essential to high-performance and good uniformity devices.
Architectures for High-Performance Ceramic Composites Being Improved
NASA Technical Reports Server (NTRS)
Yun, Hee Mann; DiCarlo, James A.
2002-01-01
A major thrust of the Ultra-Efficient Engine Technology (UEET) Program at the NASA Glenn Research Center is to develop advanced hot-section engine components using SiC/SiC ceramic matrix composites (CMC's) with thermostructural capability to 2400 F (1315 C). In previous studies, UEET determined that the higher the ultimate tensile strength (UTS) of the as-fabricated CMC, the greater its structural performance at 2400 F. Thus efforts have been ongoing within UEET to understand and develop fiber architecture approaches that can improve the UTS of SiC/SiC CMC's. Under UEET, SiC/SiC test panels and demonstration engine components are currently produced by the multi-ply layup of two-dimensional fabric pieces. The fabric is typically formed of multifilament tows containing high-performance Sylramic (Dow Corning) SiC fiber that is woven into two-dimensional five-harness satin fabric with 20 ends per inch in the 0 degree and 90 degree directions. In some cases, fabric pieces containing woven Sylramic fiber tows are thermally treated at NASA to form Sylramic-iBN fibers that contain a very thin in-situ-grown boron nitride layer on their surfaces. The final SiC/SiC panels and components are fabricated at the CMC vendor by compressing the fabric pieces in tools and then depositing a thin BN interphase coating on the fibers by chemical vapor deposition. The last step at the vendor is to infiltrate the BN-coated fiber architecture with SiC and silicon matrix constituents to form a dense product. Because the as-produced Sylramic fiber tows are sized with a thin polymer coating to facilitate handling and weaving, the individual fibers within the tows and fabric are in close contact with each other. This contact is further increased during fabric compression. One important recent finding is that increasing Sylramic fiber tow width in a fabric increases the UTS of the final SiC/SiC CMC. This effect is presumably related to minimizing fiber/fiber contact, which can be detrimental to CMC strength because of the boron-rich chemistry and roughness of the Sylramic fiber surface. Tows can be spread by mechanically agitating the Sylramic fabric prior to CMC fabrication or by simply thermally treating the Sylramic fabric as in the formation of the Sylramic-iBN fibers. However, CMC's with the treated Sylramic-iBN fabric are even stronger than CMC's with mechanically spread Sylramic tows. The extra strength capability is presumably related to the in situ BN on the fiber surface, which adds compliance to the fiber surfaces and is more resistant to oxygen impurities introduced during the chemical vapor deposition BN process. As shown, another important finding is that the use of fabric with tows having less than the standard of 20 ends per inch provides advantages in terms of reduced ply height and increased ply and CMC strength. The reduced ply height provides more control of part thickness by allowing more plies for a given thickness and by reducing interlaminar residual stresses between plies. The increased ply strength is presumably related to a reduced number of interlaced 90 tows, which, in turn, reduces the crimp angle on the high-modulus fibers in the 0 degree tows. Also, as shown, although fabric with fewer ends per inch reduced the maximum fiber fraction in an eight-ply CMC panel; CMC UTS actually increased because of increased ply strength. Thus, using fabric with fewer ends per inch has several advantages, including providing a significantly higher strength per fiber fraction in the CMC. Consequently, ongoing UEET efforts will attempt to use architectural approaches for components that minimize fiber-fiber contacts and fiber bending within the final composite microstructure.
Risitano, Salvatore; Sabatini, Luigi; Atzori, Francesco; Massè, Alessandro; Indelli, Pier Francesco
2018-06-01
Periprosthetic joint infection (PJI) is a serious complication in total knee arthroplasty (TKA) and represents one of the most common causes of revision. The challenge for surgeons treating an infected TKA is to quickly obtain an infection-free joint in order to re-implant, when possible, a new TKA. Recent literature confirms the role of local antibiotic-loaded beads as a strong bactericidal, allowing higher antibiotic elution when compared with antibiotic loaded spacers only. Unfortunately, classical Polymethylmethacrylate (PMMA) beads might allow bacteria adhesion, secondary development of antibiotic resistance and eventually surgical removal once antibiotics have eluted. This article describes a novel surgical technique using static, custom-made antibiotic loaded spacers augmented by calcium sulphate antibiotic-impregnated beads to improve the success rate of revision TKA in a setting of PJI. The use of calcium sulphate beads has several potential benefits, including a longer sustained local antibiotic release when compared with classical PMMA beads and, being resorbable, not requiring accessory surgical interventions.
CRISPRcompar: a website to compare clustered regularly interspaced short palindromic repeats.
Grissa, Ibtissem; Vergnaud, Gilles; Pourcel, Christine
2008-07-01
Clustered regularly interspaced short palindromic repeat (CRISPR) elements are a particular family of tandem repeats present in prokaryotic genomes, in almost all archaea and in about half of bacteria, and which participate in a mechanism of acquired resistance against phages. They consist in a succession of direct repeats (DR) of 24-47 bp separated by similar sized unique sequences (spacers). In the large majority of cases, the direct repeats are highly conserved, while the number and nature of the spacers are often quite diverse, even among strains of a same species. Furthermore, the acquisition of new units (DR + spacer) was shown to happen almost exclusively on one side of the locus. Therefore, the CRISPR presents an interesting genetic marker for comparative and evolutionary analysis of closely related bacterial strains. CRISPRcompar is a web service created to assist biologists in the CRISPR typing process. Two tools facilitates the in silico investigation: CRISPRcomparison and CRISPRtionary. This website is freely accessible at http://crispr.u-psud.fr/CRISPRcompar/.
NASA Technical Reports Server (NTRS)
Banks, Bruce A.; Groh, Kim De; Kneubel, Christian A.
2014-01-01
A space experiment flown as part of the Materials International Space Station Experiment 6B (MISSE 6B) was designed to compare the atomic oxygen erosion yield (Ey) of layers of Kapton H polyimide with no spacers between layers with that of layers of Kapton H with spacers between layers. The results were compared to a solid Kapton H (DuPont, Wilmington, DE) sample. Monte Carlo computational modeling was performed to optimize atomic oxygen interaction parameter values to match the results of both the MISSE 6B multilayer experiment and the undercut erosion profile from a crack defect in an aluminized Kapton H sample flown on the Long Duration Exposure Facility (LDEF). The Monte Carlo modeling produced credible agreement with space results of increased Ey for all samples with spacers as well as predicting the space-observed enhancement in erosion near the edges of samples due to scattering from the beveled edges of the sample holders.
32 CFR 720.44 - Responsible officials.
Code of Federal Regulations, 2010 CFR
2010-07-01
... request for return. (b) The Commandant of the Marine Corps (CMC) for requests involving Marine Corps members and their family members who are not employees. The CMC may delegate this authority within his...
32 CFR 775.4 - Responsibilities.
Code of Federal Regulations, 2011 CFR
2011-07-01
... environmental planning. (d) The Chief of Naval Operations (CNO) and the Commandant of the Marine Corps (CMC... proposed CNO/CMC environmental planning instructions or orders to ASN (I&E) and, when appropriate, ASN (RD...
32 CFR 775.4 - Responsibilities.
Code of Federal Regulations, 2012 CFR
2012-07-01
... environmental planning. (d) The Chief of Naval Operations (CNO) and the Commandant of the Marine Corps (CMC... proposed CNO/CMC environmental planning instructions or orders to ASN (I&E) and, when appropriate, ASN (RD...
32 CFR 720.44 - Responsible officials.
Code of Federal Regulations, 2013 CFR
2013-07-01
... request for return. (b) The Commandant of the Marine Corps (CMC) for requests involving Marine Corps members and their family members who are not employees. The CMC may delegate this authority within his...
32 CFR 720.44 - Responsible officials.
Code of Federal Regulations, 2014 CFR
2014-07-01
... request for return. (b) The Commandant of the Marine Corps (CMC) for requests involving Marine Corps members and their family members who are not employees. The CMC may delegate this authority within his...
32 CFR 775.4 - Responsibilities.
Code of Federal Regulations, 2013 CFR
2013-07-01
... environmental planning. (d) The Chief of Naval Operations (CNO) and the Commandant of the Marine Corps (CMC... proposed CNO/CMC environmental planning instructions or orders to ASN (I&E) and, when appropriate, ASN (RD...
32 CFR 775.4 - Responsibilities.
Code of Federal Regulations, 2014 CFR
2014-07-01
... environmental planning. (d) The Chief of Naval Operations (CNO) and the Commandant of the Marine Corps (CMC... proposed CNO/CMC environmental planning instructions or orders to ASN (I&E) and, when appropriate, ASN (RD...
32 CFR 720.44 - Responsible officials.
Code of Federal Regulations, 2011 CFR
2011-07-01
... request for return. (b) The Commandant of the Marine Corps (CMC) for requests involving Marine Corps members and their family members who are not employees. The CMC may delegate this authority within his...
32 CFR 720.44 - Responsible officials.
Code of Federal Regulations, 2012 CFR
2012-07-01
... request for return. (b) The Commandant of the Marine Corps (CMC) for requests involving Marine Corps members and their family members who are not employees. The CMC may delegate this authority within his...
CMC Property Variability and Life Prediction Methods for Turbine Engine Component Application
NASA Technical Reports Server (NTRS)
Cheplak, Matthew L.
2004-01-01
The ever increasing need for lower density and higher temperature-capable materials for aircraft engines has led to the development of Ceramic Matrix Composites (CMCs). Today's aircraft engines operate with >3000"F gas temperatures at the entrance to the turbine section, but unless heavily cooled, metallic components cannot operate above approx.2000 F. CMCs attempt to push component capability to nearly 2700 F with much less cooling, which can help improve engine efficiency and performance in terms of better fuel efficiency, higher thrust, and reduced emissions. The NASA Glenn Research Center has been researching the benefits of the SiC/SiC CMC for engine applications. A CMC is made up of a matrix material, fibers, and an interphase, which is a protective coating over the fibers. There are several methods or architectures in which the orientation of the fibers can be manipulated to achieve a particular material property objective as well as a particular component geometric shape and size. The required shape manipulation can be a limiting factor in the design and performance of the component if there is a lack of bending capability of the fiber as making the fiber more flexible typically sacrifices strength and other fiber properties. Various analysis codes are available (pcGINA, CEMCAN) that can predict the effective Young's Moduli, thermal conductivities, coefficients of thermal expansion (CTE), and various other properties of a CMC. There are also various analysis codes (NASAlife) that can be used to predict the life of CMCs under expected engine service conditions. The objective of this summer study is to utilize and optimize these codes for examining the tradeoffs between CMC properties and the complex fiber architectures that will be needed for several different component designs. For example, for the pcGINA code, there are six variations of architecture available. Depending on which architecture is analyzed, the user is able to specify the fiber tow size, tow spacing, weave parameter, and angle of orientation of fibers. By holding the volume fraction of the fibers constant, variations in tow spacing can be explored for different architectures. The CMC material properties are usually calculated assuming the component is manufactured perfectly. However, this is typically not the case so that a quantification of the material property variability is needed to account for processing and/or manufacturing imperfections. The overall inputs and outputs are presented using a regression software to rapidly investigate the tradeoffs associated with fiber architecture, material properties, and ultimately cost. This information is then propagated through lifing models and Larson-Miller data to assess timehemperature-dependent CMC strength. In addition, a first order cost estimation will be quantified from a current qualitative perspective. This cost estimation includes the manufacturing challenges, such as tooling, as well as the component cost for a particular application. Ultimately, a cost to performance ratio should be established that compares the effectiveness of CMCs to their current rival, nickel superalloys.
NASA Astrophysics Data System (ADS)
Liu, Jie; Wang, Dapeng; Zhang, Daquan; Gao, Lixin; Lin, Tong
2016-12-01
The synergistic effects of carboxymethyl cellulose (CMC) and zinc oxide (ZnO) have been investigated as alkaline electrolyte additives for the AA5052 aluminium alloy anode in aluminium-air battery by the hydrogen evolution test, the electrochemical measurements and the surface analysis method. The combination of CMC and ZnO effectively retards the self-corrosion of AA5052 alloy in 4 M NaOH solution. A complex film is formed via the interaction between CMC and Zn2+ ions on the alloy surface. The carboxyl groups adsorbed on the surface of aluminium make the protective film more stable. The cathodic reaction process is mainly suppressed significantly. AA5052 alloy electrode has a good discharge performance in the applied electrolyte containing the composite CMC/ZnO additives.
Transparent sunlight conversion film based on carboxymethyl cellulose and carbon dots.
You, Yaqin; Zhang, Haoran; Liu, Yingliang; Lei, Bingfu
2016-10-20
Transparent sunlight conversion film based on carboxymethyl cellulose (CMC) and carbon dots (CDs) has been developed for the first time through dispersion of CDs in CMC aqueous solution. Due to the hydrogen bonds interaction, CMC can effectively absorb the CDs, whose surfaces are functionalized by lots of polar groups. The results from atomic force microscopy (AFM), scanning electron microscopy (SEM) confirm that the composite film possesses a homogeneous and compact structure. Besides, the CMC matrix neither competes for absorbing excitation light nor absorbs the emissions of CDs, which reserves the inherent optical properties of the individual CDs. The composite films can efficiently convert ultraviolet light to blue light. What's more, the film is transparent and possesses excellent mechanical properties, expected to apply in the field of agricultural planting for sunlight conversion. Copyright © 2016 Elsevier Ltd. All rights reserved.
Study on rheological properties of CMC/Eu-Tb solutions with different concentrations
NASA Astrophysics Data System (ADS)
Fu, Z. C.; Ye, J.; Xiong, J.
2018-05-01
The rheological properties of polymer solution are sensitive to variations in the polymer structure. Carboxymethyl cellulose (CMC) aqueous solution has been used in many fields, such as food, medicine and paper industry. In this paper, the effects of different concentrations (2% - 6%) of CMC/Eu-Tb on their rheological properties were investigeted, including steady-state flow and viscoelastic response. The results show that, the viscosity of CMC/Eu-Tb is lower than that of CMC, at the same concentrations; the products solutions present a nearly Newtonian behavior at the low concentrations (2% - 3%); while at the higher concentrations (4% - 6%), the products solutions present a pseudoplastic behavior; shear-thinning behavior is due to the polymer chains unravel under the action of flow and the molecular chains are oriented in the flow direction. The results also show that the viscosity of the solutions decreases with increasing temperature. Dynamic rheological tests show that CMC/Eu-Tb has viscoelasticity in the concentrations of 2% - 6%. At lower concentrations, the elastic modulus G‧ is slightly higher than the viscous modulus G″, and as the concentrations increase, the elastic modulus G‧ is significantly higher than the viscous modulus G″. It means that at the lower solution concentrations, the solutions tend to be less elastic and easier to flow. Most of the energies are lost through the viscous flow. As the solution concentrations increase, the solutions tend to be more elastic, and the system tends to form a gel.
Jahnke, Heinz-Georg; Steel, Daniella; Fleischer, Stephan; Seidel, Diana; Kurz, Randy; Vinz, Silvia; Dahlenborg, Kerstin; Sartipy, Peter; Robitzki, Andrea A.
2013-01-01
Unexpected adverse effects on the cardiovascular system remain a major challenge in the development of novel active pharmaceutical ingredients (API). To overcome the current limitations of animal-based in vitro and in vivo test systems, stem cell derived human cardiomyocyte clusters (hCMC) offer the opportunity for highly predictable pre-clinical testing. The three-dimensional structure of hCMC appears more representative of tissue milieu than traditional monolayer cell culture. However, there is a lack of long-term, real time monitoring systems for tissue-like cardiac material. To address this issue, we have developed a microcavity array (MCA)-based label-free monitoring system that eliminates the need for critical hCMC adhesion and outgrowth steps. In contrast, feasible field potential derived action potential recording is possible immediately after positioning within the microcavity. Moreover, this approach allows extended observation of adverse effects on hCMC. For the first time, we describe herein the monitoring of hCMC over 35 days while preserving the hCMC structure and electrophysiological characteristics. Furthermore, we demonstrated the sensitive detection and quantification of adverse API effects using E4031, doxorubicin, and noradrenaline directly on unaltered 3D cultures. The MCA system provides multi-parameter analysis capabilities incorporating field potential recording, impedance spectroscopy, and optical read-outs on individual clusters giving a comprehensive insight into induced cellular alterations within a complex cardiac culture over days or even weeks. PMID:23861955
Simulations of spray autoignition and flame establishment with two-dimensional CMC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wright, Y.M.; Boulouchos, K.; De Paola, G.
2005-12-01
The unsteady two-dimensional conditional moment closure (CMC) model with first-order closure of the chemistry and supplied with standard models for the conditional convection and turbulent diffusion terms has been interfaced with a commercial engine CFD code and analyzed with two numerical methods, an 'exact' calculation with the method of lines and a faster fractional-step method. The aim was to examine the sensitivity of the predictions to the operator splitting errors and to identify the extent to which spatial transport terms are important for spray autoignition problems. Despite the underlying simplifications, solution of the full CMC equations allows a single modelmore » to be used for the autoignition, flame propagation ('premixed mode'), and diffusion flame mode of diesel combustion, which makes CMC a good candidate model for practical engine calculations. It was found that (i) the conditional averages have significant spatial gradients before ignition and during the premixed mode and (ii) that the inclusion of physical-space transport affects the calculation of the autoignition delay time, both of which suggest that volume-averaged CMC approaches may be inappropriate for diesel-like problems. A balance of terms in the CMC equation before and after autoignition shows the relative magnitude of spatial transport and allows conjectures on the structure of the premixed phase of diesel combustion. Very good agreement with available experimental data is found concerning ignition delays and the effect of background air turbulence on them.« less
NASA Astrophysics Data System (ADS)
Mendenhall, Jonathan D.
Surfactants are chemically-heterogeneous molecules possessing hydrophilic (head) and hydrophobic (tail) moieties. This dual nature of surfactants leads to interesting phase behavior in aqueous solution as a function of surfactant concentration, including: (i) formation of surfactant monolayers at surfaces and interfaces, and (ii) self-assembly into finite aggregates (micelles) in the bulk solution beyond the critical micelle concentration (cmc). This concentration-dependent phase behavior induces changes in solution properties. For example, the surface activity of surfactants can decrease the surface tension, and self-assembly in bulk solution can lead to changes in viscosity, equivalent conductivity, solubilization capacity, and other bulk properties. These effects make surfactants quite attractive and unique for use in product formulations, where they are utilized as detergents, dispersants, emulsifiers, solubilizers, surface and interfacial tension modifiers, and in other contexts. The specific chemical structure of the surfactant head and tail is essential in determining the overall performance properties of a surfactant in aqueous media. The surfactant tail drives the self-assembly process through the hydrophobic effect, while the surfactant head imparts a certain extent of solubility to the surfactant in aqueous solution through preferential interactions with the hydrogen-bonding network of water. The interplay between these two effects gives rise to the particular phase diagram of a surfactant, including the specific cmc at which micelles begin to form. In addition to serving as a quantitative indicator of micelle formation, the cmc represents a limit to surface monolayer formation, and hence to surface and interfacial tension reduction, because surfactant adsorption at interfaces remains approximately constant beyond the cmc. In addition, the cmc represents the onset of changes in bulk solution properties. This Thesis is concerned with the prediction of cmc's and other micellization properties for a variety of linear and branched surfactant chemical architectures which are commonly encountered in practice. Single-component surfactant solutions are investigated, in order to clarify the specific contributions of the surfactant head and tail to the free energy of micellization, a quantity which determines the cmc and all other aspects of micellization. First, a molecular-thermodynamic (MT) theory is presented which makes use of bulk-phase thermodynamics and a phenomenological thought process to describe the energetics related to the formation of a micelle from its constituent surfactant monomers. Second, a combined computer-simulation/molecular-thermodynamic (CSMT) framework is discussed which provides a more detailed quantification of the hydrophobic effect using molecular dynamics simulations. A novel computational strategy to identify surfactant head and tail using an iterative dividing surface approach, along with simulated micelle results, is proposed. Force-field development for novel surfactant structures is also discussed. Third, a statistical-thermodynamic, single-chain, mean-field theory for linear and branched tail packing is formulated, which enables quantification of the specific energetic penalties related to confinement and constraint of surfactant tails within micelles. Finally, these theoretical and simulations-based strategies are used to predict the micellization behavior of 55 linear surfactants and 28 branched surfactants. Critical micelle concentration and optimal micelle properties are reported and compared with experiment, demonstrating good agreement across a range of surfactant head and tail types. In particular, the CSMT framework is found to provide improved agreement with experimental cmc's for the branched surfactants considered. (Copies available exclusively from MIT Libraries, libraries.mit.edu/docs - docs mit.edu)
NASA Astrophysics Data System (ADS)
Kaveh, M.; Gao, Q.; Jagadish, C.; Ge, J.; Duscher, G.; Wagner, H. P.
2016-12-01
Excitons are the most prominent optical excitations and controlling their emission is an important step towards new optical devices. We have investigated the exciton emission from uncoated and gold/aluminum quinoline (Alq3) coated GaAs-AlGaAs-GaAs core-shell nanowires (NWs) using temperature-, intensity- and polarization dependent photoluminescence (PL). Plasmonic GaAs-AlGaAs-GaAs NWs with a ˜10 nm thick Au coating but without an Alq3 spacer layer reveal a significant reduction of the PL intensity of the exciton emission compared with the uncoated NW sample. Plasmonic NW samples with the same nominal Au coverage and an additional Alq3 interlayer of 3 or 6 nm thickness show a clearly stronger PL intensity which increases with rising Alq3 spacer thickness. Time-resolved (TR) PL measurements reveal an increase of the exciton decay rate by a factor of up to two with decreasing Alq3 spacer thickness suggesting the presence of Förster energy transfer from NW excitons to plasmon oscillations in the gold film. The weak change of the decay time, however, indicates that Förster energy-transfer is only partially responsible for the PL quenching in the gold coated NWs. The main reason for the reduction of the PL emission is attributed to a gold induced band-bending in the GaAs NW core which causes exciton dissociation. With increasing Alq3 spacer thickness the band-bending decreases leading to a reduction of the exciton dissociation and PL quenching. Our interpretation is supported by electron energy loss spectroscopy measurements which show a signal reduction and blue shift of defect (possibly EL2) transitions when gold particles are deposited on NWs compared with bare or Alq3 coated NWs.
Mann, Karsten; Davids, Andreas; Range, Ursula; Richter, Gert; Boening, Klaus; Reitemeier, Bernd
2015-04-01
The 2-step putty and wash impression technique is commonly used in fixed prosthodontics. However, cutting sluiceways to allow the light-body material to drain is time-consuming. A solution might be the use of a spacer foil. The purpose of this study was to evaluate the influence of spacer foil on the margin reproduction and dimensional accuracy of 2-step putty and wash impressions. Two methods of creating space for the wash material in a 2-step putty and wash impression were compared: the traditional cutout technique and a spacer foil. Eleven commercially available combinations of silicone impression materials were included in the study. The impressions and the cast production were carried out under standardized conditions. All casts were measured with a 3-dimensional (3D) coordinate measuring machine. Preparation margin reproduction and the diameters and spacing of the stone cast dies were measured (α=.05). The 2 methods showed significant differences (P<.05) in the reproduction of the preparation margins (complete reproduction cutout, 90% to 98%; foil, 74% to 91%). The use of a foil resulted in greater dimensional accuracy of the cast dies compared to the cutout technique. Cast dies from the cutout technique were significantly smaller than the metallic original cast (cutout median, 4.55 mm to 4.61 mm; foil median, 4.61 to 4.64). Spacing between the dies revealed only a few additional significant differences between the techniques. When spacer foils were used, dies were obtained that better corresponded to the original tooth. Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Kaveh, M; Gao, Q; Jagadish, C; Ge, J; Duscher, G; Wagner, H P
2016-12-02
Excitons are the most prominent optical excitations and controlling their emission is an important step towards new optical devices. We have investigated the exciton emission from uncoated and gold/aluminum quinoline (Alq 3 ) coated GaAs-AlGaAs-GaAs core-shell nanowires (NWs) using temperature-, intensity- and polarization dependent photoluminescence (PL). Plasmonic GaAs-AlGaAs-GaAs NWs with a ∼10 nm thick Au coating but without an Alq 3 spacer layer reveal a significant reduction of the PL intensity of the exciton emission compared with the uncoated NW sample. Plasmonic NW samples with the same nominal Au coverage and an additional Alq 3 interlayer of 3 or 6 nm thickness show a clearly stronger PL intensity which increases with rising Alq 3 spacer thickness. Time-resolved (TR) PL measurements reveal an increase of the exciton decay rate by a factor of up to two with decreasing Alq 3 spacer thickness suggesting the presence of Förster energy transfer from NW excitons to plasmon oscillations in the gold film. The weak change of the decay time, however, indicates that Förster energy-transfer is only partially responsible for the PL quenching in the gold coated NWs. The main reason for the reduction of the PL emission is attributed to a gold induced band-bending in the GaAs NW core which causes exciton dissociation. With increasing Alq 3 spacer thickness the band-bending decreases leading to a reduction of the exciton dissociation and PL quenching. Our interpretation is supported by electron energy loss spectroscopy measurements which show a signal reduction and blue shift of defect (possibly EL2) transitions when gold particles are deposited on NWs compared with bare or Alq 3 coated NWs.
Favotto, Lindsay; Michaelson, Valerie; Davison, Colleen
2017-12-01
Recent technological advances have provided many youth with daily, almost continuous cell-phone and Internet connectivity through portable devices. Young people's experiences with computer-mediated communication (CMC) and their views about how this form of communication affects their health have not been fully explored in the scientific literature. A purposeful maximum variation sample of young people (aged 11-15 years) across Ontario was identified, using key informants for recruitment. The young people participated in seven focus groups (involving a total of 40 adolescents), and discussed various aspects of health including the health impacts of CMC. Inductive content analysis of the focus group transcripts revealed two overarching concepts: first, that the relationship between health and the potential impacts of CMC is multidimensional; and secondly, that there exists a duality of both positive and negative potential influences of CMC on health. Within this framework, four themes were identified involving CMC and: (1) physical activity, (2) negative mental and emotional disturbance, (3) mindfulness, and (4) relationships. With this knowledge, targeted strategies for healthy technology use that draw on the perspectives of young people can be developed, and can then be implemented by parents, teachers, and youth themselves.
Kocur, Chris M D; Lomheim, Line; Molenda, Olivia; Weber, Kela P; Austrins, Leanne M; Sleep, Brent E; Boparai, Hardiljeet K; Edwards, Elizabeth A; O'Carroll, Denis M
2016-07-19
Nanoscale zerovalent iron (nZVI) is an emerging technology for the remediation of contaminated sites. However, there are concerns related to the impact of nZVI on in situ microbial communities. In this study, the microbial community composition at a contaminated site was monitored over two years following the injection of nZVI stabilized with carboxymethyl cellulose (nZVI-CMC). Enhanced dechlorination of chlorinated ethenes to nontoxic ethene was observed long after the expected nZVI oxidation. The abundance of Dehalococcoides (Dhc) and vinyl chloride reductase (vcrA) genes, monitored using qPCR, increased by over an order of magnitude in nZVI-CMC-impacted wells. The entire microbial community was tracked using 16S rRNA gene amplicon pyrosequencing. Following nZVI-CMC injection, a clear shift in microbial community was observed, with most notable increases in the dechlorinating genera Dehalococcoides and Dehalogenimonas. This study suggests that coupled abiotic degradation (i.e., from reaction with nZVI) and biotic degradation fueled by CMC led to the long-term degradation of chlorinated ethenes at this field site. Furthermore, nZVI-CMC addition stimulated dehalogenator growth (e.g., Dehalococcoides) and biotic degradation of chlorinated ethenes.
Farhadnejad, Hassan; Mortazavi, Seyed Alireza; Erfan, Mohammad; Darbasizadeh, Behzad; Motasadizadeh, Hamidreza; Fatahi, Yousef
2018-05-01
The main aim of the present study was to design pH-sensitive nanocomposite hydrogel beads, based on carboxymethyl cellulose (CMC) and montmorillonite (Mt)-propranolol (PPN) nanohybrid, and evaluate whether the prepared nanocomposite beads could potentially be used as oral drug delivery systems. PPN-as a model drug-was intercalated into the interlayer space of Mt clay mineral via the ion exchange procedure. The resultant nanohybrid (Mt-PPN) was applied to fabricate nanocomposite hydrogel beads by association with carboxymethyl cellulose. The characterization of test samples was performed using different techniques: X-Ray Diffraction (XRD), IR spectroscopy (FT-IR), thermal gravity analysis (TGA), and scanning electron microscopy (SEM). The drug encapsulation efficiency was evaluated by UV-vis spectroscopy, and was found to be high for Mt/CMC beads. In vitro drug release test was performed in the simulated gastrointestinal conditions to evaluate the efficiency of Mt-PPN/CMC nanocomposite beads as a controlled-release drug carrier. The drug release profiles indicated that the Mt-PPN/CMC nanocomposite beads had high stability against stomach acid and a sustained- and controlled-release profile for PPN under the simulated intestinal conditions. Copyright © 2018 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gregory Corman; Krishan Luthra
This report covers work performed under the Continuous Fiber Ceramic Composites (CFCC) program by GE Global Research and its partners from 1994 through 2005. The processing of prepreg-derived, melt infiltrated (MI) composite systems based on monofilament and multifilament tow SiC fibers is described. Extensive mechanical and environmental exposure characterizations were performed on these systems, as well as on competing Ceramic Matrix Composite (CMC) systems. Although current monofilament SiC fibers have inherent oxidative stability limitations due to their carbon surface coatings, the MI CMC system based on multifilament tow (Hi-Nicalon ) proved to have excellent mechanical, thermal and time-dependent properties. Themore » materials database generated from the material testing was used to design turbine hot gas path components, namely the shroud and combustor liner, utilizing the CMC materials. The feasibility of using such MI CMC materials in gas turbine engines was demonstrated via combustion rig testing of turbine shrouds and combustor liners, and through field engine tests of shrouds in a 2MW engine for >1000 hours. A unique combustion test facility was also developed that allowed coupons of the CMC materials to be exposed to high-pressure, high-velocity combustion gas environments for times up to {approx}4000 hours.« less
Ceramic Composite Development for Gas Turbine Engine Hot Section Components
NASA Technical Reports Server (NTRS)
DiCarlo, James A.; VANrOODE, mARK
2006-01-01
The development of ceramic materials for incorporation into the hot section of gas turbine engines has been ongoing for about fifty years. Researchers have designed, developed, and tested ceramic gas turbine components in rigs and engines for automotive, aero-propulsion, industrial, and utility power applications. Today, primarily because of materials limitations and/or economic factors, major challenges still remain for the implementation of ceramic components in gas turbines. For example, because of low fracture toughness, monolithic ceramics continue to suffer from the risk of failure due to unknown extrinsic damage events during engine service. On the other hand, ceramic matrix composites (CMC) with their ability to display much higher damage tolerance appear to be the materials of choice for current and future engine components. The objective of this paper is to briefly review the design and property status of CMC materials for implementation within the combustor and turbine sections for gas turbine engine applications. It is shown that although CMC systems have advanced significantly in thermo-structural performance within recent years, certain challenges still exist in terms of producibility, design, and affordability for commercial CMC turbine components. Nevertheless, there exist some recent successful efforts for prototype CMC components within different engine types.
Nanoparticle-based brachytherapy spacers for delivery of localized combined chemoradiation therapy.
Kumar, Rajiv; Belz, Jodi; Markovic, Stacey; Jadhav, Tej; Fowle, William; Niedre, Mark; Cormack, Robert; Makrigiorgos, Mike G; Sridhar, Srinivas
2015-02-01
In radiation therapy (RT), brachytherapy-inert source spacers are commonly used in clinical practice to achieve high spatial accuracy. These implanted devices are critical technical components of precise radiation delivery but provide no direct therapeutic benefits. Here we have fabricated implantable nanoplatforms or chemoradiation therapy (INCeRT) spacers loaded with silica nanoparticles (SNPs) conjugated containing a drug, to act as a slow-release drug depot for simultaneous localized chemoradiation therapy. The spacers are made of poly(lactic-co-glycolic) acid (PLGA) as matrix and are physically identical in size to the commercially available brachytherapy spacers (5 mm × 0.8 mm). The silica nanoparticles, 250 nm in diameter, were conjugated with near infrared fluorophore Cy7.5 as a model drug, and the INCeRT spacers were characterized in terms of size, morphology, and composition using different instrumentation techniques. The spacers were further doped with an anticancer drug, docetaxel. We evaluated the in vivo stability, biocompatibility, and biodegradation of these spacers in live mouse tissues. The electron microscopy studies showed that nanoparticles were distributed throughout the spacers. These INCeRT spacers remained stable and can be tracked by the use of optical fluorescence. In vivo optical imaging studies showed a slow diffusion of nanoparticles from the spacer to the adjacent tissue in contrast to the control Cy7.5-PLGA spacer, which showed rapid disintegration in a few days with a burst release of Cy7.5. The docetaxel spacers showed suppression of tumor growth in contrast to control mice over 16 days. The imaging with the Cy7.5 spacer and therapeutic efficacy with docetaxel spacers supports the hypothesis that INCeRT spacers can be used for delivering the drugs in a slow, sustained manner in conjunction with brachytherapy, in contrast to the rapid clearance of the drugs when administered systemically. The results demonstrate that these spacers with tailored release profiles have potential in improving the combined therapeutic efficacy of chemoradiation therapy. Copyright © 2015 Elsevier Inc. All rights reserved.
Meta-Analysis Comparing Zero-Profile Spacer and Anterior Plate in Anterior Cervical Fusion.
Dong, Jun; Lu, Meng; Lu, Teng; Liang, Baobao; Xu, Junkui; Zhou, Jun; Lv, Hongjun; Qin, Jie; Cai, Xuan; Huang, Sihua; Li, Haopeng; Wang, Dong; He, Xijing
2015-01-01
Anterior plate fusion is an effective procedure for the treatment of cervical spinal diseases but is accompanied by a high incidence of postoperative dysphagia. A zero profile (Zero-P) spacer is increasingly being used to reduce postoperative dysphagia and other potential complications associated with surgical intervention. Studies comparing the Zero-P spacer and anterior plate have reported conflicting results. A meta-analysis was conducted to compare the safety, efficacy, radiological outcomes and complications associated with the use of a Zero-P spacer versus an anterior plate in anterior cervical spine fusion for the treatment of cervical spinal disease. We comprehensively searched PubMed, Embase, the Cochrane Library and other databases and performed a meta-analysis of all randomized controlled trials (RCTs) and prospective or retrospective comparative studies assessing the two techniques. Ten studies enrolling 719 cervical spondylosis patients were included. The pooled data showed significant differences in the operation time [SMD = -0.58 (95% CI = -0.77 to 0.40, p < 0.01)] and blood loss [SMD = -0.40, 95% CI (-0.59 to -0.21), p < 0.01] between the two groups. Compared to the anterior plate group, the Zero-P group exhibited a significantly improved JOA score and reduced NDI and VAS. However, anterior plate fusion had greater postoperative segmental and cervical Cobb's angles than the Zero-P group at the last follow-up. The fusion rate in the two groups was similar. More importantly, the Zero-P group had a lower incidence of earlier and later postoperative dysphagia. Compared to anterior plate fusion, Zero-P is a safer and effective procedure, with a similar fusion rate and lower incidence of earlier and later postoperative dysphagia. However, the results of this meta-analysis should be accepted with caution due to the limitations of the study. Further evaluation and large-sample RCTs are required to confirm and update the results of this study.
Inoue, Tohru; Yamakawa, Haruka
2011-04-15
Micellization behavior was investigated for polyoxyethylene-type nonionic surfactants with varying chain length (C(n)E(m)) in a room temperature ionic liquid, 1-butyl-3-methylimidazolium tetrafluoroborate (bmimBF(4)). Critical micelle concentration (cmc) was determined from the variation of (1)H NMR chemical shift with the surfactant concentration. The logarithmic value of cmc decreased linearly with the number of carbon atoms in the surfactant hydrocarbon chain, similarly to the case observed in aqueous surfactant solutions. However, the slope of the straight line is much smaller in bmimBF(4) than in aqueous solution. Thermodynamic parameters for micelle formation estimated from the temperature dependence of cmc showed that the micellization in bmimBF(4) is an entropy-driven process around room temperature. This behavior is also similar to the case in aqueous solution. However, the magnitude of the entropic contribution to the overall micellization free energy in bmimBF(4) is much smaller compared with that in aqueous solution. These results suggest that the micellization in bmimBF(4) proceeds through a mechanism similar to the hydrophobic interaction in aqueous surfactant solutions, although the solvophobic effect in bmimBF(4) is much weaker than the hydrophobic effect. Copyright © 2011 Elsevier Inc. All rights reserved.
Foliar penetration enhanced by biosurfactant rhamnolipid.
Liu, Haojing; Shao, Bing; Long, Xuwei; Yao, Yang; Meng, Qin
2016-09-01
With recent environmental and health concerns, biosurfactants have obtained increasing interest in replacing conventional surfactants for diverse applications. In agriculture, the use of surfactant in stimulating foliar uptake is mainly for wetting leaf surface, resisting deposition/evaporation, enhancing penetration across cuticular membrane (CM) and translocation. This paper aimed to address the improved foliar uptake by rhamnolipid (RL) in comparison with the currently used alkyl polyglucoside (APG). As found, compared with APG at 900mg/L (1×critical micellar concentration, CMC), RL at a much lower concentration of 50mg/L (1×CMC) showed much better wettability and surface activity, indicative of its high effectiveness as surfactants. Its performance on resistance to deposition and evaporation was at least as same as APG. Moreover, RL could significantly improve the penetration of herbicide glyphosate and other two small water-soluble molecules (phenol red and Fe(2+)) across CM at an equivalent efficiency as APG at 1×CMC. Finally, the greatly enhanced herbicidal actitivity of glyphosate on greenhouse plants confirmed that RL and APG could both enhance the foliar uptake including translocation. Overall, RL should be more applicable than APG in agriculture due to its more promising properties on health/environmental friendliness. Copyright © 2016 Elsevier B.V. All rights reserved.
The optimization of CMC concentration as graphite binder on the anode of LiFePO4 battery
NASA Astrophysics Data System (ADS)
Hidayat, S.; Cahyono, T.; Mindara, J. Y.; Riveli, N.; Alamsyah, W.; Rahayu, I.
2017-05-01
Recently, the most dominating power supply on the mobile electronics market are rechargeable Lithium-ion batteries. This is because of a higher energy density and a longer lifetime compared to similar rechargeable battery systems. Graphite is commonly used as anode material in the Lithium-ion batteries, because of its excellent electrochemical characteristics and low cost fabrication. In this paper, we reported the optimization of the concentration of the CMC (carboxymethyl cellulose), that acts as the binder for graphite anode. Based on our experimental results, the best composition of graphite : C : CMC is 90 : 8 : 2 in weight %. Anode with such composition has, based on SEM measurement, a relatively good surface morphology, while it also has relatively high conductivity, about 2.68 S/cm. The result of cyclic voltammogram with a scan rate of 10 mV/s in the voltage range of 0 to 1 Volt, shows the peak of reduction voltage at 0.85 Volts and the peak voltage of oxidation is at -1.5 Volt. The performance of the battery system with LiFePO4 set as the cathode, shows that the working voltage is about 2.67 Volts at 1 mA current-loading, with the efficiency around 47%.
Mahboubi, Hossein; Mohraz, Ali; Verma, Sunil P
2016-03-01
To compare the viscoelastic properties of calcium hydroxyapatite (CaHA) to carboxymethylcellulose (CMC) injectables used for injection laryngoplasty and determine if they are affected by heating and shearing. Experimental. University laboratory. Vocal fold injection laryngoplasty with CaHA is oftentimes challenging due to the amount of pressure necessary to push the injectate through a needle. Anecdotal techniques, such as heating the product, have been suggested to facilitate injection. The viscoelastic properties of CaHA and CMC were measured with a rheometer. The effects of heating and shearing on sample viscoelasticity were recorded. CaHA was 9.5 times more viscous than CMC (43,100 vs 4540 Pa·s). Heating temporarily decreased the viscosity of CaHA by 32%. However, it also caused the viscosity to subsequently increase after time. Shearing of CaHA reduced its viscosity by 26%. Heating and shearing together temporarily reduced the viscosity of CaHA by 52%. A combination of heating and shearing had a more profound effect than heating or shearing alone on the viscosity of CaHA, potentially making it easier to inject temporarily. Long-term and in vivo studies are required to further analyze the effect of heating and shearing on CaHA injectables. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2016.
Lightning charge moment changes estimated by high speed photometric observations from ISS
NASA Astrophysics Data System (ADS)
Hobara, Y.; Kono, S.; Suzuki, K.; Sato, M.; Takahashi, Y.; Adachi, T.; Ushio, T.; Suzuki, M.
2017-12-01
Optical observations by the CCD camera using the orbiting satellite is generally used to derive the spatio-temporal global distributions of the CGs and ICs. However electrical properties of the lightning such as peak current and lightning charge are difficult to obtain from the space. In particular, CGs with considerably large lightning charge moment changes (CMC) and peak currents are crucial parameters to generate red sprites and elves, respectively, and so it must be useful to obtain these parameters from space. In this paper, we obtained the lightning optical signatures by using high speed photometric observations from the International Space Station GLIMS (Global Lightning and Sprit MeasurementS JEM-EF) mission. These optical signatures were compared quantitatively with radio signatures recognized as truth values derived from ELF electromagnetic wave observations on the ground to verify the accuracy of the optically derived values. High correlation (R > 0.9) was obtained between lightning optical irradiance and current moment, and quantitative relational expression between these two parameters was derived. Rather high correlation (R > 0.7) was also obtained between the integrated irradiance and the lightning CMC. Our results indicate the possibility to derive lightning electrical properties (current moment and CMC) from optical measurement from space. Moreover, we hope that these results will also contribute to forthcoming French microsatellite mission TARANIS.
Rhamnolipid surface thermodynamic properties and transport in agricultural soil.
Renfro, Tyler Dillard; Xie, Weijie; Yang, Guang; Chen, Gang
2014-03-01
Rhamnolipid is a biosurfactant produced by several Pseudomonas species, which can wet hydrophobic soils by lowering the cohesive and/or adhesive surface tension. Because of its biodegradability, rhamnolipid applications bring minimal adverse impact on the soil and groundwater as compared with that of chemical wetting agents. Subsequently, rhamnolipid applications have more advantages when used to improve irrigation in the agricultural soil, especially under draught conditions. In the presence of rhamnolipid, water surface tension dropped linearly with the increase of rhamnolipid concentration until the rhamnolipid critical micelle concentration (CMC) of 30 mg/L was reached. Below the CMC, rhamnolipid had linear adsorption isotherms on the soil with a partition coefficient of 0.126 L/kg. Rhamnolipid transport breakthrough curves had a broad and diffuse infiltration front, indicating retention of rhamnolipid on the soil increased with time. Rhamnolipid transport was found to be well represented by the advection-dispersion equation based on a local equilibrium assumption. When applied at concentrations above the CMC, the formed rhamnolipid micelles prevented rhamnolipid adsorption (both equilibrium adsorption and kinetic adsorption) in the soil. It was discovered in this research that rhamnolipid surface thermodynamic properties played the key role in controlling rhamnolipid transport. The attractive forces between rhamnolipid molecules contributed to micelle formation and facilitated rhamnolipid transport. Published by Elsevier B.V.
Micellization Behavior of Long-Chain Substituted Alkylguanidinium Surfactants
Bouchal, Roza; Hamel, Abdellah; Hesemann, Peter; In, Martin; Prelot, Bénédicte; Zajac, Jerzy
2016-01-01
Surface activity and micelle formation of alkylguanidinium chlorides containing 10, 12, 14 and 16 carbon atoms in the hydrophobic tail were studied by combining conductivity and surface tension measurements with isothermal titration calorimetry. The purity of the resulting surfactants, their temperatures of Cr→LC and LC→I transitions, as well as their propensity of forming birefringent phases, were assessed based on the results of 1H and 13C NMR, differential scanning calorimetry (DSC), and polarizing microscopy studies. Whenever possible, the resulting values of Krafft temperature (TK), critical micelle concentration (CMC), minimum surface tension above the CMC, chloride counter-ion binding to the micelle, and the standard enthalpy of micelle formation per mole of surfactant (ΔmicH°) were compared to those characterizing alkyltrimethylammonium chlorides or bromides with the same tail lengths. The value of TK ranged between 292 and 314 K and increased strongly with the increase in the chain length of the hydrophobic tail. Micellization was described as both entropy and enthalpy-driven. Based on the direct calorimetry measurements, the general trends in the CMC with the temperature, hydrophobic tail length, and NaCl addition were found to be similar to those of other types of cationic surfactants. The particularly exothermic character of micellization was ascribed to the hydrogen-binding capacity of the guanidinium head-group. PMID:26861309
Ceballos, L.; Alvarez, L.; Mackenzie, C.; Geary, T.; Lanusse, C.
2015-01-01
Despite the well established ivermectin activity against microfilaria, the success of human filariasis control programmes requires the use of a macrofilaricide compound. Different in vivo trials suggest that flubendazole (FLBZ), an anthelmintic benzimidazole compound, is a highly efficacious and potent macrofilaricide. However, since serious injection site reactions were reported in humans after the subcutaneous FLBZ administration, the search for alternative pharmaceutical strategies to improve the systemic availability of FLBZ has acquired special relevance both in human and veterinary medicine. The goal of the current experimental work was to compare the pharmacokinetic plasma behavior of FLBZ, and its metabolites, formulated as either an aqueous hydroxypropyl- β -cyclodextrin-solution (HPBCD), an aqueous carboxymethyl cellulose-suspension (CMC) or a Tween 80-based formulation, in pigs. Animals were allocated into three groups and treated (2 mg/kg) with FLBZ formulated as either a HPBCD-solution (oral), CMC-suspension (oral) or Tween 80-based formulation (subcutaneous). Only trace amounts of FLBZ parent drug and its reduced metabolite were measured after administration of the different FLBZ formulations in pigs. The hydrolyzed FLBZ (H-FLBZ) metabolite was the main analyte recovered in the bloodstream in pigs treated with the three experimental FLBZ formulations. The oral administration of the HPBCD-solution accounted for significantly higher (P < 0.05) Cmax and AUC (23.1 ± 4.4 μg h/mL) values for the main metabolite (H-FLBZ), compared with those observed for the oral CMC-suspension (AUC = 3.5 ± 1.0 μg h/mL) and injectable Tween 80-based formulation (AUC: 7.5 ± 1.7 μg h/mL). The oral administration of the HPBCD-solution significantly improved the poor absorption pattern (indirectly assessed as the H-FLBZ plasma concentrations) observed after the oral administration of the FLBZ-CMC suspension or the subcutaneous injection of the Tween 80 FLBZ formulation to pigs. Overall, the work reported here indicates that FLBZ pharmacokinetic behavior can be markedly changed by the pharmaceutical formulation. PMID:27120064
Fuzzy Current-Mode Control and Stability Analysis
NASA Technical Reports Server (NTRS)
Kopasakis, George
2000-01-01
In this paper a current-mode control (CMC) methodology is developed for a buck converter by using a fuzzy logic controller. Conventional CMC methodologies are based on lead-lag compensation with voltage and inductor current feedback. In this paper the converter lead-lag compensation will be substituted with a fuzzy controller. A small-signal model of the fuzzy controller will also be developed in order to examine the stability properties of this buck converter control system. The paper develops an analytical approach, introducing fuzzy control into the area of CMC.
Effect of halloysite content on carboxymethyl cellulose/halloysite nanotube bio-nanocomposite films
NASA Astrophysics Data System (ADS)
Suppiah, Kathiravan; Leng, Teh Pei; Husseinsyah, Salmah; Rahman, Rozyanty; Keat, Yeoh Cheow
2017-04-01
Carboxymethyl cellulose/halloysite nanotube (CMC/HNT) bio-nanocomposite films were prepared by solution casting method. The effect of HNT content on tensile properties and morphology were studied. The results showed that the tensile strength of the CMC/HNT bio-nanocomposite films achieved optimum at 10 wt% of HNT content. The elongation at break and modulus of elasticity increased with increasing HNT content. The morphology of CMC/HNT bio-nanocomposite films showed that the poor distribution of HNT filler was observed at 20 wt% of HNT content.
Silas, Sukrit; Makarova, Kira S; Shmakov, Sergey; Páez-Espino, David; Mohr, Georg; Liu, Yi; Davison, Michelle; Roux, Simon; Krishnamurthy, Siddharth R; Fu, Becky Xu Hua; Hansen, Loren L; Wang, David; Sullivan, Matthew B; Millard, Andrew; Clokie, Martha R; Bhaya, Devaki; Lambowitz, Alan M; Kyrpides, Nikos C; Koonin, Eugene V; Fire, Andrew Z
2017-07-11
Cas1 integrase is the key enzyme of the clustered regularly interspaced short palindromic repeat (CRISPR)-Cas adaptation module that mediates acquisition of spacers derived from foreign DNA by CRISPR arrays. In diverse bacteria, the cas1 gene is fused (or adjacent) to a gene encoding a reverse transcriptase (RT) related to group II intron RTs. An RT-Cas1 fusion protein has been recently shown to enable acquisition of CRISPR spacers from RNA. Phylogenetic analysis of the CRISPR-associated RTs demonstrates monophyly of the RT-Cas1 fusion, and coevolution of the RT and Cas1 domains. Nearly all such RTs are present within type III CRISPR-Cas loci, but their phylogeny does not parallel the CRISPR-Cas type classification, indicating that RT-Cas1 is an autonomous functional module that is disseminated by horizontal gene transfer and can function with diverse type III systems. To compare the sequence pools sampled by RT-Cas1-associated and RT-lacking CRISPR-Cas systems, we obtained samples of a commercially grown cyanobacterium- Arthrospira platensis Sequencing of the CRISPR arrays uncovered a highly diverse population of spacers. Spacer diversity was particularly striking for the RT-Cas1-containing type III-B system, where no saturation was evident even with millions of sequences analyzed. In contrast, analysis of the RT-lacking type III-D system yielded a highly diverse pool but reached a point where fewer novel spacers were recovered as sequencing depth was increased. Matches could be identified for a small fraction of the non-RT-Cas1-associated spacers, and for only a single RT-Cas1-associated spacer. Thus, the principal source(s) of the spacers, particularly the hypervariable spacer repertoire of the RT-associated arrays, remains unknown. IMPORTANCE While the majority of CRISPR-Cas immune systems adapt to foreign genetic elements by capturing segments of invasive DNA, some systems carry reverse transcriptases (RTs) that enable adaptation to RNA molecules. From analysis of available bacterial sequence data, we find evidence that RT-based RNA adaptation machinery has been able to join with CRISPR-Cas immune systems in many, diverse bacterial species. To investigate whether the abilities to adapt to DNA and RNA molecules are utilized for defense against distinct classes of invaders in nature, we sequenced CRISPR arrays from samples of commercial-scale open-air cultures of Arthrospira platensis , a cyanobacterium that contains both RT-lacking and RT-containing CRISPR-Cas systems. We uncovered a diverse pool of naturally occurring immune memories, with the RT-lacking locus acquiring a number of segments matching known viral or bacterial genes, while the RT-containing locus has acquired spacers from a distinct sequence pool for which the source remains enigmatic. Copyright © 2017 Silas et al.
Comparative analysis of CRISPR-Cas systems in Klebsiella genomes.
Shen, Juntao; Lv, Li; Wang, Xudong; Xiu, Zhilong; Chen, Guoqiang
2017-04-01
Prokaryotic CRISPR-Cas system provides adaptive immunity against invasive genetic elements. Bacteria of the genus Klebsiella are important nosocomial opportunistic pathogens. However, information of CRISPR-Cas system in Klebsiella remains largely unknown. Here, we analyzed the CRISPR-Cas systems of 68 complete genomes of Klebsiella representing four species. All the elements for CRISPR-Cas system (cas genes, repeats, leader sequences, and PAMs) were characterized. Besides the typical Type I-E and I-F CRISPR-Cas systems, a new Subtype I system located in the ABC transport system-glyoxalase region was found. The conservation of the new subtype CRISPR system between different species showed new evidence for CRISPR horizontal transfer. CRISPR polymorphism was strongly correlated both with species and multilocus sequence types. Some results indicated the function of adaptive immunity: most spacers (112 of 124) matched to prophages and plasmids and no matching housekeeping genes; new spacer acquisition was observed within the same sequence type (ST) and same clonal complex; the identical spacers were observed only in the ancient position (far from the leader) between different STs and clonal complexes. Interestingly, a high ratio of self-targeting spacers (7.5%, 31 of 416) was found in CRISPR-bearing Klebsiella pneumoniae (61%, 11 of 18). In some strains, there even were multiple full matching self-targeting spacers. Some self-targeting spacers were conserved even between different STs. These results indicated that some unknown mechanisms existed to compromise the function of self-targets of CRISPR-Cas systems in K. pneumoniae. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Gautam, Vineeta; Singh, Karan Pratap; Yadav, Vijay Laxmi
2018-06-01
In this paper, we are presenting the preparation and characterization of "polyaniline/multiwalled carbon nanotubes/carboxymethyl cellulose" based novel composite material. It's morphological, thermal, structural, and electrochemical properties were investigated by using different instrumental techniques. During the in-situ chemical polymerization of aniline in the aqueous suspension of CMC and MWCNTs, the particle size change in two different ways "top to bottom" (low molecular weight oligomers grows in size) and "bottom to top" (long fibers of CMC fragmented in the reaction mixture). The combination of these two processes facilitated the fabrication of an integrated green-nano-composite material. In addition, a little amount of conductive nanofillers (MWCNTs) boosts the electrical and electrocatalytic properties of the material. Electron-rich centers of benzenoid rings exhibited π-π stacking with sp 2 carbon of MWCNTs. CMC dominantly impact on the properties of PANI, negatively charged carboxylate group of CMC ionically bonded with protonated amine/imine. FTIR and Raman analysis confirmed that the material has dominated quinoid units and effective charge transfer. Hydroxyl and carboxyl groups and bonded water molecules of CMC results in a network of hydrogen bonds (which induced directional property). PANI/MWCNTs/CMC have nanobead-like structures (TEM analysis), large surface area, large pore volume, small pore diameter (BET and BJH studies) and good dispersion ability in the aqueous phase. Nanostructures of aligned PANI exhibited excellent electrochemical properties have attracted increasing attention. Modified carbon paste electrode was used for electrocatalytic detection of ascorbic acid (as a model analyte). The sensor exhibited a linear range 0.05 mM-5 mM, sensitivity 100.63 μA mM -1 cm -2 , and limit of detection 0.01 mM. PANI/MWCNTs/CMC is suitable nanocomposite material for apply electroactive/conducting ink and membrane (which could be used in electrochemical sensor applications). Copyright © 2018 Elsevier Ltd. All rights reserved.
Yang, Ying-Fei; Chen, Pei-Jen; Liao, Vivian Hsiu-Chuan
2016-05-01
Nanoscale zerovalent iron (nZVI) is widely used with large scale for environmental remediation for in situ or ex situ applications. The potential impact of nZVI on biota at environmentally relevant concentrations needs to be elucidated. In this study, the reproductive toxicities of three irons species: carboxymethyl cellulose (CMC)-stabilized nZVI, nanoscale iron oxide (nFe3O4), and ferrous ion (Fe(II)aq) in the soil-dwelling nematode Caenorhabditis elegans were examined. In addition, the generational transfer of reproductive toxicity of CMC-nZVI on C. elegans was investigated. The results showed that CMC-nZVI, nFe3O4, and Fe(II)aq did not cause significant mortality after 24 h exposure at the examined concentrations. Reproductive toxicity assays revealed that CMC-nZVI, nFe3O4, and Fe(II)aq significantly decreased offsprings in parental generation (F0) in accompany with the increased intracellular reactive oxygen species (ROS). Furthermore, the reproductive toxicity of CMC-nZVI at environmentally relevant concentrations was transferrable from the F0 to the F1 and F2 generations, but then recovered in the F3 and F4 generations. Further evidence showed that total irons were accumulated in the F0 and F1 generations of C. elegans after CMC-nZVI parental exposure. This study demonstrated that environmentally relevant concentrations of CMC-nZVI induced multigenerational reproductive toxicity which can be ascribed to its high production of ROS in F0 generation, toxicity of Fe(II)aq, and iron accumulation in C. elegans. Since nZVI is widely used for environmental remediation, considering the multigenerational toxicity, this study thus implicates a potential environmental risk of nZVI-induced nanotoxicity in the environment. Copyright © 2016 Elsevier Ltd. All rights reserved.
Inhibitors of the tick-borne, hemorrhagic fever-associated flaviviruses.
Flint, Mike; McMullan, Laura K; Dodd, Kimberly A; Bird, Brian H; Khristova, Marina L; Nichol, Stuart T; Spiropoulou, Christina F
2014-06-01
No antiviral therapies are available for the tick-borne flaviviruses associated with hemorrhagic fevers: Kyasanur Forest disease virus (KFDV), both classical and the Alkhurma hemorrhagic fever virus (AHFV) subtype, and Omsk hemorrhagic fever virus (OHFV). We tested compounds reported to have antiviral activity against members of the Flaviviridae family for their ability to inhibit AHFV replication. 6-Azauridine (6-azaU), 2'-C-methylcytidine (2'-CMC), and interferon alpha 2a (IFN-α2a) inhibited the replication of AHFV and also KFDV, OHFV, and Powassan virus. The combination of IFN-α2a and 2'-CMC exerted an additive antiviral effect on AHFV, and the combination of IFN-α2a and 6-azaU was moderately synergistic. The combination of 2'-CMC and 6-azaU was complex, being strongly synergistic but with a moderate level of antagonism. The antiviral activity of 6-azaU was reduced by the addition of cytidine but not guanosine, suggesting that it acted by inhibiting pyrimidine biosynthesis. To investigate the mechanism of action of 2'-CMC, AHFV variants with reduced susceptibility to 2'-CMC were selected. We used a replicon system to assess the substitutions present in the selected AHFV population. A double NS5 mutant, S603T/C666S, and a triple mutant, S603T/C666S/M644V, were more resistant to 2'-CMC than the wild-type replicon. The S603T/C666S mutant had a reduced level of replication which was increased when M644V was also present, although the replication of this triple mutant was still below that of the wild type. The S603 and C666 residues were predicted to lie in the active site of the AHFV NS5 polymerase, implicating the catalytic center of the enzyme as the binding site for 2'-CMC. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
SU-C-BRC-06: OpenCL-Based Cross-Platform Monte Carlo Simulation Package for Carbon Ion Therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qin, N; Tian, Z; Pompos, A
2016-06-15
Purpose: Monte Carlo (MC) simulation is considered to be the most accurate method for calculation of absorbed dose and fundamental physical quantities related to biological effects in carbon ion therapy. Its long computation time impedes clinical and research applications. We have developed an MC package, goCMC, on parallel processing platforms, aiming at achieving accurate and efficient simulations for carbon therapy. Methods: goCMC was developed under OpenCL framework. It supported transport simulation in voxelized geometry with kinetic energy up to 450 MeV/u. Class II condensed history algorithm was employed for charged particle transport with stopping power computed via Bethe-Bloch equation. Secondarymore » electrons were not transported with their energy locally deposited. Energy straggling and multiple scattering were modeled. Production of secondary charged particles from nuclear interactions was implemented based on cross section and yield data from Geant4. They were transported via the condensed history scheme. goCMC supported scoring various quantities of interest e.g. physical dose, particle fluence, spectrum, linear energy transfer, and positron emitting nuclei. Results: goCMC has been benchmarked against Geant4 with different phantoms and beam energies. For 100 MeV/u, 250 MeV/u and 400 MeV/u beams impinging to a water phantom, range difference was 0.03 mm, 0.20 mm and 0.53 mm, and mean dose difference was 0.47%, 0.72% and 0.79%, respectively. goCMC can run on various computing devices. Depending on the beam energy and voxel size, it took 20∼100 seconds to simulate 10{sup 7} carbons on an AMD Radeon GPU card. The corresponding CPU time for Geant4 with the same setup was 60∼100 hours. Conclusion: We have developed an OpenCL-based cross-platform carbon MC simulation package, goCMC. Its accuracy, efficiency and portability make goCMC attractive for research and clinical applications in carbon therapy.« less
Inhibitors of the Tick-Borne, Hemorrhagic Fever-Associated Flaviviruses
Flint, Mike; McMullan, Laura K.; Dodd, Kimberly A.; Bird, Brian H.; Khristova, Marina L.; Nichol, Stuart T.
2014-01-01
No antiviral therapies are available for the tick-borne flaviviruses associated with hemorrhagic fevers: Kyasanur Forest disease virus (KFDV), both classical and the Alkhurma hemorrhagic fever virus (AHFV) subtype, and Omsk hemorrhagic fever virus (OHFV). We tested compounds reported to have antiviral activity against members of the Flaviviridae family for their ability to inhibit AHFV replication. 6-Azauridine (6-azaU), 2′-C-methylcytidine (2′-CMC), and interferon alpha 2a (IFN-α2a) inhibited the replication of AHFV and also KFDV, OHFV, and Powassan virus. The combination of IFN-α2a and 2′-CMC exerted an additive antiviral effect on AHFV, and the combination of IFN-α2a and 6-azaU was moderately synergistic. The combination of 2′-CMC and 6-azaU was complex, being strongly synergistic but with a moderate level of antagonism. The antiviral activity of 6-azaU was reduced by the addition of cytidine but not guanosine, suggesting that it acted by inhibiting pyrimidine biosynthesis. To investigate the mechanism of action of 2′-CMC, AHFV variants with reduced susceptibility to 2′-CMC were selected. We used a replicon system to assess the substitutions present in the selected AHFV population. A double NS5 mutant, S603T/C666S, and a triple mutant, S603T/C666S/M644V, were more resistant to 2′-CMC than the wild-type replicon. The S603T/C666S mutant had a reduced level of replication which was increased when M644V was also present, although the replication of this triple mutant was still below that of the wild type. The S603 and C666 residues were predicted to lie in the active site of the AHFV NS5 polymerase, implicating the catalytic center of the enzyme as the binding site for 2′-CMC. PMID:24663025
Effect of CMC and arabic gum in the manufacture of jackfruit velva (Artocarpus heterophyllus)
NASA Astrophysics Data System (ADS)
Yudhistira, B.; Riyadi, N. H.; Pangestika, A. D.; Pertiwi, S. R.
2018-03-01
Velva is one type of frozen dessert which is made from fruit/vegetable with ice cream maker, low fat and high fiber content. Jackfruit is a raw material for the manufacture of velva because of the high fiber content of 2.31 gr. The use of a stabilizers combination of CMC and arabic gum in the manufacture of velva will provide a better gel mix than single use. The purpose of this research is to know the influence of variation of CMC and arabic gum stabilizer on the characteristics (physical, chemical, and sensory) of jackfruit velva (Artocarpus heterophyllus) and determine variations in the most appropriate combinations of stabilizers to produce jackfruit velva with the best quality. This research applied Completely Randomized Design consist of one factor which is the combination of CMC and arabic gum levels in the making of jackfruit velva with two replicates and two replications of the analysis. The data obtained then analyzed statistically using one way analysis of variance (ANOVA), when there is a significant difference, then followed by Duncan’s Multiple Range Test (DMRT) at significance level of 0.05. The results of this study concluded that the jackfruit velva with the addition of various concentrations of CMC and arabic gum is significantly affecting the taste, texture and overall parameters, but no significant difference on the color and flavor parameters of jackfruit velva. Based on the results of physical characteristics, chemical and sensory jackfruit velva with the addition of a stabilizing concentration of CMC and arabic gum 1: 1 result in best jackfruit velva. The best jackfruit velva with stabilizing the concentration of CMC and arabic gum 1: 1 contains a water content of 61.95%, dietary fiber 2.231%, total dissolved solids 20.38 °Brix, overrun 19.709%, meltdown 28.215 minutes. As for the color attribute score 3.72; Taste 4; flavor 3.60; Texture 3.68, and overall 3.88.
NASA Astrophysics Data System (ADS)
Zhao, Aijie; Yao, Peng; Kang, Chunshang; Yuan, Xubo; Chang, Jin; Pu, Peiyu
2005-08-01
This paper describes a new formulation of magnetic nanoparticles coated by a novel polymer matrix—O-carboxylmethylated chitosan (O-CMC) as drug/gene carrier. The O-CMC magnetic nanoparticles were derivatized with a peptide sequence from the HIV-tat protein to improve the translocational property and cellar uptake of the nanoparticles. To evaluate the O-MNPs-tat as drug carriers, MTX was incorporated as a model drug and MTX-loaded O-MNPs-tat with an average diameter of 45-60 nm were prepared and characterized by TEM, AFM and VSM. The cytotoxicity of MTX-loaded O-MNPs-tat was investigated with U-937 tumor cells. The results showed that the MTX-loaded O-MNPs-tat retained significant antitumor toxicity; additionally, sustained release of MTX from O-CMC nanoparticles was observed in vitro, suggesting that the tat-O-MNPs could be a novel magnetic targeting carrier.
Stanley, F. E.; Warner, A. M.; Schneiderman, E.; Stalcup, A. M.
2009-01-01
This work demonstrates a novel, convenient utilization of capillary electrophoresis (CE) instrumentation for the determination of critical micelle concentrations (CMCs). Solution viscosity differences across a range of surfactant concentrations were monitored by hydrodynamically forcing an analyte towards the detector. Upon reaching the surfactant's CMC value, migration times were observed to change drastically. CMC values for four commonly employed anionic surfactants were determined - sodium dodecyl sulfate: 8.1 mM; sodium caprylate- 300 mM; sodium decanoate- 86 mM; sodium laurate- 30 mM; and found to be in excellent agreement with values previously reported in the literature. The technique was then applied to the less well-characterized nonionic surfactants poly(oxyethylene) 8 myristyl ether (CMC ~ 9 μM), poly(oxyethylene) 8 decyl ether (CMC ~ 0.95 mM) and poly(oxyethylene) 4 lauryl ether. PMID:19836753
Goby, Valerie Priscilla
2011-06-01
This preliminary study investigates the uptake of computer-mediated communication (CMC) with parents and siblings, an area on which no research appears to have been conducted. Given the lack of relevant literature, grounded theory methodology was used and online focus group discussions were conducted in an attempt to generate suitable hypotheses for further empirical studies. Codification of the discussion data revealed various categories of meaning, namely: a perceived inappropriateness of CMC with members of family of origin; issues relating to the family generational gap; the nature of the offline sibling/parent relationship; the non-viability of online affordances such as planned self-disclosure, deception, identity construction; and disinhibition in interactions with family-of-origin members. These themes could be molded into hypotheses to assess the psychosocial limitations of CMC and to determine if it can indeed become a ubiquitous alternative to traditional communication modes as some scholars have claimed.
Environmental/Thermal Barrier Coatings for Ceramic Matrix Composites: Thermal Tradeoff Studies
NASA Technical Reports Server (NTRS)
Murthy, Pappu L. M.; Brewer, David; Shah, Ashwin R.
2007-01-01
Recent interest in environmental/thermal barrier coatings (EBC/TBCs) has prompted research to develop life-prediction methodologies for the coating systems of advanced high-temperature ceramic matrix composites (CMCs). Heat-transfer analysis of EBC/TBCs for CMCs is an essential part of the effort. It helps establish the resulting thermal profile through the thickness of the CMC that is protected by the EBC/TBC system. This report documents the results of a one-dimensional analysis of an advanced high-temperature CMC system protected with an EBC/TBC system. The one-dimensional analysis was used for tradeoff studies involving parametric variation of the conductivity; the thickness of the EBC/TBCs, bond coat, and CMC substrate; and the cooling requirements. The insight gained from the results will be used to configure a viable EBC/TBC system for CMC liners that meet the desired hot surface, cold surface, and substrate temperature requirements.
AlRashdi, Ahmed S.; Salama, Suzy M.; Alkiyumi, Salim S.; Abdulla, Mahmood A.; Hadi, A. Hamid A.; Abdelwahab, Siddig I.; Taha, Manal M.; Hussiani, Jamal; Asykin, Nur
2012-01-01
Jasminum sambac is used in folk medicine as the treatment of many diseases. The aim of the present investigation is to evaluate the gastroprotective effects of ethanolic extracts of J. sambac leaves against acidified ethanol-induced gastric ulcers in rats. Seven groups of rats were orally pre-treated with carboxymethylcellulose (CMC) as normal group, CMC as ulcer group, 20 mg/kg of omeprazole as positive group, 62.5, 125, 250, and 500 mg/kg of extract as the experimental groups, respectively. An hour later, CMC was given orally to normal group and acidified ethanol solution was given orally to the ulcer control, positive control, and the experimental groups. The rats were sacrificed after an hour later. Acidity of gastric content, the gastric wall mucus, ulcer areas, and histology and immunohistochemistry of the gastric wall were assessed. Gastric homogenates were determined for prostaglandin E2 (PGE2), superoxide dismutase (SOD), andmalondialdehyde (MDA) content. Ulcer group exhibited significantly severe mucosal injury as compared with omeprazole or extract which shows significant protection towards gastric mucosal injury the plant promotes ulcer protection as it shows significant reduction of ulcer area grossly, and histology showed marked reduction of edema and leucocytes infiltration of submucosal layer compared with ulcer group. Immunohistochemistry showed overexpression of Hsp70 protein and downexpression of Bax protein in rats pretreated with extract. Significant increased in the pH, mucus of gastric content and high levels of PGE2, SOD and reduced amount of MDA was observed. PMID:22550543
Halilaj, Eni; Moore, Douglas C.; Laidlaw, David H.; Got, Christopher J.; Weiss, Arnold-Peter C.; Ladd, Amy L.; Crisco, Joseph J.
2014-01-01
The increased prevalence of thumb carpometacarpal (CMC) joint osteoarthritis (OA) in women has been previously linked to the articular morphology of the trapezium. However, studies report conflicting results on how the articular shapes of male and female trapezia compare to one another, mainly because their findings are based on data from older cadaver specimens. The purpose of this in vivo study was to dissociate the effect of sex from that of aging and early OA by using cohorts of healthy young and healthy older subjects, as well as patients with early stage OA. Computed tomography scans from 68 healthy subjects and 87 arthritic subjects were used to obtain 3-D bone models. The trapezial and metacarpal articular surfaces were manually delineated on scaled bone models, to remove the effect of size, and then were compared between sex, age, and health groups by using polar histograms of curvature and average curvature values. We found no sex differences, but significant age-group and health-group differences, in the articular surfaces of both bones. The older healthy subjects had higher curvature in the concave and lower curvature in the convex directions of both the trapezial and metacarpal saddles than the healthy young subjects. Subjects with early OA had significantly different metacarpal and trapezial articular shapes from healthy subjects. These findings suggest that aging and OA affect the articular shape of the CMC joint, but that, in contrast to previously held beliefs, inherent sex differences are not responsible for the higher incidence of CMC OA in women. PMID:24909332
Maharana, Prafulla K; Raghuwanshi, Sapna; Chauhan, Ashish K; Rai, Vaishali G; Pattebahadur, Rajesh
2017-01-01
To compare the efficacy of carboxymethylcellulose 0.5% (CMC), hydroxypropyl-guar containing polyethylene glycol 400/propylene glycol (PEG/PG), and hydroxypropyl methylcellulose 0.3% (HPMC) as tear substitutes in patients with dry eye. A retrospective evaluation of cases presenting with symptoms of dry eye from July 2014 to June 2015 was done. Patients with Ocular Surface Disease Index (OSDI) scoring >12 were included in the study. Parameters such as age, gender, Schirmer test (ST), and tear film breakup time (TBUT) were recorded on day 0, week 1, and week 4. For analysis, cases were divided into three groups; Group 1 - CMC, Group 2 - PEG/PG, and Group 3 - HPMC. Overall, 120 patients were included in the study. Demographic data and baseline characteristics were comparable among the groups. Group 2 had significant improvement in percentage change in OSDI (weeks 0-1, 0-4, and 1-4, P = 0.00), TBUT (weeks 0-1, P = 0.01; 0-4, P = 0.006; and 1-4, P = 0.007), and in ST (weeks 0-1, P = 0.02; 0-4, P = 0.002; and 1-4, P = 0.008) compared to Group 1 at all follow-ups. Group 3 had improvements similar to Group 2, but it was not at all follow-ups (improvement in percentage change OSDI [weeks 0-1, 0-4, and 1-4, P = 0.00], TBUT [weeks 0-1, P = 0.10; 0-4, P = 0.03; and 1-4, P = 0.04], and in ST [weeks 0-1, P = 0.007; 0-4, P = 0.03; and 1-4, P = 0.12]). No significant difference was found between Groups 2 and 3. Hydroxypropyl-guar containing PEG/PG and HPMC as tear substitutes are better than CMC. While HPMC was comparable to PEG/PG in subjective improvement, the objective improvement was not consistent.
NASA Astrophysics Data System (ADS)
Kurbatov, A. O.; Balabaev, N. K.; Mazo, M. A.; Kramarenko, E. Yu.
2018-01-01
Molecular dynamics simulations of two types of isolated siloxane dendrimers of various generations (from the 2nd to the 8th) have been performed for temperatures ranging from 150 K to 600 K. The first type of dendrimer molecules has short spacers consisting of a single oxygen atom. In the dendrimers of the second type, spacers are longer and comprised of two oxygen atoms separated by a single silicon atom. A comparative analysis of molecular macroscopic parameters such as the gyration radius and the shape factor as well as atom distributions within dendrimer interior has been performed for varying generation number, temperature, and spacer length. It has been found that the short-spacer dendrimers of the 7th and 8th generations have a stressed central part with elongated bonds and deformed valence angles. Investigation of the time evolution of radial displacements of the terminal Si atoms has shown that a fraction of the Si groups have a reduced mobility. Therefore, rather long time trajectories (of the order of tens of nanoseconds) are required to study dendrimer intramolecular dynamics.
Chemical and Sensory Quality Preservation in Coated Almonds with the Addition of Antioxidants.
Larrauri, Mariana; Demaría, María Gimena; Ryan, Liliana C; Asensio, Claudia M; Grosso, Nelson R; Nepote, Valeria
2016-01-01
Almonds provide many benefits such as preventing heart disease due to their high content of oleic fatty acid-rich oil and other important nutrients. However, they are susceptible to oxidation reactions causing rancidity during storage. The objective of this work was to evaluate the chemical and sensory quality preservation of almonds coated with carboxymethyl cellulose and with the addition of natural and synthetic antioxidants during storage. Four samples were prepared: almonds without coating (C), almonds coated with carboxymethyl cellulose (CMC), almonds coated with CMC supplemented with peanut skins extract (E), and almonds coated with CMC and supplemented with butylhydroxytoluene (BHT). Proximate composition and fatty acid profile were determined on raw almonds. Almond samples (C, CMC, E and BHT) were stored at 40 °C for 126 d. Lipid oxidation indicators: peroxide value (PV), conjugated dienes (CD), volatile compounds (hexanal and nonanal), and sensory attributes were determined for the stored samples. Samples showed small but significant increases in PV, CD, hexanal and nonanal contents, and intensity ratings of negative sensory attributes (oxidized and cardboard). C had the highest tendency to deterioration during storage. At the end of storage (126 d), C had the highest PV (3.90 meqO2 /kg), and BHT had the lowest PV (2.00 meqO2 /kg). CMC and E samples had similar intermediate PV values (2.69 and 2.57 meqO2 /kg, respectively). CMC coating and the addition of natural (peanut skin extract) and synthetic (BHT) antioxidants provide protection to the roasted almond product. © 2015 Institute of Food Technologists®
NASA Astrophysics Data System (ADS)
Siahaan, P.; Salimah, S. N. M.; Sipangkar, M. J.; Hudiyanti, D.; Djunaidi, M. C.; Laksitorini, M. D.
2018-04-01
Chitosan application in pharmaceutics and cosmeceutics industries is limited by its solubility issue. Modification of -NH2 and -OH fuctional groups of chitosan by adding carboxyl group has been shown to improve its solubility and application. Attempt to synthesize carboxymethyl chitosan (CMC) from monocloroacetic acid (MCAA) has been done prior this report. However no information is available wether –OH (-O-C bonding formation) or -NH2 (-N-C bonding formation) is the preference for - CH2COOH to attach. In the current study, the reaction mechanism between chitosan and MCAA reactants into carboxymethyl chitosan (CMC) was examined by computational approach. Dimer from of chitosan used as a molecular model in calculation All the molecular structure involved in the reaction mechanism was optimized by ab initio computational on the theory and basis set HF/6-31G(d,p). The results showed that the - N-C bonding formation via SN2 than the -O-C bonding formation via SN2 which have activation energy 469.437 kJ/mol and 533.219 kJ/mol respectively. However, the -O-C bonding formation more spontaneous than the -N-C bonding formation because ΔG the formation of O-CMC-2 reaction is more negative than ΔG of formation N-CMC-2 reaction is -4.353 kJ/mol and -1.095 kJ/mol respectively. The synthesis of N,O-CMC first forms -O-CH2COOH, then continues to form -NH-CH2COOH. This information is valuable to further optimize the reaction codition for CMC synthesis.
Capanema, Nádia S V; Mansur, Alexandra A P; Mansur, Herman S; de Jesus, Anderson C; Carvalho, Sandhra M; Chagas, Poliane; de Oliveira, Luiz C
2017-08-28
In this study, new eco-friendly hydrogel adsorbents were synthesized based on carboxymethylcellulose (CMC, degree of substitution [DS] = 0.7) chemically cross-linked with citric acid (CA) using a green process in aqueous solution and applied for the adsorption of methylene blue (MB). Spectroscopic analyses demonstrated the mechanism of cross-linking through the reaction of hydroxyl functional groups from CMC with CA. These CMC hydrogels showed very distinct morphological features dependent on the extension of cross-linking and their nanomechanical properties were drastically increased by approximately 300% after cross-linking with 20% CA (e.g. elastic moduli from 80 ± 15 to 270 ± 50 MPa). Moreover, they were biocompatible using an in vitro cell viability assay in contact with human osteosarcoma-derived cells (SAOS) for 24 h. These CMC-based hydrogels exhibited adsorption efficiency above 90% (24 h) and maximum removal capacity of MB from 5 to 25 mg g -1 depending on the dye concentration (from 100 to 500 mg L -1 ), which was used as the model cationic organic pollutant. The adsorption of process of MB was well-fit to the pseudo-second-order kinetics model. The desorption of MB by immersion in KCl solution (3 mol L -1 , 24 h) showed a typical recovery efficiency of over 60% with conceivable reuse of these CMC-based hydrogels. Conversely, CMC hydrogels repelled methyl orange dye used as model anionic pollutant, proving the mechanism of adsorption by the formation of charged polyelectrolyte/dye complexes.
A LES-CMC formulation for premixed flames including differential diffusion
NASA Astrophysics Data System (ADS)
Farrace, Daniele; Chung, Kyoungseoun; Bolla, Michele; Wright, Yuri M.; Boulouchos, Konstantinos; Mastorakos, Epaminondas
2018-05-01
A finite volume large eddy simulation-conditional moment closure (LES-CMC) numerical framework for premixed combustion developed in a previous studyhas been extended to account for differential diffusion. The non-unity Lewis number CMC transport equation has an additional convective term in sample space proportional to the conditional diffusion of the progress variable, that in turn accounts for diffusion normal to the flame front and curvature-induced effects. Planar laminar simulations are first performed using a spatially homogeneous non-unity Lewis number CMC formulation and validated against physical-space fully resolved reference solutions. The same CMC formulation is subsequently used to numerically investigate the effects of curvature for laminar flames having different effective Lewis numbers: a lean methane-air flame with Leeff = 0.99 and a lean hydrogen-air flame with Leeff = 0.33. Results suggest that curvature does not affect the conditional heat release if the effective Lewis number tends to unity, so that curvature-induced transport may be neglected. Finally, the effect of turbulence on the flame structure is qualitatively analysed using LES-CMC simulations with and without differential diffusion for a turbulent premixed bluff body methane-air flame exhibiting local extinction behaviour. Overall, both the unity and the non-unity computations predict the characteristic M-shaped flame observed experimentally, although some minor differences are identified. The findings suggest that for the high Karlovitz number (from 1 to 10) flame considered, turbulent mixing within the flame weakens the differential transport contribution by reducing the conditional scalar dissipation rate and accordingly the conditional diffusion of the progress variable.
Coller, Ryan J; Nelson, Bergen B; Klitzner, Thomas S; Saenz, Adrianna A; Shekelle, Paul G; Lerner, Carlos F; Chung, Paul J
Interventions to reduce disproportionate hospital use among children with medical complexity (CMC) are needed. We conducted a rigorous, structured process to develop intervention strategies aiming to reduce hospitalizations within a complex care program population. A complex care medical home program used 1) semistructured interviews of caregivers of CMC experiencing acute, unscheduled hospitalizations and 2) literature review on preventing hospitalizations among CMC to develop key drivers for lowering hospital utilization and link them with intervention strategies. Using an adapted version of the RAND/UCLA Appropriateness Method, an expert panel rated each model for effectiveness at impacting each key driver and ultimately reducing hospitalizations. The complex care program applied these findings to select a final set of feasible intervention strategies for implementation. Intervention strategies focused on expanding access to familiar providers, enhancing general or technical caregiver knowledge and skill, creating specific and proactive crisis or contingency plans, and improving transitions between hospital and home. Activities aimed to facilitate family-centered, flexible implementation and consideration of all of the child's environments, including school and while traveling. Tailored activities and special attention to the highest utilizing subset of CMC were also critical for these interventions. A set of intervention strategies to reduce hospitalizations among CMC, informed by key drivers, can be created through a structured, reproducible process. Both this process and the results may be relevant to clinical programs and researchers aiming to reduce hospital utilization through the medical home for CMC. Copyright © 2017 Academic Pediatric Association. Published by Elsevier Inc. All rights reserved.
Qin, Nan; Pinto, Marco; Tian, Zhen; Dedes, Georgios; Pompos, Arnold; Jiang, Steve B.; Parodi, Katia; Jia, Xun
2017-01-01
Monte Carlo (MC) simulation is considered as the most accurate method for calculation of absorbed dose and fundamental physics quantities related to biological effects in carbon ion therapy. To improve its computational efficiency, we have developed a GPU-oriented fast MC package named goCMC, for carbon therapy. goCMC simulates particle transport in voxelized geometry with kinetic energy up to 450 MeV/u. Class II condensed history simulation scheme with a continuous slowing down approximation was employed. Energy straggling and multiple scattering were modeled. δ-electrons were terminated with their energy locally deposited. Four types of nuclear interactions were implemented in goCMC, i.e., carbon-hydrogen, carbon-carbon, carbon-oxygen and carbon-calcium inelastic collisions. Total cross section data from Geant4 were used. Secondary particles produced in these interactions were sampled according to particle yield with energy and directional distribution data derived from Geant4 simulation results. Secondary charged particles were transported following the condensed history scheme, whereas secondary neutral particles were ignored. goCMC was developed under OpenCL framework and is executable on different platforms, e.g. GPU and multi-core CPU. We have validated goCMC with Geant4 in cases with different beam energy and phantoms including four homogeneous phantoms, one heterogeneous half-slab phantom, and one patient case. For each case 3 × 107 carbon ions were simulated, such that in the region with dose greater than 10% of maximum dose, the mean relative statistical uncertainty was less than 1%. Good agreements for dose distributions and range estimations between goCMC and Geant4 were observed. 3D gamma passing rates with 1%/1 mm criterion were over 90% within 10%) isodose line except in two extreme cases, and those with 2%/1 mm criterion were all over 96%. Efficiency and code portability were tested with different GPUs and CPUs. Depending on the beam energy and voxel size, the computation time to simulate 107 carbons was 9.9–125 sec, 2.5–50 sec and 60–612 sec on an AMD Radeon GPU card, an NVidia GeForce GTX 1080 GPU card and an Intel Xeon E5-2640 CPU, respectively. The combined accuracy, efficiency and portability make goCMC attractive for research and clinical applications in carbon ion therapy. PMID:28140352
NASA Astrophysics Data System (ADS)
Qin, Nan; Pinto, Marco; Tian, Zhen; Dedes, Georgios; Pompos, Arnold; Jiang, Steve B.; Parodi, Katia; Jia, Xun
2017-05-01
Monte Carlo (MC) simulation is considered as the most accurate method for calculation of absorbed dose and fundamental physics quantities related to biological effects in carbon ion therapy. To improve its computational efficiency, we have developed a GPU-oriented fast MC package named goCMC, for carbon therapy. goCMC simulates particle transport in voxelized geometry with kinetic energy up to 450 MeV u-1. Class II condensed history simulation scheme with a continuous slowing down approximation was employed. Energy straggling and multiple scattering were modeled. δ-electrons were terminated with their energy locally deposited. Four types of nuclear interactions were implemented in goCMC, i.e. carbon-hydrogen, carbon-carbon, carbon-oxygen and carbon-calcium inelastic collisions. Total cross section data from Geant4 were used. Secondary particles produced in these interactions were sampled according to particle yield with energy and directional distribution data derived from Geant4 simulation results. Secondary charged particles were transported following the condensed history scheme, whereas secondary neutral particles were ignored. goCMC was developed under OpenCL framework and is executable on different platforms, e.g. GPU and multi-core CPU. We have validated goCMC with Geant4 in cases with different beam energy and phantoms including four homogeneous phantoms, one heterogeneous half-slab phantom, and one patient case. For each case 3× {{10}7} carbon ions were simulated, such that in the region with dose greater than 10% of maximum dose, the mean relative statistical uncertainty was less than 1%. Good agreements for dose distributions and range estimations between goCMC and Geant4 were observed. 3D gamma passing rates with 1%/1 mm criterion were over 90% within 10% isodose line except in two extreme cases, and those with 2%/1 mm criterion were all over 96%. Efficiency and code portability were tested with different GPUs and CPUs. Depending on the beam energy and voxel size, the computation time to simulate {{10}7} carbons was 9.9-125 s, 2.5-50 s and 60-612 s on an AMD Radeon GPU card, an NVidia GeForce GTX 1080 GPU card and an Intel Xeon E5-2640 CPU, respectively. The combined accuracy, efficiency and portability make goCMC attractive for research and clinical applications in carbon ion therapy.
Qin, Nan; Pinto, Marco; Tian, Zhen; Dedes, Georgios; Pompos, Arnold; Jiang, Steve B; Parodi, Katia; Jia, Xun
2017-05-07
Monte Carlo (MC) simulation is considered as the most accurate method for calculation of absorbed dose and fundamental physics quantities related to biological effects in carbon ion therapy. To improve its computational efficiency, we have developed a GPU-oriented fast MC package named goCMC, for carbon therapy. goCMC simulates particle transport in voxelized geometry with kinetic energy up to 450 MeV u -1 . Class II condensed history simulation scheme with a continuous slowing down approximation was employed. Energy straggling and multiple scattering were modeled. δ-electrons were terminated with their energy locally deposited. Four types of nuclear interactions were implemented in goCMC, i.e. carbon-hydrogen, carbon-carbon, carbon-oxygen and carbon-calcium inelastic collisions. Total cross section data from Geant4 were used. Secondary particles produced in these interactions were sampled according to particle yield with energy and directional distribution data derived from Geant4 simulation results. Secondary charged particles were transported following the condensed history scheme, whereas secondary neutral particles were ignored. goCMC was developed under OpenCL framework and is executable on different platforms, e.g. GPU and multi-core CPU. We have validated goCMC with Geant4 in cases with different beam energy and phantoms including four homogeneous phantoms, one heterogeneous half-slab phantom, and one patient case. For each case [Formula: see text] carbon ions were simulated, such that in the region with dose greater than 10% of maximum dose, the mean relative statistical uncertainty was less than 1%. Good agreements for dose distributions and range estimations between goCMC and Geant4 were observed. 3D gamma passing rates with 1%/1 mm criterion were over 90% within 10% isodose line except in two extreme cases, and those with 2%/1 mm criterion were all over 96%. Efficiency and code portability were tested with different GPUs and CPUs. Depending on the beam energy and voxel size, the computation time to simulate [Formula: see text] carbons was 9.9-125 s, 2.5-50 s and 60-612 s on an AMD Radeon GPU card, an NVidia GeForce GTX 1080 GPU card and an Intel Xeon E5-2640 CPU, respectively. The combined accuracy, efficiency and portability make goCMC attractive for research and clinical applications in carbon ion therapy.
Nanoparticle-Based Brachytherapy Spacers for Delivery of Localized Combined Chemoradiation Therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Rajiv, E-mail: r.kumar@neu.edu; Department of Radiation Oncology, Brigham and Women's Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts; Belz, Jodi
Purpose: In radiation therapy (RT), brachytherapy-inert source spacers are commonly used in clinical practice to achieve high spatial accuracy. These implanted devices are critical technical components of precise radiation delivery but provide no direct therapeutic benefits. Methods and Materials: Here we have fabricated implantable nanoplatforms or chemoradiation therapy (INCeRT) spacers loaded with silica nanoparticles (SNPs) conjugated containing a drug, to act as a slow-release drug depot for simultaneous localized chemoradiation therapy. The spacers are made of poly(lactic-co-glycolic) acid (PLGA) as matrix and are physically identical in size to the commercially available brachytherapy spacers (5 mm × 0.8 mm). The silica nanoparticles, 250 nm in diameter,more » were conjugated with near infrared fluorophore Cy7.5 as a model drug, and the INCeRT spacers were characterized in terms of size, morphology, and composition using different instrumentation techniques. The spacers were further doped with an anticancer drug, docetaxel. We evaluated the in vivo stability, biocompatibility, and biodegradation of these spacers in live mouse tissues. Results: The electron microscopy studies showed that nanoparticles were distributed throughout the spacers. These INCeRT spacers remained stable and can be tracked by the use of optical fluorescence. In vivo optical imaging studies showed a slow diffusion of nanoparticles from the spacer to the adjacent tissue in contrast to the control Cy7.5-PLGA spacer, which showed rapid disintegration in a few days with a burst release of Cy7.5. The docetaxel spacers showed suppression of tumor growth in contrast to control mice over 16 days. Conclusions: The imaging with the Cy7.5 spacer and therapeutic efficacy with docetaxel spacers supports the hypothesis that INCeRT spacers can be used for delivering the drugs in a slow, sustained manner in conjunction with brachytherapy, in contrast to the rapid clearance of the drugs when administered systemically. The results demonstrate that these spacers with tailored release profiles have potential in improving the combined therapeutic efficacy of chemoradiation therapy.« less
Synthesis and amphiphilic properties of decanoyl esters of tri- and tetraethylene glycol.
Zhu, Ying; Molinier, Valérie; Queste, Sébastien; Aubry, Jean-Marie
2007-08-15
Well-defined decanoyl triethylene glycol ester and decanoyl tetraethylene glycol ester were synthesized and compared to their ether counterparts (C(10)E(4) and C(10)E(3)). Their physicochemical properties i.e. critical micelle concentrations (CMC), cloud points, and equilibrium surface tensions were determined. Binary water-surfactant phase behavior was also studied by polarized optical microscopy. The stability of the ester bond was determined by investigating alkaline hydrolysis of the compounds. It was found that CMC, cloud point and equilibrium surface tension are roughly the same for corresponding ethers and esters. In the binary diagram, the esters form only lamellar phases, the area of which is smaller than that of the ether counterparts. These different behaviors can be related to the modification of the molecular conformation induced by the replacement of the ether group by the ester group.
A ceramic matrix composite thermal protection system for hypersonic vehicles
NASA Technical Reports Server (NTRS)
Riccitiello, Salvatore R.; Love, Wendell L.; Pitts, William C.
1993-01-01
The next generation of hypersonic vehicles (NASP, SSTO) that require reusable thermal protection systems will experience acreage surface temperatures in excess of 1100 C. More important, they will experience a more severe physical environment than the Space Shuttle due to non-pristine launching and landing conditions. As a result, maintenance, inspection, and replacement factors must be more thoroughly incorporated into the design of the TPS. To meet these requirements, an advanced thermal protection system was conceived, designated 'TOPHAT'. This system consists of a toughened outer ceramic matrix composite (CMC) attached to a rigid reusable surface insulator (RSI) which is directly bonded to the surface. The objective of this effort was to evaluate this concept in an aeroconvective environment, to determine the effect of impacts to the CMC material, and to compare the results with existing thermal protection systems.
Potential of a cyclone prototype spacer to improve in vitro dry powder delivery.
Parisini, Irene; Cheng, Sean J; Symons, Digby D; Murnane, Darragh
2014-05-01
Low inspiratory force in patients with lung disease is associated with poor deagglomeration and high throat deposition when using dry powder inhalers (DPIs). The potential of two reverse flow cyclone prototypes as spacers for commercial carrier-based DPIs was investigated. Cyclohaler®, Accuhaler® and Easyhaler® were tested with and without the spacers between 30 and 60 Lmin−1. Deposition of particles in the next generation impactor and within the devices was determined by high performance liquid chromatography. Reduced induction port deposition of the emitted particles from the cyclones was observed due to the high retention of the drug within the spacers (e.g. salbutamol sulphate (SS): 67.89 ± 6.51% at 30 Lmin−1 in Cheng 1). Fine particle fractions of aerosol as emitted from the cyclones were substantially higher than the DPIs alone. Moreover, the aerodynamic diameters of particles emitted from the cyclones were halved compared to the DPIs alone (e.g. SS from the Cyclohaler® at 4 kPa: 1.08 ± 0.05 μm vs. 3.00 ± 0.12 μm, with and without Cheng 2, respectively) and unaltered with increased flow rates. This work has shown the potential of employing a cyclone spacer for commercial carrier-based DPIs to improve inhaled drug delivery.
Toward efficient Zn(II)-based artificial nucleases.
Boseggia, Elisa; Gatos, Maddalena; Lucatello, Lorena; Mancin, Fabrizio; Moro, Stefano; Palumbo, Manlio; Sissi, Claudia; Tecilla, Paolo; Tonellato, Umberto; Zagotto, Giuseppe
2004-04-14
A series of cis-cis-triaminocyclohexane Zn(II) complex-anthraquinone intercalator conjugates, designed in such a way to allow their easy synthesis and modification, have been investigated as hydrolytic cleaving agents for plasmid DNA. The ligand structure comprises a triaminocyclohexane platform linked by means of alkyl spacers of different length (from C(4) to C(8)) to the anthraquinone group which may intercalate the DNA. At a concentration of 5 microM, the complex of the derivative with a C(8) alkyl spacer induces the hydrolytic stand scission of supercoiled DNA with a rate of 4.6 x 10(-6) s(-1) at pH 7 and 37 degrees C. The conjugation of the metal complex with the anthraquinone group leads to a 15-fold increase of the cleavage efficiency when compared with the anthraquinone lacking Zn-triaminocyclohexane complex. The straightforward synthetic procedure employed, allowing a systematic change of the spacer length, made possible to gain more insight on the role of the intercalating group in determining the reactivity of the systems. Comparison of the reactivity of the different complexes shows a remarkable increase of the DNA cleaving efficiency with the length of the spacer. In the case of too-short spacers, the advantages due to the increased DNA affinity are canceled due to the incorrect positioning of the reactive group, thus leading to cleavage inhibition.
Fink, Bernd; Rechtenbach, Annett; Büchner, Hubert; Vogt, Sebastian; Hahn, Michael
2011-04-01
Articulating spacers used in two-stage revision surgery of infected prostheses have the potential to abrade and subsequently induce third-body wear of the new prosthesis. We asked whether particulate material abraded from spacers could be detected in the synovial membrane 6 weeks after implantation when the spacers were removed for the second stage of the revision. Sixteen hip spacers (cemented prosthesis stem articulating with a cement cup) and four knee spacers (customized mobile cement spacers) were explanted 6 weeks after implantation and the synovial membranes were removed at the same time. The membranes were examined by xray fluorescence spectroscopy, xray diffraction for the presence of abraded particles originating from the spacer material, and analyzed in a semiquantitative manner by inductively coupled plasma mass spectrometry. Histologic analyses also were performed. We found zirconium dioxide in substantial amounts in all samples, and in the specimens of the hip synovial lining, we detected particles that originated from the metal heads of the spacers. Histologically, zirconium oxide particles were seen in the synovial membrane of every spacer and bone cement particles in one knee and two hip spacers. The observations suggest cement spacers do abrade within 6 weeks. Given the presence of abrasion debris, we recommend total synovectomy and extensive lavage during the second-stage reimplantation surgery to minimize the number of abraded particles and any retained bacteria.
NASA Technical Reports Server (NTRS)
Nemeth, Noel N.; Bednarcyk, Brett A.; Pineda, Evan; Arnold, Steven; Mital, Subodh; Murthy, Pappu; Walton, Owen
2015-01-01
Reported here is a coupling of two NASA developed codes: CARES (Ceramics Analysis and Reliability Evaluation of Structures) with the MACGMC composite material analysis code. The resulting code is called FEAMACCARES and is constructed as an Abaqus finite element analysis UMAT (user defined material). Here we describe the FEAMACCARES code and an example problem (taken from the open literature) of a laminated CMC in off-axis loading is shown. FEAMACCARES performs stochastic-strength-based damage simulation response of a CMC under multiaxial loading using elastic stiffness reduction of the failed elements.
Detecting Lamb waves with broad-band acousto-ultrasonic signals in composite structures
NASA Technical Reports Server (NTRS)
Kautz, Harold E.
1992-01-01
Lamb waves can be produced and detected in ceramic matrix composites (CMC) and metal matrix composites (MMC) plates using the acousto-ultrasonic configuration employing broadband transducers. Experimental dispersion curves of lowest symmetric and antisymmetric modes behave in a manner analogous to the graphite/polymer theoretical curves. In this study a basis has been established for analyzing Lamb wave velocities for characterizing composite plates. Lamb wave dispersion curves and group velocities were correlated with variations in axial stiffness and shear stiffness in MMC and CMC. For CMC, interfacial shear strength was also correlated with the first antisymmetric Lamb mode.
Babkirk, Sarah; Luehring-Jones, Peter; Dennis-Tiwary, Tracy A
2016-12-01
The use of computer-mediated communication (CMC) as a form of social interaction has become increasingly prevalent, yet few studies examine individual differences that may shed light on implications of CMC for adjustment. The current study examined neurocognitive individual differences associated with preferences to use technology in relation to social-emotional outcomes. In Study 1 (N = 91), a self-report measure, the Social Media Communication Questionnaire (SMCQ), was evaluated as an assessment of preferences for communicating positive and negative emotions on a scale ranging from purely via CMC to purely face-to-face. In Study 2, SMCQ preferences were examined in relation to event-related potentials (ERPs) associated with early emotional attention capture and reactivity (the frontal N1) and later sustained emotional processing and regulation (the late positive potential (LPP)). Electroencephalography (EEG) was recorded while 22 participants passively viewed emotional and neutral pictures and completed an emotion regulation task with instructions to increase, decrease, or maintain their emotional responses. A greater preference for CMC was associated with reduced size of and satisfaction with social support, greater early (N1) attention capture by emotional stimuli, and reduced LPP amplitudes to unpleasant stimuli in the increase emotion regulatory task. These findings are discussed in the context of possible emotion- and social-regulatory functions of CMC.
Favotto, Lindsay; Michaelson, Valerie; Davison, Colleen
2017-01-01
ABSTRACT Recent technological advances have provided many youth with daily, almost continuous cell-phone and Internet connectivity through portable devices. Young people’s experiences with computer-mediated communication (CMC) and their views about how this form of communication affects their health have not been fully explored in the scientific literature. A purposeful maximum variation sample of young people (aged 11–15 years) across Ontario was identified, using key informants for recruitment. The young people participated in seven focus groups (involving a total of 40 adolescents), and discussed various aspects of health including the health impacts of CMC. Inductive content analysis of the focus group transcripts revealed two overarching concepts: first, that the relationship between health and the potential impacts of CMC is multidimensional; and secondly, that there exists a duality of both positive and negative potential influences of CMC on health. Within this framework, four themes were identified involving CMC and: (1) physical activity, (2) negative mental and emotional disturbance, (3) mindfulness, and (4) relationships. With this knowledge, targeted strategies for healthy technology use that draw on the perspectives of young people can be developed, and can then be implemented by parents, teachers, and youth themselves. PMID:28657469
Babkirk, Sarah; Luehring-Jones, Peter; Dennis, Tracy A.
2016-01-01
The use of computer-mediated communication (CMC) to engage socially has become increasingly prevalent, yet few studies examined individual differences that may shed light on implications of CMC for adjustment. The current study examined neurocognitive individual differences associated with preferences to use technology in relation to social-emotional outcomes. In Study 1 (N =91), a self-report measure, the Social Media Communication Questionnaire (SMCQ), was evaluated as an assessment of preferences for communicating positive and negative emotions on a scale ranging from purely via CMC to purely face-to-face. In Study 2, SMCQ preferences were examined in relation to event-related potentials (ERPs) associated with early emotional attention capture and reactivity (the frontal N1) and later sustained emotional processing and regulation [the late positive potential (LPP)]. Electroencephalography (EEG) was recorded while 22 participants passively viewed emotional and neutral pictures and completed an emotion regulation task with instructions to increase, decrease or maintain their emotional responses. A greater preference for CMC was associated with reduced size of and satisfaction with social support, greater early (N1) attention capture by emotional stimuli, and reduced LPP amplitudes to unpleasant stimuli in the increase emotion regulatory task. These findings are discussed in the context of possible emotion- and social-regulatory functions of CMC. PMID:26613269
Building dialogue on complex conservation issues in a conference setting.
Rock, Jenny; Sparrow, Andrew; Wass, Rob; Moller, Henrik
2014-10-01
Dialogue about complex science and society issues is important for contemporary conservation agendas. Conferences provide an appropriate space for such dialogue, but despite its recognized worth, best practices for facilitating active dialogue are still being explored. Face-to-face (FTF) and computer-mediated communication (CMC) are two approaches to facilitating dialogue that have different strengths. We assessed the use of these approaches to create dialogue on cultural perspectives of conservation and biodiversity at a national ecology conference. In particular, we aimed to evaluate their potential to enhance dialogue through their integrated application. We used an interactive blog to generate CMC on participant-sourced issues and to prime subsequent discussion in an FTF conference workshop. The quantity and quality of both CMC and FTF discussion indicated that both approaches were effective in building dialogue. Prior to the conference the blog averaged 126 views per day, and 44 different authors contributed a total of 127 comments. Twenty-five participants subsequently participated in active FTF discussion during a 3-h workshop. Postconference surveys confirmed that CMC had developed participants' thinking and deepened FTF dialogue; 88% indicated specifically that CMC helped facilitate the FTF discussion. A further 83% of respondents concluded that preliminary blog discussion would be useful for facilitating dialogue at future conferences. © 2014 Society for Conservation Biology.