Science.gov

Sample records for cme activity cluster

  1. CME Productivity of Active Regions.

    NASA Astrophysics Data System (ADS)

    Liu, L.; Wang, Y.; Wang, J.; Shen, C.; Ye, P.; Zhang, Q.; Liu, R.; Wang, S.

    2015-12-01

    Solar active regions (ARs) are the major sources of two kinds of the most violent solar eruptions, namely flares and coronal mass ejections (CMEs). Although they are believed to be two phenomena in the same eruptive process, the productivity of them could be quiet different for various ARs. Why is an AR productive? And why is a flare-rich AR CME-poor? To answer these questions, we compared the recent super flare-rich but CME-poor AR 12192, with other four ARs; two were productive in both flares and CMEs and the other two were inert to produce any M-class or intenser flares or CMEs. By investigating the photospheric parameters based on the SDO/HMI vector magnetogram, we find the three productive ARs have larger magnetic flux, current and free magnetic energy than the inert ARs. Furthermore, the two ARs productive in both flares and CMEs contain higher current helicity, concentrating along both sides of the flaring neutral lines, indicating the presence of a seed magnetic structure( that is highly sheared or twisted) of a CME; they also have higher decay index in the low corona, showing weak constraint. The results suggest that productive ARs are always large and have strong current system and sufficient free energy to power flares, and more importantly whether or not a flare is accompanied by a CME is seemingly related to (1) if there is significant sheared or twisted core field serving as the seed of the CME and (2) if the constraint of the overlying arcades is weak enough. Moreover, some productive ARs may frequently produce more than one CME. How does this happen? We do a statistical investigation of waiting times of quasi-homologous CMEs ( CME ssuccessive originating from the same ARs within short intervals) from super ARs in solar cycle 23 to answer this question. The waiting times of quasi-homologous CMEs have a two-component distribution with a separation at about 18 hours, the first component peaks at 7 hours. The correlation analysis among CME waiting times

  2. Prediction of Active-Region CME Productivity from Magnetograms

    NASA Technical Reports Server (NTRS)

    Falconer, D. A.; Moore, R. L.; Gary, G. A.

    2004-01-01

    We report results of an expanded evaluation of whole-active-region magnetic measures as predictors of active-region coronal mass ejection (CME) productivity. Previously, in a sample of 17 vector magnetograms of 12 bipolar active regions observed by the Marshall Space Flight Center (MSFC) vector magnetograph, from each magnetogram we extracted a measure of the size of the active region (the active region s total magnetic flux a) and four measures of the nonpotentiality of the active region: the strong-shear length L(sub SS), the strong-gradient length L(sub SG), the net vertical electric current I(sub N), and the net-current magnetic twist parameter alpha (sub IN). This sample size allowed us to show that each of the four nonpotentiality measures was statistically significantly correlated with active-region CME productivity in time windows of a few days centered on the day of the magnetogram. We have now added a fifth measure of active-region nonpotentiality (the best-constant-alpha magnetic twist parameter (alpha sub BC)), and have expanded the sample to 36 MSFC vector magnetograms of 31 bipolar active regions. This larger sample allows us to demonstrate statistically significant correlations of each of the five nonpotentiality measures with future CME productivity, in time windows of a few days starting from the day of the magnetogram. The two magnetic twist parameters (alpha (sub 1N) and alpha (sub BC)) are normalized measures of an active region s nonpotentially in that they do not depend directly on the size of the active region, while the other three nonpotentiality measures (L(sub SS), L(sub SG), and I(sub N)) are non-normalized measures in that they do depend directly on active-region size. We find (1) Each of the five nonpotentiality measures is statistically significantly correlated (correlation confidence level greater than 95%) with future CME productivity and has a CME prediction success rate of approximately 80%. (2) None of the nonpotentiality

  3. CME planning series: article four of five, promoting interaction within educational activities.

    PubMed

    Van Hoof, Thomas J

    2009-01-01

    Interaction refers to what happens within the minds of individuals participating in a CME activity. While peer-to-peer and peer-to-presenter discussion maybe helpful, internal engagement of the learner with the material is the type of interaction that is necessary for deep learning and change. The choice of which interactive method to use depends on the learning objectives of the specific CME program being planned.

  4. Suppression of Active-Region CME Production by the Presence of Other Active Regions

    NASA Technical Reports Server (NTRS)

    Falconer, David; Moore, Ron; Barghouty, Abdulnasser; Khazanov, Igor

    2009-01-01

    From the SOHO mission s data base of MDI full-disk magnetograms spanning solar cycle 23, we have obtained a set of 40,000 magnetograms of 1,300 active regions, tracking each active region across the 30 degree central solar disk. Each active region magnetogram is cropped from the full-disk magnetogram by an automated code. The cadence is 96 minutes. From each active-region magnetogram, we have measured two whole-active-region magnetic quantities: (1) the magnetic size of the active region (the active region s total magnetic flux), and (2) a gauge of the active region s free magnetic energy (part of the free energy is released in the production of a flare and/or CME eruption). From NOAA Flare/CME catalogs, we have obtained the event (Flare/CME/SEP event) production history of each active region. Using all these data, we find that for each type of eruptive event, an active region s expected rate of event production increases as a power law of our gauge of active-region free magnetic energy. We have also found that, among active regions having nearly the same free energy, the rate of the CME production is less when there are many other active regions on the disk than when there are few or none, but there is no significant discernible suppression of the rate of flare production. This indicates that the presence of other active regions somehow tends to inhibit an active region s flare-producing magnetic explosions from becoming CMEs, contrary to the expectation from the breakout model for the production of CMEs.

  5. Treatment of Viscosity in the Shock Waves Observed After Two Consecutive Coronal Mass Ejection Activities CME08/03/2012 and CME15/03/2012

    NASA Astrophysics Data System (ADS)

    Cavus, Huseyin

    2016-11-01

    A coronal mass ejection (CME) is one of the most the powerful activities of the Sun. There is a possibility to produce shocks in the interplanetary medium after CMEs. Shock waves can be observed when the solar wind changes its velocity from being supersonic nature to being subsonic nature. The investigations of such activities have a central place in space weather purposes, since; the interaction of shocks with viscosity is one of the most important problems in the supersonic and compressible gas flow regime (Blazek in Computational fluid dynamics: principles and applications. Elsevier, Amsterdam 2001). The main aim of present work is to achieve a search for the viscosity effects in the shocks occurred after two consecutive coronal mass ejection activities in 2012 (i.e. CME08/03/2012 and CME15/03/2012).

  6. WHY IS THE GREAT SOLAR ACTIVE REGION 12192 FLARE-RICH BUT CME-POOR?

    SciTech Connect

    Sun, Xudong; Bobra, Monica G.; Hoeksema, J. Todd; Liu, Yang; Couvidat, Sebastien; Norton, Aimee A.; Li, Yan; Fisher, George H.; Shen, Chenglong

    2015-05-10

    Solar active region (AR) 12192 of 2014 October hosts the largest sunspot group in 24 years. It is the most prolific flaring site of Cycle 24 so far, but surprisingly produced no coronal mass ejection (CME) from the core region during its disk passage. Here, we study the magnetic conditions that prevented eruption and the consequences that ensued. We find AR 12192 to be “big but mild”; its core region exhibits weaker non-potentiality, stronger overlying field, and smaller flare-related field changes compared to two other major flare-CME-productive ARs (11429 and 11158). These differences are present in the intensive-type indices (e.g., means) but generally not the extensive ones (e.g., totals). AR 12192's large amount of magnetic free energy does not translate into CME productivity. The unexpected behavior suggests that AR eruptiveness is limited by some relative measure of magnetic non-potentiality over the restriction of background field, and that confined flares may leave weaker photospheric and coronal imprints compared to their eruptive counterparts.

  7. Solar Back-sided Halo CME

    NASA Video Gallery

    The Sun erupted with several CMEs (coronal mass ejections) during a period just over a day (Nov. 8-9, 2012), the largest of which was a halo CME. This CME appears to have originated from an active ...

  8. Enhancing Quality Improvements in Cancer Care Through CME Activities at a Nationally Recognized Cancer Center

    PubMed Central

    Uemura, Marc; Morgan, Robert; Mendelsohn, Mary; Kagan, Jean; Saavedra, Crystal; Leong, Lucille

    2013-01-01

    Changing healthcare policy will undoubtedly affect the healthcare environment in which providers function. The current Fee for Service reimbursement model will be replaced by Value-Based Purchasing, where higher quality and more efficient care will be emphasized. Because of this, large healthcare organizations and individual providers must adapt to incorporate performance outcomes into patient care. Here, we present a Continuing Medical Education (CME)-based initiative at the City of Hope National Cancer Center that we believe can serve as a model for using CME as a value added component to achieving such a goal. PMID:23608956

  9. Enhancing quality improvements in cancer care through CME activities at a nationally recognized cancer center.

    PubMed

    Uemura, Marc; Morgan, Robert; Mendelsohn, Mary; Kagan, Jean; Saavedra, Crystal; Leong, Lucille

    2013-06-01

    Changing healthcare policy will undoubtedly affect the healthcare environment in which providers function. The current Fee for Service reimbursement model will be replaced by Value-Based Purchasing, where higher quality and more efficient care will be emphasized. Because of this, large healthcare organizations and individual providers must adapt to incorporate performance outcomes into patient care. Here, we present a Continuing Medical Education (CME)-based initiative at the City of Hope National Cancer Center that we believe can serve as a model for using CME as a value added component to achieving such a goal.

  10. Real-Time CME Forecasting Using HMI Active-Region Magnetograms and Flare History

    NASA Technical Reports Server (NTRS)

    Falconer, David; Moore, Ron; Barghouty, Abdulnasser F.; Khazanov, Igor

    2011-01-01

    We have recently developed a method of predicting an active region s probability of producing a CME, an X-class Flare, an M-class Flare, or a Solar Energetic Particle Event from a free-energy proxy measured from SOHO/MDI line-of-sight magnetograms. This year we have added three major improvements to our forecast tool: 1) Transition from MDI magnetogram to SDO/HMI magnetogram allowing us near-real-time forecasts, 2) Automation of acquisition and measurement of HMI magnetograms giving us near-real-time forecasts (no older than 2 hours), and 3) Determination of how to improve forecast by using the active region s previous flare history in combination with its free-energy proxy. HMI was turned on in May 2010 and MDI was turned off in April 2011. Using the overlap period, we have calibrated HMI to yield what MDI would measure. This is important since the value of the free-energy proxy used for our forecast is resolution dependent, and the forecasts are made from results of a 1996-2004 database of MDI observations. With near-real-time magnetograms from HMI, near-real-time forecasts are now possible. We have augmented the code so that it continually acquires and measures new magnetograms as they become available online, and updates the whole-sun forecast from the coming day. The next planned improvement is to use an active region s previous flare history, in conjunction with its free-energy proxy, to forecast the active region s event rate. It has long been known that active regions that have produced flares in the past are likely to produce flares in the future, and that active regions that are nonpotential (have large free-energy) are more likely to produce flares in the future. This year we have determined that persistence of flaring is not just a reflection of an active region s free energy. In other words, after controlling for free energy, we have found that active regions that have flared recently are more likely to flare in the future.

  11. Does an offer for a free on-line continuing medical education (CME) activity increase physician survey response rate? A randomized trial

    PubMed Central

    2012-01-01

    Background Achieving a high response rate in a physician survey is challenging. Monetary incentives increase response rates but obviously add cost to a survey project. We wondered whether an offer of a free continuing medical education (CME) activity would be effective in improving survey response rate. Results As part of a survey of a national sample of physicians, we randomized half to an offer for a free on-line CME activity upon completion of a web-based survey and the other half to no such offer. We compared response rates between the groups. A total of 1214 out of 8477 potentially eligible physicians responded to our survey, for an overall response rate of 14.3%. The response rate among the control group (no offer of CME credit) was 16.6%, while among those offered the CME opportunity, the response rate was 12.0% (p < 0.0001). Conclusions An offer for a free on-line CME activity did not improve physician survey response rate. On the contrary, the offer for a free CME activity actually appeared to worsen the response rate. PMID:22397624

  12. Use of Yohkoh SXT in Measuring the Net Current and CME Productivity of Active Regions

    NASA Technical Reports Server (NTRS)

    Falconer, D. A.; Moore, R. L.; Gary, G. A.; Six, N. Frank (Technical Monitor)

    2001-01-01

    In our investigation of the correlation of global nonpotentiality of active regions to their CME productivity (Falconer, D.A. 2001, JGR, in press, and Falconer, Moore, & Gary, 2000, EOS 82, 20 S323), we use Yohkoh SXT images for two purposes. The first use is to help resolve the 180 degree ambiguity in the direction of the observed transverse magnetic field. Resolution of the 180 degree ambiguity is important, since the net current, one of our measures of global nonpotentiality, is derived from integrating the dot product of the transverse field around a contour (I(sub N)=(integral)BT(raised dot)dl). The ambiguity results from the observed transverse field being determined from the linear polarization, which gives the plane of the direction, but leaves a 180 degrees ambiguity. Automated methods to resolve the ambiguity ranging from the simple acute angle rule (Falconer, D.A. 2001) to the more sophisticated annealing method (Metcalf T.R. 1994). For many active regions, especially ones that are nearly potential these methods work well. But for very nonpotential active regions where the shear angle (the angle between the observed and potential transverse field) is near 90 degrees throughout large swaths along the main neutral line, both methods can resolve the ambiguity incorrectly for long segments of the neutral line. By determining from coronal images, such as those from Yohkoh/SXT, the sense of shear along the main neutral line in the active region, these cases can be identified and corrected by a modification of the acute angle rule described here. The second use of Yohkoh/SXT in this study is to check for the cusped coronal arcades of long-duration eruptive flares. This signature is an excellent proxy for CMEs, and was used by Canfield, Hudson, and McKenzie (1999 GRL V26, 6, 627-630). This work is funded by NSF through the Space Weather Program and by NASA through the Solar Physics Supporting Research and Technology Program.

  13. Correlation of the CME Productivity of Solar Active Regions with Measures of their Global Nonpotentiality from Vector Magnetograms: Baseline Results

    NASA Technical Reports Server (NTRS)

    Falconer, David A.; Moore, Ron L.; Gary, G. Allen; Six, N. Frank (Technical Monitor)

    2001-01-01

    From conventional magnetograms and chromospheric and coronal images, it is known qualitatively that the fastest coronal mass ejections (CMEs) are magnetic explosions from sunspot active regions in which the magnetic field is globally strongly sheared and twisted from its minimum-energy potential configuration. In this paper, we present measurements from active-region vector magnetograms that begin to quantify the dependence of the CME productivity of an active region on the global nonpotentiality of its magnetic field. From each of 17 magnetograms of 12 bipolar active regions, we obtain a measure of the size of the active region (the magnetic flux content, phi) and three different measures of the global nonpotentiality (L(sub SS), the length of strong-shear, strong-field main neutral line; I(sub N), the net electric current arching from one polarity to the other; and alpha = muI(subN/phi), a flux-normalized measure of the field twist).

  14. Coronal mass ejection (CME) activity of low mass M stars as an important factor for the habitability of terrestrial exoplanets. I. CME impact on expected magnetospheres of Earth-like exoplanets in close-in habitable zones.

    PubMed

    Khodachenko, Maxim L; Ribas, Ignasi; Lammer, Helmut; Griessmeier, Jean-Mathias; Leitner, Martin; Selsis, Franck; Eiroa, Carlos; Hanslmeier, Arnold; Biernat, Helfried K; Farrugia, Charles J; Rucker, Helmut O

    2007-02-01

    Low mass M- and K-type stars are much more numerous in the solar neighborhood than solar-like G-type stars. Therefore, some of them may appear as interesting candidates for the target star lists of terrestrial exoplanet (i.e., planets with mass, radius, and internal parameters identical to Earth) search programs like Darwin (ESA) or the Terrestrial Planet Finder Coronagraph/Inferometer (NASA). The higher level of stellar activity of low mass M stars, as compared to solar-like G stars, as well as the closer orbital distances of their habitable zones (HZs), means that terrestrial-type exoplanets within HZs of these stars are more influenced by stellar activity than one would expect for a planet in an HZ of a solar-like star. Here we examine the influences of stellar coronal mass ejection (CME) activity on planetary environments and the role CMEs may play in the definition of habitability criterion for the terrestrial type exoplanets near M stars. We pay attention to the fact that exoplanets within HZs that are in close proximity to low mass M stars may become tidally locked, which, in turn, can result in relatively weak intrinsic planetary magnetic moments. Taking into account existing observational data and models that involve the Sun and related hypothetical parameters of extrasolar CMEs (density, velocity, size, and occurrence rate), we show that Earth-like exoplanets within close-in HZs should experience a continuous CME exposure over long periods of time. This fact, together with small magnetic moments of tidally locked exoplanets, may result in little or no magnetospheric protection of planetary atmospheres from a dense flow of CME plasma. Magnetospheric standoff distances of weakly magnetized Earth-like exoplanets at orbital distances

  15. Coronal mass ejection (CME) activity of low mass M stars as an important factor for the habitability of terrestrial exoplanets. II. CME-induced ion pick up of Earth-like exoplanets in close-in habitable zones.

    PubMed

    Lammer, Helmut; Lichtenegger, Herbert I M; Kulikov, Yuri N; Griessmeier, Jean-Mathias; Terada, N; Erkaev, Nikolai V; Biernat, Helfried K; Khodachenko, Maxim L; Ribas, Ignasi; Penz, Thomas; Selsis, Franck

    2007-02-01

    Atmospheric erosion of CO2-rich Earth-size exoplanets due to coronal mass ejection (CME)-induced ion pick up within close-in habitable zones of active M-type dwarf stars is investigated. Since M stars are active at the X-ray and extreme ultraviolet radiation (XUV) wave-lengths over long periods of time, we have applied a thermal balance model at various XUV flux input values for simulating the thermospheric heating by photodissociation and ionization processes due to exothermic chemical reactions and cooling by the CO2 infrared radiation in the 15 microm band. Our study shows that intense XUV radiation of active M stars results in atmospheric expansion and extended exospheres. Using thermospheric neutral and ion densities calculated for various XUV fluxes, we applied a numerical test particle model for simulation of atmospheric ion pick up loss from an extended exosphere arising from its interaction with expected minimum and maximum CME plasma flows. Our results indicate that the Earth-like exoplanets that have no, or weak, magnetic moments may lose tens to hundreds of bars of atmospheric pressure, or even their whole atmospheres due to the CME-induced O ion pick up at orbital distances CME plasma erosion. Therefore, we suggest that larger and more massive terrestrial-type exoplanets may better protect their

  16. Assessment of Barriers to Changing Practice as CME Outcomes

    ERIC Educational Resources Information Center

    Price, David W.; Miller, Elaine K.; Rahm, Alanna Kulchak; Brace, Nancy E.; Larson, R. Sam

    2010-01-01

    Introduction: Continuing medical education (CME) is meant to drive and support improvements in practice. To achieve this goal, CME activities must move beyond simply purveying knowledge, instead helping attendees to contextualize information and to develop strategies for implementing new learning. CME attendees face different barriers to…

  17. CME planning series: article five of five, using commitment to change within educational activities.

    PubMed

    van Hoof, Thomas J

    2009-03-01

    Commitment to change is an educational practice that encourages participants to commit to doing something differently in their respective practices based on an educational activity. Evidence suggests that such commitment increases the likelihood that changes in behavior will occur above and beyond what might be expected from participation without explicit commitments. Educators should consider options for incorporating this practice into their educational activities.

  18. Improved Cardiovascular Prevention Using Best CME Practices: A Randomized Trial

    ERIC Educational Resources Information Center

    Laprise, Rejean; Thivierge, Robert; Gosselin, Gilbert; Bujas-Bobanovic, Maja; Vandal, Sylvie; Paquette, Daniel; Luneau, Micheline; Julien, Pierre; Goulet, Serge; Desaulniers, Jean; Maltais, Paule

    2009-01-01

    Introduction: It was hypothesized that after a continuing medical education (CME) event, practice enablers and reinforcers addressing main clinical barriers to preventive care would be more effective in improving general practitioners' (GPs) adherence to cardiovascular guidelines than a CME event only. Methods: A cluster-randomized trial was…

  19. CME - Coming At You

    NASA Video Gallery

    An oldie but goody: The September 12, 2000 coronal mass ejection (CME), which moves directly from the sun's surface toward the viewer. This was recorded by the Solar and Heliospheric Observatory (S...

  20. Active matter clusters at interfaces

    NASA Astrophysics Data System (ADS)

    Copenhagen, Katherine; Gopinathan, Ajay

    Collective and directed motility or swarming is an emergent phenomenon displayed by many self-organized assemblies of active biological matter such as clusters of embryonic cells during tissue development and flocks of birds. Such clusters typically encounter very heterogeneous environments. What happens when a cluster encounters an interface between two different environments has implications for its function and fate. Here we study this problem by using a mathematical model of a cluster that treats it as a single cohesive unit whose movement depends on the nature of the local environment. We find that low speed clusters which exert forces but no active torques, encountering an interface with a moderate difference in properties can lead to refraction or even total internal reflection of the cluster. For large speeds and clusters with active torques, they show more complex behaviors crossing the interface multiple times, becoming trapped at the interface and deviating from the predictable refraction and reflection of the low velocity clusters. Our results show a wide range of behaviors that occur when collectively moving active biological matter moves across interfaces and these insights can be used to control motion by patterning environments.

  1. Active matter clusters at interfaces.

    NASA Astrophysics Data System (ADS)

    Copenhagen, Katherine; Gopinathan, Ajay

    2016-03-01

    Collective and directed motility or swarming is an emergent phenomenon displayed by many self-organized assemblies of active biological matter such as clusters of embryonic cells during tissue development, cancerous cells during tumor formation and metastasis, colonies of bacteria in a biofilm, or even flocks of birds and schools of fish at the macro-scale. Such clusters typically encounter very heterogeneous environments. What happens when a cluster encounters an interface between two different environments has implications for its function and fate. Here we study this problem by using a mathematical model of a cluster that treats it as a single cohesive unit that moves in two dimensions by exerting a force/torque per unit area whose magnitude depends on the nature of the local environment. We find that low speed (overdamped) clusters encountering an interface with a moderate difference in properties can lead to refraction or even total internal reflection of the cluster. For large speeds (underdamped), where inertia dominates, the clusters show more complex behaviors crossing the interface multiple times and deviating from the predictable refraction and reflection for the low velocity clusters. We then present an extreme limit of the model in the absence of rotational damping where clusters can become stuck spiraling along the interface or move in large circular trajectories after leaving the interface. Our results show a wide range of behaviors that occur when collectively moving active biological matter moves across interfaces and these insights can be used to control motion by patterning environments.

  2. The CME Flare Arcade and the Width of the CME in the Outer Corona

    NASA Technical Reports Server (NTRS)

    Moore, Ron; Falconer, David; Sterling, Alphonse

    2008-01-01

    Moore, Sterling, & Suess (2007, ApJ, 668, 1221) present evidence that (1) a CME is typically a magnetic bubble, a low-beta gplasmoid with legs h having roughly the 3D shape of a light bulb, and (2) in the outer corona the CME plasmoid is in lateral pressure equilibrium with the ambient magnetic field. They present three CMEs observed by SOHO/LASCO, each from a very different source located near the limb. One of these CMEs came from a compact ejective eruption from a small part of a sunspot active region, another came from a large quiet-region filament eruption, and the third CME, an extremely large and fast one, was produced in tandem with an X20 flare arcade that was centered on a huge delta sunspot. Each of these CMEs had more or less the classic lightbulb silhouette and attained a constant heliocentric angular width in the outer corona. This indicates that the CME plasmoid attained lateral magnetic pressure balance with the ambient radial magnetic field in the outer corona. This lateral pressure balance, together with the standard scenario for CME production by the eruption of a sheared-core magnetic arcade, yields the following simple estimate of the strength B(sub Flare) of the magnetic field in the flare arcade produced together with the CME: B(sub Flare) 1.4(theta CME/theta Flare)sup 2 G, where theta (sub CME) is the heliocentric angular width of the CME plasmoid in the outer corona and theta (sub Flare) is the heliocentric angular width of the full-grown flare arcade. Conversely, theta (sub CME) approximately equal to (R(sub Sun)sup -1(phi(sub Flare)/1.4)sup 1/2 radians, where Flare is the magnetic flux covered by the full-grown flare arcade. In addition to presenting the three CMEs of Moore, Sterling, & Suess (2007) and their agreement with this relation between CME and Flare, we present a further empirical test of this relation. For CMEs that erupt from active regions, the co-produced flare arcade seldom if ever covers the entire active region: if AR is

  3. CME Kinematics and Dynamics

    NASA Astrophysics Data System (ADS)

    Lin, C.-H.; Gallagher, P. T.

    The goal of this study is to investigate the driving mechanisms of CMEs and to infer the magnetic field properties at the onset of the instability. We use EIT 195 Å images and LASCO white-light coronagraph data of a CME event that occurred on 17 December 2006. It was a long-duration event, and was associated with an occulted C2.1 class flare. To determine the driving mechanism, we quantitatively and qualitatively compared the observationally obtained kinematic evolution with that predicted by three CME models: the breakout model (BO, see Antiochos et al. 1999; Lynch et al. 2008; DeVore and Antiochos 2008), the catastrophe model (CM, see Priest and Forbes 2000), and the toroidal instability model (TI, see Chen 1989; Kliem and Török 2006). Our results indicate that this CME is best represented by the CM model. We infer that, at the onset of the instability, the Alfvén speed is approximately 120 km s-1 and the height of the flux rope is roughly 100-200Mm. These parameter values are related to the magnetic environment and the loop geometry and can be used to infer the magnetic condition at the onset of the eruption.We intend to submit the full analysis to A&A.

  4. Characteristics That Predict Physician Participation in a Web-Based CME Activity: The MI-Plus Study

    PubMed Central

    Schoen, Michael J.; Tipton, Edmond F.; Houston, Thomas K.; Funkhouser, Ellen; Levine, Deborah A.; Estrada, Carlos A.; Allison, Jeroan J.; Williams, O. Dale; Kiefe, Catarina I.

    2011-01-01

    Introduction Physician use of the Internet for practice improvement has increased dramatically over the last decade, but research shows that many physicians choose not to participate. The current study investigated the association of specific physician characteristics with enrollment rates and intensity of participation in a specific Internet-delivered educational intervention to improve care to post–myocardial infarction (MI) patients. Methods Primary-care physicians were recruited for participation in a randomized controlled trial designed to compare effectiveness of an intervention Web site versus a control Web site in the management of adult chronic disease. Physicians were informed that the intervention focused on ambulatory post–myocardial infarction patients. Physician characteristics were obtained from a commercial vendor with data merged from the American Medical Association and Alabama State Licensing Board. Enrollment and Web use were tracked electronically. Results Out of a sample of 1337 eligible physicians, 177 (13.2%) enrolled in the study. Enrollment was higher for physicians with more post-MI patients (≥20 vs < 20 patients, 15.3% vs 9.3%, P = .002) and for those practicing in rural compared to urban areas (16.3% vs 12.1%, P = .046). Intensity of use of the Internet courses after initial enrollment was not predicted by physician characteristics in the current sample. Discussion Physicians with more post-MI patients and rural practice location were found to predict enrollment in an Internet-delivered continuing medical education (CME) intervention designed to improve care for post-MI patients. These factors predicted program interest but not program use. More research is needed to replicate these findings to investigate variables that determine physician engagement in Internet CME. PMID:19998447

  5. Active constrained clustering by examining spectral Eigenvectors

    NASA Technical Reports Server (NTRS)

    Wagstaff, Kiri L.; desJardins, Marie; Xu, Qianjun

    2005-01-01

    This work focuses on the active selection of pairwise constraints for spectral clustering. We develop and analyze a technique for Active Constrained Clustering by Examining Spectral eigenvectorS (ACCESS) derived from a similarity matrix.

  6. Distinctive activation and functionalization of hydrocarbon C-H bonds initiated by Cp*W(NO)(η(3)-allyl)(CH2CMe3) complexes.

    PubMed

    Baillie, Rhett A; Legzdins, Peter

    2014-02-18

    Converting hydrocarbon feedstocks into value-added chemicals continues to offer challenges to contemporary preparative chemists. A particularly important remaining challenge is the selective activation and functionalization of the C(sp(3))-H linkages of alkanes, which are relatively abundant but chemically inert. This Account outlines the discovery and development of C-H bond functionalization mediated by a family of tungsten organometallic nitrosyl complexes. Specifically, it describes how gentle thermolyses of any of four 18-electron Cp*W(NO)(η(3)-allyl)(CH2CMe3) complexes (Cp* = η(5)-C5Me5; η(3)-allyl = η(3)-H2CCHCHMe, η(3)-H2CCHCHSiMe3, η(3)-H2CCHCHPh, or η(3)-H2CCHCMe2) results in the loss of neopentane and the transient formation of a 16-electron intermediate species, Cp*W(NO)(η(2)-allene) and/or Cp*W(NO)(η(2)-diene). We have never detected any of these species spectroscopically, but we infer their existence based on trapping experiments with trimethylphosphine (PMe3) and labeling experiments using deuterated hydrocarbon substrates. This Account first summarizes the syntheses and properties of the four chiral Cp*W(NO)(η(3)-allyl)(CH2CMe3) complexes. It then outlines the various types of C-H activations we have effected with each of the 16-electron (η(2)-allene) or (η(2)-diene) intermediate nitrosyl complexes, and presents the results of mechanistic investigations of some of these processes. It next describes the characteristic chemical properties of the Cp*W(NO)(η(3)-allyl)(η(1)-hydrocarbyl) compounds formed by the single activations of C(sp(3))-H bonds, with particular emphasis on those reactions that result in the selective functionalization of the original hydrocarbon substrate. We are continuing development of methods to release the acyl ligands from the metal centers while keeping the Cp*W(NO)(η(3)-allyl) fragments intact, with the ultimate aim of achieving these distinctive conversions of alkanes into functionalized organics in a

  7. A Type I Noise Storm and the Bastille Day CME

    NASA Astrophysics Data System (ADS)

    Wen, Yayuan; Wang, Jingxiu

    Based on Nançay Radioheliograph (NRH) observations, we have identified 4 Type I noise storm continua sources associated with the Bastille Day flare/CME event. Two of them were stable and closed to active regions. Their outskirts covered AR9077 and 9082, respectively. One source was over the south-west limb and in the high corona, it was stable for hours. All the Type I storm sources weren't observed simultaneously before 10:20 UT at the onset of the global CME, which indicated the intrinsic association of Type I noise storm and CME initiation. The wide span of the Type I storm sources and burst sources clearly implied that the Bastille Day flare/CME involves large or even global magnetic interaction.

  8. Dual Repression of the Multidrug Efflux Pump CmeABC by CosR and CmeR in Campylobacter jejuni

    PubMed Central

    Grinnage-Pulley, Tara; Mu, Yang; Dai, Lei; Zhang, Qijing

    2016-01-01

    During transmission and intestinal colonization, Campylobacter jejuni, a major foodborne human pathogen, experiences oxidative stress. CosR, a response regulator in C. jejuni, modulates the oxidative stress response and represses expression of the CmeABC multidrug efflux pump. CmeABC, a key component in resistance to toxic compounds including antimicrobials and bile salts, is also under negative regulation by CmeR, a TetR family transcriptional regulator. How CosR and CmeR interact in binding to the cmeABC promoter and how CosR senses oxidative stress are still unknown. To answer these questions, we conducted various experiments utilizing electrophoretic mobility shift assays and transcriptional fusion assays. CosR and CmeR bound independently to two separate sites of the cmeABC promoter, simultaneously repressing cmeABC expression. This dual binding of CosR and CmeR is optimal with a 17 base pair space between the two binding sites as mutations that shortened the distance between the binding sites decreased binding by CmeR and enhanced cmeABC expression. Additionally, the single cysteine residue (C218) of CosR was sensitive to oxidation, which altered the DNA-binding activity of CosR and dissociated CosR from the cmeABC promoter as determined by electrophoretic mobility shift assay. Replacement of C218 with serine rendered CosR insensitive to oxidation, suggesting a potential role of C218 in sensing oxidative stress and providing a possible mechanism for CosR-mediated response to oxidative stress. These findings reveal a dual regulatory role of CosR and CmeR in modulating cmeABC expression and suggest a potential mechanism that may explain overexpression of cmeABC in response to oxidative stress. Differential expression of cmeABC mediated by CmeR and CosR in response to different signals may facilitate adaptation of Campylobacter to various environmental conditions. PMID:27468281

  9. The State of the Art in CME.

    ERIC Educational Resources Information Center

    Richards, Robert K.

    1983-01-01

    The author describes major trends and directions related to continuing medical education (CME). The rapid changes he observed in the state of the art in CME are presented in relation to three historical periods in the past 16 years. (SSH)

  10. INITIATION AND ERUPTION PROCESS OF MAGNETIC FLUX ROPE FROM SOLAR ACTIVE REGION NOAA 11719 TO EARTH-DIRECTED CME

    SciTech Connect

    Vemareddy, P.; Zhang, J.

    2014-12-20

    An eruption event launched from the solar active region (AR) NOAA 11719 is investigated based on coronal EUV observations and photospheric magnetic field measurements obtained from the Solar Dynamic Observatory. The AR consists of a filament channel originating from a major sunspot and its south section is associated with an inverse-S sigmoidal system as observed in Atmospheric Imaging Assembly passbands. We regard the sigmoid as the main body of the flux rope (FR). There also exists a twisted flux bundle crossing over this FR. This overlying flux bundle transforms in shape similar to kink-rise evolution, which corresponds with the rise motion of the FR. The emission measure and temperature along the FR exhibits an increasing trend with its rising motion, indicating reconnection in the thinning current sheet underneath the FR. Net magnetic flux of the AR, evaluated at north and south polarities, showed decreasing behavior whereas the net current in these fluxes exhibits an increasing trend. Because the negative (positive) flux has a dominant positive (negative) current, the chirality of AR flux system is likely negative (left handed) in order to be consistent with the chirality of inverse S-sigmoidal FR. This analysis of magnetic fields of the source AR suggests that the cancelling fluxes are prime factors of the monotonous twisting of the FR system, reaching to a critical state to trigger kink instability and rise motion. This rise motion may have led to the onset of the torus instability, resulting in an Earth-directed coronal mass ejection, and the progressive reconnection in the thinning current sheet beneath the rising FR led to the M6.5 flare.

  11. Reflections on CME Congress 2012

    ERIC Educational Resources Information Center

    Knox, Alan B.

    2013-01-01

    This commentary reflects the author's impressions of Continuing Medical Education (CME) Congress 2012, a provocative international conference on professional development and quality improvement in the health professions that took place in Toronto, Ontario, last spring. The sessions he attended and conversations he had with other attendees were…

  12. CME Prediction Using SDO, SoHO, and STEREO data with a Machine Learning Algorithm

    NASA Astrophysics Data System (ADS)

    Bobra, M.; Ilonidis, S.

    2015-12-01

    It is unclear whether a flaring active region will also produce a Coronal Mass Ejection (CME). Usually, active regions that produce large flares will also produce a CME, but this is not always the case. For example, the largest active region from the last 24 years, NOAA Active Region 12192 of October 2014, produced many X-class flares but not a single CME. We attempt to forecast whether an active region that produces an M- or X-class flare will also produce a CME. We do this by analyzing data from three solar observatories -- SDO, STEREO, and SoHO -- using a machine-learning algorithm. We find that the role of horizontal component of the photospheric magnetic field plays a crucial component in driving a CME, a result corroborated by Sun et al. (2015). We present the success rate of our method and the potential applications to space weather forecasts.

  13. Controlling Quality in CME/CPD by Measuring and Illuminating Bias

    ERIC Educational Resources Information Center

    Dixon, David; Takhar, Jatinder; Macnab, Jennifer; Eadie, Jason; Lockyer, Jocelyn; Stenerson, Heather; Francois, Jose; Bell, Mary; Monette, Celine; Campbell, Craig; Marlow, Bernie

    2011-01-01

    Introduction: There has been a surge of interest in the area of bias in industry-supported continuing medical education/continuing professional development (CME/CPD) activities. In 2007, we published our first study on measuring bias in CME, demonstrating that our assessment tool was valid and reliable. In light of the increasing interest in this…

  14. PROPAGATION OF THE 2014 JANUARY 7 CME AND RESULTING GEOMAGNETIC NON-EVENT

    SciTech Connect

    Mays, M. L.; Collinson, G.; Taktakishvili, A.; Thompson, B. J.; Jian, L. K.; Savani, N. P.; MacNeice, P. J.; Zheng, Y.; Colaninno, R. C.; Odstrcil, D.; Möstl, C.; Temmer, M.

    2015-10-20

    On 2014 January 7 an X1.2 flare and coronal mass ejection (CME) with a radial speed ≈2500 km s{sup −1} was observed from near an active region close to disk center. This led many forecasters to estimate a rapid arrival at Earth (≈36 hr) and predict a strong geomagnetic storm. However, only a glancing CME arrival was observed at Earth with a transit time of ≈49 hr and a K{sub P} geomagnetic index of only 3−. We study the interplanetary propagation of this CME using the ensemble Wang-Sheeley-Arge (WSA)–ENLIL+Cone model, that allows a sampling of CME parameter uncertainties. We explore a series of simulations to isolate the effects of the background solar wind solution, CME shape, tilt, location, size, and speed, and the results are compared with observed in situ arrivals at Venus, Earth, and Mars. Our results show that a tilted ellipsoid CME shape improves the initial real-time prediction to better reflect the observed in situ signatures and the geomagnetic storm strength. CME parameters from the Graduated Cylindrical Shell model used as input to WSA–ENLIL+Cone, along with a tilted ellipsoid cloud shape, improve the arrival-time error by 14.5, 18.7, 23.4 hr for Venus, Earth, and Mars respectively. These results highlight that CME orientation and directionality with respect to observatories play an important role in understanding the propagation of this CME, and for forecasting other glancing CME arrivals. This study also demonstrates the importance of three-dimensional CME fitting made possible by multiple viewpoint imaging.

  15. Propagation of the 7 January 2014 CME and Resulting Geomagnetic Non-event

    NASA Astrophysics Data System (ADS)

    Mays, M. L.; Thompson, B. J.; Jian, L. K.; Colaninno, R. C.; Odstrcil, D.; Möstl, C.; Temmer, M.; Savani, N. P.; Collinson, G.; Taktakishvili, A.; MacNeice, P. J.; Zheng, Y.

    2015-10-01

    On 2014 January 7 an X1.2 flare and coronal mass ejection (CME) with a radial speed ≈2500 km s-1 was observed from near an active region close to disk center. This led many forecasters to estimate a rapid arrival at Earth (≈36 hr) and predict a strong geomagnetic storm. However, only a glancing CME arrival was observed at Earth with a transit time of ≈49 hr and a K P geomagnetic index of only 3-. We study the interplanetary propagation of this CME using the ensemble Wang-Sheeley-Arge (WSA)-ENLIL+Cone model, that allows a sampling of CME parameter uncertainties. We explore a series of simulations to isolate the effects of the background solar wind solution, CME shape, tilt, location, size, and speed, and the results are compared with observed in situ arrivals at Venus, Earth, and Mars. Our results show that a tilted ellipsoid CME shape improves the initial real-time prediction to better reflect the observed in situ signatures and the geomagnetic storm strength. CME parameters from the Graduated Cylindrical Shell model used as input to WSA-ENLIL+Cone, along with a tilted ellipsoid cloud shape, improve the arrival-time error by 14.5, 18.7, 23.4 hr for Venus, Earth, and Mars respectively. These results highlight that CME orientation and directionality with respect to observatories play an important role in understanding the propagation of this CME, and for forecasting other glancing CME arrivals. This study also demonstrates the importance of three-dimensional CME fitting made possible by multiple viewpoint imaging.

  16. The Solar Stormwatch CME catalogue.

    NASA Astrophysics Data System (ADS)

    Barnard, Luke

    2015-04-01

    Since the launch of the twin STEREO satellites in late 2006, the Heliospheric Imagers have been used, with good results, in tracking transients of solar origin, such as Coronal Mass Ejections (CMEs), out through the inner heliosphere. A frequently used approach is to build a "J-Map", in which multiple elongation profiles along a constant position angle are stacked in time, building an image in which radially propagating transients form curved tracks in the J-Map. From this the time-elongation profile of a solar transient can be manually identified. This is a time consuming and laborious process, and the results are subjective, depending on the skill and expertise of the investigator. With the Heliospheric Imager data it is possible to follow CMEs from the outer limits of the solar corona all the way to 1AU. Solar Stormwatch is a citizen science project that employs the power of thousands of volunteers to both identify and track CMEs in the Heliospheric Imager data. The CMEs identified by Solar Stormwatch are tracked many times by multiple users and this allows the calculation of consensus time-elongation profiles for each event and also provides an estimate of the error in the consensus profile. Therefore this system does not suffer from the potential subjectivity of individual researchers identifying and tracking CMEs. In this sense, the Solar Stormwatch system can be thought of as providing a middle ground between manually identified CME catalogues, such as the CDAW list, and CME catalogues generated through fully automated algorithms, such as CACtus and ARTEMIS etc. We provide a summary of the reduction of the Solar Stormwatch data into a catalogue of CMEs observed by STEREO-A and STEREO-B through the deep minimum of solar cycle 23 and review some key statistical properties of these CMEs. Through some case studies of the propagation of CMEs out into the inner heliosphere we argue that the Solar Stormwatch CME catalogue, which publishes the time

  17. Pattern Activity Clustering and Evaluation (PACE)

    NASA Astrophysics Data System (ADS)

    Blasch, Erik; Banas, Christopher; Paul, Michael; Bussjager, Becky; Seetharaman, Guna

    2012-06-01

    With the vast amount of network information available on activities of people (i.e. motions, transportation routes, and site visits) there is a need to explore the salient properties of data that detect and discriminate the behavior of individuals. Recent machine learning approaches include methods of data mining, statistical analysis, clustering, and estimation that support activity-based intelligence. We seek to explore contemporary methods in activity analysis using machine learning techniques that discover and characterize behaviors that enable grouping, anomaly detection, and adversarial intent prediction. To evaluate these methods, we describe the mathematics and potential information theory metrics to characterize behavior. A scenario is presented to demonstrate the concept and metrics that could be useful for layered sensing behavior pattern learning and analysis. We leverage work on group tracking, learning and clustering approaches; as well as utilize information theoretical metrics for classification, behavioral and event pattern recognition, and activity and entity analysis. The performance evaluation of activity analysis supports high-level information fusion of user alerts, data queries and sensor management for data extraction, relations discovery, and situation analysis of existing data.

  18. December 2008 CME as Viewed by Spacecraft

    NASA Video Gallery

    Newly reprocessed images from NASA's STEREO-A spacecraft, allow scientists to trace the anatomy of the December 2008 CME as it moves and changes on its journey from the Sun to the Earth, identify t...

  19. Comparing Automatic CME Detections in Multiple LASCO and SECCHI Catalogs

    NASA Astrophysics Data System (ADS)

    Hess, Phillip; Colaninno, Robin C.

    2017-02-01

    With the creation of numerous automatic detection algorithms, a number of different catalogs of coronal mass ejections (CMEs) spanning the entirety of the Solar and Heliospheric Observatory (SOHO) Large Angle Spectrometric Coronagraph (LASCO) mission have been created. Some of these catalogs have been further expanded for use on data from the Solar Terrestrial Earth Observatory (STEREO) Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI) as well. We compare the results from different automatic detection catalogs (Solar Eruption Event Detection System (SEEDS), Computer Aided CME Tracking (CACTus), and Coronal Image Processing (CORIMP)) to ensure the consistency of detections in each. Over the entire span of the LASCO catalogs, the automatic catalogs are well correlated with one another, to a level greater than 0.88. Focusing on just periods of higher activity, these correlations remain above 0.7. We establish the difficulty in comparing detections over the course of LASCO observations due to the change in the instrument image cadence in 2010. Without adjusting catalogs for the cadence, CME detection rates show a large spike in cycle 24, despite a notable drop in other indices of solar activity. The output from SEEDS, using a consistent image cadence, shows that the CME rate has not significantly changed relative to sunspot number in cycle 24. These data, and mass calculations from CORIMP, lead us to conclude that any apparent increase in CME rate is a result of the change in cadence. We study detection characteristics of CMEs, discussing potential physical changes in events between cycles 23 and 24. We establish that, for detected CMEs, physical parameters can also be sensitive to the cadence.

  20. HELCATS Prediction of Planetary CME arrival times

    NASA Astrophysics Data System (ADS)

    Boakes, Peter; Moestl, Christian; Davies, Jackie; Harrison, Richard; Byrne, Jason; Barnes, David; Isavnin, Alexey; Kilpua, Emilia; Rollett, Tanja

    2015-04-01

    We present the first results of CME arrival time prediction at different planetary locations and their comparison to the in situ data within the HELCATS project. The EU FP7 HELCATS (Heliospheric Cataloguing, Analysis & Techniques Service) is a European effort to consolidate the exploitation of the maturing field of heliospheric imaging. HELCATS aims to catalogue solar wind transients, observed by the NASA STEREO Heliospheric Imager (HI) instruments, and validate different methods for the determination of their kinematic properties. This validation includes comparison with arrivals at Earth, and elsewhere in the heliosphere, as well as onsets at the Sun (http://www.helcats-fp7.eu/). A preliminary catalogue of manually identified CMEs, with over 1000 separate events, has been created from observations made by the STEREO/HI instruments covering the years 2007-2013. Initial speeds and directions of each CME have been derived through fitting the time elongation profile to the state of the art Self-Similar Expansion Fitting (SSEF) geometric technique (Davies et al., 2012). The technique assumes that, in the plane corresponding to the position angle of interest, CMEs can be modelled as circles subtending a fixed angular width to Sun-center and propagating anti-sunward in a fixed direction at a constant speed (we use an angular width of 30 degrees in our initial results). The model has advantages over previous geometric models (e.g. harmonic mean or fixed phi) as it allows one to predict whether a CME will 'hit' a specific heliospheric location, as well as to what degree (e.g. direct assault or glancing blow). We use correction formulae (Möstl and Davies, 2013) to convert CME speeds, direction and launch time to speed and arrival time at any in situ location. From the preliminary CME dataset, we derive arrival times for over 400 Earth-directed CMEs, and for over 100 Mercury-, Venus-, Mars- and Saturn-directed CMEs predicted to impact each planet. We present statistics of

  1. Space Weather Model of July 22-23, 2012 CME

    NASA Video Gallery

    NASA's Space Weather Research Center modeled the July 23, 2012 CME using a modeling program called ENLIL. The CME can be seen to expand dramatically as it travels through space. By comparing how we...

  2. STEREO Captures Fastest CME to Date

    NASA Video Gallery

    This movie shows a coronal mass ejection (CME) on the sun from July 22, 2012 at 10:00 PM EDT until 2 AM on July 23 as captured by NASA's Solar TErrestrial RElations Observatory-Ahead (STEREO-A). Be...

  3. CME and Change in Practice: An Alternative Perspective.

    ERIC Educational Resources Information Center

    Wergin, Jon F.; And Others

    1988-01-01

    Results of a study by the American College of Cardiology revealed that continuing medical education (CME) courses contain relatively little information that is new to the audience, that other influences on practice interact with CME content, and that change attributable to CME is subtle and often delayed. (JOW)

  4. The Growth, Characteristics, and Future of Online CME

    ERIC Educational Resources Information Center

    Harris, John M., Jr.; Sklar, Bernard M.; Amend, Robert W.; Novalis-Marine, Cheryl

    2010-01-01

    Introduction: Physician use of online continuing medical education (CME) is growing, but there are conflicting data on the uptake of online CME and few details on this market. Methods: Analyses of 11 years of data from the Accreditation Council for Continuing Medical Education (ACCME) and a survey of 272 publicly available CME Web sites. …

  5. Learning to Collaborate: A Case Study of Performance Improvement CME

    ERIC Educational Resources Information Center

    Shershneva, Marianna B.; Mullikin, Elizabeth A.; Loose, Anne-Sophie; Olson, Curtis A.

    2008-01-01

    Introduction: Performance Improvement Continuing Medical Education (PI CME) is a mechanism for joining quality improvement (QI) in health care to continuing medical education (CME) systems together. Although QI practices and CME approaches have been recognized for years, what emerges from their integration is largely unfamiliar, because it…

  6. Sharing Collaborative Designs of Tobacco Cessation Performance Improvement CME Projects

    ERIC Educational Resources Information Center

    Mullikin, Elizabeth A.; Ales, Mary W.; Cho, Jane; Nelson, Teena M.; Rodrigues, Shelly B.; Speight, Mike

    2011-01-01

    Introduction: Performance Improvement Continuing Medical Education (PI CME) provides an important opportunity for CME providers to combine educational and quality health care improvement methodologies. Very few CME providers take on the challenges of planning this type of intervention because it is still a new practice and there are limited…

  7. Probability of CME Impact on Exoplanets Orbiting M Dwarfs and Solar-like Stars

    NASA Astrophysics Data System (ADS)

    Kay, C.; Opher, M.; Kornbleuth, M.

    2016-08-01

    Solar coronal mass ejections (CMEs) produce adverse space weather effects at Earth. Planets in the close habitable zone of magnetically active M dwarfs may experience more extreme space weather than at Earth, including frequent CME impacts leading to atmospheric erosion and leaving the surface exposed to extreme flare activity. Similar erosion may occur for hot Jupiters with close orbits around solar-like stars. We have developed a model, Forecasting a CME's Altered Trajectory (ForeCAT), which predicts a CME's deflection. We adapt ForeCAT to simulate CME deflections for the mid-type M dwarf V374 Peg and hot Jupiters with solar-type hosts. V374 Peg's strong magnetic fields can trap CMEs at the M dwarfs's Astrospheric Current Sheet, that is, the location of the minimum in the background magnetic field. Solar-type CMEs behave similarly, but have much smaller deflections and do not become trapped at the Astrospheric Current Sheet. The probability of planetary impact decreases with increasing inclination of the planetary orbit with respect to the Astrospheric Current Sheet: 0.5-5 CME impacts per day for M dwarf exoplanets, 0.05-0.5 CME impacts per day for solar-type hot Jupiters. We determine the minimum planetary magnetic field necessary to shield a planet's atmosphere from CME impacts. M dwarf exoplanets require values between tens and hundreds of Gauss. Hot Jupiters around a solar-type star, however, require a more reasonable <30 G. These values exceed the magnitude required to shield a planet from the stellar wind, suggesting that CMEs may be the key driver of atmospheric losses.

  8. Solar eruptions: The CME-flare relationship

    NASA Astrophysics Data System (ADS)

    Vršnak, B.

    2016-11-01

    Coronal mass ejections (CMEs), caused by large-scale eruptions of the coronal magnetic field, often are accompanied by a more localized energy release in the form of flares, as a result of dissipative magnetic-field reconfiguration. Morphology and evolution of such flares, also denoted as dynamical flares are often explained as a consequence of reconnection of the arcade magnetic field, taking place below the erupting magnetic flux rope. A close relationship of the CME acceleration and the flare energy release is evidenced by various statistical correlations between parameters describing CMEs and flares, as well as by the synchronization of the CME acceleration phase with the impulsive phase of the associated flare. Such behavior implies that there must be a feedback relation between the dynamics of the CME and the flare-associated reconnection process. From the theoretical standpoint, magnetic reconnection affects the CME dynamics in several ways. First, it reduces the tension of the overlying arcade magnetic field and increases the magnetic pressure below the flux rope, and in this way enhances the CME acceleration. Furthermore, it supplies the poloidal magnetic flux to the flux rope, which helps sustaining the electric current in the rope and prolonging the action of the driving Lorentz force to large distances. The role of these processes, directly relating solar flares and CMEs, is illustrated by employing a simple model, where the erupting structure is represented by a curved flux rope anchored at both sides in the dense/inert photosphere, being subject to the kink and torus instability. It is shown that in most strongly accelerated ejections, where values on the order of 10 km s-2 are attained, the poloidal flux supplied to the erupting rope has to be several times larger than was the initial flux.

  9. CHARACTERISTICS OF KINEMATICS OF A CORONAL MASS EJECTION DURING THE 2010 AUGUST 1 CME-CME INTERACTION EVENT

    SciTech Connect

    Temmer, Manuela; Rollett, Tanja; Bein, Bianca; Moestl, Christian; Veronig, Astrid M.; Flor, Olga; Vrsnak, Bojan; Zic, Tomislav; De Koning, Curt A.; Liu, Ying; Bosman, Eckhard; Davies, Jackie A.; Bothmer, Volker; Harrison, Richard; Nitta, Nariaki; Bisi, Mario; Eastwood, Jonathan; Forsyth, Robert; Odstrcil, Dusan

    2012-04-10

    We study the interaction of two successive coronal mass ejections (CMEs) during the 2010 August 1 events using STEREO/SECCHI COR and heliospheric imager (HI) data. We obtain the direction of motion for both CMEs by applying several independent reconstruction methods and find that the CMEs head in similar directions. This provides evidence that a full interaction takes place between the two CMEs that can be observed in the HI1 field of view. The full de-projected kinematics of the faster CME from Sun to Earth is derived by combining remote observations with in situ measurements of the CME at 1 AU. The speed profile of the faster CME (CME2; {approx}1200 km s{sup -1}) shows a strong deceleration over the distance range at which it reaches the slower, preceding CME (CME1; {approx}700 km s{sup -1}). By applying a drag-based model we are able to reproduce the kinematical profile of CME2, suggesting that CME1 represents a magnetohydrodynamic obstacle for CME2 and that, after the interaction, the merged entity propagates as a single structure in an ambient flow of speed and density typical for quiet solar wind conditions. Observational facts show that magnetic forces may contribute to the enhanced deceleration of CME2. We speculate that the increase in magnetic tension and pressure, when CME2 bends and compresses the magnetic field lines of CME1, increases the efficiency of drag.

  10. Characteristics of Kinematics of a Coronal Mass Ejection During the 2010 August 1 CME-CME Interaction Event

    NASA Technical Reports Server (NTRS)

    Temmer, Manuela; Vrsnak, Bojan; Rollett, Tanja; Bein, Bianca; de Koning, Curt A.; Liu, Ying; Bosman, Eckhard; Davies, Jackie A.; Mostl, Christian; Zic, Tomislav; Veronig, Astrid M.; Bothmer, Volker; Harrison, Richard; Nitta, Nariaki; Bisi, Mario; Flor, Olga; Eastwood, Jonathan; Odstrcil, Dusan; Forsyth, Robert

    2012-01-01

    We study the interaction of two successive coronal mass ejections (CMEs) during the 2010 August 1 events using STEREO/SECCHI COR and HI data. We obtain the direction of motion for both CMEs by applying several independent reconstruction methods and find that the CMEs head in similar directions. This provides evidence that a full interaction takes place between the two CMEs that can be observed in the HI1 field-of-view. The full de-projected kinematics of the faster CME from Sun to Earth is derived by combining remote observations with in situ measurements of the CME at 1 AU. The speed profile of the faster CME (CME2; (is) approximately 1200 km s-1) shows a strong deceleration over the distance range at which it reaches the slower, preceding CME (CME1; (is) approximately 700 km s-1). By applying a drag-based model we are able to reproduce the kinematical profile of CME2 suggesting that CME1 represents a magnetohydrodynamic obstacle for CME2 and that, after the interaction, the merged entity propagates as a single structure in an ambient flow of speed and density typical for quiet solar wind conditions. Observational facts show that magnetic forces may contribute to the enhanced deceleration of CME2. We speculate that the increase in magnetic tension and pressure, when CME2 bends and compresses the magnetic field lines of CME1, increases the efficiency of drag.

  11. Radio signatures of CME-streamer interaction

    NASA Astrophysics Data System (ADS)

    CHEN, Y.; Feng, S.; Kong, X.; Li, G.; Song, H.

    2011-12-01

    Recent observational finding of streamer waves using the LASCO white light data presents us interesting physical consequence of CME-streamer interactions [1, 2, 3]. CME-streamer interactions can also manifest themselves in the Type-II-related radio dynamic spectra as recorded by the ground-based or space-borne instruments. A large body of studies exists revealing the possible roles of pre-existing helmet streamers in the radio emission during a solar eruption. In this presentation, we will summary our efforts in classifying the roles of streamers affecting Type-II radio emissions. Generally speaking, there exist two groups of CME-streamer-Type-II events. In the first group, the shock as well as the Type-II radio emission seems to exist prior to the CME-streamer interaction. The interaction can be clearly discerned from the well-defined bump of the Type-II radio dynamic spectra. The spectral bump is a direct result of plasma emissions when the radio emitting region traversing the denser streamer structure. In the other group of events, the Type-II burst is excited as a result of the CME-streamer interaction. Either the shock is formed and radio-emitting electrons are accelerated inside the streamer, or a prior non-emitting shock becomes radio aloud during the interacting process. A novel triangular-streamer-shock model is proposed to interpret the associated electron acceleration inside the streamer. Observational examples of CME-streamer-radio events corresponding to both cases will be presented. [1] Chen, Y., Song, H.Q., Li, B., Xia, L.D., Wu, Z., Fu, H., Li, X., 2010, Astrophys. J. 714, 644 [2] Chen, Y., Feng, S.W., Li, B., Song, H.Q., Xia, L.D., Kong, X.L., Li, X., 2011, Astrophys. J. 728, 147 [3] Feng S. W., Chen Y., Li B., Song H. Q., Kong X. L., Xia L. D., Feng, X. S., 2011, Sol. Phys., DOI 10.1007/s11207-011-9814-6

  12. Deriving CME kinematics from multipoint space observations

    NASA Astrophysics Data System (ADS)

    Mrotzek, Niclas; Pluta, Adam; Bothmer, Volker; Davies, Jackie; Harrison, Richard

    2016-04-01

    It is commonly believed that the kinematics of CMEs consist of an early Lorentz acceleration phase near the Sun followed by a decelerating drag-force phase at distances further out. To better understand the physical processes of CME evolution, and also to predict more accurately their arrival times at other heliospheric locations, we have analysed CMEs using multipoint coronagraph observations from STEREO and SOHO. The CME speed evolution is analysed by applying time-series GCS-modelling. The analysis is extended to distances further away from the Sun through analysis of observations from the STEREO heliospheric imagers. The results are compared to those obtained from the geometrical modelling of time-elongation profiles of CMEs extracted from J-maps. We discuss the implications of our results in the context of state-of-the-art space weather predictions. The studies are carried out in the EU FP7 project HELCATS (Heliospheric Cataloguing, Analysis and Techniques Service).

  13. Active galactic nucleus feedback in clusters of galaxies

    PubMed Central

    Blanton, Elizabeth L.; Clarke, T. E.; Sarazin, Craig L.; Randall, Scott W.; McNamara, Brian R.

    2010-01-01

    Observations made during the last ten years with the Chandra X-ray Observatory have shed much light on the cooling gas in the centers of clusters of galaxies and the role of active galactic nucleus (AGN) heating. Cooling of the hot intracluster medium in cluster centers can feed the supermassive black holes found in the nuclei of the dominant cluster galaxies leading to AGN outbursts which can reheat the gas, suppressing cooling and large amounts of star formation. AGN heating can come in the form of shocks, buoyantly rising bubbles that have been inflated by radio lobes, and the dissipation of sound waves. PMID:20351250

  14. Interaction of metallic clusters with biologically active curcumin molecules

    NASA Astrophysics Data System (ADS)

    Gupta, Sanjeev K.; He, Haiying; Liu, Chunhui; Dutta, Ranu; Pandey, Ravindra

    2015-09-01

    We have investigated the interaction of subnano metallic Gd and Au clusters with curcumin, an important biomolecule having pharmacological activity. Gd clusters show different site preference to curcumin and much stronger interaction strength, in support of the successful synthesis of highly stable curcumin-coated Gd nanoparticles as reported recently. It can be attributed to significant charge transfer from the Gd cluster to curcumin together with a relatively strong hybridization of the Gd df-orbitals with curcumin p-orbitals. These results suggest that Gd nanoparticles can effectively be used as delivery carriers for curcumin at the cellular level for therapy and medical imaging applications.

  15. Thermal activation in statistical clusters of magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Hovorka, O.

    2017-02-01

    This article presents a kinetic Monte-Carlo study of thermally activated magnetisation dynamics in clusters of statistically distributed magnetic nanoparticles. The structure of clusters is assumed to be of fractal nature, consistently with recent observations of magnetic particle aggregation in cellular environments. The computed magnetisation relaxation decay and frequency-dependent hysteresis loops are seen to significantly depend on the fractal dimension of aggregates, leading to accelerated magnetisation relaxation and reduction in the size of hysteresis loops as the fractal dimension increases from one-dimensional-like to three-dimensional-like clusters. Discussed are implications for applications in nanomedicine, such as magnetic hyperthermia or magnetic particle imaging.

  16. Active galactic nucleus feedback in clusters of galaxies.

    PubMed

    Blanton, Elizabeth L; Clarke, T E; Sarazin, Craig L; Randall, Scott W; McNamara, Brian R

    2010-04-20

    Observations made during the last ten years with the Chandra X-ray Observatory have shed much light on the cooling gas in the centers of clusters of galaxies and the role of active galactic nucleus (AGN) heating. Cooling of the hot intracluster medium in cluster centers can feed the supermassive black holes found in the nuclei of the dominant cluster galaxies leading to AGN outbursts which can reheat the gas, suppressing cooling and large amounts of star formation. AGN heating can come in the form of shocks, buoyantly rising bubbles that have been inflated by radio lobes, and the dissipation of sound waves.

  17. Numerical simulation of multiple CME-driven shocks in the month of 2011 September

    NASA Astrophysics Data System (ADS)

    Wu, Chin-Chun; Liou, Kan; Vourlidas, Angelos; Plunkett, Simon; Dryer, Murray; Wu, S. T.; Socker, Dennis; Wood, Brian E.; Hutting, Lynn; Howard, Russell A.

    2016-03-01

    A global, three-dimensional (3-D) numerical simulation model has been employed to study the Sun-to-Earth propagation of multiple (12) coronal mass ejections (CMEs) and their associated shocks in September 2011. The inputs to the simulation are based on actual solar observations, which include the CME speeds, source locations, and photospheric magnetic fields. The simulation result is fine tuned with in situ solar wind data observations at 1 AU by matching the arrival time of CME-driven shocks. During this period three CME-driven interplanetary (IP) shocks induced three sizable geomagnetic storms on 9, 17, and 26 September, with Dst values reaching -69, -70, and -101 nT, respectively. These storm events signify the commencement of geomagnetic activity in the solar cycle 24. The CME propagation speed near the Sun (e.g., < 30 RS) has been widely used to estimate the interplanetary CME (ICME)/Shock arrival time at 1 AU. Our simulation indicates that the background solar wind speed, as expected, is an important controlling parameter in the propagation of IP shocks and CMEs. Prediction of the ICME/shock arrival time at 1 AU can be more problematic for slow (e.g., < 500 km s-1) than fast CMEs (>1000 km s-1). This is because the effect of the background solar wind is more pronounced for slow CMEs. Here we demonstrate this difficulty with a slow (400 km s-1) CME event that arrived at the Earth in 3 days instead of the predicted 4.3 days. Our results also demonstrate that a long period (a month in this case) of simulation may be necessary to make meaningful solar source geomagnetic storm associations.

  18. Interrater Reliability to Assure Valid Content in Peer Review of CME-Accredited Presentations

    ERIC Educational Resources Information Center

    Quigg, Mark; Lado, Fred A.

    2009-01-01

    Introduction: The Accreditation Council for Continuing Medical Education (ACCME) provides guidelines for continuing medical education (CME) materials to mitigate problems in the independence or validity of content in certified activities; however, the process of peer review of materials appears largely unstudied and the reproducibility of…

  19. Active Clustering with Model-Based Uncertainty Reduction.

    PubMed

    Xiong, Caiming; Johnson, David M; Corso, Jason J

    2017-01-01

    Semi-supervised clustering seeks to augment traditional clustering methods by incorporating side information provided via human expertise in order to increase the semantic meaningfulness of the resulting clusters. However, most current methods are passive in the sense that the side information is provided beforehand and selected randomly. This may require a large number of constraints, some of which could be redundant, unnecessary, or even detrimental to the clustering results. Thus in order to scale such semi-supervised algorithms to larger problems it is desirable to pursue an active clustering method-i.e., an algorithm that maximizes the effectiveness of the available human labor by only requesting human input where it will have the greatest impact. Here, we propose a novel online framework for active semi-supervised spectral clustering that selects pairwise constraints as clustering proceeds, based on the principle of uncertainty reduction. Using a first-order Taylor expansion, we decompose the expected uncertainty reduction problem into a gradient and a step-scale, computed via an application of matrix perturbation theory and cluster-assignment entropy, respectively. The resulting model is used to estimate the uncertainty reduction potential of each sample in the dataset. We then present the human user with pairwise queries with respect to only the best candidate sample. We evaluate our method using three different image datasets (faces, leaves and dogs), a set of common UCI machine learning datasets and a gene dataset. The results validate our decomposition formulation and show that our method is consistently superior to existing state-of-the-art techniques, as well as being robust to noise and to unknown numbers of clusters.

  20. Active Clustering with Model-Based Uncertainty Reduction.

    PubMed

    Xiong, Caiming; Johnson, David M; Corso, Jason J

    2016-03-09

    Semi-supervised clustering seeks to augment traditional clustering methods by incorporating side information provided via human expertise in order to increase the semantic meaningfulness of the resulting clusters. However, most current methods are passive in the sense that the side information is provided beforehand and selected randomly. This may require a large number of constraints, some of which could be redundant, unnecessary, or even detrimental to the clustering results. Thus in order to scale such semi-supervised algorithms to larger problems it is desirable to pursue an active clustering method- i.e. an algorithm that maximizes the effectiveness of the available human labor by only requesting human input where it will have the greatest impact. Here, we propose a novel online framework for active semi-supervised spectral clustering that selects pairwise constraints as clustering proceeds, based on the principle of uncertainty reduction. Using a first-order Taylor expansion, we decompose the expected uncertainty reduction problem into a gradient and a step-scale, computed via an application of matrix perturbation theory and cluster-assignment entropy, respectively. The resulting model is used to estimate the uncertainty reduction potential of each sample in the dataset. We then present the human user with pairwise queries with respect to only the best candidate sample. We evaluate our method using three different image datasets (faces, leaves and dogs), a set of common UCI machine learning datasets and a gene dataset. The results validate our decomposition formulation and show that our method is consistently superior to existing state-of-the-art techniques, as well as being robust to noise and to unknown numbers of clusters.

  1. Ly-alpha and white light observations of a CME during the Spartan 201-1 mission

    NASA Technical Reports Server (NTRS)

    Hassler, Don M.; Strachan, Leonard; Gardner, L. D.; Kohl, J. L.; Guhathakurta, Madhulika; Fisher, Richard R.; Strong, K.

    1994-01-01

    A coronal mass ejection (CME) near a large active region on the west limb was observed with the white light coronograph (WLC) and ultraviolet coronal spectrometer (UVCS) on the Spartan 201 satellite at 9:42 UT on 12 Apr. 1993. Soft X-ray images of the region below the CME were obtained out to 1.7 solar radii with the soft X-ray telescope (SXT) on Yohkoh. After the event, the formation of a new helmet streamer could be seen in the polarized brightness (pB) images from the Mk III coronograph at Mauna Loa. The CME was observed from Spartan 201 in two different pB images obtained 14 min apart using the WLC, and was observed moving through the field-of-view of the UVCS integrated intensity slit. Ly-alpha intensities in the same region of the corona were obtained one orbit earlier (prior to the CME) using the Ly-alpha profile slit of the UVCS. These are the first Ly-alpha observations of a CME and may help constrain models of the electron temperature on CME's.

  2. A comparative evaluation of the effect of internet-based CME delivery format on satisfaction, knowledge and confidence

    PubMed Central

    2010-01-01

    Background Internet-based instruction in continuing medical education (CME) has been associated with favorable outcomes. However, more direct comparative studies of different Internet-based interventions, instructional methods, presentation formats, and approaches to implementation are needed. The purpose of this study was to conduct a comparative evaluation of two Internet-based CME delivery formats and the effect on satisfaction, knowledge and confidence outcomes. Methods Evaluative outcomes of two differing formats of an Internet-based CME course with identical subject matter were compared. A Scheduled Group Learning format involved case-based asynchronous discussions with peers and a facilitator over a scheduled 3-week delivery period. An eCME On Demand format did not include facilitated discussion and was not based on a schedule; participants could start and finish at any time. A retrospective, pre-post evaluation study design comparing identical satisfaction, knowledge and confidence outcome measures was conducted. Results Participants in the Scheduled Group Learning format reported significantly higher mean satisfaction ratings in some areas, performed significantly higher on a post-knowledge assessment and reported significantly higher post-confidence scores than participants in the eCME On Demand format that was not scheduled and did not include facilitated discussion activity. Conclusions The findings support the instructional benefits of a scheduled delivery format and facilitated asynchronous discussion in Internet-based CME. PMID:20113493

  3. Filament-Prominence-Cme Magnetic Evolution Study

    NASA Astrophysics Data System (ADS)

    Bagala', L. G.; Mandrini, C. H.; Fernandez Borda, R.; de Pontieu, B.; Rovira, M. G.; Rank, G.

    1999-10-01

    The first results of the SOHO Joint Observation Program JOP 99 are outlined. JOP 99 involve several SOHO instruments (CDS, LASCO, MDI), together with TRACE, and two new ground-based instruments: HASTA (Hα Solar Telescope for Argentina) and MICA (Mirror Coronagraph for Argentina). The proposed program have a new motivation in taking advantage of the capabilities of the TRACE instrument, together with our experience in magnetic reconnection. The objective here is focused on the investigation of the conditions of the eruption of a prominence, often associated with the CME. JOP 99 is running at the moment that this abstract is submitted. It is a 5-days study of the filament/prominence, with 3-4 days observing the disk and 1-2 days observing the limb. While on disk, we will look for the eruption signatures in two ways: by studying the physical conditions in the filament and its surroundings (densities, temperature, abundances), and by looking at the magnetic topology changes. While at the limb, we will wait with luck for an eruption. If it does happen, LASCO and MICA observations will study if there exists an associated CME.

  4. Homologous Flare-CME Events and Their Metric Type II Radio Burst Association

    NASA Technical Reports Server (NTRS)

    Yashiro, S.; Gopalswamy, N.; Makela, P.; Akiyama, S.; Uddin, W.; Srivastava, A. K.; Joshi, N. C.; Chandra, R.; Manoharan, P. K.; Mahalakshmi, K.; Dwivedi, V. C.; Jain, R.; Awasthi, A. K.; Nitta, N. V.; Aschwanden, M. J.; Choudhary, D. P.

    2014-01-01

    Active region NOAA 11158 produced many flares during its disk passage. At least two of these flares can be considered as homologous: the C6.6 flare at 06:51 UT and C9.4 flare at 12:41 UT on February 14, 2011. Both flares occurred at the same location (eastern edge of the active region) and have a similar decay of the GOES soft X-ray light curve. The associated coronal mass ejections (CMEs) were slow (334 and 337 km/s) and of similar apparent widths (43deg and 44deg), but they had different radio signatures. The second event was associated with a metric type II burst while the first one was not. The COR1 coronagraphs on board the STEREO spacecraft clearly show that the second CME propagated into the preceding CME that occurred 50 min before. These observations suggest that CME-CME interaction might be a key process in exciting the type II radio emission by slow CMEs.

  5. The Nature of CME-flare Associated Coronal Dimming

    NASA Astrophysics Data System (ADS)

    Cheng, J.; Qiu, J.; Sullivan, S.

    2014-12-01

    Coronal mass ejections (CMEs) are often accompanied by coronal dimming evident in extreme ultraviolet (EUV) and soft X-ray observations. The locations of dimming are sometimes considered to map foot-points of the erupting flux rope. As emitting material expands in the corona, the decreased plasma density leads to reduced emission observed in spectral and irradiance measurements. Therefore, signatures of dimming may be used to diagnose initiation of CMEs. We analyze three events of flare, CME, and coronal dimming. Data from the Solar Dynamics Observatorys Atmospheric Imaging Assembly (AIA) and EUV variability Experiment (EVE) are used for observations of the dimming, and the Solar Terrestrial Relations Observatorys EUVI, COR1 and COR2 are used to obtain velocity for the associated CMEs. We also calculate the magnetic reconnection rate from the Helioseismic and Magnetic (HMI) combined with AIA 1600. The magnetic reconnection fluxes are correlated well with CME height profiles while the reconnection rate peaks at the CME acceleration maximum. In two events, the dimming light curve also shows good correlation with the CME height evolution. We model the dimming evolution based on several different assumptions of CME expansion: isothermal or adiabatic, self-similar or one-dimensional. The observed dimming light curves agree with the calculations based on one dimensional, isothermal CME expansion model. Dimming in the third event cannot be described by the above CME expansion models, and we speculate that the nature of dimming associated with the third CME event is different from the other two.

  6. Attendees' Perceptions of Commercial Influence in Noncommercially Funded CME Programs

    ERIC Educational Resources Information Center

    Goldfarb, Elizabeth; Baer, Lee; Fromson, John A.; Gorrindo, Tristan; Iodice, Kristin E.; Birnbaum, Robert J.

    2012-01-01

    Introduction: The controversy surrounding commercial support for continuing medical education (CME) programs has led to policy changes, but data show no significant difference in perceived bias between commercial and noncommercial CME. Indeed, what attendees perceive as commercial influence is not fully understood. We sought to clarify what…

  7. Feasibility of a Knowledge Translation CME Program: "Courriels Cochrane"

    ERIC Educational Resources Information Center

    Pluye, Pierre; Grad, Roland; Granikov, Vera; Theriault, Guylene; Fremont, Pierre; Burnand, Bernard; Mercer, Jay; Marlow, Bernard; Arroll, Bruce; Luconi, Francesca; Legare, France; Labrecque, Michel; Ladouceur, Roger; Bouthillier, France; Sridhar, Soumya Bindiganavile; Moscovici, Jonathan

    2012-01-01

    Introduction: Systematic literature reviews provide best evidence, but are underused by clinicians. Thus, integrating Cochrane reviews into continuing medical education (CME) is challenging. We designed a pilot CME program where summaries of Cochrane reviews ("Courriels Cochrane") were disseminated by e-mail. Program participants…

  8. Modeling Extreme Space Weather Scenarios: July 23, 2012 Rare-Type CME

    NASA Astrophysics Data System (ADS)

    Ngwira, C. M.; Pulkkinen, A. A.

    2014-12-01

    Space weather is a major concern for modern day society because of its adverse impacts on technological infrastructure such as power grids, oil pipelines, and global navigation systems. Particularly, earth directed coronal mass ejections (CMEs) are the main drivers of the most extreme geomagnetic storms in the near-Earth space environment. On 23 July 2012, NASA's Solar Terrestrial Relations Observatory-Ahead (STEREO-A) spacecraft observed in situ an extremely fast CME that traveled 0.96 astronomical units (~1 AU) in about 19 h. In our study, we use the Space Weather Modeling Framework (SWMF), a 3-D MHD based code, to perform simulations of this rare CME by considering STEREO-A in situ observations to represent the upstream L1 solar wind boundary conditions. The goal of the study is to investigate what would have happened if this Rare-type CME was Earth-bound. Global SWMF-generated ground geomagnetic field perturbations are used to compute the simulated induced geoelectric field at specific ground-based active magnetometer sites. Simulation results show that the July 23 CME would have produced ground effects comparable to previously observed extreme geomagnetic storms such as the Halloween 2003 storm. In addition, we discuss how this study compares to other independent studies on this same event.

  9. Digital Wave Processor Products in the Cluster Active Archive

    NASA Astrophysics Data System (ADS)

    Yearby, K. H.; Alleyne, H. St. C.; Walker, S. N.; Bates, I.; Gough, M. P.; Buckley, A.; Carozzi, T. D.

    The Digital Wave Processor (DWP) is the central control and data processing instrument for the Cluster Wave Experiment Consortium. DWP products in the Cluster Active Archive (CAA) provide a mainly supporting function for the rest of the consortium. This includes a time correction dataset which allows the standard timing accuracy of 2 ms to be improved to around 20 μs, and experiment command and status datasets which show what commands have been sent to the experiments, and the resulting status. DWP also contains a particle correlator experiment that computes the auto-correlation of electron counts received by the PEACE electron experiment via an inter-experiment link.

  10. Flux Cancellation Leading to CME Filament Eruptions

    NASA Technical Reports Server (NTRS)

    Popescu, Roxana M.; Panesar, Navdeep K.; Sterling, Alphonse C.; Moore, Ronald L.

    2016-01-01

    Solar filaments are strands of relatively cool, dense plasma magnetically suspended in the lower density hotter solar corona. They trace magnetic polarity inversion lines (PILs) in the photosphere below, and are supported against gravity at heights of up to approx.100 Mm above the chromosphere by the magnetic field in and around them. This field erupts when it is rendered unstable, often by magnetic flux cancellation or emergence at or near the PIL. We have studied the evolution of photospheric magnetic flux leading to ten observed filament eruptions. Specifically, we look for gradual magnetic changes in the neighborhood of the PIL prior to and during eruption. We use Extreme Ultraviolet (EUV) images from the Atmospheric Imaging Assembly (AIA), and magnetograms from the Helioseismic and Magnetic Imager (HMI), both on board the Solar Dynamics Observatory (SDO), to study filament eruptions and their photospheric magnetic fields. We examine whether flux cancellation or/and emergence leads to filament eruptions. We find that continuous flux cancellation was present at the PIL for many hours prior to each eruption. We present two CME-producing eruptions in detail and find the following: (a) the pre-eruption filament-holding core field is highly sheared and appears in the shape of a sigmoid above the PIL; (b) at the start of the eruption the opposite arms of the sigmoid reconnect in the middle above the site of (tether-cutting) flux cancellation at the PIL; (c) the filaments first show a slow-rise, followed by a fast-rise as they erupt. We conclude that these two filament eruptions result from flux cancellation in the middle of the sheared field, and thereafter evolve in agreement with the standard model for a CME/flare filament eruption from a closed bipolar magnetic field [flux cancellation (van Ballegooijen and Martens 1989 and Moore and Roumelrotis 1992) and runaway tether-cutting (Moore et. al 2001)].

  11. CME Interaction with Large-Scale Coronal Structures

    NASA Technical Reports Server (NTRS)

    Gopalswarny, Nat

    2012-01-01

    This talk presents some key observations that highlight the importance of CME interaction with other large scale structures such as CMEs and coronal holes . Such interactions depend on the phase of the solar cycle: during maximum, CMEs are ejected more frequently, so CME-CME interaction becomes dominant. During the rise phase, the polar coronal holes are strong, so the interaction between polar coronal holes and CMEs is important, which also leads to a possible increase in the number of interplanetary CMEs observed as magnetic clouds. During the declining phase, there are more equatorial coronal holes, so CMEs originating near these coronal holes are easily deflected. CMEs can be deflected toward and away from the Sun-Earth line resulting in interesting geospace consequences. For example, the largest geomagnetic storm of solar cycle 23 was due to a CME that was deflected towards the Sun-earth line from E22. CME deflection away from the Sun-Earth line diminishes the chance of a CME producing a geomagnetic storm. CME interaction in the coronagraphic field of view was first identified using enhanced radio emission, which is an indication of acceleration of low energy (approx.10 keV) electrons in the interaction site. CME interaction, therefore, may also have implications for proton acceleration. For example, solar energetic particle events typically occur with a higher intensity, whenever multiple CMEs occur in quick succession from the same source region. CME deflection may also have implications to the arrival of energetic particles to earth because magnetic connectivity may be changed by the interaction. I illustrate the above points using examples from SOHO, STEREO, Wind, and ACE data .

  12. The WHISPER Relaxation Sounder and the CLUSTER Active Archive

    NASA Astrophysics Data System (ADS)

    Trotignon, J. G.; Décréau, P. M. E.; Rauch, J. L.; Vallières, X.; Rochel, A.; Kougblénou, S.; Lointier, G.; Facskó, G.; Canu, P.; Darrouzet, F.; Masson, A.

    The Waves of HIgh frequency and Sounder for Probing of Electron density by Relaxation (WHISPER) instrument is part of the Wave Experiment Consortium (WEC) of the CLUSTER mission. With the help of the long double sphere antennae of the Electric Field and Wave (EFW) instrument and the Digital Wave Processor (DWP), it delivers active (sounding) and natural (transmitter off) electric field spectra, respectively from 4 to 82 kHz, and from 2 to 80 kHz. These frequency ranges have been chosen to include the electron plasma frequency, which is closely related to the total electron density, in most of the regions encountered by the CLUSTER spacecraft. Presented here is an overview of the WHISPER data products available in the CLUSTER Active Archive (CAA). The instrument and its performance are first recalled. The way the WHISPER products are obtained is then described, with particular attention being paid to the density determination. Both sounding and natural measurements are commonly used in this process, which depends on the ambient plasma regime. This is illustrated using drawings similar to the Bryant plots commonly used in the CLUSTER master science plan. These give a clear overview of typical density values and the parts of the orbits where they are obtained. More information on the applied software or on the quality/reliability of the density determination can also be highlighted.

  13. STAR FORMATION ACTIVITY IN CLASH BRIGHTEST CLUSTER GALAXIES

    SciTech Connect

    Fogarty, Kevin; Postman, Marc; Connor, Thomas; Donahue, Megan; Moustakas, John

    2015-11-10

    The CLASH X-ray selected sample of 20 galaxy clusters contains 10 brightest cluster galaxies (BCGs) that exhibit significant (>5σ) extinction-corrected star formation rates (SFRs). Star formation activity is inferred from photometric estimates of UV and Hα+[N ii] emission in knots and filaments detected in CLASH Hubble Space Telescope ACS and WFC3 observations. UV-derived SFRs in these BCGs span two orders of magnitude, including two with a SFR ≳ 100 M{sub ⊙} yr{sup −1}. These measurements are supplemented with [O ii], [O iii], and Hβ fluxes measured from spectra obtained with the SOAR telescope. We confirm that photoionization from ongoing star formation powers the line emission nebulae in these BCGs, although in many BCGs there is also evidence of a LINER-like contribution to the line emission. Coupling these data with Chandra X-ray measurements, we infer that the star formation occurs exclusively in low-entropy cluster cores and exhibits a correlation with gas properties related to cooling. We also perform an in-depth study of the starburst history of the BCG in the cluster RXJ1532.9+3021, and create 2D maps of stellar properties on scales down to ∼350 pc. These maps reveal evidence for an ongoing burst occurring in elongated filaments, generally on ∼0.5–1.0 Gyr timescales, although some filaments are consistent with much younger (≲100 Myr) burst timescales and may be correlated with recent activity from the active galactic nucleus. The relationship between BCG SFRs and the surrounding intracluster medium gas properties provide new support for the process of feedback-regulated cooling in galaxy clusters and is consistent with recent theoretical predictions.

  14. Emission line galaxies and active galactic nuclei in WINGS clusters

    NASA Astrophysics Data System (ADS)

    Marziani, P.; D'Onofrio, M.; Bettoni, D.; Poggianti, B. M.; Moretti, A.; Fasano, G.; Fritz, J.; Cava, A.; Varela, J.; Omizzolo, A.

    2017-03-01

    We present the analysis of the emission line galaxies members of 46 low-redshift (0.04 < z < 0.07) clusters observed by WINGS (WIde-field Nearby Galaxy cluster Survey). Emission line galaxies were identified following criteria that are meant to minimize biases against non-star-forming galaxies and classified employing diagnostic diagrams. We examined the emission line properties and frequencies of star-forming galaxies, transition objects, and active galactic nuclei (AGNs: LINERs and Seyferts), unclassified galaxies with emission lines, and quiescent galaxies with no detectable line emission. A deficit of emission line galaxies in the cluster environment is indicated by both a lower frequency, and a systematically lower Balmer emission line equivalent width and luminosity with respect to control samples; this implies a lower amount of ionized gas per unit mass and a lower star formation rate if the source is classified as Hii region. A sizable population of transition objects and of low-luminosity LINERs (≈ 10-20% of all emission line galaxies) are detected among WINGS cluster galaxies. These sources are a factor of ≈1.5 more frequent, or at least as frequent, as in control samples with respect to Hii sources. Transition objects and LINERs in clusters are most affected in terms ofline equivalent width by the environment and appear predominantly consistent with so-called retired galaxies. Shock heating can be a possible gas excitation mechanism that is able to account for observed line ratios. Specific to the cluster environment, we suggest interaction between atomic and molecular gas and the intracluster medium as a possible physical cause of line-emitting shocks. The data whose description is provided in Table B.1, and emission line catalog of the WINGS database are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/599/A83

  15. Quenching of the star formation activity in cluster galaxies

    NASA Astrophysics Data System (ADS)

    Boselli, A.; Roehlly, Y.; Fossati, M.; Buat, V.; Boissier, S.; Boquien, M.; Burgarella, D.; Ciesla, L.; Gavazzi, G.; Serra, P.

    2016-11-01

    We study the star formation quenching mechanism in cluster galaxies by fitting the spectral energy distribution (SED) of the Herschel Reference Survey, a complete volume-limited K-band-selected sample of nearby galaxies including objects in different density regions, from the core of the Virgo cluster to the general field. The SEDs of the target galaxies were fitted using the CIGALE SED modelling code. The truncated activity of cluster galaxies was parametrised using a specific star formation history with two free parameters, the quenching age QA and the quenching factor QF. These two parameters are crucial for the identification of the quenching mechanism, which acts on long timescales when starvation processes are at work, but is rapid and efficient when ram pressure occurs. To be sensitive to an abrupt and recent variation of the star formation activity, we combined twenty photometric bands in the UV to far-infrared in a new way with three age-sensitive Balmer line absorption indices extracted from available medium-resolution (R 1000) integrated spectroscopy and with Hα narrow-band imaging data. The use of a truncated star formation history significantly increases the quality of the fit in HI-deficient galaxies of the sample, that is to say, in those objects whose atomic gas content has been removed during the interaction with the hostile cluster environment. The typical quenching age of the perturbed late-type galaxies is QA ≲ 300 Myr whenever the activity of star formation is reduced by 50% < QF ≤ 80% and QA ≲ 500 Myr for QF > 80%, while that of the quiescent early-type objects is QA ≃ 1-3 Gyr. The fraction of late-type galaxies with a star formation activity reduced by QF > 80% and with an HI-deficiency parameter HI-def > 0.4 drops by a factor of 5 from the inner half virial radius of the Virgo cluster (R/Rvir < 0.5), where the hot diffuse X-ray emitting gas of the cluster is located, to the outer regions (R/Rvir > 4). The efficient quenching of the

  16. CME front and severe space weather

    NASA Astrophysics Data System (ADS)

    Balan, N.; Skoug, R.; Tulasi Ram, S.; Rajesh, P. K.; Shiokawa, K.; Otsuka, Y.; Batista, I. S.; Ebihara, Y.; Nakamura, T.

    2014-12-01

    Thanks to the work of a number of scientists who made it known that severe space weather can cause extensive social and economic disruptions in the modern high-technology society. It is therefore important to understand what determines the severity of space weather and whether it can be predicted. We present results obtained from the analysis of coronal mass ejections (CMEs), solar energetic particle (SEP) events, interplanetary magnetic field (IMF), CME-magnetosphere coupling, and geomagnetic storms associated with the major space weather events since 1998 by combining data from the ACE and GOES satellites with geomagnetic parameters and the Carrington event of 1859, the Quebec event of 1989, and an event in 1958. The results seem to indicate that (1) it is the impulsive energy mainly due to the impulsive velocity and orientation of IMF Bz at the leading edge of the CMEs (or CME front) that determine the severity of space weather. (2) CMEs having high impulsive velocity (sudden nonfluctuating increase by over 275 km s-1 over the background) caused severe space weather (SvSW) in the heliosphere (failure of the solar wind ion mode of Solar Wind Electron Proton Alpha Monitor in ACE) probably by suddenly accelerating the high-energy particles in the SEPs ahead directly or through the shocks. (3) The impact of such CMEs which also show the IMF Bz southward from the leading edge caused SvSW at the Earth including extreme geomagnetic storms of mean DstMP < -250 nT during main phases, and the known electric power outages happened during some of these SvSW events. (4) The higher the impulsive velocity, the more severe the space weather, like faster weather fronts and tsunami fronts causing more severe damage through impulsive action. (5) The CMEs having IMF Bz northward at the leading edge do not seem to cause SvSW on Earth, although, later when the IMF Bz turns southward, they can lead to super geomagnetic storms of intensity (Dstmin) less than even -400 nT.

  17. Active spacecraft potential control: An ion emitter experiment. [Cluster mission

    NASA Technical Reports Server (NTRS)

    Riedler, W.; Goldstein, R.; Hamelin, M.; Maehlum, B. N.; Troim, J.; Olsen, R. C.; Pedersen, A.; Grard, R. J. L.; Schmidt, R.; Rudenauer, F.

    1988-01-01

    The cluster spacecraft are instrumented with ion emitters for charge neutralization. The emitters produce indium ions at 6 keV. The ion current is adjusted in a feedback loop with instruments measuring the spacecraft potential. The system is based on the evaporation of indium in the apex field of a needle. The design of the active spacecraft potential control instruments, and the ion emitters is presented.

  18. Composition and topology of activity cliff clusters formed by bioactive compounds.

    PubMed

    Stumpfe, Dagmar; Dimova, Dilyana; Bajorath, Jürgen

    2014-02-24

    The assessment of activity cliffs has thus far mostly focused on compound pairs, although the majority of activity cliffs are not formed in isolation but in a coordinated manner involving multiple active compounds and cliffs. However, the composition of coordinated activity cliff configurations and their topologies are unknown. Therefore, we have identified all activity cliff configurations formed by currently available bioactive compounds and analyzed them in network representations where activity cliff configurations occur as clusters. The composition, topology, frequency of occurrence, and target distribution of activity cliff clusters have been determined. A limited number of large cliff clusters with unique topologies were identified that were centers of activity cliff formation. These clusters originated from a small number of target sets. However, most clusters were of small to moderate size. Three basic topologies were sufficient to describe recurrent activity cliff cluster motifs/topologies. For example, frequently occurring clusters with star topology determined the scale-free character of the global activity cliff network and represented a characteristic activity cliff configuration. Large clusters with complex topology were often found to contain different combinations of basic topologies. Our study provides a first view of activity cliff configurations formed by currently available bioactive compounds and of the recurrent topologies of activity cliff clusters. Activity cliff clusters of defined topology can be selected, and from compounds forming the clusters, SAR information can be obtained. The SAR information of activity cliff clusters sharing a/one specific activity and topology can be compared.

  19. SOHO Captures CME From X5.4 Solar Flare

    NASA Video Gallery

    The Solar Heliospheric Observatory (SOHO) captured this movie of the sun's coronal mass ejection (CME) associated with an X5.4 solar flare on the evening of March 6, 2012. The extremely fast and en...

  20. Cluster Ion Spectrometry (CIS) Data in the Cluster Active Archive (CAA)

    NASA Astrophysics Data System (ADS)

    Dandouras, I.; Barthe, A.; Penou, E.; Brunato, S.; Rème, H.; Kistler, L. M.; Bavassano-Cattaneo, M. B.; Blagau, A.

    The Cluster Active Archive (CAA) aims at preserving the four Cluster spacecraft data, so that they are usable in the long-term by the scientific community as well as by the instrument team PIs and Co-Is. This implies that the data are filed together with the descriptive and documentary elements making it possible to select and interpret them. The CIS (Cluster Ion Spectrometry) experiment is a comprehensive ionic plasma spectrometry package onboard the four Cluster spacecraft, capable of obtaining full three-dimensional ion distributions (about 0-40 keV/e) with a time resolution of one spacecraft spin (4 s) and with mass-per-charge composition determination. The CIS package consists of two different instruments, a Hot Ion Analyser (HIA) and a time-of-flight ion Composition Distribution Function (CODIF) analyser, plus a sophisticated dual-processor based instrument control and data processing system (DPS). For the archival of the CIS data a multi-level approach has been adopted. The CAA archival includes processed raw data (Level 1 data), moments of the ion distribution functions (Level 2 data), and calibrated high-resolution data in a variety of physical units (Level 3 data). The latter are 3-D ion distribution functions. In addition, a software package has been developed to allow the CAA user to interactively calculate partial or total moments of the ion distributions. The CIS data archive includes also experiment documentation, graphical products for browsing through the data, and data caveats. Given the complexity of an ion spectrometer, and the variety of its operational modes, each one being optimised for a different magnetospheric region or measurement objective, consultation of the data caveats by the end user will always be a necessary step in the data analysis.

  1. Prediction of shock arrival times from CME and flare data

    NASA Astrophysics Data System (ADS)

    Núñez, Marlon; Nieves-Chinchilla, Teresa; Pulkkinen, Antti

    2016-08-01

    This paper presents the Shock Arrival Model (SARM) for predicting shock arrival times for distances from 0.72 AU to 8.7 AU by using coronal mass ejections (CME) and flare data. SARM is an aerodynamic drag model described by a differential equation that has been calibrated with a data set of 120 shocks observed from 1997 to 2010 by minimizing the mean absolute error (MAE), normalized to 1 AU. SARM should be used with CME data (radial, earthward, or plane-of-sky speeds) and flare data (peak flux, duration, and location). In the case of 1 AU, the MAE and the median of absolute errors were 7.0 h and 5.0 h, respectively, using the available CME/flare data. The best results for 1 AU (an MAE of 5.8 h) were obtained using both CME data, either radial or cone model-estimated speeds, and flare data. For the prediction of shock arrivals at distances from 0.72 AU to 8.7 AU, the normalized MAE and the median were 7.1 h and 5.1 h, respectively, using the available CME/flare data. SARM was also calibrated to be used with CME data alone or flare data alone, obtaining normalized MAE errors of 8.9 h and 8.6 h, respectively, for all shock events. The model verification was carried out with an additional data set of 20 shocks observed from 2010 to 2012 with radial CME speeds to compare SARM with the empirical ESA model and the numerical MHD-based ENLIL model. The results show that the ENLIL's MAE was lower than the SARM's MAE, which was lower than the ESA's MAE. The SARM's best results were obtained when both flare and true CME speeds were used.

  2. The Nature of CME-flare-Associated Coronal Dimming

    NASA Astrophysics Data System (ADS)

    Cheng, J. X.; Qiu, J.

    2016-07-01

    Coronal mass ejections (CMEs) are often accompanied by coronal dimming that is evident in extreme ultraviolet (EUV) and soft X-ray observations. The locations of dimming are sometimes considered to map footpoints of the erupting flux rope. As the emitting material expands in the corona, the decreased plasma density leads to reduced emission observed in spectral and irradiance measurements. Therefore, signatures of dimming may reflect the properties of CMEs in the early phase of their eruption. In this study, we analyze the event of flare, CME, and coronal dimming on 2011 December 26. We use the data from the Atmospheric Imaging Assembly on the Solar Dynamics Observatory for disk observations of the dimming, and analyze images taken by EUVI, COR1, and COR2 on board the Solar Terrestrial Relations Observatory to obtain the height and velocity of the associated CMEs observed at the limb. We also measure the magnetic reconnection rate from flare observations. Dimming occurs in a few locations next to the flare ribbons, and it is observed in multiple EUV passbands. Rapid dimming starts after the onset of fast reconnection and CME acceleration, and its evolution tracks the CME height and flare reconnection. The spatial distribution of dimming exhibits cores of deep dimming with a rapid growth, and their light curves are approximately linearly scaled with the CME height profile. From the dimming analysis we infer the process of the CME expansion, and estimate properties of the CME.

  3. Nature of CME-flare Associated Coronal Dimming

    NASA Astrophysics Data System (ADS)

    Cheng, Jianxia; Qiu, Jiong

    2016-04-01

    Coronal mass ejections (CMEs) are often accompanied by coronal dimming evident in extreme ultraviolet (EUV) and soft X-ray observations. The locations of dimming are sometimes considered to map footpoints of the erupting flux rope. As emitting material expands in the corona, the decreased plasma density leads to reduced emission observed in spectral and irradiance measurements. Therefore, signatures of dimming may reflect properties of CMEs in the early phase of eruption. We analyze the event of flare, CME, and coronal dimming on December 26, 2011. Data from the Atmospheric Imaging Assembly (AIA) on Solar Dynamics Observatories (SDO) are used for disk observations of the dimming, and images taken by EUVI, COR1, and COR2 onboard the Solar Terrestrial Relations Observatories are used to obtain height and velocity of the associated CMEs observed at the limb. We also calculate magnetic reconnection rate from flare observations. Dimming occurs in a few locations next to flare ribbons, and is observed in multiple EUV passbands. Rapid dimming starts after onset of fast reconnection and CME acceleration, and its evolution well tracks the CME height and flare reconnection. Spatial distribution of dimming exhibits cores of deep dimming with rapid growth, and their light curves are approximately linearly scaled with the CME height profile. From dimming analysis, we infer the process of CME expansion, and estimate properties of the CME.

  4. Coronal Current Sheet Evolution in the Aftermath of a CME

    NASA Technical Reports Server (NTRS)

    Bemporad, A.; Poletto, G.; Suess, S. T.; Ko, Y.-K.; Schwadron, N. A.; Elliott, H. A.; Raymond, J. C.

    2005-01-01

    We report on SOHO-UVCS observations of coronal restructuring following a Coronal Mass Ejection (CME) on November 26, 2002, at the time of a SOHO-Ulysses quadrature campaign. Starting about 3 hours after the CME, which was directed towards Ulysses, UVCS began taking spectra at 1.7 solar radii, covering emission from both cool and hot plasma. Observations continued, with occasional gaps, for more than 2 days. Emission in the 974.8 Angstrom line of [Fe XVIII], indicating temperatures above 6x10(6) K, was observed throughout the campaign in a spatially limited location. Comparison with EIT images shows the [Fe XVIII] emission to overlie a growing post-flare loop system formed in the aftermath of the CME. The emission most likely originates in a current sheet overlying the arcade. Analysis of the [Fe XVIII] emission allows us to infer the evolution of physical parameters in the current sheet over the entire span of our observations: in particular, we give the temperature vs. time in the current sheet and estimate the density. Ulysses was directly above the location of the CME and intercepted the ejecta. High ionization state Fe was detected by SWICS throughout the magnetic cloud associated with the CME, although the rapid temporal variation suggests bursty, rather than smooth, reconnection in the coronal current sheet. Both the remote and in situ observations are compared with predictions of theoretical CME models.

  5. Current Sheet Evolution in the Aftermath of a CME Event

    NASA Technical Reports Server (NTRS)

    Bemporad, A.; Poletto, G.; Suess, S. T.; Ko, Y.-K.; Schwadron, N. A.; Elliott, H. A.; Raymond, J. C.

    2005-01-01

    We report on SOHO-UVCS observations of the coronal restructuring following a Coronal Mass Ejection (CME) on November 26,2002, at the time of a SOHO-Ulysses quadrature campaign. Starting about 3 hours after a CME in the NW quadrant, UVCS began taking spectra at 1.7 solar radius, covering emission from both cool and hot plasma. Observations continued, with occasional gaps, for more than 2 days. Emission in the 974.8 Angstrom line of [Fe XVIII], indicating temperatures above 6 x 10(exp 6) K, was observed throughout the campaign in a spatially limited location. Comparison with EIT images shows the Fe XVIII emission to overlie a growing post-flare loop system formed in the aftermath of the CME. The emission most likely originates in a current sheet overlying the arcade. Analysis of the [Fe XVIII] emission allows us to infer the evolution of physical parameters in the current sheet over the entire span of our observations: in particular, we give the temperature vs. time in the current sheet and estimate the density. At the time of the quadrature, Ulysses was directly above the location of the CME and intercepted the ejecta. High ionization state Fe was detected by Ulysses-SWICS throughout the magnetic cloud associated with the CME. Both the remote and in situ observations are compared with predictions of theoretical CME models.

  6. The SCEC Community Modeling Environment(SCEC/CME): A Collaboratory for Seismic Hazard Analysis

    NASA Astrophysics Data System (ADS)

    Maechling, P. J.; Jordan, T. H.; Minster, J. B.; Moore, R.; Kesselman, C.

    2005-12-01

    The SCEC Community Modeling Environment (SCEC/CME) Project is an NSF-supported Geosciences/IT partnership that is actively developing an advanced information infrastructure for system-level earthquake science in Southern California. This partnership includes SCEC, USC's Information Sciences Institute (ISI), the San Diego Supercomputer Center (SDSC), the Incorporated Institutions for Research in Seismology (IRIS), and the U.S. Geological Survey. The goal of the SCEC/CME is to develop seismological applications and information technology (IT) infrastructure to support the development of Seismic Hazard Analysis (SHA) programs and other geophysical simulations. The SHA application programs developed on the Project include a Probabilistic Seismic Hazard Analysis system called OpenSHA. OpenSHA computational elements that are currently available include a collection of attenuation relationships, and several Earthquake Rupture Forecasts (ERFs). Geophysicists in the collaboration have also developed Anelastic Wave Models (AWMs) using both finite-difference and finite-element approaches. Earthquake simulations using these codes have been run for a variety of earthquake sources. Rupture Dynamic Model (RDM) codes have also been developed that simulate friction-based fault slip. The SCEC/CME collaboration has also developed IT software and hardware infrastructure to support the development, execution, and analysis of these SHA programs. To support computationally expensive simulations, we have constructed a grid-based scientific workflow system. Using the SCEC grid, project collaborators can submit computations from the SCEC/CME servers to High Performance Computers at USC and TeraGrid High Performance Computing Centers. Data generated and archived by the SCEC/CME is stored in a digital library system, the Storage Resource Broker (SRB). This system provides a robust and secure system for maintaining the association between the data seta and their metadata. To provide an easy

  7. Evidence-based choices of physicians: a comparative analysis of physicians participating in Internet CME and non-participants

    PubMed Central

    2010-01-01

    Background The amount of medical education offered through the Internet continues to increase, providing unprecedented access for physicians nationwide. However, the process of evaluating these activities is ongoing. This study is a continuation of an earlier report that found online continuing medical education (CME) to be highly effective in making evidence-based decisions. Methods To determine the effectiveness of 114 Internet CME activities, case vignette-based surveys were administered to U.S.-practicing physicians immediately following participation, and to a representative control group of non-participants. Survey responses were analyzed based on evidence presented in the content of CME activities. An effect size for each activity was calculated using Cohen's d to determine the amount of difference between the two groups in the likelihood of making evidence-based clinical decisions. Results In a sample of 17,142 U.S. physicians, of the more than 350,000 physicians who participated in 114 activities, the average effect size was 0.82. This indicates an increased likelihood of 48% that physicians participating in online activities were making clinical choices based on evidence. Conclusion Physicians who participated in online CME activities continue to be more likely to make evidence-based clinical choices than non-participants in response to clinical case vignettes. PMID:20537144

  8. Asymmetry in the CME-CME interaction process for the events from 2011 February 14-15

    SciTech Connect

    Temmer, M.; Veronig, A. M.; Peinhart, V.; Vršnak, B.

    2014-04-20

    We present a detailed study of the interaction process of two coronal mass ejections (CMEs) successively launched on 2011 February 14 (CME1) and 2011 February 15 (CME2). Reconstructing the three-dimensional shape and evolution of the flux ropes, we verify that the two CMEs interact. The frontal structure of both CMEs, measured along different position angles (PAs) over the entire latitudinal extent, reveals differences in the kinematics for the interacting flanks and the apexes. The interaction process is strongly PA-dependent in terms of timing as well as kinematical evolution. The central interaction occurs along PA-100°, which shows the strongest changes in kinematics. During interaction, CME1 accelerates from ∼400 km s{sup –1} to ∼700 km s{sup –1} and CME2 decelerates from ∼1300 km s{sup –1} to ∼600 km s{sup –1}. Our results indicate that a simplified scenario such as inelastic collision may not be sufficient to describe the CME-CME interaction. The magnetic field structures of the intertwining flux ropes and the momentum transfer due to shocks each play an important role in the interaction process.

  9. Effect of gravitational stratification on the propagation of a CME

    NASA Astrophysics Data System (ADS)

    Pagano, P.; Mackay, D. H.; Poedts, S.

    2013-12-01

    Context. Coronal mass ejections (CMEs) are the most violent phenomenon found on the Sun. One model that explains their occurrence is the flux rope ejection model. A magnetic flux rope is ejected from the solar corona and reaches the interplanetary space where it interacts with the pre-existing magnetic fields and plasma. Both gravity and the stratification of the corona affect the early evolution of the flux rope. Aims: Our aim is to study the role of gravitational stratification on the propagation of CMEs. In particular, we assess how it influences the speed and shape of CMEs and under what conditions the flux rope ejection becomes a CME or when it is quenched. Methods: We ran a set of MHD simulations that adopt an eruptive initial magnetic configuration that has already been shown to be suitable for a flux rope ejection. We varied the temperature of the backgroud corona and the intensity of the initial magnetic field to tune the gravitational stratification and the amount of ejected magnetic flux. We used an automatic technique to track the expansion and the propagation of the magnetic flux rope in the MHD simulations. From the analysis of the parameter space, we evaluate the role of gravitational stratification on the CME speed and expansion. Results: Our study shows that gravitational stratification plays a significant role in determining whether the flux rope ejection will turn into a full CME or whether the magnetic flux rope will stop in the corona. The CME speed is affected by the background corona where it travels faster when the corona is colder and when the initial magnetic field is more intense. The fastest CME we reproduce in our parameter space travels at ~850 km s-1. Moreover, the background gravitational stratification plays a role in the side expansion of the CME, and we find that when the background temperature is higher, the resulting shape of the CME is flattened more. Conclusions: Our study shows that although the initiation mechanisms of the

  10. Star Formation Activity in CLASH Brightest Cluster Galaxies

    NASA Astrophysics Data System (ADS)

    Fogarty, Kevin; Postman, Marc; Connor, Thomas; Donahue, Megan; Moustakas, John

    2015-11-01

    The CLASH X-ray selected sample of 20 galaxy clusters contains 10 brightest cluster galaxies (BCGs) that exhibit significant (>5σ) extinction-corrected star formation rates (SFRs). Star formation activity is inferred from photometric estimates of UV and Hα+[N ii] emission in knots and filaments detected in CLASH Hubble Space Telescope ACS and WFC3 observations. UV-derived SFRs in these BCGs span two orders of magnitude, including two with a SFR ≳ 100 M⊙ yr-1. These measurements are supplemented with [O ii], [O iii], and Hβ fluxes measured from spectra obtained with the SOAR telescope. We confirm that photoionization from ongoing star formation powers the line emission nebulae in these BCGs, although in many BCGs there is also evidence of a LINER-like contribution to the line emission. Coupling these data with Chandra X-ray measurements, we infer that the star formation occurs exclusively in low-entropy cluster cores and exhibits a correlation with gas properties related to cooling. We also perform an in-depth study of the starburst history of the BCG in the cluster RXJ1532.9+3021, and create 2D maps of stellar properties on scales down to ˜350 pc. These maps reveal evidence for an ongoing burst occurring in elongated filaments, generally on ˜0.5-1.0 Gyr timescales, although some filaments are consistent with much younger (≲100 Myr) burst timescales and may be correlated with recent activity from the active galactic nucleus. The relationship between BCG SFRs and the surrounding intracluster medium gas properties provide new support for the process of feedback-regulated cooling in galaxy clusters and is consistent with recent theoretical predictions. Based on observations obtained at the Southern Astrophysical Research (SOAR) telescope, which is a joint project of the Ministério da Ciência, Tecnologia, e Inovação (MCTI) da República Federativa do Brasil, the U.S. National Optical Astronomy Observatory (NOAO), the University of North Carolina at Chapel

  11. Chandra Finds Surprising Black Hole Activity In Galaxy Cluster

    NASA Astrophysics Data System (ADS)

    2002-09-01

    Scientists at the Carnegie Observatories in Pasadena, California, have uncovered six times the expected number of active, supermassive black holes in a single viewing of a cluster of galaxies, a finding that has profound implications for theories as to how old galaxies fuel the growth of their central black holes. The finding suggests that voracious, central black holes might be as common in old, red galaxies as they are in younger, blue galaxies, a surprise to many astronomers. The team made this discovery with NASA'S Chandra X-ray Observatory. They also used Carnegie's 6.5-meter Walter Baade Telescope at the Las Campanas Observatory in Chile for follow-up optical observations. "This changes our view of galaxy clusters as the retirement homes for old and quiet black holes," said Dr. Paul Martini, lead author on a paper describing the results that appears in the September 10 issue of The Astrophysical Journal Letters. "The question now is, how do these black holes produce bright X-ray sources, similar to what we see from much younger galaxies?" Typical of the black hole phenomenon, the cores of these active galaxies are luminous in X-ray radiation. Yet, they are obscured, and thus essentially undetectable in the radio, infrared and optical wavebands. "X rays can penetrate obscuring gas and dust as easily as they penetrate the soft tissue of the human body to look for broken bones," said co-author Dr. Dan Kelson. "So, with Chandra, we can peer through the dust and we have found that even ancient galaxies with 10-billion-year-old stars can have central black holes still actively pulling in copious amounts of interstellar gas. This activity has simply been hidden from us all this time. This means these galaxies aren't over the hill after all and our theories need to be revised." Scientists say that supermassive black holes -- having the mass of millions to billions of suns squeezed into a region about the size of our Solar System -- are the engines in the cores of

  12. The propagation of a CME front in 3D

    NASA Astrophysics Data System (ADS)

    Maloney, Shane; Byrne, Jason; Gallagher, Peter T.; McAteer, R. T. James

    We present a new three-dimensional (3D) reconstruction of an Earth-directed coronal mass ejec-tion (CME), providing new insight into the processes that control its evolution and propagation. Previously limited fields-of-view and single vantage point observations made it impossible to confidently describe CMEs in 3D. This uncertainty in a CME's position and geometry made comparison to theory difficult and hindered progress. Our 3D reconstruction unambiguously shows three effects at play on the CME: deflection from a high latitude source region, angular width expansion, and interplanetary drag. The CME undergoes a deflection of ˜20° degrees below 10 RSun and slowly tends towards the ecliptic throughout its subsequent propagation. We interpret this deflection as a direct result of the interplay between the CME and the drawn-out dipolar topology of the (solar minimum) coronal magnetic field. The increasing angular width is in excess of that due to simple spherical expansion in the diverging solar wind so an additional source of expansion must be present. The additional source is inferred to be a pressure gradient between the internal pressure (magnetic and gas) of the flux rope relative to the ambient solar wind pressure. Low in the corona there is rapid expansion due to a large pressure difference, but further out the CME approaches equilibrium with the solar wind, and the angular width tends to a constant. The 3D reconstruction allows us to accurately determine the CME kinematics, and we show unambiguously that the interplanetary acceleration is due to aerodynamic drag. Furthermore we derive parameters from our reconstruction that act as inputs to an ENLIL model of the CME's propagation to Earth. The results show the CME undergoes a significant degrease in velocity where it encounters a slow-speed solar wind stream ahead of it (>50 RSun ). This lower velocity agrees with the derived velocity from in-situ data at the L1 point and predicts the correct arrival time

  13. CME impact on comet 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Edberg, Niklas J. T.; Alho, M.; André, M.; Andrews, D. J.; Behar, E.; Burch, J. L.; Carr, C. M.; Cupido, E.; Engelhardt, I. A. D.; Eriksson, A. I.; Glassmeier, K.-H.; Goetz, C.; Goldstein, R.; Henri, P.; Johansson, F. L.; Koenders, C.; Mandt, K.; Möstl, C.; Nilsson, H.; Odelstad, E.; Richter, I.; Simon Wedlund, C.; Stenberg Wieser, G.; Szego, K.; Vigren, E.; Volwerk, M.

    2016-11-01

    We present Rosetta observations from comet 67P/Churyumov-Gerasimenko during the impact of a coronal mass ejection (CME). The CME impacted on 2015 Oct 5-6, when Rosetta was about 800 km from the comet nucleus, and 1.4 au from the Sun. Upon impact, the plasma environment is compressed to the level that solar wind ions, not seen a few days earlier when at 1500 km, now reach Rosetta. In response to the compression, the flux of suprathermal electrons increases by a factor of 5-10 and the background magnetic field strength increases by a factor of ˜2.5. The plasma density increases by a factor of 10 and reaches 600 cm-3, due to increased particle impact ionization, charge exchange and the adiabatic compression of the plasma environment. We also observe unprecedentedly large magnetic field spikes at 800 km, reaching above 200 nT, which are interpreted as magnetic flux ropes. We suggest that these could possibly be formed by magnetic reconnection processes in the coma as the magnetic field across the CME changes polarity, or as a consequence of strong shears causing Kelvin-Helmholtz instabilities in the plasma flow. Due to the limited orbit of Rosetta, we are not able to observe if a tail disconnection occurs during the CME impact, which could be expected based on previous remote observations of other CME-comet interactions.

  14. On the Accurate Prediction of CME Arrival At the Earth

    NASA Astrophysics Data System (ADS)

    Zhang, Jie; Hess, Phillip

    2016-07-01

    We will discuss relevant issues regarding the accurate prediction of CME arrival at the Earth, from both observational and theoretical points of view. In particular, we clarify the importance of separating the study of CME ejecta from the ejecta-driven shock in interplanetary CMEs (ICMEs). For a number of CME-ICME events well observed by SOHO/LASCO, STEREO-A and STEREO-B, we carry out the 3-D measurements by superimposing geometries onto both the ejecta and sheath separately. These measurements are then used to constrain a Drag-Based Model, which is improved through a modification of including height dependence of the drag coefficient into the model. Combining all these factors allows us to create predictions for both fronts at 1 AU and compare with actual in-situ observations. We show an ability to predict the sheath arrival with an average error of under 4 hours, with an RMS error of about 1.5 hours. For the CME ejecta, the error is less than two hours with an RMS error within an hour. Through using the best observations of CMEs, we show the power of our method in accurately predicting CME arrival times. The limitation and implications of our accurate prediction method will be discussed.

  15. Topological Evolution of a Fast Magnetic Breakout CME in 3-Dimensions

    NASA Technical Reports Server (NTRS)

    Lynch, B. J.; Antiochos, S. K.; DeVore, C. R.; Luhmann, J. G.; Zurbuchen, T. H.

    2008-01-01

    W present the extension of the magnetic breakout model for CME initiation to a fully 3-dimensional, spherical geometry. Given the increased complexity of the dynamic magnetic field interactions in 3-dimensions, we first present a summary of the well known axisymmetric breakout scenario in terms of the topological evolution associated with the various phases of the eruptive process. In this context, we discuss the completely analogous topological evolution during the magnetic breakout CME initiation process in the simplest 3-dimensional multipolar system. We show that an extended bipolar active region embedded in an oppositely directed background dipole field has all the necessary topological features required for magnetic breakout, i.e. a fan separatrix surface between the two distinct flux systems, a pair of spine fieldlines, and a true 3-dimensional coronal null point at their intersection. We then present the results of a numerical MHD simulation of this 3-dimensional system where boundary shearing flows introduce free magnetic energy, eventually leading to a fast magnetic breakout CME. The eruptive flare reconnection facilitates the rapid conversion of this stored free magnetic energy into kinetic energy and the associated acceleration causes the erupting field and plasma structure to reach an asymptotic eruption velocity of greater than or approx. equal to 1100 km/s over an approx.15 minute time period. The simulation results are discussed using the topological insight developed to interpret the various phases of the eruption and the complex, dynamic, and interacting magnetic field structures.

  16. Solar signatures and eruption mechanism of the August 14, 2010 coronal mass ejection (CME)

    NASA Astrophysics Data System (ADS)

    D'Huys, Elke; Seaton, Daniel B.; De Groof, Anik; Berghmans, David; Poedts, Stefaan

    2017-03-01

    On August 14, 2010 a wide-angled coronal mass ejection (CME) was observed. This solar eruption originated from a destabilized filament that connected two active regions and the unwinding of this filament gave the eruption an untwisting motion that drew the attention of many observers. In addition to the erupting filament and the associated CME, several other low-coronal signatures that typically indicate the occurrence of a solar eruption were associated with this event. However, contrary to what was expected, the fast CME (v > 900 km s-1) was accompanied by only a weak C4.4 flare. We investigate the various eruption signatures that were observed for this event and focus on the kinematic evolution of the filament in order to determine its eruption mechanism. Had this solar eruption occurred just a few days earlier, it could have been a significant event for space weather. The risk of underestimating the strength of this eruption based solely on the C4.4 flare illustrates the need to include all eruption signatures in event analyses in order to obtain a complete picture of a solar eruption and assess its possible space weather impact.

  17. Activity and Rotation in the young cluster h Per

    NASA Astrophysics Data System (ADS)

    Argiroffi, Costanza; Caramazza, Marilena; Micela, Giusi; Moraux, Estelle; Bouvier, Jerome

    2013-07-01

    We study the stellar rotation-activity relation in the crucial age at which stars reach the fastest rotation. To this aim we have analyzed data of the young cluster h Per, very rich and compact, located at 2300 pc, that at an age of 13 Myr should be mainly composed of stars that have ended their contraction phase and that have not lost significant angular momentum viamagnetic breaking. To constrain the activity level of h Per members we have analyzed a deep Chandra/ACIS-I observation. Rotational periods of h Per members have been derived by Moraux et al. (2013) in the framework of the MONITOR project (Aigrain et al. 2007; Irwin et al. 2007). In the Chandra observation we have detected 1010 X-ray sources located in the central field of h Persei. Assuming a distance of 2300 pc their X-ray luminosity ranges between 2x10^29 and 6x10^31 erg/s. Among the 1010 x-ray sources ~600 have as optical counterpart candidate members of the cluster with masses ranging down to 0.3 solar mass, and ˜150 have also measured rotational period. For this sample of ˜150 h Per members we have compared X-ray luminosity and rotational periods for different mass ranges. We have found that solar type stars (~1.3 solar mass) show evidence of supersaturation for short periods. This phenomenon is unobserved for lower mass stars.

  18. Source Regions of the Type II Radio Burst Observed During a CME-CME Interaction on 2013 May 22

    NASA Astrophysics Data System (ADS)

    Mäkelä, P.; Gopalswamy, N.; Reiner, M. J.; Akiyama, S.; Krupar, V.

    2016-08-01

    We report on our study of radio source regions during the type II radio burst on 2013 May 22 based on direction-finding analysis of the Wind/WAVES and STEREO/WAVES (SWAVES) radio observations at decameter-hectometric wavelengths. The type II emission showed an enhancement that coincided with the interaction of two coronal mass ejections (CMEs) launched in sequence along closely spaced trajectories. The triangulation of the SWAVES source directions posited the ecliptic projections of the radio sources near the line connecting the Sun and the STEREO-A spacecraft. The WAVES and SWAVES source directions revealed shifts in the latitude of the radio source, indicating that the spatial location of the dominant source of the type II emission varies during the CME-CME interaction. The WAVES source directions close to 1 MHz frequencies matched the location of the leading edge of the primary CME seen in the images of the LASCO/C3 coronagraph. This correspondence of spatial locations at both wavelengths confirms that the CME-CME interaction region is the source of the type II enhancement. Comparison of radio and white-light observations also showed that at lower frequencies scattering significantly affects radio wave propagation.

  19. Current Sheet Evolution In The Aftermath Of A CME Event

    NASA Technical Reports Server (NTRS)

    Bemporad, A.; Poletto, G.; Seuss, S. T.; Schwardron, N. A.; Elliott, H. A.; Raymond, J. C.

    2006-01-01

    We report on SOHO UVCS observations of the coronal restructuring following a coronal mass ejection (CME) on 2002 November 26, at the time of a SOHO-Ulysses quadrature campaign. Starting about 1.5 hr after a CME in the northwest quadrant, UVCS began taking spectra at 1.7 R, covering emission from both cool and hot plasma. Observations continued, with occasional gaps, for more than 2 days. Emission in the 974.8 A line of [Fe XVIII], indicating temperatures above 6 x 10(exp 6) K, was observed throughout the campaign in a spatially limited location. Comparison with EIT images shows the [Fe XVIII] emission to overlie a growing post-flare loop system formed in the aftermath of the CME. The emission most likely originates in a current sheet overlying the arcade. Analysis of the [Fe XVIII] emission allows us to infer the evolution of physical parameters in the current sheet over the entire span of our observations: in particular, we give the temperature versus time in the current sheet and estimate its density. At the time of the quadrature, Ulysses was directly above the location of the CME and intercepted the ejecta. High ionization state Fe was detected by the Ulysses SWICS throughout the magnetic cloud associated with the CME, although its rapid temporal variation suggests bursty, rather than smooth, reconnection in the coronal current sheet. The SOHO-Ulysses data set provided us with the unique opportunity of analyzing a current sheet structure from its lowest coronal levels out to its in situ properties. Both the remote and in situ observations are compared with predictions of theoretical CME models.

  20. Validation of CME Detection Software (CACTus) by Means of Simulated Data, and Analysis of Projection Effects on CME Velocity Measurements

    NASA Astrophysics Data System (ADS)

    Bonte, K.; Jacobs, C.; Robbrecht, E.; de Groof, A.; Berghmans, D.; Poedts, S.

    2011-05-01

    In the context of space weather forecasting, an automated detection of coronal mass ejections (CMEs) becomes more and more important for efficiently handling a large data flow which is expected from recently-launched and future solar missions. In this paper we validate the detection software package "CACTus" by applying the program to synthetic data from our 3D time-dependent CME simulations instead of observational data. The main strength of this study is that we know in advance what should be detected. We describe the sensitivities and strengths of automated detection, more specific for the CACTus program, resulting in a better understanding of CME detection on one hand and the calibration of the CACTus software on the other hand, suggesting possible improvements of the package. In addition, the simulation is an ideal tool to investigate projection effects on CME velocity measurements.

  1. Active learning framework with iterative clustering for bioimage classification.

    PubMed

    Kutsuna, Natsumaro; Higaki, Takumi; Matsunaga, Sachihiro; Otsuki, Tomoshi; Yamaguchi, Masayuki; Fujii, Hirofumi; Hasezawa, Seiichiro

    2012-01-01

    Advances in imaging systems have yielded a flood of images into the research field. A semi-automated facility can reduce the laborious task of classifying this large number of images. Here we report the development of a novel framework, CARTA (Clustering-Aided Rapid Training Agent), applicable to bioimage classification that facilitates annotation and selection of features. CARTA comprises an active learning algorithm combined with a genetic algorithm and self-organizing map. The framework provides an easy and interactive annotation method and accurate classification. The CARTA framework enables classification of subcellular localization, mitotic phases and discrimination of apoptosis in images of plant and human cells with an accuracy level greater than or equal to annotators. CARTA can be applied to classification of magnetic resonance imaging of cancer cells or multicolour time-course images after surgery. Furthermore, CARTA can support development of customized features for classification, high-throughput phenotyping and application of various classification schemes dependent on the user's purpose.

  2. THE 2010 AUGUST 1 TYPE II BURST: A CME-CME INTERACTION AND ITS RADIO AND WHITE-LIGHT MANIFESTATIONS

    SciTech Connect

    Martinez Oliveros, Juan Carlos; Raftery, Claire L.; Bain, Hazel M.; Liu Ying; Bale, Stuart; Krucker, Saem; Krupar, Vratislav

    2012-03-20

    We present observational results of a type II burst associated with a CME-CME interaction observed in the radio and white-light (WL) wavelength range. We applied radio direction-finding techniques to observations from the STEREO and Wind spacecraft, the results of which were interpreted using WL coronagraphic measurements for context. The results of the multiple radio direction-finding techniques applied were found to be consistent both with each other and with those derived from the WL observations of coronal mass ejections (CMEs). The results suggest that the type II burst radio emission is causally related to the CMEs interaction.

  3. Simulation of the 23 July 2012 Extreme Space Weather Event: What if This Extremely Rare CME Was Earth Directed?

    NASA Technical Reports Server (NTRS)

    Ngwira, Chigomezyo M.; Pulkkinen, Antti; Mays, M. Leila; Kuznetsova, Maria M.; Galvin, A. B.; Simunac, Kristin; Baker, Daniel N.; Li, Xinlin; Zheng, Yihua; Glocer, Alex

    2013-01-01

    Extreme space weather events are known to cause adverse impacts on critical modern day technological infrastructure such as high-voltage electric power transmission grids. On 23 July 2012, NASA's Solar Terrestrial Relations Observatory-Ahead (STEREO-A) spacecraft observed in situ an extremely fast coronal mass ejection (CME) that traveled 0.96 astronomical units (approx. 1 AU) in about 19 h. Here we use the SpaceWeather Modeling Framework (SWMF) to perform a simulation of this rare CME.We consider STEREO-A in situ observations to represent the upstream L1 solar wind boundary conditions. The goal of this study is to examine what would have happened if this Rare-type CME was Earth-bound. Global SWMF-generated ground geomagnetic field perturbations are used to compute the simulated induced geoelectric field at specific ground-based active INTERMAGNET magnetometer sites. Simulation results show that while modeled global SYM-H index, a high-resolution equivalent of the Dst index, was comparable to previously observed severe geomagnetic storms such as the Halloween 2003 storm, the 23 July CME would have produced some of the largest geomagnetically induced electric fields, making it very geoeffective. These results have important practical applications for risk management of electrical power grids.

  4. Simulation of the 23 July 2012 extreme space weather event: What if this extremely rare CME was Earth directed?

    NASA Astrophysics Data System (ADS)

    Ngwira, Chigomezyo M.; Pulkkinen, Antti; Leila Mays, M.; Kuznetsova, Maria M.; Galvin, A. B.; Simunac, Kristin; Baker, Daniel N.; Li, Xinlin; Zheng, Yihua; Glocer, Alex

    2013-12-01

    Extreme space weather events are known to cause adverse impacts on critical modern day technological infrastructure such as high-voltage electric power transmission grids. On 23 July 2012, NASA's Solar Terrestrial Relations Observatory-Ahead (STEREO-A) spacecraft observed in situ an extremely fast coronal mass ejection (CME) that traveled 0.96 astronomical units (˜1 AU) in about 19 h. Here we use the Space Weather Modeling Framework (SWMF) to perform a simulation of this rare CME. We consider STEREO-A in situ observations to represent the upstream L1 solar wind boundary conditions. The goal of this study is to examine what would have happened if this Rare-type CME was Earth-bound. Global SWMF-generated ground geomagnetic field perturbations are used to compute the simulated induced geoelectric field at specific ground-based active INTERMAGNET magnetometer sites. Simulation results show that while modeled global SYM-H index, a high-resolution equivalent of the Dst index, was comparable to previously observed severe geomagnetic storms such as the Halloween 2003 storm, the 23 July CME would have produced some of the largest geomagnetically induced electric fields, making it very geoeffective. These results have important practical applications for risk management of electrical power grids.

  5. Improving CME: Using Participant Satisfaction Measures to Specify Educational Methods

    ERIC Educational Resources Information Center

    Olivieri, Jason J.; Regala, Roderick P.

    2013-01-01

    Imagine having developed a continuing medical education (CME) initiative to educate physicians on updated guidelines regarding high cholesterol in adults. This initiative consisted of didactic presentations and case-based discussions offered in 5 major US cities, followed by a Web-based enduring component to distill key points of the live…

  6. The new CORIMP CME catalog & 3D reconstructions

    NASA Astrophysics Data System (ADS)

    Byrne, Jason; Morgan, Huw; Gallagher, Peter; Habbal, Shadia; Davies, Jackie

    2015-04-01

    A new coronal mass ejection catalog has been built from a unique set of coronal image processing techniques, called CORIMP, that overcomes many of the limitations of current catalogs in operation. An online database has been produced for the SOHO/LASCO data and event detections therein; providing information on CME onset time, position angle, angular width, speed, acceleration, and mass, along with kinematic plots and observation movies. The high-fidelity and robustness of these methods and derived CME structure and kinematics will lead to an improved understanding of the dynamics of CMEs, and a realtime version of the algorithm has been implemented to provide CME detection alerts to the interested space weather community. Furthermore, STEREO data has been providing the ability to perform 3D reconstructions of CMEs that are observed in multipoint observations. This allows a determination of the 3D kinematics and morphologies of CMEs characterised in STEREO data via the 'elliptical tie-pointing' technique. The associated observations of SOHO, SDO and PROBA2 (and intended use of K-Cor) provide additional measurements and constraints on the CME analyses in order to improve their accuracy.

  7. Determining CME-driven shock parameters from remote sensing observations

    NASA Astrophysics Data System (ADS)

    Volpes, L.; Bothmer, V.

    2016-02-01

    Coronal mass ejections (CMEs) are large scale eruptions of magnetized plasma propagating from the Sun into interplanetary space with speeds varying from a few tens to more than 2500 km s-1. They cause large-scale turbulence in the heliosphere and are the major drivers of space weather. Fast CMEs drive strong shocks in the corona and interplanetary medium and generate plasma turbulence in the post-shock regions ahead of the CME bodies. In this work results from the detailed analysis of a strong CME and shock event on April 3, 2010 are summarized. For this event the solar source region is identified and the CME and shock kinematics are determined from time series of white light images obtained by the SECCHI suite on board the STEREO spacecrafts. The shock's standoff distance, compression ratio and Mach number are derived. A comparison of the derived values with the in-situ measurements shows good agreement. Further comparison of the shock MHD parameters determined from remote sensing observations with in-situ data, including the calculation of power-spectra, will help validating the results and provide new insights into CME generated turbulence. The study will be extended to further events identified in STEREO observations.

  8. Quality framework proposal for Component Material Evaluation (CME) projects.

    SciTech Connect

    Christensen, Naomi G.; Arfman, John F.; Limary, Siviengxay

    2008-09-01

    This report proposes the first stage of a Quality Framework approach that can be used to evaluate and document Component Material Evaluation (CME) projects. The first stage of the Quality Framework defines two tools that will be used to evaluate a CME project. The first tool is used to decompose a CME project into its essential elements. These elements can then be evaluated for inherent quality by looking at the subelements that impact their level of quality maturity or rigor. Quality Readiness Levels (QRLs) are used to valuate project elements for inherent quality. The Framework provides guidance for the Principal Investigator (PI) and stakeholders for CME project prerequisites that help to ensure the proper level of confidence in the deliverable given its intended use. The Framework also Provides a roadmap that defined when and how the Framework tools should be applied. Use of these tools allow the Principal Investigator (PI) and stakeholders to understand what elements the project will use to execute the project, the inherent quality of the elements, which of those are critical to the project and why, and the risks associated to the project's elements.

  9. Didactic CME and Practice Change: Don't Throw that Baby out Quite yet

    ERIC Educational Resources Information Center

    Olson, Curtis A.; Tooman, Tricia R.

    2012-01-01

    Skepticism exists regarding the role of continuing medical education (CME) in improving physician performance. The harshest criticism has been reserved for didactic CME. Reviews of the scientific literature on the effectiveness of CME conclude that formal or didactic modes of education have little or no impact on clinical practice. This has led…

  10. Obstetrician/Gynecologists and Postpartum Mental Health: Differences between CME Course Takers and Nontakers

    ERIC Educational Resources Information Center

    Leddy, Meaghan A.; Farrow, Victoria A.; Joseph, Gerald F., Jr.; Schulkin, Jay

    2012-01-01

    Introduction: Continuing medical education (CME) courses are an essential component of professional development. Research indicates a continued need for understanding how and why physicians select certain CME courses, as well as the differences between CME course takers and nontakers. Purpose: Obstetrician-gynecologists (OB-GYNs) are health care…

  11. Accurate and Timely Forecasting of CME-Driven Geomagnetic Storms

    NASA Astrophysics Data System (ADS)

    Chen, J.; Kunkel, V.; Skov, T. M.

    2015-12-01

    Wide-spread and severe geomagnetic storms are primarily caused by theejecta of coronal mass ejections (CMEs) that impose long durations ofstrong southward interplanetary magnetic field (IMF) on themagnetosphere, the duration and magnitude of the southward IMF (Bs)being the main determinants of geoeffectiveness. Another importantquantity to forecast is the arrival time of the expected geoeffectiveCME ejecta. In order to accurately forecast these quantities in atimely manner (say, 24--48 hours of advance warning time), it isnecessary to calculate the evolving CME ejecta---its structure andmagnetic field vector in three dimensions---using remote sensing solardata alone. We discuss a method based on the validated erupting fluxrope (EFR) model of CME dynamics. It has been shown using STEREO datathat the model can calculate the correct size, magnetic field, and theplasma parameters of a CME ejecta detected at 1 AU, using the observedCME position-time data alone as input (Kunkel and Chen 2010). Onedisparity is in the arrival time, which is attributed to thesimplified geometry of circular toroidal axis of the CME flux rope.Accordingly, the model has been extended to self-consistently includethe transverse expansion of the flux rope (Kunkel 2012; Kunkel andChen 2015). We show that the extended formulation provides a betterprediction of arrival time even if the CME apex does not propagatedirectly toward the earth. We apply the new method to a number of CMEevents and compare predicted flux ropes at 1 AU to the observed ejectastructures inferred from in situ magnetic and plasma data. The EFRmodel also predicts the asymptotic ambient solar wind speed (Vsw) foreach event, which has not been validated yet. The predicted Vswvalues are tested using the ENLIL model. We discuss the minimum andsufficient required input data for an operational forecasting systemfor predicting the drivers of large geomagnetic storms.Kunkel, V., and Chen, J., ApJ Lett, 715, L80, 2010. Kunkel, V., Ph

  12. Lateralized activation of Cluster N in the brains of migratory songbirds.

    PubMed

    Liedvogel, Miriam; Feenders, Gesa; Wada, Kazuhiro; Troje, Nikolaus F; Jarvis, Erich D; Mouritsen, Henrik

    2007-02-01

    Cluster N is a cluster of forebrain regions found in night-migratory songbirds that shows high activation of activity-dependent gene expression during night-time vision. We have suggested that Cluster N may function as a specialized night-vision area in night-migratory birds and that it may be involved in processing light-mediated magnetic compass information. Here, we investigated these ideas. We found a significant lateralized dominance of Cluster N activation in the right hemisphere of European robins (Erithacus rubecula). Activation predominantly originated from the contralateral (left) eye. Garden warblers (Sylvia borin) tested under different magnetic field conditions and under monochromatic red light did not show significant differences in Cluster N activation. In the fairly sedentary Sardinian warbler (Sylvia melanocephala), which belongs to the same phyolgenetic clade, Cluster N showed prominent activation levels, similar to that observed in garden warblers and European robins. Thus, it seems that Cluster N activation occurs at night in all species within predominantly migratory groups of birds, probably because such birds have the capability of switching between migratory and sedentary life styles. The activation studies suggest that although Cluster N is lateralized, as is the dependence on magnetic compass orientation, either Cluster N is not involved in magnetic processing or the magnetic modulations of the primary visual signal, forming the basis for the currently supported light-dependent magnetic compass mechanism, are relatively small such that activity-dependent gene expression changes are not sensitive enough to pick them up.

  13. Synthesis and 5-lipoxygenase inhibitory activity of new cinnamoyl and caffeoyl clusters.

    PubMed

    Doiron, Jérémie; Boudreau, Luc H; Picot, Nadia; Villebonet, Benoît; Surette, Marc E; Touaibia, Mohamed

    2009-02-15

    Novel cinnamoyl and caffeoyl clusters were synthesized by multiple Cu(I)-catalyzed [1,3]-dipolar cycloadditions and their anti-5-lipoxygenase inhibitory activity was tested. Caffeoyl cluster showed an improved 5-lipoxygenase inhibitory activity compared to caffeic acid, with caffeoyl trimer 16 and tetramer 19 showing the best 5-lipoxygenase inhibitory activity.

  14. Preconditioning of Interplanetary Space Due to Transient CME Disturbances

    NASA Astrophysics Data System (ADS)

    Temmer, M.; Reiss, M. A.; Nikolic, L.; Hofmeister, S. J.; Veronig, A. M.

    2017-02-01

    Interplanetary space is characteristically structured mainly by high-speed solar wind streams emanating from coronal holes and transient disturbances such as coronal mass ejections (CMEs). While high-speed solar wind streams pose a continuous outflow, CMEs abruptly disrupt the rather steady structure, causing large deviations from the quiet solar wind conditions. For the first time, we give a quantification of the duration of disturbed conditions (preconditioning) for interplanetary space caused by CMEs. To this aim, we investigate the plasma speed component of the solar wind and the impact of in situ detected interplanetary CMEs (ICMEs), compared to different background solar wind models (ESWF, WSA, persistence model) for the time range 2011–2015. We quantify in terms of standard error measures the deviations between modeled background solar wind speed and observed solar wind speed. Using the mean absolute error, we obtain an average deviation for quiet solar activity within a range of 75.1–83.1 km s‑1. Compared to this baseline level, periods within the ICME interval showed an increase of 18%–32% above the expected background, and the period of two days after the ICME displayed an increase of 9%–24%. We obtain a total duration of enhanced deviations over about three and up to six days after the ICME start, which is much longer than the average duration of an ICME disturbance itself (∼1.3 days), concluding that interplanetary space needs ∼2–5 days to recover from the impact of ICMEs. The obtained results have strong implications for studying CME propagation behavior and also for space weather forecasting.

  15. Charged particles and cluster ions produced during cooking activities.

    PubMed

    Stabile, L; Jayaratne, E R; Buonanno, G; Morawska, L

    2014-11-01

    Previous studies showed that a significant number of the particles present in indoor air are generated by cooking activities, and measured particle concentrations and exposures have been used to estimate the related human dose. The dose evaluation can be affected by the particle charge level which is usually not considered in particle deposition models. To this purpose, in this paper we show, for the very first time, the electric charge of particles generated during cooking activities and thus extending the interest on particle charging characterization to indoor micro-environments, so far essentially focused on outdoors. Particle number, together with positive and negative cluster ion concentrations, was monitored using a condensation particle counter and two air ion counters, respectively, during different cooking events. Positively-charged particle distribution fractions during gas combustion, bacon grilling, and eggplant grilling events were measured by two Scanning Mobility Particle Sizer spectrometers, used with and without a neutralizer. Finally, a Tandem Differential Mobility Analyzer was used to measure the charge specific particle distributions of bacon and eggplant grilling experiments, selecting particles of 30, 50, 80 and 100 nm in mobility diameter. The total fraction of positively-charged particles was 4.0%, 7.9%, and 5.6% for gas combustion, bacon grilling, and eggplant grilling events, respectively, then lower than other typical outdoor combustion-generated particles.

  16. Mapping brain activity at scale with cluster computing.

    PubMed

    Freeman, Jeremy; Vladimirov, Nikita; Kawashima, Takashi; Mu, Yu; Sofroniew, Nicholas J; Bennett, Davis V; Rosen, Joshua; Yang, Chao-Tsung; Looger, Loren L; Ahrens, Misha B

    2014-09-01

    Understanding brain function requires monitoring and interpreting the activity of large networks of neurons during behavior. Advances in recording technology are greatly increasing the size and complexity of neural data. Analyzing such data will pose a fundamental bottleneck for neuroscience. We present a library of analytical tools called Thunder built on the open-source Apache Spark platform for large-scale distributed computing. The library implements a variety of univariate and multivariate analyses with a modular, extendable structure well-suited to interactive exploration and analysis development. We demonstrate how these analyses find structure in large-scale neural data, including whole-brain light-sheet imaging data from fictively behaving larval zebrafish, and two-photon imaging data from behaving mouse. The analyses relate neuronal responses to sensory input and behavior, run in minutes or less and can be used on a private cluster or in the cloud. Our open-source framework thus holds promise for turning brain activity mapping efforts into biological insights.

  17. Clustering and Pattern Formation in Chemorepulsive Active Colloids

    NASA Astrophysics Data System (ADS)

    Liebchen, Benno; Marenduzzo, Davide; Pagonabarraga, Ignacio; Cates, Michael E.

    2015-12-01

    We demonstrate that migration away from self-produced chemicals (chemorepulsion) generates a generic route to clustering and pattern formation among self-propelled colloids. The clustering instability can be caused either by anisotropic chemical production, or by a delayed orientational response to changes of the chemical environment. In each case, chemorepulsion creates clusters of a self-limiting area which grows linearly with self-propulsion speed. This agrees with recent observations of dynamic clusters in Janus colloids (albeit not yet known to be chemorepulsive). More generally, our results could inform design principles for the self-assembly of chemorepulsive synthetic swimmers and/or bacteria into nonequilibrium patterns.

  18. Determining the Intrinsic CME Flux Rope Type Using Remote-sensing Solar Disk Observations

    NASA Astrophysics Data System (ADS)

    Palmerio, E.; Kilpua, E. K. J.; James, A. W.; Green, L. M.; Pomoell, J.; Isavnin, A.; Valori, G.

    2017-02-01

    A key aim in space weather research is to be able to use remote-sensing observations of the solar atmosphere to extend the lead time of predicting the geoeffectiveness of a coronal mass ejection (CME). In order to achieve this, the magnetic structure of the CME as it leaves the Sun must be known. In this article we address this issue by developing a method to determine the intrinsic flux rope type of a CME solely from solar disk observations. We use several well-known proxies for the magnetic helicity sign, the axis orientation, and the axial magnetic field direction to predict the magnetic structure of the interplanetary flux rope. We present two case studies: the 2 June 2011 and the 14 June 2012 CMEs. Both of these events erupted from an active region, and despite having clear in situ counterparts, their eruption characteristics were relatively complex. The first event was associated with an active region filament that erupted in two stages, while for the other event the eruption originated from a relatively high coronal altitude and the source region did not feature a filament. Our magnetic helicity sign proxies include the analysis of magnetic tongues, soft X-ray and/or extreme-ultraviolet sigmoids, coronal arcade skew, filament emission and absorption threads, and filament rotation. Since the inclination of the post-eruption arcades was not clear, we use the tilt of the polarity inversion line to determine the flux rope axis orientation and coronal dimmings to determine the flux rope footpoints, and therefore, the direction of the axial magnetic field. The comparison of the estimated intrinsic flux rope structure to in situ observations at the Lagrangian point L1 indicated a good agreement with the predictions. Our results highlight the flux rope type determination techniques that are particularly useful for active region eruptions, where most geoeffective CMEs originate.

  19. A Statistical Study of CME Properties and of the Correlation Between Flares and CMEs over Solar Cycles 23 and 24

    NASA Astrophysics Data System (ADS)

    Compagnino, A.; Romano, P.; Zuccarello, F.

    2017-01-01

    We investigated some properties of coronal mass ejections (CMEs), such as speed, acceleration, polar angle, angular width, and mass, using data acquired by the Large Angle Spectrometric Coronagraph (LASCO) onboard the Solar and Heliospheric Observatory (SOHO) from 31 July 1997 to 31 March 2014, i.e. during the Solar Cycles 23 and 24. We used two CME catalogs: one provided by the Coordinated Data Analysis Workshops (CDAW) Data Center and one obtained by the Computer Aided CME Tracking software (CACTus) detection algorithm. For each dataset, we found that the number of CMEs observed during the peak of Cycle 24 was higher than or comparable to the number during Cycle 23, although the photospheric activity during Cycle 24 was weaker than during Cycle 23. Using the CMEs detected by CACTus, we noted that the number of events [N] is of the same order of magnitude during the peaks of the two cycles, but the peak of the CME distribution during Cycle 24 is more extended in time (N > 1500 during 2012 and 2013). We ascribe the discrepancy between the CDAW and CACTus results to the observer bias for CME definition in the CDAW catalog. We also used a dataset containing 19,811 flares of C-, M-, and X-class observed by the Geostationary Operational Environmental Satellite (GOES) during the same period. Using both datasets, we studied the relationship between the mass ejected by the CMEs and the flux emitted during the corresponding flares: we found 11,441 flares that were temporally correlated with CMEs for CDAW and 9120 for CACTus. Moreover, we found a log-linear relationship between the flux of the flares integrated from the start to end in the 0.1 - 0.8 nm range and the CME mass. We also found some differences in the mean CMEs velocity and acceleration between the events associated with flares and those that were not.

  20. A FULL STUDY ON THE SUN–EARTH CONNECTION OF AN EARTH-DIRECTED CME MAGNETIC FLUX ROPE

    SciTech Connect

    Vemareddy, Panditi; Mishra, Wageesh E-mail: wageesh@ustc.edu.cn

    2015-11-20

    We present an investigation of an eruption event of a coronal mass ejection (CME) magnetic flux rope (MFR) from the source active region (AR) NOAA 11719 on 2013 April 11 utilizing observations from the Solar Dynamic Observatory, the Solar Terrestrial Relations Observatory, the Solar and Heliospheric Observatory, and the WIND spacecraft. The source AR consists of a pre-existing sigmoidal structure stacked over a filament channel which is regarded as an MFR system. EUV observations of low corona suggest further development of this MFR system by added axial flux through tether-cutting reconnection of loops at the middle of the sigmoid under the influence of continuous slow flux motions for two days. Our study implies that the MFR system in the AR is initiated to upward motion by kink instability and further driven by torus instability. The CME morphology, captured in simultaneous three-point coronagraph observations, is fitted with a Graduated Cylindrical Shell (GCS) model and discerns an MFR topology with its orientation aligning with a magnetic neutral line in the source AR. This MFR expands self-similarly and is found to have source AR twist signatures in the associated near-Earth magnetic cloud (MC). We further derived the kinematics of this CME propagation by employing a plethora of stereoscopic as well as single-spacecraft reconstruction techniques. While stereoscopic methods perform relatively poorly compared to other methods, fitting methods worked best in estimating the arrival time of the CME compared to in situ measurements. Supplied with the values of constrained solar wind velocity, drag parameter, and three-dimensional kinematics from the GCS fit, we construct CME kinematics from the drag-based model consistent with in situ MC arrival.

  1. Adults' Physical Activity Patterns across Life Domains: Cluster Analysis with Replication

    PubMed Central

    Rovniak, Liza S.; Sallis, James F.; Saelens, Brian E.; Frank, Lawrence D.; Marshall, Simon J.; Norman, Gregory J.; Conway, Terry L.; Cain, Kelli L.; Hovell, Melbourne F.

    2010-01-01

    Objective Identifying adults' physical activity patterns across multiple life domains could inform the design of interventions and policies. Design Cluster analysis was conducted with adults in two US regions (Baltimore-Washington DC, n = 702; Seattle-King County, n = 987) to identify different physical activity patterns based on adults' reported physical activity across four life domains: leisure, occupation, transport, and home. Objectively measured physical activity, and psychosocial and built (physical) environment characteristics of activity patterns were examined. Main Outcome Measures Accelerometer-measured activity, reported domain-specific activity, psychosocial characteristics, built environment, body mass index (BMI). Results Three clusters replicated (kappa = .90-.93) across both regions: Low Activity, Active Leisure, and Active Job. The Low Activity and Active Leisure adults were demographically similar, but Active Leisure adults had the highest psychosocial and built environment support for activity, highest accelerometer-measured activity, and lowest BMI. Compared to the other clusters, the Active Job cluster had lower socioeconomic status and intermediate accelerometer-measured activity. Conclusion Adults can be clustered into groups based on their patterns of accumulating physical activity across life domains. Differences in psychosocial and built environment support between the identified clusters suggest that tailored interventions for different subgroups may be beneficial. PMID:20836604

  2. Effect of mitochondrial complex I inhibition on Fe-S cluster protein activity

    SciTech Connect

    Mena, Natalia P.; Bulteau, Anne Laure; Salazar, Julio; Hirsch, Etienne C.; Nunez, Marco T.

    2011-06-03

    Highlights: {yields} Mitochondrial complex I inhibition resulted in decreased activity of Fe-S containing enzymes mitochondrial aconitase and cytoplasmic aconitase and xanthine oxidase. {yields} Complex I inhibition resulted in the loss of Fe-S clusters in cytoplasmic aconitase and of glutamine phosphoribosyl pyrophosphate amidotransferase. {yields} Consistent with loss of cytoplasmic aconitase activity, an increase in iron regulatory protein 1 activity was found. {yields} Complex I inhibition resulted in an increase in the labile cytoplasmic iron pool. -- Abstract: Iron-sulfur (Fe-S) clusters are small inorganic cofactors formed by tetrahedral coordination of iron atoms with sulfur groups. Present in numerous proteins, these clusters are involved in key biological processes such as electron transfer, metabolic and regulatory processes, DNA synthesis and repair and protein structure stabilization. Fe-S clusters are synthesized mainly in the mitochondrion, where they are directly incorporated into mitochondrial Fe-S cluster-containing proteins or exported for cytoplasmic and nuclear cluster-protein assembly. In this study, we tested the hypothesis that inhibition of mitochondrial complex I by rotenone decreases Fe-S cluster synthesis and cluster content and activity of Fe-S cluster-containing enzymes. Inhibition of complex I resulted in decreased activity of three Fe-S cluster-containing enzymes: mitochondrial and cytosolic aconitases and xanthine oxidase. In addition, the Fe-S cluster content of glutamine phosphoribosyl pyrophosphate amidotransferase and mitochondrial aconitase was dramatically decreased. The reduction in cytosolic aconitase activity was associated with an increase in iron regulatory protein (IRP) mRNA binding activity and with an increase in the cytoplasmic labile iron pool. Since IRP activity post-transcriptionally regulates the expression of iron import proteins, Fe-S cluster inhibition may result in a false iron deficiency signal. Given that

  3. Exceptional oxidation activity with size-controlled supported gold clusters of low atomicity

    NASA Astrophysics Data System (ADS)

    Corma, Avelino; Concepción, Patricia; Boronat, Mercedes; Sabater, Maria J.; Navas, Javier; Yacaman, Miguel José; Larios, Eduardo; Posadas, Alvaro; López-Quintela, M. Arturo; Buceta, David; Mendoza, Ernest; Guilera, Gemma; Mayoral, Alvaro

    2013-09-01

    The catalytic activity of gold depends on particle size, with the reactivity increasing as the particle diameter decreases. However, investigations into behaviour in the subnanometre regime (where gold exists as small clusters of a few atoms) began only recently with advances in synthesis and characterization techniques. Here we report an easy method to prepare isolated gold atoms supported on functionalized carbon nanotubes and their performance in the oxidation of thiophenol with O2. We show that single gold atoms are not active, but they aggregate under reaction conditions into gold clusters of low atomicity that exhibit a catalytic activity comparable to that of sulfhydryl oxidase enzymes. When clusters grow into larger nanoparticles, catalyst activity drops to zero. Theoretical calculations show that gold clusters are able to activate thiophenol and O2 simultaneously, and larger nanoparticles are passivated by strongly adsorbed thiolates. The combination of both reactants activation and facile product desorption makes gold clusters excellent catalysts.

  4. Coronal magnetic reconnection driven by CME expansion—the 2011 June 7 event

    SciTech Connect

    Van Driel-Gesztelyi, L.; Baker, D.; Green, L. M.; Williams, D. R.; Carlyle, J.; Kliem, B.; Long, D. M.; Matthews, S. A.; Török, T.; Pariat, E.; Valori, G.; Démoulin, P.; Malherbe, J.-M.

    2014-06-10

    Coronal mass ejections (CMEs) erupt and expand in a magnetically structured solar corona. Various indirect observational pieces of evidence have shown that the magnetic field of CMEs reconnects with surrounding magnetic fields, forming, e.g., dimming regions distant from the CME source regions. Analyzing Solar Dynamics Observatory (SDO) observations of the eruption from AR 11226 on 2011 June 7, we present the first direct evidence of coronal magnetic reconnection between the fields of two adjacent active regions during a CME. The observations are presented jointly with a data-constrained numerical simulation, demonstrating the formation/intensification of current sheets along a hyperbolic flux tube at the interface between the CME and the neighboring AR 11227. Reconnection resulted in the formation of new magnetic connections between the erupting magnetic structure from AR 11226 and the neighboring active region AR 11227 about 200 Mm from the eruption site. The onset of reconnection first becomes apparent in the SDO/AIA images when filament plasma, originally contained within the erupting flux rope, is redirected toward remote areas in AR 11227, tracing the change of large-scale magnetic connectivity. The location of the coronal reconnection region becomes bright and directly observable at SDO/AIA wavelengths, owing to the presence of down-flowing cool, dense (10{sup 10} cm{sup –3}) filament plasma in its vicinity. The high-density plasma around the reconnection region is heated to coronal temperatures, presumably by slow-mode shocks and Coulomb collisions. These results provide the first direct observational evidence that CMEs reconnect with surrounding magnetic structures, leading to a large-scale reconfiguration of the coronal magnetic field.

  5. Night-time neuronal activation of Cluster N in a day- and night-migrating songbird.

    PubMed

    Zapka, Manuela; Heyers, Dominik; Liedvogel, Miriam; Jarvis, Erich D; Mouritsen, Henrik

    2010-08-01

    Magnetic compass orientation in a night-migratory songbird requires that Cluster N, a cluster of forebrain regions, is functional. Cluster N, which receives input from the eyes via the thalamofugal pathway, shows high neuronal activity in night-migrants performing magnetic compass-guided behaviour at night, whereas no activation is observed during the day, and covering up the birds' eyes strongly reduces neuronal activation. These findings suggest that Cluster N processes light-dependent magnetic compass information in night-migrating songbirds. The aim of this study was to test if Cluster N is active during daytime migration. We used behavioural molecular mapping based on ZENK activation to investigate if Cluster N is active in the meadow pipit (Anthus pratensis), a day- and night-migratory species. We found that Cluster N of meadow pipits shows high neuronal activity under dim-light at night, but not under full room-light conditions during the day. These data suggest that, in day- and night-migratory meadow pipits, the light-dependent magnetic compass, which requires an active Cluster N, may only be used during night-time, whereas another magnetosensory mechanism and/or other reference system(s), like the sun or polarized light, may be used as primary orientation cues during the day.

  6. Night-time neuronal activation of Cluster N in a day- and night-migrating songbird

    PubMed Central

    Zapka, Manuela; Heyers, Dominik; Liedvogel, Miriam; Jarvis, Erich D; Mouritsen, Henrik

    2010-01-01

    Magnetic compass orientation in a night-migratory songbird requires that Cluster N, a cluster of forebrain regions, is functional. Cluster N, which receives input from the eyes via the thalamofugal pathway, shows high neuronal activity in night-migrants performing magnetic compass-guided behaviour at night, whereas no activation is observed during the day, and covering up the birds’ eyes strongly reduces neuronal activation. These findings suggest that Cluster N processes light-dependent magnetic compass information in night-migrating songbirds. The aim of this study was to test if Cluster N is active during daytime migration. We used behavioural molecular mapping based on ZENK activation to investigate if Cluster N is active in the meadow pipit (Anthus pratensis), a day- and night-migratory species. We found that Cluster N of meadow pipits shows high neuronal activity under dim-light at night, but not under full room-light conditions during the day. These data suggest that, in day- and night-migratory meadow pipits, the light-dependent magnetic compass, which requires an active Cluster N, may only be used during night-time, whereas another magnetosensory mechanism and/or other reference system(s), like the sun or polarized light, may be used as primary orientation cues during the day. PMID:20618826

  7. Removing Cool Cores and Central Metallicity Peaks in Galaxy Clusters with Powerful Active Galactic Nucleus Outbursts

    NASA Astrophysics Data System (ADS)

    Guo, Fulai; Mathews, William G.

    2010-07-01

    Recent X-ray observations of galaxy clusters suggest that cluster populations are bimodally distributed according to central gas entropy and are separated into two distinct classes: cool core (CC) and non-cool core (NCC) clusters. While it is widely accepted that active galactic nucleus (AGN) feedback plays a key role in offsetting radiative losses and maintaining many clusters in the CC state, the origin of NCC clusters is much less clear. At the same time, a handful of extremely powerful AGN outbursts have recently been detected in clusters, with a total energy ~1061-1062 erg. Using two-dimensional hydrodynamic simulations, we show that if a large fraction of this energy is deposited near the centers of CC clusters, which is likely common due to dense cores, these AGN outbursts can completely remove CCs, transforming them to NCC clusters. Our model also has interesting implications for cluster abundance profiles, which usually show a central peak in CC systems. Our calculations indicate that during the CC to NCC transformation, AGN outbursts efficiently mix metals in cluster central regions and may even remove central abundance peaks if they are not broad enough. For CC clusters with broad central abundance peaks, AGN outbursts decrease peak abundances, but cannot effectively destroy the peaks. Our model may simultaneously explain the contradictory (possibly bimodal) results of abundance profiles in NCC clusters, some of which are nearly flat, while others have strong central peaks similar to those in CC clusters. A statistical analysis of the sizes of central abundance peaks and their redshift evolution may shed interesting insights on the origin of both types of NCC clusters and the evolution history of thermodynamics and AGN activity in clusters.

  8. Career Cluster Activity Book, Intermediate Level. Learn About the Fifteen Career Clusters and Color the Pictures.

    ERIC Educational Resources Information Center

    White Hawk, Sharon, Ed.

    Simple black and white illustrations portray one occupation for each of 15 career clusters. Directed toward the Indian student and showing Indians at work in the occupations depicted, the illustrations are intended to create an awareness, understanding, and motivation for Indian students to become involved in work, both on and off the reservation.…

  9. Reactivity and Catalytic Activity of Hydrogen Atom Chemisorbed Silver Clusters.

    PubMed

    Manzoor, Dar; Pal, Sourav

    2015-06-18

    Metal clusters of silver have attracted recent interest of researchers as a result of their potential in different catalytic applications and low cost. However, due to the completely filled d orbital and very high first ionization potential of the silver atom, the silver-based catalysts interact very weakly with the reacting molecules. In the current work, density functional theory calculations were carried out to investigate the effect of hydrogen atom chemisorption on the reactivity and catalytic properties of inert silver clusters. Our results affirm that the hydrogen atom chemisorption leads to enhancement in the binding energy of the adsorbed O2 molecule on the inert silver clusters. The increase in the binding energy is also characterized by the decrease in the Ag-O and increase in the O-O bond lengths in the case of the AgnH silver clusters. Pertinent to the increase in the O-O bond length, a significant red shift in the O-O stretching frequency is also noted in the case of the AgnH silver clusters. Moreover, the hydrogen atom chemisorbed silver clusters show low reaction barriers and high heat of formation of the final products for the environmentally important CO oxidation reaction as compared to the parent catalytically inactive clusters. The obtained results were compared with those of the corresponding gold and hydrogen atom chemisorbed gold clusters obtained at the same level of theory. It is expected the current computational study will provide key insights for future advances in the design of efficient nanosilver-based catalysts through the adsorption of a small atom or a ligand.

  10. Thermal Chemistry of Cp*W(NO)(CH2CMe3)(H)(L) Complexes (L = Lewis Base).

    PubMed

    Fabulyak, Diana; Handford, Rex C; Holmes, Aaron S; Levesque, Taleah M; Wakeham, Russell J; Patrick, Brian O; Legzdins, Peter; Rosenfeld, Devon C

    2017-01-03

    The complexes trans-Cp*W(NO)(CH2CMe3)(H)(L) (Cp* = η(5)-C5Me5) result from the treatment of Cp*W(NO)(CH2CMe3)2 in n-pentane with H2 (∼1 atm) in the presence of a Lewis base, L. The designation of a particular geometrical isomer as cis or trans indicates the relative positions of the alkyl and hydrido ligands in the base of a four-legged piano-stool molecular structure. The thermal behavior of these complexes is markedly dependent on the nature of L. Some of them can be isolated at ambient temperatures [e.g., L = P(OMe)3, P(OPh)3, or P(OCH2)3CMe]. Others undergo reductive elimination of CMe4 via trans to cis isomerization to generate the 16e reactive intermediates Cp*W(NO)(L). These intermediates can intramolecularly activate a C-H bond of L to form 18e cis complexes that may convert to the thermodynamically more stable trans isomers [e.g., Cp*W(NO)(PPh3) initially forms cis-Cp*W(NO)(H)(κ(2)-PPh2C6H4) that upon being warmed in n-pentane at 80 °C isomerizes to trans-Cp*W(NO)(H)(κ(2)-PPh2C6H4)]. Alternatively, the Cp*W(NO)(L) intermediates can effect the intermolecular activation of a substrate R-H to form trans-Cp*W(NO)(R)(H)(L) complexes [e.g., L = P(OMe)3 or P(OCH2)3CMe; R-H = C6H6 or Me4Si] probably via their cis isomers. These latter activations are also accompanied by the formation of some Cp*W(NO)(L)2 disproportionation products. An added complication in the L = P(OMe)3 system is that thermolysis of trans-Cp*W(NO)(CH2CMe3)(H)(P(OMe)3) results in it undergoing an Arbuzov-like rearrangement and being converted mainly into [Cp*W(NO)(Me)(PO(OMe)2)]2, which exists as a mixture of two isomers. All new complexes have been characterized by conventional and spectroscopic methods, and the solid-state molecular structures of most of them have been established by single-crystal X-ray crystallographic analyses.

  11. Dynamical quorum sensing and clustering dynamics in a population of spatially distributed active rotators

    NASA Astrophysics Data System (ADS)

    Sakaguchi, Hidetsugu; Maeyama, Satomi

    2013-02-01

    A model of clustering dynamics is proposed for a population of spatially distributed active rotators. A transition from excitable to oscillatory dynamics is induced by the increase of the local density of active rotators. It is interpreted as dynamical quorum sensing. In the oscillation regime, phase waves propagate without decay, which generates an effectively long-range interaction in the clustering dynamics. The clustering process becomes facilitated and only one dominant cluster appears rapidly as a result of the dynamical quorum sensing. An exact localized solution is found to a simplified model equation, and the competitive dynamics between two localized states is studied numerically.

  12. Moreton and EUV Waves Associated with an X1.0 Flare and CME Ejection

    NASA Astrophysics Data System (ADS)

    Francile, Carlos; López, Fernando M.; Cremades, Hebe; Mandrini, Cristina H.; Luoni, María Luisa; Long, David M.

    2016-11-01

    A Moreton wave was detected in active region (AR) 12017 on 29 March 2014 with very high cadence with the H-Alpha Solar Telescope for Argentina (HASTA) in association with an X1.0 flare (SOL2014-03-29T17:48). Several other phenomena took place in connection with this event, such as low-coronal waves and a coronal mass ejection (CME). We analyze the association between the Moreton wave and the EUV signatures observed with the Atmospheric Imaging Assembly onboard the Solar Dynamics Observatory. These include their low-coronal surface-imprint, and the signatures of the full wave and shock dome propagating outward in the corona. We also study their relation to the white-light CME. We perform a kinematic analysis by tracking the wavefronts in several directions. This analysis reveals a high-directional dependence of accelerations and speeds determined from data at various wavelengths. We speculate that a region of open magnetic field lines northward of our defined radiant point sets favorable conditions for the propagation of a coronal magnetohydrodynamic shock in this direction. The hypothesis that the Moreton wavefront is produced by a coronal shock-wave that pushes the chromosphere downward is supported by the high compression ratio in that region. Furthermore, we propose a 3D geometrical model to explain the observed wavefronts as the chromospheric and low-coronal traces of an expanding and outward-traveling bubble intersecting the Sun. The results of the model are in agreement with the coronal shock-wave being generated by a 3D piston that expands at the speed of the associated rising filament. The piston is attributed to the fast ejection of the filament-CME ensemble, which is also consistent with the good match between the speed profiles of the low-coronal and white-light shock waves.

  13. Prediction of Type II Radio Bursts Associated with Large CME Events

    NASA Astrophysics Data System (ADS)

    Cairns, Iver; Schmidt, Joachim

    Type II radio bursts are associated with shocks in the corona and solar wind, either driven by CMEs or else by blast waves. Recently we coupled the advanced 3D MHD BATS-R-US code of Toth, Gombosi, and colleagues with our kinetic ``bolt-on'' theory for type II emission. Initialising the simulation code with event specific coronal and CME data, the combined code can be used to predict the dynamic spectrum of type II emission for a specific radio event. We demonstrate very good agreement with Wind spacecraft observations for three type II bursts, one on 15 February 2011 and two on 7 March 2012 (associated with successive CMEs from different sides of the same active region). The intensities, frequencies, and times of fundamental and harmonic type II emission are predicted very well from the high corona to 1 AU (frequencies ~ 20 MHz - 30 kHz). The islands of increased emission correspond to different regions of the shock interacting with coronal structures, with streamers typically corresponding to reduced emission. The results provide strong evidence that both the type II theory and the BATS-R-US (driven with event-specific data) are accurate. They also provide strong evidence that the observation and detailed theoretical modelling of type II bursts can in principle provide warnings with lead-times of over a day for large and fast CMEs that might produce space weather at Earth. The MHD code can also predict whether the CME will hit Earth's magnetopause and the magnetic field direction at the magnetopause as the shock, sheath, and CME, vital quantities for predicting space weather at Earth.

  14. CME dynamics using coronagraph and interplanetary ejecta data

    NASA Astrophysics Data System (ADS)

    Dal Lago, Alisson; Gonzalez, Walter D.; De Lucas, Aline; Braga, Carlos Roberto; Vieira, Lucas Ramos; Stekel, Tardelli Ronan Coelho; Rockenbach, Marlos

    2013-05-01

    In this work, we present a study of the coronal mass ejection (CME) dynamics using LASCO coronagraph observations combined with in-situ ACE plasma and magnetic field data, covering a continuous period of time from January 1997 to April 2001, complemented by few extreme events observed in 2001 and 2003. We show, for the first time, that the CME expansion speed correlates very well with the travel time to 1 AU of the interplanetary ejecta (or ICMEs) associated with the CMEs, as well as with their preceding shocks. The events analyzed in this work are a subset of the events studied in Schwenn et al. (2005), from which only the CMEs associated with interplanetary ejecta (ICMEs) were selected. Three models to predict CME travel time to Earth, two proposed by Gopalswamy et al. (2001) and one by Schwenn et al. (2005), were used to characterize the dynamical behavior of this set of events. Extreme events occurred in 2001 and 2003 were used to test the prediction capability of the models regarding CMEs with very high LASCO C3 speeds.

  15. Coronal magnetic field profiles from shock-CME standoff distances

    NASA Astrophysics Data System (ADS)

    Schmidt, J. M.; Cairns, Iver H.; Gopalswamy, N.; Yashiro, S.

    2016-10-01

    Coronagraphs observe coronal mass ejections (CMEs) and driven shocks in white light images. From these observations the shock's speed and the shock's standoff distance from the CME's leading edge can be derived. Using these quantities, theoretical relationships between the shock's Alfvénic Mach number MA and standoff distance, and empirical radial profiles for the solar wind velocity and number density, the radial magnetic field profile upstream of the shock can be calculated. These profiles cannot be measured directly. We test the accuracy of this method for estimating the radial magnetic field profile upstream of the shock by simulating a sample CME that occurred on 29 November 2013 using the three-dimensional (3-D) magnetohydrodynamic Block-Adaptive-Tree-Solarwind-Roe-Upwind-Scheme code, retrieving shock-CME standoff distances from the simulation, and comparing the estimated and simulated radial magnetic field profiles. We find good agreement between the two profiles (within ±30%) between 1.8 and 10 R⊙. Our simulations confirm that a linear relationship exists between the standoff distance and the inverse compression ratio at the shock. We also find very good agreement between the empirical and simulated radial profiles of the number density and speed of the solar wind and inner corona.

  16. Energy spectral property in an isolated CME-driven shock

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Yan, Yi-Hua; Ding, Ming-De; Wang, Na; Shan, Hao

    2016-02-01

    Observations from multiple spacecraft show that there are energy spectral “breaks” at 1-10 MeV in some large CME-driven shocks. However, numerical models can hardly simulate this property due to high computational expense. The present paper focuses on analyzing these energy spectral “breaks” by Monte Carlo particle simulations of an isolated CME-driven shock. Taking the 2006 Dec 14 CME-driven shock as an example, we investigate the formation of this energy spectral property. For this purpose, we apply different values for the scattering time in our isolated shock model to obtain the highest energy “tails,” which can potentially exceed the “break” energy range. However, we have not found the highest energy “tails” beyond the “break” energy range, but instead find that the highest energy “tails” reach saturation near the range of energy at 5 MeV. So, we believe that there exists an energy spectral “cut off” in an isolated shock. If there is no interaction with another shock, there would not be formation of the energy spectral “break” property.

  17. Type II Radio Bursts as an Indicator of CME Location

    NASA Astrophysics Data System (ADS)

    Quirk, C. A.; St Cyr, O. C.; Henning, C.; Xie, H.; Gilbert, H. R.; Orlove, M.; Gopalswamy, N.; Odstrcil, D.

    2011-12-01

    We examined a subset of nine low-frequency radio events with type II radio bursts that drifted below 2 megahertz and were detected by the WAVES investigation on the WIND spacecraft. For each event, we identified the associated coronal mass ejection (CME) and derived the electron density using a model of solar wind plasma frequency (fp ≈ 9 * ne1/2, where fp is plasma frequency in kHz and ne is electron density in cm-3) . We also used the pb_inverter program in SolarSoft developed by Howard and Hayes to examine the electron density structure. Expanding on the Van De Hulst process of inverting polarized brightness measurements, the program inverts total brightness measurements from SOHO LASCO images to extract electron density information. From the electron density inferred from radio spectra, we derived the location of the CME using five standard electron density to height models (Leblanc, 1996; Saito, 1977; Bougeret, 1984; Alvarez, 1973; and Fainberg, 1971). Using images from the LASCO instrument on SOHO and the SECCHI instrument on STEREO, we extracted locations of the leading edge of the CME and compared the heights and velocities to those found using the frequency data. For the lowest frequency events, we also compared our results to the outputs of ENLIL, a time-dependent, three-dimensional, MHD model of the heliosphere hosted by the Community Coordinated Modeling Center (CCMC) at NASA Goddard Space Flight Center.

  18. [Active monitoring of cancer clusters: comments from an epidemiological perspective].

    PubMed

    Becker, N

    2014-01-01

    Epidemiological cancer registries are responsible for the description of the occurrence of cancers in time and space in the respective Federal State(s). Their work also involves the work-up of suspected or obvious regional clusters of cancer cases. The current sequence of action - (a) to confirm the cluster by a statistical test, (b) to identify specific exposures as potential causes, (c) to potentially conduct etiologic-epidemiological studies to confirm a suspected association - fails because of methodological difficulties. This article outlines a different approach that focuses on (a) the explanation of these methodological limitations and (b) on the current epidemiological knowledge on cancer etiology in order to rule out misunderstandings on potential causes of cancer clusters. Collaboration with professional cancer registries is advised.

  19. Spontaneous cluster activity in the inferior olivary nucleus in brainstem slices from postnatal mice.

    PubMed

    Rekling, Jens C; Jensen, Kristian H R; Jahnsen, Henrik

    2012-04-01

    A distinctive property of the cerebellar system is olivocerebellar modules, where synchronized electrical activity in neurons in the inferior olivary nucleus (IO) evokes organized activity in the cerebellar cortex. However, the exact function of these modules, and how they are developed, is still largely unknown. Here we show that the IO in in vitro slices from postnatal mice spontaneously generates clusters of neurons with synchronous Ca(2+) transients. Neurons in the principal olive (PO), and the vestibular-related dorsomedial cell column (dmcc), showed an age-dependent increase in spontaneous calcium transients. The spatiotemporal activity pattern was occasionally organized in clusters of co-active neighbouring neurons,with regular (16 min-1) and irregular (2-3 min(-1)) repeating cluster activity in the dmcc and PO, respectively. IO clusters had a diameter of 100-170 μm, lasted~1 s, and increased in occurrence from postnatal day P5.5 to P12.5, followed by a sharp drop to near zero at P15.5. IO clusters were overlapping, and comprised nearly identical neurons at some time points, and a varied subset of neurons at others. Some neurons had hub-like properties, being co-active with many other neighbours, and some were co-active with separate clusters at different times. The coherence between calcium transients in IO neurons decreased with Euclidean distance between the cells reaching low values at 100-200 μm distances. Intracellular recordings from IO neurons during cluster formation revealed the presence of spikelet-like potentials, suggesting that electrical coupling between neighbouring IO neurons may serve as a synchronizing mechanism. In conclusion, the IO shows spontaneous cluster activity under in vitro conditions, coinciding with a critical postnatal period in olivocerebellar development. We propose that these clusters may be forerunners of the ensembles of IO neurons shown to be co-active in adult animals spontaneously and during motor acts.

  20. STUDY OF THE 2007 APRIL 20 CME-COMET INTERACTION EVENT WITH AN MHD MODEL

    SciTech Connect

    Jia, Y. D.; Russell, C. T.; Jian, L. K.; Manchester, W. B.; Cohen, O.; Hansen, K. C.; Combi, M. R.; Gombosi, T. I.; Vourlidas, A.

    2009-05-01

    This study examines the tail disconnection event on 2007 April 20 on comet 2P/Encke, caused by a coronal mass ejection (CME) at a heliocentric distance of 0.34 AU. During their interaction, both the CME and the comet are visible with high temporal and spatial resolution by the STEREO-A spacecraft. Previously, only current sheets or shocks have been accepted as possible reasons for comet tail disconnections, so it is puzzling that the CME caused this event. The MHD simulation presented in this work reproduces the interaction process and demonstrates how the CME triggered a tail disconnection in the April 20 event. It is found that the CME disturbs the comet with a combination of a 180 deg. sudden rotation of the interplanetary magnetic field (IMF), followed by a 90 deg. gradual rotation. Such an interpretation applies our understanding of solar wind-comet interactions to determine the in situ IMF orientation of the CME encountering Encke.

  1. MHD simulations for investigating interaction processes between a CME and ambient solar wind

    NASA Astrophysics Data System (ADS)

    An, Junmo; Magara, Tetsuya

    2016-05-01

    The interaction between coronal mass ejections (CMEs) and ambient solar winds is one of the important issues of space weather because it affects the trajectory of a flying CME, which determines whether the CME hits the Earth and produces geomagnetic disturbances or not. In this study, two-step 3D magnetohydrodynamic (MHD) simulations including a spheromak-type CME and an ambient solar wind are performed to investigate their interaction processes such as deflection and rotation of a CME. We perform the 1st-step MHD simulation using averaged surface magnetic field data to construct a steady state with an ambient solar wind. A spheromak-type CME is then injected through the solar surface, and subsequent evolution is reproduced by performing the 2nd-step MHD simulation. We discuss key parameters that characterize interaction processes between a CME and ambient solar wind.

  2. X-Ray Activity in the Open Cluster IC 4665

    NASA Technical Reports Server (NTRS)

    Giamapapa, Mark S.; Prosser, Charles F.; Fleming, Thomas A.

    1997-01-01

    We present the results of a joint ROSAT High Resolution Imager (HRI) and optical investigation of the open cluster IC 4665. The ROSAT data contains detections for 28 stellar sources in the field, including 22 cluster members and candidate members spanning the color range -0.18 less than or equal to (B - V(sub o)) less than or equal to +1.63 (approx. B3 - M3). Upper limits are given for the remaining members (or candidate members) in the HRI field. Keck HIRES spectra have been obtained that yield radial and rotational velocity measures, respectively, for faint, low mass candidate members located within the field of the ROSAT HRI observation. In addition, photometry of possible optical counterparts to previously uncatalogued X-ray sources in the HRI field is presented. The trends in X-ray properties with (B - V) color in IC 4665 are found to be quite similar to that for other, more nearby young clusters such as the Pleiades and alpha Persei. In particular, a maximum in normalized X-ray luminosity of log (L(sub x)/L(sub bol)) approx. equal 3 is observed, beginning in the color range of (B - V)(sub o) = 0.7 - 0.8. This is similar to the corresponding color range among Pleiades members, in agreement with the earlier estimate, that the age of IC 4665 is similar to the age of the Pleiades. The correlation of rotation and X-ray emission levels is consistent with that in other young clusters. Among the high mass stars in IC 4665, five B stars are detected as X-ray sources. Of these, one is a spectroscopic binary while the remaining objects are apparently single staxs. The level of intrinsic X-ray emission observed in the rapidly rotating (v sini greater than 200 km/ s), single B stars is consistent with an origin due to shock heating of the ambient medium by radiatively driven, rotationally enhanced winds. On the basis of these observations and the results for other clusters, we argue that observed levels of X-ray emission in high mass stars of log (L(sub x)/L(sub bol

  3. Crystal Structure of the Transcriptional Regulator CmeR From Campylobacter Jejuni

    SciTech Connect

    Gu, R.; Su, C.-C.; Shi, F.; McDermott, G.; Zhang, Q.; Yu, E.W.

    2009-06-01

    The CmeABC multidrug efflux pump, which belongs to the resistance-nodulation-division (RND) family, recognizes and extrudes a broad range of antimicrobial agents and is essential for Campylobacter jejuni colonization of the animal intestinal tract by mediating the efflux of bile acids. The expression of CmeABC is controlled by the transcriptional regulator CmeR, whose open reading frame is located immediately upstream of the cmeABC operon. To understand the structural basis of CmeR regulation, we have determined the crystal structure of CmeR to 2.2 {angstrom} resolution, revealing a dimeric two-domain molecule with an entirely helical architecture similar to members of the TetR family of transcriptional regulators. Unlike the rest of the TetR regulators, CmeR has a large center-to-center distance (54 {angstrom}) between two N termini of the dimer, and a large flexible ligand-binding pocket in the C-terminal domain. Each monomer forms a 20 {angstrom} long tunnel-like cavity in the ligand-binding domain of CmeR and is occupied by a fortuitous ligand that is identified as glycerol. The binding of glycerol to CmeR induces a conformational state that is incompatible with target DNA. As glycerol has a chemical structure similar to that of potential ligands of CmeR, the structure obtained mimics the induced form of CmeR. These findings reveal novel structural features of a TetR family regulator, and provide new insight into the mechanisms of ligand binding and CmeR regulation.

  4. Activation and Characterization of a Cryptic Polycyclic Tetramate Macrolactam Biosynthetic Gene Cluster

    PubMed Central

    Luo, Yunzi; Huang, Hua; Liang, Jing; Wang, Meng; Lu, Lu; Shao, Zengyi; Cobb, Ryan E.; Zhao, Huimin

    2014-01-01

    Polycyclic tetramate macrolactams (PTMs) are a widely distributed class of natural products with important biological activities. However, many of them have not been characterized. Here we apply a plug and play synthetic biology strategy to activate a cryptic PTM biosynthetic gene cluster SGR810-815 from Streptomyces griseus and discover three potential PTMs. This gene cluster is highly conserved in phylogenetically diverse bacterial strains and contains an unusual hybrid polyketide synthase-nonribosomal peptide synthetase (PKS-NRPS) which resembles iterative PKSs known in fungi. To further characterize this gene cluster, we use the same synthetic biology approach to create a series of gene deletion constructs and elucidate the biosynthetic steps for the formation of the polycyclic system. The strategy we employ bypasses the traditional laborious processes to elicit gene cluster expression and should be generally applicable to many other silent or cryptic gene clusters for discovery and characterization of new natural products. PMID:24305602

  5. Isolation of a point mutation associated with altered expression of the CmeABC efflux pump in a multidrug-resistant Campylobacter jejuni population of poultry origin.

    PubMed

    Pérez-Boto, David; Acebo, Paloma; García-Peña, Francisco Javier; Abad, Juan Carlos; Echeita, María Aurora; Amblar, Mónica

    2015-06-01

    The objective of this study was to investigate the antibiotic resistance phenotype of Campylobacter jejuni isolates from a poultry flock of broiler production in Spain. Isolates were characterised by RFLP-PCR of the flaA gene and multilocus sequence typing. Minimum inhibitory concentrations of quinolones, aminoglycosides, β-lactams, tetracyclines, phenicols, macrolides and lincosamides were determined by Etest. Determinants of resistance and the regulatory region of the cmeABC operon were investigated in all isolates by PCR detection and sequencing. Expression of the CmeABC efflux pump was investigated by quantitative RT-PCR and accumulation assay. Based on their molecular markers, two different populations of C. jejuni were identified: one resistant to quinolones, β-lactams and tetracyclines, considered multidrug-resistant (MDR); and another resistant only to tetracyclines. Both populations possessed the tetO gene, previously associated with tetracycline resistance. The blaOXA-61 gene was also present in both populations, although only the MDR population showed β-lactamase activity. In addition, MDR isolates possessed the Thr86Ile mutation in the gyrA gene responsible for quinolone resistance. Moreover, sequencing of the regulatory region of the cmeABC operon revealed the presence of the C-32→T mutation in the MDR isolates, which was accompanied by an increase in cmeA mRNA levels compared with the non-mutant population. In conclusion, this is the first report of the mutation C-32→T in the cmeABC operon in C. jejuni isolates of veterinary origin. This mutation is associated with overexpression of the CmeABC efflux pump in a MDR population and is possibly related to enhanced tolerance to antimicrobials that favours the development of resistance.

  6. Multi-cellular natural killer (NK) cell clusters enhance NK cell activation through localizing IL-2 within the cluster

    PubMed Central

    Kim, Miju; Kim, Tae-Jin; Kim, Hye Mi; Doh, Junsang; Lee, Kyung-Mi

    2017-01-01

    Multi-cellular cluster formation of natural killer (NK) cells occurs during in vivo priming and potentiates their activation to IL-2. However, the precise mechanism underlying this synergy within NK cell clusters remains unclear. We employed lymphocyte-laden microwell technologies to modulate contact-mediated multi-cellular interactions among activating NK cells and to quantitatively assess the molecular events occurring in multi-cellular clusters of NK cells. NK cells in social microwells, which allow cell-to-cell contact, exhibited significantly higher levels of IL-2 receptor (IL-2R) signaling compared with those in lonesome microwells, which prevent intercellular contact. Further, CD25, an IL-2R α chain, and lytic granules of NK cells in social microwells were polarized toward MTOC. Live cell imaging of lytic granules revealed their dynamic and prolonged polarization toward neighboring NK cells without degranulation. These results suggest that IL-2 bound on CD25 of one NK cells triggered IL-2 signaling of neighboring NK cells. These results were further corroborated by findings that CD25-KO NK cells exhibited lower proliferation than WT NK cells, and when mixed with WT NK cells, underwent significantly higher level of proliferation. These data highlights the existence of IL-2 trans-presentation between NK cells in the local microenvironment where the availability of IL-2 is limited. PMID:28074895

  7. Multi-cellular natural killer (NK) cell clusters enhance NK cell activation through localizing IL-2 within the cluster

    NASA Astrophysics Data System (ADS)

    Kim, Miju; Kim, Tae-Jin; Kim, Hye Mi; Doh, Junsang; Lee, Kyung-Mi

    2017-01-01

    Multi-cellular cluster formation of natural killer (NK) cells occurs during in vivo priming and potentiates their activation to IL-2. However, the precise mechanism underlying this synergy within NK cell clusters remains unclear. We employed lymphocyte-laden microwell technologies to modulate contact-mediated multi-cellular interactions among activating NK cells and to quantitatively assess the molecular events occurring in multi-cellular clusters of NK cells. NK cells in social microwells, which allow cell-to-cell contact, exhibited significantly higher levels of IL-2 receptor (IL-2R) signaling compared with those in lonesome microwells, which prevent intercellular contact. Further, CD25, an IL-2R α chain, and lytic granules of NK cells in social microwells were polarized toward MTOC. Live cell imaging of lytic granules revealed their dynamic and prolonged polarization toward neighboring NK cells without degranulation. These results suggest that IL-2 bound on CD25 of one NK cells triggered IL-2 signaling of neighboring NK cells. These results were further corroborated by findings that CD25-KO NK cells exhibited lower proliferation than WT NK cells, and when mixed with WT NK cells, underwent significantly higher level of proliferation. These data highlights the existence of IL-2 trans-presentation between NK cells in the local microenvironment where the availability of IL-2 is limited.

  8. Living Clusters and Crystals from Low-Density Suspensions of Active Colloids

    NASA Astrophysics Data System (ADS)

    Mognetti, B. M.; Šarić, A.; Angioletti-Uberti, S.; Cacciuto, A.; Valeriani, C.; Frenkel, D.

    2013-12-01

    Recent studies aimed at investigating artificial analogs of bacterial colonies have shown that low-density suspensions of self-propelled particles confined in two dimensions can assemble into finite aggregates that merge and split, but have a typical size that remains constant (living clusters). In this Letter, we address the problem of the formation of living clusters and crystals of active particles in three dimensions. We study two systems: self-propelled particles interacting via a generic attractive potential and colloids that can move toward each other as a result of active agents (e.g., by molecular motors). In both cases, fluidlike “living” clusters form. We explain this general feature in terms of the balance between active forces and regression to thermodynamic equilibrium. This balance can be quantified in terms of a dimensionless number that allows us to collapse the observed clustering behavior onto a universal curve. We also discuss how active motion affects the kinetics of crystal formation.

  9. A Flux-Rope Scaling of CME and Prominence Acceleration

    NASA Astrophysics Data System (ADS)

    Marque, C.; Chen, J.; Vourlidas, A.; Krall, J.; Schuck, P.

    2005-12-01

    It has been known that coronal mass ejections (CMEs) and eruptive prominences (EPs) are closely associated with each other. A major question concerning CMEs and EPS is the magnetic geometry that underlies the eruptive plasma structures. It is now well established that many CMEs can be explained as erupting magnetic flux ropes. However, the coronal magnetic field cannot be directly measured at this time, and therefore the flux rope hypothesis has not been confirmed by magnetic field data. A second unresolved question is the structural relationship between the closely associated CMEs and EPs. Recently, it was theoretically found [1] that the height at which a CME or an EP attains maximum acceleration scales with the footpoint separation distance (S_f) of the underlying magnetic flux rope. This scaling law is characteristic of an erupting flux rope and is universal in that it depends only the flux rope geometry and the Lorentz force acting on the structure. It was shown to be well satisfied based on comparison with a small number of CMEs and EPs, indicating that the erupting structures in these events were initially flux ropes or evolved into flux ropes early enough. In the present paper, we present results of a study using a larger sample of events. In this study, we have analyzed CME events detected by LASCO, for which footpoints are determined by observational proxies such as magnetic neutral line length, and EPs seen in Hα and radio data, for which footpoint locations are observable. We find that CMEs and EPs in this large sample also satisfy the flux-rope scaling law. The results are consistent with the model structure with the bright CME rim at Z+2a and the prominence at Z-a, where Z is the height of the centroid and a is the minor radius of the flux rope, both defined at the apex of the flux rope. 1. Chen, J. and J. Krall, JGR, 108 (A11), 2003

  10. The evolution of active galactic nuclei in clusters of galaxies from the Dark Energy Survey

    SciTech Connect

    Bufanda, E.; Hollowood, D.; Jeltema, T. E.; Rykoff, E. S.; Rozo, E.; Martini, P.; Abbott, T. M. C.; Abdalla, F. B.; Allam, S.; Banerji, M.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Carnero Rosell, A.; Carrasco Kind, M.; Carretero, J.; Cunha, C. E.; da Costa, L. N.; Desai, S.; Diehl, H. T.; Dietrich, J. P.; Evrard, A. E.; Fausti Neto, A.; Flaugher, B.; Frieman, J.; Gerdes, D. W.; Goldstein, D. A.; Gruen, D.; Gruendl, R. A.; Gutierrez, G.; Honscheid, K.; James, D. J.; Kuehn, K.; Kuropatkin, N.; Lima, M.; Maia, M. A. G.; Marshall, J. L.; Melchior, P.; Miquel, R.; Mohr, J. J.; Ogando, R.; Plazas, A. A.; Romer, A. K.; Rooney, P.; Sanchez, E.; Santiago, B.; Scarpine, V.; Sevilla-Noarbe, I.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Tarle, G.; Thomas, D.; Tucker, D. L.; Walker, A. R.

    2016-12-13

    The correlation between active galactic nuclei (AGN) and environment provides important clues to AGN fueling and the relationship of black hole growth to galaxy evolution. In this paper, we analyze the fraction of galaxies in clusters hosting AGN as a function of redshift and cluster richness for X-ray detected AGN associated with clusters of galaxies in Dark Energy Survey (DES) Science Verification data. The present sample includes 33 AGN with L_X > 1043 ergs s-1 in non-central, host galaxies with luminosity greater than 0.5 L* from a total sample of 432 clusters in the redshift range of 0.1cluster members has a strong positive correlation with redshift such that the AGN fraction increases by a factor of ~8 from low to high redshift, and the fraction of cluster galaxies hosting AGN at high redshifts is greater than the low-redshift fraction at 3.6 sigma. In particular, the AGN fraction increases steeply at the highest redshifts in our sample at z>0.7. This result is in good agreement with previous work and parallels the increase in star formation in cluster galaxies over the same redshift range. However, the AGN fraction in clusters is observed to have no significant correlation with cluster mass. Future analyses with DES Year 1 through Year 3 data will be able to clarify whether AGN activity is correlated to cluster mass and will tightly constrain the relationship between cluster AGN populations and redshift.

  11. The evolution of active galactic nuclei in clusters of galaxies from the Dark Energy Survey

    NASA Astrophysics Data System (ADS)

    Bufanda, E.; Hollowood, D.; Jeltema, T. E.; Rykoff, E. S.; Rozo, E.; Martini, P.; Abbott, T. M. C.; Abdalla, F. B.; Allam, S.; Banerji, M.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Carnero Rosell, A.; Carrasco Kind, M.; Carretero, J.; Cunha, C. E.; da Costa, L. N.; Desai, S.; Diehl, H. T.; Dietrich, J. P.; Evrard, A. E.; Fausti Neto, A.; Flaugher, B.; Frieman, J.; Gerdes, D. W.; Goldstein, D. A.; Gruen, D.; Gruendl, R. A.; Gutierrez, G.; Honscheid, K.; James, D. J.; Kuehn, K.; Kuropatkin, N.; Lima, M.; Maia, M. A. G.; Marshall, J. L.; Melchior, P.; Miquel, R.; Mohr, J. J.; Ogando, R.; Plazas, A. A.; Romer, A. K.; Rooney, P.; Sanchez, E.; Santiago, B.; Scarpine, V.; Sevilla-Noarbe, I.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Tarle, G.; Thomas, D.; Tucker, D. L.; Walker, A. R.; DES Collaboration

    2017-03-01

    The correlation between active galactic nuclei (AGNs) and environment provides important clues to AGN fuelling and the relationship of black hole growth to galaxy evolution. In this paper, we analyse the fraction of galaxies in clusters hosting AGN as a function of redshift and cluster richness for X-ray-detected AGN associated with clusters of galaxies in Dark Energy Survey (DES) Science Verification data. The present sample includes 33 AGNs with LX > 1043 erg s-1 in non-central, host galaxies with luminosity greater than 0.5L* from a total sample of 432 clusters in the redshift range of 0.1 < z < 0.95. Analysis of the present sample reveals that the AGN fraction in red-sequence cluster members has a strong positive correlation with redshift such that the AGN fraction increases by a factor of ∼8 from low to high redshift, and the fraction of cluster galaxies hosting AGN at high redshifts is greater than the low-redshift fraction at 3.6σ. In particular, the AGN fraction increases steeply at the highest redshifts in our sample at z > 0.7. This result is in good agreement with previous work and parallels the increase in star formation in cluster galaxies over the same redshift range. However, the AGN fraction in clusters is observed to have no significant correlation with cluster mass. Future analyses with DES Year 1 through Year 3 data will be able to clarify whether AGN activity is correlated to cluster mass and will tightly constrain the relationship between cluster AGN populations and redshift.

  12. SCEC Community Modeling Environment (SCEC/CME) - Seismic Hazard Analysis Applications and Infrastructure

    NASA Astrophysics Data System (ADS)

    Maechling, P. J.; Jordan, T. H.; Kesselman, C.; Moore, R.; Minster, B.; SCEC ITR Collaboration

    2003-12-01

    developed a SCEC Community Velocity Model server based on Internet standards (XML, SOAP, and WSDL) to provide access to the SCEC Community Velocity Model. We have also continued development of the SCEC Fault Information System (SCEC/FIS) to provide access to the SCEC Community Fault Model and the SCEC Fault Activity Database. Data generated and archived by the SCEC/CME is stored in a digital library system, the Storage Resource Broker (SRB) [Minster et al., this meeting]. This system provides a robust and secure system for maintaining the association between the data sets and their metadata. A browser-based computational pathway assembly web site has been developed [Gupta et al., this meeting]. Users can compose SHA calculations and call SCEC/CME computational programs to process the data and the output. By assembling a series of computational steps, users can develop complex computational pathways the validity of which can be verified with an ontology-based pathway assembly tool. Data visualization software developed by the collaboration to support analysis and validation of data sets includes 4D wave propagation visualization software based on OpenGL [Thiebaux et al., this meeting] and 3D Geowall-based visualization of earthquakes and faults.

  13. Thermal Dihydrogen Activation by a Closed-Shell AuCeO2(+) Cluster.

    PubMed

    Meng, Jing-Heng; He, Sheng-Gui

    2014-11-06

    Laser-ablation-generated AuCeO2(+) and CeO2(+) oxide clusters were mass-selected using a quadrupole mass filter and reacted with H2 in an ion trap reactor at ambient conditions. The reactions were characterized by mass spectrometry and density functional theory calculations. The gold-cerium bimetallic oxide cluster AuCeO2(+) is more reactive in H2 activation than the pure cerium oxide cluster CeO2(+). The gold atom is the active adsorption site and facilitates the heterolytic cleavage of H2 in collaboration with the separated O(2-) ion of the CeO2 support. To the best of our knowledge, this is the first example of thermal H2 activation by a closed-shell atomic cluster, which provides molecular-level insights into the single gold atom catalysis over metal oxide supports.

  14. Communication: CO oxidation by silver and gold cluster cations: Identification of different active oxygen species

    SciTech Connect

    Popolan, Denisia M.; Bernhardt, Thorsten M.

    2011-03-07

    The oxidation of carbon monoxide with nitrous oxide on mass-selected Au{sub 3}{sup +} and Ag{sub 3}{sup +} clusters has been investigated under multicollision conditions in an octopole ion trap experiment. The comparative study reveals that for both gold and silver cations carbon dioxide is formed on the clusters. However, whereas in the case of Au{sub 3}{sup +} the cluster itself acts as reactive species that facilitates the formation of CO{sub 2} from N{sub 2}O and CO, for silver the oxidized clusters Ag{sub 3}O{sub x}{sup +} (n= 1-3) are identified as active in the CO oxidation reaction. Thus, in the case of the silver cluster cations N{sub 2}O is dissociated and one oxygen atom is suggested to directly react with CO, whereas a second kind of oxygen strongly bound to silver is acting as a substrate for the reaction.

  15. Particle Acceleration in Solar Flares and Associated CME Shocks

    NASA Astrophysics Data System (ADS)

    Petrosian, Vahé

    2016-10-01

    Observations relating the characteristics of electrons seen near Earth (solar energetic particles [SEPs]) and those producing flare radiation show that in certain (prompt) events the origin of both populations appears to be the flare site, which shows strong correlation between the number and spectral index of SEP and hard X-ray radiating electrons, but in others (delayed), which are associated with fast coronal mass ejections (CMEs), this relation is complex and SEPs tend to be harder. Prompt event spectral relation disagrees with that expected in thick or thin target models. We show that using a more accurate treatment of the transport of the accelerated electrons to the footpoints and to Earth can account for this discrepancy. Our results are consistent with those found by Chen & Petrosian for two flares using nonparametric inversion methods, according to which we have weak diffusion conditions, and trapping mediated by magnetic field convergence. The weaker correlations and harder spectra of delayed events can come about by reacceleration of electrons in the CME shock environment. We describe under what conditions such a hardening can be achieved. Using this (acceleration at the flare and reacceleration in the CME) scenario, we show that we can describe the similar dichotomy that exists between the so-called impulsive, highly enriched (3He and heavy ions), and softer SEP events and stronger, more gradual SEP events with near-normal ionic abundances and harder spectra. These methods can be used to distinguish the acceleration mechanisms and to constrain their characteristics.

  16. Morphology and Density Structure of Post-CME Current Sheets

    NASA Technical Reports Server (NTRS)

    Vrsnak, B.; Poletto, G.; Vujic, E.; Vourlidas, A.

    2009-01-01

    Eruption of a coronal mass ejection (CME) is believed to drag and open the coronal magnetic field, presumably leading to the formation of a large-scale current sheet and field relaxation by magnetic reconnection. This paper analyzes the physical characteristics of ray-like coronal features formed in the aftermath of CMEs, to confirm whether interpreting such phenomena in terms of a reconnecting current sheet is consistent with observations. Methods: The study focuses on UVCS/SOHO and LASCO/SOHO measurements of the ray width, density excess, and coronal velocity field as a function of the radial distance. The morphology of the rays implies that they are produced by Petschek-like reconnection in the large-scale current sheet formed in the wake of CME. The hypothesis is supported by the flow pattern, often showing outflows along the ray, and sometimes also inflows into the ray. The inferred inflow velocities range from 3 to 30 km/s, and are consistent with the narrow opening-angle of rays, which add up to a few degrees. The density of rays is an order of magnitude higher than in the ambient corona. The model results are consistent with the observations, revealing that the main cause of the density excess in rays is a transport of the dense plasma from lower to higher heights by the reconnection outflow.

  17. Quantitative Analysis of CME Deflections in the Corona

    NASA Astrophysics Data System (ADS)

    Gui, Bin; Shen, Chenglong; Wang, Yuming; Ye, Pinzhong; Liu, Jiajia; Wang, Shui; Zhao, Xuepu

    2011-07-01

    In this paper, ten CME events viewed by the STEREO twin spacecraft are analyzed to study the deflections of CMEs during their propagation in the corona. Based on the three-dimensional information of the CMEs derived by the graduated cylindrical shell (GCS) model (Thernisien, Howard, and Vourlidas in Astrophys. J. 652, 1305, 2006), it is found that the propagation directions of eight CMEs had changed. By applying the theoretical method proposed by Shen et al. ( Solar Phys. 269, 389, 2011) to all the CMEs, we found that the deflections are consistent, in strength and direction, with the gradient of the magnetic energy density. There is a positive correlation between the deflection rate and the strength of the magnetic energy density gradient and a weak anti-correlation between the deflection rate and the CME speed. Our results suggest that the deflections of CMEs are mainly controlled by the background magnetic field and can be quantitatively described by the magnetic energy density gradient (MEDG) model.

  18. CME dynamics using coronagraph and interplanetary ejecta observations

    NASA Astrophysics Data System (ADS)

    Dal Lago, Alisson; Demítrio Gonzalez Alarcon, Walter; da Silva, Marlos; de Lucas, Aline; Braga, Carlos Roberto; Ramos Vieira, Lucas

    One of the key issues of Space Weather is the dynamics of coronal mass ejections, from their release from the Sun, their propagation throughout the interplanetary space, eventually im-pacting the earth and other planets. These impacts of CMEs are the most important drivers of space weather phenomena. A number of empirical and analytical studies have addressed this point so far, using observations from coronagraphs and interplanetary monitors, in order to correlate CMEs observed near the Sun and in situ (e.g. earth vincity). However, results are far from conclusive. Error bars in CME travel time predictions from the Sun to earth, are of the order of 1 day, which is considerably big for the typical time scale of 1 to 3 days of their travel time. After many years of intensive investigations of CMEs observed with the Large An-gle and Spectrometric Coronagraph (LASCO), abord the Solar and Heliospheric Observatory (SOHO), we found that the subset of interplanetary counterparts of CMEs, the ICMEs, with a well defined ejecta structure are those with best predictable behaviour. The prediction of these interplanetary ejecta travel time to earth, using coronagraph observations is the one with lowest error bar among other sets of events, such as interplanetary shock. We present a statistic study of all the CME-ejecta events observed by SOHO and by the Advanced Composition Explorer (ACE) satellite since 1997.

  19. Sigmoid CME Source Regions at The Sun: Some Recent Results

    NASA Technical Reports Server (NTRS)

    Sterling, Alphonse C.

    2000-01-01

    Identifying coronal mass ejection (CME) precursors in the solar corona would be an important step in space weather forecasting, as well as a vital key to understanding the physics of CMEs. Twisted magnetic field structures are suspected of being the source of at least some CMEs. These features can appear sigmoid (S or inverse-S) shaped in soft X-ray, (SXR) images. We review recent observations of these structures and their relation to CMEs. using SXR data from the Soft X-ray Telescope (SXT) on the Yohkoh satellite, and EUV data from the EUV Imaging Telescope (EIT) on the SOHO satellite. These observations indicate that the pre-eruption sigmoid patterns are more prominent in SXRs than in EUV, and that sigmoid precursors are present in over 50% of CMEs. These findings are important for CME research, and may potentially be a major component to space weather forecasting. So far, however, the studies have been subject to restrictions that will have to be relaxed before sigmoid morphology can be used as a reliable predictive too[. Moreover, some CMEs do not display a SXR sigmoid structure prior to eruption, and some others show no prominent SXR signature of any kind before or during eruption.

  20. Effect on the Lunar Exosphere of a CME Passage

    NASA Technical Reports Server (NTRS)

    Killen, Rosemary M.; Hurley, Dana M.; Farrell, William M.; Sarantos, Menelaos

    2011-01-01

    It has long been recognized that solar wind bombardment onto exposed surfaces in the solar system will produce an energetic component to the exospheres about those bodies. Laboratory experiments have shown that the sputter yield can be noticeably increased in the case of a good insulating surface. It is now known that the solar wind composition is highly dependent on the origin of the particular plasma. Using the measured composition of the slow wind, fast wind, solar energetic particle (SEP) population, and coronal mass ejection (CME), broken down into its various components, we have estimated the total sputter yield for each type of solar wind. The heavy ion component, especially the He++ component, greatly enhances the total sputter yield during times when the heavy ion population is enhanced, most notably during a coronal mass ejection. To simulate the effect on the lunar exosphere of a CME passage past the Moon, we ran a Monte Carlo code for the species Na, K, Mg and Ca.

  1. Identification of clusters of investors from their real trading activity in a financial market

    NASA Astrophysics Data System (ADS)

    Tumminello, Michele; Lillo, Fabrizio; Piilo, Jyrki; Mantegna, Rosario N.

    2012-01-01

    We use statistically validated networks, a recently introduced method of validating links in a bipartite system, to identify clusters of investors trading in a financial market. Specifically, we investigate a special database allowing us to track the trading activity of individual investors of Nokia stock. We find that many statistically detected clusters of investors show a very high degree of synchronization in time when they decide to trade and in the trading action taken. We investigate the composition of these clusters and find that several of them show an over-expression of specific categories of investors.

  2. Nitric oxide synthases activation and inhibition by metallacarborane-cluster-based isoform-specific affectors.

    PubMed

    Kaplánek, Robert; Martásek, Pavel; Grüner, Bohumír; Panda, Satya; Rak, Jakub; Masters, Bettie Sue Siler; Král, Vladimír; Roman, Linda J

    2012-11-26

    A small library of boron-cluster- and metallacarborane-cluster-based ligands was designed, prepared, and tested for isoform-selective activation or inhibition of the three nitric oxide synthase isoforms. On the basis of the concept of creating a hydrophobic analogue of a natural substrate, a stable and nontoxic basic boron cluster system, previously used for boron neutron capture therapy, was modified by the addition of positively charged moieties to its periphery, providing hydrophobic and nonclassical hydrogen bonding interactions with the protein. Several of these compounds show efficacy for inhibition of NO synthesis with differential effects on the various nitric oxide synthase isoforms.

  3. A Pilot Study of CME on Risk Management in Long-Term Care

    ERIC Educational Resources Information Center

    Powers, James; Pichert, James W.; Habermann, Ralf; Ribble, Rachel

    2004-01-01

    This pilot study's purpose was to evaluate behavioral changes among medical directors and physicians following CME on risk management in long-term care (LTC) facilities. The setting was a satellite conference at the AGS Meeting Symposium 2000. CME participants included 51 medical directors, attending physicians, and nurses. Evaluations were based…

  4. Effect of CME on Primary Care and OB/GYN Treatment of Breast Masses

    ERIC Educational Resources Information Center

    Price, David W.; Xu, Stanley; McClure, David

    2005-01-01

    Introduction: CME program planners are being asked to move beyond assessments of knowledge to assessing the impact of CME on practice and patient outcomes. Methods: We conducted a pre-post analysis of administrative data from 107 physicians, nurse practitioners (NPs), or physician's assistants (PAs) who attended one or two continuing medical…

  5. Creating a New Paradigm for CME: Seizing Opportunities within the Health Care Revolution.

    ERIC Educational Resources Information Center

    Moore, Donald E., Jr.; And Others

    1994-01-01

    Forces creating change in continuing medical education (CME) are health care reform, quality management, information expansion, and technological advances. Opportunities are emerging in six areas: emphasis on learning, clinically relevant data, combination of quality management and CME, collaborative learning systems, focus on patient outcomes,…

  6. A Reflective Learning Framework to Evaluate CME Effects on Practice Reflection

    ERIC Educational Resources Information Center

    Leung, Kit H.; Pluye, Pierre; Grad, Roland; Weston, Cynthia

    2010-01-01

    Introduction: The importance of reflective practice is recognized by the adoption of a reflective learning model in continuing medical education (CME), but little is known about how to evaluate reflective learning in CME. Reflective learning seldom is defined in terms of specific cognitive processes or observable performances. Competency-based…

  7. Of Horses' Mouths and Toothpick Houses. A Devil's Advocate Position vis-a-vis CME Research.

    ERIC Educational Resources Information Center

    Miller, Judith Ribble; Pennington, Floyd A.

    1984-01-01

    The authors argue that continuing medical education (CME) research fails to prove its effectiveness in patient outcomes, that there is no theory from which to generate measurable hypotheses and that questionable methodology, dubious applicability, and misleading conclusions pervade CME research. (SK)

  8. Microwave emission as a proxy of CME speed in ICME arrival time predictions

    NASA Astrophysics Data System (ADS)

    Salas Matamoros, Carolina; Klein, Karl-Ludwig; Trottet, Gerard

    2016-04-01

    The propagation of a coronal mass ejection (CME) to the Earth takes between about 13 hours and several days. Observations of early radiative signatures of CMEs therefore provide a possible means to predict the arrival time of the CME near Earth. The fundamental tool to measure CME speeds in the corona is coronography, but the Earth-directed speed of a CME cannot be measured by a coronagraph located on the Sun-Earth line. Various proxies have been devised, based on the coronographic measurement. As an alternative, we explore radiative proxies. In the present contribution we investigate if microwave observations can be employed as a proxy for CME propagation speed. Caroubalos (1964) had shown that the higher the fluence of a solar radio burst near 3 GHz, the shorter is the time lapse between the solar event and the sudden commencement of a geomagnetic storm. We reconsider the relationship between CME speed and microwave fluence for limb CMEs in cycle 23 and early cycle 24. Then we use the microwave fluence as a proxy of CME speed of Earth-directed CMEs, together with the empirical interplanetary acceleration model devised by Gopalswamy et al. (2001), to predict the CME arrival time at Earth. These predictions are compared with observed arrival times and with the predictions based on other proxies, including soft X-rays and coronographic measurements.

  9. Promoting Free Online CME for Intimate Partner Violence: What Works at What Cost?

    ERIC Educational Resources Information Center

    Harris, John M., Jr.; Novalis-Marine, Cheryl; Amend, Robert W.; Surprenant, Zita J.

    2009-01-01

    Introduction: There is a need to provide practicing physicians with training on the recognition and management of intimate partner violence (IPV). Online continuing medical education (CME) could help meet this need, but there is little information on the costs and effectiveness of promoting online CME to physicians. This lack of information may…

  10. KELVIN-HELMHOLTZ INSTABILITY OF THE CME RECONNECTION OUTFLOW LAYER IN THE LOW CORONA

    SciTech Connect

    Foullon, Claire; Verwichte, Erwin; Nykyri, Katariina; Aschwanden, Markus J.; Hannah, Iain G.

    2013-04-20

    New capabilities for studying the Sun allow us to image for the first time the magnetic Kelvin-Helmholtz (KH) instability developing at the surface of a fast coronal mass ejecta (CME) less than 150 Mm above the solar surface. We conduct a detailed observational investigation of this phenomenon, observed off the east solar limb on 2010 November 3, in the EUV with SDO/AIA. In conjunction with STEREO-B/EUVI, we derive the CME source surface position. We ascertain the timing and early evolution of the CME outflow leading to the instability onset. We perform image and spectral analysis, exploring the CME plasma structuring and its parabolic flow pattern. As we evaluate and validate the consistency of the observations with theoretical considerations and predictions, we take the view that the ejecta layer corresponds to a reconnection outflow layer surrounding the erupting flux rope, accounting for the timing, high temperature ({approx}11.6 MK), and high flow shear ({approx}680 km s{sup -1}) on the unstable CME northern flank and for the observed asymmetry between the CME flanks. From the irregular evolution of the CME flow pattern, we infer a shear gradient consistent with expected spatial flow variations across the KH-unstable flank. The KH phenomenon observed is tied to the first stage of a linked flare-CME event.

  11. Measuring Classroom Management Expertise (CME) of Teachers: A Video-Based Assessment Approach and Statistical Results

    ERIC Educational Resources Information Center

    König, Johannes

    2015-01-01

    The study aims at developing and exploring a novel video-based assessment that captures classroom management expertise (CME) of teachers and for which statistical results are provided. CME measurement is conceptualized by using four video clips that refer to typical classroom management situations in which teachers are heavily challenged…

  12. CME Brightness at Large Elongations: Application to LASCO and SMEI Observations

    NASA Astrophysics Data System (ADS)

    Vourlidas, A.; Webb, D. F.; Morrill, J. S.; Jackson, B. V.

    2006-12-01

    The traditional analysis of the CME brightness relied on the assumption that all lines of sight through the CME were parallel due to the large distance between the observer and the event. However, this assumption is not correct when CME observations at large distances from the Sun are concerned. In a recent paper (Vourlidas & Howard 2006) we have outlined the proper geometry and presented a few theoretical predictions about the brightness evolution of CME launched at various angles relative to the Sun-observer line. In this talk, we use LASCO and SMEI observations of the same events to test our predictions and see how we can use our theoretical framework to interpret the observed CME structures.

  13. Interaction between CME and surrounding magnetic fields producing multiple flaring sites

    NASA Astrophysics Data System (ADS)

    van Driel-Gesztelyi, Lidia M.

    2015-08-01

    L. van Driel-Gesztelyi (1,2,3), D. Baker (1), T. Török (4), E. Pariat (2), L.M. Green (1),D.R. Williams (1), J. Carlyle (1,5) G. Valori (1, 2), P. Démoulin (2), B. Kliem (1,7,8),D. Long (1), S.A. Matthews (1), J.-M. Malherbe (2)(1) UCL/MSSL, UK, (2) Paris Observatory, LESIA, CNRS, France, (3) Konkoly Observatory, Hungary, (4) Predictive Science, Dan Diego, USA, (5) Max Planck Inst., Göttingen, Germany, (6) INAF, Obs. Roma, Italy, (7) Potsdam Univ., Germany, (8) Yunnan Observatories, Kunming, ChinaAnalyzing Solar Dynamics Observatory (SDO) observations of the spectacular Coronal Mass Ejection eruption on 7 June 2011, we present evidence of coronal magnetic reconnection between the expanding magnetic structure of the CME and the magnetic fields of an adjacent active region (AR). The onset of reconnection first became apparent in the SDO/AIA images when filament plasma, originally contained within the erupting flux rope, was re-directed towards remote areas in the neighboring AR, tracing the change of large-scale magnetic connectivity. The observations are presented jointly with a topological analysis of the pre-eruption magnetic configuration, and a data-constrained numerical simulation of the three-AR complex, demonstrating the formation/intensification of current sheets along a pre-existing hyperbolic flux tube (HFT) at the interface between the CME and the neighboring AR, where a secondary flare ribbon was created. Reconnection across this current sheet resulted in the formation of new magnetic connections between the erupting magnetic structure and a neighboring AR about 200 Mm from the eruption site, in strong qualitative agreement with the observations. In addition, the CME temporarily created unusually dense plasma conditions around a reconnection region at high coronal altitudes, enabling us to observe emission resulting from it. We argue that this exceptional observation of a coronal brightening was directly observable at SDO/AIA wavelengths owing to the

  14. The Walking School Bus and children's physical activity: A pilot cluster randomized controlled trial

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To evaluate the impact of a "walking school bus" program on children's rates of active commuting to school and physical activity. We conducted a pilot cluster randomized controlled trial among 4th-graders from 8 schools in Houston, Texas (N = 149). Random allocation to treatment or control condition...

  15. Prediction of in vitro and in vivo oestrogen receptor activity using hierarchical clustering

    EPA Science Inventory

    In this study, hierarchical clustering classification models were developed to predict in vitro and in vivo oestrogen receptor (ER) activity. Classification models were developed for binding, agonist, and antagonist in vitro ER activity and for mouse in vivo uterotrophic ER bindi...

  16. An Extended Membrane System with Active Membranes to Solve Automatic Fuzzy Clustering Problems.

    PubMed

    Peng, Hong; Wang, Jun; Shi, Peng; Pérez-Jiménez, Mario J; Riscos-Núñez, Agustín

    2016-05-01

    This paper focuses on automatic fuzzy clustering problem and proposes a novel automatic fuzzy clustering method that employs an extended membrane system with active membranes that has been designed as its computing framework. The extended membrane system has a dynamic membrane structure; since membranes can evolve, it is particularly suitable for processing the automatic fuzzy clustering problem. A modification of a differential evolution (DE) mechanism was developed as evolution rules for objects according to membrane structure and object communication mechanisms. Under the control of both the object's evolution-communication mechanism and the membrane evolution mechanism, the extended membrane system can effectively determine the most appropriate number of clusters as well as the corresponding optimal cluster centers. The proposed method was evaluated over 13 benchmark problems and was compared with four state-of-the-art automatic clustering methods, two recently developed clustering methods and six classification techniques. The comparison results demonstrate the superiority of the proposed method in terms of effectiveness and robustness.

  17. A search for flares and mass ejections on young late-type stars in the open cluster Blanco-1

    NASA Astrophysics Data System (ADS)

    Leitzinger, M.; Odert, P.; Greimel, R.; Korhonen, H.; Guenther, E. W.; Hanslmeier, A.; Lammer, H.; Khodachenko, M. L.

    2014-09-01

    We present a search for stellar activity (flares and mass ejections) in a sample of 28 stars in the young open cluster Blanco-1. We use optical spectra obtained with European Southern Observatory's Visible Multi-Object Spectrograph installed on the Very Large Telescope. From the total observing time of ˜5 h, we find four Hα flares but no distinct indication of coronal mass ejections (CMEs) on the investigated dK-dM stars. Two flares show `dips' in their light curves right before their impulsive phases which are similar to previous discoveries in photometric light curves of active dMe stars. We estimate an upper limit of <4 CMEs per day per star and discuss this result with respect to a empirical estimation of the CME rate of main-sequence stars. We find that we should have detected at least one CME per star with a mass of ≤ 3 × 1017 g depending on the star's X-ray luminosity, but the estimated Hα fluxes associated with these masses are below the detection limit of our observations. We conclude that the parameter which mainly influences the detection of stellar CMEs using the method of Doppler-shifted emission caused by moving plasma is not the spectral resolution/velocity but the flux/mass of the CME.

  18. E-learning for occupational physicians' CME: a study case.

    PubMed

    Mazzoleni, M Cristina; Rognoni, Carla; Finozzi, Enrico; Gri, Tommaso; Pagani, Marco; Imbriani, Marcello

    2011-01-01

    The present study reports the results of the evaluation of an e-learning CME course in the field of Occupational Medicine. In particular the following aspects have been investigated: If and how the course contents have met the educational users' needs; The effectiveness of the course in terms of knowledge improvement; Users' behaviour. Attendance data and results of a sample of 1128 attendees have been analyzed via ad hoc developed tools for direct inspection of Moodle CMS database. The results document the effectiveness of the e-learning course, as regards meeting the educational needs of physicians and also the improvement in terms of knowledge and problem solving skill acquisition. Users' behaviour has revealed a certain tendency for passing the tests, more than for pursuing the best possible result. Interaction with the tutor is low.

  19. Systematic assessment of coordinated activity cliffs formed by kinase inhibitors and detailed characterization of activity cliff clusters and associated SAR information.

    PubMed

    Dimova, Dilyana; Stumpfe, Dagmar; Bajorath, Jürgen

    2015-01-27

    From currently available kinase inhibitors and their activity data, clusters of coordinated activity cliffs were systematically derived and subjected to cluster index and index map analysis. Type I-like inhibitors with well-defined IC50 measurements were found to provide a large knowledge base of activity cliff clusters for 266 targets from nine kinase groups. On the basis of index map analysis, these clusters were systematically organized according to structural similarity of inhibitors and activity cliff diversity and prioritized for structure-activity relationship (SAR) analysis. From prioritized clusters, interpretable SAR information can be extracted. It is also shown that activity cliff clusters formed by ATP site-directed inhibitors often represent local SAR environments of rather different complexity and interpretability. In addition, activity cliff clusters including promiscuous kinase inhibitors have been determined. Only a small subset of inhibitors was found to change activity cliff roles in different clusters. The activity cliff clusters described herein and their index map organization substantially enrich SAR information associated with kinase inhibitors in compound subsets of limited size. The cluster and index map information is made available upon request to provide opportunities for further SAR exploration. On the basis of our analysis and the data provided, activity cliff clusters and corresponding inhibitor series for kinase targets of interest can be readily selected.

  20. Highly active subnano palladium clusters embedded in i-motif DNA.

    PubMed

    Zhang, Jinli; Wang, Xian; Fu, Yan; Han, You; Cheng, Jingyao; Zhang, Yanqing; Li, Wei

    2013-11-26

    Highly active subnano Pd clusters were synthesized using i-motif DNA as the template through characterization via ESI MS, DLS, XPS, UV-vis, and FTIR. It is indicated that Pd1-Pd5 clusters are generated at a [Pd]/[base] ratio of 0.2, Pd8 to Pd9 clusters are generated at a [Pd]/[base] ratio of 0.5, and large nanoparticles with the size about 2.6 nm are formed at a [Pd]/[base] ratio of 2.0. The i-motif-stabilized Pd8-Pd9 clusters show high catalytic activity toward the reduction of 4-nitrophenol with a relative rate constant value of 2034 min(-1) (mM Pd)(-1). DFT calculations disclose that the unique structure of the i-motif with consecutive hemiprotonated CH(+)·C pairs can efficiently ligate Pd ions at the N3 sites of cytosines and that the synthesized Pd clusters consist of metallic Pd atoms as well as positively charged Pd that is ligated by nucleobases, which is capable of facilitating the activation of the nitryl group of 4-nitrophenol. This work suggests a promising pathway to preparing subnano metal catalysts with enhanced catalytic activity using programmable DNA scaffolds.

  1. CME Interaction with Coronal Holes and Their Interplanetary Consequences

    NASA Technical Reports Server (NTRS)

    Gopalswamy, N.; Makela, P.; Xie, H.; Akiyama, S.; Yashiro, S.

    2008-01-01

    A significant number of interplanetary (IP) shocks (-17%) during cycle 23 were not followed by drivers. The number of such "driverless" shocks steadily increased with the solar cycle with 15%, 33%, and 52% occurring in the rise, maximum, and declining phase of the solar cycle. The solar sources of 15% of the driverless shocks were very close the central meridian of the Sun (within approx.15deg), which is quite unexpected. More interestingly, all the driverless shocks with their solar sources near the solar disk center occurred during the declining phase of solar cycle 23. When we investigated the coronal environment of the source regions of driverless shocks, we found that in each case there was at least one coronal hole nearby suggesting that the coronal holes might have deflected the associated coronal mass ejections (CMEs) away from the Sun-Earth line. The presence of abundant low-latitude coronal holes during the declining phase further explains why CMEs originating close to the disk center mimic the limb CMEs, which normally lead to driverless shocks due to purely geometrical reasons. We also examined the solar source regions of shocks with drivers. For these, the coronal holes were located such that they either had no influence on the CME trajectories. or they deflected the CMEs towards the Sun-Earth line. We also obtained the open magnetic field distribution on the Sun by performing a potential field source surface extrapolation to the corona. It was found that the CMEs generally move away from the open magnetic field regions. The CME-coronal hole interaction must be widespread in the declining phase, and may have a significant impact on the geoeffectiveness of CMEs.

  2. Clustering-Based Ensemble Learning for Activity Recognition in Smart Homes

    PubMed Central

    Jurek, Anna; Nugent, Chris; Bi, Yaxin; Wu, Shengli

    2014-01-01

    Application of sensor-based technology within activity monitoring systems is becoming a popular technique within the smart environment paradigm. Nevertheless, the use of such an approach generates complex constructs of data, which subsequently requires the use of intricate activity recognition techniques to automatically infer the underlying activity. This paper explores a cluster-based ensemble method as a new solution for the purposes of activity recognition within smart environments. With this approach activities are modelled as collections of clusters built on different subsets of features. A classification process is performed by assigning a new instance to its closest cluster from each collection. Two different sensor data representations have been investigated, namely numeric and binary. Following the evaluation of the proposed methodology it has been demonstrated that the cluster-based ensemble method can be successfully applied as a viable option for activity recognition. Results following exposure to data collected from a range of activities indicated that the ensemble method had the ability to perform with accuracies of 94.2% and 97.5% for numeric and binary data, respectively. These results outperformed a range of single classifiers considered as benchmarks. PMID:25014095

  3. Clustering-based ensemble learning for activity recognition in smart homes.

    PubMed

    Jurek, Anna; Nugent, Chris; Bi, Yaxin; Wu, Shengli

    2014-07-10

    Application of sensor-based technology within activity monitoring systems is becoming a popular technique within the smart environment paradigm. Nevertheless, the use of such an approach generates complex constructs of data, which subsequently requires the use of intricate activity recognition techniques to automatically infer the underlying activity. This paper explores a cluster-based ensemble method as a new solution for the purposes of activity recognition within smart environments. With this approach activities are modelled as collections of clusters built on different subsets of features. A classification process is performed by assigning a new instance to its closest cluster from each collection. Two different sensor data representations have been investigated, namely numeric and binary. Following the evaluation of the proposed methodology it has been demonstrated that the cluster-based ensemble method can be successfully applied as a viable option for activity recognition. Results following exposure to data collected from a range of activities indicated that the ensemble method had the ability to perform with accuracies of 94.2% and 97.5% for numeric and binary data, respectively. These results outperformed a range of single classifiers considered as benchmarks.

  4. Combining STEREO SECCHI COR2 and HI1 images for automatic CME front edge tracking

    NASA Astrophysics Data System (ADS)

    Kirnosov, Vladimir; Chang, Lin-Ching; Pulkkinen, Antti

    2016-12-01

    COR2 coronagraph images are the most commonly used data for coronal mass ejection (CME) analysis among the various types of data provided by the STEREO (Solar Terrestrial Relations Observatory) SECCHI (Sun-Earth Connection Coronal and Heliospheric Investigation) suite of instruments. The field of view (FOV) in COR2 images covers 2-15 solar radii (Rs) that allow for tracking the front edge of a CME in its initial stage to forecast the lead-time of a CME and its chances of reaching the Earth. However, estimating the lead-time of a CME using COR2 images gives a larger lead-time, which may be associated with greater uncertainty. To reduce this uncertainty, CME front edge tracking should be continued beyond the FOV of COR2 images. Therefore, heliospheric imager (HI1) data that covers 15-90 Rs FOV must be included. In this paper, we propose a novel automatic method that takes both COR2 and HI1 images into account and combine the results to track the front edges of a CME continuously. The method consists of two modules: pre-processing and tracking. The pre-processing module produces a set of segmented images, which contain the signature of a CME, for both COR2 and HI1 separately. In addition, the HI1 images are resized and padded, so that the center of the Sun is the central coordinate of the resized HI1 images. The resulting COR2 and HI1 image set is then fed into the tracking module to estimate the position angle (PA) and track the front edge of a CME. The detected front edge is then used to produce a height-time profile that is used to estimate the speed of a CME. The method was validated using 15 CME events observed in the period from January 1, 2008 to August 31, 2009. The results demonstrate that the proposed method is effective for CME front edge tracking in both COR2 and HI1 images. Using this method, the CME front edge can now be tracked automatically and continuously in a much larger range, i.e., from 2 to 90 Rs, for the first time. These improvements can

  5. Human frataxin activates Fe-S cluster biosynthesis by facilitating sulfur transfer chemistry.

    PubMed

    Bridwell-Rabb, Jennifer; Fox, Nicholas G; Tsai, Chi-Lin; Winn, Andrew M; Barondeau, David P

    2014-08-05

    Iron-sulfur clusters are ubiquitous protein cofactors with critical cellular functions. The mitochondrial Fe-S assembly complex, which consists of the cysteine desulfurase NFS1 and its accessory protein (ISD11), the Fe-S assembly protein (ISCU2), and frataxin (FXN), converts substrates l-cysteine, ferrous iron, and electrons into Fe-S clusters. The physiological function of FXN has received a tremendous amount of attention since the discovery that its loss is directly linked to the neurodegenerative disease Friedreich's ataxia. Previous in vitro results revealed a role for human FXN in activating the cysteine desulfurase and Fe-S cluster biosynthesis activities of the Fe-S assembly complex. Here we present radiolabeling experiments that indicate FXN accelerates the accumulation of sulfur on ISCU2 and that the resulting persulfide species is viable in the subsequent synthesis of Fe-S clusters. Additional mutagenesis, enzyme kinetic, UV-visible, and circular dichroism spectroscopic studies suggest conserved ISCU2 residue C104 is critical for FXN activation, whereas C35, C61, and C104 are all essential for Fe-S cluster formation on the assembly complex. These results cannot be fully explained by the hypothesis that FXN functions as an iron donor for Fe-S cluster biosynthesis, and further support an allosteric regulator role for FXN. Together, these results lead to an activation model in which FXN accelerates persulfide formation on NFS1 and favors a helix-to-coil interconversion on ISCU2 that facilitates the transfer of sulfur from NFS1 to ISCU2 as an initial step in Fe-S cluster biosynthesis.

  6. A Redox Active [2Fe-2S] Cluster on the Hydrogenase Maturase HydF.

    PubMed

    Shepard, Eric M; Byer, Amanda S; Betz, Jeremiah N; Peters, John W; Broderick, Joan B

    2016-06-28

    [FeFe]-hydrogenases are nature's most prolific hydrogen catalysts, excelling at facilely interconverting H2 and protons. The catalytic core common to all [FeFe]-hydrogenases is a complex metallocofactor, referred to as the H-cluster, which is composed of a standard [4Fe-4S] cluster linked through a bridging thiolate to a 2Fe subcluster harboring dithiomethylamine, carbon monoxide, and cyanide ligands. This 2Fe subcluster is synthesized and inserted into [FeFe]-hydrogenase by three maturase enzymes denoted HydE, HydF, and HydG. HydE and HydG are radical S-adenosylmethionine enzymes and synthesize the nonprotein ligands of the H-cluster. HydF is a GTPase that functions as a scaffold or carrier for 2Fe subcluster production. Herein, we utilize UV-visible, circular dichroism, and electron paramagnetic resonance spectroscopic studies to establish the existence of redox active [4Fe-4S] and [2Fe-2S] clusters bound to HydF. We have used spectroelectrochemical titrations to assign iron-sulfur cluster midpoint potentials, have shown that HydF purifies with a reduced [2Fe-2S] cluster in the absence of exogenous reducing agents, and have tracked iron-sulfur cluster spectroscopic changes with quaternary structural perturbations. Our results provide an important foundation for understanding the maturation process by defining the iron-sulfur cluster content of HydF prior to its interaction with HydE and HydG. We speculate that the [2Fe-2S] cluster of HydF either acts as a placeholder for HydG-derived Fe(CO)2CN species or serves as a scaffold for 2Fe subcluster assembly.

  7. The mCME Project: A Randomized Controlled Trial of an SMS-Based Continuing Medical Education Intervention for Improving Medical Knowledge among Vietnamese Community Based Physicians’ Assistants

    PubMed Central

    Gill, Christopher J.; Le Ngoc, Bao; Halim, Nafisa; Nguyen Viet, Ha; Larson Williams, Anna; Nguyen Van, Tan; McNabb, Marion; Tran Thi Ngoc, Lien; Falconer, Ariel; An Phan Ha, Hai; Rohr, Julia; Hoang, Hai; Michiel, James; Nguyen Thi Thanh, Tam; Bird, Liat; Pham Vu, Hoang; Yeshitla, Mahlet; Ha Van, Nhu; Sabin, Lora

    2016-01-01

    Background Community health workers (CHWs) provide critical services to underserved populations in low and middle-income countries, but maintaining CHW’s clinical knowledge through formal continuing medical education (CME) activities is challenging and rarely occurs. We tested whether a Short Message Service (SMS)-based mobile CME (mCME) intervention could improve medical knowledge among a cadre of Vietnamese CHWs (Community Based Physician’s Assistants–CBPAs) who are the leading providers of primary medical care for rural underserved populations. Methods The mCME Project was a three arm randomized controlled trial. Group 1 served as controls while Groups 2 and 3 experienced two models of the mCME intervention. Group 2 (passive model) participants received a daily SMS bullet point, and were required to reply to the text to acknowledge receipt; Group 3 (interactive model) participants received an SMS in multiple choice question format addressing the same thematic area as Group 2, entering an answer (A, B, C or D) in their response. The server provided feedback immediately informing the participant whether the answer was correct. Effectiveness was based on standardized examination scores measured at baseline and endline (six months later). Secondary outcomes included job satisfaction and self-efficacy. Results 638 CBPAs were enrolled, randomized, and tested at baseline, with 592 returning at endline (93.7%). Baseline scores were similar across all three groups. Over the next six months, participation of Groups 2 and 3 remained high; they responded to >75% of messages. Group 3 participants answered 43% of the daily SMS questions correctly, but their performance did not improve over time. At endline, the CBPAs reported high satisfaction with the mCME intervention, and deemed the SMS messages highly relevant. However, endline exam scores did not increase over baseline, and did not differ between the three groups. Job satisfaction and self-efficacy scores also did

  8. Clustering of diet- and activity-related parenting practices: cross-sectional findings of the INPACT study

    PubMed Central

    2013-01-01

    Background Various diet- and activity-related parenting practices are positive determinants of child dietary and activity behaviour, including home availability, parental modelling and parental policies. There is evidence that parenting practices cluster within the dietary domain and within the activity domain. This study explores whether diet- and activity-related parenting practices cluster across the dietary and activity domain. Also examined is whether the clusters are related to child and parental background characteristics. Finally, to indicate the relevance of the clusters in influencing child dietary and activity behaviour, we examined whether clusters of parenting practices are related to these behaviours. Methods Data were used from 1480 parent–child dyads participating in the Dutch IVO Nutrition and Physical Activity Child cohorT (INPACT). Parents of children aged 8–11 years completed questionnaires at home assessing their diet- and activity-related parenting practices, child and parental background characteristics, and child dietary and activity behaviours. Principal component analysis (PCA) was used to identify clusters of parenting practices. Backward regression analysis was used to examine the relationship between child and parental background characteristics with cluster scores, and partial correlations to examine associations between cluster scores and child dietary and activity behaviours. Results PCA revealed five clusters of parenting practices: 1) high visibility and accessibility of screens and unhealthy food, 2) diet- and activity-related rules, 3) low availability of unhealthy food, 4) diet- and activity-related positive modelling, and 5) positive modelling on sports and fruit. Low parental education was associated with unhealthy cluster 1, while high(er) education was associated with healthy clusters 2, 3 and 5. Separate clusters were related to both child dietary and activity behaviour in the hypothesized directions: healthy clusters

  9. The Width of a CME and the Source of the Driving Magnetic Explosion

    NASA Technical Reports Server (NTRS)

    Moore, R. L.; Sterling, A. C.; Suess, S. T.

    2007-01-01

    We show that the strength of the magnetic field in the area covered by the flare arcade following a CME-producing ejective solar eruption can be estimated from the final angular width of the CME in the outer corona and the final angular width of the flare arcade. We assume (1) the flux-rope plasmoid ejected from the flare site becomes the interior of the CME plasmoid, (2) in the outer corona the CME is roughly a "spherical plasmoid with legs" shaped like a light bulb, and (3) beyond some height in or below the outer corona the CME plasmoid is in lateral pressure balance with the surrounding magnetic field. The strength of the nearly radial magnetic field in the outer corona is estimated from the radial component of the interplanetary magnetic field measured by Ulysses. We apply this model to three well-observed CMEs that exploded from flare regions of extremely different size and magnetic setting. In each event, the estimated source-region field strength is appropriate for the magnetic setting of the flare. This agreement indicates via the model that CMEs (1) are propelled by the magnetic field of the CME plasmoid pushing against the surrounding magnetic field, and (2) can explode from flare regions that are laterally far offset from the radial path of the CME in the outer corona.

  10. 3D Density Structure and LOS Observations of a Model CME

    NASA Astrophysics Data System (ADS)

    Manchester, W. B.; Lugaz, N.; Gombosi, T.; de Zeeuw, D.; Sokolov, I.; Toth, G.

    2004-12-01

    We present synthetic Thomson-scattered white-light images of a simulated coronal mass ejection (CME). The simulations are based on a 3-D MHD model of a CME propagating through a bimodal solar wind characteristic of solar minimum. The CME is driven by a 3-D Gibson-Low flux rope inserted in the helmet streamer of the steady-state corona. Synthetic coronograph images are produced that follow the evolution of the CME to 1 AU from several points of view. The white light images provide a basis for comparison with wide angle coronographs, like those of SMEI or STEREO. We find that a large amount of plasma is swept up from the solar wind by the CME-driven shock wave, which dominates the density structure far from the Sun. We also find that the shape of this compressed plasma is highly distorted by the variation in speed of the ambient solar wind. Comparisons of 2-D integrated images to the 3-D density structure show that the viewing angle severely effects the line-of-sight appearance of the CME, as well as the estimated mass of the CME from such 2D images.

  11. 3D Numerical Study of Typical CME Event: The 2010-04-03 Event

    NASA Astrophysics Data System (ADS)

    Zhou, Y.; Feng, X. S.; Zhao, X.

    2014-12-01

    The coronal mass ejection (CME) event on April 3, 2010 is the first fast CME observed by STEREO SECCHI/HI for the full Sun-Earth line. Such an event provides us a good opportunity to study the propagation and evolution of CME from the Sun up to 1 AU. In this paper, we study the time-dependent evolution and propagation of this event from the Sun to Earth using the 3D SIP-CESE MHD model. The CME is initiated by a simple spherical plasmoid model: a spheromak magnetic structure with high speed, high pressure and high plasma density plasmoid. We find that the results can successfully reproduce the observations in the STEREO A/B COR1 and COR2 field of view and generate many basic structures of the in situ measurement: such as the similar curves of the plasma density and velocity, an increase in the magnetic field magnitude, the large-scale smooth magnetic field rotation and prolonged southward IMF (a well known source of magnetic storms). The MHD model gives the shock arrival time at Earth with an error of ˜ 1.5 hours. Finally, we analyze in detail the propagation velocity, the spread angle, the trajectory of CME. The speed of the CME rapidly increases from near the Sun, then decreases due to interaction with the solar wind ambient. The spread angle of the CME quickly increases due to lateral material expansion by the pressure gradients within the realistic solar wind background, then the expansion decreases with distance and ends until a pressure equilibrium is established. We also study the CME deflection and find that the CME almost does not deflects in the latitudinal and longitudinal direction during its propagation from the Sun to 1 AU.

  12. Preparation of Aun quantum clusters with catalytic activity in β-cyclodextrin polyurethane nanosponges.

    PubMed

    Vasconcelos, Diego Andrade; Kubota, Tatiana; Santos, Douglas C; Araujo, Marcia V G; Teixeira, Zaine; Gimenez, Iara F

    2016-01-20

    Here we report the use of β-cyclodextrin polyurethane nanosponges cross-linked with 1,6-hexamethylene diisocyanate as a template for the preparation of Aun quantum clusters, by the core-etching of glutathione-capped Au nanoparticles. The study of temporal evolution of the core-etching process using different Au concentrations indicated that formation of Aun clusters embedded in the nanosponge is favored by the use of lower Au concentrations, since it began at shorter times and lead to higher cluster loading. An estimation of the number of Au atoms based on the maximum photoluminescence wavelength suggested that, depending on the Au concentration and the core etching time, clusters with 11-15 atoms were formed. After excluding the possibility of an inclusion complex formation, evaluation of the catalytic activity of nanosponge-loaded Aun clusters toward the reduction of 4-nitrophenol has shown that the reaction is catalyzed by the Aun clusters with no induction time, following the Langmuir-Hinshelwood kinetic model.

  13. Activation and adsorption of CO{sub 2} on copper surfaces and clusters

    SciTech Connect

    Gautam, Seema; Dharmvir, Keya; Goel, Neetu

    2014-04-24

    The activation and adsorption of CO{sub 2} over Cu{sub n} clusters have been investigated by first principle calculations. Results of these calculations are compared with the previous studies of adsorption of CO{sub 2} on Cu (hkl) surfaces [Wang et al. Surface Science 570 (2004) 205–217]. We find that CO{sub 2} is preferentially adsorbed over the clusters in comparison with Cu (hkl) surfaces. The Cu13 cluster in particular dissociates the CO{sub 2} molecule adsorbed on the one of the caps of the icosahedron into CO and atomic oxygen. This activated configuration can act as a precursor to reactions leading to hydrocarbon fuels from CO{sub 2}.

  14. a Three-Step Spatial-Temporal Clustering Method for Human Activity Pattern Analysis

    NASA Astrophysics Data System (ADS)

    Huang, W.; Li, S.; Xu, S.

    2016-06-01

    How people move in cities and what they do in various locations at different times form human activity patterns. Human activity pattern plays a key role in in urban planning, traffic forecasting, public health and safety, emergency response, friend recommendation, and so on. Therefore, scholars from different fields, such as social science, geography, transportation, physics and computer science, have made great efforts in modelling and analysing human activity patterns or human mobility patterns. One of the essential tasks in such studies is to find the locations or places where individuals stay to perform some kind of activities before further activity pattern analysis. In the era of Big Data, the emerging of social media along with wearable devices enables human activity data to be collected more easily and efficiently. Furthermore, the dimension of the accessible human activity data has been extended from two to three (space or space-time) to four dimensions (space, time and semantics). More specifically, not only a location and time that people stay and spend are collected, but also what people "say" for in a location at a time can be obtained. The characteristics of these datasets shed new light on the analysis of human mobility, where some of new methodologies should be accordingly developed to handle them. Traditional methods such as neural networks, statistics and clustering have been applied to study human activity patterns using geosocial media data. Among them, clustering methods have been widely used to analyse spatiotemporal patterns. However, to our best knowledge, few of clustering algorithms are specifically developed for handling the datasets that contain spatial, temporal and semantic aspects all together. In this work, we propose a three-step human activity clustering method based on space, time and semantics to fill this gap. One-year Twitter data, posted in Toronto, Canada, is used to test the clustering-based method. The results show that the

  15. Star formation activity of intermediate redshift cluster galaxies out to the infall regions

    NASA Astrophysics Data System (ADS)

    Gerken, B.; Ziegler, B.; Balogh, M.; Gilbank, D.; Fritz, A.; Jäger, K.

    2004-07-01

    We present a spectroscopic analysis of two galaxy clusters at z≈0.2, out to ˜4 Mpc. The two clusters VMF73 and VMF74 as identified by \\citet{VMFJQH98} were observed with multiple object spectroscopy using MOSCA at the Calar Alto 3.5 m telescope. Both clusters lie in the ROSAT Position Sensitive Proportional Counter field R285 and were selected from the X-ray Dark Cluster Survey \\citep{GBCZ04} that provides optical V- and I-band data. VMF73 and VMF74 are located at respective redshifts of z=0.25 and z=0.18 with velocity dispersions of 671 km s-1 and 442 km s-1, respectively. Both cluster velocity dispersions are consistent with Gaussians. The spectroscopic observations reach out to ˜2.5 virial radii. Line strength measurements of the emission lines Hα and [O II]λ3727 are used to assess the star formation activity of cluster galaxies which show radial and density dependences. The mean and median of both line strength distributions as well as the fraction of star forming galaxies increase with increasing clustercentric distance and decreasing local galaxy density. Except for two galaxies with strong Hα and [O II] emission, all of the cluster galaxies are normal star forming or passive galaxies. Our results are consistent with other studies that show the truncation in star formation occurs far from the cluster centre. Table A.1 is only available in electronic from at http//www.edpsciences.org

  16. Isotropic Heating of Galaxy Cluster Cores via Rapidly Reorienting Active Galactic Nucleus Jets

    NASA Astrophysics Data System (ADS)

    Babul, Arif; Sharma, Prateek; Reynolds, Christopher S.

    2013-05-01

    Active galactic nucleus (AGN) jets carry more than sufficient energy to stave off catastrophic cooling of the intracluster medium (ICM) in the cores of cool-core clusters. However, in order to prevent catastrophic cooling, the ICM must be heated in a near-isotropic fashion and narrow bipolar jets with P jet = 1044 - 45 erg s-1, typical of radio AGNs at cluster centers, are inefficient in heating the gas in the transverse direction to the jets. We argue that due to existent conditions in cluster cores, the supermassive black holes (SMBHs) will, in addition to accreting gas via radiatively inefficient flows, experience short stochastic episodes of enhanced accretion via thin disks. In general, the orientation of these accretion disks will be misaligned with the spin axis of the black holes (BHs) and the ensuing torques will cause the BH's spin axis (and therefore the jet axis) to slew and rapidly change direction. This model not only explains recent observations showing successive generations of jet-lobes-bubbles in individual cool-core clusters that are offset from each other in the angular direction with respect to the cluster center, but also shows that AGN jets can heat the cluster core nearly isotropically on the gas cooling timescale. Our model does require that the SMBHs at the centers of cool-core clusters be spinning relatively slowly. Torques from individual misaligned disks are ineffective at tilting rapidly spinning BHs by more than a few degrees. Additionally, since SMBHs that host thin accretion disks will manifest as quasars, we predict that roughly 1-2 rich clusters within z < 0.5 should have quasars at their centers.

  17. Tests of Dynamical Flux Emergence as a Mechanism for CME Initiation

    DTIC Science & Technology

    2010-08-01

    ar X iv :1 00 7. 54 84 v2 [ as tr o- ph .S R ] 3 A ug 2 01 0 Tests of Dynamical Flux Emergence as a Mechanism for CME Initiation James E. Leake...boundary conditions or simply assume the appearance of flux at these heights. We test the importance of including dynamical flux emergence in CME modeling... test the models against observations. Subject headings: CMEs, Flux Emergence, MHD 1. INTRODUCTION 1.1. CME modeling Coronal mass ejections (CMEs) and

  18. Connection Between the CME Velocities and Decameter Radio Bursts Parameters from URAN-4 Observations

    NASA Astrophysics Data System (ADS)

    Galanin, V. V.; Isaeva, E. A.; Kravetz, R. O.

    The paper reports the results of the research of connection between the coronal mass ejections (CME) with the IV type continual decameter bursts parameters. As the parameters characterizing the CME velocity, we used the integrated flux of the radio bursts and background intensity on 20 and 25 MHz frequencies. The analysis demonstrated that the connection between the CME velocity and IV type bursts increases, if we take into account the intensity of the radio bursts and background on two polarizations at a given frequency. In this case, the correlation coefficient is ≍ 0.75.

  19. Effects of the 5 October 1996 CME at 4.4 AU: Ulysses observations

    SciTech Connect

    Marsden, R.G.; Desai, M.I.; Sanderson, T.R.; Forsyth, R.J.; Gosling, J.T.

    1997-09-01

    The authors present observations from Ulysses associated with a large coronal mass ejection (CME) that lifted off the west limb of the Sun on 5 October, 1996. The study focuses on the effects of the interplanetary counterpart of the CME on the energetic particle populations at the location of Ulysses, in particular the effect on the sequence of corotating enhancements that had been observed prior to its arrival. They conclude that, despite its large spatial extent, the CME caused no permanent deformation of the heliospheric current sheet.

  20. Transforming in-situ observations of CME-driven shock accelerated protons into the shock's reference frame.

    NASA Astrophysics Data System (ADS)

    Robinson, I. M.; Simnett, G. M.

    2005-07-01

    We examine the solar energetic particle event following solar activity from 14, 15 April 2001 which includes a "bump-on-the-tail" in the proton energy spectra at 0.99 AU from the Sun. We find this population was generated by a CME-driven shock which arrived at 0.99 AU around midnight 18 April. As such this population represents an excellent opportunity to study in isolation, the effects of proton acceleration by the shock. The peak energy of the bump-on-the-tail evolves to progressively lower energies as the shock approaches the observing spacecraft at the inner Lagrange point. Focusing on the evolution of this peak energy we demonstrate a technique which transforms these in-situ spectral observations into a frame of reference co-moving with the shock whilst making allowance for the effects of pitch angle scattering and focusing. The results of this transform suggest the bump-on-the-tail population was not driven by the 15 April activity but was generated or at least modulated by a CME-driven shock which left the Sun on 14 April. The existence of a bump-on-the-tail population is predicted by models in Rice et al. (2003) and Li et al. (2003) which we compare with observations and the results of our analysis in the context of both the 14 April and 15 April CMEs. We find an origin of the bump-on-the-tail at the 14 April CME-driven shock provides better agreement with these modelled predictions although some discrepancy exists as to the shock's ability to accelerate 100 MeV protons. Keywords. Solar physics, astrophysics and astronomy (Energetic particles; Flares and mass ejections) Space plasma physics (Transport processes)

  1. User Activity Recognition in Smart Homes Using Pattern Clustering Applied to Temporal ANN Algorithm

    PubMed Central

    Bourobou, Serge Thomas Mickala; Yoo, Younghwan

    2015-01-01

    This paper discusses the possibility of recognizing and predicting user activities in the IoT (Internet of Things) based smart environment. The activity recognition is usually done through two steps: activity pattern clustering and activity type decision. Although many related works have been suggested, they had some limited performance because they focused only on one part between the two steps. This paper tries to find the best combination of a pattern clustering method and an activity decision algorithm among various existing works. For the first step, in order to classify so varied and complex user activities, we use a relevant and efficient unsupervised learning method called the K-pattern clustering algorithm. In the second step, the training of smart environment for recognizing and predicting user activities inside his/her personal space is done by utilizing the artificial neural network based on the Allen’s temporal relations. The experimental results show that our combined method provides the higher recognition accuracy for various activities, as compared with other data mining classification algorithms. Furthermore, it is more appropriate for a dynamic environment like an IoT based smart home. PMID:26007738

  2. User Activity Recognition in Smart Homes Using Pattern Clustering Applied to Temporal ANN Algorithm.

    PubMed

    Bourobou, Serge Thomas Mickala; Yoo, Younghwan

    2015-05-21

    This paper discusses the possibility of recognizing and predicting user activities in the IoT (Internet of Things) based smart environment. The activity recognition is usually done through two steps: activity pattern clustering and activity type decision. Although many related works have been suggested, they had some limited performance because they focused only on one part between the two steps. This paper tries to find the best combination of a pattern clustering method and an activity decision algorithm among various existing works. For the first step, in order to classify so varied and complex user activities, we use a relevant and efficient unsupervised learning method called the K-pattern clustering algorithm. In the second step, the training of smart environment for recognizing and predicting user activities inside his/her personal space is done by utilizing the artificial neural network based on the Allen's temporal relations. The experimental results show that our combined method provides the higher recognition accuracy for various activities, as compared with other data mining classification algorithms. Furthermore, it is more appropriate for a dynamic environment like an IoT based smart home.

  3. Yeast homologous recombination-based promoter engineering for the activation of silent natural product biosynthetic gene clusters.

    PubMed

    Montiel, Daniel; Kang, Hahk-Soo; Chang, Fang-Yuan; Charlop-Powers, Zachary; Brady, Sean F

    2015-07-21

    Large-scale sequencing of prokaryotic (meta)genomic DNA suggests that most bacterial natural product gene clusters are not expressed under common laboratory culture conditions. Silent gene clusters represent a promising resource for natural product discovery and the development of a new generation of therapeutics. Unfortunately, the characterization of molecules encoded by these clusters is hampered owing to our inability to express these gene clusters in the laboratory. To address this bottleneck, we have developed a promoter-engineering platform to transcriptionally activate silent gene clusters in a model heterologous host. Our approach uses yeast homologous recombination, an auxotrophy complementation-based yeast selection system and sequence orthogonal promoter cassettes to exchange all native promoters in silent gene clusters with constitutively active promoters. As part of this platform, we constructed and validated a set of bidirectional promoter cassettes consisting of orthogonal promoter sequences, Streptomyces ribosome binding sites, and yeast selectable marker genes. Using these tools we demonstrate the ability to simultaneously insert multiple promoter cassettes into a gene cluster, thereby expediting the reengineering process. We apply this method to model active and silent gene clusters (rebeccamycin and tetarimycin) and to the silent, cryptic pseudogene-containing, environmental DNA-derived Lzr gene cluster. Complete promoter refactoring and targeted gene exchange in this "dead" cluster led to the discovery of potent indolotryptoline antiproliferative agents, lazarimides A and B. This potentially scalable and cost-effective promoter reengineering platform should streamline the discovery of natural products from silent natural product biosynthetic gene clusters.

  4. CME/CNE Article: A Framework of Care in Multiple Sclerosis, Part 1

    PubMed Central

    Aliotta, Philip J.; Bainbridge, Jacquelyn; Bennett, Susan E.; Cutter, Gary; Fenton, Kaylan; Lublin, Fred; Northrop, Dorothy; Rintell, David; Walker, Bryan D.; Weigel, Megan; Zackowski, Kathleen; Jones, David E.

    2016-01-01

    CME/CNE Information Activity Available Online: To access the article, post-test, and evaluation online, go to http://www.cmscscholar.org. Target Audience: The target audience for this activity is physicians, physician assistants, nursing professionals, and other health-care providers involved in the management of patients with multiple sclerosis (MS). Learning Objectives: Apply new information about MS to a comprehensive individualized treatment plan for patients with MS Integrate the team approach into long-term planning in order to optimize rehabilitation care of patients with MS Accreditation Statement: This activity has been planned and implemented in accordance with the accreditation requirements and policies of the Accreditation Council for Continuing Medical Education (ACCME) through the joint providership of the Consortium of Multiple Sclerosis Centers (CMSC), Nurse Practitioner Alternatives (NPA), and Delaware Media Group. The CMSC is accredited by the ACCME to provide continuing medical education for physicians. The CMSC designates this journal-based CME activity for a maximum of 1.0 AMA PRA Category 1 Credit(s)™. Physicians should claim only the credit commensurate with the extent of their participation in the activity. Nurse Practitioner Alternatives (NPA) is accredited as a provider of continuing nursing education by the American Nurses Credentialing Center's Commission on Accreditation. NPA designates this enduring material for 1.0 Continuing Nursing Education credit. Laurie Scudder, DNP, NP, has served as Nurse Planner for this activity. She has disclosed no relevant financial relationships. Disclosures: Francois Bethoux, MD, Editor in Chief of the International Journal of MS Care (IJMSC), has served as Physician Planner for this activity. He has received royalties from Springer Publishing and has received intellectual property rights from Biogen. Laurie Scudder, DNP, NP, has served as Nurse Planner for this activity. She has disclosed no relevant

  5. Magnetic Field-Induced T Cell Receptor Clustering by Nanoparticles Enhances T Cell Activation and Stimulates Antitumor Activity

    PubMed Central

    2015-01-01

    Iron–dextran nanoparticles functionalized with T cell activating proteins have been used to study T cell receptor (TCR) signaling. However, nanoparticle triggering of membrane receptors is poorly understood and may be sensitive to physiologically regulated changes in TCR clustering that occur after T cell activation. Nano-aAPC bound 2-fold more TCR on activated T cells, which have clustered TCR, than on naive T cells, resulting in a lower threshold for activation. To enhance T cell activation, a magnetic field was used to drive aggregation of paramagnetic nano-aAPC, resulting in a doubling of TCR cluster size and increased T cell expansion in vitro and after adoptive transfer in vivo. T cells activated by nano-aAPC in a magnetic field inhibited growth of B16 melanoma, showing that this novel approach, using magnetic field-enhanced nano-aAPC stimulation, can generate large numbers of activated antigen-specific T cells and has clinically relevant applications for adoptive immunotherapy. PMID:24564881

  6. CME on Oct. 21, 2011 Caused Red Aurora in U.S.

    NASA Video Gallery

    The SOlar Heliospheric Observatory (SOHO) captured this "coronograph" – so-called because the images block the sun, and only show the sun's atmosphere, or corona. The coronal mass ejection (CME)...

  7. RADIO-LOUD ACTIVE GALACTIC NUCLEUS: IS THERE A LINK BETWEEN LUMINOSITY AND CLUSTER ENVIRONMENT?

    SciTech Connect

    Ineson, J.; Croston, J. H.; Hardcastle, M. J.; Jarvis, M.; Kraft, R. P.; Evans, D. A.

    2013-06-20

    We present here the first results from the Chandra ERA (Environments of Radio-loud AGN) Large Project, characterizing the cluster environments of a sample of 26 radio-loud active galactic nuclei (AGNs) at z {approx} 0.5 that covers three decades of radio luminosity. This is the first systematic X-ray environmental study at a single epoch, and has allowed us to examine the relationship between radio luminosity and cluster environment without the problems of Malmquist bias. We have found a weak correlation between radio luminosity and host cluster X-ray luminosity, as well as tentative evidence that this correlation is driven by the subpopulation of low-excitation radio galaxies, with high-excitation radio galaxies showing no significant correlation. The considerable scatter in the environments may be indicative of complex relationships not currently included in feedback models.

  8. Modeling UV and X-Ray Emission in a Post-CME Current Sheet

    DTIC Science & Technology

    2010-08-01

    physical parameters in the ambient corona , namely the coronal magnetic field, the electron density and temperature during the CME event. It is...interplanetary CMEs. The model results depend strongly on the physical parameters in the ambient corona namely the coronal magnetic field, the electron density... corona are expected inside the CS as magnetic energy is converted to kinetic and thermal energy due to reconnection. This standard flare-CME picture

  9. Active galactic nuclei. II - The acceleration of relativistic particles in a cluster of accreting black holes

    NASA Technical Reports Server (NTRS)

    Pacholczyk, A. G.; Stepinski, T. F.

    1988-01-01

    An accreting cluster of black holes in an active galactic nucleus is a natural site for a system of shock structures with a hierarchy of sizes, corresponding to the distribution of masses in the cluster. Accreted gas containing some magnetic fields and supersonically falling onto the core forms shocks on the outside of each hole and these shocks are capable of accelerating relativistic particles. The energies reached in a single shock are size rather than acceleration time limited and are proportional to the mass of the hole with a proportionality constant being a function of the position of the hole within a cluster and the model of the cluster and the shock formation. These energies are adequate to explain the observed properties of synchrotron and inverse-Compton radiation from these objects. The resulting energy spectrum of particles in the cluster in 'zeroth' approximation has the form of a doubly broken power law with indices of two and three on both extremes of the energy domain respectively, bridged by an index of about 2.5.

  10. Active learning for semi-supervised clustering based on locally linear propagation reconstruction.

    PubMed

    Chang, Chin-Chun; Lin, Po-Yi

    2015-03-01

    The success of semi-supervised clustering relies on the effectiveness of side information. To get effective side information, a new active learner learning pairwise constraints known as must-link and cannot-link constraints is proposed in this paper. Three novel techniques are developed for learning effective pairwise constraints. The first technique is used to identify samples less important to cluster structures. This technique makes use of a kernel version of locally linear embedding for manifold learning. Samples neither important to locally linear propagation reconstructions of other samples nor on flat patches in the learned manifold are regarded as unimportant samples. The second is a novel criterion for query selection. This criterion considers not only the importance of a sample to expanding the space coverage of the learned samples but also the expected number of queries needed to learn the sample. To facilitate semi-supervised clustering, the third technique yields inferred must-links for passing information about flat patches in the learned manifold to semi-supervised clustering algorithms. Experimental results have shown that the learned pairwise constraints can capture the underlying cluster structures and proven the feasibility of the proposed approach.

  11. Kinematic Treatment of CME Evolution in the Solar Wind

    NASA Technical Reports Server (NTRS)

    Riley, Pete; Crooker, N. U.

    2004-01-01

    We present a kinematic study of the evolution of coronal mass ejections (CMEs) in the solar wind. Specifically, we consider the effects of: (1) spherical expansion; and (2) uniform expansion due to pressure gradients between the Interplanetary CME (ICME) and the ambient solar wind. We compare these results with an MHD model, which allows us to isolate these effects from the combined kinematic and dynamical effects, which are included in MHD models. They also provide compelling evidence that the fundamental cross section of so-called "force-free" flux ropes (or magnetic clouds) is neither circular or elliptical, but rather a convex-outward, "pancake" shape. We apply a force-free fitting to the magnetic vectors from the MHD simulation to assess how the distortion of the flux rope affects the fitting. In spite of these limitations, force-free fittings, which are straightforward to apply, do provide an important description of a number of parameters, including the radial dimension, orientation and chirality of the ICME.

  12. Solar and interplanetary activities of isolated and non-isolated coronal mass ejections

    NASA Astrophysics Data System (ADS)

    Bendict Lawrance, M.; Shanmugaraju, A.; Moon, Y.-J.; Umapathy, S.

    2017-02-01

    We report our results on comparison of two halo Coronal Mass Ejections (CME) associated with X-class flares of similar strength (X1.4) but quite different in CME speed and acceleration, similar geo-effectiveness but quite different in Solar Energetic Particle (SEP) intensity. CME1 (non-isolated) was associated with a double event in X-ray flare and it was preceded by another fast halo CME of speed = 2684 km/s (pre-CME) associated with X-ray flare class X5.4 by 1 h from the same location. Since this pre-CME was more eastern, interaction with CME1 and hitting the earth were not possible. This event (CME1) has not suffered the cannibalism since pre-CME has faster speed than post-CME. Pre-CME plays a very important role in increasing the intensity of SEP and Forbush Decrease (FD) by providing energetic seed particles. So, the seed population is the major difference between these two selected events. CME2 (isolated) was a single event. We would like to address on the kinds of physical conditions related to such CMEs and their associated activities. Their associated activities such as, type II bursts, SEP, geomagnetic storm and FD are compared. The following results are obtained from the analysis. (1) The CME leading edge height at the start of metric/DH type II bursts are 2 R⊙/ 4 R⊙ for CME1, but 2 R⊙/ 2.75 R⊙ for CME2. (2) Peak intensity of SEP event associated with the two CMEs are quite different: 6530 pfu for CME1, but 96 pfu for CME2. (3) The Forbush decrease occurred with a minimum decrease of 9.98% in magnitude for CME1, but 6.90% for CME2. (4) These two events produced similar intense geomagnetic storms of intensity of Dst index -130 nT. (5) The maximum southward magnetic fields corresponding to Interplanetary CME (ICME) of these two events are nearly the same, but there is difference in Sheath Bz maximum (-14.2, -6.9 nT). (6) The time-line chart of the associated activities of two CMEs show some difference in the time delay between the onsets of

  13. Catalytic oligomerization of ethylene to higher linear alpha-olefins promoted by the cationic group 4 [(eta 5-Cp-(CMe2-bridge)-Ph)MII(ethylene)2]+ (M = Ti, Zr, Hf) active catalysts: a density functional investigation of the influence of the metal on the catalytic activity and selectivity.

    PubMed

    Tobisch, Sven; Ziegler, Tom

    2004-07-28

    A detailed theoretical analysis is presented of the catalytic abilities of heavier group 4 (M = Zr, Hf) metals for linear ethylene oligomerization with the cationic [(eta(5)-C(5)H(4)-(CMe(2)-bridge)-C(6)H(5))M(IV)(CH(3))(2)](+) complex as precatalyst, employing a gradient-corrected DFT method. The parent Ti system has been reported as a highly selective catalyst for ethylene trimerization. The mechanism involving metallacycle intermediates, originally proposed by Briggs and Jolly, has been supported by the present study to be operative for the investigated class of group 4 catalysts. Metallacycle growth through bimolecular ethylene uptake and subsequent insertion is likely to occur at uniform rates for larger cycles that are furthermore comparable for Ti, Zr, and Hf catalysts. Ethylene insertion into the two smallest five- and seven-membered cycles is found to become accelerated for Zr and Hf catalysts, which is due to geometrical factors. In contrast, electronic effects act to raise the barrier for metallacycle decomposition, affording alpha-olefins upon descending group 4. This process is furthermore predicted to be kinetically more difficult for larger metallacycles. The oligomer distribution of the Zr-mediated reaction is likely to comprise predominantly 1-hexene together with 1-octene, while 1-butene and alpha-olefins of chain lengths C(10)-C(18) should occur only in negligible portions. A similar composition of alpha-olefins having C(6)-C(18) chain lengths is indicated for the Hf catalysts, but with long-chain oligomers and polymers as the prevalent fraction. Between the group 4 catalysts of the investigated type, the Zr system appears as the most promising candidate having catalytic potential for production of 1-octene, although not selectively. The influence of temperature to modulate the oligomer product composition has been evaluated.

  14. Didactic CME and practice change: don't throw that baby out quite yet.

    PubMed

    Olson, Curtis A; Tooman, Tricia R

    2012-08-01

    Skepticism exists regarding the role of continuing medical education (CME) in improving physician performance. The harshest criticism has been reserved for didactic CME. Reviews of the scientific literature on the effectiveness of CME conclude that formal or didactic modes of education have little or no impact on clinical practice. This has led some to argue that didactic CME is a highly questionable use of organizational and financial resources, and a cause of lost opportunities for physicians to engage in meaningful learning. The authors' current program of research has forced them to reconsider the received wisdom regarding the relationship between didactic modes of education and learning, and the role frank dissemination can play in bringing about practice change. The authors argued that the practice of assessing and valuing educational methods based only on their capacity to directly influence practice reflects an impoverished understanding of how change in clinical practice actually occurs. Drawing on case studies research, examples were given of the functions didactic CME served in the interest of improved practice. Reasons were then explored as to why the contribution of didactic CME is often missed or dismissed. The goal was not to advocate for a return to the status quo ante where lecture-based education is the dominant modality, but rather to acknowledge both the limits and potential of this longstanding approach to delivering continuing education.

  15. Anaerobic central metabolic pathways active during polyhydroxyalkanoate production in uncultured cluster 1 Defluviicoccus enriched in activated sludge communities.

    PubMed

    Burow, Luke C; Mabbett, Amanda N; Borrás, Luis; Blackall, Linda L

    2009-09-01

    A glycogen nonpolyphosphate-accumulating organism (GAO) enrichment culture dominated by the Alphaproteobacteria cluster 1 Defluviicoccus was investigated to determine the metabolic pathways involved in the anaerobic formation of polyhydroxyalkanoates, carbon storage polymers important for the proliferation of microorganisms in enhanced biological phosphorus removal processes. FISH-microautoradiography and post-FISH fluorescent chemical staining confirmed acetate assimilation as polyhydroxyalkanoates in cluster 1 Defluviicoccus under anaerobic conditions. Chemical inhibition of glycolysis using iodoacetate, and of isocitrate lyase by 3-nitropropionate and itaconate, indicated that carbon is likely to be channelled through both glycolysis and the glyoxylate cycle in cluster 1 Defluviicoccus. The effect of metabolic inhibitors of aconitase (monofluoroacetate) and succinate dehydrogenase (malonate) suggested that aconitase, but not succinate dehydrogenase, was active, providing further support for the role of the glyoxylate cycle in these GAOs. Metabolic inhibition of fumarate reductase using oxantel decreased polyhydroxyalkanoate production. This indicated reduction of fumarate to succinate and the operation of the reductive branch of the tricarboxylic acid cycle, which is possibly important in the production of the polyhydroxyvalerate component of polyhydroxyalkanoates observed in cluster 1 Defluviicoccus enrichment cultures. These findings were integrated with previous metabolic models for GAOs and enabled an anaerobic central metabolic pathway model for polyhydroxyalkanoate formation in cluster 1 Defluviicoccus to be proposed.

  16. Is the cluster environment quenching the Seyfert activity in elliptical and spiral galaxies?

    NASA Astrophysics Data System (ADS)

    de Souza, R. S.; Dantas, M. L. L.; Krone-Martins, A.; Cameron, E.; Coelho, P.; Hattab, M. W.; de Val-Borro, M.; Hilbe, J. M.; Elliott, J.; Hagen, A.; COIN Collaboration

    2016-09-01

    We developed a hierarchical Bayesian model (HBM) to investigate how the presence of Seyfert activity relates to their environment, herein represented by the galaxy cluster mass, M200, and the normalized cluster centric distance, r/r200. We achieved this by constructing an unbiased sample of galaxies from the Sloan Digital Sky Survey, with morphological classifications provided by the Galaxy Zoo Project. A propensity score matching approach is introduced to control the effects of confounding variables: stellar mass, galaxy colour, and star formation rate. The connection between Seyfert-activity and environmental properties in the de-biased sample is modelled within an HBM framework using the so-called logistic regression technique, suitable for the analysis of binary data (e.g. whether or not a galaxy hosts an AGN). Unlike standard ordinary least square fitting methods, our methodology naturally allows modelling the probability of Seyfert-AGN activity in galaxies on their natural scale, i.e. as a binary variable. Furthermore, we demonstrate how an HBM can incorporate information of each particular galaxy morphological type in an unified framework. In elliptical galaxies our analysis indicates a strong correlation of Seyfert-AGN activity with r/r200, and a weaker correlation with the mass of the host cluster. In spiral galaxies these trends do not appear, suggesting that the link between Seyfert activity and the properties of spiral galaxies are independent of the environment.

  17. Membership and Coronal Activity in the NGC 2232 and Cr 140 Open Clusters

    NASA Technical Reports Server (NTRS)

    Patten, Brian M.; Oliversen, Ronald J. (Technical Monitor)

    2001-01-01

    This is the second annual performance report for our grant "Membership and Coronal Activity in the NGC 2232 and Cr 140 Open Clusters." We propose to identify X-ray sources and extract net source counts in 8 archival ROSAT HRI images in the regions of the NGC 2232 and Cr 140 open clusters. These X-ray data will be combined with ground-based photometry and spectroscopy in order to identify G, K, and early-M type cluster members. At present, no members later than approximately F5 are currently known for either cluster. With ages of approximately 25 Myr and at a distance of just 320 - 360 pc, the combined late-type membership of the NGC 2232 and Cr 140 clusters will yield an almost unique sample of solar-type stars in the post-T Tauri/pre-main sequence phase of evolution. These stars will be used to assess the level and dispersion in coronal activity levels, as part of a probe of the importance of magnetic braking and the level of magnetic dynamo activity, for solar-type stars just before they reach the ZAMS. Over the past year we have successfully acquired all of the ground-based data necessary to support the analysis of the archival ROSAT X-ray data in the regions around both of these clusters. By the end of 2001 we expect to have completed the reduction and analysis of the ground-based photometry and spectroscopy and will begin the integration of these data with the ROSAT X-ray data. A certain amount of pressure to complete the work on NGC 2232 is coming from the SIRTF project, as this cluster may be a key component to a circumstellar disk evolution GTO program. We are only too happy to try to help and have worked to speed the analysis as much as possible. The primary activity to be undertaken in the next few months is the integration of the groundbased photometry and spectroscopy with the archival ROSAT X-ray data and then writing the paper summarizing our results. The most time consuming portion of this next phase is, of course, seeing the paper through

  18. The Evolution of Star Formation Activity in Cluster Galaxies Over 0.15 < z < 1.5

    NASA Astrophysics Data System (ADS)

    Wagner, Cory R.

    In this thesis, we explore 7.5 billion years of evolution in cluster galaxy star formation activity using a sample of 11 high-redshift (1 < z < 1.5) clusters from the IRAC Shallow Cluster Survey, and 25 low-redshift (0.15 < z < 1) clusters from The Cluster Lensing And Supernova survey with Hubble. We compare cluster galaxy star formation to that of the field over 0.15 < z < 1.5 using 8000 galaxies from the UltraVISTA survey. Mid-infrared star formation rates are measured using Spitzer 24 mum data for isolated high-redshift galaxies. We calculate rest-frame ultraviolet star formation rates for low-redshift cluster members using Hubble Space Telescope observations. Using publically available mid-infrared and ultraviolet data for our field sample, we empirically derive scaling relations to adjust low-redshift cluster galaxy ultraviolet star formation rates to mid-infrared levels. We classify cluster galaxy morphology by visual inspection, and use quantitatively measured morphologies for field galaxies. Cluster late-type galaxies at z > 1 show enhanced star formation activity relative to the field, and account for nearly 90% of the overall star formation activity in high-redshift clusters. While high-redshift early-type galaxies are substantially quenched relative to cluster late-types, they still contribute 13% of the total cluster star formation activity. With early-type fractions increasing from 34 to 56% from z 1.5 → 1.16, we find that new cluster early-type galaxies are likely being formed around z 1.4. The fraction of early-type galaxies that are star-forming drops from 29 to 11% over this period, yet their specific star formation rates are roughly constant. These factors suggest that the events that created these new galaxies, possibly mergers, were both recent and gas-rich. With typical coverages of 50% of z < 1 cluster virial radii, we can only probe the cores of low-redshift clusters. We find that in this regime, the star formation activity of cluster

  19. Role of hydroxyl groups on the stability and catalytic activity of Au clusters on rutile surface

    SciTech Connect

    Kent, Paul R

    2011-01-01

    Hydroxyls are present as surface terminations of transition metal oxides under ambient conditions and may modify the properties of supported catalysts. We perform first-principles density functional theory calculations to investigate the role of hydroxyls on the catalytic activity of supported gold clusters on TiO{sub 2} (rutile). We find that they have a long-range effect increasing the adhesion of gold clusters on rutile. While hydroxyls make one gold atom more electronegative, a more complex charge-transfer scenario is observed on larger clusters which are important for catalytic applications. This enhances the molecular adsorption and coadsorption energies of CO and O{sub 2}, thereby increasing the catalytic activity of gold clusters for CO oxidation, consistent with reported experiments. Hydroxyls at the interface between gold and rutile surface are most important to this process, even when not directly bound to gold. As such, accurate models of catalytic processes on gold and other catalysts should include the effect of surface hydroxyls.

  20. Discovery of Unusual Biaryl Polyketides by Activation of a Silent Streptomyces venezuelae Biosynthetic Gene Cluster.

    PubMed

    Thanapipatsiri, Anyarat; Gomez-Escribano, Juan Pablo; Song, Lijiang; Bibb, Maureen J; Al-Bassam, Mahmoud; Chandra, Govind; Thamchaipenet, Arinthip; Challis, Gregory L; Bibb, Mervyn J

    2016-11-17

    Comparative transcriptional profiling of a ΔbldM mutant of Streptomyces venezuelae with its unmodified progenitor revealed that the expression of a cryptic biosynthetic gene cluster containing both type I and type III polyketide synthase genes is activated in the mutant. The 29.5 kb gene cluster, which was predicted to encode an unusual biaryl metabolite, which we named venemycin, and potentially halogenated derivatives, contains 16 genes including one-vemR-that encodes a transcriptional activator of the large ATP-binding LuxR-like (LAL) family. Constitutive expression of vemR in the ΔbldM mutant led to the production of sufficient venemycin for structural characterisation, confirming its unusual biaryl structure. Co-expression of the venemycin biosynthetic gene cluster and vemR in the heterologous host Streptomyces coelicolor also resulted in venemycin production. Although the gene cluster encodes two halogenases and a flavin reductase, constitutive expression of all three genes led to the accumulation only of a monohalogenated venemycin derivative, both in the native producer and the heterologous host. A competition experiment in which equimolar quantities of sodium chloride and sodium bromide were fed to the venemycin-producing strains resulted in the preferential incorporation of bromine, thus suggesting that bromide is the preferred substrate for one or both halogenases.

  1. Discovery of Unusual Biaryl Polyketides by Activation of a Silent Streptomyces venezuelae Biosynthetic Gene Cluster

    PubMed Central

    Thanapipatsiri, Anyarat; Gomez‐Escribano, Juan Pablo; Song, Lijiang; Bibb, Maureen J.; Al‐Bassam, Mahmoud; Chandra, Govind

    2016-01-01

    Abstract Comparative transcriptional profiling of a ΔbldM mutant of Streptomyces venezuelae with its unmodified progenitor revealed that the expression of a cryptic biosynthetic gene cluster containing both type I and type III polyketide synthase genes is activated in the mutant. The 29.5 kb gene cluster, which was predicted to encode an unusual biaryl metabolite, which we named venemycin, and potentially halogenated derivatives, contains 16 genes including one—vemR—that encodes a transcriptional activator of the large ATP‐binding LuxR‐like (LAL) family. Constitutive expression of vemR in the ΔbldM mutant led to the production of sufficient venemycin for structural characterisation, confirming its unusual biaryl structure. Co‐expression of the venemycin biosynthetic gene cluster and vemR in the heterologous host Streptomyces coelicolor also resulted in venemycin production. Although the gene cluster encodes two halogenases and a flavin reductase, constitutive expression of all three genes led to the accumulation only of a monohalogenated venemycin derivative, both in the native producer and the heterologous host. A competition experiment in which equimolar quantities of sodium chloride and sodium bromide were fed to the venemycin‐producing strains resulted in the preferential incorporation of bromine, thus suggesting that bromide is the preferred substrate for one or both halogenases. PMID:27605017

  2. Membership and Coronal Activity in the NGC 2232 and Cr 140 Open Clusters

    NASA Technical Reports Server (NTRS)

    Oliversen, Ronald J. (Technical Monitor); Patten, Brian M.

    2004-01-01

    Making use of eight archival ROSAT HRI images in the regions of the NGC 2232 and Cr 140, this project's primary focus is to identify X-ray sources and to extract net source counts for these sources in these two open clusters. These X-ray data would be combined with ground-based photometry and spectroscopy in order to identify G, K, and early-M type cluster members. Such membership data are important because, at present, no members later than spectral type approx. F5 are currently known for either cluster. With ages estimated to be approx. 25 Myr and at distances of just approx. 350 pc, the combined late-type membership of the NGC 2232 and Cr 140 clusters would yield an almost unique sample of solar-type stars in the post-T Tauri/pre-main sequence phase of evolution. These stars could be used to assess the level and dispersion of coronal activity levels, as a part of a probe of the importance of magnetic braking and the level of magnetic dynamo activity, for solar-type stars just before they reach the zero-age main sequence.

  3. Using Light-at-Night (LAN) Satellite Data for Identifying Clusters of Economic Activities in Europe

    NASA Astrophysics Data System (ADS)

    Rybnikova, N. A.; Portnov, B. A.

    2015-04-01

    Enterprises organized in clusters are often efficient in stimulating urban development, productivity and profit outflows. Identifying clusters of economic activities (EAs) thus becomes an important step in devising regional development policies, aimed at facilitating regional economic development. However, a major problem with cluster identification stems from limited reporting of specific EAs by individual countries and administrative entities. Even Eurostat, which maintains most advances regional databases, provides data for less than 50% of all regional subdivisions of the 3rd tier of the Nomenclature of Territorial Units for Statistics (NUTS3). Such poor reporting impedes identification of EA clusters and economic forces behind them. In this study, we test a possibility that missing data on geographic concentrations of EAs can be reconstructed using Light-at-Night (LAN) satellite measurements, and that such reconstructed data can then be used for the identification of EA clusters. As we hypothesize, LAN, captured by satellite sensors, is characterized by different intensity, depending on its source - production facilities, services, etc., - and this information can be used for EA identification. The study was carried out in three stages. First, using nighttime satellite images, we determined what types of EAs can be identified, with a sufficient degree of accuracy, by LAN they emit. Second, we calculated multivariate statistical models, linking EAs concentrations with LAN intensities and several locational and development attributes of NUTS3 regions in Europe. Next, using the obtained statistical models, we restored missing data on EAs across NUTS3 regions in Europe and identified clusters of EAs, using spatial analysis tools.

  4. Using hierarchical clustering methods to classify motor activities of COPD patients from wearable sensor data

    PubMed Central

    Sherrill, Delsey M; Moy, Marilyn L; Reilly, John J; Bonato, Paolo

    2005-01-01

    Background Advances in miniature sensor technology have led to the development of wearable systems that allow one to monitor motor activities in the field. A variety of classifiers have been proposed in the past, but little has been done toward developing systematic approaches to assess the feasibility of discriminating the motor tasks of interest and to guide the choice of the classifier architecture. Methods A technique is introduced to address this problem according to a hierarchical framework and its use is demonstrated for the application of detecting motor activities in patients with chronic obstructive pulmonary disease (COPD) undergoing pulmonary rehabilitation. Accelerometers were used to collect data for 10 different classes of activity. Features were extracted to capture essential properties of the data set and reduce the dimensionality of the problem at hand. Cluster measures were utilized to find natural groupings in the data set and then construct a hierarchy of the relationships between clusters to guide the process of merging clusters that are too similar to distinguish reliably. It provides a means to assess whether the benefits of merging for performance of a classifier outweigh the loss of resolution incurred through merging. Results Analysis of the COPD data set demonstrated that motor tasks related to ambulation can be reliably discriminated from tasks performed in a seated position with the legs in motion or stationary using two features derived from one accelerometer. Classifying motor tasks within the category of activities related to ambulation requires more advanced techniques. While in certain cases all the tasks could be accurately classified, in others merging clusters associated with different motor tasks was necessary. When merging clusters, it was found that the proposed method could lead to more than 12% improvement in classifier accuracy while retaining resolution of 4 tasks. Conclusion Hierarchical clustering methods are relevant

  5. A multiwavelength photometric census of AGN and star formation activity in the brightest cluster galaxies of X-ray selected clusters

    NASA Astrophysics Data System (ADS)

    Green, T. S.; Edge, A. C.; Stott, J. P.; Ebeling, H.; Burgett, W. S.; Chambers, K. C.; Draper, P. W.; Metcalfe, N.; Kaiser, N.; Wainscoat, R. J.; Waters, C.

    2016-09-01

    Despite their reputation as being `red and dead', the unique environment inhabited by brightest cluster galaxies (BCGs) can often lead to a self-regulated feedback cycle between radiatively cooling intracluster gas and star formation and active galactic nucleus (AGN) activity in the BCG. However the prevalence of `active' BCGs, and details of the feedback involved, are still uncertain. We have performed an optical, UV and mid-IR photometric analysis of the BCGs in 981 clusters at 0.03 < z < 0.5, selected from the ROSAT All Sky Survey. Using Pan-STARRS PS1 3π, GALEX and WISE survey data we look for BCGs with photometric colours which deviate from that of the bulk population of passive BCGs - indicative of AGN and/or star formation activity within the BCG. We find that whilst the majority of BCGs are consistent with being passive, at least 14 per cent of our BCGs show a significant colour offset from passivity in at least one colour index. And, where available, supplementary spectroscopy reveals the majority of these particular BCGs show strong optical emission lines. On comparing BCG `activity' with the X-ray luminosity of the host cluster, we find that BCGs showing a colour offset are preferentially found in the more X-ray luminous clusters, indicative of the connection between BCG `activity' and the intracluster medium.

  6. Ring opening and carbonylation of 3,3-dimethylthietane ligands in ruthenium carbonyl cluster complexes

    SciTech Connect

    Adams, R.D.; Belinski, J.A.; Yamamoto, J.H.

    1992-10-01

    When heated to 97{degrees}C, the complex Ru{sub 4}(CO){sub 12}[{mu}-SCH{sub 2}CMe{sub 2}CH{sub 2}]2 (1) was transformed into two new hexaruthenium cluster complexes, Ru{sub 6}(CO){sub 13}({mu}{sub 3}-SCH{sub 2}CMe{sub 2}CH{sub 2}){sub 4} (2) and Ru{sub 6}(CO){sub 12}({mu}-SCH{sub 2}CMe{sub 2}CH{sub 2})({mu}{sub 3}-SCH{sub 2}CMe{sub 2}CH{sub 2}){sub 3}[{mu}{sub 3}-SCH{sub 2}C(Me)(CH{sub 2})CH{sub 2}] ({mu}-H) (3), that contain four and five ring-opened 3,3-dimethylthietane (3,3-DMT) ligands, respectively. In compound 3 one of the ring-opened DMT ligands has also undergone a CH activation on one of the methyl groups. Compound 2 reacts with additional 3,3-DMT at 97{degrees}C to form 3 in 18% yield. When treated with CO at 95{degrees}C (500 psi), compound 2 yielded 4,4-dimethylthiobutyrolactone and Ru{sub 3}(CO){sub 12}. It was also found that the complex Os{sub 3}(CO){sub 11-}(SCH{sub 2}CMe{sub 2}CH{sub 2}C{double_bond}O) (4) yields 4,4-dimethylthiobutyrolactone when treated with CO at 120{degrees}C (1200 psi). Crystal data for 2: space group P2{sub 1}/n, {alpha} = 22.652 (7) A, {beta} = 11.712 (2) A, c = 19.965 (6) A, {Beta} = 115.75 (2){degrees} Z = 4, 3665 reflections, R = 0.021. Crystal data for 3: space group P2{sub 1}/c, {alpha} = 17.332 (8) A, {Beta} = 14.668 (9) A, c = 19.823 (9) A, {Beta} = 91.27 (4){degrees}, Z = 4, 1875 reflections, R = 0.050. 13 refs., 2 figs., 13 refs.

  7. An approach to functionally relevant clustering of the protein universe: Active site profile‐based clustering of protein structures and sequences

    PubMed Central

    Knutson, Stacy T.; Westwood, Brian M.; Leuthaeuser, Janelle B.; Turner, Brandon E.; Nguyendac, Don; Shea, Gabrielle; Kumar, Kiran; Hayden, Julia D.; Harper, Angela F.; Brown, Shoshana D.; Morris, John H.; Ferrin, Thomas E.; Babbitt, Patricia C.

    2017-01-01

    Abstract Protein function identification remains a significant problem. Solving this problem at the molecular functional level would allow mechanistic determinant identification—amino acids that distinguish details between functional families within a superfamily. Active site profiling was developed to identify mechanistic determinants. DASP and DASP2 were developed as tools to search sequence databases using active site profiling. Here, TuLIP (Two‐Level Iterative clustering Process) is introduced as an iterative, divisive clustering process that utilizes active site profiling to separate structurally characterized superfamily members into functionally relevant clusters. Underlying TuLIP is the observation that functionally relevant families (curated by Structure‐Function Linkage Database, SFLD) self‐identify in DASP2 searches; clusters containing multiple functional families do not. Each TuLIP iteration produces candidate clusters, each evaluated to determine if it self‐identifies using DASP2. If so, it is deemed a functionally relevant group. Divisive clustering continues until each structure is either a functionally relevant group member or a singlet. TuLIP is validated on enolase and glutathione transferase structures, superfamilies well‐curated by SFLD. Correlation is strong; small numbers of structures prevent statistically significant analysis. TuLIP‐identified enolase clusters are used in DASP2 GenBank searches to identify sequences sharing functional site features. Analysis shows a true positive rate of 96%, false negative rate of 4%, and maximum false positive rate of 4%. F‐measure and performance analysis on the enolase search results and comparison to GEMMA and SCI‐PHY demonstrate that TuLIP avoids the over‐division problem of these methods. Mechanistic determinants for enolase families are evaluated and shown to correlate well with literature results. PMID:28054422

  8. An approach to functionally relevant clustering of the protein universe: Active site profile-based clustering of protein structures and sequences.

    PubMed

    Knutson, Stacy T; Westwood, Brian M; Leuthaeuser, Janelle B; Turner, Brandon E; Nguyendac, Don; Shea, Gabrielle; Kumar, Kiran; Hayden, Julia D; Harper, Angela F; Brown, Shoshana D; Morris, John H; Ferrin, Thomas E; Babbitt, Patricia C; Fetrow, Jacquelyn S

    2017-04-01

    Protein function identification remains a significant problem. Solving this problem at the molecular functional level would allow mechanistic determinant identification-amino acids that distinguish details between functional families within a superfamily. Active site profiling was developed to identify mechanistic determinants. DASP and DASP2 were developed as tools to search sequence databases using active site profiling. Here, TuLIP (Two-Level Iterative clustering Process) is introduced as an iterative, divisive clustering process that utilizes active site profiling to separate structurally characterized superfamily members into functionally relevant clusters. Underlying TuLIP is the observation that functionally relevant families (curated by Structure-Function Linkage Database, SFLD) self-identify in DASP2 searches; clusters containing multiple functional families do not. Each TuLIP iteration produces candidate clusters, each evaluated to determine if it self-identifies using DASP2. If so, it is deemed a functionally relevant group. Divisive clustering continues until each structure is either a functionally relevant group member or a singlet. TuLIP is validated on enolase and glutathione transferase structures, superfamilies well-curated by SFLD. Correlation is strong; small numbers of structures prevent statistically significant analysis. TuLIP-identified enolase clusters are used in DASP2 GenBank searches to identify sequences sharing functional site features. Analysis shows a true positive rate of 96%, false negative rate of 4%, and maximum false positive rate of 4%. F-measure and performance analysis on the enolase search results and comparison to GEMMA and SCI-PHY demonstrate that TuLIP avoids the over-division problem of these methods. Mechanistic determinants for enolase families are evaluated and shown to correlate well with literature results.

  9. Activation-Dependent Rapid Postsynaptic Clustering of Glycine Receptors in Mature Spinal Cord Neurons

    PubMed Central

    Eto, Kei; Murakoshi, Hideji; Watanabe, Miho; Hirata, Hiromi; Moorhouse, Andrew J.; Ishibashi, Hitoshi

    2017-01-01

    Abstract Inhibitory synapses are established during development but continue to be generated and modulated in strength in the mature nervous system. In the spinal cord and brainstem, presynaptically released inhibitory neurotransmitter dominantly switches from GABA to glycine during normal development in vivo. While presynaptic mechanisms of the shift of inhibitory neurotransmission are well investigated, the contribution of postsynaptic neurotransmitter receptors to this shift is not fully elucidated. Synaptic clustering of glycine receptors (GlyRs) is regulated by activation-dependent depolarization in early development. However, GlyR activation induces hyperpolarization after the first postnatal week, and little is known whether and how presynaptically released glycine regulates postsynaptic receptors in a depolarization-independent manner in mature developmental stage. Here we developed spinal cord neuronal culture of rodents using chronic strychnine application to investigate whether initial activation of GlyRs in mature stage could change postsynaptic localization of GlyRs. Immunocytochemical analyses demonstrate that chronic blockade of GlyR activation until mature developmental stage resulted in smaller clusters of postsynaptic GlyRs that could be enlarged upon receptor activation for 1 h in the mature stage. Furthermore, live cell-imaging techniques show that GlyR activation decreases its lateral diffusion at synapses, and this phenomenon is dependent on PKC, but neither Ca2+ nor CaMKII activity. These results suggest that the GlyR activation can regulate receptor diffusion and cluster size at inhibitory synapses in mature stage, providing not only new insights into the postsynaptic mechanism of shifting inhibitory neurotransmission but also the inhibitory synaptic plasticity in mature nervous system. PMID:28197549

  10. AGN ACTIVITY AND IGM HEATING IN THE FOSSIL CLUSTER RX J1416.4+2315

    SciTech Connect

    Miraghaei, H.; Khosroshahi, H. G.; Abbassi, S.; Sengupta, C.; Raychaudhury, S.

    2015-12-15

    We study active galactic nucleus (AGN) activity in the fossil galaxy cluster RX J1416.4+2315. Radio observations were carried out using the Giant Metrewave Radio Telescope at two frequencies, 1420 and 610 MHz. A weak radio lobe that extends from the central nucleus is detected in the 610 MHz map. Assuming the radio lobe originated from the central AGN, we show that the energy injection into the intergalactic medium is only sufficient to heat up the central 50 kpc within the cluster core, while the cooling radius is larger (∼130 kpc). In the hardness ratio map, three low energy cavities have been identified. No radio emission is detected for these regions. We evaluated the power required to inflate the cavities and showed that the total energy budget is sufficient to offset the radiative cooling. We showed that the initial conditions would change the results remarkably. Furthermore, the efficiency of the Bondi accretion in powering the AGN has been estimated.

  11. Enhanced catalytic activity of sub-nanometer titania clusters confined inside double-wall carbon nanotubes.

    PubMed

    Zhang, Hongbo; Pan, Xiulian; Liu, Jingyue Jimmy; Qian, Weizhong; Wei, Fei; Huang, Yuying; Bao, Xinhe

    2011-07-18

    Sub-nanometer titania clusters have been homogeneously dispersed within double-wall carbon nantubes (DWNTs) with an inner diameter ranging from 1.0 to 1.5 nm. The confined titania exhibits a much higher activity than the titania particles attached on the outside walls of the DWNTs (the outside titania) in the epoxidation of propylene by H(2)O(2). XPS, XANES and Raman spectroscopy data suggest electron transfer from titanium to the inner surfaces of the DWNTs. In contrast, no electron transfer has been observed for the outside titania. We also found that the extent of this confinement-induced electron transfer is temperature dependent. The enhanced activity of the confined titania clusters is likely attributed to their small sizes and the interaction with the DWNT surface. The synthesis method that we developed here can be readily applied to incorporation of other metal/metal oxide nanoparticles into carbon nanotubes.

  12. RELATIONSHIP BETWEEN PARENTS' MOTIVATION FOR PHYSICAL ACTIVITY AND THEIR BELIEFS, AND SUPPORT OF THEIR CHILDREN'S PHYSICAL ACTIVITY: A CLUSTER ANALYSIS.

    PubMed

    Naisseh, Matilda; Martinent, Guillaume; Ferrand, Claude; Hautier, Christophe

    2015-08-01

    Previous studies have neglected the multivariate nature of motivation. The purpose of the current study was to first identify motivational profiles of parents' own physical activity. Second, the study examined if such profiles differ in the way in which parents perceive their children's competence in physical activity and the importance and support given to their children's physical activity. 711 physically active parents (57% mothers; M age = 39.7 yr.; children 6-11 years old) completed the Situational Motivation Scale, the Parents' Perceptions of Physical Activity Importance and their Children's Ability Questionnaire, and the Parental Support for Physical Activity Scale. Cluster analyses indicated four motivational profiles: Highly self-determined, Moderately self-determined, Non-self-determined, and Externally motivated profiles. Parents' beliefs and support toward their children's physical activity significantly differed across these profiles. It is the first study using Self-Determination Theory that provides evidence for the interpersonal outcomes of motivation.

  13. O2 and N2O activation by Bi-, Tri-, and tetranuclear Cu clusters in biology.

    PubMed

    Solomon, Edward I; Sarangi, Ritimukta; Woertink, Julia S; Augustine, Anthony J; Yoon, Jungjoo; Ghosh, Somdatta

    2007-07-01

    Copper-cluster sites in biology exhibit unique spectroscopic features reflecting exchange coupling between oxidized Cu's and e (-) delocalization in mixed valent sites. These novel electronic structures play critical roles in O 2 binding and activation for electrophilic aromatic attack and H-atom abstraction, the 4e (-)/4H (+) reduction of O 2 to H 2O, and in the 2e (-)/2H (+) reduction of N 2O. These electronic structure/reactivity correlations are summarized below.

  14. Automatic active space selection for the similarity transformed equations of motion coupled cluster method

    NASA Astrophysics Data System (ADS)

    Dutta, Achintya Kumar; Nooijen, Marcel; Neese, Frank; Izsák, Róbert

    2017-02-01

    An efficient scheme for the automatic selection of an active space for similarity transformed equations of motion (STEOM) coupled cluster method is proposed. It relies on state averaged configuration interaction singles (CIS) natural orbitals and makes it possible to use STEOM as a black box method. The performance of the new scheme is tested for singlet and triplet valence, charge transfer, and Rydberg excited states.

  15. Cooperativity between Integrin Activation and Mechanical Stress Leads to Integrin Clustering

    PubMed Central

    Ali, O.; Guillou, H.; Destaing, O.; Albigès-Rizo, C.; Block, M.R.; Fourcade, B.

    2011-01-01

    Integrins are transmembrane receptors involved in crucial cellular biological functions such as migration, adhesion, and spreading. Upon the modulation of integrin affinity toward their extracellular ligands by cytoplasmic proteins (inside-out signaling) these receptors bind to their ligands and cluster into nascent adhesions. This clustering results in the increase in the mechanical linkage among the cell and substratum, cytoskeleton rearrangements, and further outside-in signaling. Based on experimental observations of the distribution of focal adhesions in cells attached to micropatterned surfaces, we introduce a physical model relying on experimental numerical constants determined in the literature. In this model, allosteric integrin activation works in synergy with the stress build by adhesion and the membrane rigidity to allow the clustering to nascent adhesions independently of actin but dependent on the integrin diffusion onto adhesive surfaces. The initial clustering could provide a template to the mature adhesive structures. Predictions of our model for the organization of focal adhesions are discussed in comparison with experiments using adhesive protein microarrays. PMID:21641304

  16. Determining Distance, Age, and Activity in a New Benchmark Cluster: Ruprecht 147

    NASA Astrophysics Data System (ADS)

    Wright, Jason T.

    2009-08-01

    This proposal seeks 0.7 night of time on Hectochelle to observe the F, G, and K dwarfs of Ruprecht 147, recently identified as the closest old stellar cluster. At only ~ 200 pc and at an age of ~ 1-2 Gyr, this will be an important benchmark in stellar astrophysics, providing the only sample of spectroscopically accessible old, late-type stars of determinable age. Hectochelle is the ideal instrument to study this cluster, with a FOV, fiber count, and telescope aperture well matched to the cluster's diameter (~ 1°), richness (~ 100 identified members), and distance modulus (6.5-7 mag., putting the G and K dwarfs at B=11-15). Hectochelle will measure the Ca II line strengths of members to establish, for the first time, the chromospheric activity levels of a statistically significant sample of single, G and K dwarfs of this modest age. Hectochelle will also vet background stars for suitability as astrometric reference stars for a forthcoming HST FGS proposal to robustly measure the cluster's distance.

  17. Forecast of geomagnetic storms using CME parameters and the WSA-ENLIL model

    NASA Astrophysics Data System (ADS)

    Moon, Y.; Lee, J.; Jang, S.; Na, H.; Lee, J.

    2013-12-01

    Intense geomagnetic storms are caused by coronal mass ejections (CMEs) from the Sun and their forecast is quite important in protecting space- and ground-based technological systems. The onset and strength of geomagnetic storms depend on the kinematic and magnetic properties of CMEs. Current forecast techniques mostly use solar wind in-situ measurements that provide only a short lead time. On the other hand, techniques using CME observations near the Sun have the potential to provide 1-3 days of lead time before the storm occurs. Therefore, one of the challenging issues is to forecast interplanetary magnetic field (IMF) southward components and hence geomagnetic storm strength with a lead-time on the order of 1-3 days. We are going to answer the following three questions: (1) when does a CME arrive at the Earth? (2) what is the probability that a CME can induce a geomagnetic storm? and (3) how strong is the storm? To address the first question, we forecast the arrival time and other physical parameters of CMEs at the Earth using the WSA-ENLIL model with three CME cone types. The second question is answered by examining the geoeffective and non-geoeffective CMEs depending on CME observations (speed, source location, earthward direction, magnetic field orientation, and cone-model output). The third question is addressed by examining the relationship between CME parameters and geomagnetic indices (or IMF southward component). The forecast method will be developed with a three-stage approach, which will make a prediction within four hours after the solar coronagraph data become available. We expect that this study will enable us to forecast the onset and strength of a geomagnetic storm a few days in advance using only CME parameters and the physics-based models.

  18. Iron binding activity is essential for the function of IscA in iron-sulphur cluster biogenesis.

    PubMed

    Landry, Aaron P; Cheng, Zishuo; Ding, Huangen

    2013-03-07

    Iron-sulphur cluster biogenesis requires coordinated delivery of iron and sulphur to scaffold proteins, followed by transfer of the assembled clusters from scaffold proteins to target proteins. This complex process is accomplished by a group of dedicated iron-sulphur cluster assembly proteins that are conserved from bacteria to humans. While sulphur in iron-sulphur clusters is provided by L-cysteine via cysteine desulfurase, the iron donor(s) for iron-sulphur cluster assembly remains largely elusive. Here we report that among the primary iron-sulphur cluster assembly proteins, IscA has a unique and strong binding activity for mononuclear iron in vitro and in vivo. Furthermore, the ferric iron centre tightly bound in IscA can be readily extruded by l-cysteine, followed by reduction to ferrous iron for iron-sulphur cluster biogenesis. Substitution of the highly conserved residue tyrosine 40 with phenylalanine (Y40F) in IscA results in a mutant protein that has a diminished iron binding affinity but retains the iron-sulphur cluster binding activity. Genetic complementation studies show that the IscA Y40F mutant is inactive in vivo, suggesting that the iron binding activity is essential for the function of IscA in iron-sulphur cluster biogenesis.

  19. A Cluster-Analytical Approach towards Physical Activity and Eating Habits among 10-Year-Old Children

    ERIC Educational Resources Information Center

    Sabbe, Dieter; De Bourdeaudhuij, I.; Legiest, E.; Maes, L.

    2008-01-01

    The purpose was to investigate whether clusters--based on physical activity (PA) and eating habits--can be found among children, and to explore subgroups' characteristics. A total of 1725 10-year olds completed a self-administered questionnaire. K-means cluster analysis was based on the weekly quantity of vigorous and moderate PA, the excess index…

  20. MHD SIMULATIONS OF ACTIVE GALACTIC NUCLEUS JETS IN A DYNAMIC GALAXY CLUSTER MEDIUM

    SciTech Connect

    Mendygral, P. J.; Jones, T. W.; Dolag, K.

    2012-05-10

    We present a pair of three-dimensional magnetohydrodynamical simulations of intermittent jets from a central active galactic nucleus (AGN) in a galaxy cluster extracted from a high-resolution cosmological simulation. The selected cluster was chosen as an apparently relatively relaxed system, not having undergone a major merger in almost 7 Gyr. Despite this characterization and history, the intracluster medium (ICM) contains quite active 'weather'. We explore the effects of this ICM weather on the morphological evolution of the AGN jets and lobes. The orientation of the jets is different in the two simulations so that they probe different aspects of the ICM structure and dynamics. We find that even for this cluster, which can be characterized as relaxed by an observational standard, the large-scale, bulk ICM motions can significantly distort the jets and lobes. Synthetic X-ray observations of the simulations show that the jets produce complex cavity systems, while synthetic radio observations reveal bending of the jets and lobes similar to wide-angle tail radio sources. The jets are cycled on and off with a 26 Myr period using a 50% duty cycle. This leads to morphological features similar to those in 'double-double' radio galaxies. While the jet and ICM magnetic fields are generally too weak in the simulations to play a major role in the dynamics, Maxwell stresses can still become locally significant.

  1. ANISOTROPIC METAL-ENRICHED OUTFLOWS DRIVEN BY ACTIVE GALACTIC NUCLEI IN CLUSTERS OF GALAXIES

    SciTech Connect

    Kirkpatrick, C. C.; McNamara, B. R.; Cavagnolo, K. W.

    2011-04-20

    We present an analysis of the spatial distribution of metal-rich gas in 10 galaxy clusters using deep observations from the Chandra X-ray Observatory. The brightest cluster galaxies (BCGs) have experienced recent active galactic nucleus activity in the forms of bright radio emission, cavities, and shock fronts embedded in the hot atmospheres. The heavy elements are distributed anisotropically and are aligned with the large-scale radio and cavity axes. They are apparently being transported from the halo of the BCG into the intracluster medium along large-scale outflows driven by the radio jets. The radial ranges of the metal-enriched outflows are found to scale with jet power as R{sub Fe} {proportional_to} P {sup 0.42}{sub jet}, with a scatter of only 0.5 dex. The heavy elements are transported beyond the extent of the inner cavities in all clusters, suggesting that this is a long-lasting effect sustained over multiple generations of outbursts. Black holes in BCGs will likely have difficulty ejecting metal-enriched gas beyond 1 Mpc unless their masses substantially exceed 10{sup 9} M{sub sun}.

  2. Particle Acceleration at Oblique CME-driven Shock Using Improved PATH Model

    NASA Astrophysics Data System (ADS)

    Hu, J.; Li, G.; Parker, L. N.; Zank, G. P.

    2015-12-01

    .Gradual solar energetic particle (SEP) events are generally accepted to be caused by particle acceleration at coronal mass ejection(CME)-driven shocks. In this work we improved the PATH(Particle Acceleration and Transport in the Heliosphere) model by initiating a 2D CME-driven shock to investigate particle acceleration at different locations of an oblique CME-drive shock, where the shock has different obliquity angle(θBN). Thus we can study problems like whether quasi-perpendicular or quasi-parallel shock is more efficient in particle acceleration.The PATH model is based on the diffusive shock acceleration mechanism. The core of the model consists of a 3D Zeus module, which computes numerically the background solar wind and the CME-drive shock as inputs; and a shell module where the convection and diffusion of accelerated particles within the shock complex are followed. The 2D CME-driven shock is generated by perturbing the boundary condition of a steady background solar wind in certain patterns.

  3. The Roles of Reconnected Flux and Overlying Fields in CME Speeds

    NASA Astrophysics Data System (ADS)

    Deng, Minda; Welsch, Brian T.

    2017-01-01

    Researchers have reported i) correlations of coronal mass ejection (CME) speeds and the total photospheric magnetic flux swept out by flare ribbons in flare-associated eruptive events, and, separately, ii) correlations of CME speeds and more rapid decay, with height, of magnetic fields in potential-field coronal models above eruption sites. Here, we compare the roles of both ribbon fluxes and the decay rates of overlying fields in a set of 16 eruptive events. We confirm previous results that higher CME speeds are associated with both higher ribbon fluxes and more rapidly decaying overlying fields. We find the association with ribbon fluxes to be weaker than a previous report, but stronger than the dependence on the decay rate of overlying fields. Since the photospheric ribbon flux is thought to approximate the amount of coronal magnetic flux reconnected during the event, the correlation of speeds with ribbon fluxes suggests that reconnection plays some role in accelerating CMEs. One possibility is that reconnected fields that wrap around the rising ejection produce an increased outward hoop force, thereby increasing CME acceleration. The correlation of CME speeds with more rapidly decaying overlying fields might be caused by greater downward magnetic tension in stronger overlying fields, which could act as a source of drag on rising ejections.

  4. The CORIMP CME Catalogue: Automatically Detecting and Tracking CMEs in Coronagraph Data

    NASA Astrophysics Data System (ADS)

    Byrne, Jason; Morgan, H.; Habbal, S. R.

    2012-05-01

    Studying CMEs in coronagraph data can be challenging due to their diffuse structure and transient nature, and user-specific biases may be introduced through visual inspection of the images. The large amount of data available from the SOHO and STEREO missions also makes manual cataloguing of CMEs tedious, and so a robust method of detection and analysis is required. This has led to the development of automated CME detection and cataloguing packages such as CACTus, SEEDS and ARTEMIS. Here we present the development of the CORIMP (coronal image processing) Catalogue: a new, automated, multiscale, CME detection and tracking catalogue, that overcomes many of the drawbacks of current catalogues. It works by first employing a dynamic CME separation technique to remove the static background, and then characterizing CME structure via a multiscale edge-detection algorithm. The detections are chained through time to determine the CME kinematics and morphological changes as it propagates across the plane-of-sky. The effectiveness of the method is demonstrated by its application to a selection of SOHO/LASCO and STEREO/SECCHI images, as well as to synthetic coronagraph images created from a model corona with a variety of CMEs. These algorithms are being applied to the whole LASCO and SECCHI datasets, and a CORIMP catalogue of results will soon be available to the community.

  5. The Pre- and Post-Launch Configuration of a CME Flux Rope

    NASA Astrophysics Data System (ADS)

    Howard, T. A.; DeForest, C. E.

    2014-12-01

    While the standard picture of a coronal mass ejection (CME) remains largely unchanged from the early 1990s, we continue to develop our understanding of the finer structures comprising the CME anatomy. Our efforts are impeded by an assortment of inconveniences involving the detection and tracking of CMEs: namely that they are two-dimensional manifestations of an extended three-dimensional structure, they are optically-thin, have asymmetric geometries that evolve at different kinematic rates, and when observed by coronagraphs their appearances are subject to the laws of Thomson scattering. Even in the STEREO era we have rarely had an opportunity to explore in 3-D the finer structures comprising CMEs and their greater counterparts. Through careful analysis of a CME observed during such an opportunity, we have constructed a detailed narrative describing the pre-launch configuration of the magnetic configuration that gave rise to the CME, and its launch and evolution through the corona and solar wind. We present our narrative using observational evidence from EUV imagers, coronagraphs and heliospheric imagers. We offer insight into the implications of its 3-D structure for CME observation, including the difficulties presented by geometry, kinematics and Thomson scattering.

  6. The Solar Corona and a CME at the 2010 Total Eclipse

    NASA Astrophysics Data System (ADS)

    Pasachoff, Jay M.; Rusin, V.; Druckmüllerová, H.; Saniga, M.; Lu, M.; Malamut, C.; Seaton, D. B.; Golub, L.; Engell, A. J.; Hill, S. W.; Lucas, R.

    2011-05-01

    The 11 July 2010 total solar eclipse was observed on the ground from French Polynesia and, 83 minutes later, from Easter Island, and near-simultaneous images were made with spacecraft instruments including AIA/SDO, HMI/SDO, EUVI/STEREO, SWAP/PROBA2, EIT/SOHO, and LASCO/SOHO. We report on changes in the corona detectable with high-resolution image processing of the ground-based eclipse coronal imaging, including two CME's that were seen to evolve. We compare with the spacecraft images to give a complete depiction of coronal structure at the time of the eclipse, which corresponded to a low but rising phase of the solar-activity cycle. We acknowledge the support of NASA's MSFC NNX10AK47A, NSF REU AST-1005024 with DoD ASSURE, VEGA 2/0098/10 of the Slovak Acad. Sci, 205/09/1469 of the Czech Science Foundation, PRODEX C90345 of ESA/BELSPO, FP7/2007-2013/218816 SOTERIA, Lockheed Martin; for equipment: Nikon Professional Services, ASTELCO Systems GmbH (Germany), and National Geographic Society's Photographic Division; and colleagues Y.-M. Wang (NRL), S. Habbal (U. Hawaii), H. Lanteires (Tatakoto), and J. Kern (Carnegie Obs.).

  7. Post Alpbach-summerschool project: CARRINGTON MISSION FOR CME DETECTION TO IMPROVE SPACE WEATHER FORECAST

    NASA Astrophysics Data System (ADS)

    Scheucher, Markus; Urbar, Jaroslav; Musset, Sophie; Andersson, Viktor; Gini, Francesco; Gorski, Jedrzej; Jüstel, Peter; Kiefer, René; Lee, Arrow; Meskers, Arjan; Miles, Oscar; Perakis, Nikolas; Rußwurm, Michael; Scully, Stephen; Seifert, Bernhard; Sorba, Arianna

    2014-05-01

    The effects of solar activity, especially Coronal Mass Ejections (CMEs), on Earth- and satellite-based systems are well-known and can cause major damage to space-dependent infrastructure. The main problem in current space weather forecasting is the inability to determine necessary forecast parameters of CMEs and Corotating Interaction Regions (CIRs) early enough to react. We present the design for a novel space mission consisting of two spacecraft that is aimed to perform stereoscopic measurements on Earth-directed CMEs and in-situ measurements of CIRs. The magnetic field orientation and structure of CMEs will be measured close to the Sun, using spectro-polarimetry. Geoeffectiveness will be derived by remote sensing the CMEs magnetic field at 0.64AU from the Sun, determining the full magnetic field vector of a CME. This will be achieved by the novel concept of measuring its polarising effects on spacecraft to spacecraft laser beams based upon heterodyne interferometry. Overall structure and trajectory of CMEs will also be monitored by heliospheric imagers and in-situ plasma instruments. To achieve the mission objectives, the orbit is heliocentric at 1AU with a separation angle from the Earth of ±50°. The operational mission lifetime is 6 years with a proposed 6 year extension. If implemented, Carrington will serve as a forecast system which will significantly improve the minimum forecast time for the fastest CMEs with 2000 km/s, from 13 minutes based on current L1 satellites, to around 3 hours.

  8. The role of family of origin in physicians referred to a CME course.

    PubMed

    Samenow, Charles P; Yabiku, Scott T; Ghulyan, Marine; Williams, Betsy; Swiggart, William

    2012-06-01

    Few studies exist which look at psychological factors associated with physician sexual misconduct. In this study, we explore family dysfunction as a possible risk factor associated with physician sexual misconduct. Six hundred thirteen physicians referred to a continuing medical education (CME) course for sexual misconduct were administered the FACES-II survey, a validated and reliable measure of family dynamics. The survey was part of a self-learning activity. We collected data from February 2000 to February 2009. Participants were predominantly white, middle-aged males who represented the full range of medical specialties. Their results were compared against a sample of 177 physicians. The FACES-II is a self-report test that measures family of origin (the family in which one was raised) dynamics on two dimensions (1) flexibility, ranging from too flexible (chaotic) to not flexible enough (rigid) and (2) cohesion ranging from too close (enmeshed) to not close enough (disengaged). The most common family pattern observed among physicians accused of sexual misconduct was rigid flexibility paired with disengaged cohesion, indicative of unhealthy family functioning. This pattern was significantly different than the pattern observed in the comparison group. Physicians who engage in sexual misconduct are more likely to have family of origin dysfunction. Ethics is developmental and learned in one's family of origin. Family of origin dynamics may be one risk factor predisposing one to ethical violations. These findings have important implications for screening, education, and treatment across the medical education continuum.

  9. Multi-wavelength study of X-ray luminous clusters at z ~ 0.3. I. Star-formation activity of cluster galaxies

    NASA Astrophysics Data System (ADS)

    Braglia, F. G.; Pierini, D.; Biviano, A.; Böhringer, H.

    2009-06-01

    Context: The current paradigm of cosmic formation and evolution of galaxy clusters foresees growth mostly through merging. Galaxies in the infall region or in the core of a cluster undergo transformations owing to different environmental stresses. Aims: For two X-ray luminous clusters at redshift z 0.3 with opposite X-ray morphologies (i.e., dynamical states), RXCJ 0014.3-3022 and RXCJ 2308.3-0211, we assess differences in galaxy populations as a function of cluster topography. This is a pilot study for the joint X-ray and optical analysis of the REFLEX-DXL cluster sample. Methods: Cluster large-scale structure and substructure are determined from the combined photometry in the B, V, and R bands, and from multi-object optical spectroscopy at low resolution. Photometric redshifts and broad-band optical colours are determined. A spectral index analysis is performed, based on the [O II](λλ3726, 3728 Å) and Hδ(λ4102 Å) features, and the D4000 break, which are available for more than 100 member galaxies per cluster. Additional far-ultraviolet (FUV) photometry is retrieved from the GALEX archive. Combination of spectral indices and FUV-optical colours provides a picture of the star-formation history in galaxies. Results: In spite of the potential presence of a small fraction of galaxies with obscured star-formation activity, the average star-formation history of cluster members is found to depend on clustercentric distance and, more interestingly, on cluster substructure. The core regions of both clusters mainly host galaxies dominated by old, passively evolving stellar populations, which define the same red sequence in a (B-R) colour-R magnitude diagram. However, a sharp increase in star-formation activity is found along two clearly evident filamentary structures of the merging cluster RXCJ 0014.3-3022, out to its virial radius and beyond. It is produced by luminous (i.e., LR ≥ LRstar) and sub-Lstar galaxies. In contrast, the regular cool-core cluster RXCJ 2308

  10. Phosphorous transient enhanced diffusion suppression and activation enhancement with cluster carbon co-implantation

    SciTech Connect

    Nakashima, Yoshiki; Hamamoto, Nariaki; Nagayama, Tsutomu; Koga, Yuji; Umisedo, Sei; Kawamura, Yasunori; Hashimoto, Masahiro; Onoda, Hiroshi

    2012-11-06

    Carbon co-implantation is well known as an effective method for suppressing boron/phosphorous transient enhanced diffusion (TED). Germanium pre-amorphization implantation (PAI) is usually applied prior to carbon co-implantation for suppressing channeling tail of dopants. In this study, cluster carbon was applied instead of the combination of germanium PAI and monomer carbon co-implantation prior to phosphorous implantation. Dependence of phosphorous activation and TED on amorphous layer thickness, carbon dose, carbon distribution and substrate temperature have been investigated. Cluster carbon implantation enables thick amorphous layer formation and TED suppression at the same time and low temperature implantation enhances the ability of amorphous layer formation so that shallow junction and low Rs can be achieved without Ge implantation.

  11. Predicting Water Activity for Complex Wastes with Solvation Cluster Equilibria (SCE) - 12042

    SciTech Connect

    Agnew, S.F.; Reynolds, J.G.; Johnston, C.T.

    2012-07-01

    Predicting an electrolyte mixture's water activity, i.e. the ratio of water vapor pressure over a solution with that of pure water, in principle reveals both boiling point and solubilities for that mixture. Better predictions of these properties helps support the ongoing missions to concentrate complex nuclear waste mixtures in order to conserve tank space and improved predictions of water activity will help. A new approach for predicting water activity, the solvation cluster equilibria (SCE) model, uses pure electrolyte water activities to predict water activity for a complex mixture of those electrolytes. An SCE function based on electrolyte hydration free energy and a standard Debye- Hueckel (DH) charge compression fits each pure electrolyte's water activity with three parameters. Given these pure electrolyte water activities, the SCE predicts any mixture water activity over a large range of concentration with an additional parameter for each mixture vector, the multinarity. In contrast to ionic strength, which scales with concentration, multinarity is related to the relative proportion of electrolytes in a mixture and can either increase or decrease the water activity prediction over a broad range of concentration for that mixture. The SCE model predicts water activity for complex electrolyte mixtures based on the water activities of pure electrolytes. Three parameter SCE functions fit the water activities of pure electrolytes and along with a single multinarity parameter for each mixture vector then predict the mixture water activity. Predictions of water activity can in principle predict solution electrolyte activity and this relationship will be explored in the future. Predicting electrolyte activities for complex mixtures provides a means of determining solubilities for each electrolyte. Although there are a number of reports [9, 10, 11] of water activity models for pure and binary mixtures of electrolytes, none of them compare measured versus calculated

  12. Redox control of the DNA damage-inducible protein DinG helicase activity via its iron-sulfur cluster.

    PubMed

    Ren, Binbin; Duan, Xuewu; Ding, Huangen

    2009-02-20

    The Escherichia coli DNA damage-inducible protein DinG, a member of the superfamily 2 DNA helicases, has been implicated in the nucleotide excision repair and recombinational DNA repair pathways. Combining UV-visible absorption, EPR, and enzyme activity measurements, we demonstrate here that E. coli DinG contains a redox-active [4Fe-4S] cluster with a midpoint redox potential (E(m)) of -390 +/- 23 mV (pH 8.0) and that reduction of the [4Fe-4S] cluster reversibly switches off the DinG helicase activity. Unlike the [4Fe-4S] cluster in E. coli dihydroxyacid dehydratase, the DinG [4Fe-4S] cluster is stable, and the enzyme remains fully active after exposure to 100-fold excess of hydrogen peroxide, indicating that DinG could be functional under oxidative stress conditions. However, the DinG [4Fe-4S] cluster can be efficiently modified by nitric oxide (NO), forming the DinG-bound dinitrosyl iron complex with the concomitant inactivation of helicase activity in vitro and in vivo. Reassembly of the [4Fe-4S] cluster in NO-modified DinG restores helicase activity, indicating that the iron-sulfur cluster in DinG is the primary target of NO cytotoxicity. The results led us to propose that the iron-sulfur cluster in DinG may act as a sensor of intracellular redox potential to modulate its helicase activity and that modification of the iron-sulfur cluster in DinG and likely in other DNA repair enzymes by NO may contribute to NO-mediated genomic instability.

  13. The Walking School Bus and Children's Physical Activity: A Pilot Cluster Randomized Controlled Trial

    PubMed Central

    Watson, Kathy; Baranowski, Tom; Nicklas, Theresa A.; Uscanga, Doris K.; Hanfling, Marcus J.

    2011-01-01

    OBJECTIVE: To evaluate the impact of a “walking school bus” program on children's rates of active commuting to school and physical activity. METHODS: We conducted a pilot cluster randomized controlled trial among 4th-graders from 8 schools in Houston, Texas (N = 149). Random allocation to treatment or control conditions was at the school level. Study staff walked with children to and from school up to 5 days/week. Outcomes were measured the week before (time 1) and during weeks 4 and 5 of the intervention (time 2). The main outcome was the weekly rate of active commuting, and a secondary outcome was moderate-to-vigorous physical activity. Covariates included sociodemographics, distance from home to school, neighborhood safety, child BMI z score, parent self-efficacy/outcome expectations, and child self-efficacy for active commuting. A mixed-model repeated measures regression accounted for clustering by school, and stepwise procedures with backward elimination of nonsignificant covariates were used to identify significant predictors. RESULTS: Intervention children increased active commuting (mean ± SD) from 23.8% ± 9.2% (time 1) to 54% ± 9.2% (time 2), whereas control subjects decreased from 40.2% ± 8.9% (time 1) to 32.6% ± 8.9% (time 2) (P < .0001). Intervention children increased their minutes of daily moderate-to-vigorous physical activity from 46.6 ± 4.5 (time 1) to 48.8 ± 4.5 (time 2), whereas control children decreased from 46.1 ± 4.3 (time 1) to 41.3 ± 4.3 (time 2) (P = .029). CONCLUSIONS: The program improved children's active commuting to school and daily moderate-to-vigorous physical activity. PMID:21859920

  14. Prediction of in vitro and in vivo oestrogen receptor activity using hierarchical clustering.

    PubMed

    Martin, T M

    2016-01-01

    In this study, hierarchical clustering classification models were developed to predict in vitro and in vivo oestrogen receptor (ER) activity. Classification models were developed for binding, agonist, and antagonist in vitro ER activity and for mouse in vivo uterotrophic ER binding. In vitro classification models yielded balanced accuracies ranging from 0.65 to 0.85 for the external prediction set. In vivo ER classification models yielded balanced accuracies ranging from 0.72 to 0.83. If used as additional biological descriptors for in vivo models, in vitro scores were found to increase the prediction accuracy of in vivo ER models. If in vitro activity was used directly as a surrogate for in vivo activity, the results were poor (balanced accuracy ranged from 0.49 to 0.72). Under-sampling negative compounds in the training set was found to increase the coverage (fraction of chemicals which can be predicted) and increase prediction sensitivity.

  15. MLSO Mark III K-Coronameter Observations of the CME Rate from 1989-1996

    NASA Technical Reports Server (NTRS)

    St Cyr, O. C.; Flint, Q. A.; Xie, H.; Webb, D. F.; Burkepile, J. T.; Lecinski, A. R.; Quirk, C.; Stanger, A. L.

    2015-01-01

    We report here an attempt to fill the 1990-1995 gap in the CME (coronal mass ejection) rate using the Mauna Loa Solar Observatory (MLSO)'s Mark III (Mk3) K-coronameter. The Mk3 instrument observed routinely several hours most days beginning in 1980 until it was upgraded to Mk4 in 1999. We describe the statistical properties of the CMEs detected during 1989-1996, and we determine a CME rate for each of those years. Since spaceborne coronagraphs have more complete duty cycles than a ground-based instrument at a single location, we compare the Mk3-derived CME rate from 1989 with the SMM C/P (Solar Maximum Mission Coronagraph/Polarimeter) coronagraph, and from 1996 with the SOHO (Solar and Hellospheric Observatory) LASCO (Large Angle and Spectrometric COronagraph) coronagraphs.

  16. Stereoscopic Analysis of STEREO/SECCHI Data for CME Trajectory Determination

    NASA Technical Reports Server (NTRS)

    Liewer, P. C.; Hall, J. R.; Howard, R. A.; DeJong, E. M.; Thompson, W. T.; Thernisten, A.

    2010-01-01

    The Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI) coronagraphs on the twin Solar TErrestrial RElations Observatory (STEREO) spacecraft provide simultaneous views of the corona and coronal mass ejections from two view points. Here, we analyze simultaneous image pairs using the technique of tie-pointing and triangulation (T&T) to determine the three-dimensional trajectory of seven coronal mass ejections (CMEs). The bright leading edge of a CME seen in coronagraph images results from line-of-sight integration through the CME front; the two STEREO coronagraphs see different apparent leading edges, leading to a systematic error in its three-dimensional reconstruction. We analyze this systematic error using a simple geometric model of a CME front. We validate the technique and analysis by comparing T&T trajectory determinations for seven CMEs with trajectories determined by Thernisien et al. (2009) using a forward modeling technique not susceptible to this systematic effect.

  17. MLSO Mark III K-Coronameter Observations of the CME Rate from 1989 - 1996

    NASA Astrophysics Data System (ADS)

    St. Cyr, O. C.; Flint, Q. A.; Xie, H.; Webb, D. F.; Burkepile, J. T.; Lecinski, A. R.; Quirk, C.; Stanger, A. L.

    2015-10-01

    We report here an attempt to fill the 1990 - 1995 gap in the CME rate using the Mauna Loa Solar Observatory's Mark III (Mk3) K-coronameter. The Mk3 instrument observed routinely several hours most days beginning in 1980 until it was upgraded to Mk4 in 1999. We describe the statistical properties of the CMEs detected during 1989 - 1996, and we determine a CME rate for each of those years. Since spaceborne coronagraphs have more complete duty cycles than a ground-based instrument at a single location, we compare the Mk3-derived CME rate from 1989 with the rate from the SMM C/P coronagraph, and from 1996 with the rate from the SOHO LASCO coronagraphs.

  18. Modeling Active Galactic Nucleus Feedback in Cool-core Clusters: The Formation of Cold Clumps

    NASA Astrophysics Data System (ADS)

    Li, Yuan; Bryan, Greg L.

    2014-07-01

    We perform high-resolution (15-30 pc) adaptive mesh simulations to study the impact of momentum-driven active galactic nucleus (AGN) feedback in cool-core clusters, focusing in this paper on the formation of cold clumps. The feedback is jet-driven with an energy determined by the amount of cold gas within 500 pc of the super-massive black hole. When the intracluster medium in the core of the cluster becomes marginally stable to radiative cooling, with the thermal instability to the free-fall timescale ratio t TI/t ff < 3-10, cold clumps of gas start to form along the propagation direction of the AGN jets. By tracing the particles in the simulations, we find that these cold clumps originate from low entropy (but still hot) gas that is accelerated by the jet to outward radial velocities of a few hundred km s-1. This gas is out of hydrostatic equilibrium and so can cool. The clumps then grow larger as they decelerate and fall toward the center of the cluster, eventually being accreted onto the super-massive black hole. The general morphology, spatial distribution, and estimated Hα morphology of the clumps are in reasonable agreement with observations, although we do not fully replicate the filamentary morphology of the clumps seen in the observations, probably due to missing physics.

  19. Visible-Light-Induced Olefin Activation Using 3D Aromatic Boron-Rich Cluster Photooxidants.

    PubMed

    Messina, Marco S; Axtell, Jonathan C; Wang, Yiqun; Chong, Paul; Wixtrom, Alex I; Kirlikovali, Kent O; Upton, Brianna M; Hunter, Bryan M; Shafaat, Oliver S; Khan, Saeed I; Winkler, Jay R; Gray, Harry B; Alexandrova, Anastassia N; Maynard, Heather D; Spokoyny, Alexander M

    2016-06-08

    We report a discovery that perfunctionalized icosahedral dodecaborate clusters of the type B12(OCH2Ar)12 (Ar = Ph or C6F5) can undergo photo-excitation with visible light, leading to a new class of metal-free photooxidants. Excitation in these species occurs as a result of the charge transfer between low-lying orbitals located on the benzyl substituents and an unoccupied orbital delocalized throughout the boron cluster core. Here we show how these species, photo-excited with a benchtop blue LED source, can exhibit excited-state reduction potentials as high as 3 V and can participate in electron-transfer processes with a broad range of styrene monomers, initiating their polymerization. Initiation is observed in cases of both electron-rich and electron-deficient styrene monomers at cluster loadings as low as 0.005 mol%. Furthermore, photo-excitation of B12(OCH2C6F5)12 in the presence of a less activated olefin such as isobutylene results in the production of highly branched poly(isobutylene). This work introduces a new class of air-stable, metal-free photo-redox reagents capable of mediating chemical transformations.

  20. Modeling active galactic nucleus feedback in cool-core clusters: The formation of cold clumps

    SciTech Connect

    Li, Yuan; Bryan, Greg L.

    2014-07-10

    We perform high-resolution (15-30 pc) adaptive mesh simulations to study the impact of momentum-driven active galactic nucleus (AGN) feedback in cool-core clusters, focusing in this paper on the formation of cold clumps. The feedback is jet-driven with an energy determined by the amount of cold gas within 500 pc of the super-massive black hole. When the intracluster medium in the core of the cluster becomes marginally stable to radiative cooling, with the thermal instability to the free-fall timescale ratio t{sub TI}/t{sub ff} < 3-10, cold clumps of gas start to form along the propagation direction of the AGN jets. By tracing the particles in the simulations, we find that these cold clumps originate from low entropy (but still hot) gas that is accelerated by the jet to outward radial velocities of a few hundred km s{sup –1}. This gas is out of hydrostatic equilibrium and so can cool. The clumps then grow larger as they decelerate and fall toward the center of the cluster, eventually being accreted onto the super-massive black hole. The general morphology, spatial distribution, and estimated Hα morphology of the clumps are in reasonable agreement with observations, although we do not fully replicate the filamentary morphology of the clumps seen in the observations, probably due to missing physics.

  1. Seed Population in Large Solar Energetic Particle Events and the Twin-CME Scenario

    NASA Astrophysics Data System (ADS)

    Ding, Liu-Guan; Li, Gang; Le, Gui-Ming; Gu, Bin; Cao, Xin-Xin

    2015-10-01

    It has recently been suggested that large solar energetic particle (SEP) events are often caused by twin coronal mass ejections (CMEs). In the twin-CME scenario, the preceding CME provides both an enhanced turbulence level and enhanced seed population at the main CME-driven shock. In this work, we study the effect of the preceding CMEs on the seed population. We examine event-integrated abundance of iron to oxygen ratio (Fe/O) at energies above 25 MeV/nuc for large SEP events in solar cycle 23. We find that the Fe/O ratio (normalized to the reference coronal value of 0.134) ≤2.0 for almost all single-CME events and these events tend to have smaller peak intensities. In comparison, the Fe/O ratio of twin-CME events scatters in a larger range, reaching as high as 8, suggesting the presence of flare material from perhaps preceding flares. For extremely large SEP events with peak intensities above 1000 pfu, the Fe/O ratios drop below 2, indicating that the seed particles are dominated by coronal material rather than flare material in these extreme events. The Fe/O ratios of ground level enhancement (GLE) events, which are all twin-CME events, scatter in a broad range. For a given Fe/O ratio, GLE events tend to have larger peak intensities than non-GLE events. Using velocity dispersion analysis, we find that GLE events have lower solar particle release heights than non-GLE events, agreeing with earlier results by Reames.

  2. Identifying active faults in Switzerland using relocated earthquake catalogs and optimal anisotropic dynamic clustering

    NASA Astrophysics Data System (ADS)

    Wagner, M.; Wang, Y.; Husen, S.; Woessner, J.; Kissling, E. H.; Ouillon, G.; Giardini, D.; Sornette, D.

    2010-12-01

    Active fault zones are the causal locations of most earthquakes, which release tectonic stresses. Yet, identification and association of faults and earthquakes is not straightforward. On the one hand, many earthquakes occur on faults that are unknown. On the other hand, systematic biases and uncertainties in earthquake locations hamper the association of earthquakes and known faults. We tackle the problem of linking earthquakes to faults by relocating them in a non-linear probabilistic manner and by applying a three-dimensional optimal anisotropic dynamic clustering approach to the relocated events to map fault networks. Non-linear probabilistic earthquake location allows to compute probability density functions that provide the complete probabilistic solution to the earthquake hypocenter location problem, including improved information on location uncertainties. To improve absolute earthquake locations we use a newly developed combined controlled-source seismology and local earthquake tomography model, which allows the use of secondary phases, such as PmP. Dynamic clustering is a very general image processing technique that allows partitioning a set of data points. Our improved optimal anisotropic dynamic clustering technique accounts for uncertainties in earthquake locations by the use of probability density functions, as provided by non-linear probabilistic earthquake location. Hence, number and size of the reconstructed faults is controlled by earthquake location uncertainty. We apply our approach to seismicity in Switzerland to identify active faults in the region. Relocated earthquake catalogs and associated fault networks will be compared to already existing information on faults, such as geological and seismotectonic maps, to derive a more complete picture of active faulting in Switzerland.

  3. Role of Ambient Solar Wind Conditions in CME evolution (P21)

    NASA Astrophysics Data System (ADS)

    Jadav, R.; Jadeja, A. K.; Iyer, K. N.

    2006-11-01

    ipsraj@yahoo.com Solar events are mainly responsible for producing storms at the Earth. Coronal Mass Ejection (CME) is a major cause for this. In this paper, Coronal Mass Ejections occurred during 1998-2004 are studied. Ambient solar wind does play some role in determining the effect of a CME. The effects produced at the Earth during the period 1999 2004 are considered and an attempt has been made to understand the role of ambient solar wind. This is to draw some conclusion about how some of the events become geo- effective.

  4. The analysis of CME on 18 June 2000 and the associated radio emission

    NASA Astrophysics Data System (ADS)

    Wang, M.; Xie, R. X.

    A small flare near the solar limb occurred on 18 June 2000 This flare associated with a short duration radio burst in the micro-wavelength In the metric bands the radio burst wear also short but very complex which was consist of fast drifting structure type III bursts and slow drifting structure type II burst The SXR data showed that this flare was impulsive followed with a gradual phase The image radio observation showed the bright structure moving along the direction of the CME s The associated CME was very significant and typical with high velocity larger than 600km s

  5. Simulation of SEP Acceleration and Transport at CME-driven Shocks

    SciTech Connect

    Kota, J.; Jokipii, J.R.; Manchester, W.B.; Zeeuw, D.L. de; Gombosi, T.I.

    2005-08-01

    Our code of solar energetic particle (SEP) acceleration and transport developed in Arizona is combined with the realistic CME simulations of Michigan, using the solar wind and magnetic field data of the Michigan CME-simulation as input to the SEP code. We suggest that, in addition to the acceleration at the shock significant acceleration may also occur in the sheet behind the shock, where magnetic field lines are compressed as they are bent around the expanding cloud. We consider field aligned motion and cast the proper Fokker-Planck equation into a non-inertial comoving frame, that follows field lines as they evolve. Illustrative simulation results are presented.

  6. Voltage clustering in redox-active ligand complexes: mitigating electronic communication through choice of metal ion

    SciTech Connect

    Zarkesh, Ryan A.; Ichimura, Andrew S.; Monson, Todd C.; Tomson, Neil C.; Anstey, Mitchell R.

    2016-02-01

    We used the redox-active bis(imino)acenapthene (BIAN) ligand to synthesize homoleptic aluminum, chromium, and gallium complexes of the general formula (BIAN)3M. The resulting compounds were characterized using X-ray crystallography, NMR, EPR, magnetic susceptibility and cyclic voltammetry measurements and modeled using both DFT and ab initio wavefunction calculations to compare the orbital contributions of main group elements and transition metals in ligand-based redox events. Ultimately, complexes of this type have the potential to improve the energy density and electrolyte stability of grid-scale energy storage technologies, such as redox flow batteries, through thermodynamically-clustered redox events.

  7. Voltage clustering in redox-active ligand complexes: mitigating electronic communication through choice of metal ion

    DOE PAGES

    Zarkesh, Ryan A.; Ichimura, Andrew S.; Monson, Todd C.; ...

    2016-02-01

    We used the redox-active bis(imino)acenapthene (BIAN) ligand to synthesize homoleptic aluminum, chromium, and gallium complexes of the general formula (BIAN)3M. The resulting compounds were characterized using X-ray crystallography, NMR, EPR, magnetic susceptibility and cyclic voltammetry measurements and modeled using both DFT and ab initio wavefunction calculations to compare the orbital contributions of main group elements and transition metals in ligand-based redox events. Ultimately, complexes of this type have the potential to improve the energy density and electrolyte stability of grid-scale energy storage technologies, such as redox flow batteries, through thermodynamically-clustered redox events.

  8. Open clusters as laboratories for stellar spin-down and magnetic activity decay

    NASA Astrophysics Data System (ADS)

    Douglas, Stephanie; Agueros, Marcel A.; Covey, Kevin R.

    2017-01-01

    The oldest open clusters within 250 pc of the Sun, the Hyades and Praesepe, are important benchmarks for calibrating stellar properties such as rotation and magnetic activity. As they have the same age and roughly solar metallicity, these clusters serve as an ideal laboratory for testing the agreement between theoretical and empirical rotation-activity relations at ~600 Myr. The repurposed Kepler mission, K2, has allowed us to measure rotation periods for dozens of Hyads and hundreds of Praesepe members, including the first periods measured for fully convective Hyads. These data have enabled new tests of models describing the evolution of stellar rotation; discrepancies with these models imply that we still do not fully understand how magnetic fields affect stellar spin-down. I will present rotation periods measured for 48 Hyads and 699 Praesepe members with K2, along with associated Halpha and X-ray fluxes. I will also show how we can compare the dependence of H-alpha and X-ray emission on rotation in order to test theories of magnetic field topology and stellar dynamos. These tests inform models of stellar wind-driven angular momentum loss and the age-rotation-activity relation.

  9. Extracellular engagement of ADAM12 induces clusters of invadopodia with localized ectodomain shedding activity.

    PubMed

    Albrechtsen, Reidar; Stautz, Dorte; Sanjay, Archana; Kveiborg, Marie; Wewer, Ulla M

    2011-01-15

    Invadopodia are dynamic actin structures at the cell surface that degrade extracellular matrix and act as sites of signal transduction. The biogenesis of invadopodia, including the mechanisms regulating their formation, composition, and turnover is not entirely understood. Here, we demonstrate that antibody ligation of ADAM12, a transmembrane disintegrin and metalloprotease, resulted in the rapid accumulation of invadopodia with extracellular matrix-degrading capacity in epithelial cells expressing the αvβ3 integrin and active c-Src kinase. The induction of invadopodia clusters required an intact c-Src interaction site in the ADAM12 cytoplasmic domain, but was independent of the catalytic activity of ADAM12. Caveolin-1 and transmembrane protease MMP14/MT1-MMP were both present in the ADAM12-induced clusters of invadopodia, and cholesterol depletion prevented their formation, suggesting that lipid-raft microdomains are involved in the process. Importantly, our data demonstrate that ADAM12-mediated ectodomain shedding of epidermal growth factor receptor ligands can occur within these invadopodia. Such localized growth factor signalling offers an interesting novel biological concept highly relevant to the properties of carcinoma cells, which often show upregulated ADAM12 and β3 integrin expression, together with high levels of c-Src kinase activity.

  10. Active Longitude and Coronal Mass Ejection Occurrences

    NASA Astrophysics Data System (ADS)

    Gyenge, N.; Singh, T.; Kiss, T. S.; Srivastava, A. K.; Erdélyi, R.

    2017-03-01

    The spatial inhomogeneity of the distribution of coronal mass ejection (CME) occurrences in the solar atmosphere could provide a tool to estimate the longitudinal position of the most probable CME-capable active regions in the Sun. The anomaly in the longitudinal distribution of active regions themselves is often referred to as active longitude (AL). In order to reveal the connection between the AL and CME spatial occurrences, here we investigate the morphological properties of active regions. The first morphological property studied is the separateness parameter, which is able to characterize the probability of the occurrence of an energetic event, such as a solar flare or CME. The second morphological property is the sunspot tilt angle. The tilt angle of sunspot groups allows us to estimate the helicity of active regions. The increased helicity leads to a more complex buildup of the magnetic structure and also can cause CME eruption. We found that the most complex active regions appear near the AL and that the AL itself is associated with the most tilted active regions. Therefore, the number of CME occurrences is higher within the AL. The origin of the fast CMEs is also found to be associated with this region. We concluded that the source of the most probably CME-capable active regions is at the AL. By applying this method, we can potentially forecast a flare and/or CME source several Carrington rotations in advance. This finding also provides new information for solar dynamo modeling.

  11. NanoCluster Beacons as reporter probes in rolling circle enhanced enzyme activity detection.

    PubMed

    Juul, Sissel; Obliosca, Judy M; Liu, Cong; Liu, Yen-Liang; Chen, Yu-An; Imphean, Darren M; Knudsen, Birgitta R; Ho, Yi-Ping; Leong, Kam W; Yeh, Hsin-Chih

    2015-05-14

    As a newly developed assay for the detection of endogenous enzyme activity at the single-catalytic-event level, Rolling Circle Enhanced Enzyme Activity Detection (REEAD) has been used to measure enzyme activity in both single human cells and malaria-causing parasites, Plasmodium sp. Current REEAD assays rely on organic dye-tagged linear DNA probes to report the rolling circle amplification products (RCPs), the cost of which may hinder the widespread use of REEAD. Here we show that a new class of activatable probes, NanoCluster Beacons (NCBs), can simplify the REEAD assays. Easily prepared without any need for purification and capable of large fluorescence enhancement upon hybridization, NCBs are cost-effective and sensitive. Compared to conventional fluorescent probes, NCBs are also more photostable. As demonstrated in reporting the human topoisomerases I (hTopI) cleavage-ligation reaction, the proposed NCBs suggest a read-out format attractive for future REEAD-based diagnostics.

  12. 43 CFR Appendix II to Part 11 - Format for Data Inputs and Modifications to the NRDAM/CME

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... The NRDAM/CME begins its calculations at the point that the released substance entered water in an area represented by its geographic database. Any water within the geographic boundaries of the NRDAM.... In the case of a release that began in water in an area within the boundaries of the NRDAM/CME,...

  13. Comparative analysis of adaptor-mediated clathrin assembly reveals general principles for adaptor clustering.

    PubMed

    Pucadyil, Thomas J; Holkar, Sachin S

    2016-10-15

    Clathrin-mediated endocytosis (CME) manages the sorting and uptake of the bulk of membrane proteins (or cargo) from the plasma membrane. CME is initiated by the formation of clathrin-coated pits (CCPs), in which adaptors nucleate clathrin assembly. Clathrin adaptors display diversity in both the type and number of evolutionarily conserved clathrin-binding boxes. How this diversity relates to the process of adaptor clustering as clathrin assembles around a growing pit remains unclear. Using real-time, fluorescence microscopy-based assays, we compare the formation kinetics and distribution of clathrin assemblies on membranes that display five unique clathrin adaptors. Correlations between equilibrium and kinetic parameters of clathrin assembly to the eventual adaptor distribution indicate that adaptor clustering is determined not by the amount of clathrin recruited or the degree of clathrin clustered but instead by the rate of clathrin assembly. Together our results emphasize the need to analyze kinetics of protein interactions to better understand mechanisms that regulate CME.

  14. Overproduction of Ristomycin A by Activation of a Silent Gene Cluster in Amycolatopsis japonicum MG417-CF17

    PubMed Central

    Spohn, Marius; Kirchner, Norbert; Kulik, Andreas; Jochim, Angelika; Wolf, Felix; Muenzer, Patrick; Borst, Oliver; Gross, Harald; Wohlleben, Wolfgang

    2014-01-01

    The emergence of antibiotic-resistant pathogenic bacteria within the last decades is one reason for the urgent need for new antibacterial agents. A strategy to discover new anti-infective compounds is the evaluation of the genetic capacity of secondary metabolite producers and the activation of cryptic gene clusters (genome mining). One genus known for its potential to synthesize medically important products is Amycolatopsis. However, Amycolatopsis japonicum does not produce an antibiotic under standard laboratory conditions. In contrast to most Amycolatopsis strains, A. japonicum is genetically tractable with different methods. In order to activate a possible silent glycopeptide cluster, we introduced a gene encoding the transcriptional activator of balhimycin biosynthesis, the bbr gene from Amycolatopsis balhimycina (bbrAba), into A. japonicum. This resulted in the production of an antibiotically active compound. Following whole-genome sequencing of A. japonicum, 29 cryptic gene clusters were identified by genome mining. One of these gene clusters is a putative glycopeptide biosynthesis gene cluster. Using bioinformatic tools, ristomycin (syn. ristocetin), a type III glycopeptide, which has antibacterial activity and which is used for the diagnosis of von Willebrand disease and Bernard-Soulier syndrome, was deduced as a possible product of the gene cluster. Chemical analyses by high-performance liquid chromatography and mass spectrometry (HPLC-MS), tandem mass spectrometry (MS/MS), and nuclear magnetic resonance (NMR) spectroscopy confirmed the in silico prediction that the recombinant A. japonicum/pRM4-bbrAba synthesizes ristomycin A. PMID:25114137

  15. Cosmological Studies with Galaxy Clusters, Active Galactic Nuclei, and Strongly Lensed Quasars

    NASA Astrophysics Data System (ADS)

    Rumbaugh, Nicholas Andrew

    The large-scale structure (LSS) of the universe provides scientists with one of the best laboratories for studying Lambda Cold Dark Matter (LambdaCDM) cosmology. Especially at high redshift, we see increased rates of galaxy cluster and galaxy merging in LSS relative to the field, which is useful for studying the hierarchical merging predicted by LambdaCDM. The largest identified bound structures, superclusters, have not yet virialized. Despite the wide range of dynamical states of their constituent galaxies, groups, and clusters, they are all still actively evolving, providing an ideal laboratory in which to study cluster and galaxy evolution. In this dissertation, I present original research on several aspects of LSS and LambdaCDM cosmology. Three separate studies are included, each one focusing on a different aspect. In the first study, we use X-ray and optical observations from nine galaxy clusters at high redshift, some embedded in larger structures and some isolated, to study their evolutionary states. We extract X-ray gas temperatures and luminosities as well as optical velocity dispersions. These cluster properties are compared using low-redshift scaling relations. In addition, we employ several tests of substructure, using velocity histograms, Dressler-Shectman tests, and centroiding offsets. We conclude that two clusters out of our sample are most likely unrelaxed, and find support for deviations from self-similarity in the redshift evolution of the Lx-T relation. Our numerous complementary tests of the evolutionary state of clusters suggest potential under-estimations of systematic error in studies employing only a single such test. In the second study, we use multi-band imaging and spectroscopy to study active galactic nuclei (AGN) in high-redshift LSS. The AGN were identified using X-ray imaging and matched to optical catalogs that contained spectroscopic redshifts to identify members of the structures. AGN host galaxies tended to be associated with the

  16. Changing ionization conditions in SDSS galaxies with active galactic nuclei as a function of environment from pairs to clusters

    SciTech Connect

    Khabiboulline, Emil T.; Steinhardt, Charles L.; Silverman, John D.; Ellison, Sara L.; Mendel, J. Trevor; Patton, David R.

    2014-11-01

    We study how active galactic nucleus (AGN) activity changes across environments from galaxy pairs to clusters using 143,843 galaxies with z < 0.2 from the Sloan Digital Sky Survey. Using a refined technique, we apply a continuous measure of AGN activity, characteristic of the ionization state of the narrow-line emitting gas. Changes in key emission-line ratios ([N II] λ6548/Hα, [O III] λ5007/Hβ) between different samples allow us to disentangle different environmental effects while removing contamination. We confirm that galaxy interactions enhance AGN activity. However, conditions in the central regions of clusters are inhospitable for AGN activity even if galaxies are in pairs. These results can be explained through models of gas dynamics in which pair interactions stimulate the transfer of gas to the nucleus and clusters suppress gas availability for accretion onto the central black hole.

  17. Photocatalytic activity of nanostructured TiO2 films produced by supersonic cluster beam deposition

    NASA Astrophysics Data System (ADS)

    Della Foglia, Flavio; Losco, Tonia; Piseri, Paolo; Milani, Paolo; Selli, Elena

    2009-08-01

    The photocatalytic activity of thin, nanostructured films of titanium dioxide, synthesized by supersonic cluster beam deposition (SCBD) from the gas phase, has been investigated employing the photodegradation of salicylic acid as test reaction. Because of the low deposition energy, the so-deposited highly porous TiO2 films are composed of nanoparticles maintaining their original properties in the film, which can be fully controlled by tuning the deposition and post-deposition treatment conditions. A systematic investigation on the evolution of light absorption properties and photoactivity of the films in relation to their morphology, determined by AFM analysis, and phase composition, determined by Raman spectroscopy, has been performed. The absorption and photocatalytic activity of the nanostructured films in the visible region could be enhanced either through post-deposition annealing treatment in ammonia containing atmosphere or employing mild oxidation conditions, followed by annealing in N2 at 600 °C.

  18. Constraints on CME Evolution from in situ Observations of Ionic Charge States

    NASA Technical Reports Server (NTRS)

    Gruesbeck, Jacob R.; Lepri, Susan T.; Zurbuchen, Thomas H.; Antiochos, Spiro K.

    2010-01-01

    We present a novel procedure for deriving the physical properties of Coronal Mass Ejections (CMES) in the corona. Our methodology uses in-situ measurements of ionic charge states of C, O, Si and Fe in the heliosphere and interprets them in the context of a model for the early evolution of ICME plasma, between 2 - 5 R-solar. We find that the data can be fit only by an evolution that consists of an initial heating of the plasma, followed by an expansion that ultimately results in cooling. The heating profile is consistent with a compression of coronal plasma due to flare reconnect ion jets and an expansion cooling due to the ejection, as expected from the standard CME/flare model. The observed frozen-in ionic charge states reflect this time-history and, therefore, provide important constraints for the heating and expansion time-scales, as well as the maximum temperature the CME plasma is heated to during its eruption. Furthermore, our analysis places severe limits on the possible density of CME plasma in the corona. We discuss the implications of our results for CME models and for future analysis of ICME plasma composition.

  19. Organizational Change in Management of Hepatitis C: Evaluation of a CME Program

    ERIC Educational Resources Information Center

    Garrard, Judith; Choudary, Veena; Groom, Holly; Dieperink, Eric; Willenbring, Mark L.; Durfee, Janet M.; Ho, Samuel B.

    2006-01-01

    Introduction: Effective treatment regimens exist for the hepatitis C virus (HCV); however, clinicians are often resistant to evaluation or treatment of patients with alcohol or substance abuse problems. We describe a continuing medical education (CME) program for clinicians in a nationwide health care system, with emphasis on current treatment…

  20. Analysis of Metric Type II Burst and EUV Waves Generated by Shock Wave Driven by Cme

    NASA Astrophysics Data System (ADS)

    Cunha-Silva, Rafael; Fernandes, Francisco; Selhorst, Caius

    2016-07-01

    The relationship between solar type II radio bursts produced by plasma oscillations and coronal shocks is well shown since the 1960s. However, the details of the association between the drivers of the shocks and the metric type II bursts remains a controversial issue. The flares and the coronal mass ejections (CMEs) are the potential drivers of these shocks. In this work, we present the analysis of a metric type II burst observed on May 17, 2013, by spectrometers from e-CALLISTO network and EUV images from the Extreme Ultraviolet Imager (EUVI), aboard the STEREO. The event was associated with an M3.2 X-ray flare and a halo CME. The EUV images show the EUV wave was produced by the expansion of the CME. The heights of the EUV wave fronts and the magnetic field intensity determined in the regions of the shock are consistent with those the heights of radio source obtained with the three-fold Newkirk density model, which suggests an oblique propagation of the shock. The finding of an accelerating shock with speed of 530-640 km/s and of 870-1220 km/s for the first and the second stages of the type II emission, respectively, is consistent with both the average speed of the associated EUV wave front, of 626 km/s, during the initial expansion of the CME, and with the linear speed of the CME, of 1345 km/s. These results will be presented and discussed.

  1. Reconciling CME Kinematics using Radio and White-light Observations from STEREO and SOHO

    NASA Astrophysics Data System (ADS)

    Gopalswamy, Nat; Yashiro, Seiji; Xie, Hong; Makela, Pertti; Akiyama, Sachiko; Reiner, Michael; MacDowall, Robert

    2014-05-01

    We study the characteristics of nonthermal radio emission associated with coronal mass ejections (CMEs) observed by STEREO, SOHO, and Wind spacecraft. In particular, we examine three backside CMEs associated with type II radio bursts at frequencies below 16 MHz. These bursts are known to be excellent indicators of solar energetic particle events. We use the universal drift rate spectrum of type II radio bursts and the inferred density scale heights in the corona and interplanetary medium o estimate the speed of the shock waves that produce the type II radio bursts. We find that the radio bursts can provide an accurate estimate of the CME speeds. We consider three backside events and a cannibalism event to show the usefulness of radio dynamic spectrum in inferring CME kinematics. We use radio direction finding technique to show that CME-CME interaction results in enhanced nonthermal radio emission. The radio data also provide constraints on the particle acceleration mechanisms and the reason for the energetic particles observed at wide-ranging longitudes. Finally we infer the shape and extent of the shock associated with one of the biggest solar energetic particle events in the space era.

  2. Medical Education and Communication Companies Involved in CME: An Updated Profile

    ERIC Educational Resources Information Center

    Peterson, Eric D.; Overstreet, Karen M.; Parochka, Jacqueline N.; Lemon, Michael R.

    2008-01-01

    Introduction: Medical Education and Communication Companies (MECCs) represent approximately 21% of the providers accredited by the Accreditation Council for Continuing Medical Education (ACCME), yet relatively little is known about these organizations in the greater continuing medical education (CME) community. Two prior studies described them,…

  3. Stable and solubilized active Au atom clusters for selective epoxidation of cis-cyclooctene with molecular oxygen

    PubMed Central

    Qian, Linping; Wang, Zhen; Beletskiy, Evgeny V.; Liu, Jingyue; dos Santos, Haroldo J.; Li, Tiehu; Rangel, Maria do C.; Kung, Mayfair C.; Kung, Harold H.

    2017-01-01

    The ability of Au catalysts to effect the challenging task of utilizing molecular oxygen for the selective epoxidation of cyclooctene is fascinating. Although supported nanometre-size Au particles are poorly active, here we show that solubilized atomic Au clusters, present in ng ml−1 concentrations and stabilized by ligands derived from the oxidized hydrocarbon products, are active. They can be formed from various Au sources. They generate initiators and propagators to trigger the onset of the auto-oxidation reaction with an apparent turnover frequency of 440 s−1, and continue to generate additional initiators throughout the auto-oxidation cycle without direct participation in the cycle. Spectroscopic characterization suggests that 7–8 atom clusters are effective catalytically. Extension of work based on these understandings leads to the demonstration that these Au clusters are also effective in selective oxidation of cyclohexene, and that solubilized Pt clusters are also capable of generating initiators for cyclooctene epoxidation. PMID:28348389

  4. Application of space-time scan statistics to describe geographic and temporal clustering of visible drug activity.

    PubMed

    Linton, Sabriya L; Jennings, Jacky M; Latkin, Carl A; Gomez, Marisela B; Mehta, Shruti H

    2014-10-01

    Knowledge of the geographic and temporal clustering of drug activity can inform where health and social services are needed and can provide insight on the potential impact of local policies on drug activity. This ecologic study assessed the spatial and temporal distribution of drug activity in Baltimore, Maryland, prior to and following the implementation of a large urban redevelopment project in East Baltimore, which began in 2003. Drug activity was measured by narcotic calls for service at the neighborhood level. A space-time scan statistic approach was used to identify statistically significant clusters of narcotic calls for service across space and time, using a discrete Poisson model. After adjusting for economic deprivation and housing vacancy, clusters of narcotic calls for service were identified among neighborhoods located in Southeast, Northeast, Northwest, and West Baltimore from 2001 to 2010. Clusters of narcotic calls for service were identified among neighborhoods located in East Baltimore from 2001 to 2003, indicating a decrease in narcotic calls thereafter. A large proportion of clusters occurred among neighborhoods located in North and Northeast Baltimore after 2003, which indicated a potential spike during this time frame. These findings suggest potential displacement of drug activity coinciding with the initiation of urban redevelopment in East Baltimore. Space-time scan statistics should be used in future research to describe the potential implications of local policies on drug activity.

  5. Modeling active galactic nucleus feedback in cool-core clusters: The balance between heating and cooling

    SciTech Connect

    Li, Yuan; Bryan, Greg L.

    2014-07-01

    We study the long-term evolution of an idealized cool-core galaxy cluster under the influence of momentum-driven active galactic nucleus (AGN) feedback using three-dimensional high-resolution (60 pc) adaptive mesh refinement simulations. The feedback is modeled with a pair of precessing jets whose power is calculated based on the accretion rate of the cold gas surrounding the supermassive black hole (SMBH). The intracluster medium first cools into clumps along the propagation direction of the jets. As the jet power increases, gas condensation occurs isotropically, forming spatially extended structures that resemble the observed Hα filaments in Perseus and many other cool-core clusters. Jet heating elevates the gas entropy, halting clump formation. The cold gas that is not accreted onto the SMBH settles into a rotating disk of ∼10{sup 11} M {sub ☉}. The hot gas cools directly onto the disk while the SMBH accretes from its innermost region, powering the AGN that maintains a thermally balanced state for a few Gyr. The mass cooling rate averaged over 7 Gyr is ∼30 M {sub ☉} yr{sup –1}, an order of magnitude lower than the classic cooling flow value. Medium resolution simulations produce similar results, while in low resolution runs, the cluster experiences cycles of gas condensation and AGN outbursts. Owing to its self-regulating mechanism, AGN feedback can successfully balance cooling with a wide range of model parameters. Our model also produces cold structures in early stages that are in good agreement with the observations. However, the long-lived massive cold disk is unrealistic, suggesting that additional physical processes are still needed.

  6. Associations between dimensions of anxiety sensitivity and PTSD symptom clusters in active-duty police officers.

    PubMed

    Asmundson, Gordon J G; Stapleton, Jennifer A

    2008-01-01

    Prior studies have shown that anxiety sensitivity (AS) plays an important role in posttraumatic stress disorder (PTSD) symptom severity. The purpose of this study was to evaluate associations between empirically supported PTSD symptom clusters (i.e. reexperiencing, avoidance, numbing, hyperarousal) and AS dimensions (i.e. psychological concerns, social concerns, somatic concerns). Participants were 138 active-duty police officers (70.7% female; mean age = 38.9 years; mean time policing = 173.8 months) who, as a part of a larger study, completed measures of trauma exposure, PTSD symptoms, AS, and depressive symptoms. All participants reported experiencing at least one event that they perceived as traumatic, and 44 (31.9%) screened positive for PTSD. Officers with probable PTSD scored significantly higher on AS total as well as the somatic and psychological concerns dimensional scores than did those without PTSD. As well, a higher percentage of officers with probable PTSD scored positively on the AS-derived Brief Screen for Panic Disorder (Apfeldorf et al., 1994) compared with those without PTSD. A series of regression analyses revealed that depressive symptoms, number of reported traumas, and AS somatic concerns were significant predictors of PTSD total symptom severity as well as severity of reexperiencing. Avoidance was predicted by depressive symptoms and AS somatic concerns. Only depressive symptoms were significantly predictive of numbing and hyperarousal cluster scores. These findings contribute to understanding the nature of association between AS and PTSD symptom clusters. Implications for the treatment of individuals having PTSD with and without panic-related symptomatology are discussed.

  7. Nanoparticle cluster gas sensor: Pt activated SnO2 nanoparticles for NH3 detection with ultrahigh sensitivity.

    PubMed

    Liu, Xu; Chen, Nan; Han, Bingqian; Xiao, Xuechun; Chen, Gang; Djerdj, Igor; Wang, Yude

    2015-09-28

    Pt activated SnO2 nanoparticle clusters were synthesized by a simple solvothermal method. The structure, morphology, chemical state and specific surface area were analyzed by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and N2-sorption studies, respectively. The SnO2 nanoparticle cluster matrix consists of tens of thousands of SnO2 nanoparticles with an ultra-small grain size estimated to be 3.0 nm. And there are abundant random-packed wormhole-like pores, caused by the inter-connection of the SnO2 nanoparticles, throughout each cluster. The platinum element is present in two forms including metal (Pt) and tetravalent metal oxide (PtO2) in the Pt activated SnO2 nanoparticle clusters. The as-synthesized pure and Pt activated SnO2 nanoparticle clusters were used to fabricate gas sensor devices. It was found that the gas response toward 500 ppm of ammonia was improved from 6.48 to 203.44 through the activation by Pt. And the results indicate that the sensor based on Pt activated SnO2 not only has ultrahigh sensitivity but also possesses good response-recovery properties, linear dependence, repeatability, selectivity and long-term stability, demonstrating the potential to use Pt activated SnO2 nanoparticle clusters as ammonia gas sensors. At the same time, the formation mechanisms of the unique nanoparticle clusters and highly enhanced sensitivity are also discussed.

  8. CME-Producing Precursors to the 2006 December 13 X-Flare

    NASA Technical Reports Server (NTRS)

    Sterling, Alphonse C.; Harra, Louise K.; Moore, Ronald L.

    2008-01-01

    We revisit one of the largest explosions observed during the Hinode era, the X4.3 class event of 2006 Dec 13. We gain insight into the main eruption through study of two sub-C-class precursor eruptions, occurring within 12 hours of and originating from the same (or nearby) neutral line as the X-flare. The precursors share some features in common with the main eruption, and their lower energy and consequent slower development renders interpretation of these features easier to decipher than in the rapidly explosive main eruption. In addition, because the weak precursors occurred in a magnetically strong region, magnetic connections indicated by soft X-ray loops are readily visible in these cases, while such connections can be much less apparent in weaker-region eruptions. Hinode/SOT magnetograms indicate that photospheric magnetic dynamic activity in the "magnetic core" is the likely ultimate source of the eruptions. All the eruptions, however, produce Coronal Mass Ejections (CMEs) that have wider spatial extent than the localized source region; this is a long-observed but puzzling phenomena, which can address directly here using the high-quality Hinode data. For the precursor eruptions, Hinode/XRT images show that the initial eruptions occur inside larger-scale magnetic structures that encompass the core. The exploding core field blows out this larger-scale structure, resulting in the CME having angular extent far exceeding that of the source-region core alone; this is the arch-arch-blowout scenario for CMEs of Moore & Sterling (2007). Similar processes occur in the main eruption, except that the much larger energy release in that eruption compared to the precursors results in much faster and larger-scale phenomena.

  9. Formation and Reactivity of Organo-Functionalized Tin Selenide Clusters.

    PubMed

    Rinn, Niklas; Eußner, Jens P; Kaschuba, Willy; Xie, Xiulan; Dehnen, Stefanie

    2016-02-24

    Reactions of R(1) SnCl3 (R(1) =CMe2 CH2 C(O)Me) with (SiMe3 )2 Se yield a series of organo-functionalized tin selenide clusters, [(SnR(1) )2 SeCl4 ] (1), [(SnR(1) )2 Se2 Cl2 ] (2), [(SnR(1) )3 Se4 Cl] (3), and [(SnR(1) )4 Se6 ] (4), depending on the solvent and ratio of the reactants used. NMR experiments clearly suggest a stepwise formation of 1 through 4 by subsequent condensation steps with the concomitant release of Me3 SiCl. Furthermore, addition of hydrazines to the keto-functionalized clusters leads to the formation of hydrazone derivatives, [(Sn2 (μ-R(3) )(μ-Se)Cl4 ] (5, R(3) =[CMe2 CH2 CMe(NH)]2 ), [(SnR(2) )3 Se4 Cl] (6, R(2) =CMe2 CH2 C(NNH2 )Me), [(SnR(4) )3 Se4 ][SnCl3 ] (7, R(4) =CMe2 CH2 C(NNHPh)Me), [(SnR(2) )4 Se6 ] (8), and [(SnR(4) )4 Se6 ] (9). Upon treatment of 4 with [Cu(PPh3 )3 Cl] and excess (SiMe3 )2 Se, the cluster fragments to form [(R(1) Sn)2 Se2 (CuPPh3 )2 Se2 ] (10), the first discrete Sn/Se/Cu cluster compound reported in the literature. The derivatization reactions indicate fundamental differences between organotin sulfide and organotin selenide chemistry.

  10. Discovery of five low-luminosity active galactic nuclei at the centre of the Perseus cluster

    NASA Astrophysics Data System (ADS)

    Park, Songyoun; Yang, Jun; Oonk, J. B. Raymond; Paragi, Zsolt

    2017-03-01

    According to optical stellar kinematics observations, an overmassive black hole candidate has been reported by van den Bosch et al. in the normal early-type galaxy NGC 1277. This galaxy is located in the central region of the Perseus cluster. Westerbork Synthesis Radio Telescope observations have shown that NGC 1277 and other early-type galaxies in the neighbourhood have radio counterparts. These nuclear radio sources have stable flux densities on a time-scale of years. In order to investigate the origin of the radio emission from these normal galaxies, we selected five sources (NGC 1270, NGC 1272, NGC 1277, NGC 1278 and VZw 339) residing in the central 10-arcmin region of the Perseus cluster and requested to re-correlate the data of an existing very long baseline interferometry (VLBI) experiment at these new positions. With the re-correlation data provided by the European VLBI Network (EVN), we imaged the five sources with a resolution of about 8 mas and detected all of them with a confidence level above 5σ at 1.4 GHz. They show compact structure and brightness temperatures above 107 K, which implies that the radio emission is non-thermal. We rule out ongoing nuclear star formation and conclude that these VLBI-detected radio sources are parsec-scale jet activity associated with the supermassive black holes in low-luminosity active galactic nuclei, although there are no clear signs of nuclear activity observed in the optical and infrared bands. Using the Fundamental Plane relation in black holes, we find no significant evidence for or against an extremely massive black hole hiding in NGC 1277.

  11. Eastern region represents a worrying cluster of active hepatitis C in Algeria in 2012.

    PubMed

    Bensalem, Aïcha; Selmani, Karima; Hihi, Narjes; Bencherifa, Nesrine; Mostefaoui, Fatma; Kerioui, Cherif; Pineau, Pascal; Debzi, Nabil; Berkane, Saadi

    2016-08-01

    Algeria is the largest country of Africa, peopled with populations living a range of traditional/rural and modern/urban lifestyles. The variations of prevalence of chronic active hepatitis care poorly known on the Algerian territory. We conducted a retrospective survey on all patients (n = 998) referred to our institution in 2012 and confirmed by us for an active hepatitis C. Half of the hepatitis C virus (HCV) isolates were genotyped. Forty Algerian regions out of the 48 were represented in our study. Three geographical clusters (Aïn-Temouchent/SidiBelAbbes, Algiers, and a large Eastern region) with an excess of active hepatitis C were observed. Patients coming from the Eastern cluster (Batna, Khenchela, Oum el Bouaghi, and Tebessa) were strongly over-represented (49% of cases, OR = 14.5, P < 0.0001). The hallmarks of Eastern region were an excess of women (65% vs. 46% in the remaining population, P < 0.0001) and the almost exclusive presence of HCV genotype 1 (93% vs. 63%, P = 0.0001). The core of the epidemics was apparently located in Khenchela (odds ratio = 24.6, P < 0.0001). This situation is plausibly connected with nosocomial transmission or traditional practices as scarification (Hijama), piercing or tattooing, very lively in this region. Distinct hepatitis C epidemics are currently affecting Algerian population. The most worrying situation is observed in rural regions located east of Algeria. J. Med. Virol. 88:1394-1403, 2016. © 2016 Wiley Periodicals, Inc.

  12. THE CLUSTERING OF GALAXIES AROUND RADIO-LOUD ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Worpel, Hauke; Brown, Michael J. I.; Jones, D. Heath; Floyd, David J. E.; Beutler, Florian

    2013-07-20

    We examine the hypothesis that mergers and close encounters between galaxies can fuel active galactic nuclei (AGNs) by increasing the rate at which gas accretes toward the central black hole. We compare the clustering of galaxies around radio-loud AGNs with the clustering around a population of radio-quiet galaxies with similar masses, colors, and luminosities. Our catalog contains 2178 elliptical radio galaxies with flux densities greater than 2.8 mJy at 1.4 GHz from the Six Degree Field Galaxy Survey. We find tentative evidence that radio AGNs with more than 200 times the median radio power have, on average, more close (r < 160 kpc) companions than their radio-quiet counterparts, suggesting that mergers play a role in forming the most powerful radio galaxies. For ellipticals of fixed stellar mass, the radio power is neither a function of large-scale environment nor halo mass, consistent with the radio powers of ellipticals varying by orders of magnitude over billions of years.

  13. Mechanistically distinct cancer-associated mTOR activation clusters predict sensitivity to rapamycin

    PubMed Central

    Xu, Jianing; Pham, Can G.; Albanese, Steven K.; Dong, Yiyu; Lee, Chung-Han; Yao, Zhan; Han, Song; Chen, David; Parton, Daniel L.; Chodera, John D.; Rosen, Neal; Cheng, Emily H.; Hsieh, James J.

    2016-01-01

    Genomic studies have linked mTORC1 pathway–activating mutations with exceptional response to treatment with allosteric inhibitors of mTORC1 called rapalogs. Rapalogs are approved for selected cancer types, including kidney and breast cancers. Here, we used sequencing data from 22 human kidney cancer cases to identify the activating mechanisms conferred by mTOR mutations observed in human cancers and advance precision therapeutics. mTOR mutations that clustered in focal adhesion kinase targeting domain (FAT) and kinase domains enhanced mTORC1 kinase activity, decreased nutrient reliance, and increased cell size. We identified 3 distinct mechanisms of hyperactivation, including reduced binding to DEP domain–containing MTOR-interacting protein (DEPTOR), resistance to regulatory associated protein of mTOR–mediated (RAPTOR-mediated) suppression, and altered kinase kinetics. Of the 28 mTOR double mutants, activating mutations could be divided into 6 complementation groups, resulting in synergistic Rag- and Ras homolog enriched in brain–independent (RHEB-independent) mTORC1 activation. mTOR mutants were resistant to DNA damage–inducible transcript 1–mediated (REDD1-mediated) inhibition, confirming that activating mutations can bypass the negative feedback pathway formed between HIF1 and mTORC1 in the absence of von Hippel–Lindau (VHL) tumor suppressor expression. Moreover, VHL-deficient cells that expressed activating mTOR mutants grew tumors that were sensitive to rapamycin treatment. These data may explain the high incidence of mTOR mutations observed in clear cell kidney cancer, where VHL loss and HIF activation is pathognomonic. Our study provides mechanistic and therapeutic insights concerning mTOR mutations in human diseases. PMID:27482884

  14. Using Targeted Active-Learning Exercises and Diagnostic Question Clusters to Improve Students' Understanding of Carbon Cycling in Ecosystems

    ERIC Educational Resources Information Center

    Maskiewicz, April Cordero; Griscom, Heather Peckham; Welch, Nicole Turrill

    2012-01-01

    In this study, we used targeted active-learning activities to help students improve their ways of reasoning about carbon flow in ecosystems. The results of a validated ecology conceptual inventory (diagnostic question clusters [DQCs]) provided us with information about students' understanding of and reasoning about transformation of inorganic and…

  15. NanoCluster Beacons as reporter probes in rolling circle enhanced enzyme activity detection

    NASA Astrophysics Data System (ADS)

    Juul, Sissel; Obliosca, Judy M.; Liu, Cong; Liu, Yen-Liang; Chen, Yu-An; Imphean, Darren M.; Knudsen, Birgitta R.; Ho, Yi-Ping; Leong, Kam W.; Yeh, Hsin-Chih

    2015-04-01

    As a newly developed assay for the detection of endogenous enzyme activity at the single-catalytic-event level, Rolling Circle Enhanced Enzyme Activity Detection (REEAD) has been used to measure enzyme activity in both single human cells and malaria-causing parasites, Plasmodium sp. Current REEAD assays rely on organic dye-tagged linear DNA probes to report the rolling circle amplification products (RCPs), the cost of which may hinder the widespread use of REEAD. Here we show that a new class of activatable probes, NanoCluster Beacons (NCBs), can simplify the REEAD assays. Easily prepared without any need for purification and capable of large fluorescence enhancement upon hybridization, NCBs are cost-effective and sensitive. Compared to conventional fluorescent probes, NCBs are also more photostable. As demonstrated in reporting the human topoisomerases I (hTopI) cleavage-ligation reaction, the proposed NCBs suggest a read-out format attractive for future REEAD-based diagnostics.As a newly developed assay for the detection of endogenous enzyme activity at the single-catalytic-event level, Rolling Circle Enhanced Enzyme Activity Detection (REEAD) has been used to measure enzyme activity in both single human cells and malaria-causing parasites, Plasmodium sp. Current REEAD assays rely on organic dye-tagged linear DNA probes to report the rolling circle amplification products (RCPs), the cost of which may hinder the widespread use of REEAD. Here we show that a new class of activatable probes, NanoCluster Beacons (NCBs), can simplify the REEAD assays. Easily prepared without any need for purification and capable of large fluorescence enhancement upon hybridization, NCBs are cost-effective and sensitive. Compared to conventional fluorescent probes, NCBs are also more photostable. As demonstrated in reporting the human topoisomerases I (hTopI) cleavage-ligation reaction, the proposed NCBs suggest a read-out format attractive for future REEAD-based diagnostics. Electronic

  16. A cluster of noncoding RNAs activates the ESR1 locus during breast cancer adaptation.

    PubMed

    Tomita, Saori; Abdalla, Mohamed Osama Ali; Fujiwara, Saori; Matsumori, Haruka; Maehara, Kazumitsu; Ohkawa, Yasuyuki; Iwase, Hirotaka; Saitoh, Noriko; Nakao, Mitsuyoshi

    2015-04-29

    Estrogen receptor-α (ER)-positive breast cancer cells undergo hormone-independent proliferation after deprivation of oestrogen, leading to endocrine therapy resistance. Up-regulation of the ER gene (ESR1) is critical for this process, but the underlying mechanisms remain unclear. Here we show that the combination of transcriptome and fluorescence in situ hybridization analyses revealed that oestrogen deprivation induced a cluster of noncoding RNAs that defined a large chromatin domain containing the ESR1 locus. We termed these RNAs as Eleanors (ESR1 locus enhancing and activating noncoding RNAs). Eleanors were present in ER-positive breast cancer tissues and localized at the transcriptionally active ESR1 locus to form RNA foci. Depletion of one Eleanor, upstream (u)-Eleanor, impaired cell growth and transcription of intragenic Eleanors and ESR1 mRNA, indicating that Eleanors cis-activate the ESR1 gene. Eleanor-mediated gene activation represents a new type of locus control mechanism and plays an essential role in the adaptation of breast cancer cells.

  17. A cluster of noncoding RNAs activates the ESR1 locus during breast cancer adaptation

    PubMed Central

    Tomita, Saori; Abdalla, Mohamed Osama Ali; Fujiwara, Saori; Matsumori, Haruka; Maehara, Kazumitsu; Ohkawa, Yasuyuki; Iwase, Hirotaka; Saitoh, Noriko; Nakao, Mitsuyoshi

    2015-01-01

    Estrogen receptor-α (ER)-positive breast cancer cells undergo hormone-independent proliferation after deprivation of oestrogen, leading to endocrine therapy resistance. Up-regulation of the ER gene (ESR1) is critical for this process, but the underlying mechanisms remain unclear. Here we show that the combination of transcriptome and fluorescence in situ hybridization analyses revealed that oestrogen deprivation induced a cluster of noncoding RNAs that defined a large chromatin domain containing the ESR1 locus. We termed these RNAs as Eleanors (ESR1 locus enhancing and activating noncoding RNAs). Eleanors were present in ER-positive breast cancer tissues and localized at the transcriptionally active ESR1 locus to form RNA foci. Depletion of one Eleanor, upstream (u)-Eleanor, impaired cell growth and transcription of intragenic Eleanors and ESR1 mRNA, indicating that Eleanors cis-activate the ESR1 gene. Eleanor-mediated gene activation represents a new type of locus control mechanism and plays an essential role in the adaptation of breast cancer cells. PMID:25923108

  18. CME Flux Rope and Shock Identifications and Locations: Comparison of White Light Data, Graduated Cylindrical Shell Model, and MHD Simulations

    NASA Technical Reports Server (NTRS)

    Schmidt, J. M.; Cairns, Iver H.; Xie, Hong; St. Cyr, O. C.; Gopalswamy, N.

    2016-01-01

    Coronal mass ejections (CMEs) are major transient phenomena in the solar corona that are observed with ground-based and spacecraft-based coronagraphs in white light or with in situ measurements by spacecraft. CMEs transport mass and momentum and often drive shocks. In order to derive the CME and shock trajectories with high precision, we apply the graduated cylindrical shell (GCS) model to fit a flux rope to the CME directed toward STEREO A after about 19:00 UT on 29 November 2013 and check the quality of the heliocentric distance-time evaluations by carrying out a three-dimensional magnetohydrodynamic (MHD) simulation of the same CME with the Block Adaptive Tree Solar-Wind Roe Upwind Scheme (BATS-R-US) code. Heliocentric distances of the CME and shock leading edges are determined from the simulated white light images and magnetic field strength data. We find very good agreement between the predicted and observed heliocentric distances, showing that the GCS model and the BATS-R-US simulation approach work very well and are consistent. In order to assess the validity of CME and shock identification criteria in coronagraph images, we also compute synthetic white light images of the CME and shock. We find that the outer edge of a cloud-like illuminated area in the observed and predicted images in fact coincides with the leading edge of the CME flux rope and that the outer edge of a faint illuminated band in front of the CME leading edge coincides with the CME-driven shock front.

  19. Hydrogen activation by unsaturated mixed-metal cluster complexes: new directions.

    PubMed

    Adams, Richard D; Captain, Burjor

    2008-01-01

    There has been a renewed interest in the chemistry of hydrogen as a result of the ever-increasing global demands for energy. Recent studies have revealed new electronically unsaturated polynuclear metal complexes containing bulky ligands that exhibit a variety of reactions with hydrogen, including facile addition and elimination under mild conditions. Materials and molecules that can reversibly absorb large quantities of hydrogen are very attractive for hydrogen storage and hydrogenation catalysis. This Minireview summarizes recent studies of reactions of hydrogen with unsaturated mixed-metal cluster complexes containing platinum and bulky phosphine ligands. Some related studies on bimetallic cooperativity and the synthesis of trimetallic nanoparticles on mesoporous supports that exhibit high activity and selectivity for catalytic hydrogenations are also discussed.

  20. Graphdiyne oxides as excellent substrate for electroless deposition of Pd clusters with high catalytic activity.

    PubMed

    Qi, Hetong; Yu, Ping; Wang, Yuexiang; Han, Guangchao; Liu, Huibiao; Yi, Yuanping; Li, Yuliang; Mao, Lanqun

    2015-04-29

    Graphdiyne (GDY), a novel kind of two-dimensional carbon allotrope consisting of sp- and sp(2)-hybridized carbon atoms, is found to be able to serve as the reducing agent and stabilizer for electroless deposition of highly dispersed Pd nanoparticles owing to its low reduction potential and highly conjugated electronic structure. Furthermore, we observe that graphdiyne oxide (GDYO), the oxidation form of GDY, can be used as an even excellent substrate for electroless deposition of ultrafine Pd clusters to form Pd/GDYO nanocomposite that exhibits a high catalytic performance toward the reduction of 4-nitrophenol. The high catalytic performance is considered to benefit from the rational design and electroless deposition of active metal catalysts with GDYO as the support.

  1. Temporal Offsets Between Maximum CME Speed Index and Solar, Geomagnetic, and Interplanetary Indicators During Solar Cycle 23 and the Ascending Phase of Cycle 24

    NASA Astrophysics Data System (ADS)

    Özgüç, A.; Kilcik, A.; Georgieva, K.; Kirov, B.

    2016-05-01

    On the basis of a morphological analysis of yearly values of the maximum coronal mass ejection (CME) speed index, the sunspot number and total sunspot area, sunspot magnetic field, and solar flare index, the solar wind speed and interplanetary magnetic field strength, and the geomagnetic Ap and D_{st} indices, we point out the particularities of solar and geomagnetic activity during the last Cycle 23, the long minimum that followed it, and the ascending branch of Cycle 24. We also analyze the temporal offset between the maximum CME speed index and the above-mentioned solar, geomagnetic, and interplanetary indices. It is found that this solar activity index, analyzed jointly with other solar activity, interplanetary parameters, and geomagnetic activity indices, shows a hysteresis phenomenon. It is observed that these parameters follow different paths for the ascending and descending phases of Cycle 23. The hysteresis phenomenon represents a clue in the search for physical processes responsible for linking the solar activity to near-Earth and geomagnetic responses.

  2. Antimicrobial surfaces containing cationic nanoparticles: how immobilized, clustered, and protruding cationic charge presentation affects killing activity and kinetics.

    PubMed

    Fang, Bing; Jiang, Ying; Nüsslein, Klaus; Rotello, Vincent M; Santore, Maria M

    2015-01-01

    This work examines how the antimicrobial (killing) activity of net-negative surfaces depends on the presentation of antimicrobial cationic functionality: distributed versus clustered, and flat clusters versus raised clusters. Specifically, the ability to kill Staphylococcus aureus by sparsely distributed 10 nm cationic nanoparticles, immobilized on a negative surface and backfilled with a PEG (polyethylene glycol) brush, was compared with that for a dense layer of the same immobilized nanoparticles. Additionally, sparsely distributed 10 nm poly-L-lysine (PLL) coils, adsorbed to a surface to produce flat cationic "patches" and backfilled with a PEG brush were compared to a saturated adsorbed layer of PLL. The latter resembled classical uniformly cationic antimicrobial surfaces. The protrusion of the cationic clusters substantially influenced killing but the surface concentration of the clusters had minor impact, as long as bacteria adhered. When surfaces were functionalized at the minimum nanoparticle and patch densities needed for bacterial adhesion, killing activity was substantial within 30 min and nearly complete within 2 h. Essentially identical killing was observed on more densely functionalized surfaces. Surfaces containing protruding (by about 8 nm) nanoparticles accomplished rapid killing (at 30 min) compared with surfaces containing similarly cationic but flat features (PLL patches). Importantly, the overall surface density of cationic functionality within the clusters was lower than reported thresholds for antimicrobial action. Also surprising, the nanoparticles were far more deadly when surface-immobilized compared with free in solution. These findings support a killing mechanism involving interfacial stress.

  3. The Sound of Silence: Activating Silent Biosynthetic Gene Clusters in Marine Microorganisms.

    PubMed

    Reen, F Jerry; Romano, Stefano; Dobson, Alan D W; O'Gara, Fergal

    2015-07-31

    Unlocking the rich harvest of marine microbial ecosystems has the potential to both safeguard the existence of our species for the future, while also presenting significant lifestyle benefits for commercial gain. However, while significant advances have been made in the field of marine biodiscovery, leading to the introduction of new classes of therapeutics for clinical medicine, cosmetics and industrial products, much of what this natural ecosystem has to offer is locked in, and essentially hidden from our screening methods. Releasing this silent potential represents a significant technological challenge, the key to which is a comprehensive understanding of what controls these systems. Heterologous expression systems have been successful in awakening a number of these cryptic marine biosynthetic gene clusters (BGCs). However, this approach is limited by the typically large size of the encoding sequences. More recently, focus has shifted to the regulatory proteins associated with each BGC, many of which are signal responsive raising the possibility of exogenous activation. Abundant among these are the LysR-type family of transcriptional regulators, which are known to control production of microbial aromatic systems. Although the environmental signals that activate these regulatory systems remain unknown, it offers the exciting possibility of evoking mimic molecules and synthetic expression systems to drive production of potentially novel natural products in microorganisms. Success in this field has the potential to provide a quantum leap forward in medical and industrial bio-product development. To achieve these new endpoints, it is clear that the integrated efforts of bioinformaticians and natural product chemists will be required as we strive to uncover new and potentially unique structures from silent or cryptic marine gene clusters.

  4. Transcriptional pausing and stalling causes multiple clustered mutations by human activation-induced deaminase

    PubMed Central

    Canugovi, Chandrika; Samaranayake, Mala; Bhagwat, Ashok S.

    2009-01-01

    Transcription of the rearranged immunoglobulin gene and expression of the enzyme activation-induced deaminase (AID) are essential for somatic hypermutations of this gene during antibody maturation. While AID acts as a single-strand DNA-cytosine deaminase creating U · G mispairs that lead to mutations, the role played by transcription in this process is less clear. We have used in vitro transcription of the kan gene by the T7 RNA polymerase (RNAP) in the presence of AID and a genetic reversion assay for kanamycin-resistance to investigate the causes of multiple clustered mutations (MCMs) during somatic hypermutations. We find that, depending on transcription conditions, AID can cause single-base substitutions or MCMs. When wild-type RNAP is used for transcription at physiologically relevant concentrations of ribonucleoside triphosphates (NTPs), few MCMs are found. In contrast, slowing the rate of elongation by reducing the NTP concentration or using a mutant RNAP increases several-fold the percent of revertants containing MCMs. Arresting the elongation complexes by a quick removal of NTPs leads to formation of RNA-DNA hybrids (R-loops). Treatment of these structures with AID results in a high percentage of KanR revertants with MCMs. Furthermore, selecting for transcription elongation complexes stalled near the codon that suffers mutations during acquisition of kanamycin-resistance results in an overwhelming majority of revertants with MCMs. These results show that if RNAP II pauses or stalls during transcription of immunoglobulin gene, AID is likely to promote MCMs. As changes in physiological conditions such as occurrence of certain DNA primary or secondary structures or DNA adducts are known to cause transcriptional pausing and stalling in mammalian cells, this process may cause MCMs during somatic hypermutation.—Canugovi, C., Samaranayake, M., Bhagwat, A. S. Transcriptional pausing and stalling causes multiple clustered mutations by human activation

  5. The Sound of Silence: Activating Silent Biosynthetic Gene Clusters in Marine Microorganisms

    PubMed Central

    Reen, F. Jerry; Romano, Stefano; Dobson, Alan D.W.; O’Gara, Fergal

    2015-01-01

    Unlocking the rich harvest of marine microbial ecosystems has the potential to both safeguard the existence of our species for the future, while also presenting significant lifestyle benefits for commercial gain. However, while significant advances have been made in the field of marine biodiscovery, leading to the introduction of new classes of therapeutics for clinical medicine, cosmetics and industrial products, much of what this natural ecosystem has to offer is locked in, and essentially hidden from our screening methods. Releasing this silent potential represents a significant technological challenge, the key to which is a comprehensive understanding of what controls these systems. Heterologous expression systems have been successful in awakening a number of these cryptic marine biosynthetic gene clusters (BGCs). However, this approach is limited by the typically large size of the encoding sequences. More recently, focus has shifted to the regulatory proteins associated with each BGC, many of which are signal responsive raising the possibility of exogenous activation. Abundant among these are the LysR-type family of transcriptional regulators, which are known to control production of microbial aromatic systems. Although the environmental signals that activate these regulatory systems remain unknown, it offers the exciting possibility of evoking mimic molecules and synthetic expression systems to drive production of potentially novel natural products in microorganisms. Success in this field has the potential to provide a quantum leap forward in medical and industrial bio-product development. To achieve these new endpoints, it is clear that the integrated efforts of bioinformaticians and natural product chemists will be required as we strive to uncover new and potentially unique structures from silent or cryptic marine gene clusters. PMID:26264003

  6. N2O reduction by the mu4-sulfide-bridged tetranuclear CuZ cluster active site.

    PubMed

    Chen, Peng; Gorelsky, Serge I; Ghosh, Somdatta; Solomon, Edward I

    2004-08-13

    Nitrous oxide (N2O) reduction is a chemical challenge both in the selective oxidation of organic substrates by N2O and in the removal of N2O as a green-house gas. The reduction of N2O is thermodynamically favorable but kinetically inert, and requires activating transition-metal centers. In biological systems, N2O reduction is the last step in the denitrification process of the bacterial nitrogen cycle and is accomplished by the enzyme nitrous oxide reductase, whose active site consists of a micro4-sulfide-bridged tetranuclear CuZ cluster which has many unusual spectroscopic features. Recent studies have developed a detailed electronic-structure description of the resting CuZ cluster, determined its catalytically relevant state, and provided insight into the role of this tetranuclear copper cluster in N2O activation and reduction.

  7. Anti-tumor and immunomodulatory activity of iron hepta-tungsten phosphate oxygen clusters complex.

    PubMed

    Zhang, Bisong; Qiu, Jianping; Wu, Changsheng; Li, Yunxia; Liu, Zhenxiang

    2015-12-01

    Polyoxometalates (POMs) have attracted a considerable attention due to their unique structural characteristics, physicochemical properties and biological activities. In this study, iron hepta-tungsten phosphate oxygen clusters complex Na12H[Fe(HPW7O28)2]·44H2O (IHTPO) was synthesized and evaluated for in vitro cytotoxic activities on human hepatoma HepG2, leukemia K562, lung carcinoma A549, and large cell lung cancer NCI-H460 cells, therapeutic efficacies on mice transplantable tumor, and immunomodulatory potentials on the immune response in tumor-bearing mice. IHTPO exhibited lower in vitro cytotoxic activities against four human tumor cell lines, with the IC50 values being higher than 62.5μM (ca. 300μg/ml). IHTPO, however, significantly inhibited the growth of S180 sarcoma transplanted in mice. It was further showed that IHTPO could not only significantly promote splenocytes proliferation, NK cell and CTL activity from splenocytes, but remarkably enhance serum antigen-specific IgG, IgG2a and IgG2b antibody levels in S180-bearing mice. IHTPO also significantly promoted Th1 cytokines IFN-γ and IL-2 production, and up-regulated the mRNA expression levels of IFN-γ, IL-2 and Th1 transcription factors T-bet and STAT-4 in splenocytes from the S180-bearing mice. These results suggested that IHTPO significantly inhibited the growth of mice transplantable tumor, and that its in vivo antitumor activity might be achieved by improving Th1 protective cell-mediated immunity. IHTPO could act as antitumor agent with immunomodulatory activity.

  8. Cluster Analysis of Tumor Suppressor Genes in Canine Leukocytes Identifies Activation State

    PubMed Central

    Daly, Julie-Anne; Mortlock, Sally-Anne; Taylor, Rosanne M.; Williamson, Peter

    2015-01-01

    Cells of the immune system undergo activation and subsequent proliferation in the normal course of an immune response. Infrequently, the molecular and cellular events that underlie the mechanisms of proliferation are dysregulated and may lead to oncogenesis, leading to tumor formation. The most common forms of immunological cancers are lymphomas, which in dogs account for 8%–20% of all cancers, affecting up to 1.2% of the dog population. Key genes involved in negatively regulating proliferation of lymphocytes include a group classified as tumor suppressor genes (TSGs). These genes are also known to be associated with progression of lymphoma in humans, mice, and dogs and are potential candidates for pathological grading and diagnosis. The aim of the present study was to analyze TSG profiles in stimulated leukocytes from dogs to identify genes that discriminate an activated phenotype. A total of 554 TSGs and three gene set collections were analyzed from microarray data. Cluster analysis of three subsets of genes discriminated between stimulated and unstimulated cells. These included 20 most upregulated and downregulated TSGs, TSG in hallmark gene sets significantly enriched in active cells, and a selection of candidate TSGs, p15 (CDKN2B), p18 (CDKN2C), p19 (CDKN1A), p21 (CDKN2A), p27 (CDKN1B), and p53 (TP53) in the third set. Analysis of two subsets suggested that these genes or a subset of these genes may be used as a specialized PCR set for additional analysis. PMID:27478369

  9. Temporal clustering analysis of cerebral blood flow activation maps measured by laser speckle contrast imaging

    NASA Astrophysics Data System (ADS)

    Wang, Zheng; Luo, Qingming

    2004-05-01

    Temporal and spatial orchestration of neurovascular coupling in the brain neuronal activity is crucial for us to comprehend mechanism of functional cerebral metabolism and pathophysiology. Laser speckle contrast imaging (LSCI) through a thinned skull over the somatosensory cortex was utilized to map the spatiotemporal characteristics of local cerebral blood flow (CBF) in anesthetized rats during sciatic nerve stimulation. Since the time course of signals from all spatial loci among the massive dataset is hard to analyze, especially for the thousands of images each of which composes of millions of pixels, we introduced a temporal clustering analysis (TCA) method, which was proved as an efficient method to analyze functional magnetic resonance imaging (fMRI) data in the temporal domain. The timing and location of CBF activation showed that contralateral hindlimb sensory cortical microflow was activated to increase promptly in less than 1 s after the onset of 2 s electrical stimulation then evolved in different discrete regions. This pattern is similar but slightly elaborated to the results obtained from laser Doppler flowmetry (LDF) and fMRI. We presented this combination to investigate interacting brain regions and provided network-level analyses, which might possibly lead to a better understanding of the nature of brain parcellation and effective connectivity.

  10. Activity and age from Kepler and K2 observations of field and cluster stars

    NASA Astrophysics Data System (ADS)

    Soderblom, David R.

    2017-01-01

    Kepler and K2 are providing key insights into activity-related phenomena on late-type stars. Kepler observations showed that highly energetic flares can be seen on many more types of stars than the M dwarfs that have been the traditional focus of flare studies. Some stars similar to the Sun have been seen to exhibit flares with $\\sim10^4$ times the energy of the largest solar flares ever seen, for example. The K2 extension of Kepler has been especially valuable by providing data for several open clusters, including the Pleiades, Praesepe, Hyades, and M67.In this review I will summarize the flaring behavior seen with Kepler and K2, from A stars through Ms and from the pre-main sequence to solar age. The Pleiades and M67 provide useful examples to illustrate what is seen and not seen.Other aspects of Kepler and K2 light curves have been studied as indicators of activity, and some results from that will be presented. Finally, these indicators of activity will be placed into an age context using indicators and measurements of age from Kepler/K2.

  11. Enzyme activity of α-chymotrypsin: Deactivation by gold nano-cluster and reactivation by glutathione.

    PubMed

    Ghosh, Catherine; Mondal, Tridib; Bhattacharyya, Kankan

    2017-05-15

    Effect of gold nanoclusters (Au-NCs) on the circular dichroism (CD) spectra and enzymatic activity of α-chymotrypsin (ChT) (towards hydrolysis of a substrate, N-succinyl-l-phenylalanine p-nitroanilide) are studied. The CD spectra indicate that on binding to Au-NC, ChT is completely unfolded, resulting in nearly zero ellipticity. α-chymotrypsin (ChT) coated gold nano-clusters exhibit almost no enzymatic activity. Addition of glutathione (GSH) or oxidized glutathione (GSSG) restore the enzyme activity of α-chymotrypsin by 30-45%. ChT coated Au-NC exhibits two emission maxima-one at 480nm (corresponding to Au10) and one at 640nm (Au25). On addition of glutathione (GSH) or oxidized glutathione (GSSG) the emission peak at 640nm vanishes and only one peak at 480nm (Au10) remains. MALDI mass spectrometry studies suggest addition of glutathione (GSH) to α-chymotrypsin capped Au-NCs results in the formation of glutathione-capped Au-NCs and α-chymotrypsin is released from Au-NCs. CD spectroscopy indicates that the conformation of the released α-chymotrypsin is different from that of the native α-chymotrypsin.

  12. Suppressing cluster cooling flows by self-regulated heating from a spatially distributed population of active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Nusser, Adi; Silk, Joseph; Babul, Arif

    2006-12-01

    Existing models invoking active galactic nucleus (AGN) activity to resolve the cooling flow conundrum in galaxy clusters focus exclusively on the role of the central galaxy. Such models require fine-tuning of highly uncertain microscopic transport properties to distribute the thermal over the entire cluster cooling core. We propose that the intracluster medium (ICM) is instead heated by multiple, spatially distributed AGN. The central regions of galaxy clusters are rich in spheroidal systems, all of which are thought to host black holes and could participate in the heating of the ICM via AGN activity of varying strengths, and they do. There is mounting observational evidence for multiple AGN in cluster environments. AGN drive bubbles into the ICM. We identify three distinct interactions between the bubble and the ICM: (1) upon injection, the bubbles expand rapidly in situ to reach pressure equilibrium with their surroundings, generating shocks and waves whose dissipation is the principal source of ICM heating; (2) once inflated, the bubbles rise buoyantly at a rate determined by a balance with the viscous drag force, which itself results in some additional heating; and (3) rising bubbles expand and compress their surroundings. This process is adiabatic and does not contribute to any additional heating; rather, the increased ICM density due to compression enhances cooling. Our model sidesteps the `transport' issue by relying on the spatially distributed galaxies to heat the cluster core. We include self-regulation in our model by linking AGN activity in a galaxy to cooling characteristics of the surrounding ICM. We use a spherically symmetric one-dimensional hydrodynamical code to carry out a preliminary study illustrating the efficacy of the model. Our self-regulating scenario predicts that there should be enhanced AGN activity of galaxies inside the cooling regions compared to galaxies in the outer parts of the cluster. This prediction remains to be confirmed or

  13. Identification of the nik Gene Cluster of Brucella suis: Regulation and Contribution to Urease Activity

    PubMed Central

    Jubier-Maurin, Véronique; Rodrigue, Agnès; Ouahrani-Bettache, Safia; Layssac, Marion; Mandrand-Berthelot, Marie-Andrée; Köhler, Stephan; Liautard, Jean-Pierre

    2001-01-01

    Analysis of a Brucella suis 1330 gene fused to a gfp reporter, and identified as being induced in J774 murine macrophage-like cells, allowed the isolation of a gene homologous to nikA, the first gene of the Escherichia coli operon encoding the specific transport system for nickel. DNA sequence analysis of the corresponding B. suis nik locus showed that it was highly similar to that of E. coli except for localization of the nikR regulatory gene, which lies upstream from the structural nikABCDE genes and in the opposite orientation. Protein sequence comparisons suggested that the deduced nikABCDE gene products belong to a periplasmic binding protein-dependent transport system. The nikA promoter-gfp fusion was activated in vitro by low oxygen tension and metal ion deficiency and was repressed by NiCl2 excess. Insertional inactivation of nikA strongly reduced the activity of the nickel metalloenzyme urease, which was restored by addition of a nickel excess. Moreover, the nikA mutant of B. suis was functionally complemented with the E. coli nik gene cluster, leading to the recovery of urease activity. Reciprocally, an E. coli strain harboring a deleted nik operon recovered hydrogenase activity by heterologous complementation with the B. suis nik locus. Taking into account these results, we propose that the nik locus of B. suis encodes a nickel transport system. The results further suggest that nickel could enter B. suis via other transport systems. Intracellular growth rates of the B. suis wild-type and nikA mutant strains in human monocytes were similar, indicating that nikA was not essential for this step of infection. We discuss a possible role of nickel transport in maintaining enzymatic activities which could be crucial for survival of the bacteria under the environmental conditions encountered within the host. PMID:11133934

  14. Substorms and polar cap convection: the 10 January 2004 interplanetary CME case

    NASA Astrophysics Data System (ADS)

    Andalsvik, Y.; Sandholt, P. E.; Farrugia, C. J.

    2012-01-01

    The expansion-contraction model of Dungey cell plasma convection has two different convection sources, i.e. reconnections at the magnetopause and in the magnetotail. The spatial-temporal structure of the nightside source is not yet well understood. In this study we shall identify temporal variations in the winter polar cap convection structure during substorm activity under steady interplanetary conditions. Substorm activity (electrojets and particle precipitations) is monitored by excellent ground-satellite DMSP F15 conjunctions in the dusk-premidnight sector. We take advantage of the wide latitudinal coverage of the IMAGE chain of ground magnetometers in Svalbard - Scandinavia - Russia for the purpose of monitoring magnetic deflections associated with polar cap convection and substorm electrojets. These are augmented by direct observations of polar cap convection derived from SuperDARN radars and cross-track ion drift observations during traversals of polar cap along the dusk-dawn meridian by spacecraft DMSP F13. The interval we study is characterized by moderate, stable forcing of the magnetosphere-ionosphere system (EKL = 4.0-4.5 mV m-1; cross polar cap potential (CPCP), Φ (Boyle) = 115 kV) during Earth passage of an interplanetary CME (ICME), choosing an 4-h interval where the magnetic field pointed continuously south-west (Bz < 0; By < 0). The combination of continuous monitoring of ground magnetic deflections and the F13 cross-track ion drift observations in the polar cap allows us to infer the temporal CPCP structure on time scales less than the ~10 min duration of F13 polar cap transits. We arrived at the following estimates of the dayside and nightside contributions to the CPCP (CPCP = CPCP/day + CPCP/night) under two intervals of substorm activity: CPCP/day ~110 kV; CPCP/night ~50 kV (45% CPCP increase during substorms). The temporal CPCP structure during one of the substorm cases resulted in a dawn-dusk convection asymmetry measured by DMSP F13 which

  15. CmeR-dependent gene Cj0561c is induced more effectively by bile salts than the CmeABC efflux pump in both human and poultry Campylobacter jejuni strains.

    PubMed

    Dzieciol, Monika; Wagner, Martin; Hein, Ingeborg

    2011-12-01

    The multidrug efflux pump CmeABC described in the food-borne pathogen Campylobacter jejuni was shown to be an important element of bile resistance and significant for successful colonization of chicken intestines. Recently, another gene (Cj0561c) strongly suppressed by the same repressor (CmeR) that regulates expression of CmeABC was identified in C. jejuni NCTC 11168. Initial data suggested that, similarly to cmeABC, Cj0561c could be induced by bile salts. In the present study, the occurrence of the Cj0561c gene and bile-salt-dependent induction was investigated in ten poultry and eight human C. jejuni strains. The Cj0561c gene was present in all strains. When cultured without addition of bile salts, the transcription level of that gene was about tenfold higher than that of cmeABC. Bile salts cholate and taurocholate induced transcription of cmeABC 1.66-fold and 2.71-fold and that of Cj0561c 3.71-fold and 10.99-fold, respectively. Thus Cj0561c was more effectively induced by bile salts than cmeABC and taurocholate was superior to cholate as an inducer of transcription. More efficient induction of both cmeABC and Cj0561c by taurocholate might be the reason for the higher minimum inhibitory concentrations (MICs) observed with taurocholate than with cholate (100 mg/ml vs. 10 mg/ml). There was no significant difference between poultry and human C. jejuni strains concerning the transcription levels of cmeABC and Cj0561c in cultures without bile salts and concerning bile-salt-induced changes in transcription of cmeABC and Cj0561c. Thus, higher MIC values observed for taurocholate in human strains than in poultry strains (200 mg/ml vs. 75 mg/ml) could not be explained by different responses of cmeABC and Cj0561c to bile salts. Therefore, they must be due to another mechanism.

  16. The Role of Collagen Charge Clusters in the Modulation of Matrix Metalloproteinase Activity*

    PubMed Central

    Lauer, Janelle L.; Bhowmick, Manishabrata; Tokmina-Roszyk, Dorota; Lin, Yan; Van Doren, Steven R.; Fields, Gregg B.

    2014-01-01

    Members of the matrix metalloproteinase (MMP) family selectively cleave collagens in vivo. Several substrate structural features that direct MMP collagenolysis have been identified. The present study evaluated the role of charged residue clusters in the regulation of MMP collagenolysis. A series of 10 triple-helical peptide (THP) substrates were constructed in which either Lys-Gly-Asp or Gly-Asp-Lys motifs replaced Gly-Pro-Hyp (where Hyp is 4-hydroxy-l-proline) repeats. The stabilities of THPs containing the two different motifs were analyzed, and kinetic parameters for substrate hydrolysis by six MMPs were determined. A general trend for virtually all enzymes was that, as Gly-Asp-Lys motifs were moved from the extreme N and C termini to the interior next to the cleavage site sequence, kcat/Km values increased. Additionally, all Gly-Asp-Lys THPs were as good or better substrates than the parent THP in which Gly-Asp-Lys was not present. In turn, the Lys-Gly-Asp THPs were also always better substrates than the parent THP, but the magnitude of the difference was considerably less compared with the Gly-Asp-Lys series. Of the MMPs tested, MMP-2 and MMP-9 most greatly favored the presence of charged residues with preference for the Gly-Asp-Lys series. Lys-Gly-(Asp/Glu) motifs are more commonly found near potential MMP cleavage sites than Gly-(Asp/Glu)-Lys motifs. As Lys-Gly-Asp is not as favored by MMPs as Gly-Asp-Lys, the Lys-Gly-Asp motif appears advantageous over the Gly-Asp-Lys motif by preventing unwanted MMP hydrolysis. More specifically, the lack of Gly-Asp-Lys clusters may diminish potential MMP-2 and MMP-9 collagenolytic activity. The present study indicates that MMPs have interactions spanning the P23–P23′ subsites of collagenous substrates. PMID:24297171

  17. The role of collagen charge clusters in the modulation of matrix metalloproteinase activity.

    PubMed

    Lauer, Janelle L; Bhowmick, Manishabrata; Tokmina-Roszyk, Dorota; Lin, Yan; Van Doren, Steven R; Fields, Gregg B

    2014-01-24

    Members of the matrix metalloproteinase (MMP) family selectively cleave collagens in vivo. Several substrate structural features that direct MMP collagenolysis have been identified. The present study evaluated the role of charged residue clusters in the regulation of MMP collagenolysis. A series of 10 triple-helical peptide (THP) substrates were constructed in which either Lys-Gly-Asp or Gly-Asp-Lys motifs replaced Gly-Pro-Hyp (where Hyp is 4-hydroxy-L-proline) repeats. The stabilities of THPs containing the two different motifs were analyzed, and kinetic parameters for substrate hydrolysis by six MMPs were determined. A general trend for virtually all enzymes was that, as Gly-Asp-Lys motifs were moved from the extreme N and C termini to the interior next to the cleavage site sequence, kcat/Km values increased. Additionally, all Gly-Asp-Lys THPs were as good or better substrates than the parent THP in which Gly-Asp-Lys was not present. In turn, the Lys-Gly-Asp THPs were also always better substrates than the parent THP, but the magnitude of the difference was considerably less compared with the Gly-Asp-Lys series. Of the MMPs tested, MMP-2 and MMP-9 most greatly favored the presence of charged residues with preference for the Gly-Asp-Lys series. Lys-Gly-(Asp/Glu) motifs are more commonly found near potential MMP cleavage sites than Gly-(Asp/Glu)-Lys motifs. As Lys-Gly-Asp is not as favored by MMPs as Gly-Asp-Lys, the Lys-Gly-Asp motif appears advantageous over the Gly-Asp-Lys motif by preventing unwanted MMP hydrolysis. More specifically, the lack of Gly-Asp-Lys clusters may diminish potential MMP-2 and MMP-9 collagenolytic activity. The present study indicates that MMPs have interactions spanning the P23-P23' subsites of collagenous substrates.

  18. Coronal Mass Ejections from the Same Active Region Cluster: Two Different Perspectives

    NASA Astrophysics Data System (ADS)

    Cremades, H.; Mandrini, C. H.; Schmieder, B.; Crescitelli, A. M.

    2015-06-01

    The cluster formed by active regions (ARs) NOAA 11121 and 11123, approximately located on the solar central meridian on 11 November 2010, is of great scientific interest. This complex was the site of violent flux emergence and the source of a series of Earth-directed events on the same day. The onset of the events was nearly simultaneously observed by the Atmospheric Imaging Assembly (AIA) telescope onboard the Solar Dynamics Observatory (SDO) and the Extreme-Ultraviolet Imagers (EUVI) on the Sun-Earth Connection Coronal and Heliospheric Investigation (SECCHI) suite of telescopes onboard the Solar-Terrestrial Relations Observatory (STEREO) twin spacecraft. The progression of these events in the low corona was tracked by the Large Angle Spectroscopic Coronagraphs (LASCO) onboard the Solar and Heliospheric Observatory (SOHO) and the SECCHI/COR coronagraphs on STEREO. SDO and SOHO imagers provided data from the Earth's perspective, whilst the STEREO twin instruments procured images from the orthogonal directions. This spatial configuration of spacecraft allowed optimum simultaneous observations of the AR cluster and the coronal mass ejections that originated in it. Quadrature coronal observations provided by STEREO revealed many more ejective events than were detected from Earth. Furthermore, joint observations by SDO/AIA and STEREO/SECCHI EUVI of the source region indicate that all events classified by GOES as X-ray flares had an ejective coronal counterpart in quadrature observations. These results directly affect current space weather forecasting because alarms might be missed when there is a lack of solar observations in a view direction perpendicular to the Sun-Earth line.

  19. Identification and activation of novel biosynthetic gene clusters by genome mining in the kirromycin producer Streptomyces collinus Tü 365.

    PubMed

    Iftime, Dumitrita; Kulik, Andreas; Härtner, Thomas; Rohrer, Sabrina; Niedermeyer, Timo Horst Johannes; Stegmann, Evi; Weber, Tilmann; Wohlleben, Wolfgang

    2016-03-01

    Streptomycetes are prolific sources of novel biologically active secondary metabolites with pharmaceutical potential. S. collinus Tü 365 is a Streptomyces strain, isolated 1972 from Kouroussa (Guinea). It is best known as producer of the antibiotic kirromycin, an inhibitor of the protein biosynthesis interacting with elongation factor EF-Tu. Genome Mining revealed 32 gene clusters encoding the biosynthesis of diverse secondary metabolites in the genome of Streptomyces collinus Tü 365, indicating an enormous biosynthetic potential of this strain. The structural diversity of secondary metabolisms predicted for S. collinus Tü 365 includes PKS, NRPS, PKS-NRPS hybrids, a lanthipeptide, terpenes and siderophores. While some of these gene clusters were found to contain genes related to known secondary metabolites, which also could be detected in HPLC-MS analyses, most of the uncharacterized gene clusters are not expressed under standard laboratory conditions. With this study we aimed to characterize the genome information of S. collinus Tü 365 to make use of gene clusters, which previously have not been described for this strain. We were able to connect the gene clusters of a lanthipeptide, a carotenoid, five terpenoid compounds, an ectoine, a siderophore and a spore pigment-associated gene cluster to their respective biosynthesis products.

  20. Search for α -Cluster Structure in Exotic Nuclei with the Prototype Active-Target Time-Projection Chamber

    NASA Astrophysics Data System (ADS)

    Fritsch, A.; Ayyad, Y.; Bazin, D.; Beceiro-Novo, S.; Bradt, J.; Carpenter, L.; Cortesi, M.; Mittig, W.; Suzuki, D.; Ahn, T.; Kolata, J. J.; Howard, A. M.; Becchetti, F. D.; Wolff, M.

    Some exotic nuclei appear to exhibit α -cluster structure, which may impact nucleosynthesis reaction rates. While various theoretical models currently describe such clustering, more experimental data are needed to constrain model predictions. The Prototype Active-Target Time-Projection Chamber (PAT-TPC) has low-energy thresholds for charged-particle decay and a high detection efficiency due to its thick gaseous active target volume, making it well-suited to search for low-energy α -cluster reactions. Radioactive-ion beams produced by the TwinSol facility at the University of Notre Dame were delivered to the PAT-TPC to study 14C via α -resonant scattering. Differential cross sections and excitation functions were measured and show evidence of three-body exit channels. Additional data were measured with an updated Micromegas detector more sensitive to three-body decay. Preliminary results are presented.

  1. A stereoscopic system for viewing the temporal evolution of brain activity clusters in response to linguistic stimuli

    NASA Astrophysics Data System (ADS)

    Forbes, Angus; Villegas, Javier; Almryde, Kyle R.; Plante, Elena

    2014-03-01

    In this paper, we present a novel application, 3D+Time Brain View, for the stereoscopic visualization of functional Magnetic Resonance Imaging (fMRI) data gathered from participants exposed to unfamiliar spoken languages. An analysis technique based on Independent Component Analysis (ICA) is used to identify statistically significant clusters of brain activity and their changes over time during different testing sessions. That is, our system illustrates the temporal evolution of participants' brain activity as they are introduced to a foreign language through displaying these clusters as they change over time. The raw fMRI data is presented as a stereoscopic pair in an immersive environment utilizing passive stereo rendering. The clusters are presented using a ray casting technique for volume rendering. Our system incorporates the temporal information and the results of the ICA into the stereoscopic 3D rendering, making it easier for domain experts to explore and analyze the data.

  2. A stereoscopic system for viewing the temporal evolution of brain activity clusters in response to linguistic stimuli

    PubMed Central

    Forbes, Angus; Villegas, Javier; Almryde, Kyle R.; Plante, Elena

    2014-01-01

    In this paper, we present a novel application, 3D+Time Brain View, for the stereoscopic visualization of functional Magnetic Resonance Imaging (fMRI) data gathered from participants exposed to unfamiliar spoken languages. An analysis technique based on Independent Component Analysis (ICA) is used to identify statistically significant clusters of brain activity and their changes over time during different testing sessions. That is, our system illustrates the temporal evolution of participants’ brain activity as they are introduced to a foreign language through displaying these clusters as they change over time. The raw fMRI data is presented as a stereoscopic pair in an immersive environment utilizing passive stereo rendering. The clusters are presented using a ray casting technique for volume rendering. Our system incorporates the temporal information and the results of the ICA into the stereoscopic 3D rendering, making it easier for domain experts to explore and analyze the data. PMID:25075268

  3. Initial fluxon models of CME onset: loss-of-equilibrium, breakout, tether-cutting

    NASA Astrophysics Data System (ADS)

    Deforest, C.

    2005-12-01

    I will present results from initial models of CME onset using a new force-free magnetic evolution code, FLUX, that uses the novel fluxon approach to MHD modeling. FLUX is a quasi-Lagrangian solver that is free of numerical reconnection and that I am making available as free software. It is currently suitable for studying evolving force-free equilibria in the presence of only controlled reconnection; development work is ongoing to add plasma static and dynamic forces. I plan to consider three simple configurations typical of three current genres of CME onset model: loss of equilibrium under smooth motion by the photosphere; "tether-cutting" (reconnection of a containment field underneath a twisted prominence field); and "breakout" (reconnection of a containment field above a twisted prominence field). In each case I will estimate the magnetic energy available to accelerate mass, and discuss the resulting shape of the remnant open field regions ("dimming regions") after liftoff.

  4. Upstream turbulence and the particle spectrum at CME-driven Shocks

    SciTech Connect

    Li Gang; Hu, Q.; Zank, G.P.

    2005-08-01

    Particle spectra at a CME-driven shock often exhibit a power law to certain energies, then roll over exponentially beyond. However, there are cases where a spectrum evolves to another power law above a certain energy (e.g. the Oct. 29th, 2003 event). Here we introduce an effective 'loss term' into the particle transport equation and study the consequent particle spectra behavior at a CME-driven shock. The loss term represents the effect of particle leaking out from a finite shock and is related to the turbulence power at and near the shock. We show that the shape of particle spectra are tightly related to the form of upstream turbulence. Under certain circumstances, broken power-law spectrum can be obtained. The physical meaning of the 'loss term' and its relationship to the upstream turbulence is discussed.

  5. Analysis of the 3D Structure and Velocity of a CME on 2 January 2008

    NASA Astrophysics Data System (ADS)

    López, F. M.; Cremades, H.

    We perform an analysis of the 3D structure and velocity of a CME (coronal mass ejection) ejected on 2 January 2008. The event was imaged by both STEREO A and B spacecraft (mutual separation of ˜44°), providing polarized images of the event from two different points of view. To obtain information on the 3D structure of the CME from polarized images, a polarization technique (Moran & Davila, Science 305, 66, 2003) is applied. Aided by this method, we have constructed topographical maps which show the height of the various event features from the plane of the sky (i.e. toward or away from the observer) and have dinamically analyzed and compared the real and projected on the plane of the sky velocities.

  6. Genetic-Biochemical Analysis and Distribution of the Ambler Class A β-Lactamase CME-2, Responsible for Extended-Spectrum Cephalosporin Resistance in Chryseobacterium (Flavobacterium) meningosepticum

    PubMed Central

    Bellais, Samuel; Poirel, Laurent; Naas, Thierry; Girlich, Delphine; Nordmann, Patrice

    2000-01-01

    In vitro synergy between extended-spectrum cephalosporins and either clavulanic acid or cefoxitin was found for Chryseobacterium meningosepticum isolates during a double-disk assay on an agar plate. An extended-spectrum β-lactamase (ESBL) gene from a C. meningosepticum clinical isolate was cloned and expressed in Escherichia coli DH10B. Its protein conferred resistance to most β-lactams including extended-spectrum cephalosporins but not to cephamycins or to imipenem. Its activity was strongly inhibited by clavulanic acid, sulbactam, and tazobactam, as well as by cephamycins and imipenem. Sequence analysis of the cloned DNA fragment revealed an open reading frame (ORF) of 891 bp with a G+C content of 33.9%, which lies close to the expected range of G+C contents of members of the Chryseobacterium genus. The ORF encoded a precursor protein of 297 amino acids, giving a mature protein with a molecular mass of 31 kDa and a pI value of 9.2 in E. coli. This gene was very likely chromosomally located. Amino acid sequence comparison showed that this β-lactamase, named CME-2 (C. meningosepticum ESBL), is a novel ESBL of the Ambler class A group (Bush functional group 2be), being weakly related to other class A β-lactamases. It shares only 39 and 35% identities with the ESBLs VEB-1 from E. coli MG-1 and CBL-A from Bacteroides uniformis, respectively. The distribution of blaCME-2 among unrelated C. meningosepticum species isolates showed that blaCME-2-like genes were found in the C. meningosepticum strains studied but were absent from strains of other C. meningosepticum-related species. Each C. meningosepticum strain produced at least two β-lactamases, with one of them being a noninducible serine ESBL with variable pIs ranging from 7.0 to 8.5. PMID:10602714

  7. Dependence of the Intensity of Solar Energetic Particle Event on the Twin-CME: A Study of Two Cases

    NASA Astrophysics Data System (ADS)

    Min-hao, Chen; Yu-lin, Chen; Gui-ming, Le; Yang-ping, Lu; Zhong-yi, Li; Zhi-qiang, Yin

    2017-01-01

    Solar energetic particle events often associate with solar flares and Coronal Mass Ejections (CMEs). Because that the interaction of twin-CME is the key factor of solar energetic particle (SEP) events, the relationship between the intensity of SEP event and the associated twin-CME has been investigated for the two SEP events occurred respectively on 15 April 2001 and 20 January 2005, by using the energetic particle strength, flare intensity, and the relative height and time of CMEs observed by the SOHO satellite, as well as the CME speed obtained by fitting the height variation with the time. The results show that the intensities of the two SEP events have no relationship with the associated twin-CME. Hence, in the earlier stage of these two SEP events, the protons of E≥10 MeV are only associated with relevant solar flares and CMEs.

  8. Symmetry adapted cluster-configuration interaction calculation of the photoelectron spectra of famous biological active steroids

    NASA Astrophysics Data System (ADS)

    Abyar, Fatemeh; Farrokhpour, Hossein

    2014-11-01

    The photoelectron spectra of some famous steroids, important in biology, were calculated in the gas phase. The selected steroids were 5α-androstane-3,11,17-trione, 4-androstane-3,11,17-trione, cortisol, cortisone, corticosterone, dexamethasone, estradiol and cholesterol. The calculations were performed employing symmetry-adapted cluster/configuration interaction (SAC-CI) method using the 6-311++G(2df,pd) basis set. The population ratios of conformers of each steroid were calculated and used for simulating the photoelectron spectrum of steroid. It was found that more than one conformer contribute to the photoelectron spectra of some steroids. To confirm the calculated photoelectron spectra, they compared with their corresponding experimental spectra. There were no experimental gas phase Hesbnd I photoelectron spectra for some of the steroids of this work in the literature and their calculated spectra can show a part of intrinsic characteristics of this molecules in the gas phase. The canonical molecular orbitals involved in the ionization of each steroid were calculated at the HF/6-311++g(d,p) level of theory. The spectral bands of each steroid were assigned by natural bonding orbital (NBO) calculations. Knowing the electronic structures of steroids helps us to understand their biological activities and find which sites of steroid become active when a modification is performing under a biological pathway.

  9. Pair and Cluster Formation in Hybrid Active-Passive Matter Suspensions

    NASA Astrophysics Data System (ADS)

    Krafnick, Ryan; Garcia, Angel

    2015-03-01

    Systems composed of self-propelling entities, dubbed active matter, are ubiquitous in nature, from flocks of birds and schools of fish to swarms of bacteria and catalytic nanomotors. These systems (both biological and industrial) have applications ranging from micron-scale cargo manipulation and directed transport to water remediation and material processing. When added to a solution with passive (non-self-propelling) particles, active matter leads to new and altered system properties. For example, the diffusion of passive particles increases by orders of magnitude in typical systems, leading to a raised effective temperature. Additionally, particles that normally repel each other exhibit effective attractions which can lead to pair formation and clustering. The nature of these effects depends on both the mechanical collisions of swimmers and the hydrodynamic flow fields they propagate. We computationally examine the effect and dependence of various system parameters, such as particle shape and density, on these properties. This work was funded by NIH grant GM086801 and NSF grant MCB-1050966.

  10. {Ta12}/{Ta16} cluster-containing polytantalotungstates with remarkable photocatalytic H2 evolution activity.

    PubMed

    Li, Shujun; Liu, Shumei; Liu, Shuxia; Liu, Yiwei; Tang, Qun; Shi, Zhan; Ouyang, Shuxin; Ye, Jinhua

    2012-12-05

    Four novel polytantalotungstates K(5)Na(4)[P(2)W(15)O(59)(TaO(2))(3)]·17H(2)O (1), K(8)Na(8)H(4)[P(8)W(60)Ta(12)(H(2)O)(4)(OH)(8)O(236)]·42H(2)O (2), Cs(3)K(3.5)H(0.5)[SiW(9)(TaO(2))(3)O(37)]·9H(2)O (3), and Cs(10.5)K(4)H(5.5)[Ta(4)O(6)(SiW(9)Ta(3)O(40))(4)]·30H(2)O (4) were synthesized. Compounds 1 and 3 are tris-(peroxotantalum)-substituted Dawson- and Keggin-type derivatives, whereas 2 and 4 are tetrameric oligomers containing respectively an unprecedented {Ta(12)} and {Ta(16)} cluster core. The photocatalytic activities of 2 and 4 for H(2) evolution from water were evaluated. The significantly enhanced performance against the control K(6)[P(2)W(18)O(62)] can be attributed to the modulation of the electronic structures of these novel POMs by Ta incorporation. The highest activity observed so far with the use of 2 can be further rationalized by the presence of distorted heptacoordinate Ta atoms in the form of TaO(7) pentagonal bipyramid.

  11. Evidence for Magnetic Reconnection in a Flare and CME Observed By RHESSI and SDO/AIA

    NASA Astrophysics Data System (ADS)

    Su, Yang; Wang, T.; Holman, G. D.; Dennis, B. R.; Veronig, A.

    2011-05-01

    The double coronal X-ray sources (Sui and Holman 2003, Liu et al. 2008) observed by RHESSI are believed to be evidence for the existence of a current sheet in between. On the other hand, evidence for magnetic reconnection (inflows, outflows, flux rope, cusp, current sheet and down flows) has been reported in EUV observations. However, there are few (Liu et al. 2010, but with no RHESSI observation) that show the combined features expected from reconnection theory. We report a study of two limb flares and a related CME observed by RHESSI and SDO/AIA at 18:00 UT-21:00 UT on Mar. 08 2011. The SDO-AIA data show the formation and eruption of the flux rope (CME). The X-ray emission observed by RHESSI shows an extended source at both thermal and non-thermal energies above the flaring loop. During the two hard X-ray peaks, RHESSI images indicate a reverse Y-shape structure above the flaring loop and a Y-shape structure high in the corona. We also observe inflows between the two RHESSI coronal sources after the second peak at 18:19 UT. The flux rope erupted one hour later. Down flows were seen above the post flare loops at this time. These provide evidence for magnetic reconnection and a failed eruption, inhibited by an overlying magnetic structure in the corona at least an hour before the successful CME. We will compare the results with previous observations and flare/CME models.

  12. Coronal Shocks of November 1997 Revisited: The CME-Type II Timing Problem

    DTIC Science & Technology

    2004-08-24

    Introduction 20060214 002 Solar metric type II bursts (reviewed by Nelson and Melrose, 1985) drift outward through the low corona from high to low...taken by the Large Angle and Spectrometric Corona - graph’s (LASCO) (Brueckner et al., 1995) C2 and C3 instruments on the Solar and Heliospheric...Delaboudini~re et al., 1995), which observes the solar disk and the corona up to 1.5 R0, to determine CME launch times without any need for

  13. Observational Signatures of Ion Acceleration Near CME-Driven Interplanetary Shocks

    NASA Astrophysics Data System (ADS)

    Desai, M. I.; Dayeh, M. A.; Lee, M. A.; Smith, C. W.; Mason, G. M.; Kasper, J. C.

    2010-12-01

    Coronal Mass Ejection- or CME-driven interplanetary (IP) shocks are responsible for causing the so-called energetic storm particle (ESP) events observed at Earth. However, despite recent observational and theoretical advances, many important questions regarding such CME-associated particle events remain unanswered. This is because ESP events occur due to a confluence of numerous poorly understood physical effects all of whose contributions can vary with time and location. These include: the origin, structure, and obliquity of the shocks, the nature of wave-particle interactions and the type of turbulence that is present near the shocks, the distribution and composition of the seed populations, and the type of injection and acceleration processes involved. In this paper, we combine observations of ~0.1-0.5 MeV/nucleon O and Fe ions with that of the magnetic field near 17 CME-driven IP shocks observed at the Advanced Composition Explorer and Wind spacecraft to study the temporal evolution of (1) O and Fe intensities, (2) power-law spectral indices of O, (3) the Fe/O ratios, and (4) the magnetic field power spectrum. In particular, we identify unique signatures that differentiate between shocks where the seed population is dominated by low-energy (<100 keV/nucleon) suprathermal ions and those events where it is dominated by suprathermal-through-energetic seed ions with spectra extending at least up to ~0.5 MeV/nucleon. Such observational signatures may also be useful in modeling the properties of the so-called large gradual solar energetic particle (SEP) events that are primarily accelerated by CME shocks near the Sun.

  14. Observational Signatures of Thermal and Suprathermal Ion Acceleration at CME-Driven Interplanetary Shocks

    NASA Astrophysics Data System (ADS)

    Desai, M. I.; Smith, C. W.; Lee, M. A.; Dayeh, M. A.; Mason, G. M.

    2009-12-01

    Coronal Mass Ejection- or CME-driven interplanetary (IP) shocks are responsible for causing the so-called energetic storm particle (ESP) events observed at Earth. However, despite recent observational and theoretical advances, many important questions regarding such CME-associated particle events remain unanswered. This is because ESP events occur due to a confluence of numerous poorly understood physical effects all of whose contributions can vary with time and location. These effects include: the origin, structure, and obliquity of the shocks, the nature of wave-particle interactions and the type of turbulence that is present near the shocks, the distribution and composition of the seed populations, and the type of injection and acceleration processes involved. In this paper, we combine observations of ~0.1-0.5 MeV/nucleon O and Fe ions with that of the magnetic field near four CME-driven IP shocks observed at the Advanced Composition Explorer spacecraft to differentiate between shocks where the seed population is most likely dominated by thermal solar wind ions and those events where it is dominated by pre-existing suprathermal ions. In particular, we use the temporal evolution of (1) O and Fe intensities, (2) power-law spectral indices of O, (3) the Fe/O and C/O ratios, and (4) the magnetic field power spectrum to identify unique signatures that provide strong clues regarding the origin of the seed population. Such observational signatures may also be useful in modeling the properties of the so-called large gradual solar energetic particle (SEP) events that are primarily accelerated by CME shocks near the Sun.

  15. The Dependence of Characteristic Times of Gradual SEP Events on Their Associated CME Properties

    NASA Astrophysics Data System (ADS)

    Pan, Z. H.; Wang, C. B.; Xue, X. H.; Wang, Y. M.

    It is generally believed that coronal mass ejections CMEs are the drivers of shocks that accelerate gradual solar energetic particles SEPs One might expect that the characteristics of the SEP intensity time profiles observed at 1 AU are determined by properties of the associated CMEs such as the radial speed and the angular width Recently Kahler statistically investigated the characteristic times of gradual SEP events observed from 1998-2002 and their associated coronal mass ejection properties Astrophys J 628 1014--1022 2005 Three characteristic times of gradual SEP events are determined as functions of solar source longitude 1 T 0 the time from associated CME launch to SEP onset at 1 AU 2 T R the rise time from SEP onset to the time when the SEP intensity is a factor of 2 below peak intensity and 3 T D the duration over which the SEP intensity is within a factor of 2 of the peak intensity However in his study the CME speeds and angular widths are directly taken from the LASCO CME catalog In this study we analyze the radial speeds and the angular widths of CMEs by an ice-cream cone model and re-investigate their correlationships with the characteristic times of the corresponding SEP events We find T R and T D are significantly correlated with radial speed for SEP events in the best-connected longitude range and there is no correlation between T 0 and CME radial speed and angular width which is consistent with Kahler s results On the other hand it s found that T R and T D are also have

  16. In Situ Heating of the 2007 May 19 CME Ejecta Detected by STEREO/PLASTIC and ACE

    DTIC Science & Technology

    2011-01-24

    possible relatively close to the solar surface where the signal is strong. Ion charge states, on the other hand, are routinely collected and CMEs, and their...equilibrium ionization (NEI) balance as the CME plasma expands outward into the ambient solar wind. In this paper we explore the consequences of a different...source of thermal heating, that due to anomalous resistivity within a spheromak solution for the CME geometry as it expands into the solar wind. We

  17. NUMERICAL SIMULATION OF AN EUV CORONAL WAVE BASED ON THE 2009 FEBRUARY 13 CME EVENT OBSERVED BY STEREO

    SciTech Connect

    Cohen, Ofer; Attrill, Gemma D. R.; Wills-Davey, Meredith J.; Manchester, Ward B.

    2009-11-01

    On 2009 February 13, a coronal wave-CME-dimming event was observed in quadrature by the Solar Terrestrial Relations Observatory (STEREO) spacecraft. We analyze this event using a three-dimensional, global magnetohydrodynamic model for the solar corona. The numerical simulation is driven and constrained by the observations, and indicates where magnetic reconnection occurs between the expanding CME core and surrounding environment. We focus primarily on the lower corona, extending out to 3 R{sub sun}; this range allows simultaneous comparison with both EUVI and COR1 data. Our simulation produces a diffuse coronal bright front remarkably similar to that observed by STEREO/EUVI at 195 A. It is made up of two components, and is the result of a combination of both wave and non-wave mechanisms. The CME becomes large-scale quite low (< 200 Mm) in the corona. It is not, however, an inherently large-scale event; rather, the expansion is facilitated by magnetic reconnection between the expanding CME core and the surrounding magnetic environment. In support of this, we also find numerous secondary dimmings, many far from the initial CME source region. Relating such dimmings to reconnecting field lines within the simulation provides further evidence that CME expansion leads to the 'opening' of coronal field lines on a global scale. Throughout the CME expansion, the coronal wave maps directly to the CME footprint. Our results suggest that the ongoing debate over the 'true' nature of diffuse coronal waves may be mischaracterized. It appears that both wave and non-wave models are required to explain the observations and understand the complex nature of these events.

  18. UVCS/SOHO capability for determining coronal conditions before, during, and after CME's

    NASA Technical Reports Server (NTRS)

    Strachan, Leonard; Raymond, J. C.; Kohl, J. L.; Noci, G.; Antonucci, E.; Tondello, G.; Huber, M. C. E.; Fineschi, S.; Gardner, L. D.; Nicolosi, P.

    1994-01-01

    The ultraviolet coronal spectrometer (UVCS)/SOHO instrument will provide spectroscopic determinations of plasma parameters describing the evolution of coronal conditions at the site of coronal mass ejections (CME's). Prior to a CME event, UVCS can provide an empirical model of the coronal region where the event originates. The model would include values for the proton density, temperature, and outflow velocity; the electron density and temperature; and minor ion densities, temperatures, and outflow velocities. This information would be determined for heliocentric heights from about 1.5 to 3.5 of the solar radius with a subset of the parameters determined up to heights of 12 of the solar radius. During the event, UVCS would repeatedly sample one or more heights between 1.5 and 3.5 of the solar radius with a time resolution of about 1 min. The goal would be to determine the mass and energy content of the CME as it moves outward. After the event, the conditions in the region would be determined as before. Information about the instrument optical specifications and sensitivity is provided.

  19. Measure the Propagation of a Halo CME and Its Driven Shock with the Observations from a Single Perspective at Earth

    NASA Astrophysics Data System (ADS)

    Lu, Lei; Inhester, Bernd; Feng, Li; Liu, Siming; Zhao, Xinhua

    2017-02-01

    We present a detailed study of an Earth-directed coronal mass ejection (full-halo CME) event that happened on 2011 February 15, making use of white-light observations by three coronagraphs and radio observations by Wind/WAVES. We applied three different methods to reconstruct the propagation direction and traveling distance of the CME and its driven shock. We measured the kinematics of the CME leading edge from white-light images observed by Solar Terrestrial Relations Observatory (STEREO) Aand B, tracked the CME-driven shock using the frequency drift observed by Wind/WAVES together with an interplanetary density model, and obtained the equivalent scattering centers of the CME by the polarization ratio (PR) method. For the first time, we applied the PR method to different features distinguished from LASCO/C2 polarimetric observations and calculated their projections onto white-light images observed by STEREO-A and STEREO-B. By combining the graduated cylindrical shell (GCS) forward modeling with the PR method, we proposed a new GCS-PR method to derive 3D parameters of a CME observed from a single perspective at Earth. Comparisons between different methods show a good degree of consistence in the derived 3D results.

  20. Tracking the CME-driven shock wave on 2012 March 5 and radio triangulation of associated radio emission

    SciTech Connect

    Magdalenić, J.; Marqué, C.; Mierla, M.; Zhukov, A. N.; Rodriguez, L.; Krupar, V.; Maksimović, M.; Cecconi, B.

    2014-08-20

    We present a multiwavelength study of the 2012 March 5 solar eruptive event, with an emphasis on the radio triangulation of the associated radio bursts. The main points of the study are reconstruction of the propagation of shock waves driven by coronal mass ejections (CMEs) using radio observations and finding the relative positions of the CME, the CME-driven shock wave, and its radio signatures. For the first time, radio triangulation is applied to different types of radio bursts in the same event and performed in a detailed way using goniopolarimetric observations from STEREO/Waves and WIND/Waves spacecraft. The event on 2012 March 5 was associated with a X1.1 flare from the NOAA AR 1429 situated near the northeast limb, accompanied by a full halo CME and a radio event comprising long-lasting interplanetary type II radio bursts. The results of the three-dimensional reconstruction of the CME (using SOHO/LASCO, STEREO COR, and HI observations), and modeling with the ENLIL cone model suggest that the CME-driven shock wave arrived at 1 AU at about 12:00 UT on March 7 (as observed by SOHO/CELIAS). The results of radio triangulation show that the source of the type II radio burst was situated on the southern flank of the CME. We suggest that the interaction of the shock wave and a nearby coronal streamer resulted in the interplanetary type II radio emission.

  1. Redox Control of the Human Iron-Sulfur Repair Protein MitoNEET Activity via Its Iron-Sulfur Cluster*

    PubMed Central

    Golinelli-Cohen, Marie-Pierre; Lescop, Ewen; Mons, Cécile; Gonçalves, Sergio; Clémancey, Martin; Santolini, Jérôme; Guittet, Eric; Blondin, Geneviève; Latour, Jean-Marc; Bouton, Cécile

    2016-01-01

    Human mitoNEET (mNT) is the first identified Fe-S protein of the mammalian outer mitochondrial membrane. Recently, mNT has been implicated in cytosolic Fe-S repair of a key regulator of cellular iron homeostasis. Here, we aimed to decipher the mechanism by which mNT triggers its Fe-S repair capacity. By using tightly controlled reactions combined with complementary spectroscopic approaches, we have determined the differential roles played by both the redox state of the mNT cluster and dioxygen in cluster transfer and protein stability. We unambiguously demonstrated that only the oxidized state of the mNT cluster triggers cluster transfer to a generic acceptor protein and that dioxygen is neither required for the cluster transfer reaction nor does it affect the transfer rate. In the absence of apo-acceptors, a large fraction of the oxidized holo-mNT form is converted back to reduced holo-mNT under low oxygen tension. Reduced holo-mNT, which holds a [2Fe-2S]+ with a global protein fold similar to that of the oxidized form is, by contrast, resistant in losing its cluster or in transferring it. Our findings thus demonstrate that mNT uses an iron-based redox switch mechanism to regulate the transfer of its cluster. The oxidized state is the “active state,” which reacts promptly to initiate Fe-S transfer independently of dioxygen, whereas the reduced state is a “dormant form.” Finally, we propose that the redox-sensing function of mNT is a key component of the cellular adaptive response to help stress-sensitive Fe-S proteins recover from oxidative injury. PMID:26887944

  2. Identification and characterization of the spiruchostatin biosynthetic gene cluster enables yield improvement by overexpressing a transcriptional activator

    PubMed Central

    Potharla, Vishwakanth Y.; Wang, Cheng; Cheng, Yi-Qiang

    2014-01-01

    Spiruchostatins A and B are members of the FK228-family of natural products with potent histone deacetylase inhibitory activities and antineoplastic activities. However, their production in the wild-type strain of Pseudomonas sp. Q71576 is low. To improve the yield, the spiruchostatin biosynthetic gene cluster (spi) was first identified by rapid genome sequencing and characterized by genetic mutations. This spi gene cluster encodes a hybrid biosynthetic pathway similar to that encoded by the FK228 biosynthetic gene cluster (dep) in Chromobacterium violaceum No. 968. Each gene cluster contains a pathway regulatory gene (spiR vs. depR) but these two genes encode transcriptional activators of different classes. Overexpression of native spiR or heterologous depR in the wild-type strain of Pseudomonas sp. Q71576 resulted in 268% or 1,285% increase of the combined titer of spiruchostatins A and B, respectively. RT-PCR analysis indicates that overexpression of heterologous depR upregulates the expression of native spiR. PMID:24973954

  3. High interfacial activity of polymers "grafted through" functionalized iron oxide nanoparticle clusters.

    PubMed

    Foster, Lynn M; Worthen, Andrew J; Foster, Edward L; Dong, Jiannan; Roach, Clarissa M; Metaxas, Athena E; Hardy, Clifford D; Larsen, Eric S; Bollinger, Jonathan A; Truskett, Thomas M; Bielawski, Christopher W; Johnston, Keith P

    2014-09-02

    The mechanism by which polymers, when grafted to inorganic nanoparticles, lower the interfacial tension at the oil-water interface is not well understood, despite the great interest in particle stabilized emulsions and foams. A simple and highly versatile free radical "grafting through" technique was used to bond high organic fractions (by weight) of poly(oligo(ethylene oxide) monomethyl ether methacrylate) onto iron oxide clusters, without the need for catalysts. In the resulting ∼1 μm hybrid particles, the inorganic cores and grafting architecture contribute to the high local concentration of grafted polymer chains to the dodecane/water interface to produce low interfacial tensions of only 0.003 w/v % (polymer and particle core). This "critical particle concentration" (CPC) for these hybrid inorganic/polymer amphiphilic particles to lower the interfacial tension by 36 mN/m was over 30-fold lower than the critical micelle concentration of the free polymer (without inorganic cores) to produce nearly the same interfacial tension. The low CPC is favored by the high adsorption energy (∼10(6) kBT) for the large ∼1 μm hybrid particles, the high local polymer concentration on the particles surfaces, and the ability of the deformable hybrid nanocluster cores as well as the polymer chains to conform to the interface. The nanocluster cores also increased the entanglement of the polymer chains in bulk DI water or synthetic seawater, producing a viscosity up to 35,000 cP at 0.01 s(-1), in contrast with only 600 cP for the free polymer. As a consequence of these interfacial and rheological properties, the hybrid particles stabilized oil-in-water emulsions at concentrations as low as 0.01 w/v %, with average drop sizes down to 30 μm. In contrast, the bulk viscosity was low for the free polymer, and it did not stabilize the emulsions. The ability to influence the interfacial activity and rheology of polymers upon grafting them to inorganic particles, including clusters

  4. The m-chlorophenylpiperazine test in cluster headache: a study on central serotoninergic activity.

    PubMed

    Leone, M; Attanasio, A; Croci, D; Libro, G; Grazzi, L; D'Amico, D; Nespolo, A; Bussone, G

    1997-10-01

    The central serotoninergic agonist m-chlorophenylpiperazine (m-CPP) stimulates several 5HT receptor subtypes. It induces the release of both cortisol and prolactin (PRL). In this study we investigated central serotoninergic responsiveness in cluster headache by monitoring cortisol and PRL responses to m-CPP administration. Twenty-three patients with episodic cluster headache and 17 sex-matched and age-matched healthy subjects were studied. The cluster headache patients were tested during a cluster period, and none were receiving prophylaxis. A single oral dose of m-CPP, 0.5 mg/kg, was given at time 0. Blood samples were drawn at -30, 0, 30, 60, 90, 120, 150 and 180 min. PRL and cortisol levels were assayed in the samples. PRL and cortisol delta maxima (delta maximum = maximum response - baseline level at time 0/baseline level at time 0) were evaluated in each patient and mean values compared. Serum levels of m-CPP were detected by HPLC and correlated to hormonal responses. Reduced cortisol (p < 0.02) and increased PRL (p < 0.05) delta maxima were observed in cluster headache patients. Increased basal cortisol plasma levels (p < 0.05) and reduced basal PRL plasma levels (p = 0.06) also characterized cluster headache patients. This is the first study evaluating central serotoninergic responsiveness to m-CPP in cluster headache and these data suggest impaired central serotoninergic function in this pathology.

  5. The effects of baryon physics, black holes and active galactic nucleus feedback on the mass distribution in clusters of galaxies

    NASA Astrophysics Data System (ADS)

    Martizzi, Davide; Teyssier, Romain; Moore, Ben; Wentz, Tina

    2012-06-01

    The spatial distribution of matter in clusters of galaxies is mainly determined by the dominant dark matter component; however, physical processes involving baryonic matter are able to modify it significantly. We analyse a set of 500 pc resolution cosmological simulations of a cluster of galaxies with mass comparable to Virgo, performed with the AMR code RAMSES. We compare the mass density profiles of the dark, stellar and gaseous matter components of the cluster that result from different assumptions for the subgrid baryonic physics and galaxy formation processes. First, the prediction of a gravity-only N-body simulation is compared to that of a hydrodynamical simulation with standard galaxy formation recipes, and then all results are compared to a hydrodynamical simulation which includes thermal active galactic nucleus (AGN) feedback from supermassive black holes (SMBHs). We find the usual effects of overcooling and adiabatic contraction in the run with standard galaxy formation physics, but very different results are found when implementing SMBHs and AGN feedback. Star formation is strongly quenched, producing lower stellar densities throughout the cluster, and much less cold gas is available for star formation at low redshifts. At redshift z= 0 we find a flat density core of radius 10 kpc in both the dark and stellar matter density profiles. We speculate on the possible formation mechanisms able to produce such cores and we conclude that they can be produced through the coupling of different processes: (I) dynamical friction from the decay of black hole orbits during galaxy mergers; (II) AGN-driven gas outflows producing fluctuations of the gravitational potential causing the removal of collisionless matter from the central region of the cluster; (III) adiabatic expansion in response to the slow expulsion of gas from the central region of the cluster during the quiescent mode of AGN activity.

  6. Mitochondrial Iron-Sulfur Cluster Activity and Cytosolic Iron Regulate Iron Traffic in Saccharomyces cerevisiae.

    PubMed

    Wofford, Joshua D; Lindahl, Paul A

    2015-11-06

    An ordinary differential equation-based mathematical model was developed to describe trafficking and regulation of iron in growing fermenting budding yeast. Accordingly, environmental iron enters the cytosol and moves into mitochondria and vacuoles. Dilution caused by increasing cell volume is included. Four sites are regulated, including those in which iron is imported into the cytosol, mitochondria, and vacuoles, and the site at which vacuolar Fe(II) is oxidized to Fe(III). The objective of this study was to determine whether cytosolic iron (Fecyt) and/or a putative sulfur-based product of iron-sulfur cluster (ISC) activity was/were being sensed in regulation. The model assumes that the matrix of healthy mitochondria is anaerobic, and that in ISC mutants, O2 diffuses into the matrix where it reacts with nonheme high spin Fe(II) ions, oxidizing them to nanoparticles and generating reactive oxygen species. This reactivity causes a further decline in ISC/heme biosynthesis, which ultimately gives rise to the diseased state. The ordinary differential equations that define this model were numerically integrated, and concentrations of each component were plotted versus the concentration of iron in the growth medium and versus the rate of ISC/heme biosynthesis. Model parameters were optimized by fitting simulations to literature data. The model variant that assumed that both Fecyt and ISC biosynthesis activity were sensed in regulation mimicked observed behavior best. Such "dual sensing" probably arises in real cells because regulation involves assembly of an ISC on a cytosolic protein using Fecyt and a sulfur species generated in mitochondria during ISC biosynthesis and exported into the cytosol.

  7. Mitochondrial Iron-Sulfur Cluster Activity and Cytosolic Iron Regulate Iron Traffic in Saccharomyces cerevisiae*

    PubMed Central

    Wofford, Joshua D.; Lindahl, Paul A.

    2015-01-01

    An ordinary differential equation-based mathematical model was developed to describe trafficking and regulation of iron in growing fermenting budding yeast. Accordingly, environmental iron enters the cytosol and moves into mitochondria and vacuoles. Dilution caused by increasing cell volume is included. Four sites are regulated, including those in which iron is imported into the cytosol, mitochondria, and vacuoles, and the site at which vacuolar FeII is oxidized to FeIII. The objective of this study was to determine whether cytosolic iron (Fecyt) and/or a putative sulfur-based product of iron-sulfur cluster (ISC) activity was/were being sensed in regulation. The model assumes that the matrix of healthy mitochondria is anaerobic, and that in ISC mutants, O2 diffuses into the matrix where it reacts with nonheme high spin FeII ions, oxidizing them to nanoparticles and generating reactive oxygen species. This reactivity causes a further decline in ISC/heme biosynthesis, which ultimately gives rise to the diseased state. The ordinary differential equations that define this model were numerically integrated, and concentrations of each component were plotted versus the concentration of iron in the growth medium and versus the rate of ISC/heme biosynthesis. Model parameters were optimized by fitting simulations to literature data. The model variant that assumed that both Fecyt and ISC biosynthesis activity were sensed in regulation mimicked observed behavior best. Such “dual sensing” probably arises in real cells because regulation involves assembly of an ISC on a cytosolic protein using Fecyt and a sulfur species generated in mitochondria during ISC biosynthesis and exported into the cytosol. PMID:26306041

  8. Screen-based media use clusters are related to other activity behaviours and health indicators in adolescents

    PubMed Central

    2013-01-01

    Background Screen-based media (SBM) occupy a considerable portion of young peoples’ discretionary leisure time. The aim of this paper was to investigate whether distinct clusters of SBM use exist, and if so, to examine the relationship of any identified clusters with other activity/sedentary behaviours and physical and mental health indicators. Methods The data for this study come from 643 adolescents, aged 14 years, who were participating in the longitudinal Western Australian Pregnancy Cohort (Raine) Study through May 2003 to June 2006. Time spent on SBM, phone use and reading was assessed using the Multimedia Activity Recall for Children and Adults. Height, weight, muscle strength were measured at a clinic visit and the adolescents also completed questionnaires on their physical activity and psychosocial health. Latent class analysis (LCA) was used to analyse groupings of SBM use. Results Three clusters of SBM use were found; C1 ‘instrumental computer users’ (high email use, general computer use), C2 ‘multi-modal e-gamers’ (both high console and computer game use) and C3 ‘computer e-gamers’ (high computer game use only). Television viewing was moderately high amongst all the clusters. C2 males took fewer steps than their male peers in C1 and C3 (-13,787/week, 95% CI: -4619 to -22957, p = 0.003 and -14,806, 95% CI: -5,306 to -24,305, p = 0.002) and recorded less MVPA than the C1 males (-3.5 h, 95% CI: -1.0 to -5.9, p = 0.005). There was no difference in activity levels between females in clusters C1 and C3. Conclusion SBM use by adolescents did cluster and these clusters related differently to activity/sedentary behaviours and both physical and psychosocial health indicators. It is clear that SBM use is not a single construct and future research needs to take consideration of this if it intends to understand the impact SBM has on health. PMID:24330626

  9. THE SPATIAL CLUSTERING OF ROSAT ALL-SKY SURVEY ACTIVE GALACTIC NUCLEI. III. EXPANDED SAMPLE AND COMPARISON WITH OPTICAL ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Krumpe, Mirko; Coil, Alison L.; Miyaji, Takamitsu; Aceves, Hector

    2012-02-10

    This is the third paper in a series that reports on our investigation of the clustering properties of active galactic nuclei (AGNs) identified in the ROSAT All-Sky Survey (RASS) and the Sloan Digital Sky Survey (SDSS). In this paper, we extend the redshift range to 0.07 < z < 0.50 and measure the clustering amplitudes of both X-ray-selected and optically selected SDSS broad-line AGNs with and without radio detections as well as for X-ray-selected narrow-line RASS/SDSS AGNs. We measure the clustering amplitude through cross-correlation functions (CCFs) with SDSS galaxies and derive the bias by applying a halo occupation distribution model directly to the CCFs. We find no statistically convincing difference in the clustering of X-ray-selected and optically selected broad-line AGNs, as well as with samples in which radio-detected AGNs are excluded. This is in contrast to low-redshift optically selected narrow-line AGNs, where radio-loud AGNs are found in more massive halos than optical AGNs without a radio detection. The typical dark matter halo masses of our broad-line AGNs are log (M{sub DMH}/[h{sup -1} M{sub Sun }]) {approx} 12.4-13.4, consistent with the halo mass range of typical non-AGN galaxies at low redshifts. We find no significant difference between the clustering of X-ray-selected narrow-line AGNs and broad-line AGNs. We confirm the weak dependence of the clustering strength on AGN X-ray luminosity at a {approx}2{sigma} level. Finally, we summarize the current picture of AGN clustering to z {approx} 1.5 based on three-dimensional clustering measurements.

  10. Asp1 from Schizosaccharomyces pombe binds a [2Fe-2S](2+) cluster which inhibits inositol pyrophosphate 1-phosphatase activity.

    PubMed

    Wang, Huanchen; Nair, Vasudha S; Holland, Ashley A; Capolicchio, Samanta; Jessen, Henning J; Johnson, Michael K; Shears, Stephen B

    2015-10-27

    Iron-sulfur (Fe-S) clusters are widely distributed protein cofactors that are vital to cellular biochemistry and the maintenance of bioenergetic homeostasis, but to our knowledge, they have never been identified in any phosphatase. Here, we describe an iron-sulfur cluster in Asp1, a dual-function kinase/phosphatase that regulates cell morphogenesis in Schizosaccharomyces pombe. Full-length Asp1, and its phosphatase domain (Asp1(371-920)), were each heterologously expressed in Escherichia coli. The phosphatase activity is exquisitely specific: it hydrolyzes the 1-diphosphate from just two members of the inositol pyrophosphate (PP-InsP) signaling family, namely, 1-InsP7 and 1,5-InsP8. We demonstrate that Asp1 does not hydrolyze either InsP6, 2-InsP7, 3-InsP7, 4-InsP7, 5-InsP7, 6-InsP7, or 3,5-InsP8. We also recorded 1-phosphatase activity in a human homologue of Asp1, hPPIP5K1, which was heterologously expressed in Drosophila S3 cells with a biotinylated N-terminal tag, and then isolated from cell lysates with avidin beads. Purified, recombinant Asp1(371-920) contained iron and acid-labile sulfide, but the stoichiometry (0.8 atoms of each per protein molecule) indicates incomplete iron-sulfur cluster assembly. We reconstituted the Fe-S cluster in vitro under anaerobic conditions, which increased the stoichiometry to approximately 2 atoms of iron and acid-labile sulfide per Asp1 molecule. The presence of a [2Fe-2S](2+) cluster in Asp1(371-920) was demonstrated by UV-visible absorption, resonance Raman spectroscopy, and electron paramagnetic resonance spectroscopy. We determined that this [2Fe-2S](2+) cluster is unlikely to participate in redox chemistry, since it rapidly degraded upon reduction by dithionite. Biochemical and mutagenic studies demonstrated that the [2Fe-2S](2+) cluster substantially inhibits the phosphatase activity of Asp1, thereby increasing its net kinase activity.

  11. White spot syndrome virus entry is dependent on multiple endocytic routes and strongly facilitated by Cq-GABARAP in a CME-dependent manner

    PubMed Central

    Chen, Rong-yuan; Shen, Kai-li; Chen, Zhen; Fan, Wei-wei; Xie, Xiao-lu; Meng, Chuang; Chang, Xue-jiao; Zheng, Li-bing; Jeswin, Joseph; Li, Cheng-hua; Wang, Ke-jian; Liu, Hai-peng

    2016-01-01

    White spot syndrome virus (WSSV) is a lethal pathogen of shrimp and many other crustaceans, including crayfish. However, the molecular mechanism underlying its cellular entry remains elusive due to the lack of shrimp cell lines for viral propagation. Crayfish hematopoietic tissue (Hpt) cell culture was recently established as a good model for WSSV infection study. Here, we showed that multiple endocytic routes, including clathrin-mediated endocytosis (CME), macropinocytosis and caveolae-mediated endocytosis, were indispensably employed for the viral entry into Hpt cell of the crayfish Cherax quadricarinatus. Intriguingly, cellular autophagic activity was positively correlated with efficient viral entry, in which a key autophagy-related protein, γ-aminobutyric acid receptor-associated protein (Cq-GABARAP), that not only localized but also co-localized with WSSV on the Hpt cell membrane, strongly facilitated WSSV entry by binding to the viral envelope VP28 in a CME-dependent manner that was negatively regulated by Cq-Rac1. Furthermore, cytoskeletal components, including Cq-β-tubulin and Cq-β-actin, bound to both recombinant rCq-GABARAP and WSSV envelope proteins, which likely led to viral entry promotion via cooperation with rCq-GABARAP. Even under conditions that promoted viral entry, rCq-GABARAP significantly reduced viral replication at an early stage of infection, which was probably caused by the formation of WSSV aggregates in the cytoplasm. PMID:27385304

  12. Prediction of Type II Burst Radiation for Large CME Events

    NASA Astrophysics Data System (ADS)

    Cairns, I. H.; Schmidt, J. M.

    2013-12-01

    Type IIs are associated with shocks in the corona and solar wind, either driven by CMEs or else blast waves. Recent quantitative theories for type II radiation show that the amount of radiation depends on the speed and spatial extent of the 3D shock, as well as on the background plasma, magnetic field configuration, and the number of superthermal electrons available for acceleration by the shock. In principle, then, Type II bursts may provide 1-3 day warnings of large and fast CMEs that might produce space weather at Earth. In this paper we couple the advanced 3D MHD BATS-R-US code of Toth, Gombosi, and colleagues with our new ``bolt-on'' theory for type II emission. The modeling includes initialization with coronal and active region magnetic fields reconstructed from solar magnetograms, coronal densities determined by 1 AU data, and CMEs modelled using STEREO coronagraph data. Two events with type IIs and strong CMEs are analyzed: 15 February 2011 and 7 March 2012. We demonstrate impressive accuracy in time, frequency, and intensity for both type II bursts. This strongly supports the type II theory, implies real understanding of the physics involved, and supports the near-term development of a capability to predict and track these events for space weather prediction.

  13. Highly Active Gold(I)-Silver(I) Oxo Cluster Activating sp³ C-H Bonds of Methyl Ketones under Mild Conditions.

    PubMed

    Pei, Xiao-Li; Yang, Yang; Lei, Zhen; Chang, Shan-Shan; Guan, Zong-Jie; Wan, Xian-Kai; Wen, Ting-Bin; Wang, Quan-Ming

    2015-04-29

    The activation of C(sp(3))-H bonds is challenging, due to their high bond dissociation energy, low proton acidity, and highly nonpolar character. Herein we report a unique gold(I)-silver(I) oxo cluster protected by hemilabile phosphine ligands [OAu3Ag3(PPhpy2)3](BF4)4 (1), which can activate C(sp(3))-H bonds under mild conditions for a broad scope of methyl ketones (RCOCH3, R = methyl, phenyl, 2-methylphenyl, 2-aminophenyl, 2-hydroxylphenyl, 2-pyridyl, 2-thiazolyl, tert-butyl, ethyl, isopropyl). Activation happens via triple deprotonation of the methyl group, leading to formation of heterometallic Au(I)-Ag(I) clusters with formula RCOCAu4Ag4(PPhpy2)4(BF4)5 (PPhpy2 = bis(2-pyridyl)phenylphosphine). Cluster 1 can be generated in situ via the reaction of [OAu3Ag(PPhpy2)3](BF4)2 with 2 equiv of AgBF4. The oxo ion and the metal centers are found to be essential in the cleavage of sp(3) C-H bonds of methyl ketones. Interestingly, cluster 1 selectively activates the C-H bonds in -CH3 rather than the N-H bonds in -NH2 or the O-H bond in -OH which is traditionally thought to be more reactive than C-H bonds. Control experiments with butanone, 3-methylbutanone, and cyclopentanone as substrates show that the auration of the C-H bond of the terminal methyl group is preferred over secondary or tertiary sp(3) C-H bonds; in other words, the C-H bond activation is influenced by steric effect. This work highlights the powerful reactivity of metal clusters toward C-H activation and sheds new light on gold(I)-mediated catalysis.

  14. Solvent-Induced Reductive Activation in Gas Phase [Bi(CO2)n]- Clusters

    NASA Astrophysics Data System (ADS)

    Thompson, Michael C.; Ramsay, Jacob Sondergaard; Weber, J. Mathias

    2016-06-01

    We report infrared photodissociation spectra of [Bi(CO2)n]- (n=2-9) cluster anions. We determine the charge carrier geometry by comparing calculated vibrational frequencies based on density functional theory to the experimental spectra. The vibrational frequencies and the charge carrier geometry depend strongly on the solvation environment present in the cluster. We discuss the interaction of bismuth and CO_2 in the presence of an excess electron in the context of heterogeneous catalytic reduction of CO_2.

  15. The Properties of Solar Energetic Particle Event-Associated Coronal Mass Ejections Reported in Different CME Catalogs

    NASA Astrophysics Data System (ADS)

    Richardson, I. G.; von Rosenvinge, T. T.; Cane, H. V.

    2015-06-01

    We compare estimates of the speed and width of coronal mass ejections (CMEs) in several catalogs for the CMEs associated with ˜ 200 solar energetic particle (SEP) events in 2006 - 2013 that included 25 MeV protons. The catalogs used are: CDAW, CACTUS, SEEDS, and CORIMP, all derived from observations by the LASCO coronagraphs on the SOHO spacecraft, the CACTUS catalog derived from the COR2 coronagraphs on the STEREO-A and -B spacecraft, and the DONKI catalog, which uses observations from SOHO and the STEREO spacecraft. We illustrate how, for this set of events, CME parameters can differ considerably in each catalog. The well-known correlation between CME speed and proton event intensity is shown to be similar for most catalogs, but this is largely because it is determined by a few large particle events associated with fast CMEs, and small events associated with slow CMEs. Intermediate particle events "shuffle" in position when speeds from different catalogs are used. Quadrature spacecraft CME speeds do not improve the correlation. CME widths also vary widely between catalogs, and they are influenced by plane-of-the-sky projection and how the width is inferred from the coronagraph images. The high degree of association (˜ 50 %) between the 25 MeV proton events and "full halo" (360∘-width) CMEs as defined in the CDAW catalog is removed when other catalogs are considered. Using CME parameters from the quadrature spacecraft, the SEP intensity is correlated with CME width, which is also correlated with CME speed.

  16. High reactivity of nanosized niobium oxide cluster cations in methane activation: A comparison with vanadium oxides

    SciTech Connect

    Ding, Xun-Lei E-mail: chemzyx@iccas.ac.cn; Wang, Dan; Wu, Xiao-Nan; Li, Zi-Yu; Zhao, Yan-Xia E-mail: chemzyx@iccas.ac.cn; He, Sheng-Gui

    2015-09-28

    The reactions between methane and niobium oxide cluster cations were studied and compared to those employing vanadium oxides. Hydrogen atom abstraction (HAA) reactions were identified over stoichiometric (Nb{sub 2}O{sub 5}){sub N}{sup +} clusters for N as large as 14 with a time-of-flight mass spectrometer. The reactivity of (Nb{sub 2}O{sub 5}){sub N}{sup +} clusters decreases as the N increases, and it is higher than that of (V {sub 2}O{sub 5}){sub N}{sup +} for N ≥ 4. Theoretical studies were conducted on (Nb{sub 2}O{sub 5}){sub N}{sup +} (N = 2–6) by density functional calculations. HAA reactions on these clusters are all favorable thermodynamically and kinetically. The difference of the reactivity with respect to the cluster size and metal type (Nb vs V) was attributed to thermodynamics, kinetics, the electron capture ability, and the distribution of the unpaired spin density. Nanosized Nb oxide clusters show higher HAA reactivity than V oxides, indicating that niobia may serve as promising catalysts for practical methane conversion.

  17. Flare-CME Models: An Observational Perspective (Invited Review)

    NASA Astrophysics Data System (ADS)

    Schmieder, B.; Aulanier, G.; Vršnak, B.

    2015-12-01

    Eruptions, flares, and coronal mass ejection (CMEs) are due to physical phenomena mainly driven by an initially force-free current-carrying magnetic field. We review some key observations relevant to the current theoretical trigger mechanisms of the eruption and to the energy release via reconnection. Sigmoids observed in X-rays and UV, as well as the pattern (double J-shaped) of electric currents in the photosphere show clear evidence of the existence of currents parallel to the magnetic field and can be the signature of a flux rope that is detectable in CMEs. The magnetic helicity of filaments and active regions is an interesting indirectly measurable parameter because it can quantify the twist of the flux rope. On the other hand, the magnetic helicity of the solar structures allows us to associate solar eruptions and magnetic clouds in the heliosphere. The magnetic topology analysis based on the 3D magnetic field extrapolated from vector magnetograms is a good tool for identifying the reconnection locations (null points and/or the 3D large volumes - hyperbolic flux tube, HFT). Flares are associated more with quasi-separatrix layers (QSLs) and HFTs than with a single null point, which is a relatively rare case. We review various mechanisms that have been proposed to trigger CMEs and their observable signatures: by "breaking" the field lines overlying the flux rope or by reconnection below the flux rope to reduce the magnetic tension, or by letting the flux rope to expand until it reaches a minimum threshold height (loss of equilibrium or torus instability). Additional mechanisms are commonly operating in the solar atmosphere. Examples of observations are presented throughout the article and are discussed in this framework.

  18. LoCuSS: A DYNAMICAL ANALYSIS OF X-RAY ACTIVE GALACTIC NUCLEI IN LOCAL CLUSTERS

    SciTech Connect

    Haines, C. P.; Pereira, M. J.; Egami, E.; Sanderson, A. J. R.; Smith, G. P.; Babul, A.; Edge, A. C.; Finoguenov, A.; Moran, S. M.; Okabe, N.

    2012-08-01

    We present a study of the distribution of X-ray active galactic nuclei (AGNs) in a representative sample of 26 massive clusters at 0.15 < z < 0.30, combining Chandra observations sensitive to X-ray point sources of luminosity L{sub X} {approx} 10{sup 42} erg s{sup -1} at the cluster redshift with extensive and highly complete spectroscopy of cluster members down to {approx}M*{sub K} + 2. In total we identify 48 X-ray AGNs among the cluster members, with luminosities 2 Multiplication-Sign 10{sup 41}-1 Multiplication-Sign 10{sup 44} erg s{sup -1}. Based on these identifications, we estimate that 0.73% {+-} 0.14% of cluster galaxies brighter than M{sub K} = -23.1 (M*{sub K} + 1.5) host an X-ray AGN with L{sub X} > 10{sup 42} erg s{sup -1}. In the stacked caustic diagram that shows (v{sub los} - (v))/{sigma}{sub v} versus r{sub proj}/r{sub 500}, the X-ray AGN appear to preferentially lie along the caustics, suggestive of an infalling population. They also appear to avoid the region with lowest cluster-centric radii and relative velocities (r{sub proj} < 0.4r{sub 500}; |v - (v)|/{sigma}{sub v} < 0.8), which is dominated by the virialized population of galaxies accreted earliest into the clusters. The line-of-sight velocity histogram of the X-ray AGN shows a relatively flat distribution, and is inconsistent with the Gaussian distribution expected for a virialized population at 98.9% confidence. Moreover, the velocity dispersion of the 48 X-ray AGNs is 1.51 times that of the overall cluster population, which is consistent with the {radical}2 ratio expected by simple energetic arguments when comparing infalling versus virialized populations. This kinematic segregation is significant at the 4.66{sigma} level. When splitting the X-ray AGN sample into two according to X-ray or infrared (IR) luminosity, both X-ray bright (L{sub X} > 10{sup 42}) and IR-bright (L{sub TIR} > 2 Multiplication-Sign 10{sup 10} L{sub Sun }) subsamples show higher velocity dispersions than their X

  19. MC2: boosted AGN and star formation activity in CIZA J2242.8+5301, a massive post-merger cluster at z = 0.19

    NASA Astrophysics Data System (ADS)

    Sobral, David; Stroe, Andra; Dawson, William A.; Wittman, David; Jee, M. James; Röttgering, Huub; van Weeren, Reinout J.; Brüggen, Marcus

    2015-06-01

    Cluster mergers may play a fundamental role in the formation and evolution of cluster galaxies. Stroe et al. revealed unexpected overdensities of candidate Hα emitters near the ˜1-Mpc-wide shock fronts of the massive (˜2 × 1015 M⊙) `Sausage' merging cluster, CIZA J2242.8+5301. We used the Keck/Deep Imaging Multi-Object Spectrograph and the William Herschel Telescope/AutoFib2+WYFFOS to confirm 83 Hα emitters in and around the merging cluster. We find that cluster star-forming galaxies in the hottest X-ray gas and/or in the cluster subcores (away from the shock fronts) show high [S II]6716/[S II]6761 and high [S II] 6716/Hα, implying very low electron densities (<30 × lower than all other star-forming galaxies outside the cluster) and/or significant contribution from supernovae, respectively. All cluster star-forming galaxies near the cluster centre show evidence of significant outflows (blueshifted Na D ˜200-300 km s-1), likely driven by supernovae. Strong outflows are also found for the clusteractive galactic nucleus (AGN). Hα star-forming galaxies in the merging cluster follow the z ˜ 0 mass-metallicity relation, showing systematically higher metallicity (˜0.15-0.2 dex) than Hα emitters outside the cluster (projected R > 2.5 Mpc). This suggests that the shock front may have triggered remaining metal-rich gas which galaxies were able to retain into forming stars. Our observations show that the merger of impressively massive (˜1015 M⊙) clusters can provide the conditions for significant star formation and AGN activity, but, as we witness strong feedback by star-forming galaxies and AGN (and given how massive the merging cluster is), such sources will likely quench in a few 100 Myr.

  20. The Blob Connection: Searching for Low Coronal Signatures of Solar Post-CME Blobs

    NASA Astrophysics Data System (ADS)

    Schanche, Nicole E.; Reeves, Katharine K.; Webb, David F.

    2016-11-01

    Bright linear structures, thought to be indicators of a current sheet (CS), are often seen in Large Angle and Spectrometric Coronagraph (LASCO) on the Solar and Heliospheric Observatory (SOHO) white-light data in the wake of coronal mass ejections (CMEs). In a subset of these post-CME structures, relatively bright blobs are seen moving outward along the rays. These blobs have been interpreted as consequences of the plasmoid instability in the CS, and can help us to understand the dynamics of the reconnection. We examine several instances, taken largely from the SOHO/LASCO CME-rays Catalog, where these blobs are clearly visible in white-light data. Using radially filtered, difference, wavelet enhanced, and multiscale Gaussian normalized images to visually inspect Solar Dynamics Observatory/Atmospheric Imaging Assembly (AIA) data in multiple wavelengths, we look for signatures of material that correspond both temporally and spatially to the later appearance of the blobs in LASCO/C2. Constraints from measurements of the blobs allow us to predict the expected count rates in DN pixel-1 s-1 for each AIA channel. The resulting values would make the blobs bright enough to be detectable at 1.2 R ⊙. However, we do not see conclusive evidence for corresponding blobs in the AIA data in any of the events. We do the same calculation for the “cartwheel CME,” an event in which blobs were seen in X-rays, and find that our estimated count rates are close to those observed. We suggest several possibilities for the absence of the EUV blobs including the formation of the blob higher than the AIA field of view, blob coalescence, and overestimation of blob densities.

  1. AN INTERPRETATION OF GLE71 CONCURRENT CME-DRIVEN SHOCK WAVE

    SciTech Connect

    Firoz, Kazi A.; Rodríguez-Pacheco, J.; Zhang, Q. M.; Gan, W. Q.; Li, Y. P.; Moon, Y.-J.; Kudela, K.; Park, Y.-D.; Dorman, Lev I. E-mail: firoz.kazi@uah.es

    2014-08-01

    Particle accelerations in solar flares and CME-driven shocks can sometimes result in very high-energy particle events (≥1 GeV) that are known as ground level enhancements (GLEs). Recent studies on the first GLE event (GLE71 2012 May 17 01:50 UT) of solar cycle 24 suggested that CME-driven shock played a leading role in causing the event. To verify this claim, we have made an effort to interpret the GLE71 concurrent shock wave. For this, we have deduced the possible speed and height of the shock wave in terms of the frequency (MHz) of the solar radio type II burst and its drift rate (MHz min{sup –1}), and studied the temporal evolution of the particle intensity profiles at different heights of the solar corona. For a better perception of the particle acceleration in the shock, we have studied the solar radio type II burst with concurrent solar radio and electron fluxes. When the particle intensity profiles are necessarily shifted in time at ∼1 AU, it is found that the growth phases of the electron and cosmic ray intensity fluxes are strongly correlated (>0.91; ≥0.87) with the frequency drift rate of the type II burst, which is also consistent with the intensive particle accelerations at upper coronal heights (∼≥0.80 R {sub S} < 1.10 R {sub S}). Thus, we conclude that the CME-driven shock was possibly capable of producing the high-energy particle event. However, since the peaks of some flare components are found to be strongly associated with the fundamental phase of the type II burst, the preceding flare is supposed to contribute to the shock acceleration process.

  2. A cluster analysis of neuronal activity in the dorsal premotor cortical area for neuroprosthetic control.

    PubMed

    Ye, N; Roontiva, A; He, J

    2008-01-01

    With the use of the neuronal data acquisition technology, millisecond-level multi-electrode data from several regions of the premotor area were obtained from two rhesus monkeys trained to perform arm-reach tasks with visual cues in virtual reality. In each trial, animals were required to select and perform one of the four possible arm reaching movements to the target on the top-left or top-right of the virtual reality space. They were also required to decide whether they would move their arms straight to the target or curve them in order to avoid the obstacle that was presented. After the acquired neuronal signals were processed, unsupervised Hierarchical clustering and K-means clustering were performed to uncover the similarity and difference in the average firing rate of spike train data between neurons and phases for each experiment condition. The clustering results indicate the similarity of neuronal data in the movement planning and actual movement phases, and the difference of such data from the data in information processing phases. Furthermore, the clustering results show that when the target location is on the right, the move planning started earlier. The analysis of variance (ANOVA) on the neuronal data confirms the results from the hierarchical clustering.

  3. The Driving Magnetic Field and Reconnection in CME/Flare Eruptions and Coronal Jets

    NASA Technical Reports Server (NTRS)

    Moore, Ronald L.

    2010-01-01

    Signatures of reconnection in major CME (coronal mass ejection)/flare eruptions and in coronal X-ray jets are illustrated and interpreted. The signatures are magnetic field lines and their feet that brighten in flare emission. CME/flare eruptions are magnetic explosions in which: 1. The field that erupts is initially a closed arcade. 2. At eruption onset, most of the free magnetic energy to be released is not stored in field bracketing a current sheet, but in sheared field in the core of the arcade. 3. The sheared core field erupts by a process that from its start or soon after involves fast "tether-cutting" reconnection at an initially small current sheet low in the sheared core field. If the arcade has oppositely-directed field over it, the eruption process from its start or soon after also involves fast "breakout" reconnection at an initially small current sheet between the arcade and the overarching field. These aspects are shown by the small area of the bright field lines and foot-point flare ribbons in the onset of the eruption. 4. At either small current sheet, the fast reconnection progressively unleashes the erupting core field to erupt with progressively greater force. In turn, the erupting core field drives the current sheet to become progressively larger and to undergo progressively greater fast reconnection in the explosive phase of the eruption, and the flare arcade and ribbons grow to become comparable to the pre-eruption arcade in lateral extent. In coronal X-ray jets: 1. The magnetic energy released in the jet is built up by the emergence of a magnetic arcade into surrounding unipolar "open" field. 2. A simple jet is produced when a burst of reconnection occurs at the current sheet between the arcade and the open field. This produces a bright reconnection jet and a bright reconnection arcade that are both much smaller in diameter that the driving arcade. 3. A more complex jet is produced when the arcade has a sheared core field and undergoes an

  4. Direct Comparison of a Solar Moreton Wave, EUV Wave and CME (Preprint)

    DTIC Science & Technology

    2013-10-30

    Patsourakos, S. & Vourlidas , A. 2009, Astrophys. J. Letters, 700, L182 —. 2012, Solar Phys., 281, 187 Patsourakos, S., Vourlidas , A., Wang, Y. M., Stenborg...Physics of Approved for public release; distribution is unlimited. 12 the Solar Corona , ed. C. J. Macris, 156 Temmer, M., Veronig, A. M., Gopalswamy...AFRL-RV-PS- AFRL-RV-PS- TP-2014-0004 TP-2014-0004 DIRECT COMPARISON OF A SOLAR MORETON WAVE, EUV WAVE AND CME (PREPRINT) S. M. White, et al. 30

  5. Comparison of the WSA-ENLIL model with three CME cone types

    NASA Astrophysics Data System (ADS)

    Jang, Soojeong; Moon, Y.; Na, H.

    2013-07-01

    We have made a comparison of the CME-associated shock propagation based on the WSA-ENLIL model with three cone types using 29 halo CMEs from 2001 to 2002. These halo CMEs have cone model parameters as well as their associated interplanetary (IP) shocks. For this study we consider three different cone types (an asymmetric cone model, an ice-cream cone model and an elliptical cone model) to determine 3-D CME parameters (radial velocity, angular width and source location), which are the input values of the WSA-ENLIL model. The mean absolute error (MAE) of the arrival times for the asymmetric cone model is 10.6 hours, which is about 1 hour smaller than those of the other models. Their ensemble average of MAE is 9.5 hours. However, this value is still larger than that (8.7 hours) of the empirical model of Kim et al. (2007). We will compare their IP shock velocities and densities with those from ACE in-situ measurements and discuss them in terms of the prediction of geomagnetic storms.Abstract (2,250 Maximum Characters): We have made a comparison of the CME-associated shock propagation based on the WSA-ENLIL model with three cone types using 29 halo CMEs from 2001 to 2002. These halo CMEs have cone model parameters as well as their associated interplanetary (IP) shocks. For this study we consider three different cone types (an asymmetric cone model, an ice-cream cone model and an elliptical cone model) to determine 3-D CME parameters (radial velocity, angular width and source location), which are the input values of the WSA-ENLIL model. The mean absolute error (MAE) of the arrival times for the asymmetric cone model is 10.6 hours, which is about 1 hour smaller than those of the other models. Their ensemble average of MAE is 9.5 hours. However, this value is still larger than that (8.7 hours) of the empirical model of Kim et al. (2007). We will compare their IP shock velocities and densities with those from ACE in-situ measurements and discuss them in terms of the

  6. Copper speciation in sulfidic solutions at low sulfur activity: Further evidence for cluster complexes?

    NASA Astrophysics Data System (ADS)

    Thompson, Richard A.; Helz, George R.

    1994-07-01

    The solubility of two as0-buffering assemblages in the Cu-S system have been studied: chalcocite-djurleite (Cc-Dj) and anilite-covellite (An-Cv). Ion activity products, [Cu +]HS -] 1/2[H +] - 1/2 (25°C, I = 0) at equilibrium, derived from solubility measurements in penicillamine solutions, are 10 -17.01 ± 0.05 (Cc-Dj) and 10 -17.14 ± 0.10 (An-Cv), from which ΔG° f = -82.11 kJ/mol for Cc and -74.77 kJ/mol for An. In the An-Cv assemblage, aCu2S = 0.55 (2 σ = 0.2) vs. 1.00 in the Cc-containing assemblage. The difference in aCu2S between the two assemblages is used in a novel way to estimate stoichiometry of Cu-HS complexes. The solubility of both assemblages (0.7-0.01 M NaHS, pH 7-12.5, 25°C) can be fit with a model incorporating the same two chemical species, one containing an odd number of Cu atoms (Cu(HS) 2-3, CU 3S 4H 2-3, or a higher multimer) and the other containing an even number of Cu atoms (Cu 2S(HS) 22-, Cu 4S 4H 22-, etc.). The trimer-tetramer model fits the combined data for the two assemblages distinctly better than the monomer-dimer model, but this result is very sensitive to uncertainty in aCu2S. Along with EXAFS results, the weight of the evidence favors small cluster complexes (2-5 Cu atoms), but is inconclusive at the present level of resolution. Multimers can be rationalized because condensation of metal-centered monomers to clusters provides a means for soft acid/base elements to maintain favored coordination geometries at low ligand to metal ratios. Based on the fitting methods developed here, previous covellite solubility data from this laboratory are reinterpreted in terms of Cu 2S 2(HS) 33-, Cu 2S 3)(S 4) 2-, and Cu(S 9)S 10) 3-; the last of these could also be represented by the trimer, Cu 3(S 7) 33-, which is homologous with a known complex. With the measured equilibrium constants, the speciation of Cu in the sulfidic zone of the Black Sea is calculated. Covellite is the stable Cu-S mineral, but the sulfidic water column is vastly

  7. Interaction of potassium cyanide with the [Ni-4Fe-5S] active site cluster of CO dehydrogenase from Carboxydothermus hydrogenoformans.

    PubMed

    Ha, Seung-Wook; Korbas, Malgorzata; Klepsch, Mirjam; Meyer-Klaucke, Wolfram; Meyer, Ortwin; Svetlitchnyi, Vitali

    2007-04-06

    The Ni-Fe carbon monoxide (CO) dehydrogenase II (CODHII(Ch)) from the anaerobic CO-utilizing hydrogenogenic bacterium Carboxydothermus hydrogenoformans catalyzes the oxidation of CO, presumably at the Ni-(micro(2)S)-Fe1 subsite of the [Ni-4S-5S] cluster in the active site. The CO oxidation mechanism proposed on the basis of several CODHII(Ch) crystal structures involved the apical binding of CO at the nickel ion and the activation of water at the Fe1 ion of the cluster. To understand how CO interacts with the active site, we have studied the reactivity of the cluster with potassium cyanide and analyzed the resulting type of nickel coordination by x-ray absorption spectroscopy. Cyanide acts as a competitive inhibitor of reduced CODHII(Ch) with respect to the substrate CO and is therefore expected to mimic the substrate. It inhibits the enzyme reversibly, forming a nickel cyanide. In this reaction, one of the four square-planar sulfur ligands of nickel is replaced by the carbon atom of cyanide, suggesting removal of the micro(2)S from the Ni-(micro(2)S)-Fe1 subsite. Upon reactivation of the inhibited enzyme, cyanide is released, and the square-planar coordination of nickel by 4S ligands is recovered, which includes the reformation of the Ni-(micro(2)S)-Fe1 bridge. The results are summarized in a model of the CO oxidation mechanism at the [Ni-4Fe-5S] active site cluster of CODHII(Ch) from C. hydrogenoformans.

  8. Magnetohydrodynamic simulation of interplanetary propagation of multiple coronal mass ejections with internal magnetic flux rope (SUSANOO-CME)

    NASA Astrophysics Data System (ADS)

    Shiota, D.; Kataoka, R.

    2016-02-01

    Coronal mass ejections (CMEs) are the most important drivers of various types of space weather disturbance. Here we report a newly developed magnetohydrodynamic (MHD) simulation of the solar wind, including a series of multiple CMEs with internal spheromak-type magnetic fields. First, the polarity of the spheromak magnetic field is set as determined automatically according to the Hale-Nicholson law and the chirality law of Bothmer and Schwenn. The MHD simulation is therefore capable of predicting the time profile of the southward interplanetary magnetic field at the Earth, in relation to the passage of a magnetic cloud within a CME. This profile is the most important parameter for space weather forecasts of magnetic storms. In order to evaluate the current ability of our simulation, we demonstrate a test case: the propagation and interaction process of multiple CMEs associated with the highly complex active region NOAA 10486 in October to November 2003, and present the result of a simulation of the solar wind parameters at the Earth during the 2003 Halloween storms. We succeeded in reproducing the arrival at the Earth's position of a large amount of southward magnetic flux, which is capable of causing an intense magnetic storm. We find that the observed complex time profile of the solar wind parameters at the Earth could be reasonably well understood by the interaction of a few specific CMEs.

  9. Spitzer Clusters

    NASA Astrophysics Data System (ADS)

    Krick, Kessica

    This proposal is a specific response to the strategic goal of NASA's research program to "discover how the universe works and explore how the universe evolved into its present form." Towards this goal, we propose to mine the Spitzer archive for all observations of galaxy groups and clusters for the purpose of studying galaxy evolution in clusters, contamination rates for Sunyaev Zeldovich cluster surveys, and to provide a database of Spitzer observed clusters to the broader community. Funding from this proposal will go towards two years of support for a Postdoc to do this work. After searching the Spitzer Heritage Archive, we have found 194 unique galaxy groups and clusters that have data from both the Infrared array camera (IRAC; Fazio et al. 2004) at 3.6 - 8 microns and the multiband imaging photometer for Spitzer (MIPS; Rieke et al. 2004) at 24microns. This large sample will add value beyond the individual datasets because it will be a larger sample of IR clusters than ever before and will have sufficient diversity in mass, redshift, and dynamical state to allow us to differentiate amongst the effects of these cluster properties. An infrared sample is important because it is unaffected by dust extinction while at the same time is an excellent measure of both stellar mass (IRAC wavelengths) and star formation rate (MIPS wavelengths). Additionally, IRAC can be used to differentiate star forming galaxies (SFG) from active galactic nuclei (AGN), due to their different spectral shapes in this wavelength regime. Specifically, we intend to identify SFG and AGN in galaxy groups and clusters. Groups and clusters differ from the field because the galaxy densities are higher, there is a large potential well due mainly to the mass of the dark matter, and there is hot X-ray gas (the intracluster medium; ICM). We will examine the impact of these differences in environment on galaxy formation by comparing cluster properties of AGN and SFG to those in the field. Also, we will

  10. Communication activity in a social network: relation between long-term correlations and inter-event clustering.

    PubMed

    Rybski, Diego; Buldyrev, Sergey V; Havlin, Shlomo; Liljeros, Fredrik; Makse, Hernán A

    2012-01-01

    Human communication in social networks is dominated by emergent statistical laws such as non-trivial correlations and temporal clustering. Recently, we found long-term correlations in the user's activity in social communities. Here, we extend this work to study the collective behavior of the whole community with the goal of understanding the origin of clustering and long-term persistence. At the individual level, we find that the correlations in activity are a byproduct of the clustering expressed in the power-law distribution of inter-event times of single users, i.e. short periods of many events are separated by long periods of no events. On the contrary, the activity of the whole community presents long-term correlations that are a true emergent property of the system, i.e. they are not related to the distribution of inter-event times. This result suggests the existence of collective behavior, possibly arising from nontrivial communication patterns through the embedding social network.

  11. Activation and Transformation of Ethane by Au2 VO3(+) Clusters with Closed-Shell Electronic Structures.

    PubMed

    Li, Ya-Ke; Li, Zi-Yu; Zhao, Yan-Xia; Liu, Qing-Yu; Meng, Jing-Heng; He, Sheng-Gui

    2016-01-26

    The study of chemical reactions between gold-containing heteronuclear oxide clusters and small molecules can provide molecular level mechanisms to understand the excellent activity of gold supported by metal oxides. While the promotion role of gold in alkane transformation was identified in the clusters with atomic oxygen radicals (O(-.)), the role of gold in the systems without O(-.) is not clear. By employing mass spectrometry and quantum chemistry calculations, the reactivity of Au2 VO3(+) clusters with closed-shell electronic structures toward ethane was explored. Both the dehydrogenation and ethene elimination channels were identified. It is gold rather than oxygen species initiating the C-H activation. The Au-Au dimer formed during the reactions plays important roles in ethane transformation. The reactivity comparison between Au2 VO3(+) and bare Au2(+) demonstrates that Au2 VO3(+) not only retains the property of bare Au2(+) that transforming ethane to dihydrogen, but also exhibits new functions in converting ethane to ethene, which reveals the importance of the composite system. This study provides a further understanding of the reactivity of metal oxide supported gold in alkane activation and transformation.

  12. Identification of a Cellobiose Utilization Gene Cluster with Cryptic β-Galactosidase Activity in Vibrio fischeri▿

    PubMed Central

    Adin, Dawn M.; Visick, Karen L.; Stabb, Eric V.

    2008-01-01

    Cellobiose utilization is a variable trait that is often used to differentiate members of the family Vibrionaceae. We investigated how Vibrio fischeri ES114 utilizes cellobiose and found a cluster of genes required for growth on this β-1,4-linked glucose disaccharide. This cluster includes genes annotated as a phosphotransferase system II (celA, celB, and celC), a glucokinase (celK), and a glucosidase (celG). Directly downstream of celCBGKA is celI, which encodes a LacI family regulator that represses cel transcription in the absence of cellobiose. When the celCBGKAI gene cluster was transferred to cellobiose-negative strains of Vibrio and Photobacterium, the cluster conferred the ability to utilize cellobiose. Genomic analyses of naturally cellobiose-positive Vibrio species revealed that V. salmonicida has a homolog of the celCBGKAI cluster, but V. vulnificus does not. Moreover, bioinformatic analyses revealed that CelG and CelK share the greatest homology with glucosidases and glucokinases in the phylum Firmicutes. These observations suggest that distinct genes for cellobiose utilization have been acquired by different lineages within the family Vibrionaceae. In addition, the loss of the celI regulator, but not the structural genes, attenuated the ability of V. fischeri to compete for colonization of its natural host, Euprymna scolopes, suggesting that repression of the cel gene cluster is important in this symbiosis. Finally, we show that the V. fischeri cellobioase (CelG) preferentially cleaves β-d-glucose linkages but also cleaves β-d-galactose-linked substrates such as 5-bromo-4-chloro-3-indolyl-β-d-galactoside (X-gal), a finding that has important implications for the use of lacZ as a marker or reporter gene in V. fischeri. PMID:18487409

  13. DESTABILIZATION OF A SOLAR PROMINENCE/FILAMENT FIELD SYSTEM BY A SERIES OF EIGHT HOMOLOGOUS ERUPTIVE FLARES LEADING TO A CME

    SciTech Connect

    Panesar, Navdeep K.; Moore, Ronald L.; Sterling, Alphonse C.; Innes, Davina E.

    2015-09-20

    Homologous flares are flares that occur repetitively in the same active region, with similar structure and morphology. A series of at least eight homologous flares occurred in active region NOAA 11237 over 2011 June 16–17. A nearby prominence/filament was rooted in the active region, and situated near the bottom of a coronal cavity. The active region was on the southeast solar limb as seen from the Solar Dynamics Observatory/Atmospheric Imaging Assembly, and on the disk as viewed from the Solar TErrestrial RElations Observatory/EUVI-B. The dual perspective allows us to study in detail behavior of the prominence/filament material entrained in the magnetic field of the repeatedly erupting system. Each of the eruptions were mainly confined, but expelled hot material into the prominence/filament cavity system (PFCS). The field carrying and containing the ejected hot material interacted with the PFCS and caused it to inflate, resulting in a step-wise rise of the PFCS approximately in step with the homologous eruptions. The eighth eruption triggered the PFCS to move outward slowly, accompanied by a weak coronal dimming. As this slow PFCS eruption was underway, a final “ejective” flare occurred in the core of the active region, resulting in strong dimming in the EUVI-B images and expulsion of a coronal mass ejection (CME). A plausible scenario is that the repeated homologous flares could have gradually destabilized the PFCS, and its subsequent eruption removed field above the acitive region and in turn led to the ejective flare, strong dimming, and CME.

  14. The evolution of dust-obscured star formation activity in galaxy clusters relative to the field over the last 9 billion years

    NASA Astrophysics Data System (ADS)

    Alberts, Stacey; Pope, Alexandra; Brodwin, Mark; Atlee, David W.; Lin, Yen-Ting; Dey, Arjun; Eisenhardt, Peter R. M.; Gettings, Daniel P.; Gonzalez, Anthony H.; Jannuzi, Buell T.; Mancone, Conor L.; Moustakas, John; Snyder, Gregory F.; Stanford, S. Adam; Stern, Daniel; Weiner, Benjamin J.; Zeimann, Gregory R.

    2014-01-01

    We compare the star formation (SF) activity in cluster galaxies to the field from z = 0.3 to 1.5 using Herschel Spectral and Photometric Imaging REceiver 250 μm imaging and utilizing 274 clusters from the IRAC Shallow Cluster Survey (ISCS). These clusters were selected as rest-frame near-infrared overdensities over the 9 square degree Boötes field. This sample allows us to quantify the evolution of SF in clusters over a long redshift baseline without bias against active cluster systems. Using a stacking analysis, we determine the average star formation rates (SFRs) and specific SFRs (SSFR = SFR/M⋆) of stellar mass-limited (M ≥ 1.3 × 1010 M⊙), statistical samples of cluster and field galaxies, probing both the star-forming and quiescent populations. We find a clear indication that the average SF in cluster galaxies is evolving more rapidly than in the field, with field SF levels at z ≳ 1.2 in the cluster cores (r < 0.5 Mpc), in good agreement with previous ISCS studies. By quantifying the SF in cluster and field galaxies as an exponential function of cosmic time, we determine that cluster galaxies are evolving approximately two times faster than the field. Additionally, we see enhanced SF above the field level at z ˜ 1.4 in the cluster outskirts (r > 0.5 Mpc). These general trends in the cluster cores and outskirts are driven by the lower mass galaxies in our sample. Blue cluster galaxies have systematically lower SSFRs than blue field galaxies, but otherwise show no strong differential evolution with respect to the field over our redshift range. This suggests that the cluster environment is both suppressing the SF in blue galaxies on long time-scales and rapidly transitioning some fraction of blue galaxies to the quiescent galaxy population on short time-scales. We argue that our results are consistent with both strangulation and ram pressure stripping acting in these clusters, with merger activity occurring in the cluster outskirts.

  15. Nuclear respiratory factors 1 and 2 utilize similar glutamine-containing clusters of hydrophobic residues to activate transcription.

    PubMed Central

    Gugneja, S; Virbasius, C M; Scarpulla, R C

    1996-01-01

    Nuclear respiratory factors 1 and 2 (NRF-1 and NRF-2) are ubiquitous transcription factors that have been implicated in the control of nuclear genes required for respiration, heme biosynthesis, and mitochondrial DNA transcription and replication. Recently, both factors have been found to be major transcriptional determinants for a subset of these genes that define a class of simple promoters involved in respiratory chain expression. Here, functional domains required for transactivation by NRF-1 have been defined. An atypical nuclear localization signal resides in a conserved amino-terminal region adjacent to the DNA binding domain and consists of functionally redundant clusters of basic residues. A second domain in the carboxy-terminal half of the molecule is necessary for transcriptional activation. The activation domains of both NRF-1 and NRF-2 were extensively characterized by both deletion and alanine substitution mutagenesis. The results show that these domains do not fall into known classes defined by a preponderance of amino acid residues, including glutamines, prolines, or isoleucines, as found in other eukaryotic activators. Rather, in both factors, a series of tandemly arranged clusters of hydrophobic amino acids were required for activation. Although all of the functional clusters contain glutamines, the glutamines differ from the hydrophobic residues in that they are inconsequential for activation. Unlike the NRF-2 domain, which contains its essential hydrophobic motifs within 40 residues, the NRF-1 domain spans about 40% of the molecule and appears to have a bipartite structure. The findings indicate that NRF-1 and NRF-2 utilize similar hydrophobic structural motifs for activating transcription. PMID:8816484

  16. The Width of a Solar Coronal Mass Ejection and the Source of the Driving Magnetic Explosion: A Test of the Standard Scenario for CME Production

    NASA Technical Reports Server (NTRS)

    Moore, Ronald L.; Sterling, Alphonse C.; Suess, Steven T.

    2007-01-01

    We show that the strength (B(sub F1are)) of the magnetic field in the area covered by the flare arcade following a CME-producing ejective solar eruption can be estimated from the final angular width (Final Theta(sub CME)) of the CME in the outer corona and the final angular width (Theta(sub Flare)) of the flare arcade: B(sub Flare) approx. equals 1.4[(Final Theta(sub CME)/Theta(sub Flare)] (exp 2)G. We assume (1) the flux-rope plasmoid ejected from the flare site becomes the interior of the CME plasmoid; (2) in the outer corona (R > 2 (solar radius)) the CME is roughly a "spherical plasmoid with legs" shaped like a lightbulb; and (3) beyond some height in or below the outer corona the CME plasmoid is in lateral pressure balance with the surrounding magnetic field. The strength of the nearly radial magnetic field in the outer corona is estimated from the radial component of the interplanetary magnetic field measured by Ulysses. We apply this model to three well-observed CMEs that exploded from flare regions of extremely different size and magnetic setting. One of these CMEs was an over-and-out CME, that is, in the outer corona the CME was laterally far offset from the flare-marked source of the driving magnetic explosion. In each event, the estimated source-region field strength is appropriate for the magnetic setting of the flare. This agreement (1) indicates that CMEs are propelled by the magnetic field of the CME plasmoid pushing against the surrounding magnetic field; (2) supports the magnetic-arch-blowout scenario for over-and-out CMEs; and (3) shows that a CME's final angular width in the outer corona can be estimated from the amount of magnetic flux covered by the source-region flare arcade.

  17. The Width of a Solar Coronal Mass Ejection and the Source of the Driving Magnetic Explosion: A Test of the Standard Scenario for CME Production

    NASA Astrophysics Data System (ADS)

    Moore, Ronald L.; Sterling, Alphonse C.; Suess, Steven T.

    2007-10-01

    We show that the strength (BFlare) of the magnetic field in the area covered by the flare arcade following a CME-producing ejective solar eruption can be estimated from the final angular width (Final θCME) of the CME in the outer corona and the final angular width (θFlare) of the flare arcade: BFlare~1.4[(Final θCME)/θFlare2 G. We assume (1) the flux-rope plasmoid ejected from the flare site becomes the interior of the CME plasmoid; (2) in the outer corona (R>2 Rsolar) the CME is roughly a ``spherical plasmoid with legs'' shaped like a lightbulb; and (3) beyond some height in or below the outer corona the CME plasmoid is in lateral pressure balance with the surrounding magnetic field. The strength of the nearly radial magnetic field in the outer corona is estimated from the radial component of the interplanetary magnetic field measured by Ulysses. We apply this model to three well-observed CMEs that exploded from flare regions of extremely different size and magnetic setting. One of these CMEs was an over-and-out CME, that is, in the outer corona the CME was laterally far offset from the flare-marked source of the driving magnetic explosion. In each event, the estimated source-region field strength is appropriate for the magnetic setting of the flare. This agreement (1) indicates that CMEs are propelled by the magnetic field of the CME plasmoid pushing against the surrounding magnetic field; (2) supports the magnetic-arch-blowout scenario for over-and-out CMEs; and (3) shows that a CME's final angular width in the outer corona can be estimated from the amount of magnetic flux covered by the source-region flare arcade.

  18. Plasma properties from the multi-wavelength analysis of the November 1st 2003 CME/shock event.

    PubMed

    Benna, Carlo; Mancuso, Salvatore; Giordano, Silvio; Gioannini, Lorenzo

    2013-05-01

    The analysis of the spectral properties and dynamic evolution of a CME/shock event observed on November 1st 2003 in white-light by the LASCO coronagraph and in the ultraviolet by the UVCS instrument operating aboard SOHO, has been performed to compute the properties of some important plasma parameters in the middle corona below about 2R ⊙. Simultaneous observations obtained with the MLSO/Mk4 white-light coronagraph, providing both the early evolution of the CME expansion in the corona and the pre-shock electron density profile along the CME front, were also used to study this event. By combining the above information with the analysis of the metric type II radio emission detected by ground-based radio spectrographs, we finally derive estimates of the values of the local Alfvén speed and magnetic field strength in the solar corona.

  19. Cavitation bubble cluster activity in the breakage of stones by shock wave lithotripsy

    NASA Astrophysics Data System (ADS)

    Pishchalnikov, Yuriy A.; Sapozhnikov, Oleg A.; Williams, James C.; Evan, Andrew P.; McAteer, James A.; Cleveland, Robin O.; Colonius, Tim; Bailey, Michael R.; Crum, Lawrence A.

    2002-05-01

    High-speed photography was used to investigate cavitation at the surface of artificial and natural kidney stones during exposure to lithotripter shock pulses in vitro. It was observed that numerous individual bubbles formed over virtually the entire surface of the stone, but these bubbles did not remain independent and combined with one another to form larger bubbles and bubble clusters. The movement of bubble boundaries across the surface left portions of the stone bubble free. The biggest cluster grew to envelop the proximal end of the stone (6.5 mm diameter artificial stone) then collapsed to a small spot that over multiple shots formed a crater in that face of the stone. The bubble clusters that developed at the sides of stones tended to align along fractures and to collapse into these cracks. High-speed camera images demonstrated that cavitation-mediated damage to stones was due not to the action of solitary, individual bubbles, but to the forceful collapse of dynamic clusters of bubbles. [Work supported by NIH DK43881.

  20. Near infrared emission from molecule-like silver clusters confined in zeolite A assisted by thermal activation

    SciTech Connect

    Lin, Hui Imakita, Kenji; Rong Gui, Sa Chu; Fujii, Minoru

    2014-07-07

    Strong and broad near infrared (NIR) emission peaked at ~855 nm upon optimal excitation at 342 nm has been observed from molecule-like silver clusters (MLSCs) confined in zeolite A assisted by thermal activation. To the best of our knowledge, this is the first observation of NIR emission peaked at longer than 800 nm from MLSCs confined in solid matrices. The decay time of the NIR emission is over 10 μs, which indicates that it is a spin-forbidden transition. The ~855 nm NIR emission shows strong dependence on the silver loading concentration and the thermal activation temperature.

  1. Advancing Water and Water-Energy-Food Cluster Activities within Future Earth

    NASA Astrophysics Data System (ADS)

    Lawford, R. G.; Bhaduri, A.; Pahl-Wostl, C.

    2014-12-01

    In building its emerging program, Future Earth has encouraged former Earth System Science Partnership (ESSP) projects to redefine their objectives, priorities and problem approaches so they are aligned with those of Future Earth. These new projects will be characterized by more integrated applications of natural and social sciences as well as dialogue and science integrated across disciplinary boundaries to address a wide range of environmental and social issues. The Global Water System Project (GWSP) has had a heritage of integrating natural and social sciences, and recently started to also look at issues within the Water-Energy-Food (WEF) cluster using similar integrated approaches. As part of the growth of the scientific elements of this cluster, GWSP has approached Future Earth opportunities by addressing the sustainability for Water, Energy, and Food through integrated water information and improved governance.In this presentation the approaches being considered for promoting integration in both water and the WEF cluster will be discussed. In particular, potential contributions of Future Earth to research related to the use and management of water and to issues and science underpinning the W-E-F nexus deliberations will be identified. In both cases the increasing ability to utilize Earth observations and big data will advance this research agenda. In addition, the better understanding of the implications of governance structures in addressing these issues and the options for harmonizing the use of scientific knowledge and technological advances will be explored. For example, insights gained from water management studies undertaken within the GWSP are helping to focus plans for a "sustainable water futures" project and a WEF cluster within Future Earth. The potential role of the Sustainable Development Goals in bringing together the monitoring and science capabilities, and understanding of governance approaches, will be discussed as a framework for facilitating

  2. Ion acceleration at CME-driven shocks near the Earth and the Sun

    NASA Astrophysics Data System (ADS)

    Desai, Mihir; Dayeh, Maher; Ebert, Robert; Smith, Charles; Mason, Glenn; Li, G.

    2012-11-01

    We compare the behavior of heavy ion spectra during an Energetic Storm Particle (ESP) event that exhibited clear evidence of wave excitation with that observed during an intense, large gradual Solar Energetic Particle (SEP) event in which the associated <0.2 MeV/nucleon ions are delayed >12 hr. We interpret that the ESP event is an example of the first-order Fermi acceleration process where enhancements in the magnetic field power spectral densities around local ion cyclotron frequency νpc indicate the presence of Alfvén waves excited by accelerated protons streaming away from the in-situ interplanetary shock. The softening or unfolding of the CNO energy spectrum below ˜200 keV/nucleon and the systematic organization of the Fe and O spectral roll-overs with the E/q ratio during the ESP event are likely due to M/Q-dependent trapping and scattering of the heavy ions by the proton-excited waves. Based on striking similarities in the spectral behavior observed upstream of both, the ESP and the SEP event, we suggest that coupling between proton-generated Alfvén waves and energetic ions is also operating at the distant CME shock during the large, gradual SEP event, thereby providing us with a new, powerful tool to remotely probe the roles of shock geometries and wave-particle interactions at near-Sun CME-driven shocks.

  3. Ion acceleration at CME-driven shocks near the Earth and the Sun

    SciTech Connect

    Desai, Mihir; Dayeh, Maher; Ebert, Robert; Smith, Charles; Mason, Glenn; Li, G.

    2012-11-20

    We compare the behavior of heavy ion spectra during an Energetic Storm Particle (ESP) event that exhibited clear evidence of wave excitation with that observed during an intense, large gradual Solar Energetic Particle (SEP) event in which the associated <0.2 MeV/nucleon ions are delayed >12 hr. We interpret that the ESP event is an example of the first-order Fermi acceleration process where enhancements in the magnetic field power spectral densities around local ion cyclotron frequency {nu}{sub pc} indicate the presence of Alfven waves excited by accelerated protons streaming away from the in-situ interplanetary shock. The softening or unfolding of the CNO energy spectrum below {approx}200 keV/nucleon and the systematic organization of the Fe and O spectral roll-overs with the E/q ratio during the ESP event are likely due to M/Q-dependent trapping and scattering of the heavy ions by the proton-excited waves. Based on striking similarities in the spectral behavior observed upstream of both, the ESP and the SEP event, we suggest that coupling between proton-generated Alfven waves and energetic ions is also operating at the distant CME shock during the large, gradual SEP event, thereby providing us with a new, powerful tool to remotely probe the roles of shock geometries and wave-particle interactions at near-Sun CME-driven shocks.

  4. The Divergence of CME and Sunspot Number Rates During Solar Cycle 24

    NASA Astrophysics Data System (ADS)

    Webb, David F.; St. Cyr, Orville Chris; Xie, Hong; Kuchar, Thomas Andrew

    2014-06-01

    In the previous three solar cycles the frequency of occurrence of CMEs observed in white light has closely tracked the solar cycle in both phase and amplitude, varying by an order of magnitude over the cycle. LASCO has now observed the entire solar Cycle 23 and continues to observe through the current rise and maximum phases of Cycle 24. Cycle 23 had an unusually long decline and extended minimum. During this period we have been able to image and count CMEs in the heliosphere, and can determine rates from both LASCO and STEREO SECCHI (since 2007) coronagraphs and from the Solar Mass Ejection Imager (SMEI - since 2003) and the SECCHI Heliospheric Imagers in the heliosphere. Manual rates estimated by observers are now supplemented by counts from identifications made by automatic programs, such as contained in the SEEDS, CACTus and ARTEMIS catalogs. Since the cycle 23/24 minimum, the CME and sunspot number rates have diverged, with similar cycle 23/24 rise and peak CME rates but much lower SSN rates in this cycle. We will discuss these rate estimates and their implications for the evolution of the global solar magnetic field.

  5. PROPAGATION AND EVOLUTION OF THE JUNE 1st 2008 CME IN THE INTERPLANETARY MEDIUM

    NASA Astrophysics Data System (ADS)

    Nieves-Chinchilla, T.; Lamb, D. A.; Davila, J. M.; Vinas, A. F.; Moestl, C.; Hidalgo, M. A.; Farrugia, C. J.; Malandraki, O.; Dresing, N.; Gómez-Herrero, R.

    2009-12-01

    In this work we present a study of the coronal mass ejection (CME) of June 1st of 2008 in the interplanetary medium. This event has been extensively studied by others because of its favorable geometry and the possible consequences of its peculiar initiation for space weather forecasting. We show an analysis of the evolution of the CME in the interplanetary medium in order to shed some light on the propagation mechanism of the ICME. We have determined the typical shock associated characteristics of the ICME in order to understand the propagation properties. Using two different non force-free models of the magnetic cloud allows us to incorporate expansion of the cloud. We use in-situ measurements from STEREO B/IMPACT to characterize the ICME. In addition, we use images from STEREO A/SECCHI-HI to analyze the propagation and visual evolution of the associated flux rope in the interplanetary medium. We compare and contrast these observations with the results of the analytical models.

  6. Physical and Dynamical Properties of a Post-CME Current Sheet

    NASA Astrophysics Data System (ADS)

    Ko, Y.; Raymond, J. C.; Lin, J.; Lawrence, G.; Li, J.; Fludra, A.

    2002-05-01

    On January 8, 2002 following a CME at the east limb, thin threads of materials are formed, as seen in the white light corona, with continuous outflow that lasted more than two days as it gradually moved toward the north. We interprete it as a current sheet left behind the CME. UV/EUV spectra were taken on January 10 by SOHO/UVCS and SOHO/CDS as part of the SOHO JOP 151. The UV spectra at 1.6 Ro show a small region (< 70 arcsec) of depleted low temperature emission and a high temperature region where lines from highly ionized ions such as Fe+17 and Ca+13 are observed. We combine the data from UVCS, LASCO, EIT and CDS on SOHO to derive the physical properties (electron temperature, electron density and elemental abundances) and dynamical properties (outflow speed and acceleration) of these regions which is likely to be associated with this current sheet. Implications on its formation and magnetic properties are discussed.

  7. Human immunodeficiency virus risk awareness. Evaluation of a CME program for family physicians.

    PubMed Central

    Martin, F.; Murphy, P.

    1997-01-01

    OBJECTIVE: To determine whether a continuing medical education (CME) program on AIDS risk awareness would enhance physicians' knowledge of HIV and AIDS, their "intent-to-change" practice behaviour, and their ability to integrate their knowledge into hypothetical clinical scenarios; and to identify participant characteristics that affect their knowledge of risks and how they intend to behave regarding HIV testing. DESIGN: Before-and-after study using a questionnaire. SETTING: The city of Winnipeg and 16 rural communities in Manitoba. PARTICIPANTS: Convenience sample of physicians who attended the AIDS Risk Awareness Program and completed a questionnaire before the presentation (96 of 142 eligible physicians). MAIN OUTCOME MEASURE: A two-point or greater change on a Likert scale in the desired direction for each questionnaire item. RESULTS: Physicians were classified as sensitized or less sensitized depending on previous experience with HIV-positive and AIDS patients. Less sensitized physicians significantly improved their scores in all three areas. Sensitized physicians and women physicians significantly improved their knowledge and reported more intent to ask patients routinely about HIV risk behaviours. Physicians' sex, age, religion, and years in practice had an effect on these improvements. CONCLUSIONS: The AIDS Risk Awareness Program was successful in improving physicians' knowledge, attitude to intent-to-change behaviour and ability to integrate knowledge into practice scenarios. Physicians with true learning needs benefited the most from the CME program. PMID:9266123

  8. Evaluation of standoff distance method to determine the coronal magnetic field using CME-driven shocks

    NASA Astrophysics Data System (ADS)

    Suresh, K.; Shanmugaraju, A.; Syed Ibrahim, M.

    2016-11-01

    We have analyzed the propagation characteristics of four limb coronal mass ejections (CMEs) with their shocks. These CMEs were observed in 18 frames up to 18 solar radii using LASCO white light images. Gopalswamy and Yashiro (Astrophys. J. 736:L17, 2011) introduced the standoff distance method (SOD) to find the magnetic field in the corona using CME-driven shock. In this paper, we have used this technique to determine the magnetic field strength and to study the propagation/shock formation condition of these CMEs at 18 different locations. Since the thickness of shock sheath (standoff distance or SOD) is not constant around CME, we estimate the shock parameters and their variation in large and small SOD regions of the shock. The Mach number ranges from 1.7 to 2.8 and Alfvén speed varies from 197 to 857 km s^{-1}. Finally, we estimate the magnetic field variation in the corona. The magnetic field strength ranges from 4.9 to 26.2 mG from 8.3 to 17.5 solar radii. The estimated magnetic field strength in this study is consistent with the literature value (7.6 to 45.8 mG from Gopalswamy and Yashiro (Astrophys. J. 736:L17, 2011), and 6 to 105 mG from Kim et al. (Astrophys. J. 746:118, 2012)) and it smoothly follows the general coronal magnetic field profile.

  9. Superposed epoch analysis of ion temperatures during CME- and CIR/HSS-driven storms

    NASA Astrophysics Data System (ADS)

    Keesee, A. M.; Scime, E. E.

    2012-12-01

    The NASA Two Wide-angle Imaging Neutral atom Spectrometers (TWINS) Mission provides a global view of the magnetosphere with near-continuous coverage. Utilizing a novel technique to calculate ion temperatures from the TWINS energetic neutral atom (ENA) measurements, we generate ion temperature maps of the magnetosphere. These maps can be used to study ion temperature evolution during geomagnetic storms. A superposed epoch analysis of the ion temperature evolution during 48 storms will be presented. Zaniewski et al. [2006] performed a superposed epoch analysis of ion temperatures by storm interval using data from the MENA instrument on the IMAGE mission, demonstrating significant dayside ion heating during the main phase. The TWINS measurements provide more continuous coverage and improved spatial and temporal resolution. Denton and Borovsky [2008] noted differences in ion temperature evolution at geosynchronous orbit between coronal mass ejection (CME)- and corotating interaction region (CIR)/high speed stream (HSS)- driven storms. Using our global ion temperature maps, we have found consistent results for select individual storms [Keesee et al., 2012]. We will present superposed epoch analyses for the subgroups of CME- and CIR/HSS-driven storms to compare global ion temperature evolution during the two types of storms.

  10. Comparison of CME and CIR driven geomagnetic storms using the artificial neural network model

    NASA Astrophysics Data System (ADS)

    Revallo, Milos; Valach, Fridrich; Hejda, Pavel; Bochnicek, Josef

    2016-04-01

    A model of geomagnetic storms based on the method of artificial neural networks (ANN) combined with an analytical approach is presented in the paper. Unlike our previous studies, here we focus on medium and weak geomagnetic storms caused by coronal mass ejections (CMEs) and those caused by corotating interaction regions (CIRs). As the model input, the hourly solar wind parameters measured by the ACE satellite at the libration point L1 are used. The time series of the Dst index is obtained as the model output. The simulated Dst index series is compared with the corresponding observatory data. The resulting Dst index series are inspected and typical features of CME and CIR driven storms are isolated. The model reliabilty is assessed using the skill scores, namely the correlation coefficient CC and the prediction efficiency PE. The general observation is that in the case of medium and weak geomagnetic storms the model performance is worse than in the case of intense geomagnetic storms studied in our previous paper. Due to more complex Dst index record, the model response for CIR driven storms is worse than in the case of CME driven storms.

  11. Multi-Wavelength Observations of an Unusual Impulsive Flare Associated with Cme

    NASA Astrophysics Data System (ADS)

    Uddin, Wahab; Jain, Rajmal; Yoshimura, Keiji; Chandra, Ramesh; Sakao, T.; Kosugi, T.; Joshi, Anita; Despande, M. R.

    2004-12-01

    We present the results of a detailed analysis of multi-wavelength observations of a very impulsive solar flare 1B/M6.7, which occurred on 10 March, 2001 in NOAA AR 9368 (N27 W42). The observations show that the flare is very impulsive with a very hard spectrum in HXR that reveal that non-thermal emission was most dominant. On the other hand, this flare also produced a type II radio burst and coronal mass ejections (CME), which are not general characteristics for impulsive flares. In Hα we observed bright mass ejecta (BME) followed by dark mass ejecta (DME). Based on the consistency of the onset times and directions of BME and CME, we conclude that these two phenomena are closely associated. It is inferred that the energy build-up took place due to photospheric reconnection between emerging positive parasitic polarity and predominant negative polarity, which resulted as a consequence of flux cancellation. The shear increased to >80° due to further emergence of positive parasitic polarity causing strongly enhanced cancellation of flux. It appears that such enhanced magnetic flux cancellation in a strongly sheared region triggered the impulsive flare.

  12. GRB2 Nucleates T Cell Receptor-Mediated LAT Clusters That Control PLC-γ1 Activation and Cytokine Production

    PubMed Central

    Bilal, Mahmood Yousif; Houtman, Jon C. D.

    2015-01-01

    GRB2 is a ubiquitously expressed adaptor protein required for signaling downstream of multiple receptors. To address the role of GRB2 in receptor-mediated signaling, the expression of GRB2 was suppressed in human CD4+ T cells and its role downstream of the T cell receptor (TCR) was examined. Interestingly, GRB2 deficient T cells had enhanced signaling from complexes containing the TCR. However, GRB2 deficient T cells had substantially reduced production of IL-2 and IFN-γ. This defect was attributed to diminished formation of linker for activation of T cells (LAT) signaling clusters, which resulted in reduced MAP kinase activation, calcium flux, and PLC-γ1 recruitment to LAT signaling clusters. Add back of wild-type GRB2, but not a novel N-terminal SH3 domain mutant, rescued LAT microcluster formation, calcium mobilization, and cytokine release, providing the first direct evidence that GRB2, and its ability to bind to SH3 domain ligands, is required for establishing LAT microclusters. Our data demonstrate that the ability of GRB2 to facilitate protein clusters is equally important in regulating TCR-mediated functions as its capacity to recruit effector proteins. This highlights that GRB2 regulates signaling downstream of adaptors and receptors by both recruiting effector proteins and regulating the formation of signaling complexes. PMID:25870599

  13. GRB2 Nucleates T Cell Receptor-Mediated LAT Clusters That Control PLC-γ1 Activation and Cytokine Production.

    PubMed

    Bilal, Mahmood Yousif; Houtman, Jon C D

    2015-01-01

    GRB2 is a ubiquitously expressed adaptor protein required for signaling downstream of multiple receptors. To address the role of GRB2 in receptor-mediated signaling, the expression of GRB2 was suppressed in human CD4+ T cells and its role downstream of the T cell receptor (TCR) was examined. Interestingly, GRB2 deficient T cells had enhanced signaling from complexes containing the TCR. However, GRB2 deficient T cells had substantially reduced production of IL-2 and IFN-γ. This defect was attributed to diminished formation of linker for activation of T cells (LAT) signaling clusters, which resulted in reduced MAP kinase activation, calcium flux, and PLC-γ1 recruitment to LAT signaling clusters. Add back of wild-type GRB2, but not a novel N-terminal SH3 domain mutant, rescued LAT microcluster formation, calcium mobilization, and cytokine release, providing the first direct evidence that GRB2, and its ability to bind to SH3 domain ligands, is required for establishing LAT microclusters. Our data demonstrate that the ability of GRB2 to facilitate protein clusters is equally important in regulating TCR-mediated functions as its capacity to recruit effector proteins. This highlights that GRB2 regulates signaling downstream of adaptors and receptors by both recruiting effector proteins and regulating the formation of signaling complexes.

  14. An Application of the Stereoscopic Self-similar-Expansion Model to the Determination of CME-Driven Shock Parameters

    NASA Astrophysics Data System (ADS)

    Volpes, L.; Bothmer, V.

    2015-10-01

    We present an application of the stereoscopic self-similar-expansion model (SSSEM) to Solar Terrestrial Relations Observatory (STEREO)/ Sun-Earth Connection Coronal and Heliospheric Investigation (SECCHI) observations of the CME on 3 April 2010 and its associated shock. The aim is to verify whether CME-driven shock parameters can be inferred from the analysis of j-maps. For this purpose, we used the SSSEM to derive the CME and the shock kinematics. Arrival times and speeds, inferred assuming either propagation at constant speed or with uniform deceleration, agree well with Advanced Composition Explorer (ACE) measurements. The shock standoff distance [Δ], the density compression [ρd/ρu], and the Mach number [M] were calculated by combining the results obtained for the CME and shock kinematics with models for the shock location. Their values were extrapolated to L1 and compared to in-situ data. The in-situ standoff distance was obtained from ACE solar-wind measurements, and the Mach number and compression ratio were provided by the interplanetary shock database of the Harvard-Smithsonian Center for Astrophysics. They are ρd/ρu =2.84 and M = 2.2. The best fit to observations was obtained when the SSSEM half-width λ= 40°, and the CME and shock propagate with uniform deceleration. In this case we found Δ= 23 R_{⊙}, ρd/ρu =2.61, and M = 2.93. The study shows that CME-driven shock parameters can be estimated from the analysis of time-elongation plots and can be used to predict their in-situ values.

  15. A new L5 brown dwarf member of the Hyades cluster with chromospheric activity

    NASA Astrophysics Data System (ADS)

    Pérez-Garrido, A.; Lodieu, N.; Rebolo, R.

    2017-03-01

    Aims: Our aim is to identify brown dwarf members of the nearby Hyades open star cluster to determine the photometric and spectroscopic properties of brown dwarfs at moderately old ages and extend the knowledge of the substellar mass function of the cluster. Methods: We cross-matched the 2MASS and AllWISE public catalogues and measured proper motions to identify low-mass stars and brown dwarf candidates in an area of radius eight degrees around the central region of the Hyades cluster. We identified objects with photometry and proper motions consistent with cluster membership. For the faintest (J = 17.2 mag) most promising astrometric and photometric low-mass candidate 2MASS J04183483+2131275, with a membership probability of 94.5%, we obtained low-resolution (R = 300-1000) and intermediate-resolution (R = 2500) spectroscopy with the 10.4m Gran Telescopio Canarias. Results: From the low-resolution spectra we determined a L5.0 ± 0.5 spectral type, consistent with the available photometry. In the intermediate dispersion spectrum we detected Hα in emission (marginally resolved with a full width half maximum of 2.8 Å) and determined a log (LHα/Lbol) = -6.0 dex. From Hα we obtained a radial velocity of 38.0 ± 2.9 km s-1, which combined with the proper motion leads to space velocities which are fully consistent with membership in the Hyades cluster. We also report a detection in the H2 band by the UKIDSS Galactic Plane Survey. Using evolutionary models we determine from the available photometry of the object a mass in the range 0.039-0.055 M⊙. Brown dwarfs with masses below 0.055 M⊙ should fully preserve its initial lithium content, and indeed the spectrum at 6708 Å may show a feature consistent with lithium preservation; however, a higher S/N is needed to confirm this point. Conclusions: We have identified a new high-probability L5 brown dwarf member of the Hyades cluster. This is the first relatively old L5 brown dwarf with a well-determined age (500-700 Myr

  16. Evidence that Plasmodium falciparum chromosome end clusters are cross-linked by protein and are the sites of both virulence gene silencing and activation.

    PubMed

    Marty, Allison J; Thompson, Jennifer K; Duffy, Michael F; Voss, Till S; Cowman, Alan F; Crabb, Brendan S

    2006-10-01

    The malaria parasite Plasmodium falciparum undergoes antigenic variation through allelic exclusion and variant expression of surface proteins encoded by the var gene family. Regulation of var genes is under epigenetic control and involves reversible silencing and activation that requires the physical repositioning of a var locus into a transcriptionally permissive zone of the nuclear periphery. P. falciparum chromosome ends appear to aggregate into large perinuclear clusters which house both subtelomeric and chromosome central var genes. In this study we further define the composition of telomeric clusters using fluorescent in situ hybridization, and provide evidence that chromosome end clusters are formed by cross-linking protein. In addition, we demonstrate that a subtelomeric reporter gene and a var gene remain within clusters regardless of their transcriptional status. Our findings support a model whereby a highly localized structure dedicated to the activation of a single var gene can be housed within a gene dense chromosome end cluster that is otherwise transcriptionally silent.

  17. Clustering Analysis of OFFICER'S Behaviours in London Police Foot Patrol Activities

    NASA Astrophysics Data System (ADS)

    Shen, J.; Cheng, T.

    2015-07-01

    In this small paper we aim at presenting a framework of conceptual representation and clustering analysis of police officers' patrol pattern obtained from mining their raw movement trajectory data. This have been achieved by a model developed to accounts for the spatio-temporal dynamics human movements by incorporating both the behaviour features of the travellers and the semantic meaning of the environment they are moving in. Hence, the similarity metric of traveller behaviours is jointly defined according to the stay time allocation in each Spatio-temporal region of interests (ST-ROI) to support clustering analysis of patrol behaviours. The proposed framework enables the analysis of behaviour and preferences on higher level based on raw moment trajectories. The model is firstly applied to police patrol data provided by the Metropolitan Police and will be tested by other type of dataset afterwards.

  18. Inhibition of retinoic acid-induced activation of 3' human HOXB genes by antisense oligonucleotides affects sequential activation of genes located upstream in the four HOX clusters.

    PubMed Central

    Faiella, A; Zappavigna, V; Mavilio, F; Boncinelli, E

    1994-01-01

    Most homeobox genes belonging to the Hox family are sequentially activated in embryonal carcinoma cells upon treatment with retinoic acid. Genes located at the 3' end of each one of the four Hox clusters are activated first, whereas upstream Hox genes are activated progressively later. This activation has been extensively studied for human HOX genes in the NT2/D1 cell line and shown to take place at the transcriptional level. To understand the molecular mechanisms of sequential HOX gene activation in these cells, we tried to modulate the expression of 3' HOX genes through the use of antisense oligonucleotides added to the culture medium. We chose the HOXB locus. A 5- to 15-fold reduction of the expression of HOXB1 and HOXB3 was sufficient to produce a significant inhibition of the activation of the upstream HOXB genes, as well as of their paralogs in the HOXA, HOXC, and HOXD clusters. Conversely, no effect was detectable on downstream HOX genes. The extent of this inhibition increased for progressively more-5' genes. The stability of the corresponding mRNAs appeared to be unaffected, supporting the idea that the observed effect might be mediated at the transcriptional level. These data suggest a cascade model of progressive activation of Hox genes, with a 3'-to-5' polarity. Images PMID:7911240

  19. Let's Not Waste Time: Using Temporal Information in Clustered Activity Estimation with Spatial Adjacency Restrictions (CAESAR) for Parcellating FMRI Data.

    PubMed

    Janssen, Ronald J; Jylänki, Pasi; van Gerven, Marcel A J

    2016-01-01

    We have proposed a Bayesian approach for functional parcellation of whole-brain FMRI measurements which we call Clustered Activity Estimation with Spatial Adjacency Restrictions (CAESAR). We use distance-dependent Chinese restaurant processes (dd-CRPs) to define a flexible prior which partitions the voxel measurements into clusters whose number and shapes are unknown a priori. With dd-CRPs we can conveniently implement spatial constraints to ensure that our parcellations remain spatially contiguous and thereby physiologically meaningful. In the present work, we extend CAESAR by using Gaussian process (GP) priors to model the temporally smooth haemodynamic signals that give rise to the measured FMRI data. A challenge for GP inference in our setting is the cubic scaling with respect to the number of time points, which can become computationally prohibitive with FMRI measurements, potentially consisting of long time series. As a solution we describe an efficient implementation that is practically as fast as the corresponding time-independent non-GP model with typically-sized FMRI data sets. We also employ a population Monte-Carlo algorithm that can significantly speed up convergence compared to traditional single-chain methods. First we illustrate the benefits of CAESAR and the GP priors with simulated experiments. Next, we demonstrate our approach by parcellating resting state FMRI data measured from twenty participants as taken from the Human Connectome Project data repository. Results show that CAESAR affords highly robust and scalable whole-brain clustering of FMRI timecourses.

  20. General Practitioners’ Barriers to Prescribe Physical Activity: The Dark Side of the Cluster Effects on the Physical Activity of Their Type 2 Diabetes Patients

    PubMed Central

    Lanhers, Charlotte; Duclos, Martine; Guttmann, Aline; Coudeyre, Emmanuel; Pereira, Bruno; Ouchchane, Lemlih

    2015-01-01

    Aims/hypothesis To describe barriers to physical activity (PA) in type 2 diabetes patients and their general practitioners (GPs), looking for practitioner’s influence on PA practice of their patients. Methods We conducted a cross-sectional study on GPs (n = 48) and their type 2 diabetes patients (n = 369) measuring respectively barriers to prescribe and practice PA using a self-assessment questionnaire: barriers to physical activity in diabetes (BAPAD). Statistical analysis was performed accounting hierarchical data structure. Similar practitioner’s patients were considered a cluster sharing common patterns. Results The higher the patient’s BAPAD score, the higher the barriers to PA, the higher the risk to declare practicing no PA (p<0.001), low frequency and low duration of PA (p<0.001). A high patient’s BAPAD score was also associated with a higher risk to have HbA1c ≥7% (53 mmol/mol) (p = 0.001). The intra-class correlation coefficient between type 2 diabetes patients and GPs was 34%, indicating a high cluster effect. A high GP’s BAPAD score, regarding the PA prescription, is predictive of a high BAPAD score with their patients, regarding their practice (p = 0.03). Conclusion/interpretation Type 2 diabetes patients with lower BAPAD score, thus lower barriers to physical activity, have a higher PA level and a better glycemic control. An important and deleterious cluster effect between GPs and their patients is demonstrated: the higher the GP’s BAPAD score, the higher the type 2 diabetes patients’ BAPAD score. This important cluster effect might designate GPs as a relevant lever for future interventions regarding patient’s education towards PA and type 2 diabetes management. PMID:26468874

  1. Activity-dependent formation and location of voltage-gated sodium channel clusters at a CNS nerve terminal during postnatal development.

    PubMed

    Xu, Jie; Berret, Emmanuelle; Kim, Jun Hee

    2017-02-01

    In auditory pathways, the precision of action potential (AP) propagation depends on axon myelination and high densities of voltage-gated Na (Nav) channels clustered at nodes of Ranvier. Changes in Nav channel expression at the heminode, the final node before the nerve terminal, can alter AP invasion into the presynaptic terminal. We studied the activity-dependent formation of Nav channel clusters before and after hearing onset at postnatal day 12 in the rat and mouse auditory brain stem. In rats, the Nav channel cluster at the heminode formed progressively during the second postnatal week, around hearing onset, whereas the Nav channel cluster at the nodes was present before hearing onset. Initiation of heminodal Nav channel clustering was correlated with the expression of scaffolding protein ankyrinG and paranodal protein Caspr. However, in whirler mice with congenital deafness, heminodal Nav channels did not form clusters and maintained broad expression, but Nav channel clustering was normal at the nodes. In addition, a clear difference in the distance from the heminodal Nav channel to the calyx across the mediolateral axis of the medial nucleus of the trapezoid body (MNTB) developed after hearing onset. In the medial MNTB, where neurons respond best to high-frequency sounds, the heminodal Nav channel cluster was located closer to the terminal than in the lateral MNTB, where neurons respond best to low-frequency sounds. Thus sound-mediated neuronal activities are potentially associated with the refinement of the heminode adjacent to the presynaptic terminal in the auditory brain stem.

  2. A minimal nitrogen fixation gene cluster from Paenibacillus sp. WLY78 enables expression of active nitrogenase in Escherichia coli.

    PubMed

    Wang, Liying; Zhang, Lihong; Liu, Zhanzhi; Liu, Zhangzhi; Zhao, Dehua; Liu, Xiaomeng; Zhang, Bo; Xie, Jianbo; Hong, Yuanyuan; Li, Pengfei; Chen, Sanfeng; Dixon, Ray; Li, Jilun

    2013-01-01

    Most biological nitrogen fixation is catalyzed by molybdenum-dependent nitrogenase, an enzyme complex comprising two component proteins that contains three different metalloclusters. Diazotrophs contain a common core of nitrogen fixation nif genes that encode the structural subunits of the enzyme and components required to synthesize the metalloclusters. However, the complement of nif genes required to enable diazotrophic growth varies significantly amongst nitrogen fixing bacteria and archaea. In this study, we identified a minimal nif gene cluster consisting of nine nif genes in the genome of Paenibacillus sp. WLY78, a gram-positive, facultative anaerobe isolated from the rhizosphere of bamboo. We demonstrate that the nif genes in this organism are organized as an operon comprising nifB, nifH, nifD, nifK, nifE, nifN, nifX, hesA and nifV and that the nif cluster is under the control of a σ(70) (σ(A))-dependent promoter located upstream of nifB. To investigate genetic requirements for diazotrophy, we transferred the Paenibacillus nif cluster to Escherichia coli. The minimal nif gene cluster enables synthesis of catalytically active nitrogenase in this host, when expressed either from the native nifB promoter or from the T7 promoter. Deletion analysis indicates that in addition to the core nif genes, hesA plays an important role in nitrogen fixation and is responsive to the availability of molybdenum. Whereas nif transcription in Paenibacillus is regulated in response to nitrogen availability and by the external oxygen concentration, transcription from the nifB promoter is constitutive in E. coli, indicating that negative regulation of nif transcription is bypassed in the heterologous host. This study demonstrates the potential for engineering nitrogen fixation in a non-nitrogen fixing organism with a minimum set of nine nif genes.

  3. Cluster Headache

    MedlinePlus

    Cluster headache Overview By Mayo Clinic Staff Cluster headaches, which occur in cyclical patterns or clusters, are one of the most painful types of headache. A cluster headache commonly awakens you ...

  4. A Cluster Of Activities On Coma From The Hubble Space Telescope, StarDate, And McDonald Observatory

    NASA Astrophysics Data System (ADS)

    Hemenway, Mary Kay; Jogee, S.; Fricke, K.; Preston, S.

    2011-01-01

    With a goal of providing a vast audience of students, teachers, the general public, and Spanish-speakers with activities to learn about research on the Coma cluster of galaxies based on the HST ACS Treasury survey of Coma, McDonald Observatory used a many-faceted approach. Since this research offered an unprecedented legacy dataset, part of the challenge was to convey the importance of this project to a diverse audience. The methodology was to create different products for different (overlapping) audiences. Five radio programs were produced in English and Spanish for distribution on over 500 radio stations in the US and Mexico with a listening audience of over 2 million; in addition to the radio listeners, there were over 13,000 downloads of the English scripts and almost 6000 of the Spanish. Images were prepared for use in the StarDate Online Astronomy Picture of the Week, for ViewSpace (used in museums), and for the StarDate/Universo Teacher Guide. A high-school level activity on the Coma Cluster was prepared and distributed both on-line and in an upgraded printed version of the StarDate/Universo Teacher Guide. This guide has been distributed to over 1700 teachers nationally. A YouTube video about careers and research in astronomy using the Coma cluster as an example was produced. Just as the activities were varied, so were the evaluation methods. This material is based upon work supported by the National Aeronautics and Space Administration under Grant/Contract/Agreement No. HST-EO-10861.35-A issued through the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555.

  5. Large-conductance calcium-activated potassium channels in purkinje cell plasma membranes are clustered at sites of hypolemmal microdomains.

    PubMed

    Kaufmann, Walter A; Ferraguti, Francesco; Fukazawa, Yugo; Kasugai, Yu; Shigemoto, Ryuichi; Laake, Petter; Sexton, Joseph A; Ruth, Peter; Wietzorrek, Georg; Knaus, Hans-Günther; Storm, Johan F; Ottersen, Ole Petter

    2009-07-10

    Calcium-activated potassium channels have been shown to be critically involved in neuronal function, but an elucidation of their detailed roles awaits identification of the microdomains where they are located. This study was undertaken to unravel the precise subcellular distribution of the large-conductance calcium-activated potassium channels (called BK, KCa1.1, or Slo1) in the somatodendritic compartment of cerebellar Purkinje cells by means of postembedding immunogold cytochemistry and SDS-digested freeze-fracture replica labeling (SDS-FRL). We found BK channels to be unevenly distributed over the Purkinje cell plasma membrane. At distal dendritic compartments, BK channels were scattered over the plasma membrane of dendritic shafts and spines but absent from postsynaptic densities. At the soma and proximal dendrites, BK channels formed two distinct pools. One pool was scattered over the plasma membrane, whereas the other pool was clustered in plasma membrane domains overlying subsurface cisterns. The labeling density ratio of clustered to scattered channels was about 60:1, established in SDS-FRL. Subsurface cisterns, also called hypolemmal cisterns, are subcompartments of the endoplasmic reticulum likely representing calciosomes that unload and refill Ca2+ independently. Purkinje cell subsurface cisterns are enriched in inositol 1,4,5-triphosphate receptors that mediate the effects of several neurotransmitters, hormones, and growth factors by releasing Ca2+ into the cytosol, generating local Ca2+ sparks. Such increases in cytosolic [Ca2+] may be sufficient for BK channel activation. Clustered BK channels in the plasma membrane may thus participate in building a functional unit (plasmerosome) with the underlying calciosome that contributes significantly to local signaling in Purkinje cells.

  6. Acoustic Cluster Therapy: In Vitro and Ex Vivo Measurement of Activated Bubble Size Distribution and Temporal Dynamics.

    PubMed

    Healey, Andrew John; Sontum, Per Christian; Kvåle, Svein; Eriksen, Morten; Bendiksen, Ragnar; Tornes, Audun; Østensen, Jonny

    2016-05-01

    Acoustic cluster technology (ACT) is a two-component, microparticle formulation platform being developed for ultrasound-mediated drug delivery. Sonazoid microbubbles, which have a negative surface charge, are mixed with micron-sized perfluoromethylcyclopentane droplets stabilized with a positively charged surface membrane to form microbubble/microdroplet clusters. On exposure to ultrasound, the oil undergoes a phase change to the gaseous state, generating 20- to 40-μm ACT bubbles. An acoustic transmission technique is used to measure absorption and velocity dispersion of the ACT bubbles. An inversion technique computes bubble size population with temporal resolution of seconds. Bubble populations are measured both in vitro and in vivo after activation within the cardiac chambers of a dog model, with catheter-based flow through an extracorporeal measurement flow chamber. Volume-weighted mean diameter in arterial blood after activation in the left ventricle was 22 μm, with no bubbles >44 μm in diameter. After intravenous administration, 24.4% of the oil is activated in the cardiac chambers.

  7. Does cluster-root activity benefit nutrient uptake and growth of co-existing species?

    PubMed

    Muler, Ana L; Oliveira, Rafael S; Lambers, Hans; Veneklaas, Erik J

    2014-01-01

    Species that inhabit phosphorus- (P) and micronutrient-impoverished soils typically have adaptations to enhance the acquisition of these nutrients, for example cluster roots in Proteaceae. However, there are several species co-occurring in the same environment that do not produce similar specialised roots. This study aims to investigate whether one of these species (Scholtzia involucrata) can benefit from the mobilisation of P or micronutrients by the cluster roots of co-occurring Banksia attenuata, and also to examine the response of B. attenuata to the presence of S. involucrata. We conducted a greenhouse experiment, using a replacement series design, where B. attenuata and S. involucrata shared a pot at proportions of 2:0, 1:2 and 0:4. S. involucrata plants grew more in length, were heavier and had higher manganese (Mn) concentrations in their young leaves when grown next to one individual of B. attenuata and one individual of S. involucrata than when grown with three conspecifics. All S. involucrata individuals were colonised by arbuscular mycorrhizal fungi, and possibly Rhizoctonia. Additionally, P concentration was higher in the young leaves of B. attenuata when grown with another B. attenuata than when grown with two individuals of S. involucrata, despite the smaller size of the S. involucrata individuals. Our results demonstrate that intraspecific competition was stronger than interspecific competition for S. involucrata, but not for B. attenuata. We conclude that cluster roots of B. attenuata facilitate the acquisition of nutrients by neighbouring shrubs by making P and Mn more available for their neighbours.

  8. Timing and duration of hydrothermal activity at the Los Bronces porphyry cluster: an update

    NASA Astrophysics Data System (ADS)

    Deckart, K.; Silva, W.; Spröhnle, C.; Vela, I.

    2014-06-01

    New geochronological data from the Los Bronces cluster of the Río Blanco-Los Bronces mega-porphyry Cu-Mo district establish a wide range of magmatism, hydrothermal alteration, and mineralization ages, both in terms of areal extent and time. The northern El Plomo and southernmost Los Piches exploration areas contain the oldest barren porphyritic intrusions with U-Pb ages of 10.8 ± 0.1 Ma and 13.4 ± 0.1 Ma, respectively. A hypabyssal barren intrusion adjacent northwesterly to the main pit area yields a slightly younger age of 10.2 ± 0.3 Ma (San Manuel sector, U-Pb), whereas in the Los Bronces (LB) open-pit area, the present day mineral extraction zone, porphyries range from 8.49 to 6.02 Ma (U-Pb). Hydrothermal biotite and sericite ages are up to 0.5 Ma younger but consistent with the cooling of the corresponding intrusion events of each area. Two quartz-molybdenite B-type veins from the LB open pit have Re-Os molybdenite ages of 5.65 ± 0.03 Ma and 5.35 ± 0.03 Ma consistent with published data for the contiguous Río Blanco cluster. The San Manuel exploration area within the Los Bronces cluster, located about 1.5-2 km southeast of the open-pit extraction zone, shows both the oldest hydrothermal biotite (7.70 ± 0.07 Ma; 40Ar/39Ar) and breccia cement molybdenite ages (8.36 ± 0.06 Ma; Re-Os) registered in the entire Río Blanco-Los Bronces district. These are also older than those reported from the El Teniente porphyry Cu(-Mo) deposit, suggesting that mineralization in the late Miocene to early Pliocene porphyry belt of Central Chile commenced 2 Ma before the previously accepted age of 6.3 Ma.

  9. Activation and products of the cryptic secondary metabolite biosynthetic gene clusters by rifampin resistance (rpoB) mutations in actinomycetes.

    PubMed

    Tanaka, Yukinori; Kasahara, Ken; Hirose, Yutaka; Murakami, Kiriko; Kugimiya, Rie; Ochi, Kozo

    2013-07-01

    A subset of rifampin resistance (rpoB) mutations result in the overproduction of antibiotics in various actinomycetes, including Streptomyces, Saccharopolyspora, and Amycolatopsis, with H437Y and H437R rpoB mutations effective most frequently. Moreover, the rpoB mutations markedly activate (up to 70-fold at the transcriptional level) the cryptic/silent secondary metabolite biosynthetic gene clusters of these actinomycetes, which are not activated under general stressful conditions, with the exception of treatment with rare earth elements. Analysis of the metabolite profile demonstrated that the rpoB mutants produced many metabolites, which were not detected in the wild-type strains. This approach utilizing rifampin resistance mutations is characterized by its feasibility and potential scalability to high-throughput studies and would be useful to activate and to enhance the yields of metabolites for discovery and biochemical characterization.

  10. Capturing local atomic environment dependence of activation barriers in metals using cluster expansion models

    NASA Astrophysics Data System (ADS)

    Kulkarni, Nimish; Chatterjee, Abhijit

    2016-10-01

    It is well known that surface diffusion in metals can proceed via multiple mechanisms, such as hop, exchange and other types of concerted moves. However, the manner in which kinetic rates associated with a mechanism can depend sensitively on local atomic environment is relatively less understood. We describe recent attempts in our research group to capture the atomic environment dependence using the cluster expansion model (CEM). In particular, we focus on hop and exchange moves at the (001) surface in homoepitaxy, and show that while CEM can work remarkably well in most cases, it can sometimes provide inaccurate predictions for concerted moves.

  11. Relation Between the 3D-Geometry of the Coronal Wave and Associated CME During the 26 April 2008 Event

    NASA Astrophysics Data System (ADS)

    Temmer, M.; Veronig, A. M.; Gopalswamy, N.; Yashiro, S.

    We study the kinematical characteristics and 3D geometry of a large-scale coronal wave that occurred in association with the 26 April 2008 flare-CME event. The wave was observed with the EUVI instruments aboard both STEREO spacecraft (STEREO-A and STEREO-B) with a mean speed of ˜ 240 km s-1. The wave is more pronounced in the eastern propagation direction, and is thus, better observable in STEREO-B images. From STEREO-B observations we derive two separate initiation centers for the wave, and their locations fit with the coronal dimming regions. Assuming a simple geometry of the wave we reconstruct its 3D nature from combined STEREO-A and STEREO-B observations. We find that the wave structure is asymmetric with an inclination toward East. The associated CME has a deprojected speed of ˜ 750±50 km s-1, and it shows a non-radial outward motion toward the East with respect to the underlying source region location. Applying the forward fitting model developed by Thernisien, Howard, and Vourlidas (Astrophys. J. 652, 763, 2006), we derive the CME flux rope position on the solar surface to be close to the dimming regions. We conclude that the expanding flanks of the CME most likely drive and shape the coronal wave.

  12. Relation Between the 3D-Geometry of the Coronal Wave and Associated CME During the 26 April 2008 Event

    NASA Astrophysics Data System (ADS)

    Temmer, M.; Veronig, A. M.; Gopalswamy, N.; Yashiro, S.

    2011-11-01

    We study the kinematical characteristics and 3D geometry of a large-scale coronal wave that occurred in association with the 26 April 2008 flare-CME event. The wave was observed with the EUVI instruments aboard both STEREO spacecraft (STEREO-A and STEREO-B) with a mean speed of ˜ 240 km s-1. The wave is more pronounced in the eastern propagation direction, and is thus, better observable in STEREO-B images. From STEREO-B observations we derive two separate initiation centers for the wave, and their locations fit with the coronal dimming regions. Assuming a simple geometry of the wave we reconstruct its 3D nature from combined STEREO-A and STEREO-B observations. We find that the wave structure is asymmetric with an inclination toward East. The associated CME has a deprojected speed of ˜ 750±50 km s-1, and it shows a non-radial outward motion toward the East with respect to the underlying source region location. Applying the forward fitting model developed by Thernisien, Howard, and Vourlidas (Astrophys. J. 652, 763, 2006), we derive the CME flux rope position on the solar surface to be close to the dimming regions. We conclude that the expanding flanks of the CME most likely drive and shape the coronal wave.

  13. Relation Between the 3D-Geometry of the Coronal Wave and Associated CME During the 26 April 2008 Event

    NASA Technical Reports Server (NTRS)

    Temmer, M.; Veronig, A. M.; Gopalswamy, N.; Yashiro, S.

    2011-01-01

    We study the kinematical characteristics and 3D geometry of a large-scale coronal wave that occurred in association with the 26 April 2008 flare-CME event. The wave was observed with the EUVI instruments aboard both STEREO spacecraft (STEREO-A and STEREO-B) with a mean speed of approx 240 km/s. The wave is more pronounced in the eastern propagation direction, and is thus, better observable in STEREO-B images. From STEREO-B observations we derive two separate initiation centers for the wave, and their locations fit with the coronal dimming regions. Assuming a simple geometry of the wave we reconstruct its 3D nature from combined STEREO-A and STEREO-B observations. We find that the wave structure is asymmetric with an inclination toward East. The associated CME has a deprojected speed of approx 750 +/- 50 km/s, and it shows a non-radial outward motion toward the East with respect to the underlying source region location. Applying the forward fitting model developed by Thernisien, Howard, and Vourlidas we derive the CME flux rope position on the solar surface to be close to the dimming regions. We conclude that the expanding flanks of the CME most likely drive and shape the coronal wave.

  14. C-ME: A 3D Community-Based, Real-Time Collaboration Tool for Scientific Research and Training

    PubMed Central

    Kolatkar, Anand; Kennedy, Kevin; Halabuk, Dan; Kunken, Josh; Marrinucci, Dena; Bethel, Kelly; Guzman, Rodney; Huckaby, Tim; Kuhn, Peter

    2008-01-01

    The need for effective collaboration tools is growing as multidisciplinary proteome-wide projects and distributed research teams become more common. The resulting data is often quite disparate, stored in separate locations, and not contextually related. Collaborative Molecular Modeling Environment (C-ME) is an interactive community-based collaboration system that allows researchers to organize information, visualize data on a two-dimensional (2-D) or three-dimensional (3-D) basis, and share and manage that information with collaborators in real time. C-ME stores the information in industry-standard databases that are immediately accessible by appropriate permission within the computer network directory service or anonymously across the internet through the C-ME application or through a web browser. The system addresses two important aspects of collaboration: context and information management. C-ME allows a researcher to use a 3-D atomic structure model or a 2-D image as a contextual basis on which to attach and share annotations to specific atoms or molecules or to specific regions of a 2-D image. These annotations provide additional information about the atomic structure or image data that can then be evaluated, amended or added to by other project members. PMID:18286178

  15. 43 CFR 11.42 - How does the authorized official apply the NRDAM/CME or NRDAM/GLE?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 1 2011-10-01 2011-10-01 false How does the authorized official apply the NRDAM/CME or NRDAM/GLE? 11.42 Section 11.42 Public Lands: Interior Office of the Secretary of the Interior NATURAL RESOURCE DAMAGE ASSESSMENTS Type A Procedures § 11.42 How does the authorized...

  16. 43 CFR 11.42 - How does the authorized official apply the NRDAM/CME or NRDAM/GLE?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false How does the authorized official apply the NRDAM/CME or NRDAM/GLE? 11.42 Section 11.42 Public Lands: Interior Office of the Secretary of the Interior NATURAL RESOURCE DAMAGE ASSESSMENTS Type A Procedures § 11.42 How does the authorized...

  17. Gas dynamic modeling of the CME propagation through the envelope of a hot Jupiter-type exoplanet

    NASA Astrophysics Data System (ADS)

    Cherenkov, A. A.; Kaygorodov, P. V.; Bisikalo, D. V.

    2016-05-01

    We propose a 3D gasdynamic numerical model for the study of the interaction between the extended envelopes of hot Jupiters, overfilling their Roche lobes, and non-stationary stellar wind. In the model we use a Roe-Osher numerical scheme with Eindfeldt entropy fix. To test the model we have simulated a flow structure, forming due to the interaction between the extended quasi-stationary envelope of the hot Jupiter planet HD 209458b and the bow shock formed ahead of a propagating coronal mass ejection (CME). We have adopted the solar CME parameters in our computations and taken into account the fact that the planet is located close to its host star. The simulation results show that the bow shock of the CME partially destroys the stream, starting from the Li point of the quasi-closed planet's envelope. A bow shock, existing ahead of the planet in its orbital motion when the stellar wind is undisturbed, almost disappears when the CME shock passes through the system.

  18. Calibrating the Age-Rotation-Activity Relation in Low-Mass Stars: Chromospheric and Coronal Activity in the 500 Myr-old M37 Open Cluster

    NASA Astrophysics Data System (ADS)

    Núñez, Alejandro; Agueros, Marcel A.

    2017-01-01

    In low-mass stars, the strength of the magnetic dynamo decreases over time as stars spin down through the loss of angular momentum via magnetized winds. Both coronal X-ray emission and chromospheric Hα emission trace the strength of the changing dynamo and, when combined with rotation periods in a single-aged population, can therefore be used to examine the dependence of magnetic activity on rotation across a range of masses. We observed the 500-Myr-old open cluster M37 with Chandra and Hectospec on the MMT to obtain X-ray and Hα measurements for its low-mass stars. We obtained a sample of ≈280 cluster members with X-ray detections, ≈290 with Hα measurements, and ≈80 with both. This is the largest sample available for analyzing the dependence of coronal and chromospheric emission on rotation for a single-aged population. We used published rotation periods (Prot) to calculate Rossby numbers, Ro = Prot / τ, where τ is the convective turnover time, for all of the known rotators. We also determined the ratios of X-ray and Hα luminosities to bolometric luminosities to minimize mass dependencies when characterizing the rotation-activity relation at 500 Myr. With these data we explored how X-ray and Hα luminosity depend on Ro, and whether the behavior in the unsaturated regime (i.e., when increasing or decreasing Ro changes the measured activity) differ for these two tracers of magnetic activity. Finally, we examine the age-activity relation as measured in the X ray using seven open clusters spanning the age range 6-600 Myr.

  19. The cytosolic Fe-S cluster assembly component MET18 is required for the full enzymatic activity of ROS1 in active DNA demethylation

    PubMed Central

    Wang, Xiaokang; Li, Qi; Yuan, Wei; Cao, Zhendong; Qi, Bei; Kumar, Suresh; Li, Yan; Qian, Weiqiang

    2016-01-01

    DNA methylation patterns in plants are dynamically regulated by DNA methylation and active DNA demethylation in response to both environmental changes and development of plant. Beginning with the removal of methylated cytosine by ROS1/DME family of 5-methylcytosine DNA glycosylases, active DNA demethylation in plants occurs through base excision repair. So far, many components involved in active DNA demethylation remain undiscovered. Through a forward genetic screening of Arabidopsis mutants showing DNA hypermethylation at the EPF2 promoter region, we identified the conserved iron-sulfur cluster assembly protein MET18. MET18 dysfunction caused DNA hypermethylation at more than 1000 loci as well as the silencing of reporter genes and some endogenous genes. MET18 can directly interact with ROS1 in vitro and in vivo. ROS1 activity was reduced in the met18 mutant plants and point mutation in the conserved Fe-S cluster binding motif of ROS1 disrupted its biological function. Interestingly, a large number of DNA hypomethylated loci, especially in the CHH context, were identified from the met18 mutants and most of the hypo-DMRs were from TE regions. Our results suggest that MET18 can regulate both active DNA demethylation and DNA methylation pathways in Arabidopsis. PMID:27193999

  20. [Pathophysiology of cluster headache].

    PubMed

    Donnet, Anne

    2015-11-01

    The aetiology of cluster headache is partially unknown. Three areas are involved in the pathogenesis of cluster headache: the trigeminal nociceptive pathways, the autonomic system and the hypothalamus. The cluster headache attack involves activation of the trigeminal autonomic reflex. A dysfunction located in posterior hypothalamic gray matter is probably pivotal in the process. There is a probable association between smoke exposure, a possible genetic predisposition and the development of cluster headache.

  1. The mechanism of emerging catalytic activity of gold nano-clusters on rutile TiO2(110) in CO oxidation reaction

    NASA Astrophysics Data System (ADS)

    Mitsuhara, K.; Tagami, M.; Matsuda, T.; Visikovskiy, A.; Takizawa, M.; Kido, Y.

    2012-03-01

    This paper reveals the fact that the O adatoms (Oad) adsorbed on the 5-fold Ti rows of rutile TiO2(110) react with CO to form CO2 at room temperature and the oxidation reaction is pronouncedly enhanced by Au nano-clusters deposited on the above O-rich TiO2(110) surfaces. The optimum activity is obtained for 2D clusters with a lateral size of ˜1.5 nm and two-atomic layer height corresponding to ˜50 Au atoms/cluster. This strong activity emerging is attributed to an electronic charge transfer from Au clusters to O-rich TiO2(110) supports observed clearly by work function measurement, which results in an interface dipole. The interface dipoles lower the potential barrier for dissociative O2 adsorption on the surface and also enhance the reaction of CO with the Oad atoms to form CO2 owing to the electric field of the interface dipoles, which generate an attractive force upon polar CO molecules and thus prolong the duration time on the Au nano-clusters. This electric field is screened by the valence electrons of Au clusters except near the perimeter interfaces, thereby the activity is diminished for three-dimensional clusters with a larger size.

  2. The mechanism of emerging catalytic activity of gold nano-clusters on rutile TiO{sub 2}(110) in CO oxidation reaction

    SciTech Connect

    Mitsuhara, K.; Tagami, M.; Matsuda, T.; Visikovskiy, A.; Kido, Y.; Takizawa, M.

    2012-03-28

    This paper reveals the fact that the O adatoms (O{sub ad}) adsorbed on the 5-fold Ti rows of rutile TiO{sub 2}(110) react with CO to form CO{sub 2} at room temperature and the oxidation reaction is pronouncedly enhanced by Au nano-clusters deposited on the above O-rich TiO{sub 2}(110) surfaces. The optimum activity is obtained for 2D clusters with a lateral size of {approx}1.5 nm and two-atomic layer height corresponding to {approx}50 Au atoms/cluster. This strong activity emerging is attributed to an electronic charge transfer from Au clusters to O-rich TiO{sub 2}(110) supports observed clearly by work function measurement, which results in an interface dipole. The interface dipoles lower the potential barrier for dissociative O{sub 2} adsorption on the surface and also enhance the reaction of CO with the O{sub ad} atoms to form CO{sub 2} owing to the electric field of the interface dipoles, which generate an attractive force upon polar CO molecules and thus prolong the duration time on the Au nano-clusters. This electric field is screened by the valence electrons of Au clusters except near the perimeter interfaces, thereby the activity is diminished for three-dimensional clusters with a larger size.

  3. The mechanism of emerging catalytic activity of gold nano-clusters on rutile TiO2(110) in CO oxidation reaction.

    PubMed

    Mitsuhara, K; Tagami, M; Matsuda, T; Visikovskiy, A; Takizawa, M; Kido, Y

    2012-03-28

    This paper reveals the fact that the O adatoms (O(ad)) adsorbed on the 5-fold Ti rows of rutile TiO(2)(110) react with CO to form CO(2) at room temperature and the oxidation reaction is pronouncedly enhanced by Au nano-clusters deposited on the above O-rich TiO(2)(110) surfaces. The optimum activity is obtained for 2D clusters with a lateral size of ∼1.5 nm and two-atomic layer height corresponding to ∼50 Au atoms∕cluster. This strong activity emerging is attributed to an electronic charge transfer from Au clusters to O-rich TiO(2)(110) supports observed clearly by work function measurement, which results in an interface dipole. The interface dipoles lower the potential barrier for dissociative O(2) adsorption on the surface and also enhance the reaction of CO with the O(ad) atoms to form CO(2) owing to the electric field of the interface dipoles, which generate an attractive force upon polar CO molecules and thus prolong the duration time on the Au nano-clusters. This electric field is screened by the valence electrons of Au clusters except near the perimeter interfaces, thereby the activity is diminished for three-dimensional clusters with a larger size.

  4. Quantitative Imaging of the Solar Wind: CME Mass Evolution and the Interplanetary Magnetic Flux Balance

    NASA Astrophysics Data System (ADS)

    DeForest, Craig

    2012-05-01

    We recently developed post-processing techniques for heliospheric images from the STEREO spacecraft; the new data sets enable, for the first time, quantitative photometric studies of evolving wind features at distances up to 1 A.U. from the Sun. We have used the new data to trace several CMEs and magnetic disconnection events to their origins in the solar corona, and to infer the force balance and entrained magnetic flux in those features. We present recent results showing the relationship between ICME and CME anatomy, in particular the origin of an observed interplanetary flux rope and the relationship between original launched solar material and piled-up sheath material and flux in the storm at 1. A.U. We discuss implications for understanding space weather physics and predicting individual events, and point out the importance of future imaging technologies such as polarized heliospheric imaging.

  5. Comparison of CME radial velocities from a flux rope model and an ice cream cone model

    NASA Astrophysics Data System (ADS)

    Kim, T.; Moon, Y.; Na, H.

    2011-12-01

    Coronal Mass Ejections (CMEs) on the Sun are the largest energy release process in the solar system and act as the primary driver of geomagnetic storms and other space weather phenomena on the Earth. So it is very important to infer their directions, velocities and three-dimensional structures. In this study, we choose two different models to infer radial velocities of halo CMEs since 2008 : (1) an ice cream cone model by Xue et al (2005) using SOHO/LASCO data, (2) a flux rope model by Thernisien et al. (2009) using the STEREO/SECCHI data. In addition, we use another flux rope model in which the separation angle of flux rope is zero, which is morphologically similar to the ice cream cone model. The comparison shows that the CME radial velocities from among each model have very good correlations (R>0.9). We will extending this comparison to other partial CMEs observed by STEREO and SOHO.

  6. Wavelet analysis of CME, X-ray flare, and sunspot series

    NASA Astrophysics Data System (ADS)

    Guedes, M. R. G.; Pereira, E. S.; Cecatto, J. R.

    2015-01-01

    Context. Coronal mass ejections (CMEs) and solar flares are the most energetic transient phenomena taking place at the Sun. Together they are principally responsible for disturbances in outer geospace. Coronal mass ejections and solar flares are believed to be correlated with the solar cycle, which is mainly characterized by sunspot numbers. Aims: Here, we search for pattern identification in CMEs, X-ray solar flares, and sunspot number time series using a new data mining process and a quantitative procedure to correlate these series. Methods: This new process consists of the combination of a decomposition method with the wavelet transform technique applied to the series ranging from 2000 until 2012. A simple moving average is used for the time-series decomposition as a high-pass filter. A continuous wavelet transform is applied to the series in sequence, which permits us to uncover signals previously masked by the original time series. We made use of the wavelet coherence to find some correlation between the data. Results: The results have shown the existence of periodic and intermittent signals in the CMEs, flares, and sunspot time series. For the CME and flare series, few and relatively short time intervals without any signal were observed. Signals with an intermittent character take place during some epochs of the maximum and descending phases of the solar cycle 23 and rising phase of solar cycle 24. A comparison among X-ray flares, sunspots, and CME time series shows a stronger relation between flare and CMEs, although during some short intervals (four-eight months) and in a relatively narrow band. Yet, in contrast we have obtained a fainter or even absent relation between the X-ray flares and sunspot number series as well as between the CMEs and sunspot number series.

  7. Shock wave driven by CME evidenced by metric type II burst and EUV wave

    NASA Astrophysics Data System (ADS)

    Cunha-Silva, R. D.; Fernandes, F. C. R.; Selhorst, C. L.

    2015-12-01

    Solar type II radio bursts are produced by plasma oscillations in the solar corona as a result of shock waves. The relationship between type II bursts and coronal shocks is well evidenced by observations since the 1960s. However, the drivers of the shocks associated with type II events at metric wavelengths remain as a controversial issue among solar physicists. The flares and the coronal mass ejections (CMEs) are considered as potential drivers of these shocks. In this article, we present an analysis of a metric type II burst observed on May 17, 2013, using data provided by spectrometers from e-CALLISTO (extended-Compound Astronomical Low-cost Low-frequency Instrument for Spectroscopy and Transportable Observatories) and EUV images from the Extreme Ultraviolet Imager (EUVI), aboard the Solar Terrestrial Relations Observatory (STEREO). The event was associated with an M3.2 SXR flare and a halo CME. The EUV wave produced by the expansion of the CME was clear from the EUV images. The heights of the EUV wave fronts proved to be consistent with the heights of the radio source obtained with the 2-4 × Newkirk density model, which provided a clue to an oblique propagation of the type-II-emitting shock segment. The results for the magnetic field in the regions of the shock also revealed to be consistent with the heights of the radio source obtained using the 2-4 × Newkirk density model. Exponential fit on the intensity maxima of the harmonic emission provided a shock speed of ∼580-990 km s-1, consistent with the average speed of the associated EUV wave front of 626 km s-1.

  8. Plasma Physical Parameters along CME-driven Shocks. II. Observation-Simulation Comparison

    NASA Astrophysics Data System (ADS)

    Bacchini, F.; Susino, R.; Bemporad, A.; Lapenta, G.

    2015-08-01

    In this work, we compare the spatial distribution of the plasma parameters along the 1999 June 11 coronal mass ejection (CME)-driven shock front with the results obtained from a CME-like event simulated with the FLIPMHD3D code, based on the FLIP-MHD particle-in-cell method. The observational data are retrieved from the combination of white-light coronagraphic data (for the upstream values) and the application of the Rankine-Hugoniot equations (for the downstream values). The comparison shows a higher compression ratio X and Alfvénic Mach number MA at the shock nose, and a stronger magnetic field deflection d toward the flanks, in agreement with observations. Then, we compare the spatial distribution of MA with the profiles obtained from the solutions of the shock adiabatic equation relating MA, X, and {θ }{Bn} (the angle between the upstream magnetic field and the shock front normal) for the special cases of parallel and perpendicular shock, and with a semi-empirical expression for a generically oblique shock. The semi-empirical curve approximates the actual values of MA very well, if the effects of a non-negligible shock thickness {δ }{sh} and plasma-to magnetic pressure ratio {β }u are taken into account throughout the computation. Moreover, the simulated shock turns out to be supercritical at the nose and sub-critical at the flanks. Finally, we develop a new one-dimensional Lagrangian ideal MHD method based on the GrAALE code, to simulate the ion-electron temperature decoupling due to the shock transit. Two models are used, a simple solar wind model and a variable-γ model. Both produce results in agreement with observations, the second one being capable of introducing the physics responsible for the additional electron heating due to secondary effects (collisions, Alfvén waves, etc.).

  9. Efficient active waveguiding properties of Mo6 nano-cluster-doped polymer nanotubes

    NASA Astrophysics Data System (ADS)

    Bigeon, J.; Huby, N.; Amela-Cortes, M.; Molard, Y.; Garreau, A.; Cordier, S.; Bêche, B.; Duvail, J.-L.

    2016-06-01

    We investigate 1D nanostructures based on a Mo6@SU8 hybrid nanocomposite in which photoluminescent Mo6 clusters are embedded in the photosensitive SU8 resist. Tens of micrometers long Mo6@SU8-based tubular nanostructures were fabricated by the wetting template method, enabling the control of the inner and outer diameter to about 190 nm and 240 nm respectively, as supported by structural and optical characterizations. The image plane optical study of these nanotubes under optical pumping highlights the efficient waveguiding phenomenon of the red luminescence emitted by the clusters. Moreover, the wave vector distribution in the Fourier plane determined by leakage radiation microscopy gives additional features of the emission and waveguiding. First, the anisotropic red luminescence of the whole system can be attributed to the guided mode along the nanotube. Then, a low-loss propagation behavior is evidenced in the Mo6@SU8-based nanotubes. This result contrasts with the weaker waveguiding signature in the case of UV210-based nanotubes embedding PFO (poly(9,9-di-n-octylfluorenyl-2,7-diyl)). It is attributed to the strong reabsorption phenomenon, owing to overlapping between absorption and emission bands in the semi-conducting conjugated polymer PFO. These results make this Mo6@SU8 original class of nanocomposite a promising candidate as nanosources for submicronic photonic integration.

  10. Theoretical investigation of the hetero-junction effect in PVP-stabilized Au 13 clusters. The role of PVP in their catalytic activities

    NASA Astrophysics Data System (ADS)

    Okumura, Mitsutaka; Kitagawa, Yasutaka; Kawakami, Takashi; Haruta, Masatake

    2008-06-01

    Hybrid density functional calculations have been carried out for Au 13-poly( N-vinyl-2-pyrrolidone), abbreviated as Au 13-PVP, and related model clusters, Au 13-PVP 4, Au 13-PVP-O 2 and Au 13-PVP 4-O 2, to discuss the variation in the electronic structure of Au 13 clusters by PVP adsorption. The calculations have shown that the charge transfer from the adsorbed PVP to Au 13 produces negatively charged O 2 on Au 13-PVP 4. These findings suggest that PVP acts not only as a stabilizer to prevent the aggregation of Au clusters but also as an electron donor to Au clusters. Thus we conclude that the catalytic activities of Au clusters are affected by the adsorbed PVPs.

  11. Rhenium Complexes and Clusters Supported on c-Al2O3: Effects of Rhenium Oxidation State and Rhenium Cluster Size on Catalytic Activity for n-butane Hydrogenolysis

    SciTech Connect

    Lobo Lapidus, R.; Gates, B

    2009-01-01

    Supported metals prepared from H{sub 3}Re{sub 3}(CO){sub 12} on {gamma}-Al{sub 2}O{sub 3} were treated under conditions that led to various rhenium structures on the support and were tested as catalysts for n-butane conversion in the presence of H{sub 2} in a flow reactor at 533 K and 1 atm. After use, two samples were characterized by X-ray absorption edge positions of approximately 5.6 eV (relative to rhenium metal), indicating that the rhenium was cationic and essentially in the same average oxidation state in each. But the Re-Re coordination numbers found by extended X-ray absorption fine structure spectroscopy (2.2 and 5.1) show that the clusters in the two samples were significantly different in average nuclearity despite their indistinguishable rhenium oxidation states. Spectra of a third sample after catalysis indicate approximately Re{sub 3} clusters, on average, and an edge position of 4.5 eV. Thus, two samples contained clusters approximated as Re{sub 3} (on the basis of the Re-Re coordination number), on average, with different average rhenium oxidation states. The data allow resolution of the effects of rhenium oxidation state and cluster size, both of which affect the catalytic activity; larger clusters and a greater degree of reduction lead to increased activity.

  12. PREDICTING CME EJECTA AND SHEATH FRONT ARRIVAL AT L1 WITH A DATA-CONSTRAINED PHYSICAL MODEL

    SciTech Connect

    Hess, Phillip; Zhang, Jie

    2015-10-20

    We present a method for predicting the arrival of a coronal mass ejection (CME) flux rope in situ, as well as the sheath of solar wind plasma accumulated ahead of the driver. For faster CMEs, the front of this sheath will be a shock. The method is based upon geometrical separate measurement of the CME ejecta and sheath. These measurements are used to constrain a drag-based model, improved by including both a height dependence and accurate de-projected velocities. We also constrain the geometry of the model to determine the error introduced as a function of the deviation of the CME nose from the Sun–Earth line. The CME standoff-distance in the heliosphere fit is also calculated, fit, and combined with the ejecta model to determine sheath arrival. Combining these factors allows us to create predictions for both fronts at the L1 point and compare them against observations. We demonstrate an ability to predict the sheath arrival with an average error of under 3.5 hr, with an rms error of about 1.58 hr. For the ejecta the error is less than 1.5 hr, with an rms error within 0.76 hr. We also discuss the physical implications of our model for CME expansion and density evolution. We show the power of our method with ideal data and demonstrate the practical implications of having a permanent L5 observer with space weather forecasting capabilities, while also discussing the limitations of the method that will have to be addressed in order to create a real-time forecasting tool.

  13. Differences between the CME fronts tracked by an expert, an automated algorithm, and the Solar Stormwatch project

    NASA Astrophysics Data System (ADS)

    Barnard, L.; Scott, C. J.; Owens, M.; Lockwood, M.; Crothers, S. R.; Davies, J. A.; Harrison, R. A.

    2015-10-01

    Observations from the Heliospheric Imager (HI) instruments aboard the twin STEREO spacecraft have enabled the compilation of several catalogues of coronal mass ejections (CMEs), each characterizing the propagation of CMEs through the inner heliosphere. Three such catalogues are the Rutherford Appleton Laboratory (RAL)-HI event list, the Solar Stormwatch CME catalogue, and, presented here, the J-tracker catalogue. Each catalogue uses a different method to characterize the location of CME fronts in the HI images: manual identification by an expert, the statistical reduction of the manual identifications of many citizen scientists, and an automated algorithm. We provide a quantitative comparison of the differences between these catalogues and techniques, using 51 CMEs common to each catalogue. The time-elongation profiles of these CME fronts are compared, as are the estimates of the CME kinematics derived from application of three widely used single-spacecraft-fitting techniques. The J-tracker and RAL-HI profiles are most similar, while the Solar Stormwatch profiles display a small systematic offset. Evidence is presented that these differences arise because the RAL-HI and J-tracker profiles follow the sunward edge of CME density enhancements, while Solar Stormwatch profiles track closer to the antisunward (leading) edge. We demonstrate that the method used to produce the time-elongation profile typically introduces more variability into the kinematic estimates than differences between the various single-spacecraft-fitting techniques. This has implications for the repeatability and robustness of these types of analyses, arguably especially so in the context of space weather forecasting, where it could make the results strongly dependent on the methods used by the forecaster.

  14. Analysis of EIT/LASCO Observations Using Available MHD Models: Investigation of CME Initiation Propagation and Geoeffectiveness

    NASA Technical Reports Server (NTRS)

    Wu, S. T.

    2001-01-01

    The Sun's activity drives the variability of geospace (i.e., near-earth environment). Observations show that the ejection of plasma from the sun, called coronal mass ejections (CMEs), are the major cause of geomagnetic storms. This global-scale solar dynamical feature of coronal mass ejection was discovered almost three decades ago by the use of space-borne coronagraphs (OSO-7, Skylab/ATM and P78-1). Significant progress has been made in understanding the physical nature of the CMEs. Observations show that these global-scale CMEs have size in the order of a solar radius (approximately 6.7 x 10(exp 5) km) near the sun, and each event involves a mass of about 10(exp 15) g and an energy comparable to that of a large flare on the order of 10(exp 32) ergs. The radial propagation speeds of CMEs have a wide range from tens to thousands of kilometers per second. Thus, the transit time to near earth's environment [i.e., 1 AU (astronomical unit)] can be as fast as 40 hours to 100 hours. The typical transit time for geoeffective events is approximately 60-80 h. This paper consists of two parts: 1) A summary of the observed CMEs from Skylab to the present SOHO will be presented. Special attention will be made to SOHO/ LASCO/ EIT observations and their characteristics leading to a geoeffectiv a CME 2) The chronological development of theory and models to interpret the physical nature of this fascinating phenomenon will be reviewed. Finally, an example will be presented to illustrate the geoeffectiveness of the CMEs by using both observation and model.

  15. Clustering of 3D-Structure Similarity Based Network of Secondary Metabolites Reveals Their Relationships with Biological Activities.

    PubMed

    Ohtana, Yuki; Abdullah, Azian Azamimi; Altaf-Ul-Amin, Md; Huang, Ming; Ono, Naoaki; Sato, Tetsuo; Sugiura, Tadao; Horai, Hisayuki; Nakamura, Yukiko; Morita Hirai, Aki; Lange, Klaus W; Kibinge, Nelson K; Katsuragi, Tetsuo; Shirai, Tsuyoshi; Kanaya, Shigehiko

    2014-12-01

    Developing database systems connecting diverse species based on omics is the most important theme in big data biology. To attain this purpose, we have developed KNApSAcK Family Databases, which are utilized in a number of researches in metabolomics. In the present study, we have developed a network-based approach to analyze relationships between 3D structure and biological activity of metabolites consisting of four steps as follows: construction of a network of metabolites based on structural similarity (Step 1), classification of metabolites into structure groups (Step 2), assessment of statistically significant relations between structure groups and biological activities (Step 3), and 2-dimensional clustering of the constructed data matrix based on statistically significant relations between structure groups and biological activities (Step 4). Applying this method to a data set consisting of 2072 secondary metabolites and 140 biological activities reported in KNApSAcK Metabolite Activity DB, we obtained 983 statistically significant structure group-biological activity pairs. As a whole, we systematically analyzed the relationship between 3D-chemical structures of metabolites and biological activities.

  16. The relationship between activating affects, inhibitory affects, and self-compassion in patients with Cluster C personality disorders.

    PubMed

    Schanche, Elisabeth; Stiles, Tore C; McCullough, Leigh; Svartberg, Martin; Nielsen, Geir Høstmark

    2011-09-01

    In the short-term dynamic psychotherapy model termed "Affect Phobia Treatment," it is assumed that increase in patients' defense recognition, decrease in inhibitory affects (e.g., anxiety, shame, guilt), and increase in the experience of activating affects (e.g., sadness, anger, closeness) are related to enhanced self-compassion across therapeutic approaches. The present study aimed to test this assumption on the basis of data from a randomized controlled trial, which compared a 40-session short-term dynamic psychotherapy (N = 25) with 40-session cognitive treatment (N = 25) for outpatients with Cluster C personality disorders. Patients' defense recognition, inhibitory affects, activating affects, and self-compassion were rated with the Achievement of Therapeutic Objectives Scale (McCullough et al., 2003b) in Sessions 6 and 36. Results showed that increase in self-compassion from early to late in therapy significantly predicted pre- to post-decrease in psychiatric symptoms, interpersonal problems, and personality pathology. Decrease in levels of inhibitory affects and increase in levels of activating affects during therapy were significantly associated with higher self-compassion toward the end of treatment. Increased levels of defense recognition did not predict higher self-compassion when changes in inhibitory and activating affects were statistically controlled for. There were no significant interaction effects with type of treatment. These findings support self-compassion as an important goal of psychotherapy and indicate that increase in the experience of activating affects and decrease in inhibitory affects seem to be worthwhile therapeutic targets when working to enhance self-compassion in patients with Cluster C personality disorders.

  17. Highly active Ag clusters stabilized on TiO2 nanocrystals for catalytic reduction of p-nitrophenol

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Zhao, Zhe; Ou, Dingrong; Tu, Baofeng; Cui, Daan; Wei, Xuming; Cheng, Mojie

    2016-11-01

    Ag/TiO2 nanocomposites comprising of Ag clusters on TiO2 nanocrystal surfaces are of great significance in catalysts and advanced functional materials. Herein a novel method to synthesize Ag/TiO2 nanocomposites with Ag clusters under 2 nm on TiO2 nanocrystal surfaces have been developed. The success of this method relies on a silver mirror reaction in toluene, which refers to the reduction of silver-dodecylamine complexes by acetaldehyde in the presence of mono-dispersed TiO2 nanocrystals. The prepared Ag/TiO2 nanocomposites have been characterized by FT-IR spectra, UV-vis absorption spectra, X-ray diffraction (XRD) analysis, ultra high resolution scanning electron microscope (Ultra-HRSEM), high resolution transmission electron microscope (HRTEM) and X-ray photoelectron spectra (XPS). Catalytic activity of Ag/TiO2 nanocomposites is evaluated for the reduction of p-nitrophenol (4-NP) into p-aminophenol (4-AP) by NaBH4. Results demonstrate that Ag/TiO2 nanocomposites have shown an outstanding catalytic activity as well as a good stability in successive reduction of 4-NP. Noticeably, TOF of Ag/TiO2-0.75 nanocomposites obtained in this work is the highest among Ag based catalysts previously reported.

  18. Generation of spectral clusters in a mixture of noble and Raman-active gases

    NASA Astrophysics Data System (ADS)

    Hosseini, Pooria; Abdolvand, Amir; St. J. Russell, Philip

    2016-12-01

    We report a novel scheme for the generation of dense clusters of Raman sidebands. The scheme uses a broadband-guiding hollow-core photonic crystal fiber (HC-PCF) filled with a mixture of H2, D2, and Xe for efficient interaction between the gas mixture and a green laser pump pulse (532 nm, 1 ns) of only 5 uJ energy. This results in the generation from noise of more than 135 ro-vibrational Raman sidebands covering the visible spectral region with an average spacing of only 2 THz. Such a spectrally dense and compact fiber-based source is ideal for applications where closely spaced narrow-band laser lines with high spectral power density are required, such as in spectroscopy and sensing. When the HC-PCF is filled with a H2-D2 mixture the Raman comb spans the spectral region from the deep UV (280 nm) to the near infrared (1000 nm).

  19. The Relationship Between CME Properties in the CDAW, CACTUS and SEEDS Catalogs and ?25 MeV Solar Proton Event Intensities

    NASA Astrophysics Data System (ADS)

    Richardson, I. G.; von Rosenvinge, T. T.; Cane, H. V.

    2013-12-01

    The existence of a correlation between the intensity of solar energetic proton (SEP) events and the speed of the associated coronal mass ejection near the Sun is well known, and is often interpreted as evidence for particle acceleration at CME-driven shocks. However, this correlation is far from perfect and might be improved by taking other parameters into consideration (e.g., CME width). In studies of cycle 23 SEP events, values of CME speed, width and other parameters were typically taken from the CDAWWeb LASCO CME catalog. This is compiled 'by hand' from examination of LASCO images by experienced observers. Other automated LASCO CME catalogs have now been developed, e.g., CACTUS (Royal Observatory of Belgium) and SEEDS (George Mason University), but the basic CME parameters do not always agree with those from the CDAWweb catalog since they are not determined in the same way. For example the 'CME speed' might be measured at a specific position angle against the plane of the sky in one catalog, or be the average of speeds taken along the CME front in another. Speeds may also be based on linear or higher order fits to the coronagraph images. There will also be projection effects in these plane of the sky speeds. Similarly, CME widths can vary between catalogs and are dependent on how they are defined. For example, the CDAW catalog lists any CME that surrounds the occulting disk as a 'halo' (360 deg. width) CME even though the CME may be highly-asymmetric and originate from a solar event far from central meridian. Another catalog may give a smaller width for the same CME. The problem of obtaining the 'true' CME width is especially acute for assessing the relationship between CME width and SEP properties when using the CDAW catalog since a significant fraction, if not the majority, of the CMEs associated with major SEP events are reported to be halo CMEs. In principle, observations of CMEs from the STEREO A and B spacecraft, launched in late 2006, might be used to

  20. The Devon Active Villages Evaluation (DAVE) trial of a community-level physical activity intervention in rural south-west England: a stepped wedge cluster randomised controlled trial

    PubMed Central

    2014-01-01

    Background The majority of adults are not meeting the guidelines for physical activity despite activity being linked with numerous improvements to long-term health. In light of this, researchers have called for more community-level interventions. The main objective of the present study was to evaluate whether a community-level physical activity intervention increased the activity levels of rural communities. Methods 128 rural villages (clusters) were randomised to receive the intervention in one of four time periods between April 2011 and December 2012. The Devon Active Villages intervention provided villages with 12 weeks of physical activity opportunities for all age groups, including at least three different types of activities per village. Each village received an individually tailored intervention, incorporating a local needs-led approach. Support was provided for a further 12 months following the intervention. The evaluation study used a stepped wedge cluster randomised controlled trial design. All 128 villages were measured at each of five data collection periods using a postal survey. The primary outcome of interest was the proportion of adults reporting sufficient physical activity to meet internationally recognised guidelines. Minutes spent in moderate-and-vigorous activity per week was analysed as a secondary outcome. To compare between intervention and control modes, random effects linear regression and marginal logistic regression models were implemented for continuous and binary outcomes respectively. Results 10,412 adults (4693 intervention, 5719 control) completed the postal survey (response rate 32.2%). The intervention did not increase the odds of adults meeting the physical activity guideline (adjusted OR 1.02, 95% CI: 0.88 to 1.17; P = 0.80), although there was weak evidence of an increase in minutes of moderate-and-vigorous-intensity activity per week (adjusted mean difference = 171, 95% CI: -16 to 358; P = 0.07). The

  1. Membership, lithium and chromospheric activity of the young open clusters IC 2391, IC 2602 and IC 4665 from GES (Gaia-ESO Survey) observations

    NASA Astrophysics Data System (ADS)

    Gómez Garrido, M.; Montes, D.; Gutiérrez Albarrán, M. L.; Tabernero, H. M.; Gónzalez Hernández, J. I.; GES Survey Builders

    2017-03-01

    We conduct a comparative study of the main properties of the of the young open clusters IC 2391, IC 2602 and IC 4665, focusing on their membership, lithium abundance and level of chromospheric activity and possible accretion. We use the fundamental parameters (effective temperature, surface gravity, and radial velocity) delivered by the Gaia-ESO survey (GES - https://www.gaia-eso.eu/) consortium in the four internal data release (iDR4) to select the members of these clusters among the UVES and GIRAFFE spectroscopic observations. Chromospheric activity criterium, and iterative process between radial velocity distribution and lithium-temperature diagram are applied to determinate what objects are members or non members of the clusters. All this information allowed us to characterize the properties of the members of these clusters and identify some field contaminant lithium-rich giants.

  2. Improvements on GPS Location Cluster Analysis for the Prediction of Large Carnivore Feeding Activities: Ground-Truth Detection Probability and Inclusion of Activity Sensor Measures

    PubMed Central

    Blecha, Kevin A.; Alldredge, Mat W.

    2015-01-01

    Animal space use studies using GPS collar technology are increasingly incorporating behavior based analysis of spatio-temporal data in order to expand inferences of resource use. GPS location cluster analysis is one such technique applied to large carnivores to identify the timing and location of feeding events. For logistical and financial reasons, researchers often implement predictive models for identifying these events. We present two separate improvements for predictive models that future practitioners can implement. Thus far, feeding prediction models have incorporated a small range of covariates, usually limited to spatio-temporal characteristics of the GPS data. Using GPS collared cougar (Puma concolor) we include activity sensor data as an additional covariate to increase prediction performance of feeding presence/absence. Integral to the predictive modeling of feeding events is a ground-truthing component, in which GPS location clusters are visited by human observers to confirm the presence or absence of feeding remains. Failing to account for sources of ground-truthing false-absences can bias the number of predicted feeding events to be low. Thus we account for some ground-truthing error sources directly in the model with covariates and when applying model predictions. Accounting for these errors resulted in a 10% increase in the number of clusters predicted to be feeding events. Using a double-observer design, we show that the ground-truthing false-absence rate is relatively low (4%) using a search delay of 2–60 days. Overall, we provide two separate improvements to the GPS cluster analysis techniques that can be expanded upon and implemented in future studies interested in identifying feeding behaviors of large carnivores. PMID:26398546

  3. Improvements on GPS Location Cluster Analysis for the Prediction of Large Carnivore Feeding Activities: Ground-Truth Detection Probability and Inclusion of Activity Sensor Measures.

    PubMed

    Blecha, Kevin A; Alldredge, Mat W

    2015-01-01

    Animal space use studies using GPS collar technology are increasingly incorporating behavior based analysis of spatio-temporal data in order to expand inferences of resource use. GPS location cluster analysis is one such technique applied to large carnivores to identify the timing and location of feeding events. For logistical and financial reasons, researchers often implement predictive models for identifying these events. We present two separate improvements for predictive models that future practitioners can implement. Thus far, feeding prediction models have incorporated a small range of covariates, usually limited to spatio-temporal characteristics of the GPS data. Using GPS collared cougar (Puma concolor) we include activity sensor data as an additional covariate to increase prediction performance of feeding presence/absence. Integral to the predictive modeling of feeding events is a ground-truthing component, in which GPS location clusters are visited by human observers to confirm the presence or absence of feeding remains. Failing to account for sources of ground-truthing false-absences can bias the number of predicted feeding events to be low. Thus we account for some ground-truthing error sources directly in the model with covariates and when applying model predictions. Accounting for these errors resulted in a 10% increase in the number of clusters predicted to be feeding events. Using a double-observer design, we show that the ground-truthing false-absence rate is relatively low (4%) using a search delay of 2-60 days. Overall, we provide two separate improvements to the GPS cluster analysis techniques that can be expanded upon and implemented in future studies interested in identifying feeding behaviors of large carnivores.

  4. Metastable β-Bi2O3 nanoparticles with high photocatalytic activity from polynuclear bismuth oxido clusters.

    PubMed

    Schlesinger, Maik; Schulze, Steffen; Hietschold, Michael; Mehring, Michael

    2013-01-28

    The synthesis of nanoscaled β-Bi(2)O(3) starting from the bismuth oxido clusters [Bi(6)O(4)(OH)(4)](NO(3))(6)·H(2)O, [Bi(22)O(26)(OSiMe(2)(t)Bu)(14)], [Bi(38)O(45)(NO(3))(20)(DMSO)(28)](NO(3))(4)·4DMSO and [Bi(38)O(45)(OMc)(24)(DMSO)(9)]·2DMSO·7H(2)O (OMc = O(2)CC(3)H(5)) under ambient conditions is reported. The metal oxido clusters are regarded as ideal precursors for β-Bi(2)O(3) due to their structural relationship with the latter. Nevertheless, different bismuth oxide polymorphs are accessible dependent on the hydrolysis protocol. Hydrolysis over a period of 18 h gave stable α-Bi(2)O(3) whereas after 3 min an amorphous material is observed. Annealing of the amorphous material at 370 °C gave nanoscaled β-Bi(2)O(3). An unusual high reactivity of the β-Bi(2)O(3) particles with SiO(2) and Al(2)O(3) is observed at temperatures above 400 °C. Powder X-ray diffraction studies, transmission electron microscopy, diffuse reflectance UV/Vis spectroscopy and nitrogen adsorption measurements are used for characterization of the as-prepared β-Bi(2)O(3) nanoparticles. The properties of the β-Bi(2)O(3) nanoparticles depend on the starting bismuth oxido clusters with regard to particle size and optical band gap. The β-Bi(2)O(3) nanoparticles show excellent photocatalytic activity as demonstrated by dye decomposition (rhodamine B, methyl orange, methylene blue and orange G) under visible light.

  5. Saturated fatty acids induce c-Src clustering within membrane subdomains leading to JNK activation

    PubMed Central

    Holzer, Ryan G.; Park, Eek-Joong; Li, Ning; Tran, Helen; Chen, Monica; Choi, Crystal; Solinas, Giovanni; Karin, Michael

    2011-01-01

    Saturated fatty acids (FA) exert adverse health effects and are more likely to cause insulin resistance and type 2 diabetes than unsaturated FA, some of which exert protective and beneficial effects. Saturated FA, but not unsaturated FA, activate Jun N terminal kinase (JNK), which has been linked to obesity and insulin resistance in mice and men. However, it is unknown how saturated and unsaturated FA are discriminated. We now demonstrate that saturated FA activate JNK and induce insulin resistance by altering the membrane distribution of c-Src, causing it to partition into intracellular membrane subdomains where it may become activated. Conversely, unsaturated FA with known beneficial effects on glucose metabolism prevent c-Src membrane partitioning and activation, which are dependent on its myristoylation, and block JNK activation. Consumption of a diabetogenic high fat diet causes the partitioning and activation of c-Src within detergent insoluble membrane subdomains of adipocytes. PMID:21962514

  6. Prominence activity related to CME observed by SOHO, Yohkoh and ground-based observatories

    NASA Technical Reports Server (NTRS)

    Schmieder, B.; vanDriel-Gesztelyi, L.; Wiik, J. E.; Kucera, T.; Thompson, B.; DeForest, C.; SaintCyr, C.; Simnett, G. M.

    1997-01-01

    Examples of destabilization of prominences and their associated coronal mass ejections (CMEs) are presented. During the 1996 campaigns of multi-wavelength observations with the Solar and Heliospheric Observatory (SOHO), the Yohkoh satellite's soft X-ray telescope (SXT) and the Meudon (France) H alpha spectroheliograph eruptive solar filaments and prominences associated with the CMEs were observed. Two of the observed events showed that CMEs and 'brusques disparitions' (BDs) seem to be consequences of global magnetic field instability.

  7. Generation of spectral clusters in a mixture of noble and Raman-active gases.

    PubMed

    Hosseini, Pooria; Abdolvand, Amir; St J Russell, Philip

    2016-12-01

    We report a novel scheme for the generation of dense clusters of Raman sidebands. The scheme uses a broadband-guiding hollow-core photonic crystal fiber (HC-PCF) filled with a mixture of H2, D2, and Xe for efficient interaction between the gas mixture and a green laser pump pulse (532 nm, 1 ns) of only 5 μJ of energy. This results in the generation from noise of more than 135 rovibrational Raman sidebands covering the visible spectral region with an average spacing of only 2.2 THz. Such a spectrally dense and compact fiber-based source is ideal for applications where closely spaced narrow-band laser lines with high spectral power density are required, such as in spectroscopy and sensing. When the HC-PCF is filled with a H2-D2 mixture, the Raman comb spans the spectral region from the deep UV (280 nm) to the near infrared (1000 nm).

  8. Bond Activation and Hydrogen Evolution from Water through Reactions with M3S4 (M = Mo, W) and W3S3 Anionic Clusters.

    PubMed

    Kumar, Corrine A; Saha, Arjun; Raghavachari, Krishnan

    2017-03-02

    Transition metal sulfides (TMS) are being investigated with increased frequency because of their ability to efficiently catalyze the hydrogen evolution reaction. We have studied the trimetallic TMS cluster ions, Mo3S4(-), W3S4(-), and W3S3(-), and probed their efficiency for bond activation and hydrogen evolution from water. These clusters have geometries that are related to the edge sites on bulk MoS2 surfaces that are known to play a role in hydrogen evolution. Using density functional theory, the electronic structures of these clusters and their chemical reactivity with water have been investigated. The reaction mechanism involves the initial formation of hydroxyl and thiol groups, hydrogen migration to form an intermediate with a metal hydride bond, and finally, combination of a hydride and a proton to eliminate H2. Using this mechanism, free energy profiles of the reactions of the three metal clusters with water have been constructed. Unlike previous reactivity studies of other related cluster systems, there is no overall energy barrier in the reactions involving the M3S4 systems. The energy required for the rate-determining step of the reaction (the initial addition of the cluster by water) is lower than the separated reactants (-0.8 kcal/mol for Mo and -5.1 kcal/mol for W). They confirm the M3S4(-) cluster's ability to efficiently activate the chemical bonds in water to release H2. Though the W3S3(-) cluster is not as efficient at bond activation, it provides insights into the factors that contribute to the success of the M3S4 anionic systems in hydrogen evolution.

  9. The Evolution of Star formation Activity in Cluster Galaxies over 0.15 < z < 1.5

    NASA Astrophysics Data System (ADS)

    Wagner, Cory R.; Courteau, Stéphane; Brodwin, Mark; Stanford, S. A.; Snyder, Gregory F.; Stern, Daniel

    2017-01-01

    We explore 7.5 billion years of evolution in the star formation activity of massive ({M}\\star > {10}10.1 {M}ȯ ) cluster galaxies using a sample of 25 clusters over 0.15< z< 1 from the Cluster Lensing And Supernova survey with Hubble and 11 clusters over 1< z< 1.5 from the IRAC Shallow Cluster Survey. Galaxy morphologies are determined visually using high-resolution Hubble Space Telescope images. Using the spectral energy distribution fitting code Code Investigating GALaxy Emission, we measure star formation rates, stellar masses, and 4000 Å break strengths. The latter are used to separate quiescent and star-forming galaxies (SFGs). From z∼ 1.3 to z∼ 0.2, the specific star formation rate (sSFR) of cluster SFGs and quiescent galaxies decreases by factors of three and four, respectively. Over the same redshift range, the sSFR of the entire cluster population declines by a factor of 11, from 0.48+/- 0.06 {{Gyr}}-1 to 0.043+/- 0.009 {{Gyr}}-1. This strong overall sSFR evolution is driven by the growth of the quiescent population over time; the fraction of quiescent cluster galaxies increases from {28}-19+8 % to {88}-4+5 % over z ∼ 1.3 to 0.2. The majority of the growth occurs at z≳ 0.9, where the quiescent fraction increases by 0.41. While the sSFR of the majority of star-forming cluster galaxies is at the level of the field, a small subset of cluster SFGs have low field-relative star formation activity, suggestive of long-timescale quenching. The large increase in the fraction of quiescent galaxies above z∼ 0.9, coupled with the field-level sSFRs of cluster SFGs, suggests that higher-redshift cluster galaxies are likely being quenched quickly. Assessing those timescales will require more accurate stellar population ages and star formation histories.

  10. Effects of Source Position on the DH-Type II CME Properties

    NASA Astrophysics Data System (ADS)

    Shanmugarju, A.; Moon, Y.-J.; Cho, K.-S.; Umapathy, S.

    2009-06-01

    The properties of SOHO/LASCO CMEs are subjected to projection effects. Their dependence on the source position is important to be studied. Our main aim is to study the dependence of CME properties on helio-longitude and latitude using the CMEs associated with type IIs observed by Wind/WAVES spacecraft (Deca-hecta metric type IIs - DH type IIs). These CMEs were identified as a separate population of geo-effective CMEs. We considered the CMEs associated with the Wind/WAVE type IIs observed during the period January 1997 - December 2005. The source locations of these CMEs were identified using their associated GOES X-ray flares and listed online. Using their locations and the cataloged properties of CMEs, we carried out a study on the dependence of CME properties on source location. We studied the above for three groups of CMEs: (i) all CMEs, (ii) halo and non-halo CMEs, and (iii) limb and non-limb CMEs. Major results from this study can be summarized as follows. (i) There is a clear dependence of speed on both the longitude and latitude; while there is an increasing trend with respect to longitude, it is opposite in the case of latitude. Our investigations show that the longitudinal dependence is caused by the projection effect and the latitudinal effect by the solar cycle effect. (ii) In the case of width, the disc centered events are observed with more width than those occurred at higher longitudes, and this result seems to be the same for latitude. (iii) The dependency of speed is confirmed on the angular distance between the sun-center and source location determined using both the longitude and latitude. (iv) There is no dependency found in the case of acceleration. (v) Among all the three groups of CMEs, the speeds of halo CMEs show more dependency on longitude. The speed of non-halo and non-limb CMEs show more dependency on latitude. The above results may be taken into account in correcting the projection effects of geo-effective CMEs.

  11. Evolution of Three Geoeffective Shock-CME pairs in September 2011

    NASA Astrophysics Data System (ADS)

    Wu, S. T.; Liou, K.; Wu, C. C.; Vourlidas, A.; Plunkett, S. P.; Dryer, Ph D., M.; Socker, D. G.; Wood, B. E.

    2014-12-01

    Three sizable geomagnetic storms were recorded in September 2011. The intensity of geomagnetic storms (Dstmin: minimum Dst) are -69, -70, -101 nT and the storms' onset time are September 9, 17, and 26, respectively. A sequence of coronal mass ejections (CMEs) correspond causing these three geomagnetic storms. The severe geomagnetic storm (Dstmin < -100 nT) on 26 September was caused by a couple of CMEs erupted on 24 September. Wind spacecraft detected an interplanetary (IP) shock at ~11:18 UT on 26 September but no magnetic cloud was recorded behind the IP shock. A severe geomagnetic storm was recorded ~6 hours after the IP shock passed through the Wind spacecraft. Geomagnetic index (Dst) dropped to -101 nT which was due to the z-component of interplanetary magnetic field (Bz) dropped to ~ -20 nT. Both September 9th and 17th IP shocks have followed by a magnetic hole with a very sharp change in both magnetic field and density. Inside the magnetic holes, both solar wind velocity and temperature are almost constant, and the peak of density and dip of magnetic field occurred near the centre of the magnetic field hole. Peak densities were close to ~94, ~60 cm-3 near the centre of the hole on Sept. 09, 17, respectively. A global, three-dimensional (3-D) magnetohydrodynamic (MHD) numerical model with inputs based on actual solar observations (e.g., velocity of the CME) is used to simulate the responses of the 3-D heliosphere. These velocity pulses are deduced from STEREO-A which are used to minic the initiation of the observed 15 CMEs at lower boundary (2.5 Rs) to investigate the CME evolution from the Sun to the Earth during September 03-30, 2011.Simulated background solar wind parameters (velocity, density, magnetic field, and temperature) are matched well with 1 AU in-situ measurement from Wind spacecraft. In summary, we have successfully simulated these CMEs' evolution and the IP shocks arrival time at 1 AU by comparison with Wind measurement.It is found that

  12. MHD Modeling of Coronal Large-Amplitude Waves Related to CME Lift-off

    NASA Astrophysics Data System (ADS)

    Pomoell, J.; Vainio, R.; Kissmann, R.

    2008-12-01

    We have employed a two-dimensional magnetohydrodynamic simulation code to study mass motions and large-amplitude coronal waves related to the lift-off of a coronal mass ejection (CME). The eruption of the filament is achieved by an artificial force acting on the plasma inside the flux rope. By varying the magnitude of this force, the reaction of the ambient corona to CMEs with different acceleration profiles can be studied. Our model of the ambient corona is gravitationally stratified with a quadrupolar magnetic field, resulting in an ambient Alfvén speed that increases as a function of height, as typically deduced for the low corona. The results of the simulations show that the erupting flux rope is surrounded by a shock front, which is strongest near the leading edge of the erupting mass, but also shows compression near the solar surface. For rapidly accelerating filaments, the shock front forms already in the low corona. Although the speed of the driver is less than the Alfvén speed near the top of the atmosphere, the shock survives in this region as well, but as a freely propagating wave. The leading edge of the shock becomes strong early enough to drive a metric type II burst in the corona. The speed of the weaker part of the shock front near the surface is lower, corresponding to the magnetosonic speed there. We analyze the (line-of-sight) emission measure of the corona during the simulation and recognize a wave receding from the eruption site, which strongly resembles EIT waves in the low corona. Behind the EIT wave, we clearly recognize a coronal dimming, also observed during CME lift-off. We point out that the morphology of the hot downstream region of the shock would be that of a hot erupting loop, so care has to be taken not to misinterpret soft X-ray imaging observations in this respect. Finally, the geometry of the magnetic field around the erupting mass is analyzed in terms of precipitation of particles accelerated in the eruption complex. Field

  13. THE CLUSTER AND FIELD GALAXY ACTIVE GALACTIC NUCLEUS FRACTION AT z = 1-1.5: EVIDENCE FOR A REVERSAL OF THE LOCAL ANTICORRELATION BETWEEN ENVIRONMENT AND AGN FRACTION

    SciTech Connect

    Martini, Paul; Miller, E. D.; Bautz, M.; Brodwin, M.; Stanford, S. A.; Gonzalez, Anthony H.; Hickox, R. C.; Stern, D.; Eisenhardt, P. R.; Galametz, A.; Norman, D.; Dey, A.; Jannuzi, B. T.; Murray, S.; Jones, C.; Brown, M. J. I.

    2013-05-01

    The fraction of cluster galaxies that host luminous active galactic nuclei (AGNs) is an important probe of AGN fueling processes, the cold interstellar medium at the centers of galaxies, and how tightly black holes and galaxies co-evolve. We present a new measurement of the AGN fraction in a sample of 13 clusters of galaxies (M {>=} 10{sup 14} M{sub Sun }) at 1 < z < 1.5 selected from the Spitzer/IRAC Shallow Cluster Survey, as well as the field fraction in the immediate vicinity of these clusters, and combine these data with measurements from the literature to quantify the relative evolution of cluster and field AGN from the present to z {approx} 3. We estimate that the cluster AGN fraction at 1 < z < 1.5 is f{sub A} = 3.0{sup +2.4}{sub -1.4}% for AGNs with a rest-frame, hard X-ray luminosity greater than L{sub X,{sub H}} {>=} 10{sup 44} erg s{sup -1}. This fraction is measured relative to all cluster galaxies more luminous than M{sup *}{sub 3.6}(z) + 1, where M{sup *}{sub 3.6}(z) is the absolute magnitude of the break in the galaxy luminosity function at the cluster redshift in the IRAC 3.6 {mu}m bandpass. The cluster AGN fraction is 30 times greater than the 3{sigma} upper limit on the value for AGNs of similar luminosity at z {approx} 0.25, as well as more than an order of magnitude greater than the AGN fraction at z {approx} 0.75. AGNs with L{sub X,{sub H}} {>=} 10{sup 43} erg s{sup -1} exhibit similarly pronounced evolution with redshift. In contrast to the local universe, where the luminous AGN fraction is higher in the field than in clusters, the X-ray and MIR-selected AGN fractions in the field and clusters are consistent at 1 < z < 1.5. This is evidence that the cluster AGN population has evolved more rapidly than the field population from z {approx} 1.5 to the present. This environment-dependent AGN evolution mimics the more rapid evolution of star-forming galaxies in clusters relative to the field.

  14. Fuel mediated solution combustion synthesis of ZnO supported gold clusters and nanoparticles and their catalytic activity and in vitro cytotoxicity.

    PubMed

    Chanu, T Inakhunbi; Muthukumar, Thangavelu; Manoharan, Periakaruppan T

    2014-11-21

    Nanocomposites of gold nanoparticles and semiconductor ZnO with wurtzite structure, made by solution combustion synthesis (SCS), as a function of the Zn/fuel ratio with polyethylene glycol (PEG) as fuel exhibit the presence of both nanoparticles and clusters. Atomic gold clusters present on the surface of ZnO nanorods which can be identified by XPS and SEM are easily monitored and characterized by positive ion MALDI experiments as mostly odd numbered clusters, Au3 to Au11 in decreasing amounts. Low concentrations of the fuel produce AuClO and nanoparticles (NPs), with no clusters. Au-ZnO nanocomposites at all [Au] exhibit single blue shifted plasmon absorption and corresponding photoluminescence (PL). Increasing particle size prefers surface plasmon resonance (SPR) scattering of metal that could lead to PL enhancement; however, available ZnO surface in the Au-ZnO composite becomes more important than the particle size of the composite with higher [Au]. The catalytic activity of these Au-ZnO nanocomposites tested on 4-nitrophenol clearly revealed the presence of an intermediate with both NPs and clusters playing different roles. An in vitro study of cytotoxicity on MCF-7 cell lines revealed that these gold nanostructures have turned out to be powerful nanoagents for destruction of cancer cells even with small amounts of gold particles/clusters. The nanorods of ZnO, known to be nontoxic to normal cells, play a lesser role in the anticancer activity of these Au-ZnO nanocomposites.

  15. CLUSTER CHEMISTRY

    SciTech Connect

    Muetterties, Earl L.

    1980-05-01

    Metal cluster chemistry is one of the most rapidly developing areas of inorganic and organometallic chemistry. Prior to 1960 only a few metal clusters were well characterized. However, shortly after the early development of boron cluster chemistry, the field of metal cluster chemistry began to grow at a very rapid rate and a structural and a qualitative theoretical understanding of clusters came quickly. Analyzed here is the chemistry and the general significance of clusters with particular emphasis on the cluster research within my group. The importance of coordinately unsaturated, very reactive metal clusters is the major subject of discussion.

  16. Computational evaluation of sub-nanometer cluster activity of singly exposed copper atom with various coordinative environment in catalytic CO2 transformation

    NASA Astrophysics Data System (ADS)

    Shanmugam, Ramasamy; Thamaraichelvan, Arunachalam; Ganesan, Tharumeya Kuppusamy; Viswanathan, Balasubramanian

    2017-02-01

    Metal cluster, at sub-nanometer level has a unique property in the activation of small molecules, in contrast to that of bulk surface. In the present work, singly exposed active site of copper metal cluster at sub-nanometer level was designed to arrive at the energy minimised configurations, binding energy, electrostatic potential map, frontier molecular orbitals and partial density of states. The ab initio molecular dynamics was carried out to probe the catalytic nature of the cluster. Further, the stability of the metal cluster and its catalytic activity in the electrochemical reduction of CO2 to CO were evaluated by means of computational hydrogen electrode via calculation of the free energy profile using DFT/B3LYP level of theory in vacuum. The activity of the cluster is ascertained from the fact that the copper atom, present in a two coordinative environment, performs a more selective conversion of CO2 to CO at an applied potential of -0.35 V which is comparatively lower than that of higher coordinative sites. The present study helps to design any sub-nano level metal catalyst for electrochemical reduction of CO2 to various value added chemicals.

  17. Goal-setting intervention in patients with active asthma: protocol for a pilot cluster-randomised controlled trial

    PubMed Central

    2013-01-01

    Background Supporting self-management behaviours is recommended guidance for people with asthma. Preliminary work suggests that a brief, intensive, patient-centred intervention may be successful in supporting people with asthma to participate in life roles and activities they value. We seek to assess the feasibility of undertaking a cluster-randomised controlled trial (cRCT) of a brief, goal-setting intervention delivered in the context of an asthma review consultation. Methods/design A two armed, single-blinded, multi-centre, cluster-randomised controlled feasibility trial will be conducted in UK primary care. Randomisation will take place at the practice level. We aim to recruit a total of 80 primary care patients with active asthma from at least eight practices across two health boards in Scotland (10 patients per practice resulting in ~40 in each arm). Patients in the intervention arm will be asked to complete a novel goal-setting tool immediately prior to an asthma review consultation. This will be used to underpin a focussed discussion about their goals during the asthma review. A tailored management plan will then be negotiated to facilitate achieving their prioritised goals. Patients in the control arm will receive a usual care guideline-based review of asthma. Data on quality of life, asthma control and patient confidence will be collected from both arms at baseline and 3 and 6 months post-intervention. Data on health services resource use will be collected from all patient records 6 months pre- and post-intervention. Semi-structured interviews will be carried out with healthcare staff and a purposive sample of patients to elicit their views and experiences of the trial. The outcomes of interest in this feasibility trial are the ability to recruit patients and healthcare staff, the optimal method of delivering the intervention within routine clinical practice, and acceptability and perceived utility of the intervention among patients and staff. Trial

  18. EVOLUTION AND DISTRIBUTION OF MAGNETIC FIELDS FROM ACTIVE GALACTIC NUCLEI IN GALAXY CLUSTERS. I. THE EFFECT OF INJECTION ENERGY AND REDSHIFT

    SciTech Connect

    Xu Hao; Li Hui; Li Shengtai; Collins, David C.; Norman, Michael L. E-mail: hli@lanl.go E-mail: dcollins@physics.ucsd.ed

    2010-12-20

    We present a series of cosmological magnetohydrodynamic simulations that simultaneously follow the formation of a galaxy cluster and evolution of magnetic fields ejected by an active galactic nucleus (AGN). Specifically, we investigate the influence of both the epoch of the AGN (z {approx} 3-0.5) and the AGN energy ({approx}3 x 10{sup 57}- 2 x 10{sup 60} erg) on the final magnetic field distribution in a relatively massive cluster (M{sub vir} {approx} 10{sup 15} M{sub sun}). We find that as long as the AGN magnetic fields are ejected before the major mergers in the cluster formation history, magnetic fields can be transported throughout the cluster and can be further amplified by the intracluster medium (ICM) turbulence caused by hierarchical mergers during the cluster formation process. The total magnetic energy in the cluster can reach {approx}10{sup 61} erg, with micro Gauss fields distributed over the {approx}Mpc scale. The amplification of the total magnetic energy by the ICM turbulence can be significant, up to {approx}1000 times in some cases. Therefore even weak magnetic fields from AGNs can be used to magnetize the cluster to the observed level. The final magnetic energy in the ICM is determined by the ICM turbulent energy, with a weak dependence on the AGN injection energy. We discuss the properties of magnetic fields throughout the cluster and the synthetic Faraday rotation measure maps they produce. We also show that high spatial resolution over most of the magnetic regions of the cluster is very important to capture the small-scale dynamo process and maintain the magnetic field structure in our simulations.

  19. Radio imaging spectroscopy of synchrotron emission associated with a CME on the 14th of August 2010

    NASA Astrophysics Data System (ADS)

    Bain, Hazel; Krucker, S.; Saint-Hilaire, P.; Raftery, C.

    2013-07-01

    We present Nancay Radioheliograph observations of a moving type IV solar radio burst which occurred in association with a CME on the 14th of August 2010. The event was well observed at extreme ultraviolet wavelengths by the Atmospheric Imaging Assembly onboard the Solar Dynamics Observatory, the SWAP instrument onboard Proba2 and by the LASCO white light coronograph. The burst emission was found to be cospatial with the core of the CME. Using radio imaging spectroscopy we are able to characterize the underlying electron distribution and plasma parameters within the source. Fitted spectra reveal a clear power law component consistent with optically thin synchrotron emission from accelerated electrons trapped in the erupting flux rope. As is often observed in type IV bursts, polarization measurements show the source to be moderately polarized during the peak of the burst, before steadily increasing to around 70% as the brightness temperature of the burst decays.

  20. Elemental composition before, during and after the January 6, 1997, CME event measured by CELIAS/SOHO

    NASA Technical Reports Server (NTRS)

    Wurz, P.; Ipavich, F. M.; Galvin, A. B.; Bochsler, P.; Aellig, M. R.; Kallenbach, R.; Hovestadt, D.; Gruenwaldt, H.; Hilchenbach, M.; Axford, W. I.; Balsiger, H.; Buergi, A.; Coplan, M. A.; Geiss, J.; Gliem, F.; Gloeckler, G.; Hefti, S.; Hsieh, K. C.; Klecker, B.; Lee, M. A.

    1997-01-01

    Using solar wind particle data from the charge, element and isotope analysis system (CELIAS) experiment on the SOHO mission, densities of the elements O, Ne, Mg, Si, S, Ca, and Fe are derived, and their abundance is analyzed before, during and after the 6 Janaury 1997 coronal mass ejection event (CME). In the interstream and coronal hole regions before and after this event, typical solar wind abundances for the elements investigated were found. However, during the passage of the coronal mass ejection and during the passage of the erupted filament, the elemental composition differed markedly from typical solar wind. For the passage of the CME and for the passage of the erupted filament, a mass-dependent enhancement of the elements was found, with a monotonic increase towards heavier elements. Si/O and Fe/O ratios of the order of one during these time periods were observed.

  1. The CZMIL manual editor (CME): a new tool for analyzing bathymetric lidar waveforms and editing point clouds

    NASA Astrophysics Data System (ADS)

    Morris, Gary Q.; Depner, Jan; Hilderbrand, Ronnie; Ramnath, Vinod

    2010-04-01

    The University of Southern Mississippi's Center of Higher Learning has developed a Waveform Viewer, Attribute Viewer, and a 3D Editor for use in the CZMIL Point Cloud Manual Editor (CME). The Waveform Viewer displays various channels of CZMIL waveforms within the 2D/3D editor interface of CME. This module provides the user an interactive tool set consisting of a cross sectioning mechanism for the intensity time-bin relationship, waveform file output, and zooming capabilities. The Attribute Viewer provides the data analyst with information to analyze various environmental and spatial parameters that might contribute to errors in the measured points. The 3D Editor offers the benefits of capturing depth outliers; an intuitive visual connectivity with the 2D editor; and the implementation of volumetric directional slice isolation of data outliers.

  2. Active Currents and Stresses on the cell surface: Clustering, Instabilities and Budding

    NASA Astrophysics Data System (ADS)

    Rao, Madan

    2011-03-01

    We study the contractile dynamics of a collection of active polar filaments, such as actin, on a two dimensional substrate, using a continuum hydrodynamic description in the presence of spatiotemporal noise. The steady states, characterized by a variety of phases generically consisting of a transient collection of inward pointing asters. We next study the dynamics of particles advected along these active filaments. This is relevant to the dynamics and organization of a large class of cell surface molecules. We make several predictions regarding the statistics of fluctuations of these passive advective particles which we confirm using fluorescence based experiments. We then show how such active patterning of filaments can give rise to membrane stresses leading to membrane shape deformations. In collaboration with Kripa Gowrishankar and Satyajit Mayor.

  3. Tracking the Momentum Flux of a CME and Quantifying Its Influence on Geomagnetically Induced Currents at Earth

    NASA Technical Reports Server (NTRS)

    Savani, N. P.; Vourlidas, A.; Pulkkinen, A.; Nieves-Chinchilla, T.; Lavraud, B.; Owens, M. J.

    2013-01-01

    We investigate a coronal mass ejection (CME) propagating toward Earth on 29 March 2011. This event is specifically chosen for its predominately northward directed magnetic field, so that the influence from the momentum flux onto Earth can be isolated. We focus our study on understanding how a small Earth-directed segment propagates. Mass images are created from the white-light cameras onboard STEREO which are also converted into mass height-time maps (mass J-maps). The mass tracks on these J-maps correspond to the sheath region between the CME and its associated shockfront as detected by in situ measurements at L1. A time series of mass measurements from the STEREOCOR-2A instrument is made along the Earth propagation direction. Qualitatively, this mass time series shows a remarkable resemblance to the L1 in situ density series. The in situ measurements are used as inputs into a three-dimensional (3-D) magnetospheric space weather simulation from the Community Coordinated Modeling Center. These simulations display a sudden compression of the magnetosphere from the large momentum flux at the leading edge of the CME, and predictions are made for the time derivative of the magnetic field (dBdt) on the ground. The predicted dBdt values were then compared with the observations from specific equatorially located ground stations and showed notable similarity. This study of the momentum of a CME from the Sun down to its influence on magnetic ground stations on Earth is presented as a preliminary proof of concept, such that future attempts may try to use remote sensing to create density and velocity time series as inputs to magnetospheric simulations.

  4. Clustering of mammalian Hox genes with other H3K27me3 targets within an active nuclear domain.

    PubMed

    Vieux-Rochas, Maxence; Fabre, Pierre J; Leleu, Marion; Duboule, Denis; Noordermeer, Daan

    2015-04-14

    Embryogenesis requires the precise activation and repression of many transcriptional regulators. The Polycomb group proteins and the associated H3K27me3 histone mark are essential to maintain the inactive state of many of these genes. Mammalian Hox genes are targets of Polycomb proteins and form local 3D clusters centered on the H3K27me3 mark. More distal contacts have also been described, yet their selectivity, dynamics, and relation to other layers of chromatin organization remained elusive. We report that repressed Hox genes form mutual intra- and interchromosomal interactions with other genes located in strong domains labeled by H3K27me3. These interactions occur in a central and active nuclear environment that consists of the HiC compartment A, away from peripheral lamina-associated domains. Interactions are independent of nearby H3K27me3-marked loci and determined by chromosomal distance and cell-type-specific scaling factors, thus inducing a moderate reorganization during embryogenesis. These results provide a simplified view of nuclear organization whereby Polycomb proteins may have evolved to repress genes located in gene-dense regions whose position is restricted to central, active, nuclear environments.

  5. Antibiotic discovery throughout the Small World Initiative: A molecular strategy to identify biosynthetic gene clusters involved in antagonistic activity.

    PubMed

    Davis, Elizabeth; Sloan, Tyler; Aurelius, Krista; Barbour, Angela; Bodey, Elijah; Clark, Brigette; Dennis, Celeste; Drown, Rachel; Fleming, Megan; Humbert, Allison; Glasgo, Elizabeth; Kerns, Trent; Lingro, Kelly; McMillin, MacKenzie; Meyer, Aaron; Pope, Breanna; Stalevicz, April; Steffen, Brittney; Steindl, Austin; Williams, Carolyn; Wimberley, Carmen; Zenas, Robert; Butela, Kristen; Wildschutte, Hans

    2017-01-22

    The emergence of bacterial pathogens resistant to all known antibiotics is a global health crisis. Adding to this problem is that major pharmaceutical companies have shifted away from antibiotic discovery due to low profitability. As a result, the pipeline of new antibiotics is essentially dry and many bacteria now resist the effects of most commonly used drugs. To address this global health concern, citizen science through the Small World Initiative (SWI) was formed in 2012. As part of SWI, students isolate bacteria from their local environments, characterize the strains, and assay for antibiotic production. During the 2015 fall semester at Bowling Green State University, students isolated 77 soil-derived bacteria and genetically characterized strains using the 16S rRNA gene, identified strains exhibiting antagonistic activity, and performed an expanded SWI workflow using transposon mutagenesis to identify a biosynthetic gene cluster involved in toxigenic compound production. We identified one mutant with loss of antagonistic activity and through subsequent whole-genome sequencing and linker-mediated PCR identified a 24.9 kb biosynthetic gene locus likely involved in inhibitory activity in that mutant. Further assessment against human pathogens demonstrated the inhibition of Bacillus cereus, Listeria monocytogenes, and methicillin-resistant Staphylococcus aureus in the presence of this compound, thus supporting our molecular strategy as an effective research pipeline for SWI antibiotic discovery and genetic characterization.

  6. CME Mass Estimates via EVE Coronal Dimmings for X-class Flares

    NASA Astrophysics Data System (ADS)

    Hudson, Hugh S.; Hannah, Iain; Schrijver, Karel

    2014-06-01

    The EVE instrument on SDO detects post-flare dimmings, mainly in the spectral regions of Fe IX-XII in its MEGS-A range, which is available for most of the 29 X-class flares that have occurred between SDO launch and the end of April 2014. Based upon earlier X-ray observations we interpret these dimmings as the result of CME mass ejection from the low corona. We estimate the masses involved in these dimmings by deriving a best pre-event temperature and emission measure in the dimmed region from EVE, and a source volume from AIA images. The dimming for SOL2011-02-15, the first of these events, "peaked"at -3.4% in Fe IX in terms of the pre-event emission from the whole Sun, with smaller relative depletions in higher ionization states of Fe. The "maximum" occurred more than one hour after GOES peak. The dimming signature is generally cleanly measurable in the EVE/MEGS-A spectral samples at10 s cadence, with the dominant source of uncertainty stemming from the "sun-as-a-star" integrations; for example flare-related excess emission at a given wavelength tends to compensate for the dimming,and in this sense the mass estimate must be considered a lower limit. We address these uncertainties for the solar case by appealing to the AIA images, but for analogous processes in stellar flares one would not have this luxury.

  7. Trauma-Informed Medical Care: A CME Communication Training for Primary Care Providers

    PubMed Central

    Green, Bonnie L.; Saunders, Pamela A.; Power, Elizabeth; Dass-Brailsford, Priscilla; Schelbert, Kavitha Bhat; Giller, Esther; Wissow, Larry; Hurtado-de-Mendoza, Alejandra; Mete, Mihriye

    2014-01-01

    BACKGROUND AND OBJECTIVES: Trauma exposure predicts mental disorders, medical morbidity, and healthcare costs. Yet trauma-related impacts have not received sufficient attention in primary care provider (PCP) training programs. This study adapted a theory-based approach to working with trauma survivors, Risking Connection, into a 6-hour CME course, Trauma-Informed Medical Care (TI-Med), and evaluated its efficacy. METHODS: We randomized PCPs to training or wait-list (delay) conditions; waitlist groups were trained after reassessment. The primary outcome assessing newly acquired skills was a patient-centeredness score derived from Roter Interactional Analysis System ratings of 90 taped visits between PCPs and standardized patients (SPs). PCPs were Family Medicine residents (n=17) and community physicians (n=13; 83% Family Medicine specialty), from four sites in the Washington DC metropolitan area. RESULTS: Immediately trained PCPs trended toward a larger increase in patient-centeredness than did the delayed PCPs (p < .09), with a moderate effect size (.66). The combined trained PCP groups showed a significant increase in patient-centeredness pre to post training, p < .01, Cohen’s D = .61. CONCLUSIONS: This is a promising approach to supporting relationship-based trauma-informed care among PCPs to help promote better patient health and higher compliance with medical treatment plans. PMID:25646872

  8. Development of a full ice-cream cone model for halo CME structures

    NASA Astrophysics Data System (ADS)

    Na, Hyeonock; Moon, Yong-Jae

    2015-04-01

    The determination of three dimensional parameters (e.g., radial speed, angular width, source location) of Coronal Mass Ejections (CMEs) is very important for space weather forecast. To estimate these parameters, several cone models based on a flat cone or a shallow ice-cream cone with spherical front have been suggested. In this study, we investigate which cone model is proper for halo CME morphology using 33 CMEs which are identified as halo CMEs by one spacecraft (SOHO or STEREO-A or B) and as limb CMEs by the other ones. From geometrical parameters of these CMEs such as their front curvature, we find that near full ice-cream cone CMEs (28 events) are dominant over shallow ice-cream cone CMEs (5 events). So we develop a new full ice-cream cone model by assuming that a full ice-cream cone consists of many flat cones with different heights and angular widths. This model is carried out by the following steps: (1) construct a cone for given height and angular width, (2) project the cone onto the sky plane, (3) select points comprising the outer boundary, (4) minimize the difference between the estimated projection points with the observed ones. We apply this model to several halo CMEs and compare the results with those from other methods such as a Graduated Cylindrical Shell model and a geometrical triangulation method.

  9. Why S, Not X, Marks the Spot for CME/Flare Eruptions

    NASA Technical Reports Server (NTRS)

    Moore, Ronald L.; Sterling, Alphonse; Gary, Allen; Cirtain, Jonathan; Falconer, David

    2010-01-01

    For any major CME/flare eruption: I. The field that erupts is an arcade in which the interior is greatly sheared and twisted. Most of the free magnetic energy to be released: a) Is in the shear and twist of the interior field. b) Is Not due to a big current sheet. The eruption is unleashed by reconnection at a growing current sheet. The current sheet is still little when the reconnection turns on. The unleashed eruption then makes the current sheet much bigger by building it up faster than the reconnection can tear it down. II. Most X-ray jets work the opposite way: a) Tapped free energy is in the field of a pre-jet current sheet. b) Current sheet built by small arcade emerging into ambient field. c) Current sheet still much smaller than the arcade when reconnection turns on and tears it down, producing a jet. III. These rules reflect the low-beta condition in the eruptive magnetic field

  10. A Comparative Study of Shock Structures for the Halloween 2003 and the 23 July 2012 CME Events

    NASA Astrophysics Data System (ADS)

    Wu, C. C.; Liou, K.

    2015-12-01

    Interplanetary (IP) shocks driven by coronal mass ejections (CMEs) play an important role in space weather. For example, solar energetic particles are accelerated at the shock and storm sudden commencements are produced by the impingement of the Earth by the shocks. Here, we study shocks associated with two major CME events - the Halloween 2003 and the 23 July 2012 CME events, using a three-dimensional (3D) magnetohydrodynamics model (H3DMHD). The H3DMHD (Wu et al. 2007, JGR) combines the kinematic solar wind model (HAF) for regions near the solar surface (2.5-18 Rs) and a 3D magnetohydrodynamics model (Han et al. 1988), which takes output from HAF at 18 Rs and propagates outward up to 1.7 AU. The H3DMHD code has been fully tested and is capable of simulating disturbances propagating in the solar wind. We will focus on the temporal and spatial structure of the CME-driven shocks, including the shock type and strength.

  11. Impacts of CME on the TEC at middle and low latitudes during maximum of the 24th solar cycle

    NASA Astrophysics Data System (ADS)

    Migoya Orue, Yenca Olivia; Amory-Mazaudier, Christine; Radicella, Sandro; Nava, Bruno; Kashcheyev, Anton

    2015-04-01

    In this study we analyzed the impacts on the GNSS-derived Total Electron Content (TEC) of four selected CME hitting the Earth during the year 2013 at different stations of middle and low latitudes (Ebre, Rabat, Alexandria, San Fernando, M'barara, Matera and Dakar). In order to analyzed the seasonal behavior of TEC under these disturbed conditions in the mentioned stations we have selected four CME events occurred during the different seasons (January 19, March 17, July 9 and October 2) of year 2013, at a maximum of the sunspot cycle 24. At the beginning of each event there is an increase of TEC followed by a decrease. The first increase of TEC is a consequence of the Prompt Penetration of the Electric Field (PPEF). The depletion of the TEC is associated to the Disturbance Dynamo Electric Field (DDEF). In order to interpret the observations we analyzed the convection patterns at high latitudes given by the radar SUPERDARN. At low latitudes, we derived the ionospheric electric current disturbance Diono from ground magnetic variations. Diono is the sum of the DP2 (PPEF) and Ddyn (DDEF) electric current systems. Finally we found that the strength of the impact at middle and low latitudes depends on the time of the impact of the CME and the season.

  12. A new observation-based fitting method assuming an elliptical CME frontal shape and a variable speed

    NASA Astrophysics Data System (ADS)

    Rollett, T.; Moestl, C.; Isavnin, A.; Boakes, P. D.; Kubicka, M.; Amerstorfer, U. V.

    2015-12-01

    In this study, we present a new method for forecasting arrival times and speeds of coronal mass ejections (CMEs) at any location in the inner heliosphere. This new approach assumes a highly adjustable geometrical shape of the CME front with a variable CME width and a variable curvature of the frontal part, i.e. the assumed geometry is elliptical. An elliptic conversion (ElCon) method is applied to observations from STEREO's heliospheric imagers to convert the angular observations into a unit of radial distance from the Sun. This distance profile of the CME apex is then fitted using the drag-based model (DBM) to comprise the deceleration or acceleration CMEs experience during propagation. The outcome of both methods is then utilized as input for the Ellipse Evolution (ElEvo) model, forecasting the shock arrival times and speeds of CMEs at any position in interplanetary space. We introduce the combination of these three methods as the new ElEvoHI method. To demonstrate the applicability of ElEvoHI we present the forecast of 20 CMEs and compare it to the results from other forecasting utilities. Such a forecasting method is going to be useful when STEREO Ahead is again observing the space between the Sun and Earth, or when an L4/L5 space weather mission is in operation.

  13. Identification of a genetic cluster influencing memory performance and hippocampal activity in humans.

    PubMed

    de Quervain, Dominique J-F; Papassotiropoulos, Andreas

    2006-03-14

    Experimental work in animals has shown that memory formation depends on a cascade of molecular events. Here we show that variability of human memory performance is related to variability in genes encoding proteins of this signaling cascade, including the NMDA and metabotrobic glutamate receptors, adenylyl cyclase, CAMKII, PKA, and PKC. The individual profile of genetic variability in these signaling molecules correlated significantly with episodic memory performance (P < 0.00001). Moreover, functional MRI during memory formation revealed that this genetic profile correlated with activations in memory-related brain regions, including the hippocampus and parahippocampal gyrus. The present study indicates that genetic variability in the human homologues of memory-related signaling molecules contributes to interindividual differences in human memory performance and memory-related brain activations.

  14. SMEI 3D RECONSTRUCTION OF A CORONAL MASS EJECTION INTERACTING WITH A COROTATING SOLAR WIND DENSITY ENHANCEMENT: THE 2008 APRIL 26 CME

    SciTech Connect

    Jackson, B. V.; Buffington, A.; Hick, P. P.; Clover, J. M.; Bisi, M. M.; Webb, D. F.

    2010-12-01

    The Solar Mass Ejection Imager (SMEI) has recorded the brightness responses of hundreds of interplanetary coronal mass ejections (CMEs) in the interplanetary medium. Using a three-dimensional (3D) reconstruction technique that derives its perspective views from outward-flowing solar wind, analysis of SMEI data has revealed the shapes, extents, and masses of CMEs. Here, for the first time, and using SMEI data, we report on the 3D reconstruction of a CME that intersects a corotating region marked by a curved density enhancement in the ecliptic. Both the CME and the corotating region are reconstructed and demonstrate that the CME disrupts the otherwise regular density pattern of the corotating material. Most of the dense CME material passes north of the ecliptic and east of the Sun-Earth line: thus, in situ measurements in the ecliptic near Earth and at the Solar-TErrestrial RElations Observatory Behind spacecraft show the CME as a minor density increase in the solar wind. The mass of the dense portion of the CME is consistent with that measured by the Large Angle Spectrometric Coronagraph on board the Solar and Heliospheric Observatory spacecraft, and is comparable to the masses of many other three-dimensionally reconstructed solar wind features at 1 AU observed in SMEI 3D reconstructions.

  15. Probing the Extreme Realm of Active Galactic Nucleus Feedback in the Massive Galaxy Cluster, RX J1532.9+3021

    NASA Astrophysics Data System (ADS)

    Hlavacek-Larrondo, J.; Allen, S. W.; Taylor, G. B.; Fabian, A. C.; Canning, R. E. A.; Werner, N.; Sanders, J. S.; Grimes, C. K.; Ehlert, S.; von der Linden, A.

    2013-11-01

    We present a detailed Chandra, XMM-Newton, Very Large Array (VLA) and Hubble Space Telescope analysis of one of the strongest cool core clusters known, RX J1532.9+3021 (z = 0.3613). Using new, deep 90 ks Chandra observations, we confirm the presence of a western X-ray cavity or bubble, and report on a newly discovered eastern X-ray cavity. The total mechanical power associated with these active galactic nucleus (AGN) driven outflows is (22 ± 9) × 1044 erg s-1, and is sufficient to offset the cooling, indicating that AGN feedback still provides a viable solution to the cooling flow problem even in the strongest cool core clusters. Based on the distribution of the optical filaments, as well as a jet-like structure seen in the 325 MHz VLA radio map, we suggest that the cluster harbors older outflows along the north to south direction. The jet of the central AGN is therefore either precessing or sloshing-induced motions have caused the outflows to change directions. There are also hints of an X-ray depression to the north aligned with the 325 MHz jet-like structure, which might represent the highest redshift ghost cavity discovered to date. We further find evidence of a cold front (r ≈ 65 kpc) that coincides with the outermost edge of the western X-ray cavity and the edge of the radio mini-halo. The common location of the cold front with the edge of the radio mini-halo supports the idea that the latter originates from electrons being reaccelerated due to sloshing-induced turbulence. Alternatively, its coexistence with the edge of the X-ray cavity may be due to cool gas being dragged out by the outburst. We confirm that the central AGN is highly sub-Eddington and conclude that a >1010 M ⊙ or a rapidly spinning black hole is favored to explain both the radiative-inefficiency of the AGN and the powerful X-ray cavities.

  16. PROBING THE EXTREME REALM OF ACTIVE GALACTIC NUCLEUS FEEDBACK IN THE MASSIVE GALAXY CLUSTER, RX J1532.9+3021

    SciTech Connect

    Hlavacek-Larrondo, J.; Allen, S. W.; Canning, R. E. A.; Werner, N.; Ehlert, S.; Von der Linden, A.; Taylor, G. B.; Grimes, C. K.; Fabian, A. C.; Sanders, J. S.

    2013-11-10

    We present a detailed Chandra, XMM-Newton, Very Large Array (VLA) and Hubble Space Telescope analysis of one of the strongest cool core clusters known, RX J1532.9+3021 (z = 0.3613). Using new, deep 90 ks Chandra observations, we confirm the presence of a western X-ray cavity or bubble, and report on a newly discovered eastern X-ray cavity. The total mechanical power associated with these active galactic nucleus (AGN) driven outflows is (22 ± 9) × 10{sup 44} erg s{sup –1}, and is sufficient to offset the cooling, indicating that AGN feedback still provides a viable solution to the cooling flow problem even in the strongest cool core clusters. Based on the distribution of the optical filaments, as well as a jet-like structure seen in the 325 MHz VLA radio map, we suggest that the cluster harbors older outflows along the north to south direction. The jet of the central AGN is therefore either precessing or sloshing-induced motions have caused the outflows to change directions. There are also hints of an X-ray depression to the north aligned with the 325 MHz jet-like structure, which might represent the highest redshift ghost cavity discovered to date. We further find evidence of a cold front (r ≈ 65 kpc) that coincides with the outermost edge of the western X-ray cavity and the edge of the radio mini-halo. The common location of the cold front with the edge of the radio mini-halo supports the idea that the latter originates from electrons being reaccelerated due to sloshing-induced turbulence. Alternatively, its coexistence with the edge of the X-ray cavity may be due to cool gas being dragged out by the outburst. We confirm that the central AGN is highly sub-Eddington and conclude that a >10{sup 10} M{sub ☉} or a rapidly spinning black hole is favored to explain both the radiative-inefficiency of the AGN and the powerful X-ray cavities.

  17. Analysis of Transcriptionally Active Gene Clusters of Major Outer Membrane Protein Multigene Family in Ehrlichia canis and E. chaffeensis

    PubMed Central

    Ohashi, Norio; Rikihisa, Yasuko; Unver, Ahmet

    2001-01-01

    Ehrlichia canis and E. chaffeensis are tick-borne obligatory intramonocytic ehrlichiae that cause febrile systemic illness in humans and dogs, respectively. The current study analyzed the pleomorphic multigene family encoding approximately 30-kDa major outer membrane proteins (OMPs) of E. canis and E. chaffeensis. Upstream from secA and downstream of hypothetical transcriptional regulator, 22 paralogs of the omp gene family were found to be tandemly arranged except for one or two genes with opposite orientations in a 28- and a 27-kb locus in the E. canis and E. chaffeensis genomes, respectively. Each locus consisted of three highly repetitive regions with four nonrepetitive intervening regions. E. canis, in addition, had a 6.9-kb locus which contained a repeat of three tandem paralogs in the 28-kb locus. These total 47 paralogous and orthologous genes encoded OMPs of approximately 30 to 35 kDa consisting of several hypervariable regions alternating with conserved regions. In the 5′-end half of the 27-kb locus or the 28-kb locus of each Ehrlichia species, 14 paralogs were linked by short intergenic spaces ranging from −8 bp (overlapped) to 27 bp, and 8 remaining paralogs in the 3′-end half were connected by longer intergenic spaces ranging from 213 to 632 bp. All 22 paralogs, five unknown genes, and secA in the omp cluster in E. canis were transcriptionally active in the monocyte culture, and the paralogs with short intergenic spaces were cotranscribed with their adjacent genes, including the respective intergenic spaces at both the 5′ and the 3′ sides. Although omp genes are diverse, our results suggest that the gene organization of the clusters and the gene locus are conserved between two species of Ehrlichia to maintain a unique transcriptional mechanism for adaptation to environmental changes common to them. PMID:11254561

  18. Spectroscopic and electronic structure studies of the trinuclear Cu cluster active site of the multicopper oxidase laccase: nature of its coordination unsaturation.

    PubMed

    Quintanar, Liliana; Yoon, Jungjoo; Aznar, Constantino P; Palmer, Amy E; Andersson, K Kristoffer; Britt, R David; Solomon, Edward I

    2005-10-12

    Laccase is a multicopper oxidase that contains four Cu ions, one type 1 (T1), one type 2 (T2), and a coupled binuclear type 3 Cu pair (T3). The T2 and T3 centers form a trinuclear Cu cluster that is the active site for O2 reduction to H2O. A combination of spectroscopic and DFT studies on a derivative where the T1 Cu has been replaced by a spectroscopically innocent Hg2+ ion has led to a detailed geometric and electronic structure description of the resting trinuclear Cu cluster, complementing crystallographic results. The nature of the T2 Cu ligation has been elucidated; this site is three-coordinate with two histidines and a hydroxide over its functional pH range (stabilized by a large inductive effect, cluster charge, and a hydrogen-bonding network). Both the T2 and T3 Cu centers have open coordination positions oriented toward the center of the cluster. DFT calculations show that the negative protein pocket (four conserved Asp/Glu residues within 12 A) and the dielectric of the protein play important roles in the electrostatic stability and integrity of the highly charged, coordinatively unsaturated trinuclear cupric cluster. These tune the ligand binding properties of the cluster, leading to its high affinity for fluoride and its coordination unsaturation in aqueous media, which play a key role in its O2 reactivity.

  19. Comparative analysis of adaptor-mediated clathrin assembly reveals general principles for adaptor clustering

    PubMed Central

    Pucadyil, Thomas J.; Holkar, Sachin S.

    2016-01-01

    Clathrin-mediated endocytosis (CME) manages the sorting and uptake of the bulk of membrane proteins (or cargo) from the plasma membrane. CME is initiated by the formation of clathrin-coated pits (CCPs), in which adaptors nucleate clathrin assembly. Clathrin adaptors display diversity in both the type and number of evolutionarily conserved clathrin-binding boxes. How this diversity relates to the process of adaptor clustering as clathrin assembles around a growing pit remains unclear. Using real-time, fluorescence microscopy–based assays, we compare the formation kinetics and distribution of clathrin assemblies on membranes that display five unique clathrin adaptors. Correlations between equilibrium and kinetic parameters of clathrin assembly to the eventual adaptor distribution indicate that adaptor clustering is determined not by the amount of clathrin recruited or the degree of clathrin clustered but instead by the rate of clathrin assembly. Together our results emphasize the need to analyze kinetics of protein interactions to better understand mechanisms that regulate CME. PMID:27559129

  20. Chromospheric and Coronal Activity in the 500 Myr old Open Cluster M37: Evidence for Coronal Stripping?

    NASA Astrophysics Data System (ADS)

    Núñez, Alejandro; Agüeros, Marcel A.; Covey, Kevin R.; López-Morales, Mercedes

    2017-01-01

    We present the results of a spectroscopic survey to characterize chromospheric activity, as measured by {{H}}α emission, in low-mass members of the 500 Myr old open cluster M37. Combining our new measurements of {{H}}α luminosities ({L}{{H}α }) with previously cataloged stellar properties, we identify saturated and unsaturated regimes in the dependence of the {L}{{H}α }-to-bolometric luminosity ratio, {L}{{H}α }/{L}{bol}, on the Rossby number Ro. All rotators with Ro smaller than 0.03 ± 0.01 converge to an activity level of {L}{{H}α }/{L}{bol}=(1.27+/- 0.02)× {10}-4. This saturation threshold ({R}o,{sat}=0.03+/- 0.01) is statistically smaller than that found in most studies of the rotation–activity relation. In the unsaturated regime, slower rotators have lower levels of chromospheric activity, with {L}{{H}α }/{L}{bol}(Ro) following a power-law of index β =-0.51+/- 0.02, slightly shallower than that found for a combined ≈650 Myr old sample of Hyades and Praesepe stars. By comparing this unsaturated behavior to that previously found for coronal activity in M37 (as measured via the X-ray luminosity, {L}{{X}}), we confirm that chromospheric activity decays at a much slower rate than coronal activity with increasing Ro. While a comparison of {L}{{H}α } and {L}{{X}} for M37 members with measurements of both reveals a nearly 1:1 relation, removing the mass-dependencies by comparing instead {L}{{H}α }/{L}{bol} and {L}{{X}}/{L}{bol} does not provide clear evidence for such a relation. Finally, we find that {R}o,{sat} is smaller for our chromospheric than for our coronal indicator of activity ({R}o,{sat}=0.03+/- 0.01 versus 0.09 ± 0.01). We interpret this as possible evidence for coronal stripping.