The Critical Mass Laboratory at Rocky Flats
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rothe, Robert E
2003-10-15
The Critical Mass Laboratory (CML) at Rocky Flats northwest of Denver, Colorado, was built in 1964 and commissioned to conduct nuclear experiments on January 28, 1965. It was built to attain more accurate and precise experimental data to ensure nuclear criticality safety at the plant than were previously possible. Prior to its construction, safety data were obtained from long extrapolations of subcritical data (called in situ experiments), calculated parameters from reactor engineering 'models', and a few other imprecise methods. About 1700 critical and critical-approach experiments involving several chemical forms of enriched uranium and plutonium were performed between then and 1988.more » These experiments included single units and arrays of fissile materials, reflected and 'bare' systems, and configurations with various degrees of moderation, as well as some containing strong neutron absorbers. In 1989, a raid by the Federal Bureau of Investigation (FBI) caused the plant as a whole to focus on 'resumption' instead of further criticality safety experiments. Though either not recognized or not admitted for a few years, that FBI raid did sound the death knell for the CML. The plant's optimistic goal of resumption evolved to one of deactivation, decommissioning, and plantwide demolition during the 1990s. The once-proud CML facility was finally demolished in April of 2002.« less
Takeuchi, M.; Makita, Z.; Yanagisawa, K.; Kameda, Y.; Koike, T.
1999-01-01
BACKGROUND: The advanced stage of the Maillard reaction, which leads to the formation of advanced glycation end products (AGE), plays an important role in the pathogenesis of angiopathy in diabetic patients and in the aging process. N(epsilon)-(carboxymethyl)lysine (CML) is thought to be an important epitope for many of currently available AGE antibodies. However, recent findings have indicated that a major source of CML may be by pathways other than glycation. A distinction between CML and non-CML AGE may increase our understanding of AGE formation in vivo. In the present study, we prepared antibodies directed against CML and non-CML AGE. MATERIALS AND METHODS: AGE-rabbit serum albumin prepared by 4, 8, and 12 weeks of incubation with glucose was used to immunize rabbits, and a high-titer AGE-specific antiserum was obtained without affinity for the carrier protein. To separate CML and non-CML AGE antibodies, the anti-AGE antiserum was subjected to affinity chromatography on a column coupled with AGE-BSA and CML-BSA. Two different antibodies were obtained, one reacting specifically with CML and the other reacting with non-CML AGE. Circulating levels of CML and non-CML AGE were measured in 66 type 2 diabetic patients without uremia by means of the competitive ELISA. Size distribution and clearance by hemodialysis detected by non-CML AGE and CML were assessed in serum from diabetic patients on hemodialysis. RESULTS: The serum non-CML AGE level in type 2 diabetic patients was significantly correlated with the mean fasting blood glucose level over the previous 2 months (r = 0.498, p < 0.0001) or the previous 1 month (r = 0.446, p = 0. 0002) and with HbA(1c) (r = 0.375, p = 0.0019), but the CML AGE level was not correlated with these clinical parameters. The CML and non-CML AGE were detected as four peaks with apparent molecular weights of 200, 65, 1.15, and 0.85 kD. The hemodialysis treatment did not affect the high-molecular-weight protein fractions. Although the low-molecular-weight peptide fractions (absorbance at 280 nm and fluorescence) were decreased by hemodialysis, there was no difference before and after dialysis in the non-CML AGE- and CML-peptide fractions (1.15 and 0.85 kD fractions). CONCLUSIONS: We propose that both CML and non-CML AGE are present in the blood and that non-CML AGE rather than CML AGE should be more closely evaluated when investigating the pathophysiology of AGE-related diseases. PMID:10415164
Approval summary for imatinib mesylate capsules in the treatment of chronic myelogenous leukemia.
Cohen, Martin H; Williams, Grant; Johnson, John R; Duan, John; Gobburu, Jogarao; Rahman, Atiqur; Benson, Kimberly; Leighton, John; Kim, Sung K; Wood, Rebecca; Rothmann, Mark; Chen, Gang; U, Khin Maung; Staten, Ann M; Pazdur, Richard
2002-05-01
Chronic myelogenous leukemia (CML) results from the breakpoint cluster region-Abl fusion gene product, a tyrosine kinase involved in cell division and apoptosis. Imatinib, an orally administered inhibitor of the breakpoint cluster region-Abl tyrosine kinase, is capable of blocking proliferation and inducing apoptosis in CML cell lines. In this report, we describe the preclinical profile of imatinib and the data submitted in the New Drug Application that led to its marketing approval. Chemistry manufacturing and controls, animal toxicology, and biopharmaceutical data are described. Results of Phase I and Phase II clinical studies in patients with CML in blast crisis (CML-BC), in accelerated phase (CML-AP), and in chronic phase disease-resistant or intolerant to IFN-alpha (CML-CP) are summarized. The basis for marketing approval and postmarketing commitments by the pharmaceutical company are discussed. Toxicology studies in the rat, dog, and monkey show the hematological, renal, and hepatobiliary toxicity of imatinib. Pharmacokinetic studies in patients with CML demonstrate 98% imatinib bioavailability. The elimination half-lives of the parent drug and the major active metabolite, CGP74588, from plasma are approximately 18 and 40 h, respectively. Approximately 81% of the drug is eliminated in 7 days, 68% in the feces and 13% in the urine. Cytochrome P-450 3A4 is the main enzyme responsible for imatinib metabolism. Phase I and II clinical studies were conducted. The Phase I study, in 83 CML patients, evaluated oral imatinib doses from 25 to 1000 mg/day. Dose-limiting toxicity was not observed. The three Phase II studies, in CML-CP, CML-AP, and CML-BC, enrolled 1027 patients. CML-CP patients received 400 mg/day imatinib, whereas CML-AP and CML-BC patients generally received 600 mg/day imatinib. Primary study endpoints were cytogenetic response rate (CML-CP) and hematological response rate (CML-AP and CML-BC). The cytogenetic response rate for CML-CP patients was 49%. The hematological response rate of CML-AP and CML-BC patients was 63 and 26%, respectively. The most common imatinib adverse events were nausea, vomiting, myalgia, edema, and diarrhea. Elevated liver enzymes and/or bilirubin were reported in 27 patients (2.6%). On May 10, 2001, imatinib mesylate (Gleevec, formerly known as STI-571 and Glivec), manufactured and distributed by Novartis Pharmaceuticals, East Hanover, NJ, was approved by the United States Food and Drug Administration for the treatment of CML in three clinical settings: CML-BC, CML-AP, and CML-CP. This report summarizes the Food and Drug Administration's review of the New Drug Application.
Heller, G; Topakian, T; Altenberger, C; Cerny-Reiterer, S; Herndlhofer, S; Ziegler, B; Datlinger, P; Byrgazov, K; Bock, C; Mannhalter, C; Hörmann, G; Sperr, W R; Lion, T; Zielinski, C C; Valent, P; Zöchbauer-Müller, S
2016-01-01
Little is known about the impact of DNA methylation on the evolution/progression of Ph+ chronic myeloid leukemia (CML). We investigated the methylome of CML patients in chronic phase (CP-CML), accelerated phase (AP-CML) and blast crisis (BC-CML) as well as in controls by reduced representation bisulfite sequencing. Although only ~600 differentially methylated CpG sites were identified in samples obtained from CP-CML patients compared with controls, ~6500 differentially methylated CpG sites were found in samples from BC-CML patients. In the majority of affected CpG sites, methylation was increased. In CP-CML patients who progressed to AP-CML/BC-CML, we identified up to 897 genes that were methylated at the time of progression but not at the time of diagnosis. Using RNA-sequencing, we observed downregulated expression of many of these genes in BC-CML compared with CP-CML samples. Several of them are well-known tumor-suppressor genes or regulators of cell proliferation, and gene re-expression was observed by the use of epigenetic active drugs. Together, our results demonstrate that CpG site methylation clearly increases during CML progression and that it may provide a useful basis for revealing new targets of therapy in advanced CML. PMID:27211271
1990 Annual Tropical Cyclone Report
1995-01-01
land) - followed further loss of convective organization as system underwent increased vertical wind shear and loss of latent and sensible heat. III...FOLXTECHNICOF HONG KONG CIUDAD UNIVERSITARLA,M)XICO CML DEFENSE, BELAU CML DEFENSE, MAJURO CML DEFENSE, POHNPEI CML DEFENSE, SAIPAN CML DEFENSE, TRUK
Production and chemical characterization of pigments in filamentous fungi.
Souza, Patrícia Nirlane da Costa; Grigoletto, Tahuana Luiza Bim; de Moraes, Luiz Alberto Beraldo; Abreu, Lucas M; Guimarães, Luís Henrique Souza; Santos, Cledir; Galvão, Luciano Ribeiro; Cardoso, Patrícia Gomes
2016-01-01
Production of pigments by filamentous fungi is gaining interest owing to their use as food colourants, in cosmetics and textiles, and because of the important biological activities of these compounds. In this context, the objectives of this study were to select pigment-producing fungi, identify these fungi based on internal transcribed spacer sequences, evaluate the growth and pigment production of the selected strains on four different media, and characterize the major coloured metabolites in their extracts. Of the selected fungal strains, eight were identified as Aspergillus sydowii (CML2967), Aspergillus aureolatus (CML2964), Aspergillus keveii (CML2968), Penicillium flavigenum (CML2965), Penicillium chermesinum (CML2966), Epicoccum nigrum (CML2971), Lecanicillium aphanocladii (CML2970) and Fusarium sp. (CML2969). Fungal pigment production was influenced by medium composition. Complex media, such as potato dextrose and malt extract, favoured increased pigment production. The coloured compounds oosporein, orevactaene and dihydrotrichodimerol were identified in extracts of L. aphanocladii (CML2970), E. nigrum (CML2971), and P. flavigenum (CML2965), respectively. These results indicate that the selected fungal strains can serve as novel sources of pigments that have important industrial applications.
Schleicher, E D; Wagner, E; Nerlich, A G
1997-01-01
N(epsilon)-(Carboxymethyl)lysine (CML), a major product of oxidative modification of glycated proteins, has been suggested to represent a general marker of oxidative stress and long-term damage to proteins in aging, atherosclerosis, and diabetes. To investigate the occurrence and distribution of CML in humans an antiserum specifically recognizing protein-bound CML was generated. The oxidative formation of CML from glycated proteins was reduced by lipoic acid, aminoguanidine, superoxide dismutase, catalase, and particularly vitamin E and desferrioxamine. Immunolocalization of CML in skin, lung, heart, kidney, intestine, intervertebral discs, and particularly in arteries provided evidence for an age-dependent increase in CML accumulation in distinct locations, and acceleration of this process in diabetes. Intense staining of the arterial wall and particularly the elastic membrane was found. High levels of CML modification were observed within atherosclerotic plaques and in foam cells. The preferential location of CML immunoreactivity in lesions may indicate the contribution of glycoxidation to the processes occurring in diabetes and aging. Additionally, we found increased CML content in serum proteins in diabetic patients. The strong dependence of CML formation on oxidative conditions together with the increased occurrence of CML in diabetic serum and tissue proteins suggest a role for CML as endogenous biomarker for oxidative damage. PMID:9022079
Novel grading system for quantification of cystic macular lesions in Usher syndrome.
Sliesoraityte, Ieva; Peto, Tunde; Mohand-Said, Saddek; Sahel, Jose Alain
2015-12-10
To evaluate novel grading system used to quantify optical coherence tomography (OCT) scans for cystic macular lesions (CML) in Usher syndrome (USH) patients, focusing on CML associated alterations in MOY7A and USH2A mutations. Two readers evaluated 76 patients' (mean age 42 ± 14 years) data prospectively uploaded on Eurush database. OCT was used to obtain high quality cross-sectional images through the fovea. The CML was graded as none, mild, moderate or severe, depending on the following features set: subretinal fluid without clearly detectable CML boundaries; central macular thickness; largest diameter of CML; calculated mean of all detectable CML; total number of detectable CML; retinal layers affected by CML. Intra-and inter-grader reproducibility was evaluated. CML were observed in 37 % of USH eyes, while 45 % were observed in MYO7A and 29 % in USH2A cases. Of those with CML: 52 % had mild, 22 % had moderate and 26 % had severe changes, respectively. CML were found in following retinal layers: 50 % inner nuclear layer, 44 % outer nuclear layer, 6 % retinal ganglion cell layer. For the inter-grader repeatability analysis, agreements rates for CML were 97 % and kappa statistics was 0.91 (95 % CI 0.83-0.99). For the intra-grader analysis, agreement rates for CML were 98 %, while kappa statistics was 0.96 (95 % CI 0.92-0.99). The novel grading system is a reproducible tool for grading OCT images in USH complicated by CML, and potentially could be used for objective tracking of macular pathology in clinical therapy trials.
Adebayo, Matthew A; Prola, Lizie D T; Lima, Eder C; Puchana-Rosero, M J; Cataluña, Renato; Saucier, Caroline; Umpierres, Cibele S; Vaghetti, Julio C P; da Silva, Leandro G; Ruggiero, Reinaldo
2014-03-15
A macromolecule, CML, was obtained by purifying and carboxy-methylating the lignin generated from acid hydrolysis of sugarcane bagasse during bioethanol production from biomass. The CMLs complexed with Al(3+) (CML-Al) and Mn(2+) (CML-Mn) were utilised for the removal of a textile dye, Procion Blue MX-R (PB), from aqueous solutions. CML-Al and CML-Mn were characterised using Fourier transform infrared spectroscopy (FTIR), scanning differential calorimetry (SDC), scanning electron microscopy (SEM) and pHPZC. The established optimum pH and contact time were 2.0 and 5h, respectively. The kinetic and equilibrium data fit into the general order kinetic model and Liu isotherm model, respectively. The CML-Al and CML-Mn have respective values of maximum adsorption capacities of 73.52 and 55.16mgg(-1) at 298K. Four cycles of adsorption/desorption experiments were performed attaining regenerations of up to 98.33% (CML-Al) and 98.08% (CML-Mn) from dye-loaded adsorbents, using 50% acetone+50% of 0.05molL(-1) NaOH. The CML-Al removed ca. 93.97% while CML-Mn removed ca. 75.91% of simulated dye house effluents. Copyright © 2014 Elsevier B.V. All rights reserved.
Hussein, K; Stucki-Koch, A; Göhring, G; Kreipe, H; Suttorp, M
2017-07-01
Paediatric chronic myeloid leukaemia (ped-CML) is rare and ped-CML with fibre accumulation in the bone marrow (MF) is thought to be even rarer. In adults (ad-CML), fibrosis represents an adverse prognostic factor. So far, the pro-fibrotic changes in the bone marrow microenvironment have not been investigated in detail in ped-CML. From a total of 66 ped-CML in chronic phase, biopsies were analysable and 10 had MF1/2 (MF1, n=8/10; MF2, n=2/10). We randomly selected 16 ped-CML and 16 ad-CML cases with and without fibrosis (each n=8) as well as 18 non-neoplastic controls. Bone marrow samples were analysed with a real-time PCR-based assay (including 127 genes for paediatric cases) and by immunohistochemistry. We found increased expression of megakaryocytic genes in ped-CML. The number of megakaryocytes and pro-platelets are increased in CML patients, but the most significant increase was noted for ped-CML-MF1/2. Anti-fibrotic MMP9 expression was lower in children than in adults. Cell mobilisation-related CXCL12 was decreased in young and adult patients with CML but not the corresponding receptor CXCR4. In summary, fibre accumulation in ped-CML-MF1/2 is associated with increased megakaryocytic proliferation and increased interstitial pro-platelet deposition. Deregulated expression of matrix-modulating factors shifts the bone marrow microenvironment towards fibrosis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manachai, Nawin; Saito, Yusuke; Nakahata, Shingo
The presence of a BCR-ABL1 fusion gene is necessary for the pathogenesis of chronic myeloid leukemia (CML) through t(9;22)(q34;q11) translocation. Imatinib, an ABL tyrosine kinase inhibitor, is dramatically effective in CML patients; however, 30% of CML patients will need further treatment due to progression of CML to blast crisis (BC). Aberrant high expression of ecotropic viral integration site 1 (EVI1) is frequently observed in CML during myeloid-BC as a potent driver with a CML stem cell signature; however, the precise molecular mechanism of EVI1 transcriptional regulation during CML progression is poorly defined. Here, we demonstrate the transcriptional activity of EVI1more » is dependent on activation of lymphoid enhancer-binding factor 1 (LEF1)/β-catenin complex by BCR-ABL with loss of p53 function during CML-BC. The activation of β-catenin is partly dependent on BCR-ABL expression through enhanced GSK3β phosphorylation, and EVI1 expression is directly enhanced by the LEF1/β-catenin complex bound to the EVI1 promoter region. Moreover, the loss of p53 expression is inversely correlated with high expression of EVI1 in CML leukemia cells with an aggressive phase of CML, and a portion of the activation mechanism of EVI1 expression is dependent on β-catenin activation through GSK3β phosphorylation by loss of p53. Therefore, we found that the EVI1 activation in CML-BC is dependent on LEF1/β-catenin activation by BCR-ABL expression with loss of p53 function, representing a novel selective therapeutic approach targeting myeloid blast crisis progression. - Highlights: • Transcriptional regulation of EVI1 in CML-BC is proposed. • EVI1 transcription is directly regulated by LEF1/β-catenin complex in CML-BC. • Loss of p53 function as a key regulator for β-catenin-EVI1 in CML myeloid-BC. • The LEF1/β-catenin binding site on the EVI1 promoter is a new target for CML-BC.« less
Measuring the symptom burden associated with the treatment of chronic myeloid leukemia
Gonzalez, Araceli G. Garcia; Ault, Patricia; Mendoza, Tito R.; Sailors, Mary L.; Williams, Janet L.; Huang, Furong; Nazha, Aziz; Kantarjian, Hagop M.; Cleeland, Charles S.; Cortes, Jorge E.
2013-01-01
We developed a module of the MD Anderson Symptom Inventory (MDASI) for patients with chronic myeloid leukemia (CML). To develop the MDASI-CML, we identified CML-specific symptoms from qualitative interviews with 35 patients. A list of candidate symptoms was reduced by a panel of patients, caregivers, and clinicians to the 13 core MDASI symptom items and 6 CML-specific items; these items were subsequently administered to 30 patients. Cognitive debriefing confirmed that the items were clear, relevant, and easy to use. One additional CML-specific symptom item was added, for a total of 7. The refined MDASI-CML was administered to 152 patients once every 2 weeks for 1 year. The content, concurrent, known-group, and construct validity of the MDASI-CML were evaluated. The internal consistency and test-retest reliabilities of the module were adequate. Longitudinal analysis showed relatively stable symptom severity scores over time. The most severe symptoms were fatigue, drowsiness, disturbed sleep, muscle soreness and cramping, and trouble remembering things. Approximately one-third of the patients who completed the MDASI-CML reported persistent moderate-to-severe symptoms. The MDASI-CML is a valid and reliable symptom assessment instrument that can be used in clinical studies of symptom status in patients with CML. This trial was registered at www.clinicaltrials.gov as #NCT01046305. PMID:23777764
Deng, Yingjun; Li, Xin; Feng, Jinxin; Zhang, Xiangliang
2018-01-01
Chronic myeloid leukemia (CML) is a myeloproliferative disease which uniquely expresses a constitutively active tyrosine kinase, BCR/ABL. As a specific inhibitor of the BCR-ABL tyrosine kinase, imatinib becomes the first choice for the treatment of CML due to its high efficacy and low toxicity. However, the development of imatinib resistance limits the long-term treatment benefits of it in CML patients. In the present study, we aimed to investigate the roles of miR-202 in the regulation of imatinib sensitivity in CML cell lines and the possible mechanisms involved in this process. We found miR-202 was down-regulated in seven CML cell lines by quantitative reverse-transcription PCR (qRT-PCR) analysis. Overexpression of miR-202 significantly suppressed proliferation rates of CML cells. By establishing imatinib resistant cell lines originating from K562 and KU812 cells, we observed expressions of miR-202 were down-regulated by imatinib treatments and imatinib resistant CML cell lines exhibited lower level of miR-202. On the contrary, imatinib resistant CML cell lines displayed up-regulated glycolysis rate than sensitive cells with the evidence that glucose uptake, lactate production, and key glycolysis enzymes were elevated in imatinib resistant cells. Importantly, the imatinib resistant CML cell lines were more sensitive to glucose starvation and glycolysis inhibitors. In addition, we identified Hexokinase 2 (HK2) as a direct target of miR-202 in CML cell lines. Overexpression of miR-202 sensitized imatinib resistant CML through the miR-202-mediated glycolysis inhibition by targetting HK2. Finally, we provided the clinical relevance that miR-202 was down-regulated in CML patients and patients with lower miR-202 expression displayed higher HK2 expression. The present study will provide new aspects on the miRNA-modulated tyrosine kinase inhibitor (TKI) sensitivity in CML, contributing to the development of new therapeutic anticancer drugs. PMID:29559564
[Preliminary establishment of transplanted human chronic myeloid leukemia model in nude mice].
Li, Xian-Min; Ding, Xin; Zhang, Long-Zhen; Cen, Jian-Nong; Chen, Zi-Xing
2011-12-01
Chronic myeloid leukemia (CML) is a malignant clonal disease derived from hematopoietic stem cells. CML stem cells were thought to be the root which could lead disease development and ultimately rapid change. However, a stable animal model for studying the characteristics of CML stem cells is currently lacking. This study was aimed to establish a transplanted human CML nude-mice model to further explore the biological behavior of CML stem cells in vivo, and to enrich CML stem cells in nude mice by series transplantation. The 4 - 6 weeks old BALB/c nude mice pretreated by splenectomy (S), cytoxan intraperitoneal injection (C) and sublethal irradiation (I) were transplanted intravenously with (5 - 7) × 10(7) of bone marrow mononuclear cells from CML patients in chronic phase. Alternatively, 4 - 6 weeks old BALB/c nude mice pretreated by lethal irradiation were transplanted intravenously with 5 × 10(6) homologous bone marrow cells of BALB/c nude mice together with (5 - 7) × 10(7) of bone marrow mononuclear cells from CML patients in chronic phase simultaneously. The leukemic cells engrafted and infiltrated in organs and bone marrow of the mice were tracked by reverse transcription-polymerase chain reaction (RT-PCR), plastic-embedded biopsy and flow cytometry. The results of these two methods were compared. The results showed that human CML cells engrafted and infiltrating into the bone marrow of two nude mice pretreated with SCI could be detected. In spite of the low successful rate, results suggested the feasibility of this method by using BALB/c nude mice as a human CML animal model. In contrast, in nude mice pretreated by the lethal dose irradiation, CML cells in the bone marrow could not be found. It is concluded that human bone marrow CML cells can results in leukemia in nude mice pretreated by SCI. Thus this study provides a new strategy for establishment of CML animal models which deserves further elaboration.
Naka, Kazuhito; Jomen, Yoshie; Ishihara, Kaori; Kim, Junil; Ishimoto, Takahiro; Bae, Eun-Jin; Mohney, Robert P.; Stirdivant, Steven M.; Oshima, Hiroko; Oshima, Masanobu; Kim, Dong-Wook; Nakauchi, Hiromitsu; Takihara, Yoshihiro; Kato, Yukio; Ooshima, Akira; Kim, Seong-Jin
2015-01-01
Understanding the specific survival of the rare chronic myelogenous leukaemia (CML) stem cell population could provide a target for therapeutics aimed at eradicating these cells. However, little is known about how survival signalling is regulated in CML stem cells. In this study, we survey global metabolic differences between murine normal haematopoietic stem cells (HSCs) and CML stem cells using metabolomics techniques. Strikingly, we show that CML stem cells accumulate significantly higher levels of certain dipeptide species than normal HSCs. Once internalized, these dipeptide species activate amino-acid signalling via a pathway involving p38MAPK and the stemness transcription factor Smad3, which promotes CML stem cell maintenance. Importantly, pharmacological inhibition of dipeptide uptake inhibits CML stem cell activity in vivo. Our results demonstrate that dipeptide species support CML stem cell maintenance by activating p38MAPK–Smad3 signalling in vivo, and thus point towards a potential therapeutic target for CML treatment. PMID:26289811
Li, Fengyin; He, Bing; Ma, Xiaoke; Yu, Shuyang; Bhave, Rupali R; Lentz, Steven R; Tan, Kai; Guzman, Monica L; Zhao, Chen; Xue, Hai-Hui
2017-09-07
Effective treatment of chronic myelogenous leukemia (CML) largely depends on the eradication of CML leukemic stem cells (LSCs). We recently showed that CML LSCs depend on Tcf1 and Lef1 factors for self-renewal. Using a connectivity map, we identified prostaglandin E1 (PGE1) as a small molecule that partly elicited the gene expression changes in LSCs caused by Tcf1/Lef1 deficiency. Although it has little impact on normal hematopoiesis, we found that PGE1 treatment impaired the persistence and activity of LSCs in a pre-clinical murine CML model and a xenograft model of transplanted CML patient CD34 + stem/progenitor cells. Mechanistically, PGE1 acted on the EP4 receptor and repressed Fosb and Fos AP-1 factors in a β-catenin-independent manner. Misoprostol, an FDA-approved EP4 agonist, conferred similar protection against CML. These findings suggest that activation of this PGE1-EP4 pathway specifically targets CML LSCs and that the combination of PGE1/misoprostol with conventional tyrosine-kinase inhibitors could provide effective therapy for CML. Copyright © 2017 Elsevier Inc. All rights reserved.
Glycotoxin and Autoantibodies Are Additive Environmentally Determined Predictors of Type 1 Diabetes
Beyan, Huriya; Riese, Harriette; Hawa, Mohammed I.; Beretta, Guisi; Davidson, Howard W.; Hutton, John C.; Burger, Huibert; Schlosser, Michael; Snieder, Harold; Boehm, Bernhard O.; Leslie, R. David
2012-01-01
In type 1 diabetes, diabetes-associated autoantibodies, including islet cell antibodies (ICAs), reflect adaptive immunity, while increased serum Nε-carboxymethyl-lysine (CML), an advanced glycation end product, is associated with proinflammation. We assessed whether serum CML and autoantibodies predicted type 1 diabetes and to what extent they were determined by genetic or environmental factors. Of 7,287 unselected schoolchildren screened, 115 were ICA+ and were tested for baseline CML and diabetes autoantibodies and followed (for median 7 years), whereas a random selection (n = 2,102) had CML tested. CML and diabetes autoantibodies were determined in a classic twin study of twin pairs discordant for type 1 diabetes (32 monozygotic, 32 dizygotic pairs). CML was determined by enzyme-linked immunosorbent assay, autoantibodies were determined by radioimmunoprecipitation, ICA was determined by indirect immunofluorescence, and HLA class II genotyping was determined by sequence-specific oligonucleotides. CML was increased in ICA+ and prediabetic schoolchildren and in diabetic and nondiabetic twins (all P < 0.001). Elevated levels of CML in ICA+ children were a persistent, independent predictor of diabetes progression, in addition to autoantibodies and HLA risk. In twins model fitting, familial environment explained 75% of CML variance, and nonshared environment explained all autoantibody variance. Serum CML, a glycotoxin, emerged as an environmentally determined diabetes risk factor, in addition to autoimmunity and HLA genetic risk, and a potential therapeutic target. PMID:22396204
Beer, Philip A.; Knapp, David J. H. F.; Miller, Paul H.; Kannan, Nagarajan; Sloma, Ivan; Heel, Kathy; Babovic, Sonja; Bulaeva, Elizabeth; Rabu, Gabrielle; Terry, Jefferson; Druker, Brian J.; Loriaux, Marc M.; Loeb, Keith R.; Radich, Jerald P.; Erber, Wendy N.
2015-01-01
Without effective therapy, chronic-phase chronic myeloid leukemia (CP-CML) evolves into an acute leukemia (blast crisis [BC]) that displays either myeloid or B-lymphoid characteristics. This transition is often preceded by a clinically recognized, but biologically poorly characterized, accelerated phase (AP). Here, we report that IKAROS protein is absent or reduced in bone marrow blasts from most CML patients with advanced myeloid disease (AP or BC). This contrasts with primitive CP-CML cells and BCR-ABL1–negative acute myeloid leukemia blasts, which express readily detectable IKAROS. To investigate whether loss of IKAROS contributes to myeloid disease progression in CP-CML, we examined the effects of forced expression of a dominant-negative isoform of IKAROS (IK6) in CP-CML patients’ CD34+ cells. We confirmed that IK6 disrupts IKAROS activity in transduced CP-CML cells and showed that it confers on them features of AP-CML, including a prolonged increased output in vitro and in xenografted mice of primitive cells with an enhanced ability to differentiate into basophils. Expression of IK6 in CD34+ CP-CML cells also led to activation of signal transducer and activator of transcription 5 and transcriptional repression of its negative regulators. These findings implicate loss of IKAROS as a frequent step and potential diagnostic harbinger of progressive myeloid disease in CML patients. PMID:25370416
CML8, an Arabidopsis Calmodulin-Like Protein, Plays a Role in Pseudomonas syringae Plant Immunity.
Zhu, Xiaoyang; Robe, Eugénie; Jomat, Lucile; Aldon, Didier; Mazars, Christian; Galaud, Jean-Philippe
2017-02-01
Calcium is a universal second messenger involved in various cellular processes including plant development and stress responses. Its conversion into biological responses requires the presence of calcium sensor relays such as calmodulin (CaM) and calmodulin-like (CML) proteins. While the role of CaM is well described, the functions CML proteins remain largely uncharacterized. Here, we show that Arabidopsis CML8 expression is strongly and transiently induced by Pseudomonas syringae, and reverse genetic approaches indicated that the overexpression of CML8 confers on plants a better resistance to pathogenic bacteria compared with wild-type, knock-down and knock-out lines, indicating that CML8 participates as a positive regulator in plant immunity. However, this difference disappeared when inoculations were performed using bacteria unable to inject effectors into a plant host cell or deficient for some effectors known to target the salicylic acid (SA) signaling pathway. SA content and PR1 protein accumulation were altered in CML8 transgenic lines, supporting a role for CML8 in SA-dependent processes. Pathogen-associated molecular pattern (PAMP) treatments with flagellin and elf18 peptides have no effects on CML8 gene expression and do not modify root growth of CML8 knock-down and overexpressing lines compared with wild-type plants. Collectively, our results support a role for CML8 in plant immunity against P. syringae. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Jabbour, Elias J; Cortes, Jorge E; Kantarjian, Hagop M
2014-01-01
Chronic myeloid leukemia (CML) is a hematologic neoplasm with a progressive, ultimately terminal, disease course. In most cases, CML arises owing to the aberrant formation of a chimeric gene for a constitutively active tyrosine kinase. Inhibition of the signaling activity of this kinase has proved to be a highly successful treatment target transforming the prognosis of patients with CML. New tyrosine kinase inhibitors (TKIs) continue to improve the management of CML, offering alternative options for those resistant to or intolerant of standard TKIs. Here we review the pathobiology of CML and explore emerging strategies to optimize the management of chronic-phase CML, particularly first-line treatment. PMID:24236822
Oaxaca, Derrick M; Yang-Reid, Sun Ah; Ross, Jeremy A; Rodriguez, Georgialina; Staniswalis, Joan G; Kirken, Robert A
2016-09-01
Tyrosine kinase inhibitors (TKIs) have dramatically improved the life expectancy of patients suffering from chronic myeloid leukemia (CML); however, patients will eventually develop resistance to TKI therapy or adverse side effects due to secondary off-target mechanisms associated with TKIs. CML patients exhibiting TKI resistance are at greater risk of developing an aggressive and drug-insensitive disease. Drug-resistant CML typically arises in response to spontaneous mutations within the drug binding sites of the targeted oncoproteins. To better understand the mechanism of drug resistance in TKI-resistant CML patients, the BCR-ABL transformed cell line KCL22 was grown with increasing concentrations of imatinib for a period of 6 weeks. Subsequently, a drug-resistant derivative of the parental KCL22 cell line harboring the T315I gatekeeper mutation was isolated and investigated for TKI drug sensitivity via multi-agent drug screens. A synergistic combination of ponatinib- and forskolin-reduced cell viability was identified in this clinically relevant imatinib-resistant CML cell line, which also proved efficacious in other CML cell lines. In summary, this study provides new insight into the biological underpinnings of BCR-ABL-driven CML and potential rationale for investigating novel treatment strategies for patients with T315I CML.
El Eit, Rabab M; Iskandarani, Ahmad N; Saliba, Jessica L; Jabbour, Mark N; Mahfouz, Rami A; Bitar, Nizar M A; Ayoubi, Hanadi R El; Zaatari, Ghazi S; Mahon, Francois-Xavier; De Thé, Hugues B; Bazarbachi, Ali A; Nasr, Rihab R
2014-02-15
Imatinib is the standard of care in chronic meloid leukemia (CML) therapy. However, imatinib is not curative since most patients who discontinue therapy relapse indicating that leukemia initiating cells (LIC) are resistant. Interferon alpha (IFN) induces hematologic and cytogenetic remissions and interestingly, improved outcome was reported with the combination of interferon and imatinib. Arsenic trioxide was suggested to decrease CML LIC. We investigated the effects of arsenic and IFN on human CML cell lines or primary cells and the bone marrow retroviral transduction/transplantation murine CML model. In vitro, the combination of arsenic and IFN inhibited proliferation and activated apoptosis. Importantly, arsenic and IFN synergistically reduced the clonogenic activity of primary bone marrow cells derived from CML patients. Finally, in vivo, combined interferon and arsenic treatment, but not single agents, prolonged the survival of primary CML mice. Importantly, the combination severely impaired engraftment into untreated secondary recipients, with some recipients never developing the disease, demonstrating a dramatic decrease in CML LIC activity. Arsenic/IFN effect on CML LIC activity was significantly superior to that of imatinib. These results support further exploration of this combination, alone or with imatinib aiming at achieving CML eradication rather than long-term disease control. © 2013 UICC.
La Verde, Valentina; Trande, Matteo; D'Onofrio, Mariapina; Dominici, Paola; Astegno, Alessandra
2018-03-01
Calmodulin-like protein 19 (CML19) is an Arabidopsis centrin that modulates nucleotide excision repair (NER) by binding to RAD4 protein, the Arabidopsis homolog of human Xeroderma pigmentosum complementation group C protein. Although the necessity of CML19 as a part of the RAD4 plant recognition complex for functional NER is known at a cellular level, little is known at a molecular level. Herein, we used a combination of biophysical and biochemical approaches to investigate the structural and ion and target-peptide binding properties of CML19. We found that CML19 possesses four Ca 2+ -specific binding sites, two of high affinity in the N-terminal domain and two of low affinity in the C-terminal domain. Binding of Ca 2+ to CML19 increases its alpha-helix content, stabilizes the tertiary structure, and triggers a conformational change, resulting in the exposure of a hydrophobic patch instrumental for target protein recognition. Using bioinformatics tools we identified a CML19-binding site at the C-terminus of RAD4, and through in vitro binding experiments we analyzed the interaction between a 17-mer peptide representing this site and CML19. We found that the peptide shows a high affinity for CML19 in the presence of Ca 2+ (stoichiometry 1:1) and the interaction primarily involves the C-terminal half of CML19. Copyright © 2017 Elsevier B.V. All rights reserved.
Chang, Xiaohui; Zhou, Lin; Chen, Xiaoxia; Xu, Baoli; Cheng, Yubin; Sun, Shujun; Fang, Meiyun; Xiang, Yang
2017-12-01
Imatinib is a first-line tyrosine kinase inhibitor for treating chronic myelogenous leukaemia (CML) and has greatly improved the prognosis of this disease. An increasing number of CML patients of reproductive age are diagnosed each year, and the impact of imatinib on fertility is a major concern. Providing useful advice to these patients regarding the choice of their therapeutic treatment is very important. This study examined the impact of imatinib on the fertility of male patients with CML in the chronic phase. We performed a study of 48 adult male CML patients in the chronic phase (CML-CP), 50 healthy control subjects, and 10 male patients with infertility. Imatinib levels in semen and plasma were measured using high-performance liquid chromatography/mass spectrometry. We examined the effects of imatinib on sperm parameters and the male reproductive system using a computer-assisted sperm assay and ultrasound, respectively. We analysed sex hormone levels in the sera of CML-CP patients using an enzyme-linked immunosorbent assay. Imatinib levels in semen were comparable to plasma levels in CML-CP patients. CML-CP patients treated with imatinib exhibited reduced sperm density, counts, survival rates, and activity. Ultrasound demonstrated that the shape and size of the testis and epididymis in CML-CP patients undergoing imatinib treatment were normal. However, 19 of these patients exhibited a hydrocele in their tunica vaginalis, with a large dark area of effusion (0.7-2.9 cm in width). Sex hormone levels in the sera of the CML-CP patients were normal. These results suggest that imatinib crosses the blood-testis barrier and reduces sperm density, sperm count, survival rates, and activity in CML-CP patients. However, imatinib did not affect the structure of reproductive organs or sex hormone levels.
McClintock, Carlee; Li, Tian
2016-01-01
During waterlogging and the associated oxygen deprivation stress, plants respond by the induction of adaptive programs, including the redirected expression of gene networks toward the synthesis of core hypoxia-response proteins. Among these core response proteins in Arabidopsis (Arabidopsis thaliana) is the calcium sensor CML38, a protein related to regulator of gene silencing calmodulin-like proteins (rgsCaMs). CML38 transcripts are up-regulated more than 300-fold in roots within 6 h of hypoxia treatment. Transfer DNA insertional mutants of CML38 show an enhanced sensitivity to hypoxia stress, with lowered survival and more severe inhibition of root and shoot growth. By using yellow fluorescent protein (YFP) translational fusions, CML38 protein was found to be localized to cytosolic granule structures similar in morphology to hypoxia-induced stress granules. Immunoprecipitation of CML38 from the roots of hypoxia-challenged transgenic plants harboring CML38pro::CML38:YFP followed by liquid chromatography-tandem mass spectrometry analysis revealed the presence of protein targets associated with messenger RNA ribonucleoprotein (mRNP) complexes including stress granules, which are known to accumulate as messenger RNA storage and triage centers during hypoxia. This finding is further supported by the colocalization of CML38 with the mRNP stress granule marker RNA Binding Protein 47 (RBP47) upon cotransfection of Nicotiana benthamiana leaves. Ruthenium Red treatment results in the loss of CML38 signal in cytosolic granules, suggesting that calcium is necessary for stress granule association. These results confirm that CML38 is a core hypoxia response calcium sensor protein and suggest that it serves as a potential calcium signaling target within stress granules and other mRNPs that accumulate during flooding stress responses. PMID:26634999
Manachai, Nawin; Saito, Yusuke; Nakahata, Shingo; Bahirvani, Avinash Govind; Osato, Motomi; Morishita, Kazuhiro
2017-01-22
The presence of a BCR-ABL1 fusion gene is necessary for the pathogenesis of chronic myeloid leukemia (CML) through t(9;22)(q34;q11) translocation. Imatinib, an ABL tyrosine kinase inhibitor, is dramatically effective in CML patients; however, 30% of CML patients will need further treatment due to progression of CML to blast crisis (BC). Aberrant high expression of ecotropic viral integration site 1 (EVI1) is frequently observed in CML during myeloid-BC as a potent driver with a CML stem cell signature; however, the precise molecular mechanism of EVI1 transcriptional regulation during CML progression is poorly defined. Here, we demonstrate the transcriptional activity of EVI1 is dependent on activation of lymphoid enhancer-binding factor 1 (LEF1)/β-catenin complex by BCR-ABL with loss of p53 function during CML-BC. The activation of β-catenin is partly dependent on BCR-ABL expression through enhanced GSK3β phosphorylation, and EVI1 expression is directly enhanced by the LEF1/β-catenin complex bound to the EVI1 promoter region. Moreover, the loss of p53 expression is inversely correlated with high expression of EVI1 in CML leukemia cells with an aggressive phase of CML, and a portion of the activation mechanism of EVI1 expression is dependent on β-catenin activation through GSK3β phosphorylation by loss of p53. Therefore, we found that the EVI1 activation in CML-BC is dependent on LEF1/β-catenin activation by BCR-ABL expression with loss of p53 function, representing a novel selective therapeutic approach targeting myeloid blast crisis progression. Copyright © 2016 Elsevier Inc. All rights reserved.
Bulldozing of Basal Continental Mantle Lithosphere During Flat-Slab Subduction
NASA Astrophysics Data System (ADS)
Axen, G. J.; van Wijk, J.; Currie, C. A.
2017-12-01
Flat-slab subduction occurs along 10% of subduction margins, forming magmatic gaps and causing inland migration of upper-plate deformation. We suggest that basal continental mantle lithosphere (CML) can be bulldozed ahead of the flat portion of horizontally-subducted oceanic lithosphere, forming a growing and advancing keel of thickened CML. This process fills the asthenospheric mantle wedge with CML, precluding melting. The bulldozed CML keel may transmit tectonic stresses ahead of the flat slab itself, causing upper-plate deformation ahead of the slab hinge. We designed 2-D numerical models after the North American Laramide orogeny, with subduction of a thick, buoyant oceanic plateau (conjugate Shatsky Rise) and with the continent advancing trenchward over the initial slab hinge. This results in slab-flattening, and removal of CML material. In our models, the thickness of the CML layer removed by this process depends on overriding plate rheology and is up to 25 km. The removed material is bulldozed ahead of the hinge and may fill up the asthenospheric wedge. Low-density (depleted) CML favors formation of bulldozed keels, which increase in width as CML strength decreases. Regular-density and/or stronger CML forms smaller bulldozed keels that are more likely to sink with the slab as eclogitization and densification proceed. When the flat slab rolls back, it leaves a step in the CML at the farthest extent of the slab. Relics of this step may remain below North America or may have dripped off. We interpret an upper-mantle fast-velocity anomaly below SE New Mexico and W Texas as a drip/keel, and the step in lithosphere thickness in southwestern Colorado as a fossil step, caused by the removal of the CML layer. Our model predicts that the Laramide bulldozed CML keel may have aided in stress transmission that caused basement uplifts as far as NE Wyoming and subsurface folds even farther N and E. Modern examples may exist in South American flat slab segments.
Ni, Xinzhi; Krakowsky, Matthew D; Buntin, G David; Rector, Brian G; Guo, Baozhu; Snook, Maurice E
2008-08-01
Ninety four corn inbred lines selected from International Center for the Improvement of Maize and Wheat (CIMMYT) in Mexico were evaluated for levels of silk maysin in 2001 and 2002. Damage by major ear-feeding insects [i.e., corn earworm, Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae); maize weevil, Sitophilus zeamais (Motschulsky) (Coleoptera: Curculionidae); brown stink bug, Euschistus servus (Say); southern green stink bugs, Nezara viridula (L.) (Heteroptera: Pentatomidae)], and common smut [Ustilago maydis DC (Corda)] infection on these inbred lines were evaluated in 2005 and 2006 under subtropical conditions at Tifton, GA. Ten inbred lines possessing good agronomic traits were also resistant to the corn earworm. The correlation between ear-feeding insect damage or smut infection and three phenotypic traits (silk maysin level, husk extension, and husk tightness of corn ears) was also examined. Corn earworm and stink bug damage was negatively correlated to husk extension, but not to either silk maysin levels or husk tightness. In combination with the best agronomic trait ratings that show the least corn earworm and stink bug damage, lowest smut infection rate, and good insect-resistant phenotypic traits (i.e., high maysin and good husk coverage and husk tightness), 10 best inbred lines (CML90, CML92, CML94, CML99, CML104, CML108, CML114, CML128, CML137, and CML373) were identified from the 94 lines examined. These selected inbred lines will be used for further examination of their resistance mechanisms and development of new corn germplasm that confers multiple ear-colonizing pest resistance.
Irvine, David A.; Zhang, Bin; Kinstrie, Ross; Tarafdar, Anuradha; Morrison, Heather; Campbell, Victoria L.; Moka, Hothri A.; Ho, Yinwei; Nixon, Colin; Manley, Paul W.; Wheadon, Helen; Goodlad, John R.; Holyoake, Tessa L.; Bhatia, Ravi; Copland, Mhairi
2016-01-01
Targeting the Hedgehog (Hh) pathway represents a potential leukaemia stem cell (LSC)-directed therapy which may compliment tyrosine kinase inhibitors (TKIs) to eradicate LSC in chronic phase (CP) chronic myeloid leukaemia (CML). We set out to elucidate the role of Hh signaling in CP-CML and determine if inhibition of Hh signaling, through inhibition of smoothened (SMO), was an effective strategy to target CP-CML LSC. Assessment of Hh pathway gene and protein expression demonstrated that the Hh pathway is activated in CD34+ CP-CML stem/progenitor cells. LDE225 (Sonidegib), a small molecule, clinically investigated SMO inhibitor, used alone and in combination with nilotinib, inhibited the Hh pathway in CD34+ CP-CML cells, reducing the number and self-renewal capacity of CML LSC in vitro. The combination had no effect on normal haemopoietic stem cells. When combined, LDE225 + nilotinib reduced CD34+ CP-CML cell engraftment in NSG mice and, upon administration to EGFP+ /SCLtTA/TRE-BCR-ABL mice, the combination enhanced survival with reduced leukaemia development in secondary transplant recipients. In conclusion, the Hh pathway is deregulated in CML stem and progenitor cells. We identify Hh pathway inhibition, in combination with nilotinib, as a potentially effective therapeutic strategy to improve responses in CP-CML by targeting both stem and progenitor cells. PMID:27157927
Re-emergence of interferon-α in the treatment of chronic myeloid leukemia
Talpaz, M; Hehlmann, R; Quintás-Cardama, A; Mercer, J; Cortes, J
2013-01-01
Treatment for chronic myeloid leukemia (CML) has evolved from chemotherapy (busulfan, hydroxyurea) to interferon-α (IFNα), and finally to tyrosine kinase inhibitors such as imatinib. Although imatinib has profoundly improved outcomes for patients with CML, it has limitations. Most significantly, imatinib cannot eradicate CML primitive progenitors, which likely accounts for the high relapse rate when imatinib is discontinued. IFNα, unlike imatinib, preferentially targets CML stem cells. Early studies with IFNα in CML demonstrated its ability to induce cytogenetic remission. Moreover, a small percentage of patients treated with IFNα were able to sustain durable remissions after discontinuing therapy and were probably cured. The mechanisms by which IFNα exerts its antitumor activity in CML are not well understood; however, activation of leukemia-specific immunity may have a role. Some clinical studies have demonstrated that the combination of imatinib and IFNα is superior to either therapy alone, perhaps because of their different mechanisms of action. Nonetheless, the side effects of IFNα often impede its administration, especially in combination therapy. Here, we review the role of IFNα in CML treatment and the recent developments that have renewed interest in this once standard therapy for patients with CML. PMID:23238589
Immune Effector Recovery in Chronic Myeloid Leukemia and Treatment-Free Remission
Hughes, Amy; Yong, Agnes S. M.
2017-01-01
Chronic myeloid leukemia (CML) is a hematological cancer, characterized by a reciprocal chromosomal translocation between chromosomes 9 and 22 [t(9;22)], producing the Bcr-Abl oncogene. Tyrosine kinase inhibitors (TKIs) represent the standard of care for CML patients and exert a dual mode of action: direct oncokinase inhibition and restoration of effector-mediated immune surveillance, which is rendered dysfunctional in CML patients at diagnosis, prior to TKI therapy. TKIs such as imatinib, and more potent second-generation nilotinib and dasatinib induce a high rate of deep molecular response (DMR, BCR-ABL1 ≤ 0.01%) in CML patients. As a result, the more recent goal of therapy in CML treatment is to induce a durable DMR as a prelude to successful treatment-free remission (TFR), which occurs in approximately half of all CML patients who cease TKI therapy. The lack of overt relapse in such patients has been attributed to immunological control of CML. In this review, we discuss an immunological timeline to successful TFR, focusing on the immunology of CML during TKI treatment; an initial period of immune suppression, limiting antitumor immune effector responses in newly diagnosed CML patients, linked to an expansion of immature myeloid-derived suppressor cells and regulatory T cells and aberrant expression of immune checkpoint signaling pathways, including programmed death-1/programmed death ligand-1. Commencement of TKI treatment is associated with immune system re-activation and restoration of effector-mediated [natural killer (NK) cell and T cell] immune surveillance in CML patients, albeit with differing frequencies in concert with differing levels of molecular response achieved on TKI. DMR is associated with maximal restoration of immune recovery in CML patients on TKI. Current data suggest a net balance between both the effector and suppressor arms of the immune system, at a minimum involving mature, cytotoxic CD56dim NK cells may be important in mediating TFR success. However, a major goal remains in CML to identify the most effective pathways to target to maximize an advantageous immune response and promote TFR success. PMID:28484463
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Zhong; Li, Yong; Lv, Cao
Chronic myeloid leukemia (CML) responds well to BCR-ABL tyrosine kinase inhibitors (TKI), but becomes resistant to TKIs after it progresses to blast phase (BP). Here we show that niclosamide, a FDA-approved anthelmintic drug, enhances the sensitivity of BP-CML cells to dasatinib (2nd generation of BCR-ABL TKI) through inhibiting Erk/Mnk1/eIF4E signaling pathway. Niclosamide dose-dependently inhibits proliferation and induces apoptosis in a panel of CML cell lines. It also selectively targets BP-CML CD34 stem/progenitor cells through inducing apoptosis, inhibiting colony formation and self-renewal capacity while sparing normal bone marrow (NBM) counterparts. In addition, combination of niclosamide and dasatinib is synergistic in CMLmore » cell lines and BP-CML CD34 cells. Importantly, niclosamide inhibits phosphorylation of Erk, Mnk1 and eIF4E in CML cells. Overexpression of phosphomimetic but not nonphosphorylatable form of eIF4E reverses the inhibitory effects of niclosamide, suggesting that eIF4E inhibition is required for the action of niclosamide in CML. Compared to NBM, the increased levels of eIF4E and its activity in CML CD34 cells might explain the selective toxicity of niclosamide in CML versus NBM. We further show that dasatinib time-dependently induces eIF4E phosphorylation. The combination of eIF4E depletion and dasatinib results in similar effects as the combination of niclosamide and dasatinib, suggesting that niclosamide enhances dasatinib through targeting eIF4E. Our work is the first to demonstrate that niclosamide is a potential drug to overcome resistance to BCR-ABL TKI treatment in BP-CML. Our findings also suggest the therapeutic value of Erk/Mnk/eIF4E in CML treatment.« less
Liu, Shing Hwa; Sheu, Wayne Huey Herng; Lee, Maw Rong; Lee, Wen Jane; Yi, Yu Chiao; Yang, Tzung Jie; Jen, Jen Fon; Pan, Hung Chuan; Shen, Chin Chang; Chen, Wen Bao; Tien, Hsing Ru; Sheu, Meei Ling
2013-06-01
N(ε)-carboxymethyllysine (CML), a major advanced glycation end product, plays a crucial role in diabetes-induced vascular injury. The roles of protein tyrosine phosphatases and vascular endothelial growth factor (VEGF) receptors in CML-related endothelial cell injury are still unclear. Human umbilical vein endothelial cells (HUVECs) are a commonly used human EC type. Here, we tested the hypothesis that NADPH oxidase/reactive oxygen species (ROS)-mediated SH2 domain-containing tyrosine phosphatase-1 (SHP-1) activation by CML inhibits the VEGF receptor-2 (VEGFR-2, KDR/Flk-1) activation, resulting in HUVEC injury. CML significantly inhibited cell proliferation and induced apoptosis and reduced VEGFR-2 activation in parallel with the increased SHP-1 protein expression and activity in HUVECs. Adding recombinant VEGF increased forward biological effects, which were attenuated by CML. The effects of CML on HUVECs were abolished by SHP-1 siRNA transfection. Exposure of HUVECs to CML also remarkably escalated the integration of SHP-1 with VEGFR-2. Consistently, SHP-1 siRNA transfection and pharmacological inhibitors could block this interaction and elevating [(3)H]thymidine incorporation. CML also markedly activated the NADPH oxidase and ROS production. The CML-increased SHP-1 activity in HUVECs was effectively attenuated by antioxidants. Moreover, the immunohistochemical staining of SHP-1 and CML was increased, but phospho-VEGFR-2 staining was decreased in the aortic endothelium of streptozotocin-induced and high-fat diet-induced diabetic mice. We conclude that a pathway of tyrosine phosphatase SHP-1-regulated VEGFR-2 dephosphorylation through NADPH oxidase-derived ROS is involved in the CML-triggered endothelial cell dysfunction/injury. These findings suggest new insights into the development of therapeutic approaches to reduce diabetic vascular complications. Copyright © 2013 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Buckle, A. M.; Mottram, R.; Pierce, A.; Lucas, G. S.; Russell, N.; Miyan, J. A.; Whetton, A. D.
2000-01-01
BACKGROUND: Chronic Myeloid Leukaemia (CML) is characterised by the chromosomal translocation resulting in expression of the Bcr-Abl protein tyrosine kinase (PTK) in early stem cells and their progeny. However the precise nature of Bcr-Abl effects in primitive CML stem cells remains a matter of active debate. MATERIALS AND METHODS: Extremely primitive Bcr-Abl fusion positive cells were purified from patients with CML using multiparameter flow cytometric analysis of CD34, Thy, and lineage marker (Lin) expression, plus rhodamine-123 (Rh-123) brightness. Progenitor cells of increasing maturity were examined for cycling status by flow cytometry and their proliferative status directly correlated with cell phenotype. The activation status of a key transcription factor, signal transducers and activators of transcription (STAT-5), was also analyzed by immunocytochemistry. RESULTS: The most primitive stem cells currently defined (CD34+Lin-Thy+ Rh-1231o) were present as a lower proportion of the stem cell compartment (CD34+Lin-) of CML patients at presentation than of normal individuals (2.3% +/- 0.4 compared with 5.1% +/- 0.6 respectively). Conversely there was a significantly higher proportion of the more mature cells (CD34+Lin-Thy-Rh-123 hi) in CML patients than in normal individuals (79.3 +/- 1.8 compared with 70.9 +/- 3.3). No primitive subpopulation of CML CD34+Lin- cells was cycling to a significantly greater degree than cells from normal donors, in fact, late progenitor cells (CD34+Lin+) were cycling significantly less in CML samples than normal samples. STAT5, however, was observed to be activated in CML cells. CONCLUSIONS: We conclude that no subpopulation of CML stem cells displays significantly increased cell cycling. Thus, increased cycling cannot be a direct consequence of Bcr-Abl PTK acquisition in highly enriched stem cells from patients with CML. In vivo CML need not be considered a disease of unbridled stem cell proliferation, but a subtle defect in the balance between self renewal and maturation. PMID:11126203
Inhibition of the NADPH oxidase regulates HO-1 expression in chronic myeloid leukemia
Singh, Melissa M.; Irwin, Mary E.; Gao, Yin; Ban, Kechen; Shi, Ping; Arlinghaus, Ralph B.; Amin, Hesham M.; Chandra, Joya
2011-01-01
Background Patients with blast crisis phase chronic myelogeneous leukemia (CML) have poor response to tyrosine kinase inhibitors designed to inhibit the BCR-ABL1 oncogene. Recent work has shown that heme oxygenase 1 (HO-1) expression is increased in BCR-ABL1 expressing cells and that inhibition of HO-1 in CML leads to reduced cellular growth suggesting HO-1 may be a plausible target for therapy. Here we sought to clarify the mechanism of HO-1 overexpression and the role of the NADPH oxidase as a contributor to this mechanism in CML. Methods HO-1 expression was evaluated in CML bone marrow specimens from patients in various stages of disease, in a transplant based model for CML and in CML cell lines. Chemical and genetic inhibition of the NADPH oxidase was carried out in CML cells. Results Blast crisis CML patient specimens displayed higher levels of HO-1 staining than chronic or accelerated phase. HO-1 upregulation in BCR-ABL1 expressing cells was suppressed by diphenyliodonium (DPI), a chemical inhibitor of the NADPH oxidase. Targeting the NADPH oxidase through RNAi to Rac1, a dominant negative Rac1 construct or an inhibitor of Rac1 activity also blunted HO-1 protein expression. Moreover, inhibition of the NADPH oxidase by RNAi directed towards p47phox similarly abrogated HO-1 levels. Conclusion BCR-ABL1 expression upregulates HO-1, a survival factor for CML cells. This upregulation is more pronounced in blast crisis CML relative to early stage disease and is mediated by the NADPH oxidase components Rac1 and p47phox. Expression of p47phox is increased in BCR-ABL1 expressing cells. PMID:22139798
Frolova, Olga; Benito, Juliana; Brooks, Chris; Wang, Rui-Yu; Korchin, Borys; Rowinsky, Eric K.; Cortes, Jorge; Kantarjian, Hagop; Andreeff, Michael; Frankel, Arthur E.; Konopleva, Marina
2014-01-01
SUMMARY While imatinib and other tyrosine kinase inhibitors (TKIs) are highly efficacious in the treatment of chronic myeloid leukaemia (CML), some patients become refractory to these therapies. After confirming that interleukin-3 receptor (IL3R, CD123) is highly expressed on CD34+/CD38− BCR-ABL1+ CML stem cells, we investigated whether targeting IL3R with diphtheria toxin (DT)-IL3 fusion proteins SL-401 (DT388-IL3) and SL-501 (DT388-IL3[K116W]) could eradicate these stem cells. SL-401 and SL-501 inhibited cell growth and induced apoptosis in the KBM5 cell line and its TKI-resistant KBM5-STI subline. Combinations of imatinib with these agents increased apoptosis in KBM5 and in primary CML cells. In six primary CML samples, including CML cells harbouring the ABL1 T315I mutation, SL-401 and SL-501 decreased the absolute numbers of viable CD34+/CD38−/CD123+ CML progenitor cells by inducing apoptosis. IL3-targeting agents reduced clonogenic growth and diminished the fraction of primitive long-term culture-initiating cells in samples from patients with advanced phase CML that were resistant to TKIs or harboured an ABL1 mutation. Survival was also extended in a mouse model of primary TKI-resistant CML blast crisis. These data suggest that the DT-IL3 fusion proteins, SL-401 and SL-501, deplete CML stem cells and may increase the effectiveness of current CML treatment, which principally targets tumour bulk. PMID:24942980
Schiffer, Charles A; Cortes, Jorge E; Hochhaus, Andreas; Saglio, Giuseppe; le Coutre, Philipp; Porkka, Kimmo; Mustjoki, Satu; Mohamed, Hesham; Shah, Neil P
2016-05-01
The proliferation of clonal cytotoxic T-cells or natural killer cells has been observed after dasatinib treatment in small studies of patients with chronic myeloid leukemia (CML). The incidence of lymphocytosis and its association with response, survival, and side effects were assessed in patients from 3 large clinical trials. Overall, 1402 dasatinib-treated patients with newly diagnosed CML in chronic phase (CML-CP), CML-CP refractory/intolerant to imatinib, or with CML in accelerated or myeloid-blast phase were analyzed. Lymphocytosis developed in 32% to 35% of patients and persisted for >12 months. This was not observed in the patients who received treatment with imatinib. Dasatinib-treated patients in all stages of CML who developed lymphocytosis were more likely to achieve a complete cytogenetic response, and patients who had CML-CP with lymphocytosis were more likely to achieve major and deep molecular responses. Progression-free and overall survival rates were significantly longer in patients with CML-CP who were refractory to or intolerant of imatinib and had lymphocytosis. Pleural effusions developed more commonly in patients with lymphocytosis. Overall, lymphocytosis occurred and persisted in many dasatinib-treated patients in all phases of CML. Its presence was associated with higher response rates, significantly longer response durations, and increased overall survival, suggesting an immunomodulatory effect. Prospective studies are warranted to characterize the functional activity of these cells and to assess whether an immunologic effect against CML is detectable. Cancer 2016;122:1398-1407. © 2016 The Authors. Cancer published by Wiley Periodicals, Inc. on behalf of American Cancer Society. © 2016 The Authors. Cancer published by Wiley Periodicals, Inc. on behalf of American Cancer Society.
Frolova, Olga; Benito, Juliana; Brooks, Chris; Wang, Rui-Yu; Korchin, Borys; Rowinsky, Eric K; Cortes, Jorge; Kantarjian, Hagop; Andreeff, Michael; Frankel, Arthur E; Konopleva, Marina
2014-09-01
While imatinib and other tyrosine kinase inhibitors (TKIs) are highly efficacious in the treatment of chronic myeloid leukaemia (CML), some patients become refractory to these therapies. After confirming that interleukin-3 receptor (IL3R, CD123) is highly expressed on CD34(+) /CD38(-) BCR-ABL1(+) CML stem cells, we investigated whether targeting IL3R with diphtheria toxin (DT)-IL3 fusion proteins SL-401 (DT388 -IL3) and SL-501 (DT388 -IL3[K116W]) could eradicate these stem cells. SL-401 and SL-501 inhibited cell growth and induced apoptosis in the KBM5 cell line and its TKI-resistant KBM5-STI subline. Combinations of imatinib with these agents increased apoptosis in KBM5 and in primary CML cells. In six primary CML samples, including CML cells harbouring the ABL1 T315I mutation, SL-401 and SL-501 decreased the absolute numbers of viable CD34(+) /CD38(-) /CD123(+) CML progenitor cells by inducing apoptosis. IL3-targeting agents reduced clonogenic growth and diminished the fraction of primitive long-term culture-initiating cells in samples from patients with advanced phase CML that were resistant to TKIs or harboured an ABL1 mutation. Survival was also extended in a mouse model of primary TKI-resistant CML blast crisis. These data suggest that the DT-IL3 fusion proteins, SL-401 and SL-501, deplete CML stem cells and may increase the effectiveness of current CML treatment, which principally targets tumour bulk. © 2014 John Wiley & Sons Ltd.
Uz, Burak; Buyukasik, Yahya; Atay, Hilmi; Kelkitli, Engin; Turgut, Mehmet; Bektas, Ozlen; Eliacik, Eylem; Isik, Ayşe; Aksu, Salih; Goker, Hakan; Sayinalp, Nilgun; Ozcebe, Osman I; Haznedaroglu, Ibrahim C
2013-09-01
The validity of the three currently used chronic myeloid leukemia (CML) scoring systems (Sokal CML prognostic scoring system, Euro/Hasford CML scoring system, and the EUTOS CML prognostic scoring system) were compared in the CML patients receiving frontline imatinib mesylate. One hundred and fourty-three chronic phase CML patients (71 males, 72 females) taking imatinib as frontline treatment were included in the study. The median age was 44 (16-82) years. Median total and on-imatinib follow-up durations were 29 (3.8-130) months and 25 (3-125) months, respectively. The complete hematological response (CHR) rate at 3 months was 95%. The best cumulative complete cytogenetic response (CCyR) rate at 24 months was 79.6%. Euro/Hasford scoring system was well-correlated with both Sokal and EUTOS scores (r = 0.6, P < 0.001 and r = 0.455, P < 0.001). However, there was only a weak correlation between Sokal and EUTOS scores (r = 0.2, P = 0.03). The 5-year median estimated event-free survival for low and high EUTOS risk patients were 62.6 (25.7-99.5) and 15.3 (7.4-23.2) months, respectively (P < 0.001). This performance was better than Sokal (P = 0.3) and Euro/Hasford (P = 0.04) scoring systems. Overall survival and CCyR rates were also better predicted by the EUTOS score. EUTOS CML prognostic scoring system, which is the only prognostic system developed during the imatinib era, predicts European LeukemiaNet (ELN)-based event-free survival better than Euro/Hasford and Sokal systems in CML patients receiving frontline imatinib mesylate. This observation might have important clinical implications.
Dong, Rong; Cwynarski, Kate; Entwistle, Alan; Marelli-Berg, Federica; Dazzi, Francesco; Simpson, Elizabeth; Goldman, John M; Melo, Junia V; Lechler, Robert I; Bellantuono, Ilaria; Ridley, Anne; Lombardi, Giovanna
2003-05-01
Chronic myeloid leukemia (CML) is characterized by expression of the BCR-ABL fusion gene that encodes a 210-kDa protein, which is a constitutively active tyrosine kinase. At least 70% of the oncoprotein is localized to the cytoskeleton, and several of the most prominent tyrosine kinase substrates for p210(BCR-ABL) are cytoskeletal proteins. Dendritic cells (DCs) are bone marrow-derived antigen-presenting cells responsible for the initiation of immune responses. In CML patients, up to 98% of myeloid DCs generated from peripheral blood mononuclear cells are BCR-ABL positive. In this study we have compared the morphology and behavior of myeloid DCs derived from CML patients with control DCs from healthy individuals. We show that the actin cytoskeleton and shape of CML-DCs of myeloid origin adherent to fibronectin differ significantly from those of normal DCs. CML-DCs are also defective in processing and presentation of exogenous antigens such as tetanus toxoid. The antigen-processing defect may be a consequence of the reduced capacity of CML-DCs to capture antigen via macropinocytosis or via mannose receptors when compared with DCs generated from healthy individuals. Furthermore, chemokine-induced migration of CML-DCs in vitro was significantly reduced. These observations cannot be explained by a difference in the maturation status of CML and normal DCs, because phenotypic analysis by flow cytometry showed a similar surface expression of maturation makers. Taken together, these results suggest that the defects in antigen processing and migration we have observed in CML-DCs may be related to underlying cytoskeletal changes induced by the p210(BCR-ABL) fusion protein.
The option value of innovative treatments in the context of chronic myeloid leukemia.
Sanchez, Yuri; Penrod, John R; Qiu, Xiaoli Lily; Romley, John; Thornton Snider, Julia; Philipson, Tomas
2012-11-01
To quantify in the context of chronic myeloid leukemia (CML) the additional value patients receive when innovative treatments enable them to survive until the advent of even more effective future treatments (ie, the "option value"). Observational study using data from the Surveillance, Epidemiology and End Results (SEER) cancer registry comprising all US patients with CML diagnosed between 2000 and 2008 (N = 9,760). We quantified the option value of recent breakthroughs in CML treatment by first conducting retrospective survival analyses on SEER data to assess the effectiveness of TKI treatments, and then forecasting survival from CML and other causes to measure expected future medical progress. We then developed an analytical framework to calculate option value of innovative CML therapies, and used an economic model to value these gains. We calculated the option value created both by future innovations in CML treatment and by medical progress in reducing background mortality. For a recently diagnosed CML patient, the option value of innovative therapies from future medical innovation amounts to 0.76 life-years. This option value is worth $63,000, equivalent to 9% of the average survival gains from existing treatments. Future innovations in CML treatment jointly account for 96% of this benefit. The option value of innovative treatments has significance in the context of CML and, more broadly, in disease areas with rapid innovation. Incorporating option value into traditional valuations of medical innovations is both a feasible and a necessary practice in health technology assessment.
Mak, Po Yee; Mu, Hong; Zhou, Hongsheng; Mak, Duncan H.; Schober, Wendy; Leverson, Joel D.; Zhang, Bin; Bhatia, Ravi; Huang, Xuelin; Cortes, Jorge; Kantarjian, Hagop; Konopleva, Marina
2016-01-01
BCR-ABL tyrosine kinase inhibitors (TKIs) are effective against chronic myeloid leukemia (CML), but they rarely eliminate CML stem cells. Disease relapse is common upon therapy cessation, even in patients with complete molecular responses. Furthermore, once CML progresses to blast crisis (BC), treatment outcomes are dismal. We hypothesized that concomitant targeting of BCL-2 and BCR-ABL tyrosine kinase could overcome these limitations. We demonstrate increased BCL-2 expression at the protein level in bone marrow cells, particularly in Lin−Sca-1+cKit+ cells of inducible CML in mice as determined by CyTOF mass cytometry. Further, selective inhibition of BCL-2, aided by TKI-mediated MCL-1 and BCL-XL inhibition, markedly decreased leukemic Lin−Sca-1+cKit+ cell numbers and long-term stem cell frequency, and prolonged survival in a murine CML model. Additionally, this combination effectively eradicated CD34+CD38−, CD34+CD38+, and quiescent stem/progenitor CD34+ cells from BC CML patient samples. Our results suggest that BCL-2 is a key survival factor for CML stem/progenitor cells and that combined inhibition of BCL-2 and BCR-ABL tyrosine kinase has the potential to significantly improve depth of response and cure rates of chronic phase and BC CML. PMID:27605552
Payandeh, Mehrdad; Sadeghi, Edris; Khodarahmi, Reza; Sadeghi, Masoud
2014-10-01
Chronic lymphocytic leukemia (CLL) and chronic myeloid leukemia (CML) are the most common leukemias of the elderly (>43 year). However, the sequential occurrence of CML followed by CLL in the same patient is extremely rare. In our report, a 52-year-old female was diagnosed with CLL (type of bone marrow (BM) infiltration was nodular and interstitial) and was treated with chlorambucil. 64 months after the diagnosis of CLL, she developed CML. She was treated with imatinib (400mg/day). After a few months, signs of CML were disappeared and CLL became dominant. This is first reported case.
Therapeutic use of Aldara in chronic myeloid leukemia.
Marleau, Annette M; Lipton, Jeffrey H; Riordan, Neil H; Ichim, Thomas E
2007-01-25
The potent clinical responses seen in patients with chronic myeloid leukemia (CML) after administration of donor-specific lymphocytes, as well as the correlation between the presence of antigen specific T cells and prolonged remission in these patients, suggests a role for the immunological control of CML. Here we propose Aldara, a clinically used formulation of imiquimod, as an agent for augmenting immune responses to CML antigens. Our proposition is based upon 3 tenets: 1) Endogenous dendritic cells (DC) of CML patients, which are known to be derived from the malignant clone, express and present various leukemic antigens; 2) CML-antigen reactive T cell clones exist in the patient but in many situations are ineffectively stimulated to cause significant hematological responses; and 3) Antigen presentation by mature, activated DC, which endogenously express CML-antigens may endow the pre-existing ineffective T cell responses with ability to control CML progression. The practical use of Aldara as a localized activator of DC in the context of present day leukemic therapeutics, as well as various properties of this unique immune modulator will be discussed.
[Experiments with sausage meat on the formation of N epsilon-carboxymethyllysine].
Hartkopf, J; Erbersdobler, H F
1995-07-01
In model experiments the influence of ingredients normally used for sausage production to a meat homogenate on the formation of N epsilon-carboxymethyllysine (CML) was investigated. The formation of CML is obviously more promoted from the reaction of ascorbate with lysine than from that of glucose with lysine. The addition of ascorbate in a practical concentration yielded 35 mg, the addition of glucose only 23 mg compared to 17 mg CML/kg protein in the control sample. The addition of diphosphate in a practical concentration besides glucose significantly increased the CML values from 23 mg to 30 mg CML/kg protein. On the other hand, nitrite did not enhance the formation of CML (21 mg/kg protein) in the sausage when used in concentrations usually applied in meat processing. Generally the values found in the meat products are quite low compared to data in other foods like milk products.
The Calmodulin-related Calcium Sensor CML42 Plays a Role in Trichome Branching*
Dobney, Stephanie; Chiasson, David; Lam, Polly; Smith, Steven P.; Snedden, Wayne A.
2009-01-01
Calcium (Ca2+) is a key second messenger in eukaryotes where it regulates a diverse array of cellular processes in response to external stimuli. An important Ca2+ sensor in both animals and plants is calmodulin (CaM). In addition to evolutionarily conserved CaM, plants possess a unique family of CaM-like (CML) proteins. The majority of these CMLs have not yet been studied, and investigation into their physical properties and cellular functions will provide insight into Ca2+ signal transduction in plants. Here we describe the characterization of CML42, a 191-amino acid Ca2+-binding protein from Arabidopsis. Ca2+ binding to recombinant CML42 was assessed by fluorescence spectroscopy, NMR spectroscopy, microcalorimetry, and CD spectroscopy. CML42 displays significant α-helical secondary structure, binds three molecules of Ca2+ with affinities ranging from 30 to 430 nm, and undergoes a Ca2+-induced conformational change that results in the exposure of one or more hydrophobic regions. Gene expression analysis revealed CML42 transcripts at various stages of development and in many cell types, including the support cells, which surround trichomes (leaf hairs) on the leaf surface. Using yeast two-hybrid screening we identified a putative CML42 interactor; kinesin-interacting Ca2+-binding protein (KIC). Because KIC is a protein known to function in trichome development, we examined transgenic CML42 knockout plants and found that they possess aberrant trichomes with increased branching. Collectively, our data support a role for CML42 as a Ca2+ sensor that functions during cell branching in trichomes. PMID:19720824
Clinical medical librarian: the last unicorn?
Demas, J M; Ludwig, L T
1991-01-01
In the information age of the 1990s, the clinical medical librarian (CML) concept, like many other personalized library services, is often criticized as being too labor-intensive and expensive; others praise its advantages. To determine the attitudes of medical school library directors and clinical department heads toward implementation and feasibility of a CML program, forty randomly selected medical schools were surveyed. A double-blind procedure was used to sample department heads in internal medicine, pediatrics, and surgery, as well as health sciences library directors identified by the Association of Academic Health Sciences Library Directors (AAHSLD) annual statistics. The survey instrument was designed to measure responses to the following attitudinal variables: acceptance and nonacceptance of a CML program; importance to patient care, education, and research; influence on information-seeking patterns of health care professionals; ethical issues; CML extension services; and costs. Seventy-nine usable questionnaires out of a total of 120 (66%) were obtained from clinical medical personnel, and 30 usable questionnaires out of a total of 40 (75%) were obtained from medical school library directors. Survey results indicated significant differences between clinical medical personnel and library personnel regarding attitudes toward CML influence on information-seeking patterns, ethics, alternative CML services, and costs. Survey results also indicated a continuing strong support for CML programs in the medical school setting; however, differences of opinion existed toward defining the role of the CML and determining responsibility for funding.
Karvela, Maria; Baquero, Pablo; Kuntz, Elodie M.; Mukhopadhyay, Arunima; Mitchell, Rebecca; Allan, Elaine K.; Chan, Edmond; Kranc, Kamil R.; Calabretta, Bruno; Salomoni, Paolo; Gottlieb, Eyal; Holyoake, Tessa L.; Helgason, G. Vignir
2016-01-01
ABSTRACT A major drawback of tyrosine kinase inhibitor (TKI) treatment in chronic myeloid leukemia (CML) is that primitive CML cells are able to survive TKI-mediated BCR-ABL inhibition, leading to disease persistence in patients. Investigation of strategies aiming to inhibit alternative survival pathways in CML is therefore critical. We have previously shown that a nonspecific pharmacological inhibition of autophagy potentiates TKI-induced death in Philadelphia chromosome-positive cells. Here we provide further understanding of how specific and pharmacological autophagy inhibition affects nonmitochondrial and mitochondrial energy metabolism and reactive oxygen species (ROS)-mediated differentiation of CML cells and highlight ATG7 (a critical component of the LC3 conjugation system) as a potential specific therapeutic target. By combining extra- and intracellular steady state metabolite measurements by liquid chromatography-mass spectrometry with metabolic flux assays using labeled glucose and functional assays, we demonstrate that knockdown of ATG7 results in decreased glycolysis and increased flux of labeled carbons through the mitochondrial tricarboxylic acid cycle. This leads to increased oxidative phosphorylation and mitochondrial ROS accumulation. Furthermore, following ROS accumulation, CML cells, including primary CML CD34+ progenitor cells, differentiate toward the erythroid lineage. Finally, ATG7 knockdown sensitizes CML progenitor cells to TKI-induced death, without affecting survival of normal cells, suggesting that specific inhibitors of ATG7 in combination with TKI would provide a novel therapeutic approach for CML patients exhibiting persistent disease. PMID:27168493
Tanabe, Y; Dan, K; Kuriya, S; Nomura, T
1989-10-01
The effects of recombinant human interferon (IFN) alpha-2b and gamma on the bone marrow megakaryocyte progenitors (CFU-Meg) were compared between eight patients in the chronic phase of Ph1-positive chronic myelocytic leukemia (CML) and five hematologically normal patients. CFU-Meg was assayed in plasma clot culture added with phytohemagglutinin-stimulated leukocyte-conditioned medium as a source of colony stimulating activity. The average count of CFU-Meg colonies formed from the bone marrow of CML patients was 5.5 times that of normal controls. Spontaneous CFU-Meg colonies were grown in seven of eight CML patients, but in none of five controls. Colony formation by CFU-Meg in CML as well as normal bone marrow was suppressed by the two preparations of IFN in a dose dependent fashion. Their suppressive influence on colonies from CFU-Meg was comparable between CML and normal bone marrow at lower concentrations, but was less marked for CML than normal bone marrow at higher concentrations. The formation of CFU-Meg colonies from CML bone marrow was more severely suppressed by IFN-gamma than IFN-alpha-2b. Depletion of either T lymphocytes or adherent cells from the CML bone marrow cells diminished the suppressive effects of IFN-gamma, but had no influence on the effects of IFN-alpha-2b.
Activation of stress response gene SIRT1 by BCR-ABL promotes leukemogenesis
Yuan, Hongfeng; Wang, Zhiqiang; Li, Ling; Zhang, Hao; Modi, Hardik; Horne, David
2012-01-01
The tyrosine kinase inhibitor imatinib is highly effective in the treatment of chronic myelogenous leukemia (CML), but primary and acquired resistance of CML cells to the drug offset its efficacy. Molecular mechanisms for resistance of CML to tyrosine kinase inhibitors are not fully understood. In the present study, we show that BCR-ABL activates the expression of the mammalian stress response gene SIRT1 in hematopoietic progenitor cells and that this involves STAT5 signaling. SIRT1 activation promotes CML cell survival and proliferation associated with deacetylation of multiple SIRT1 substrates, including FOXO1, p53, and Ku70. Imatinib-mediated inhibition of BCR-ABL kinase activity partially reduces SIRT1 expression and SIRT1 inhibition further sensitizes CML cells to imatinib-induced apoptosis. Knockout of SIRT1 suppresses BCR-ABL transformation of mouse BM cells and the development of a CML-like myeloproliferative disease, and treatment of mice with the SIRT1 inhibitor tenovin-6 deters disease progression. The combination of SIRT1 gene knockout and imatinib treatment further extends the survival of CML mice. Our results suggest that SIRT1 is a novel survival pathway activated by BCR-ABL expression in hematopoietic progenitor cells, which promotes oncogenic transformation and leukemogenesis. Our findings suggest further exploration of SIRT1 as a therapeutic target for CML treatment to overcome resistance. PMID:22207735
Gore, Lia; Kearns, Pamela R; de Martino, Maria Lucia; Lee; De Souza, Carmino Antonio; Bertrand, Yves; Hijiya, Nobuko; Stork, Linda C; Chung, Nack-Gyun; Cardos, Rocio Cardenas; Saikia, Tapan; Fagioli, Franca; Seo, Jong Jin; Landman-Parker, Judith; Lancaster, Donna; Place, Andrew E; Rabin, Karen R; Sacchi, Mariana; Swanink, Rene; Zwaan, C Michel
2018-05-01
Purpose Safe, effective treatments are needed for pediatric patients with chronic myeloid leukemia in chronic phase (CML-CP). Dasatinib is approved for treatment of adults and children with CML-CP. A phase I study determined suitable dosing for children with Philadelphia chromosome-positive (Ph+) leukemias. Methods CA180-226/NCT00777036 is a phase II, open-label, nonrandomized prospective trial of patients < 18 years of age receiving dasatinib. There are three cohorts: (1) imatinib-resistant/intolerant CML-CP, (2) imatinib-resistant/intolerant CML in accelerated/blast phase or Ph+ acute lymphoblastic leukemia (n = 17), and (3) newly diagnosed CML-CP treated with tablets or powder for oral suspension. Major cytogenetic response > 30% for imatinib-resistant/intolerant patients and complete cytogenetic response (CCyR) > 55% for newly diagnosed patients were of clinical interest. Results Of 113 patients with CML-CP, 14 (48%) who were imatinib-resistant/intolerant and 61 (73%) who were newly diagnosed remained on treatment at time of analysis. Major cytogenetic response > 30% was reached by 3 months in the imatinib-resistant/intolerant group and CCyR > 55% was reached by 6 months in the newly diagnosed CML-CP group. CCyR and major molecular response by 12 months, respectively, were 76% and 41% in the imatinib-resistant/intolerant group and 92% and 52% in newly diagnosed CML-CP group. Progression-free survival by 48 months was 78% and 93% in the imatinib-resistant/intolerant and newly diagnosed CML-CP groups, respectively. No dasatinib-related pleural or pericardial effusion, pulmonary edema, or pulmonary arterial hypertension were reported. Bone growth and development events were reported in 4% of patients. Conclusion In the largest prospective trial to date in children with CML-CP, we demonstrate that dasatinib is a safe, effective treatment of pediatric CML-CP. Target responses to first- or second-line dasatinib were met early, and deep molecular responses were observed. Safety of dasatinib in pediatric patients was similar to that observed in adults; however, no cases of pleural or pericardial effusion or pulmonary arterial hypertension were reported.
Chronic Myelogenous Leukemia (CML) (For Parents)
... Videos for Educators Search English Español Chronic Myelogenous Leukemia (CML) KidsHealth / For Parents / Chronic Myelogenous Leukemia (CML) ... Coping Print en español Leucemia mielógena crónica About Leukemia Leukemia is a type of cancer that affects ...
Plasma Protein Pentosidine and Carboxymethyllysine, Biomarkers for Age-related Macular Degeneration*
Ni, Jiaqian; Yuan, Xianglin; Gu, Jiayin; Yue, Xiuzhen; Gu, Xiaorong; Nagaraj, Ram H.; Crabb, John W.
2009-01-01
Age-related macular degeneration (AMD) causes severe vision loss in the elderly; early identification of AMD risk could help slow or prevent disease progression. Toward the discovery of AMD biomarkers, we quantified plasma protein Nε-carboxymethyllysine (CML) and pentosidine from 58 AMD and 32 control donors. CML and pentosidine are advanced glycation end products that are abundant in Bruch membrane, the extracellular matrix separating the retinal pigment epithelium from the blood-bearing choriocapillaris. We measured CML and pentosidine by LC-MS/MS and LC-fluorometry, respectively, and found higher mean levels of CML (∼54%) and pentosidine (∼64%) in AMD (p < 0.0001) relative to normal controls. Plasma protein fructosyl-lysine, a marker of early glycation, was found by amino acid analysis to be in equal amounts in control and non-diabetic AMD donors, supporting an association between AMD and increased levels of CML and pentosidine independent of other diseases like diabetes. Carboxyethylpyrrole (CEP), an oxidative modification from docosahexaenoate-containing lipids and also abundant in AMD Bruch membrane, was elevated ∼86% in the AMD cohort, but autoantibody titers to CEP, CML, and pentosidine were not significantly increased. Compellingly higher mean levels of CML and pentosidine were present in AMD plasma protein over a broad age range. Receiver operating curves indicate that CML, CEP adducts, and pentosidine alone discriminated between AMD and control subjects with 78, 79, and 88% accuracy, respectively, whereas CML in combination with pentosidine provided ∼89% accuracy, and CEP plus pentosidine provided ∼92% accuracy. Pentosidine levels appeared slightly altered in AMD patients with hypertension and cardiovascular disease, indicating further studies are warranted. Overall this study supports the potential utility of plasma protein CML and pentosidine as biomarkers for assessing AMD risk and susceptibility, particularly in combination with CEP adducts and with concurrent analyses of fructosyl-lysine to detect confounding factors. PMID:19435712
Rauzan, Muhammad; Chuah, Charles T H; Ko, Tun Kiat; Ong, S Tiong
2017-01-01
Chronic myeloid leukemia (CML) treatment has been improved by tyrosine kinase inhibitors (TKIs) such as imatinib mesylate (IM) but various factors can cause TKI resistance in patients with CML. One factor which contributes to TKI resistance is a germline intronic deletion polymorphism in the BCL2-like 11 (BIM) gene which impairs the expression of pro-apoptotic splice isoforms of BIM. SB939 (pracinostat) is a hydroxamic acid based HDAC inhibitor with favorable pharmacokinetic, physicochemical and pharmaceutical properties, and we investigated if this drug could overcome BIM deletion polymorphism-induced TKI resistance. We found that SB939 corrects BIM pre-mRNA splicing in CML cells with the BIM deletion polymorphism, and induces apoptotic cell death in CML cell lines and primary cells with the BIM deletion polymorphism. More importantly, SB939 both decreases the viability of CML cell lines and primary CML progenitors with the BIM deletion and restores TKI-sensitivity. Our results demonstrate that SB939 overcomes BIM deletion polymorphism-induced TKI resistance, and suggest that SB939 may be useful in treating CML patients with BIM deletion-associated TKI resistance.
Targeting of the BLT2 in chronic myeloid leukemia inhibits leukemia stem/progenitor cell function
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiao, Meifang; Ai, Hongmei; Li, Tao
Imatinib, a tyrosine kinase inhibitor (TKI) has significantly improved clinical outcome for chronic myeloid leukemia (CML) patients. However, patients develop resistance when the disease progresses to the blast phase (BP) and the mechanisms are not well understood. Here we show that BCR-ABL activates BLT2 in hematopoietic stem/progenitor cells to promote leukemogenesis and this involves the p53 signaling pathway. Compared to normal bone marrow (NBM), the mRNA and protein levels of BLT2 are significantly increased in BP-CML CD34{sup +} stem/progenitor cells. This is correlated with increasing BCR-ABL expression. In contrast, knockdown of BCR-ABL or inhibition of its tyrosine kinase activity decreasesmore » Blt2 protein level. BLT2 inhibition induces apoptosis, inhibits proliferation, colony formation and self-renewal capacity of CD34{sup +} cells from TKI-resistant BP-CML patients. Importantly, the inhibitory effects of BCR-ABL TKI on CML stem/progenitor cells are further enhanced upon combination with BLT2 inhibition. We further show that BLT2 activation selectively suppresses p53 but not Wnt or BMP-mediated luciferase activity and transcription. Our results demonstrate that BLT2 is a novel pathway activated by BCR-ABL and critically involved in the resistance of BP-CML CD34{sup +} stem/progenitors to TKIs treatment. Our findings suggest that BLT2 and p53 can serve as therapeutic targets for CML treatment. - Highlights: • BCR-ABL regulates BLT2 expression to promote leukemogenesis. • BLT2 is essential to maintain CML cell function. • Activation of BLT2 suppresses p53 signaling pathway in CML cells. • Inhibition of BLT2 and BCR-ABL synergize in eliminating CML CD34{sup +} stem/progenitors.« less
Zhou, H; Mak, P Y; Mu, H; Mak, D H; Zeng, Z; Cortes, J; Liu, Q; Andreeff, M; Carter, B Z
2017-10-01
Tyrosine kinase inhibitor (TKI) resistance and progression to blast crisis (BC), both related to persistent β-catenin activation, remain formidable challenges for chronic myeloid leukemia (CML). We observed overexpression of β-catenin in BC-CML stem/progenitor cells, particularly in granulocyte-macrophage progenitors, and highest among a novel CD34 + CD38 + CD123 hi Tim-3 hi subset as determined by CyTOF analysis. Co-culture with mesenchymal stromal cells (MSCs) induced the expression of β-catenin and its target CD44 in CML cells. A novel Wnt/β-catenin signaling modulator, C82, and nilotinib synergistically killed KBM5 T315I and TKI-resistant primary BC-CML cells with or without BCR-ABL kinase mutations even under leukemia/MSC co-culture conditions. Silencing of β-catenin by short interfering RNA restored sensitivity of primary BCR-ABL T315I/E255V BC-CML cells to nilotinib. Combining the C82 pro-drug, PRI-724, with nilotinib significantly prolonged the survival of NOD/SCID/IL2Rγ null mice injected with primary BCR-ABL T315I/E255V BC-CML cells. The combined treatment selectively targeted CML progenitors and inhibited CD44, c-Myc, survivin, p-CRKL and p-STAT5 expression. In addition, pretreating primary BC-CML cells with C82, or the combination, but not with nilotinib alone, significantly impaired their engraftment potential in NOD/SCID/IL2Rγ-null-3/GM/SF mice and significantly prolonged survival. Our data suggest potential benefit of concomitant β-catenin and Bcr-Abl inhibition to prevent or overcome Bcr-Abl kinase-dependent or -independent TKI resistance in BC-CML.
Zhou, H; Mak, P Y; Mu, H; Mak, D H; Zeng, Z; Cortes, J; Liu, Q; Andreeff, M; Carter, B Z
2017-01-01
Tyrosine kinase inhibitor (TKI) resistance and progression to blast crisis (BC), both related to persistent β-catenin activation, remain formidable challenges for chronic myeloid leukemia (CML). We observed overexpression of β-catenin in BC-CML stem/progenitor cells, particularly in granulocyte–macrophage progenitors, and highest among a novel CD34+CD38+CD123hiTim-3hi subset as determined by CyTOF analysis. Co-culture with mesenchymal stromal cells (MSCs) induced the expression of β-catenin and its target CD44 in CML cells. A novel Wnt/β-catenin signaling modulator, C82, and nilotinib synergistically killed KBM5T315I and TKI-resistant primary BC-CML cells with or without BCR–ABL kinase mutations even under leukemia/MSC co-culture conditions. Silencing of β-catenin by short interfering RNA restored sensitivity of primary BCR–ABLT315I/E255V BC-CML cells to nilotinib. Combining the C82 pro-drug, PRI-724, with nilotinib significantly prolonged the survival of NOD/SCID/IL2Rγ null mice injected with primary BCR–ABLT315I/E255V BC-CML cells. The combined treatment selectively targeted CML progenitors and inhibited CD44, c-Myc, survivin, p-CRKL and p-STAT5 expression. In addition, pretreating primary BC-CML cells with C82, or the combination, but not with nilotinib alone, significantly impaired their engraftment potential in NOD/SCID/IL2Rγ-null-3/GM/SF mice and significantly prolonged survival. Our data suggest potential benefit of concomitant β-catenin and Bcr–Abl inhibition to prevent or overcome Bcr–Abl kinase-dependent or -independent TKI resistance in BC-CML. PMID:28321124
Li, Chen; Yichao, Jin; Jiaxin, Lin; Yueting, Zhang; Qin, Lu; Tonghua, Yang
2015-01-01
Reported evidence supports a role for methylenetetrahydrofolate reductase (MTHFR) in the risk of chronic myelogenous leykemia (CML). However, these reports arrived at non-conclusive and even conflicting results regarding the association between two common MTHFR polymorphisms (C677T and A1298C) and CML risk. Thus, a meta-analysis was carried out to clarify a more precise association between these two polymorphisms and the CML risk by updating the available publications. Pooled odds ratios (OR) with corresponding 95% confidence interval (95% CI) and stratification analysis were performed to estimate the relationship between MTHFR polymorphisms and the risk of CML under different genetic comparison models. Data from the meta-analysis showed no significant association between MTHFR C677T polymorphism and CML risk. However, significant associations were found between MTHFR A1298C variants and CML risk under homozygous comparison model (CC vs AA, OR=1.62, 95% CI=1.11-2.36, p=0.01) and dominant comparison model (CC+AC vs AA, OR=1.68, 95% CI=1.17-2.43, p=0.005) in overall population; especially more obvious impacts were noticed for Asian populations in subgroup analysis for homozygous model (CC vs AA, OR=2.00, 95% CI=1.25-3.21, p=0.004) and dominant model (CC+AC vs AA, OR=2.49, 95% CI=1.42-4.36, p=0.001), but this did not apply in Caucasian populations. The results of this meta-analysis suggested no significant association between MTHFR C677T polymorphism and CML risk, while an increased CML risk was noticed for 1298C variant carriers, especially in Asian populations but not in Caucasian populations, which suggested ethnicity differences between MTHFR A1298C polymorphisms and risk of CML.
Huang, Jixian; Lu, Ziyuan; Xiao, Yajuan; He, Bolin; Pan, Chengyun; Zhou, Xuan; Xu, Na; Liu, Xiaoli
2018-02-05
BACKGROUND A hypoxic microenvironment is associated with resistance to tyrosine kinase inhibitors (TKIs) and a poor prognosis in chronic myeloid leukemia (CML). The E3 ubiquitin ligase Siah2 plays a vital role in the regulation of hypoxia response, as well as in leukemogenesis. However, the role of Siah2 in CML resistance is unclear, and it is unknown whether vitaminK3 (a Siah2 inhibitor) can improve the chemo-sensitivity of CML cells in a hypoxic microenvironment. MATERIAL AND METHODS The expression of Siah2 was detected in CML patients (CML-CP and CML-BC), K562 cells, and K562-imatinib-resistant cells (K562-R cells). We measured the expression of PHD3, HIF-1α, and VEGF in both cell lines under normoxia and hypoxic conditions, and the degree of leukemic sensitivity to imatinib and VitaminK3 were evaluated. RESULTS Siah2 was overexpressed in CML-BC patients (n=9) as compared to CML-CP patients (n=13). Similarly, K562-imatinib-resistant cells (K562-R cells) showed a significantly higher expression of Siah2 as compared to K562 cells in a hypoxic microenvironment. Compared to normoxia, under hypoxic conditions, both cell lines had lower PHD3, higher HIF-1α, and higher VEGF expression. Additionally, Vitamin K3 (an inhibitor of Siah2) reversed these changes and promoted a higher degree of leukemic sensitivity to imatinib. CONCLUSIONS Our findings indicate that the Siah2-PHD3- HIF-1α-VEGF axis is an important hypoxic signaling pathway in a leukemic microenvironment. An inhibitor of Siah2, combined with TKIs, might be a promising therapy for relapsing and refractory CML patients.
Assessing the weather monitoring capabilities of cellular microwave link networks
NASA Astrophysics Data System (ADS)
Fencl, Martin; Vrzba, Miroslav; Rieckermann, Jörg; Bareš, Vojtěch
2016-04-01
Using of microwave links for rainfall monitoring was suggested already by (Atlas and Ulbrich, 1977). However, this technique attracted broader attention of scientific community only in the recent decade, with the extensive growth of cellular microwave link (CML) networks, which form the backbone of today's cellular telecommunication infrastructure. Several studies have already shown that CMLs can be conveniently used as weather sensors and have potential to provide near-ground path-integrated observations of rainfall but also humidity or fog. However, although research is still focusing on algorithms to improve the weather sensing capabilities (Fencl et al., 2015), it is not clear how to convince cellular operators to provide the power levels of their network. One step in this direction is to show in which regions or municipalities the networks are sufficiently dense to provide/develop good services. In this contribution we suggest a standardized approach to evaluate CML networks in terms of rainfall observation and to identify suitable regions for CML rainfall monitoring. We estimate precision of single CML based on its sensitivity to rainfall, i.e. as a function of frequency, polarization and path length. Capability of a network to capture rainfall spatial patterns is estimated from the CML coverage and path lengths considering that single CML provides path-integrated rain rates. We also search for suitable predictors for regions where no network topologies are available. We test our approach on several European networks and discuss the results. Our results show that CMLs are very dense in urban areas (> 1 CML/km2), but less in rural areas (< 0.02 CML/km2). We found a strong correlation between a population and CML network density (e.g. R2 = 0.97 in Czech Republic), thus population could be a simple proxy to identify suitable regions for CML weather monitoring. To enable a simple and efficient assessment of the CML monitoring potential for any region worldwide, we are currently integrating our approach into open source online tool. In summary, our results demonstrate that CML represent promising environmental observation network, suitable especially for urban rainfall monitoring. The developed approach integrated into an open source online tool can be conveniently used e.g. by local operators or authorities to evaluate the suitability of their region for CML weather monitoring and estimate the credible spatial-resolution of a CML weather monitoring product. Atlas, D. and Ulbrich, C. W. (1977) Path- and Area-Integrated Rainfall Measurement by Microwave Attenuation in the 1-3 cm Band. Journal of Applied Meteorology, 16(12), 1322-1331. Fencl, M., Rieckermann, J., Sýkora, P., Stránský, D., and Bareš, V. (2015) Commercial microwave links instead of rain gauges: fiction or reality? Water Science & Technology, 71(1), 31. Acknowledgements to Czech Science Foundation project No. 14-22978S and Czech Technical University in Prague project No. SGS15/050/OHK1/1T/11.
Modeling of Chronic Myeloid Leukemia: An Overview of In Vivo Murine and Human Xenograft Models
Vellenga, Edo
2016-01-01
Over the past years, a wide variety of in vivo mouse models have been generated in order to unravel the molecular pathology of Chronic Myeloid Leukemia (CML) and to develop and improve therapeutic approaches. These models range from (conditional) transgenic models, knock-in models, and murine bone marrow retroviral transduction models followed by transplantation. With the advancement of immunodeficient xenograft models, it has become possible to use human stem/progenitor cells for in vivo studies as well as cells directly derived from CML patients. These models not only mimic CML but also have been instrumental in uncovering various fundamental mechanisms of CML disease progression and tyrosine kinase inhibitor (TKI) resistance. With the availability of iPSC technology, it has become feasible to derive, maintain, and expand CML subclones that are at least genetically identical to those in patients. The following review provides an overview of all murine as well as human xenograft models for CML established till date. PMID:27642303
Gallipoli, Paolo; Cook, Amy; Rhodes, Susan; Hopcroft, Lisa; Wheadon, Helen; Whetton, Anthony D.; Jørgensen, Heather G.; Bhatia, Ravi
2014-01-01
Chronic myeloid leukemia (CML) stem cell survival is not dependent on BCR-ABL protein kinase and treatment with ABL tyrosine kinase inhibitors cures only a minority of CML patients, thus highlighting the need for novel therapeutic targets. The Janus kinase (JAK)2/signal transducer and activator of transcription (STAT)5 pathway has recently been explored for providing putative survival signals to CML stem/progenitor cells (SPCs) with contradictory results. We investigated the role of this pathway using the JAK2 inhibitor, ruxolitinib (RUX). We demonstrated that the combination of RUX, at clinically achievable concentrations, with the specific and potent tyrosine kinase inhibitor nilotinib, reduced the activity of the JAK2/STAT5 pathway in vitro relative to either single agent alone. These effects correlated with increased apoptosis of CML SPCs in vitro and a reduction in primitive quiescent CML stem cells, including NOD.Cg-Prkdcscid IL2rgtm1Wjl /SzJ mice repopulating cells, induced by combination treatment. A degree of toxicity toward normal SPCs was observed with the combination treatment, although this related to mature B-cell engraftment in NOD.Cg-Prkdcscid IL2rgtm1Wjl /SzJ mice with minimal effects on primitive CD34+ cells. These results support the JAK2/STAT5 pathway as a relevant therapeutic target in CML SPCs and endorse the current use of nilotinib in combination with RUX in clinical trials to eradicate persistent disease in CML patients. PMID:24957147
Kalaipandian, Sundaravelpandian; Xue, Gang-Ping; Rae, Anne L; Glassop, Donna; Bonnett, Graham D; McIntyre, Lynne C
2018-06-14
Calcium (Ca 2+ ) is a universal messenger that mediates intracellular responses to extracellular stimuli in living organisms. Calmodulin (CaM) and calmodulin-like proteins (CMLs) are the important Ca 2+ sensors in plants that decode Ca 2+ -signatures to execute downstream intracellular level responses. Several studies indicate the interlinking of Ca 2+ and sugar signalling in plants, however, no genes have been functionally characterized to provide molecular evidence. Our study found that expression of TaCML20 was significantly correlated with water soluble carbohydrate (WSC) concentrations in recombinant inbred lines in wheat. TaCML20 has four EF-hand motifs that may facilitate the binding of Ca 2+ . To explore the role of CML20, we generated TaCML20 overexpressing transgenic lines in wheat. These lines accumulated higher WSC concentrations in the shoots, and we also found a significantly increased transcript level of sucrose:sucrose-1-fructosyltransferase (1-SST) in the internodes compared with the control plants. In addition, TaCML20 overexpressing plants showed significantly increased tillers per plant and also increased about 19% of grain weight per plant compared with control plants. The results also suggested a role for TaCML20 in drought stress, as its transcripts significantly increased in the shoots of wild-type plants under water deficit. These results uncovered the role of CML20 in determining multiple traits in wheat. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Uchiyama, Tatsuki; Mizumoto, Chisaki; Takeoka, Tomoharu; Tomo, Kenjiro; Ohno, Tatsuharu
2017-01-01
Myeloid blast crisis of chronic myeloid leukemia (CML-MBC) is rarely seen at presentation and has a poor prognosis. There is no standard therapy for CML-MBC. It is often difficult to distinguish CML-MBC from acute myeloid leukemia expressing the Philadelphia chromosome (Ph+ AML). We present a case in which CML-MBC was seen at the initial presentation in a 75-year-old male. He was treated with conventional AML-directed chemotherapy followed by imatinib mesylate monotherapy, which failed to induce response. However, he achieved long-term complete molecular response after combination therapy involving dasatinib, a second-generation tyrosine kinase inhibitor, and conventional chemotherapy. PMID:29391957
Synchronous Occurrence of Chronic Myeloid Leukemia and Mantle Cell Lymphoma
Li, Ying; Gray, Brian Allen; May, William Stratford
2017-01-01
Chronic myeloid leukemia (CML) and mantle cell lymphoma (MCL) are hematologic malignancies that originate from different oligopotent progenitor stem cells, namely, common myeloid and lymphoid progenitor cells, respectively. Although blastic transformation of CML can occur in the lymphoid lineage and CML has been related to non-Hodgkin lymphoma on transformation, to our knowledge, de novo and synchronous occurrence of CML and MCL has not been reported. Herein, we report the first case of synchronous CML and MCL in an otherwise healthy 38-year-old man. Potential etiologies and pathological relationships between the two malignancies are explored, including the possibility that the downstream effects of BCR-ABL may link it to an overexpression of cyclin D1, which is inherent to the etiology of MCL. PMID:28270940
Li, Bin; Zhang, Jian; Wang, Lei; Li, Yan; Jin, Juping; Ai, Limei; Li, Chong; Li, Zhe; Mao, Shudan
2014-05-01
Chronic myelogenous leukemia (CML) is a complex disease with a genetic basis. The genetic association studies (GASs) that have investigated the association between adult CML and 5,10-methylenetetrahydrofolate reductase (MTHFR) C677T and A1298C polymorphisms have produced contradictory and inconclusive results. The aim of this meta-analysis is to provide a relatively comprehensive assessment of the association of these polymorphisms with adult CML risk. A literature search for eligible GAS published before September 15, 2013 was conducted in PubMed, Embase, Web of Science, Cochrane Library, and China National Knowledge Infrastructure (CNKI) databases. Pooled odds ratios (ORs) with their corresponding 95% confidence intervals (95% CIs) were used to evaluate the strength of the association under a fixed or random effect model according to heterogeneity test results. All analyses were performed using the Stata software, version 12.0. Twelve case-control studies were included in this meta-analysis with a total of 932 CML patients and 3,465 healthy controls. For MTHFR C677T (dbSNP: rs1801133, C>T), though the pooled ORs were not significant in the overall population, all the ORs greater than 1 suggested an increased risk of CML for carriers of the risk allele. However, stratified analysis based on genotyping method revealed a significant association in the PCR-restriction fragment length polymorphism (RFLP) subgroup, possibly as a result of heterogeneity. For MTHFR A1298C (dbSNP: rs1801131, A>C), the combined results showed that carriers of the C allele may be associated with a decreased risk of adult CML. Stratified analysis showed that the magnitude of this effect was especially significant among Asians, indicating ethnicity differences in adult CML susceptibility. This meta-analysis shows that the C allele of MTHFR A1298C may be associated with a decreased risk in adult CML, especially among Asians, while MTHFR C677T may not be associated with adult CML risk. However, the development of adult CML may be the result of gene-gene and gene-environment interactions, which should be considered in future individual GAS and subsequent meta-analyses.
Ali, Mohamed A M
2016-08-01
Chronic myeloid leukemia (CML) is a myeloproliferative neoplasm, characterized by the unrestrained expansion of pluripotent hematopoietic stem cells. CML was the first malignancy in which a unique chromosomal abnormality was identified and a pathophysiologic association was suggested. The hallmark of CML is a reciprocal chromosomal translocation between the long arms of chromosomes 9 and 22, t(9; 22)(q34; q11), creating a derivative 9q+ and a shortened 22q-. The latter, known as the Philadelphia (Ph) chromosome, harbors the breakpoint cluster region-abelson (BCR-ABL) fusion gene, encoding the constitutively active BCR-ABL tyrosine kinase that is necessary and sufficient for initiating CML. The successful implementation of tyrosine kinase inhibitors (TKIs) for the treatment of CML remains a flagship for molecularly targeted therapy in cancer. TKIs have changed the clinical course of CML; however, some patients nonetheless demonstrate primary or secondary resistance to such therapy and require an alternative therapeutic strategy. Therefore, the assessment of early response to treatment with TKIs has become an important tool in the clinical monitoring of CML patients. Although mutations in the BCR-ABL have proven to be the most prominent mechanism of resistance to TKIs, other mechanisms-either rendering the leukemic cells still dependent on BCR-ABL activity or supporting oncogenic properties of the leukemic cells independent of BCR-ABL signaling-have been identified. This article provides an overview of the current understanding of CML pathogenesis; recommendations for diagnostic tools, treatment strategies, and management guidelines; and highlights the BCR-ABL-dependent and -independent mechanisms that contribute to the development of resistance to TKIs.
Somoza, Veronika; Lindenmeier, Michael; Hofmann, Thomas; Frank, Oliver; Erbersdobler, Helmut F; Baynes, John W; Thorpe, Suzanne R; Heidland, August; Zill, Holger; Bek, Stephan; Huber, Jochen; Weigle, Thomas; Scheidler, Sabine; Busch, Andreas E; Sebeková, Katarína
2005-06-01
In renal HEK-293 cells, the dietary Maillard reaction compounds casein-linked Nepsilon-carboxymethyllysine (CML), CML, bread crust (BC), and pronyl-glycine (a key compound formed in association with the process-induced heat impact applied to bread dough) all showed activation of p38-MAP kinase. Expression of the C-terminus truncated receptor for advanced glycation end products (RAGE) resulted in a reduction of HEK-293-MAP kinase activation. As these findings suggested a RAGE-mediated activating effect of CML, BC, and pronyl-glycine on kidney cellular signal transduction pathways, an in vivo study was performed. Male Wistar rats were subjected to a sham operation (CTRL, n = 20) or to 5/6 nephrectomy (NX, n = 20). Both groups were randomized into two subgroups and fed 20 g of a diet containing either 25% by weight BC or wheat starch (WS). GC-MS analyses of CML, carboxyethyllysine (CEL), and pentosidine revealed increased levels of CML and CEL in the liver but decreased levels of CML in the kidneys of CTRL and NX rats fed the BC diet compared to those on the WS diet. However, urinary levels of CML were also elevated in the CTRL and NX rats on the BC diet, pointing to enhanced excretion of AGEs after BC administration. Although renal insufficiency in the NX rats was reflected by proteinuria, the renal handling of CML and, presumably, other AGEs was not impaired.
Zhang, Bin; Nguyen, Le Xuan Truong; Li, Ling; Zhao, Dandan; Kumar, Bijender; Wu, Herman; Lin, Allen; Pellicano, Francesca; Hopcroft, Lisa; Su, Yu-Lin; Copland, Mhairi; Holyoake, Tessa L; Kuo, Calvin J; Bhatia, Ravi; Snyder, David S; Ali, Haris; Stein, Anthony S; Brewer, Casey; Wang, Huafeng; McDonald, Tinisha; Swiderski, Piotr; Troadec, Estelle; Chen, Ching-Cheng; Dorrance, Adrienne; Pullarkat, Vinod; Yuan, Yate-Ching; Perrotti, Danilo; Carlesso, Nadia; Forman, Stephen J; Kortylewski, Marcin; Kuo, Ya-Huei; Marcucci, Guido
2018-05-01
Leukemia stem cells (LSCs) in individuals with chronic myelogenous leukemia (CML) (hereafter referred to as CML LSCs) are responsible for initiating and maintaining clonal hematopoiesis. These cells persist in the bone marrow (BM) despite effective inhibition of BCR-ABL kinase activity by tyrosine kinase inhibitors (TKIs). Here we show that although the microRNA (miRNA) miR-126 supported the quiescence, self-renewal and engraftment capacity of CML LSCs, miR-126 levels were lower in CML LSCs than in long-term hematopoietic stem cells (LT-HSCs) from healthy individuals. Downregulation of miR-126 levels in CML LSCs was due to phosphorylation of Sprouty-related EVH1-domain-containing 1 (SPRED1) by BCR-ABL, which led to inhibition of the RAN-exportin-5-RCC1 complex that mediates miRNA maturation. Endothelial cells (ECs) in the BM supply miR-126 to CML LSCs to support quiescence and leukemia growth, as shown using mouse models of CML in which Mir126a (encoding miR-126) was conditionally knocked out in ECs and/or LSCs. Inhibition of BCR-ABL by TKI treatment caused an undesired increase in endogenous miR-126 levels, which enhanced LSC quiescence and persistence. Mir126a knockout in LSCs and/or ECs, or treatment with a miR-126 inhibitor that targets miR-126 expression in both LSCs and ECs, enhanced the in vivo anti-leukemic effects of TKI treatment and strongly diminished LSC leukemia-initiating capacity, providing a new strategy for the elimination of LSCs in individuals with CML.
PP2A-activating drugs selectively eradicate TKI-resistant chronic myeloid leukemic stem cells
Neviani, Paolo; Harb, Jason G.; Oaks, Joshua J.; Santhanam, Ramasamy; Walker, Christopher J.; Ellis, Justin J.; Ferenchak, Gregory; Dorrance, Adrienne M.; Paisie, Carolyn A.; Eiring, Anna M.; Ma, Yihui; Mao, Hsiaoyin C.; Zhang, Bin; Wunderlich, Mark; May, Philippa C.; Sun, Chaode; Saddoughi, Sahar A.; Bielawski, Jacek; Blum, William; Klisovic, Rebecca B.; Solt, Janelle A.; Byrd, John C.; Volinia, Stefano; Cortes, Jorge; Huettner, Claudia S.; Koschmieder, Steffen; Holyoake, Tessa L.; Devine, Steven; Caligiuri, Michael A.; Croce, Carlo M.; Garzon, Ramiro; Ogretmen, Besim; Arlinghaus, Ralph B.; Chen, Ching-Shih; Bittman, Robert; Hokland, Peter; Roy, Denis-Claude; Milojkovic, Dragana; Apperley, Jane; Goldman, John M.; Reid, Alistair; Mulloy, James C.; Bhatia, Ravi; Marcucci, Guido; Perrotti, Danilo
2013-01-01
The success of tyrosine kinase inhibitors (TKIs) in treating chronic myeloid leukemia (CML) depends on the requirement for BCR-ABL1 kinase activity in CML progenitors. However, CML quiescent HSCs are TKI resistant and represent a BCR-ABL1 kinase–independent disease reservoir. Here we have shown that persistence of leukemic HSCs in BM requires inhibition of the tumor suppressor protein phosphatase 2A (PP2A) and expression — but not activity — of the BCR-ABL1 oncogene. Examination of HSCs from CML patients and healthy individuals revealed that PP2A activity was suppressed in CML compared with normal HSCs. TKI-resistant CML quiescent HSCs showed increased levels of BCR-ABL1, but very low kinase activity. BCR-ABL1 expression, but not kinase function, was required for recruitment of JAK2, activation of a JAK2/β-catenin survival/self-renewal pathway, and inhibition of PP2A. PP2A-activating drugs (PADs) markedly reduced survival and self-renewal of CML quiescent HSCs, but not normal quiescent HSCs, through BCR-ABL1 kinase–independent and PP2A-mediated inhibition of JAK2 and β-catenin. This led to suppression of human leukemic, but not normal, HSC/progenitor survival in BM xenografts and interference with long-term maintenance of BCR-ABL1–positive HSCs in serial transplantation assays. Targeting the JAK2/PP2A/β-catenin network in quiescent HSCs with PADs (e.g., FTY720) has the potential to treat TKI-refractory CML and relieve lifelong patient dependence on TKIs. PMID:23999433
Second primary malignancies in chronic myeloid leukemia.
Shah, Binay Kumar; Ghimire, Krishna Bilas
2014-12-01
Survival of patients with chronic myeloid leukemia (CML) has improved with the use of imatinib and other tyrosine kinase inhibitors. There is limited data on second primary malignancies (SPM) in CML. We analyzed the SPMs rates among CML patients reported to Surveillance, Epidemiology, and End Results (SEER) database during pre-(1992-2000) and post-(2002-2009) era. We used SEER Multiple Primary-Standardized Incidence Ratio session to calculate standardized incidence ratios (SIRs). Among 8,511 adult CML patients, 446 patients developed 473 SPMs. The SIR for SPMs in CML patients was significantly higher with observed/expected ratio:1.27, P < 0.05 and absolute excess risk of 32.09 per 10,000 person years compared to general population. The rate of SPMs for cancers of all sites in post-imatinib era were significantly higher compared to pre-imatinib era with observed/expected ratio of 1.48 versus 1.06, P = 0.03. This study showed that risk of SPMs is higher among CML patients. The risk of SPMs is significantly higher in post-imatinib era compared to pre-imatinib era.
Gómez-Ojeda, Armando; Jaramillo-Ortíz, Sarahi; Wrobel, Katarzyna; Wrobel, Kazimierz; Barbosa-Sabanero, Gloria; Luevano-Contreras, Claudia; de la Maza, Maria Pia; Uribarri, Jaime; Del Castillo, Ma Dolores; Garay-Sevilla, Ma Eugenia
2018-03-15
N ε -carboxymethyl-lysine (CML) is measured in food, but there is a controversy concerning the most convenient yet reliable method(s) for this task. This work compares three different ELISA assays and HPLC-ESI-ITMS/MS for the analysis of CML in several food items. The four methods showed the same decreasing order of CML concentration: beef, bacon>chicken > fish>dairy products>grain products>fruits/vegetables. HPLC-ESI-ITMS/MS results highly correlated with those obtained by ELISA performed with monoclonal CML-antibody (β=0.98, p<0.0001) whereas My Bio Source® kit results were not correlated with those provided by Lamider®. Small differences of CML concentrations in food items prepared by different culinary treatment were clearly distinguished by HPLC-ESI-ITMS/MS, but could not always be detected by ELISA. This work demonstrates a reasonable relationship between CM determined by ELISA and HPLC-ESI-ITMS/MS and therefore supports the implementation of ELISA in food CML/AGEs screening. Copyright © 2017. Published by Elsevier Ltd.
Patel, Ami B; Wilds, Brandon W; Deininger, Michael W
2017-07-01
With the discovery of imatinib mesylate nearly 20 years ago, tyrosine kinase inhibitors (TKIs) were found to be effective in chronic myeloid leukemia (CML). TKI therapy has since revolutionized the treatment of CML and has served as a paradigm of success for targeted drug therapy in cancer. Several new TKIs for CML have been approved over the last two decades that exhibit improved potency over imatinib and have different off-target profiles, providing options for individualized therapy selection. Areas covered: Current management of chronic phase CML, including guidance on the sequential use of imatinib and newer-generation TKIs and evolving treatment strategies such as TKI discontinuation. Relevant literature was identified by searching biomedical databases (i.e. PubMed) for primary research material. Expert commentary: Although survival outcomes have drastically improved for CML patients, treatment for CML has grown more complex with the introduction of next-generation TKIs and the advent of treatment-free remissions (TFR). Goals of therapy have shifted accordingly, with increased focus on improving quality of life, managing patient expectations and optimizing patient adherence.
Jiao, Ye; He, Jialiang; Li, Fengli; Tao, Guanjun; Zhang, Shuang; Zhang, Shikang; Qin, Fang; Zeng, Maomao; Chen, Jie
2017-10-01
The levels of N ε -(carboxymethyl)lysine (CML) and N ε -(carboxyethyl)lysine (CEL) in 99 tea samples from 14 geographic regions, including 44 green, 7 oolong, 41 black, and 7 dark teas were determined by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The CML and CEL contents varied from 11.0 to 1701μg/g tea and 4.6 to 133μg/g tea, respectively. Dark tea presented the highest levels of CML and CEL, whereas green and oolong teas presented the lowest levels. Five kinds of catechins in the tea were also analyzed, and spearman's correlation coefficients showed that all the catechins negatively correlated with CML and CEL. The results suggested that withering, fermentation and pile fermentation may facilitate the formation of CML and CEL. Catechins might inhibit the formation of CML and CEL, but their inhibitory effects may be affected by tea processing. The results of this study are useful for the production of healthier tea. Copyright © 2017. Published by Elsevier Ltd.
Okamura, Keisuke; Okuda, Tetsu; Shirai, Kazuyuki; Urata, Hidenori
2018-01-01
The aim of the present study was to establish a convenient clinically applicable assay method for chymase-dependent angiotensin II forming activity of circulating mononuclear leukocytes (CML), which was potentially a marker of tissue chymase activity. Using this method, association between CML chymase activity and clinical parameters was determined. Cardiovascular outpatients (n = 170) without taking antihypertensive medication were recruited. An ELISA for chymase-dependent angiotensin II-forming activity in CML was established using Nma /Dnp-modified angiotensin I. Logistic regression analysis revealed that age and male gender were significant independent determinants of the increased CML chymase activity. After adjustment by age and gender, the CML chymase activity was positively correlated with systolic blood pressure, pulse rate, and the brain natriuretic peptide level. The relation between blood pressure and CML chymase activity suggests that it might reflect that increased tissue chymase activity contributes to systemic high blood pressure and heart rate because plasma chymase is inactive due to inhibitory plasma inhibitors.
Zhang, Min-Yue; Chen, Fang-Yuan; Zhong, Hua
2011-12-01
Human leukocyte antigen (HLA) genetic polymorphisms are assumed to be correlated to the risk of chronic myelogenous leukemia (CML) in various ethnicities. Up to now, no clear consensus has been reached. Our goal is to address this issue in Chinese population. By searching the data in PubMed, Embase and four Chinese databases (prior to July 2010), the association of HLA genetic polymorphisms with CML has been fixed as the research objective. We studied a totality of 12 studies, comprising 2281 CML cases and 41000 health controls. The data demonstrated that HLA-A*11, A*74, HLA-B*40, B*47, B*55 and B*81 alleles were correlated with the increasing risk of CML. Nevertheless, HLA-DRB1*13 allele seemed to contribute to the genetic protection to CML. Conclusively we suggested that certain HLA alleles might be in association with the pathogenesis of CML in Chinese population. Due to little statistical scale, larger studies and particularly in a mono-people background, our hypothesis need to be further investigated in the future. Copyright © 2011 Elsevier Ltd. All rights reserved.
Wang, Zhiqiong; Zen, Wen; Meng, Fankai; Xin, Xing; Luo, Li; Sun, Hanying; Zhou, Jianfeng; Huang, Lifang
2015-01-01
Chronic myeloid leukemia (CML) is most frequently observed in middle-aged individuals. In most patients, normal marrow cells are replaced by cells with an abnormal G-group chromosome, the Philadelphia (Ph) chromosome. The Ph chromosome that is characterized by the translocation (9;22) (q34;q11) is noted in 90-95% of patients diagnosed with CML. Studies have also shown that CML can be associated with various other cytogenetic abnormalities, with 5-10% of these cases showing complex translocation involving another chromosome in addition to the Ph chromosome. Here, we report the case of a Ph(+) CML patient with an inserted karyotype who presented clinically in the chronic phase but with atypical features. This case highlights the significance of cytogenetic abnormalities on the prognosis in CML.
NASA Astrophysics Data System (ADS)
Boose, Yvonne; Doumounia, Ali; Chwala, Christian; Moumouni, Sawadogo; Zougmoré, François; Kunstmann, Harald
2017-04-01
The number of rain gauges is declining worldwide. A recent promising method for alternative precipitation measurements is to derive rain rates from the attenuation of the microwave signal between remote antennas of mobile phone base stations, so called commercial microwave links (CMLs). In European countries, such as Germany, the CML technique can be used as a complementary method to the existing gauge and radar networks improving their products, for example, in mountainous terrain and urban areas. In West African countries, where a dense gauge or radar network is absent, the number of mobile phone users is rapidly increasing and so are the CML networks. Hence, the CML-derived precipitation measurements have high potential for applications such as flood warning and support of agricultural planning in this region. For typical CML bandwidths (10-40 GHz), the relationship of attenuation to rain rate is quasi-linear. However, also humidity, wet antennas or electronic noise can lead to signal interference. To distinguish these fluctuations from actual attenuation due to rain, a temporal wet (rain event occurred)/ dry (no rain event) classification is usually necessary. In dense CML networks this is possible by correlating neighboring CML time series. Another option is to use the correlation between signal time series of different frequencies or bidirectional signals. The CML network in rural areas is typically not dense enough for correlation analysis and often only one polarization and one frequency are available along a CML. In this work we therefore use cloud cover information derived from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) radiometer onboard the geostationary satellite METEOSAT for a wet (pixels along link are cloud covered)/ dry (no cloud along link) classification. We compare results for CMLs in Burkina Faso and Germany, which differ meteorologically (rain rate and duration, droplet size distributions) and technically (CML frequencies, lengths, signal level) and use rain gauge data as ground truth for validation.
Noise Radiation from a Continuous Mold-Line Link Flap Configuration
NASA Technical Reports Server (NTRS)
Hutcheson, Florence V.; Brooks, Thomas F.; Humphreys, William M., Jr.
2011-01-01
The results of an experimental study of the noise from a Continuous Mold-Line Link (CML) flap are presented. Acoustic and unsteady surface pressure measurements were performed on a main element wing section with a half-span CML flap in NASA Langley s Quiet Flow Facility. The acoustic data were acquired with a medium aperture directional array (MADA) of microphones. The Deconvolution Approach for the Mapping of Acoustic Sources (DAMAS) method is applied to determine the spatial distribution and strength of the noise sources over the surface of the test model. A Coherent Output Power (COP) method which relates the output from unsteady surface pressure sensors to the output of the MADA is also used to obtain more detailed characteristics of the noise source distribution in the trailing edge region of the CML. These results are compared to those obtained for a blunt flap to quantify the level of noise benefit that is achieved with the CML flap. The results indicate that the noise from the CML region of the flap is 5 to 17 dB lower (depending on flap deflection and Mach number) than the noise from the side edge region of the blunt flap. Lower noise levels are obtained for all frequencies. Spectral analysis of the noise from the cove region of the CML and blunt flap models also reveal a spectral peak in the high frequency range that is related to noise scattering at the trailing edge of the main element. The peaks in the CML and blunt flap cove noise spectra are close in level and often exceed blunt side edge noise. Applying a strip of serrated tape to the trailing edge of the CML flap model main airfoil reduced the peak but increased other noise somewhat. Directivity measurements show that the CML flap can be more directional than the blunt flap.
Noise Radiation from a Continuous Mold-Line Link Flap Configuration
NASA Technical Reports Server (NTRS)
Hutcheson, Florence V.; Brooks, Thomas F.; Humphreys, William M.
2008-01-01
The results of an experimental study of the noise from a Continuous Mold-Line Link (CML) flap are presented. Acoustic and unsteady surface pressure measurements were performed on a main element wing section with a half-span CML flap in NASA Langley s Quiet Flow Facility. The acoustic data were acquired with a medium aperture directional array (MADA) of microphones. The Deconvolution Approach for the Mapping of Acoustic Sources (DAMAS) method is applied to determine the spatial distribution and strength of the noise sources over the surface of the test model. A Coherent Output Power (COP) method which relates the output from unsteady surface pressure sensors to the output of the MADA is also used to obtain more detailed characteristics of the noise source distribution in the trailing edge region of the CML. These results are compared to those obtained for a blunt flap to quantify the level of noise benefit that is achieved with the CML flap. The results indicate that the noise from the CML region of the flap is 5 to 17 dB lower (depending on flap deflection and Mach number) than the noise from the side edge region of the blunt flap. Lower noise levels are obtained for all frequencies. Spectral analysis of the noise from the cove region of the CML and blunt flap models also reveal a spectral peak in the high frequency range that is related to noise scattering at the trailing edge of the main element. The peaks in the CML and blunt flap cove noise spectra are close in level and often exceed blunt side edge noise. Applying a strip of serrated tape to the trailing edge of the CML flap model main airfoil, reduced the peak but increased other noise somewhat. Directivity measurements show that the CML flap can be more directional than the blunt flap.
Jiao, Li; Stolzenberg-Solomon, Rachael; Zimmerman, Thea Palmer; Duan, Zhigang; Chen, Liang; Kahle, Lisa; Risch, Adam; Subar, Amy F; Cross, Amanda J; Hollenbeck, Albert; Vlassara, Helen; Striker, Gary; Sinha, Rashmi
2015-01-01
Advanced glycation end products (AGEs) are a heterogeneous group of compounds present in uncooked foods as well as in foods cooked at high temperatures. AGEs have been associated with insulin resistance, oxidative stress, and chronic inflammation in patients with diabetes. Dietary AGEs are an important contributor to the AGE pool in the body. N(ϵ)-(carboxymethyl)lysine (CML) AGE is one of the major biologically and chemically well-characterized AGE markers. The consumption of red meat, which is CML-AGE rich, has been positively associated with pancreatic cancer in men. With the use of a published food CML-AGE database, we estimated the consumption of CML AGE in the prospective NIH-AARP Diet and Health Study and evaluated the association between CML-AGE consumption and pancreatic cancer and the mediating effect of CML AGE on the association between red meat consumption and pancreatic cancer. Multivariate Cox proportional hazard regression models were used to estimate HRs and 95% CIs for pancreatic cancer. During an average of 10.5 y of follow-up, we identified 2193 pancreatic cancer cases (1407 men and 786 women) from 528,251 subjects. With the comparison of subjects in the fifth and the first quintiles of CML-AGE consumption, we observed increased pancreatic cancer risk in men (HR: 1.43; 95% CI: 1.06, 1.93, P-trend = 0.003) but not women (HR: 1.14; 95% CI: 0.76, 1.72, P-trend = 0.42). Men in the highest quintile of red meat consumption had higher risk of pancreatic cancer (HR: 1.35; 95% CI: 1.07, 1.70), which attenuated after adjustment for CML-AGE consumption (HR: 1.20; 95% CI: 0.95, 1.53). Dietary CML-AGE consumption was associated with modestly increased risk of pancreatic cancer in men and may partially explain the positive association between red meat and pancreatic cancer. © 2015 American Society for Nutrition.
Accumulation of carboxymethyl-lysine (CML) in human cortical bone.
Thomas, Corinne J; Cleland, Timothy P; Sroga, Grazyna E; Vashishth, Deepak
2018-05-01
Advanced glycation end-products (AGEs) are a category of post translational modification associated with the degradation of the structural properties of multiple different types of tissues. Typically, AGEs are the result of a series of post-translational modification reactions between sugars and proteins through a process known as non-enzymatic glycation (NEG). Increases in the rate of NEG of bone tissue are associated with type 2 diabetes and skeletal fragility. Current methods of assessing NEG and its impact on bone fracture risk involve measurement of pentosidine or total fluorescent AGEs (fAGEs). However, pentosidine represents only a small fraction of possible fAGEs present in bone, and neither pentosidine nor total fAGE measurement accounts for non-fluorescent AGEs, which are known to form in significant amounts in skin and other collagenous tissues. Carboxymethyl-lysine (CML) is a non-fluorescent AGE that is often measured and has been shown to accumulate in tissues such as skin, heart, arteries, and intervertebral disks, but is currently not assessed in bone. Here we show the localization of CML to collagen I using mass spectrometry for the first time in human bone. We then present a new method using demineralization followed by heating and trypsin digestion to measure CML content in human bone and demonstrate that CML in bone is 40-100 times greater than pentosidine (the current most commonly used marker of AGEs in bone). We then establish the viability of CML as a measurable AGE in bone by showing that levels of CML, obtained from bone using this technique, increase with age (p<0.05) and are correlated with previously reported measures of bone toughness. Thus, CML is a viable non-fluorescent AGE target to assess AGE accumulation and fragility in bone. The method developed here to extract and measure CML from human bone could facilitate the development of a new diagnostic assay to evaluate fracture risk and potentially lead to new therapeutic approaches to address bone fragility. Copyright © 2018 Elsevier Inc. All rights reserved.
Zhang, Wenhui; Chi, Kaikai; Zhang, Yin; Ma, Baogen; Shi, Jie; Chen, Yuqing; Lei, Pingchong; Li, Yulong; Sun, Kai
2013-01-01
Tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) down-regulation by preferentially expressed antigen of melanoma (PRAME) is a general phenomenon in different types of solid tumours, but research on the correlation between PRAME and TRAIL gene expression in leukaemia patients is rare. PRAME and TRAIL expression was detected in bone marrow samples from 80 newly diagnosed acute leukaemia (AL) patients and 40 chronic myeloid leukaemia (CML) patients using TaqMan-based real-time quantitative PCR methods, and a linear correlation analysis was performed on their levels of expression. A total of 15 normal bone marrow samples from individuals with non-malignant haematological diseases served as normal controls. PRAME expression was higher in both AL and CML patients compared to controls (both p < 0.001). CML patients in both blast crisis (BC) and the accelerated phase (AP) had significantly higher PRAME levels than CML patients in the chronic phase (CP) (p = 0.006 and 0.0461, respectively). TRAIL expression was higher in both the acute myeloid leukaemia (AML) group and the acute lymphoblastic leukaemia (ALL) group than in the controls (p = 0.039 and 0.047, respectively). In contrast, CML patients had lower TRAIL levels than controls (p = 0.043), and TRAIL expression in CML patients in the advanced phases (BC and AP) was significantly lower than in CML-CP patients (p = 0.006). In CML patients, there was a significant inverse correlation (Spearman's R = -0.6669, p < 0.0001) between PRAME and TRAIL gene expression, while a greater significant inverse correlation was found in patients in the advanced phases (BC and AP) (R = -0.6764). In addition, no correlation was observed in AML and ALL patients. The simultaneous detection of PRAME and TRAIL gene expression may be helpful to monitor condition changes in leukaemia patients and evaluate therapeutic effects in clinical practice, particularly in CML patients. © 2013 S. Karger AG, Basel.
Akram, Afia Muhammad; Iqbal, Zafar; Akhtar, Tanveer; Khalid, Ahmed Mukhtar; Sabar, Muhammad Farooq; Qazi, Mahmood Hussain; Aziz, Zeba; Sajid, Nadia; Aleem, Aamer; Rasool, Mahmood; Asif, Muhammad; Aloraibi, Saleh; Aljamaan, Khaled; Iqbal, Mudassar
2017-04-03
BCR-ABL kinase domain (K D ) mutations are well known for causing resistance against tyrosine kinase inhibitors (TKIs) and disease progression in chronic myeloid leukemia (CML). In recent years, compound BCR-ABL mutations have emerged as a new threat to CML patients by causing higher degrees of resistance involving multiple TKIs, including ponatinib. However, there are limited reports about association of compound BCR-ABL mutations with disease progression in imatinib (IM) sensitive CML patients. Therefore, we investigated presence of ABL-K D mutations in chronic phase (n = 41), late chronic phase (n = 33) and accelerated phase (n = 16) imatinib responders. Direct sequencing analysis was used for this purpose. Eleven patients (12.22%) in late-CP CML were detected having total 24 types of point mutations, out of which 8 (72.72%) harbored compound mutated sites. SH2 contact site mutations were dominant in our study cohort, with E355G (3.33%) being the most prevalent. Five patients (45%) all having compound mutated sites, progressed to advanced phases of disease during follow up studies. Two novel silent mutations G208G and E292E/E were detected in combination with other mutants, indicating limited tolerance for BCR-ABL1 kinase domain for missense mutations. However, no patient in early CP of disease manifested mutated ABL-K D . Occurrence of mutations was found associated with elevated platelet count (p = 0.037) and patients of male sex (p = 0.049). The median overall survival and event free survival of CML patients (n = 90) was 6.98 and 5.8 y respectively. The compound missense mutations in BCR-ABL kinase domain responsible to elicit disease progression, drug resistance or disease relapse in CML, can be present in yet Imatinib sensitive patients. Disease progression observed here, emphasizes the need of ABL-K D mutation screening in late chronic phase CML patients for improved clinical management of disease.
Shokeen, Yogender; Sharma, Neeta Raj; Vats, Abhishek; Dinand, Veronique; Beg, Mirza Adil; Sanskaran, Satish; Minhas, Sachin; Jauhri, Mayank; Hariharan, Arun K; Taneja, Vibha; Aggarwal, Shyam
2018-01-01
Background: Chronic myeloid leukemia (CML) is a hematological disorder caused by fusion of BCR and ABL genes. BCR-ABL dependent and independent pathways play equally important role in CML. TGFβ-Smad pathway, an important BCR -ABL independent pathway, has scarce data in CML. Present study investigate the association between TGFβ-Smad pathway and CML. Materials and Methods: Sixty-four CML patients and age matched healthy controls (n=63) were enrolled in this study. Patients were segregated into responder and resistant groups depending on their response to Imatinib mesylate (IM). TGFβ1 serum levels were evaluated by ELISA and transcript levels of TGFβ1 receptors, SMAD4 and SMAD7 were evaluated by Real-Time PCR. Sequencing of exons and exon-intron boundaries of study genes was performed using Next Generation Sequencing (NGS) in 20 CML patients. Statistical analysis was performed using SPSS version 16.0. Results: TGFβ1 serum levels were significantly elevated ( p = 0.02) and TGFβR2 and SMAD4 were significantly down-regulated ( p = 0.012 and p = 0.043 respectively) in the patients. c.69A>G in TGFβ1 , c.1024+24G>A in TGFβR1 and g.46474746C>T in SMAD7 were the most important genetic variants observed with their presence in 10/20, 8/20 and 7/20 patients respectively. In addition, TGFβR1 transcript levels were reduced in CML patients with c.69A>G mutation. None of the genes differed significantly in terms of expression or genetic variants between responder and resistant patient groups. Conclusion: Our findings demonstrate the role of differential expression and genetic variants of TGFβ-Smad pathway in CML. Decreased TGFβR2 and SMAD4 levels observed in the present study may be responsible for reduced tumor suppressive effects of this pathway in CML.
Delk, Nikkí A.; Johnson, Keith A.; Chowdhury, Naweed I.; Braam, Janet
2005-01-01
Changes in intracellular calcium (Ca2+) levels serve to signal responses to diverse stimuli. Ca2+ signals are likely perceived through proteins that bind Ca2+, undergo conformation changes following Ca2+ binding, and interact with target proteins. The 50-member calmodulin-like (CML) Arabidopsis (Arabidopsis thaliana) family encodes proteins containing the predicted Ca2+-binding EF-hand motif. The functions of virtually all these proteins are unknown. CML24, also known as TCH2, shares over 40% amino acid sequence identity with calmodulin, has four EF hands, and undergoes Ca2+-dependent changes in hydrophobic interaction chromatography and migration rate through denaturing gel electrophoresis, indicating that CML24 binds Ca2+ and, as a consequence, undergoes conformational changes. CML24 expression occurs in all major organs, and transcript levels are increased from 2- to 15-fold in plants subjected to touch, darkness, heat, cold, hydrogen peroxide, abscisic acid (ABA), and indole-3-acetic acid. However, CML24 protein accumulation changes were not detectable. The putative CML24 regulatory region confers reporter expression at sites of predicted mechanical stress; in regions undergoing growth; in vascular tissues and various floral organs; and in stomata, trichomes, and hydathodes. CML24-underexpressing transgenics are resistant to ABA inhibition of germination and seedling growth, are defective in long-day induction of flowering, and have enhanced tolerance to CoCl2, molybdic acid, ZnSO4, and MgCl2. MgCl2 tolerance is not due to reduced uptake or to elevated Ca2+ accumulation. Together, these data present evidence that CML24, a gene expressed in diverse organs and responsive to diverse stimuli, encodes a potential Ca2+ sensor that may function to enable responses to ABA, daylength, and presence of various salts. PMID:16113225
Stiefelhagen, Marius; Sellner, Leopold; Kleinschmidt, Jürgen A; Jauch, Anna; Laufs, Stephanie; Wenz, Frederik; Zeller, W Jens; Fruehauf, Stefan; Veldwijk, Marlon R
2008-01-01
Background For many promising target cells (e.g.: haematopoeitic progenitors), the susceptibility to standard adeno-associated viral (AAV) vectors is low. Advancements in vector development now allows the generation of target cell-selected AAV capsid mutants. Methods To determine its suitability, the method was applied on a chronic myelogenous leukaemia (CML) cell line (K562) to obtain a CML-targeted vector and the resulting vectors tested on leukaemia, non-leukaemia, primary human CML and CD34+ peripheral blood progenitor cells (PBPC); standard AAV2 and a random capsid mutant vector served as controls. Results Transduction of CML (BV173, EM3, K562 and Lama84) and AML (HL60 and KG1a) cell lines with the capsid mutants resulted in an up to 36-fold increase in CML transduction efficiency (K562: 2-fold, 60% ± 2% green fluorescent protein (GFP)+ cells; BV173: 9-fold, 37% ± 2% GFP+ cells; Lama84: 36-fold, 29% ± 2% GFP+ cells) compared to controls. For AML (KG1a, HL60) and one CML cell line (EM3), no significant transduction (<1% GFP+ cells) was observed for any vector. Although the capsid mutant clone was established on a cell line, proof-of-principle experiments using primary human cells were performed. For CML (3.2-fold, mutant: 1.75% ± 0.45% GFP+ cells, p = 0.03) and PBPC (3.5-fold, mutant: 4.21% ± 3.40% GFP+ cells) a moderate increase in gene transfer of the capsid mutant compared to control vectors was observed. Conclusion Using an AAV random peptide library on a CML cell line, we were able to generate a capsid mutant, which transduced CML cell lines and primary human haematopoietic progenitor cells with higher efficiency than standard recombinant AAV vectors. PMID:18789140
Gunnarsson, Niklas; Stenke, Leif; Höglund, Martin; Sandin, Fredrik; Björkholm, Magnus; Dreimane, Arta; Lambe, Mats; Markevärn, Berit; Olsson-Strömberg, Ulla; Richter, Johan; Wadenvik, Hans; Wallvik, Jonas; Själander, Anders
2015-06-01
Given that tyrosine kinase inhibitors (TKIs) have dramatically improved the survival of patients with chronic myeloid leukaemia (CML), we were interested in examining the possible risk of long-term adverse events, such as the emergence of other neoplasms. Therefore, we studied the development of second malignancies in 868 patients diagnosed with CML between 2002 and 2011 using the Swedish CML register, cross-linked to the Swedish Cancer register. With a median follow-up of 3·7 (range 0-9·9) years, 65 (7·5%) patients developed 75 second malignancies (non-haematological), 52 of which were of the invasive type. Compared to expected rates in the background population, the risk of second malignancies was higher in the CML cohort, with a standardized incidence ratio (SIR) of 1·52 (95% CI 1·13-1·99). The SIR before and after the second year following diagnosis of CML was 1·58 and 1·47, respectively. Among specific cancer types, gastrointestinal and nose and throat cancer were significantly increased. Founded on a population-based material, our results indicate that CML patients treated in the TKI era are at an increased risk of developing a second malignancy, with indications that this risk may more likely be linked to CML itself rather than to the TKI treatment. © 2015 John Wiley & Sons Ltd.
Immune cell contexture in the bone marrow tumor microenvironment impacts therapy response in CML.
Brück, Oscar; Blom, Sami; Dufva, Olli; Turkki, Riku; Chheda, Himanshu; Ribeiro, Antonio; Kovanen, Panu; Aittokallio, Tero; Koskenvesa, Perttu; Kallioniemi, Olli; Porkka, Kimmo; Pellinen, Teijo; Mustjoki, Satu
2018-06-20
Increasing evidence suggests that the immune system affects prognosis of chronic myeloid leukemia (CML), but the detailed immunological composition of the leukemia bone marrow (BM) microenvironment is unknown. We aimed to characterize the immune landscape of the CML BM and predict the current treatment goal of tyrosine kinase inhibitor (TKI) therapy, molecular remission 4.0 (MR4.0). Using multiplex immunohistochemistry (mIHC) and automated image analysis, we studied BM tissues of CML patients (n = 56) and controls (n = 14) with a total of 30 immunophenotype markers essential in cancer immunology. CML patients' CD4+ and CD8+ T-cells expressed higher levels of putative exhaustion markers PD1, TIM3, and CTLA4 when compared to control. PD1 expression was higher in BM compared to paired peripheral blood (PB) samples, and decreased during TKI therapy. By combining clinical parameters and immune profiles, low CD4+ T-cell proportion, high proportion of PD1+TIM3-CD8+ T cells, and high PB neutrophil count were most predictive of lower MR4.0 likelihood. Low CD4+ T-cell proportion and high PB neutrophil counts predicted MR4.0 also in a validation cohort (n = 52) analyzed with flow cytometry. In summary, the CML BM is characterized by immune suppression and immune biomarkers predicted MR4.0, thus warranting further testing of immunomodulatory drugs in CML treatment.
Changing trends of chronic myeloid leukemia in greater Mumbai, India over a period of 30 years
Dikshit, Rajesh P.; Nagrani, Rajini; Yeole, Balkrishna; Koyande, Shravani; Banawali, Shripad
2011-01-01
Background: Little is known about burden of chronic myeloid leukemia (CML) in India. There is a recent interest to observe incidence and mortality because of advent of new diagnostic and treatment policies for CML. Materials and Methods: We extracted data from the oldest population-based cancer registry of Mumbai for 30 years period from 1976−2005 to observe incidence and mortality rates of CML. We classified the data into four age groups 0–14, 15–29, 30–54 and 55–74 to observe incidence rates in the respective age groups. Results: The age specific rates were highest for the age group of 55–74 years. No significant change in trends of CML was observed for 30 years period. However, there was a significant reduction in incidence rate for recent 15-years period (Estimated average annual percentage change=-3.9). No significant reduction in mortality rate was observed till 2005. Conclusion: The study demonstrates that age-specific rates for CML are highest in age group of 55-74 years, although they are lower compared to western populations. Significant reduction in incidence of CML in recent periods might be because of reduced misclassification of leukemias. The data of CML has to be observed for another decade to witness reduction in mortality because of changes in treatment management. PMID:22174498
Daroudi, Rajabali; Mirzania, Mehrzad; Nikravanfard, Nazila; Sadighi, Sanambar; Sedighi, Zahra; Zendehdel, Kazem
2017-10-01
After the introduction of tyrosine kinase inhibitors for chronic myeloid leukemia (CML), the survival of these patients has increased significantly. However, these new drugs are expensive and impose considerable expense to patients and governments. Epidemiologic and economic evaluation studies provide good information for resource allocation and decision making. We estimated the incidence, prevalence and direct medical cost of CML in Iran. We used the National Cancer Registry (NCR) data from 2006 to 2009 to estimate the incidence rate of CML (ICD-10 code C92.1). After adjustment for the underestimation of incidence rates, we used survival rates of CML and estimated the 5-year prevalence for these patients. In addition, we used clinical practice guideline, expert opinions and medical tariffs to estimate the direct medical costs through the prevalence approach. After an adjustment for the underestimation, the incidence rate of CML was 0.5 per 100 000 in the I.R. of Iran. The 5-year prevalence was about 2263 cases (2.98 per 100 000). The total direct medical cost of CML was $23 089 323 and the majority of the cost (97%) was related to drug costs. The total cost will increase considerably to $40 728 869 if all patients use the new drug nilotinib (800 mg/day) as a second-line treatment. The increased survival of CML patients and a possible increase in incidence of CML in Iran will most likely lead to a considerable rise in its prevalence and economic burden. © 2016 John Wiley & Sons Australia, Ltd.
Willmann, Michael; Sadovnik, Irina; Eisenwort, Gregor; Entner, Martin; Bernthaler, Tina; Stefanzl, Gabriele; Hadzijusufovic, Emir; Berger, Daniela; Herrmann, Harald; Hoermann, Gregor; Valent, Peter; Rülicke, Thomas
2018-01-01
Chronic myeloid leukemia (CML) is a stem cell (SC) neoplasm characterized by the BCR/ABL1 oncogene. Although the disease can be kept under control using BCR/ABL1 tyrosine kinase inhibitors (TKIs) in most cases, some patients relapse or have resistant disease, so there is a need to identify new therapeutic targets in this malignancy. Recent data suggest that leukemic SCs (LSCs) in CML display the stem-cell (SC)-mobilizing cell surface enzyme dipeptidyl-peptidase IV (DPPIV = CD26) in an aberrant manner. In the present study, we analyzed the effects of the DPPIV blocker vildagliptin as single agent or in combination with the BCR/ABL1 TKI imatinib or nilotinib on growth and survival of CML LSCs in vitro and on LSC engraftment in an in vivo xenotransplantation nonobese diabetic SCID-IL-2Rγ -/- (NSG) mouse model. We found that nilotinib induces apoptosis in CML LSCs and inhibits their engraftment in NSG mice. In contrast, no substantial effects were seen with imatinib or vildagliptin. Nevertheless, vildagliptin was found to reduce the "mobilization" of CML LSCs from a stroma cell layer consisting of mouse fibroblasts in an in vitro co-culture model, suggesting reduced disease expansion. However, although vildagliptin and nilotinib produced cooperative effects in individual experiments, overall, no significant effects of coadministered vildagliptin over nilotinib or imatinib treatment alone were seen on the engraftment of CML cells in NSG mice. Gliptins may be interesting drugs in the context of CML and nilotinib therapy, but our preclinical studies did not reveal a major cooperative effect of the drug-combination vildagliptin + nilotinib on engraftment of CML cells in NSG mice. Copyright © 2018 ISEH – Society for Hematology and Stem Cells. Published by Elsevier Inc. All rights reserved.
Genetic polymorphisms associated with increased risk of developing chronic myelogenous leukemia
Bruzzoni-Giovanelli, Heriberto; González, Juan R.; Sigaux, François; Villoutreix, Bruno O.; Cayuela, Jean Michel; Guilhot, Joëlle; Preudhomme, Claude; Guilhot, François; Poyet, Jean-Luc; Rousselot, Philippe
2015-01-01
Little is known about inherited factors associated with the risk of developing chronic myelogenous leukemia (CML). We used a dedicated DNA chip containing 16 561 single nucleotide polymorphisms (SNPs) covering 1 916 candidate genes to analyze 437 CML patients and 1 144 healthy control individuals. Single SNP association analysis identified 139 SNPs that passed multiple comparisons (1% false discovery rate). The HDAC9, AVEN, SEMA3C, IKBKB, GSTA3, RIPK1 and FGF2 genes were each represented by three SNPs, the PSM family by four SNPs and the SLC15A1 gene by six. Haplotype analysis showed that certain combinations of rare alleles of these genes increased the risk of developing CML by more than two or three-fold. A classification tree model identified five SNPs belonging to the genes PSMB10, TNFRSF10D, PSMB2, PPARD and CYP26B1, which were associated with CML predisposition. A CML-risk-allele score was created using these five SNPs. This score was accurate for discriminating CML status (AUC: 0.61, 95%CI: 0.58–0.64). Interestingly, the score was associated with age at diagnosis and the average number of risk alleles was significantly higher in younger patients. The risk-allele score showed the same distribution in the general population (HapMap CEU samples) as in our control individuals and was associated with differential gene expression patterns of two genes (VAPA and TDRKH). In conclusion, we describe haplotypes and a genetic score that are significantly associated with a predisposition to develop CML. The SNPs identified will also serve to drive fundamental research on the putative role of these genes in CML development. PMID:26474455
Sun, Yingying; Hua, Xiuyi; Ge, Rui; Guo, Aitong; Guo, Zhiyong; Dong, Deming; Sun, Wentian
2013-08-01
Centrifugal mother liquid (CML) is one of the main sources of wastewater produced during the production of polyvinyl chloride in chlor-alkali industry. CML is a typical poorly biodegradable organic wastewater, containing many kinds of refractory pollutants. Specifically, it contains dissolved refractory polymers, especially polyvinyl alcohol (PVA), which can pass though the biotreatment processes and clog the membranes used for further treatment. In this study, to ensure the CML applicable to biotreatment and membrane treatment, a novel efficient and mild technique, air-Fenton treatment, was employed as a pretreatment technique to improve biodegradability of the CML and to break down the polymers in the CML. Firstly, the technique was optimized for the CML treatment by optimizing the main parameters, including the dosage of ferrous sulfate, initial pH of the wastewater, [H2O2]/[Fe(2+)], aeration rate, reaction time, and temperature, based on removal efficiency of COD and PVA from the CML. Then, the optimized technique was tested and evaluated. The results indicated that under the optimized conditions, the air-Fenton treatment could remove 66, 98, and 55 % of the COD, PVA, and TOC, respectively, from the CML. After the treatment, biodegradability of the wastewater increased significantly (BOD/COD increased from 0.31 to 0.68), and almost all of the PVA polymers were removed or broken down. Meanwhile, concentration of the remaining iron ions, which were added during the treatment, was also quite low (only 2.9 mg/L). Furthermore, most of the suspended materials and ammonia nitrogen, and some of the phosphorus in the wastewater were removed simultaneously.
Syed, Yahiya Y; McCormack, Paul L; Plosker, Greg L
2014-02-01
Bosutinib (Bosulif®) is an orally administered small molecule tyrosine kinase inhibitor (TKI) of BCR-ABL and SRC family kinases. It is indicated for the treatment of adult patients with chronic-, accelerated-, or blast-phase Philadelphia chromosome-positive (Ph+) chronic myelogenous leukemia (CML) with resistance or intolerance to prior therapy (imatinib, dasatinib, or nilotinib) [USA] or for a small subpopulation of these patients for whom imatinib, nilotinib, and dasatinib are not considered appropriate treatment options (EU). In a multinational pivotal trial (n = 547), bosutinib treatment resulted in a major cytogenetic response (MCyR) at 24 weeks in one-third of all treated patients with imatinib-resistant chronic-phase CML who had no previous exposure to any TKIs other than imatinib (primary endpoint), with similar results observed in chronic-phase CML patients who were intolerant of imatinib and naïve to all other TKIs. MCyRs were also seen in more than one-quarter of evaluable patients with chronic-phase CML previously treated with multiple TKIs. Most of the patients with chronic-phase CML achieved a complete hematologic response with bosutinib and some patients with advanced phases of CML achieved an overall hematologic response. Responses were seen irrespective of the type of BCR-ABL mutation at baseline, except T315I. Bosutinib had a manageable tolerability profile in the pivotal trial, with ≤21 % of patients with chronic-phase CML discontinuing the treatment because of adverse events. Diarrhea was the most common adverse event but was generally manageable, with only few patients discontinuing the treatment because of diarrhea. Therefore, bosutinib is a useful TKI option for patients with Ph+ CML in second-line or greater settings.
Lin, Pei-Jung; Winn, Aaron N; Parsons, Susan K; Neumann, Peter J; Weiss, Elisa S; Cohen, Joshua T
2016-04-01
The high prices of chronic myeloid leukemia (CML) therapy are well recognized, but less discussion has focused on the value of health care spending on the disease. This study examined whether the added costs have been "worth" the benefits among older adults with CML. We analyzed trends in health care costs and survival over time of 2164 CML patients over age 65 using the Surveillance, Epidemiology and End Results-Medicare-linked database. We estimated life expectancy over a 15-year duration after diagnosis using a Weibull survival model and projected the corresponding costs using a 2-part model, adjusting for patient characteristics. We estimated population-level survival, total health care costs, and incremental cost-effectiveness ratios (expressed as cost per life year gained) over the period of 1995-2007. We found that therapeutic improvements in the treatment of CML have been associated with survival gains among older adults. Mean life expectancy was 2.2 years in 1995 and increased to 4.2 years in 2007. During the same timeframe, CML care costs have increased, from $127,000 in 1995 to $278,000 in 2007 (2010 dollars), mostly due to increasing tyrosine kinase inhibitor costs. The aggregated incremental cost-effectiveness ratio was $74,000/life year gained. Our findings showed that, despite high costs, CML care may provide reasonable value for money among older patients between 1995-2007. Our study sheds light on the value of health care spending on CML by considering both the costs and the benefits. Future research should investigate strategies to improve treatment adherence to maximize the value of CML care.
Pageon, Hervé; Zucchi, Hélène; Dai, Zhenyu; Sell, David R.; Strauch, Christopher M.; Monnier, Vincent M.; Asselineau, Daniel
2015-01-01
Abstract Advanced glycation end products (AGEs) accumulate in the aging skin. To understand the biological effects of individual AGEs, skin reconstructed with collagen selectively enriched with Nɛ-(carboxymethyl)-lysine (CML), Nɛ-(carboxyethyl)-lysine (CEL), methylglyoxal hydroimidazolone (MG-H1), or pentosidine was studied. Immunohistochemistry revealed increased expression of α6 integrin at the dermal epidermal junction by CEL and CML (p<0.01). Laminin 5 was diminished by CEL and MG-H1 (p<0.05). Both CML and CEL induced a robust increase (p<0.01) in procollagen I. In the culture medium, IL-6, VEGF, and MMP1 secretion were significantly decreased (p<0.05) by MG-H1. While both CEL and CML decreased MMP3, only CEL decreased IL-6 and TIMP1, while CML stimulated TIMP1 synthesis significantly (p<0.05). mRNA expression studies using qPCR in the epidermis layer showed that CEL increased type 7 collagen (COL7A1), β1, and α6 integrin, while CML increased only COL7A1 (p<0.05). MG-H1-modified collagen had no effect. Importantly, in the dermis layer, MMP3 mRNA expression was increased by both CML and MG-H1. CML also significantly increased the mRNAs of MMP1, TIMP1, keratinocyte growth factor (KGF), IL-6, and monocyte chemoattractant protein 1 (MCP1) (p<0.05). Mixed effects were present in CEL-rich matrix. Minimally glycoxidized pentosidine-rich collagen suppressed most mRNAs of the genes studied (p<0.05) and decreased VEGF and increased MCP1 protein expression. Taken together, this model of the aging skin suggests that a combination of AGEs tends to counterbalance and thus minimizes the detrimental biological effects of individual AGEs. PMID:26309782
He, Hairong; He, Gonghao; Wang, Taotao; Cai, Jiangxia; Wang, Yan; Zheng, Xiaowei; Dong, Yalin; Lu, Jun
2014-10-01
The expression of methylenetetrahydrofolate reductase (MTHFR) is associated with acute myeloid leukemia (AML) and chronic myeloid leukemia (CML). Most studies have linked the common functional C677T and A1298C polymorphisms of the MTHFR gene and susceptibility to AML and CML, but the results were not consistent. The aim of the present study was to derive a more precise estimation of the relationship. Meta-analyses assessing the association of MTHFR C677T and A1298C variations with AML and CML were conducted. Eligible articles were identified from the PubMed and EMBASE databases. All statistical analyses were conducted using Review Manager Software. 10 and 10 studies were included in the meta-analysis about the role of C677T polymorphism on the AML and CML risks, respectively; 6 and 4 studies were included about the role of A1298C polymorphism on the AML and CML risks, respectively. Overall, both the C677T and A1298C polymorphisms were significantly associated with CML risk under the recessive model (P=0.04, OR=1.35, 95% CI=1.02-1.79 for C677T and P=0.003, OR=2.17, 95% CI=1.29-3.63 for A1298C). In addition, the risk of CML was higher in 1298CC genotype carriers than in 1298AA genotype carriers (P=0.004, OR=2.17, 95%=1.28-3.69). Conversely, the overall data failed to indicate a significant association of C677T or A1298C polymorphisms with AML risk under any model. The findings provide evidence that C677T and A1298C polymorphisms are risk factors for CML risk. Copyright © 2014 Elsevier Ltd. All rights reserved.
Hoxa9 and Hoxa10 induce CML myeloid blast crisis development through activation of Myb expression.
Negi, Vijay; Vishwakarma, Bandana A; Chu, Su; Oakley, Kevin; Han, Yufen; Bhatia, Ravi; Du, Yang
2017-11-17
Mechanisms underlying the progression of Chronic Myeloid Leukemia (CML) from chronic phase to myeloid blast crisis are poorly understood. Our previous studies have suggested that overexpression of SETBP1 can drive this progression by conferring unlimited self-renewal capability to granulocyte macrophage progenitors (GMPs). Here we show that overexpression of Hoxa9 or Hoxa10 , both transcriptional targets of Setbp1 , is also sufficient to induce self-renewal of primary myeloid progenitors, causing their immortalization in culture. More importantly, both are able to cooperate with BCR/ABL to consistently induce transformation of mouse GMPs and development of aggressive leukemias resembling CML myeloid blast crisis, suggesting that either gene can drive CML progression by promoting the self-renewal of GMPs. We further identify Myb as a common critical target for Hoxa9 and Hoxa10 in inducing self-renewal of myeloid progenitors as Myb knockdown significantly reduced colony-forming potential of myeloid progenitors immortalized by the expression of either gene. Interestingly, Myb is also capable of immortalizing primary myeloid progenitors in culture and cooperating with BCR/ABL to induce leukemic transformation of mouse GMPs. Significantly increased levels of MYB transcript also were detected in all human CML blast crisis samples examined over chronic phase samples, further suggesting the possibility that MYB overexpression may play a prevalent role in driving human CML myeloid blast crisis development. In summary, our results identify overexpression of HOXA9 , HOXA10 , and MYB as critical drivers of CML progression, and suggest MYB as a key therapeutic target for inhibiting the self-renewal of leukemia-initiating cells in CML myeloid blast crisis patients.
Molecular techniques for the personalised management of patients with chronic myeloid leukaemia.
Alikian, Mary; Gale, Robert Peter; Apperley, Jane F; Foroni, Letizia
2017-03-01
Chronic myeloid leukemia (CML) is the paradigm for targeted cancer therapy. RT-qPCR is the gold standard for monitoring response to tyrosine kinase-inhibitor (TKI) therapy based on the reduction of blood or bone marrow BCR-ABL1 . Some patients with CML and very low or undetectable levels of BCR-ABL1 transcripts can stop TKI-therapy without CML recurrence. However, about 60 percent of patients discontinuing TKI-therapy have rapid leukaemia recurrence. This has increased the need for more sensitive and specific techniques to measure residual CML cells. The clinical challenge is to determine when it is safe to stop TKI-therapy. In this review we describe and critically evaluate the current state of CML clinical management, different technologies used to monitor measurable residual disease (MRD) focus on comparingRT-qPCR and new methods entering clinical practice. We discuss advantages and disadvantages of new methods.
Determination of advanced glycation endproducts in cooked meat products.
Chen, Gengjun; Smith, J Scott
2015-02-01
Advanced glycation endproducts (AGEs), a pathogenic factor implicated in diabetes and other chronic diseases, are produced in cooked meat products. The objective of this study was to determine the AGE content, as measured by Nε-carboxymethyllysine (CML) levels, in cooked chicken, pork, beef and fish (salmon and tilapia) prepared by three common cooking methods used by U.S. consumers: frying, baking, and broiling. The CML was detected in all the cooked samples, but the levels were dependent on types of meat, cooking conditions, and the final internal temperature. Broiling and frying at higher cooking temperature produced higher levels of CML, and broiled beef contained the highest CML content (21.8μg/g). Baked salmon (8.6μg/g) and baked tilapia (9.7μg/g) contained less CML as compared to the other muscle food samples. Copyright © 2014 Elsevier Ltd. All rights reserved.
Zhao, Pan; Duan, Li; Guo, Long; Dou, Li-Li; Dong, Xin; Zhou, Ping; Li, Ping; Liu, E-Hu
2015-04-15
Citri Fructus (CF), the mature fruit of Citrus wilsonii Tanaka (CWT) or Citrus medica L. (CML), is an important citrus by-product with health promoting and nutritive properties. The present study compares the chemical and biological differences of CWT and CML. Thin layer chromatography and high performance liquid chromatography, coupled with quadrupole time-of-flight tandem mass spectrometry techniques, were employed to compare the chemical profiles of CWT and CML. A total of 25 compounds were identified and the results indicated that there were significant differences in chemical composition between the two CF species. The quantitative results obtained by HPLC coupled with diode array detector method demonstrated that naringin was present in the highest amounts in CWT, whilst nomilin was the most dominant constituent in CML. It was also found that CWT had significantly higher free radical-scavenging activity than CML. Copyright © 2014 Elsevier Ltd. All rights reserved.
Bcr-Abl and inhibition of apoptosis in chronic myelogenous leukemia cells.
Fernandez-Luna, J L
2000-10-01
Chronic myelogenous leukemia (CML) cells are highly resistant to apoptosis induced by chemotherapeutic drugs. The observation that production of Bcr-Abl is the initiating event in CML has focussed attention on the survival signals triggered by this oncogene. A number of signal transducers and transcription factors have been associated with the antiapoptotic phenotype of CML cells, some of which lead to the expression and/or activation of members of the Bcl-2 family of apoptosis modulators, such as Bcl-xL and Bad. In this article, recent advances in understanding the antiapoptotic pathways triggered by Bcr-Abl in CML cells, are discussed.
A power-efficient switchable CML driver at 10 Gbps
NASA Astrophysics Data System (ADS)
Peipei, Chen; Lei, Li; Huihua, Liu
2016-02-01
High static power limits the application of conventional current-mode logic(CML). This paper presents a power-efficient switchable CML driver, which achieves a significant current saving by 75% compared with conventional ones. Implemented in the 130 nm CMOS technology process, the proposed CML driver just occupies an area about 0.003 mm2 and provides a robust differential signal of 1600 mV for 10 Gbps optical line terminal (OLT) with a total current of 10 mA. The peak-to-peak jitter is about 4 ps (0.04TUI) and the offset voltage is 347.2 mV @ 1600 mVPP.
Legros, Laurence; Bourcier, Christine; Jacquel, Arnaud; Mahon, François-Xavier; Cassuto, Jill-Patrice; Auberger, Patrick; Pagès, Gilles
2004-07-15
Increased angiogenesis in bone marrow (BM) is one of the characteristics of chronic myeloid leukemia (CML), a clonal myeloproliferative disorder that expresses a chimeric Bcr/Abl protein. Recently, the therapeutic strategy in CML has been totally modified with the development of a new drug: imatinib mesylate (STI571), a specific inhibitor of Bcr/Abl tyrosine kinase activity. The aim of our study was to determine, in patients with CML, the capacity of imatinib mesylate to modulate one of the most potent regulators of angiogenesis, the vascular endothelial growth factor (VEGF). In newly diagnosed CML, we observed significantly increased VEGF secretion by CML BM cells and significantly increased VEGF plasma concentrations. We showed that low plasma VEGF concentrations could be one of the characteristics of complete cytogenetic remission. To understand the molecular mechanisms leading to the inhibition of VEGF production by imatinib, we focused our experiments on the human cell line K562, which is Bcr/Abl positive. We demonstrated that imatinib inhibits VEGF gene transcription by targeting the Sp1 and Sp3 transcription factors. Taken together, our results highlight the potential prognostic value of VEGF concentrations in evaluating the evolution of CML patients treated with imatinib.
Giustacchini, Alice; Thongjuea, Supat; Barkas, Nikolaos; Woll, Petter S; Povinelli, Benjamin J; Booth, Christopher A G; Sopp, Paul; Norfo, Ruggiero; Rodriguez-Meira, Alba; Ashley, Neil; Jamieson, Lauren; Vyas, Paresh; Anderson, Kristina; Segerstolpe, Åsa; Qian, Hong; Olsson-Strömberg, Ulla; Mustjoki, Satu; Sandberg, Rickard; Jacobsen, Sten Eirik W; Mead, Adam J
2017-06-01
Recent advances in single-cell transcriptomics are ideally placed to unravel intratumoral heterogeneity and selective resistance of cancer stem cell (SC) subpopulations to molecularly targeted cancer therapies. However, current single-cell RNA-sequencing approaches lack the sensitivity required to reliably detect somatic mutations. We developed a method that combines high-sensitivity mutation detection with whole-transcriptome analysis of the same single cell. We applied this technique to analyze more than 2,000 SCs from patients with chronic myeloid leukemia (CML) throughout the disease course, revealing heterogeneity of CML-SCs, including the identification of a subgroup of CML-SCs with a distinct molecular signature that selectively persisted during prolonged therapy. Analysis of nonleukemic SCs from patients with CML also provided new insights into cell-extrinsic disruption of hematopoiesis in CML associated with clinical outcome. Furthermore, we used this single-cell approach to identify a blast-crisis-specific SC population, which was also present in a subclone of CML-SCs during the chronic phase in a patient who subsequently developed blast crisis. This approach, which might be broadly applied to any malignancy, illustrates how single-cell analysis can identify subpopulations of therapy-resistant SCs that are not apparent through cell-population analysis.
Circulating endothelial cells are increased in chronic myeloid leukemia blast crisis.
Godoy, C R T; Levy, D; Giampaoli, V; Chamone, D A F; Bydlowski, S P; Pereira, J
2015-06-01
We measured circulating endothelial precursor cells (EPCs), activated circulating endothelial cells (aCECs), and mature circulating endothelial cells (mCECs) using four-color multiparametric flow cytometry in the peripheral blood of 84 chronic myeloid leukemia (CML) patients and 65 healthy controls; and vascular endothelial growth factor (VEGF) by quantitative real-time PCR in 50 CML patients and 32 healthy controls. Because of an increase in mCECs, the median percentage of CECs in CML blast crisis (0.0146%) was significantly higher than in healthy subjects (0.0059%, P<0.01) and in the accelerated phase (0.0059%, P=0.01). There were no significant differences in the percentages of CECs in chronic- or active-phase patients and healthy subjects (P>0.05). In addition, VEGF gene expression was significantly higher in all phases of CML: 0.245 in blast crisis, 0.320 in the active phase, and 0.330 in chronic phase patients than it was in healthy subjects (0.145). In conclusion, CML in blast crisis had increased levels of CECs and VEGF gene expression, which may serve as markers of disease progression and may become targets for the management of CML.
The effect of a clinical medical librarian on in-patient care outcomes.
Esparza, Julia M; Shi, Runhua; McLarty, Jerry; Comegys, Marianne; Banks, Daniel E
2013-07-01
The research sought to determine the effect of a clinical medical librarian (CML) on outcomes of in-patients on the internal medicine service. A prospective study was performed with two internal medicine in-patient teams. Team 1 included a CML who accompanied the team on daily rounds. The CML answered questions posed at the point of care immediately or in emails post-rounds. Patients on Team 2, which did not include a CML, as well as patients who did not require consultation by the CML on Team 1, served as the control population. Numerous clinical and library metrics were gathered on each question. Patients on Team 1 who required an answer to a clinical question were more ill and had a longer length of stay, higher costs, and higher readmission rates compared to those in the control group. Using a matched pair analysis, we showed no difference in clinical outcomes between the intervention group and the control group. This study is the largest attempt to prospectively measure changes in patient outcomes when physicians were accompanied by a CML on rounds. This approach may serve as a model for further studies to define when and how CMLs are most effective.
2010-01-01
Background Chronic myelogenous leukemia (CML) is characterized by the chimeric tyrosine kinase Bcr-Abl. Bcr-Abl-T315I is the notorious point mutation that causes resistance to imatinib and the second generation tyrosine kinase inhibitors, leading to poor prognosis. CML blasts have constitutive p65 (RelA NF-κB) transcriptional activity, and NF-κB may be a potential target for molecular therapies in CML that may also be effective against CML cells with Bcr-Abl-T315I. Results In this report, we discovered that pristimerin, a quinonemethide triterpenoid isolated from Celastraceae and Hippocrateaceae, inhibited growth and induced apoptosis in CML cells, including the cells harboring Bcr-Abl-T315I mutation. Additionally, pristimerin inhibited the growth of imatinib-resistant Bcr-Abl-T315I xenografts in nude mice. Pristimerin blocked the TNFα-induced IκBα phosphorylation, translocation of p65, and expression of NF-κB-regulated genes. Pristimerin inhibited two steps in NF-κB signaling: TAK1→IKK and IKK→IκBα. Pristimerin potently inhibited two pairs of CML cell lines (KBM5 versus KBM5-T315I, 32D-Bcr-Abl versus 32D-Bcr-Abl-T315I) and primary cells from a CML patient with acquired resistance to imatinib. The mRNA and protein levels of Bcr-Abl in imatinib-sensitive (KBM5) or imatinib-resistant (KBM5-T315I) CML cells were reduced after pristimerin treatment. Further, inactivation of Bcr-Abl by imatinib pretreatment did not abrogate the TNFα-induced NF-κB activation while silencing p65 by siRNA did not affect the levels of Bcr-Abl, both results together indicating that NF-κB inactivation and Bcr-Abl inhibition may be parallel independent pathways. Conclusion To our knowledge, this is the first report to show that pristimerin is effective in vitro and in vivo against CML cells, including those with the T315I mutation. The mechanisms may involve inhibition of NF-κB and Bcr-Abl. We concluded that pristimerin could be a lead compound for further drug development to overcome imatinib resistance in CML patients. PMID:20482842
Recchia, Anna Grazia; Caruso, Nadia; Bossio, Sabrina; Pellicanò, Mariavaleria; De Stefano, Laura; Franzese, Stefania; Palummo, Angela; Abbadessa, Vincenzo; Lucia, Eugenio; Gentile, Massimo; Vigna, Ernesto; Caracciolo, Clementina; Agostino, Antolino; Galimberti, Sara; Levato, Luciano; Stagno, Fabio; Molica, Stefano; Martino, Bruno; Vigneri, Paolo; Di Raimondo, Francesco; Morabito, Fortunato
2015-01-01
Chronic Myeloid Leukemia (CML) is characterized by a balanced translocation juxtaposing the Abelson (ABL) and breakpoint cluster region (BCR) genes. The resulting BCR-ABL1 oncogene leads to increased proliferation and survival of leukemic cells. Successful treatment of CML has been accompanied by steady improvements in our capacity to accurately and sensitively monitor therapy response. Currently, measurement of BCR-ABL1 mRNA transcript levels by real-time quantitative PCR (RQ-PCR) defines critical response endpoints. An antibody-based technique for BCR-ABL1 protein recognition could be an attractive alternative to RQ-PCR. To date, there have been no studies evaluating whether flow-cytometry based assays could be of clinical utility in evaluating residual disease in CML patients. Here we describe a flow-cytometry assay that detects the presence of BCR-ABL1 fusion proteins in CML lysates to determine the applicability, reliability, and specificity of this method for both diagnosis and monitoring of CML patients for initial response to therapy. We show that: i) CML can be properly diagnosed at onset, (ii) follow-up assessments show detectable fusion protein (i.e. relative mean fluorescent intensity, rMFI%>1) when BCR-ABL1IS transcripts are between 1–10%, and (iii) rMFI% levels predict CCyR as defined by FISH analysis. Overall, the FCBA assay is a rapid technique, fully translatable to the routine management of CML patients. PMID:26111048
Saussele, Susanne; Krauss, Marie-Paloma; Hehlmann, Rüdiger; Lauseker, Michael; Proetel, Ulrike; Kalmanti, Lida; Hanfstein, Benjamin; Fabarius, Alice; Kraemer, Doris; Berdel, Wolfgang E; Bentz, Martin; Staib, Peter; de Wit, Maike; Wernli, Martin; Zettl, Florian; Hebart, Holger F; Hahn, Markus; Heymanns, Jochen; Schmidt-Wolf, Ingo; Schmitz, Norbert; Eckart, Michael J; Gassmann, Winfried; Bartholomäus, Andrea; Pezzutto, Antonio; Leibundgut, Elisabeth Oppliger; Heim, Dominik; Krause, Stefan W; Burchert, Andreas; Hofmann, Wolf-Karsten; Hasford, Joerg; Hochhaus, Andreas; Pfirrmann, Markus; Müller, Martin C
2015-07-02
We studied the influence of comorbidities on remission rate and overall survival (OS) in patients with chronic myeloid leukemia (CML). Participants of the CML Study IV, a randomized 5-arm trial designed to optimize imatinib therapy, were analyzed for comorbidities at diagnosis using the Charlson Comorbidity Index (CCI); 511 indexed comorbidities were reported in 1519 CML patients. Age was an additional risk factor in 863 patients. Resulting CCI scores were as follows: CCI 2, n = 589; CCI 3 or 4, n = 599; CCI 5 or 6, n = 229; and CCI ≥ 7, n = 102. No differences in cumulative incidences of accelerated phase, blast crisis, or remission rates were observed between patients in the different CCI groups. Higher CCI was significantly associated with lower OS probabilities. The 8-year OS probabilities were 93.6%, 89.4%, 77.6%, and 46.4% for patients with CCI 2, 3 to 4, 5 to 6, and ≥7, respectively. In multivariate analysis, CCI was the most powerful predictor of OS, which was still valid after removal of its age-related components. Comorbidities have no impact on treatment success but do have a negative effect on OS, indicating that survival of patients with CML is determined more by comorbidities than by CML itself. OS may therefore be inappropriate as an outcome measure for specific CML treatments. The trial was registered at www.clinicaltrials.gov as #NCT00055874. © 2015 by The American Society of Hematology.
Söderlund, Stina; Dahlén, Torsten; Sandin, Fredrik; Olsson-Strömberg, Ulla; Creignou, Maria; Dreimane, Arta; Lübking, Anna; Markevärn, Berit; Själander, Anders; Wadenvik, Hans; Stenke, Leif; Richter, Johan; Höglund, Martin
2017-01-01
The primary goal in management of chronic phase (CP) chronic myeloid leukaemia (CML) is to prevent disease progression to accelerated phase (AP) or blast crisis (BC). We have evaluated progression rates in a decentralised healthcare setting and characterised patients progressing to AP/BC on TKI treatment. Using data from the Swedish CML register, we identified CP-CML patients diagnosed 2007-2011 who progressed to AP/BC within 2 yrs from diagnosis (n = 18) as well as patients diagnosed in advanced phase during 2007-2012 (n = 36) from a total of 544 newly diagnosed CML cases. We evaluated baseline characteristics, progression rates, outcome and adherence to guidelines for monitoring and treatment. The cumulative progression rate at 2 yrs was 4.3%. All 18 progression cases had been treated with imatinib, and six progressed within 6 months. High-risk EUTOS score was associated to a higher risk of progression. Insufficient cytogenetic and/or molecular monitoring was found in 33%. Median survival after transformation during TKI treatment was 1.4 yrs. In those presenting with BC and AP, median survival was 1.6 yrs and not reached, respectively. In this population-based setting, progression rates appear comparable to that reported from clinical trials, with similar dismal patient outcome. Improved adherence to CML guidelines may minimise the risk of disease progression. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Drinda, S; Franke, S; Canet, C; Petrow, P; Brauer, R; Huttich, C; Stein, G; Hein, G
2002-01-01
Background: Generation of advanced glycation end products (AGEs) is an inevitable process in vivo and can be accelerated under pathological conditions such as oxidative stress. In serum and synovial fluid of patients with rheumatoid arthritis (RA) raised AGE levels have been found. Objective: To determine the presence of N -carboxymethyllysine (CML; marker of oxidative stress) in RA synovial tissue by immunohistology. Methods: Frozen synovial tissue samples from 10 patients with RA and eight controls (four patients without joint disease and four patients with osteoarthritis (OA)) were treated with rabbit-anti-CML-IgG and goat-antirabbit-IgG. Immunostaining was visualised by streptavidine-alkaline phosphatase (chromogen fuchsin). Cell differentiation was performed with antibodies against CD68, CD45RO, and CD20. Results: CML was detected in the synovial lining, sublining, and endothelium in 10/10 RA and 4/4 OA synovial specimens. In RA some macrophages (CD68+) and T cells (CD45RO+) showed positive immunostaining for CML, whereas B cells were negative. Staining in OA synovial sublining was weak compared with RA. Conclusions: CML was detected for the first time in RA and OA synovial tissue. Different patterns of immunostaining in RA and OA and the presence of CML on macrophages and T cells, suggest a role for CML in the pathogenesis of RA. This might be due to presentation of new epitopes which can maintain or even trigger an autoimmune response. PMID:12006318
Krauß, Marie-Paloma; Hehlmann, Rüdiger; Lauseker, Michael; Proetel, Ulrike; Kalmanti, Lida; Hanfstein, Benjamin; Fabarius, Alice; Kraemer, Doris; Berdel, Wolfgang E.; Bentz, Martin; Staib, Peter; de Wit, Maike; Wernli, Martin; Zettl, Florian; Hebart, Holger F.; Hahn, Markus; Heymanns, Jochen; Schmidt-Wolf, Ingo; Schmitz, Norbert; Eckart, Michael J.; Gassmann, Winfried; Bartholomäus, Andrea; Pezzutto, Antonio; Leibundgut, Elisabeth Oppliger; Heim, Dominik; Krause, Stefan W.; Burchert, Andreas; Hofmann, Wolf-Karsten; Hasford, Joerg; Hochhaus, Andreas; Pfirrmann, Markus; Müller, Martin C.
2015-01-01
We studied the influence of comorbidities on remission rate and overall survival (OS) in patients with chronic myeloid leukemia (CML). Participants of the CML Study IV, a randomized 5-arm trial designed to optimize imatinib therapy, were analyzed for comorbidities at diagnosis using the Charlson Comorbidity Index (CCI); 511 indexed comorbidities were reported in 1519 CML patients. Age was an additional risk factor in 863 patients. Resulting CCI scores were as follows: CCI 2, n = 589; CCI 3 or 4, n = 599; CCI 5 or 6, n = 229; and CCI ≥ 7, n = 102. No differences in cumulative incidences of accelerated phase, blast crisis, or remission rates were observed between patients in the different CCI groups. Higher CCI was significantly associated with lower OS probabilities. The 8-year OS probabilities were 93.6%, 89.4%, 77.6%, and 46.4% for patients with CCI 2, 3 to 4, 5 to 6, and ≥7, respectively. In multivariate analysis, CCI was the most powerful predictor of OS, which was still valid after removal of its age-related components. Comorbidities have no impact on treatment success but do have a negative effect on OS, indicating that survival of patients with CML is determined more by comorbidities than by CML itself. OS may therefore be inappropriate as an outcome measure for specific CML treatments. The trial was registered at www.clinicaltrials.gov as #NCT00055874. PMID:25918346
Clinical pathway for patients with Chronic Myeloid Leukaemia: The Euriclea Project.
Botti, Stefano; Gargiulo, Gianpaolo; Bombaci, Felice; Artioli, Giovanna; Cosentino, Chiara; Pignatelli, Adriana Concetta; Torino, Daniela; Lionetti, Maria Marcella; Samarani, Emanuela; Cappucciati, Lorella; Bordiga, Paola; Diodati, Antonella; Caffarri, Cristiana; Rosini, Irene; Pane, Fabrizio
2017-07-18
The use of Tirosine Kinase Ihnibitors (TKIs) for the treatment of Chronic Myeloid Leukemia (CML) has definitely represented a turning point in the treatment of the onco-hematological diseases. Over the years, the interest of physicians, nurses, patients and caregivers has increasingly focused on the aspects of the humanization of care, the management of side effects and on the full and constant therapeutic adherence. The aim of the project was to define patient-oriented care processes, based on a proactive approach that can fully respond to the new health needs of CML patients. A nursing expert Working Group (WG) was established. WG reviewed literature about CML patients assistance and then it was conducted a survey on organizational models for the treatment of CML patients, adopted by Italian haematologic and transplant centers. Finally, the main issues regarding CML patients care were identified and discussed on a multiprofessional basis. Euriclea Project for care of CML patients with the description of a new and expanded nurse role was defined. The Nurse Case Manager or Nursing Clinical Experts were identified as key people for the management of the side effects of treatment, the promotion of the therapeutic adherence and the evaluation of efficacy and effectiveness of the process through the identification of specific indicators for structure, process and outcome. The focal areas of the care process were identified so as to define a different approach to the CML patient, through a holistic view of care and the multidisciplinary interventions.
Cancer progression by reprogrammed BCAA metabolism in myeloid leukaemia.
Hattori, Ayuna; Tsunoda, Makoto; Konuma, Takaaki; Kobayashi, Masayuki; Nagy, Tamas; Glushka, John; Tayyari, Fariba; McSkimming, Daniel; Kannan, Natarajan; Tojo, Arinobu; Edison, Arthur S; Ito, Takahiro
2017-05-25
Reprogrammed cellular metabolism is a common characteristic observed in various cancers. However, whether metabolic changes directly regulate cancer development and progression remains poorly understood. Here we show that BCAT1, a cytosolic aminotransferase for branched-chain amino acids (BCAAs), is aberrantly activated and functionally required for chronic myeloid leukaemia (CML) in humans and in mouse models of CML. BCAT1 is upregulated during progression of CML and promotes BCAA production in leukaemia cells by aminating the branched-chain keto acids. Blocking BCAT1 gene expression or enzymatic activity induces cellular differentiation and impairs the propagation of blast crisis CML both in vitro and in vivo. Stable-isotope tracer experiments combined with nuclear magnetic resonance-based metabolic analysis demonstrate the intracellular production of BCAAs by BCAT1. Direct supplementation with BCAAs ameliorates the defects caused by BCAT1 knockdown, indicating that BCAT1 exerts its oncogenic function through BCAA production in blast crisis CML cells. Importantly, BCAT1 expression not only is activated in human blast crisis CML and de novo acute myeloid leukaemia, but also predicts disease outcome in patients. As an upstream regulator of BCAT1 expression, we identified Musashi2 (MSI2), an oncogenic RNA binding protein that is required for blast crisis CML. MSI2 is physically associated with the BCAT1 transcript and positively regulates its protein expression in leukaemia. Taken together, this work reveals that altered BCAA metabolism activated through the MSI2-BCAT1 axis drives cancer progression in myeloid leukaemia.
TARGETED THERAPY: Generic imatinib — impact on frontline and salvage therapy for CML
Gorkin, Larry; Kantarjian, Hagop
2017-01-01
Imatinib has revolutionized the treatment of chronic myeloid leukaemia (CML). In 2016, generic imatinib will be introduced into the US market. We analyse the potential impact of this new product on patient care and optimal CML therapy, and comment on the effect that distorted cancer drug pricing in the USA will have on treatment for patients with limited therapeutic options. PMID:27098218
Koller, Paul B; Kantarjian, Hagop M; Nogueras-Gonzalez, Graciela M; Jabbour, Elias; Verstovsek, Srdan; Borthakur, Gautam; Estrov, Zeev; Wierda, William G; Garcia-Manero, Guillermo; Ferrajoli, Alessandra; Ravandi, Farhad; O'Brien, Susan M; Cortes, Jorge E
2017-02-15
Some patients with chronic myeloid leukemia (CML) have a history of previous malignancies. To the authors' knowledge, outcomes for CML diagnosed in these patients have not been well described. The current study was conducted to determine the outcome of patients with CML and a history of prior malignancies. The current study included patients who were enrolled in clinical trials of tyrosine kinase inhibitors as initial therapy for CML in chronic phase from July 2000 to January 2014. Of the 630 patients with CML who were treated with frontline tyrosine kinase inhibitors, 626 had a known prior malignancy status. Of these, 45 patients (7%) had a prior malignancy other than nonmelanoma skin cancer whereas 17 patients (3%) had a history of nonmelanoma skin cancers alone. Characteristics of CML were similar between the patients with no prior malignancy, those with a prior malignancy, and those with nonmelanoma skin cancer. Patients with a prior malignancy were found to have an older median age compared with the other 2 groups. The most common prior malignancies were nonmelanoma skin cancer in 20 patients, breast cancer in 11 patients, melanoma in 7 patients, prostate cancer in 6 patients, and colorectal cancer in 5 patients. With regard to CML, the event-free survival, transformation-free survival, and failure-free survival rates were found to be similar between the groups. There was a statistically significantly decreased survival in the group with a prior malignancy versus the group with no prior malignancy versus the group with nonmelanoma skin cancer. In a multivariate analysis, advanced age and an elevated creatinine level were found to be associated with worse survival after a diagnosis of CML. Patients with CML with a history of prior malignancies appear to have the same excellent outcome as patients with no prior malignancies. In the few instances in which concomitant therapy for other malignancies was required during therapy with tyrosine kinase inhibitors, this was able to be accomplished without significant toxicity. Cancer 2017;123:609-616. © 2016 American Cancer Society. © 2016 American Cancer Society.
Abboud, Camille; Berman, Ellin; Cohen, Adam; Cortes, Jorge; DeAngelo, Daniel; Deininger, Michael; Devine, Steven; Druker, Brian; Fathi, Amir; Jabbour, Elias; Jagasia, Madan; Kantarjian, Hagop; Khoury, Jean; Laneuville, Pierre; Larson, Richard; Lipton, Jeffrey; Moore, Joseph O.; Mughal, Tariq; O’Brien, Susan; Pinilla-Ibarz, Javier; Quintas-Cardama, Alfonso; Radich, Jerald; Reddy, Vishnu; Schiffer, Charles; Shah, Neil; Shami, Paul; Silver, Richard T.; Snyder, David; Stone, Richard; Talpaz, Moshe; Tefferi, Ayalew; Van Etten, Richard A.; Wetzler, Meir; Abruzzese, Elisabetta; Apperley, Jane; Breccia, Massimo; Byrne, Jenny; Cervantes, Francisco; Chelysheva, Ekaterina; Clark, R. E.; de Lavallade, Hugues; Dyagil, Iryna; Gambacorti-Passerini, Carlo; Goldman, John; Haznedaroglu, Ibrahim; Hjorth-Hansen, Henrik; Holyoake, Tessa; Huntly, Brian; le Coutre, Philipp; Lomaia, Elza; Mahon, Francois-Xavier; Marin-Costa, David; Martinelli, Giovanni; Mayer, Jiri; Milojkovic, Dragana; Olavarria, Eduardo; Porkka, Kimmo; Richter, Johan; Rousselot, Philippe; Saglio, Giuseppe; Saydam, Guray; Stentoft, Jesper; Turkina, Anna; Vigneri, Paolo; Zaritskey, Andrey; Aguayo, Alvaro; Ayala, Manuel; Bendit, Israel; Maria Bengio, Raquel; Best, Carlos; Bullorsky, Eduardo; Cervera, Eduardo; DeSouza, Carmino; Fanilla, Ernesto; Gomez-Almaguer, David; Hamerschlak, Nelson; Lopez, Jose; Magarinos, Alicia; Meillon, Luis; Milone, Jorge; Moiraghi, Beatriz; Pasquini, Ricardo; Pavlovsky, Carolina; Ruiz-Arguelles, Guillermo J.; Spector, Nelson; Arthur, Christopher; Browett, Peter; Grigg, Andrew; Hu, Jianda; Huang, Xiao-jun; Hughes, Tim; Jiang, Qian; Jootar, Saengsuree; Kim, Dong-Wook; Malhotra, Hemant; Malhotra, Pankaj; Matsumura, Itaru; Melo, Junia; Ohnishi, Kazunori; Ohno, Ryuzo; Saikia, Tapan; Schwarer, Anthony P.; Takahashi, Naoto; Tam, Constantine; Tauchi, Tetsuzo; Usuki, Kensuke; Wang, Jianxiang; Abdel-Rahman, Fawzi; Deeb Saeed Aljurf, Mahmoud; Bazarbachi, Ali; Ben Yehuda, Dina; Chaudhri, Naeem; Durosinmi, Muheez; Kamel, Hossam; Louw, Vernon; Francis Matti, Bassam; Nagler, Arnon; Raanani, Pia; Salem, Ziad
2013-01-01
As a group of more than 100 experts in chronic myeloid leukemia (CML), we draw attention to the high prices of cancer drugs, with the particular focus on the prices of approved tyrosine kinase inhibitors for the treatment of CML. This editorial addresses the multiple factors involved in cancer drug pricing and their impact on individual patients and health care policies, and argues for the need to (1) lower the prices of cancer drugs to allow more patients to afford them and (2) maintain sound long-term health care policies. PMID:23620577
Buetler, Timo M; Leclerc, Estelle; Baumeyer, Alexandra; Latado, Helia; Newell, John; Adolfsson, Oskar; Parisod, Véronique; Richoz, Janique; Maurer, Sarah; Foata, Francis; Piguet, Dominique; Junod, Sylviane; Heizmann, Claus W; Delatour, Thierry
2008-03-01
Advanced glycation endproducts (AGEs) containing carboxymethyllysine (CML) modifications are generally thought to be ligands of the receptor for AGEs, RAGEs. It has been argued that this results in the activation of pro-inflammatory pathways and diseases. However, it has not been shown conclusively that a CML-modified protein can interact directly with RAGE. Here, we have analyzed whether beta-lactoglobulin (bLG) or human serum albumin (HSA) modified chemically to contain only CML (10-40% lysine modification) can (i) interact with RAGE in vitro and (ii) interact with and activate RAGE in lung epithelial cells. Our results show that CML-modified bLG or HSA are unable to bind to RAGE in a cell-free assay system (Biacore). Furthermore, they are unable to activate pro-inflammatory signaling in the cellular system. Thus, CML probably does not form the necessary structure(s) to interact with RAGE and activate an inflammatory signaling cascade in RAGE-expressing cells.
On the global dynamics of a chronic myelogenous leukemia model
NASA Astrophysics Data System (ADS)
Krishchenko, Alexander P.; Starkov, Konstantin E.
2016-04-01
In this paper we analyze some features of global dynamics of a three-dimensional chronic myelogenous leukemia (CML) model with the help of the stability analysis and the localization method of compact invariant sets. The behavior of CML model is defined by concentrations of three cellpopulations circulating in the blood: naive T cells, effector T cells specific to CML and CML cancer cells. We prove that the dynamics of the CML system around the tumor-free equilibrium point is unstable. Further, we compute ultimate upper bounds for all three cell populations and provide the existence conditions of the positively invariant polytope. One ultimate lower bound is obtained as well. Moreover, we describe the iterative localization procedure for refining localization bounds; this procedure is based on cyclic using of localizing functions. Applying this procedure we obtain conditions under which the internal tumor equilibrium point is globally asymptotically stable. Our theoretical analyses are supplied by results of the numerical simulation.
Huang, Y; Zheng, J; Hu, J D; Wu, Y A; Zheng, X Y; Liu, T B; Chen, F L
2014-02-19
We performed whole-exome sequencing in samples representing accelerated phase (AP) and blastic crisis (BC) in a subject with chronic myeloid leukemia (CML). A total of 12.74 Gb clean data were generated, achieving a mean depth coverage of 64.45 and 69.53 for AP and BC samples, respectively, of the target region. A total of 148 somatic variants were detected, including 76 insertions and deletions (indels), 64 single-nucleotide variations (SNV), and 8 structural variations (SV). On the basis of annotation and functional prediction analysis, we identified 3 SNVs and 6 SVs that showed a potential association with CML progression. Among the genes that harbor the identified variants, GATA2 has previously been reported to play important roles in the progression from AP to BC in CML. Identification of these genes will allow us to gain a better understanding of the pathological mechanism of CML and represents a critical advance toward new molecular diagnostic tests for the development of potential therapies for CML.
Identification of Novel Genes and Candidate Targets in CML Stem Cells
2008-07-01
myeloblastosis viral oncogene homolog (avian) 6q22–q23 12 GATCCTGTGTTTGCAAC 1 FLI1 NM_002017 Friend leukemia virus integration 1 11q24.1–q24.3 3...AVAILABILITY STATEMENT Approved for public release; distribution unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Chronic myeloid leukemia (CML) is...Conclusion 6 References 6 Supporting Data 8 Appendices 16 4 INTRODUCTION: Chronic myeloid leukemia (CML) is a blood
The effect of a clinical medical librarian on in-patient care outcomes*
Esparza, Julia M.; Shi, Runhua; McLarty, Jerry; Comegys, Marianne; Banks, Daniel E.
2013-01-01
Objective: The research sought to determine the effect of a clinical medical librarian (CML) on outcomes of in-patients on the internal medicine service. Methods: A prospective study was performed with two internal medicine in-patient teams. Team 1 included a CML who accompanied the team on daily rounds. The CML answered questions posed at the point of care immediately or in emails post-rounds. Patients on Team 2, which did not include a CML, as well as patients who did not require consultation by the CML on Team 1, served as the control population. Numerous clinical and library metrics were gathered on each question. Results: Patients on Team 1 who required an answer to a clinical question were more ill and had a longer length of stay, higher costs, and higher readmission rates compared to those in the control group. Using a matched pair analysis, we showed no difference in clinical outcomes between the intervention group and the control group. Conclusions: This study is the largest attempt to prospectively measure changes in patient outcomes when physicians were accompanied by a CML on rounds. This approach may serve as a model for further studies to define when and how CMLs are most effective. PMID:23930088
Wagner, Kay Cimpl; Byrd, Gary D.
2004-01-01
Objective: This study was undertaken to determine if a systematic review of the evidence from thirty years of literature evaluating clinical medical librarian (CML) programs could help clarify the effectiveness of this outreach service model. Methods: A descriptive review of the CML literature describes the general characteristics of these services as they have been implemented, primarily in teaching-hospital settings. Comprehensive searches for CML studies using quantitative or qualitative evaluation methods were conducted in the medical, allied health, librarianship, and social sciences literature. Findings: Thirty-five studies published between 1974 and 2001 met the review criteria. Most (30) evaluated single, active programs and used descriptive research methods (e.g., use statistics or surveys/questionnaires). A weighted average of 89% of users in twelve studies found CML services useful and of high quality, and 65% of users in another overlapping, but not identical, twelve studies said these services contributed to improved patient care. Conclusions: The total amount of research evidence for CML program effectiveness is not great and most of it is descriptive rather than comparative or analytically qualitative. Standards are needed to consistently evaluate CML or informationist programs in the future. A carefully structured multiprogram study including three to five of the best current programs is needed to define the true value of these services. PMID:14762460
Integrated computational biology analysis to evaluate target genes for chronic myelogenous leukemia.
Zheng, Yu; Wang, Yu-Ping; Cao, Hongbao; Chen, Qiusheng; Zhang, Xi
2018-06-05
Although hundreds of genes have been linked to chronic myelogenous leukemia (CML), many of the results lack reproducibility. In the present study, data across multiple modalities were integrated to evaluate 579 CML candidate genes, including literature‑based CML‑gene relation data, Gene Expression Omnibus RNA expression data and pathway‑based gene‑gene interaction data. The expression data included samples from 76 patients with CML and 73 healthy controls. For each target gene, four metrics were proposed and tested with case/control classification. The effectiveness of the four metrics presented was demonstrated by the high classification accuracy (94.63%; P<2x10‑4). Cross metric analysis suggested nine top candidate genes for CML: Epidermal growth factor receptor, tumor protein p53, catenin β 1, janus kinase 2, tumor necrosis factor, abelson murine leukemia viral oncogene homolog 1, vascular endothelial growth factor A, B‑cell lymphoma 2 and proto‑oncogene tyrosine‑protein kinase. In addition, 145 CML candidate pathways enriched with 485 out of 579 genes were identified (P<8.2x10‑11; q=0.005). In conclusion, weighted genetic networks generated using computational biology may be complementary to biological experiments for the evaluation of known or novel CML target genes.
The impact of socio-economic factors on treatment choice and mortality in chronic myeloid leukaemia.
Larfors, Gunnar; Sandin, Fredrik; Richter, Johan; Själander, Anders; Stenke, Leif; Lambe, Mats; Höglund, Martin
2017-04-01
To evaluate the influence of socio-economic variables on treatment selection and survival of patients with chronic myeloid leukaemia (CML). Using information available in population-based Swedish registries, we evaluated indices of health, education and economy from the 980 patients in the Swedish CML register diagnosed between 2002 and 2012. Apart from internal comparisons, five age-, gender- and region-matched control subjects per patient served as control cohort. Median follow-up time from CML diagnosis was 4.8 years. Among patients with CML, low personal or household income, short education, living alone, poor performance status and high age (>60 years) were significantly associated with an inferior survival (in univariate analyses). However, similar findings were noted also in the matched control group, and in comparisons adjusted for calendar year, age and performance status, socio-economic variables were not significantly associated with CML survival. Meanwhile, both education and income were independently linked to TKI treatment overall and to upfront treatment with second-generation TKIs. In conclusion, socio-economic conditions were associated with survival in the studied CML cohort but these associations could be explained by differences at baseline. Meanwhile, socio-economic conditions appeared to influence treatment choice. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Giotopoulos, George; van der Weyden, Louise; Osaki, Hikari; Rust, Alistair G.; Gallipoli, Paolo; Meduri, Eshwar; Horton, Sarah J.; Chan, Wai-In; Foster, Donna; Prinjha, Rab K.; Pimanda, John E.; Tenen, Daniel G.; Vassiliou, George S.; Koschmieder, Steffen; Adams, David J.
2015-01-01
The introduction of highly selective ABL-tyrosine kinase inhibitors (TKIs) has revolutionized therapy for chronic myeloid leukemia (CML). However, TKIs are only efficacious in the chronic phase of the disease and effective therapies for TKI-refractory CML, or after progression to blast crisis (BC), are lacking. Whereas the chronic phase of CML is dependent on BCR-ABL, additional mutations are required for progression to BC. However, the identity of these mutations and the pathways they affect are poorly understood, hampering our ability to identify therapeutic targets and improve outcomes. Here, we describe a novel mouse model that allows identification of mechanisms of BC progression in an unbiased and tractable manner, using transposon-based insertional mutagenesis on the background of chronic phase CML. Our BC model is the first to faithfully recapitulate the phenotype, cellular and molecular biology of human CML progression. We report a heterogeneous and unique pattern of insertions identifying known and novel candidate genes and demonstrate that these pathways drive disease progression and provide potential targets for novel therapeutic strategies. Our model greatly informs the biology of CML progression and provides a potent resource for the development of candidate therapies to improve the dismal outcomes in this highly aggressive disease. PMID:26304963
CML/CD36 accelerates atherosclerotic progression via inhibiting foam cell migration.
Xu, Suining; Li, Lihua; Yan, Jinchuan; Ye, Fei; Shao, Chen; Sun, Zhen; Bao, Zhengyang; Dai, Zhiyin; Zhu, Jie; Jing, Lele; Wang, Zhongqun
2018-01-01
Among the various complications of type 2 diabetes mellitus, atherosclerosis causes the highest disability and morbidity. A multitude of macrophage-derived foam cells are retained in atherosclerotic plaques resulting not only from recruitment of monocytes into lesions but also from a reduced rate of macrophage migration from lesions. Nε-carboxymethyl-Lysine (CML), an advanced glycation end product, is responsible for most complications of diabetes. This study was designed to investigate the mechanism of CML/CD36 accelerating atherosclerotic progression via inhibiting foam cell migration. In vivo study and in vitro study were performed. For the in vivo investigation, CML/CD36 accelerated atherosclerotic progression via promoting the accumulation of macrophage-derived foam cells in aorta and inhibited macrophage-derived foam cells in aorta migrating to the para-aorta lymph node of diabetic apoE -/- mice. For the in vitro investigation, CML/CD36 inhibited RAW264.7-derived foam cell migration through NOX-derived ROS, FAK phosphorylation, Arp2/3 complex activation and F-actin polymerization. Thus, we concluded that CML/CD36 inhibited foam cells of plaque migrating to para-aorta lymph nodes, accelerating atherosclerotic progression. The corresponding mechanism may be via free cholesterol, ROS generation, p-FAK, Arp2/3, F-actin polymerization. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Intercellular interaction mechanisms for the origination of blast crisis in chronic myeloid leukemia
Sachs, Rainer; Johnsson, Kerstin; Hahnfeldt, Philip; Luo, Janet; Chen, Allen; Hlatky, Lynn
2011-01-01
Chronic myeloid leukemia (CML) is characterized by a specific chromosome translocation, and its pathobiology is considered comparatively well understood. Thus, quantitative analysis of CML and its progression to blast crisis may help elucidate general mechanisms of carcinogenesis and cancer progression. Hitherto it has been widely postulated that CML blast crisis originates mainly via cell-autonomous mechanisms such as secondary mutations or genomic instability, rather than by intercellular interactions. However, recent results suggest that intercellular interactions play an important role in carcinogenesis. In this study, we analyzed alternative mechanisms, including pairwise intercellular interactions, for CML blast crisis origination. A quantitative, mechanistic cell population dynamics model was employed. This model used recent data on imatinib-treated CML; it also used earlier clinical data, not previously incorporated into current mathematical CML/imatinib models. With the pre-imatinib data, which include results on many more blast crises, we obtained evidence that the driving mechanism for blast crisis origination is intercellular interaction between specific cell types. Assuming leukemic-normal interactions resulted in a statistically significant improvement over assuming either cell-autonomous mechanisms or interactions between leukemic cells. This conclusion was robust with regard to changes in the model’s adjustable parameters. Application of the results to patients treated with imatinib suggests that imatinib may act not only on malignant blast precursors, but also, to a limited degree, on the malignant blasts themselves. Major Findings A comprehensive mechanistic model gives evidence that the main driving mechanisms for CML blast crisis origination are interactions between leukemic and normal cells. PMID:21487044
Plasma sRAGE and N-(carboxymethyl) lysine in patients with CHF and/or COPD.
Boschetto, Piera; Campo, Ilaria; Stendardo, Mariarita; Casimirri, Enrico; Tinelli, Carmine; Gorrini, Marina; Ceconi, Claudio; Fucili, Alessandro; Potena, Alfredo; Papi, Alberto; Ballerin, Licia; Fabbri, Leonardo M; Luisetti, Maurizio
2013-06-01
Knowledge of the role of the receptor for advanced glycation end products (RAGE), particularly its soluble form (sRAGE), and of its advanced glycation end product (AGE) ligand, N-(carboxymethyl)lysine adducts (CML), is limited in chronic heart failure (CHF) and in chronic obstructive pulmonary disease (COPD). We evaluated whether the AGE/RAGE system is activated in stable CHF and COPD, and whether plasma sRAGE and CML levels are affected by clinical and functional parameters. We measured plasma levels of sRAGE and CML using a sandwich enzyme-linked immunosorbent assay (ELISA) in 143 subjects, aged ≥ 65 years, divided into five groups: 58 with CHF, 23 with COPD, 27 with CHF+COPD and 35 controls (17 healthy smokers and 18 healthy nonsmokers). Individuals with diabetes were excluded from the study. Plasma levels of sRAGE and CML were higher in CHF patients than in controls [sRAGE: 0.48 (0.37-0.83) vs. 0.42 (0.29-0.52) ng/mL, P = 0.01; CML: 1.95 (1.58-2.38) vs. 1.68 (1.43-2.00) ng/mL, P = 0.01]. By contrast, sRAGE and CML were not different between both COPD and CHF+COPD patients and controls (P > 0.05). N-terminal pro-brain natriuretic peptide (Nt-pro BNP) correlated with sRAGE, but not with CML, in the patient groups: CHF (r = 0.43, P < 0.001), COPD (r = 0.77, P < 0.0001) and CHF/COPD (r = 0.43, P = 0.003). Plasma levels of sRAGE and CML are increased in CHF, but not in COPD patients. The robust association between NT-pro BNP, a diagnostic and prognostic marker in CHF, and sRAGE concentrations might suggest a possible BNP pathway of amplification of inflammation via the AGE/RAGE system. © 2013 Stichting European Society for Clinical Investigation Journal Foundation. Published by John Wiley & Sons Ltd.
Zhou, Chao; Liu, LiJuan; Zhuang, Jing; Wei, JunYu; Zhang, TingTing; Gao, ChunDi; Liu, Cun; Li, HuaYao; Si, HongZong; Sun, ChangGang
2018-06-23
BACKGROUND The method of multiple targets overall control is increasingly used to predict the main active ingredient and potential target group of Chinese traditional medicines and to determine the mechanisms involved in their curative effects. Qingdai is the main traditional Chinese medicine used in the treatment of chronic myelogenous leukemia (CML), but the complex active ingredients and antitumor targets in treatment of CML have not been clearly defined in previous studies. MATERIAL AND METHODS We constructed a protein-protein interaction network diagram of CML with 638 nodes (proteins) and 1830 edges, based on the biological function of chronic myelocytic leukemia by use of Cytoscape, and we determined 19 key gene nodes in the CML molecule by network topological properties analysis in a data bank. Then, we used the Surflex-dock plugin in SYBYL7.3 docking and acquired the protein crystal structures of key genes involved in CML from the chemical composition of the traditional Chinese medicine Qingdai with key proteins in CML networks. RESULTS According to the score and the spatial structure, the pharmacodynamically active ingredients of Qingdai are Isdirubin, Isoindigo, N-phenyl-2-naphthylamine, and Isatin, among which Isdirubin is the most important. We further screened the most effective activity key protein structures of CML to find the best pharmacodynamically active ingredients of Qingdai, according to the binding interactions of the inhibitors at the catalytic site performed in best docking combinations. CONCLUSIONS The results suggest that Isdirubin plays a role in resistance to CML by altering the expressions of PIK3CA, MYC, JAK2, and TP53 target proteins. Network pharmacology and molecular docking technology can be used to search for possible reactive molecules in traditional chinese medicines (TCM) and to elucidate their molecular mechanisms.
de Jong, Wibe A; Walker, Andrew M; Hanwell, Marcus D
2013-05-24
Multidisciplinary integrated research requires the ability to couple the diverse sets of data obtained from a range of complex experiments and computer simulations. Integrating data requires semantically rich information. In this paper an end-to-end use of semantically rich data in computational chemistry is demonstrated utilizing the Chemical Markup Language (CML) framework. Semantically rich data is generated by the NWChem computational chemistry software with the FoX library and utilized by the Avogadro molecular editor for analysis and visualization. The NWChem computational chemistry software has been modified and coupled to the FoX library to write CML compliant XML data files. The FoX library was expanded to represent the lexical input files and molecular orbitals used by the computational chemistry software. Draft dictionary entries and a format for molecular orbitals within CML CompChem were developed. The Avogadro application was extended to read in CML data, and display molecular geometry and electronic structure in the GUI allowing for an end-to-end solution where Avogadro can create input structures, generate input files, NWChem can run the calculation and Avogadro can then read in and analyse the CML output produced. The developments outlined in this paper will be made available in future releases of NWChem, FoX, and Avogadro. The production of CML compliant XML files for computational chemistry software such as NWChem can be accomplished relatively easily using the FoX library. The CML data can be read in by a newly developed reader in Avogadro and analysed or visualized in various ways. A community-based effort is needed to further develop the CML CompChem convention and dictionary. This will enable the long-term goal of allowing a researcher to run simple "Google-style" searches of chemistry and physics and have the results of computational calculations returned in a comprehensible form alongside articles from the published literature.
2013-01-01
Background Multidisciplinary integrated research requires the ability to couple the diverse sets of data obtained from a range of complex experiments and computer simulations. Integrating data requires semantically rich information. In this paper an end-to-end use of semantically rich data in computational chemistry is demonstrated utilizing the Chemical Markup Language (CML) framework. Semantically rich data is generated by the NWChem computational chemistry software with the FoX library and utilized by the Avogadro molecular editor for analysis and visualization. Results The NWChem computational chemistry software has been modified and coupled to the FoX library to write CML compliant XML data files. The FoX library was expanded to represent the lexical input files and molecular orbitals used by the computational chemistry software. Draft dictionary entries and a format for molecular orbitals within CML CompChem were developed. The Avogadro application was extended to read in CML data, and display molecular geometry and electronic structure in the GUI allowing for an end-to-end solution where Avogadro can create input structures, generate input files, NWChem can run the calculation and Avogadro can then read in and analyse the CML output produced. The developments outlined in this paper will be made available in future releases of NWChem, FoX, and Avogadro. Conclusions The production of CML compliant XML files for computational chemistry software such as NWChem can be accomplished relatively easily using the FoX library. The CML data can be read in by a newly developed reader in Avogadro and analysed or visualized in various ways. A community-based effort is needed to further develop the CML CompChem convention and dictionary. This will enable the long-term goal of allowing a researcher to run simple “Google-style” searches of chemistry and physics and have the results of computational calculations returned in a comprehensible form alongside articles from the published literature. PMID:23705910
Xubo, Gong; Xingguo, Lu; Xianguo, Wu; Rongzhen, Xu; Xibin, Xiao; Lin, Wang; Lei, Zhu; Xiaohong, Zhang; Genbo, Xu; Xiaoying, Zhao
2009-10-01
To better realize the features of peripheral blood (PB), bone marrow (BM) aspirate and especially BM trephine biopsy in atypical chronic myeloid leukemia (aCML). We studied PB, BM smears in 35 cases of aCML and compared with 84 cases of chronic granulocytic leukemia chronic phase (CGL-CP), 39 cases of chronic myelomonocytic leukemia (CMML). In addition, we evaluated characteristics of BM trephine biopsies in 21 cases of aCML and compared with 68 cases of CGL-CP, 20 cases of CMML. All aCML patients presented with leukocytosis (median WBC 17.3 x 10(9)/L), 48% had moderate anemia, and 85% had thrombocytopenia. Values of monocytes, eosinophils, basophils, percentage of immature granulocytes and monocytes (0.63 +/- 0.41 x 10(9)/L, 0.18 +/- 0.16 x 10(9)/L, 0.09 +/-0.08 x 10(9)/L, 6.27 +/- 3.09%, and 2.46 +/- 1.75%, respectively) were useful in distinguishing aCML from CGL-CP and CMML groups. The BM smears showed that striking dysgranulopoieis (100%), dyserythropoiesis (48.6%), percentage of blasts, nucleated erythrocytes, monocytes, eosinophils, and basophils (2.45 +/- 2.06%, 7.76 +/- 2.89%, 1.30 +/- 1.21%, 1.47 +/- 1.60%, and 1.15 +/- 1.08%, respectively) were all important parameters for a diagnosis of aCML. On BM trephine sections, aCML was characterized as hypercellularity, a moderate degree of reticulin fibrosis (71.4%), lymphocytopenia (76.2%), plasmacytopenia (90.5%), abnormal localization of immature precursors (28.5%), and absence of eosinophilia, basophilia, monocytosis. Furthermore, BM imprints, immunohistochemical, and cytochemical staining findings provided important morphological reference to BM trephine sections and made the identification of nucleated cells more convenient. Besides the findings observed in PB and BM aspirate, features of BM trephine biopsy (including BM trephine section, BM imprint, immunohistochemical, and cytochemical staining) can also aid in the diagnosis of aCML.
Association of serum N(ε)-Carboxy methyl lysine with severity of diabetic retinopathy.
Mishra, Nibha; Saxena, Sandeep; Shukla, Rajendra K; Singh, Vinita; Meyer, Carsten H; Kruzliak, Peter; Khanna, Vinay K
2016-04-01
To correlate serum levels of N-epsilon-carboxy methyl lysine (N(ε)-CML) with severity of retinopathy, in vivo macular edema and disruption of external limiting membrane (ELM) and photoreceptor ellipsoid zone in type 2 diabetes mellitus (DM). Consecutive cases of type 2 DM [diabetes mellitus with no retinopathy (No DR) (n=20); non- proliferative diabetic retinopathy (NPDR) with diabetic macular edema (n=20); proliferative diabetic retinopathy with diabetic macular edema (PDR) (n=20)] and healthy controls (n=20) between the ages of 40 and 65 years were included (power of study=93.8%). In vivo histology of retinal layers was assessed using spectral domain optical coherence tomography. Every study subject underwent macular thickness analysis using the macular cube 512×128 feature. Disruption of ELM and photoreceptor ellipsoid zone was graded: grade 0, no disruption of ELM and ellipsoid zone; grade 1, ELM disrupted and ellipsoid zone intact; grade 2, both ELM and ellipsoid zone disrupted. Data were statistically analyzed. The mean levels of N(ε)-CML were 31.34±21.23 ng/ml, 73.88±35.01 ng/ml, 91.21±66.65 ng/ml, and 132.08±84.07 ng/ml in control, No DR, NPDR and PDR respectively. N(ε)-CML level was significantly different between the study groups (control, No DR, NPDR and PDR) (p<0.001). Mean logMAR visual acuity decreased with increased levels of N(ε)-CML (p<0.001). The association of N(Ɛ)CML with the grades of disruption was found to be statistically significant (F value=18.48, p<0.001). Univariate analysis was done with N(Ɛ)-CML as a dependent variable. The values of N(Ɛ)-CML were normalized (log10) and were subjected to univariate analysis with fasting blood glucose level, glycosylated hemoglobin, central subfield macular thickness and cube average thickness among the diseased groups (NPDR and PDR) that act as confounders. It was found that none of the variables had significant effect on N(Ɛ)-CML (fasting blood glucose p=0.12, HBA1c p=0.65, central subfield macular thickness p=0.13, cube average thickness p=0.19). N(Ɛ)-CML tends to be a significant and important predictor of grade of ELM and ellipsoid zone disruption in diabetic retinopathy. Increased N(ε)-CML levels are associated with increased severity of diabetic retinopathy, macular edema and structural changes in macula that is ELM and ellipsoid zone disruption, which serves as a prognosticator of visual outcome. Copyright © 2016 Elsevier Inc. All rights reserved.
Cheng, Lu; Jin, Cheng; Zhang, Ying
2014-05-01
Baking processing is indispensable to determine special sensory prosperities of cookies and induces the formation of some beneficial components such as antioxidants. However, the formation of some Maillard reaction-derived chemical hazards, such as acrylamide (AA) and N(ε) -(carboxymethyl) lysine (CML) in cookies is also a significant consequence of baking processing from a food safety standpoint. This study investigated the effects of baking conditions on the formation of AA and CML, as well as the antioxidant activity (AOA) of cookies. Cookies were baked at various baking temperatures (155 to 230 °C) and times (1.5 to 31 min). AA and CML contents were determined by ultra-performance liquid chromatography-tandem mass spectrometry, respectively. The highest level of AA was obtained in the cookies baked at 155 °C/21 min and 205 °C/11 min (328.93 ± 3.10 μg/kg and 329.29 ± 5.29 μg/kg), while the highest level of CML was obtained in the cookies baked at 230 °C/1.5 min (118.05 ± 0.21 mg/kg). AA was prone to form at relatively low temperature range (155 to 205 °C), however, CML at relatively high temperature range (205 to 230 °C). The CML content was much higher than the AA content in the same set of cookies, by about 2 to 3 orders of magnitude. The AOA of cookies increased at more severe baking conditions. According to the AA and CML content, AOA and sensory properties of cookies, the temperature-time regime of 180 °C/16 min might be a compromised selection. However, only optimizing the baking condition was not enough for manufacture of high-quality cookies. Cookies, a kind of widely consumed bakery products in the world, contain some potentially harmful compounds, like acrylamide (AA) and N(ε) -(carboxymethyl) lysine (CML). AA in cookies has led to public health concern and several research efforts. But CML, another Maillard reaction-derived chemical hazard, has been neglected so far, even though its content is much higher than that of AA in cookies. The results contribute to further insight into the Maillard reaction and are useful for the selection of baking conditions to produce high-quality cookies with lower AA and CML contents, higher AOA, and better sensory properties. © 2014 Institute of Food Technologists®
Chronic myelogenous leukemia (CML)
CML; Chronic myeloid leukemia; CGL; Chronic granulocytic leukemia; Leukemia - chronic granulocytic ... nuclear disaster. It takes many years to develop leukemia from radiation exposure. Most people treated for cancer ...
Mechanisms of Disease Persistence in Chronic Myelogenous Leukemia (CML)
2006-10-01
Ohno-Jones S, Kolibaba KS, Druker BJ. Efficacy of STI571, an ABL tyrosine kinase inhibitor, in conjunction with other anti -leukemic agents against Bcr... Selective detection of CML cells was observed (Figure 4). Annual Report – CM050037 Brian J. Druker, MD Page 8 of 39 Figure 4. Intracellular FACS...for selection of CML cells. Because this is a polyclonal antibody, high background staining may obscure weaker differences in signal. To address
Department of Defense In-House RDT and E Activities
1978-10-30
SERVICF DFV CML CML- BIO OFFENSE SMOKE/OBSCURANT TEST PROGRAMS CONDUCTS R & 0 & LAB INVESTIGATIONS NECESSARY TO SUPPORT MISSIONCONOUCTS JT OP CML & CNL... BIO nEFENSE TESTS/STUEPFS FOR CTNCS, SERVICESCONDUCTS PROG TO SUP ARMY POLL ABATEMENT HAZARD EVAL E DFMIL OPNSCONDUCTS ECOLOGICAL EPIDEMIOLOGICAL C...CDRoCOL. H. F. PENNY TECHODIR.DR. DALE H. STELING PROGRAM DATA BY FISCAL YEAR (MILLION S) PROGRAM 1978 1979 (ACT UAL) (ACT + EST)TOTAL RDT&E 23&722
Kanakasetty, Govind Babu; Kuntejowdahalli, Lakshmaiah; Thanky, Aditi Harsh; Dasappa, Lokanatha; Jacob, Linu Abraham; Mallekavu, Suresh Babu; Kumari, Prasanna
2017-01-01
Chronic myeloid leukemia (CML) is a myeloproliferative disorder characterized by Philadelphia (Ph) chromosome with classical t(9;22)(q34;q11) seen in up to 90% of cases. However 5% to 10% of patients who present with variant Ph translocations (vPh) have been an area of research for their significance in predicting response to various therapies including tyrosine kinase inhibitors as well as prognosticating survival outcomes for many years involving varied patient populations, with conflicting results. We retrospectively analyzed our data from January 2002 to December 2014. Patients with vPh in chronic phase of CML (CML-CP) were analyzed with respect to their demographic parameters, response to imatinib therapy, and survival and their data were compared with data of patients with classical Ph translocation (cPh). Of 615 patients diagnosed with CML-CP, 72 patients (11.7%) showed vPh. Most common chromosomes involved in these translocations were 14 (13.9%), 11 (12.5%), 19 (9.7%), and 7 (8.3%). Rates of complete hematological response, complete cytogenetic response, and major molecular response were not statistically different between the groups. At 5 years, event-free survival, failure-free survival, progression-free survival, and overall survival were 60% versus 67.9%, 62.7% versus 69.7%, 84.7% versus 92.1%, and 87.5% versus 92.4%, respectively, in vPh and cPh. The differences in survival were statistically not significant. To our knowledge, this is the largest series of variant translocations in CML-CP, pertaining to the Indian population. Our data suggest that the presence of vPh in CML has no significant effect in predicting response to imatinib as well as in prognosticating survival. Copyright © 2016 Elsevier Inc. All rights reserved.
Swords, Ronan; Mahalingam, Devalingam; Padmanabhan, Swaminathan; Carew, Jennifer; Giles, Francis
2009-09-21
Chronic myeloid leukemia (CML) is the consequence of a single balanced translocation that produces the BCR-ABL fusion oncogene which is detectable in over 90% of patients at presentation. The BCR-ABL inhibitor imatinib mesylate (IM) has improved survival in all phases of CML and is the standard of care for newly diagnosed patients in chronic phase. Despite the very significant therapeutic benefits of IM, a small minority of patients with early stage disease do not benefit optimally while IM therapy in patients with advanced disease is of modest benefit in many. Diverse mechanisms may be responsible for IM failures, with point mutations within the Bcr-Abl kinase domain being amongst the most common resistance mechanisms described in patients with advanced CML. The development of novel agents designed to overcome IM resistance, while still primarily targeted on BCR-ABL, led to the creation of the high affinity aminopyrimidine inhibitor, nilotinib. Nilotinib is much more potent as a BCR-ABL inhibitor than IM and inhibits both wild type and IM-resistant BCR-ABL with significant clinical activity across the entire spectrum of BCR-ABL mutants with the exception of T315I. The selection of a second generation tyrosine kinase inhibitor to rescue patients with imatinib failure will be based on several factors including age, co-morbid medical problems and ABL kinase mutational profile. It should be noted that while the use of targeted BCR-ABL kinase inhibitors in CML represents a paradigm shift in CML management these agents are not likely to have activity against the quiescent CML stem cell pool. The purpose of this review is to summarize the pre-clinical and clinical data on nilotinib in patients with CML who have failed prior therapy with IM or dasatinib.
Lo, Mei-Chen; Chen, Ming-Hong; Lee, Wen-Sen; Lu, Chin-I; Chang, Chuang-Rung; Kao, Shu-Huei; Lee, Horng-Mo
2015-11-15
Nε-(carboxymethyl) lysine-conjugated bovine serum albumin (CML-BSA) is a major component of advanced glycation end products (AGEs). We hypothesised that AGEs reduce insulin secretion from pancreatic β-cells by damaging mitochondrial functions and inducing mitophagy. Mitochondrial morphology and the occurrence of autophagy were examined in pancreatic islets of diabetic db/db mice and in the cultured CML-BSA-treated insulinoma cell line RIN-m5F. In addition, the effects of α-lipoic acid (ALA) on mitochondria in AGE-damaged tissues were evaluated. The diabetic db/db mouse exhibited an increase in the number of autophagosomes in damaged mitochondria and receptor for AGEs (RAGE). Treatment of db/db mice with ALA for 12 wk increased the number of mitochondria with well-organized cristae and fewer autophagosomes. Treatment of RIN-m5F cells with CML-BSA increased the level of RAGE protein and autophagosome formation, caused mitochondrial dysfunction, and decreased insulin secretion. CML-BSA also reduced mitochondrial membrane potential and ATP production, increased ROS and lipid peroxide production, and caused mitochondrial DNA deletions. Elevated fission protein dynamin-related protein 1 (Drp1) level and mitochondrial fragmentation demonstrated the unbalance of mitochondrial fusion and fission in CML-BSA-treated cells. Additionally, increased levels of Parkin and PTEN-induced putative kinase 1 protein suggest that fragmented mitochondria were associated with increased mitophagic activity, and ALA attenuated the CML-BSA-induced mitophage formation. Our study demonstrated that CML-BSA induced mitochondrial dysfunction and mitophagy in pancreatic β-cells. The findings from this study suggest that increased concentration of AGEs may damage β-cells and reduce insulin secretion. Copyright © 2015 the American Physiological Society.
Cutaneous larva migrans syndrome: a case report.
Tekely, Emilia; Szostakiewicz, Beata; Wawrzycki, Bartłomiej; Kądziela-Wypyska, Grażyna; Juszkiewicz-Borowiec, Maria; Pietrzak, Aldona; Chodorowska, Grażyna
2013-04-01
Cutaneous larva migrans (CML) is a frequent parasitic infestation caused by migration of animal hookworm larvae into the human epidermis. This skin disease is common in warmer climates among people, who have contact with contaminated soil. Clinical manifestation of CML is an itchy, erythematous, linear tract, which appears days to even months after exposure to infested sand or soil. Diagnosis is established on the clinical presentation. We describe a case of CML acquired during a holiday in Brazil.
Cutaneous larva migrans syndrome: a case report
Szostakiewicz, Beata; Wawrzycki, Bartłomiej; Kądziela-Wypyska, Grażyna; Juszkiewicz-Borowiec, Maria; Pietrzak, Aldona; Chodorowska, Grażyna
2013-01-01
Cutaneous larva migrans (CML) is a frequent parasitic infestation caused by migration of animal hookworm larvae into the human epidermis. This skin disease is common in warmer climates among people, who have contact with contaminated soil. Clinical manifestation of CML is an itchy, erythematous, linear tract, which appears days to even months after exposure to infested sand or soil. Diagnosis is established on the clinical presentation. We describe a case of CML acquired during a holiday in Brazil. PMID:24278060
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jia, Qinghua; Sun, Huiyan; Xiao, Fengjun
miR-17-92 cluster are overexpressed in hematological malignancies including chronic myeloid leukemia (CML). However, their roles and mechanisms that regulate BCR-ABL induced leukemogenesis remain unclear. In this study, we demonstrated that genomic depletion of miR-17-92 inhibited the BCR-ABL induced leukemogenesis by using a mouse model of transplantation of BCR-ABL transduced hematopoietic stem cells. Furthermore, we identified that miR-19b targeted A20 (TNFAIP3). A20 overexpression results in inactivation of NF-κB activity including decrease of phosphorylation of P65 and IκBα, leads to induce apoptosis and inhibit proliferation and cycle in CML CD34 {sup +} cells. Thus we proved that miR-17-92 is a critical contributor to CMLmore » leukemogenesis via targeting A20 and activation of NF-κB signaling. These findings indicate that miR-17-92 will be important resources for developing novel treatment strategies of CML and better understanding long-term disease control. - Highlights: • Genomic depletion of miR-17-92 inhibits the BCR-ABL induced leukemogenesis in a mouse CML model. • miR-19b targets A20 to regulate NF-κB signaling in CML cells. • A20 functions as a suppressor in regulating CML cell growth and survival.« less
Chronic myelogenous leukemia in eastern Pennsylvania: an assessment of registry reporting.
Mertz, Kristen J; Buchanich, Jeanine M; Washington, Terri L; Irvin-Barnwell, Elizabeth A; Woytowitz, Donald V; Smith, Roy E
2015-01-01
Chronic myelogenous leukemia (CML) has been reportable to the Pennsylvania Cancer Registry (PCR) since the 1980s, but the completeness of reporting is unknown. This study assessed CML reporting in eastern Pennsylvania where a cluster of another myeloproliferative neoplasm was previously identified. Cases were identified from 2 sources: 1) PCR case reports for residents of Carbon, Luzerne, or Schuylkill County with International Classification of Diseases for Oncology, Third Edition (ICD-O-3) codes 9875 (CML, BCR-ABL+), 9863 (CML, NOS), and 9860 (myeloid leukemia) and date of diagnosis 2001-2009, and 2) review of billing records at hematology practices. Participants were interviewed and their medical records were reviewed by board-certified hematologists. PCR reports included 99 cases coded 9875 or 9863 and 9 cases coded 9860; 2 additional cases were identified by review of billing records. Of the 110 identified cases, 93 were mailed consent forms, 23 consented, and 12 medical records were reviewed. Hematologists confirmed 11 of 12 reviewed cases as CML cases; all 11 confirmed cases were BCR/ABL positive, but only 1 was coded as positive (code 9875). Very few unreported CML cases were identified, suggesting relatively complete reporting to the PCR. Cases reviewed were accurately diagnosed, but ICD-0-3 coding often did not reflect BCR-ABL-positive tests. Cancer registry abstracters should look for these test results and code accordingly.
Constitutional pericentric inversion 9 in Korean patients with chronic myelogenous leukemia.
Suh, Borum; Song, Jaewoo; Kim, Juwon; Park, Tae Sung; Choi, Jong Rak
2010-06-01
Although the pericentric inversion of chromosome 9, inv(9)(p11q13), is generally considered a normal variation, it is also associated with solid tumors and several hematologic malignancies such as biphenotypic acute leukemia, ALL, AML, and myeloproliferative neoplasms. However, to the best of our knowledge, there have been no reports that suggest an association between CML and constitutional pericentric inversion of chromosome 9. The purpose of this retrospective study was to investigate the frequency and clinical features of CML patients with concomitant inv(9) and t(9;22)(q34;q11.2) variation at our institution. We reviewed the bone marrow chromosome database entries between October 2006 and December 2008 to identify patients with concomitant inv(9) and t(9;22) variations. Laboratory and clinical data of the patients were obtained from the electronic medical record system. Among the 51 CML patients, 4 (7.8%) had concomitant inv(9) and t(9;22) variations. Although the association between inv(9) variation and CML is still controversial, we believe that hematologists should consider the role of constitutional inv(9) variation in CML patients to avoid overlooking the impaired engraftment potential of hematopoietic stem cells harboring inv(9). Therefore, we suggest that more effort should be invested to develop cytogenetic tests for detecting constitutional inv(9) variation in CML patients.
Heterogeneity of leukemia-initiating capacity of chronic myelogenous leukemia stem cells
Zhang, Bin; Li, Ling; Ho, Yinwei; Li, Min; Marcucci, Guido
2016-01-01
Chronic myelogenous leukemia (CML) results from transformation of a long-term hematopoietic stem cell (LTHSC) by expression of the BCR-ABL fusion gene. However, BCR-ABL–expressing LTHSCs are heterogeneous in their capacity as leukemic stem cells (LSCs). Although discrepancies in proliferative, self-renewal, and differentiation properties of normal LTHSCs are being increasingly recognized, the mechanisms underlying heterogeneity of leukemic LTHSCs are poorly understood. Using a CML mouse model, we identified gene expression differences between leukemic and nonleukemic LTHSCs. Expression of the thrombopoietin (THPO) receptor MPL was elevated in leukemic LTHSC populations. Compared with LTHSCs with low MPL expression, LTHSCs with high MPL expression showed enhanced JAK/STAT signaling and proliferation in response to THPO in vitro and increased leukemogenic capacity in vivo. Although both G0 and S phase subpopulations were increased in LTHSCs with high MPL expression, LSC capacity was restricted to quiescent cells. Inhibition of MPL expression in CML LTHSCs reduced THPO-induced JAK/STAT signaling and leukemogenic potential. These same phenotypes were also present in LTHSCs from patients with CML, and patient LTHSCs with high MPL expression had reduced sensitivity to BCR-ABL tyrosine kinase inhibitor treatment but increased sensitivity to JAK inhibitors. Together, our studies identify MPL expression levels as a key determinant of heterogeneous leukemia-initiating capacity and drug sensitivity of CML LTHSCs and suggest that high MPL–expressing CML stem cells are potential targets for therapy. PMID:26878174
Khorshied, Mervat Mamdooh; Shaheen, Iman Abdel Mohsen; Abu Khalil, Reham E; Sheir, Rania Elsayed
2014-01-01
Methylenetetrahydrofolate reductase (MTHFR) gene plays a pivotal role in folate metabolism. Several genetic variations in MTHFR gene as MTHFR-C677T and MTHFR-A1298C result in decreased MTHFR activity, which could influence efficient DNA methylation and explain susceptibility to different cancers. The etiology of chronic myeloid leukemia (CML) is obscure and little is known about individual's susceptibility to CML. In order to assess the influence of these genetic polymorphisms on the susceptibility to CML and its effect on the course of the disease among Egyptians, we performed an age-gender-ethnic matched case-control study. The study included 97 CML patients and 130 healthy controls. Genotyping of MTHFR-C677T and -A1298C was performed by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) technique. The results showed no statistical difference in the distribution of MTHFR-C677T and -A1298C polymorphic genotypes between CML patients and controls. The frequency of MTHFR 677-TT homozygous variant was significantly higher in patients with accelerated/blastic transformation phase when compared to those in the chronic phase of the disease. In conclusion, our study revealed that MTHFR-C677T and -A1298C polymorphisms could not be considered as genetic risk factors for CML in Egyptians. However, MTHFR 677-TT homozygous variant might be considered as a molecular predictor for disease progression.
Watanabe, Tomoya; Hotta, Chie; Koizumi, Shin-ichi; Miyashita, Kazuho; Nakabayashi, Jun; Kurotaki, Daisuke; Sato, Go R; Yamamoto, Michio; Nakazawa, Masatoshi; Fujita, Hiroyuki; Sakai, Rika; Fujisawa, Shin; Nishiyama, Akira; Ikezawa, Zenro; Aihara, Michiko; Ishigatsubo, Yoshiaki; Tamura, Tomohiko
2013-11-15
BCR-ABL tyrosine kinase inhibitors (TKI) have dramatically improved therapy for chronic myelogenous leukemia (CML). However, several problems leading to TKI resistance still impede a complete cure of this disease. IFN regulatory factor-8 (IRF8) is a transcription factor essential for the development and functions of immune cells, including dendritic cells. Irf8(-/-) mice develop a CML-like disease and IRF8 expression is downregulated in patients with CML, suggesting that IRF8 is involved in the pathogenesis of CML. In this study, by using a murine CML model, we show that BCR-ABL strongly inhibits a generation of dendritic cells from an early stage of their differentiation in vivo, concomitant with suppression of Irf8 expression. Forced expression of IRF8 overrode BCR-ABL (both wild-type and T315I-mutated) to rescue dendritic cell development in vitro, indicating that the suppression of Irf8 causes dendritic cell deficiency. Gene expression profiling revealed that IRF8 restored the expression of a significant portion of BCR-ABL-dysregulated genes and predicted that BCR-ABL has immune-stimulatory potential. Indeed, IRF8-rescued BCR-ABL-expressing dendritic cells were capable of inducing CTLs more efficiently than control dendritic cells. Altogether, our findings suggest that IRF8 is an attractive target in next-generation therapies for CML. ©2013 AACR
Wang, Yalin; Jiang, Yan; Bian, Cuicui; Dong, Yi; Ma, Chao; Hu, Xiaolin; Liu, Ziling
2015-09-01
Chronic myeloid leukemia (CML) is a clonal disorder characterized by excessive accumulation of myeloid cells in the peripheral blood. In the present study, to investigate the role of Hiwi in leukemogenesis, lentivirus-mediated Hiwi overexpression was performed in a CML cell line, K562 cells. Our data revealed that Hiwi protein expression was undetectable in K562 cells, and its overexpression suppressed cell proliferation, induced cell cycle arrest at G0/G1 and G2/M phases, and promoted apoptosis in K562 cells in vitro. Expression of anti-apoptotic protein, Bcl-2, was decreased in cells expressing Hiwi, whereas that of pro-apoptotic proteins, Bax, activated caspase-3, -9, and cleaved poly (ADP-ribose) polymerase were increased. Additionally, Hiwi upregulation enhanced the chemosensitivity of CML cells to daunomycin. Our study illustrates that expression deletion of Hiwi may be involved in the pathogenesis of human CML and suggests a possible role of Hiwi in regulating the cell growth, cell cycle, and apoptosis of CML cells in vitro.
Recent Progress in Chronic Neutrophilic Leukemia and Atypical Chronic Myeloid Leukemia.
Dao, Kim-Hien T; Tyner, Jeffrey W; Gotlib, Jason
2017-10-01
We reviewed recent diagnostic and therapeutic progress in chronic neutrophilic leukemia (CNL) and atypical chronic myeloid leukemia (aCML). We summarized recent genetic data that may guide future efforts towards implementing risk-adapted therapy based on mutational profile and improving disease control and survival of affected patients. Recent genetic data in CNL and aCML prompted modifications to the World Health Organization (WHO) diagnostic criteria, which have improved our understanding of how CNL and aCML are different diseases despite sharing common findings of peripheral granulocytosis and marrow myeloid hyperplasia. The overlap of recurrently mutated genes between aCML and CMML support considering CSF3R-T618I mutated cases as a distinct entity, either as CNL or CNL with dysplasia. Ongoing preclinical and clinical studies will help to further inform the therapeutic approach to these diseases. Our understanding of CNL and aCML has greatly advanced over the last few years. This will improve clarity for the diagnosis of these diseases, provide a strategy for risk stratification, and guide risk-adapted therapy.
Inhibition of Rac GTPases in the Therapy of Chronic Myelogenous Leukemia
2009-04-01
procedure is approximately 65%, however, the procedure is only available to a minority of CML patients due to a lack of compatible donors and age [8...apoptosis of BCR/ABL-positive cells [12-14], it provides an effective treatment in CML and has rejuvenated the field of rationalized drug design. The...of CML, most patients lack suitable donors or are not eligible for transplant due to advanced age .3–6 The development of imatinib mesylate, a
Gao, Xiaoning; Li, Jie; Wang, Lili; Lin, Ji; Jin, Hongshi; Xu, Yihan; Wang, Nan; Zhao, Yu; Liu, Daihong; Yu, Li; Wang, Quanshun
2016-01-01
Patient: Male, 49 Final Diagnosis: T-lymphoid/myeloid bilineal blastic transformation of CML Symptoms: Rapidly enlarging mass in left neck Medication: — Clinical Procedure: Biopsy of the left submandibular lymph nodes Specialty: Hematology Objective: Rare co-existance of disease or pathology Background: Chronic myeloid leukemia (CML) is a clonal myeloproliferative disorder characterized by the Philadelphia chromosome generated by the reciprocal translocation t(9: 22)(q34;q11). CML is usually diagnosed in the chronic phase. Blast crisis represents an advanced phase of CML. Extramedullary blast crisis as the initial presentation of CML with bone marrow remaining in chronic phase is an unusual event. Further, extramedullary blast crisis with T lymphoid/myeloid bilineal phenotype as an initial presentation for CML is extremely unusual. Case Report: Here, we report the case of a 49-year-old male with rapidly enlarged submandibular lymph nodes. Biopsy specimen from the nodes revealed a characteristic appearance with morphologically and immunohistochemically distinct myeloblasts and T lymphoblasts co-localized in 2 adjacent regions, accompanied by chronic phase of the disease in bone marrow. The presence of the BCR/ABL1 fusion gene within both cellular populations in this case confirmed the extramedullary disease represented a localized T lymphoid/myeloid bilineal blastic transformation of CML. After 3 courses of combined chemotherapy plus tyrosine kinase inhibitor treatment, the mass was completely regressed with a 3-log decrease in BCR/ABL1 transcript from baseline. Five months after the diagnosis, the patient showed diminished vision, hand tremors, and weakness of lower extremities. Flow cytometric immunophenotyping of cerebrospinal fluid revealed the presence of myeloid blasts. An isolated central nervous system relapse of leukemia was identified. Following high-dose systemic and intrathecal chemotherapy, the patient continued to do well. Conclusions: The possibility of extramedullary blast crisis as an initial presentation in patients with CML should be considered. Further, an isolated central nervous system blast crisis should be considered if neurological symptoms evolve in patients who have shown a good response to therapy. PMID:27784881
Pandor, Abdullah; Stevenson, Matt; Stevens, John; James, Marrissa Martyn-St; Hamilton, Jean; Byrne, Jenny; Rudin, Claudius; Rawdin, Andrew; Wong, Ruth
2018-02-26
As part of its single technology appraisal process, the National Institute for Health and Care Excellence (NICE) invited the company that manufactures ponatinib (Inclusig ® ; Incyte Corporation) to submit evidence for the clinical and cost effectiveness for previously treated chronic myeloid leukaemia (CML) and Philadelphia-chromosome-positive acute lymphoblastic leukaemia (Ph+ ALL). This paper focusses on the three phases of CML: the chronic phase (CP), the accelerated phase (AP) and the blast crisis phase (BP). The School of Health and Related Research Technology Appraisal Group at the University of Sheffield was commissioned to act as the independent Evidence Review Group (ERG). This article presents the critical review of the company's submission by the ERG and the outcome of the NICE guidance. Clinical evidence for ponatinib was derived from a phase II, industry-sponsored, single-arm, open-label, multicentre, non-comparative study. Despite the limited evidence and potential for biases, this study demonstrated that ponatinib was likely to be an effective treatment (in terms of major cytogenetic response and major haematological response) with an acceptable safety profile for patients with CML. Given the absence of any head-to-head studies comparing ponatinib with other relevant comparators, the company undertook a matching-adjusted indirect comparison (MAIC) of ponatinib with bosutinib. The approach was only used for patients with CP-CML because comprehensive data were not available for the AP- or BP-CML groups to allow the matching technique to be used. Despite the uncertainty about the MAIC approach, ponatinib was considered likely to offer advantages over bosutinib in the third-line setting, particularly for complete cytogenetic response. The company developed two health economic models to assess the cost effectiveness of ponatinib for the treatment of patients in CP-CML or in advanced CML (AP- or BP-CML, which were modelled separately). The company did not adequately explore the uncertainty in the survivor functions. As a result, the ERG believed the uncertainty in the decision problem was underestimated. Exploratory analyses undertaken by the ERG produced the following results for ponatinib. In CP-CML, from £18,246 to £27,667 per quality-adjusted life-year (QALY) gained compared with best supportive care (BSC), from £19,680 to £37,381 per QALY gained compared with bosutinib and from £18,279 per QALY gained to dominated compared with allogeneic stem cell transplant (allo-SCT). In AP-CML, the cost per QALY gained for ponatinib ranged from £7123 to £17,625 compared with BSC, and from dominating to £61,896 per QALY gained compared with allo-SCT. In BP-CML, the cost effectiveness of ponatinib ranged from £5033 per QALY gained to dominated compared with allo-SCT, although it was likely to be at the more favourable end of this range, and dominant in all scenarios compared with BSC. The NICE appraisal committee concluded that ponatinib is a cost-effective use of NHS resources in the considered population, subject to the company providing the agreed discount in the Patient Access Scheme.
Behzad, Masumeh Maleki; Shahrabi, Saeid; Jaseb, Kaveh; Bertacchini, Jessika; Ketabchi, Neda; Saki, Najmaldin
2018-01-31
Chronic myeloid leukemia (CML) is a hematopoietic stem cell malignancy characterized by the expression of the BCR-ABL1 fusion gene with different chimeric transcripts. Despite the crucial impact of constitutively active tyrosine kinase in CML pathogenesis, aberrant DNA methylation of certain genes plays an important role in disease progression and the development of drug resistance. This article reviews recent findings relevant to the effect of DNA methylation pattern of regulatory genes on various cellular activities such as cell proliferation and survival, as well as cell-signaling molecules in CML. These data might contribute to defining the role of aberrant DNA methylation in disease initiation and progression. However, further studies are needed on the validation of specific aberrant methylation markers regarding the prognosis and prediction of response among the CML patients.
NASA Astrophysics Data System (ADS)
Brehme, Marc; Koschmieder, Steffen; Montazeri, Maryam; Copland, Mhairi; Oehler, Vivian G.; Radich, Jerald P.; Brümmendorf, Tim H.; Schuppert, Andreas
2016-04-01
Modelling the parameters of multistep carcinogenesis is key for a better understanding of cancer progression, biomarker identification and the design of individualized therapies. Using chronic myeloid leukemia (CML) as a paradigm for hierarchical disease evolution we show that combined population dynamic modelling and CML patient biopsy genomic analysis enables patient stratification at unprecedented resolution. Linking CD34+ similarity as a disease progression marker to patient-derived gene expression entropy separated established CML progression stages and uncovered additional heterogeneity within disease stages. Importantly, our patient data informed model enables quantitative approximation of individual patients’ disease history within chronic phase (CP) and significantly separates “early” from “late” CP. Our findings provide a novel rationale for personalized and genome-informed disease progression risk assessment that is independent and complementary to conventional measures of CML disease burden and prognosis.
Keogh, Jennifer B.; Price, Naomi J.
2017-01-01
Advanced glycation end-products (AGEs) are formed endogenously as a normal ageing process and during food processing. High levels of AGEs have been implicated in the development of both macrovascular disease and microvascular disease. The purpose of this secondary analysis was to determine whether a major AGE species, Nε-carboxymethyllysine (CML), was reduced after weight loss. CML values decreased by 17% after weight loss. Participants with diabetes and pre-diabetes had a lower CML values at baseline and a smaller change in CML than overweight participants without diabetes. We conclude that, in addition to the known health benefits, weight loss may reduce AGEs. Randomized studies of the effect of weight loss on AGE in people with and without type 2 diabetes are needed to confirm these results. PMID:29232895
Popescu, Sorina C.; Popescu, George V.; Bachan, Shawn; Zhang, Zimei; Seay, Montrell; Gerstein, Mark; Snyder, Michael; Dinesh-Kumar, S. P.
2007-01-01
Calmodulins (CaMs) are the most ubiquitous calcium sensors in eukaryotes. A number of CaM-binding proteins have been identified through classical methods, and many proteins have been predicted to bind CaMs based on their structural homology with known targets. However, multicellular organisms typically contain many CaM-like (CML) proteins, and a global identification of their targets and specificity of interaction is lacking. In an effort to develop a platform for large-scale analysis of proteins in plants we have developed a protein microarray and used it to study the global analysis of CaM/CML interactions. An Arabidopsis thaliana expression collection containing 1,133 ORFs was generated and used to produce proteins with an optimized medium-throughput plant-based expression system. Protein microarrays were prepared and screened with several CaMs/CMLs. A large number of previously known and novel CaM/CML targets were identified, including transcription factors, receptor and intracellular protein kinases, F-box proteins, RNA-binding proteins, and proteins of unknown function. Multiple CaM/CML proteins bound many binding partners, but the majority of targets were specific to one or a few CaMs/CMLs indicating that different CaM family members function through different targets. Based on our analyses, the emergent CaM/CML interactome is more extensive than previously predicted. Our results suggest that calcium functions through distinct CaM/CML proteins to regulate a wide range of targets and cellular activities. PMID:17360592
Kim, Dae Sik; Na, Yoo Jin; Kang, Myoung Hee; Yoon, Soo-Young; Choi, Chul Won
2016-03-01
The treatment of chronic myeloid leukemia (CML) has achieved impressive success since the development of the Bcr-Abl tyrosine kinase inhibitor, imatinib mesylate. Nevertheless, resistance to imatinib has been observed, and a substantial number of patients need alternative treatment strategies. We have evaluated the effects of deferasirox, an orally active iron chelator, and imatinib on K562 and KU812 human CML cell lines. Imatinib-resistant CML cell lines were created by exposing cells to gradually increasing concentrations of imatinib. Co-treatment of cells with deferasirox and imatinib induced a synergistic dose-dependent inhibition of proliferation of both CML cell lines. Cell cycle analysis showed an accumulation of cells in the subG1 phase. Western blot analysis of apoptotic proteins showed that co-treatment with deferasirox and imatinib induced an increased expression of apoptotic proteins. These tendencies were clearly identified in imatinib-resistant CML cell lines. The results also showed that co-treatment with deferasirox and imatinib reduced the expression of BcrAbl, phosphorylated Bcr-Abl, nuclear factor-κB (NF-κB) and β-catenin. We observed synergistic effects of deferasirox and imatinib on both imatinib-resistant and imatinib-sensitive cell lines. These effects were due to induction of apoptosis and cell cycle arrest by down-regulated expression of NF-κB and β-catenin levels. Based on these results, we suggest that a combination treatment of deferasirox and imatinib could be considered as an alternative treatment option for imatinib-resistant CML.
Guillermo, Rosamond B.; Yang, Panzao; Vickers, Mark H.; McJarrow, Paul; Guan, Jian
2015-01-01
Background Supplementation with complex milk lipids (CML) during postnatal brain development has been shown to improve spatial reference learning in rats. Objective The current study examined histo-biological changes in the brain following CML supplementation and their relationship to the observed improvements in memory. Design The study used the brain tissues from the rats (male Wistar, 80 days of age) after supplementing with either CML or vehicle during postnatal day 10–80. Immunohistochemical staining of synaptophysin, glutamate receptor-1, myelin basic protein, isolectin B-4, and glial fibrillary acidic protein was performed. The average area and the density of the staining and the numbers of astrocytes and capillaries were assessed and analysed. Results Compared with control rats, CML supplementation increased the average area of synaptophysin staining and the number of GFAP astrocytes in the CA3 sub-region of the hippocampus (p<0.01), but not in the CA4 sub-region. The supplementation also led to an increase in dopamine output in the striatum that was related to nigral dopamine expression (p<0.05), but did not alter glutamate receptors, myelination or vascular density. Conclusion CML supplementation may enhance neuroplasticity in the CA3 sub-regions of the hippocampus. The brain regions-specific increase of astrocyte may indicate a supporting role for GFAP in synaptic plasticity. CML supplementation did not associate with postnatal white matter development or vascular remodelling. PMID:25818888
Moon, Hee Won; Kim, Tae Young; Oh, Bo Ra; Min, Hyun Chung; Cho, Han Ik; Bang, Soo Mee; Lee, Jae Hoon; Yoon, Sung Soo; Lee, Dong Soon
2007-09-01
Methylenetetrahydrofolate reductase (MTHFR) is an enzyme involved in folate metabolism and DNA methylation. Studies on MTHFR polymorphism in leukemia have largely focused on the protective role of MTHFR polymorphism in acute lymphoblastic leukemia (ALL). We evaluated the C677T and A1298C polymorphisms using the TaqMan allelic discrimination assay in various malignancies. The study population included 115 subjects with chronic myelogenous leukemia (CML), 200 with acute myelogenous leukemia (AML), 196 with multiple myeloma (MM) and 434 healthy control subjects. The frequency of 1298CC was statistically significantly higher in subjects with CML than that of the controls (OR=5.12, 95% CI: 1.75-14.9, P-value=.003). Of note, the frequencies of 677CC/1298CC genotype were statistically significantly higher in subjects with CML, AML and MM than that of the controls (OR=8.8, 3.5, 3.83, P-value=.002, 0.036, 0.023, respectively). Our results demonstrate that the MTHFR 1298CC homozygote variant is strongly associated with an increased risk of CML, while MTHFR C677T does not significantly affect the risk of CML. Moreover, we demonstrated that MTHFR 677CC and 1298CC genotype might have combined effect on risk of CML, AML and MM and it is inferred that the A1298C may play a different role in carcinogenesis, depending on the types of organs involved, the types of disease entities and the genotype of C677T.
Bu, Qiangui; Cui, Lijing; Li, Juan; Du, Xin; Zou, Waiyi; Ding, Ke; Pan, Jingxuan
2014-01-01
Limited treatment options are available for chronic myelogenous leukemia (CML) patients who develop imatinib mesylate (IM) resistance. Here we proposed a novel combination regimen, a co-administration of S116836, a novel small molecule multi-targeted tyrosine kinase inhibitor that was synthesized by rational design, and histone deacetylases inhibitor (HDACi) suberoylanilide hydroxamic acid (SAHA), to overcome IM resistance in CML. S116836 at low concentrations used in the present study mildly downregulates auto-tyrosine phosphorylation of Bcr-Abl. SAHA, an FDA-approved HDACi drug, at 1 μM has modest anti-tumor activity in treating CML. However, we found a synergistic interaction between SAHA and S116836 in Bcr-Abl-positive CML cells that were sensitive or resistant to IM. Exposure of KBM5 and KBM5-T315I cells to minimal or non-toxic concentrations of SAHA and S116836 synergistically reduced cell viability and induced cell death. Co-treatment with SAHA and S116838 repressed the expressions of anti-apoptosis proteins, such as Mcl-1 and XIAP, but promoted Bim expression and mitochondrial damage. Of importance, treatment with both drugs significantly reduced cell viability of primary human CML cells, as compared with either agent alone. Taken together, our findings suggest that SAHA exerts synergistically with S116836 at a non-toxic concentration to promote apoptosis in the CML, including those resistant to imatinib or dasatinib. PMID:24759597
Taverna, Simona; Giallombardo, Marco; Pucci, Marzia; Flugy, Anna; Manno, Mauro; Raccosta, Samuele; Rolfo, Christian; De Leo, Giacomo; Alessandro, Riccardo
2015-01-01
Exosomes are nanosize vesicles released from cancer cells containing microRNAs that can influence gene expression in target cells. Curcumin has been shown to exhibit antitumor activities in a wide spectrum of human cancer. The addition of Curcumin, to Chronic Myelogenous Leukemia (CML) cells, caused a dose-dependent increase of PTEN, target of miR-21. Curcumin treatment also decreased AKT phosphorylation and VEGF expression and release. Colony formation assays indicated that Curcumin affects the survival of CML cells. Some observation suggest a possible cellular disposal of miRNAs by exosomes. To elucidate if Curcumin caused a decrease of miR-21 in CML cells and its packaging in exosomes, we analyzed miR-21 content in K562 and LAMA84 cells and exosomes, after treatment with Curcumin. Furthermore, we showed that addition of Curcumin to CML cells caused a downregulation of Bcr-Abl expression through the cellular increase of miR-196b. The effects of Curcumin was then investigated on a CML xenograft in SCID mice. We observed that animals treated with Curcumin, developed smaller tumors compared to mice control. Real time PCR analysis showed that exosomes, released in the plasma of the Curcumin-treated mice, were enriched in miR-21 with respect control. Taken together, our results suggested that a selective packaging of miR-21 in exosomes may contribute to the antileukemic effect of Curcumin in CML. PMID:26116834
Therapy of chronic myeloid leukemia: twilight of the imatinib era?
Trela, Ewelina; Glowacki, Sylwester; Błasiak, Janusz
2014-01-01
Chronic myeloid leukemia (CML) results from the clonal expansion of pluripotent hematopoietic stem cells containing the active BCR/ABL fusion gene produced by a reciprocal translocation of the ABL1 gene to the BCR gene. The BCR/ABL protein displays a constitutive tyrosine kinase activity and confers on leukemic cells growth and proliferation advantage and resistance to apoptosis. Introduction of imatinib (IM) and other tyrosine kinase inhibitors (TKIs) has radically improved the outcome of patients with CML and some other diseases with BCR/ABL expression. However, a fraction of CML patients presents with resistance to this drug. Regardless of clinical profits of IM, there are several drawbacks associated with its use, including lack of eradication of the malignant clone and increasing relapse rate resulting from long-term therapy, resistance, and intolerance. Second and third generations of TKIs have been developed to break IM resistance. Clinical studies revealed that the introduction of second-generation TKIs has improved the overall survival of CML patients; however, some with specific mutations such as T315I remain resistant. Second-generation TKIs may completely replace imatinib in perspective CML therapy, and addition of third-generation inhibitors may overcome resistance induced by every form of point mutations.
Degenhardt, T P; Grass, L; Reddy, S; Thorpe, S R; Diamandis, E P; Baynes, J W
1997-10-01
Advanced glycation end products (AGEs) such as pentosidine and N epsilon-(carboxymethyl)lysine (CML) have been traditionally quantified by HPLC or gas chromatography--mass spectrometry (GC/MS). Enzyme-linked immunosorbent assays (ELISA) have been introduced as a convenient alternative to simplify the detection and measurement of AGEs in proteins and tissues, but some of these studies are limited by the lack of information on the structure of the epitopes recognized by antibodies to AGE-proteins. In this work we demonstrate that an antibody used in a previous study, reporting increased levels of AGEs in patients with diabetes or on continuous ambulatory peritoneal dialysis (CAPD) and hemodialysis (HD), recognizes CML as its major epitope. We also show that there is a significant correlation between the concentration of AGEs in serum measured by ELISA and a GC/MS assay for CML in serum proteins. Both analyses yielded comparable results, with patients on CAPD and HD having about threefold higher AGE- or CML-concentrations in their serum. Our data suggest that ELISA assays for CML should be useful for the clinical measurement of AGEs in serum proteins.
Zhu, Biao; Zhang, Jianbo; Chen, Jiao; Li, Chenglong; Wang, Xiaodong
2015-01-01
Chronic myeloid leukemia (CML) can be contextualized as a disease of unregulated self-renewal of stem cells which exist in a quiescent state and are instructed to differentiate and mobilize to circulation under pathologic circumstances leading to tumor invasion and metastasis. Here we found that matrix metalloproteinase-9 (MMP-9), induced by TGF-β1, upregulated s-KitL and s-ICAM-1, permitting the transfer of c-kit+ hematopoietic stem cells (HSCs) from the quiescent to proliferative niche in CML. Further study showed that this MMP-9 production was raised by CML specific BCR/ABL+ oncogene mediated TGF-β1. Besides, phosphatidylinositol-3 kinase (PI3K)/Akt/nuclear factor (NF)-κB signaling pathway was evidenced to govern this stem cell recruitment in CML pathogenesis. Overall, our observations defined a novel critical role for TGF-β1 induced PI3K/Akt/NF-κB signaling pathway in the recruitment of the malignant cells in CML by releasing s-KitL and s-ICAM-1 and this was through a distinct PI3K/Akt/NF-κB signaling pathway. PMID:26722450
Xie, Yan-Hui; Chen, Qin-Fen; Xie, Yi; Xie, Hong
2002-12-01
To observe the proliferation of T lymphocytes stimulated by CML and AML cells which were induced by rhGM-CSF and rhIL-4, and the secretion of IFN-gamma from proliferated T lymphocytes, the expression of CD80, CD86 and HLA-DR on CML and AML cells induced by GM-CSF and IL-4 was assayed by flow cytometry in vitro. Then one-way mixed lymphocyte reaction was carried out, with induced leukemia cells as stimulating cells and auto-T lymphocytes as reactive cells. The secretion of IFN-gamma from T lymphocytes was determined by double antibody sandwich ELISA. The results showed that GM-CSF and IL-4 significantly upregulated the expression of CD80, CD86 and HLA-DR on CML cells and CD80 and CD86 on AML cells, which could stimulate the T lymphocyte proliferation and high secretion of IFN-gamma (in CML group) of autologous T lymphocytes. It is concluded that the CML and AML cells induced by GM-CSF and IL-4 have the ability to present tumor specific antigen to auto-T lymphocyte.
2006-04-01
activates STATs. The protein tyrosine phosphatases TC-PTP and PTP1B are negative regulators of JAK/STAT signaling molecules and it is possible that...these two PTPs could impede the ability of CML cells to survive and proliferate in response to p210 BCR-Abl. We examined the role of TC-PTP and PTP1b in...contributing to the CML phenotype and found that in some CML cell lines the levels of TC-PTP and PTP1b is increased suggesting that they may be
The semantics of Chemical Markup Language (CML): dictionaries and conventions.
Murray-Rust, Peter; Townsend, Joe A; Adams, Sam E; Phadungsukanan, Weerapong; Thomas, Jens
2011-10-14
The semantic architecture of CML consists of conventions, dictionaries and units. The conventions conform to a top-level specification and each convention can constrain compliant documents through machine-processing (validation). Dictionaries conform to a dictionary specification which also imposes machine validation on the dictionaries. Each dictionary can also be used to validate data in a CML document, and provide human-readable descriptions. An additional set of conventions and dictionaries are used to support scientific units. All conventions, dictionaries and dictionary elements are identifiable and addressable through unique URIs.
CMLLite: a design philosophy for CML
2011-01-01
CMLLite is a collection of definitions and processes which provide strong and flexible validation for a document in Chemical Markup Language (CML). It consists of an updated CML schema (schema3), conventions specifying rules in both human and machine-understandable forms and a validator available both online and offline to check conformance. This article explores the rationale behind the changes which have been made to the schema, explains how conventions interact and how they are designed, formulated, implemented and tested, and gives an overview of the validation service. PMID:21999395
The semantics of Chemical Markup Language (CML): dictionaries and conventions
2011-01-01
The semantic architecture of CML consists of conventions, dictionaries and units. The conventions conform to a top-level specification and each convention can constrain compliant documents through machine-processing (validation). Dictionaries conform to a dictionary specification which also imposes machine validation on the dictionaries. Each dictionary can also be used to validate data in a CML document, and provide human-readable descriptions. An additional set of conventions and dictionaries are used to support scientific units. All conventions, dictionaries and dictionary elements are identifiable and addressable through unique URIs. PMID:21999509
Davis, Kathleen E; Prasad, Chandan; Vijayagopal, Parakat; Juma, Shanil; Adams-Huet, Beverley; Imrhan, Victorine
2015-12-14
The purpose of this pilot study was to determine whether macronutrient content (low-fat v. high-fat diet) influences an indicator of advanced glycation end products (AGE), N(ε) carboxymethyl-lysine (CML), in the context of a 1-d, high-AGE diet. The effect of the diets on inflammatory markers was also assessed. A total of nineteen overweight and obese adults (nine men and ten women) without known disease were recruited to participate in a crossover challenge of a high-fat, high-AGE (HFHA) and low-fat, high-AGE (LFHA) diet. In each phase patients had fasting blood drawn, followed by consumption of a high-fat or low-fat breakfast test meal, then three postprandial blood draws at 1, 2 and 3 h after consuming the test meal. After consuming high-AGE meals for the remainder of the day, participants returned the next day for a follow-up analysis. A different pattern in the 3-h post-meal CML and soluble receptor for AGE response to the two diets was observed (P=0·01 and 0·05, respectively). No change in serum CML was observed following consumption of a LFHA breakfast (535 (25th-75th percentile 451-790) to 495 (25th-75th percentile 391-682) ng/ml; P=0·36), whereas a rise in CML occurred after the HFHA breakfast (463 (25th-75th percentile 428-664) to 578 (25th-75th percentile 474-865) ng/ml; P=0·05). High sensitivity C-reactive protein and high molecular weight adiponectin were not affected by either diet. These findings suggest that dietary CML may not be as important in influencing serum CML as other dietary factors. In addition, acute exposure to dietary CML may not influence inflammation in adults without diabetes or kidney disease. This is contrary to previous findings.
Campiotti, Leonardo; Suter, Matteo Basilio; Guasti, Luigina; Piazza, Rocco; Gambacorti-Passerini, Carlo; Grandi, Anna Maria; Squizzato, Alessandro
2017-05-01
Tyrosine kinase inhibitors (TKIs) are the cornerstones of treatment for patients with chronic myeloid leukaemia (CML). In recent years, several studies were conducted to evaluate the safety of TKIs discontinuation. We performed a systematic review of the literature to determine the incidence of CML relapse, to identify possible factors relapse rates and to evaluate the long-term safety in CML patients with stable undetectable BCR-ABL transcript level who discontinued TKIs. Studies evaluating TKIs discontinuation in CML patients with undetectable BCR-ABL transcript level were identified by electronic search of MEDLINE and EMBASE database until May 2015. Weighted mean proportion and 95% confidence intervals (CIs) of CML relapse was calculated using a fixed-effects and a random-effects model. Statistical heterogeneity was evaluated using the I 2 statistic. Fifteen cohort studies, for a total of 509 patients, were included. Nine studies were at low-risk of bias. All 15 studies included only patients on imatinib. Overall weighted mean molecular relapse rate of CML was 51% (95% CI 44-58%; I 2 = 55). Weighted mean molecular relapse rate at 6-month follow-up was 41% (95% CI 32-51%; I 2 = 78). Eighty percent of molecular relapses occurred in the first 6 months. All 509 patients were alive at 2-year follow-up and only one patient (0.8%, 95% CI 0.2-1.8%; I 2 = 0) has progressed to a blastic crisis. Our findings suggest that imatinib discontinuation is feasible for the majority of CML patients with stable undetectable BCR-ABL transcript level. Approximately 50% of patients remain therapy-free after imatinib discontinuation. Restarting TKIs therapy was followed by a very high rate of molecular response, with no deaths 2 years after discontinuation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Maxson, Julia E; Luty, Samuel B; MacManiman, Jason D; Paik, Jason C; Gotlib, Jason; Greenberg, Peter; Bahamadi, Swaleh; Savage, Samantha L; Abel, Melissa L; Eide, Christopher A; Loriaux, Marc M; Stevens, Emily A; Tyner, Jeffrey W
2016-02-01
Colony-stimulating factor 3 receptor (CSF3R) mutations have been identified in the majority of chronic neutrophilic leukemia (CNL) and a smaller percentage of atypical chronic myeloid leukemia (aCML) cases. Although CSF3R point mutations (e.g., T618I) are emerging as key players in CNL/aCML, the significance of rarer CSF3R mutations is unknown. In this study, we assess the importance of the CSF3R T640N mutation as a marker of CNL/aCML and potential therapeutic target. Sanger sequencing of leukemia samples was performed to identify CSF3R mutations in CNL and aCML. The oncogenicity of the CSF3R T640N mutation relative to the T618I mutation was assessed by cytokine independent growth assays and by mouse bone marrow transplant. Receptor dimerization and O-glycosylation of the mutants was assessed by Western blot, and JAK inhibitor sensitivity was assessed by colony assay. Here, we identify a CSF3R T640N mutation in two patients with CNL/aCML, one of whom was originally diagnosed with MDS and acquired the T640N mutation upon evolution of disease to aCML. The T640N mutation is oncogenic in cellular transformation assays and an in vivo mouse bone marrow transplantation model. It exhibits many similar phenotypic features to T618I, including ligand independence and altered patterns of O-glycosylation--despite the transmembrane location of T640 preventing access by GalNAc transferase enzymes. Cells transformed by the T640N mutation are sensitive to JAK kinase inhibition to a similar degree as cells transformed by CSF3R T618I. Because of its similarities to CSF3R T618I, the T640N mutation likely has diagnostic and therapeutic relevance in CNL/aCML. ©2015 American Association for Cancer Research.
A case of non-Hodgkin lymphoma in a patient with chronic myeloid leukemia.
Găman, Amelia Maria; Dobrea, Camelia; Rotaru, Ionela
2013-01-01
Chronic myeloid leukemia is a clonal expansion of hematopoietic progenitor cells characterized by exaggerated proliferation of granulocytic lineage, with chronic phase, accelerated phase and blast crisis. Accelerated phase and blast crisis may be associated with extramedulary disease. Extramedullary transformation of CML can be determined both in nodal and extranodal sites. Non-Hodgkin lymphoma is rare in chronic myeloid leukemia and may be misdiagnosed as an extramedullary lymphoid blast transformation; the majorities are T-cell lymphomas with an immature thymic phenotype, while peripheral B-cell lymphomas are rarer. We report the case of a 79-year-old woman carrier Ph+ chronic myeloid leukemia who developed at eight months of diagnosis an accelerated phase of CML associated simultaneous with a tumor of soft palate, which was initial considering an extramedullary disease. The patient was treated with specific chemotherapy for accelerated phase of CML (Cytosinarabinoside) + Anagrelide, and reversed to secondary chronic phase of CML, but soft palate tumor persists. The immunohistochemical findings of bone marrow trephine biopsy examination showed chronic phase of CML (negativity for immature cells such as CD34, Tdt) and the biopsy of soft palate tumor and immunohistochemical findings revealed a primitive non-Hodgkin lymphoma (NHL) with medium B-cells (CD20, CD79a positive) and excluding an extramedullary blast crisis (CD34 negative, Tdt negative). Cytogenetic analysis in tumor revealed absence of Philadelphia chromosome. The patient was treated with local radiotherapy for NHL, with a favorable evolution and Hydroxyurea 1 g/day for CML with hematological remission. A localized lymphoid neoplasm may be an extramedullary localized blast crisis of CML or a distinct malignancy, with distinguished therapy and prognosis. A correct diagnosis based on a complex investigation: immunohistochemistry, conventional cytogenetic analysis and fluorescence in situ hybridization (FISH), molecular analysis (Southern blot and RT-PCR) is necessary. Further studies are required to clarify the pathogenetic relationship between chronic myeloid leukemia and non-Hodgkin lymphomas.
Chronic myelocytic leukemia and gastric cancer in the same patient.
Butala, A.; Kalra, J.; Rosner, F.
1989-01-01
The association of chronic myelocytic leukemia (CML) and gastric cancer is very rare. We report a case of CML associated with gastric cancer and review the pertinent literature of 15 previously reported cases. PMID:2661837
Martino, Suella; Daguindau, Etienne; Ferrand, Christophe; Bamoulid, Jamal; Hayette, Sandrine; Nicolini, F-E; Capellier, G; Deconinck, Eric; Larosa, Fabrice
2013-01-01
Second-generation tyrosine kinase inhibitors (TKI2) often induce molecular remission, and prolonged survival with a better tolerance in imatinib-resistant chronic myelogenous leukaemia (CML) patients. We report the case of a CML in first chronic phase who was diagnosed in August 2003 in a young 24 year-old Caucasian woman. Our patient received first imatinib and then dasatinib and nilotinib. Imatinib was well tolerated and she developed TTP/HUS on dasatinib without documented evolution of CML and finally obtained MR5.0 with nilotinib and without any side effect. This case also illustrates the absence of cross-resistance and side-effects between the different TKIs and the feasibility of kidney transplantation associated with a nilotinib treatment of CML allowing a continuing MR5.0 and no further side effects.
Suknuntha, Kran; Ishii, Yuki; Tao, Lihong; Hu, Kejin; McIntosh, Brian E.; Yang, David; Swanson, Scott; Stewart, Ron; Wang, Jean Y.J.; Thomson, James; Slukvin, Igor
2016-01-01
A definitive cure for chronic myeloid leukemia (CML) requires identifying novel therapeutic targets to eradicate leukemia stem cells (LSCs). However, the rarity of LSCs within the primitive hematopoietic cell compartment remains a major limiting factor for their study in humans. Here we show that primitive hematopoietic cells with typical LSC features, including adhesion defect, increased long-term survival and proliferation, and innate resistance to tyrosine kinase inhibitor (TKI) imatinib, can be generated de novo from reprogrammed primary CML cells. Using CML iPSC-derived primitive leukemia cells, we discovered olfactomedin 4 (OLFM4) as a novel factor that contributes to survival and growth of somatic lin−CD34+ cells from bone marrow of patients with CML in chronic phase, but not primitive hematopoietic cells from normal bone marrow. Overall, this study shows the feasibility and advantages of using reprogramming technology to develop strategies for targeting primitive leukemia cells. PMID:26561938
Brehme, Marc; Koschmieder, Steffen; Montazeri, Maryam; Copland, Mhairi; Oehler, Vivian G.; Radich, Jerald P.; Brümmendorf, Tim H.; Schuppert, Andreas
2016-01-01
Modelling the parameters of multistep carcinogenesis is key for a better understanding of cancer progression, biomarker identification and the design of individualized therapies. Using chronic myeloid leukemia (CML) as a paradigm for hierarchical disease evolution we show that combined population dynamic modelling and CML patient biopsy genomic analysis enables patient stratification at unprecedented resolution. Linking CD34+ similarity as a disease progression marker to patient-derived gene expression entropy separated established CML progression stages and uncovered additional heterogeneity within disease stages. Importantly, our patient data informed model enables quantitative approximation of individual patients’ disease history within chronic phase (CP) and significantly separates “early” from “late” CP. Our findings provide a novel rationale for personalized and genome-informed disease progression risk assessment that is independent and complementary to conventional measures of CML disease burden and prognosis. PMID:27048866
Kim, Dae Sik; Na, Yoo Jin; Kang, Myoung Hee; Yoon, Soo-Young; Choi, Chul Won
2016-01-01
Background/Aims: The treatment of chronic myeloid leukemia (CML) has achieved impressive success since the development of the Bcr-Abl tyrosine kinase inhibitor, imatinib mesylate. Nevertheless, resistance to imatinib has been observed, and a substantial number of patients need alternative treatment strategies. Methods: We have evaluated the effects of deferasirox, an orally active iron chelator, and imatinib on K562 and KU812 human CML cell lines. Imatinib-resistant CML cell lines were created by exposing cells to gradually increasing concentrations of imatinib. Results: Co-treatment of cells with deferasirox and imatinib induced a synergistic dose-dependent inhibition of proliferation of both CML cell lines. Cell cycle analysis showed an accumulation of cells in the subG1 phase. Western blot analysis of apoptotic proteins showed that co-treatment with deferasirox and imatinib induced an increased expression of apoptotic proteins. These tendencies were clearly identified in imatinib-resistant CML cell lines. The results also showed that co-treatment with deferasirox and imatinib reduced the expression of BcrAbl, phosphorylated Bcr-Abl, nuclear factor-κB (NF-κB) and β-catenin. Conclusions: We observed synergistic effects of deferasirox and imatinib on both imatinib-resistant and imatinib-sensitive cell lines. These effects were due to induction of apoptosis and cell cycle arrest by down-regulated expression of NF-κB and β-catenin levels. Based on these results, we suggest that a combination treatment of deferasirox and imatinib could be considered as an alternative treatment option for imatinib-resistant CML. PMID:26874514
The classic metaphyseal lesion and traumatic injury.
Thackeray, Jonathan D; Wannemacher, Jacob; Adler, Brent H; Lindberg, Daniel M
2016-07-01
It is widely accepted that the classic metaphyseal lesion (CML) is a traumatic lesion, strongly associated with abuse in infants. Nevertheless, various non-traumatic origins for CMLs continue to be suggested in medical and legal settings. No studies to date systematically describe the association of CMLs with other traumatic injuries. The primary objective of this study is to examine the association of CMLs with other traumatic injuries in a large data set of children evaluated for physical abuse. This was a retrospectively planned secondary analysis of data from a prospective, observational study of children <120 months of age who underwent evaluation by a child abuse physician. For this secondary analysis, we identified all children ≤12 months of age with an identified CML and determined the number and type of additional injuries identified. Descriptive analysis was used to report frequency of additional traumatic injuries. Among 2,890 subjects, 119 (4.1%) were identified as having a CML. Of these, 100 (84.0%) had at least one additional (non-CML) fracture. Thirty-three (27.7%) had traumatic brain injury. Nearly half (43.7%) of children had cutaneous injuries. Oropharyngeal injuries were found in 12 (10.1%) children. Abdominal/thoracic injuries were also found in 12 (10.1%) children. In all, 95.8% of children with a CML had at least one additional injury; one in four children had three or more categories of injury. CMLs identified in young children are strongly associated with traumatic injuries. Identification of a CML in a young child should prompt a thorough evaluation for physical abuse.
Klenovics, Kristína Simon; Boor, Peter; Somoza, Veronika; Celec, Peter; Fogliano, Vincenzo; Šebeková, Katarína
2013-01-01
Introduction Infant formula-feeding is associated with reduced insulin sensitivity. In rodents and healthy humans, advanced glycation end product (AGE)-rich diets exert diabetogenic effects. In comparison with human breast-milk, infant formulas contain high amounts of AGEs. We assessed the role of AGEs in infant-formula-consumption-associated insulin resistance. Methods Total plasma levels of Nε-(carboxymethyl)lysine (CML), AGEs-associated fluorescence (λex = 370 nm/λem = 445 nm), soluble adhesion molecules, markers of micro- binflammation (hsCRP), oxidative stress (malondialdehyde, 8-isoprostanes) and leptinemia were determined, and correlated with insulin sensitivity in a cross-sectional study in 166 healthy term infants aged 3-to-14 months, subdivided according to feeding regimen (breast-milk- vs. infant formula-fed) and age (3-to-6-month-olds, 7-to-10-month-olds, and 11-to-14-month-old infants). Effects of the consumption of low- vs. high-CML-containing formulas were assessed. 36 infants aged 5.8±0.3 months were followed-up 7.5±0.3 months later. Results Cross-sectional study: 3-to-6-month-olds and 7-to-10-month-old formula-fed infants presented higher total plasma CML levels and AGEs-associated fluorescence (p<0.01, both), while only the 3-to-6-month-olds displayed lower insulin sensitivity (p<0.01) than their breast-milk-fed counterparts. 3-to-6-month-olds fed low-CML-containing formulas presented lower total plasma CML levels (p<0.01), but similar insulin sensitivity compared to those on high-CML-containing formulas. Markers of oxidative stress and inflammation, levels of leptin and adhesion molecules did not differ significantly between the groups. Follow-up study: at initial investigation, the breast-milk-consuming infants displayed lower total plasma CML levels (p<0.01) and AGEs-associated fluorescence (p<0.05), but higher insulin sensitivity (p<0.05) than the formulas-consuming infants. At follow-up, the groups did not differ significantly in either determined parameter. Conclusions In healthy term infants, high dietary load with CML does not play a pathophysiological role in the induction of infant formula-associated insulin resistance. Whether a high load of AGEs in early childhood affects postnatal programming remains to be elucidated. PMID:23301020
Tanaka, M; Kimura, R; Matsutani, A; Zaitsu, K; Oka, Y; Oizumi, K
1998-01-01
A case report of simultaneous presentation of chronic myelogenous leukemia (CML) and multiple myeloma (MM) in a 72-year-old female is described. Our case was typical of Ph1-positive and chimeric bcr-abl messenger RNA-positive CML. Furthermore, a marked IgG (kappa-type) paraproteinemia was present. Fluorescence in situ hybridization showed that 97% of marrow nucleated cells were positive for bcr-abl fusion signal, when myeloma cells in the bone marrow amounted to 19.0%. In the literature survey, 4 similar cases with coexistence of CML and MM have been identified.
You, Liangshun; Liu, Hui; Huang, Jian; Xie, Wanzhuo; Wei, Jueying; Ye, Xiujin; Qian, Wenbin
2017-01-31
Chronic myeloid leukemia (CML) is a clonal malignant disease caused by the expression of BCR/ABL. MDM2 (human homolog of the murine double minute-2) inhibitors such as Nutlin-3 have been shown to induce apoptosis in a p53-dependent manner in CML cells and sensitize cells to Imatinib. Here, we demonstrate that JNJ-26854165, an inhibitor of MDM2, inhibits proliferation and triggers cell death in a p53-independent manner in various BCR/ABL-expressing cells, which include primary leukemic cells from patients with CML blast crisis and cells expressing the Imatinib-resistant T315I BCR/ABL mutant. The response to JNJ-26854165 is associated with the downregulation of BCR/ABL dependently of proteosome activation. Moreover, in all tested CML cells, with the exception of T315I mutation cells, combining JNJ-26854165 and tyrosine kinase inhibitor (TKI) Imatinib or PD180970 leads to a synergistic effect. In conclusion, our results suggest that JNJ-26854165, used either alone or in combination with TKIs, represents a promising novel targeted approach to overcome TKI resistance and improve patient outcome in CML.
Fujiwara, Shin-Ichiro; Shirato, Yuya; Ikeda, Takashi; Kawaguchi, Shin-Ichiro; Toda, Yumiko; Ito, Shoko; Ochi, Shin-Ichi; Nagayama, Takashi; Mashima, Kiyomi; Umino, Kento; Minakata, Daisuke; Nakano, Hirofumi; Morita, Kaoru; Yamasaki, Ryoko; Kawasaki, Yasufumi; Sugimoto, Miyuki; Ashizawa, Masahiro; Yamamoto, Chihiro; Hatano, Kaoru; Sato, Kazuya; Oh, Iekuni; Ohmine, Ken; Muroi, Kazuo; Kanda, Yoshinobu
2018-06-01
Tyrosine kinase inhibitors (TKIs) are standard therapy for chronic myeloid leukemia (CML). However, the effects of these agents on mature B cell lymphoma are not well known. We describe a 50-year-old man who was diagnosed with CML in the chronic phase and treated with imatinib. After 3 years of imatinib therapy that achieved a complete cytogenetic response of CML, he developed Philadelphia-negative follicular lymphoma (FL). Rituximab monotherapy induced a partial response of FL, and he subsequently achieved a major molecular response (MMR) of CML. Three years later, however, the MMR was lost, followed by the progression of FL. Imatinib was switched to nilotinib for the treatment of CML, while we chose watchful waiting for FL. He achieved MMR again under treatment with nilotinib for 8 months including one month of substitutional use of dasatinib due to adverse events, but thereafter nilotinib was switched to bosutinib due to hyperbilirubinemia. With the administration of second-generation TKIs (2G-TKIs) for a total of 18 months, he achieved a complete response to FL without antilymphoma treatment. This is the first report to suggest that 2G-TKIs may have direct or indirect effects on FL.
Current approach to the treatment of chronic myeloid leukaemia.
Pasic, Ivan; Lipton, Jeffrey H
2017-04-01
Of all the cancers, chronic myeloid leukaemia (CML) has witnessed the most rapid evolution of the therapeutic milieu in recent decades. The introduction of tyrosine kinase inhibitors (TKIs) as a therapeutic option has profoundly changed patient experience and outcome. The availability of multiple new highly effective therapies has increasingly underscored the importance of a good understanding of the underlying pathophysiological basis in CML, as well as patient-specific factors in choosing the right treatment for every individual. The treatment of CML has migrated in many jurisdictions from the office of a highly specialized malignant hematologist to the general hematologist or even a general practitioner. The goal of this review is to offer an overview of the modern approach to the treatment of CML, with an emphasis on chronic phase (CP) CML, including both TKI-based therapies such as imatinib, dasatinib, nilotinib, bosutinib and ponatinib, and non-TKI medications, such as omacetaxine. We discuss evidence behind each drug, most common and material adverse reactions and outline how this information can be used in selecting the right drug for the right patient. We also discuss evidence as it relates to other therapies, including stem cell transplant (SCT), and patients in accelerated (AP) and blastic phase (BP). Copyright © 2017 Elsevier Ltd. All rights reserved.
Laidlaw, Kamilla M.E.; Berhan, Samuel; Liu, Suhu; Silvestri, Giovannino; Holyoake, Tessa L.; Frank, David A.; Aggarwal, Bharat; Bonner, Michael Y.; Perrotti, Danilo
2016-01-01
The use of tyrosine kinase inhibitors (TKI), including nilotinib, has revolutionized the treatment of chronic myeloid leukemia (CML). However current unmet clinical needs include combating activation of additional survival signaling pathways in persistent leukemia stem cells after long-term TKI therapy. A ubiquitous signaling alteration in cancer, including CML, is activation of reactive oxygen species (ROS) signaling, which may potentiate stem cell activity and mediate resistance to both conventional chemotherapy and targeted inhibitors. We have developed a novel nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitor, imipramine blue (IB) that targets ROS generation. ROS levels are known to be elevated in CML with respect to normal hematopoietic stem/progenitor cells and not corrected by TKI. We demonstrate that IB has additive benefit with nilotinib in inhibiting proliferation, viability, and clonogenic function of TKI-insensitive quiescent CD34+ CML chronic phase (CP) cells while normal CD34+ cells retained their clonogenic capacity in response to this combination therapy in vitro. Mechanistically, the pro-apoptotic activity of IB likely resides in part through its dual ability to block NF-κB and re-activate the tumor suppressor protein phosphatase 2A (PP2A). Combining BCR-ABL1 kinase inhibition with NADPH oxidase blockade may be beneficial in eradication of CML and worthy of further investigation. PMID:27438151
Somoza, Veronika; Wenzel, Elisabeth; Weiss, Carola; Clawin-Rädecker, Ingrid; Grübel, Nadine; Erbersdobler, Helmut F
2006-09-01
During the heat treatment of protein-containing foods, the amino acid lysine is most prone to undergo chemical reactions in the course of amino acid cross-linking or Maillard reactions. Among the reaction products formed, lysinoalanine (LAL), N(epsilon)-fructoselysine (FL) and N(epsilon)-carboxymethyllysine (CML) are those which serve as sensitive markers for the heat treatment applied. From a nutritional perspective, these compounds are ingested with the diet in considerable amounts but information about their metabolic transit and putative in vivo effects is scarce. In the present study, casein-linked LAL, FL and CML were administered to rats in two different doses for 10 days. Quantitation of LAL, FL and CML in plasma, tissue and faeces samples revealed that the kidneys are the predominant sites of accumulation and excretion. The maximum percent of dietary LAL, FL and CML excreted in the urine was 5.6, 5.2 and 29%, whereas the respective recoveries in the kidneys were 0.02, 26 and 1.4%. The plasma and tissue analyses revealed that the endogenous load of either compound is increased by its dietary intake. But the dose-dependent utilisation of dietary protein-linked LAL, FL and CML in rats has been demonstrated for the first time to vary substantially from each other.
Vandelle, Elodie; Vannozzi, Alessandro; Wong, Darren; Danzi, Davide; Digby, Anne-Marie; Dal Santo, Silvia; Astegno, Alessandra
2018-06-04
Calcium (Ca 2+ ) is an ubiquitous key second messenger in plants, where it modulates many developmental and adaptive processes in response to various stimuli. Several proteins containing Ca 2+ binding domain have been identified in plants, including calmodulin (CaM) and calmodulin-like (CML) proteins, which play critical roles in translating Ca 2+ signals into proper cellular responses. In this work, a genome-wide analysis conducted in Vitis vinifera identified three CaM- and 62 CML-encoding genes. We assigned gene family nomenclature, analyzed gene structure, chromosomal location and gene duplication, as well as protein motif organization. The phylogenetic clustering revealed a total of eight subgroups, including one unique clade of VviCaMs distinct from VviCMLs. VviCaMs were found to contain four EF-hand motifs whereas VviCML proteins have one to five. Most of grapevine CML genes were intronless, while VviCaMs were intron rich. All the genes were well spread among the 19 grapevine chromosomes and displayed a high level of duplication. The expression profiling of VviCaM/VviCML genes revealed a broad expression pattern across all grape organs and tissues at various developmental stages, and a significant modulation in biotic stress-related responses. Our results highlight the complexity of CaM/CML protein family also in grapevine, supporting the versatile role of its different members in modulating cellular responses to various stimuli, in particular to biotic stresses. This work lays the foundation for further functional and structural studies on specific grapevine CaMs/CMLs in order to better understand the role of Ca 2+ -binding proteins in grapevine and to explore their potential for further biotechnological applications. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Bhatia, Sanil; Diedrich, Daniela; Frieg, Benedikt; Ahlert, Heinz; Stein, Stefan; Bopp, Bertan; Lang, Franziska; Zang, Tao; Kröger, Tobias; Ernst, Thomas; Kögler, Gesine; Krieg, Andreas; Lüdeke, Steffen; Kunkel, Hana; Rodrigues Moita, Ana J; Kassack, Matthias U; Marquardt, Viktoria; Opitz, Friederike V; Oldenburg, Marina; Remke, Marc; Babor, Florian; Grez, Manuel; Hochhaus, Andreas; Borkhardt, Arndt; Groth, Georg; Nagel-Steger, Luitgard; Jose, Joachim; Kurz, Thomas; Gohlke, Holger; Hansen, Finn K; Hauer, Julia
2018-05-03
Heat shock protein 90 (HSP90) stabilizes many client proteins including BCR-ABL1 oncoprotein. BCR-ABL1 is the hallmark of CML in which treatment-free remission (TFR) is limited with clinical and economic consequences. Thus, there is an urgent need for novel therapeutics, which synergize with current treatment approaches. Several inhibitors targeting the N-terminal domain (NTD) of HSP90 are under investigation; however, side effects such as induction of heat shock response (HSR) and toxicity have so far precluded their FDA approval. We have developed a novel inhibitor (referred to as aminoxyrone) of HSP90 function by targeting HSP90 dimerization via the C-terminal domain (CTD). This was achieved by structure-based molecular design, chemical synthesis, and functional pre-clinical in vitro and in vivo validation using CML cell lines and patient-derived CML cells. Aminoxyrone (AX) is a promising potential candidate, which induces apoptosis in leukemic stem cells (LSCs) fraction (CD34 + CD38 - ) as well as the leukemic bulk (CD34 + CD38 + ) of primary CML and in TKI-resistant cells. Furthermore, BCR-ABL1 oncoprotein and related pro-oncogenic cellular responses are downregulated and targeting HSP90 C-terminus by AX does not induce HSR in vitro and in vivo. We also probed the potential of AX in other therapy refractory leukemia such as BCR-ABL1+ BCP-ALL, FLT3-ITD+ AML and Ph-like BCP-ALL. Therefore, AX is the first peptidometic C-terminal HSP90 inhibitor with the potential to increase TFR in TKI sensitive and refractory CML patients and also offers a novel therapeutic option for patients with other therapy-refractory leukemia, due to its low toxicity profile and lack of HSR. Copyright © 2018 American Society of Hematology.
Qin, Ling; Deng, Hui-Yang; Chen, Sheng-Jiang; Wei, Wei
2017-05-01
Previous epidemiologic studies that have been reported on the association between cigarette smoking and risk of chronic myeloid leukaemia (CML) have remained controversial. A comprehensive meta-analysis was performed to evaluate smoking as a potential relationship factor and incidence of CML. Systematic literatures collected from articles published before August 2015 were searched from PubMed, EMBASE and the Cochrane Library. A total of 10 studies (nine case-controls and one cohort) met inclusion criteria of this meta-analysis. Odds ratios (ORs) with 95% confidence interval (CI) were calculated to assess the strength of the association between cigarette smoking and risk of CML in this study. Quality assessments were performed on the studies with the Newcastle-Ottawa Scale. I2 index was used to evaluate heterogeneity. Finally, publication bias was assessed through funnel plots and Begger's test. No significant association was observed between ever-smokers and CML when compared among non-smokers (OR = 1.13, 95% CI: 0.99-1.29) or between subgroups stratified by smoking history, gender, geographical region, study design and source of patients. Our results demonstrate that this association was stronger in individuals who smoked <20 cigarettes/day (OR = 1.72, 95% CI: 1.06-2.79) vs. individuals who smoked >20 cigarettes/day (OR = 1.24, 95% CI: 0.55-2.81). Moreover, cumulative smoking of <15, 15-30 and >30 pack-years was associated with ORs of 1.22, 1.32 and 1.39, respectively (P < 0.001, for trend). This meta-analysis suggests that smoking may significantly increase the risk of CML in a dose-dependent manner. However, additional well-designed, prospective cohort studies are required to verify these findings and identify other risk factors associated with CML.
Ru, Yi; Wang, Qinhao; Liu, Xiping; Zhang, Mei; Zhong, Daixing; Ye, Mingxiang; Li, Yuanchun; Han, Hua; Yao, Libo; Li, Xia
2016-01-01
Chronic myeloid leukemia (CML) is characterized by constitutively active fusion protein tyrosine kinase BCR-ABL. Although the tyrosine kinase inhibitor (TKI) against BCR-ABL, imatinib, is the first-line therapy for CML, acquired resistance almost inevitably emerges. The underlying mechanism are point mutations within the BCR-ABL gene, among which T315I is notorious because it resists to almost all currently available inhibitors. Here we took use of a previously generated chimeric ubiquitin ligase, SH2-U-box, in which SH2 from the adaptor protein Grb2 acts as a binding domain for activated BCR-ABL, while U-box from CHIP functions as an E3 ubiquitin ligase domain, so as to target the ubiquitination and degradation of both native and T315I-mutant BCR-ABL. As such, SH2-U-box significantly inhibited proliferation and induced apoptosis in CML cells harboring either the wild-type or T315I-mutant BCR-ABL (K562 or K562R), with BCR-ABL-dependent signaling pathways being repressed. Moreover, SH2-U-box worked in concert with imatinib in K562 cells. Importantly, SH2-U-box-carrying lentivirus could markedly suppress the growth of K562-xenografts in nude mice or K562R-xenografts in SCID mice, as well as that of primary CML cells. Collectively, by degrading the native and T315I-mutant BCR-ABL, the chimeric ubiquitin ligase SH2-U-box may serve as a potential therapy for both imatinib-sensitive and resistant CML. PMID:27329306
Ru, Yi; Wang, Qinhao; Liu, Xiping; Zhang, Mei; Zhong, Daixing; Ye, Mingxiang; Li, Yuanchun; Han, Hua; Yao, Libo; Li, Xia
2016-06-22
Chronic myeloid leukemia (CML) is characterized by constitutively active fusion protein tyrosine kinase BCR-ABL. Although the tyrosine kinase inhibitor (TKI) against BCR-ABL, imatinib, is the first-line therapy for CML, acquired resistance almost inevitably emerges. The underlying mechanism are point mutations within the BCR-ABL gene, among which T315I is notorious because it resists to almost all currently available inhibitors. Here we took use of a previously generated chimeric ubiquitin ligase, SH2-U-box, in which SH2 from the adaptor protein Grb2 acts as a binding domain for activated BCR-ABL, while U-box from CHIP functions as an E3 ubiquitin ligase domain, so as to target the ubiquitination and degradation of both native and T315I-mutant BCR-ABL. As such, SH2-U-box significantly inhibited proliferation and induced apoptosis in CML cells harboring either the wild-type or T315I-mutant BCR-ABL (K562 or K562R), with BCR-ABL-dependent signaling pathways being repressed. Moreover, SH2-U-box worked in concert with imatinib in K562 cells. Importantly, SH2-U-box-carrying lentivirus could markedly suppress the growth of K562-xenografts in nude mice or K562R-xenografts in SCID mice, as well as that of primary CML cells. Collectively, by degrading the native and T315I-mutant BCR-ABL, the chimeric ubiquitin ligase SH2-U-box may serve as a potential therapy for both imatinib-sensitive and resistant CML.
Bruynzeel, A M E; Abou El Hassan, M A; Schalkwijk, C; Berkhof, J; Bast, A; Niessen, H W M; van der Vijgh, W J F
2007-01-01
Cardiac damage is the major limiting factor for the clinical use of doxorubicin (DOX). Preclinical studies indicate that inflammatory effects may be involved in DOX-induced cardiotoxicity. Nɛ-(carboxymethyl) lysine (CML) is suggested to be generated subsequent to oxidative stress, including inflammation. Therefore, the aim of this study was to investigate whether CML increased in the heart after DOX and whether anti-inflammatory agents reduced this effect in addition to their possible protection on DOX-induced cardiotoxicity. These effects were compared with those of the potential cardioprotector 7-monohydroxyethylrutoside (monoHER). BALB/c mice were treated with saline, DOX alone or DOX preceded by ketoprofen (KP), dexamethasone (DEX) or monoHER. Cardiac damage was evaluated according to Billingham. Nɛ-(carboxymethyl) lysine was quantified immunohistochemically. Compared to saline, a 21.6-fold increase of damaged cardiomyocytes was observed in mice treated with DOX (P<0.001). Addition of KP, DEX or monoHER before DOX significantly reduced the mean ratio of abnormal cardiomyocytes in comparison to mice treated with DOX alone (P⩽0.02). In addition, DOX induced a significant increase in the number of CML-stained intramyocardial vessels per mm2 (P=0.001) and also in the intensity of CML staining (P=0.001) compared with the saline-treated group. Nɛ-(carboxymethyl) lysine positivity was significantly reduced (P⩽0.01) by DOX-DEX, DOX-KP and DOX-monoHER. These results confirm that inflammation plays a role in DOX-induced cardiotoxicity, which is strengthened by the observed DOX-induced accumulation of CML, which can be reduced by anti-inflammatory agents and monoHER. PMID:17325706
[Case of pediatric chronic myeloid leukemia with bilateral visual loss onset].
Hara, Yusuke; Kamura, Yumi; Oikawa, Aki; Shichino, Hiroyuki; Mugishima, Hideo; Goto, Hiroshi
2010-05-01
Chronic myeloid leukemia (CML) during childhood is rare, and only been a few cases showed visual disturbances as an initial symptom. We report a pediatric CML case diagnosed by bilateral visual loss. An 11-year-old boy complained of visual loss in both eyes. His best corrected visual acuity was 0.5 in the right eye and 0.2 in the left. Fundus examination showed disc swelling, dilated and tortuous retinal veins and multiple elevated retinal lesions with hemorrhages of various size from one-forth to four disc diameters in both eyes. He was diagnosed as having CML by leucocytosis and systematic work-up including Philadelphia chromosome-positive, BCR-ABL kinase domain in peripheral blood and bone marrow. The ocular findings improved after treatment with hydroxyurea, leukocytaphresis and imatinib. His best corrected visual acuity improved to 0.7 in both eyes. Recent leukemia therapy including imatinib is effective not only for ocular lesions but also to induce hematological remission in childhood CML.
Di Stefano, Carla; Mirone, Giovanna; Perna, Stefania; Marfe, Gabriella
2016-02-01
Chronic myeloid leukemia (CML) is characterized by the accumulation of Philadelphia chromosome-positive (Ph+) myeloid cells. Ph+ cells occur via a reciprocal translocation between the long arms of chromosomes 9 and 22 resulting in constitutively active BCR-ABL fusion protein. Tyrosine kinase inhibitors (TKIs) are used against the kinase activity of BCR-ABL protein for the effective treatment of CML. However, the development of drug resistance, caused by different genetic mechanisms, is the major issue in the clinical application of TKIs. These mechanisms include changes in expression levels of microRNAs (miRNAs). miRNAs are short non-coding regulatory RNAs that control gene expression and play an important role in cancer development and progression. In the present review, we highlight the roles of miRNAs both in the progression and chemotherapy-resistance of CML. Our understanding of these mechanisms may lead to the use of this knowledge not only in the treatment of patients with CML, but also in other type of cancers.
Saglio, G; Cilloni, D; Rancati, F; Boano, L
2004-01-01
Chronic Myeloid Leukemia (CML) has always been an ideal model to understand the molecular pathogenesis of human leukaemias and the way to cure them. This can be ascribed to the fact that CML was the first human cancer demonstrated to be strongly associated to the presence of a recurrent chromosomal translocation (the t(9;22)(q34;q11) that creates the Philadelphia (Ph)-chromosome) and to a specific molecular defect, the formation of a hybrid BCR-ABL gene that generates new fusion proteins endowed with a constitutive tyrosine-kinase (TK) activity, strongly implicated in the pathogenesis of the disease. The introduction into clinical practice of imatinib, (Glivec, Gleevec, Novartis), a potent tyrosine kinase inhibitor of the Bcr-Abl protein as well as of a restricted number of other TKs, has not only produced a substantial improvement in the treatment of CML, but represents a major break-through in the perspective of opening a new era, that of molecularly targeted therapy, in the management of other types of leukemia, lymphoma and cancer in general.
Ninomiya, Soranobu; Kanemura, Nobuhiro; Tsurumi, Hisashi; Kasahara, Senji; Hara, Takeshi; Yamada, Toshiki; Moriwaki, Hisataka
2011-06-01
A 63-year-old woman presented with leukocytosis (278 × 10(9)/L) with 72% blasts. Bone marrow blast cells showed cytogenetic abnormality with 46,XX, t(9;22), inv(16). Despite achievement of hematological remission by induction chemotherapy, Philadelphia chromosome did not disappear; chronic myeloid leukemia (CML) in blast crisis (BC) was thus diagnosed. The P190 BCR/ABL fusion transcript was detected. Imatinib mesylate introduced a hematological remission of short duration; however, infiltration into the central nervous system occurred, and the patient died 7 months after presentation. Coexistence of inv(16) and t(9:22) has been described in CML-BC and de novo AML, and CML-BC patients always carry P210 BCR/ABL, while de novo AML patients usually have P190 BCR/ABL. To the best of our knowledge, this is the first report of CML-BC with inv(16) and P190 BCR/ABL. We discuss this case with reference to the literature.
Itoh, K; Kashimura, T; Kobayashi, Y; Yagasaki, F; Sakata, T; Kawai, N; Matsuda, A; Kusumoto, S; Fukuda, M; Ino, H; Murohashi, I; Jinnai, I; Yoshida, S; Bessho, M; Saitoh, M; Hirashima, K
1999-02-01
A 78-year-old man was diagnosed as leukocytosis in February 1994. Physical examination revealed marked hepatosplenomegaly. A peripheral blood examination disclosed 95,090/microliter leukocytes without hiatus leukemicus, 6.5 g/dl Hb, and 15.0 x 10(4)/microliter platelets. The neutrophil alkaline phosphatase score was 27, and serum VB12 was above 1,600pg/ml. IgG was identified as monoclonal immunoglobulin of type lambda. Bone marrow specimens demonstrated marked granulocytic hyperplasia. Neither the Philadelphia chromosome (Ph1) nor BCR gene rearrangement was detected; hence, the diagnosis of Ph1 (-) chronic myeloid leukemia (CML) was made. The patient was treated with hydroxyurea and low-dose VP-16 with no improvement, and died of pneumonia and sepsis in June 1995. This case was considered to be consistent with atypical CML (aCML) according to the FAB classification because monocytosis was not observed. It seems likely and interesting that the coexistent monoclonal gammopathy and aCML might have arisen from common abnormal hematopoietic stem cells.
Biological therapy and the immune system in patients with chronic myeloid leukemia.
Rohon, Peter
2012-07-01
Chronic myeloid leukemia (CML) is a clonal myeloproliferative disorder of hematopoietic stem cells that has been recognized as a disease responsive to immunotherapy. Despite the huge success of the tyrosine kinase inhibitors (TKIs), CML remains for the most part incurable, probably due to treatment resistance of leukemic stem cells, which are responsible for rapid disease relapse after discontinuation of therapy. Only allogeneic stem cell transplantation enables disease eradication. In addition to the Bcr-Abl1 oncoprotein, TKIs also inhibit off-target kinases (e.g. c-kit, Src, Tec), some of them having physiological functions in immune responses. In vitro studies have implied immunomodulatory effects of TKIs and interferon-alpha (IFN-α), but comprehensive information from in vivo analyses is missing. This review summarizes the recent advances in the field of immunology of CML, including basic information about leukemia-associated antigens and peptide vaccines, that could lead to the incorporation of TKIs and IFN-α in future therapeutic, potentially curative, interventions for CML.
Basbous, Sara; Levescot, Anaïs; Piccirilli, Nathalie; Brizard, Françoise; Guilhot, François; Roy, Lydia; Bourmeyster, Nicolas; Gombert, Jean-Marc; Herbelin, André
2016-11-01
CD1d-restricted invariant natural killer T (iNKT) cells are believed to play a key role in cancer immune surveillance, and are functionally deficient in patients with chronic myeloid leukaemia (CML). Herein, we have hypothesized that this defect might originate from BCR-ABL-dependent dysfunctions in myeloid dendritic cells (mDCs). Indeed, flow cytometry and confocal microscopy revealed that cell surface expression of CD1d was downregulated in CML mDCs, relative to healthy donor (HD) controls. The decreased cell surface display of CD1d could not be ascribed to defective mDC differentiation, as attested by normal expression of HLA-DR and the CD86 maturation marker. On the other hand, reduced membrane expression was not associated with decreased intracytoplasmic levels of CD1d or its mRNA transcripts, consistent with intracellular retention. In vitro treatment of CML mDCs with the Rho-associated protein kinase (ROCK) inhibitor Y-27632 partially restored both cell surface CD1d expression and CD1d-mediated antigen presentation, whereas it had no effect on HD mDCs. An inhibitor of BCR-ABL tyrosine kinase (TK), imatinib mesylate (IM), had no such activity. Similar recovery of CD1d expression occurred with fasudil, another ROCK inhibitor that is commonly used in clinical trials. Our data support the conclusion that BCR-ABL-dependent ROCK, but not TK, is involved in CD1d downregulation. We propose that ROCK, which is most likely activated by the DH/PH domain of BCR-ABL, mediates iNKT-cell immune subversion in CML patients by downregulating CD1d expression on CML mDCs. Our study reveals the ROCK-mDC axis as a new potential target to restore immune surveillance in patients with CML, offering new therapeutic perspectives for CML treatment. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Takeuchi, Masayoshi; Takino, Jun-ichi; Furuno, Satomi; Shirai, Hikari; Kawakami, Mihoko; Muramatsu, Michiru; Kobayashi, Yuka; Yamagishi, Sho-ichi
2015-01-01
Dietary consumption has recently been identified as a major environmental source of pro-inflammatory advanced glycation end-products (AGEs) in humans. It is disputed whether dietary AGEs represent a risk to human health. Nε-(carboxymethyl)lysine (CML), a representative AGE compound found in food, has been suggested to make a significant contribution to circulating CML levels. However, recent studies have found that the dietary intake of AGEs is not associated with plasma CML concentrations. We have shown that the serum levels of glyceraldehyde-derived AGEs (Glycer-AGEs), but not hemoglobin A1c, glucose-derived AGEs (Glu-AGEs), or CML, could be used as biomarkers for predicting the progression of atherosclerosis and future cardiovascular events. We also detected the production/accumulation of Glycer-AGEs in normal rats administered Glu-AGE-rich beverages. Therefore, we assessed the concentrations of various AGEs in a total of 1,650 beverages and foods that are commonly consumed in Japan. The concentrations of four kinds of AGEs (Glu-AGEs, fructose-derived AGEs (Fru-AGEs), CML, and Glycer-AGEs) were measured with competitive enzyme-linked immunosorbent assays involving immunoaffinity-purified specific antibodies. The results of the latter assays indicated that Glu-AGEs and Fru-AGEs (especially Glu-AGEs), but not CML or Glycer-AGEs, are present at appreciable levels in beverages and foods that are commonly consumed by Japanese. Glu-AGEs, Fru-AGEs, CML, and Glycer-AGEs exhibited concentrations of ≥85%, 2–12%, <3%, and trace amounts in the examined beverages and ≥82%, 5–15%, <3%, and trace amounts in the tested foods, respectively. The results of the present study indicate that some lactic acid bacteria beverages, carbonated drinks, sugar-sweetened fruit drinks, sports drinks, mixed fruit juices, confectionery (snacks), dried fruits, cakes, cereals, and prepared foods contain markedly higher Glu-AGE levels than other classes of beverages and foods. We provide useful data on the concentrations of various AGEs, especially Glu-AGEs, in commonly consumed beverages and foods. PMID:25730321
Population-based Testing and Treatment Characteristics for Chronic Myelogenous Leukemia
Styles, Timothy; Wu, Manxia; Wilson, Reda; Babcock, Frances; Butterworth, David; West, Dee W.; Richardson, Lisa C.
2017-01-01
Introduction National and International Hematology/Oncology Practice Guidelines recommend testing for the BCR-ABL mutation for definitive diagnosis of chronic myeloid leukemia (CML) to allow for appropriate treatment with a Tyrosine Kinase Inhibitor (TKI). The purpose of our study was to describe population-based testing and treatment practice characteristics for patients diagnosed with CML. Methods We analyzed cases of CML using 2011 data from 10 state registries which are part of the Centers for Disease Control and Prevention’s (CDC) National Program of Cancer Registries. We describe completeness of testing for the BCR-ABL gene and availability of outpatient treatment with TKIs and associated characteristics. Results A total of 685 cases of CML were identified; 55% (374) had a documented BCR-ABL gene test with 96% (360) of these being positive for the BCR-ABL gene and the remaining 4% (14) either testing negative or had a missing result. Registries were able to identify the use of TKIs in 54% (369) of patients, though only 43% (296) had a corresponding BCR-ABL gene test documented. One state registry reported a significantly lower percentage of patients being tested for the BCR-ABL gene (25%) and receiving TKI treatment (21%). Limiting analysis to CML case reports from the remaining nine CER registries, 78% (305) patients had a documented BCR-ABL gene test and 79% (308) had documented treatment with a TKI. Receipt of testing or treatment for these nine states did not vary by sex, race, ethnicity, census tract poverty level, census tract urbanization, or insurance status; BCR-ABL testing varied by state of residence and BCR-ABL testing and TKI therapy occurred less often with increasing age (OR: 0.97, 95%CI: 0.95–0.99; OR: 0.97, 95%CI: 0.96–0.99 respectively). Conclusions Collection of detailed CML data vary significantly by states. A majority of the case patients had appropriate testing for the BCR-ABL gene and treatment with tyrosine kinase inhibitors. However, BCR-ABL testing and TKI treatment decreased with increasing age. Further research is needed to understand CML coding, testing, and treatment disparities. PMID:28121314
Wang, Wen-Jun; Zheng, Chao-Feng; Liu, Zhuang; Tan, Yan-Hong; Chen, Xiu-Hua; Zhao, Bin-Liang; Li, Guo-Xia; Xu, Zhi-Fang; Ren, Fang-Gang; Zhang, Yao-Fang; Chang, Jian-Mei; Wang, Hong-Wei
2018-04-25
The present study intended to establish a droplet digital PCR (dd-PCR) for monitoring minimal residual disease (MRD) in patients with BCR/ABL (P210)-positive CML, thereby achieving deep-level monitoring of tumor load and determining the efficacy for guided clinically individualized treatment. Using dd-PCR and RT-qPCR, two cell suspensions were obtained from K562 cells and normal peripheral blood mononuclear cells by gradient dilution and were measured at the cellular level. At peripheral blood(PB) level, 61 cases with CML-chronic phase (CML-CP) were obtained after tyrosine kinase inhibitors (TKIs) treatment and regular follow-ups. By RT-qPCR, BCR/ABL (P210) fusion gene was undetectable in PB after three successive analyses, which were performed once every three months. At the same time, dd-PCR was performed simultaneously with the last equal amount of cDNA. Ten CML patients with MR4.5 were followed up by the two methods. At the cellular level, consistency of results of dd-PCR and RT-qPCR reached R 2 ≥0.99, with conversion equation of Y=33.148X 1.222 (Y: dd-PCR results; X: RT-qPCR results). In the dd-PCR test, 11 of the 61 CML patients (18.03%) tested positive and showed statistically significant difference (P<0.01). In the follow-up of 10 CML patients who were in MR4.5, 10 patients loss of MR4.0, and 4 were tested positive by dd-PCR 3 months earlier than by RT-qPCR. In contrast with RT-qPCR, dd-PCR is more sensitive, thus enabling accurate conversion of dd-PCR results into internationally standard RT-qPCR results by conversion equation, to achieve a deeper molecular biology-based stratification of BCR/ABL(P210) MRD. It has some reference value to monitor disease progression in clinic. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Jabbour, Elias J.; Hughes, Timothy P.; Cortés, Jorge E.; Kantarjian, Hagop M.; Hochhaus, Andreas
2014-01-01
Despite vast improvements in treatment of Philadelphia chromosome–positive chronic myeloid leukemia (CML) in chronic phase (CP), advanced stages of CML, accelerated phase or blast crisis, remain notoriously difficult to treat. Treatments that are highly effective against CML-CP produce disappointing results against advanced disease. Therefore, a primary goal of therapy should be to maintain patients in CP for as long as possible, by (1) striving for deep, early molecular response to treatment; (2) using tyrosine kinase inhibitors that lower risk of disease progression; and (3) more closely observing patients who demonstrate cytogenetic risk factors at diagnosis or during treatment. PMID:24050507
Tyrosine Kinase Inhibitor Treatment for Newly Diagnosed Chronic Myeloid Leukemia.
Radich, Jerald P; Mauro, Michael J
2017-08-01
Chronic myeloid leukemia (CML) is a myeloproliferative disorder that accounts for approximately 10% of new cases of leukemia. The introduction of tyrosine kinase inhibitors has led to a reduction in mortalities. Thus, the estimated prevalence of CML is increasing. The National Comprehensive Cancer Network and the European Leukemia Net guidelines incorporate frequent molecular monitoring of the fusion BCR-ABL transcript to ensure that patients reach and keep treatment milestones. Most patients with CML are diagnosed in the chronic phase, and approximately 10% to 30% of these patients will at some time in their course meet definition criteria of resistance to imatinib. Copyright © 2017 Elsevier Inc. All rights reserved.
Luu, Martin H; Press, Richard D
2013-09-01
The use of tyrosine kinase inhibitors (TKIs) to treat chronic myeloid leukemia (CML) represents the paradigm for modern targeted cancer therapy. Importantly, molecular monitoring using BCR-ABL real-time quantitative reverse transcription polymerase chain reaction (RQ-PCR) for assessing treatment efficacy and quantitating minimal residual disease is a major determinate of practical therapeutic decision-making in the long-term management of this now chronic disease. Herein, we present an overview of CML and the use of TKIs for targeted CML therapy, with an emphasis on the role, application and future aspects of PCR-based molecular monitoring.
Jabbour, Elias J; Hughes, Timothy P; Cortés, Jorge E; Kantarjian, Hagop M; Hochhaus, Andreas
2014-07-01
Despite vast improvements in the treatment of Philadelphia chromosome-positive chronic myeloid leukemia (CML) in chronic phase (CP), advanced stages of CML, accelerated phase or blast crisis, remain notoriously difficult to treat. Treatments that are highly effective against CML-CP produce disappointing results against advanced disease. Therefore, a primary goal of therapy should be to maintain patients in CP for as long as possible, by (1) striving for deep, early molecular response to treatment; (2) using tyrosine kinase inhibitors that lower risk of disease progression; and (3) more closely observing patients who demonstrate cytogenetic risk factors at diagnosis or during treatment.
Sedimentary processes of the lower Monterey Fan channel and channel-mouth lobe
Klaucke, I.; Masson, D.G.; Kenyon, Neil H.; Gardner, J.V.
2004-01-01
The distribution of deposits, sediment transport pathways and processes on the lower Monterey Fan channel and channel-mouth lobe (CML) are studied through the integration of GLORIA and TOBI sidescan sonar data with 7-kHz subbottom profiler records and sediment cores for ground-truthing. The lower Monterey channel is characterised by an up to 30-m-deep channel with poorly developed levees and alternating muddy and silty muddy overbank deposits. The channel is discontinuous, disappearing where gradients are less than about 1:350. Ground-truthing of the large CML shows that the entire CML is characterised by widespread deposits of generally fine sand, with coarser sand at the base of turbidites. Sand is particularly concentrated in finger-like areas of low-backscatter intensity and is interpreted as the result of non-turbulent sediment-gravity flows depositing metres thick massive, fine sand. TOBI sidescan sonar data reveal recent erosional features in the form of scours, secondary channels, large flow slides, and trains of blocks at the distal end of the CML. Erosion is probably related to increasing gradient as the CML approaches Murray Fracture zone and to differential loading of sandy submarine fan deposits onto pelagic clays. Reworking of older flow slides by sediment transport processes on the lobe produces trains of blocks that are several metres in diameter and aligned parallel to the flow direction. ?? 2004 Elsevier B.V. All rights reserved.
Alonso-Dominguez, Juan M; Grinfeld, Jacob; Alikian, Mary; Marin, David; Reid, Alistair; Daghistani, Mustafa; Hedgley, Corinne; O'Brien, Stephen; Clark, Richard E; Apperley, Jane; Foroni, Letizia; Gerrard, Gareth
2015-01-01
The tyrosine kinase inhibitor (TKI) imatinib has revolutionized the management of chronic myeloid leukaemia (CML). However, around 25% of patients fail to sustain an adequate response. We sought to identify gene-expression biomarkers that could be used to predict imatinib response. The expression of 29 genes, previously implicated in CML pathogenesis, were measured by TaqMan Low Density Array in 73 CML patient samples. Patients were divided into low and high expression for each gene and imatinib failure (IF), probability of achieving CCyR, progression free survival and CML related OS were compared by Kaplan-Meier and log-rank. Results were validated in a second cohort of 56 patients, with a further technical validation using custom gene-expression assays in a conventional RT-qPCR in a sub-cohort of 37 patients. Patients with low PTCH1 expression showed a worse clinical response for all variables in all cohorts. PTCH1 was the most significant predictor in the multivariate analysis compared with Sokal, age and EUTOS. PTCH1 expression assay showed the adequate sensitivity, specificity and predictive values to predict for IF. Given the different treatments available for CML, measuring PTCH1 expression at diagnosis may help establish who will benefit best from imatinib and who is better selected for second generation TKI. © 2014 Wiley Periodicals, Inc.
Trends in chronic myeloid leukemia survival in the United States from 1975–2009
Chen, Yiming; Wang, Haijun; Kantarjian, Hagop; Cortes, Jorge
2017-01-01
The use of interferon-alfa and allogeneic-stem cell transplantation, and more recently of tyrosine-kinase inhibitors (TKIs) has improved the outcome of patients with chronic myeloid leukemia (CML). We performed a population-based study of CML to evaluate relative survival (RS) trend by treatment eras. All instances of CML diagnosed between 1975 and 2009 reported in the Surveillance, Epidemiology, and End Results databases were reviewed. The incidence of CML was 1.75/100,000 persons per-year and increased with age. The incidence was highest in Detroit and lowest among Asians. The 5-year RS ratios increased from 0.26 in patients diagnosed in 1975–1989 to 0.36 in 1990–2000 and 0.56 in 2001–2009. There was a significant improvement in 5-year RS ratios in 2005–2009 calendar period compared to 2001–2004 period (P<0.05) corresponding to the introduction of second generation of TKIs. Age was the most important prognostic factor for RS, but the improvement in 5-year RS ratios was observed in all age groups except the group aged <15 years (P>0.05) including adolescent and young adults and elderly patient groups. There are ethnic and geographic variations in the incidence of CML. The RS improved with each treatment era, with the greatest improvement in all age groups occurring during the TKI era. PMID:23121646
Bănescu, Claudia; Iancu, Mihaela; Trifa, Adrian P; Macarie, Ioan; Dima, Delia; Dobreanu, Minodora
2015-04-01
The methylenetetrahydrofolate reductase (MTHFR) 677 C>T and 1298 A>C polymorphisms are associated with variations in folate levels, a phenomenon linked to the development of various malignancies. The aim of this study was to investigate the influence of the 677 C>T and 1298 A>C polymorphisms in the MTHFR gene on the risk of developing chronic myeloid leukemia (CML). Our study included 151 patients with CML and 305 controls. The MTHFR 677 C>T and 1298 A>C polymorphisms were investigated by polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP) and allele-specific PCR techniques. The CT and TT genotypes of the MTHFR 677 C>T polymorphism were associated with an increased risk of developing CML (odds ratio (OR) = 1.556, 95% confidence interval (CI) = 1.017-2.381, p value = 0.041, and OR = 1.897, 95% CI = 1.046-3.44, p value = 0.035, respectively). No association was observed between the prognostic factors (blasts, basophils, additional chromosomal abnormalities, EUTOS score, Sokal and Hasford risk groups) and the MTHFR 677 C>T and 1298 A>C variant genotypes in CML patients. Our study shows that the MTHFR 677 C>T polymorphism is significantly associated with the risk of CML in Romanian patients.
Cortes, Jorge; Radich, Jerald; Mauro, Michael J
2012-10-01
The development of tyrosine kinase inhibitors (TKIs) that inhibit signaling of the constitutive BCR-ABL protein revolutionized the treatment of chronic myelogenous leukemia (CML). These agents have dramatically changed the treatment landscape for CML, shifting the use of allogeneic stem cell transplantation to selected patients in the salvage setting. Four BCR-ABL TKIs are now commercially available for the treatment of CML: the first-generation TKI imatinib, and the second-generation TKIs dasatinib, nilotinib, and bosutinib. Continuous treatment with these agents induces durable responses in a high proportion of patients with chronic-phase CML. Research is focused on identifying which patients can discontinue therapy without a recurrence of disease. For the group of patients with resistance to TKIs, multiple alternative therapies are being evaluated. The third-generation TKI ponatinib is a BCR-ABL inhibitor that has demonstrated significant activity, including in patients with the TKI resistance mutation T315I. The homoharringtonine derivative omacetaxine mepesuccinate, which inhibits protein synthesis, has also demonstrated clinical activity in CML, including in patients with TKI resistance due to T315I and in patients who have TKI resistance despite no evidence of ABL mutations. It is essential that clinicians implement these new agents with care and change therapies only when appropriate in order to preserve as many options as possible for future use if needed.
NASA Astrophysics Data System (ADS)
Eshel, Adam; Alpert, Pinhas; Raich, Roi; Laronne, Jonathan; Merz, Ralf; Geyer, Stefan; Corsmeier, Ulrich
2016-04-01
Flash floods are a common phenomenon in arid and semi-arid areas such as the Dead Sea. These floods are generated due to a combination of short lasting, yet intense rainfall and typical low infiltration rates. The rare flow events in ephemeral rivers have significant importance in the replenishment of groundwater via transmission losses and in sustaining the vivid ecology of drylands. In some cases, flash floods cause severe damage to infrastructure as well as to private property, constituting a threat to human life. The temporal variation of rainfall intensity is the main driver generating the majority of flash floods in the Judean Desert, hence its monitoring is crucial in this area as in other remote arid areas worldwide. Cellular communication towers are profusely located. Commercial Microwave Links (CML) attenuation data obtained by cellular companies can be used for environmental monitoring. Rain is one of the most effective meteorological phenomena to attenuate a CML signal which, unlike radar backscatter, relates to near-surface conditions and is, therefore, suitable for surface hydrology. A 16 km CML crosses the Wadi Ze'elim drainage basin (~250 square kilometers), at the outlet of which the discharge is calculated using the Manning formula. The hydrometric data include accurate longitudinal and cross sectional measurements, water level and importantly mean water surface velocity when present during a flash flood. The latter is first-ever obtained in desert flash floods by portable, radar-based surface velocimetry. Acquisition of water velocity data is essential to avoid assuming a constant roughness coefficient, thereby more accurately calculating water discharge. Calibrating the CML-rain intensity, derived from the International Telecommunication Union (ITU)'s power law, is necessary to correlate the surface hydrologic response to the link. Our calibration approach is as follows: all the Israel Meteorological Service C-band radar cells over the CML's path were extracted and rain intensities were derived and averaged to simulate the dependence of the CML rain intensity on path's length. The CML-derived rain intensity is then multiplied by a correlation factor, found by fitting the CML intensity to that of the radar's rain (instantaneous rather than cumulative values) using least squares. Relative humidity is taken into account from the beginning of storms because its low values can lead to the Virga phenomenon - rain drops evaporate before reaching the ground, particularly in arid regions. This is a significant disadvantage of using radar data in dry regions. Therefore, the CML contribution may be significant in this environment. Spatial assumptions including uniformity are used to allow the computed specific discharge to be compared to the corrected and the uncorrected rain intensity. The time difference between the runoff generating attenuation pattern and the arrival of the wave at the outlet is examined and can constitute the base of a future short term flood warning system.
In vitro evaluation of digestive and endolysosomal enzymes to cleave CML-modified Ara h 1 peptides
USDA-ARS?s Scientific Manuscript database
The sensory, biological, chemical, and immunological characteristics of foods can be modified non-enzymatically during processing. Notably, these modifications may modulate the allergenic potency of food allergens, such as the Ara h 1 peanut allergen. Carboxymethyl-lysine (CML) modification is a p...
USDA-ARS?s Scientific Manuscript database
The transport of polyacrylic acid capped cadmium telluride (CdTe) quantum dots (QDs) and carboxylate-modified latex (CML) nanoparticles (NPs) was studied in packed columns at various electrolyte concentrations and cation types. The breakthrough curves (BTCs) of QDs and CML NPs in acid-treated Accus...
Gargallo, Patricia M; Cuello, Maria Teresa; Aranguren, Pedro Negri; Larripa, Irene B
2003-06-01
Although the chronic phase of chronic myelocytic leukemia (CML) is characterized by the Philadelphia (Ph) chromosome creating a hybrid BCR/ABL gene, additional genetic changes involved in blast crisis are poorly understood. We report a 4-8-fold amplification by tandem duplication of the BCR/ABL fusion gene clustered on a masked Ph chromosome in a 61-year-old male patient with CML in myeloblastic crisis. Our finding suggests that the BCR/ABL amplification may play a role as a novel mechanism in the progression to an aggressive blast transformation in some cases of Ph-positive CML.
2010 Library of the Year: Columbus Metropolitan Library
ERIC Educational Resources Information Center
Berry, John N., III
2010-01-01
This article features Columbus Metropolitan Library (CML), winner of the Gale/"Library Journal" Library of the Year Award 2010. CML, comprised of an operations center and 21 branches, serves the 847,376 people who inhabit a large portion of Franklin County in central Ohio. It is an independent library with its own taxing district. CML…
[Molecular genetics in chronic myeloid leukemia with variant Ph translocation].
Wu, Wei; Li, Jian-yong; Zhu, Yu; Qiu, Hai-rong; Pan, Jin-lan; Xu, Wei; Chen, Li-juan; Shen, Yun-feng; Xue, Yong-quan
2007-08-01
To explore the value of fluorescence in situ hybridization (FISH) and multiplex fluorescence in situ hybridization (M-FISH) techniques in the detection of genetic changes in chronic myeloid leukemia (CML) with variant Philadelphia translocation (vPh). Cytogenetic preparations from 10 CML patients with vPh confirmed by R banding were assayed with dual color dual fusion FISH technique. If only one fusion signal was detected in interphase cells, metaphase cells were observed to determine if there were derivative chromosome 9[der (9)] deletions. Meanwhile, the same cytogenetic preparations were assayed with M-FISH technique. Of the 10 CML patients with vPh, 5 were detected with der (9) deletions by FISH technique. M-FISH technique revealed that besides the chromosome 22, chromosomes 1, 3, 5, 6, 8, 10, 11 and 17 were also involved in the vPh. M-FISH technique also detected the abnormalities which were not found with conventional cytogenetics (CC), including two never reported abnormalities. The combination of CC, FISH and M-FISH technique could refine the genetic diagnosis of CML with vPh.
Advanced glycation endproducts in 35 types of seafood products consumed in eastern China
NASA Astrophysics Data System (ADS)
Wang, Jing; Li, Zhenxing; Pavase, Ramesh Tushar; Lin, Hong; Zou, Long; Wen, Jie; Lv, Liangtao
2016-08-01
Advanced glycation endproducts (AGEs) have been recognized as hazards in processed foods that can induce chronic diseases such as cardiovascular disease, diabetes, and diabetic nephropathy. In this study, we investigated the AGEs contents of 35 types of industrial seafood products that are consumed frequently in eastern China. Total fluorescent AGEs level and Nɛ-carboxymethyl-lysine (CML) content were evaluated by fluorescence spectrophotometry and gas chromatography-mass spectrometry (GC-MS), respectively. The level of total fluorescent AGEs in seafood samples ranged from 39.37 to 1178.3 AU, and was higher in canned and packaged instant aquatic products that were processed at high temperatures. The CML content in seafood samples ranged from 44.8 to 439.1 mg per kg dried sample, and was higher in roasted seafood samples. The total fluorescent AGEs and CML content increased when seafood underwent high-temperature processing, but did not show an obvious correlation. The present study suggested that commonly consumed seafood contains different levels of AGEs, and the seafood processed at high temperatures always displays a high level of either AGEs or CML.
[MPLW515L point mutation in patients with myeloproliferative disease].
Xia, Jun; Xu, Wei; Zhang, Su-Jiang; Fan, Lei; Qiao, Chun; Li, Jian-Yong
2008-12-01
In order to investigate the frequency of MPLW515L and JAK2V617F point mutations of the patients with myeloproliferative disease (MPD) in Nanjing area, MPLW515L and JAK2V617F point mutations were simultaneously detected by alleles specific polymerase chain reaction (AS-PCR) and sequencing in 190 MPD patients. The results showed that MPLW515L point mutation was detected in 1 out of 102 essential thrombocythemia (ET) patients (1.0%) and was not detected in 32 polycythemia vera (PV) patients, 13 idiopathic myelofibrosis (IMF) patients, 43 chronic myelogenous leukemia (CML) patients. JAK2V617F point mutation was detected in 20 out of 32 PV patients (62.5%), 43 out of 102 ET patients (42.2%), 5 out of 13 IMF patients (38.5%), and was not detected in 43 CML patients. It is concluded that MPLW515L point mutation exists in ET patient, but is not found in PV, IMF and CML. JAK2V617F point mutation exists in PV, ET and IMF, but not in CML.
Zhao, W; He, H; Ren, K; Li, B; Zhang, H; Lin, Y; Shao, R-g
2013-01-01
Chronic myelogenous leukemia (CML) evolves from a chronic phase characterized by the Philadelphia chromosome as the sole genetic abnormality and the accumulation of mature cells in peripheral blood into blast crisis, which is characterized by the rapid expansion of myeloid- or lymphoid-differentiation-arrested blast cells. Although ample studies have been conducted on the disease progress mechanisms, the underlying molecular mechanisms of the malignant phenotype transition are still unclear. In this study, we have shown that myofibrillogenesis regulator-1 (MR-1) was overexpressed in blast crisis patients and leukemic cells, but there was little trace expressed in healthy individuals and in most patients in CML chronic phase. MR-1 could inhibit the differentiation of myeloid cells into megakaryocytic lineages and accelerate cell proliferation. The molecular mechanism responsible for these effects was the interaction of MR-1 with MEK, which blocked the MEK/ERK signaling pathway by dephosphorylating MEK. Our results provide compelling and important evidence that MR-1 might act as a diagnostic marker and potential target of CML progression from chronic phase to blast crisis. PMID:23542180
Tabassum, Najia; Saboor, Mohammed; Ghani, Rubina; Moinuddin, Moinuddin
2014-01-01
Co-existence of myeloproliferative disorders (MPD) and Janus associated kinase 2 mutation (JAK2 V617F) is a well-established fact. Only few case reports are available showing presence of JAK2 V617F mutation in chronic myeloid leukemia (CML). Purpose of this study was to determine the frequency of JAK2 V617F mutation in Philadelphia Chromosome positive (Ph (+)) CML patients in Pakistan. The study was conducted from August 2009 to July 2010 at Civil Hospital and Baqai Institute of Hematology (BIH) Karachi. Blood samples from 25 patients with CML were collected. Multiplex reverse transcription polymerase chain reaction (RT-PCR) was performed for Breakpoint Cluster Region - Abelson (BCR-ABL) rearrangement. Conventional PCR was performed for JAK2 V617F mutation on BCR-ABL positive samples. All 25 samples showed BCR-ABL rearrangement. Out of these 11 samples (44%) had JAK2 V617F mutation; the remaining 14 (56%) cases showed JAK2 617V wild type. It is concluded that the co-existence of Ph (+)CML and JAK2 V617F mutation is possible.
The treatment of CML at an environment with limited resources.
Gómez-Almaguer, David; Cantú-Rodríguez, Olga G; Gutiérrez-Aguirre, Cesar H; Ruiz-Argüelles, Guillermo J
2016-12-01
This article reviews clinical experiences in the treatment of chronic myeloid leukemia (CML) in an environment of limited resources. We reviewed recent publications on Pub med and abstracts from mayor congresses relevant to the disease. CML is a hematological neoplasm observed more frequently in adults, regardless of their socioeconomic status. Until recently, available treatments improved patients' quality of life but did not modify survival. It was not until interferon appeared that patients received a drug that reduced and even eliminated Philadelphia chromosome-positive (Ph+) cells. With the start of the new millennium, the International Randomized Study of Interferon-α plus cytarabine versus STI571 (IRIS) trial demonstrated a dramatic improvement in survival by comparing imatinib versus interferon alpha plus cytarabine. The Food and Drug Administration (FDA) approved imatinib as first-line treatment for newly diagnosed CML in 2001 due to its outstanding effectiveness. Years later, three second-generation (dasatinib, nilotinib, bosutinib) and one third-generation (ponatinib) tyrosine-kinase inhibitors (TKIs) were developed and approved. These highly effective treatment options, however, are not affordable for many low-income patients. Additionally, the use of drugs that effectively treat but do not cure the disease has resulted in an important economic impact for patients and health care systems worldwide, especially those in developing countries. Imatinib is the least expensive and a very effective TKI in many low-income countries. Early allogeneic stem cell transplantation must be considered in the management of selected patients before CML transformation.
Giona, Fiorina; Putti, Maria C; Micalizzi, Concetta; Menna, Giuseppe; Moleti, Maria L; Santoro, Nicola; Iaria, Grazia; Ladogana, Saverio; Burnelli, Roberta; Consarino, Caterina; Varotto, Stefania; Tucci, Francesca; Messina, Chiara; Nanni, Mauro; Diverio, Daniela; Biondi, Andrea; Pession, Andrea; Locatelli, Franco; Piciocchi, Alfonso; Gottardi, Enrico; Saglio, Giuseppe; Foà, Robin
2015-08-01
Imatinib mesylate (IM) is used for the management of childhood chronic myeloid leukaemia (CML). The most effective dosage of IM and its long-term efficacy in children are not well defined. The purpose of this multicentre study is to report on the long-term results of high-dose IM (340 mg/m2 /d) in CML patients in chronic phase (CP-CML) aged <18 years at diagnosis. A total of 47 CP-CML patients with a median age at diagnosis of 11 years 9 months were enrolled in nine Italian centres. Complete cytogenetic response was achieved in 91.5% of the evaluable patients at a median time of 6 months. BCR-ABL1 International Scale ≤ 0.1% (major molecular response; MMR) and ≤0.01% (molecular response; MR) at 12 months were 66.6% and 33%, respectively. During follow-up, MMR and MR were achieved in 78.6% and 61% of children, respectively. IM was safely discontinued in 3 long-term treated children with a durable MR. Twelve patients (eight cytogenetic/molecular responders) underwent stem cell transplantation. The progression-free survival probabilities at 96 months for responding patients who continued IM and for those transplanted were 60% and 50%, respectively. After a median follow-up of 52 months (range 3-146), all patients are alive. High-dose IM is a long-term effective therapy in children and adolescents with CP-CML. © 2015 John Wiley & Sons Ltd.
Chakraborty, Jayashree B; Mahato, Sanjit K; Joshi, Kalpana; Shinde, Vaibhav; Rakshit, Srabanti; Biswas, Nabendu; Choudhury Mukherjee, Indrani; Mandal, Labanya; Ganguly, Dipyaman; Chowdhury, Avik A; Chaudhuri, Jaydeep; Paul, Kausik; Pal, Bikas C; Vinayagam, Jayaraman; Pal, Churala; Manna, Anirban; Jaisankar, Parasuraman; Chaudhuri, Utpal; Konar, Aditya; Roy, Siddhartha; Bandyopadhyay, Santu
2012-01-01
Alcoholic extract of Piper betle (Piper betle L.) leaves was recently found to induce apoptosis of CML cells expressing wild type and mutated Bcr-Abl with imatinib resistance phenotype. Hydroxy-chavicol (HCH), a constituent of the alcoholic extract of Piper betle leaves, was evaluated for anti-CML activity. Here, we report that HCH and its analogues induce killing of primary cells in CML patients and leukemic cell lines expressing wild type and mutated Bcr-Abl, including the T315I mutation, with minimal toxicity to normal human peripheral blood mononuclear cells. HCH causes early but transient increase of mitochondria-derived reactive oxygen species. Reactive oxygen species-dependent persistent activation of JNK leads to an increase in endothelial nitric oxide synthase-mediated nitric oxide generation. This causes loss of mitochondrial membrane potential, release of cytochrome c from mitochondria, cleavage of caspase 9, 3 and poly-adenosine diphosphate-ribose polymerase leading to apoptosis. One HCH analogue was also effective in vivo in SCID mice against grafts expressing the T315I mutation, although to a lesser extent than grafts expressing wild type Bcr-Abl, without showing significant bodyweight loss. Our data describe the role of JNK-dependent endothelial nitric oxide synthase-mediated nitric oxide for anti-CML activity of HCH and this molecule merits further testing in pre-clinical and clinical settings. © 2011 Japanese Cancer Association.
Pearson, Edward; McGarry, Lisa; Gala, Smeet; Nieset, Christopher; Nanavaty, Merena; Mwamburi, Mkaya; Levy, Yair
2016-04-01
Treatment of newly-diagnosed patients with chronic-phase chronic myeloid leukemia (CP-CML) with tyrosine kinase inhibitors (TKIs) results in near-normal life expectancy. However, CP-CML patients resistant to initial TKIs face a poorer prognosis and significantly higher CML-related mortality. We conducted a systematic literature review to evaluate the specific causes of deaths (diseases progression versus drug-related) in CP-CML patients receiving second- or third-line therapy. We identified eight studies based on our criteria that reported causes of death. Overall, 5% of second-line and 10% of third-line patients died during the study follow-up period. For second-line, (7 studies, n=1926), mortality was attributed to disease progression for 41% of deaths, 2% to treatment-related causes, 3% were treatment-unrelated, and 50% were unspecified adverse events (AEs), not likely related to study drug. In third-line, (2 studies, n=144), 71% deaths were attributed to disease progression, 7% treatment-related AEs, 14% treatment-unrelated and 7% unspecified AEs. Annual death rates for second- and third-line therapy were significantly higher than for general population in similar age group. Our findings suggest death attributed to disease progression is approximately 10 times that due to treatment-related AEs in patients with CP-CML receiving second- or third-line therapy. Therefore, the potential benefits of effective treatment for these patients with the currently available TKIs outweigh the risks of treatment-induced AEs. Copyright © 2016 Elsevier Ltd. All rights reserved.
Chen, Z; Shao, C; Wang, W; Zuo, Z; Mou, X; Hu, S J; DiGiuseppe, J A; Zu, Y; Medeiros, L J; Hu, S
2017-03-01
The landscape of additional chromosomal alterations (ACAs) and their impact in chronic myeloid leukemia, blast phase (CML-BP) treated with tyrosine kinase inhibitors (TKIs) have not been well studied. Here, we investigated a cohort of 354 CML-BP patients treated with TKIs. We identified +8, an extra Philadelphia chromosome (Ph), 3q26.2 rearrangement, -7 and isochromosome 17q (i(17q)) as the major-route changes with a frequency of over 10%. In addition, +21 and +19 had a frequency of over 5%. These ACAs demonstrated lineage specificity: +8, 3q26.2 rearrangement, i(17q) and +19 were significantly more common in myeloid BP, and -7 more common in lymphoid BP; +Ph and +21 were equally distributed between two groups. Pearson correlation analysis revealed clustering of common ACAs into two groups: 3q26.2 rearrangement, -7 and i(17q) formed one group, and other ACAs formed another group. The grouping correlated with risk stratification of ACAs in CML, chronic phase. Despite the overall negative prognostic impact of ACAs, stratification of ACAs into major vs minor-route changes provided no prognostic relevance in CML-BP. The emergence of 3q26.2 rearrangement as a major-route change in the TKI era correlated with a high frequency of ABL1 mutations, supporting a role for TKI resistance in the changing cytogenetic landscape in CML-BP.
Chronic myeloid leukemia progenitor cells require autophagy when leaving hypoxia-induced quiescence
Ianniciello, Angela; Dumas, Pierre-Yves; Drullion, Claire; Guitart, Amélie; Villacreces, Arnaud; Peytour, Yan; Chevaleyre, Jean; Brunet de la Grange, Philippe; Vigon, Isabelle; Desplat, Vanessa; Priault, Muriel; Sbarba, Persio Dello; Ivanovic, Zoran; Mahon, François-Xavier; Pasquet, Jean-Max
2017-01-01
Albeit tyrosine kinase inhibitors anti-Abl used in Chronic Myeloid Leukemia (CML) block the deregulated activity of the Bcr-Abl tyrosine kinase and induce remission in 90% of patients, they do not eradicate immature hematopoietic compartments of leukemic stem cells. To elucidate if autophagy is important for stem cell survival and/or proliferation, we used culture in low oxygen concentration (0.1% O2 for 7 days) followed back by non-restricted O2 supply (normoxic culture) to mimic stem cell proliferation and commitment. Knockdown of Atg7 expression, a key player in autophagy, in K562 cell line inhibited autophagy compared to control cells. Upon 7 days at 0.1% O2 both K562 and K562 shATG7 cells stopped to proliferate and a similar amount of viable cells remained. Back to non-restricted O2 supply K562 cells proliferate whereas K562 shATG7 cells exhibited strong apoptosis. Using immunomagnetic sorted normal and CML CD34+ cells, we inhibited the autophagic process by lentiviral infection expressing shATG7 or using a Vps34 inhibitor. Both, normal and CML CD34+ cells either competent or deficient for autophagy stopped to proliferate in hypoxia. Surprisingly, while normal CD34+ cells proliferate back to non restricted O2 supply, the CML CD34+ cells deficient for autophagy failed to proliferate. All together, these results suggest that autophagy is required for CML CD34+ commitment while it is dispensable for normal CD34 cells. PMID:29228587
Ghanei, Mostafa; Vosoghi, Ali Akbar
2002-01-01
Chemical agents such as mustard gas (or sulfur mustard), which has alkylating characteristics, were used against Iranian combatants in the Iraq-Iran war. Previous studies have not shown a strong link between these chemical agents and the development of chronic myelocytic leukemia (CML). The purpose of this study was to evaluate the increased risk of CML development in Iranian soldiers exposed to mustard gas during the war. Based on a descriptive study of 2,500 cases with documented exposure to various chemical warfare agents, 665 patients had documented exposure to mustard gas. We screened the latter using the leukocyte alkaline phosphatase (LAP) test and performed further cytochemical studies on cases with positive results. From among the 665 cases with documented exposure to mustard gas, 9 cases had LAP scores < 20; 2 of these 9 cases had CML and a score of zero (0.3%). We detected cytogenetic abnormalities in 7 patients with low LAP scores and atypical lymphocytes of 5-11% in 40 patients. The risk ratio of CML developing in victims exposed to mustard gas (cutaneous or respiratory) may be higher in comparison with the normal population, although confounding factors (e.g., the possibility of exposure to combined chemical agents, excluding patients who did not manifest blisters) limited our results. Because the increased development of CML in young patients with a documented history of exposure to mustard gas cannot be disregarded, further studies are needed. PMID:12003756
BCR-ABL1 promotes leukemia by converting p27 into a cytoplasmic oncoprotein
Mackenzie, Ryan J.; Besson, Arnaud; Jeng, Sophia; Carey, Alyssa; LaTocha, Dorian H.; Fleischman, Angela G.; Duquesnes, Nicolas; Eide, Christopher A.; Vasudevan, Kavin B.; Loriaux, Marc M.; Firpo, Eduardo; Cortes, Jorge E.; McWeeney, Shannon; O’Hare, Thomas; Roberts, James M.; Druker, Brian J.; Deininger, Michael W.
2014-01-01
Recent studies have revealed that p27, a nuclear cyclin-dependent kinase (Cdk) inhibitor and tumor suppressor, can acquire oncogenic activities upon mislocalization to the cytoplasm. To understand how these antagonistic activities influence oncogenesis, we dissected the nuclear and cytoplasmic functions of p27 in chronic myeloid leukemia (CML), a well-characterized malignancy caused by the BCR-ABL1 tyrosine kinase. p27 is predominantly cytoplasmic in CML and nuclear in normal cells. BCR-ABL1 regulates nuclear and cytoplasmic p27 abundance by kinase-dependent and -independent mechanisms, respectively. p27 knockdown in CML cell lines with predominantly cytoplasmic p27 induces apoptosis, consistent with a leukemogenic role of cytoplasmic p27. Accordingly, a p27 mutant (p27CK−) devoid of Cdk inhibitory nuclear functions enhances leukemogenesis in a murine CML model compared with complete absence of p27. In contrast, p27 mutations that enhance its stability (p27T187A) or nuclear retention (p27S10A) attenuate leukemogenesis over wild-type p27, validating the tumor-suppressor function of nuclear p27 in CML. We conclude that BCR-ABL1 kinase-dependent and -independent mechanisms convert p27 from a nuclear tumor suppressor to a cytoplasmic oncogene. These findings suggest that cytoplasmic mislocalization of p27 despite BCR-ABL1 inhibition by tyrosine kinase inhibitors may contribute to drug resistance, and effective therapeutic strategies to stabilize nuclear p27 must also prevent cytoplasmic mislocalization. PMID:25293778
Karalexi, Maria A; Baka, Margarita; Ryzhov, Anton; Zborovskaya, Anna; Dimitrova, Nadya; Zivkovic, Snezana; Eser, Sultan; Antunes, Luis; Sekerija, Mario; Zagar, Tina; Bastos, Joana; Demetriou, Anna; Agius, Domenic; Florea, Margareta; Coza, Daniela; Polychronopoulou, Sophia; Stiakaki, Eftichia; Moschovi, Maria; Hatzipantelis, Emmanuel; Kourti, Maria; Graphakos, Stelios; Pombo-de-Oliveira, Maria S; Adami, Hans Olov; Petridou, Eleni Th
2016-11-01
To assess trends in survival and geographic disparities among children (0-14 years) with chronic myeloid leukaemia (CML) before and after the introduction of molecular therapy, namely tyrosine kinase inhibitors (TKIs) in Southern-Eastern European (SEE) countries and the USA. We calculated survival among children with CML, acute lymphoblastic (ALL) and acute myeloid leukaemia (AML) in 14 SEE (1990-2014) cancer registries and the U.S. Surveillance, Epidemiology and End Results Program (SEER, 1990-2012). We used Kaplan-Meier curves and multivariate Cox regression models to calculate hazard ratios (HRs) with 95% confidence intervals (CIs). Among 369 CML cases, substantial improvements were noted in 2-year survival during the post-TKI (range: 81-89%) compared to pre-TKI period (49-66%; HR: 0.37, 95% CI: 0.23-0.60). Risk of death was three times higher for <5-year-old children versus those aged 10-14 years (HR: 3.03, 95% CI: 1.85-4.94) and 56% higher for those living in SEE versus SEER (HR: 1.56, 95% CI: 1.01-2.42). Regardless of geographic area and period of TKI administration, however, age seems to be a significant determinant of CML prognosis (pre-TKI period, HR 0-4y : 2.71, 95% CI: 1.53-4.79; post-TKI period, HR 0-4y : 3.38, 95% CI: 1.29-8.85). Noticeably, post-TKI survival in CML overall approximates that for ALL, whereas therapeutic advancements for AML remain modest. Registry data show that introduction of molecular therapies coincides with revolutionised therapeutic outcomes in childhood CML entailing dramatically improved survival which is now similar to that in ALL. Given that age disparities in survival remain substantial, offering optimal therapy to entire populations is an urgent priority. Copyright © 2016 Elsevier Ltd. All rights reserved.
Liu, Yi-Chang; Hsiao, Hui-Hua; Yang, Wen-Chi; Liu, Ta-Chih; Chang, Chao-Sung; Yang, Ming-Yu; Lin, Pai-Mei; Hsu, Jui-Feng; Lee, Ching-Ping; Lin, Sheng-Fung
2014-12-01
The genetic or functional inactivation of the p53 pathway plays an important role with regards to disease progression from the chronic phase (CP) to blast phase (BP) and imatinib treatment response in chronic myeloid leukemia (CML). Two functional single nucleotide polymorphisms (SNPs), p53 R72P and MDM2 SNP309, are associated with alternation of p53 activity, however the association regarding CML susceptibility and BP transformation under imatinib treatment is unclear. The MDM2 SNP309 genotype was determined by polymerase chain reaction-restriction fragment length polymorphism and confirmed by direct sequencing from 116 CML patients, including 104 in the CP at diagnosis, and 162 healthy Taiwanese controls. The p53 R72P polymorphism was examined in all CML patients. The SNP309 G/G genotype was associated with an increased risk of CML susceptibility (OR: 1.82, 95% CI: 1.03-3.22, P = 0.037), and an earlier age of disease onset (log-rank P = 0.005) compared with the T/T + T/G genotypes. Higher MDM2 mRNA expression was found in G/G genotype compared with T/T (P = 0.034) and T/T + T/G (P = 0.056) genotypes. No associations were found between the p53 R72P genotypes and clinical parameters and survival outcomes. Among 62 CP patients receiving imatinib as first-line therapy, the G/G genotype was associated with a shorter blast-free survival (log-rank P = 0.048) and more clonal evolution compared with the T/T + T/G genotypes. In patients with advanced diseases at diagnosis, the G/G genotype was associated with a poor overall survival (log-rank P = 0.006). Closely monitoring CML patients harboring the G/G genotype and further large-scale studies are warranted. © 2013 Wiley Periodicals, Inc.
Mishra, Nibha; Saxena, Sandeep; Ruia, Surabhi; Prasad, Senthamizh; Singh, Vinita; Khanna, Vinay; Staffa, Robert; Gaspar, Ludovit; Kruzliak, Peter
2016-07-01
To evaluate the association of serum levels of N(ε)- Carboxy methyl lysine (N(ε)-CML), an advanced glycation end product with topographic alterations in retinal pigment epithelium (RPE) in diabetic retinopathy on spectral domain optical coherence tomography (SD-OCT). Consecutive cases of type 2 diabetes mellitus with no retinopathy (n=20); non-proliferative diabetic retinopathy (n=20); proliferative diabetic retinopathy (n=20) and healthy controls (n=20) between the ages of 40 and 65years were included. RPE alterations were graded on segmentation map of SD-OCT: grade 0, No RPE alterations; grade 1, RPE alterations in up to two quadrants and grade 2, RPE alterations in more than two quadrants. Serum level of N(ε)-CML and glycated hemoglobin (HbA1c) was analyzed using the standard protocol. Statistical analysis was done. Significant increase in N(ε)-CML was observed with increased severity of diabetic retinopathy (F=34.1; p<0.0001). Fisher exact test revealed significant increase in grades of RPE alterations with increased severity of diabetic retinopathy (p<0.001). Univariate ordinal regression analysis was done to calculate the risk of progression in grades of RPE alteration with individual changes in variables like duration of diabetes (odds ratio=1.37; p=0.001), HbA1c (odds ratio=1.37; p=0.002) and Nε-CML (odds ratio=1.37; p<0.0001). Multivariate ordinal regression analysis for predicting progression in grades of RPE alteration revealed Nε-CML to be an independent predictor of increase in grades of RPE alteration (adjusted odds ratio=1.07; p<0.01) when duration of diabetes and HbA1c were held constant. Increase in serum levels of N(ε)- Carboxy methyl lysine is significantly associated with topographic alterations in RPE. Grades of RPE alteration increase significantly with increased severity of diabetic retinopathy. Copyright © 2016 Elsevier Inc. All rights reserved.
Erosion of the chronic myeloid leukaemia stem cell pool by PPARγ agonists.
Prost, Stéphane; Relouzat, Francis; Spentchian, Marc; Ouzegdouh, Yasmine; Saliba, Joseph; Massonnet, Gérald; Beressi, Jean-Paul; Verhoeyen, Els; Raggueneau, Victoria; Maneglier, Benjamin; Castaigne, Sylvie; Chomienne, Christine; Chrétien, Stany; Rousselot, Philippe; Leboulch, Philippe
2015-09-17
Whether cancer is maintained by a small number of stem cells or is composed of proliferating cells with approximate phenotypic equivalency is a central question in cancer biology. In the stem cell hypothesis, relapse after treatment may occur by failure to eradicate cancer stem cells. Chronic myeloid leukaemia (CML) is quintessential to this hypothesis. CML is a myeloproliferative disorder that results from dysregulated tyrosine kinase activity of the fusion oncoprotein BCR-ABL. During the chronic phase, this sole genetic abnormality (chromosomal translocation Ph(+): t(9;22)(q34;q11)) at the stem cell level causes increased proliferation of myeloid cells without loss of their capacity to differentiate. Without treatment, most patients progress to the blast phase when additional oncogenic mutations result in a fatal acute leukaemia made of proliferating immature cells. Imatinib mesylate and other tyrosine kinase inhibitors (TKIs) that target the kinase activity of BCR-ABL have improved patient survival markedly. However, fewer than 10% of patients reach the stage of complete molecular response (CMR), defined as the point when BCR-ABL transcripts become undetectable in blood cells. Failure to reach CMR results from the inability of TKIs to eradicate quiescent CML leukaemia stem cells (LSCs). Here we show that the residual CML LSC pool can be gradually purged by the glitazones, antidiabetic drugs that are agonists of peroxisome proliferator-activated receptor-γ (PPARγ). We found that activation of PPARγ by the glitazones decreases expression of STAT5 and its downstream targets HIF2α and CITED2, which are key guardians of the quiescence and stemness of CML LSCs. When pioglitazone was given temporarily to three CML patients in chronic residual disease in spite of continuous treatment with imatinib, all of them achieved sustained CMR, up to 4.7 years after withdrawal of pioglitazone. This suggests that clinically relevant cancer eradication may become a generally attainable goal by combination therapy that erodes the cancer stem cell pool.
McCance, D R; Dyer, D G; Dunn, J A; Bailie, K E; Thorpe, S R; Baynes, J W; Lyons, T J
1993-01-01
Glycation, oxidation, and browning of proteins have all been implicated in the development of diabetic complications. We measured the initial Amadori adduct, fructoselysine (FL); two Maillard products, N epsilon-(carboxymethyl) lysine (CML) and pentosidine; and fluorescence (excitation = 328 nm, emission = 378 nm) in skin collagen from 39 type 1 diabetic patients (aged 41.5 +/- 15.3 [17-73] yr; duration of diabetes 17.9 +/- 11.5 [0-46] yr, [mean +/- SD, range]). The measurements were related to the presence of background (n = 9) or proliferative (n = 16) retinopathy; early nephropathy (24-h albumin excretion rate [AER24] > or = 20 micrograms/min; n = 9); and limited joint mobility (LJM; n = 20). FL, CML, pentosidine, and fluorescence increased progressively across diabetic retinopathy (P < 0.05, P < 0.001, P < 0.05, P < 0.01, respectively). FL, CML, pentosidine, and fluorescence were also elevated in patients with early nephropathy (P < 0.05, P < 0.001, P < 0.01, P < 0.01, respectively). There was no association with LJM. Controlling for age, sex, and duration of diabetes using logistic regression, FL and CML were independently associated with retinopathy (FL odds ratio (OR) = 1.06, 95% confidence interval (CI) = 1.01-1.12, P < 0.05; CML OR = 6.77, 95% CI = 1.33-34.56, P < 0.05) and with early nephropathy (FL OR = 1.05, 95% CI = 1.01-1.10, P < 0.05; CML OR = 13.44, 95% CI = 2.00-93.30, P < 0.01). The associations between fluorescence and retinopathy and between pentosidine and nephropathy approached significance (P = 0.05). These data show that FL and Maillard products in skin correlate with functional abnormalities in other tissues and suggest that protein glycation and oxidation (glycoxidation) may be implicated in the development of diabetic retinopathy and early nephropathy. PMID:8514859
MTHFR A1298C and C677T gene polymorphisms and susceptibility to chronic myeloid leukemia in Egypt.
Aly, Rabab M; Taalab, Mona M; Ghazy, Hayam F
2014-01-01
Methylenetetrahydrofolate reductase (MTHFR) is a key enzyme regulating the intracellular folate metabolism which plays an important role in carcinogenesis through DNA methylation. We aimed to evaluate the association between MTHFR A1298C and C677T polymorphisms and the risks of chronic myeloid leukemia (CML). Eighty-five patients with CML and a control group containing 100 healthy, age and sex matched individuals were examined for MTHFR C677T and A1298C polymorphisms using polymerase chain reaction-restriction fragment-length (PCR-RFLP) method. The frequency of 677TT genotype in patients with CML was significantly higher compared to controls (OR=2.513, 95% CI: 0.722-4.086, P=0.025). No such association was shown for heterozygous 677CT (OR=1.010, 95% CI: 0.460-2.218, P=0.981). Moreover, for A1298C genotype, a statistically significant higher frequency of 1298CC was also detected in CML patients compared to control group (OR=1.1816, 95% CI: 0.952-3.573, P=0.036), 0.036). No such statistical significance was demonstrable for heterozygote 1298AC (OR=1.046, 95% CI: 0.740-1.759, P=0.092). In addition, patients with joint 677CT/1298AC or 677TT/1298CC genotypes showed an association with increased risk of CML (OR=1.849, 95% CI: 0.935-2.540, P=0.024; OR=1.915, 95% CI: 1.202-3.845, P=0.020 respectively). .A statistically significant increased risk of resistant to therapy was observed with 677CT and 1298AC genotypes (P=0.001, P=0.002 respectively). We conclude that both MTHFR 677TT and 1298CC polymorphisms have been associated with risk of CML and both 677CT and 1298AC genotypes are associated with higher risk of resistant to therapy.
MTHFR A1298C and C677T gene polymorphisms and susceptibility to chronic myeloid leukemia in Egypt
Aly, Rabab M; Taalab, Mona M; Ghazy, Hayam F
2014-01-01
Methylenetetrahydrofolate reductase (MTHFR) is a key enzyme regulating the intracellular folate metabolism which plays an important role in carcinogenesis through DNA methylation. We aimed to evaluate the association between MTHFR A1298C and C677T polymorphisms and the risks of chronic myeloid leukemia (CML). Eighty-five patients with CML and a control group containing 100 healthy, age and sex matched individuals were examined for MTHFR C677T and A1298C polymorphisms using polymerase chain reaction-restriction fragment-length (PCR-RFLP) method. The frequency of 677TT genotype in patients with CML was significantly higher compared to controls (OR = 2.513, 95% CI: 0.722-4.086, P = 0.025). No such association was shown for heterozygous 677CT (OR = 1.010, 95% CI: 0.460-2.218, P = 0.981). Moreover, for A1298C genotype, a statistically significant higher frequency of 1298CC was also detected in CML patients compared to control group (OR = 1.1816, 95% CI: 0.952-3.573, P = 0.036), 0.036). No such statistical significance was demonstrable for heterozygote 1298AC (OR = 1.046, 95% CI: 0.740-1.759, P = 0.092). In addition, patients with joint 677CT/1298AC or 677TT/1298CC genotypes showed an association with increased risk of CML (OR = 1.849, 95% CI: 0.935-2.540, P = 0.024; OR = 1.915, 95% CI: 1.202-3.845, P = 0.020 respectively). .A statistically significant increased risk of resistant to therapy was observed with 677CT and 1298AC genotypes (P = 0.001, P = 0.002 respectively). We conclude that both MTHFR 677TT and 1298CC polymorphisms have been associated with risk of CML and both 677CT and 1298AC genotypes are associated with higher risk of resistant to therapy. PMID:24966971
DOE Office of Scientific and Technical Information (OSTI.GOV)
Podzelinska, K.; Latimer, R; Bhattacharya, A
2010-01-01
Chloramphenicol is a halogenated natural product bearing an unusual dichloroacetyl moiety that is critical for its antibiotic activity. The operon for chloramphenicol biosynthesis in Streptomyces venezuelae encodes the chloramphenicol halogenase CmlS, which belongs to the large and diverse family of flavin-dependent halogenases (FDH's). CmlS was previously shown to be essential for the formation of the dichloroacetyl group. Here we report the X-ray crystal structure of CmlS determined at 2.2 {angstrom} resolution, revealing a flavin monooxygenase domain shared by all FDHs, but also a unique 'winged-helix' C-terminal domain that creates a T-shaped tunnel leading to the halogenation active site. Intriguingly, themore » C-terminal tail of this domain blocks access to the halogenation active site, suggesting a structurally dynamic role during catalysis. The halogenation active site is notably nonpolar and shares nearly identical residues with Chondromyces crocatus tyrosyl halogenase (CndH), including the conserved Lys (K71) that forms the reactive chloramine intermediate. The exception is Y350, which could be used to stabilize enolate formation during substrate halogenation. The strictly conserved residue E44, located near the isoalloxazine ring of the bound flavin adenine dinucleotide (FAD) cofactor, is optimally positioned to function as a remote general acid, through a water-mediated proton relay, which could accelerate the reaction of the chloramine intermediate during substrate halogenation, or the oxidation of chloride by the FAD(C4{alpha})-OOH intermediate. Strikingly, the 8{alpha} carbon of the FAD cofactor is observed to be covalently attached to D277 of CmlS, a residue that is highly conserved in the FDH family. In addition to representing a new type of flavin modification, this has intriguing implications for the mechanism of FDHs. Based on the crystal structure and in analogy to known halogenases, we propose a reaction mechanism for CmlS.« less
Wong, Siu-Fun; Mirshahidi, Hamid
2011-06-01
To summarize the use of tyrosine kinase inhibitors (TKIs) for treatment of patients with chronic myeloid leukemia (CML) and provide practical information for patient management. Literature was retrieved from PubMed (2000-January 2011), using the search terms chronic myeloid leukemia and tyrosine kinase inhibitor. Abstracts presented at the 2008-2010 annual meetings of the American Society of Hematology and the American Society of Clinical Oncology, reference citations from identified publications, as well as the manufacturers' full prescribing information for cited drugs, also were reviewed. Articles evaluating the efficacy and safety of the TKIs imatinib, nilotinib, and dasatinib were evaluated. Focus was placed on publications supporting management of patients with CML in the chronic phase. Reports presenting clinical trial information of TKIs in development also were included. The discovery of targeted tyrosine kinase inhibition of BCR-ABL kinase dramatically changed the treatment of CML. Imatinib, the first TKI approved for treatment of patients with Philadelphia chromosome--positive CML, demonstrated significant superiority over the previous standard of care: interferon plus cytarabine. The newer, more potent TKIs, nilotinib and dasatinib, have demonstrated improved efficacy over imatinib as first-line therapy and provide an effective option for patients with resistance or intolerance to imatinib. To maximize efficacy of TKI therapy, close patient management, involving frequent monitoring of patient response, is essential. Given the importance of continuing TKI therapy, early recognition and management of adverse events are critical to optimizing outcomes in patients with CML. In addition to the safety profile and considerations of comorbidities, additional factors can affect therapeutic selection, including drug-drug and drug-food interactions. Research investigating new therapies, particularly for patients harboring the T315I mutation-which remains refractory to current TKIs-continues in the quest to improve outcomes in patients with CML.
Palamà, Ilaria E; Leporatti, Stefano; de Luca, Emanuela; Di Renzo, Nicola; Maffia, Michele; Gambacorti-Passerini, Carlo; Rinaldi, Ross; Gigli, Giuseppe; Cingolani, Roberto; Coluccia, Addolorata M L
2010-04-01
The lack of sensitivity of chronic myeloid leukemia (CML) stem cells to imatinib mesylate (IM) commonly leads to drug dose escalation or early disease relapses when therapy is stopped. Here, we report that packaging of IM into a biodegradable carrier based on polyelectrolyte microcapsules increases drug retention and antitumor activity in CML stem cells, also improving the ex vivo purging of malignant progenitors from patient autografts. Microparticles/capsules were obtained by layer-by-layer (LbL) self-assembly of oppositely charged polyelectrolyte multilayers on removable calcium carbonate (CaCO(3)) templates and loaded with or without IM. A leukemic cell line (KU812) and CD34(+) cells freshly isolated from healthy donors or CML patients were tested. Polyelectrolyte microcapsules (PMCs) with an average diameter of 3 microm, fluorescently labelled multilayers sensitive to the action of intracellular proteases and 95-99% encapsulation efficiency of IM, were prepared. Cell uptake efficiency of such biodegradable carriers was quantified in KU812, leukemic and normal CD34(+) stem cells (range: 70-85%), and empty PMCs did not impact cell viability. IM-loaded PMCs selectively targeted CML cells, by promoting apoptosis at doses that exert only cytostatic effects by IM alone. More importantly, residual CML cells from patient leukapheresis products were reduced or eliminated more efficiently by using IM-loaded PMCs compared with freely soluble IM, with a purging efficiency of several logs. No adverse effects on normal CD34(+) stem-cell survival and their clonogenic potential was noticed in long-term cultures of hematopoietic progenitors in vitro. This pilot study provides the proof-of-principle for the clinical application of biodegradable IM-loaded PMC as feasible, safe and effective ex vivo purging agents to target CML stem cells, in order to improve transplant outcome of resistant/relapsed patients or reduce IM dose escalation.
Qing, Xin; Qing, Annie; Ji, Ping; French, Samuel W; Mason, Holli
2018-04-01
Chronic myelogenous leukemia (CML) is a myeloproliferative disorder characterized by the Philadelphia (Ph) chromosome generated by the reciprocal translocation t(9,22)(q34;q11). The natural progression of the disease follows a biphasic or triphasic course. Most cases of CML are diagnosed in the chronic phase. Extramedullary blast crisis rarely occurs during the course of CML, and is extremely rare as the initial presentation of CML. Here, we report the case of a 32-year-old female with enlarged neck lymph nodes and fatigue. She was diagnosed with B-lymphoblastic leukemia/lymphoma with possible mixed phenotype (B/myeloid) by right neck lymph node biopsy at an outside hospital. However, review of her peripheral blood smear and her bone marrow aspirate and biopsy showed features consistent with CML, which was confirmed by PCR and karyotyping. An ultrasound-guided right cervical lymph node core biopsy showed a diffuse infiltrate of blasts, near totally replacing the normal lymph node tissue, admixed with some hematopoietic cells including megakaryocytes, erythroid precursors and maturing myeloid cells. By flow cytometry and immunohistochemistry, the blasts expressed CD2, cytoplasmic CD3, CD5, CD7, CD56, TdT, CD10 (weak, subset), CD19 (subset), CD79a, PAX-5 (subset), CD34, CD38, CD117 (subset), HLA-DR (subset), CD11b, CD13 (subset), CD33 (subset), and weak cytoplasmic myeloperoxidase, without co-expression of surface CD3, CD4, CD8, CD20, CD22, CD14, CD15, CD16 and CD64, consistent with blasts with mixed phenotype (T/B/myeloid). A diagnosis of extramedullary blast crisis of CML was made. Chromosomal analysis performed on the lymph node biopsy tissue revealed multiple numerical and structural abnormalities including the Ph chromosome (46-49,XX,add(1)(p34),add(3)(p25),add(5)(q13),-6,t(9;22)(q34;q11.2),+10,-15,add(17)(p11.2),+19, +der(22)t(9;22),+mar[cp8]). After completion of one cycle of combined chemotherapy plus dasatinib treatment, she was transferred to City of Hope National Cancer Institute for bone marrow transplantation. Diagnosis of extramedullary blast crisis should be suspected in patients with leukocytosis and extramedullary blast proliferation. In this case study, we diagnosed extramedullary blast crisis accompanied by chronic phase of CML in the bone marrow. To our knowledge, this is the first reported case of extramedullary blast crisis as the initial presentation of CML with T/B/myeloid mixed phenotype. Other unusual features associated with this case are also discussed. Copyright © 2018 Elsevier Inc. All rights reserved.
Nilotinib induced avascular necrosis of femoral head in an adult chronic myeloid leukemia patient.
Thekkudan, Shinto Francis; Nityanand, Soniya
2018-06-01
We report a rare case of avascular necrosis of femoral head (AVNFH) in an adult chronic myeloid leukemia - chronic phase (CML-CP) patient during due course of therapy with second line Tyrosine Kinase Inhibitor (TKI), Nilotinib. A high index of clinical suspicion should be kept in any symptomatic CML patient on TKI's.
ELA Teacher Preparation 2.0: Critical Media Literacy, Action Research, and Mashups
ERIC Educational Resources Information Center
Laughter, Judson
2015-01-01
Engaging preservice English language arts interns in the analysis of mashups accomplishes two objectives: (a) it brings interns to a deeper understanding of action research and (b) provides a critical media literacy (CML) foundation on which they might build with their own students. In this paper CML is defined and recent literature is…
Eckardt, Mark A; Chang, Vivian Y; Rao, Nagesh P; Federman, Noah
2011-11-01
Chronic myelogenous leukemia (CML) constitutes less than 5% of childhood leukemias. The authors describe a rare case of a 14-year-old boy who presented with CML in blast crisis. Unique to this patient was the evidence of both breakpoint cluster region-c-abl oncogene 1 (BCR-ABL1) fusions as well as an additional unbalanced t(1;19) translocation. This combination has not previously been reported in the same patient. Initial treatment with dasatinib achieved a complete cytogenetic response within 2 months of therapy. This case highlights the heterogeneous presentation of CML in children and rationale for use of dasatinib as a first-line agent for patients with blast crisis.
The semantics of Chemical Markup Language (CML) for computational chemistry : CompChem.
Phadungsukanan, Weerapong; Kraft, Markus; Townsend, Joe A; Murray-Rust, Peter
2012-08-07
: This paper introduces a subdomain chemistry format for storing computational chemistry data called CompChem. It has been developed based on the design, concepts and methodologies of Chemical Markup Language (CML) by adding computational chemistry semantics on top of the CML Schema. The format allows a wide range of ab initio quantum chemistry calculations of individual molecules to be stored. These calculations include, for example, single point energy calculation, molecular geometry optimization, and vibrational frequency analysis. The paper also describes the supporting infrastructure, such as processing software, dictionaries, validation tools and database repositories. In addition, some of the challenges and difficulties in developing common computational chemistry dictionaries are discussed. The uses of CompChem are illustrated by two practical applications.
The semantics of Chemical Markup Language (CML) for computational chemistry : CompChem
2012-01-01
This paper introduces a subdomain chemistry format for storing computational chemistry data called CompChem. It has been developed based on the design, concepts and methodologies of Chemical Markup Language (CML) by adding computational chemistry semantics on top of the CML Schema. The format allows a wide range of ab initio quantum chemistry calculations of individual molecules to be stored. These calculations include, for example, single point energy calculation, molecular geometry optimization, and vibrational frequency analysis. The paper also describes the supporting infrastructure, such as processing software, dictionaries, validation tools and database repositories. In addition, some of the challenges and difficulties in developing common computational chemistry dictionaries are discussed. The uses of CompChem are illustrated by two practical applications. PMID:22870956
Wang, Guangji; Yan, Bei; Zhang, Sujiang; Huang, Qing; Ni, Lingna; Zha, Weibin; Liu, Linsheng; Cao, Bei; Hong, Ming; Wu, Hanxin; Lu, Hua; Shi, Jian; Li, Mengjie; Li, Jianyong
2010-01-01
The BCR-ABL tyrosine kinase inhibitor imatinib is highly effective for chronic myeloid leukemia (CML). However, some patients gradually develop resistance to imatinib, resulting in therapeutic failure. Metabonomic and genomic profiling of patients' responses to drug interventions can provide novel information about the in vivo metabolism of low-molecular-weight compounds and extend our insight into the mechanism of drug resistance. Based on a multi-platform of high-throughput metabonomics, SNP array analysis, karyotype and mutation, the metabolic phenotypes and genomic polymorphisms of CML patients and their diverse responses to imatinib were characterized. The untreated CML patients (UCML) showed different metabolic patterns from those of healthy controls, and the discriminatory metabolites suggested the perturbed metabolism of the urea cycle, tricarboxylic acid cycle, lipid metabolism, and amino acid turnover in UCML. After imatinib treatment, patients sensitive to imatinib (SCML) and patients resistant to imatinib (RCML) had similar metabolic phenotypes to those of healthy controls and UCML, respectively. SCML showed a significant metabolic response to imatinib, with marked restoration of the perturbed metabolism. Most of the metabolites characterizing CML were adjusted to normal levels, including the intermediates of the urea cycle and tricarboxylic acid cycle (TCA). In contrast, neither cytogenetic nor metabonomic analysis indicated any positive response to imatinib in RCML. We report for the first time the associated genetic and metabonomic responses of CML patients to imatinib and show that the perturbed in vivo metabolism of UCML is independent of imatinib treatment in resistant patients. Thus, metabonomics can potentially characterize patients' sensitivity or resistance to drug intervention. PMID:20949032
Mohanta, Tapan Kumar; Kumar, Pradeep; Bae, Hanhong
2017-02-03
Ca 2+ ion is a versatile second messenger that operate in a wide ranges of cellular processes that impact nearly every aspect of life. Ca 2+ regulates gene expression and biotic and abiotic stress responses in organisms ranging from unicellular algae to multi-cellular higher plants through the cascades of calcium signaling processes. In this study, we deciphered the genomics and evolutionary aspects of calcium signaling event of calmodulin (CaM) and calmodulin like- (CML) proteins. We studied the CaM and CML gene family of 41 different species across the plant lineages. Genomic analysis showed that plant encodes more calmodulin like-protein than calmodulins. Further analyses showed, the majority of CMLs were intronless, while CaMs were intron rich. Multiple sequence alignment showed, the EF-hand domain of CaM contains four conserved D-x-D motifs, one in each EF-hand while CMLs contain only one D-x-D-x-D motif in the fourth EF-hand. Phylogenetic analysis revealed that, the CMLs were evolved earlier than CaM and later diversified. Gene expression analysis demonstrated that different CaM and CMLs genes were express differentially in different tissues in a spatio-temporal manner. In this study we provided in detailed genome-wide identifications and characterization of CaM and CML protein family, phylogenetic relationships, and domain structure. Expression study of CaM and CML genes were conducted in Glycine max and Phaseolus vulgaris. Our study provides a strong foundation for future functional research in CaM and CML gene family in plant kingdom.
Woessner, David W; Lim, Carol S
2013-01-07
Chronic myeloid leukemia (CML) is a myeloproliferative disorder caused by expression of the fusion gene BCR-ABL following a chromosomal translocation in the hematopoietic stem cell. Therapeutic management of CML uses tyrosine kinase inhibitors (TKIs), which block ABL-signaling and effectively kill peripheral cells with BCR-ABL. However, TKIs are not curative, and chronic use is required in order to treat CML. The primary failure for TKIs is through the development of a resistant population due to mutations in the TKI binding regions. This led us to develop the mutant coiled-coil, CC(mut2), an alternative method for BCR-ABL signaling inhibition by targeting the N-terminal oligomerization domain of BCR, necessary for ABL activation. In this article, we explore additional pathways that are important for leukemic stem cell survival in K562 cells. Using a candidate-based approach, we test the combination of CC(mut2) and inhibitors of unique secondary pathways in leukemic cells. Transformative potential was reduced following silencing of the leukemic stem cell factor Alox5 by RNA interference. Furthermore, blockade of the oncogenic protein MUC-1 by the novel peptide GO-201 yielded reductions in proliferation and increased cell death. Finally, we found that inhibiting macroautophagy using chloroquine in addition to blocking BCR-ABL signaling with the CC(mut2) was most effective in limiting cell survival and proliferation. This study has elucidated possible combination therapies for CML using novel blockade of BCR-ABL and secondary leukemia-specific pathways.
Li, Qianyin; Huang, Zhenglan; Gao, Miao; Cao, Weixi; Xiao, Qin; Luo, Hongwei; Feng, Wenli
2017-03-02
The gradual emerging of resistance to imatinib urgently calls for the development of new therapy for chronic myeloid leukemia (CML). The fusion protein Bcr-Abl, which promotes the malignant transformation of CML cells, is mainly located in the cytoplasm, while the c-Abl protein which is expressed in the nucleus can induce apoptosis. Based on the hetero-dimerization of FKBP (the 12-kDa FK506- and rapamycin-binding protein) and FRB (the FKBP-rapamycin binding domain of the protein kinase, mTOR) mediated by AP21967, we constructed a nuclear transport system to induce cytoplasmic Bcr-Abl into nuclear. In this study, we reported the construction of the nuclear transport system, and we demonstrated that FN3R (three nuclear localization signals were fused to FRBT2098L with a FLAG tag), HF2S (two FKBP domains were in tandem and fused to the SH2 domain of Grb2 with an HA tag) and Bcr-Abl form a complexus upon AP21967. Bcr-Abl was imported into the nucleus successfully by the nuclear transport system. The nuclear transport system inhibited CML cell proliferation through mitogen-activated protein kinase (MAPK) and signal transducer and activator of transcription 5 (STAT5) pathways mainly by HF2S. It was proven that nuclear located Bcr-Abl induced CML cell (including imatinib-resistant K562G01 cells) apoptosis by activation of p73 and its downstream molecules. In summary, our study provides a new targeted therapy for the CML patients even with Tyrosine Kinase Inhibitor (TKI)-resistance.
Valeri, Antonio; Alonso-Ferrero, Maria Eugenia; Río, Paula; Pujol, María Roser; Casado, José A; Pérez, Laura; Jacome, Ariana; Agirre, Xabier; Calasanz, Maria José; Hanenberg, Helmut; Surrallés, Jordi; Prosper, Felipe; Albella, Beatriz; Bueren, Juan A
2010-12-28
Chronic myeloid leukemia (CML) is a malignant clonal disorder of the hematopoietic system caused by the expression of the BCR/ABL fusion oncogene. Although it is well known that CML cells are genetically unstable, the mechanisms accounting for this genomic instability are still poorly understood. Because the Fanconi anemia (FA) pathway is believed to control several mechanisms of DNA repair, we investigated whether this pathway was disrupted in CML cells. Our data show that CML cells have a defective capacity to generate FANCD2 nuclear foci, either in dividing cells or after DNA damage. Similarly, human cord blood CD34(+) cells transduced with BCR/ABL retroviral vectors showed impaired FANCD2 foci formation, whereas FANCD2 monoubiquitination in these cells was unaffected. Soon after the transduction of CD34(+) cells with BCR/ABL retroviral vectors a high proportion of cells with supernumerary centrosomes was observed. Similarly, BCR/ABL induced a high proportion of chromosomal abnormalities, while mediated a cell survival advantage after exposure to DNA cross-linking agents. Significantly, both the impaired formation of FANCD2 nuclear foci, and also the predisposition of BCR/ABL cells to develop centrosomal and chromosomal aberrations were reverted by the ectopic expression of BRCA1. Taken together, our data show for the first time a disruption of the FA/BRCA pathway in BCR/ABL cells, suggesting that this defective pathway should play an important role in the genomic instability of CML by the co-occurrence of centrosomal amplification and DNA repair deficiencies.
Hodgson, J. Graeme; Shah, Neil P.; Cortes, Jorge E.; Kim, Dong-Wook; Nicolini, Franck E.; Talpaz, Moshe; Baccarani, Michele; Müller, Martin C.; Li, Jin; Parker, Wendy T.; Lustgarten, Stephanie; Clackson, Tim; Haluska, Frank G.; Guilhot, Francois; Kantarjian, Hagop M.; Soverini, Simona; Hochhaus, Andreas; Hughes, Timothy P.; Rivera, Victor M.; Branford, Susan
2016-01-01
BCR-ABL1 kinase domain mutations can confer resistance to first- and second-generation tyrosine kinase inhibitors (TKIs) in chronic myeloid leukemia (CML). In preclinical studies, clinically achievable concentrations of the third-generation BCR-ABL1 TKI ponatinib inhibit T315I and all other single BCR-ABL1 mutants except T315M, which generates a single amino acid exchange, but requires 2 sequential nucleotide exchanges. In addition, certain compound mutants (containing ≥2 mutations in cis) confer resistance. Initial analyses based largely on conventional Sanger sequencing (SS) have suggested that the preclinical relationship between BCR-ABL1 mutation status and ponatinib efficacy is generally recapitulated in patients receiving therapy. Thus far, however, such analyses have been limited by the inability of SS to definitively identify compound mutations or mutations representing less than ∼20% of total alleles (referred to as “low-level mutations”), as well as limited patient follow-up. Here we used next-generation sequencing (NGS) to define the baseline BCR-ABL1 mutation status of 267 heavily pretreated chronic phase (CP)-CML patients from the PACE trial, and used SS to identify clonally dominant mutants that may have developed on ponatinib therapy (30.1 months median follow-up). Durable cytogenetic and molecular responses were observed irrespective of baseline mutation status and included patients with compound mutations. No single or compound mutation was identified that consistently conferred primary and/or secondary resistance to ponatinib in CP-CML patients. Ponatinib is effective in CP-CML irrespective of baseline mutation status. PMID:26603839
Neviani, Paolo; Santhanam, Ramasamy; Oaks, Joshua J.; Eiring, Anna M.; Notari, Mario; Blaser, Bradley W.; Liu, Shujun; Trotta, Rossana; Muthusamy, Natarajan; Gambacorti-Passerini, Carlo; Druker, Brian J.; Cortes, Jorge; Marcucci, Guido; Chen, Ching-Shih; Verrills, Nicole M.; Roy, Denis C.; Caligiuri, Michael A.; Bloomfield, Clara D.; Byrd, John C.; Perrotti, Danilo
2007-01-01
Blast crisis chronic myelogenous leukemia (CML-BC) and Philadelphia chromosome–positive (Ph1-positive) acute lymphocytic leukemia (ALL) are 2 fatal BCR/ABL-driven leukemias against which Abl kinase inhibitors fail to induce a long-term response. We recently reported that functional loss of protein phosphatase 2A (PP2A) activity is important for CML blastic transformation. We assessed the therapeutic potential of the PP2A activator FTY720 (2-amino-2-[2-(4-octylphenyl)ethyl]-1,3-propanediol hydrochloride), an immunomodulator in Phase III trials for patients with multiple sclerosis or undergoing organ transplantation, in CML-BC and Ph1 ALL patient cells and in in vitro and in vivo models of these BCR/ABL+ leukemias. Our data indicate that FTY720 induces apoptosis and impairs clonogenicity of imatinib/dasatinib-sensitive and -resistant p210/p190BCR/ABL myeloid and lymphoid cell lines and CML-BCCD34+ and Ph1 ALLCD34+/CD19+ progenitors but not of normal CD34+ and CD34+/CD19+ bone marrow cells. Furthermore, pharmacologic doses of FTY720 remarkably suppress in vivo p210/p190BCR/ABL-driven [including p210/p190BCR/ABL (T315I)] leukemogenesis without exerting any toxicity. Altogether, these results highlight the therapeutic relevance of rescuing PP2A tumor suppressor activity in Ph1 leukemias and strongly support the introduction of the PP2A activator FTY720 in the treatment of CML-BC and Ph1 ALL patients. PMID:17717597
Walker, Christopher J.; Oaks, Joshua J.; Santhanam, Ramasamy; Neviani, Paolo; Harb, Jason G.; Ferenchak, Gregory; Ellis, Justin J.; Landesman, Yosef; Eisfeld, Ann-Kathrin; Gabrail, Nash Y.; Smith, Carrie L.; Caligiuri, Michael A.; Hokland, Peter; Roy, Denis Claude; Reid, Alistair; Milojkovic, Dragana; Goldman, John M.; Apperley, Jane; Garzon, Ramiro; Marcucci, Guido; Shacham, Sharon; Kauffman, Michael G.
2013-01-01
As tyrosine kinase inhibitors (TKIs) fail to induce long-term response in blast crisis chronic myelogenous leukemia (CML-BC) and Philadelphia chromosome–positive (Ph+) acute lymphoblastic leukemia (ALL), novel therapies targeting leukemia-dysregulated pathways are necessary. Exportin-1 (XPO1), also known as chromosome maintenance protein 1, regulates cell growth and differentiation by controlling the nucleocytoplasmic trafficking of proteins and RNAs, some of which are aberrantly modulated in BCR-ABL1+ leukemias. Using CD34+ progenitors from CML, B-ALL, and healthy individuals, we found that XPO1 expression was markedly increased, mostly in a TKI-sensitive manner, in CML-BC and Ph+ B-ALL. Notably, XPO1 was also elevated in Ph− B-ALL. Moreover, the clinically relevant XPO1 inhibitor KPT-330 strongly triggered apoptosis and impaired the clonogenic potential of leukemic, but not normal, CD34+ progenitors, and increased survival of BCR-ABL1+ mice, 50% of which remained alive and, mostly, became BCR-ABL1 negative. Moreover, KPT-330 compassionate use in a patient with TKI-resistant CML undergoing disease progression significantly reduced white blood cell count, blast cells, splenomegaly, lactate dehydrogenase levels, and bone pain. Mechanistically, KPT-330 altered the subcellular localization of leukemia-regulated factors including RNA-binding heterogeneous nuclear ribonucleoprotein A1 and the oncogene SET, thereby inducing reactivation of protein phosphatase 2A tumor suppressor and inhibition of BCR-ABL1 in CML-BC cells. Because XPO1 is important for leukemic cell survival, KPT-330 may represent an alternative therapy for TKI-refractory Ph+ leukemias. PMID:23970380
Iriyama, Noriyoshi; Ohashi, Kazuteru; Hashino, Satoshi; Kimura, Shinya; Nakaseko, Chiaki; Takano, Hina; Hino, Masayuki; Uchiyama, Michihiro; Morita, Satoshi; Sakamoto, Junichi; Sakamaki, Hisashi; Inokuchi, Koiti
2017-01-01
Objective The aim of this study was to prospectively investigate the efficacy and safety profiles of low-dose dasatinib therapy (50 mg once daily). Methods Patients with chronic myeloid leukemia in the chronic phase (CML-CP) who were being treated with low-dose imatinib (≤200 mg/day), but were resistant to this agent were enrolled in the current study (referred to as the LD-CML study). Results There subjects included 9 patients (4 men and 5 women); all were treated with dasatinib at a dose of 50 mg once daily. Among 8 patients who had not experienced major molecular response (MMR; BCR-ABL1 transcript ≤0.1% according to International Scale [IS]) at study enrollment, 5 attained MMR by 12 months. In particular, 3 of 9 patients demonstrated a deep molecular response (DMR; IS ≤0.0069%) by 18 months. Five patients developed lymphocytosis accompanied by cytotoxic lymphocyte predominance. There was no mortality or disease progression, and all continue to receive dasatinib therapy at 18 months with only 2 patients requiring dose reduction. Toxicities were mild-to-moderate, and pleural effusion was observed in 1 patient (grade 1). Conclusion Low-dose dasatinib can attain MMR and DMR without severe toxicity in patients with CML-CP who are unable to achieve MMR with low-dose imatinib. Switching to low-dose dasatinib should therefore be considered for patients in this setting, especially if they are otherwise considering a cessation of treatment. PMID:29033428
Exploring Mission Concepts with the JPL Innovation Foundry A-Team
NASA Technical Reports Server (NTRS)
Ziemer, John K.; Ervin, Joan; Lang, Jared
2013-01-01
The JPL Innovation Foundry has established a new approach for exploring, developing, and evaluating early concepts called the A-Team. The A-Team combines innovative collaborative methods with subject matter expertise and analysis tools to help mature mission concepts. Science, implementation, and programmatic elements are all considered during an A-Team study. Methods are grouped by Concept Maturity Level (CML), from 1 through 3, including idea generation and capture (CML 1), initial feasibility assessment (CML 2), and trade space exploration (CML 3). Methods used for each CML are presented, and the key team roles are described from two points of view: innovative methods and technical expertise. A-Team roles for providing innovative methods include the facilitator, study lead, and assistant study lead. A-Team roles for providing technical expertise include the architect, lead systems engineer, and integration engineer. In addition to these key roles, each A-Team study is uniquely staffed to match the study topic and scope including subject matter experts, scientists, technologists, flight and instrument systems engineers, and program managers as needed. Advanced analysis and collaborative engineering tools (e.g. cost, science traceability, mission design, knowledge capture, study and analysis support infrastructure) are also under development for use in A-Team studies and will be discussed briefly. The A-Team facilities provide a constructive environment for innovative ideas from all aspects of mission formulation to eliminate isolated studies and come together early in the development cycle when they can provide the biggest impact. This paper provides an overview of the A-Team, its study processes, roles, methods, tools and facilities.
Quality of life of chronic myeloid leukemia patients in Brazil: ability to work as a key factor.
Hamerschlak, Nelson; de Souza, Carmino; Cornacchioni, Ana Lúcia; Pasquini, Ricardo; Tabak, Daniel; Spector, Nelson; Steagall, Merula
2014-08-01
The purpose of this study was to evaluate the quality of life (QOL) of patients receiving treatment by the public health system in Brazil for chronic myeloid leukemia (CML), a disease requiring daily and strict compliance to oral medication and regular blood and bone marrow controls, which are invasive exams. Between 2008 and 2010, patients with CML were surveyed by telephone. Quality of life was evaluated by the functional assessment of chronic illness therapy (FACIT) tool. The mean QOL among CML patients was 92.53 (out of 124 total points) in the trial outcome index, 78.50 (out of 108) in the general total score, and 130.43 (out of 176) in the leukemia total score. Patients who had the prescriptions recently changed anyway had better QOL general score (p = 0.012) and leukemia-specific score (p = 0.043) than those who remained with the same treatment. Imatinib was not associated with this change in QOL (p > 0.797). The more the patient felt able to work, the higher the scores in all three FACIT scales (p < 0.001, Spearman's correlation). The use of imatinib (p = 0.012) was associated with a better ability to work, while chemotherapy (p = 0.017) and the use of hydroxyurea (p = 0.001) were inversely associated with work capability. A recent change in medication can improve quality of life. The ability to work is an important component of quality of life of patients with CML. Ability to work should be specifically considered in CML treatment.
2007-01-01
Mobilization Reform, October 2003, pg 6; https://mobwhitepaperfinal10Oct03.pdf. 15GAO Report, Reserves Forces: “Plans Needed,” 20. 16Scott Haraburda , CML...April 2004. Haraburda , Scott. CML Army Chemical Review, U.S. Army Reserve Support for Domestic Response to a Chemical Incident, 1 January 2007. Helmly
First-line treatment of chronic myeloid leukaemia.
O'Dwyer, Michael
2010-02-01
Since the introduction of imatinib just over a decade ago, there has been a dramatic change in the treatment and prognosis of early chronic phase chronic myeloid Leukaemia (CML). This review article focuses on recent advances, culminating in the approval of nilotinib by the US Food and Drug Administration for the treatment of adult patients with newly diagnosed CML in the chronic phase.
Nomi, Yuri; Annaka, Hironori; Sato, Shinji; Ueta, Etsuko; Ohkura, Tsuyoshi; Yamamoto, Kazuhiro; Homma, Seiichi; Suzuki, Emiko; Otsuka, Yuzuru
2016-11-09
The aim of this study was to develop a simple and sensitive method to analyze several advanced glycation end products (AGEs) simultaneously using liquid chromatography-tandem mass spectrometry (LC-MS/MS), and to apply this method to the quantitation of AGEs in brown-colored foods. The developed method enabled to separate and quantitate simultaneously seven AGEs, and was applied to the determination of free AGEs contained in various kinds of soy sauce and beer. The major AGEs in soy sauce and beer were N ε -carboxymethyllysine (CML), N ε -carboxyethyllysine (CEL), and N δ -(5-hydro-5-methyl-4-imidazolon-2-yl)ornithine (MG-H1). Using the developed LC-MS/MS method, recovery test on soy sauce and beer samples showed the recovery values of 85.3-103.9% for CML, 95.9-107.4% for CEL, and 69.5-123.2% for MG-H1. In particular, it is the first report that free CML, CEL, and MG-H1 were present in beer. Furthermore, long-term storage and heating process of soy sauce increased CML and MG-H1.
Chuah, Charles T.; Nakamae, Hirohisa; Shen, Zhixiang X.; Bradley-Garelik, M. Brigid
2014-01-01
Asian patients with chronic myeloid leukemia (CML) tend to have different characteristics compared with patients from other regions, including younger age and smaller body size. The phase 3, open-label, randomized DASISION trial (NCT00481247), comparing dasatinib 100 mg once daily (QD) (n = 259) with imatinib 400 mg QD (n = 260) in newly diagnosed chronic phase CML (CML-CP), included a sizeable East Asian population (n = 60: dasatinib; n = 48: imatinib). In East Asian patients, dasatinib showed favorable 24-month rates of major molecular response (68% vs. 50% for imatinib) and complete cytogenetic response (92% vs. 88%), and more patients achieved BCR–ABL1 transcript levels ≤ 10% at 3 months with dasatinib (91% vs. 69%), similar to the overall population. Relative to non-East Asian patients, the incidence of rash, fluid-related events and grade 3/4 neutropenia and thrombocytopenia appeared to be higher in East Asians, regardless of treatment. Pharmacokinetic analysis revealed statistically non-significant increased dasatinib exposure among East Asian patients. Results support the use of dasatinib 100 mg QD as first-line CML treatment in both East Asian and non-East Asian patients. PMID:24289108
Mousinho, Filipa; Azevedo, Ana P; Mendes, Tatiana; Santos, Paula Sousa E; Cerqueira, Rita; Matos, Sónia; Santos, Sónia; Ramos, Sância; Viana, João Faro; Lima, Fernando
2018-05-17
Myeloproliferative neoplasms (MPNs) are classically divided into BCR RhoGEF and GTPase activating protein (BCR)-ABL proto‑oncogene 1 non‑receptor tyrosine kinase (ABL) positive chronic myeloid leukemia (CML) and BCR‑ABL negative MPNs, including essential thrombocythemia (ET). One of the major diagnostic criteria for ET is the absence of the philadelphia chromosome, thus when present it is almost indicative of CML. ET and CML are considered to be mutually exclusive; however, there are rare situations in which patients with ET present positive BCR‑ABL without the features of CML. Although from the literature review, the frequency of JAK2V617F mutation and BCR‑ABL translocation coexistence in MPNs is low, it may be higher than expected. The current study reported cases of two patients with an initial diagnosis of ET in the presence of JAK2V617F mutation and BCR‑ABL translocation by fluorescent in situ hybridization. Both patients presented with a heterozygous BCR‑ABL translocation, and absence of p190 and p210 transcripts, seemingly a der(9) in the background of an ET JAK2V617F mutation.
Boissinot, Marjorie; Vilaine, Mathias; Hermouet, Sylvie
2014-01-01
Met is the receptor of hepatocyte growth factor (HGF), a cytoprotective cytokine. Disturbing the equilibrium between Met and its ligand may lead to inappropriate cell survival, accumulation of genetic abnormalities and eventually, malignancy. Abnormal activation of the HGF/Met axis is established in solid tumours and in chronic haematological malignancies, including myeloma, acute myeloid leukaemia, chronic myelogenous leukaemia (CML), and myeloproliferative neoplasms (MPNs). The molecular mechanisms potentially responsible for the abnormal activation of HGF/Met pathways are described and discussed. Importantly, inCML and in MPNs, the production of HGF is independent of Bcr-Abl and JAK2V617F, the main molecular markers of these diseases. In vitro studies showed that blocking HGF/Met function with neutralizing antibodies or Met inhibitors significantly impairs the growth of JAK2V617F-mutated cells. With personalised medicine and curative treatment in view, blocking activation of HGF/Met could be a useful addition in the treatment of CML and MPNs for those patients with high HGF/MET expression not controlled by current treatments (Bcr-Abl inhibitors in CML; phlebotomy, hydroxurea, JAK inhibitors in MPNs). PMID:25119536
García-Gutiérrez, Valentín; Jiménez-Velasco, Antonio; Gómez-Casares, M Teresa; Sánchez-Guijo, Fermín; López-Sendón, Jose Luis; Steegmann Olmedillas, Juan Luis
2016-06-17
The second generation tyrosine kinase inhibitors (TKI, dasatinib and nilotinib) used in chronic myeloid leukemia (CML) treatment have shown a benefit compared to imatinib in responses achieved and disease progression. However, both have been related to some cardiovascular toxicity, being more frequent in patients with cardiovascular risk factors (CVRFs). Nowadays, due to the lack of recommendations for CML patients, CVRF management is carried out heterogeneously. The aim of this work is to develop recommendations on the prevention and monitoring of cardiovascular events (CVD) in patients with CML treated with TKIs. Experts from the Spanish Group of Chronic Myeloid Leukemia together with experts in cardiovascular risk have elaborated, after a consensus meeting, recommendations for the prevention and follow-up of CVE in patients with CML treated with TKI. Recommendations regarding the necessary information to be collected on clinical history, treatment decisions, as well as treatment and monitoring of CVRFs are shown in this document. TKI treatment requires comprehensive patient management from a multidisciplinary approach, in which both the prevention and management of CVRFs are essential. Copyright © 2016 Elsevier España, S.L.U. All rights reserved.
Tabassum, Najia; Saboor, Mohammed; Ghani, Rubina; Moinuddin, Moinuddin
2014-01-01
Background and Objective: Co-existence of myeloproliferative disorders (MPD) and Janus associated kinase 2 mutation (JAK2 V617F) is a well-established fact. Only few case reports are available showing presence of JAK2 V617F mutation in chronic myeloid leukemia (CML). Purpose of this study was to determine the frequency of JAK2 V617F mutation in Philadelphia Chromosome positive (Ph +) CML patients in Pakistan. Methods: The study was conducted from August 2009 to July 2010 at Civil Hospital and Baqai Institute of Hematology (BIH) Karachi. Blood samples from 25 patients with CML were collected. Multiplex reverse transcription polymerase chain reaction (RT-PCR) was performed for Breakpoint Cluster Region – Abelson (BCR-ABL) rearrangement. Conventional PCR was performed for JAK2 V617F mutation on BCR-ABL positive samples. Results: All 25 samples showed BCR-ABL rearrangement. Out of these 11 samples (44%) had JAK2 V617F mutation; the remaining 14 (56%) cases showed JAK2 617V wild type. Conclusion: It is concluded that the co-existence of Ph +CML and JAK2 V617F mutation is possible. PMID:24639858
Entasoltan, B; Bekadja, M A; Touhami, H; Mehalhal, N; Zouaoui, Z; Mesli, N; Talbi, M; Bachiri, A; Michallet, M
2017-01-01
In a developing country like Algeria, such expensive therapy is not available. Alternative approaches are needed to help these adult. In Algeria 'imatib' (CIPLA-India) was introduced in 2006; but no study has been published yet in the North Africa region regarding response and outcome of this copy in CML patients. The goal of this multicenter study is to characterize newly adult CML in the western region of Algeria and to assess the effectiveness and safety of imatib (IM, copy) as frontline therapy for patients with CML. The study was carried out in 7 hematology centers in the western Algeria. Patients, who were diagnosed to be suffering from CML between January 1st, 2007 and December 31st, 2014 were selected for data analysis. All patients received a copy preparation, consisting of the alpha crystal form of imatinib, (IM, copy) at an oral dose of 400 mg daily and monitored for tolerance and side effects while on therapy. Between January 2007 and December 2014, 355 patients with CML were treated with imatib (Copy). The median follow- up of the study was 46 months (range: 13-107 months). Complete hematological response (CHR) was seen in 83% of patients within 3 months. According to the Sokal score, 72% patients with low, 78% with intermediate and 69% with high risk disease achieved a CHR in 3 months (p=0.26) and according to the EUTOS score, 81% of patients with low and 70% with high risk disease achieved a CHR in 3 months (p=0.08). The major molecular response (MMR) at six months (M6), M9, M12, M18 and M24 was 21%, 38%, 35%, 51% and 67% respectively and 34% of patients achieved a complete molecular response (CMR). The projected 5-year overall survival (OS) rate was 83%. Side effects of imatib (copy) in this study were similar to those reported previously for the entire imatinib mesylate treatment study and only 8% of patients were intolerant to imatib (copy) and treated with a second generation of BCR-ABL inhibitor. This study reflects real world experience treating patients with CML in a developing country and thus sheds light on differences in this population compared to Western countries. In conclusion, imatib (copy) is effective and safe in treating patients with CML in chronic phase and proves to have a durable outcome. To our knowledge this is the first study reporting the response to imatib (copy) in an Algerian population.
Epigenetic Silencing and Resistance to Imatinib Mesylate in CML
2006-07-01
including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and...reproductions will be in black and white. 14. ABSTRACT Resistance to Imatinib mesylate is emerging as a real clinical problem in the management of...clinical problem in the management of chronic myelogenous leukemia (CML). In this project, we are exploring the hypothesis that epigenetic
First-line treatment of chronic myeloid leukaemia
O'Dwyer, Michael
2010-01-01
Since the introduction of imatinib just over a decade ago, there has been a dramatic change in the treatment and prognosis of early chronic phase chronic myeloid Leukaemia (CML). This review article focuses on recent advances, culminating in the approval of nilotinib by the US Food and Drug Administration for the treatment of adult patients with newly diagnosed CML in the chronic phase. PMID:23556068
Mitchell, Rebecca; Hopcroft, Lisa E M; Baquero, Pablo; Allan, Elaine K; Hewit, Kay; James, Daniel; Hamilton, Graham; Mukhopadhyay, Arunima; O'Prey, Jim; Hair, Alan; Melo, Junia V; Chan, Edmond; Ryan, Kevin M; Maguer-Satta, Véronique; Druker, Brian J; Clark, Richard E; Mitra, Subir; Herzyk, Pawel; Nicolini, Franck E; Salomoni, Paolo; Shanks, Emma; Calabretta, Bruno; Holyoake, Tessa L; Helgason, G Vignir
2018-05-01
Imatinib and second-generation tyrosine kinase inhibitors (TKIs) nilotinib and dasatinib have statistically significantly improved the life expectancy of chronic myeloid leukemia (CML) patients; however, resistance to TKIs remains a major clinical challenge. Although ponatinib, a third-generation TKI, improves outcomes for patients with BCR-ABL-dependent mechanisms of resistance, including the T315I mutation, a proportion of patients may have or develop BCR-ABL-independent resistance and fail ponatinib treatment. By modeling ponatinib resistance and testing samples from these CML patients, it is hoped that an alternative drug target can be identified and inhibited with a novel compound. Two CML cell lines with acquired BCR-ABL-independent resistance were generated following culture in ponatinib. RNA sequencing and gene ontology (GO) enrichment were used to detect aberrant transcriptional response in ponatinib-resistant cells. A validated oncogene drug library was used to identify US Food and Drug Administration-approved drugs with activity against TKI-resistant cells. Validation was performed using bone marrow (BM)-derived cells from TKI-resistant patients (n = 4) and a human xenograft mouse model (n = 4-6 mice per group). All statistical tests were two-sided. We show that ponatinib-resistant CML cells can acquire BCR-ABL-independent resistance mediated through alternative activation of mTOR. Following transcriptomic analysis and drug screening, we highlight mTOR inhibition as an alternative therapeutic approach in TKI-resistant CML cells. Additionally, we show that catalytic mTOR inhibitors induce autophagy and demonstrate that genetic or pharmacological inhibition of autophagy sensitizes ponatinib-resistant CML cells to death induced by mTOR inhibition in vitro (% number of colonies of control[SD], NVP-BEZ235 vs NVP-BEZ235+HCQ: 45.0[17.9]% vs 24.0[8.4]%, P = .002) and in vivo (median survival of NVP-BEZ235- vs NVP-BEZ235+HCQ-treated mice: 38.5 days vs 47.0 days, P = .04). Combined mTOR and autophagy inhibition may provide an attractive approach to target BCR-ABL-independent mechanism of resistance.
Sheng, Guangying; Chen, Suning; Dong, Chaohui; Zhang, Ri; Miao, Miao; Wu, Depei; Tan, Seng Chuen; Liu, Chao; Xiong, Tengbin
2017-04-01
Imatinib (Glivec) and nilotinib (Tasigna) have been covered by critical disease insurance in Jiangsu province of China since 2013, which changed local treatment patterns and outcomes of patients with chronic myeloid leukemia (CML). This study evaluated the long-term cost-effectiveness of insurance coverage with imatinib as the first-line treatment for patients with CML in China from a societal perspective. A decision-analytic model based on previously published and real-world evidence was applied to simulate and evaluate the lifetime clinical and economic outcomes associated with CML treatments before and after imatinib was covered by medical insurance. Incremental cost-effectiveness ratio (ICER) was calculated with both costs and quality-adjusted life years (QALYs) discounted at 3% annually. Different assumptions of treatment benefits and costs were taken to address uncertainties and were tested with sensitivity analyses. In base case analysis, both cost and effectiveness of CML treatments increased after imatinib was covered by the medical insurance; on average, the incremental QALY and cost were 5.5 and ¥277,030 per patient in lifetime, respectively. The ICER of insurance coverage with imatinib was ¥50,641, which is less than the GDP per capita of China. Monte Carlo simulation resulted in the estimate of 100% probability that the insurance coverage of imatinib is cost-effective. Total cost was substantially saved at 5 years after patients initiated imatinib treatment with insurance coverage compared to no insurance coverage, the saved cost at 5 years was ¥99,565, which included the cost savings from both direct (e.g. cost of bone marrow or stem cell transplant) and indirect costs (e.g. productivity loss of patients and care-givers). The insurance coverage of imatinib is very cost-effective in China, according to the local cost and clinical data in Jiangsu province. More importantly, the insurance coverage of imatinib and nilotinib have changed the treatment patterns of CML patients, thus dramatically increasing life expectancy and quality-of-life (QoL) saving on productivity losses for both CML patients and their caregivers.
Prabhu, S; Saadat, D; Zhang, M; Halbur, L; Fruehauf, J P; Ong, S T
2007-02-22
The oncogenic kinase Bcr-Abl is thought to cause chronic myelogenous leukemia (CML) by altering the transcription of specific genes with growth- and survival-promoting functions. Recently, Bcr-Abl has also been shown to activate an important regulator of protein synthesis, the mammalian target of rapamycin (mTOR), which suggests that dysregulated translation may also contribute to CML pathogenesis. In this study, we found that both Bcr-Abl and the rapamycin-sensitive mTORC1 complex contribute to the phosphorylation (inactivation) of 4E-BP1, an inhibitor of the eIF4E translation initiation factor. Experiments with rapamycin and the Bcr-Abl inhibitor, imatinib mesylate, in Bcr-Abl-expressing cell lines and primary CML cells indicated that Bcr-Abl and mTORC1 induced formation of the translation initiation complex, eIF4F. This was characterized by reduced 4E-BP1 binding and increased eIF4G binding to eIF4E, two events that lead to the assembly of eIF4F. One target transcript is cyclin D3, which is regulated in Bcr-Abl-expressing cells by both Bcr-Abl and mTORC1 in a translational manner. In addition, the combination of imatinib and rapamycin was found to act synergistically against committed CML progenitors from chronic and blast phase patients. These experiments establish a novel mechanism of action for Bcr-Abl, and they provide insights into the modes of action of imatinib mesylate and rapamycin in treatment of CML. They also suggest that aberrant cap-dependent mRNA translation may be a therapeutic target in Bcr-Abl-driven malignancies.
Millot, Frédéric; Dupraz, Christelle; Guilhot, Joelle; Suttorp, Meinolf; Brizard, Françoise; Leblanc, Thierry; Güneş, Adalet Meral; Sedlacek, Petr; De Bont, Evelyne; Li, Chi Kong; Kalwak, Krzysztof; Lausen, Birgitte; Culic, Srdjana; Dworzak, Michael; Kaiserova, Emilia; De Moerloose, Barbara; Roula, Farah; Biondi, Andrea; Baruchel, André; Guilhot, François
2017-09-15
In the adult population with newly diagnosed chronic myeloid leukemia (CML), variant translocations are usually not considered to be impairing the prognosis, whereas some additional cytogenetic abnormalities (ACAs) are associated with a negative impact on survival. Because of the rarity of CML in the pediatric population, such abnormalities have not been investigated in a large group of children with CML. The prognostic relevance of variant t(9;22) and ACAs at diagnosis was assessed in 301 children with CML in the chronic phase who were enrolled in the International Registry for Chronic Myeloid Leukemia in Children and Adolescents. Overall, 19 children (6.3%) presented with additional cytogenetic findings at diagnosis: 5 children (1.7%) had a variant t(9;22) translocation, 13 children (4.3%) had ACAs, and 1 had both. At 3 years, for children with a classic translocation, children with ACAs, and children with a variant t(9;22) translocation who were treated with imatinib as frontline therapy, the probability of progression-free survival (PFS) was 95% (95% confidence interval [CI], 91%-97%), 100%, and 75% (95% CI, 13%-96%), respectively, and the probability of overall survival (OS) was 98% (95% CI, 95%-100%), 100% (95% CI, 43%-98%), and 75% (95% CI, 13%-96%), respectively. No statistical difference was observed between the patients with classic cytogenetic findings and those with additional chromosomal abnormalities in terms of PFS and OS. In contrast to adults with CML, additional chromosomal abnormalities observed at diagnosis do not seem to have a significant prognostic impact. Cancer 2017;123:3609-16. © 2017 American Cancer Society. © 2017 American Cancer Society.
Drozd-Sokołowska, Joanna; Mądry, Krzysztof; Waszczuk-Gajda, Anna; Biecek, Przemysław; Szwedyk, Paweł; Budziszewska, Katarzyna; Raźny, Magdalena; Dutka, Magdalena; Obara, Agata; Wasilewska, Ewa; Lewandowski, Krzysztof; Piekarska, Agnieszka; Bober, Grażyna; Krzemień, Helena; Stella-Hołowiecka, Beata; Kapelko-Słowik, Katarzyna; Sawicki, Waldemar; Paszkowska-Kowalewska, Małgorzata; Machowicz, Rafał; Dwilewicz-Trojaczek, Jadwiga
2018-03-07
Atypical chronic myeloid leukaemia (aCML) belongs to myelodysplastic/myeloproliferative neoplasms. Because of its rarity and changing diagnostic criteria throughout subsequent classifications, data on aCML are very scarce. Therefore, we at the Polish Adult Leukemia Group performed a nationwide survey on aCML. Eleven biggest Polish centres participated in the study. Altogether, 45 patients were reported, among whom only 18 patients (40%) fulfilled diagnostic criteria. Among misdiagnosed patients, myelodysplastic/myeloproliferative syndrome unclassifiable and chronic myelomonocytic leukaemia were the most frequent diagnoses. Thirteen patients were male, median age 64.6 years (range 40.4-80.9). The median parameters at diagnosis were as follows: white blood cell count 97 × 10 9 /L (23.8-342) with immature progenitors amounting at 27.5% (12-72), haemoglobin 8.6 g/dL (3.9-14.9), and platelet count 66 × 10 9 /L (34-833). Cytoreductive treatment was used in all patients, and 2 patients underwent allogeneic hematopoietic stem cell transplantation. The median overall survival was 14.1 months (95% CI, 7.2), with median acute myeloid leukaemia-free survival of 13.3 months (95% CI, 3.6-22.6). Cumulative incidence of acute myeloid leukaemia transformation after 1 year in aCML group was 12.5% (95% CI, 0%-29.6%). To conclude, aCML harbours a poor prognosis. Treatment options are limited, with allogeneic hematopoietic stem cell transplantation being the only curative method at present, although only a minority of patients are transplant eligible. Educational measures are needed to improve the quality of diagnoses. Copyright © 2018 John Wiley & Sons, Ltd.
Strzelczyk, Janusz; Szumska, Magdalena; Damasiewicz-Bodzek, Aleksandra; Krywult, Anna; Długaszek, Michał; Czubilińska, Justyna; Gawlik, Kaja; Synowiec, Konrad; Tyrpień-Golder, Krystyna; Poczkaj, Karolina; Kos-Kudła, Beata
2016-01-01
The glycation process is a non-enzymatic modification of proteins occurring due to the reactions of reductive carbohydrates. The glycated residues lose their biological functions, and their removal process is ineffective. They accumulate, and as a result they cause an immunological response. The aim of this study was a determination of the concentrations of advanced glycation end-products and antibodies against carboxymethyl lysine (anti-CML) and carboxyethyl lysine (anti-CEL) in the sera of Graves' orbitopathy patients. The study group were patients from the Division of Endocrinology of the Medical University of Silesia (n = 25) suffering from Graves' orbitopathy. The concentration of AGE-peptides using flow spectrofluorimetry method, and anti-CML and anti-CEL IgG antibodies using immunoenzymatic technique (ELISA), were measured in patients sera before and after methylprednisolone treatment. In sera of the study group the concentrations of AGE-peptides and anti-CML were significantly lower before and after treatment in comparison to the control group (p < 0.05). Mean values of anti-CEL concentrations were comparable (at both phases of treatment) with the value observed in the control group. After treatment the concentrations of AGE-peptides and anti-CEL significantly decreased (p < 0.05); however, the concentration of anti-CML was also lower but the observed change was not significant (p > 0.05). In the course of Graves' orbitopathy the glycation process is disturbed. The treatment modifies significantly the process by lowering the concentration of advanced glycation end-products and suppressing the immune response to them. (Endokrynol Pol 2016; 67 (4): 383-389).
Human immunodeficiency virus bDNA assay for pediatric cases.
Avila, M M; Liberatore, D; Martínez Peralta, L; Biglione, M; Libonatti, O; Coll Cárdenas, P; Hodara, V L
2000-01-01
Techniques to quantify plasma HIV-1 RNA viral load (VL) are commercially available, and they are adequate for monitoring adults infected by HIV and treated with antiretroviral drugs. Little experience on HIV VL has been reported in pediatric cases. In Argentina, the evaluation of several assays for VL in pediatrics are now being considered. To evaluate the pediatric protocol for bDNA assay in HIV-infected children, 25 samples from HIV-infected children (according to CDC criteria for pediatric AIDS) were analyzed by using Quantiplex HIV RNA 2.0 Assay (Chiron Corporation) following the manufacturer's recommendations in a protocol that uses 50 microliters of patient's plasma (sensitivity: 10,000 copies/ml). When HIV-RNA was not detected, samples were run with the 1 ml standard bDNA protocol (sensitivity: 500 HIV-RNA c/ml). Nine samples belonged to infants under 12 months of age (group A) and 16 were over 12 months (group B). All infants under one year of age had high HIV-RNA copies in plasma. VL ranged from 30,800 to 2,560,000 RNA copies/ml (median = 362,000 c/ml) for group A and < 10,000 to 554,600 c/ml (median = < 10,000) for group B. Only 25% of children in group B had detectable HIV-RNA. By using the standard test of quantification, none of the patients had non detectable HIV-RNA, ranging between 950 and 226,200 c/ml for group B (median = 23,300 RNA c/ml). The suggested pediatric protocol could be useful in children under 12 months of age, but 1 ml standard protocol must be used for older children. Samples with undetectable results from children under one year of age should be repeated using the standard protocol.
Shiseki, Masayuki; Yoshida, Chikashi; Takezako, Naoki; Ohwada, Akira; Kumagai, Takashi; Nishiwaki, Kaichi; Horikoshi, Akira; Fukuda, Tetsuya; Takano, Hina; Kouzai, Yasuji; Tanaka, Junji; Morita, Satoshi; Sakamoto, Junichi; Sakamaki, Hisashi; Inokuchi, Koiti
2017-10-01
With the introduction of imatinib, a first-generation tyrosine kinase inhibitor (TKI) to inhibit BCR-ABL1 kinase, the outcome of chronic-phase chronic myeloid leukemia (CP-CML) has improved dramatically. However, only a small proportion of CP-CML patients subsequently achieve a deep molecular response (DMR) with imatinib. Dasatinib, a second-generation TKI, is more potent than imatinib in the inhibition of BCR-ABL1 tyrosine kinase in vitro and more effective in CP-CML patients who do not achieve an optimal response with imatinib treatment. In the present study, we attempted to investigate whether switching the treatment from imatinib to dasatinib can induce DMR in 16 CP-CML patients treated with imatinib for at least two years who achieved a major molecular response (MMR) with detectable levels of BCR-ABL1 transcripts. The rates of achievement of DMR at 1, 3, 6 and 12 months after switching to dasatinib treatment in the 16 patients were 44% (7/16), 56% (9/16), 63% (10/16) and 75% (12/16), respectively. The cumulative rate of achieving DMR at 12 months from initiation of dasatinib therapy was 93.8% (15/16). The proportion of natural killer cells and cytotoxic T cells in peripheral lymphocytes increased after switching to dasatinib. In contrast, the proportion of regulatory T cells decreased during treatment. The safety profile of dasatinib was consistent with previous studies. Switching to dasatinib would be a therapeutic option for CP-CML patients who achieved MMR but not DMR by imatinib, especially for patients who wish to discontinue TKI therapy.
Waechter, Fernanda; da Silva, Gloria N S; Willig, Julia B; de Oliveira, Cristiane B; Vieira, Bruna D; Trivella, Daniela B B; Zimmer, Aline R; Buffon, Andreia; Pilger, Diogo A; Gnoatto, Simone C B
2017-01-01
Chronic myeloid leukemia (CML) is currently treated with imatinib, a Bcr-Abl inhibitor. However, resistance to this drug usually develops over time. Triptolide, a diterpenoid triepoxide, has been shown active against CML cells resistant to imatinib, acting mainly on the level of Bcr-Abl transcription inhibition. Here, we used the triterpene betulinic acid, a known proteasome inhibitor with potential antileukemic activity, as a scaffold for the generation of analogues with predicted triptolide biological activity. Betulinic acid derivatives were designed based on the structure-activity relationship of triptolide and evaluated for their cytotoxic effects in CML cells, lymphocytes and human keratinocytes (HaCaT), as well as against the proteasome complex. The main modification performed on betulinic acid was fluorination at C-28 and epoxidation, both of which are responsible for enhancing activity of triptolide. A total of 10 compounds were obtained: 6 previously described and 4 novel compounds. The cytotoxic activity over a CML cell line (K562) was assessed using flow cytometry and compared to lymphocytes and HaCaT. The results show that betulinic acid was the most cytotoxic compound against CML cells, showing a good selectivity index for cancer over normal cells. The most important trend for the activity in betulinic acid derivatives is the presence of a free hydroxyl group at C-3 and a carboxyl group at C-28. Results also indicated that the epoxide is important for enhancing the activity, while modification at C-28 worsens the activity. Proteasome inhibition assays suggest that proteasome is the main target for betulinic acid and its derivatives. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Zhang, Amin; Yu, Jie; Yan, Shuxin; Zhao, Xia; Chen, Chen; Zhou, Ying; Zhao, Xueyun; Hua, Mingqiang; Wang, Ruiqing; Zhang, Chen; Zhong, Chaoqin; He, Na; Ji, Chunyan; Ma, Daoxin
2018-01-01
NLRP3 inflammasome has been recently reported as an important risk factor in the development of cancer. But the relationship between polymorphisms of NLRP3 inflammasome related genes and chronic myeloid leukemia (CML) is rarely reported. Therefore, the aim of the present study was to investigate the association of five genetic polymorphisms (NLRP3, IL-1β, IL-18, CARD8 and NF-κB) in 267 CML patients and 344 healthy controls. We found that the AT genotype of CARD8 (rs2043211) was significantly higher compared to TT genotype in high and intermediate risk CML patients. IL-1β (rs16944) polymorphism in early molecular response at 6 months was marginally different, with more GG and less AA genotype in BCR-ABL IS >1% group. IL-18 (rs1946518) polymorphism was significantly different with more GG genotype in BCR-ABL IS >1% group at 6 months. We also demonstrated that WBC count of newly diagnosed patients carrying AG genotype was significantly higher than that of GG or AA genotype of IL-1β (rs16944). The onset age of patients carrying ins/ins genotype of NF-κB (rs28362491) was significantly older than that of ins/del and del/del genotype. Moreover, IL-1β or NLRP3 mRNA expression was decreased and IL-18 mRNA expression was increased significantly in CML patients compared with controls. In conclusion, the genetic polymorphisms of NLRP3 inflammasome may be served as potential predictors for CML. Copyright © 2017 American Society for Histocompatibility and Immunogenetics. Published by Elsevier Inc. All rights reserved.
Luft, V C; Duncan, B B; Schmidt, M I; Chambless, L E; Pankow, J S; Hoogeveen, R C; Couper, D J; Heiss, G
2016-10-01
To verify whether elevated fasting levels of circulating carboxymethyl lysine (CML), an advanced glycation end product, predict the development of diabetes in middle-age adults. Using a stratified case-cohort design, we followed 543 middle-aged individuals who developed diabetes and 514 who did not over a median 9 years in the Atherosclerosis Risk in Communities Study. Weighted Cox proportional hazards analyses were used to account for the design. In weighted analyses, correlation between CML levels and anthropometric, inflammatory or metabolic variables was minimal (Pearson correlations usually < 0.10). CML, when modelled as a continuous variable and after adjustment for age, sex, race, centre, parental history of diabetes, BMI, waist-to-hip ratio, non-esterified fatty acids, oxidized LDL-cholesterol, GFR, smoking, an inflammation score, adiponectin, leptin, insulin and glucose levels, was associated with an increased risk of diabetes [Hazard ratio (HR) = 1.35; 95% confidence interval (CI) 1.09-1.67, for each 100 ng/ml CML increment]. Baseline glucose level and race each modified the association (P < 0.05 for interaction), which was present only among those with impaired fasting glucose (≥ 5.6 mmol/l, HR = 1.61, 95% CI 1.26-2.05) and among white participants (HR = 1.50, 95% CI 1.13-1.99). Elevated fasting CML, after adjustment for multiple risk factors for diabetes, predicts the development of incident diabetes, the association being present among those with impaired fasting glucose and in white participants. These prospective findings suggest that advanced glycation end products might play a role in the development of diabetes. © 2015 Diabetes UK.
Beaulieu, Aurore; Poncin, Géraldine; Belaid-Choucair, Zakia; Humblet, Chantal; Bogdanovic, Gordana; Lognay, Georges; Boniver, Jacques; Defresne, Marie-Paule
2011-01-01
It is suspected that bone marrow (BM) microenvironmental factors may influence the evolution of chronic myeloid leukaemia (CML). In this study, we postulated that adipocytes and lipids could be involved in the progression of CML. To test this hypothesis, adipocytes were co-cultured with two BCR-ABL positive cell lines (PCMDS and K562). T cell (Jurkat) and stroma cell (HS-5) lines were used as controls. In the second set of experiments, leukemic cell lines were treated with stearic, oleic, linoleic or α-linolenic acids in presence or absence of leptin. Survival, proliferation, leptin production, OB-R isoforms (OB-Ra and OB-Rb), phosphoinositide 3-kinase (PI3k) and BCL-2 expression have been tested after 24h, 48h and 72h of treatment. Our results showed that adipocytes induced a decrease of CML proliferation and an increase in lipid accumulation in leukemic cells. In addition, CML cell lines induced adipocytes cell death. Chromatography analysis showed that BM microenvironment cells were full of saturated (SFA) and monounsaturated (MUFA) fatty acids, fatty acids that protect tumor cells against external agents. Stearic acid increased Bcl-2 expression in PCMDS, whereas oleic and linoleic acids had no effects. In contrast, α-linolenic acid decreased the proliferation and the survival of CML cell lines as well as BCL-2 and OB-R expression. The effect of α-linolenic acids seemed to be due to PI3K pathway and Bcl-2 inhibition. Leptin production was detected in the co-culture medium. In the presence of leptin, the effect of α-linolenic acid on proliferation, survival, OB-R and BCl-2 expression was reduced.
Agarwal, Anupriya; MacKenzie, Ryan J.; Pippa, Raffaella; Eide, Christopher A.; Oddo, Jessica; Tyner, Jeffrey W.; Sears, Rosalie; Vitek, Michael P.; Odero, María D.; Christensen, Dale; Druker, Brian J.
2014-01-01
Purpose The SET oncoprotein, a potent inhibitor of the protein phosphatase 2A (PP2A), is overexpressed in leukemia. We evaluated the efficacy of SET antagonism in chronic myeloid leukemia (CML) and acute myeloid leukemia (AML) cell lines, a murine leukemia model, and primary patient samples using OP449, a specific, cell-penetrating peptide that antagonizes SET's inhibition of PP2A. Experimental Design In vitro cytotoxicity and specificity of OP449 in CML and AML cell lines and primary samples were measured using proliferation, apoptosis and colonogenic assays. Efficacy of target inhibition by OP449 is evaluated by immunoblotting and PP2A assay. In vivo antitumor efficacy of OP449 was measured in human HL-60 xenografted murine model. Results We observed that OP449 inhibited growth of CML cells including those from patients with blastic phase disease and patients harboring highly drug-resistant BCR-ABL1 mutations. Combined treatment with OP449 and ABL1 tyrosine kinase inhibitors was significantly more cytotoxic to K562 cells and primary CD34+ CML cells. SET protein levels remained unchanged with OP449 treatment, but BCR-ABL1-mediated downstream signaling was significantly inhibited with the degradation of key signaling molecules such as BCR-ABL1, STAT5, and AKT. Similarly, AML cell lines and primary patient samples with various genetic lesions showed inhibition of cell growth after treatment with OP449 alone or in combination with respective kinase inhibitors. Finally, OP449 reduced the tumor burden of mice xenografted with human leukemia cells. Conclusions We demonstrate a novel therapeutic paradigm of SET antagonism using OP449 in combination with tyrosine kinase inhibitors for the treatment of CML and AML. PMID:24436473
Li, Ziye; Yang, Lin; Liu, Xiaojun; Nie, Ziyuan; Luo, Jianmin
2018-05-14
The long noncoding RNA (lnc) maternally expressed 3 (MEG3) is downregulated in many types of cancers. However, the relationship between lncRNA MEG3, microRNA-21 (miR-21) and chronic myeloid leukemia (CML) blast crisis is unknown. This study examined bone marrow samples from 40 CML patients and 10 healthy donors. Proliferation and apoptosis assays, real-time polymerase chain reaction (PCR), bisulfite sequencing PCR, Western blotting, luciferase assay, RNA pull-down, RNA immunoprecipitation (RIP), co-immunoprecipitation (CoIP) and Chromatin immunoprecipitation (ChIP) were performed. We found that MEG3 and PTEN expression were down-regulated, whereas, MDM2, DNMT1 and miR-21 were up-regulated in the accelerated and blast phases of CML. Treated with 5-azacytidine decreased the level of MDM2, DNMT1 and miR21, but increased the level of MEG3 and PTEN. Overexpression of MEG3 and silencing the expression of miR-21 inhibited proliferation and induced apoptosis. MEG3 overexpression and silencing the expression of miR21 influence the levels of MMP-2, MMP-9, bcl-2 and Bax. MEG3 was able to interact with MDM2 and EZH2. MDM2 could interact with DNMT1 and PTEN. MYC and AKT can interact with EZH2. ChIP-seq showed that the promoter of KLF4 and SFRP2 interacts with DNMT1. In conclusion, lncRNA MEG3 and its target miR21 may serve as novel therapeutic targets for CML blast crisis; and demethylation drugs might also have potential clinical application in treating CML blast crisis. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Vickers, Mark H; Guan, Jian; Gustavsson, Malin; Krägeloh, Christian U; Breier, Bernhard H; Davison, Michael; Fong, Bertram; Norris, Carmen; McJarrow, Paul; Hodgkinson, Steve C
2009-06-01
Alterations in nutritional factors during early development can exert long-term effects on growth, neural function, and associated behaviors. The lipid component of milk provides a critical nutritional source for generating both energy and essential nutrients for the growth of the newborn. The present study, therefore, investigated the hypothesis that nutritional supplementation with a complex milk lipid (CML) preparation, derived from the milk fat globule membrane rich in phospholipids and gangliosides from young rats, has beneficial effects on learning behavior and postnatal growth and development. Male Wistar rat offspring from normal pregnancies were treated from neonatal day 10 until postnatal day 80 with either vehicle or CML at a dose of 0.2% (low) and 1.0% (high) based on total food intake (n = 16 per group). Neonatal dosing was via daily oral gavage, while postweaning dosing was via gel supplementation to a standard chow diet. Animals underwent behavioral tasks related to spatial memory, learning, and cognitive function. Complex milk lipid supplementation significantly increased linear growth rate (P < .05), and the improved growth trajectory was not related to changes in body composition as quantified by dual-energy x-ray absorptiometry scanning or altered plasma lipid profiles. Moreover, this effect was not dose dependent and not attributable to the contribution to total energy intake of the CML composition. Supplementation of the CML to growing rats resulted in statistically significant improvements in parameters related to novelty recognition (P < .02) and spatial memory (P < .05) using standard behavioral techniques, but operant testing showed no significant differences between treatment groups. Supplementation with a CML containing gangliosides had positive growth and learning behavioral effects in young normal growing rats.
Asif, Muhammad; Hussain, Abrar; Rasool, Mahmood
2016-01-01
The t(9;22)(q34;q11) translocation is present in 90–95% of patients with chronic myeloid leukemia (CML). Variant complex translocations have been observed in 5–8% of CML patients, in which a third chromosome other than (9;22) is involved. Imatinib mesylate is the first line breakpoint cluster region-Abelson gene (BCR/ABL)-targeted oral therapy for CML, and may produce a complete response in 70–80% of CML patients in the chronic phase. In the present study, a bone marrow sample was used for conventional cytogenetic analysis, and the fluorescence in situ hybridization (FISH) test was used for BCR/ABL gene detection. A hematological analysis was also performed to determine the white blood cell (WBC) count, red blood cell count, hemoglobin levels, packed and mean cell volumes, mean corpuscular hemoglobin, mean corpuscular hemoglobin concentration and platelet values of the patient. The hematological analysis of the patient indicated the increased WBC of 186.5×103 cells/µl, and decreased hemoglobin levels of 11.1 g/dl. The FISH test revealed that 67% cells demonstrated BCR/ABL gene translocation. The patient was treated with 400 mg imatinib mesylate daily, and was monitored at various intervals over a 6-month period. The present study reports the rare case of a patient that demonstrates a three-way Philadelphia chromosome-positive translocation involving 46XY,t(9;11;22)(q34;p15;q11)[10], alongside CML in the chronic phase. The translocation was analyzed using cytogenetic and FISH tests. PMID:27602125
The clinical implications of mixed lymphocyte reaction with leukemic cells.
Kim, Hee-Je; Kim, Tai-Gyu; Cho, Hyun Il; Han, Hoon; Min, Woo-Sung; Kim, Chun-Choo
2002-11-01
To evaluate the clinical implications of a mixed lymphocyte reaction between leukemic cells and lymphocytes from HLA-matched sibling donors, we attempted to generate donor-derived, graft-versus-leukemia-effective cells and to define their characteristics. We studied 8 patients with chronic myelogenous leukemia (CML), including 5 patients in the chronic phase (CP), 3 patients in the accelerated phase (AP), and 2 patients with acute myelogenous leukemia (AML) in their first complete remission. Cells from these patients were used as stimulators in a mixed lymphocyte reaction.The effects of natural killer (NK) cells and cytotoxic T-lymphocytes (CTLs) were separated by observing tests for cytotoxicity to target cells, including K562 cells, the patient's leukemic cells, and phytohemagglutinin (PHA) blasts. Donor-derived antileukemic CTLs againstthe patient's own leukemic cells are productive in vitro. The efficacy of generating CTLs against leukemic target cells was (in decreasing order) AML, CML-CP, and CML-AP. Cytotoxic activity against leukemic targets was prominent in 4 cases--2 CML-CP and the 2 AML cases. On the contrary, the 3 cases of CML-AP showed low CTL activity. In cases showing 1 positive result among 3 targets (K562 cells, the patient's leukemic cells, and PHA blasts), the relapse rate was significantly lower (P = .022) on follow-up (median, 33 months; 7-40 months) after hematopoietic stem cell transplantation. By a combined analysis of the cytotoxicity effects for all 3 target cells, we were able to demonstrate a correlation between leukemic relapse and the variable degree of the cytotoxicity test results. Although the total sample numbers for this study were low, we speculate that these results may come from differences in the individual characteristics of the leukemic cells that are in line with their clinical disease status.
Steriti, Ronald
2002-10-01
Chronic myelogenous leukemia (CML) is a slowly progressive disease characterized by the overproduction of granulocytes (neutrophils, eosinophils, and basophils). A blood smear shows moderate elevations in white blood cell counts that may persist for years and be benign. Platelets are increased in number, although their function is impaired, resulting in symptoms of easy bleeding (purpura, swollen gums). Conventional medical treatment is a marrow transplant and alkylating agents, which are usually prescribed only during crisis. Several nutrients and botanicals have been studied for use in CML, including vitamin A and all-trans retinoic acid (Retin-A), vitamin D3, vitamin E, vitamin B12, indirubin (found in herbs including Indigofera tinctoria and Isatis tinctoria), and Curcuma longa. This article briefly reviews the scientific literature on the therapeutic use of these nutrients for CML.
Imatinib mesylate in chronic myeloid leukemia: frontline treatment and long-term outcomes.
Stagno, Fabio; Stella, Stefania; Spitaleri, Antonio; Pennisi, Maria Stella; Di Raimondo, Francesco; Vigneri, Paolo
2016-01-01
The tyrosine kinase inhibitor Imatinib Mesylate has dramatically improved the clinical outcome of chronic myeloid leukemia (CML) patients in the chronic phase of the disease, generating unprecedented rates of complete hematologic and cytogenetic responses and sustained reductions in BCR-ABL transcripts. Here, we present an overview on the efficacy and safety of Imatinib and describe the most important clinical studies employing this drug for the frontline treatment of chronic phase CML. We also discuss recent reports describing the long-term outcome of patients receiving Imatinib for their disease. The imminent availability of generic forms of Imatinib coupled with the approval of expensive second-generation tyrosine kinase inhibitors underlines an unmet need for early molecular parameters that may distinguish CML patients likely to benefit from the drug from those that should receive alternative forms of treatment.
Chemical markup, XML, and the world wide web. 6. CMLReact, an XML vocabulary for chemical reactions.
Holliday, Gemma L; Murray-Rust, Peter; Rzepa, Henry S
2006-01-01
A set of components (CMLReact) for managing chemical and biochemical reactions has been added to CML. These can be combined to support most of the strategies for the formal representation of reactions. The elements, attributes, and types are formally defined as XMLSchema components, and their semantics are developed. New syntax and semantics in CML are reported and illustrated with 10 examples.
2007-02-01
collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services , Directorate...AC22, K1P and AC19 as well as the Furans A103 and A105 have qualities which distinguish them from previously reported CML cell inhibitory drugs and...cost in the quality of life for those individuals so treated (3). Imatinib, a specific inhibitor of the Bcr-Abl tyrosine protein kinase, has
Saussele, Susanne; Hehlmann, Rüdiger; Fabarius, Alice; Jeromin, Sabine; Proetel, Ulrike; Rinaldetti, Sebastien; Kohlbrenner, Katharina; Einsele, Hermann; Falge, Christiane; Kanz, Lothar; Neubauer, Andreas; Kneba, Michael; Stegelmann, Frank; Pfreundschuh, Michael; Waller, Cornelius F; Oppliger Leibundgut, Elisabeth; Heim, Dominik; Krause, Stefan W; Hofmann, Wolf-Karsten; Hasford, Joerg; Pfirrmann, Markus; Müller, Martin C; Hochhaus, Andreas; Lauseker, Michael
2018-05-01
Major molecular remission (MMR) is an important therapy goal in chronic myeloid leukemia (CML). So far, MMR is not a failure criterion according to ELN management recommendation leading to uncertainties when to change therapy in CML patients not reaching MMR after 12 months. At monthly landmarks, for different molecular remission status Hazard ratios (HR) were estimated for patients registered to CML study IV who were divided in a learning and a validation sample. The minimum HR for MMR was found at 2.5 years with 0.28 (compared to patients without remission). In the validation sample, a significant advantage for progression-free survival (PFS) for patients in MMR could be detected (p-value 0.007). The optimal time to predict PFS in patients with MMR could be validated in an independent sample at 2.5 years. With our model we provide a suggestion when to define lack of MMR as therapy failure and thus treatment change should be considered. The optimal response time for 1% BCR-ABL at about 12-15 months was confirmed and for deep molecular remission no specific time point was detected. Nevertheless, it was demonstrated that the earlier the MMR is achieved the higher is the chance to attain deep molecular response later.
Application of commercial microwave link (CML) derived precipitation data in a hydrology model
NASA Astrophysics Data System (ADS)
Smiatek, Gerhard; Chwala, Christian; Kunstmann, Harald
2017-04-01
In 2016 very local and extremely intensive convective events caused severe flooding in the Alpine space. Despite the large number of monitoring stations most of the rainfall events were not captured accurately by the existing rain gauge network. As the number of traditional precipitation monitoring sites is in general decreasing, novel rain monitoring techniques are gaining attention. One of the new techniques is the rainfall estimation from signal attenuation in commercial microwave link (CML) networks operated by cellular phone companies. In this contribution, we use CML-derived rainfall information to improve the streamflow forecast of the distributed hydrology model WaSiM-ETH in hindcasting and nowcasting modes. Our model domain covers the complex terrain of the Ammer catchment located in the German Alps. The hydrology model is operated with a spatial resolution of 100m and with an hourly time step. We present two alternative methods of rainfall estimation from CMLs and compare the results to data from rain gauges and a weather radar. Finally, we show the impact of the rainfall data sets on the hydrology model initialization and in discharge simulations of the Ammer River for selected episodes in 2015 and 2016. We found that the densification of the observation network by the CML observations leads to a significant improvement of the model performance.
Diagnosis and Treatment of Chronic Myeloid Leukemia (CML) in 2015
Thompson, Philip A; Kantarjian, Hagop; Cortes, Jorge E
2017-01-01
Few neoplastic diseases have undergone a transformation in a relatively short period of time like chronic myeloid leukemia (CML) has in the last few years. In 1960, CML was the first cancer where a unique chromosomal abnormality, “a minute chromosome”,1 was identified and a pathophysiologic correlation suggested. Landmark work followed, recognizing the underlying translocation between chromosomes 9 and 22 that gave rise to this abnormality2 and shortly afterward, the specific genes involved3,4 and the pathophysiologic implications of this novel rearrangement.5–7 Fast-forward a few years, this knowledge has given us the most remarkable example of a specific therapy targeting the dysregulated kinase activity represented by this molecular change. The broad use of tyrosine kinase inhibitors has resulted in an improvement in the overall survival to the point where the life expectancy of patients today is nearly equal to that of the general population.8 Still, there are challenges and unanswered questions that define the reasons why the progress still escapes many patients, and the details that separate patients from ultimate “cure”. In this manuscript we review our current understanding of CML in 2015, present recommendations for optimal management, and discuss the unanswered questions and what could be done to answer them in the near future. PMID:26434969
Accumulation of Maillard reaction products in skin collagen in diabetes and aging.
Dyer, D G; Dunn, J A; Thorpe, S R; Bailie, K E; Lyons, T J; McCance, D R; Baynes, J W
1993-01-01
To investigate the contribution of glycation and oxidation reactions to the modification of insoluble collagen in aging and diabetes, Maillard reaction products were measured in skin collagen from 39 type 1 diabetic patients and 52 nondiabetic control subjects. Compounds studied included fructoselysine (FL), the initial glycation product, and the glycoxidation products, N epsilon-(carboxymethyl) lysine (CML) and pentosidine, formed during later Maillard reactions. Collagen-linked fluorescence was also studied. In nondiabetic subjects, glycation of collagen (FL content) increased only 33% between 20 and 85 yr of age. In contrast, CML, pentosidine and fluorescence increased five-fold, correlating strongly with age. In diabetic patients, collagen FL was increased threefold compared with nondiabetic subjects, correlating strongly with glycated hemoglobin but not with age. Collagen CML, pentosidine and fluorescence were increased up to twofold in diabetic compared with control patients: this could be explained by the increase in glycation alone, without invoking increased oxidative stress. There were strong correlations among CML, pentosidine and fluorescence in both groups, providing evidence for age-dependent chemical modification of collagen via the Maillard reaction, and acceleration of this process in diabetes. These results support the description of diabetes as a disease characterized by accelerated chemical aging of long-lived tissue proteins. PMID:8514858
Peng, Xing-Xiang; Tiwari, Amit K.; Wu, Hsiang-Chun; Chen, Zhe-Sheng
2012-01-01
Imatinib, a breakpoint cluster region (BCR)-Abelson murine leukemia (ABL) tyrosine kinase inhibitor (TKI), has revolutionized the treatment of chronic myelogenous leukemia (CML). However, development of multidrug resistance (MDR) limits the use of imatinib. In the present study, we aimed to investigate the mechanisms of cellular resistance to imatinib in CML. Therefore, we established an imatinib-resistant human CML cell line (K562-imatinib) through a stepwise selection process. While characterizing the phenotype of these cells, we found that K562-imatinib cells were 124.6-fold more resistant to imatinib than parental K562 cells. In addition, these cells were cross-resistant to second- and third-generation BCR-ABL TKIs. Western blot analysis and reverse transcription-polymerase chain reaction(RT-PCR) demonstrated that P-glycoprotein (P-gp) and MDR1 mRNA levels were increased in K562-imatinib cells. In addition, accumulation of [14C]6-mercaptopurine (6-MP) was decreased, whereas the ATP-dependent efflux of [14C] 6-MP and [3H]methotrexate transport were increased in K562-imatinib cells. These data suggest that the overexpression of P-gp may play a crucial role in acquired resistance to imatinib in CML K562-imatinib cells. PMID:22098951
Hasford, Joerg; Baccarani, Michele; Hoffmann, Verena; Guilhot, Joelle; Saussele, Susanne; Rosti, Gianantonio; Guilhot, François; Porkka, Kimmo; Ossenkoppele, Gert; Lindoerfer, Doris; Simonsson, Bengt; Pfirrmann, Markus; Hehlmann, Rudiger
2011-07-21
The outcome of chronic myeloid leukemia (CML) has been profoundly changed by the introduction of tyrosine kinase inhibitors into therapy, but the prognosis of patients with CML is still evaluated using prognostic scores developed in the chemotherapy and interferon era. The present work describes a new prognostic score that is superior to the Sokal and Euro scores both in its prognostic ability and in its simplicity. The predictive power of the score was developed and tested on a group of patients selected from a registry of 2060 patients enrolled in studies of first-line treatment with imatinib-based regimes. The EUTOS score using the percentage of basophils and spleen size best discriminated between high-risk and low-risk groups of patients, with a positive predictive value of not reaching a CCgR of 34%. Five-year progression-free survival was significantly better in the low- than in the high-risk group (90% vs 82%, P = .006). These results were confirmed in the validation sample. The score can be used to identify CML patients with significantly lower probabilities of responding to therapy and survival, thus alerting physicians to those patients who require closer observation and early intervention.
Helou, Cynthia; Gadonna-Widehem, Pascale; Robert, Nathalie; Branlard, Gérard; Thebault, Jacques; Librere, Sarah; Jacquot, Sylvain; Mardon, Julie; Piquet-Pissaloux, Agnès; Chapron, Sophie; Chatillon, Antoine; Niquet-Léridon, Céline; Tessier, Frédéric J
2016-06-15
The aim of this study was to develop a white bread with improved nutrient contents and reduced levels of potentially harmful Maillard reaction products such as N(ε)-carboxymethyllysine (CML) and 5-hydroxymethylfurfural (HMF). Assays were carried out through a full factorial experimental design allowing the simultaneous analysis of four factors at two levels: (1) wheat flour extraction rates (ash content: 0.60%-0.72%), (2) leavening agents (bakers' yeast - bakers' yeast and sourdough), (3) prebaking and (4) baking conditions (different sets of time and temperature). The baking conditions affected HMF and CML as well as certain mineral contents. A reduced baking temperature along with a prolonged heat treatment was found to be favourable for reducing both the CML (up to 20%) and HMF concentrations (up to 96%). The presence of sourdough decreased the formation of CML (up to 28%), and increased the apparent amounts of calcium (up to 8%) and manganese (up to 17.5%) probably through acidification of the dough. The extraction rate of flours as well as interactions between multiple factors also affected certain mineral content. However, compounds like folate, thiamine, copper, zinc, iron and phytic acid were not affected by any of the factors studied.
C/EBPβ promotes BCR–ABL-mediated myeloid expansion and leukemic stem cell exhaustion
Hayashi, Y; Hirai, H; Kamio, N; Yao, H; Yoshioka, S; Miura, Y; Ashihara, E; Fujiyama, Y; Tenen, DG; Maekawa, T
2015-01-01
The BCR–ABL fusion oncoprotein accelerates differentiation and proliferation of myeloid cells during the chronic phase of chronic myeloid leukemia (CP-CML). Here, the role of CCAAT/enhancer binding protein β (C/EBPβ), a regulator for ‘emergency granulopoiesis,’ in the pathogenesis of CP-CML was examined. C/EBPβ expression was upregulated in Lineage− CD34+ CD38− hematopoietic stem cells (HSCs) and myeloid progenitors isolated from bone marrow of patients with CP-CML. In EML cells, a mouse HSC line, BCR–ABL upregulated C/EBPβ, at least in part, through the activation of STAT5. Myeloid differentiation and proliferation induced by BCR–ABL was significantly impaired in C/EBPβ-deficient bone marrow cells in vitro. Mice that were transplanted with BCR–ABL-transduced C/EBPβ knockout bone marrow cells survived longer than mice that received BCR–ABL-transduced wild-type (WT) bone marrow cells. Significantly higher levels of leukemic stem cells were maintained in BCR–ABL-transduced C/EBPβ-deficient cells than in BCR–ABL-transduced WT cells. These results suggest that C/EBPβ is involved in BCR–ABL-mediated myeloid expansion. Further elucidation of the molecular mechanisms underlying the C/EBPβ-mediated stem cell loss might reveal a novel therapeutic strategy for eradication of CML stem cells. PMID:22948537
Ahmed, M U; Brinkmann Frye, E; Degenhardt, T P; Thorpe, S R; Baynes, J W
1997-01-01
Advanced glycation end-products and glycoxidation products, such as Nepsilon-(carboxymethyl)lysine (CML) and pentosidine, accumulate in long-lived tissue proteins with age and are implicated in the aging of tissue proteins and in the development of pathology in diabetes, atherosclerosis and other diseases. In this paper we describe a new advanced glycation end-product, Nepsilon-(carboxyethyl)lysine (CEL), which is formed during the reaction of methylglyoxal with lysine residues in model compounds and in the proteins RNase and collagen. CEL was also detected in human lens proteins at a concentration similar to that of CML, and increased with age in parallel with the concentration of CML. Although CEL was formed in highest yields during the reaction of methylglyoxal and triose phosphates with lysine and protein, it was also formed in reactions of pentoses, ascorbate and other sugars with lysine and RNase. We propose that levels of CML and CEL and their ratio to one another in tissue proteins and in urine will provide an index of glyoxal and methylglyoxal concentrations in tissues, alterations in glutathione homoeostasis and dicarbonyl metabolism in disease, and sources of advanced glycation end-products in tissue proteins in aging and disease. PMID:9182719
Ovarian minimal residual disease in chronic myeloid leukaemia.
Abir, Ronit; Aviram, Adina; Feinmesser, Meora; Stein, Jerry; Yaniv, Isaac; Parnes, Doris; Ben-Haroush, Avi; Meirow, Dror; Rabizadeh, Esther; Fisch, Benjamin
2014-02-01
The options for fertility preservation include cryopreservation of ovarian tissue. Although transplantation of cryopreserved-thawed ovarian tissue in cancer survivors has resulted in live births, there is evidence of malignancy involvement in ovarian tissue, especially in leukaemia. The objectives of this study were to investigate the involvement of chronic myeloid leukaemia (CML) in ovaries by both pathological/immunohistochemical methods and PCR for the identification of the Philadelphia chromosome (BCR-ABL transcripts). The patient was a survivor of paediatric CML whose ovaries were cryopreserved. The patient became infertile and requested ovarian reimplantation in adulthood. Pathological examinations of ovarian tissue with immunohistochemical stainings, quantitative PCR and two-step nested PCR were applied to identify BCR-ABL transcripts. Despite the lack of positive pathological/immunohistochemical evidence, PCR and two-step nested PCR revealed that the ovary was contaminated by malignant minimal residual CML. Survivors of childhood CML may harbour minimal residual disease in the ovaries. This finding stresses the danger of reseeding cancer by ovarian grafting, especially in patients with leukaemia. If ovarian grafting is considered, reimplantation should be preceded by examination of ovarian samples both pathologically and by molecular techniques. On the basis of molecular findings, ovarian autografting was not recommended in this case report. Copyright © 2013 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.
In vivo RNAi Library Screen to Identify Mediators of Disease Progression and Drug Resistance in CML
2006-09-01
O. N., Ozawa, K., Ishikawa, T., Yazaki, Y., and Hirai, H. Development of acute lymphoblastic leukemia and myeloproliferative disorder in...of a chronic myelogenous leukemia-like myeloproliferative disease in mice receiving P210 bcr/abl-transduced bone marrow. Blood 1998;92:3780-92. 7...Consistent with previous reports (27), these animals developed a CML-like myeloproliferative disease and, occasionally, an acute leukemia. Although p53
The concept of treatment-free remission in chronic myeloid leukemia
Saußele, S; Richter, J; Hochhaus, A; Mahon, F-X
2016-01-01
The advent of tyrosine kinase inhibitors (TKI) into the management of patients with chronic myeloid leukemia (CML) has profoundly improved prognosis. Survival of responders is approaching that of the general population but lifelong treatment is still recommended. In several trials, TKI treatment has been stopped successfully in approximately half of the patients with deep molecular response. This has prompted the development of a new concept in the evaluation of CML patients known as ‘treatment-free remission'. The future in CML treatment will be to define criteria for the safe and most promising discontinuation of TKI on one hand, and, on the other, to increase the number of patients available for such an attempt. Until safe criteria have been defined, discontinuation of therapy is still experimental and should be restricted to clinical trials or registries. This review will provide an overview of current knowledge as well as an outlook on future challenges. PMID:27133824
Visual Disturbance as the first Symptom of Chronic Myeloid Leukemia
Huang, Philemon K.; Sanjay, Srinivasan
2011-01-01
Chronic myeloid leukemia (CML) is a well-studied entity and advances made in diagnosis and treatment have improved the disease outcome. Patients with ophthalmic manifestation of CML have been reported to have lower 5-year survival rates. Hence, recognizing the early fundus changes may improve outcome by allowing earlier diagnosis and treatment. We report a case of a previously healthy 30-year-old Myanmarese male, who presented with a minor visual disturbance, complaining of seeing a ‘black dot’ in his left visual field for the past 1 week. Fundoscopic examination revealed bilateral retinal blot hemorrhages, white-centered hemorrhage, and preretinal hemorrhage over the left fovea. The full blood count and peripheral blood film were abnormal, and bone marrow biopsy confirmed the diagnosis of CML. Cytoreduction therapy was promptly commenced and his symptoms resolved, with improvement in visual acuity. No complications were recorded at 1-year follow-up. PMID:22224030
Visual Disturbance as the first Symptom of Chronic Myeloid Leukemia.
Huang, Philemon K; Sanjay, Srinivasan
2011-10-01
Chronic myeloid leukemia (CML) is a well-studied entity and advances made in diagnosis and treatment have improved the disease outcome. Patients with ophthalmic manifestation of CML have been reported to have lower 5-year survival rates. Hence, recognizing the early fundus changes may improve outcome by allowing earlier diagnosis and treatment. We report a case of a previously healthy 30-year-old Myanmarese male, who presented with a minor visual disturbance, complaining of seeing a 'black dot' in his left visual field for the past 1 week. Fundoscopic examination revealed bilateral retinal blot hemorrhages, white-centered hemorrhage, and preretinal hemorrhage over the left fovea. The full blood count and peripheral blood film were abnormal, and bone marrow biopsy confirmed the diagnosis of CML. Cytoreduction therapy was promptly commenced and his symptoms resolved, with improvement in visual acuity. No complications were recorded at 1-year follow-up.
Drug Target Optimization in Chronic Myeloid Leukemia Using Innovative Computational Platform
Chuang, Ryan; Hall, Benjamin A.; Benque, David; Cook, Byron; Ishtiaq, Samin; Piterman, Nir; Taylor, Alex; Vardi, Moshe; Koschmieder, Steffen; Gottgens, Berthold; Fisher, Jasmin
2015-01-01
Chronic Myeloid Leukemia (CML) represents a paradigm for the wider cancer field. Despite the fact that tyrosine kinase inhibitors have established targeted molecular therapy in CML, patients often face the risk of developing drug resistance, caused by mutations and/or activation of alternative cellular pathways. To optimize drug development, one needs to systematically test all possible combinations of drug targets within the genetic network that regulates the disease. The BioModelAnalyzer (BMA) is a user-friendly computational tool that allows us to do exactly that. We used BMA to build a CML network-model composed of 54 nodes linked by 104 interactions that encapsulates experimental data collected from 160 publications. While previous studies were limited by their focus on a single pathway or cellular process, our executable model allowed us to probe dynamic interactions between multiple pathways and cellular outcomes, suggest new combinatorial therapeutic targets, and highlight previously unexplored sensitivities to Interleukin-3. PMID:25644994
Drug Target Optimization in Chronic Myeloid Leukemia Using Innovative Computational Platform
NASA Astrophysics Data System (ADS)
Chuang, Ryan; Hall, Benjamin A.; Benque, David; Cook, Byron; Ishtiaq, Samin; Piterman, Nir; Taylor, Alex; Vardi, Moshe; Koschmieder, Steffen; Gottgens, Berthold; Fisher, Jasmin
2015-02-01
Chronic Myeloid Leukemia (CML) represents a paradigm for the wider cancer field. Despite the fact that tyrosine kinase inhibitors have established targeted molecular therapy in CML, patients often face the risk of developing drug resistance, caused by mutations and/or activation of alternative cellular pathways. To optimize drug development, one needs to systematically test all possible combinations of drug targets within the genetic network that regulates the disease. The BioModelAnalyzer (BMA) is a user-friendly computational tool that allows us to do exactly that. We used BMA to build a CML network-model composed of 54 nodes linked by 104 interactions that encapsulates experimental data collected from 160 publications. While previous studies were limited by their focus on a single pathway or cellular process, our executable model allowed us to probe dynamic interactions between multiple pathways and cellular outcomes, suggest new combinatorial therapeutic targets, and highlight previously unexplored sensitivities to Interleukin-3.
Caocci, Giovanni; Greco, Marianna; Delogu, Giuseppe; Secchi, Christian; Martino, Bruno; Labate, Claudia; Abruzzese, Elisabetta; Trawinska, Malgorzata Monika; Galimberti, Sara; Orru, Federica; Fozza, Claudio; Gambacorti Passerini, Carlo; Galimi, Francesco; La Nasa, Giorgio
2016-07-29
We studied telomere length in 32 CML patients who discontinued imatinib after achieving complete molecular remission and 32 age-sex-matched controls. The relative telomere length (RTL) was determined by q-PCR as the telomere to single copy gene (36B4) ratio normalized to a reference sample (K-562 DNA). Age-corrected RTL (acRTL) was also obtained. The 36-month probability of treatment-free remission (TFR) was 59.4 %. TFR patients showed shorter acRTL compared to relapsed (mean ± SD = 0.01 ± 0.14 vs 0.20 ± 0.21; p = 0.01). TFR was significantly higher in CML patients with acRTL ≤0.09 (78.9 vs 30.8 %, p = 0.002). CML stem cells harboring longer telomeres possibly maintain a proliferative potential after treatment discontinuation.
Jakovljevic, Ksenija; Malisic, Emina; Cavic, Milena; Radulovic, Sinisa; Jankovic, Radmila
2012-07-01
Methylenetetrahydrofolate reductase (MTHFR) is a key enzyme regulating the intracellular folate metabolism which plays an important role in carcinogenesis through DNA methylation and nucleotide synthesis. The common MTHFR single nucleotide polymorphism C677T has been reported to be associated with reduced enzymatic activity. In order to investigate the influence of this polymorphism on the risk of chronic myeloid leukemia (CML), we performed a case-control study in a Serbian population of 52 patients with CML and 53 healthy control subjects. MTHFR C677T polymorphism genotyping was assessed using the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. The results demonstrated no statistical difference in MTHFR 677 frequency distribution between patient and control groups. Our findings suggest that MTHFR 677 gene variants have no significant influence on the susceptibility to CML in a Serbian population.
Lakkireddy, Samyuktha; Aula, Sangeetha; AVN, Swamy; Kapley, Atya; Rao Digumarti, Raghunadha; Jamil, Kaiser
2015-01-01
Objective Cytochrome P450 is one of the major drug metabolizing enzyme families and its role in metabolism of cancer drugs cannot be less emphasized. The association be- tween single nucleotide polymorphisms (SNPs) in CYP1A1 and pathogenesis of chronic myeloid leukemia (CML) has been investigated in several studies, but the results observed vary based on varied risk factors. The objective of this study was to investigate the risk factors associated with the CYP1A1*2C [rs1048943: A>G] polymorphism in CML patients and its role in therapeutic response to imatinib mesylate (IM) affecting clinico-pathological parameters, in the Indian population. Materials and Methods In this case-control study, CYP1A1*2C was analysed in CML patients. After obtaining approval from the Ethics Committee of oncology hospital, we collected blood samples from 132 CML patients and 140 matched controls. Genom- ic DNA was extracted and all the samples were analysed for the presence of the CYP1A1*2C polymorphism using allele-specific polymerase chain reaction, and we examined the relationship of genotypes with risk factors such as gender, age, phase of the disease and other clinical parameters. Results We observed a significant difference in the frequency distribution of CYP1A1*2C genotypes AA (38 vs. 16%, P=0.0001), AG (57 vs. 78%, P=0.0002) and GG (5 vs. 6%, P=0.6635) between patients and controls. In terms of response to IM therapy, significant variation was observed in the frequencies of AA vs AG in major (33 vs 67%) and poor (62 vs 31%) hematological responders, and AA vs AG in major (34 vs. 65%) and poor (78 vs. 22%) cytogenetic responders. However, the patients with the GG homozygous genotype did not show any significant therapeutic outcome. Conclusion The higher frequency of AG in controls indicates that AG may play a protec- tive role against developing CML. We also found that patients with the AG genotype showed favorable treatment response towards imatinib therapy, indicating that this polymorphism could serve as a good therapeutic marker in predicting response to such therapy. PMID:26464823
Lakkireddy, Samyuktha; Aula, Sangeetha; Avn, Swamy; Kapley, Atya; Rao Digumarti, Raghunadha; Jamil, Kaiser
2015-01-01
Cytochrome P450 is one of the major drug metabolizing enzyme families and its role in metabolism of cancer drugs cannot be less emphasized. The association be- tween single nucleotide polymorphisms (SNPs) in CYP1A1 and pathogenesis of chronic myeloid leukemia (CML) has been investigated in several studies, but the results observed vary based on varied risk factors. The objective of this study was to investigate the risk factors associated with the CYP1A1*2C [rs1048943: A>G] polymorphism in CML patients and its role in therapeutic response to imatinib mesylate (IM) affecting clinico-pathological parameters, in the Indian population. In this case-control study, CYP1A1*2C was analysed in CML patients. After obtaining approval from the Ethics Committee of oncology hospital, we collected blood samples from 132 CML patients and 140 matched controls. Genom- ic DNA was extracted and all the samples were analysed for the presence of the CYP1A1*2C polymorphism using allele-specific polymerase chain reaction, and we examined the relationship of genotypes with risk factors such as gender, age, phase of the disease and other clinical parameters. We observed a significant difference in the frequency distribution of CYP1A1*2C genotypes AA (38 vs. 16%, P=0.0001), AG (57 vs. 78%, P=0.0002) and GG (5 vs. 6%, P=0.6635) between patients and controls. In terms of response to IM therapy, significant variation was observed in the frequencies of AA vs AG in major (33 vs 67%) and poor (62 vs 31%) hematological responders, and AA vs AG in major (34 vs. 65%) and poor (78 vs. 22%) cytogenetic responders. However, the patients with the GG homozygous genotype did not show any significant therapeutic outcome. The higher frequency of AG in controls indicates that AG may play a protec- tive role against developing CML. We also found that patients with the AG genotype showed favorable treatment response towards imatinib therapy, indicating that this polymorphism could serve as a good therapeutic marker in predicting response to such therapy.
Haaß, Wiltrud; Kleiner, Helga; Weiß, Christel; Haferlach, Claudia; Schlegelberger, Brigitte; Müller, Martin C; Hehlmann, Rüdiger; Hofmann, Wolf-Karsten; Fabarius, Alice; Seifarth, Wolfgang
2015-01-01
Unbalanced (major route) additional cytogenetic aberrations (ACA) at diagnosis of chronic myeloid leukemia (CML) indicate an increased risk of progression and shorter survival. Moreover, newly arising ACA under imatinib treatment and clonal evolution are considered features of acceleration and define failure of therapy according to the European LeukemiaNet (ELN) recommendations. On the basis of 1151 Philadelphia chromosome positive chronic phase patients of the randomized CML-study IV, we examined the incidence of newly arising ACA under imatinib treatment with regard to the p210BCR-ABL breakpoint variants b2a2 and b3a2. We found a preferential acquisition of unbalanced ACA in patients with b3a2 vs. b2a2 fusion type (ratio: 6.3 vs. 1.6, p = 0.0246) concurring with a faster progress to blast crisis for b3a2 patients (p = 0.0124). ESPL1/Separase, a cysteine endopeptidase, is a key player in chromosomal segregation during mitosis. Separase overexpression and/or hyperactivity has been reported from a wide range of cancers and cause defective mitotic spindles, chromosome missegregation and aneuploidy. We investigated the influence of p210BCR-ABL breakpoint variants and imatinib treatment on expression and proteolytic activity of Separase as measured with a specific fluorogenic assay on CML cell lines (b2a2: KCL-22, BV-173; b3a2: K562, LAMA-84). Despite a drop in Separase protein levels an up to 5.4-fold increase of Separase activity under imatinib treatment was observed exclusively in b3a2 but not in b2a2 cell lines. Mimicking the influence of imatinib on BV-173 and LAMA-84 cells by ESPL1 silencing stimulated Separase proteolytic activity in both b3a2 and b2a2 cell lines. Our data suggest the existence of a fusion type-related feedback mechanism that posttranslationally stimulates Separase proteolytic activity after therapy-induced decreases in Separase protein levels. This could render b3a2 CML cells more prone to aneuploidy and clonal evolution than b2a2 progenitors and may therefore explain the cytogenetic results of CML patients.
Tanji, N; Markowitz, G S; Fu, C; Kislinger, T; Taguchi, A; Pischetsrieder, M; Stern, D; Schmidt, A M; D'Agati, V D
2000-09-01
Advanced glycation end products (AGE) contribute to diabetic tissue injury by two major mechanisms, i.e., the alteration of extracellular matrix architecture through nonenzymatic glycation, with formation of protein crosslinks, and the modulation of cellular functions through interactions with specific cell surface receptors, the best characterized of which is the receptor for AGE (RAGE). Recent evidence suggests that the AGE-RAGE interaction may also be promoted by inflammatory processes and oxidative cellular injury. To characterize the distributions of AGE and RAGE in diabetic kidneys and to determine their specificity for diabetic nephropathy, an immunohistochemical analysis of renal biopsies from patients with diabetic nephropathy (n = 26), hypertensive nephrosclerosis (n = 7), idiopathic focal segmental glomerulosclerosis (n = 11), focal sclerosis secondary to obesity (n = 7), and lupus nephritis (n = 11) and from normal control subjects (n = 2) was performed, using affinity-purified antibodies raised to RAGE and two subclasses of AGE, i.e., N(epsilon)-(carboxymethyl)-lysine (CML) and pentosidine (PENT). AGE were detected equally in diffuse and nodular diabetic nephropathy. CML was the major AGE detected in diabetic mesangium (96%), glomerular basement membranes (GBM) (42%), tubular basement membranes (85%), and vessel walls (96%). In diabetic nephropathy, PENT was preferentially located in interstitial collagen (90%) and was less consistently observed in vessel walls (54%), mesangium (77%), GBM (4%), and tubular basement membranes (31%). RAGE was expressed on normal podocytes and was upregulated in diabetic nephropathy. The restriction of RAGE mRNA expression to glomeruli was confirmed by reverse transcription-PCR analysis of microdissected renal tissue compartments. The extent of mesangial and GBM immunoreactivity for CML, but not PENT, was correlated with the severity of diabetic glomerulosclerosis, as assessed pathologically. CML and PENT were also identified in areas of glomerulosclerosis and arteriosclerosis in idiopathic and secondary focal segmental glomerulosclerosis, hypertensive nephrosclerosis, and lupus nephritis. In active lupus nephritis, CML and PENT were detected in the proliferative glomerular tufts and crescents. In conclusion, CML is a major AGE in renal basement membranes in diabetic nephropathy, and its accumulation involves upregulation of RAGE on podocytes. AGE are also accumulated in acute inflammatory glomerulonephritis secondary to systemic lupus erythematosus, possibly via enzymatic oxidation of glomerular matrix proteins.
Stock, W; Westbrook, C A; Peterson, B; Arthur, D C; Szatrowski, T P; Silver, R T; Sher, D A; Wu, D; Le Beau, M M; Schiffer, C A; Bloomfield, C D
1997-01-01
Disappearance of the Philadelphia chromosome during treatment for chronic myeloid leukemia (CML) has become an important therapeutic end point. To determine the additional value of molecular monitoring during treatment for CML, we performed a prospective, sequential analysis using quantitative Southern blot monitoring of BCR gene rearrangements of blood and marrow samples from Cancer and Leukemia Group B (CALGB) study 8761. Sixty-four previously untreated adults with chronic-phase CML who were enrolled onto CALGB 8761, a molecular-monitoring companion study to a treatment study for adults with chronic-phase CML (CALGB 9013). Treatment consisted of repetitive cycles of interferon alfa and low-dose subcutaneous cytarabine. Blood and marrow Southern blot quantitation of BCR gene rearrangements was compared with marrow cytogenetic analysis before the initiation of treatment and of specified points during therapy. Reverse-transcriptase polymerase chain reaction (RT-PCR) analysis was performed to detect residual disease in patients who achieved a complete response by Southern blot or cytogenetic analysis. Quantitative molecular monitoring by Southern blot analysis of blood samples was found to be equivalent to marrow monitoring at all time points. Twelve of 62 (19%) follow-up samples studied by Southern blot analysis had a complete loss of BCR gene rearrangement in matched marrow and blood specimens. Southern blot monitoring of blood samples was also found to be highly correlated to marrow cytogenetic evaluation at all points, although there were four discordant cases in which Southern blot analysis of blood showed no BCR gene rearrangement, yet demonstrated from 12% to 20% Philadelphia chromosome-positive metaphase cells in the marrow. RT-PCR analysis detected residual disease in five of six patients in whom no malignant cells were detected using Southern blot or cytogenetic analyses. Quantitative Southern blot analysis of blood samples may be substituted for bone marrow to monitor the response to therapy in CML and results in the need for fewer bone marrow examinations. To avoid overestimating the degree of response, marrow cytogenetic analysis should be performed when patients achieve a complete response by Southern blot monitoring. This approach provides a rational, cost-effective strategy to monitor the effect of treatment of individual patients, as well as to analyze large clinical trials in CML.
Inhibition of Rac GTPases in the Therapy of Chronic Myelogenous Leukemia
2008-04-01
procedure is only available to a minority of CML patients due to a lack of compatible donors and age [8-10]. Imatinib is an ABL kinase inhibitor that...provides an effective treatment in CML and has rejuvenated the field of rationalized drug design. The selective inhibitory activity of imatinib...Institute on Aging , NIH, Nov 16, 2007. 2. “Targeting Rac in chronic myelogenous leukemia.” Markey Cancer Center, University of Kentucky, Lexington, Aug
Management of Chronic Myeloid Leukemia Patients Resistant to Tyrosine Kinase Inhibitors Treatment
Wieczorek, Agnieszka; Uharek, Lutz
2015-01-01
Chronic myeloid leukemia (CML) is a myeloproliferative disorder associated with a characteristic chromosomal translocation called the Philadelphia chromosome. This oncogene is generated by the fusion of breakpoint cluster region (BCR) and Abelson leukemia virus (ABL) genes and encodes a novel fusion gene translating into a protein with constitutive tyrosine kinase activity. The discovery and introduction of tyrosine kinase inhibitors (TKIs) irreversibly changed the landscape of CML treatment, leading to dramatic improvement in long-term survival rates. The majority of patients with CML in the chronic phase have a life expectancy comparable with that of healthy age-matched individuals. Although an enormous therapeutic improvement has been accomplished, there are still some unresolved issues in the treatment of patients with CML. One of the most important problems is based on the fact that TKIs can efficiently target proliferating mature cells but do not eradicate leukemic stem cells, allowing persistence of the malignant clone. Owing to the resistance mechanisms arising during the course of the disease, treatment with most of the approved BCR-ABL1 TKIs may become ineffective in a proportion of patients. This article highlights the different molecular mechanisms of acquired resistance being developed during treatment with TKIs as well as the pharmacological strategies to overcome it. Moreover, it gives an overview of novel drugs and therapies that are aiming in overcoming drug resistance, loss of response, and kinase domain mutations. PMID:26917943
Absence of rickets in infants with fatal abusive head trauma and classic metaphyseal lesions.
Perez-Rossello, Jeannette M; McDonald, Anna G; Rosenberg, Andrew E; Tsai, Andy; Kleinman, Paul K
2015-06-01
To determine if rickets is present in cases of infant homicide with classic metaphyseal lesions (CMLs) and other skeletal injuries. This study was exempt from the institutional human subjects board review because all infants were deceased. An archival review (1984-2012) was performed of the radiologic and histopathologic findings of 46 consecutive infant fatalities referred from the state medical examiner's office for the evaluation of possible child abuse. Thirty infants with distal femoral histologic material were identified. Additional inclusion criteria were as follows: (a) The medical examiner determined that the infant had sustained a head injury and that the manner of death was a homicide, (b) at least one CML was evident at skeletal survey, (c) CMLs were confirmed at autopsy, and (d) non-CML fractures were also present. Nine infants (mean age, 3.9 months; age range, 1-9 months) were identified. Two pediatric radiologists independently reviewed the skeletal surveys for rachitic changes at the wrists and knees. A bone and soft tissue pathologist reviewed the distal femoral histologic slices for rickets. There were no radiographic or pathologic features of rickets in the cohort. The findings provide no support for the view that the CML is due to rickets. Rather, they strengthen a robust literature that states that the CML is a traumatic injury commonly encountered in physically abused infants. RSNA, 2015
Jabbour, Elias; Saglio, Giuseppe; Steegmann, Juan Luis; Shah, Neil P.; Boqué, Concepción; Chuah, Charles; Pavlovsky, Carolina; Mayer, Jiří; Cortes, Jorge; Baccarani, Michele; Kim, Dong-Wook; Bradley-Garelik, M. Brigid; Mohamed, Hesham; Wildgust, Mark; Hochhaus, Andreas
2014-01-01
This analysis explores the impact of early cytogenetic and molecular responses on the outcomes of patients with chronic myeloid leukemia in chronic phase (CML-CP) in the phase 3 DASatinib versus Imatinib Study In treatment-Naive CML patients trial with a minimum follow-up of 3 years. Patients with newly diagnosed CML-CP were randomized to receive 100 mg dasatinib (n = 259) or 400 mg imatinib (n = 260) once daily. The retrospective landmark analysis included patients evaluable at the relevant time point (3, 6, or 12 months). Median time to complete cytogenetic response was 3 vs 6 months with dasatinib vs imatinib. At 3 and 6 months, the proportion of patients with BCR-ABL transcript levels ≤10% was higher in the dasatinib arm. Deeper responses at 3, 6, and 12 months were observed in a higher proportion of patients on dasatinib therapy and were associated with better 3-year progression-free survival and overall survival in both arms. First-line dasatinib resulted in faster and deeper responses compared with imatinib. The achievement of an early molecular response was predictive of improved progression-free survival and overall survival, supporting new milestones for optimal response in patients with early CML-CP treated with tyrosine kinase inhibitors. This study was registered at www.clinicaltrials.gov as NCT00481247. PMID:24311723
Liu, Huijuan; Zang, Yi; Azam, Mohammad; Habib, Samy L.; Li, Jia; Ruan, Xinsen; Jia, Hao; Wang, Xueying; Li, Baojie
2016-01-01
Chronic myeloid leukemia (CML) treatment with BCR-ABL inhibitors is often hampered by development of drug resistance. In a screen for novel chemotherapeutic drug candidates with genotoxic activity, we identified a bisindolylmaleimide derivative, IX, as a small molecule compound with therapeutic potential against CML including drug-resistant CML. We show that Bisindolylmaleimide IX inhibits DNA topoisomerase, generates DNA breaks, activates the Atm-p53 and Atm-Chk2 pathways, and induces cell cycle arrest and cell death. Interestingly, Bisindolylmaleimide IX is highly effective in targeting cells positive for BCR-ABL. BCR-ABL positive cells display enhanced DNA damage and increased cell cycle arrest in response to Bisindolylmaleimide IX due to decreased expression of topoisomerases. Cells positive for BCR-ABL or drug-resistant T315I BCR-ABL also display increased cytotoxicity since Bisindolylmaleimide IX inhibits B-Raf and the downstream oncogene addiction pathway. Mouse cancer model experiments showed that Bisindolylmaleimide IX, at doses that show little side effect, was effective in treating leukemia-like disorders induced by BCR-ABL or T315I BCR-ABL, and prolonged the lifespan of these model mice. Thus, Bisindolylmaleimide IX presents a novel drug candidate to treat drug-resistant CML via activating BCR-ABL-dependent genotoxic stress response and inhibiting the oncogene addiction pathway activated by BCR-ABL. PMID:27564101
Fujii, Soichiro; Miura, Ikuo; Tanaka, Hideo
2015-06-01
A 78-year-old male, who had CKD and chronic heart failure, was referred to our hospital for evaluation of leukocytosis. His bone marrow contained 12% blast cells and chromosome analysis showed the Ph chromosome as well as other changes. The patient was diagnosed with the accelerated-phase CML because FISH and RT-PCR disclosed BCR/ABL fusion signals and minor BCR/ABL, respectively. Imatinib was administered, but the CML was resistant to this treatment. We gave him nilotinib employing a reduced and intermittent administration protocol because of the progression of anemia and heart failure. The patient achieved PCyR in 8 months, but, 12 months later, his WBC count increased and 83% of the cells were blasts. Because the probable diagnosis was the blast crisis of CML, we switched from nilotinib to dasatinib. However, leukocytosis worsened and he died of pneumonia. It was later revealed that he had a normal karyotype and both FISH and RT-PCR analysis of BCR/ABL were negative. His final diagnosis was Ph negative AML developing from Ph positive CML in PCyR. Since there were no dysplastic changes indicative of MDS, it was assumed that the AML was not secondary leukemia caused by the tyrosine kinase inhibitor but, rather, de novo AML.
Hur, M; Park, J Y; Cho, H C; Lee, K M; Shin, H Y; Cho, H I
2006-06-01
Methylenetetrahydrofolate reductase (MTHFR) is a key enzyme involved in folate metabolism, DNA methylation and synthesis. We investigated the association between MTHFR polymorphisms and the risks of acute and chronic leukaemias. MTHFR C677T and A1298C were genotyped in 396 Korean individuals using multiplex polymerase chain reaction/restriction fragment-length polymorphism. They were acute lymphoblastic leukaemia (ALL, n = 89), acute myeloid leukaemia (AML, n = 55), biphenotypic acute leukaemia (n = 12), chronic myelogenous leukaemia (CML, n = 40), and normal controls (n = 200). C677T genotypes were not associated with the risk of each disease. A1298C variants, however, significantly decreased the risks of ALL and CML compared with 1298AA. Odds ratios and 95% confidence intervals of 1298AC and 1298AC + CC were 0.53 (0.31-0.93) and 0.54 (0.31-0.93) in ALL, and 0.34 (0.14-0.80) and 0.40 (0.18-0.89) in CML, respectively, compared with 1298AA. These findings demonstrate that the development of ALL and CML is more dependent on folate status, and more susceptible to DNA instability than that of AML. In addition, A1298C rather than C677T may be a more important genetic risk modifier in leukaemogenesis at least in the Korean population.
Ploy, Marie-Cécile; Courvalin, Patrice; Lambert, Thierry
1998-01-01
Enterobacter aerogenes BM2688, which is resistant to multiple antibiotics, and its aminoglycoside-susceptible derivative BM2688-1 were isolated from the same clinical sample. Strain BM2688 harbored plasmid pIP833, which carries a class 1 integron, In40, containing (in addition to qacEΔ1 and sul1, which are characteristic of class 1 integrons) four gene cassettes: aac(6′)-Ib, qacF, cmlA2, and oxa-9. The cmlA2 gene had 83.7% identity with the previously described nonenzymatic chloramphenicol resistance cmlA1 gene. The qacF gene conferred resistance to quaternary ammonium compounds and displayed a high degree of similarity with qacE (67.8% identity) which, however, has been found as part of a cassette with a very different 59-base element. The oxa-9 gene was not expressed due to a lack of promoter sequences. Study of the antibiotic-susceptible derivative BM2688-1 indicated that a 3,148-bp deletion between the 3′ end of the aac(6′)-Ib gene and the 3′ conserved segment of In40 was responsible for the loss of resistance. The occurrence of this DNA rearrangement, which did not involve homologous sequences, suggests that the In40 integrase could promote recombination at secondary sites. PMID:9756755
Wahiduzzaman, Md; Ota, Akinobu; Karnan, Sivasundaram; Hanamura, Ichiro; Mizuno, Shohei; Kanasugi, Jo; Rahman, Md Lutfur; Hyodo, Toshinori; Konishi, Hiroyuki; Tsuzuki, Shinobu; Takami, Akiyoshi; Hosokawa, Yoshitaka
2018-06-23
Chronic myelogenous leukemia (CML) accounts for 15-20% of all leukemias affecting adults. Despite recent advances in the development of specific Bcr-Abl tyrosine kinase inhibitors (TKIs), some CML patients suffer from relapse due to TKI resistance. Here, we assessed the efficacy of a novel combinatorial arsenic trioxide (ATO) and cisplatin (CDDP) treatment (Ato-C) in human Bcr-Abl-positive leukemic cells. Combination index analyses revealed that a synergistic interaction of ATO and CDDP elicits a wide range of effects in K562, KU-812, MEG-A2, and KCL-22 cells. Notably, Ato-C synergistically enhanced apoptosis and decreased the survival of both acquired TKI-resistant CML cells and the cells expressing mutant Bcr-Abl T315I . In addition, Ato-C dramatically decreased the phosphorylation level of forkhead transcription factor FOXO1/3a and STAT5 as well as c-Myc protein level. Interestingly, results of gene set enrichment analysis showed that Ato-C significantly downregulates the expression of MYC- and/or E2F1-targets genes. Furthermore, Ato-C significantly suppressed the proliferation of MEG-A2-derived tumor when compared with that following monotherapy in vivo. Collectively, these results suggest that combined Ato-C treatment could be a promising alternative to the current therapeutic regime in CML. Copyright © 2018. Published by Elsevier B.V.
Asif, Muhammad; Jamal, Mohammad Sarwar; Khan, Abdul Rehman; Naseer, Muhammad Imran; Hussain, Abrar; Choudhry, Hani; Malik, Arif; Khan, Shahida Aziz; Mahmoud, Maged Mostafa; Ali, Ashraf; Iram, Saima; Kamran, Kashif; Iqbal, Asim; Abduljaleel, Zainularifeen; Pushparaj, Peter Natesan; Rasool, Mahmood
2016-01-01
Philadelphia (Ph) chromosome (9;22)(q34;q11) is well established in more than 90% of chronic myeloid leukemia (CML) patients, and the remaining 5–8% of CML patients show variant and complex translocations, with the involvement of third, fourth, or fifth chromosome other than 9;22. However, in very rare cases, the fourth chromosome is involved. Here, we found a novel case of four-way Ph+ chromosome translocation involving 46,XY,t(4;9;19;22)(q25:q34;p13.3;q11.2) with CML in the chronic phase. Complete blood cell count of the CML patient was carried out to obtain total leukocytes count, hemoglobin, and platelets. Fluorescence in situ hybridization technique was used for the identification of BCR–ABL fusion gene, and cytogenetic test for the confirmation of Ph (9;22)(q34;q11) and the mechanism of variant translocation in the bone marrow. The patient is successfully treated with a dose of 400 mg/day imatinib mesylate (Gleevec). We observed a significant decrease in white blood cell count of 11.7 × 109/L after 48-month follow-up. Patient started feeling better generally. There was a reduction in the swelling of the body, fatigue, and anxiety. PMID:27303656
Kulpeng, Wantanee; Sompitak, Sumalai; Jootar, Saengsuree; Chansung, Kanchana; Teerawattananon, Yot
2014-04-01
Recently, the second-generation tyrosine kinase inhibitors dasatinib and nilotinib have emerged as alternative treatments in patients with chronic myeloid leukemia (CML) who are resistant to or intolerant of imatinib. This article aimed to assess the cost utility and budget impact of using dasatinib or nilotinib, rather than high-dose (800-mg/d) imatinib, in patients with chronic phase (CP) CML who are resistant to standard-dose (400-mg/d) imatinib in Thailand. A Markov simulation model was developed and used to estimate the lifetime costs and outcomes of treating patients aged ≥38 years with CP-CML. The efficacy parameters were synthesized from a systematic review. Utilities using the European Quality of Life-5 Dimensions tool and costs were obtained from the Thai CML population. Costs and outcomes were compared and presented as the incremental cost-effectiveness ratio in 2011 Thai baht (THB) per quality-adjusted life year (QALY) gained. One-way and probabilistic sensitivity analyses were performed to estimate parameter uncertainty. From a societal perspective, treatment with dasatinib was found to yield more QALYs (2.13) at a lower cost (THB 1,631,331) per person than high-dose imatinib. Nilotinib treatment was also found to be more cost-effective than high-dose imatinib, producing an incremental cost-effectiveness ratio of THB 83,328 per QALY gained. This treatment option also resulted in the highest number of QALYs gained of all of the treatment options. The costs of providing dasatinib, nilotinib, and high-dose imatinib were estimated at THB 5 billion, THB 6 billion, and THB 7 billion, respectively. Treatment with dasatinib or nilotinib is likely to be more cost-effective than treatment with high-dose imatinib in CP-CML patients who do not respond positively to standard-dose imatinib in the Thai context. Dasatinib was found to be more cost-effective than nilotinib. Copyright © 2014 Elsevier HS Journals, Inc. All rights reserved.
Steegmann, J L; Baccarani, M; Breccia, M; Casado, L F; García-Gutiérrez, V; Hochhaus, A; Kim, D-W; Kim, T D; Khoury, H J; Le Coutre, P; Mayer, J; Milojkovic, D; Porkka, K; Rea, D; Rosti, G; Saussele, S; Hehlmann, R; Clark, R E
2016-01-01
Most reports on chronic myeloid leukaemia (CML) treatment with tyrosine kinase inhibitors (TKIs) focus on efficacy, particularly on molecular response and outcome. In contrast, adverse events (AEs) are often reported as infrequent, minor, tolerable and manageable, but they are increasingly important as therapy is potentially lifelong and multiple TKIs are available. For this reason, the European LeukemiaNet panel for CML management recommendations presents an exhaustive and critical summary of AEs emerging during CML treatment, to assist their understanding, management and prevention. There are five major conclusions. First, the main purpose of CML treatment is the antileukemic effect. Suboptimal management of AEs must not compromise this first objective. Second, most patients will have AEs, usually early, mostly mild to moderate, and which will resolve spontaneously or are easily controlled by simple means. Third, reduction or interruption of treatment must only be done if optimal management of the AE cannot be accomplished in other ways, and frequent monitoring is needed to detect resolution of the AE as early as possible. Fourth, attention must be given to comorbidities and drug interactions, and to new events unrelated to TKIs that are inevitable during such a prolonged treatment. Fifth, some TKI-related AEs have emerged which were not predicted or detected in earlier studies, maybe because of suboptimal attention to or absence from the preclinical data. Overall, imatinib has demonstrated a good long-term safety profile, though recent findings suggest underestimation of symptom severity by physicians. Second and third generation TKIs have shown higher response rates, but have been associated with unexpected problems, some of which could be irreversible. We hope these recommendations will help to minimise adverse events, and we believe that an optimal management of them will be rewarded by better TKI compliance and thus better CML outcomes, together with better quality of life. PMID:27121688
Lam, Masha Sh; Cheung, Nathan
2016-12-01
Studies have identified non-adherence as one of the major contributing factors to treatment failure in chronic myelogenous leukemia (CML) patients receiving imatinib. Published literature has demonstrated a unique role of oncology pharmacists, as part of a multidisciplinary team, in contributing to overall positive outcomes for patients. To evaluate the impact of an oncology pharmacist-managed oral anticancer therapy program on oral medication adherence in CML patients versus usual care. Electronic refill history and medical records of patients diagnosed with CML treated with oral tyrosine kinase inhibitors (TKIs) managed by oncology pharmacists during a 6-year period, were retrospectively reviewed. Imatinib adherence rate, as the primary endpoint, was compared with the rate for those in the usual care group within the same organization. The secondary endpoints were descriptive to characterize pharmacist interventions for all TKIs. A total of 56 patients including 45 who were treated with imatinib, were evaluated. The group managed by oncology pharmacists resulted in a higher percentage of imatinib adherence rate compared to usual care (88.6% vs 65.8%, p = 0.0046). A total of 3432 pharmacist encounters were reviewed, and 567 interventions of six categories including side effect monitoring/management (n = 95; 16.8%); drug interaction detection (n = 109; 19.2%); TKI dose adjustment (n = 82; 14.5%); laboratory monitoring (n = 200; 35.3%); non-CML related drug choice (n = 74; 13.1%); and copay assistance (n = 7; 1.2%), were documented. This resulted in a mean of 10.1 interventions per patient. Our oncology pharmacist-managed oral anticancer therapy program significantly improved TKI adherence rates in CML patients. We attribute the success of our program to consistent follow-up by utilizing routine phone, and secure email follow-ups, that allowed our oncology pharmacists to build a close and trustworthy relationship with patients and families. © The Author(s) 2015.
Pulte, Dianne; Redaniel, Maria Theresa; Bird, Jenny; Jeffreys, Mona
2015-06-01
Chronic lymphocytic leukemia (CLL) and chronic myeloid leukemia (CML) are highly treatable conditions occurring primarily in older patients. Lower survival among older people has been reported in both conditions, but newer treatments may change both the overall survival rate and the relative risk associated with aging. Here, we examine survival for patients with CLL and CML in the United States (US) and England. Patients with CLL and CML were identified from the Surveillance, Epidemiology, and End Results (US) and National Cancer Registry (England). Five-year relative survival was calculated by major age group. Excess hazard ratios (EHR) by age were calculated for each condition, and multivariable analysis was performed to adjust for the following potential confounders: gender, race or ethnic group (US only), period of diagnosis, and a measure of socioeconomic deprivation (England only). Five-year relative survival increased for both CLL and CML in both England and the US between 1996-2000 and 2006-2010. However, relative age-related disparities persisted. For CLL, the EHR for death was 9.44 (7.84-11.36) in the US and 6.14 (5.65-6.68) in England for ages 85+ compared to ages 55-64. For CML, the EHR was 3.52 (3.17-3.90) in the US and 4.54 (4.13-4.98) in England for ages 75+ compared to ages 45-64. Survival improved for patients with chronic leukemias in the early 21st century. However, age-related disparities persist, despite clinical trial evidence that treatment in older adults with chronic leukemia can be safe and effective. Further research to determine the reasons for the lower survival in older patients and greater awareness of this problem may improve survival for older patients with chronic leukemia. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Tan, Bee Kim; Tan, Seng Beng; Chen, Li-Chia; Chang, Kian Meng; Chua, Siew Siang; Balashanker, Sharmini; Kamarul Jaman, Habiba Nazeera Begum; Edmund, Syed Carlo; Bee, Ping Chong
2017-01-01
Purpose Poor adherence to tyrosine kinase inhibitors (TKIs) could compromise the control of chronic myeloid leukemia (CML) and contributes to poorer survival. Little is known about how medication-related issues affect CML patients’ adherence to TKI therapy in Malaysia. This qualitative study aimed to explore these issues. Patients and methods Individual face-to-face, semistructured interviews were conducted at the hematology outpatient clinics of two medical centers in Malaysia from August 2015 to January 2016. CML patients aged ≥18 years who were prescribed a TKI were invited to participate in the study. Interviews were audio-recorded, transcribed verbatim, and thematically analyzed. Results Four themes were identified from 18 interviews: 1) concerns about adverse reactions to TKIs, 2) personal beliefs regarding the use of TKIs, 3) mismanagement of TKIs in daily lives, and 4) financial burden in accessing treatment. Participants skipped their TKIs due to ineffective emesis control measures and perceived wastage of medication from vomiting. Participants also modified their TKI therapy due to fear of potential harm from long-term use, and stopped taking their TKIs based on belief in curative claims of traditional medicines and misconception about therapeutic effects of TKIs. Difficulty in integrating the dosing requirements of TKIs into daily lives led to unintentional skipping of doses, as well as the risk of toxicities from inappropriate dosing intervals or food interactions. Furthermore, financial constraints also resulted in delayed initiation of TKIs, missed clinic appointments, and treatment interruptions. Conclusion Malaysian CML patients encountered a range of medication-related issues leading to a complex pattern of nonadherence to TKI therapy. Further studies should investigate whether regular contact with patients to improve understanding of treatment rationale, to elicit and address patients’ concerns about adverse reactions, and to empower patients with skills to self-manage their medications might promote better adherence to TKIs and improve CML patients’ outcome. PMID:28652712
Steegmann, J L; Baccarani, M; Breccia, M; Casado, L F; García-Gutiérrez, V; Hochhaus, A; Kim, D-W; Kim, T D; Khoury, H J; Le Coutre, P; Mayer, J; Milojkovic, D; Porkka, K; Rea, D; Rosti, G; Saussele, S; Hehlmann, R; Clark, R E
2016-08-01
Most reports on chronic myeloid leukaemia (CML) treatment with tyrosine kinase inhibitors (TKIs) focus on efficacy, particularly on molecular response and outcome. In contrast, adverse events (AEs) are often reported as infrequent, minor, tolerable and manageable, but they are increasingly important as therapy is potentially lifelong and multiple TKIs are available. For this reason, the European LeukemiaNet panel for CML management recommendations presents an exhaustive and critical summary of AEs emerging during CML treatment, to assist their understanding, management and prevention. There are five major conclusions. First, the main purpose of CML treatment is the antileukemic effect. Suboptimal management of AEs must not compromise this first objective. Second, most patients will have AEs, usually early, mostly mild to moderate, and which will resolve spontaneously or are easily controlled by simple means. Third, reduction or interruption of treatment must only be done if optimal management of the AE cannot be accomplished in other ways, and frequent monitoring is needed to detect resolution of the AE as early as possible. Fourth, attention must be given to comorbidities and drug interactions, and to new events unrelated to TKIs that are inevitable during such a prolonged treatment. Fifth, some TKI-related AEs have emerged which were not predicted or detected in earlier studies, maybe because of suboptimal attention to or absence from the preclinical data. Overall, imatinib has demonstrated a good long-term safety profile, though recent findings suggest underestimation of symptom severity by physicians. Second and third generation TKIs have shown higher response rates, but have been associated with unexpected problems, some of which could be irreversible. We hope these recommendations will help to minimise adverse events, and we believe that an optimal management of them will be rewarded by better TKI compliance and thus better CML outcomes, together with better quality of life.
Takahashi, Koichi; Kantarjian, Hagop M; Yang, Yulong; Sasaki, Koji; Jain, Preetesh; DellaSala, Sara; Ravandi, Farhad; Kadia, Tapan; Pemmaraju, Naveen; Daver, Naval; Borthakur, Gautam; Garcia-Manero, Guillermo; Jabbour, Elias; Cortes, Jorge E
2016-11-15
Both dasatinib and nilotinib are approved frontline therapy for chronic myeloid leukemia in chronic phase (CML-CP) based on randomized trials compared with imatinib. However, no head-to-head comparison of dasatinib and nilotinib has been conducted in patients with newly diagnosed CML-CP. The authors conducted a propensity score (PS) matched comparison of patients with CML-CP who received frontline therapy with either dasatinib (N = 102) or nilotinib (N = 104) under the respective phase 2 trials conducted in parallel. PS matching resulted in 87 patients from each trial being matched for pretreatment characteristics. The 3-month BCR-ABL1/ABL1 ratio <10% rate was 93% with dasatinib and 94% with nilotinib (P = .25); the rates of major molecular response at 12 months were 77% and 85%, respectively (P = .13); and the rates of molecular response with 4.5-log reduction in the ratio at 36 months were 66% and 64%, respectively (P = .96). All other clinically relevant responses were similar between the 2 treatment cohorts. The 3-year probability of event-free survival was 89% among the patients who received dasatinib and 87% among those who received nilotinib (P = .99), and the corresponding 3-year overall survival probabilities were 99% and 93%, respectively (P = .95). No statistical difference was observed between the dasatinib and nilotinib groups in any of the other survival endpoints. The treatment discontinuation rate also was similar between the 2 cohorts (dasatinib group, 18%; nilotinib group, 19%; P = .82). In a PS-matched cohort of patients with newly diagnosed CML-CP, dasatinib and nilotinib offer similar response and survival outcomes. Both drugs can be considered reasonable standard-of-care options as first-line therapy for patients with CML-CP. Cancer 2016;122:3336-3343. © 2016 American Cancer Society. © 2016 American Cancer Society.
Jiang, Qian; Yu, Lu; Gale, Robert Peter
2018-04-01
To explore patients' and hematologists' concerns regarding tyrosine kinaseinhibitor (TKI)-therapy and identify variables associated these concerns. Methods A cross-sectional questionnaire including 16 common issues related to TKI-therapy was distributed to adults with chronic myeloid leukemia (CML) receiving TKIs and hematologists treating CML patients and answered anonymously. Data from 1518 patient respondents receiving TKI-therapy ≥ 3 months were analyzed. 939 (62%) were male. Median age was 42 years. 72% were receiving imatinib. Median TKI-therapy duration was 27 months. Data from 259 hematologist respondents were analyzable. 154 (59%) treated > 5 persons with CML per month. Median number of concerns was 5 (range 0-16) for both patients and hematologists. The top five issues for both cohorts were new drug development, stopping TKI-therapy, TKI-reimbursement policies, TKI-related adverse effects and long-term efficacy of TKIs. 12 issues attracted proportionally discordant attention between patients and hematologists. Patients were more concerned with TKI-reimbursement policies, price reduction of TKIs, TKI-related adverse effects, restrictions to daily life, CML knowledge and interpretation of laboratory data, whereas hematologists were more concerned with stopping TKI-therapy, TKI choice, monitoring, TKI dose-adjustment, quality of generics and switching between branded and generic TKIs. In multivariate analyses female sex [OR = 1.4 (1.1-1.7); p = 0.008], education level ≥ bachelor e[OR = 1.8 (1.4-2.2); p < 0.001], TKI-therapy duration 36-< 60 months [OR = 1.4 (1.0-1.9); p = 0.049] and having adverse impact on daily life and work [OR = 1.5 (1.2-1.8]; p = 0.001] were associated with greater numbers of patients' concerns. Our data suggested hematologists need to be aware of CML patients' concerns to improve their quality-of-life and patient-hematologist communication.
Sheng, Guangying; Chen, Suning; Zhang, Ri; Miao, Miao; Wu, Depei; Tan, Seng Chuen; Liu, Chao; Xiong, Tengbin
2017-04-01
Imatinib (Glivec) has been covered by critical disease insurance for treatment of chronic myeloid leukemia (CML) in Jiangsu province of China since 2013. Further, free molecular monitoring has been provided to patients at top clinical centers as part of a pilot study that has changed the local treatment pattern and outcomes of patients with CML. This study evaluates the impact of medical insurance coverage and the molecular monitoring frequency on outcomes of patients with CML treated at a central hospital in Jiangsu, China, according to patient-level data. The study investigated 335 CML patients receiving medical treatment in a central hospital between January 1, 2011 and December 31, 2014. Demographic and clinical characteristics were extracted from the patients' clinical records. Univariate and multivariate analyses using the logistic regression model were performed to identify the differences in outcomes of major molecular response (MMR) or complete cytogenetic response (CCyR) between patients who were insured vs uninsured, or between patients with frequency of PCR monitoring ≤2 times vs ≥3 times per year. Both the achievement of MMR (BCR-ABL IS ≤0.1%) (50.4% vs 37.5%) and CCyR (80.7% vs 62.8%) at 12 months have shown significant differences that favored patients with insurance coverage of imatinib, while there was no significant difference in the outcome of BCR-ABL IS ≤1% between insured and non-insured groups (56.0% vs 51.3%) at 6 months. The long-term results at 24 months demonstrated that there was a statistically significant difference in MMR rates between the group with 3 or more PCR monitoring tests per year and the group of patients with 2 or less PCR tests per year (76.9% vs 52.2%). The study findings suggest that CML patients benefit from insurance coverage of imatinib and higher frequency (≥3) of regularly scheduled molecular monitoring PCR in China.
Vezzalini, Marzia; Mafficini, Andrea; Tomasello, Luisa; Lorenzetto, Erika; Moratti, Elisabetta; Fiorini, Zeno; Holyoake, Tessa L; Pellicano, Francesca; Krampera, Mauro; Tecchio, Cristina; Yassin, Mohamed; Al-Dewik, Nader; Ismail, Mohamed A; Al Sayab, Ali; Monne, Maria; Sorio, Claudio
2017-06-21
Protein tyrosine phosphatase receptor gamma (PTPRG) is a ubiquitously expressed member of the protein tyrosine phosphatase family known to act as a tumor suppressor gene in many different neoplasms with mechanisms of inactivation including mutations and methylation of CpG islands in the promoter region. Although a critical role in human hematopoiesis and an oncosuppressor role in chronic myeloid leukemia (CML) have been reported, only one polyclonal antibody (named chPTPRG) has been described as capable of recognizing the native antigen of this phosphatase by flow cytometry. Protein biomarkers of CML have not yet found applications in the clinic, and in this study, we have analyzed a group of newly diagnosed CML patients before and after treatment. The aim of this work was to characterize and exploit a newly developed murine monoclonal antibody specific for the PTPRG extracellular domain (named TPγ B9-2) to better define PTPRG protein downregulation in CML patients. TPγ B9-2 specifically recognizes PTPRG (both human and murine) by flow cytometry, western blotting, immunoprecipitation, and immunohistochemistry. Co-localization experiments performed with both anti-PTPRG antibodies identified the presence of isoforms and confirmed protein downregulation at diagnosis in the Philadelphia-positive myeloid lineage (including CD34 + /CD38 bright/dim cells). After effective tyrosine kinase inhibitor (TKI) treatment, its expression recovered in tandem with the return of Philadelphia-negative hematopoiesis. Of note, PTPRG mRNA levels remain unchanged in tyrosine kinase inhibitors (TKI) non-responder patients, confirming that downregulation selectively occurs in primary CML cells. The availability of this unique antibody permits its evaluation for clinical application including the support for diagnosis and follow-up of these disorders. Evaluation of PTPRG as a potential therapeutic target is also facilitated by the availability of a specific reagent capable to specifically detect its target in various experimental conditions.
Dolinska, Monika; Piccini, Alexandre; Wong, Wan Man; Gelali, Eleni; Johansson, Anne-Sofie; Klang, Johannis; Xiao, Pingnan; Yektaei-Karin, Elham; Strömberg, Ulla Olsson; Mustjoki, Satu; Stenke, Leif; Ekblom, Marja; Qian, Hong
2017-08-19
Tyrosine kinase inhibitors targeting the BCR-ABL oncoprotein in chronic myeloid leukemia (CML) are remarkably effective inducing deep molecular remission in most patients. However, they are less effective to eradicate the leukemic stem cells (LSC), resulting in disease persistence. Therefore, there is great need to develop novel therapeutic strategies to specifically target the LSC. In an experimental mouse CML model system, the leukotriene pathway, and specifically, the expression ALOX5, encoding 5-lipoxygenase (5-LO), has been reported as a critical regulator of the LSC. Based on these results, the 5-LO inhibitor zileuton has been introduced in clinical trials as a therapeutic option to target the LSC although its effect on primary human CML LSC has not been studied. We have here by using multiplex single cell PCR analyzed the expression of the mediators of the leukotriene pathway in bone marrow (BM) BCR-ABL + CD34 + CD38 - cells at diagnosis, and found low or undetectable expression of ALOX5. In line with this, zileuton did not exert significant overall growth inhibition in the long-term culture-initiating cell (LTC-IC) and colony (CFU-C) assays of BM CD34 + CD38 - cells from 7 CML patients. The majority of the single leukemic BCR-ABL + CD34 + CD38 - cells expressed cysteinyl leukotriene receptors CYSLT1 and CYSLT2. However, montelukast, an inhibitor of CYSLT1, also failed to significantly suppress CFU-C and LTC-IC growth. These findings indicate that targeting ALOX5 or CYSLT1 signaling with leukotriene antagonists, introduced into the clinical practice primarily as prophylaxis and treatment for asthma, may not be a promising pharmacological strategy to eradicate persisting LSC in CML patients. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
Noise tolerant spatiotemporal chaos computing.
Kia, Behnam; Kia, Sarvenaz; Lindner, John F; Sinha, Sudeshna; Ditto, William L
2014-12-01
We introduce and design a noise tolerant chaos computing system based on a coupled map lattice (CML) and the noise reduction capabilities inherent in coupled dynamical systems. The resulting spatiotemporal chaos computing system is more robust to noise than a single map chaos computing system. In this CML based approach to computing, under the coupled dynamics, the local noise from different nodes of the lattice diffuses across the lattice, and it attenuates each other's effects, resulting in a system with less noise content and a more robust chaos computing architecture.
Identification of Novel Genes and Candidate Targets in CML Stem Cells
2009-01-01
v-myb myeloblastosis viral oncogene homolog (avian) 6q22–q23 12 GATCCTGTGTTTGCAAC 1 FLI1 NM_002017 Friend leukemia virus integration 1 11q24.1–q24.3 3...AVAILABILITY STATEMENT Approved for Public Release; Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Chronic myeloid leukemia ... leukemia (CML) is a blood malignancy that is believed to originate in a hematopoietic stem cell as a result of the formation of an abnormal fusion gene
Stability and oscillations in a CML model
NASA Astrophysics Data System (ADS)
Badralexi, Irina; Halanay, Andrei
2017-01-01
We capture the evolution in competition of healthy and leukemic cells in Chronic Myelogenous Leukemia (CML) taking into consideration the response of the immune system. Delay-differential equations in a Mackey-Glass approach are used. We start with the study of stability of the equilibrium points of the system. Conditions on parameters for the local stability are given. Oscillatory behaviors occur naturally in biological phenomena. Thus, we investigate the periodic behavior of solutions and we obtain conditions for periodic solutions to appear through a Hopf bifurcation.
Noise tolerant spatiotemporal chaos computing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kia, Behnam; Kia, Sarvenaz; Ditto, William L.
We introduce and design a noise tolerant chaos computing system based on a coupled map lattice (CML) and the noise reduction capabilities inherent in coupled dynamical systems. The resulting spatiotemporal chaos computing system is more robust to noise than a single map chaos computing system. In this CML based approach to computing, under the coupled dynamics, the local noise from different nodes of the lattice diffuses across the lattice, and it attenuates each other's effects, resulting in a system with less noise content and a more robust chaos computing architecture.
Kuntegowdanahalli, Lakshmaiah Chinnagiriyappa; Kanakasetty, Govind Babu; Thanky, Aditi Harsh; Dasappa, Lokanatha; Jacob, Linu Abraham; Mallekavu, Suresh Babu; Lakkavalli, Rajeev Krishnappa; Kadabur, Lokesh N; Haleshappa, Rudresha Antapura
2016-01-01
Chronic myeloid leukaemia (CML) is a myeloproliferative disorder. Over the years many prognostic models have been developed to better risk stratify this disease at baseline. Sokal, Euro, and EUTOS scores were developed in varied populations initially receiving various therapies. Here we try to identify their predictive and prognostic implication in a larger population of Indian patients with CML-CP (chronic phase) in the imatinib era.
Evaluation of a new clinical librarian service.
Vaughn, Cynthia J
2009-01-01
In order to evaluate a new Clinical Medical Librarian (CML) service at Preston Medical Library in Knoxville, Tennessee, the three departments participating in the service were surveyed and interviewed. Participants in the study shed light on how much impact the attendance of a librarian at rounds and other meetings has had on their patient care decisions as well as their use of the library. Overall, the CML service has been well received by residents and faculty and will continue to serve at least these three departments.
Ben Lakhal, Raihane; Ghedira, Hela; Bellaaj, Hatem; Ben Youssef, Yosra; Menif, Samia; Manai, Zeineb; Bedoui, Manel; Lakhal, Amel; M'Sadek, Fehmi; Elloumi, Moez; Khélif, Abderrahmane; Ben Romdhane, Neila; Laatiri, Mohamed Adnène; Ben Othmen, Tarek; Meddeb, Balkis
2018-04-01
Data are limited in developing countries regarding the clinicopathologic features and response to therapy of chronic myeloid leukemia (CML) in the era of imatinib (IM). The objective of this study is to report on the clinicoepidemiologic features of CML in Tunisia, to evaluate the long-term outcome of patients in chronic (CP) or accelerated phase (AP) treated with IM 400 mg daily as frontline therapy, and to determine imatinib's efficacy and safety. From October 2002 to December 2014, 410 CML patients were treated with IM in six Tunisian departments of hematology. Response (hematologic, cytogenetic, and molecular responses) and outcome-overall survival (OS), event-free survival (EFS), and progression-free survival (PFS)-were evaluated. The following prognostic factors were analyzed for their impact on the European leukemia net (ELN) response, OS, EFS, and PFS at 5 years: age, sex, leukocyte count, Sokal score, European Treatment and Outcome Study (EUTOS) score, CML phase, time to starting IM, and impact of adverse events. The median age was 45 years (3-85 years). Two hundred ten (51.2%) patients were male. Splenomegaly was present in 322 of the 410 (79%). Additional cytogenetic abnormalities were encountered in 25 (6.3%) patients. At diagnosis, 379 (92.4%) patients were in CP, 31 (7.6%) were in AP. The Sokal risk was low in 87 (22.5%), intermediate in 138 (35.7%), and high in 164 patients (41.9%). The EUTOS risk was low in 217 (74%), and high in 77 (26%) patients. The rates of cumulative complete cytogenetic response (CCyR), major molecular response (MMR), and molecular response 4/5 log (MR4.5) in CP/AP-CML patients were 72, 68.4, and 46.4%, respectively. The median time to reach CCyR, MMR, and MR4.5 was 6 months (3-51), 18 months (3-72), and 24 months (3-100), respectively. According to the ELN criteria, optimal, suboptimal response, and failure were noted in 206 (51.8%), 61 (15.3%), and 125 (31.4%) patients, respectively. Five-year event-free survival (EFS), progression-free survival (PFS), and overall survival (OS) were 81, 90, and 90%, respectively. By multivariate analysis, AP, high EUTOS risk, and baseline WBC ≥ 150G/l remained independent predictive factors of non-optimal response to IM. The adverse events (AE) of IM were moderate and tolerable. With the caveats that the monitoring of the disease was not optimal, response rates were similar to those reported in previous studies. It is clear to us that improvements should be made in treatment of AP-CML and high Sokal risk group of CP-CML. The frontline use of second-generation tyrosine kinase inhibitor (TKI) is expected to improve the results of the first-line treatment of these high-risk Tunisian patients, but cost and accessibility of this therapy remain the problems in developing countries.
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Jong, Wibe A.; Walker, Andrew M.; Hanwell, Marcus D.
Background Multidisciplinary integrated research requires the ability to couple the diverse sets of data obtained from a range of complex experiments and computer simulations. Integrating data requires semantically rich information. In this paper the generation of semantically rich data from the NWChem computational chemistry software is discussed within the Chemical Markup Language (CML) framework. Results The NWChem computational chemistry software has been modified and coupled to the FoX library to write CML compliant XML data files. The FoX library was expanded to represent the lexical input files used by the computational chemistry software. Conclusions The production of CML compliant XMLmore » files for the computational chemistry software NWChem can be relatively easily accomplished using the FoX library. A unified computational chemistry or CompChem convention and dictionary needs to be developed through a community-based effort. The long-term goal is to enable a researcher to do Google-style chemistry and physics searches.« less
Bacher, Ulrike; Klyuchnikov, Evgeny; Zabelina, Tatjana; Ottinger, Hellmut; Beelen, Dietrich W; Schrezenmeier, Hubert; Ehninger, Gerhard; Müller, Carlheinz; Berger, Jürgen; Suttorp, Meinolf; Kolb, Hans-Jochem; Kröger, Nicolaus; Zander, Axel R
2009-12-01
Due to the recent changes in the indication to allogeneic stem cell transplantation (SCT) in chronic myeloid leukemia (CML), we retrospectively analyzed 1,716 patients with different CML stages who received an allograft from related (n = 767) or unrelated donors (n = 938) within the German Registry of Stem Cell Transplantation (DRST) from 1998 to 2004. Myeloablative conditioning was performed in 724/871 cases (83%), dose-reduced conditioning in 147/871 (17%). Annual transplantations were decreasing from 357 to 98 (28%) in the period of study, but the proportion of advanced cases was increasing from 32% (112/346) to 53% (50/94) of all SCTs. Stage of disease, intervals from diagnosis, and patients' age were independent prognostic parameters, while peripheral stem cells and unrelated transplantation seemed equal to bone marrow/related transplantation. This study demonstrates that allo-SCT still has an important role in advanced CML, which emphasizes the need for optimized transplantation strategies for these high-risk patients.
CMML AND aCML: NOVEL PATHOGENETIC LESIONS
Muramatsu, Hideki; Makishima, Hideki; Maciejewski, Jaroslaw P.
2012-01-01
Summary Chronic myelomonocytic leukemia (CMML) and atypical chronic myeloid leukemia (aCML) are distinct, yet related, entities of myelodysplastic/myeloproliferative neoplasms (MDS/MPN) characterized by morphologic dysplasia with accumulation of monocytes or neutrophils, respectively. Our understanding of the molecular pathogenesis of CMML and aCML has advanced, mainly due to the application of novel technologies such as array-based karyotyping or next generation sequencing. In addition to previously known recurrent aberrations, somatic uniparental disomy affecting chromosomes 3, 4, 7, and 11 frequently occurs in CMML. Novel somatic mutations of genes, including those associated with proliferation signaling (CBL, RAS, RUNX1, JAK2 (V617F)) and with modification of epigenetic status (TET2, ASXL1, UTX, EZH2) have been found. Various combinations of mutations suggest a multistep pathogenesis and may account for clinical heterogeneity. The prognostic and diagnostic significance of these molecular lesions, in particular their value as biomarkers of response or resistance to specific therapies, while uncertain now is likely to be clarified as large systematic studies come to completion. PMID:22289493
Zhang, Gong; Huang, Guangwei; Xiao, Lu; Mitchell, Alyson E
2011-11-23
A sensitive and reliable LC-(ESI)MS/MS method was developed and validated for the simultaneous analysis of five common advanced glycation endproducts (AGEs) after enzymatic digestion in raw and roasted almonds. AGEs included carboxymethyl-lysine (CML), carboxyethyl-lysine (CEL), pyralline (Pyr), argpyrimidine (Arg-p), and pentosidine (Pento-s). This method allows accurate quantitation of free and AGE-protein adducts of target AGEs. Results indicate that CML and CEL are found in both raw and roasted almonds. Pyr was identified for the first time in roasted almonds and accounted for 64.4% of free plus bound measured AGEs. Arg-p and Pento-s were below the limit of detection in all almond samples tested. Free AGEs accounted for 1.3-26.8% of free plus bound measured AGEs, indicating that protein-bound forms predominate. The roasting process significantly increased CML, CEL, and Pyr formation, but no significant correlation was observed between these AGEs and roasting temperature.
Cortes, Elias Jabbour Jorge; Ravandi, Farhad; O’Brien, Susan; Kantarjian, Hagop
2014-01-01
Advances in the genetic and molecular characterizations of leukemias have enhanced our capabilities to develop targeted therapies. The most dramatic examples of targeted therapy in cancer to date are the use of targeted BCR-ABL protein tyrosine kinase inhibitors (TKI) which has revolutionized the treatment of chronic myeloid leukemia (CML). Inhibition of the signaling activity of this kinase has proved to be a highly successful treatment target, transforming the prognosis of patients with CML. In contrast, acute myeloid leukemia (AML) is an extremely heterogeneous disease with outcomes that vary widely according to subtype of the disease. Targeted therapy with monoclonal antibodies and small molecule kinase inhibitors are promising strategies to help improve the cure rates in AML. In this review, we will highlight the results of recent clinical trials in which outcomes of CML and AML have been influenced significantly. Also, novel approaches to sequencing and combining available therapies will be covered. PMID:24246694
Nakashima, Keisuke; Miyashita, Hiroyuki; Yoshimitsu, Hitoshi; Fujiwara, Yukio; Nagai, Ryoji; Ikeda, Tsuyoshi
2016-04-01
Because inhibitors of advanced glycation end-products (AGEs), for example pyridoxamine, significantly inhibit the development of retinopathy and neuropathy in rats with streptozotocin-induced diabetes, treatment with AGE inhibitors is believed to be a potential strategy for the prevention of lifestyle-related diseases such as diabetic complications. In the present study, the MeOH extract of Epimedii Herba (EH; aerial parts of Epimedium spp.) was found to inhibit the formation of N (ε) -(carboxymethyl)lysine (CML) and N (ω) -(carboxymethyl)arginine (CMA) during incubation of collagen-derived gelatin with ribose. Furthermore, compounds with inhibitory effects against CML and CMA formation were isolated from EH. Two new prenylflavonoids (compounds 1 and 2) and two known compounds (3 and 4) were found to significantly inhibit the formation of both CML and CMA; compound 4 (epimedokoreanin B) had the strongest inhibitory effect of the isolated compounds. These data suggest that epimedokoreanin B could prevent clinical complications of diabetes by inhibiting AGEs.
Targeting the SH2-Kinase Interface in Bcr-Abl Inhibits Leukemogenesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grebien, Florian; Hantschel, Oliver; Wojcik, John
2012-10-25
Chronic myelogenous leukemia (CML) is caused by the constitutively active tyrosine kinase Bcr-Abl and treated with the tyrosine kinase inhibitor (TKI) imatinib. However, emerging TKI resistance prevents complete cure. Therefore, alternative strategies targeting regulatory modules of Bcr-Abl in addition to the kinase active site are strongly desirable. Here, we show that an intramolecular interaction between the SH2 and kinase domains in Bcr-Abl is both necessary and sufficient for high catalytic activity of the enzyme. Disruption of this interface led to inhibition of downstream events critical for CML signaling and, importantly, completely abolished leukemia formation in mice. Furthermore, disruption of themore » SH2-kinase interface increased sensitivity of imatinib-resistant Bcr-Abl mutants to TKI inhibition. An engineered Abl SH2-binding fibronectin type III monobody inhibited Bcr-Abl kinase activity both in vitro and in primary CML cells, where it induced apoptosis. This work validates the SH2-kinase interface as an allosteric target for therapeutic intervention.« less
Nilotinib Induced Recurrent Gastric Polyps: Case Report and Review of Literature.
Kassem, Nancy; Ismail, Omar M; Elomri, Halima; Yassin, Mohamad A
2017-07-14
BACKGROUND Tyrosine kinase inhibitors (TKIs) are currently an important targeted drug class in the treatment of chronic myeloid leukemia (CML). Imatinib was the first approved TKI for CML in 2001. Nilotinib is a second-generation TKI, approved in 2007; it inhibits BCR-ABL, PDGFR, and c-KIT, and is 30 times more potent than imatinib. Tyrosine kinase enzymes are expressed in multiple tissues and are involved in several signaling pathways; they have been shown to have several off-target side effects. CASE REPORT We report a case of an elderly male with CML and no history of gastrointestinal diseases, treated with nilotinib, and developed recurrent gastric polyps after three years of treatment. We excluded common causes of gastric polyps and therefore considered nilotinib as a probable cause of recurrent gastric polyps. CONCLUSIONS Recurrent gastric polyps could be a potential side effect of nilotinib treatment. Careful long-term monitoring of patients on TKI therapy is necessary and further long-term studies of TKI side effects are needed.
Jayakar, Vishal
2014-01-01
Choices in medicine come with responsibility. With several TKI's (Tyrosine kinase inhibitors) available for front-line management of CML (Chronic Myeloid Leukemia), an astute clinician has to personalise, rationalise and take a pragmatic approach towards selection of the best drug for the ‘patient in question’. Though it is hotly debated as to which TKI will triumph, the truth of this debate lies in individualising treatment rather than a general ‘all size fits all’ approach with imatinib. I personally believe that the second generation TKI's will suit most patient clinical profiles rather than prescribing imatinib to all and I have strived to make a strong case for them in front line treatment of CML. Though Imatinib may remain the first line choice for some patients, my efforts in this debate are mainly geared towards breaking the myth that imatinib is the sole ‘block buster’ on the CML landscape PMID:24665456
Zhao, Di; Li, Lin; Le, Thao T; Larsen, Lotte Bach; Su, Guoying; Liang, Yi; Li, Bing
2017-07-19
This work reports the influence of glyoxal (GO)-derived glycation on the gastrointestinal enzymatic hydrolysis of β-lactoglobulin and β-casein. Reduced digestibility of glycated proteins was found in both gastric and intestinal stage. Distribution of Maillard reaction products in digests with different molecular weight ranges was investigated subsequently. The colorless and brown MRPs largely presented in the digests smaller than 20 kDa. However, the resistance of fluorescent advanced glycation end products (AGEs) to enzymatic hydrolysis gradually increased during glycation, rendering fluorescent AGEs largely present in the digests larger than 20 kDa. No free N (ε)-carboxymethyllysine (CML) was detected in digests. The relative amount of CML in digests larger than 1 kDa was higher than that of Lys, demonstrating the hindrance of CML to enzymatic hydrolysis. This study highlights the resistance of GO-derived AGEs to digestive proteases via blockage of tryptic cleavage sites or steric hindrance, which is a barrier to the absorption of dietary AGEs.
Balducci, Estelle; Loosveld, Marie; Rahal, Ilhem; Boudjarane, John; Alazard, Emilie; Missirian, Chantal; Lafage-Pochitaloff, Marina; Michel, Gérard; Zattara, Hélène
2018-02-01
Discrimination between lymphoid blast crisis of chronic myeloid leukemia (CML) and de novo BCR-ABL1 positive acute lymphoblastic leukemia (ALL) represents a diagnostic challenge because this distinction has a major incidence on the management of patients. Here, we report an uncommon pediatric case of ALL with cryptic ins(22;9)(q11;q34q34) and p190-type BCR-ABL1 transcript. We performed interphase fluorescence in situ hybridization (FISH) for BCR-ABL1 rearrangement on blood neutrophils, which was positive consistent with the diagnosis of lymphoid blast crisis of CML. This case illustrates the major interest of interphase FISH for BCR-ABL1 rearrangement on blood neutrophils as a decisive method to discriminate a lymphoid blast crisis of CML from a de novo BCR-ABL1 positive ALL. Copyright © 2017 John Wiley & Sons, Ltd.
Targeting the SH2-kinase interface in Bcr-Abl inhibits leukemogenesis.
Grebien, Florian; Hantschel, Oliver; Wojcik, John; Kaupe, Ines; Kovacic, Boris; Wyrzucki, Arkadiusz M; Gish, Gerald D; Cerny-Reiterer, Sabine; Koide, Akiko; Beug, Hartmut; Pawson, Tony; Valent, Peter; Koide, Shohei; Superti-Furga, Giulio
2011-10-14
Chronic myelogenous leukemia (CML) is caused by the constitutively active tyrosine kinase Bcr-Abl and treated with the tyrosine kinase inhibitor (TKI) imatinib. However, emerging TKI resistance prevents complete cure. Therefore, alternative strategies targeting regulatory modules of Bcr-Abl in addition to the kinase active site are strongly desirable. Here, we show that an intramolecular interaction between the SH2 and kinase domains in Bcr-Abl is both necessary and sufficient for high catalytic activity of the enzyme. Disruption of this interface led to inhibition of downstream events critical for CML signaling and, importantly, completely abolished leukemia formation in mice. Furthermore, disruption of the SH2-kinase interface increased sensitivity of imatinib-resistant Bcr-Abl mutants to TKI inhibition. An engineered Abl SH2-binding fibronectin type III monobody inhibited Bcr-Abl kinase activity both in vitro and in primary CML cells, where it induced apoptosis. This work validates the SH2-kinase interface as an allosteric target for therapeutic intervention. Copyright © 2011 Elsevier Inc. All rights reserved.
Targeting the SH2-Kinase Interface in Bcr-Abl Inhibits Leukemogenesis
Grebien, Florian; Hantschel, Oliver; Wojcik, John; Kaupe, Ines; Kovacic, Boris; Wyrzucki, Arkadiusz M.; Gish, Gerald D.; Cerny-Reiterer, Sabine; Koide, Akiko; Beug, Hartmut; Pawson, Tony; Valent, Peter; Koide, Shohei; Superti-Furga, Giulio
2011-01-01
Summary Chronic myelogenous leukemia (CML) is caused by the constitutively active tyrosine kinase Bcr-Abl and treated with the tyrosine kinase inhibitor (TKI) imatinib. However, emerging TKI resistance prevents complete cure. Therefore, alternative strategies targeting regulatory modules of Bcr-Abl in addition to the kinase active site are strongly desirable. Here, we show that an intramolecular interaction between the SH2 and kinase domains in Bcr-Abl is both necessary and sufficient for high catalytic activity of the enzyme. Disruption of this interface led to inhibition of downstream events critical for CML signaling and, importantly, completely abolished leukemia formation in mice. Furthermore, disruption of the SH2-kinase interface increased sensitivity of imatinib-resistant Bcr-Abl mutants to TKI inhibition. An engineered Abl SH2-binding fibronectin type III monobody inhibited Bcr-Abl kinase activity both in vitro and in primary CML cells, where it induced apoptosis. This work validates the SH2-kinase interface as an allosteric target for therapeutic intervention. PaperFlick PMID:22000011
Cytogenetic and molecular characteristics of 25 Chilean patients with a variant Ph translocation.
Legues, Maria E; Encina, Andrea; Valenzuela, Mercedes; Palma, Tamara; Undurraga, Maria S
2011-07-01
Chronic myeloid leukemia (CML) is characterized by the presence of the Philadelphia chromosome (Ph), which results from a balanced translocation between chromosomes 9 and 22, the t(9;22)(q34;q11.2). In 5-10% of the cases, variants of the Ph (vPh) are detected, involving various breakpoints in addition to 9q34 and 22q11.2. Deletions on the der(9) and der(22) can be detected in approximately 10-15% of CML patients. The frequency of a deletion of the der(9) in vPh CML is variable. Most studies have shown high frequencies (30-45%) in this subgroup. We report the cytogenetic evaluation of 25 vPh cases, which represents 6.8% of the CML cases diagnosed at one institution in 20 years. The breakpoints of the partners of the vPh in our patients agree with those reported previously, except for a novel 18q23. We found a low incidence of deletions of the der(9) (10%) and der(22) (5%) in these patients, contrasting with several reports in the literature. This finding may reflect the extensive spectrum of aberrations in vPh, and the possibility that a considerable group of these aberrations may not affect the genetic stability of 5'ABL1 and 3'BCR. Epidemiologic differences may also exist and could explain our results. These differences would require further investigation. Copyright © 2011 Elsevier Inc. All rights reserved.
Ciftci, Halil Ibrahim; Ozturk, Safiye Emirdag; Ali, Taha F S; Radwan, Mohamed O; Tateishi, Hiroshi; Koga, Ryoko; Ocak, Zeynep; Can, Mustafa; Otsuka, Masami; Fujita, Mikako
2018-04-01
The discovery of the chimeric tyrosine kinase breakpoint cluster region kinase-Abelson kinase (BCR-ABL)-targeted drug imatinib conceptually changed the treatment of chronic myelogenous leukemia (CML). However, some CML patients show drug resistance to imatinib. To address this issue, some artificial heterocyclic compounds have been identified as BCR-ABL inhibitors. Here we examined whether plant-derived pentacyclic triterpenoid gypsogenin and/or their derivatives show inhibitory activity against BCR-ABL. Among the three derivatives, benzyl 3-hydroxy-23-oxoolean-12-en-28-oate (1c) was found to be the most effective anticancer agent on the CML cell line K562, with an IC 50 value of 9.3 µM. In contrast, the IC 50 against normal peripheral blood mononuclear cells was 276.0 µM, showing better selectivity than imatinib. Compound 1c had in vitro inhibitory activity against Abelson kinase 1 (ABL1) (IC 50 =8.7 µM), the kinase component of BCR-ABL. In addition, compound 1c showed a different inhibitory profile against eight kinases compared with imatinib. The interaction between ATP binding site of ABL and 1c was examined by molecular docking study, and the binding mode was different from imatinib and newer generation inhibitors. Furthermore, 1c suppressed signaling downstream of BCR-ABL. This study suggests the possibility that plant extracts may be a source for CML treatment and offer a strategy to overcome drug resistance to known BCR-ABL inhibitors.
Sun, Yinghui; Zhao, Na; Wang, Huan; Wu, Qiong; Han, Yunqi; Liu, Qichao; Wu, Mangang; Liu, Yuliang; Kong, Fansheng; Wang, He; Sun, Ying; Sun, Deguang; Jing, Lutao; Tang, Guojing; Hu, Yuandong; Xiao, Dengming; Luo, Hong; Han, Yongxin; Peng, Yong
2017-01-01
Kinase inhibitors that target Bcr-Abl are highly effective in the treatment of chronic myeloid leukemia (CML). However, these inhibitors are often invalidated due to the drug resistance. Therefore, the discovery and development of novel Bcr-Abl inhibitors is required to overwhelm the drug resistance in the treatment of CML resistant to the currently used first-line Bcr-Abl inhibitors. Herein we have described a newly developed Bcr-Abl inhibitor CT-721, which displayed potent inhibitory effects on wild-type and T315I mutant Bcr-Abl. It functioned as a typically ATP-competitive inhibitor, superior to other existing Bcr-Abl inhibitors. CT-721 also demonstrated time-dependent inhibition of Bcr-Abl activation and the resultant downstream signaling transduction pathways in Bcr-Abl positive cells. Furthermore, CT-721 induced cell apoptosis and cell cycle arrest, and efficaciously inhibited tumor growth in Bcr-Abl-expressed K562 and KU812 xenograft models in a mechanism-based manner. Further PK/PD studies revealed a positive in vivo correlation between the compound concentration and inhibition of Bcr-Abl activity. Taken together, CT-721 is a potent and time-dependent Bcr-Abl kinase inhibitor, and has shown strong in vitro and in vivo anti-CML activities with a favorable pharmacokinetic profile, differentiating it from other Bcr-Abl kinase inhibitors already approved and current in development for the treatment of CML. PMID:28928866
Adan, Aysun; Baran, Yusuf
2016-05-01
Fisetin and hesperetin, naturally occurring flavonoids, have been reported as novel antioxidants with chemopreventive/chemotherapeutic potential against various types of cancer. However, their mechanism of action in CML is still unknown. This particular study aims to evaluate the therapeutic potentials of fisetin and hesperetin and their effects on cell proliferation, apoptosis, and cell cycle progression in human K562 CML cells. The results indicated that fisetin and hesperetin inhibited cell proliferation and triggered programmed cell death in these cells. The latter was confırmed by mitochondrial membrane depolarization and an increase in caspase-3 activation. In addition to that, we have detected S and G2/M cell cycle arrests and G0/G1 arrest upon fisetin and hesperetin treatment, respectively. To identify the altered genes and genetic networks in response to fisetin and hesperetin, whole-genome microarray analysis was performed. The microarray gene profiling analysis revealed some important signaling pathways including JAK/STAT pathway, KIT receptor signaling, and growth hormone receptor signaling that were altered upon fisetin and hesperetin treatment. Moreover, microarray data suggested potential candidate genes for targeted CML therapy. Fisetin and hesperetin significantly modulated the expression of genes involved in cell proliferation and division, apoptosis, cell cycle regulation, and other significant cellular processes such as replication, transcription, and translation. In conclusion, our results suggest that fisetin and hesperetin as potential natural agents for CML therapy.
Advanced glycation end products in children with chronic renal failure and type 1 diabetes.
Misselwitz, Joachim; Franke, Sybille; Kauf, Eberhard; John, Ulrike; Stein, Günter
2002-05-01
Serum levels of advanced glycation end products (AGEs) are markedly elevated in adults with chronic renal failure (CRF) and diabetes mellitus. Accumulation of AGEs in tissues contributes to the development of long-term complications. Up to now little has been known about the formation of AGEs in childhood. We determined serum levels of the well known AGEs pentosidine and Nvarepsilon-carboxymethyllysine (CML) in children with CRF (n=12), end-stage renal disease (ESRD) (n=9), renal transplantation (n=12), and type 1 diabetes mellitus (n=42) and in healthy children (n=20). Pentosidine was measured by high-performance liquid chromatography (HPLC), CML by a competitive enzyme-linked immunosorbent assay (ELISA) system. Serum levels of pentosidine and CML were significantly higher in the children with CRF and ESRD than in controls (P< 0.001), but nearly within the normal range after transplantation. Both AGEs showed a significant negative correlation with creatinine clearance (P< 0.001). During a single session of low-flux hemodialysis, total pentosidine and CML levels did not change. Free pentosidine, however, was reduced by 78% (P=0.04). Diabetic children showed significantly elevated pentosidine levels (P< 0.001) despite normal renal function. We conclude that, similar to adults, increased formation and accumulation of AGEs also exist in children with CRF and type 1 diabetes mellitus. At present the best prevention of AGE-related complications is an early renal transplantation in children with ESRD, as well as a careful metabolic monitoring of diabetics.
Giles, Francis; Mahon, François-Xavier; Gjertsen, Bjorn; Swords, Ronan; Labar, Boris; Turkina, Anna; Rosti, Gianantonio
2012-09-01
Tyrosine kinase inhibitors (TKIs) have dramatically changed the treatment of chronic myeloid leukaemia (CML). Results from ongoing phase 3 trials with nilotinib [Efficacy and Safety in Clinical Trials-Newly Diagnosed Patients (ENESTnd)] and dasatinib [Dasatinib Versus Imatinib Study in Treatment-Naive CML-CP Patients (DASISION)] in newly diagnosed patients with CML in chronic phase have demonstrated that these TKIs resulted in significant improvements in responses vs. imatinib. The Developmental Therapeutics Consortium (DTC) systematically reviewed the published literature to provide a comparative analysis of the ENESTnd and DASISION trial designs and data reported on each study. The recent approval of nilotinib and dasatinib based on these two pivotal studies offers physicians the option to optimise frontline treatment based on a patient's comorbidities, risk factors and tolerability profiles. Although nilotinib and dasatinib provide effective therapeutic options for the frontline treatment of CML, the lack of an evidenced-based, side-by-side comparison makes it difficult to directly compare these agents. Despite potential bias from differences in patient populations and study design, indirect cross-trial comparisons to determine the relative effectiveness of these agents will be performed by physicians. This DTC report provides a comprehensive summary of the study designs, protocols and results of the ENESTnd and DASISION trials, which will assist physicians in making informed decisions on the best treatment approach for their patients. © 2012 The Authors. European Journal of Clinical Investigation © 2012 Stichting European Society for Clinical Investigation Journal Foundation.
Hehlmann, R; Lauseker, M; Saußele, S; Pfirrmann, M; Krause, S; Kolb, H J; Neubauer, A; Hossfeld, D K; Nerl, C; Gratwohl, A; Baerlocher, G M; Heim, D; Brümmendorf, T H; Fabarius, A; Haferlach, C; Schlegelberger, B; Müller, M C; Jeromin, S; Proetel, U; Kohlbrenner, K; Voskanyan, A; Rinaldetti, S; Seifarth, W; Spieß, B; Balleisen, L; Goebeler, M C; Hänel, M; Ho, A; Dengler, J; Falge, C; Kanz, L; Kremers, S; Burchert, A; Kneba, M; Stegelmann, F; Köhne, C A; Lindemann, H W; Waller, C F; Pfreundschuh, M; Spiekermann, K; Berdel, W E; Müller, L; Edinger, M; Mayer, J; Beelen, D W; Bentz, M; Link, H; Hertenstein, B; Fuchs, R; Wernli, M; Schlegel, F; Schlag, R; de Wit, M; Trümper, L; Hebart, H; Hahn, M; Thomalla, J; Scheid, C; Schafhausen, P; Verbeek, W; Eckart, M J; Gassmann, W; Pezzutto, A; Schenk, M; Brossart, P; Geer, T; Bildat, S; Schäfer, E; Hochhaus, A; Hasford, J
2017-11-01
Chronic myeloid leukemia (CML)-study IV was designed to explore whether treatment with imatinib (IM) at 400 mg/day (n=400) could be optimized by doubling the dose (n=420), adding interferon (IFN) (n=430) or cytarabine (n=158) or using IM after IFN-failure (n=128). From July 2002 to March 2012, 1551 newly diagnosed patients in chronic phase were randomized into a 5-arm study. The study was powered to detect a survival difference of 5% at 5 years. After a median observation time of 9.5 years, 10-year overall survival was 82%, 10-year progression-free survival was 80% and 10-year relative survival was 92%. Survival between IM400 mg and any experimental arm was not different. In a multivariate analysis, risk group, major-route chromosomal aberrations, comorbidities, smoking and treatment center (academic vs other) influenced survival significantly, but not any form of treatment optimization. Patients reaching the molecular response milestones at 3, 6 and 12 months had a significant survival advantage. For responders, monotherapy with IM400 mg provides a close to normal life expectancy independent of the time to response. Survival is more determined by patients' and disease factors than by initial treatment selection. Although improvements are also needed for refractory disease, more life-time can currently be gained by carefully addressing non-CML determinants of survival.
Etienne, Gabriel; Huguet, Francoise; Guerci-Bresler, Agnès; Nicolini, Franck E; Maloisel, Frédéric; Coiteux, Valérie; Dauriac, Charles; Carpentier, Nathalie; Bourdeix, Isabelle; Tulliez, Michel; Cony-Makhoul, Pascale
2016-07-01
The availability of tyrosine kinase inhibitors has extended therapeutic options for chronic myeloid leukaemia (CML) patients. Monitoring recommendations and clinical response goals have recently been updated. The objective of this study was to describe the profile of CML patients in chronic phase currently receiving first-line therapy, including treatment, monitoring and response kinetics. A multicentre, cross-sectional, epidemiological survey in unselected chronic phase CML patients in France attending consultations during a one-month period was performed. 438 of 697 (62·8%) reported patients were currently receiving first-line treatment and were analysed. Imatinib was the most frequently received treatment (72·4% of patients). Retrospective cytogenetic and molecular assessments at 3, 6, 12 or 18 months were available in 88·4% of patients. At the 12-month assessment, 32·2% were not in major molecular response (MMR). At last assessment, among 355 patients with duration of treatment ≥ 12 months, 91·5% had achieved MMR and 66·5% were in deep molecular response. This study, performed in everyday practice population of CML patients, suggests that monitoring of molecular responses in real-life practice is aligned with European LeukaemiaNet recommendations. The majority of patients still receiving first-line treatment are in optimal response, with a few being classified as in the warning area or responding to failure. © 2016 John Wiley & Sons Ltd.
Takaku, Tomoiku; Iriyama, Noriyoshi; Mitsumori, Toru; Sato, Eriko; Gotoh, Akihiko; Kirito, Keita; Noguchi, Masaaki; Koike, Michiaki; Sakamoto, Junichi; Oba, Koji; Komatsu, Norio
2018-01-01
The use of tyrosine kinase inhibitors led to an improvement in the prognoses of patients with chronic myeloid leukemia (CML). The aims of this study were to investigate the efficacy and safety of dasatinib in Japanese patients and to explore the factors that affect the achievement of molecular responses. The primary endpoint was a major molecular response (MMR) by 12 months. The halving time for BCR-ABL1 transcripts was calculated using transcript levels. Thirty-two patients with chronic-phase CML (CML-CP) were enrolled and 30 received 100 mg dasatinib once daily. At 24 months of follow-up, 21 (72%) and 24 (83%) patients achieved an MMR by 12 and 24 months, respectively; the rates of a deep molecular response (DMR) by 12 and 24 months were 48 and 59%, respectively. A shorter halving time of BCR-ABL1 transcripts (≤10.6 days) accurately predicted both an MMR and a DMR. The incidence of pleural effusion was 50%. Our study reconfirmed the efficacy and safety of dasatinib treatment in Japanese patients with newly diagnosed CML-CP. In addition, the usefulness of the halving time of BCR-ABL1 transcripts was validated. These data emphasize the significance of an early treatment response in achieving a DMR during dasatinib therapy. © 2017 S. Karger AG, Basel.
NASA Astrophysics Data System (ADS)
Chwala, Christian; Boose, Yvonne; Smiatek, Gerhard; Kunstmann, Harald
2017-04-01
Commercial microwave link (CML) networks have proven to be a valuable source for rainfall information over the last years. However, up to now, analysis of CML data was always limited to certain snapshots of data for historic periods due to limited data access. With the real-time availability of CML data in Germany (Chwala et al. 2016) this situation has improved significantly. We are continuously acquiring and processing data from 3000 CMLs in Germany in near real-time with one minute temporal resolution. Currently the data acquisition system is extended to 10000 CMLs so that the whole of Germany is covered and a continuous country-wide rainfall product can be provided. In this contribution we will elaborate on the challenges and solutions regarding data acquisition, data management and robust processing. We will present the details of our data acquisition system that we run operationally at the network of the CML operator Ericsson Germany to solve the problem of limited data availability. Furthermore we will explain the implementation of our data base, its web-frontend for easy data access and present our data processing algorithms. Finally we will showcase an application of our data in hydrological modeling and its potential usage to improve radar QPE. Bibliography: Chwala, C., Keis, F., and Kunstmann, H.: Real-time data acquisition of commercial microwave link networks for hydrometeorological applications, Atmos. Meas. Tech., 9, 991-999, doi:10.5194/amt-9-991-2016, 2016
Saydam, Guray; Haznedaroglu, Ibrahim C; Kaynar, Leylagul; Yavuz, Akif S; Ali, Ridvan; Guvenc, Birol; Akay, Olga M; Baslar, Zafer; Ozbek, Ugur; Sonmez, Mehmet; Aydin, Demet; Pehlivan, Mustafa; Undar, Bulent; Dagdas, Simten; Ayyildiz, Orhan; Akkaynak, Diyar Z; Akin, Gulnur; İlhan, Osman
2018-02-27
Nilotinib is a BCR-ABL1 tyrosine kinase inhibitor approved for the treatment of patients with chronic myeloid leukemia in chronic phase (CML-CP). This study was the first prospective evaluation of the efficacy and safety of nilotinib in Turkish patients with newly diagnosed CML-CP. The primary endpoint of the study was the rate of major molecular response (MMR; BCR-ABL1 ≤ 0.1% on the International Scale [BCR-ABL1 IS ]) by 12 months. Patients with newly diagnosed CML-CP were treated with nilotinib 300 mg twice daily. This analysis was based on the first 12 months of follow-up in a 24-month study. This study is registered with ClinicalTrials.gov (NCT01274351). Of 112 patients enrolled, 66.1% (80% CI, 59.7-72.0%) achieved MMR and 22.3% achieved a deep molecular response of MR 4.5 (BCR-ABL1 IS ≤0.0032%) by 12 months. During the first year of treatment, one patient progressed to blast crisis and two patients died. Safety results were consistent with previous studies. Most adverse events (AEs) were grade 1/2. Most frequently reported nonhematologic AEs of any grade were elevations in bilirubin, alanine aminotransferase, and triglycerides. These results support the use of nilotinib 300 mg twice daily as a standard-of-care treatment option for patients with newly diagnosed CML-CP with low and intermediate risk.
Makishima, Hideki; Jankowska, Anna M.; McDevitt, Michael A.; O'Keefe, Christine; Dujardin, Simon; Cazzolli, Heather; Przychodzen, Bartlomiej; Prince, Courtney; Nicoll, John; Siddaiah, Harish; Shaik, Mohammed; Szpurka, Hadrian; Hsi, Eric; Advani, Anjali; Paquette, Ronald
2011-01-01
Progression of chronic myelogenous leukemia (CML) to accelerated (AP) and blast phase (BP) is because of secondary molecular events, as well as additional cytogenetic abnormalities. On the basis of the detection of JAK2, CBL, CBLB, TET2, ASXL1, and IDH1/2 mutations in myelodysplastic/myeloproliferative neoplasms, we hypothesized that they may also contribute to progression in CML. We screened these genes for mutations in 54 cases with CML (14 with chronic phase, 14 with AP, 20 with myeloid, and 6 with nonmyeloid BP). We identified 1 CBLB and 2 TET2 mutations in AP, and 1 CBL, 1 CBLB, 4 TET2, 2 ASXL1, and 2 IDH family mutations in myeloid BP. However, none of these mutations were found in chronic phase. No cases with JAK2V617F mutations were found. In 2 cases, TET2 mutations were found concomitant with CBLB mutations. By single nucleotide polymorphism arrays, uniparental disomy on chromosome 5q, 8q, 11p, and 17p was found in AP and BP but not involving 4q24 (TET2) or 11q23 (CBL). Microdeletions on chromosomes 17q11.2 and 21q22.12 involved tumor associated genes NF1 and RUNX1, respectively. Our results indicate that CBL family, TET2, ASXL1, and IDH family mutations and additional cryptic karyotypic abnormalities can occur in advanced phase CML. PMID:21346257
Lai, Yue-Yun; Feng, Lin; Wang, Zheng; Lü, Shan; Dang, Hui; Shi, Yan; He, Qi; Huang, Xiao-Jun
2010-02-01
This study was aimed to verify the efficacy of home-made LSI bcr/abl ES probe for detection of bcr/abl fusion gene and derivative chromosome 9 deletions in chronic myeloid leukemia (CML). Fluorescence in situ hybridization (FISH) was carried out with dual color bcr/abl extra signal (ES) probe in 97 cases of CML based on morphology and cytogenetic karyotype and 129 cases of non-hematological malignancies/non-myeloproliferative diseases with normal cytogenetic karyotype. For the patients with signals of 1R1G1F indicating der(9) deletions, FISH were done using ASS DNA probe. The results showed that 91 cases with standard t(9;22) and 6 cases with variant translocation of t(9;22) were detected by conventional G banding technique. All of the 97 patients displayed bcr/abl fusion gene by ES-FISH, including 16 cases with signal patterns of 1R1G1F showing der(9) deletions. Among the 16 cases with der(9) deletions, 13 cases were detected to have deletions of ASS gene. Meanwhile, none of the 129 cases of negative control showed bcr/abl fusion gene by ES-FISH. It is concluded that home-made LSI bcr/abl ES probe is effective to identify the bcr/abl fusion gene and der(9) deletions in CML, and the ES-FISH results are consistent with conventional cytogenetic karyotype.
Dorgham, Samia; Aberkane, Meriem; Boughrara, Wefa; Antar Soltan, Badra; Mehalhal, Nemra; Touhami, Hadj; Sidimansour, Noureddine; Merad Boudia, Nadia; Louhibi, Lotfi; Boudjema, Abdallah
2014-09-01
Methylene-tetrahydrofolate reductase (MTHFR) is a key enzyme of folate metabolism. Few studies were reported about its relationship with chronic myeloid leukemia (CML). We conducted a case-control study analyzing the prevalence of the polymorphisms MTHFR C677T and MTHFR A1298C in Algerians CML patients. Using TaqMan(®) allelic discrimination assay, we investigate MTHFR C677T and A1298C polymorphism distribution in 90 cases of CML and 100 healthy subjects. The frequencies of 677T alleles and genotypes 677TT and 677CT were significantly higher in cases than in control (P = 1E-6; OR = 6.77 [4.22-10.86]) and (P = 1E-6; OR = 10.38 [4.56-23.6]) respectively. Also, the frequencies of 1298C alleles and genotypes 1298CC and 1298AC were higher in cases (P = 9 E-6; OR = 2.65 [1.71-4.10]) and (P = 0.008; OR = 2.22 [1.21-4.06]) respectively. We report also the higher significance of the haplotype 677T/1298A and 677T/1298C in cases (P = 0.007; OR = 2.57 [1.26-5.24]) and (P = 5 E-6, OR = 6.91 [2.7646-17.2899]) respectively. Our results demonstrate that 677T and 1298C alleles are both associated with an increased risk of CML in Algeria.
Heidari, Nazanin; Vosoughi, Tina; Mohammadi Asl, Javad; Saki Malehi, Amal; Saki, Najmaldin
2018-01-12
The activation and increased expression of BCR-ABL1 lead to malignant chronic myelogenous leukaemia (CML) cells, as well as the resistance to antitumour agents and apoptosis inducers. Moreover, TWIST-1 protein is a prognostic factor of leukemogenesis, and its level is raised in CML patients with cytogenetic resistance to imatinib. So, there is a likely relationship between BCR-ABL1 and TWIST-1 genes. The aim of the study was to assess the relationship between TWIST-1 and BCR-ABL1 expressions. Peripheral blood samples were obtained from 44 CML patients under treatment and also from ten healthy subjects as normal controls. The expression of TWIST-1 and BCR-ABL1 genes was measured using real-time PCR, and ABL1 was used as the reference gene. The gene expression was evaluated by REST software. The expression levels of TWIST-1 and BCR-ABL1 genes in CML patients was changed 40.23 ± 177.75-fold and 6 ± 18-fold, respectively. No significant relationship was observed between the expressions of TWIST-1 and BCR-ABL1 genes. All patients with TWIST-1 expression levels ≥100-fold had failure of response to treatment. The probability of the relationship between BCR-ABL1 and TWIST-1 is still debatable, and the average of TWIST-1 expression has been higher in patients without response to treatment. Definitive conclusion needs further investigations.
Khoroshko, N D; Turkina, A G; Kumas, S M; Zhuravlev, V S; Kuznetsov, S V; Sokolova, M A; Semenova, E A; Kaplanskaia, I B; Frank, G A; Korolev, A V; Shcherbinina, L A; Zakharova, A V; Domracheva, E V; Zingerman, B A
2004-01-01
To investigate factors determining prognosis and efficacy of induction therapy including interferon-alpha-2b (intron-A, Schering Plough) in patients at an early chronic stage of Ph-positive chronic myeloid leukemia (CML) as shown by histomorphological examination. The analysis covered 52 CML patients treated at an early chronic phase with intron-A in a standard daily dose 5 IU/m2 in combination with low-dose cytosinearabinoside (10 mg/m2, s.c. , daily for 10 days of each month). The treatment efficacy was assessed by the international criteria of complete and partial hematological remission and cytogenetic response. The cytogenetic study employed the direct method, even and G-differential staining, fluorescent hybridization in situ (FISH). The sections were stained with hematoxilin-eosine by Gomori, van Gieson. Histological samples were examined with histomorphometry. Immunohistochemical examination was made on paraffin sections using a panel of monoclonal antibodies CD3, CD4, CD8, CD20, NK, PCNA, Ki-67 (Dako, Denmark). Repeated assessment of histomorphological parameters such as erythroid lineage, degree of myelofibrosis and reduction of leukemic population indicate the treatment efficacy. Estimation of the level of leukemic population proliferation in trephine biopsies from CML patients with monoclonal antibodies PCNA and Ki-67 before the treatment is prognostically significant as it further correlates with the cytogenetic response (r = 0.821, p = 0.000000). It is valid to study histomorphological picture of CML to prognosticate and assess treatment efficacy with standard doses of interferon-alpha with high probability.
Husaini, Roslina; Ahmad, Munirah; Zakaria, Zubaidah
2017-06-01
Chronic myeloid leukaemia (CML) is a form of leukaemia derived from the myeloid cell lineage. Imatinib mesylate, the breakpoint cluster region-abelson murine leukeamia kinase inhibitor, is a specific reagent used in the clinical treatment of CML. The DNA topoisomerase II inhibitor, etoposide, is also employed as a therapeutic, though it is used to a lesser extent. The present study aims to evaluate the effects of CML-targeted therapy, utilising imatinib mesylate and etoposide in the in vitro treatment of parental sensitive and adriamycin-resistant CML in the K562 and K562/ADM cell lines, respectively. Preliminary work involved the screening of multidrug resistant (MDR) gene expression, including MDR1, MRP1 and B-cell lymphoma 2 (BCL-2) at the mRNA levels. The sensitive and resistant CML cell lines expressed the MRP1 gene, though the sensitive K562 cells expressed low, almost undetectable levels of MDR1 and BCL-2 genes relative to the K562/ADM cells. Following treatment with imatinib mesylate or etoposide, the IC50 for imatinib mesylate did not differ between the sensitive and resistant cell lines (0.492±0.024 and 0.378±0.029, respectively), indicating that imatinib mesylate is effective in the treatment of CML regardless of cell chemosensitivity. However, the IC50 for etoposide in sensitive K562 cells was markedly lower than that of K562/ADM cells (50.6±16.5 and 194±8.46 µM, respectively), suggesting that the higher expression levels of MDR1 and/or BCL-2 mRNA in resistant cells may be partially responsible for this effect. This is supported by terminal deoxynucleotidyl transferase dUTP nick-end labeling data, whereby a higher percentage of apoptotic cells were found in the sensitive and resistant K562 cells treated with imatinib mesylate (29.3±0.2 and 31.9±16.7%, respectively), whereas etoposide caused significant apoptosis of sensitive K562 cells (18.3±8.35%) relative to K562/ADM cells (5.17±3.3%). In addition, the MDR genes in K562/ADM cells were knocked down by short interfering RNAs. The percentage knockdowns were 15.4% for MRP1, 17.8% for MDR and 30.7% for BCL-2, which resulted in a non-significant difference in the half maximal inhibitory concentration value of K562/ADM cells relative to K562 cells upon treatment with etoposide.
Whiteley, Jennifer; Iyer, Shrividya; Candrilli, Sean D; Kaye, James A
2015-02-01
Given the multiple options for treatment of chronic-phase chronic myeloid leukemia (CML) with tyrosine kinase inhibitors, our objective was to understand treatment patterns in routine practice and prognostic indicators of response. We conducted a retrospective medical record review of 681 patients with CML in Australia, Canada, and South Korea. Eligible patients had a diagnosis of chronic-phase CML, were Philadelphia chromosome and/or BCR-ABL positive, were aged 18 years or older, and had been treated with first-line imatinib therapy between January 2005 and September 2010. Data on patient demographics, medical history (e.g., comorbidities, Sokal score), and treatment characteristics (e.g., time to initiation, therapy duration) were abstracted. Descriptive analyses were stratified by country and therapy line. Prognostic indicators of response to imatinib were evaluated using multivariable logistic regression, adjusting for country, patient demographics, medical history, treatment characteristics, and side effects. Hematologic, cytogenetic, and molecular responses at 3, 6, 12, and 18 months following initiation of each therapy line. Patients' average age was 57 years, and 59% were male. Overall, imatinib was initiated approximately 4 months following CML diagnosis. Complete or major molecular response (C/MMR) at 6 months following imatinib initiation was 54% in Australia, 22% in Canada, and 38% in South Korea. At 18 months, over 60% of patients achieved C/MMR. Approximately 30% of patients discontinued imatinib primarily due to intolerance and lack of response. Among patients who received second-line treatment, dasatinib was used more frequently than nilotinib. Multivariable regression results indicated Sokal score was identified as a prognostic indicator of response to imatinib therapy at several time points. There are several limitations to this study. First, we selected a convenience sample of patients and physicians and therefore results may not be representative of the true population of patients with chronic-phase CML. Second, data were entered by the selected physician and could be subject to data entry errors or inaccuracies. Third, limited information was collected from the patient records, and it is possible that we did not capture additional prognostic or confounding factors related to the measured outcomes. Next, because this was an analysis of previously documented data (i.e., retrospective), we were unable to provide a priori definitions of response. Finally, multivariable analyses were limited to imatinib-related outcomes. Treatment patterns and prognostic indicators differed by country. Health care providers, payers, and patients can utilize these results to inform treatment and policies aimed at improving the effectiveness of care for patients with chronic-phase CML.
Singh, Anju; Kamble, Sheetal Jaisingh; Sawant, Megha; Chakravarthy, Yogita; Kazmi, Absar; Aymerich, Enrique; Starkl, Markus; Ghangrekar, Makarand; Philip, Ligy
2018-01-01
Moving bed biofilm reactor (MBBR) is a highly effective biological treatment process applied to treat both urban and industrial wastewaters in developing countries. The present study investigated the technical performance of ten full-scale MBBR systems located across India. The biochemical oxygen demand, chemical oxygen demand, total suspended solid, pathogens, and nutrient removal efficiencies were low as compared to the values claimed in literature. Plant 1 was considered for evaluation of environmental impacts using life cycle assessment approach. CML 2 baseline 2000 methodology was adopted, in which 11 impact categories were considered. The life cycle impact assessment results revealed that the main environmental hot spot of this system was energy consumption. Additionally, two scenarios were compared: scenario 1 (direct discharge of treated effluent, i.e., no reuse) and scenario 2 (effluent reuse and tap water replacement). The results showed that scenario 2 significantly reduce the environmental impact in all the categories ultimately decreasing the environmental burden. Moreover, significant economic and environmental benefits can be obtained in scenario 2 by replacing the freshwater demand for non-potable uses. To enhance the performance of wastewater treatment plant (WWTP), there is a need to optimize energy consumption and increase wastewater collection efficiency to maximize the operating capacity of plant and minimize overall environmental footprint. It was concluded that MBBR can be a good alternative for upgrading and optimizing existing municipal wastewater treatment plants with appropriate tertiary treatment. Graphical abstract ᅟ.
Li, Shuai; Ogunkoya, Dolanimi; Fang, Tiegang; Willoughby, Julie; Rojas, Orlando J
2016-11-15
Kraft and organosolv lignins were subjected to carboxymethylation to produce fractions that were soluble in water, displayed a minimum surface tension as low as 34mN/m (25°C) and a critical aggregation concentration of ∼1.5wt%. The carboxymethylated lignins (CML), which were characterized in terms of their degree of substitution ((31)P NMR), elemental composition, and molecular weight (GPC), were found suitable in the formulation of emulsions with bitumens of ultra-high viscosity, such as those from the Canadian oil sands. Remarkably, the interfacial features of the CML enabled fuel emulsions that were synthesized in a very broad range of internal phase content (30-70%). Cryo-replica transmission electron microscopy, which was used here the first time to assess the morphology of the lignin-based emulsions, revealed the droplets of the emulsion stabilized with the modified lignin. The observed drop size (diameters<2μm) was confirmed by light scattering, which revealed a normal size distribution. Such characteristics led to stable emulsified systems that are amenable for a wide range of applications. Emulsification with CML afforded bitumen emulsions with very high colloidal stability (no change was noted for over one month) and with a strong shear thinning behavior. Both features indicate excellent prospects for storage, transport and spraying, which are relevant in operations for power generation, which also take advantage of the high heating value of the emulsion components. The ability of CML to stabilize emulsions and to contribute in their combustion was tested with light fuels (kerosene, diesel, and jet fuel) after formulation of high internal phase systems (70% oil) that enabled operation of a fuel engine. A significant finding is that under certain conditions and compared to the respective pure fuel, combustion of the O/W emulsions stabilized by CML presented lower NOx and CO emissions and maintained a relatively high combustion efficiency. The results highlight the possibilities in high volume application for lignin biomacromolecules. Copyright © 2016 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Houcai; Yu, Jing; Zhang, Lixia
2014-04-18
Highlights: • RPS27a expression was up-regulated in advanced-phase CML and AL patients. • RPS27a knockdown changed biological property of K562 and K562/G01 cells. • RPS27a knockdown affected Raf/MEK/ERK, P21 and BCL-2 signaling pathways. • RPS27a knockdown may be applicable for new combination therapy in CML patients. - Abstract: Ribosomal protein S27a (RPS27a) could perform extra-ribosomal functions besides imparting a role in ribosome biogenesis and post-translational modifications of proteins. The high expression level of RPS27a was reported in solid tumors, and we found that the expression level of RPS27a was up-regulated in advanced-phase chronic myeloid leukemia (CML) and acute leukemia (AL)more » patients. In this study, we explored the function of RPS27a in leukemia cells by using CML cell line K562 cells and its imatinib resistant cell line K562/G01 cells. It was observed that the expression level of RPS27a was high in K562 cells and even higher in K562/G01 cells. Further analysis revealed that RPS27a knockdown by shRNA in both K562 and K562G01 cells inhibited the cell viability, induced cell cycle arrest at S and G2/M phases and increased cell apoptosis induced by imatinib. Combination of shRNA with imatinib treatment could lead to more cleaved PARP and cleaved caspase-3 expression in RPS27a knockdown cells. Further, it was found that phospho-ERK(p-ERK) and BCL-2 were down-regulated and P21 up-regulated in RPS27a knockdown cells. In conclusion, RPS27a promotes proliferation, regulates cell cycle progression and inhibits apoptosis of leukemia cells. It appears that drugs targeting RPS27a combining with tyrosine kinase inhibitor (TKI) might represent a novel therapy strategy in TKI resistant CML patients.« less
Gonzalez, Mariana S; De Brasi, Carlos D; Bianchini, Michele; Gargallo, Patricia; Moiraghi, Beatriz; Bengió, Raquel; Larripa, Irene B
2010-10-15
BCR-ABL fusion gene is implicated in the pathogenesis of chronic myeloid leukemia (CML), encoding the oncoprotein p210(BCR-ABL) with anti-apoptotic activity. The inability to undergo apoptosis is an important mechanism of drug resistance and neoplastic evolution in CML. The gene transcript expression of mitochondrial apoptotic related genes BAX and BCL-XL was evaluated by quantitative Real Time PCR (qPCR) in vitro in K562 cells and in vivo in peripheral blood of 66 CML patients in different stages of the disease: 13 cases at diagnosis, 34 in chronic phase (CP), 10 in accelerated phase (AP) and 9 in blast crisis (BC). Our results in K562 cells showed that all treatments with different tyrosine kinase inhibitors (TKIs) induced a decreased expression of the antiapoptotic oncogene BCL-XL, whereas the proapoptotic gene BAX remains constant with minor modifications. A significantly lower BAX/BCL-XL expression ratio (mean±SEM) than a group of healthy individuals (4.8±0.59) were observed in CML patients at diagnosis (1.28 ± 0.16), in AP (1.14±0.20), in BC (1.16±0.30) and in 18% of cases of patients in CP (2.71±0.40). Most CP cases (82%) showed a significantly increased ratio (10.03±1.30), indicating that the treatment with TKIs efficiently inhibited the expression of BCL-XL by blocking BCR-ABL oncoprotein. The BAX/BCL-XL ratio showed a significant inverse correlation (Spearman P<0.0001) with BCR-ABL/ABL relative expression indicating that low BAX/BCL-XL was associated with disease progression. Accordingly, the follow up of a cohort of eight cases during 6months from diagnosis showed that while the BAX/BCL-XL ratio rapidly increased after treatment in seven cases with good evolution, it decreased in the single case that showed rapid evolution and short survival. Our data suggest that BAX/BCL-XL expression ratio may be a sensitive monitor of disease progression and an early predictor of TKI therapy responsiveness in CML patients. Copyright © 2010 Elsevier Inc. All rights reserved.
miR-29b suppresses CML cell proliferation and induces apoptosis via regulation of BCR/ABL1 protein
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yajuan; Wang, Haixia; Tao, Kun
MicroRNAs (miRNAs) are small RNAs that regulate gene expression posttranscriptionally and are critical for many cellular pathways. Recent evidence has shown that aberrant miRNA expression profiles and unique miRNA signaling pathways are present in many cancers. Here, we demonstrate that miR-29b is markedly lower expressed in CML patient samples. Bioinformatics analysis reveals a conserved target site for miR-29b in the 3′-untranslated region (UTR) of ABL1. miR-29b significantly suppresses the activity of a luciferase reporter containing ABL1-3′UTR and this activity is not observed in cells transfected with mutated ABL1-3′UTR. Enforced expression of miR-29b in K562 cells inhibits cell growth and colonymore » formation ability thereby inducing apoptosis through cleavage of procaspase 3 and PARP. Furthermore, K562 cells transfected with a siRNA targeting ABL1 show similar growth and apoptosis phenotypes as cells overexpression of miR-29b. Collectively, our results suggest that miR-29b may function as a tumor suppressor by targeting ABL1 and BCR/ABL1. - Highlights: ► miR-29b expression was downregulated in CML patients. ► ABL1 was identified as a direct target gene of miR-29b. ► Enforced expression of miR-29b inhibits cell proliferation and induces apoptosis. ► miR-29b might be a therapeutic target to CML.« less
Human monoclonal antibodies reactive with human myelomonocytic leukemia cells.
Posner, M R; Santos, D J; Elboim, H S; Tumber, M B; Frackelton, A R
1989-04-01
Peripheral blood mononuclear cells from a patient with chronic myelogenous leukemia (CML), in remission, were depleted of CD8-positive T-cells and cultured with Epstein-Barr virus. Four of 20 cultures (20%) secreted human IgG antibodies selectively reactive with the cell surfaces of certain human leukemia cell lines. Three polyclonal, Epstein-Barr virus-transformed, B-cell lines were expanded and fused with the human-mouse myeloma analogue HMMA2.11TG/O. Antibody from secreting clones HL 1.2 (IgG1), HL 2.1 (IgG3), and HL 3.1 (IgG1) have been characterized. All three react with HL-60 (promyelocytic), RWLeu4 (CML promyelocytic), and U937 (monocytic), but not with KG-1 (myeloblastic) or K562 (CML erythroid). There is no reactivity with T-cell lines, Burkitt's cell lines, pre-B-leukemia cell lines, or an undifferentiated CML cell line, BV173. Leukemic cells from two of seven patients with acute myelogenous leukemia and one of five with acute lymphocytic leukemia react with all three antibodies. Normal lymphocytes, monocytes, polymorphonuclear cells, red blood cells, bone marrow cells, and platelets do not react. Samples from patients with other diverse hematopoietic malignancies showed no reactivity. Immunoprecipitations suggest that the reactive antigen(s) is a lactoperoxidase iodinatable series of cell surface proteins with molecular weights of 42,000-54,000 and a noniodinatable protein with a molecular weight of 82,000. Based on these data these human monoclonal antibodies appear to react with myelomonocytic leukemic cells and may detect a leukemia-specific antigen or a highly restricted differentiation antigen.
Walz, Christoph; Ahmed, Wesam; Lazarides, Katherine; Betancur, Monica; Patel, Nihal; Hennighausen, Lothar; Zaleskas, Virginia M.
2012-01-01
STAT5 proteins are constitutively activated in malignant cells from many patients with leukemia, including the myeloproliferative neoplasms (MPNs) chronic myeloid leukemia (CML) and polycythemia vera (PV), but whether STAT5 is essential for the pathogenesis of these diseases is not known. In the present study, we used mice with a conditional null mutation in the Stat5a/b gene locus to determine the requirement for STAT5 in MPNs induced by BCR-ABL1 and JAK2V617F in retroviral transplantation models of CML and PV. Loss of one Stat5a/b allele resulted in a decrease in BCR-ABL1–induced CML-like MPN and the appearance of B-cell acute lymphoblastic leukemia, whereas complete deletion of Stat5a/b prevented the development of leukemia in primary recipients. However, BCR-ABL1 was expressed and active in Stat5-null leukemic stem cells, and Stat5 deletion did not prevent progression to lymphoid blast crisis or abolish established B-cell acute lymphoblastic leukemia. JAK2V617F failed to induce polycythemia in recipients after deletion of Stat5a/b, although the loss of STAT5 did not prevent the development of myelofibrosis. These results demonstrate that STAT5a/b is essential for the induction of CML-like leukemia by BCR-ABL1 and of polycythemia by JAK2V617F, and validate STAT5a/b and the genes they regulate as targets for therapy in these MPNs. PMID:22234689
Dixon, Douglas R; Yassin, Alaa
2017-08-01
Little is known regarding the success, failure, or complication rates of advanced implant procedures in patients after discontinuation therapy of long-term medications for the treatment of chronic myelogenous leukemia (CML). This case report presents initial results of a case involving implant placement in the mandible and maxilla as well as reduction of palatal oral pigmentation in a patient discontinuing long-term tyrosine kinase inhibitor (TKI) therapy for CML. A 57-year-old male was referred to the Department of Periodontics, University of Washington, Seattle, Washington, for an assessment of edentulous areas (tooth sites #3 and #14) and failing tooth #19. Previous medical treatment included oral administration (>10 years) of TKI for the treatment of CML. Systemic complications arising from long-term TKI therapy were treated with discontinuation of this medication. Concurrently, after multispecialty dental and medical consultation, extraction of tooth #19 with immediate implant placement and bilateral sinus augmentation with simultaneous implant placement were successfully performed during three separate surgical appointments. Additionally, marked reduction of oral palatal pigmentation was observed during the surgical and restorative phases after TKI discontinuation. Patients with a history of long-term TKIs for CML are at risk for developing complications that result in discontinuation of therapy. Long-term benefits of therapy may allow these patients to enjoy remission with an extended and improved quality of life. Patients undergoing discontinuation therapy may seek dental care. Therefore, dental providers need to understand these systemic interactions and, with multispecialty consultation, may help effectively treat these individuals.
Brümmendorf, Tim H; Cortes, Jorge E; de Souza, Cármino Antonio; Guilhot, Francois; Duvillié, Ladan; Pavlov, Dmitri; Gogat, Karïn; Countouriotis, Athena M; Gambacorti-Passerini, Carlo
2015-01-01
Bosutinib is an oral, dual SRC/ABL1 tyrosine kinase inhibitor for resistant/intolerant chronic myeloid leukaemia (CML). We assessed the efficacy and safety of bosutinib 500 mg/d (n = 250) versus imatinib 400 mg/d (n = 252) after >24 months from accrual completion in newly diagnosed chronic phase (CP)-CML (Bosutinib Efficacy and Safety in Newly Diagnosed CML trial [BELA]). Cumulative complete cytogenetic response (CCyR) rates by 24 months were similar (bosutinib, 79%; imatinib, 80%); cumulative major molecular response (MMR) rates were 59% for bosutinib and 49% for imatinib. Responses were durable; 151/197 vs. 172/204 and 125/153 vs. 117/131 responders remained on treatment and maintained CCyR and MMR, respectively. Since the 12-month primary analysis, no new accelerated-/blast-phase transformations occurred with bosutinib; four occurred with imatinib. Early response (BCR-ABL1/ABL1 ≤ 10%, 3 months) was associated with better CCyR and MMR rates by 12 and 24 months (both arms). Gastrointestinal events and liver function test elevations were more common, and neutropenia, musculoskeletal events and oedema were less common with bosutinib. Discontinuations due to adverse events were more common with bosutinib versus imatinib (most commonly alanine aminotransferase elevation: 4% vs. <1%); most occurred within the first 12 months. Cardiovascular adverse events were similar in both arms. Bosutinib continues to demonstrate good efficacy and manageable tolerability in newly diagnosed CP-CML patients. © 2014 The Authors. British Journal of Haematology published by John Wiley & Sons Ltd.
Ángeles-Velázquez, Jorge Luis; Hurtado-Monroy, Rafael; Vargas-Viveros, Pablo; Carrillo-Muñoz, Silvia; Candelaria-Hernández, Myrna
2016-08-01
Over the past years, the survival of patients with Philadelphia-positive chronic myeloid leukemia (CML Ph(+)) has increased as a result of therapy with tyrosin kinase inhibitors (TKIs). Intolerance to TKIs has been described in approximately 20% of patients receiving treatment. We studied the incidence of imatinib intolerance in patients with CML Ph(+) and their outcome in our CML reference site, as there is no information about the evolution of patients intolerant to TKIs. A group of 86 patients with CML Ph(+) receiving imatinib monotherapy who abandoned treatment were the basis for this study. We present the trends of their disease evolution. The median of age at diagnosis was 42 years. Within a year, 19 (22%) of 86 patients developed imatinib intolerance, all of them with grade III or IV disease that required imatinib dose reduction or discontinuation. Of these patients, 16 (84%) of 19 developed transformation to blastic phase. The cumulative incidences of blastic phase development were 47% in the nonintolerant group and 84% in the intolerant group. There was a relative risk for those with imatinib intolerance to develop blastic phase of 1.78 (95% confidence interval, 1.28 to 2.42) (P < .05). Most imatinib-intolerant patients develop blastic phase transformation, with a poor survival of 3 to 6 months; no effective rescue treatment is available. Future research should to determine whether the origin of this evolution is really due to the intolerance itself or whether it is due to a more aggressive form of the disease, perhaps related to genetic transformation. Copyright © 2016 Elsevier Inc. All rights reserved.
Osorio, S; Casado, L F; Giraldo, P; Maestro, B; Andrade, M; Redondo, S; García-Gutiérrez, V; Ayala, R; Garcia, N; Steegmann, J L
2016-01-01
To provide more reliable data on the epidemiology of chronic myeloid leukaemia (CML) in Spain than are currently available. The EUTOS population-based project of European LeukemiaNet is a population registry of new CML cases in patients 18 years of age or older from 22 European areas. The Spanish section included the autonomous communities of Madrid, Castilla-La Mancha and Aragon, from 1-2-2010 to 31-12-2012. A total of 250 cases were recorded in 35 months. The overall incidence was 1.08 cases/10(5) inhabitants-year, with a predominance of men (58%) and clear differences among the communities. The incidence standardised by age was similar (overall, 1.04; men, 1.31; women, 0.81). The median age was 54 years. The incidence increased with age, reaching a peak at>65 years, although 31.7% of cases appeared between the ages of 20 and 44 years. Four percent of cases were diagnosed in advanced stages (2.4% in accelerated phase, 1.6% in blast crisis), 56% were asymptomatic, 38% had splenomegaly, and the Sokal score was high in 11% (lower than what was previously reflected in the literature). The current incidence of CML in Spain is higher than previously reported and similar to that of the European studies. Unlike the classical descriptions, CML presented mostly in asymptomatic form, with no splenomegaly, less leucocytosis and in stages with better prognosis. Copyright © 2016 Elsevier España, S.L.U. and Sociedad Española de Medicina Interna (SEMI). All rights reserved.
Carcone, April Idalski; Naar-King, Sylvie; Brogan, Kathryn E; Albrecht, Terrance; Barton, Ellen; Foster, Tanina; Martin, Tim; Marshall, Sharon
2013-10-01
The goal of this research was to identify communication behaviors used by weight loss counselors that mostly strongly predicted black adolescents' motivational statements. Three types of motivational statements were of interest: change talk (CT; statements describing their own desires, abilities, reasons, and need for adhering to weight loss recommendations), commitment language (CML; statements about their intentions or plans for adhering), and counterchange talk (CCT; amotivational statements against change and commitment). Thirty-seven black adolescents with obesity received a single motivational interviewing session targeting weight-related behaviors. The video-recorded transcribed sessions were coded using the Minority Youth Sequential Coding for Observing Process Exchanges generating a sequential chain of communication. Data were then subjected to sequential analysis to determine causal relationships between counselor and adolescent communication. Asking open-ended questions to elicit adolescent CT and emphasizing adolescents' autonomy most often led to CT. Open-ended questions to elicit CML, reflecting adolescent CML, and emphasizing autonomy most often led to CML. In contrast, open-ended questions to elicit CCT, reflecting CCT, reflecting ambivalence, and neutral open-ended questions about the target behavior led to CCT. This study provides clinicians with insight into the most effective way to communicate with black adolescents with obesity about weight loss. Specifically, reflective statements and open questions focusing on their own desires, abilities, reasons, need, and commitment to weight loss recommendations are more likely to increase motivational statements, whereas other types of reflections and questions may be counterproductive. Finally, because adolescents have a strong need for autonomous decision making, emphasizing their autonomy may be particularly effective in evoking motivational statements.
Treatment of chronic myelogenous leukemia with interleukin-2: a phase II study in 21 patients.
Vey, N; Blaise, D; Lafage, M; Olive, D; Viens, P; Baume, D; Camerlo, J; Stoppa, A M; Gabus, R; Brandely, M; Hercend, T; Maraninchi, D
1999-03-01
We designed a phase II study to assess the activity of recombinant interleukin-2 (rIL-2) in patients with chronic myelogenous leukemia (CML). Study population included 11 patients in the chronic phase of CML (6 in hematologic remission and 5 with active disease), 6 patients in the accelerated phase, and 4 in blastic phase of CML. Patients received three 5-day cycles administrated every other week. rIL-2 was given as intravenous bolus infusions of 8 x 10(6) IU/m2 three times a day during cycle 1 and twice a day during cycles 2 and 3. Response to rIL-2 was assessed on day 45. No hematologic response was achieved in the patients with evaluable disease. One patient in hematologic remission with rIL-2 achieved a major response (from 72% to 9% Ph+ metaphases), and two patients had some degree of reduction of Ph+ metaphases. Responses were short-lived (< 6 months), but two of these three patients achieved a new cytogenetic response with interferon given post-rIL-2. A significant immune activation was achieved with rIL-2 including a marked increase in CD3+/CD25+ cells, CD56+ cells, and in natural killer/lymphokine activated killer cell cytotoxic activity. These results confirm preclinical studies, which showed that IL-2 has antileukemic activity in CML. However, the responses observed were short lived and restricted to a subgroup of patients with low disease burden. This invites further studies testing its impact in situations of minimal disease or in combination with other cytokines.
Kast, Richard E; Focosi, Daniele
2010-01-01
Chronic myelogenous leukemia (CML) can be controlled for years with the tyrosine kinase inhibitor imatinib but because imatinib poorly penetrates the blood-brain barrier (BBB), on occasion, the CML clone will thrive and evolve to an accelerated phase in the resulting imatinib sanctuary within the central nervous system. In this, CML resembles glioblastoma in that imatinib, which otherwise may be effective, cannot get to the tumor. Although a common street drug of abuse, methamphetamine is Food and Drug Administration-approved and marketed as a pharmaceutical drug to treat attention-deficit disorders. It has shown the ability to open the BBB in rodents. We have some clinical hints that it may do so in humans as well. This short note presents three new points potentially leading to better tyrosine kinase inhibition behind the BBB: 1) Pharmaceutical methamphetamine may have a useful role in treating both CML and glioblastoma by allowing higher imatinib concentrations behind the BBB. 2) The old antidepressant and monoamine oxidase inhibitor selegiline, used to treat Parkinson disease, is catabolized to methamphetamine. Selegiline, as a nonscheduled drug,may therefore be an easier way to open the BBB, allowing more effective chemotherapy with tyrosine kinases. 3) Dasatinib is a tyrosine kinase inhibitor with a spectrum of inhibition only partially overlapping that of imatinib and a mechanism of tyrosine kinase inhibition that is different from that of imatinib. The two should be additive. In addition, dasatinib crosses the BBB poorly, and it can therefore be expected to benefit from methamphetamine-assisted entry. PMID:20165690
Rochau, Ursula; Sroczynski, Gaby; Wolf, Dominik; Schmidt, Stefan; Jahn, Beate; Kluibenschaedl, Martina; Conrads-Frank, Annette; Stenehjem, David; Brixner, Diana; Radich, Jerald; Gastl, Günther; Siebert, Uwe
2015-01-01
Several tyrosine kinase inhibitors (TKIs) are approved for chronic myeloid leukemia (CML) therapy. We evaluated the long-term cost-effectiveness of seven sequential therapy regimens for CML in Austria. A cost-effectiveness analysis was performed using a state-transition Markov model. As model parameters, we used published trial data, clinical, epidemiological and economic data from the Austrian CML registry and national databases. We performed a cohort simulation over a life-long time-horizon from a societal perspective. Nilotinib without second-line TKI yielded an incremental cost-utility ratio of 121,400 €/quality-adjusted life year (QALY) compared to imatinib without second-line TKI after imatinib failure. Imatinib followed by nilotinib after failure resulted in 131,100 €/QALY compared to nilotinib without second-line TKI. Nilotinib followed by dasatinib yielded 152,400 €/QALY compared to imatinib followed by nilotinib after failure. Remaining strategies were dominated. The sequential application of TKIs is standard-of-care, and thus, our analysis points toward imatinib followed by nilotinib as the most cost-effective strategy.
Cancer induction by restriction of oncogene expression to the stem cell compartment
Pérez-Caro, María; Cobaleda, César; González-Herrero, Inés; Vicente-Dueñas, Carolina; Bermejo-Rodríguez, Camino; Sánchez-Beato, Margarita; Orfao, Alberto; Pintado, Belén; Flores, Teresa; Sánchez-Martín, Manuel; Jiménez, Rafael; Piris, Miguel A; Sánchez-García, Isidro
2009-01-01
In human cancers, all cancerous cells carry the oncogenic genetic lesions. However, to elucidate whether cancer is a stem cell-driven tissue, we have developed a strategy to limit oncogene expression to the stem cell compartment in a transgenic mouse setting. Here, we focus on the effects of the BCR-ABLp210 oncogene, associated with chronic myeloid leukaemia (CML) in humans. We show that CML phenotype and biology can be established in mice by restricting BCR-ABLp210 expression to stem cell antigen 1 (Sca1)+ cells. The course of the disease in Sca1-BCR-ABLp210 mice was not modified on STI571 treatment. However, BCR-ABLp210-induced CML is reversible through the unique elimination of the cancer stem cells (CSCs). Overall, our data show that oncogene expression in Sca1+ cells is all that is required to fully reprogramme it, giving rise to a full-blown, oncogene-specified tumour with all its mature cellular diversity, and that elimination of the CSCs is enough to eradicate the whole tumour. PMID:19037256
Profile of bosutinib and its clinical potential in the treatment of chronic myeloid leukemia
Amsberg, Gunhild Keller-von; Koschmieder, Steffen
2013-01-01
Bosutinib (SKI-606) is an orally available, once-daily, dual Src and Abl kinase inhibitor with promising clinical potential in first-, second-, and third-line treatment of chronic myeloid leukemia (CML). Bosutinib effectively inhibits wild-type BCR-ABL and most imatinib-resistant BCR-ABL mutations except for V299L and T315I. Low hematologic toxicity is a remarkable characteristic of this novel second-generation tyrosine kinase inhibitor, and this has been ascribed to its minimal activity against the platelet-derived growth factor receptor and KIT. Low-grade, typically self-limiting diarrhea, which usually appears within the first few weeks after treatment initiation, represents the predominant toxicity of bosutinib. Other treatment-associated adverse events are mostly mild to moderate. Bosutinib has been approved by the US Food and Drug Administration for the treatment of chronic, accelerated, or blast phase Philadelphia chromosome-positive CML in adult patients with resistance or intolerance to prior therapy. This review summarizes the main properties of bosutinib and the currently available data on its clinical potential in the treatment of CML. PMID:23493838
Papadopoulou, Vasiliki; Kontandreopoulou, Elina; Panayiotidis, Panayiotis; Roumelioti, Maria; Angelopoulou, Maria; Kyriazopoulou, Lydia; Diamantopoulos, Panagiotis T; Vaiopoulos, George; Variami, Eleni; Kotsianidis, Ioannis; Athina Viniou, Nora
2016-05-01
The protein tyrosine phosphatase SHP-1 dephosphorylates BCR-ABL1, thereby serving as a potential control mechanism of BCR-ABL1 kinase activity. Pathways regulating SHP-1 expression, which could be exploited in the therapeutics of TKI-resistant chronic myeloid leukemia (CML), remain unknown. Moreover, the questions of whether there is any kind of SHP-1 deregulation in CML, contributing to disease initiation or evolution, as well as the question of prognostic significance of SHP-1, have not been definitively answered. This study shows moderately lower SHP-1 mRNA expression in chronic phase CML patients in comparison to healthy individuals and no change in SHP-1 mRNA levels after successful TKI treatment. Mutational analysis of the aminoterminal and phosphatase domains of SHP-1 in patients did not reveal genetic lesions. This study also found no correlation of SHP-1 expression at diagnosis with response to treatment, although a trend for lower SHP-1 expression was noted in the very small non-responders' group of the 3-month therapeutic milestone.
Loaëc, Grégory; Niquet-Léridon, Céline; Henry, Nicolas; Jacolot, Philippe; Jouquand, Céline; Janssens, Myriam; Hance, Philippe; Cadalen, Thierry; Hilbert, Jean-Louis; Desprez, Bruno; Tessier, Frédéric J
2015-12-02
During the heat treatment of coffee and its substitutes some compounds potentially deleterious to health are synthesized by the Maillard reaction. Among these, N(ε)-carboxymethyl-lysine (CML) was detected at high levels in coffee substitutes. The objective of this study was to evaluate the impact of changes in agricultural practice on the lysine content present in chicory roots and try to limit CML formation during roasting. Of the 24 varieties analyzed, small variations in lysine content were observed, 213 ± 8 mg/100 g dry matter (DM). The formation of lysine tested in five commercial varieties was affected by the nitrogen treatment with mean levels of 176 ± 2 mg/100 g DM when no fertilizer was added and 217 ± 7 mg/100 g DM with a nitrogen supply of 120 kg/ha. The lysine content of fresh roots was significantly correlated to the concentration of CML formed in roasted roots (r = 0.51; p < 0.0001; n = 76).
Determination of N epsilon-(carboxymethyl)lysine in foods and related systems.
Ames, Jennifer M
2008-04-01
The sensitive and specific determination of advanced glycation end products (AGEs) is of considerable interest because these compounds have been associated with pro-oxidative and proinflammatory effects in vivo. AGEs form when carbonyl compounds, such as glucose and its oxidation products, glyoxal and methylglyoxal, react with the epsilon-amino group of lysine and the guanidino group of arginine to give structures including N epsilon-(carboxymethyl)lysine (CML), N epsilon-(carboxyethyl)lysine, and hydroimidazolones. CML is frequently used as a marker for AGEs in general. It exists in both the free or peptide-bound forms. Analysis of CML involves its extraction from the food (including protein hydrolysis to release any peptide-bound adduct) and determination by immunochemical or instrumental means. Various factors must be considered at each step of the analysis. Extraction, hydrolysis, and sample clean-up are all less straight forward for food samples, compared to plasma and tissue. The immunochemical and instrumental methods all have their advantages and disadvantages, and no perfect method exists. Currently, different procedures are being used in different laboratories, and there is an urgent need to compare, improve, and validate methods.
Mustapha, Nik M.; Tarr, Joanna M.; Kohner, Eva M.; Chibber, Rakesh
2010-01-01
Objectives. Using apocynin (inhibitor of NADPH oxidase), and Mitoquinol 10 nitrate (MitoQ; mitochondrial-targeted antioxidant), we addressed the importance of mitochondria versus NADPH oxidase-derived ROS in glucose-induced apoptosis of pericytes. Methods. NADPH oxidase was localised using Western blot analysis and cytochrome C reduction assay. Apoptosis was detected by measuring caspase-3 activity. Intracellular glucose concentration, ROS formation and Nε-(carboxymethyl) lysine (CML) content were measured using Amplex Red assay kit, dihydroethidium (DHE), and competitive immunoabsorbant enzyme-linked assay (ELISA), respectively. Results. NADPH oxidase was localised in the cytoplasm of pericytes suggesting ROS production within intracellular compartments. High glucose (25 mM) significantly increased apoptosis, intracellular glucose concentration, and CML content. Apoptosis was associated with increased gp91phox expression, activity of NADPH oxidase, and intracellular ROS production. Apocynin and not MitoQ significantly blunted the generation of ROS, formation of intracellular CML and apoptosis. Conclusions. NADPH oxidase and not mitochondria-derived ROS is responsible for the accelerated apoptosis of pericytes in diabetic retinopathy. PMID:20652059
Troise, Antonio Dario; Fiore, Alberto; Wiltafsky, Markus; Fogliano, Vincenzo
2015-12-01
The control of Maillard reaction (MR) is a key point to ensure processed foods quality. Due to the presence of a primary amino group on its side chain, lysine is particularly prone to chemical modifications with the formation of Amadori products (AP), Nε-(Carboxymethyl)-L-lysine (CML), Nε-(Carboxyethyl)-L-lysine (CEL). A new analytical strategy was proposed which allowed to simultaneously quantify lysine, CML, CEL and the Nε-(2-Furoylmethyl)-L-lysine (furosine), the indirect marker of AP. The procedure is based on stable isotope dilution assay followed by liquid chromatography tandem mass spectrometry. It showed high sensitivity and good reproducibility and repeatability in different foods. The limit of detection and the RSD% were lower than 5 ppb and below 8%, respectively. Results obtained with the new procedure not only improved the knowledge about the reliability of thermal treatment markers, but also defined new insights in the relationship between Maillard reaction products and their precursors. Copyright © 2015 Elsevier Ltd. All rights reserved.
Clinical roundtable monograph: Unmet needs in the management of chronic myelogenous leukemia.
Jabbour, Elias J; Bixby, Dale; Akard, Luke P
2012-12-01
Approximately 5,000 cases of chronic myelogenous leukemia (CML) are diagnosed each year in the United States. The introduction of tyrosine kinase inhibitors (TKIs) has dramatically improved survival time for many CML patients. Current first-line treatment options include imatinib and the second-generation agents nilotinib and dasatinib. Second- and third-line agents include nilotinib, dasatinib, bosutinib, and the new agent ponatinib. Despite the effectiveness of TKIs, some patients develop resistance or intolerance to these agents. A number of mutations of the BCR-ABL gene have been identified and are associated with TKI resistance. Patients may benefit from switching to a second-line TKI, undergoing hematopoietic stem cell transplant, or receiving newly emerging agents. Although early response is associated with improved patient outcome, clinicians lack tests that can determine which patients will benefit from which therapies. To ensure adequate response, patients should be monitored by both polymerase chain reaction and cytogenetic analysis of the bone marrow. This roundtable monograph reviews key unmet needs in patients with CML related to disease management and treatment options.
Recurrent SETBP1 mutations in atypical chronic myeloid leukemia
Piazza, Rocco; Valletta, Simona; Winkelmann, Nils; Redaelli, Sara; Spinelli, Roberta; Pirola, Alessandra; Antolini, Laura; Mologni, Luca; Donadoni, Carla; Papaemmanuil, Elli; Schnittger, Susanne; Kim, Dong-Wook; Boultwood, Jacqueline; Rossi, Fabio; Gaipa, Giuseppe; De Martini, Greta P; di Celle, Paola Francia; Jang, Hyun Gyung; Fantin, Valeria; Bignell, Graham R; Magistroni, Vera; Haferlach, Torsten; Pogliani, Enrico Maria; Campbell, Peter J; Chase, Andrew J; Tapper, William J; Cross, Nicholas C P; Gambacorti-Passerini, Carlo
2013-01-01
Atypical chronic myeloid leukemia (aCML) shares clinical and laboratory features with CML, but it lacks the BCR-ABL1 fusion. We performed exome sequencing of eight aCMLs and identified somatic alterations of SETBP1 (encoding a p.Gly870Ser alteration) in two cases. Targeted resequencing of 70 aCMLs, 574 diverse hematological malignancies and 344 cancer cell lines identified SETBP1 mutations in 24 cases, including 17 of 70 aCMLs (24.3%; 95% confidence interval (CI) = 16–35%). Most mutations (92%) were located between codons 858 and 871 and were identical to changes seen in individuals with Schinzel-Giedion syndrome. Individuals with mutations had higher white blood cell counts (P = 0.008) and worse prognosis (P = 0.01). The p.Gly870Ser alteration abrogated a site for ubiquitination, and cells exogenously expressing this mutant exhibited higher amounts of SETBP1 and SET protein, lower PP2A activity and higher proliferation rates relative to those expressing the wild-type protein. In summary, mutated SETBP1 represents a newly discovered oncogene present in aCML and closely related diseases. PMID:23222956
Recurrent SETBP1 mutations in atypical chronic myeloid leukemia.
Piazza, Rocco; Valletta, Simona; Winkelmann, Nils; Redaelli, Sara; Spinelli, Roberta; Pirola, Alessandra; Antolini, Laura; Mologni, Luca; Donadoni, Carla; Papaemmanuil, Elli; Schnittger, Susanne; Kim, Dong-Wook; Boultwood, Jacqueline; Rossi, Fabio; Gaipa, Giuseppe; De Martini, Greta P; di Celle, Paola Francia; Jang, Hyun Gyung; Fantin, Valeria; Bignell, Graham R; Magistroni, Vera; Haferlach, Torsten; Pogliani, Enrico Maria; Campbell, Peter J; Chase, Andrew J; Tapper, William J; Cross, Nicholas C P; Gambacorti-Passerini, Carlo
2013-01-01
Atypical chronic myeloid leukemia (aCML) shares clinical and laboratory features with CML, but it lacks the BCR-ABL1 fusion. We performed exome sequencing of eight aCMLs and identified somatic alterations of SETBP1 (encoding a p.Gly870Ser alteration) in two cases. Targeted resequencing of 70 aCMLs, 574 diverse hematological malignancies and 344 cancer cell lines identified SETBP1 mutations in 24 cases, including 17 of 70 aCMLs (24.3%; 95% confidence interval (CI) = 16-35%). Most mutations (92%) were located between codons 858 and 871 and were identical to changes seen in individuals with Schinzel-Giedion syndrome. Individuals with mutations had higher white blood cell counts (P = 0.008) and worse prognosis (P = 0.01). The p.Gly870Ser alteration abrogated a site for ubiquitination, and cells exogenously expressing this mutant exhibited higher amounts of SETBP1 and SET protein, lower PP2A activity and higher proliferation rates relative to those expressing the wild-type protein. In summary, mutated SETBP1 represents a newly discovered oncogene present in aCML and closely related diseases.
Current trends in molecular diagnostics of chronic myeloid leukemia.
Vinhas, Raquel; Cordeiro, Milton; Pedrosa, Pedro; Fernandes, Alexandra R; Baptista, Pedro V
2017-08-01
Nearly 1.5 million people worldwide suffer from chronic myeloid leukemia (CML), characterized by the genetic translocation t(9;22)(q34;q11.2), involving the fusion of the Abelson oncogene (ABL1) with the breakpoint cluster region (BCR) gene. Early onset diagnosis coupled to current therapeutics allow for a treatment success rate of 90, which has focused research on the development of novel diagnostics approaches. In this review, we present a critical perspective on current strategies for CML diagnostics, comparing to gold standard methodologies and with an eye on the future trends on nanotheranostics.
Schütz, C; Inselmann, S; Sausslele, S; Dietz, C T; Mu Ller, M C; Eigendorff, E; Brendel, C A; Metzelder, S K; Bru Mmendorf, T H; Waller, C; Dengler, J; Goebeler, M E; Herbst, R; Freunek, G; Hanzel, S; Illmer, T; Wang, Y; Lange, T; Finkernagel, F; Hehlmann, R; Huber, M; Neubauer, A; Hochhaus, A; Guilhot, J; Xavier Mahon, F; Pfirrmann, M; Burchert, A
2017-04-01
It is unknown, why only a minority of chronic myeloid leukemia (CML) patients sustains treatment free remission (TFR) after discontinuation of tyrosine kinase inhibitor (TKI) therapy in deep molecular remission (MR). Here we studied, whether expression of the T-cell inhibitory receptor (CTLA-4)-ligand CD86 (B7.2) on plasmacytoid dendritic cells (pDC) affects relapse risk after TKI cessation. CML patients in MR displayed significantly higher CD86 + pDC frequencies than normal donors (P<0.0024), whereas TFR patients had consistently low CD86 + pDC (n=12). This suggested that low CD86 + pDC might be predictive of TFR. Indeed, in a prospective analysis of 122 patients discontinuing their TKI within the EURO-SKI trial, the one-year relapse-free survival (RFS) was 30.1% (95% CI 15.6-47.9) for patients with >95 CD86 + pDC per 10 5 lymphocytes, but 70.0% (95% CI 59.3-78.3) for patients with <95 CD86 + pDC (hazard ratio (HR) 3.4, 95% - CI: 1.9-6.0; P<0.0001). Moreover, only patients with <95 CD86 + pDC derived a significant benefit from longer (>8 years) TKI exposure before discontinuation (HR 0.3, 95% CI 0.1-0.8; P=0.0263). High CD86 + pDC counts significantly correlated with leukemia-specific CD8 + T - cell exhaustion (Spearman correlation: 0.74, 95%-CI: 0.21-0.92; P=0.0098). Our data demonstrate that CML patients with high CD86 + pDC counts have a higher risk of relapse after TKI discontinuation.
20(S)-Ginsenoside Rh2 Induce the Apoptosis and Autophagy in U937 and K562 Cells.
Zhuang, Jianjian; Yin, Juxin; Xu, Chaojian; Mu, Ying; Lv, Shaowu
2018-03-08
Acute myeloid leukemia (AML) and Chronic myelogenous leukemia (CML) are common leukemia in adults. 20(S)-GRh2 is an important bioactive substance that is present in Panax ginseng. However, there are no investigations that deal with the comparison of apoptosis, the occurrence of autophagy, and the relationship between apoptosis and autophagy after being treated with 20(S)-GRh2 in AML and CML. In this study, we explored the effect of 20(S)-GRh2 on the AML and CML (U937 and K562). Fluorescence microscopy, CCK-8, Quantitative realtime PCR, Western blot, transmission electron microscopy (TEM), and flow cytometric analysis were used to detect the occurrence of cell proliferation inhibition, apoptosis, and autophagy. By using the above methods, it was determined that apoptosis induced by 20(S)-GRh2 was more obvious in K562 than U937 cells and 20(S)-GRh2 could generate autophagy in K562 and U937 cells. When pretreated by a specific inhibitor of autophagy, (3-methyladenine), the 20(S)-GRh2-induced apoptosis was enhanced, which indicated that 20(S)-GRh2-induced autophagy may protect U937 and K562 cells from undergoing apoptotic cell death. On the other hand, pretreated by an apoptosis suppressor (Z-VAD-FMK), it greatly induced the autophagy and partially prevented 20(S)-GRh2 induced apoptosis. This phenomenon indicated that 20(S)-GRh2-induced autophagy may serve as a survival mechanism and apoptosis and autophagy could act as partners to induce cell death in a cooperative manner. These findings may provide a rationale for future clinical application by using 20(S)-GRh2 combined autophagy inhibitors for AML and CML.
Evaluation of deoxyhypusine synthase inhibitors targeting BCR-ABL positive leukemias.
Ziegler, Patrick; Chahoud, Tuhama; Wilhelm, Thomas; Pällman, Nora; Braig, Melanie; Wiehle, Valeska; Ziegler, Susanne; Schröder, Marcus; Meier, Chris; Kolodzik, Adrian; Rarey, Matthias; Panse, Jens; Hauber, Joachim; Balabanov, Stefan; Brümmendorf, Tim H
2012-12-01
Effective inhibition of BCR-ABL tyrosine kinase activity with Imatinib represents a breakthrough in the treatment of patients with chronic myeloid leukemia (CML). However, more than 30 % of patients with CML in chronic phase do not respond adequately to Imatinib and the drug seems not to affect the quiescent pool of BCR-ABL positive leukemic stem and progenitor cells. Therefore, despite encouraging clinical results, Imatinib can still not be considered a curative treatment option in CML. We recently reported downregulation of eukaryotic initiation factor 5A (eIF5A) in Imatinib treated K562 cells. Furthermore, the inhibition of eIF5A by siRNA in combination with Imatinib has been shown to exert synergistic cytotoxic effects on BCR-ABL positive cell lines. Based on the structure of known deoxyhypusine synthase (DHS) inhibitors such as CNI-1493, a drug design approach was applied to develop potential compounds targeting DHS. Here we report the biological evaluation of selected novel (DHSI-15) as compared to established (CNI-1493, deoxyspergualin) DHS inhibitors. We show that upon the compounds tested, DHSI-15 and deoxyspergualin exert strongest antiproliferative effects on BCR-ABL cells including Imatinib resistant mutants. However, this effect did not seem to be restricted to BCR-ABL positive cell lines or primary cells. Both compounds are able to induce apoptosis/necrosis during long term incubation of BCR-ABL positive BA/F3 derivates. Pharmacological synergism can be observed for deoxyspergualin and Imatinib, but not for DHSI-15 and Imatinib. Finally we show that deoxyspergualin is able to inhibit proliferation of CD34+ progenitor cells from CML patients. We conclude that inhibition of deoxyhypusine synthase (DHS) can be supportive for the anti-proliferative treatment of leukemia and merits further investigation including other cancers.
Recurrent ETNK1 mutations in atypical chronic myeloid leukemia.
Gambacorti-Passerini, Carlo B; Donadoni, Carla; Parmiani, Andrea; Pirola, Alessandra; Redaelli, Sara; Signore, Giovanni; Piazza, Vincenzo; Malcovati, Luca; Fontana, Diletta; Spinelli, Roberta; Magistroni, Vera; Gaipa, Giuseppe; Peronaci, Marco; Morotti, Alessandro; Panuzzo, Cristina; Saglio, Giuseppe; Usala, Emilio; Kim, Dong-Wook; Rea, Delphine; Zervakis, Konstantinos; Viniou, Nora; Symeonidis, Argiris; Becker, Heiko; Boultwood, Jacqueline; Campiotti, Leonardo; Carrabba, Matteo; Elli, Elena; Bignell, Graham R; Papaemmanuil, Elli; Campbell, Peter J; Cazzola, Mario; Piazza, Rocco
2015-01-15
Despite the recent identification of recurrent SETBP1 mutations in atypical chronic myeloid leukemia (aCML), a complete description of the somatic lesions responsible for the onset of this disorder is still lacking. To find additional somatic abnormalities in aCML, we performed whole-exome sequencing on 15 aCML cases. In 2 cases (13.3%), we identified somatic missense mutations in the ETNK1 gene. Targeted resequencing on 515 hematological clonal disorders revealed the presence of ETNK1 variants in 6 (8.8%) of 68 aCML and 2 (2.6%) of 77 chronic myelomonocytic leukemia samples. These mutations clustered in a small region of the kinase domain, encoding for H243Y and N244S (1/8 H243Y; 7/8 N244S). They were all heterozygous and present in the dominant clone. The intracellular phosphoethanolamine/phosphocholine ratio was, on average, 5.2-fold lower in ETNK1-mutated samples (P < .05). Similar results were obtained using myeloid TF1 cells transduced with ETNK1 wild type, ETNK1-N244S, and ETNK1-H243Y, where the intracellular phosphoethanolamine/phosphocholine ratio was significantly lower in ETNK1-N244S (0.76 ± 0.07) and ETNK1-H243Y (0.37 ± 0.02) than in ETNK1-WT (1.37 ± 0.32; P = .01 and P = .0008, respectively), suggesting that ETNK1 mutations may inhibit the catalytic activity of the enzyme. In summary, our study shows for the first time the evidence of recurrent somatic ETNK1 mutations in the context of myeloproliferative/myelodysplastic disorders. © 2015 by The American Society of Hematology.
Finch, Emily R; Kudva, Avinash K; Quickel, Michael D; Goodfield, Laura L; Kennett, Mary J; Whelan, Jay; Paulson, Robert F; Prabhu, K Sandeep
2015-10-01
Current therapies for treatment of myeloid leukemia do not eliminate leukemia stem cells (LSC), leading to disease relapse. In this study, we supplemented mice with eicosapentaenoic acid (EPA, C20:5), a polyunsaturated omega-3 fatty acid, at pharmacologic levels, to examine whether the endogenous metabolite, cyclopentenone prostaglandin delta-12 PGJ3 (Δ(12)-PGJ3), was effective in targeting LSCs in experimental leukemia. EPA supplementation for 8 weeks resulted in enhanced endogenous production of Δ(12)-PGJ3 that was blocked by indomethacin, a cyclooxygenase (COX) inhibitor. Using a murine model of chronic myelogenous leukemia (CML) induced by bone marrow transplantation of BCR-ABL-expressing hematopoietic stem cells, mice supplemented with EPA showed a decrease in the LSC population, and reduced splenomegaly and leukocytosis, when compared with mice on an oleic acid diet. Supplementation of CML mice carrying the T315I mutation (in BCR-ABL) with EPA resulted in a similar effect. Indomethacin blocked the EPA effect and increased the severity of BCR-ABL-induced CML and decreased apoptosis. Δ(12)-PGJ3 rescued indomethacin-treated BCR-ABL mice and decreased LSCs. Inhibition of hematopoietic-prostaglandin D synthase (H-PGDS) by HQL-79 in EPA-supplemented CML mice also blocked the effect of EPA. In addition, EPA supplementation was effective in a murine model of acute myeloid leukemia. EPA-supplemented mice exhibited a decrease in leukemia burden and a decrease in the LSC colony-forming unit (LSC-CFU). The decrease in LSCs was confirmed through serial transplantation assays in all disease models. The results support a chemopreventive role for EPA in myeloid leukemia, which is dependent on the ability to efficiently convert EPA to endogenous COX-derived prostanoids, including Δ(12)-PGJ3. ©2015 American Association for Cancer Research.
Suzuki, D; Miyata, T; Saotome, N; Horie, K; Inagi, R; Yasuda, Y; Uchida, K; Izuhara, Y; Yagame, M; Sakai, H; Kurokawa, K
1999-04-01
Advanced glycation end products (AGE) include a variety of protein adducts whose accumulation has been implicated in tissue damage associated with diabetic nephropathy (DN). It was recently demonstrated that among AGE, glycoxidation products, whose formation is closely linked to oxidation, such as carboxymethyllysine (CML) and pentosidine, accumulate in expanded mesangial matrix and nodular lesions in DN, in colocalization with malondialdehyde-lysine (MDA-lysine), a lipoxidation product, whereas pyrraline, another AGE structure whose deposition is rather independent from oxidative stress, was not found within diabetic glomeruli. Because CML, pentosidine, and MDA-lysine are all formed under oxidative stress by carbonyl amine chemistry between protein amino group and carbonyl compounds, their colocalization suggests a local oxidative stress and increased protein carbonyl modification in diabetic glomerular lesions. To address this hypothesis, human renal tissues from patients with DN or IgA nephropathy were examined with specific antibodies to characterize most, if not all, carbonyl modifications of proteins by autoxidation products of carbohydrates, lipids, and amino acids: CML (derived from carbohydrates, lipids, and amino acid), pentosidine (derived from carbohydrates), MDA-lysine (derived from lipids), 4-hydroxynonenal-protein adduct (derived from lipids), and acrolein-protein adduct (derived from lipids and amino acid). All of the protein adducts were identified in expanded mesangial matrix and nodular lesions in DN. In IgA nephropathy, another primary glomerular disease leading to end-stage renal failure, despite positive staining for MDA-lysine and 4-hydroxynonenal-protein adduct in the expanded mesangial area, CML, pentosidine, and acrolein-protein adduct immunoreactivities were only faint in glomeruli. These data suggest a broad derangement in nonenzymatic biochemistry in diabetic glomerular lesions, and implicate an increased local oxidative stress and carbonyl modification of proteins in diabetic glomerular tissue damage ("carbonyl stress").
Hussain, Syed Rizwan; Naqvi, Hena; Raza, Syed Tasleem; Ahmed, Faisal; Babu, Sunil G; Kumar, Ashutosh; Zaidi, Zeashan Haider; Mahdi, Farzana
2012-08-01
Leukaemia is a heterogeneous disease in which haematopoietic progenitor cells acquire genetic lesions that lead to a block in differentiation, increased self-renewal, and unregulated proliferation. The enzyme 5,10-methylenetetrahydrofolate reductase (MTHFR), involved in folate metabolism, plays a crucial role in cells because folate availability is important for DNA integrity. The aim of this case-control study was to evaluate the association of the C677T MTHFR gene polymorphism with acute myeloid leukaemia (AML), acute lymphoblastic leukaemia (ALL), chronic myeloid leukaemia (CML) and chronic lymphocytic leukaemia (CLL). A total of 275 leukaemia cases - including AML (n = 112), ALL (n = 81), CML (n = 43), CLL (n = 39) - and 251 age/sex-matched healthy control individuals participated in this study. MTHFR C677T polymorphisms in the cases and controls were evaluated by polymerase chain reaction and restriction fragment length polymorphism (PCR-RFLP). The average MTHFR 677CC, 677CT, 677TT genotype frequencies of total leukaemia cases were 68.73%, 19.64%, and 11.64% in cases, and 71.71%, 24.30%, and 3.98% in healthy controls, respectively. The average frequency of the MTHFR 677T allele was 21.45% among the cases compared to 16.13% among the controls. In the present case-control study we have observed a higher frequency of the MTHFR 677TT genotype in cases of leukaemia (AML, ALL, CML and CLL) as compared with controls; this might be due to ethnic and geographic variation. As per our findings, although the frequency of the MTHFR 677T allele is moderately high in AML, ALL and CLL, no statistically significant association was found; on the other hand statistically significant association was found in the context of CML cases. Copyright © 2012 Elsevier Ltd. All rights reserved.
Targeting survival pathways in chronic myeloid leukaemia stem cells
Sinclair, A; Latif, A L; Holyoake, T L
2013-01-01
Chronic myeloid leukaemia (CML) is a clonal myeloproliferative disorder characterized by the presence of a fusion oncogene BCR-ABL, which encodes a protein with constitutive TK activity. The implementation of tyrosine kinase inhibitors (TKIs) marked a major advance in CML therapy; however, there are problems with current treatment. For example, relapse occurs when these drugs are discontinued in the majority of patients who have achieved a complete molecular response on TKI and these agents are less effective in patients with mutations in the BCR-ABL kinase domain. Importantly, TKI can effectively target proliferating mature cells, but do not eradicate quiescent leukaemic stem cells (LSCs), therefore allowing disease persistence despite treatment. It is essential that alternative strategies are used to target the LSC population. BCR-ABL activation is responsible for the modulation of different signalling pathways, which allows the LSC fraction to evade cell death. Several pathways have been shown to be modulated by BCR-ABL, including PI3K/AKT/mTOR, JAK-STAT and autophagy signalling pathways. Targeting components of these survival pathways, alone or in combination with TKI, therefore represents an attractive potential therapeutic approach for targeting the LSC. However, many pathways are also active in normal stem cells. Therefore, potential targets must be validated to effectively eradicate CML stem cells while sparing normal counterparts. This review summarizes the main pathways modulated in CML stem cells, the recent developments and the use of novel drugs to target components in these pathways which may be used to target the LSC population. Linked Articles This article is part of a themed section on Emerging Therapeutic Aspects in Oncology. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2013.169.issue-8 PMID:23517124
Imatinib mesylate, the first molecularly targeted gene suppressor.
Pindolia, Vanita K; Zarowitz, Barbara J
2002-10-01
To review the pharmacology, pharmacokinetics, efficacy, safety, and drug-drug and drug-food interactions of imatinib and the economic considerations of imatinib in the treatment of chronic myeloid leukemia (CML). Literature accessed through MEDLINE (January 1970-January 2002), abstracts from the 2001 annual meetings of the American Society of Clinical Oncology and the American Society of Hematology, imatinib product labeling, and additional studies or abstracts identified from the bibliographies of the reviewed literature were used to compile data. Key search terms were allogeneic bone marrow transplant and stem cell transplant, chronic myeloid leukemia, imatinib, interferon, Gleevec, leukemia, gastrointestinal stromal tumors, STI-571, and tyrosine kinase inhibitors. Imatinib is a distinctively characteristic drug targeted toward inhibition of tyrosine kinase activity. Imatinib is indicated for the treatment of patients with CML who failed interferon (IFN)-alpha therapy and for the treatment of patients with gastrointestinal stromal tumors (GISTs) expressing the tyrosine kinase receptor c-kit. Imatinib produces positive short-term hematologic and cytogenetic responses in patients with CML; short-term positive objective responses have been shown for patients with GISTs. To our knowledge, there are no controlled trials demonstrating long-term safety, improvement in disease-related symptoms, or increased survival with imatinib. Serious adverse effects requiring dosage decreases and/or therapy termination are edema, hepatotoxicity, and hematologic toxicity. Imatinib also has been found to inhibit tyrosine kinases involved in the growth of other malignancies. The role of imatinib in tumors that express a tyrosine kinase is constantly evolving with new research results. Imatinib therapy should be limited to patients whose tumor growth is related to a genetically defective tyrosine kinase. In cases of CML, imatinib should be further limited to patients who have tried and failed IFN-alpha therapy or who are not candidates for an allogeneic stem cell transplant.
Russell, N H; Szydlo, R; McCann, S; Potter, M N; Craddock, C; Towlson, K; Apperley, J F
2004-02-01
As part of its clinical governance programme the British Society for Blood and Marrow Transplantation (BSBMT) undertook an analysis of transplant outcome for adults undergoing human leucocyte antigen - identical sibling allogeneic transplantation for chronic myeloid leukaemia (CML) in first chronic phase (CP1) or autologous transplantation for Hodgkin's disease (HD). The study aimed to compare transplant-related mortality (TRM) and survival for patients reported to the BSBMT with patients transplanted in the rest of Europe, reported to the European Group for Blood and Marrow Transplantation (EBMT). The outcomes for 104 allogeneic transplants for CML in 24 UK/Irish centres were compared with 775 allografts in 145 other European centres. For HD, 241 autografts from 38 UK/Irish centres were compared with 1145 transplants in 239 other European centres. For both diseases, the cohorts were broadly matched with the exception of CML, where 85% of patients were transplanted <1 year from diagnosis in the UK/Ireland compared with 68% in the EBMT (P = 0.001). Cox regression analysis was undertaken using known delineated variables affecting transplant outcome in addition to the registry of origin. The adjusted survival curves for CML showed no significant differences between the two groups, with 3-year survival probabilities of 70.2% and 67.1% for the EBMT and BSBMT cohorts respectively. Likewise, the analysis for HD showed overlapping survival curves, with 3-year survival probabilities of 71.8% (EBMT) and 70.8% (BSBMT). TRM was not statistically different in either disease. This study demonstrates the potential for using national registries to benchmark transplant outcome against the EBMT registry.
Corrêa, Stephany; Binato, Renata; Du Rocher, Bárbara; Ferreira, Gerson; Cappelletti, Paola; Soares-Lima, Sheila; Pinto, Luis Felipe; Mencalha, André; Abdelhay, Eliana
2014-01-01
One of the potential mechanisms of imatinib mesylate (IM) resistance in chronic myeloid leukemia (CML) is increased level of P-glycoprotein (Pgp). Pgp is an efflux pump capable of activating the multidrug resistance (MDR) phenotype. The gene encoding Pgp (ABCB1) has several binding sites in its promoter region, along with CpG islands and GC boxes, involved in its epigenetic control. In previous work, we performed a proteomic study to identify proteins involved in IM cross-resistance in acute leukemia. Among these proteins, we identified LRPPRC as a potential regulator of ABCB1 transcription via an invMED1 binding site in ABCB1. Interestingly, this invMED1 binding site overlaps with the GC -100 box. In this work, we investigated the potential role of LRPPRC in the regulation of ABCB1 transcriptional activity in CML resistance. In addition, we evaluated the potential connection between this regulation and the methylation status of the ABCB1 promoter in its GC -100 box. Our results show that LRPPRC binds prominently to the ABCB1 promoter in Lucena cells, an IM-resistant cell line. Luciferase assays showed that ABCB1 transcription is positively regulated by LRPPRC upon its knockdown. Pyrosequencing analysis showed that the ABCB1 promoter is differentially methylated at its GC -100 box in K562 cells compared with Lucena cells, and in CML patients with different response to IM. Chromatin immunoprecipitation and Pgp expression after DNA demethylation treatment showed that LRPPRC binding is affected by the methylation status of ABCB1 GC -100 box. Taken together, our findings indicate that LRPPRC is a transcription factor related to ABCB1 expression and highlight the importance of epigenetic regulation in CML resistance. PMID:25089713
Corrêa, Stephany; Binato, Renata; Du Rocher, Bárbara; Ferreira, Gerson; Cappelletti, Paola; Soares-Lima, Sheila; Pinto, Luis Felipe; Mencalha, André; Abdelhay, Eliana
2014-08-01
One of the potential mechanisms of imatinib mesylate (IM) resistance in chronic myeloid leukemia (CML) is increased level of P-glycoprotein (Pgp). Pgp is an efflux pump capable of activating the multidrug resistance (MDR) phenotype. The gene encoding Pgp (ABCB1) has several binding sites in its promoter region, along with CpG islands and GC boxes, involved in its epigenetic control. In previous work, we performed a proteomic study to identify proteins involved in IM cross-resistance in acute leukemia. Among these proteins, we identified LRPPRC as a potential regulator of ABCB1 transcription via an invMED1 binding site in ABCB1. Interestingly, this invMED1 binding site overlaps with the GC -100 box. In this work, we investigated the potential role of LRPPRC in the regulation of ABCB1 transcriptional activity in CML resistance. In addition, we evaluated the potential connection between this regulation and the methylation status of the ABCB1 promoter in its GC -100 box. Our results show that LRPPRC binds prominently to the ABCB1 promoter in Lucena cells, an IM-resistant cell line. Luciferase assays showed that ABCB1 transcription is positively regulated by LRPPRC upon its knockdown. Pyrosequencing analysis showed that the ABCB1 promoter is differentially methylated at its GC -100 box in K562 cells compared with Lucena cells, and in CML patients with different response to IM. Chromatin immunoprecipitation and Pgp expression after DNA demethylation treatment showed that LRPPRC binding is affected by the methylation status of ABCB1 GC -100 box. Taken together, our findings indicate that LRPPRC is a transcription factor related to ABCB1 expression and highlight the importance of epigenetic regulation in CML resistance.
Miyata, T; Fu, M X; Kurokawa, K; van Ypersele de Strihou, C; Thorpe, S R; Baynes, J W
1998-10-01
Advanced glycation end products (AGEs), formed by non-enzymatic glycation and oxidation (glycoxidation) reactions, have been implicated in the pathogenesis of several diseases, including normoglycemic uremia. AGE research in uremia has focused on the accumulation of carbohydrate-derived adducts generated by the Maillard reaction. Recent studies, however, have demonstrated that one AGE, the glycoxidation product carboxymethyllysine (CML), could be derived not only from carbohydrates but also from oxidation of polyunsaturated fatty acids in vitro, raising the possibility that both carbohydrate and lipid autoxidation might be increased in uremia. To address this hypothesis, we applied gas chromatography-mass spectrometry and high performance liquid chromatography to measure protein adducts formed in uremic plasma by reactions between carbonyl compounds and protein amino groups: pentosidine derived from carbohydrate-derived carbonyls, malondialdehyde (MDA)-lysine derived from lipid-derived carbonyls, and CML originating possibly from both sources. All three adducts were elevated in uremic plasma. Plasma CML levels were mainly (>95%) albumin bound. Their levels were not correlated with fructoselysine levels and were similar in diabetic and non-diabetic patients on hemodialysis, indicating that their increase was not driven by glucose. Pentosidine and MDA-lysine were also increased in plasma to the same extent in diabetic and non-diabetic hemodialysis patients. Statistical analysis indicated that plasma levels of CML correlated weakly (P < 0.05) with those of pentosidine and MDA-lysine, but that pentosidine and MDA-lysine varied independently (P > 0.5). These data suggest that the increased levels of AGEs in blood, and probably in tissues, reported in uremia implicate a broad derangement in non-enzymatic biochemistry involving alterations in autoxidation of both carbohydrates and lipids.
New crystal forms of Diocleinae lectins in the presence of different dimannosides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moreno, Frederico Bruno Mendes Batista; Bezerra, Gustavo Arruda; Oliveira, Taianá Maia de
2006-11-01
The crystallization and preliminary X-ray data of Canavalia gladiata lectin (CGL) and C. maritima lectin (CML) complexed with Man(α1-2)Man(α1)OMe, Man(α1-3)Man(α1)OMe and Man(α1-4)Man(α1)OMe in two crystal forms [the complexes with Man(α1-3)Man(α1)OMe and Man(α1-4)Man(α1)OMe crystallized in space group P3{sub 2} and those with Man(α1-2)Man(α1)OMe crystallized in space group I222], which differed from those of the native proteins (P2{sub 1}2{sub 1}2 for CML and C222 for CGL), are reported. Studying the interactions between lectins and sugars is important in order to explain the differences observed in the biological activities presented by the highly similar proteins of the Diocleinae subtribe. Here, the crystallization andmore » preliminary X-ray data of Canavalia gladiata lectin (CGL) and C. maritima lectin (CML) complexed with Man(α1-2)Man(α1)OMe, Man(α1-3)Man(α1)OMe and Man(α1-4)Man(α1)OMe in two crystal forms [the complexes with Man(α1-3)Man(α1)OMe and Man(α1-4)Man(α1)OMe crystallized in space group P3{sub 2} and those with Man(α1-2)Man(α1)OMe crystallized in space group I222], which differed from those of the native proteins (P2{sub 1}2{sub 1}2 for CML and C222 for CGL), are reported. The crystal complexes of ConA-like lectins with Man(α1-4)Man(α1)OMe are reported here for the first time.« less
Forensic evaluation of medical liability cases in general surgery.
Moreira, H; Magalhães, T; Dinis-Oliveira, Rj; Taveira-Gomes, A
2014-10-01
Although medical liability (disciplinary, civil and criminal) is increasingly becoming an issue, few studies exist, particularly from the perspective of forensic science, which demonstrate the extent to which medical malpractice occurs, or when it does, the reasons for it. Our aims were to evaluate the current situation concerning medical liability in general surgery (GS) in Portugal, the reasons for claims, and the forensic evaluations and conclusions, as well as the association between these issues and the judicial outcomes. We analysed the Medico-Legal Council (CML) reports of the National Institute of Legal Medicine and Forensic Sciences of Portugal related to GS during 2001-2010. The judicial outcomes of each case were requested from the Public Prosecutor Office (PPO) and the court. Alleged cases of medical liability in GS represented 11.2% of the total cases analysed by the CML. We estimated that in Portugal, 4:100,000 surgeries are subject to litigation. The majority of complaints were due to the patient's death (75.4%), with laparoscopic cholecystectomy surgeries representing 55.2% of cases. In 76.1% of the cases, the CML believed that there was no violation of legesartis and in 55.2% of cases, no causal nexus was found between the medical practice and the alleged harm. The PPO prosecuted physicians in 6.4% of the cases and resulted in one conviction. Finally, the importance of the CML reports as a relevant technical-scientific tool for judicial decision was evident because these reports significantly (p < 0.05) influenced the prosecutor's decision, whether to prosecute or not. © The Author(s) 2013 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
Mohammadi, Mohammad; Cao, Yang; Glimelius, Ingrid; Bottai, Matteo; Eloranta, Sandra; Smedby, Karin E
2015-11-05
Comorbidity increases overall mortality in patients diagnosed with hematological malignancies. The impact of comorbidity on cancer-specific mortality, taking competing risks into account, has not been evaluated. Using the Swedish Cancer Register, we identified patients aged >18 years with a first diagnosis of acute myeloid leukemia (AML, N = 2,550), chronic myeloid leukemia (CML, N = 1,000) or myeloma (N = 4,584) 2002-2009. Comorbid disease history was assessed through in- and out-patient care as defined in the Charlson comorbidity index. Mortality rate ratios (MRR) were estimated through 2012 using Poisson regression. Probabilities of cancer-specific death were computed using flexible parametric survival models. Comorbidity was associated with increased all-cause as well as cancer-specific mortality (cancer-specific MRR: AML = 1.27, 95 % CI: 1.15-1.40; CML = 1.28, 0.96-1.70; myeloma = 1.17, 1.08-1.28) compared with patients without comorbidity. Disorders associated with higher cancer-specific mortality were renal disease (in patients with AML, CML and myeloma), cerebrovascular conditions, dementia, psychiatric disease (AML, myeloma), liver and rheumatic disease (AML), cardiovascular and pulmonary disease (myeloma). The difference in the probability of cancer-specific death, comparing patients with and without comorbidity, was largest among AML patients <70 years, whereas in myeloma the difference did not vary by age among the elderly. The probability of cancer-specific death was generally higher than other-cause death even in older age groups, irrespective of comorbidity. Comorbidities associated with organ failure or cognitive function are associated with poorer prognosis in several hematological malignancies, likely due to lower treatment tolerability. The results highlight the need for a better balance between treatment toxicity and efficacy in comorbid and elderly AML, CML and myeloma patients.
Macías-Cervantes, Maciste Habacuc; Rodríguez-Soto, Juana María Dolores; Uribarri, Jaime; Díaz-Cisneros, Francisco José; Cai, Weijingi; Garay-Sevilla, Ma Eugenia
2015-03-01
The aim of this study was to review the effect of a low advanced glycation end product (AGEs) diet, exercise, and a combination of both on circulating AGE levels as well as on plasma lipids and anthropometric parameters. Forty-three overweight or obese men (body mass index [BMI] >25 kg/m(2)), 30 to 55 y, participated in a 12-wk study and were randomly assigned to one of three groups: low AGE diet, exercise with habitual food intake, or exercise plus low AGE diet. Exercise was for 45 min at 65% to 75% of their maximum heart rate three times a week. We measured somatometric variables (BMI and waist circumference), blood glucose, lipids, and serum AGEs (N(ε)-[Carboxymethyl]Lysine [CML] and methylglyoxal [MG]) at baseline and at 12 wk. Exercise alone was associated with decreased somatometric variables; the low AGE diet had the same effects and decreased serum CML and MG and when combined with exercise reproduced all these effects, but also decreased triacylglycerols and increased high-density lipoprotein. Correlation analysis showed that both changes of CML and MG correlated with changes in dietary AGEs (P < 0.020 and P < 0.038, respectively); change in maximum oxygen consumption correlated inversely with change in weight and triacylglycerols. Regression analyses, including change in dietary AGEs and in dietary calories, showed that change in dietary AGEs was the independent determinant of change in CML (P < 0.020) and MG (P < 0.038). An AGE-restricted diet reduces serum AGE and indices of body fat. The addition of exercise to the restricted diet has the same effects but also improves lipid profile. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Yang, Shuman; Pinney, Susan M.; Mallick, Palash; Ho, Shuk-Mei; Bracken, Bruce; Wu, Tianying
2015-01-01
Introduction Biomarkers of oxidative stress and advanced glycation end products (AGE) have been linked to the development of prostate cancer, but evidence from human studies is either scarce or controversial. Materials and Methods We conducted a prospective nested case-control study among 48 men (24 prostate cancer cases and 24 controls) aged 48–76 years at baseline. The participants of our study were a part of the Fernald Community Cohort (FCC). Prostate cancer cases and controls were matched individually on age (± 3 years) with 1:1 ratio. Biomarkers included urine F2-isoprostanes (markers of lipid oxidation), plasma fluorescent oxidation products (FlOPs; markers of global oxidation) and carboxymethyllysine (CML; a major end-stage AGE). Results At baseline, cases had similar age, body mass index, proportion of family history of prostate cancer, history of benign prostatic hyperplasia, history of hypertension, history of diabetes, smokers and plasma glucose levels as compared to controls. Levels of plasma CML were significantly higher in cases than in controls (182 vs. 152 μg/ml, P < 0.05). In the conditional logistic regression model, an increase in CML equivalent to one standard deviation was associated with increased risk of incident prostate cancer (Relative risk = 1.79, 95% confidence interval = 1.00–3.21), and accounted for ~8% variance of prostate cancer liability. Urine F2-isoprostanes and plasma FlOPs were not associated with prostate cancer incidence. Conclusion Higher levels of plasma CML were associated with increased risk of prostate cancer. This suggests a potential new pathway for prostate cancer prediction and treatment. PMID:25972296
Eiring, Anna M.; Neviani, Paolo; Santhanam, Ramasamy; Oaks, Joshua J.; Chang, Ji Suk; Notari, Mario; Willis, William; Gambacorti-Passerini, Carlo; Volinia, Stefano; Marcucci, Guido; Caligiuri, Michael A.; Leone, Gustavo W.
2008-01-01
Several RNA binding proteins (RBPs) have been implicated in the progression of chronic myelogenous leukemia (CML) from the indolent chronic phase to the aggressively fatal blast crisis. In the latter phase, expression and function of specific RBPs are aberrantly regulated at transcriptional or posttranslational levels by the constitutive kinase activity of the BCR/ABL oncoprotein. As a result, altered expression/function of RBPs leads to increased resistance to apoptotic stimuli, enhanced survival, growth advantage, and differentiation arrest of CD34+ progenitors from patients in CML blast crisis. Here, we identify the mRNAs bound to the hnRNP-A1, hnRNP-E2, hnRNP-K, and La/SSB RBPs in BCR/ABLtransformed myeloid cells. Interestingly, we found that the mRNA encoding the transcription factor E2F3 associates to hnRNP-A1 through a conserved binding site located in the E2F3 3′ untranslated region (UTR). E2F3 levels were up-regulated in CML-BCCD34+ in a BCR/ABL kinase– and hnRNP-A1 shuttling–dependent manner. Moreover, by using shRNA-mediated E2F3 knock-down and BCR/ABL-transduced lineage-negative bone marrow cells from E2F3+/+ and E2F3−/− mice, we show that E2F3 expression is important for BCR/ABL clonogenic activity and in vivo leukemogenic potential. Thus, the complexity of the mRNA/RBP network, together with the discovery of E2F3 as an hnRNP-A1–regulated factor, outlines the relevant role played by RBPs in posttranscriptional regulation of CML development and progression. PMID:17925491
Peng, Zhi; Luo, Hong-Wei; Yuan, Ying; Shi, Jing; Huang, Shi-Feng; Li, Chun-Li; Cao, Wei-Xi; Huang, Zong-Gan; Feng, Wen-Li
2011-05-01
The persistence of Bcr-Abl-positive cells in patients on imatinib therapy indicates that inhibition of the Bcr-Abl kinase activity alone might not be sufficient to eradicate the leukemia cells. Many downstream effectors of Bcr-Abl have been described, including activation of both the Grb2-SoS-Ras-MAPK and Grb2-Gab2-PI3K-Akt pathways. The Bcr-Abl-Grb2 interaction, which is mediated by the direct interaction of the Grb2 SH2 domain with the phospho-Bcr-Abl Y177, is required for activation of these signaling pathways. Therefore, disrupting their interaction represents a potential therapeutic strategy for inhibiting the oncogenic downstream signals of Bcr-Abl. Adenovirus Ad-SH2-HA expressing the Grb2 SH2 domain was constructed and applied in this study. As expected, Ad-SH2-HA efficiently infected CML cells and functioned by binding to the phospho-Bcr-Abl Y177 site, competitively disrupting the Grb2 SH2-phospho-Bcr-Abl Y177 complex. They induced potent anti-proliferation and apoptosis-inducing effects in CML cell lines. Moreover, the Ras, MAPK and Akt activities were significantly reduced in the Ad-SH2-HA treated cells. These were not observed with the point-mutated control adenovirus Ad-Sm-HA with abolished phospho-Bcr-Abl Y177 binding sites. These data indicate that, in addition to the direct targeting of Bcr-Abl, selective inhibition of its downstream signaling pathways may be a therapeutic option for CML, and the Ad-SH2-HA-mediated killing strategy could be explored as a promising anti-leukemia agent in CML.
Spinelli, Roberta; Pirola, Alessandra; Redaelli, Sara; Sharma, Nitesh; Raman, Hima; Valletta, Simona; Magistroni, Vera; Piazza, Rocco; Gambacorti-Passerini, Carlo
2013-11-01
Point mutations in intronic regions near mRNA splice junctions can affect the splicing process. To identify novel splicing variants from exome sequencing data, we developed a bioinformatics splice-site prediction procedure to analyze next-generation sequencing (NGS) data (SpliceFinder). SpliceFinder integrates two functional annotation tools for NGS, ANNOVAR and MutationTaster and two canonical splice site prediction programs for single mutation analysis, SSPNN and NetGene2. By SpliceFinder, we identified somatic mutations affecting RNA splicing in a colon cancer sample, in eight atypical chronic myeloid leukemia (aCML), and eight CML patients. A novel homozygous splicing mutation was found in APC (NM_000038.4:c.1312+5G>A) and six heterozygous in GNAQ (NM_002072.2:c.735+1C>T), ABCC 3 (NM_003786.3:c.1783-1G>A), KLHDC 1 (NM_172193.1:c.568-2A>G), HOOK 1 (NM_015888.4:c.1662-1G>A), SMAD 9 (NM_001127217.2:c.1004-1C>T), and DNAH 9 (NM_001372.3:c.10242+5G>A). Integrating whole-exome and RNA sequencing in aCML and CML, we assessed the phenotypic effect of mutations on mRNA splicing for GNAQ, ABCC 3, HOOK 1. In ABCC 3 and HOOK 1, RNA-Seq showed the presence of aberrant transcripts with activation of a cryptic splice site or intron retention, validated by the reverse transcription-polymerase chain reaction (RT-PCR) in the case of HOOK 1. In GNAQ, RNA-Seq showed 22% of wild-type transcript and 78% of mRNA skipping exon 5, resulting in a 4-6 frameshift fusion confirmed by RT-PCR. The pipeline can be useful to identify intronic variants affecting RNA sequence by complementing conventional exome analysis.
CD56+ blastic transformation of chronic myeloid leukemia involving the skin.
Kaddu, S; Beham-Schmid, C; Zenahlik, P; Kerl, H; Cerroni, L
1999-11-01
We report on two patients with chronic myeloid leukemia (CML) who presented blastic transformation involving the skin, with leukemic infiltrates showing unusual morphologic and immunohistologic characteristics. Both patients were elderly men with a 36-month and a 40-month history of CML, respectively. They presented with disseminated, reddish to violaceous papules and plaques (case 1), and with localized reddish nodules on the left temporal area (case 2). Concurrent features of blastic transformation in the bone marrow were observed in one patient (case 1). Histopathologic examination of skin lesions revealed similar features in both cases. There was a moderate to dense dermal infiltrate composed mainly of medium-sized atypical mononuclear myeloid precursor cells with only few relatively well-differentiated cells of the granulocytic series. Histochemical staining for naphthol-ASD-chloroacetate esterase revealed strong positivity (>50% of neoplastic cells) in case 2 and only scattered positivity (< 10% of neoplastic cells) in case 1. Immunohistologic analysis performed on paraffin-embedded sections showed in both cases variable reactivity of neoplastic cells for leucocyte common antigen (CD45), lysozyme, myeloperoxidase, CD11c, CD15, CD43, CD66, CD68, HLA-DR, and the neural cell adhesion molecule (NCAM) CD56. A negative reaction was observed for CD3, CD34, and TdT. The immunohistologic findings were remarkably similar to those reported for acute myeloid leukemia (AML) with monocytic differentiation (French-American-British [FAB] classification, subtype M4). Examination of blasts from the bone marrow performed in one patient (case 1) revealed a similar phenotype also with CD56 expression. In conclusion, our observations show that specific cutaneous infiltrates in CML may show morphologic and immunohistochemical characteristics similar to those observed in AML with monocytic differentiation. Moreover, specific cutaneous manifestations of CML may express CD56.
Promyelocytic blast crisis of chronic myelogenous leukaemia with translocations (9;22) and (15;17).
Scolnik, M P; Palacios, M F; Acevedo, S H; Castuma, M V; Larripa, I B; Palumbo, A; Moiraghi, E B; Sasot, A M; Huberman, A B
1998-09-01
The promyelocytic blast crisis is a rare form of transformation during the evolution of chronic myeloid leukaemia (CML). We report a case of promyelocytic blast crisis with t(15;17) in addition to t(9;22). The morphology and immunophenotype of the blasts were similar to those seen in acute promyelocytic leukaemia (APL). The t(15;17) was confirmed by FISH. The patient had evidence of coagulopathy with clinical and laboratory findings of disseminated intravascular coagulation (DIC). This report highlights the importance of correlating the results of multiple diagnostic methods in order to establish a correct diagnosis of the promyelocytic blast crisis of CML.
Levinson, Nicholas M.; Boxer, Steven G.
2012-01-01
Chronic myeloid leukemia (CML) is caused by the kinase activity of the BCR-Abl fusion protein. The Abl inhibitors imatinib, nilotinib and dasatinib are currently used to treat CML, but resistance to these inhibitors is a significant clinical problem. The kinase inhibitor bosutinib has shown efficacy in clinical trials for imatinib-resistant CML, but its binding mode is unknown. We present the 2.4 Å structure of bosutinib bound to the kinase domain of Abl, which explains the inhibitor's activity against several imatinib-resistant mutants, and reveals that similar inhibitors that lack a nitrile moiety could be effective against the common T315I mutant. We also report that two distinct chemical compounds are currently being sold under the name “bosutinib”, and report spectroscopic and structural characterizations of both. We show that the fluorescence properties of these compounds allow inhibitor binding to be measured quantitatively, and that the infrared absorption of the nitrile group reveals a different electrostatic environment in the conserved ATP-binding sites of Abl and Src kinases. Exploiting such differences could lead to inhibitors with improved selectivity. PMID:22493660
Children and Terrorism-Related News: Training Parents in Coping and Media Literacy
Comer, Jonathan S.; Furr, Jami M.; Beidas, Rinad S.; Weiner, Courtney L.; Kendall, Philip C.
2009-01-01
This study examined associations between televised news regarding risk for future terrorism and youth outcomes and investigated the effects of training mothers in an empirically based approach to addressing such news with children. This approach—Coping and Media Literacy (CML)—emphasized modeling, media literacy, and contingent reinforcement and was compared via randomized design to Discussion as Usual (DAU). Ninety community youth (aged 7−13 years) and their mothers viewed a televised news clip about the risk of future terrorism, and threat perceptions and state anxiety were assessed preclip, postclip, and postdiscussion. Children responded to the clip with elevated threat perceptions and anxiety. Children of CML-trained mothers exhibited lower threat perceptions than DAU youth at postclip and at postdiscussion. Additionally, CML-trained mothers exhibited lower threat perceptions and state anxiety at postclip and postdiscussion than did DAU mothers. Moreover, older youth responded to the clip with greater societal threat perception than did younger youth. Findings document associations between terrorism-related news, threat perceptions, and anxiety and support the utility of providing parents with strategies for addressing news with children. Implications and research suggestions are discussed. PMID:18665686
Mohty, Mohamad; Szydlo, Richard M; Yong, Agnes S M; Apperley, Jane F; Goldman, John M; Melo, Junia V
2008-09-01
Expression of CD7, ELA-2, PR-3, and the polycomb group gene BMI-1 reflects the intrinsic heterogeneity and predicts prognosis of patients with chronic myeloid leukemia (CML) who were not treated with allogeneic stem cell transplantation (allo-SCT). This study investigated whether expression of these genes determined outcome following allo-SCT in a cohort of 84 patients with chronic-phase (CP) CML. We found that patients expressing BMI-1 at a "high" level before allo-SCT had an improved overall survival (P = .005) related to a reduced transplantation-related mortality. In multivariate analysis, when adjusted for the European Group for Blood and Marrow Transplantation (EBMT)-Gratwohl score and other prog-nostic factors, there was an independent association between BMI-1 expression and grades 2 to 4 acute graft-versus-host disease (relative risk [RR] = 2.85; 95% confidence interval [CI], 1.3-6.4; P = .011), suggesting that BMI-1 measured prior to allo-SCT can serve as a biomarker for predicting outcome in patients with CP-CML receiving allo-SCT, and may thus contribute to better therapeutic decisions.
Aspinall-O'Dea, Mark; Pierce, Andrew; Pellicano, Francesca; Williamson, Andrew J; Scott, Mary T; Walker, Michael J; Holyoake, Tessa L; Whetton, Anthony D
2015-01-01
This protocol describes a highly reproducible antibody-based method that provides protein level and phosphorylation status information from nanogram quantities of protein cell lysate. Nanocapillary isoelectric focusing (cIEF) combines with UV-activated linking chemistry to detect changes in phosphorylation status. As an example application, we describe how to detect changes in response to tyrosine kinase inhibitors (TKIs) in the phosphorylation status of the adaptor protein CrkL, a major substrate of the oncogenic tyrosine kinase BCR-ABL in chronic myeloid leukemia (CML), using highly enriched CML stem cells and mature cell populations in vitro. This protocol provides a 2.5 pg/nl limit of protein detection (<0.2% of a stem cell sample containing <10(4) cells). Additional assays are described for phosphorylated tyrosine 207 (pTyr207)-CrkL and the protein tyrosine phosphatase PTPRC/CD45; these assays were developed using this protocol and applied to CML patient samples. This method is of high throughput, and it can act as a screen for in vitro cancer stem cell response to drugs and novel agents.
Children and terrorism-related news: training parents in Coping and Media Literacy.
Comer, Jonathan S; Furr, Jami M; Beidas, Rinad S; Weiner, Courtney L; Kendall, Philip C
2008-08-01
This study examined associations between televised news regarding risk for future terrorism and youth outcomes and investigated the effects of training mothers in an empirically based approach to addressing such news with children. This approach--Coping and Media Literacy (CML)--emphasized modeling, media literacy, and contingent reinforcement and was compared via randomized design to Discussion as Usual (DAU). Ninety community youth (aged 7-13 years) and their mothers viewed a televised news clip about the risk of future terrorism, and threat perceptions and state anxiety were assessed preclip, postclip, and postdiscussion. Children responded to the clip with elevated threat perceptions and anxiety. Children of CML-trained mothers exhibited lower threat perceptions than DAU youth at postclip and at postdiscussion. Additionally, CML-trained mothers exhibited lower threat perceptions and state anxiety at postclip and postdiscussion than did DAU mothers. Moreover, older youth responded to the clip with greater societal threat perception than did younger youth. Findings document associations between terrorism-related news, threat perceptions, and anxiety and support the utility of providing parents with strategies for addressing news with children. Implications and research suggestions are discussed. Copyright 2008 APA, all rights reserved.
Guo, Sujuan; Pridham, Kevin J; Sheng, Zhi
2016-01-01
Autophagy is a catabolic process whereby cellular components are degraded to fuel cells for longer survival during stress. Hence, autophagy plays a vital role in determining cell fate and is central for homeostasis and pathogenesis of many human diseases including chronic myeloid leukemia (CML). It has been well established that autophagy is important for the leukemogenesis as well as drug resistance in CML. Thus, autophagy is an intriguing therapeutic target. However, current approaches that detect autophagy lack reliability and often fail to provide quantitative measurements. To overcome this hurdle and facilitate the development of autophagy-related therapies, we have recently developed an autophagy assay termed as the Cyto-ID fluorescence spectrophotometric assay. This method uses a cationic fluorescence dye, Cyto-ID, which specifically labels autophagic compartments and is detected by a spectrophotometer to permit a large-scale and quantitative analysis. As such, it allows rapid, reliable, and quantitative detection of autophagy and estimation of autophagy flux. In this chapter, we further provide technical details of this method and step-by-step protocols for measuring autophagy or autophagy flux in CML cell lines as well as primary hematopoietic cells.
Pelz, Antje-Friederike; Weilepp, Gisela; Wieacker, Peter F
2005-01-01
Chronic myelogenous leukemia (CML) is a clonal bone marrow disease with progression from a chronic phase to an aggressive blast crisis. The cell line NALM-1 was originally established by Minowada and coworkers from the peripheral blood of a patient in CML blastic crisis. A karyotype analysis of the NALM-1 cell line was performed in the 1970s. To the best of our knowledge, this karyotype was not re-analyzed by molecular cytogenetic techniques, although this cell line is the source of many molecular investigations including expression studies. To establish this cell line as a CML control in our own laboratory, NALM-1 was analyzed by GTG banding, fluorescence in situ hybridization, and spectral karyotyping. Our results differ from the original publication of Sonta and coworkers. We describe for the first time the karyotype of the NALM-1 cell line: 44,X,-X,der(7)t(7;9;15)(q10;?;q15),der(9)t(9;9)(p24;q33 approximately q34)t(9;22)(q34;q11),der(15)t(7;9;15) (?;?;q15),der(22)t(9;22)(q34;q11).
Wang, Xiaozhong; Zeng, Jianming; Shi, Mei; Zhao, Shiqiao; Bai, Weijun; Cao, Weixi; Tu, Zhiguang; Huang, Zonggan
2011-01-01
The protein signal transducer and activator of transcription 5 (STAT5) of the JAK/STAT pathway is constitutively activated because of its phosphorylation by tyrosine kinase activity of fusion protein BCR-ABL in chronic myelogenous leukemia (CML) cells. This study investigated the potential therapeutic effect of STAT5 decoy oligodeoxynucleotides (ODN) using leukemia K562 cells as a model. Our results showed that transfection of 21-mer-long STAT5 decoy ODN into K562 cells effectively inhibited cell proliferation and induced cell apoptosis. Further, STAT5 decoy ODN downregulated STAT5 targets bcl-xL, cyclinD1, and c-myc at both mRNA and protein levels in a sequence-specific manner. Collectively, these data demonstrate the therapeutic effect of blocking the STAT5 signal pathway by cis-element decoy for cancer characterized by constitutive STAT5 activation. Thus, our study provides support for STAT5 as a potential target downstream of BCR-ABL for CML treatment and helps establish the concept of targeting STAT5 by decoy ODN as a novel therapy approach for imatinib-resistant CML. PMID:21091189
Structural biology contributions to the discovery of drugs to treat chronic myelogenous leukaemia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cowan-Jacob, Sandra W., E-mail: sandra.jacob@novartis.com; Fendrich, Gabriele; Floersheimer, Andreas
2007-01-01
A case study showing how the determination of multiple cocrystal structures of the protein tyrosine kinase c-Abl was used to support drug discovery, resulting in a compound effective in the treatment of chronic myelogenous leukaemia. Chronic myelogenous leukaemia (CML) results from the Bcr-Abl oncoprotein, which has a constitutively activated Abl tyrosine kinase domain. Although most chronic phase CML patients treated with imatinib as first-line therapy maintain excellent durable responses, patients who have progressed to advanced-stage CML frequently fail to respond or lose their response to therapy owing to the emergence of drug-resistant mutants of the protein. More than 40 suchmore » point mutations have been observed in imatinib-resistant patients. The crystal structures of wild-type and mutant Abl kinase in complex with imatinib and other small-molecule Abl inhibitors were determined, with the aim of understanding the molecular basis of resistance and to aid in the design and optimization of inhibitors active against the resistance mutants. These results are presented in a way which illustrates the approaches used to generate multiple structures, the type of information that can be gained and the way that this information is used to support drug discovery.« less
Heterogeneity of BCR-ABL rearrangement in patients with chronic myeloid leukemia in Pakistan.
Tabassum, Najia; Saboor, Mohammad; Ghani, Rubina; Moinuddin, Moinuddin
2014-07-01
Breakpoint cluster region-Abelson (BCR-ABL) rearrangement or Philadelphia (Ph) chromosome in Chronic Myeloid Leukemia (CML) is derived from a reciprocal chromosomal translocation between ABL gene on chromosome 9 and BCR gene on chromosome 22. This chimeric protein has various sizes and therefore different clinical behaviour. The purpose of this study was to determine the heterogeneity of BCR-ABL rearrangement in patients with Ph(+)CML in Pakistan. The study was conducted at Civil Hospital and Baqai Institute of Hematology (BIH) Karachi. Blood samples from 25 patients with CML were collected. Multiplex reverse transcription polymerase chain reaction (RT-PCR) was performed to identify various BCR-ABL transcripts. All 25 samples showed BCR-ABL rearrangements. Out of these, 24 (96%) patients expressed p210 BCR-ABL rearrangements i.e. 60% (n=15) had b3a2 and 32% (n=8) had b2a2 rearrangements. Co-expression of b3a2 /b2a2 rearrangement and p190 (e1a3) rearrangement was also identified in two patients. It is apparent that majority of the patients had p210 BCR-ABL rearrangements. Frequency of co-expression and rare fusion transcripts was very low.
Massoud, Marcel; Sakr, Riwa; Kerbage, Fouad; Makdissi, Joseph; Hawi, Jenny; Rached, Layale; Nasr, Fady; Chahine, Georges
2017-07-01
In the 2000s, the introduction of the tyrosine kinase inhibitor (TKI), imatinib, improved the survival outcomes of patients with chronic myeloid leukemia (CML). In Lebanon, we rapidly adopted this treatment strategy. To the best of our knowledge, this is the first study reporting the survival rates of Lebanese CML patients. We examined the rates of major molecular response (MMR) and complete cytogenetic response (CCyR) and analyzed the overall survival, progression-free survival, and event-free survival of CML patients treated with front-line imatinib in 3 university hospitals in Lebanon. We retrospectively reviewed the medical records of 46 patients diagnosed with CML and treated with front-line imatinib 400 mg/day from 2000 and followed up to 2015. In all patients, initially, 2 diagnostic tests were performed: cytogenetic analysis and qualitative molecular testing of the BCR-ABL transcript. The male-to-female sex ratio was 3:1. The median age at diagnosis was 49 years, and the mean age was 44.52 years. At diagnosis, 46 patients were in the chronic phase. All patients started imatinib 400 mg/day. Of the 46 patients, 35 had a typical karyotype, 8 an atypical karyotype, and 3 hypoploidism. The MMR rate at 18 months was 58.69%. The cumulative CCyR rate at 18 months of therapy with imatinib at the standard dose was 67.39%. The event-free survival rate was 75.86% and 74.14% at 5 and 8 years, respectively. The progression-free survival rate was 77.59% and 75.86% at 5 and 8 years, respectively. The overall survival rate was 98.27% and 98.27% at 5 and 8 years, respectively. Of the 46 patients, 12 developed disease progression and were salvaged by second-generation TKIs. These 12 patients were still alive with a MMR. In our study population, the achievement of a MMR and CCyR and overall survival, progression-free survival, and event-free survival were similar to previous published data. Reaching high survival rates with a first-generation TKI in a country with limited resources is a reasonable treatment approach for CML patients. Copyright © 2017 Elsevier Inc. All rights reserved.
Lee, Justin P; Birnstein, Elliott; Masiello, David; Yang, Dongyun; Yang, Allen S
2009-01-01
Background In the last decade the importance of ethnicity, socio-economic and gender differences in relation to disease incidence, diagnosis, and prognosis has been realized. Differences in these areas have become a major health policy focus in the United States. Our study was undertaken to examine the demographic and clinical features of chronic myelogenous leukemia (CML) patients presenting initially at the LAC+USC Medical Center, which serves an ethnically diverse population. Results Patients were evenly split by gender, overwhelmingly Hispanic (60.9%), and quite young (median age 39, range 17–65) compared with previously reported CML patient populations. Previous CML studies identified significant anemia (Hgb <12 g/dl), significant thrombocytosis (platelets >450 × 109/l), and significant leukocytosis (WBC >50 × 109/l) as significant adverse pretreatment prognostic factors. Using these indicators, in addition to the validated Hasford and Sokal scores, patients were stratified and analyzed via gender and ethnicity. A significantly greater proportion of women presented with significant anemia (p = 0.019, Fisher's exact test) and significant thrombocytosis (p = 0.041, Fisher's exact test) compared to men, although no differences were found in risk stratification or treatment response. MCV values for women were significantly (p = 0.02, 2-sample t-test) lower than those for men, suggesting iron deficiency anemia. Focusing on ethnicity, Hispanics as a whole had significantly lower Hasford risk stratification (p = 0.046, Fisher's exact test), and significantly greater likelihood (p = 0.016, Fisher's exact test) of achieving 3-month complete haematological remission (CHR) compared with non-Hispanics at LAC+USC Medical Center, though differences in treatment outcome were no longer significant with analysis limited to patients treated with first-line imatinib. Conclusion Female CML patients at LAC+USC Medical Center present with more significant adverse pre-treatment prognostic factors compared to men, but achieve comparable outcomes. Hispanic patients present with lower risk profile CML and achieve better treatment responses compared to non-Hispanic patients as a whole; these ethnic differences are no longer significant when statistical analysis is limited to patients given imatinib as first-line therapy. Our patients achieve response rates inferior to those of large-scale national studies. This constellation of findings has not been reported in previous studies, and is likely reflective of a unique patient population. PMID:19630970
Parameter estimation and sensitivity analysis for a mathematical model with time delays of leukemia
NASA Astrophysics Data System (ADS)
Cândea, Doina; Halanay, Andrei; Rǎdulescu, Rodica; Tǎlmaci, Rodica
2017-01-01
We consider a system of nonlinear delay differential equations that describes the interaction between three competing cell populations: healthy, leukemic and anti-leukemia T cells involved in Chronic Myeloid Leukemia (CML) under treatment with Imatinib. The aim of this work is to establish which model parameters are the most important in the success or failure of leukemia remission under treatment using a sensitivity analysis of the model parameters. For the most significant parameters of the model which affect the evolution of CML disease during Imatinib treatment we try to estimate the realistic values using some experimental data. For these parameters, steady states are calculated and their stability is analyzed and biologically interpreted.
Deep molecular responses for treatment-free remission in chronic myeloid leukemia.
Dulucq, Stéphanie; Mahon, Francois-Xavier
2016-09-01
Several clinical trials have demonstrated that some patients with chronic myeloid leukemia in chronic phase (CML-CP) who achieve sustained deep molecular responses on tyrosine kinase inhibitor (TKI) therapy can safely suspend therapy and attempt treatment-free remission (TFR). Many TFR studies to date have enrolled imatinib-treated patients; however, the feasibility of TFR following nilotinib or dasatinib has also been demonstrated. In this review, we discuss available data from TFR trials and what these data reveal about the molecular biology of TFR. With an increasing number of ongoing TFR clinical trials, TFR may become an achievable goal for patients with CML-CP. © 2016 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.
Zankl, H; Weiss, A F; Zang, K D
1975-12-23
The recently detected reciprocal translocations in chronic myeloic leucemia (CML) and Burkitt's lymphoma (BL) made it necessary to clarify if meningiomas really show the described monosomy 22 or also a translocation. In 10 out of 12 meningiomas a total or partial translocation of the missing chromosome 22 to another chromosome could be ruled out by fluorescence banding analysis. Two meningiomas showed marker chromosomes of such a complex composition that it was impossible to decide if a 22 translocation was present or not. From these results it was concluded that meningioma cells, in contrast to CML and BL, show almost regularly a loss of a definitive part of their genome.
HOXA9 gene expression in the chronic myeloid leukemia progression.
Tedeschi, Fabian A; Zalazar, Fabian E
2006-11-01
In the present work we study the HOXA9 expression in sequential samples of patients with CML using RT-PCR. To obtain a semi-quantitative value, the HOXA9 expression was referred to the ABL gene in the same sample. The relative HOXA9 expression was higher in patients in the accelerated phase of the disease (p<0.005). Interestingly, a patient with poorer prognosis (high Sokal's score), showing the highest HOXA9/ABL ratio, quickly entered a blast crisis and died 5 months later. These first results could be considered as an evidence of an actual biological phenomenon that could provide additional information about the HOXA9 role in the CML progression.
A Comparison of Three Elliptical Galaxy Photochemical Evolution Codes
NASA Astrophysics Data System (ADS)
Gibson, Brad K.
1996-09-01
Working within the classic supernovae-driven wind framework for elliptical galaxy evolution, We perform a systematic investigation into the discrepancies between the predictions of three contemporary codes (by Arimoto & Yoshii, Bressan et al., and Gibson). By being primarily concerned with reproducing the present-day color-metallicity-luminosity (CML) relations among elliptical galaxies, the approaches taken in the theoretical modeling have managed to obscure many of the hidden differences between the codes. Targeting the timescale for the onset of the initial galactic wind, t_GW_, as a primary "difference" indicator, We demonstrate exactly how and why each code is able to claim successful reproduction of the CML relations, despite possessing apparently incompatible input ingredients.
Spatiotemporal dynamics of a digital phase-locked loop based coupled map lattice system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Banerjee, Tanmoy, E-mail: tbanerjee@phys.buruniv.ac.in; Paul, Bishwajit; Sarkar, B. C.
2014-03-15
We explore the spatiotemporal dynamics of a coupled map lattice (CML) system, which is realized with a one dimensional array of locally coupled digital phase-locked loops (DPLLs). DPLL is a nonlinear feedback-controlled system widely used as an important building block of electronic communication systems. We derive the phase-error equation of the spatially extended system of coupled DPLLs, which resembles a form of the equation of a CML system. We carry out stability analysis for the synchronized homogeneous solutions using the circulant matrix formalism. It is shown through extensive numerical simulations that with the variation of nonlinearity parameter and coupling strengthmore » the system shows transitions among several generic features of spatiotemporal dynamics, viz., synchronized fixed point solution, frozen random pattern, pattern selection, spatiotemporal intermittency, and fully developed spatiotemporal chaos. We quantify the spatiotemporal dynamics using quantitative measures like average quadratic deviation and spatial correlation function. We emphasize that instead of using an idealized model of CML, which is usually employed to observe the spatiotemporal behaviors, we consider a real world physical system and establish the existence of spatiotemporal chaos and other patterns in this system. We also discuss the importance of the present study in engineering application like removal of clock-skew in parallel processors.« less
Spatiotemporal dynamics of a digital phase-locked loop based coupled map lattice system.
Banerjee, Tanmoy; Paul, Bishwajit; Sarkar, B C
2014-03-01
We explore the spatiotemporal dynamics of a coupled map lattice (CML) system, which is realized with a one dimensional array of locally coupled digital phase-locked loops (DPLLs). DPLL is a nonlinear feedback-controlled system widely used as an important building block of electronic communication systems. We derive the phase-error equation of the spatially extended system of coupled DPLLs, which resembles a form of the equation of a CML system. We carry out stability analysis for the synchronized homogeneous solutions using the circulant matrix formalism. It is shown through extensive numerical simulations that with the variation of nonlinearity parameter and coupling strength the system shows transitions among several generic features of spatiotemporal dynamics, viz., synchronized fixed point solution, frozen random pattern, pattern selection, spatiotemporal intermittency, and fully developed spatiotemporal chaos. We quantify the spatiotemporal dynamics using quantitative measures like average quadratic deviation and spatial correlation function. We emphasize that instead of using an idealized model of CML, which is usually employed to observe the spatiotemporal behaviors, we consider a real world physical system and establish the existence of spatiotemporal chaos and other patterns in this system. We also discuss the importance of the present study in engineering application like removal of clock-skew in parallel processors.
Spatiotemporal dynamics of a digital phase-locked loop based coupled map lattice system
NASA Astrophysics Data System (ADS)
Banerjee, Tanmoy; Paul, Bishwajit; Sarkar, B. C.
2014-03-01
We explore the spatiotemporal dynamics of a coupled map lattice (CML) system, which is realized with a one dimensional array of locally coupled digital phase-locked loops (DPLLs). DPLL is a nonlinear feedback-controlled system widely used as an important building block of electronic communication systems. We derive the phase-error equation of the spatially extended system of coupled DPLLs, which resembles a form of the equation of a CML system. We carry out stability analysis for the synchronized homogeneous solutions using the circulant matrix formalism. It is shown through extensive numerical simulations that with the variation of nonlinearity parameter and coupling strength the system shows transitions among several generic features of spatiotemporal dynamics, viz., synchronized fixed point solution, frozen random pattern, pattern selection, spatiotemporal intermittency, and fully developed spatiotemporal chaos. We quantify the spatiotemporal dynamics using quantitative measures like average quadratic deviation and spatial correlation function. We emphasize that instead of using an idealized model of CML, which is usually employed to observe the spatiotemporal behaviors, we consider a real world physical system and establish the existence of spatiotemporal chaos and other patterns in this system. We also discuss the importance of the present study in engineering application like removal of clock-skew in parallel processors.
Itonaga, Hidehiro; Tsushima, Hideki; Hata, Tomoko; Matsuo, Emi; Imanishi, Daisuke; Imaizumi, Yoshitaka; Kawaguchi, Yasuhisa; Fukushima, Takuya; Doi, Yuko; Mori, Sayaka; Kamihira, Shimeru; Tomonaga, Masao; Miyazaki, Yasushi
2012-02-01
The T315I BCR-ABL mutation in chronic myelogenous leukemia (CML) patients is responsible for up to 20% of all clinically observed resistance. This mutation confers resistance not only to imatinib, but also to second-generation BCR-ABL tyrosine kinases, such as nilotinib and dasatinib. A number of strategies have been implemented to overcome this resistance, but allogeneic stem cell transplantation remains the only established therapeutic option for a cure. A 61-year-old male was diagnosed with Philadelphia chromosome-positive chronic-phase CML in 2002. He was initially treated with imatinib and complete cytogenetic response (CCyR) was achieved 12 months later. However, after 18 months, a loss of CCyR was observed and a molecular study at 24 months revealed a T315I mutation of the BCR-ABL gene. At 30 months, imatinib/interferon-alfa (IFNα) combination therapy was initiated in an effort to overcome the resistance. Thirty months later, he re-achieved CCyR, and the T315I BCR-ABL mutation disappeared at 51 months. To our knowledge, this is the first case report showing the effectiveness of imatinib/IFNα combination therapy for CML patients bearing the T315I BCR-ABL mutation.
Influence of BCR/ABL fusion proteins on the course of Ph leukemias.
Telegeev, Gennady D; Dubrovska, Anna N; Dybkov, Mykhaylo V; Maliuta, Stanislav S
2004-01-01
The hallmark of chronic myeloid leukemia (CML) and a subset of acute lymphoblastic leukemia (ALL) is the presence of the Philadelphia chromosome as a result of the t(9;22) translocation. This gene rearrangement results in the production of a novel oncoprotein, BCR/ABL, a constitutively active tyrosine kinase. There is compelling evidence that the malignant transformation by BCR/ABL is critically dependent on its Abl tyrosine kinase activity. Also the bcr part of the hybrid gene takes part in realization of the malignant phenotype. We supposed that additional mutations accumulate in this region of the BCR/ABL oncogene during the development of the malignant blast crisis in CML patients. In ALL patients having p210 fusion protein the mutations were supposed to be preexisting. Sequencing of PCR product of the BCR/ABL gene (Dbl, PH region) showed that along with single-nucleotide substitutions other mutations, mostly deletions, had occurred. In an ALL patient a deletion of the 5th exon was detected. The size of the deletions varied from 36 to 220 amino acids. For one case of blast crisis of CML changes in the character of actin organization were observed. Taking into account the functional role of these domains in the cell an etiological role of such mutations on the disease phenotype and leukemia progression is plausible.
Detecting T-cell reactivity to whole cell vaccines
Brusic, Ana; Hainz, Ursula; Wadleigh, Martha; Neuberg, Donna; Su, Mei; Canning, Christine M.; DeAngelo, Daniel J.; Stone, Richard M.; Lee, Jeng-Shin; Mulligan, Richard C.; Ritz, Jerome; Dranoff, Glenn; Sasada, Tetsuro; Wu, Catherine J.
2012-01-01
BCR-ABL+ K562 cells hold clinical promise as a component of cancer vaccines, either as bystander cells genetically modified to express immunostimulatory molecules, or as a source of leukemia antigens. To develop a method for detecting T-cell reactivity against K562 cell-derived antigens in patients, we exploited the dendritic cell (DC)-mediated cross-presentation of proteins generated from apoptotic cells. We used UVB irradiation to consistently induce apoptosis of K562 cells, which were then fed to autologous DCs. These DCs were used to both stimulate and detect antigen-specific CD8+ T-cell reactivity. As proof-of-concept, we used cross-presented apoptotic influenza matrix protein-expressing K562 cells to elicit reactivity from matrix protein-reactive T cells. Likewise, we used this assay to detect increased anti-CML antigen T-cell reactivity in CML patients that attained long-lasting clinical remissions following immunotherapy (donor lymphocyte infusion), as well as in 2 of 3 CML patients vaccinated with lethally irradiated K562 cells that were modified to secrete high levels of granulocyte macrophage colony-stimulating factor (GM-CSF). This methodology can be readily adapted to examine the effects of other whole tumor cell-based vaccines, a scenario in which the precise tumor antigens that stimulate immune responses are unknown. PMID:23170257
Burchert, A; Saussele, S; Eigendorff, E; Müller, M C; Sohlbach, K; Inselmann, S; Schütz, C; Metzelder, S K; Ziermann, J; Kostrewa, P; Hoffmann, J; Hehlmann, R; Neubauer, A; Hochhaus, A
2015-06-01
A minority of chronic myeloid leukemia (CML) patients is capable of successfully discontinuing imatinib. Treatment modalities to increase this proportion are currently unknown. Here, we assessed the role of interferon alpha 2a (IFN) on therapy discontinuation in a previously reported cohort of 20 chronic phase CML patients who were treated upfront with IFN alpha plus imatinib followed by IFN monotherapy to maintain cytogenetic or molecular remission (MR) after imatinib discontinuation. After a median follow-up of 7.9 years (range, 5.2-12.2), relapse-free survival was 73% (8/11 patients) and 84% (5/6 patients) for patients who discontinued imatinib in major MR (MMR) and MR4/MR4.5, respectively. Ten patients discontinued IFN after a median of 4.5 years (range, 0.24-9.3). After a median of 2.8 years (range, 0.7-5.1), nine of them remain in ongoing treatment-free remission with MR5 (n=6) and MR4.5 (n=3). The four patients who still administer IFN are in stable MR5, MR4.5, MR4, and MMR, respectively. In conclusion, an IFN/imatinib induction treatment followed by a temporary IFN maintenance therapy may enable a high rate of treatment discontinuation in CML patients in at least MMR when stopping imatinib.
Hughes, T P; Saglio, G; Quintás-Cardama, A; Mauro, M J; Kim, D-W; Lipton, J H; Bradley-Garelik, M B; Ukropec, J; Hochhaus, A
2015-09-01
BCR-ABL1 mutations are a common, well-characterized mechanism of resistance to imatinib as first-line treatment of chronic myeloid leukemia in chronic phase (CML-CP). Less is known about mutation development during first-line treatment with dasatinib and nilotinib, despite increased use because of higher response rates compared with imatinib. Retrospective analyses were conducted to characterize mutation development in patients with newly diagnosed CML-CP treated with dasatinib (n=259) or imatinib (n=260) in DASISION (Dasatinib versus Imatinib Study in Treatment-Naive CML-CP), with 3-year minimum follow-up. Mutation screening, including patients who discontinued treatment and patients who had a clinically relevant on-treatment event (no confirmed complete cytogenetic response (cCCyR) and no major molecular response (MMR) within 12 months; fivefold increase in BCR-ABL1 with loss of MMR; loss of CCyR), yielded a small number of patients with mutations (dasatinib, n=17; imatinib, n=18). Dasatinib patients had a narrower spectrum of mutations (4 vs 12 sites for dasatinib vs imatinib), fewer phosphate-binding loop mutations (1 vs 9 mutations), fewer multiple mutations (1 vs 6 patients) and greater occurrence of T315I (11 vs 0 patients). This trial was registered at www.clinicaltrials.gov as NCT00481247.
Ko, Tun Kiat; Chin, Hui San; Chuah, Charles T H; Huang, John W J; Ng, King-Pan; Khaw, Seong Lin; Huang, David C S; Ong, S Tiong
2016-01-19
Both germline polymorphisms and tumor-specific genetic alterations can determine the response of a cancer to a given therapy. We previously reported a germline deletion polymorphism in the BIM gene that was sufficient to mediate intrinsic resistance to tyrosine kinase inhibitors (TKI) in chronic myeloid leukemia (CML), as well as other cancers [1]. The deletion polymorphism favored the generation of BIM splice forms lacking the pro-apoptotic BH3 domain, conferring a relative resistance to the TKI imatinib (IM). However, CML patients with the BIM deletion polymorphism developed both partial and complete IM resistance. To understand the mechanisms underlying the latter, we grew CML cells either with or without the BIM deletion polymorphism in increasing IM concentrations. Under these conditions, the BIM deletion polymorphism enhanced the emergence of populations with complete IM resistance, mimicking the situation in patients. Importantly, the combined use of TKIs with the BH3 mimetic ABT-737 overcame the BCR-ABL1-dependent and -independent resistance mechanisms found in these cells. Our results illustrate the interplay between germline and acquired genetic factors in confering TKI resistance, and suggest a therapeutic strategy for patients with complete TKI resistance associated with the BIM deletion polymorphism.
da Cunha Vasconcelos, Flavia; Mauricio Scheiner, Marcos Antonio; Moellman-Coelho, Arthur; Mencalha, André Luiz; Renault, Ilana Zalcberg; Rumjanek, Vivian Mary; Maia, Raquel Ciuvalschi
2016-12-01
Despite the favorable clinical evolution of patients with chronic myeloid leukemia (CML), resistance or intolerance to imatinib is present in approximately 35% of patients. Sokal score is a widely used risk factor, however efflux and influx transporters are provisional risk factors implicated in imatinib resistance. This study analyzed Sokal score, ABCB1, ABCG2 and OCT1 mRNA transporter expression levels as well as P-glycoprotein expression and efflux transporters activity to seek a possible correlation between these factors and the molecular response at 12 months from imatinib start as well as 8-year overall survival (OS). Low plus intermediate Sokal score correlated to optimal imatinib responses, as well as OS at 8-years, thus confirming the established role of Sokal score as a prognostic factor in CML patients. Low ABCB1 and high OCT1 mRNA levels were associated with an optimal molecular response, while the inverse levels were associated with non-responders (warning and failure) patients. Our results suggest that ABCB1 and OCT1 mRNA expressions may present biological relevance to identify responder and non-responder patients to imatinib treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.
Risk factors and time to symptomatic presentation in leukaemia, lymphoma and myeloma.
Howell, Debra A; Warburton, Fiona; Ramirez, Amanda-Jane; Roman, Eve; Smith, Alexandra G; Forbes, Lindsay J L
2015-09-29
UK policy aims to improve cancer outcomes by promoting early diagnosis, which for many haematological malignancies is particularly challenging as the pathways leading to diagnosis can be difficult and prolonged. A survey about symptoms was sent to patients in England with acute leukaemia, chronic lymphocytic leukaemia (CLL), chronic myeloid leukaemia (CML), myeloma and non-Hodgkin lymphoma (NHL). Symptoms and barriers to first help seeking were examined for each subtype, along with the relative risk of waiting >3 months' time from symptom onset to first presentation to a doctor, controlling for age, sex and deprivation. Of the 785 respondents, 654 (83.3%) reported symptoms; most commonly for NHL (95%) and least commonly for CLL (67.9%). Some symptoms were frequent across diseases while others were more disease-specific. Overall, 16% of patients (n=114) waited >3 months before presentation; most often in CML (24%) and least in acute leukaemia (9%). Significant risk factors for >3 months to presentation were: night sweats (particularly CLL and NHL), thirst, abdominal pain/discomfort, looking pale (particularly acute leukaemias), and extreme fatigue/tiredness (particularly CML and NHL); and not realising symptom(s) were serious. These findings demonstrate important differences by subtype, which should be considered in strategies promoting early presentation. Not realising the seriousness of some symptoms indicates a worrying lack of public awareness.
[History of chronic myeloid leukemia: a paradigm in the treatment of cancer].
Gonon-Demoulian, R; Goldman, J M; Nicolini, F E
2014-01-01
During two centuries, advances in medicine and medical research have helped to understand the pathophysiology of chronic myelogenous leukemia (CML). This hematologic malignancy is a unique model of oncogenesis where a single molecular hit, causing cell proliferation and survival, was identified. The chromosomal abnormality first highlighted by P. Nowell and D. Hungerford in 1960, and characterized as the reciprocal translocation t(9;22)(q34;q11), the Philadelphia chromosome, discovered in leukemic cells, by J. Rowley in 1973. At the end of the 20th century, the contribution of molecular biology techniques was crucial by the discovery of the BCR-ABL1 hybrid oncogene derived from the t(9;22), responsible for the translation of an aberrant protein tyrosine kinase. This BCR-ABL1 kinase deregulates signaling pathways that control normal cell cycle and survival in primitive hematopoietic cells and is thus responsible for malignant cell accumulation observed in CML. It was then only necessary to develop a targeted treatment adapted to this molecular hit. Recently, tyrosine kinase inhibitors, by their specific inhibitory activity of BCR-ABL, have revolutionized the treatment of CML, allowing rates of haematological, cytogenetic and molecular responses never seen to date, and has significantly improved the overall survival and the quality of life of patients.
Chronic myeloid leukaemia with extreme thrombocytosis.
Verma, Shailendra Prasad; Subbiah, Arunkumar; Jacob, Sajini Elizabeth; Basu, Debdatta
2015-08-19
We report two cases of chronic myeloid leukaemia (CML) with extreme thrombocytosis. The first patient was a 65-year-old man who presented with prolonged history of upper abdominal discomfort, anorexia and two episodes of recent gum bleeds without fever or other bleeding manifestations. He was a chronic smoker with no other comorbidities. Examination revealed moderate hepatosplenomegaly. On investigation, he was found to have extreme thrombocytosis (3,500,000/mm(3)) and leucocytosis with moderate anaemia. In view of the leucocytosis, he was investigated for CML and found to be positive for BCR-ABL by reverse transcription PCR (RT-PCR). He received imatinib 400 mg/day and achieved complete haematological response at the end of 3 months. The second patient was a 7-year-old boy who presented with fever, cough and cold of 2-week duration. Examination revealed mild hepatomegaly with palpable spleen tip. Haemogram and peripheral smear revealed moderate leucocytosis with extreme thrombocytosis (2,800,000/mm(3)). On evaluation, he was found to be BCR-ABL positive and responded well to imatinib treatment. In both these cases, massive thrombocytosis was an unusual presentation of a well-known entity, namely, CML. This degree of thrombocytosis is usually seen only in essential thrombocytosis. 2015 BMJ Publishing Group Ltd.
Xu, Huai-long; Wang, Zi-jie; Liang, Xiao-meng; Li, Xin; Shi, Zheng; Zhou, Nan; Bao, Jin-ku
2014-06-01
The constitutively active fusion protein BCR-ABL1 is the major cause of chronic myeloid leukemia (CML), and selective inhibition of ABL1 is a promising approach for the treatment of CML. Reported drugs worked well in clinical practice, such as imatinib, dasatinib, nilotinib and bosutinib. However, resistance arises due to ABL1 mutation in patients, especially the T315I gate-keeper mutation. Thus, wide spectrum drugs targeting ABL1 are urgently needed. In order to screen potential drugs targeting wild-type ABL1 and T315I mutant ABL1, 1408 FDA approved small molecule drugs were subjected to molecular docking. With subsequent molecular dynamic (MD) simulation and MM/GBSA binding free energy calculation and energy decomposition, we identified chlorhexidine and sorafenib as potential "new use" drugs targeting wild-type ABL1, while nicergoline and plerixafor targeted T315I ABL1. Meanwhile, we also found that residues located in the ATP-binding site and A-loop motif played key roles in drug discovery towards ABL1. These findings may not only serve as a paradigm for the repositioning of existing approved drugs, but also instill new vitality to ABL1-targeted anti-CML therapeutics.
Guthrie, Katherine A.; Cummings, Carrie L.; Sabo, Kathleen; Wood, Brent L.; Gooley, Ted; Yang, Taimei; Epping, Mirjam T.; Shou, Yaping; Pogosova-Agadjanyan, Era; Ladne, Paula; Stirewalt, Derek L.; Abkowitz, Janis L.; Radich, Jerald P.
2009-01-01
The preferentially expressed antigen in melanoma (PRAME) is expressed in several hematologic malignancies, but either is not expressed or is expressed at only low levels in normal hematopoietic cells, making it a target for cancer therapy. PRAME is a tumor-associated antigen and has been described as a corepressor of retinoic acid signaling in solid tumor cells, but its function in hematopoietic cells is unknown. PRAME mRNA expression increased with chronic myeloid leukemia (CML) disease progression and its detection in late chronic-phase CML patients before tyrosine kinase inhibitor therapy was associated with poorer therapeutic responses and ABL tyrosine kinase domain point mutations. In leukemia cell lines, PRAME protein expression inhibited granulocytic differentiation only in cell lines that differentiate along this lineage after all-trans retinoic acid (ATRA) exposure. Forced PRAME expression in normal hematopoietic progenitors, however, inhibited myeloid differentiation both in the presence and absence of ATRA, and this phenotype was reversed when PRAME was silenced in primary CML progenitors. These observations suggest that PRAME inhibits myeloid differentiation in certain myeloid leukemias, and that its function in these cells is lineage and phenotype dependent. Lastly, these observations suggest that PRAME is a target for both prognostic and therapeutic applications. PMID:19625708
Richebourg, Steven; Eclache, Virginie; Perot, Christine; Portnoi, Marie-France; Van den Akker, Jacqueline; Terré, Christine; Maareck, Odile; Soenen, Valérie; Viguié, Franck; Laï, Jean-Luc; Andrieux, Joris; Corm, Sélim; Roche-Lestienne, Catherine
2008-04-15
Many published studies have indicated that various mechanisms could be involved in the genesis of variant chronic myelogeneous leukemia (CML) translocations. These are mainly one-step or two-step mechanisms, associated or not with deletions adjacent to the translocation junction on der(9) or der(22) chromosomes (or both). Based on the mechanism of genesis, it has been suggested that the complexity may affect the occurrence of ABL1 and BCR deletions (either or both), or may be associated with the CML disease course, and thus could determine the response to imatinib therapy. Through a retrospective molecular cytogenetic study of 41 CML patients with variant Philadelphia chromosome (Ph), we explored the genesis of these variant rearrangements and analyzed the correlation with deletion status and imatinib efficiency. Our results confirmed that the one-step mechanism is the most frequent, evidenced in 30 of 41 patients (73%); 3 patients demonstrated other more complex multistep events and 8 patients (19.5%) harbored ABL1 or BCR deletions that are not significantly associated with the complexity of translocation genesis. We also found no association between one-step, two-step, or multistep mechanisms and the response to imatinib therapy.
NASA Astrophysics Data System (ADS)
Valderrama-Bravo, C.; Domínguez-Pacheco, A.; Hernández-Aguilar, C.; Zepeda-Bautista, R.; del Real-López, A.; Pahua-Ramos, M. E.; Arellano-Vázquez, J. L.; Moreno-Martínez, E.
2017-01-01
In maize plant breeding aimed at producing a hybrid, it is necessary to characterize the parents and hybrids by their agronomic aspects and grain quality so that the processing industry may offer consumers a quality product and also improve its efficiency. This study evaluated the viscoelastic parameters of masa and the chemical and texture properties of tortillas obtained from parent lines (M-54, M55, and CML-242), two single crosses (M54xM55 and M55xM54), and one hybrid (H-70). The morphology of the maize grains and tortillas was analyzed using scanning electron microscopy. The firmness of masa obtained from CML-242 and H-70 maize was higher than that from the other maize genotypes. M-54 tortillas showed the lowest crude fiber content. Otherwise, tortillas obtained from the M55xM54 hard grain had the lowest fat content and extensibility, while H-70 tortillas showed an intermediate breaking point and extensibility. M-54 and M54xM55 tortillas were softer due to their more swollen starch granules. In contrast, rigid tortillas were obtained from CML-242 and H-70. Grain hardness causes different morphology in starch and tortilla of maize genotypes. However, grain hardness did not influence the characteristics of texture in tortillas.
Planned Pregnancy in a Chronic Myeloid Leukemia Patient in Molecular Remission
Pavlovsky, Carolina; Giere, Isabel; Van Thillo, Germán
2012-01-01
Excellent response rates and a good quality of life have been observed since the introduction of tyrosine kinase inhibitors (TKIs) in chronic myeloid leukemia (CML) treatment. Consequently, some challenges began to appear in CML women in child-bearing age wishing to become pregnant. Currently, many women around the world are in stable major/complete molecular response MMR/CMR (MMR: <0.1% BCR-ABL/ABL and CMR: undetectable BCR-ABL mRNA by RQ-PCR transcript levels on the international scale). The condition of stable MMR/CMR is linked to a long-term virtual absence of progression to the accelerated and blastic phase and to the possibility of stopping the TKI treatment with the maintenance of a condition of CMR in a proportion of cases. Imatinib teratogenic and prescribing information prohibits the use of it during pregnancy. We describe the case of a 36-year-old female patient with CML in chronic phase who stopped imatinib after 2 years in major molecular response (MMR) to plan a pregnancy. Molecular monitoring by RQ-PCR was performed quarterly. She achieved a safe pregnancy and delivery maintaining an optimal molecular response throughout the pregnancy. Isolated literature reports have been described, but no formal advice has been described at present time. PMID:22928126
Hai, Xin; Guo, Meihua; Gao, Chunlu; Zhou, Jin
2017-04-15
Hydroxyurea (HU) has been used in the treatment of chronic myeloid leukaemia (CML) and other myeloproliferative malignancies. Considering patient's wide variation in clinical response to HU, a new and simple liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed and validated to monitor patients' compliance to treatment and investigate the pharmacokinetics of HU in patients with CML. Stable isotope labeled HU- 13 C 1 , 15 N 2 was used as internal standard. Plasma samples were treated with acetonitrile to precipitate protein. The supernatant was injected directly without derivatization and separated on a hydrophilic interaction liquid chromatography column. HU was quantitatively analyzed with a mobile phase of acetonitrile-1.5mM ammonium formate (90:10, V:V) within 3min. The proposed method provided a linearity range of 1-200μg/mL. The coefficients of variation for intra- and inter-day precision were less than 2.07% and 4.28%, respectively, while the accuracy (bias) was in the range of -3.77 to 2.96%. This method was satisfactorily applied to the determination of HU in two patients with CML. It is suitable for supporting pharmacokinetic studies and clinical therapeutic monitoring. Copyright © 2017 Elsevier B.V. All rights reserved.
Heterogeneity of BCR-ABL rearrangement in patients with chronic myeloid leukemia in Pakistan
Tabassum, Najia; Saboor, Mohammad; Ghani, Rubina; Moinuddin, Moinuddin
2014-01-01
Background and Objective: Breakpoint cluster region-Abelson (BCR-ABL) rearrangement or Philadelphia (Ph) chromosome in Chronic Myeloid Leukemia (CML) is derived from a reciprocal chromosomal translocation between ABL gene on chromosome 9 and BCR gene on chromosome 22. This chimeric protein has various sizes and therefore different clinical behaviour. The purpose of this study was to determine the heterogeneity of BCR-ABL rearrangement in patients with Ph+CML in Pakistan. Methods: The study was conducted at Civil Hospital and Baqai Institute of Hematology (BIH) Karachi. Blood samples from 25 patients with CML were collected. Multiplex reverse transcription polymerase chain reaction (RT-PCR) was performed to identify various BCR-ABL transcripts. Results: All 25 samples showed BCR-ABL rearrangements. Out of these, 24 (96%) patients expressed p210 BCR-ABL rearrangements i.e. 60% (n=15) had b3a2 and 32% (n=8) had b2a2 rearrangements. Co-expression of b3a2 /b2a2 rearrangement and p190 (e1a3) rearrangement was also identified in two patients. Conclusion: It is apparent that majority of the patients had p210 BCR-ABL rearrangements. Frequency of co-expression and rare fusion transcripts was very low. PMID:25097530
In Vitro Inhibitory Activity of Acca sellowiana Fruit Extract on End Products of Advanced Glycation.
Muñiz, Alethia; Garcia, Abraham H; Pérez, Rosa M; García, Efren V; González, Daphne E
2018-02-01
Hyperglycemia plays an important role in the pathogenesis of diabetic complications, as it increases protein glycation, as well as the progressive accumulation of advanced glycation end products (AGEs), which are complex structures that produce fluorescence. The glycation reaction raises the levels of protein carbonyl, N ε -(carboxymethyl)lysine (CML), and fructosamine and decreases the level of thiol groups. In the present study, the antiglycation activity was determined by fluorescence intensity using the bovine serum albumin (BSA)/glucose, CML method, and the level of fructosamine. The oxidation of proteins was determined by the carbonyl protein content and thiol groups. The results show that the hexane extract of Acca sellowiana (FOH) at different concentrations (0.30-5 mg/ml) significantly inhibited the formation of AGEs in the BSA/glucose model during the 4 weeks of the study. FOH reduced the levels of fructosamine and CML. Our results showed a significant effect of FOH in the prevention of oxidative damage of proteins, as well as an effect on the oxidation of thiol groups and carbonyl proteins. The present study indicates that FOH is effective in inhibiting the glycation of proteins in vitro, so it can prevent or ameliorate the chronic conditions of diabetes associated with the formation of AGEs.
Familial translocation involving chromosomes 1 and 9 in a patient with Philadelphia-positive CML
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rehman, K.; Rosner, F.; Shanske, A.
1994-09-01
CML has provided a model for understanding the genetic basis of neoplasia. Approximately 5% of Philadelphia-positive patients have a variant chromosome rearrangement. We recently evaluated a patient with a previously unreported simple variant translocation that is part of a familial rearrangement. He had a constitutional translocation, t(1;9)(p21;p22), which was initially identified after his wife had a routine amniocentesis. Case report: K.H. was a 54-year-old male with CML for 4 years. He had been treated until recently with hydroxyurea. An abnormal male karyotype, 46,XY,t(1;9)(q21;p22),t(9;22)(q34;q11) was recorded from an unstimulated blood sample soon after diagnosis. Both translocations involved the same number 9more » homologue resulting in a derivative 9(1pter{r_arrow}1q21::9p22{r_arrow}9q34::22q11{r_arrow}22qter). A recent CT scan of the chest showed a lytic lesion of a rib with associated soft tissue mass in the right costo-vertebral angle. He was hospitalized for progressive pain in the right lower chest and fever, treated for a UTI, required multiple transfusions for declining hemoglobin and platelets and died shortly thereafter. Autopsy revealed widespread chloromas as part of terminal CML. At least 13 complex rearrangements involving chromosomes 1, 9 and 22 are known. Our case represents a unique rearrangement with a familial component and also unique breakpoints for a Philadelphia variant. In line with the current view of cancer as a clonal disorder, perhaps the constitutional translocation contributed to the multi-step nature of the malignant transformation. In fact, a number of cancer-specific breakpoints in both regions of 1p and 9p are involved in the familial translocation.« less
Risk of Hematologic Malignancies After Radioiodine Treatment of Well-Differentiated Thyroid Cancer.
Molenaar, Remco J; Sidana, Surbhi; Radivoyevitch, Tomas; Advani, Anjali S; Gerds, Aaron T; Carraway, Hetty E; Angelini, Dana; Kalaycio, Matt; Nazha, Aziz; Adelstein, David J; Nasr, Christian; Maciejewski, Jaroslaw P; Majhail, Navneet S; Sekeres, Mikkael A; Mukherjee, Sudipto
2017-12-18
Purpose To investigate the risk and outcomes of second hematologic malignancies (SHMs) in a population-based cohort of patients with well-differentiated thyroid cancer (WDTC) treated or not with radioactive iodine (RAI). Methods Patients with WDTC were identified from SEER registries. Competing risk regression analysis was performed to calculate the risks of SHMs that occurred after WDTC treatment and outcomes after SHM development were assessed. Results Of 148,215 patients with WDTC, 53% received surgery alone and 47% received RAI. In total, 783 patients developed an SHM after a median interval of 6.5 years (interquartile range, 3.3 to 11.2 years) from WDTC diagnosis. In multivariable analysis, compared with those undergoing thyroidectomy alone, RAI treatment was associated with an increased early risk of developing acute myeloid leukemia (AML; hazard ratio, 1.79; 95% CI, 1.13 to 2.82; P = .01) and chronic myeloid leukemia (CML; hazard ratio, 3.44; 95% CI, 1.87 to 6.36; P < .001). This increased risk of AML and CML after RAI treatment was seen even in low-risk and intermediate-risk WDTC tumors. Occurrence of AML but not CML in patients with WDTC was associated with shorter median overall survival compared with matched controls (8.0 years v 31.0 years; P = .001). In addition, AML developing after RAI trended toward inferior survival compared with matched controls with de novo AML (median overall survival, 1.2 years v 2.9 years; P = .06). Conclusion Patients with WDTC treated with RAI had an increased early risk of developing AML and CML but no other hematologic malignancies. AML that arises after RAI treatment has a poor prognosis. RAI use in patients with WDTC should be limited to patients with high-risk disease features, and patients with WDTC treated with adjuvant RAI should be monitored for myeloid malignancies as part of cancer surveillance.
The impact of multiple low-level BCR-ABL1 mutations on response to ponatinib.
Parker, Wendy T; Yeung, David T O; Yeoman, Alexandra L; Altamura, Haley K; Jamison, Bronte A; Field, Chani R; Hodgson, J Graeme; Lustgarten, Stephanie; Rivera, Victor M; Hughes, Timothy P; Branford, Susan
2016-04-14
The third-generation tyrosine kinase inhibitor (TKI) ponatinib shows activity against all common BCR-ABL1 single mutants, including the highly resistant BCR-ABL1-T315I mutant, improving outcome for patients with refractory chronic myeloid leukemia (CML). However, responses are variable, and causal baseline factors have not been well-studied. The type and number of low-level BCR-ABL1 mutations present after imatinib resistance has prognostic significance for subsequent treatment with nilotinib or dasatinib as second-line therapy. We therefore investigated the impact of low-level mutations detected by sensitive mass-spectrometry before ponatinib initiation (baseline) on treatment response in 363 TKI-resistant patients enrolled in the PONATINIB for Chronic Myeloid Leukemia Evaluation and Ph(+)Acute Lymphoblastic Leukemia trial, including 231 patients in chronic phase (CP-CML). Low-level mutations were detected in 53 patients (15%, including low-level T315I in 14 patients); most, however, did not undergo clonal expansion during ponatinib treatment and, moreover, no specific individual mutations were associated with inferior outcome. We demonstrate however, that the number of mutations detectable by mass spectrometry after TKI resistance is associated with response to ponatinib treatment and could be used to refine the therapeutic approach. Although CP-CML patients with T315I (63/231, 27%) had superior responses overall, those with multiple mutations detectable by mass spectrometry (20, 32%) had substantially inferior responses compared with those with T315I as the sole mutation detected (43, 68%). In contrast, for CP-CML patients without T315I, the inferior responses previously observed with nilotinib/dasatinib therapy for imatinib-resistant patients with multiple mutations were not seen with ponatinib treatment, suggesting that ponatinib may prove to be particularly advantageous for patients with multiple mutations detectable by mass spectrometry after TKI resistance. © 2016 by The American Society of Hematology.
Shibata, Norihito; Miyamoto, Naoki; Nagai, Katsunori; Shimokawa, Kenichiro; Sameshima, Tomoya; Ohoka, Nobumichi; Hattori, Takayuki; Imaeda, Yasuhiro; Nara, Hiroshi; Cho, Nobuo; Naito, Mikihiko
2017-08-01
Chromosomal translocation occurs in some cancer cells, which results in the expression of aberrant oncogenic fusion proteins that include BCR-ABL in chronic myelogenous leukemia (CML). Inhibitors of ABL tyrosine kinase, such as imatinib and dasatinib, exhibit remarkable therapeutic effects, although emergence of drug resistance hampers the therapy during long-term treatment. An alternative approach to treat CML is to downregulate the BCR-ABL protein. We have devised a protein knockdown system by hybrid molecules named Specific and Non-genetic inhibitor of apoptosis protein [IAP]-dependent Protein Erasers (SNIPER), which is designed to induce IAP-mediated ubiquitylation and proteasomal degradation of target proteins, and a couple of SNIPER(ABL) against BCR-ABL protein have been developed recently. In this study, we tested various combinations of ABL inhibitors and IAP ligands, and the linker was optimized for protein knockdown activity of SNIPER(ABL). The resulting SNIPER(ABL)-39, in which dasatinib is conjugated to an IAP ligand LCL161 derivative by polyethylene glycol (PEG) × 3 linker, shows a potent activity to degrade the BCR-ABL protein. Mechanistic analysis suggested that both cellular inhibitor of apoptosis protein 1 (cIAP1) and X-linked inhibitor of apoptosis protein (XIAP) play a role in the degradation of BCR-ABL protein. Consistent with the degradation of BCR-ABL protein, the SNIPER(ABL)-39 inhibited the phosphorylation of signal transducer and activator of transcription 5 (STAT5) and Crk like proto-oncogene (CrkL), and suppressed the growth of BCR-ABL-positive CML cells. These results suggest that SNIPER(ABL)-39 could be a candidate for a degradation-based novel anti-cancer drug against BCR-ABL-positive CML. © 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.
Jaisson, Stéphane; Souchon, Pierre-François; Desmons, Aurore; Salmon, Anne-Sophie; Delemer, Brigitte; Gillery, Philippe
2016-05-01
To quantify serum advanced glycation end-products (AGEs) at the onset of type 1 diabetes mellitus and to determine their potential usefulness as retrospective indicators of glycemic balance. Carboxymethyllysine (CML) and pentosidine concentrations were determined by liquid chromatography-tandem mass spectrometry in 3 groups of children with type 1 diabetes mellitus: group (Gr) 1, subjects included at disease onset (n = 36); Gr2, subjects with diabetes of 5 years duration (n = 48); Gr3, subjects with diabetes of 10 years duration and in control subjects (n = 33). Hemoglobin A1c (HbA1c) values were recorded over the entire course of treatment for assessing long-term glycemic balance. Serum AGE concentrations were increased in all groups of subjects with diabetes compared with control subjects, but were highest in Gr1 (for CML: 0.155, 0.306, 0.219, and 0.224 mmol/mol Lys in control, Gr1, Gr2, and Gr3 subjects, respectively; for pentosidine: 312, 492, 365, and 403 nmol/mol Lys, respectively). AGE concentrations were closely correlated with HbA1c values (r = 0.78 for CML; r = 0.49 for pentosidine). In Gr2 and Gr3, the overall glycemic balance estimated by average HbA1c values was positively correlated with CML and pentosidine concentrations, especially in the first year of follow-up. Our results indicate that AGE concentrations are elevated in serum at the time of diabetes mellitus diagnosis, suggesting that the deleterious role of AGEs in the development of long-term complications should be taken into account even at the initial stages of the disease. Moreover, in some circumstances, AGEs could serve as surrogate markers of HbA1c for monitoring glycemic control. Copyright © 2016 Elsevier Inc. All rights reserved.
Brown, Fred; Adelson, David; White, Deborah; Hughes, Timothy; Chaudhri, Naeem
2017-01-01
Background Treatment of patients with chronic myeloid leukaemia (CML) has become increasingly difficult in recent years due to the variety of treatment options available and challenge deciding on the most appropriate treatment strategy for an individual patient. To facilitate the treatment strategy decision, disease assessment should involve molecular response to initial treatment for an individual patient. Patients predicted not to achieve major molecular response (MMR) at 24 months to frontline imatinib may be better treated with alternative frontline therapies, such as nilotinib or dasatinib. The aims of this study were to i) understand the clinical prediction ‘rules’ for predicting MMR at 24 months for CML patients treated with imatinib using clinical, molecular, and cell count observations (predictive factors collected at diagnosis and categorised based on available knowledge) and ii) develop a predictive model for CML treatment management. This predictive model was developed, based on CML patients undergoing imatinib therapy enrolled in the TIDEL II clinical trial with an experimentally identified achieving MMR group and non-achieving MMR group, by addressing the challenge as a machine learning problem. The recommended model was validated externally using an independent data set from King Faisal Specialist Hospital and Research Centre, Saudi Arabia. Principle Findings The common prognostic scores yielded similar sensitivity performance in testing and validation datasets and are therefore good predictors of the positive group. The G-mean and F-score values in our models outperformed the common prognostic scores in testing and validation datasets and are therefore good predictors for both the positive and negative groups. Furthermore, a high PPV above 65% indicated that our models are appropriate for making decisions at diagnosis and pre-therapy. Study limitations include that prior knowledge may change based on varying expert opinions; hence, representing the category boundaries of each predictive factor could dramatically change performance of the models. PMID:28045960
Zhao, Yan-Hong; Zhang, Xue-Fang; Zhao, Yan-Qiu; Bai, Fan; Qin, Fan; Sun, Jing; Dong, Ying
2017-08-01
Chronic myeloid leukemia (CML) is characterized by the accumulation of active BCR-ABL protein. Imatinib is the first-line treatment of CML; however, many patients are resistant to this drug. In this study, we aimed to compare the differences in expression patterns and functions of time-series genes in imatinib-resistant CML cells under different drug treatments. GSE24946 was downloaded from the GEO database, which included 17 samples of K562-r cells with (n=12) or without drug administration (n=5). Three drug treatment groups were considered for this study: arsenic trioxide (ATO), AMN107, and ATO+AMN107. Each group had one sample at each time point (3, 12, 24, and 48 h). Time-series genes with a ratio of standard deviation/average (coefficient of variation) >0.15 were screened, and their expression patterns were revealed based on Short Time-series Expression Miner (STEM). Then, the functional enrichment analysis of time-series genes in each group was performed using DAVID, and the genes enriched in the top ten functional categories were extracted to detect their expression patterns. Different time-series genes were identified in the three groups, and most of them were enriched in the ribosome and oxidative phosphorylation pathways. Time-series genes in the three treatment groups had different expression patterns and functions. Time-series genes in the ATO group (e.g. CCNA2 and DAB2) were significantly associated with cell adhesion, those in the AMN107 group were related to cellular carbohydrate metabolic process, while those in the ATO+AMN107 group (e.g. AP2M1) were significantly related to cell proliferation and antigen processing. In imatinib-resistant CML cells, ATO could influence genes related to cell adhesion, AMN107 might affect genes involved in cellular carbohydrate metabolism, and the combination therapy might regulate genes involved in cell proliferation.
Spinelli, Roberta; Pirola, Alessandra; Redaelli, Sara; Sharma, Nitesh; Raman, Hima; Valletta, Simona; Magistroni, Vera; Piazza, Rocco; Gambacorti-Passerini, Carlo
2013-01-01
Point mutations in intronic regions near mRNA splice junctions can affect the splicing process. To identify novel splicing variants from exome sequencing data, we developed a bioinformatics splice-site prediction procedure to analyze next-generation sequencing (NGS) data (SpliceFinder). SpliceFinder integrates two functional annotation tools for NGS, ANNOVAR and MutationTaster and two canonical splice site prediction programs for single mutation analysis, SSPNN and NetGene2. By SpliceFinder, we identified somatic mutations affecting RNA splicing in a colon cancer sample, in eight atypical chronic myeloid leukemia (aCML), and eight CML patients. A novel homozygous splicing mutation was found in APC (NM_000038.4:c.1312+5G>A) and six heterozygous in GNAQ (NM_002072.2:c.735+1C>T), ABCC3 (NM_003786.3:c.1783-1G>A), KLHDC1 (NM_172193.1:c.568-2A>G), HOOK1 (NM_015888.4:c.1662-1G>A), SMAD9 (NM_001127217.2:c.1004-1C>T), and DNAH9 (NM_001372.3:c.10242+5G>A). Integrating whole-exome and RNA sequencing in aCML and CML, we assessed the phenotypic effect of mutations on mRNA splicing for GNAQ, ABCC3, HOOK1. In ABCC3 and HOOK1, RNA-Seq showed the presence of aberrant transcripts with activation of a cryptic splice site or intron retention, validated by the reverse transcription-polymerase chain reaction (RT-PCR) in the case of HOOK1. In GNAQ, RNA-Seq showed 22% of wild-type transcript and 78% of mRNA skipping exon 5, resulting in a 4–6 frameshift fusion confirmed by RT-PCR. The pipeline can be useful to identify intronic variants affecting RNA sequence by complementing conventional exome analysis. PMID:24498620
Jain, Preetesh; Kantarjian, Hagop; Jabbour, Elias; Gonzalez, Graciela Nogueras; Borthakur, Gautam; Pemmaraju, Naveen; Daver, Naval; Gachimova, Evguenia; Ferrajoli, Alessandra; Kornblau, Steven; Ravandi, Farhad; O'Brien, Susan; Cortes, Jorge
2015-09-01
Ponatinib has shown efficacy in patients with refractory chronic myeloid leukaemia (CML) and in those with CML with a Thr315Ile mutation. We aimed to investigate the activity and safety of ponatinib as first-line treatment for patients with chronic-phase CML. We did a single-arm, phase 2 trial at MD Anderson Cancer Center in Houston, TX, USA. Between May 3, 2012, and Sept 24, 2013, we enrolled patients with early (<6 months) chronic-phase CML and treated them with oral ponatinib once a day. Patients enrolled before July 25, 2013, were given a starting dose of 45 mg per day; we lowered this due to tolerability issues and patients enrolled after this date were given a starting dose of 30 mg per day. After a warning by the US Food and Drug Administration (FDA) in Oct 6, 2013, for vascular complications with ponatinib, we started all patients on aspirin 81 mg daily and reduced the dose of ponatinib to 30 mg or 15 mg per day for all patients. The primary endpoint was the proportion of patients who achieved complete cytogenetic response by 6 months in the per-protocol population. This trial is registered with ClinicalTrials.gov, number NCT01570868. We enrolled 51 patients. Median follow-up was 20·9 months (IQR 14·9–25·2). 43 patients were started on 45 mg ponatinib every day; eight patients were started on 30 mg per day. 43 (94%) of 46 evaluable patients achieved complete cytogenetic response at 6 months. Most frequent toxicities included skin-related effects (n=35; 69%) and elevated lipase (n=32; 63%). Cardiovascular events (mainly hypertension) occurred in 25 (49%) patients. Grade 3–4 myelosuppression occurred in 15 (29%) patients. Five (10%) patients developed cerebrovascular or vaso-occlusive disease. 43 (85%) patients needed treatment interruptions at some time and 45 (88%) needed dose reductions. The study was terminated June 18, 2014, at the recommendation of the FDA due to concern about the increased risk of thromboembolism with ponatinib. Patients with newly diagnosed CML in chronic phase respond well to treatment with ponatinib, with most achieving a complete cytogenetic response. Dose adjustment, extensive monitoring, and counselling of the patients for thromboembolic events is needed for patients on ponatinib therapy. However, due to the risk of vascular thrombotic events and the availability of alternative options for these patients, other drugs should be considered first in the frontline setting. MD Anderson Cancer Center, National Cancer Institute, ARIAD Pharmaceutical.
Management of chronic myeloid leukemia in blast crisis.
Saußele, S; Silver, Richard T
2015-04-01
Due to the high efficacy of BCR-ABL tyrosine kinase inhibition (TKI) in chronic phase (CP) chronic myeloid leukemia (CML), the frequency of blast crisis (BC) is greatly reduced compared to the pre-TKI era. However, TKI treatment of BC has only marginally improved the number of favorable responses, including remissions, which for the most part have only been transitory. Occasionally, they provide a therapeutic window to perform an allogeneic stem cell transplantation (allo-SCT). The challenge remains to improve management of BC with the limited options available. We review and summarize articles pertaining to the treatment of BC CML published after 2002. Additionally, we will discuss whether there is a need for a new definition of BC and/or treatment failure.
Unrelated Umbilical Cord Blood (UBC)Transplantation
2018-05-25
Chronic Myelogenous Leukemia (CML); Acute Myelogenous Leukemia (AML); Myelodysplastic Syndrome; Multiple Myeloma; Hodgkin Lymphoma; Non-Hodgkin Lymphoma; Chronic Lymphocytic Leukemia (CLL); Acute Lymphocytic Leukemia (ALL); Severe Aplastic Anemia
Premature chromosome condensation studies in human leukemia. I. Pretreatment characteristics.
Hittelman, W N; Broussard, L C; McCredie, K
1979-11-01
The phenomenon of premature chromosome condensation (PCC) was used to compare the bone marrow proliferation characteristics of 163 patients with various forms of leukemia prior to the initiation of new therapy. The proliferative potential index (PPI, or fraction of G1 cells in late G1 phase) and the fraction of cells in S phase was determined and compared to the type of disease and the bone marrow blast infiltrate for each patient. Previously untreated patients with acute leukemia exhibited an average PPI value three times that of normal bone marrow (37.5% for acute myeloblastic leukemia [AML], acute monomyeloblastic leukemia [AMML], or acute promyelocytic leukemia [APML] and 42% for acute lymphocytic leukemia [ALL] or acute undifferentiated leukemia [AUL]). Untreated chronic myelogenous leukemia (CML) patients showed intermediate PPI values (25.2%), whereas CML patients with controlled disease exhibited nearly normal PPI values (14.6%). On the other hand, blastic-phase CML patients exhibited PPI values closer to that observed in patients with acute leukemia (35.4%). Seven patients with chronic lymphocytic leukemia (CLL) exhibited even higher PPI values. No correlations were observed between PPI values, fraction of cells in S phase, and marrow blast infiltrate. For untreated acute disease patients, PPI values were prognostic for response only at low and high PPI values. These results suggest that the PCC-determined proliferative potential is a biologic reflection of the degree of malignancy within the bone marrow.
Hanaizi, Zahra; Unkrig, Christoph; Enzmann, Harald; Camarero, Jorge; Sancho-Lopez, Arantxa; Salmonson, Tomas; Gisselbrecht, Christian; Laane, Edward; Pignatti, Francesco
2014-04-01
On March 27, 2013, a conditional marketing authorization valid throughout the European Union was issued for bosutinib (Bosulif) for the treatment of adult patients with chronic-phase, accelerated-phase, and blast-phase Philadelphia chromosome positive (Ph⁺) chronic myelogenous leukemia (CML) previously treated with one tyrosine kinase inhibitor or more and for whom imatinib, nilotinib, and dasatinib are not considered appropriate treatment options. Bosutinib is a kinase inhibitor that targets the BCR-ABL kinase. The recommended dose is 500 mg of bosutinib once daily. The main evidence of efficacy for bosutinib was based on a CML subgroup analysis of study 3160A4-200, a phase I/II study of bosutinib in Ph⁺ leukemia in imatinib-resistant or intolerant CML. The subgroup was defined based on the presence of a BCR-ABL kinase domain mutation that would be expected to confer resistance to dasatinib (F317, E255) or nilotinib (E255, Y253, F359) and expected to have sensitivity to bosutinib or based on the presence of medical conditions or prior toxicities that may predispose the patient to unacceptable risk in the setting of nilotinib or dasatinib therapy. A conditional marketing authorization was granted because of the limited evidence of efficacy and safety currently supporting this last-line indication.
Yang, Tzu-Yi; Eissler, Christie L; Hall, Mark C; Parker, Laurie L
2013-01-01
The protein kinase Bcr-Abl plays a major role in the pathogenesis of chronic myelogenous leukemia (CML), and is the target of the breakthrough drug imatinib (Gleevec™). While most patients respond well to imatinib, approximately 30% never achieve remission or develop resistance within 1-5 years of starting imatinib treatment. Evidence from clinical studies suggests that achieving at least 50% inhibition of a patient's Bcr-Abl kinase activity (relative to their level at diagnosis) is associated with improved patient outcomes, including reduced occurrence of resistance and longer maintenance of remission. Accordingly, sensitive assays for detecting Bcr-Abl kinase activity compatible with small amounts of patient material are desirable as potential companion diagnostics for imatinib. Here we report the detection of Bcr-Abl activity and inhibition by imatinib in the human CML cell line K562 using a cell-penetrating peptide biosensor and multiple reaction monitoring (MRM) on a triple quadrupole mass spectrometer. MRM enabled reproducible, selective detection of the peptide biosensor at fmol levels from aliquots of cell lysate equivalent to ~15,000 cells. This degree of sensitivity will facilitate the miniaturization of the entire assay procedure down to cell numbers approaching 15,000, making it practical for translational applications in patient cells in which the limited amount of available patient material often presents a major challenge.
Yang, Tzu-Yi; Eissler, Christie L.; Hall, Mark C.; Parker, Laurie L.
2013-01-01
The protein kinase Bcr-Abl plays a major role in the pathogenesis of chronic myelogenous leukemia (CML), and is the target of the breakthrough drug imatinib (Gleevec™). While most patients respond well to imatinib, approximately 30% never achieve remission or develop resistance within 1–5 years of starting imatinib treatment. Evidence from clinical studies suggests that achieving at least 50% inhibition of a patient’s Bcr-Abl kinase activity (relative to their level at diagnosis) is associated with improved patient outcomes, including reduced occurrence of resistance and longer maintenance of remission. Accordingly, sensitive assays for detecting Bcr-Abl kinase activity compatible with small amounts of patient material are desirable as potential companion diagnostics for imatinib. Here we report the detection of Bcr-Abl activity and inhibition by imatinib in the human CML cell line K562 using a cell-penetrating peptide biosensor and multiple reaction monitoring (MRM) on a triple quadrupole mass spectrometer. MRM enabled reproducible, selective detection of the peptide biosensor at fmol levels from aliquots of cell lysate equivalent to ∼15,000 cells. This degree of sensitivity will facilitate the miniaturization of the entire assay procedure down to cell numbers approaching 15,000, making it practical for translational applications in patient cells in which the limited amount of available patient material often presents a major challenge. PMID:23437189
Yang, Zhong-Fa; Zhang, Haojian; Ma, Leyuan; Peng, Cong; Chen, Yaoyu; Wang, Junling; Green, Michael R; Li, Shaoguang; Rosmarin, Alan G
2013-02-05
Hematopoietic stem cells (HSCs) are the source of all blood lineages, and HSCs must balance quiescence, self-renewal, and differentiation to meet lifelong needs for blood cell development. Transformation of HSCs by the breakpoint cluster region-ABL tyrosine kinase (BCR-ABL) oncogene causes chronic myelogenous leukemia (CML). The E-twenty six (ets) transcription factor GA binding protein (GABP) is a tetrameric transcription factor complex that contains GABPα and GABPβ proteins. Deletion in bone marrow of Gabpa, the gene that encodes the DNA-binding component, caused cell cycle arrest in HSCs and profound loss of hematopoietic progenitor cells. Loss of Gabpα prevented development of CML, although mice continued to generate BCR-ABL-expressing Gabpα-null cells for months that were serially transplantable and contributed to all lineages in secondary recipients. A bioinformatic screen identified the serine-threonine kinase protein kinase D2 (PRKD2) as a potential effector of GABP in HSCs. Prkd2 expression was markedly reduced in Gabpα-null HSCs and progenitor cells. Reduced expression of PRKD2 or pharmacologic inhibition decreased cell cycling, and PRKD2 rescued growth of Gabpα-null BCR-ABL-expressing cells. Thus, GABP is required for HSC cell cycle entry and CML development through its control of PRKD2. This offers a potential therapeutic target in leukemia.
Degenhardt, T P; Fu, M X; Voss, E; Reiff, K; Neidlein, R; Strein, K; Thorpe, S R; Baynes, J W; Reiter, R
1999-02-01
Aminoguanidine, an inhibitor of advanced glycation reactions in vitro, inhibits the development of diabetic complications in animal models of diabetes, suggesting that it acts by inhibition of advanced glycation reactions in vivo. However, effects of aminoguanidine on the formation of specific advanced glycation end-products (AGEs) in vivo have not been rigorously examined. Therefore, we studied the effects of aminoguanidine on the formation of pentosidine and N(epsilon)-(carboxymethyl)lysine (CML), measured by analytical chemical methods, in collagen of streptozotocin-diabetic Lewis rats at doses which ameliorated urinary albumin excretion, an index of diabetic nephropathy. At 12 weeks, diabetic animals had fivefold higher blood glucose, threefold higher glycated hemoglobin and fivefold higher collagen glycation, compared to metabolically healthy controls; pentosidine and CML in skin collagen were increased by approximately 30 and 150%, respectively. Administration of aminoguanidine, 50 mg/kg by daily intraperitoneal injection, significantly inhibited the development of albuminuria (approximately 60%, P < 0.01) in diabetic rats, without an effect on blood glucose or glycation of hemoglobin or collagen. Surprisingly, aminoguanidine failed to inhibit the increase in pentosidine and CML in diabetic rat skin collagen. Similar results were obtained in an independent experiment in which aminoguanidine was administered in drinking water at a dose of 0.5 g/l. We conclude that the therapeutic benefits of aminoguanidine on albuminuria may not be the result of inhibition of AGE formation.
Efficiency of use endobronchial laser doppler-flowmetry in patients with chronic leukemia
NASA Astrophysics Data System (ADS)
Vanina, E. A.; Voitsekhovskiy, V. V.; Landyshev, Y. S.; Tkacheva, S. I.
2016-11-01
In this work indicatorsendobronchial microcirculation were investigated in patients with chronic myeloid leukemia (CML), chronic lymphocytic leukemia (CLL), multiple myeloma (MM), polycythemia vera (PV), idiopathic myelofibrosis (IMF). A diagnostic bronchoscopy was performed using fibreoptic «Olympus» (Japan).Endobronchial laser Doppler flowmetry was carried out on the laser analyzer capillary blood LAK-02 (Russia). Laser Doppler flowmetry indicators such as parameter of microcirculation, the oscillation amplitude in the endothelial, neurogenic, myogenic, cardiac and respiratory ranges were calculated by continuous the Wavelet transforms. Reduced cardiac and respiratory amplitudes in CML and CLL are primarily due to the development leukostasis. If PV is the case, this is due to sludge syndrome. And when MM occurs, it is caused by protein stasis in the vessels of the bronchial tubes. Increased endothelial oscillation amplitudes in the range in CML, PV, IMF and their reduction in MM indicate the presence of endothelial dysfunction in these patients. Increasing the amplitude of oscillations in the range of neurogenic indicates the development of arteriolar vasodilation as a compensatory response to the violation of blood flow. Increasing the amplitude of oscillations of myogenic tone indicating decrease precapillaries as a compensatory reaction to improve blood flow. It is concluded that endobronchial laser Doppler flowmetry is an important method allowing diagnosing the pathology of the microvasculature of the bronchi in chronic leukemia.
Hochhaus, A; Saglio, G; Hughes, T P; Larson, R A; Kim, D-W; Issaragrisil, S; le Coutre, P D; Etienne, G; Dorlhiac-Llacer, P E; Clark, R E; Flinn, I W; Nakamae, H; Donohue, B; Deng, W; Dalal, D; Menssen, H D; Kantarjian, H M
2016-05-01
In the phase 3 Evaluating Nilotinib Efficacy and Safety in Clinical Trials-Newly Diagnosed Patients (ENESTnd) study, nilotinib resulted in earlier and higher response rates and a lower risk of progression to accelerated phase/blast crisis (AP/BC) than imatinib in patients with newly diagnosed chronic myeloid leukemia in chronic phase (CML-CP). Here, patients' long-term outcomes in ENESTnd are evaluated after a minimum follow-up of 5 years. By 5 years, more than half of all patients in each nilotinib arm (300 mg twice daily, 54%; 400 mg twice daily, 52%) achieved a molecular response 4.5 (MR(4.5); BCR-ABL⩽0.0032% on the International Scale) compared with 31% of patients in the imatinib arm. A benefit of nilotinib was observed across all Sokal risk groups. Overall, safety results remained consistent with those from previous reports. Numerically more cardiovascular events (CVEs) occurred in patients receiving nilotinib vs imatinib, and elevations in blood cholesterol and glucose levels were also more frequent with nilotinib. In contrast to the high mortality rate associated with CML progression, few deaths in any arm were associated with CVEs, infections or pulmonary diseases. These long-term results support the positive benefit-risk profile of frontline nilotinib 300 mg twice daily in patients with CML-CP.
Gratwohl, A; Pfirrmann, M; Zander, A; Kröger, N; Beelen, D; Novotny, J; Nerl, C; Scheid, C; Spiekermann, K; Mayer, J; Sayer, H G; Falge, C; Bunjes, D; Döhner, H; Ganser, A; Schmidt-Wolf, I; Schwerdtfeger, R; Baurmann, H; Kuse, R; Schmitz, N; Wehmeier, A; Fischer, J Th; Ho, A D; Wilhelm, M; Goebeler, M-E; Lindemann, H W; Bormann, M; Hertenstein, B; Schlimok, G; Baerlocher, G M; Aul, C; Pfreundschuh, M; Fabian, M; Staib, P; Edinger, M; Schatz, M; Fauser, A; Arnold, R; Kindler, T; Wulf, G; Rosselet, A; Hellmann, A; Schäfer, E; Prümmer, O; Schenk, M; Hasford, J; Heimpel, H; Hossfeld, D K; Kolb, H-J; Büsche, G; Haferlach, C; Schnittger, S; Müller, M C; Reiter, A; Berger, U; Saußele, S; Hochhaus, A; Hehlmann, R
2016-03-01
Tyrosine kinase inhibitors represent today's treatment of choice in chronic myeloid leukemia (CML). Allogeneic hematopoietic stem cell transplantation (HSCT) is regarded as salvage therapy. This prospective randomized CML-study IIIA recruited 669 patients with newly diagnosed CML between July 1997 and January 2004 from 143 centers. Of these, 427 patients were considered eligible for HSCT and were randomized by availability of a matched family donor between primary HSCT (group A; N=166 patients) and best available drug treatment (group B; N=261). Primary end point was long-term survival. Survival probabilities were not different between groups A and B (10-year survival: 0.76 (95% confidence interval (CI): 0.69-0.82) vs 0.69 (95% CI: 0.61-0.76)), but influenced by disease and transplant risk. Patients with a low transplant risk showed superior survival compared with patients with high- (P<0.001) and non-high-risk disease (P=0.047) in group B; after entering blast crisis, survival was not different with or without HSCT. Significantly more patients in group A were in molecular remission (56% vs 39%; P=0.005) and free of drug treatment (56% vs 6%; P<0.001). Differences in symptoms and Karnofsky score were not significant. In the era of tyrosine kinase inhibitors, HSCT remains a valid option when both disease and transplant risk are considered.
Liu, Jun; Bhadra, Malini; Sinnakannu, Joanna Rajeswary; Yue, Wan Lin; Tan, Cheryl Weiqi; Rigo, Frank; Ong, S.Tiong; Roca, Xavier
2017-01-01
Many tyrosine kinase-driven cancers, including chronic myeloid leukemia (CML), are characterized by high response rates to specific tyrosine kinase inhibitors (TKIs) like imatinib. In East Asians, primary imatinib resistance is caused by a deletion polymorphism in Intron 2 of the BIM gene, whose product is required for TKI-induced apoptosis. The deletion biases BIM splicing from exon 4 to exon 3, generating splice isoforms lacking the exon 4-encoded pro-apoptotic BH3 domain, which impairs the ability of TKIs to induce apoptosis. We sought to identify splice-switching antisense oligonucleotides (ASOs) that block exon 3 but enhance exon 4 splicing, and thereby resensitize BIM deletion-containing cancers to imatinib. First, we mapped multiple cis-acting splicing elements around BIM exon 3 by minigene mutations, and found an exonic splicing enhancer acting via SRSF1. Second, by a systematic ASO walk, we isolated ASOs that corrected the aberrant BIM splicing. Eight of 67 ASOs increased exon 4 levels in BIM deletion-containing cells, and restored imatinib-induced apoptosis and TKI sensitivity. This proof-of-principle study proves that resistant CML cells by BIM deletion polymorphism can be resensitized to imatinib via splice-switching BIM ASOs. Future optimizations might yield a therapeutic ASO as precision-medicine adjuvant treatment for BIM-polymorphism-associated TKI-resistant CML and other cancers. PMID:29100409
Liu, Jun; Bhadra, Malini; Sinnakannu, Joanna Rajeswary; Yue, Wan Lin; Tan, Cheryl Weiqi; Rigo, Frank; Ong, S Tiong; Roca, Xavier
2017-09-29
Many tyrosine kinase-driven cancers, including chronic myeloid leukemia (CML), are characterized by high response rates to specific tyrosine kinase inhibitors (TKIs) like imatinib. In East Asians, primary imatinib resistance is caused by a deletion polymorphism in Intron 2 of the BIM gene, whose product is required for TKI-induced apoptosis. The deletion biases BIM splicing from exon 4 to exon 3, generating splice isoforms lacking the exon 4-encoded pro-apoptotic BH3 domain, which impairs the ability of TKIs to induce apoptosis. We sought to identify splice-switching antisense oligonucleotides (ASOs) that block exon 3 but enhance exon 4 splicing, and thereby resensitize BIM deletion-containing cancers to imatinib. First, we mapped multiple cis -acting splicing elements around BIM exon 3 by minigene mutations, and found an exonic splicing enhancer acting via SRSF1. Second, by a systematic ASO walk, we isolated ASOs that corrected the aberrant BIM splicing. Eight of 67 ASOs increased exon 4 levels in BIM deletion-containing cells, and restored imatinib-induced apoptosis and TKI sensitivity. This proof-of-principle study proves that resistant CML cells by BIM deletion polymorphism can be resensitized to imatinib via splice-switching BIM ASOs. Future optimizations might yield a therapeutic ASO as precision-medicine adjuvant treatment for BIM -polymorphism-associated TKI-resistant CML and other cancers.
Risk factors and time to symptomatic presentation in leukaemia, lymphoma and myeloma
Howell, Debra A; Warburton, Fiona; Ramirez, Amanda-Jane; Roman, Eve; Smith, Alexandra G; Forbes, Lindsay J L
2015-01-01
Background: UK policy aims to improve cancer outcomes by promoting early diagnosis, which for many haematological malignancies is particularly challenging as the pathways leading to diagnosis can be difficult and prolonged. Methods: A survey about symptoms was sent to patients in England with acute leukaemia, chronic lymphocytic leukaemia (CLL), chronic myeloid leukaemia (CML), myeloma and non-Hodgkin lymphoma (NHL). Symptoms and barriers to first help seeking were examined for each subtype, along with the relative risk of waiting >3 months' time from symptom onset to first presentation to a doctor, controlling for age, sex and deprivation. Results: Of the 785 respondents, 654 (83.3%) reported symptoms; most commonly for NHL (95%) and least commonly for CLL (67.9%). Some symptoms were frequent across diseases while others were more disease-specific. Overall, 16% of patients (n=114) waited >3 months before presentation; most often in CML (24%) and least in acute leukaemia (9%). Significant risk factors for >3 months to presentation were: night sweats (particularly CLL and NHL), thirst, abdominal pain/discomfort, looking pale (particularly acute leukaemias), and extreme fatigue/tiredness (particularly CML and NHL); and not realising symptom(s) were serious. Conclusions: These findings demonstrate important differences by subtype, which should be considered in strategies promoting early presentation. Not realising the seriousness of some symptoms indicates a worrying lack of public awareness. PMID:26325101
[Molecular characterization of atypical chronic myeloid leukemia and chronic neutrophilic leukemia].
Senín, Alicia; Arenillas, Leonor; Martínez-Avilés, Luz; Fernández-Rodríguez, Concepción; Bellosillo, Beatriz; Florensa, Lourdes; Besses, Carles; Álvarez-Larrán, Alberto
2015-06-08
Atypical chronic myeloid leukemia (aCML) and chronic neutrophilic leukemia (CNL) display similar clinical and hematological characteristics. The objective of the present study was to determine the mutational status of SETBP1 and CSF3R in these diseases. The mutational status of SETBP1 and CSF3R was studied in 7 patients with aCML (n = 3), CNL (n = 1) and unclassifiable myeloproliferative neoplasms (MPN-u) (n = 3). Additionally, mutations in ASXL1, SRSF2, IDH1/2, DNMT3A, and RUNX1 were also analyzed. SETBP1 mutations (G870S and G872R) were detected in 2 patients with MPN-u, and one of them also presented mutations in SRSF2 (P95H) and ASXL1 (E635fs). The CNL case showed mutations in CSFR3 (T618I), SETBP1 (G870S) and SRSF2 (P95H). No patient classified as aCML had mutations in SETBP1 or CSF3R. One of the patients with mutations evolved to acute myeloid leukemia, while the other 2 had disease progression without transformation to overt leukemia. The knowledge of the molecular alterations involved in these rare diseases is useful in the diagnosis and may have an impact on both prognosis and therapy. Copyright © 2014 Elsevier España, S.L.U. All rights reserved.
Lordelo, G S; Miranda-Vilela, A L; Akimoto, A K; Alves, P C Z; Hiragi, C O; Nonino, A; Daldegan, M B; Klautau-Guimarães, M N; Grisolia, C K
2012-04-19
Chronic myeloid leukemia is a hematopoietic stem cell disorder that causes uncontrolled proliferation of white blood cells. Although the clinical and biological aspects are well documented, little is known about individual susceptibility to this disease. We conducted a case-control study analyzing the prevalence of the polymorphisms MTHFR C677T, MTHFR A1298C, del{GSTM1}, del{GSTT1}, and haptoglobin in 105 patients with chronic myeloid leukemia (CML) and 273 healthy controls, using PCR-based methods. A significant association with risk of developing CML was found for MTHFR 1298AA (odds ratio (OR) = 1.794; 95% confidence interval (CI) = 1.14-2.83) and GSTM1 non-null (OR = 1.649; 95%CI = 1.05-2.6) genotypes, while MTHFR 1298AC (OR = 0.630; 95%CI = 0.40-0.99) and GSTM1 null (OR = 0.606; 95%CI = 0.21-0.77) genotypes significantly decreased this risk. There appeared to be selection for heterozygosity at the MTHFR 1298 locus. The considerable range of variation in this and other human populations may be a consequence of distinctive processes of natural selection and adaptation to variable environmental conditions. The Brazilian population is very mixed and heterogeneous; we found these two loci to be associated with CML in this population.
Nacheva, E P; Gribble, S; Andrews, K; Wienberg, J; Grace, C D
2000-10-15
We report the application of multi-color fluorescence in situ hydribidization (FISH) for bone marrow metaphase cell analysis of hematological malignancies using a sub-set of the human karyotype for chromosome painting. A combination of chromosome probes labeled with three haptens enabled the construction of a "painting probe" which detects seven different chromosomes. The probe was used to screen three chronic myeloid leukemia (CML) derived cell lines and ten CML patient bone marrow samples for aberrations, additional to the Ph rearrangement, that are associated with the onset of blast crisis of CML. This approach was shown to identify karyotype changes commonly seen by conventional karyotyping, and in addition revealed chromosome changes unresolved or undetected by conventional cytogenetic analysis. The seven-color painting probe provides a useful, fast, and reliable complementary tool for chromosome analysis, especially in cases with poor chromosome morphology. This is a simple approach, since the probes can be displayed in a standard red/green/blue format accessible to standard fluorescence microscopes and image-processing software. The proposed approach using panels of locus-specific probes as well as chromosome paints will be useful in all diagnostic routine environments where analysis is directed towards screening for genetic rearrangements and/or specific patterns of chromosome involvement with diagnostic/prognostic value.
Stability of Individual Maillard Reaction Products in the Presence of the Human Colonic Microbiota.
Hellwig, Michael; Bunzel, Diana; Huch, Melanie; Franz, Charles M A P; Kulling, Sabine E; Henle, Thomas
2015-08-05
Maillard reaction products (MRPs) are taken up in substantial amounts with the daily diet, but the majority are not transported across the intestinal epithelium. The aim of this study was to obtain first insights into the stability of dietary MRPs in the presence of the intestinal microbiota. Four individual MRPs, namely, N-ε-fructosyllysine (FL), N-ε-carboxymethyllysine (CML), pyrraline (PYR), and maltosine (MAL), were anaerobically incubated with fecal suspensions from eight human volunteers at 37 °C for up to 72 h. The stability of the MRPs was measured by HPLC with UV and MS/MS detections. The Amadori product FL could no longer be detected after 4 h of incubation. Marked interindividual differences were observed for CML metabolism: Depending on the individual, at least 40.7 ± 1.5% of CML was degraded after 24 h of incubation, and the subjects could thus be tentatively grouped into fast and slow metabolizers of this compound. PYR was degraded by 20.3 ± 4.4% during 24 h by all subjects. The concentration of MAL was not significantly lowered in the presence of fecal suspensions. In no case could metabolites be identified and quantified by different mass spectrometric techniques. This is the first study showing that the human colonic microbiota is able to degrade selected glycated amino acids and possibly use them as a source of energy, carbon, and/or nitrogen.
Angiogenesis in chronic myeloproliferative diseases detected by CD34 expression.
Panteli, K; Zagorianakou, N; Bai, M; Katsaraki, A; Agnantis, N J; Bourantas, K
2004-06-01
Increased bone marrow angiogenesis estimated as bone marrow microvessel density (MVD), or as serum angiogenic factor levels and/or immunohistochemical expression of these factors in bone marrow biopsy has been demonstrated in a variety of hematological disorders including chronic myeloproliferative diseases (MPDs). The aim of this study was to investigate the MVD in 25 cases of myelofibrosis with myeloid metaplasia (MMM). MVD was estimated by CD34 immunohistochemical expression in bone marrow biopsies. A control group of 27 patients without bone marrow disease, eight cases of polycythemia vera (PV), 41 cases of essential thrombocythemia (ET) and nine cases of chronic myeloid leukemia (CML) were also studied. Moreover, in cases with MMM, MVD was correlated with clinical, laboratory, histological parameters and the outcome of the patients. Our study confirmed a significantly higher degree of angiogenesis in MMM, PV, ET and CML compared with controls (P < 0.001, P = 0.0007, P < 0.001 and P = 0.0008, respectively). Angiogenesis was higher in MMM than PV, ET and CML cases (P < 0.001, P < 0.001 and P = 0.008). Increased angiogenesis was correlated with hypercatabolic symptoms in MMM patients (P = 0.009). No correlation with other clinicopathological parameters or clinical outcome was found. However, definitive conclusions regarding the prognostic value of increased angiogenesis may require additional follow-up and a larger group of patients.
Cytarabine is used alone or with other chemotherapy drugs to treat certain types of leukemia (cancer of ... lymphocytic leukemia (ALL), and chronic myelogenous leukemia (CML). Cytarabine is also used alone or with other chemotherapy ...
Haploidentical Allogeneic Transplant With Post-transplant Infusion of Regulatory T-cells
2018-06-01
Leukemia, Acute; Chronic Myelogenous Leukemia (CML); Myelodysplastic Syndrome (MDS); Non-Hodgkin Lymphoma (NHL); Chronic Lymphocytic Leukemia (CLL); Acute Myelogenous Leukemia (AML); Acute Lymphoblastic Leukemia (ALL)
Haploidentical Stem Cell Transplantation for Patients With Hematologic Malignancies
2009-01-28
Leukemia, Acute Lymphocytic (ALL); Leukemia, Myeloid, Acute(AML); Leukemia, Myeloid, Chronic(CML); Juvenile Myelomonocytic Leukemia(JMML); Hemoglobinuria, Paroxysmal Nocturnal (PNH); Lymphoma, Non-Hodgkin (NHL); Myelodysplastic Syndrome (MDS)
Giona, Fiorina; Moleti, Maria L; De Benedittis, Daniela; Santopietro, Michelina; Nanni, Mauro; Testi, Anna M; Orlando, Sonia; Iori, Anna P; Piciocchi, Alfonso; Gottardi, Enrico; Barberi, Walter; Diverio, Daniela; Saglio, Giuseppe; Foà, Robin
2016-06-01
We analysed the long-term outcome of 35 children and adolescents (<20 years at diagnosis) with chronic myeloid leukaemia (CML) in chronic phase: 20 patients had received interferon-alpha and/or tyrosine kinase inhibitors (TKIs), and 15 underwent a haematopoietic stem cell transplant. The 10-year survival probabilities were similar in transplanted and non-transplanted patients (73·3% vs. 72·1%, respectively), whereas the survival probability was significantly lower in patients diagnosed before 1999 compared to those diagnosed afterwards (62·1% vs. 100%, P = 0·0384). The availability of TKIs and the standardized molecular monitoring have significantly improved treatment, management and outcome in children and adolescents with CML. © 2016 John Wiley & Sons Ltd.
Qi, Jun; Wang, Tian-Ju; Chen, Li-Ping; Wang, Man-Ni; Wu, Jun-Hua; DU, Dan
2018-02-01
To investigate the potential relationship between the high-resolution HLA-A,-B,-DRB1 alleles and haplotype polymorphism with actute myeloid leukemia (AML) and chronic myeloid leukemia (CML) of Han people in North China. A total of 1241 healthy unrelated Han people's bone marrow donors in North China were used as a control group, 259 patients with myeloid leukemia were genotyped at high-resolution level by means of PCR-SBT, -SSO and -SSP typing methods for HLA-A,-B,-DRB1 loci. The frequencies of HLA allele and haplotype were calculated by software Arleguin 3.5.2. The different distribution of genes and haplotypes was analyzed by case control study, and the odd ratio (OR) of leukemia was also calculated. The structural difference of HLA alleles was analyzed 111by HLA three-dimensional structure modeling and software Swiss-PdbViewer v4.1. χ 2 test and correction showed that an increased frequency of A*02:07 (8.47% vs 5.28%, P' =0.013), A*29:01 (1.85% vs 0.68%, P=0.044), B*07:02 (5.29% vs 3.10%, P=0.029), B*07:05:01G (1.85% vs 0.68%, P=0.044) and B*35:02 (1.06% vs 0.20%, P=0.023) were found in AML patients (n=189) as compared with controls, respectively; whereas A*02:03 was less frequent in AML as compared with controls (0.79% vs 3.10%, P=0.011). The frequency of B*46:01 was lower in CML patients (n=70) as compared with controls (2.86% vs 7.82%, P=0.031). However, the above-mentioned discrepancies were not statistically significant by Bonferroni correction. Through Fisher exact test and Bonferroni correction, the frequency of DRB1*11:28 and its haplotype A*24:02-B*15:01-DRB1*11:28 in CML group were very significantly higher than in controls (1.43% vs 0.00%, Pc=0.015; 1.43% vs 0.00%, P=0.003). Three-dimensional structure modeling of DRB1*11:28 and DRB1*11:01 presented significant structure differentiation (RMSD=0.09 nm) in peptide binding region of the backbone calculated by Swiss-PdbViewer v4.1. The haplotype A*03:01-B*50:01-DRB1*07:01 in AML and A*11:01-B*40:06-DRB1*09:01 in CML patients were significantly higher than that in controls (1.06% vs 0.00%, Pc=0.000; 2.86% vs 0.07%, Pc=0.000), and positively correlated with leukemia (OR=59.66, 95% CI=3.21-1110.39; OR=42.91, 95% CI=7.07-260.32). The relationship of HLA-A,-B,-DRB1 alleles and haplotype polymorphism with leukemia at high-resolution level were obtained and unique in north Chinese Han population. AML and CML patients in Northern Han people carry particular susceptible haplotypes. DRB1*11:28, which might not actively present bcr-abl peptide to CD4 + T cells, and is a susceptibile gene for CML patients of Northern Han people, especially in Shaanxi Province (OR=89.62, 95% CI=4.28-1875.87), as well as correlated with its particular haplotype.
Diagnosis and Monitoring of Chronic Myeloid Leukemia: Chiang Mai University Experience.
Tantiworawit, Adisak; Kongjarern, Supanat; Rattarittamrong, Ekarat; Lekawanvijit, Suree; Bumroongkit, Kanokkan; Boonma, Nonglak; Rattanathammethee, Thanawat; Hantrakool, Sasinee; Chai-Adisaksopha, Chatree; Norasetthada, Lalita
2016-01-01
A diagnosis of chronic myeloid leukemia (CML) is made on discovery of the presence of a Philadelphia (Ph) chromosome. The success of the treatment of this form of leukemia with tyrosine kinase inhibitor (TKI) is monitored by reduction of the Ph chromosome. To compare the role of conventional cytogenetic (CC) methods with a real time quantitative polymerase chain reaction (RQ-PCR) and fluorescence in situ hybridization (FISH) for diagnosis and treatment monitoring of CML patients. The secondary outcome was to analyze the treatment responses to TKI in CML patients. This was a retrospective study of CML patients who attended the Hematology clinic at Chiang Mai University Hospital from 2005-2010. Medical records were reviewed for demographic data, risk score, treatment response and the results of CC methods, FISH and RQ-PCR. One hundred and twenty three cases were included in the study, 57.7% of whom were male with a mean age of 46.9 years. Most of the patients registered as intermediate to high risk on the Sokal score. At diagnosis, 121 patients were tested using the CC method and 118 (95.9%) were identified as positive. Five patients failed to be diagnosed by CC methods but were positive for BCR-ABL1 using the FISH method. Imatinib was the first-line treatment used in 120 patients (97.6%). In most patients (108 out of 122, 88.5%), a complete cytogenetic response (CCyR) was achieved after TKI therapy and in 86 patients (70.5%) CCyR was achieved long term by the CC method. Five out of the 35 analyzed patients in which CCyR was achieved by the CC method had a positive FISH result. Out of the 76 patients in which CCyR was achieved, RQ-PCR classified patients to only CCyR in 17 patients (22.4%) with a deeper major molecular response (MMR) in 4 patients (5.3%) and complete molecular response (CMR) in 55 patients (72.4%). In the case of initial therapy, CCyR was achieved in 95 patients (79.1%) who received imatinib and in both patients who received dasatinib (100%). For the second line treatment, nilotinib were used in 30 patients and in 19 of them (63.3%) CCyR was achieved. In half of the 6 patients (50%) who received dasatinib as second line or third line treatment CCyR was also achieved. CML patients had a good response to TKI treatment. FISH could be useful for diagnosis in cases where CC analysis failed to detect the Ph chromosome. RQ-PCR was helpful in detecting any residual disease and determining the depth of the treatment response at levels greater than the CC methods.
Nonmyeloablative Allo SCT for the Treatment of Hematologic Disorders
2017-04-05
AML; ALL; CML Chronic Phase, Accelerated Phase, or Blast Crisis; CLL; MDS; RELAPSED NON-HODGKIN'S OR HODGKIN'S LYMPHOMA; APLASTIC ANEMIA; MULTIPLE MYELOMA; MYELOPROLIFERATIVE DISORDER (P Vera, CMML, ET)
CD34+ (Malignant) Stem Cell Selection for Patients Receiving Allogenic Stem Cell Transplant
2017-07-13
Chronic Myeloid Leukemia (CML); Acute Myelogenous Leukemia (AML); Myelodysplastic Syndrome (MDS); Juvenile Myelomonocytic Leukemia (JMML); Acute Lymphoblastic Leukemia (ALL); Lymphoma (Hodgkin's and Non-Hodgkin's)
Acute Lymphoblastic Leukemia (ALL) (For Parents)
... October 2012 More on this topic for: Parents Kids Teens Acute Myeloid Leukemia (AML) Chronic Myelogenous Leukemia (CML) Cancer Center Leukemia Neutropenia Stem Cell Transplants Cancer Center Chemotherapy When Cancer Keeps ...
Chronic Myelogenous Leukemia (CML)
... del paciente Transplant process Diseases treated by transplant Acute myeloid leukemia Adrenoleukodystrophy (ALD) Chronic Lymphocytic Leukemia (CLL) ... SCID) Sickle cell disease (SCD) Wiskott-Aldrich syndrome Acute lymphoblastic leukemia (ALL) Other diseases Treatment decisions Learn ...
Cortes, Jorge E; Talpaz, Moshe; O'Brien, Susan; Faderl, Stefan; Garcia-Manero, Guillermo; Ferrajoli, Alessandra; Verstovsek, Srdan; Rios, Mary B; Shan, Jenny; Kantarjian, Hagop M
2006-03-15
Several staging classification systems, all of which were designed in the preimatinib era, are used for chronic myeloid leukemia (CML). The World Health Organization (WHO) recently proposed a new classification system that has not been validated clinically. The authors investigated the significance of the WHO classification system and compared it with the classification systems used to date in imatinib trials ("standard definition") to determine its impact in establishing the outcome of patients after therapy with imatinib. In total, 809 patients who received imatinib for CML were classified into chronic phase (CP), accelerated phase (AP), and blast phase (BP) based on standard definitions and then were reclassified according to the new WHO classification system. Their outcomes with imatinib therapy were compared, and the value of individual components of these classification systems was determined. With the WHO classification, 78 patients (10%) were reclassified: 45 patients (6%) were reclassified from CP to AP, 14 patients (2%) were reclassified from AP to CP, and 19 patients (2%) were reclassified from AP to BP. The rates of complete cytogenetic response for patients in CP, AP, and BP according to the standard definition were 72%, 45%, and 8%, respectively. After these patients were reclassified according to WHO criteria, the response rates were 77% (P = 0.07), 39% (P = 0.28), and 11% (P = 0.61), respectively. The 3-year survival rates were 91%, 65%, and 10%, respectively, according to the standard classification and 95% (P = 0.05), 63% (P = 0.76), and 16% (P = 0.18), respectively, according to the WHO classification. Patients who had a blast percentage of 20-29%, which is considered CML-BP according to the WHO classification, had a significantly better response rate (21% vs. 8%; P = 0.11) and 3-year survival rate (42% vs. 10%; P = 0.0001) compared with patients who had blasts > or = 30%. Different classification systems had an impact on the outcome of patients, and some prognostic features had different prognostic implications in the imatinib era. The authors believe that a new, uniform staging system for CML is warranted, and they propose such a system. (c) 2006 American Cancer Society.