Sample records for cmos array sensor

  1. Geiger-Mode Avalanche Photodiode Arrays Integrated to All-Digital CMOS Circuits

    DTIC Science & Technology

    2016-01-20

    Figure 7 4×4 GMAPD array wire bonded to CMOS timing circuits Figure 8 Low‐fill‐factor APD design used in lidar sensors The APD doping...epitaxial growth and the pixels are isolated by mesa etch. 128×32 lidar image sensors were built by bump bonding the APD arrays to a CMOS timing...passive image sensor with this large a format based on hybridization of a GMAPD array to a CMOS readout. Fig. 14 shows one of the first images taken

  2. Optical design of microlens array for CMOS image sensors

    NASA Astrophysics Data System (ADS)

    Zhang, Rongzhu; Lai, Liping

    2016-10-01

    The optical crosstalk between the pixel units can influence the image quality of CMOS image sensor. In the meantime, the duty ratio of CMOS is low because of its pixel structure. These two factors cause the low detection sensitivity of CMOS. In order to reduce the optical crosstalk and improve the fill factor of CMOS image sensor, a microlens array has been designed and integrated with CMOS. The initial parameters of the microlens array have been calculated according to the structure of a CMOS. Then the parameters have been optimized by using ZEMAX and the microlens arrays with different substrate thicknesses have been compared. The results show that in order to obtain the best imaging quality, when the effect of optical crosstalk for CMOS is the minimum, the best distance between microlens array and CMOS is about 19.3 μm. When incident light successively passes through microlens array and the distance, obtaining the minimum facula is around 0.347 um in the active area. In addition, when the incident angle of the light is 0o 22o, the microlens array has obvious inhibitory effect on the optical crosstalk. And the anti-crosstalk distance between microlens array and CMOS is 0 μm 162 μm.

  3. A 128 x 128 CMOS Active Pixel Image Sensor for Highly Integrated Imaging Systems

    NASA Technical Reports Server (NTRS)

    Mendis, Sunetra K.; Kemeny, Sabrina E.; Fossum, Eric R.

    1993-01-01

    A new CMOS-based image sensor that is intrinsically compatible with on-chip CMOS circuitry is reported. The new CMOS active pixel image sensor achieves low noise, high sensitivity, X-Y addressability, and has simple timing requirements. The image sensor was fabricated using a 2 micrometer p-well CMOS process, and consists of a 128 x 128 array of 40 micrometer x 40 micrometer pixels. The CMOS image sensor technology enables highly integrated smart image sensors, and makes the design, incorporation and fabrication of such sensors widely accessible to the integrated circuit community.

  4. Contact CMOS imaging of gaseous oxygen sensor array

    PubMed Central

    Daivasagaya, Daisy S.; Yao, Lei; Yi Yung, Ka; Hajj-Hassan, Mohamad; Cheung, Maurice C.; Chodavarapu, Vamsy P.; Bright, Frank V.

    2014-01-01

    We describe a compact luminescent gaseous oxygen (O2) sensor microsystem based on the direct integration of sensor elements with a polymeric optical filter and placed on a low power complementary metal-oxide semiconductor (CMOS) imager integrated circuit (IC). The sensor operates on the measurement of excited-state emission intensity of O2-sensitive luminophore molecules tris(4,7-diphenyl-1,10-phenanthroline) ruthenium(II) ([Ru(dpp)3]2+) encapsulated within sol–gel derived xerogel thin films. The polymeric optical filter is made with polydimethylsiloxane (PDMS) that is mixed with a dye (Sudan-II). The PDMS membrane surface is molded to incorporate arrays of trapezoidal microstructures that serve to focus the optical sensor signals on to the imager pixels. The molded PDMS membrane is then attached with the PDMS color filter. The xerogel sensor arrays are contact printed on top of the PDMS trapezoidal lens-like microstructures. The CMOS imager uses a 32 × 32 (1024 elements) array of active pixel sensors and each pixel includes a high-gain phototransistor to convert the detected optical signals into electrical currents. Correlated double sampling circuit, pixel address, digital control and signal integration circuits are also implemented on-chip. The CMOS imager data is read out as a serial coded signal. The CMOS imager consumes a static power of 320 µW and an average dynamic power of 625 µW when operating at 100 Hz sampling frequency and 1.8 V DC. This CMOS sensor system provides a useful platform for the development of miniaturized optical chemical gas sensors. PMID:24493909

  5. Contact CMOS imaging of gaseous oxygen sensor array.

    PubMed

    Daivasagaya, Daisy S; Yao, Lei; Yi Yung, Ka; Hajj-Hassan, Mohamad; Cheung, Maurice C; Chodavarapu, Vamsy P; Bright, Frank V

    2011-10-01

    We describe a compact luminescent gaseous oxygen (O 2 ) sensor microsystem based on the direct integration of sensor elements with a polymeric optical filter and placed on a low power complementary metal-oxide semiconductor (CMOS) imager integrated circuit (IC). The sensor operates on the measurement of excited-state emission intensity of O 2 -sensitive luminophore molecules tris(4,7-diphenyl-1,10-phenanthroline) ruthenium(II) ([Ru(dpp) 3 ] 2+ ) encapsulated within sol-gel derived xerogel thin films. The polymeric optical filter is made with polydimethylsiloxane (PDMS) that is mixed with a dye (Sudan-II). The PDMS membrane surface is molded to incorporate arrays of trapezoidal microstructures that serve to focus the optical sensor signals on to the imager pixels. The molded PDMS membrane is then attached with the PDMS color filter. The xerogel sensor arrays are contact printed on top of the PDMS trapezoidal lens-like microstructures. The CMOS imager uses a 32 × 32 (1024 elements) array of active pixel sensors and each pixel includes a high-gain phototransistor to convert the detected optical signals into electrical currents. Correlated double sampling circuit, pixel address, digital control and signal integration circuits are also implemented on-chip. The CMOS imager data is read out as a serial coded signal. The CMOS imager consumes a static power of 320 µW and an average dynamic power of 625 µW when operating at 100 Hz sampling frequency and 1.8 V DC. This CMOS sensor system provides a useful platform for the development of miniaturized optical chemical gas sensors.

  6. A Dual-Mode Large-Arrayed CMOS ISFET Sensor for Accurate and High-Throughput pH Sensing in Biomedical Diagnosis.

    PubMed

    Huang, Xiwei; Yu, Hao; Liu, Xu; Jiang, Yu; Yan, Mei; Wu, Dongping

    2015-09-01

    The existing ISFET-based DNA sequencing detects hydrogen ions released during the polymerization of DNA strands on microbeads, which are scattered into microwell array above the ISFET sensor with unknown distribution. However, false pH detection happens at empty microwells due to crosstalk from neighboring microbeads. In this paper, a dual-mode CMOS ISFET sensor is proposed to have accurate pH detection toward DNA sequencing. Dual-mode sensing, optical and chemical modes, is realized by integrating a CMOS image sensor (CIS) with ISFET pH sensor, and is fabricated in a standard 0.18-μm CIS process. With accurate determination of microbead physical locations with CIS pixel by contact imaging, the dual-mode sensor can correlate local pH for one DNA slice at one location-determined microbead, which can result in improved pH detection accuracy. Moreover, toward a high-throughput DNA sequencing, a correlated-double-sampling readout that supports large array for both modes is deployed to reduce pixel-to-pixel nonuniformity such as threshold voltage mismatch. The proposed CMOS dual-mode sensor is experimentally examined to show a well correlated pH map and optical image for microbeads with a pH sensitivity of 26.2 mV/pH, a fixed pattern noise (FPN) reduction from 4% to 0.3%, and a readout speed of 1200 frames/s. A dual-mode CMOS ISFET sensor with suppressed FPN for accurate large-arrayed pH sensing is proposed and demonstrated with state-of-the-art measured results toward accurate and high-throughput DNA sequencing. The developed dual-mode CMOS ISFET sensor has great potential for future personal genome diagnostics with high accuracy and low cost.

  7. Self-calibrated humidity sensor in CMOS without post-processing.

    PubMed

    Nizhnik, Oleg; Higuchi, Kohei; Maenaka, Kazusuke

    2012-01-01

    A 1.1 μW power dissipation, voltage-output humidity sensor with 10% relative humidity accuracy was developed in the LFoundry 0.15 μm CMOS technology without post-processing. The sensor consists of a woven lateral array of electrodes implemented in CMOS top metal, a humidity-sensitive layer of Intervia Photodielectric 8023D-10, a CMOS capacitance to voltage converter, and the self-calibration circuitry.

  8. Broadband image sensor array based on graphene-CMOS integration

    NASA Astrophysics Data System (ADS)

    Goossens, Stijn; Navickaite, Gabriele; Monasterio, Carles; Gupta, Shuchi; Piqueras, Juan José; Pérez, Raúl; Burwell, Gregory; Nikitskiy, Ivan; Lasanta, Tania; Galán, Teresa; Puma, Eric; Centeno, Alba; Pesquera, Amaia; Zurutuza, Amaia; Konstantatos, Gerasimos; Koppens, Frank

    2017-06-01

    Integrated circuits based on complementary metal-oxide-semiconductors (CMOS) are at the heart of the technological revolution of the past 40 years, enabling compact and low-cost microelectronic circuits and imaging systems. However, the diversification of this platform into applications other than microcircuits and visible-light cameras has been impeded by the difficulty to combine semiconductors other than silicon with CMOS. Here, we report the monolithic integration of a CMOS integrated circuit with graphene, operating as a high-mobility phototransistor. We demonstrate a high-resolution, broadband image sensor and operate it as a digital camera that is sensitive to ultraviolet, visible and infrared light (300-2,000 nm). The demonstrated graphene-CMOS integration is pivotal for incorporating 2D materials into the next-generation microelectronics, sensor arrays, low-power integrated photonics and CMOS imaging systems covering visible, infrared and terahertz frequencies.

  9. Design and characterization of high precision in-pixel discriminators for rolling shutter CMOS pixel sensors with full CMOS capability

    NASA Astrophysics Data System (ADS)

    Fu, Y.; Hu-Guo, C.; Dorokhov, A.; Pham, H.; Hu, Y.

    2013-07-01

    In order to exploit the ability to integrate a charge collecting electrode with analog and digital processing circuitry down to the pixel level, a new type of CMOS pixel sensors with full CMOS capability is presented in this paper. The pixel array is read out based on a column-parallel read-out architecture, where each pixel incorporates a diode, a preamplifier with a double sampling circuitry and a discriminator to completely eliminate analog read-out bottlenecks. The sensor featuring a pixel array of 8 rows and 32 columns with a pixel pitch of 80 μm×16 μm was fabricated in a 0.18 μm CMOS process. The behavior of each pixel-level discriminator isolated from the diode and the preamplifier was studied. The experimental results indicate that all in-pixel discriminators which are fully operational can provide significant improvements in the read-out speed and the power consumption of CMOS pixel sensors.

  10. CMOS Imaging of Temperature Effects on Pin-Printed Xerogel Sensor Microarrays.

    PubMed

    Lei Yao; Ka Yi Yung; Chodavarapu, Vamsy P; Bright, Frank V

    2011-04-01

    In this paper, we study the effect of temperature on the operation and performance of a xerogel-based sensor microarrays coupled to a complementary metal-oxide semiconductor (CMOS) imager integrated circuit (IC) that images the photoluminescence response from the sensor microarray. The CMOS imager uses a 32 × 32 (1024 elements) array of active pixel sensors and each pixel includes a high-gain phototransistor to convert the detected optical signals into electrical currents. A correlated double sampling circuit and pixel address/digital control/signal integration circuit are also implemented on-chip. The CMOS imager data are read out as a serial coded signal. The sensor system uses a light-emitting diode to excite target analyte responsive organometallic luminophores doped within discrete xerogel-based sensor elements. As a proto type, we developed a 3 × 3 (9 elements) array of oxygen (O2) sensors. Each group of three sensor elements in the array (arranged in a column) is designed to provide a different and specific sensitivity to the target gaseous O2 concentration. This property of multiple sensitivities is achieved by using a mix of two O2 sensitive luminophores in each pin-printed xerogel sensor element. The CMOS imager is designed to be low noise and consumes a static power of 320.4 μW and an average dynamic power of 624.6 μW when operating at 100-Hz sampling frequency and 1.8-V dc power supply.

  11. High-content analysis of single cells directly assembled on CMOS sensor based on color imaging.

    PubMed

    Tanaka, Tsuyoshi; Saeki, Tatsuya; Sunaga, Yoshihiko; Matsunaga, Tadashi

    2010-12-15

    A complementary metal oxide semiconductor (CMOS) image sensor was applied to high-content analysis of single cells which were assembled closely or directly onto the CMOS sensor surface. The direct assembling of cell groups on CMOS sensor surface allows large-field (6.66 mm×5.32 mm in entire active area of CMOS sensor) imaging within a second. Trypan blue-stained and non-stained cells in the same field area on the CMOS sensor were successfully distinguished as white- and blue-colored images under white LED light irradiation. Furthermore, the chemiluminescent signals of each cell were successfully visualized as blue-colored images on CMOS sensor only when HeLa cells were placed directly on the micro-lens array of the CMOS sensor. Our proposed approach will be a promising technique for real-time and high-content analysis of single cells in a large-field area based on color imaging. Copyright © 2010 Elsevier B.V. All rights reserved.

  12. CMOS Active-Pixel Image Sensor With Intensity-Driven Readout

    NASA Technical Reports Server (NTRS)

    Langenbacher, Harry T.; Fossum, Eric R.; Kemeny, Sabrina

    1996-01-01

    Proposed complementary metal oxide/semiconductor (CMOS) integrated-circuit image sensor automatically provides readouts from pixels in order of decreasing illumination intensity. Sensor operated in integration mode. Particularly useful in number of image-sensing tasks, including diffractive laser range-finding, three-dimensional imaging, event-driven readout of sparse sensor arrays, and star tracking.

  13. Optical and Electric Multifunctional CMOS Image Sensors for On-Chip Biosensing Applications.

    PubMed

    Tokuda, Takashi; Noda, Toshihiko; Sasagawa, Kiyotaka; Ohta, Jun

    2010-12-29

    In this review, the concept, design, performance, and a functional demonstration of multifunctional complementary metal-oxide-semiconductor (CMOS) image sensors dedicated to on-chip biosensing applications are described. We developed a sensor architecture that allows flexible configuration of a sensing pixel array consisting of optical and electric sensing pixels, and designed multifunctional CMOS image sensors that can sense light intensity and electric potential or apply a voltage to an on-chip measurement target. We describe the sensors' architecture on the basis of the type of electric measurement or imaging functionalities.

  14. Monolithic integration of a plasmonic sensor with CMOS technology

    NASA Astrophysics Data System (ADS)

    Shakoor, Abdul; Cheah, Boon C.; Hao, Danni; Al-Rawhani, Mohammed; Nagy, Bence; Grant, James; Dale, Carl; Keegan, Neil; McNeil, Calum; Cumming, David R. S.

    2017-02-01

    Monolithic integration of nanophotonic sensors with CMOS detectors can transform the laboratory based nanophotonic sensors into practical devices with a range of applications in everyday life. In this work, by monolithically integrating an array of gold nanodiscs with the CMOS photodiode we have developed a compact and miniaturized nanophotonic sensor system having direct electrical read out. Doing so eliminates the need of expensive and bulky laboratory based optical spectrum analyzers used currently for measurements of nanophotonic sensor chips. The experimental optical sensitivity of the gold nanodiscs is measured to be 275 nm/RIU which translates to an electrical sensitivity of 5.4 V/RIU. This integration of nanophotonic sensors with the CMOS electronics has the potential to revolutionize personalized medical diagnostics similar to the way in which the CMOS technology has revolutionized the electronics industry.

  15. A time-resolved image sensor for tubeless streak cameras

    NASA Astrophysics Data System (ADS)

    Yasutomi, Keita; Han, SangMan; Seo, Min-Woong; Takasawa, Taishi; Kagawa, Keiichiro; Kawahito, Shoji

    2014-03-01

    This paper presents a time-resolved CMOS image sensor with draining-only modulation (DOM) pixels for tube-less streak cameras. Although the conventional streak camera has high time resolution, the device requires high voltage and bulky system due to the structure with a vacuum tube. The proposed time-resolved imager with a simple optics realize a streak camera without any vacuum tubes. The proposed image sensor has DOM pixels, a delay-based pulse generator, and a readout circuitry. The delay-based pulse generator in combination with an in-pixel logic allows us to create and to provide a short gating clock to the pixel array. A prototype time-resolved CMOS image sensor with the proposed pixel is designed and implemented using 0.11um CMOS image sensor technology. The image array has 30(Vertical) x 128(Memory length) pixels with the pixel pitch of 22.4um. .

  16. CMOS Active-Pixel Image Sensor With Simple Floating Gates

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R.; Nakamura, Junichi; Kemeny, Sabrina E.

    1996-01-01

    Experimental complementary metal-oxide/semiconductor (CMOS) active-pixel image sensor integrated circuit features simple floating-gate structure, with metal-oxide/semiconductor field-effect transistor (MOSFET) as active circuit element in each pixel. Provides flexibility of readout modes, no kTC noise, and relatively simple structure suitable for high-density arrays. Features desirable for "smart sensor" applications.

  17. A Multi-Modality CMOS Sensor Array for Cell-Based Assay and Drug Screening.

    PubMed

    Chi, Taiyun; Park, Jong Seok; Butts, Jessica C; Hookway, Tracy A; Su, Amy; Zhu, Chengjie; Styczynski, Mark P; McDevitt, Todd C; Wang, Hua

    2015-12-01

    In this paper, we present a fully integrated multi-modality CMOS cellular sensor array with four sensing modalities to characterize different cell physiological responses, including extracellular voltage recording, cellular impedance mapping, optical detection with shadow imaging and bioluminescence sensing, and thermal monitoring. The sensor array consists of nine parallel pixel groups and nine corresponding signal conditioning blocks. Each pixel group comprises one temperature sensor and 16 tri-modality sensor pixels, while each tri-modality sensor pixel can be independently configured for extracellular voltage recording, cellular impedance measurement (voltage excitation/current sensing), and optical detection. This sensor array supports multi-modality cellular sensing at the pixel level, which enables holistic cell characterization and joint-modality physiological monitoring on the same cellular sample with a pixel resolution of 80 μm × 100 μm. Comprehensive biological experiments with different living cell samples demonstrate the functionality and benefit of the proposed multi-modality sensing in cell-based assay and drug screening.

  18. A CMOS active pixel sensor for retinal stimulation

    NASA Astrophysics Data System (ADS)

    Prydderch, Mark L.; French, Marcus J.; Mathieson, Keith; Adams, Christopher; Gunning, Deborah; Laudanski, Jonathan; Morrison, James D.; Moodie, Alan R.; Sinclair, James

    2006-02-01

    Degenerative photoreceptor diseases, such as age-related macular degeneration and retinitis pigmentosa, are the most common causes of blindness in the western world. A potential cure is to use a microelectronic retinal prosthesis to provide electrical stimulation to the remaining healthy retinal cells. We describe a prototype CMOS Active Pixel Sensor capable of detecting a visual scene and translating it into a train of electrical pulses for stimulation of the retina. The sensor consists of a 10 x 10 array of 100 micron square pixels fabricated on a 0.35 micron CMOS process. Light incident upon each pixel is converted into output current pulse trains with a frequency related to the light intensity. These outputs are connected to a biocompatible microelectrode array for contact to the retinal cells. The flexible design allows experimentation with signal amplitudes and frequencies in order to determine the most appropriate stimulus for the retina. Neural processing in the retina can be studied by using the sensor in conjunction with a Field Programmable Gate Array (FPGA) programmed to behave as a neural network. The sensor has been integrated into a test system designed for studying retinal response. We present the most recent results obtained from this sensor.

  19. Low Power Camera-on-a-Chip Using CMOS Active Pixel Sensor Technology

    NASA Technical Reports Server (NTRS)

    Fossum, E. R.

    1995-01-01

    A second generation image sensor technology has been developed at the NASA Jet Propulsion Laboratory as a result of the continuing need to miniaturize space science imaging instruments. Implemented using standard CMOS, the active pixel sensor (APS) technology permits the integration of the detector array with on-chip timing, control and signal chain electronics, including analog-to-digital conversion.

  20. Optical and Electric Multifunctional CMOS Image Sensors for On-Chip Biosensing Applications

    PubMed Central

    Tokuda, Takashi; Noda, Toshihiko; Sasagawa, Kiyotaka; Ohta, Jun

    2010-01-01

    In this review, the concept, design, performance, and a functional demonstration of multifunctional complementary metal-oxide-semiconductor (CMOS) image sensors dedicated to on-chip biosensing applications are described. We developed a sensor architecture that allows flexible configuration of a sensing pixel array consisting of optical and electric sensing pixels, and designed multifunctional CMOS image sensors that can sense light intensity and electric potential or apply a voltage to an on-chip measurement target. We describe the sensors’ architecture on the basis of the type of electric measurement or imaging functionalities. PMID:28879978

  1. Smart CMOS image sensor for lightning detection and imaging.

    PubMed

    Rolando, Sébastien; Goiffon, Vincent; Magnan, Pierre; Corbière, Franck; Molina, Romain; Tulet, Michel; Bréart-de-Boisanger, Michel; Saint-Pé, Olivier; Guiry, Saïprasad; Larnaudie, Franck; Leone, Bruno; Perez-Cuevas, Leticia; Zayer, Igor

    2013-03-01

    We present a CMOS image sensor dedicated to lightning detection and imaging. The detector has been designed to evaluate the potentiality of an on-chip lightning detection solution based on a smart sensor. This evaluation is performed in the frame of the predevelopment phase of the lightning detector that will be implemented in the Meteosat Third Generation Imager satellite for the European Space Agency. The lightning detection process is performed by a smart detector combining an in-pixel frame-to-frame difference comparison with an adjustable threshold and on-chip digital processing allowing an efficient localization of a faint lightning pulse on the entire large format array at a frequency of 1 kHz. A CMOS prototype sensor with a 256×256 pixel array and a 60 μm pixel pitch has been fabricated using a 0.35 μm 2P 5M technology and tested to validate the selected detection approach.

  2. Geiger-Mode Avalanche Photodiode Arrays Integrated to All-Digital CMOS Circuits.

    PubMed

    Aull, Brian

    2016-04-08

    This article reviews MIT Lincoln Laboratory's work over the past 20 years to develop photon-sensitive image sensors based on arrays of silicon Geiger-mode avalanche photodiodes. Integration of these detectors to all-digital CMOS readout circuits enable exquisitely sensitive solid-state imagers for lidar, wavefront sensing, and passive imaging.

  3. CMOS Imaging of Pin-Printed Xerogel-Based Luminescent Sensor Microarrays.

    PubMed

    Yao, Lei; Yung, Ka Yi; Khan, Rifat; Chodavarapu, Vamsy P; Bright, Frank V

    2010-12-01

    We present the design and implementation of a luminescence-based miniaturized multisensor system using pin-printed xerogel materials which act as host media for chemical recognition elements. We developed a CMOS imager integrated circuit (IC) to image the luminescence response of the xerogel-based sensor array. The imager IC uses a 26 × 20 (520 elements) array of active pixel sensors and each active pixel includes a high-gain phototransistor to convert the detected optical signals into electrical currents. The imager includes a correlated double sampling circuit and pixel address/digital control circuit; the image data is read-out as coded serial signal. The sensor system uses a light-emitting diode (LED) to excite the target analyte responsive luminophores doped within discrete xerogel-based sensor elements. As a prototype, we developed a 4 × 4 (16 elements) array of oxygen (O 2 ) sensors. Each group of 4 sensor elements in the array (arranged in a row) is designed to provide a different and specific sensitivity to the target gaseous O 2 concentration. This property of multiple sensitivities is achieved by using a strategic mix of two oxygen sensitive luminophores ([Ru(dpp) 3 ] 2+ and ([Ru(bpy) 3 ] 2+ ) in each pin-printed xerogel sensor element. The CMOS imager consumes an average power of 8 mW operating at 1 kHz sampling frequency driven at 5 V. The developed prototype system demonstrates a low cost and miniaturized luminescence multisensor system.

  4. A 4MP high-dynamic-range, low-noise CMOS image sensor

    NASA Astrophysics Data System (ADS)

    Ma, Cheng; Liu, Yang; Li, Jing; Zhou, Quan; Chang, Yuchun; Wang, Xinyang

    2015-03-01

    In this paper we present a 4 Megapixel high dynamic range, low dark noise and dark current CMOS image sensor, which is ideal for high-end scientific and surveillance applications. The pixel design is based on a 4-T PPD structure. During the readout of the pixel array, signals are first amplified, and then feed to a low- power column-parallel ADC array which is already presented in [1]. Measurement results show that the sensor achieves a dynamic range of 96dB, a dark noise of 1.47e- at 24fps speed. The dark current is 0.15e-/pixel/s at -20oC.

  5. A photovoltaic-driven and energy-autonomous CMOS implantable sensor.

    PubMed

    Ayazian, Sahar; Akhavan, Vahid A; Soenen, Eric; Hassibi, Arjang

    2012-08-01

    An energy-autonomous, photovoltaic (PV)-driven and MRI-compatible CMOS implantable sensor is presented. On-chip P+/N-well diode arrays are used as CMOS-compatible PV cells to harvest μW's of power from the light that penetrates into the tissue. In this 2.5 mm × 2.5 mm sub-μW integrated system, the in-vivo physiological signals are first measured by using a subthreshold ring oscillator-based sensor, the acquired data is then modulated into a frequency-shift keying (FSK) signal, and finally transmitted neuromorphically to the skin surface by using a pair of polarized electrodes.

  6. CMOS imager for pointing and tracking applications

    NASA Technical Reports Server (NTRS)

    Sun, Chao (Inventor); Pain, Bedabrata (Inventor); Yang, Guang (Inventor); Heynssens, Julie B. (Inventor)

    2006-01-01

    Systems and techniques to realize pointing and tracking applications with CMOS imaging devices. In general, in one implementation, the technique includes: sampling multiple rows and multiple columns of an active pixel sensor array into a memory array (e.g., an on-chip memory array), and reading out the multiple rows and multiple columns sampled in the memory array to provide image data with reduced motion artifact. Various operation modes may be provided, including TDS, CDS, CQS, a tracking mode to read out multiple windows, and/or a mode employing a sample-first-read-later readout scheme. The tracking mode can take advantage of a diagonal switch array. The diagonal switch array, the active pixel sensor array and the memory array can be integrated onto a single imager chip with a controller. This imager device can be part of a larger imaging system for both space-based applications and terrestrial applications.

  7. Highly sensitive and area-efficient CMOS image sensor using a PMOSFET-type photodetector with a built-in transfer gate

    NASA Astrophysics Data System (ADS)

    Seo, Sang-Ho; Kim, Kyoung-Do; Kong, Jae-Sung; Shin, Jang-Kyoo; Choi, Pyung

    2007-02-01

    In this paper, a new CMOS image sensor is presented, which uses a PMOSFET-type photodetector with a transfer gate that has a high and variable sensitivity. The proposed CMOS image sensor has been fabricated using a 0.35 μm 2-poly 4- metal standard CMOS technology and is composed of a 256 × 256 array of 7.05 × 7.10 μm pixels. The unit pixel has a configuration of a pseudo 3-transistor active pixel sensor (APS) with the PMOSFET-type photodetector with a transfer gate, which has a function of conventional 4-transistor APS. The generated photocurrent is controlled by the transfer gate of the PMOSFET-type photodetector. The maximum responsivity of the photodetector is larger than 1.0 × 10 3 A/W without any optical lens. Fabricated 256 × 256 CMOS image sensor exhibits a good response to low-level illumination as low as 5 lux.

  8. Titanium dioxide nanowire sensor array integration on CMOS platform using deterministic assembly.

    PubMed

    Gall, Oren Z; Zhong, Xiahua; Schulman, Daniel S; Kang, Myungkoo; Razavieh, Ali; Mayer, Theresa S

    2017-06-30

    Nanosensor arrays have recently received significant attention due to their utility in a wide range of applications, including gas sensing, fuel cells, internet of things, and portable health monitoring systems. Less attention has been given to the production of sensor platforms in the μW range for ultra-low power applications. Here, we discuss how to scale the nanosensor energy demand by developing a process for integration of nanowire sensing arrays on a monolithic CMOS chip. This work demonstrates an off-chip nanowire fabrication method; subsequently nanowires link to a fused SiO 2 substrate using electric-field assisted directed assembly. The nanowire resistances shown in this work have the highest resistance uniformity reported to date of 18%, which enables a practical roadmap towards the coupling of nanosensors to CMOS circuits and signal processing systems. The article also presents the utility of optimizing annealing conditions of the off-chip metal-oxides prior to CMOS integration to avoid limitations of thermal budget and process incompatibility. In the context of the platform demonstrated here, directed assembly is a powerful tool that can realize highly uniform, cross-reactive arrays of different types of metal-oxide nanosensors suited for gas discrimination and signal processing systems.

  9. Titanium dioxide nanowire sensor array integration on CMOS platform using deterministic assembly

    NASA Astrophysics Data System (ADS)

    Gall, Oren Z.; Zhong, Xiahua; Schulman, Daniel S.; Kang, Myungkoo; Razavieh, Ali; Mayer, Theresa S.

    2017-06-01

    Nanosensor arrays have recently received significant attention due to their utility in a wide range of applications, including gas sensing, fuel cells, internet of things, and portable health monitoring systems. Less attention has been given to the production of sensor platforms in the μW range for ultra-low power applications. Here, we discuss how to scale the nanosensor energy demand by developing a process for integration of nanowire sensing arrays on a monolithic CMOS chip. This work demonstrates an off-chip nanowire fabrication method; subsequently nanowires link to a fused SiO2 substrate using electric-field assisted directed assembly. The nanowire resistances shown in this work have the highest resistance uniformity reported to date of 18%, which enables a practical roadmap towards the coupling of nanosensors to CMOS circuits and signal processing systems. The article also presents the utility of optimizing annealing conditions of the off-chip metal-oxides prior to CMOS integration to avoid limitations of thermal budget and process incompatibility. In the context of the platform demonstrated here, directed assembly is a powerful tool that can realize highly uniform, cross-reactive arrays of different types of metal-oxide nanosensors suited for gas discrimination and signal processing systems.

  10. A Low Noise CMOS Readout Based on a Polymer-Coated SAW Array for Miniature Electronic Nose

    PubMed Central

    Wu, Cheng-Chun; Liu, Szu-Chieh; Chiu, Shih-Wen; Tang, Kea-Tiong

    2016-01-01

    An electronic nose (E-Nose) is one of the applications for surface acoustic wave (SAW) sensors. In this paper, we present a low-noise complementary metal–oxide–semiconductor (CMOS) readout application-specific integrated circuit (ASIC) based on an SAW sensor array for achieving a miniature E-Nose. The center frequency of the SAW sensors was measured to be approximately 114 MHz. Because of interference between the sensors, we designed a low-noise CMOS frequency readout circuit to enable the SAW sensor to obtain frequency variation. The proposed circuit was fabricated in Taiwan Semiconductor Manufacturing Company (TSMC) 0.18 μm 1P6M CMOS process technology. The total chip size was nearly 1203 × 1203 μm2. The chip was operated at a supply voltage of 1 V for a digital circuit and 1.8 V for an analog circuit. The least measurable difference between frequencies was 4 Hz. The detection limit of the system, when estimated using methanol and ethanol, was 0.1 ppm. Their linearity was in the range of 0.1 to 26,000 ppm. The power consumption levels of the analog and digital circuits were 1.742 mW and 761 μW, respectively. PMID:27792131

  11. A Low Noise CMOS Readout Based on a Polymer-Coated SAW Array for Miniature Electronic Nose.

    PubMed

    Wu, Cheng-Chun; Liu, Szu-Chieh; Chiu, Shih-Wen; Tang, Kea-Tiong

    2016-10-25

    An electronic nose (E-Nose) is one of the applications for surface acoustic wave (SAW) sensors. In this paper, we present a low-noise complementary metal-oxide-semiconductor (CMOS) readout application-specific integrated circuit (ASIC) based on an SAW sensor array for achieving a miniature E-Nose. The center frequency of the SAW sensors was measured to be approximately 114 MHz. Because of interference between the sensors, we designed a low-noise CMOS frequency readout circuit to enable the SAW sensor to obtain frequency variation. The proposed circuit was fabricated in Taiwan Semiconductor Manufacturing Company (TSMC) 0.18 μm 1P6M CMOS process technology. The total chip size was nearly 1203 × 1203 μm². The chip was operated at a supply voltage of 1 V for a digital circuit and 1.8 V for an analog circuit. The least measurable difference between frequencies was 4 Hz. The detection limit of the system, when estimated using methanol and ethanol, was 0.1 ppm. Their linearity was in the range of 0.1 to 26,000 ppm. The power consumption levels of the analog and digital circuits were 1.742 mW and 761 μW, respectively.

  12. Backside illuminated CMOS-TDI line scanner for space applications

    NASA Astrophysics Data System (ADS)

    Cohen, O.; Ben-Ari, N.; Nevo, I.; Shiloah, N.; Zohar, G.; Kahanov, E.; Brumer, M.; Gershon, G.; Ofer, O.

    2017-09-01

    A new multi-spectral line scanner CMOS image sensor is reported. The backside illuminated (BSI) image sensor was designed for continuous scanning Low Earth Orbit (LEO) space applications including A custom high quality CMOS Active Pixels, Time Delayed Integration (TDI) mechanism that increases the SNR, 2-phase exposure mechanism that increases the dynamic Modulation Transfer Function (MTF), very low power internal Analog to Digital Converters (ADC) with resolution of 12 bit per pixel and on chip controller. The sensor has 4 independent arrays of pixels where each array is arranged in 2600 TDI columns with controllable TDI depth from 8 up to 64 TDI levels. A multispectral optical filter with specific spectral response per array is assembled at the package level. In this paper we briefly describe the sensor design and present some electrical and electro-optical recent measurements of the first prototypes including high Quantum Efficiency (QE), high MTF, wide range selectable Full Well Capacity (FWC), excellent linearity of approximately 1.3% in a signal range of 5-85% and approximately 1.75% in a signal range of 2-95% out of the signal span, readout noise of approximately 95 electrons with 64 TDI levels, negligible dark current and power consumption of less than 1.5W total for 4 bands sensor at all operation conditions .

  13. Integration of Si-CMOS embedded photo detector array and mixed signal processing system with embedded optical waveguide input

    NASA Astrophysics Data System (ADS)

    Kim, Daeik D.; Thomas, Mikkel A.; Brooke, Martin A.; Jokerst, Nan M.

    2004-06-01

    Arrays of embedded bipolar junction transistor (BJT) photo detectors (PD) and a parallel mixed-signal processing system were fabricated as a silicon complementary metal oxide semiconductor (Si-CMOS) circuit for the integration optical sensors on the surface of the chip. The circuit was fabricated with AMI 1.5um n-well CMOS process and the embedded PNP BJT PD has a pixel size of 8um by 8um. BJT PD was chosen to take advantage of its higher gain amplification of photo current than that of PiN type detectors since the target application is a low-speed and high-sensitivity sensor. The photo current generated by BJT PD is manipulated by mixed-signal processing system, which consists of parallel first order low-pass delta-sigma oversampling analog-to-digital converters (ADC). There are 8 parallel ADCs on the chip and a group of 8 BJT PDs are selected with CMOS switches. An array of PD is composed of three or six groups of PDs depending on the number of rows.

  14. Backside illuminated CMOS-TDI line scan sensor for space applications

    NASA Astrophysics Data System (ADS)

    Cohen, Omer; Ofer, Oren; Abramovich, Gil; Ben-Ari, Nimrod; Gershon, Gal; Brumer, Maya; Shay, Adi; Shamay, Yaron

    2018-05-01

    A multi-spectral backside illuminated Time Delayed Integration Radiation Hardened line scan sensor utilizing CMOS technology was designed for continuous scanning Low Earth Orbit small satellite applications. The sensor comprises a single silicon chip with 4 independent arrays of pixels where each array is arranged in 2600 columns with 64 TDI levels. A multispectral optical filter whose spectral responses per array are adjustable per system requirement is assembled at the package level. A custom 4T Pixel design provides the required readout speed, low-noise, very low dark current, and high conversion gains. A 2-phase internally controlled exposure mechanism improves the sensor's dynamic MTF. The sensor high level of integration includes on-chip 12 bit per pixel analog to digital converters, on-chip controller, and CMOS compatible voltage levels. Thus, the power consumption and the weight of the supporting electronics are reduced, and a simple electrical interface is provided. An adjustable gain provides a Full Well Capacity ranging from 150,000 electrons up to 500,000 electrons per column and an overall readout noise per column of less than 120 electrons. The imager supports line rates ranging from 50 to 10,000 lines/sec, with power consumption of less than 0.5W per array. Thus, the sensor is characterized by a high pixel rate, a high dynamic range and a very low power. To meet a Latch-up free requirement RadHard architecture and design rules were utilized. In this paper recent electrical and electro-optical measurements of the sensor's Flight Models will be presented for the first time.

  15. Hybrid UV Imager Containing Face-Up AlGaN/GaN Photodiodes

    NASA Technical Reports Server (NTRS)

    Zheng, Xinyu; Pain, Bedabrata

    2005-01-01

    A proposed hybrid ultraviolet (UV) image sensor would comprise a planar membrane array of face-up AlGaN/GaN photodiodes integrated with a complementary metal oxide/semiconductor (CMOS) readout-circuit chip. Each pixel in the hybrid image sensor would contain a UV photodiode on the AlGaN/GaN membrane, metal oxide/semiconductor field-effect transistor (MOSFET) readout circuitry on the CMOS chip underneath the photodiode, and a metal via connection between the photodiode and the readout circuitry (see figure). The proposed sensor design would offer all the advantages of comparable prior CMOS active-pixel sensors and AlGaN UV detectors while overcoming some of the limitations of prior (AlGaN/sapphire)/CMOS hybrid image sensors that have been designed and fabricated according to the methodology of flip-chip integration. AlGaN is a nearly ideal UV-detector material because its bandgap is wide and adjustable and it offers the potential to attain extremely low dark current. Integration of AlGaN with CMOS is necessary because at present there are no practical means of realizing readout circuitry in the AlGaN/GaN material system, whereas the means of realizing readout circuitry in CMOS are well established. In one variant of the flip-chip approach to integration, an AlGaN chip on a sapphire substrate is inverted (flipped) and then bump-bonded to a CMOS readout circuit chip; this variant results in poor quantum efficiency. In another variant of the flip-chip approach, an AlGaN chip on a crystalline AlN substrate would be bonded to a CMOS readout circuit chip; this variant is expected to result in narrow spectral response, which would be undesirable in many applications. Two other major disadvantages of flip-chip integration are large pixel size (a consequence of the need to devote sufficient area to each bump bond) and severe restriction on the photodetector structure. The membrane array of AlGaN/GaN photodiodes and the CMOS readout circuit for the proposed image sensor would be fabricated separately.

  16. CMOS minimal array

    NASA Astrophysics Data System (ADS)

    Janesick, James; Cheng, John; Bishop, Jeanne; Andrews, James T.; Tower, John; Walker, Jeff; Grygon, Mark; Elliot, Tom

    2006-08-01

    A high performance prototype CMOS imager is introduced. Test data is reviewed for different array formats that utilize 3T photo diode, 5T pinned photo diode and 6T photo gate CMOS pixel architectures. The imager allows several readout modes including progressive scan, snap and windowed operation. The new imager is built on different silicon substrates including very high resistivity epitaxial wafers for deep depletion operation. Data products contained in this paper focus on sensor's read noise, charge capacity, charge transfer efficiency, thermal dark current, RTS dark spikes, QE, pixel cross- talk and on-chip analog circuitry performance.

  17. Preliminary performances measured on a CMOS long linear array for space application

    NASA Astrophysics Data System (ADS)

    Renard, Christophe; Artinian, Armand; Dantes, Didier; Lepage, Gérald; Diels, Wim

    2017-11-01

    This paper presents the design and the preliminary performances of a CMOS linear array, resulting from collaboration between Alcatel Alenia Space and Cypress Semiconductor BVBA, which takes advantage of emerging potentialities of CMOS technologies. The design of the sensor is presented: it includes 8000 panchromatic pixels with up to 25 rows used in TDI mode, and 4 lines of 2000 pixels for multispectral imaging. Main system requirements and detector tradeoffs are recalled, and the preliminary test results obtained with a first generation prototype are summarized and compared with predicted performances.

  18. Log polar image sensor in CMOS technology

    NASA Astrophysics Data System (ADS)

    Scheffer, Danny; Dierickx, Bart; Pardo, Fernando; Vlummens, Jan; Meynants, Guy; Hermans, Lou

    1996-08-01

    We report on the design, design issues, fabrication and performance of a log-polar CMOS image sensor. The sensor is developed for the use in a videophone system for deaf and hearing impaired people, who are not capable of communicating through a 'normal' telephone. The system allows 15 detailed images per second to be transmitted over existing telephone lines. This framerate is sufficient for conversations by means of sign language or lip reading. The pixel array of the sensor consists of 76 concentric circles with (up to) 128 pixels per circle, in total 8013 pixels. The interior pixels have a pitch of 14 micrometers, up to 250 micrometers at the border. The 8013-pixels image is mapped (log-polar transformation) in a X-Y addressable 76 by 128 array.

  19. Active pixel sensors with substantially planarized color filtering elements

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R. (Inventor); Kemeny, Sabrina E. (Inventor)

    1999-01-01

    A semiconductor imaging system preferably having an active pixel sensor array compatible with a CMOS fabrication process. Color-filtering elements such as polymer filters and wavelength-converting phosphors can be integrated with the image sensor.

  20. An ultra-low power CMOS image sensor with on-chip energy harvesting and power management capability.

    PubMed

    Cevik, Ismail; Huang, Xiwei; Yu, Hao; Yan, Mei; Ay, Suat U

    2015-03-06

    An ultra-low power CMOS image sensor with on-chip energy harvesting and power management capability is introduced in this paper. The photodiode pixel array can not only capture images but also harvest solar energy. As such, the CMOS image sensor chip is able to switch between imaging and harvesting modes towards self-power operation. Moreover, an on-chip maximum power point tracking (MPPT)-based power management system (PMS) is designed for the dual-mode image sensor to further improve the energy efficiency. A new isolated P-well energy harvesting and imaging (EHI) pixel with very high fill factor is introduced. Several ultra-low power design techniques such as reset and select boosting techniques have been utilized to maintain a wide pixel dynamic range. The chip was designed and fabricated in a 1.8 V, 1P6M 0.18 µm CMOS process. Total power consumption of the imager is 6.53 µW for a 96 × 96 pixel array with 1 V supply and 5 fps frame rate. Up to 30 μW of power could be generated by the new EHI pixels. The PMS is capable of providing 3× the power required during imaging mode with 50% efficiency allowing energy autonomous operation with a 72.5% duty cycle.

  1. An Ultra-Low Power CMOS Image Sensor with On-Chip Energy Harvesting and Power Management Capability

    PubMed Central

    Cevik, Ismail; Huang, Xiwei; Yu, Hao; Yan, Mei; Ay, Suat U.

    2015-01-01

    An ultra-low power CMOS image sensor with on-chip energy harvesting and power management capability is introduced in this paper. The photodiode pixel array can not only capture images but also harvest solar energy. As such, the CMOS image sensor chip is able to switch between imaging and harvesting modes towards self-power operation. Moreover, an on-chip maximum power point tracking (MPPT)-based power management system (PMS) is designed for the dual-mode image sensor to further improve the energy efficiency. A new isolated P-well energy harvesting and imaging (EHI) pixel with very high fill factor is introduced. Several ultra-low power design techniques such as reset and select boosting techniques have been utilized to maintain a wide pixel dynamic range. The chip was designed and fabricated in a 1.8 V, 1P6M 0.18 µm CMOS process. Total power consumption of the imager is 6.53 µW for a 96 × 96 pixel array with 1 V supply and 5 fps frame rate. Up to 30 μW of power could be generated by the new EHI pixels. The PMS is capable of providing 3× the power required during imaging mode with 50% efficiency allowing energy autonomous operation with a 72.5% duty cycle. PMID:25756863

  2. CMOS Amperometric ADC With High Sensitivity, Dynamic Range and Power Efficiency for Air Quality Monitoring.

    PubMed

    Li, Haitao; Boling, C Sam; Mason, Andrew J

    2016-08-01

    Airborne pollutants are a leading cause of illness and mortality globally. Electrochemical gas sensors show great promise for personal air quality monitoring to address this worldwide health crisis. However, implementing miniaturized arrays of such sensors demands high performance instrumentation circuits that simultaneously meet challenging power, area, sensitivity, noise and dynamic range goals. This paper presents a new multi-channel CMOS amperometric ADC featuring pixel-level architecture for gas sensor arrays. The circuit combines digital modulation of input currents and an incremental Σ∆ ADC to achieve wide dynamic range and high sensitivity with very high power efficiency and compact size. Fabricated in 0.5 [Formula: see text] CMOS, the circuit was measured to have 164 dB cross-scale dynamic range, 100 fA sensitivity while consuming only 241 [Formula: see text] and 0.157 [Formula: see text] active area per channel. Electrochemical experiments with liquid and gas targets demonstrate the circuit's real-time response to a wide range of analyte concentrations.

  3. 3-D readout-electronics packaging for high-bandwidth massively paralleled imager

    DOEpatents

    Kwiatkowski, Kris; Lyke, James

    2007-12-18

    Dense, massively parallel signal processing electronics are co-packaged behind associated sensor pixels. Microchips containing a linear or bilinear arrangement of photo-sensors, together with associated complex electronics, are integrated into a simple 3-D structure (a "mirror cube"). An array of photo-sensitive cells are disposed on a stacked CMOS chip's surface at a 45.degree. angle from light reflecting mirror surfaces formed on a neighboring CMOS chip surface. Image processing electronics are held within the stacked CMOS chip layers. Electrical connections couple each of said stacked CMOS chip layers and a distribution grid, the connections for distributing power and signals to components associated with each stacked CSMO chip layer.

  4. Sparsely-Bonded CMOS Hybrid Imager

    NASA Technical Reports Server (NTRS)

    Sun, Chao (Inventor); Jones, Todd J. (Inventor); Nikzad, Shouleh (Inventor); Newton, Kenneth W. (Inventor); Cunningham, Thomas J. (Inventor); Hancock, Bruce R. (Inventor); Dickie, Matthew R. (Inventor); Hoenk, Michael E. (Inventor); Wrigley, Christopher J. (Inventor); Pain, Bedabrata (Inventor)

    2015-01-01

    A method and device for imaging or detecting electromagnetic radiation is provided. A device structure includes a first chip interconnected with a second chip. The first chip includes a detector array, wherein the detector array comprises a plurality of light sensors and one or more transistors. The second chip includes a Read Out Integrated Circuit (ROIC) that reads out, via the transistors, a signal produced by the light sensors. A number of interconnects between the ROIC and the detector array can be less than one per light sensor or pixel.

  5. Solid-state image sensor with focal-plane digital photon-counting pixel array

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R. (Inventor); Pain, Bedabrata (Inventor)

    1995-01-01

    A photosensitive layer such as a-Si for a UV/visible wavelength band is provided for low light level imaging with at least a separate CMOS amplifier directly connected to each PIN photodetector diode to provide a focal-plane array of NxN pixels, and preferably a separate photon-counting CMOS circuit directly connected to each CMOS amplifier, although one row of counters may be time shared for reading out the photon flux rate of each diode in the array, together with a buffer memory for storing all rows of the NxN image frame before transfer to suitable storage. All CMOS circuitry is preferably fabricated in the same silicon layer as the PIN photodetector diode for a monolithic structure, but when the wavelength band of interest requires photosensitive material different from silicon, the focal-plane array may be fabricated separately on a different semiconductor layer bump-bonded or otherwise bonded for a virtually monolithic structure with one free terminal of each diode directly connected to the input terminal of its CMOS amplifier and digital counter for integration of the photon flux rate at each photodetector of the array.

  6. Overview of CMOS process and design options for image sensor dedicated to space applications

    NASA Astrophysics Data System (ADS)

    Martin-Gonthier, P.; Magnan, P.; Corbiere, F.

    2005-10-01

    With the growth of huge volume markets (mobile phones, digital cameras...) CMOS technologies for image sensor improve significantly. New process flows appear in order to optimize some parameters such as quantum efficiency, dark current, and conversion gain. Space applications can of course benefit from these improvements. To illustrate this evolution, this paper reports results from three technologies that have been evaluated with test vehicles composed of several sub arrays designed with some space applications as target. These three technologies are CMOS standard, improved and sensor optimized process in 0.35μm generation. Measurements are focussed on quantum efficiency, dark current, conversion gain and noise. Other measurements such as Modulation Transfer Function (MTF) and crosstalk are depicted in [1]. A comparison between results has been done and three categories of CMOS process for image sensors have been listed. Radiation tolerance has been also studied for the CMOS improved process in the way of hardening the imager by design. Results at 4, 15, 25 and 50 krad prove a good ionizing dose radiation tolerance applying specific techniques.

  7. Single-cell recording and stimulation with a 16k micro-nail electrode array integrated on a 0.18 μm CMOS chip.

    PubMed

    Huys, Roeland; Braeken, Dries; Jans, Danny; Stassen, Andim; Collaert, Nadine; Wouters, Jan; Loo, Josine; Severi, Simone; Vleugels, Frank; Callewaert, Geert; Verstreken, Kris; Bartic, Carmen; Eberle, Wolfgang

    2012-04-07

    To cope with the growing needs in research towards the understanding of cellular function and network dynamics, advanced micro-electrode arrays (MEAs) based on integrated complementary metal oxide semiconductor (CMOS) circuits have been increasingly reported. Although such arrays contain a large number of sensors for recording and/or stimulation, the size of the electrodes on these chips are often larger than a typical mammalian cell. Therefore, true single-cell recording and stimulation remains challenging. Single-cell resolution can be obtained by decreasing the size of the electrodes, which inherently increases the characteristic impedance and noise. Here, we present an array of 16,384 active sensors monolithically integrated on chip, realized in 0.18 μm CMOS technology for recording and stimulation of individual cells. Successful recording of electrical activity of cardiac cells with the chip, validated with intracellular whole-cell patch clamp recordings are presented, illustrating single-cell readout capability. Further, by applying a single-electrode stimulation protocol, we could pace individual cardiac cells, demonstrating single-cell addressability. This novel electrode array could help pave the way towards solving complex interactions of mammalian cellular networks. This journal is © The Royal Society of Chemistry 2012

  8. Investigation of CMOS pixel sensor with 0.18 μm CMOS technology for high-precision tracking detector

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Fu, M.; Zhang, Y.; Yan, W.; Wang, M.

    2017-01-01

    The Circular Electron Positron Collider (CEPC) proposed by the Chinese high energy physics community is aiming to measure Higgs particles and their interactions precisely. The tracking detector including Silicon Inner Tracker (SIT) and Forward Tracking Disks (FTD) has driven stringent requirements on sensor technologies in term of spatial resolution, power consumption and readout speed. CMOS Pixel Sensor (CPS) is a promising candidate to approach these requirements. This paper presents the preliminary studies on the sensor optimization for tracking detector to achieve high collection efficiency while keeping necessary spatial resolution. Detailed studies have been performed on the charge collection using a 0.18 μm CMOS image sensor process. This process allows high resistivity epitaxial layer, leading to a significant improvement on the charge collection and therefore improving the radiation tolerance. Together with the simulation results, the first exploratory prototype has bee designed and fabricated. The prototype includes 9 different pixel arrays, which vary in terms of pixel pitch, diode size and geometry. The total area of the prototype amounts to 2 × 7.88 mm2.

  9. Dual-mode photosensitive arrays based on the integration of liquid crystal microlenses and CMOS sensors for obtaining the intensity images and wavefronts of objects.

    PubMed

    Tong, Qing; Lei, Yu; Xin, Zhaowei; Zhang, Xinyu; Sang, Hongshi; Xie, Changsheng

    2016-02-08

    In this paper, we present a kind of dual-mode photosensitive arrays (DMPAs) constructed by hybrid integration a liquid crystal microlens array (LCMLA) driven electrically and a CMOS sensor array, which can be used to measure both the conventional intensity images and corresponding wavefronts of objects. We utilize liquid crystal materials to shape the microlens array with the electrically tunable focal length. Through switching the voltage signal on and off, the wavefronts and the intensity images can be acquired through the DMPAs, sequentially. We use white light to obtain the object's wavefronts for avoiding losing important wavefront information. We separate the white light wavefronts with a large number of spectral components and then experimentally compare them with single spectral wavefronts of typical red, green and blue lasers, respectively. Then we mix the red, green and blue wavefronts to a composite wavefront containing more optical information of the object.

  10. CMOS foveal image sensor chip

    NASA Technical Reports Server (NTRS)

    Scott, Peter (Inventor); Sridhar, Ramalingam (Inventor); Bandera, Cesar (Inventor); Xia, Shu (Inventor)

    2002-01-01

    A foveal image sensor integrated circuit comprising a plurality of CMOS active pixel sensors arranged both within and about a central fovea region of the chip. The pixels in the central fovea region have a smaller size than the pixels arranged in peripheral rings about the central region. A new photocharge normalization scheme and associated circuitry normalizes the output signals from the different size pixels in the array. The pixels are assembled into a multi-resolution rectilinear foveal image sensor chip using a novel access scheme to reduce the number of analog RAM cells needed. Localized spatial resolution declines monotonically with offset from the imager's optical axis, analogous to biological foveal vision.

  11. A 12-bit high-speed column-parallel two-step single-slope analog-to-digital converter (ADC) for CMOS image sensors.

    PubMed

    Lyu, Tao; Yao, Suying; Nie, Kaiming; Xu, Jiangtao

    2014-11-17

    A 12-bit high-speed column-parallel two-step single-slope (SS) analog-to-digital converter (ADC) for CMOS image sensors is proposed. The proposed ADC employs a single ramp voltage and multiple reference voltages, and the conversion is divided into coarse phase and fine phase to improve the conversion rate. An error calibration scheme is proposed to correct errors caused by offsets among the reference voltages. The digital-to-analog converter (DAC) used for the ramp generator is based on the split-capacitor array with an attenuation capacitor. Analysis of the DAC's linearity performance versus capacitor mismatch and parasitic capacitance is presented. A prototype 1024 × 32 Time Delay Integration (TDI) CMOS image sensor with the proposed ADC architecture has been fabricated in a standard 0.18 μm CMOS process. The proposed ADC has average power consumption of 128 μW and a conventional rate 6 times higher than the conventional SS ADC. A high-quality image, captured at the line rate of 15.5 k lines/s, shows that the proposed ADC is suitable for high-speed CMOS image sensors.

  12. The prototype cameras for trans-Neptunian automatic occultation survey

    NASA Astrophysics Data System (ADS)

    Wang, Shiang-Yu; Ling, Hung-Hsu; Hu, Yen-Sang; Geary, John C.; Chang, Yin-Chang; Chen, Hsin-Yo; Amato, Stephen M.; Huang, Pin-Jie; Pratlong, Jerome; Szentgyorgyi, Andrew; Lehner, Matthew; Norton, Timothy; Jorden, Paul

    2016-08-01

    The Transneptunian Automated Occultation Survey (TAOS II) is a three robotic telescope project to detect the stellar occultation events generated by TransNeptunian Objects (TNOs). TAOS II project aims to monitor about 10000 stars simultaneously at 20Hz to enable statistically significant event rate. The TAOS II camera is designed to cover the 1.7 degrees diameter field of view of the 1.3m telescope with 10 mosaic 4.5k×2k CMOS sensors. The new CMOS sensor (CIS 113) has a back illumination thinned structure and high sensitivity to provide similar performance to that of the back-illumination thinned CCDs. Due to the requirements of high performance and high speed, the development of the new CMOS sensor is still in progress. Before the science arrays are delivered, a prototype camera is developed to help on the commissioning of the robotic telescope system. The prototype camera uses the small format e2v CIS 107 device but with the same dewar and also the similar control electronics as the TAOS II science camera. The sensors, mounted on a single Invar plate, are cooled to the operation temperature of about 200K as the science array by a cryogenic cooler. The Invar plate is connected to the dewar body through a supporting ring with three G10 bipods. The control electronics consists of analog part and a Xilinx FPGA based digital circuit. One FPGA is needed to control and process the signal from a CMOS sensor for 20Hz region of interests (ROI) readout.

  13. Integrating Metal-Oxide-Decorated CNT Networks with a CMOS Readout in a Gas Sensor

    PubMed Central

    Lee, Hyunjoong; Lee, Sanghoon; Kim, Dai-Hong; Perello, David; Park, Young June; Hong, Seong-Hyeon; Yun, Minhee; Kim, Suhwan

    2012-01-01

    We have implemented a tin-oxide-decorated carbon nanotube (CNT) network gas sensor system on a single die. We have also demonstrated the deposition of metallic tin on the CNT network, its subsequent oxidation in air, and the improvement of the lifetime of the sensors. The fabricated array of CNT sensors contains 128 sensor cells for added redundancy and increased accuracy. The read-out integrated circuit (ROIC) was combined with coarse and fine time-to-digital converters to extend its resolution in a power-efficient way. The ROIC is fabricated using a 0.35 μm CMOS process, and the whole sensor system consumes 30 mA at 5 V. The sensor system was successfully tested in the detection of ammonia gas at elevated temperatures. PMID:22736966

  14. Time-Domain Fluorescence Lifetime Imaging Techniques Suitable for Solid-State Imaging Sensor Arrays

    PubMed Central

    Li, David Day-Uei; Ameer-Beg, Simon; Arlt, Jochen; Tyndall, David; Walker, Richard; Matthews, Daniel R.; Visitkul, Viput; Richardson, Justin; Henderson, Robert K.

    2012-01-01

    We have successfully demonstrated video-rate CMOS single-photon avalanche diode (SPAD)-based cameras for fluorescence lifetime imaging microscopy (FLIM) by applying innovative FLIM algorithms. We also review and compare several time-domain techniques and solid-state FLIM systems, and adapt the proposed algorithms for massive CMOS SPAD-based arrays and hardware implementations. The theoretical error equations are derived and their performances are demonstrated on the data obtained from 0.13 μm CMOS SPAD arrays and the multiple-decay data obtained from scanning PMT systems. In vivo two photon fluorescence lifetime imaging data of FITC-albumin labeled vasculature of a P22 rat carcinosarcoma (BD9 rat window chamber) are used to test how different algorithms perform on bi-decay data. The proposed techniques are capable of producing lifetime images with enough contrast. PMID:22778606

  15. Spatial optical crosstalk in CMOS image sensors integrated with plasmonic color filters.

    PubMed

    Yu, Yan; Chen, Qin; Wen, Long; Hu, Xin; Zhang, Hui-Fang

    2015-08-24

    Imaging resolution of complementary metal oxide semiconductor (CMOS) image sensor (CIS) keeps increasing to approximately 7k × 4k. As a result, the pixel size shrinks down to sub-2μm, which greatly increases the spatial optical crosstalk. Recently, plasmonic color filter was proposed as an alternative to conventional colorant pigmented ones. However, there is little work on its size effect and the spatial optical crosstalk in a model of CIS. By numerical simulation, we investigate the size effect of nanocross array plasmonic color filters and analyze the spatial optical crosstalk of each pixel in a Bayer array of a CIS with a pixel size of 1μm. It is found that the small pixel size deteriorates the filtering performance of nanocross color filters and induces substantial spatial color crosstalk. By integrating the plasmonic filters in the low Metal layer in standard CMOS process, the crosstalk reduces significantly, which is compatible to pigmented filters in a state-of-the-art backside illumination CIS.

  16. Experimental single-chip color HDTV image acquisition system with 8M-pixel CMOS image sensor

    NASA Astrophysics Data System (ADS)

    Shimamoto, Hiroshi; Yamashita, Takayuki; Funatsu, Ryohei; Mitani, Kohji; Nojiri, Yuji

    2006-02-01

    We have developed an experimental single-chip color HDTV image acquisition system using 8M-pixel CMOS image sensor. The sensor has 3840 × 2160 effective pixels and is progressively scanned at 60 frames per second. We describe the color filter array and interpolation method to improve image quality with a high-pixel-count single-chip sensor. We also describe an experimental image acquisition system we used to measured spatial frequency characteristics in the horizontal direction. The results indicate good prospects for achieving a high quality single chip HDTV camera that reduces pseudo signals and maintains high spatial frequency characteristics within the frequency band for HDTV.

  17. Active-Pixel Image Sensor With Analog-To-Digital Converters

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R.; Mendis, Sunetra K.; Pain, Bedabrata; Nixon, Robert H.

    1995-01-01

    Proposed single-chip integrated-circuit image sensor contains 128 x 128 array of active pixel sensors at 50-micrometer pitch. Output terminals of all pixels in each given column connected to analog-to-digital (A/D) converter located at bottom of column. Pixels scanned in semiparallel fashion, one row at time; during time allocated to scanning row, outputs of all active pixel sensors in row fed to respective A/D converters. Design of chip based on complementary metal oxide semiconductor (CMOS) technology, and individual circuit elements fabricated according to 2-micrometer CMOS design rules. Active pixel sensors designed to operate at video rate of 30 frames/second, even at low light levels. A/D scheme based on first-order Sigma-Delta modulation.

  18. A low-noise CMOS pixel direct charge sensor, Topmetal-II-

    DOE PAGES

    An, Mangmang; Chen, Chufeng; Gao, Chaosong; ...

    2015-12-12

    In this paper, we report the design and characterization of a CMOS pixel direct charge sensor, Topmetal-II-, fabricated in a standard 0.35 μm CMOS Integrated Circuit process. The sensor utilizes exposed metal patches on top of each pixel to directly collect charge. Each pixel contains a low-noise charge-sensitive preamplifier to establish the analog signal and a discriminator with tunable threshold to generate hits. The analog signal from each pixel is accessible through time-shared multiplexing over the entire array. Hits are read out digitally through a column-based priority logic structure. Tests show that the sensor achieved a <15e - analog noisemore » and a 200e - minimum threshold for digital readout per pixel. The sensor is capable of detecting both electrons and ions drifting in gas. Lastly, these characteristics enable its use as the charge readout device in future Time Projection Chambers without gaseous gain mechanism, which has unique advantages in low background and low rate-density experiments.« less

  19. CMOS image sensor with lateral electric field modulation pixels for fluorescence lifetime imaging with sub-nanosecond time response

    NASA Astrophysics Data System (ADS)

    Li, Zhuo; Seo, Min-Woong; Kagawa, Keiichiro; Yasutomi, Keita; Kawahito, Shoji

    2016-04-01

    This paper presents the design and implementation of a time-resolved CMOS image sensor with a high-speed lateral electric field modulation (LEFM) gating structure for time domain fluorescence lifetime measurement. Time-windowed signal charge can be transferred from a pinned photodiode (PPD) to a pinned storage diode (PSD) by turning on a pair of transfer gates, which are situated beside the channel. Unwanted signal charge can be drained from the PPD to the drain by turning on another pair of gates. The pixel array contains 512 (V) × 310 (H) pixels with 5.6 × 5.6 µm2 pixel size. The imager chip was fabricated using 0.11 µm CMOS image sensor process technology. The prototype sensor has a time response of 150 ps at 374 nm. The fill factor of the pixels is 5.6%. The usefulness of the prototype sensor is demonstrated for fluorescence lifetime imaging through simulation and measurement results.

  20. A low-noise CMOS pixel direct charge sensor, Topmetal-II-

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    An, Mangmang; Chen, Chufeng; Gao, Chaosong

    In this paper, we report the design and characterization of a CMOS pixel direct charge sensor, Topmetal-II-, fabricated in a standard 0.35 μm CMOS Integrated Circuit process. The sensor utilizes exposed metal patches on top of each pixel to directly collect charge. Each pixel contains a low-noise charge-sensitive preamplifier to establish the analog signal and a discriminator with tunable threshold to generate hits. The analog signal from each pixel is accessible through time-shared multiplexing over the entire array. Hits are read out digitally through a column-based priority logic structure. Tests show that the sensor achieved a <15e - analog noisemore » and a 200e - minimum threshold for digital readout per pixel. The sensor is capable of detecting both electrons and ions drifting in gas. Lastly, these characteristics enable its use as the charge readout device in future Time Projection Chambers without gaseous gain mechanism, which has unique advantages in low background and low rate-density experiments.« less

  1. Ionizing radiation effects on CMOS imagers manufactured in deep submicron process

    NASA Astrophysics Data System (ADS)

    Goiffon, Vincent; Magnan, Pierre; Bernard, Frédéric; Rolland, Guy; Saint-Pé, Olivier; Huger, Nicolas; Corbière, Franck

    2008-02-01

    We present here a study on both CMOS sensors and elementary structures (photodiodes and in-pixel MOSFETs) manufactured in a deep submicron process dedicated to imaging. We designed a test chip made of one 128×128-3T-pixel array with 10 μm pitch and more than 120 isolated test structures including photodiodes and MOSFETs with various implants and different sizes. All these devices were exposed to ionizing radiation up to 100 krad and their responses were correlated to identify the CMOS sensor weaknesses. Characterizations in darkness and under illumination demonstrated that dark current increase is the major sensor degradation. Shallow trench isolation was identified to be responsible for this degradation as it increases the number of generation centers in photodiode depletion regions. Consequences on hardness assurance and hardening-by-design are discussed.

  2. Photon small-field measurements with a CMOS active pixel sensor.

    PubMed

    Spang, F Jiménez; Rosenberg, I; Hedin, E; Royle, G

    2015-06-07

    In this work the dosimetric performance of CMOS active pixel sensors for the measurement of small photon beams is presented. The detector used consisted of an array of 520  × 520 pixels on a 25 µm pitch. Dosimetric parameters measured with this sensor were compared with data collected with an ionization chamber, a film detector and GEANT4 Monte Carlo simulations. The sensor performance for beam profiles measurements was evaluated for field sizes of 0.5  × 0.5 cm(2). The high spatial resolution achieved with this sensor allowed the accurate measurement of profiles, beam penumbrae and field size under lateral electronic disequilibrium. Field size and penumbrae agreed within 5.4% and 2.2% respectively with film measurements. Agreements with ionization chambers better than 1.0% were obtained when measuring tissue-phantom ratios. Output factor measurements were in good agreement with ionization chamber and Monte Carlo simulation. The data obtained from this imaging sensor can be easily analyzed to extract dosimetric information. The results presented in this work are promising for the development and implementation of CMOS active pixel sensors for dosimetry applications.

  3. Ultrasonic fingerprint sensor using a piezoelectric micromachined ultrasonic transducer array integrated with complementary metal oxide semiconductor electronics

    NASA Astrophysics Data System (ADS)

    Lu, Y.; Tang, H.; Fung, S.; Wang, Q.; Tsai, J. M.; Daneman, M.; Boser, B. E.; Horsley, D. A.

    2015-06-01

    This paper presents an ultrasonic fingerprint sensor based on a 24 × 8 array of 22 MHz piezoelectric micromachined ultrasonic transducers (PMUTs) with 100 μm pitch, fully integrated with 180 nm complementary metal oxide semiconductor (CMOS) circuitry through eutectic wafer bonding. Each PMUT is directly bonded to a dedicated CMOS receive amplifier, minimizing electrical parasitics and eliminating the need for through-silicon vias. The array frequency response and vibration mode-shape were characterized using laser Doppler vibrometry and verified via finite element method simulation. The array's acoustic output was measured using a hydrophone to be ˜14 kPa with a 28 V input, in reasonable agreement with predication from analytical calculation. Pulse-echo imaging of a 1D steel grating is demonstrated using electronic scanning of a 20 × 8 sub-array, resulting in 300 mV maximum received amplitude and 5:1 contrast ratio. Because the small size of this array limits the maximum image size, mechanical scanning was used to image a 2D polydimethylsiloxane fingerprint phantom (10 mm × 8 mm) at a 1.2 mm distance from the array.

  4. High-resolution depth profiling using a range-gated CMOS SPAD quanta image sensor.

    PubMed

    Ren, Ximing; Connolly, Peter W R; Halimi, Abderrahim; Altmann, Yoann; McLaughlin, Stephen; Gyongy, Istvan; Henderson, Robert K; Buller, Gerald S

    2018-03-05

    A CMOS single-photon avalanche diode (SPAD) quanta image sensor is used to reconstruct depth and intensity profiles when operating in a range-gated mode used in conjunction with pulsed laser illumination. By designing the CMOS SPAD array to acquire photons within a pre-determined temporal gate, the need for timing circuitry was avoided and it was therefore possible to have an enhanced fill factor (61% in this case) and a frame rate (100,000 frames per second) that is more difficult to achieve in a SPAD array which uses time-correlated single-photon counting. When coupled with appropriate image reconstruction algorithms, millimeter resolution depth profiles were achieved by iterating through a sequence of temporal delay steps in synchronization with laser illumination pulses. For photon data with high signal-to-noise ratios, depth images with millimeter scale depth uncertainty can be estimated using a standard cross-correlation approach. To enhance the estimation of depth and intensity images in the sparse photon regime, we used a bespoke clustering-based image restoration strategy, taking into account the binomial statistics of the photon data and non-local spatial correlations within the scene. For sparse photon data with total exposure times of 75 ms or less, the bespoke algorithm can reconstruct depth images with millimeter scale depth uncertainty at a stand-off distance of approximately 2 meters. We demonstrate a new approach to single-photon depth and intensity profiling using different target scenes, taking full advantage of the high fill-factor, high frame rate and large array format of this range-gated CMOS SPAD array.

  5. Solar XUV Imaging and Non-dispersive Spectroscopy for Solar-C Enabled by Scientific CMOS APS Arrays

    NASA Astrophysics Data System (ADS)

    Stern, Robert A.; Lemen, J. R.; Shing, L.; Janesick, J.; Tower, J.

    2009-05-01

    Monolithic CMOS Advanced Pixel Sensor (APS) arrays are showing great promise as eventual replacements for the current workhorse of solar physics focal planes, the scientific CCD. CMOS APS devices have individually addressable pixels, increased radiation tolerance compared to CCDs, and require lower clock voltages, and thus lower power. However, commercially available CMOS chips, while suitable for use with intensifiers or fluorescent coatings, are generally not optimized for direct detection of EUV and X-ray photons. A high performance scientific CMOS array designed for these wavelengths will have significant new capabilities compared to CCDs, including the ability to read out small regions of the solar disk at high (sub sec) cadence, count single X-ray photons with Fano-limited energy resolution, and even operate at room temperature with good noise performance. Such capabilities will be crucial for future solar X-ray and EUV missions such as Solar-C. Sarnoff Corporation has developed scientific grade, monolithic CMOS arrays for X-ray imaging and photon counting. One prototype device, the "minimal" array, has 8 um pixels, is 15 to 25 um thick, is fabricated on high-resistivity ( 10 to 20 kohm-cm) Si wafers, and can be back-illuminated. These characteristics yield high quantum efficiency and high spatial resolution with minimal charge sharing among pixels, making it ideal for the detection of keV X-rays. When used with digital correlated double sampling, the array has demonstrated noise performance as low as 2 e, allowing single photon counting of X-rays over a range of temperatures. We report test results for this device in X-rays, and discuss the implications for future solar space missions.

  6. Label-free CMOS bio sensor with on-chip noise reduction scheme for real-time quantitative monitoring of biomolecules.

    PubMed

    Seong-Jin Kim; Euisik Yoon

    2012-06-01

    We present a label-free CMOS field-effect transistor sensing array to detect the surface potential change affected by the negative charge in DNA molecules for real-time monitoring and quantification. The proposed CMOS bio sensor includes a new sensing pixel architecture implemented with correlated double sampling for reducing offset fixed pattern noise and 1/f noise of the sensing devices. We incorporated non-surface binding detection which allows real-time continuous monitoring of DNA concentrations without immobilizing them on the sensing surface. Various concentrations of 19-bp oligonucleotides solution can be discriminated using the prototype device fabricated in 1- μm double-poly double-metal standard CMOS process. The detection limit was measured as 1.1 ng/μl with a dynamic range of 40 dB and the transient response time was measured less than 20 seconds.

  7. Multispectral and polarimetric photodetection using a plasmonic metasurface

    NASA Astrophysics Data System (ADS)

    Pelzman, Charles; Cho, Sang-Yeon

    2018-01-01

    We present a metasurface-integrated Si 2-D CMOS sensor array for multispectral and polarimetric photodetection applications. The demonstrated sensor is based on the polarization selective extraordinary optical transmission from periodic subwavelength nanostructures, acting as artificial atoms, known as meta-atoms. The meta-atoms were created by patterning periodic rectangular apertures that support optical resonance at the designed spectral bands. By spatially separating meta-atom clusters with different lattice constants and orientations, the demonstrated metasurface can convert the polarization and spectral information of an optical input into a 2-D intensity pattern. As a proof-of-concept experiment, we measured the linear components of the Stokes parameters directly from captured images using a CMOS camera at four spectral bands. Compared to existing multispectral polarimetric sensors, the demonstrated metasurface-integrated CMOS system is compact and does not require any moving components, offering great potential for advanced photodetection applications.

  8. Performance of a novel wafer scale CMOS active pixel sensor for bio-medical imaging.

    PubMed

    Esposito, M; Anaxagoras, T; Konstantinidis, A C; Zheng, Y; Speller, R D; Evans, P M; Allinson, N M; Wells, K

    2014-07-07

    Recently CMOS active pixels sensors (APSs) have become a valuable alternative to amorphous silicon and selenium flat panel imagers (FPIs) in bio-medical imaging applications. CMOS APSs can now be scaled up to the standard 20 cm diameter wafer size by means of a reticle stitching block process. However, despite wafer scale CMOS APS being monolithic, sources of non-uniformity of response and regional variations can persist representing a significant challenge for wafer scale sensor response. Non-uniformity of stitched sensors can arise from a number of factors related to the manufacturing process, including variation of amplification, variation between readout components, wafer defects and process variations across the wafer due to manufacturing processes. This paper reports on an investigation into the spatial non-uniformity and regional variations of a wafer scale stitched CMOS APS. For the first time a per-pixel analysis of the electro-optical performance of a wafer CMOS APS is presented, to address inhomogeneity issues arising from the stitching techniques used to manufacture wafer scale sensors. A complete model of the signal generation in the pixel array has been provided and proved capable of accounting for noise and gain variations across the pixel array. This novel analysis leads to readout noise and conversion gain being evaluated at pixel level, stitching block level and in regions of interest, resulting in a coefficient of variation ⩽1.9%. The uniformity of the image quality performance has been further investigated in a typical x-ray application, i.e. mammography, showing a uniformity in terms of CNR among the highest when compared with mammography detectors commonly used in clinical practice. Finally, in order to compare the detection capability of this novel APS with the technology currently used (i.e. FPIs), theoretical evaluation of the detection quantum efficiency (DQE) at zero-frequency has been performed, resulting in a higher DQE for this detector compared to FPIs. Optical characterization, x-ray contrast measurements and theoretical DQE evaluation suggest that a trade off can be found between the need of a large imaging area and the requirement of a uniform imaging performance, making the DynAMITe large area CMOS APS suitable for a range of bio-medical applications.

  9. Binary CMOS image sensor with a gate/body-tied MOSFET-type photodetector for high-speed operation

    NASA Astrophysics Data System (ADS)

    Choi, Byoung-Soo; Jo, Sung-Hyun; Bae, Myunghan; Kim, Sang-Hwan; Shin, Jang-Kyoo

    2016-05-01

    In this paper, a binary complementary metal oxide semiconductor (CMOS) image sensor with a gate/body-tied (GBT) metal oxide semiconductor field effect transistor (MOSFET)-type photodetector is presented. The sensitivity of the GBT MOSFET-type photodetector, which was fabricated using the standard CMOS 0.35-μm process, is higher than the sensitivity of the p-n junction photodiode, because the output signal of the photodetector is amplified by the MOSFET. A binary image sensor becomes more efficient when using this photodetector. Lower power consumptions and higher speeds of operation are possible, compared to the conventional image sensors using multi-bit analog to digital converters (ADCs). The frame rate of the proposed image sensor is over 2000 frames per second, which is higher than those of the conventional CMOS image sensors. The output signal of an active pixel sensor is applied to a comparator and compared with a reference level. The 1-bit output data of the binary process is determined by this level. To obtain a video signal, the 1-bit output data is stored in the memory and is read out by horizontal scanning. The proposed chip is composed of a GBT pixel array (144 × 100), binary-process circuit, vertical scanner, horizontal scanner, and readout circuit. The operation mode can be selected from between binary mode and multi-bit mode.

  10. Piezoelectric micromachined ultrasonic transducers for fingerprint sensing

    NASA Astrophysics Data System (ADS)

    Lu, Yipeng

    Fingerprint identification is the most prevalent biometric technology due to its uniqueness, universality and convenience. Over the past two decades, a variety of physical mechanisms have been exploited to capture an electronic image of a human fingerprint. Among these, capacitive fingerprint sensors are the ones most widely used in consumer electronics because they are fabricated using conventional complementary metal oxide semiconductor (CMOS) integrated circuit technology. However, capacitive fingerprint sensors are extremely sensitive to finger contamination and moisture. This thesis will introduce an ultrasonic fingerprint sensor using a PMUT array, which offers a potential solution to this problem. In addition, it has the potential to increase security, as it allows images to be collected at various depths beneath the epidermis, providing images of the sub-surface dermis layer and blood vessels. Firstly, PMUT sensitivity is maximized by optimizing the layer stack and electrode design, and the coupling coefficient is doubled via series transduction. Moreover, a broadband PMUT with 97% fractional bandwidth is achieved by utilizing a thinner structure excited at two adjacent mechanical vibration modes with overlapping bandwidth. In addition, we proposed waveguide PMUTs, which function to direct acoustic waves, confine acoustic energy, and provide mechanical protection for the PMUT array. Furthermore, PMUT arrays were fabricated with different processes to form the membrane, including front-side etching with a patterned sacrificial layer, front-side etching with additional anchor, cavity SOI wafers and eutectic bonding. Additionally, eutectic bonding allows the PMUT to be integrated with CMOS circuits. PMUTs were characterized in the mechanical, electrical and acoustic domains. Using transmit beamforming, a narrow acoustic beam was achieved, and high-resolution (sub-100 microm) and short-range (~1 mm) pulse-echo ultrasonic imaging was demonstrated using a steel phantom. Finally, a novel ultrasonic fingerprint sensor was demonstrated using a 24x8 array of 22 MHz PMUTs with 100 microm pitch, fully integrated with 180 nm CMOS circuitry through eutectic wafer bonding. Each PMUT is directly bonded to a dedicated CMOS receive amplifier, minimizing electrical parasitics and eliminating the need for through-silicon vias. Pulse-echo imaging of a 1D steel grating is demonstrated using electronic scanning of a 20x8 sub-array, resulting in 300 mV maximum received amplitude and 5:1 contrast ratio. Because the small size of this array limits the maximum image size, mechanical scanning was used to image a 2D PDMS fingerprint phantom (10 mm by 8 mm) at a 1.2 mm distance from the array.

  11. Efficient Smart CMOS Camera Based on FPGAs Oriented to Embedded Image Processing

    PubMed Central

    Bravo, Ignacio; Baliñas, Javier; Gardel, Alfredo; Lázaro, José L.; Espinosa, Felipe; García, Jorge

    2011-01-01

    This article describes an image processing system based on an intelligent ad-hoc camera, whose two principle elements are a high speed 1.2 megapixel Complementary Metal Oxide Semiconductor (CMOS) sensor and a Field Programmable Gate Array (FPGA). The latter is used to control the various sensor parameter configurations and, where desired, to receive and process the images captured by the CMOS sensor. The flexibility and versatility offered by the new FPGA families makes it possible to incorporate microprocessors into these reconfigurable devices, and these are normally used for highly sequential tasks unsuitable for parallelization in hardware. For the present study, we used a Xilinx XC4VFX12 FPGA, which contains an internal Power PC (PPC) microprocessor. In turn, this contains a standalone system which manages the FPGA image processing hardware and endows the system with multiple software options for processing the images captured by the CMOS sensor. The system also incorporates an Ethernet channel for sending processed and unprocessed images from the FPGA to a remote node. Consequently, it is possible to visualize and configure system operation and captured and/or processed images remotely. PMID:22163739

  12. Nanopore-CMOS Interfaces for DNA Sequencing

    PubMed Central

    Magierowski, Sebastian; Huang, Yiyun; Wang, Chengjie; Ghafar-Zadeh, Ebrahim

    2016-01-01

    DNA sequencers based on nanopore sensors present an opportunity for a significant break from the template-based incumbents of the last forty years. Key advantages ushered by nanopore technology include a simplified chemistry and the ability to interface to CMOS technology. The latter opportunity offers substantial promise for improvement in sequencing speed, size and cost. This paper reviews existing and emerging means of interfacing nanopores to CMOS technology with an emphasis on massively-arrayed structures. It presents this in the context of incumbent DNA sequencing techniques, reviews and quantifies nanopore characteristics and models and presents CMOS circuit methods for the amplification of low-current nanopore signals in such interfaces. PMID:27509529

  13. Nanopore-CMOS Interfaces for DNA Sequencing.

    PubMed

    Magierowski, Sebastian; Huang, Yiyun; Wang, Chengjie; Ghafar-Zadeh, Ebrahim

    2016-08-06

    DNA sequencers based on nanopore sensors present an opportunity for a significant break from the template-based incumbents of the last forty years. Key advantages ushered by nanopore technology include a simplified chemistry and the ability to interface to CMOS technology. The latter opportunity offers substantial promise for improvement in sequencing speed, size and cost. This paper reviews existing and emerging means of interfacing nanopores to CMOS technology with an emphasis on massively-arrayed structures. It presents this in the context of incumbent DNA sequencing techniques, reviews and quantifies nanopore characteristics and models and presents CMOS circuit methods for the amplification of low-current nanopore signals in such interfaces.

  14. A 75-ps Gated CMOS Image Sensor with Low Parasitic Light Sensitivity

    PubMed Central

    Zhang, Fan; Niu, Hanben

    2016-01-01

    In this study, a 40 × 48 pixel global shutter complementary metal-oxide-semiconductor (CMOS) image sensor with an adjustable shutter time as low as 75 ps was implemented using a 0.5-μm mixed-signal CMOS process. The implementation consisted of a continuous contact ring around each p+/n-well photodiode in the pixel array in order to apply sufficient light shielding. The parasitic light sensitivity of the in-pixel storage node was measured to be 1/8.5 × 107 when illuminated by a 405-nm diode laser and 1/1.4 × 104 when illuminated by a 650-nm diode laser. The pixel pitch was 24 μm, the size of the square p+/n-well photodiode in each pixel was 7 μm per side, the measured random readout noise was 217 e− rms, and the measured dynamic range of the pixel of the designed chip was 5500:1. The type of gated CMOS image sensor (CIS) that is proposed here can be used in ultra-fast framing cameras to observe non-repeatable fast-evolving phenomena. PMID:27367699

  15. A 75-ps Gated CMOS Image Sensor with Low Parasitic Light Sensitivity.

    PubMed

    Zhang, Fan; Niu, Hanben

    2016-06-29

    In this study, a 40 × 48 pixel global shutter complementary metal-oxide-semiconductor (CMOS) image sensor with an adjustable shutter time as low as 75 ps was implemented using a 0.5-μm mixed-signal CMOS process. The implementation consisted of a continuous contact ring around each p+/n-well photodiode in the pixel array in order to apply sufficient light shielding. The parasitic light sensitivity of the in-pixel storage node was measured to be 1/8.5 × 10⁷ when illuminated by a 405-nm diode laser and 1/1.4 × 10⁴ when illuminated by a 650-nm diode laser. The pixel pitch was 24 μm, the size of the square p+/n-well photodiode in each pixel was 7 μm per side, the measured random readout noise was 217 e(-) rms, and the measured dynamic range of the pixel of the designed chip was 5500:1. The type of gated CMOS image sensor (CIS) that is proposed here can be used in ultra-fast framing cameras to observe non-repeatable fast-evolving phenomena.

  16. Imaging system design and image interpolation based on CMOS image sensor

    NASA Astrophysics Data System (ADS)

    Li, Yu-feng; Liang, Fei; Guo, Rui

    2009-11-01

    An image acquisition system is introduced, which consists of a color CMOS image sensor (OV9620), SRAM (CY62148), CPLD (EPM7128AE) and DSP (TMS320VC5509A). The CPLD implements the logic and timing control to the system. SRAM stores the image data, and DSP controls the image acquisition system through the SCCB (Omni Vision Serial Camera Control Bus). The timing sequence of the CMOS image sensor OV9620 is analyzed. The imaging part and the high speed image data memory unit are designed. The hardware and software design of the image acquisition and processing system is given. CMOS digital cameras use color filter arrays to sample different spectral components, such as red, green, and blue. At the location of each pixel only one color sample is taken, and the other colors must be interpolated from neighboring samples. We use the edge-oriented adaptive interpolation algorithm for the edge pixels and bilinear interpolation algorithm for the non-edge pixels to improve the visual quality of the interpolated images. This method can get high processing speed, decrease the computational complexity, and effectively preserve the image edges.

  17. 1024-Pixel CMOS Multimodality Joint Cellular Sensor/Stimulator Array for Real-Time Holistic Cellular Characterization and Cell-Based Drug Screening.

    PubMed

    Park, Jong Seok; Aziz, Moez Karim; Li, Sensen; Chi, Taiyun; Grijalva, Sandra Ivonne; Sung, Jung Hoon; Cho, Hee Cheol; Wang, Hua

    2018-02-01

    This paper presents a fully integrated CMOS multimodality joint sensor/stimulator array with 1024 pixels for real-time holistic cellular characterization and drug screening. The proposed system consists of four pixel groups and four parallel signal-conditioning blocks. Every pixel group contains 16 × 16 pixels, and each pixel includes one gold-plated electrode, four photodiodes, and in-pixel circuits, within a pixel footprint. Each pixel supports real-time extracellular potential recording, optical detection, charge-balanced biphasic current stimulation, and cellular impedance measurement for the same cellular sample. The proposed system is fabricated in a standard 130-nm CMOS process. Rat cardiomyocytes are successfully cultured on-chip. Measured high-resolution optical opacity images, extracellular potential recordings, biphasic current stimulations, and cellular impedance images demonstrate the unique advantages of the system for holistic cell characterization and drug screening. Furthermore, this paper demonstrates the use of optical detection on the on-chip cultured cardiomyocytes to real-time track their cyclic beating pattern and beating rate.

  18. Direct ultrasensitive electrical detection of prostate cancer biomarkers with CMOS-compatible n- and p-type silicon nanowire sensor arrays.

    PubMed

    Gao, Anran; Lu, Na; Dai, Pengfei; Fan, Chunhai; Wang, Yuelin; Li, Tie

    2014-11-07

    Sensitive and quantitative analysis of proteins is central to disease diagnosis, drug screening, and proteomic studies. Here, a label-free, real-time, simultaneous and ultrasensitive prostate-specific antigen (PSA) sensor was developed using CMOS-compatible silicon nanowire field effect transistors (SiNW FET). Highly responsive n- and p-type SiNW arrays were fabricated and integrated on a single chip with a complementary metal oxide semiconductor (CMOS) compatible anisotropic self-stop etching technique which eliminated the need for a hybrid method. The incorporated n- and p-type nanowires revealed complementary electrical response upon PSA binding, providing a unique means of internal control for sensing signal verification. The highly selective, simultaneous and multiplexed detection of PSA marker at attomolar concentrations, a level useful for clinical diagnosis of prostate cancer, was demonstrated. The detection ability was corroborated to be effective by comparing the detection results at different pH values. Furthermore, the real-time measurement was also carried out in a clinically relevant sample of blood serum, indicating the practicable development of rapid, robust, high-performance, and low-cost diagnostic systems.

  19. Ultrasonic fingerprint sensor using a piezoelectric micromachined ultrasonic transducer array integrated with complementary metal oxide semiconductor electronics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Y.; Fung, S.; Wang, Q.

    2015-06-29

    This paper presents an ultrasonic fingerprint sensor based on a 24 × 8 array of 22 MHz piezoelectric micromachined ultrasonic transducers (PMUTs) with 100 μm pitch, fully integrated with 180 nm complementary metal oxide semiconductor (CMOS) circuitry through eutectic wafer bonding. Each PMUT is directly bonded to a dedicated CMOS receive amplifier, minimizing electrical parasitics and eliminating the need for through-silicon vias. The array frequency response and vibration mode-shape were characterized using laser Doppler vibrometry and verified via finite element method simulation. The array's acoustic output was measured using a hydrophone to be ∼14 kPa with a 28 V input, in reasonable agreement with predication from analyticalmore » calculation. Pulse-echo imaging of a 1D steel grating is demonstrated using electronic scanning of a 20 × 8 sub-array, resulting in 300 mV maximum received amplitude and 5:1 contrast ratio. Because the small size of this array limits the maximum image size, mechanical scanning was used to image a 2D polydimethylsiloxane fingerprint phantom (10 mm × 8 mm) at a 1.2 mm distance from the array.« less

  20. Hybrid CMOS-Graphene Sensor Array for Subsecond Dopamine Detection.

    PubMed

    Nasri, Bayan; Wu, Ting; Alharbi, Abdullah; You, Kae-Dyi; Gupta, Mayank; Sebastian, Sunit P; Kiani, Roozbeh; Shahrjerdi, Davood

    2017-12-01

    We introduce a hybrid CMOS-graphene sensor array for subsecond measurement of dopamine via fast-scan cyclic voltammetry (FSCV). The prototype chip has four independent CMOS readout channels, fabricated in a 65-nm process. Using planar multilayer graphene as biologically compatible sensing material enables integration of miniaturized sensing electrodes directly above the readout channels. Taking advantage of the chemical specificity of FSCV, we introduce a region of interest technique, which subtracts a large portion of the background current using a programmable low-noise constant current at about the redox potentials. We demonstrate the utility of this feature for enhancing the sensitivity by measuring the sensor response to a known dopamine concentration in vitro at three different scan rates. This strategy further allows us to significantly reduce the dynamic range requirements of the analog-to-digital converter (ADC) without compromising the measurement accuracy. We show that an integrating dual-slope ADC is adequate for digitizing the background-subtracted current. The ADC operates at a sampling frequency of 5-10 kHz and has an effective resolution of about 60 pA, which corresponds to a theoretical dopamine detection limit of about 6 nM. Our hybrid sensing platform offers an effective solution for implementing next-generation FSCV devices that can enable precise recording of dopamine signaling in vivo on a large scale.

  1. Arrays of suspended silicon nanowires defined by ion beam implantation: mechanical coupling and combination with CMOS technology.

    PubMed

    Llobet, J; Rius, G; Chuquitarqui, A; Borrisé, X; Koops, R; van Veghel, M; Perez-Murano, F

    2018-04-02

    We present the fabrication, operation, and CMOS integration of arrays of suspended silicon nanowires (SiNWs). The functional structures are obtained by a top-down fabrication approach consisting in a resistless process based on focused ion beam irradiation, causing local gallium implantation and silicon amorphization, plus selective silicon etching by tetramethylammonium hydroxide, and a thermal annealing process in a boron rich atmosphere. The last step enables the electrical functionality of the irradiated material. Doubly clamped silicon beams are fabricated by this method. The electrical readout of their mechanical response can be addressed by a frequency down-mixing detection technique thanks to an enhanced piezoresistive transduction mechanism. Three specific aspects are discussed: (i) the engineering of mechanically coupled SiNWs, by making use of the nanometer scale overhang that it is inherently-generated with this fabrication process, (ii) the statistical distribution of patterned lateral dimensions when fabricating large arrays of identical devices, and (iii) the compatibility of the patterning methodology with CMOS circuits. Our results suggest that the application of this method to the integration of large arrays of suspended SiNWs with CMOS circuitry is interesting in view of applications such as advanced radio frequency band pass filters and ultra-high-sensitivity mass sensors.

  2. Arrays of suspended silicon nanowires defined by ion beam implantation: mechanical coupling and combination with CMOS technology

    NASA Astrophysics Data System (ADS)

    Llobet, J.; Rius, G.; Chuquitarqui, A.; Borrisé, X.; Koops, R.; van Veghel, M.; Perez-Murano, F.

    2018-04-01

    We present the fabrication, operation, and CMOS integration of arrays of suspended silicon nanowires (SiNWs). The functional structures are obtained by a top-down fabrication approach consisting in a resistless process based on focused ion beam irradiation, causing local gallium implantation and silicon amorphization, plus selective silicon etching by tetramethylammonium hydroxide, and a thermal annealing process in a boron rich atmosphere. The last step enables the electrical functionality of the irradiated material. Doubly clamped silicon beams are fabricated by this method. The electrical readout of their mechanical response can be addressed by a frequency down-mixing detection technique thanks to an enhanced piezoresistive transduction mechanism. Three specific aspects are discussed: (i) the engineering of mechanically coupled SiNWs, by making use of the nanometer scale overhang that it is inherently-generated with this fabrication process, (ii) the statistical distribution of patterned lateral dimensions when fabricating large arrays of identical devices, and (iii) the compatibility of the patterning methodology with CMOS circuits. Our results suggest that the application of this method to the integration of large arrays of suspended SiNWs with CMOS circuitry is interesting in view of applications such as advanced radio frequency band pass filters and ultra-high-sensitivity mass sensors.

  3. Compressive Sensing Image Sensors-Hardware Implementation

    PubMed Central

    Dadkhah, Mohammadreza; Deen, M. Jamal; Shirani, Shahram

    2013-01-01

    The compressive sensing (CS) paradigm uses simultaneous sensing and compression to provide an efficient image acquisition technique. The main advantages of the CS method include high resolution imaging using low resolution sensor arrays and faster image acquisition. Since the imaging philosophy in CS imagers is different from conventional imaging systems, new physical structures have been developed for cameras that use the CS technique. In this paper, a review of different hardware implementations of CS encoding in optical and electrical domains is presented. Considering the recent advances in CMOS (complementary metal–oxide–semiconductor) technologies and the feasibility of performing on-chip signal processing, important practical issues in the implementation of CS in CMOS sensors are emphasized. In addition, the CS coding for video capture is discussed. PMID:23584123

  4. CMOS VLSI Active-Pixel Sensor for Tracking

    NASA Technical Reports Server (NTRS)

    Pain, Bedabrata; Sun, Chao; Yang, Guang; Heynssens, Julie

    2004-01-01

    An architecture for a proposed active-pixel sensor (APS) and a design to implement the architecture in a complementary metal oxide semiconductor (CMOS) very-large-scale integrated (VLSI) circuit provide for some advanced features that are expected to be especially desirable for tracking pointlike features of stars. The architecture would also make this APS suitable for robotic- vision and general pointing and tracking applications. CMOS imagers in general are well suited for pointing and tracking because they can be configured for random access to selected pixels and to provide readout from windows of interest within their fields of view. However, until now, the architectures of CMOS imagers have not supported multiwindow operation or low-noise data collection. Moreover, smearing and motion artifacts in collected images have made prior CMOS imagers unsuitable for tracking applications. The proposed CMOS imager (see figure) would include an array of 1,024 by 1,024 pixels containing high-performance photodiode-based APS circuitry. The pixel pitch would be 9 m. The operations of the pixel circuits would be sequenced and otherwise controlled by an on-chip timing and control block, which would enable the collection of image data, during a single frame period, from either the full frame (that is, all 1,024 1,024 pixels) or from within as many as 8 different arbitrarily placed windows as large as 8 by 8 pixels each. A typical prior CMOS APS operates in a row-at-a-time ( grolling-shutter h) readout mode, which gives rise to exposure skew. In contrast, the proposed APS would operate in a sample-first/readlater mode, suppressing rolling-shutter effects. In this mode, the analog readout signals from the pixels corresponding to the windows of the interest (which windows, in the star-tracking application, would presumably contain guide stars) would be sampled rapidly by routing them through a programmable diagonal switch array to an on-chip parallel analog memory array. The diagonal-switch and memory addresses would be generated by the on-chip controller. The memory array would be large enough to hold differential signals acquired from all 8 windows during a frame period. Following the rapid sampling from all the windows, the contents of the memory array would be read out sequentially by use of a capacitive transimpedance amplifier (CTIA) at a maximum data rate of 10 MHz. This data rate is compatible with an update rate of almost 10 Hz, even in full-frame operation

  5. Rolling Shutter Effect aberration compensation in Digital Holographic Microscopy

    NASA Astrophysics Data System (ADS)

    Monaldi, Andrea C.; Romero, Gladis G.; Cabrera, Carlos M.; Blanc, Adriana V.; Alanís, Elvio E.

    2016-05-01

    Due to the sequential-readout nature of most CMOS sensors, each row of the sensor array is exposed at a different time, resulting in the so-called rolling shutter effect that induces geometric distortion to the image if the video camera or the object moves during image acquisition. Particularly in digital holograms recording, while the sensor captures progressively each row of the hologram, interferometric fringes can oscillate due to external vibrations and/or noises even when the object under study remains motionless. The sensor records each hologram row in different instants of these disturbances. As a final effect, phase information is corrupted, distorting the reconstructed holograms quality. We present a fast and simple method for compensating this effect based on image processing tools. The method is exemplified by holograms of microscopic biological static objects. Results encourage incorporating CMOS sensors over CCD in Digital Holographic Microscopy due to a better resolution and less expensive benefits.

  6. Towards High Throughput Cell Growth Screening: A New CMOS 8 × 8 Biosensor Array for Life Science Applications.

    PubMed

    Nabovati, Ghazal; Ghafar-Zadeh, Ebrahim; Letourneau, Antoine; Sawan, Mohamad

    2017-04-01

    In this paper we present a CMOS capacitive sensor array as a compact and low-cost platform for high-throughput cell growth monitoring. The proposed biosensor, consists of an array of 8 × 8 CMOS fully differential charge-based capacitive measurement sensors. A DC-input Σ∆ modulator is used to convert the sensors' signals to digital values for reading out the biological/chemical data and further signal processing. To compensate the mismatch variations between the current mirror transistors, a calibration circuitry is proposed which removes the output voltage offset with less than 8.2% error. We validate the chip functionality using various organic solvents with different dielectric constants. Moreover, we show the response of the chip to different concentrations of Polystyrene beads that have the same electrical properties as the living cells. The experimental results show that the chip allows the detection of a wide range of Polystyrene beads concentrations from as low as 10 beads/ml to 100 k beads/ml. In addition, we present the experimental results from H1299 (human lung carcinoma) cell line where we show that the chip successfully allows the detection of cell attachment and growth over capacitive electrodes in a 30 h measurement time and the results are in consistency with the standard cell-based assays. The capability of proposed device for label-free and real-time detection of cell growth with very high sensitivity opens up the important opportunity for utilizing the device in rapid screening of living cells.

  7. A Low Power Digital Accumulation Technique for Digital-Domain CMOS TDI Image Sensor.

    PubMed

    Yu, Changwei; Nie, Kaiming; Xu, Jiangtao; Gao, Jing

    2016-09-23

    In this paper, an accumulation technique suitable for digital domain CMOS time delay integration (TDI) image sensors is proposed to reduce power consumption without degrading the rate of imaging. In terms of the slight variations of quantization codes among different pixel exposures towards the same object, the pixel array is divided into two groups: one is for coarse quantization of high bits only, and the other one is for fine quantization of low bits. Then, the complete quantization codes are composed of both results from the coarse-and-fine quantization. The equivalent operation comparably reduces the total required bit numbers of the quantization. In the 0.18 µm CMOS process, two versions of 16-stage digital domain CMOS TDI image sensor chains based on a 10-bit successive approximate register (SAR) analog-to-digital converter (ADC), with and without the proposed technique, are designed. The simulation results show that the average power consumption of slices of the two versions are 6 . 47 × 10 - 8 J/line and 7 . 4 × 10 - 8 J/line, respectively. Meanwhile, the linearity of the two versions are 99.74% and 99.99%, respectively.

  8. Design of an ultra low power CMOS pixel sensor for a future neutron personal dosimeter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Y.; Hu-Guo, C.; Husson, D.

    2011-07-01

    Despite a continuously increasing demand, neutron electronic personal dosimeters (EPDs) are still far from being completely established because their development is a very difficult task. A low-noise, ultra low power consumption CMOS pixel sensor for a future neutron personal dosimeter has been implemented in a 0.35 {mu}m CMOS technology. The prototype is composed of a pixel array for detection of charged particles, and the readout electronics is integrated on the same substrate for signal processing. The excess electrons generated by an impinging particle are collected by the pixel array. The charge collection time and the efficiency are the crucial pointsmore » of a CMOS detector. The 3-D device simulations using the commercially available Synopsys-SENTAURUS package address the detailed charge collection process. Within a time of 1.9 {mu}s, about 59% electrons created by the impact particle are collected in a cluster of 4 x 4 pixels with the pixel pitch of 80 {mu}m. A charge sensitive preamplifier (CSA) and a shaper are employed in the frond-end readout. The tests with electrical signals indicate that our prototype with a total active area of 2.56 x 2.56 mm{sup 2} performs an equivalent noise charge (ENC) of less than 400 e - and 314 {mu}W power consumption, leading to a promising prototype. (authors)« less

  9. Extreme Carrier Depletion and Superlinear Photoconductivity in Ultrathin Parallel-Aligned ZnO Nanowire Array Photodetectors Fabricated by Infiltration Synthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nam, Chang-Yong; Stein, Aaron

    Ultrathin semiconductor nanowires enable high-performance chemical sensors and photodetectors, but their synthesis and device integration by standard complementary metal-oxide-semiconductor (CMOS)-compatible processes remain persistent challenges. This work demonstrates fully CMOS-compatible synthesis and integration of parallel-aligned polycrystalline ZnO nanowire arrays into ultraviolet photodetectors via infiltration synthesis, material hybridization technique derived from atomic layer deposition. The nanowire photodetector features unique, high device performances originating from extreme charge carrier depletion, achieving photoconductive on–off ratios of >6 decades, blindness to visible light, and ultralow dark currents as low as 1 fA, the lowest reported for nanostructure-based photoconductive photodetectors. Surprisingly, the low dark current is invariantmore » with increasing number of nanowires and the photodetector shows unusual superlinear photoconductivity, observed for the first time in nanowires, leading to increasing detector responsivity and other parameters for higher incident light powers. Temperature-dependent carrier concentration and mobility reveal the photoelectrochemical-thermionic emission process at grain boundaries, responsible for the observed unique photodetector performances and superlinear photoconductivity. Here, the results elucidate fundamental processes responsible for photogain in polycrystalline nanostructures, providing useful guidelines for developing nanostructure-based detectors and sensors. Lastly, the developed fully CMOS-compatible nanowire synthesis and device fabrication methods also have potentials for scalable integration of nanowire sensor devices and circuitries.« less

  10. Extreme Carrier Depletion and Superlinear Photoconductivity in Ultrathin Parallel-Aligned ZnO Nanowire Array Photodetectors Fabricated by Infiltration Synthesis

    DOE PAGES

    Nam, Chang-Yong; Stein, Aaron

    2017-11-15

    Ultrathin semiconductor nanowires enable high-performance chemical sensors and photodetectors, but their synthesis and device integration by standard complementary metal-oxide-semiconductor (CMOS)-compatible processes remain persistent challenges. This work demonstrates fully CMOS-compatible synthesis and integration of parallel-aligned polycrystalline ZnO nanowire arrays into ultraviolet photodetectors via infiltration synthesis, material hybridization technique derived from atomic layer deposition. The nanowire photodetector features unique, high device performances originating from extreme charge carrier depletion, achieving photoconductive on–off ratios of >6 decades, blindness to visible light, and ultralow dark currents as low as 1 fA, the lowest reported for nanostructure-based photoconductive photodetectors. Surprisingly, the low dark current is invariantmore » with increasing number of nanowires and the photodetector shows unusual superlinear photoconductivity, observed for the first time in nanowires, leading to increasing detector responsivity and other parameters for higher incident light powers. Temperature-dependent carrier concentration and mobility reveal the photoelectrochemical-thermionic emission process at grain boundaries, responsible for the observed unique photodetector performances and superlinear photoconductivity. Here, the results elucidate fundamental processes responsible for photogain in polycrystalline nanostructures, providing useful guidelines for developing nanostructure-based detectors and sensors. Lastly, the developed fully CMOS-compatible nanowire synthesis and device fabrication methods also have potentials for scalable integration of nanowire sensor devices and circuitries.« less

  11. Evaluation of an innovative color sensor for space application

    NASA Astrophysics Data System (ADS)

    Cessa, Virginie; Beauvivre, Stéphane; Pittet, Jacques; Dougnac, Virgile; Fasano, M.

    2017-11-01

    We present in this paper an evaluation of an innovative image sensor that provides color information without the need of organic filters. The sensor is a CMOS array with more than 4 millions pixels which filters the incident photons into R, G, and B channels, delivering the full resolution in color. Such a sensor, combining high performance with low power consumption, is of high interest for future space missions. The paper presents the characteristics of the detector as well as the first results of environmental testing.

  12. A 0.18 μm CMOS LDO Regulator for an On-Chip Sensor Array Impedance Measurement System.

    PubMed

    Pérez-Bailón, Jorge; Márquez, Alejandro; Calvo, Belén; Medrano, Nicolás

    2018-05-02

    This paper presents a fully integrated 0.18 μm CMOS Low-Dropout (LDO) Voltage Regulator specifically designed to meet the stringent requirements of a battery-operated impedance spectrometry multichannel CMOS micro-instrument. The proposed LDO provides a regulated 1.8 V voltage from a 3.6 V to 1.94 V battery voltage over a −40 °C to 100 °C temperature range, with a compact topology (<0.10 mm² area) and a constant quiescent current of only 7.45 μA with 99.985% current efficiency, achieving remarkable state-of-art Figures of Merit (FoMs) for the regulating⁻transient performance. Experimental measurements validate its suitability for the target application, paving the way towards the future achievement of a truly portable System on Chip (SoC) platform for impedance sensors.

  13. High-speed line-scan camera with digital time delay integration

    NASA Astrophysics Data System (ADS)

    Bodenstorfer, Ernst; Fürtler, Johannes; Brodersen, Jörg; Mayer, Konrad J.; Eckel, Christian; Gravogl, Klaus; Nachtnebel, Herbert

    2007-02-01

    Dealing with high-speed image acquisition and processing systems, the speed of operation is often limited by the amount of available light, due to short exposure times. Therefore, high-speed applications often use line-scan cameras, based on charge-coupled device (CCD) sensors with time delayed integration (TDI). Synchronous shift and accumulation of photoelectric charges on the CCD chip - according to the objects' movement - result in a longer effective exposure time without introducing additional motion blur. This paper presents a high-speed color line-scan camera based on a commercial complementary metal oxide semiconductor (CMOS) area image sensor with a Bayer filter matrix and a field programmable gate array (FPGA). The camera implements a digital equivalent to the TDI effect exploited with CCD cameras. The proposed design benefits from the high frame rates of CMOS sensors and from the possibility of arbitrarily addressing the rows of the sensor's pixel array. For the digital TDI just a small number of rows are read out from the area sensor which are then shifted and accumulated according to the movement of the inspected objects. This paper gives a detailed description of the digital TDI algorithm implemented on the FPGA. Relevant aspects for the practical application are discussed and key features of the camera are listed.

  14. A High Sensitivity Bio Photosensor for Detecting a Luciferase Bioluminescence

    NASA Astrophysics Data System (ADS)

    Kameda, Seiji; Moriyama, Yusuke; Noda, Kenichi; Iwata, Atsushi

    A high sensitivity CMOS bio photosensor applicable to a bioluminescent assay was developed with a 0.18µm CMOS image sensor (CIS) process. The bio photosensor consisting of a photosensor and a PWM 20bit A/D converter achieved high sensitivity for detecting a extremely low bioluminescence due to a large photodiode area, a long exposure time and the other noise reduction techniques. The bio photosensor chip has a 2×4 sensor array on a 2.45×2.45mm2 die. Experimental results with the bioluminescence showed the chip can detect below 10-5lux luminescence at room temperature and the power consumption is 32µW.

  15. Measurement of charge transfer potential barrier in pinned photodiode CMOS image sensors

    NASA Astrophysics Data System (ADS)

    Chen, Cao; Bing, Zhang; Junfeng, Wang; Longsheng, Wu

    2016-05-01

    The charge transfer potential barrier (CTPB) formed beneath the transfer gate causes a noticeable image lag issue in pinned photodiode (PPD) CMOS image sensors (CIS), and is difficult to measure straightforwardly since it is embedded inside the device. From an understanding of the CTPB formation mechanism, we report on an alternative method to feasibly measure the CTPB height by performing a linear extrapolation coupled with a horizontal left-shift on the sensor photoresponse curve under the steady-state illumination. The theoretical study was performed in detail on the principle of the proposed method. Application of the measurements on a prototype PPD-CIS chip with an array of 160 × 160 pixels is demonstrated. Such a method intends to shine new light on the guidance for the lag-free and high-speed sensors optimization based on PPD devices. Project supported by the National Defense Pre-Research Foundation of China (No. 51311050301095).

  16. Multiple-Event, Single-Photon Counting Imaging Sensor

    NASA Technical Reports Server (NTRS)

    Zheng, Xinyu; Cunningham, Thomas J.; Sun, Chao; Wang, Kang L.

    2011-01-01

    The single-photon counting imaging sensor is typically an array of silicon Geiger-mode avalanche photodiodes that are monolithically integrated with CMOS (complementary metal oxide semiconductor) readout, signal processing, and addressing circuits located in each pixel and the peripheral area of the chip. The major problem is its single-event method for photon count number registration. A single-event single-photon counting imaging array only allows registration of up to one photon count in each of its pixels during a frame time, i.e., the interval between two successive pixel reset operations. Since the frame time can t be too short, this will lead to very low dynamic range and make the sensor merely useful for very low flux environments. The second problem of the prior technique is a limited fill factor resulting from consumption of chip area by the monolithically integrated CMOS readout in pixels. The resulting low photon collection efficiency will substantially ruin any benefit gained from the very sensitive single-photon counting detection. The single-photon counting imaging sensor developed in this work has a novel multiple-event architecture, which allows each of its pixels to register as more than one million (or more) photon-counting events during a frame time. Because of a consequently boosted dynamic range, the imaging array of the invention is capable of performing single-photon counting under ultra-low light through high-flux environments. On the other hand, since the multiple-event architecture is implemented in a hybrid structure, back-illumination and close-to-unity fill factor can be realized, and maximized quantum efficiency can also be achieved in the detector array.

  17. An 80x80 microbolometer type thermal imaging sensor using the LWIR-band CMOS infrared (CIR) technology

    NASA Astrophysics Data System (ADS)

    Tankut, Firat; Cologlu, Mustafa H.; Askar, Hidir; Ozturk, Hande; Dumanli, Hilal K.; Oruc, Feyza; Tilkioglu, Bilge; Ugur, Beril; Akar, Orhan Sevket; Tepegoz, Murat; Akin, Tayfun

    2017-02-01

    This paper introduces an 80x80 microbolometer array with a 35 μm pixel pitch operating in the 8-12 μm wavelength range, where the detector is fabricated with the LWIR-band CMOS infrared technology, shortly named as CIR, which is a novel microbolometer implementation technique developed to reduce the detector cost in order to enable the use of microbolometer type sensors in high volume markets, such as the consumer market and IoT. Unlike the widely used conventional surface micromachined microbolometer approaches, MikroSens' CIR detector technology does not require the use of special high TCR materials like VOx or a-Si, instead, it allows to implement microbolometers with standard CMOS layers, where the suspended bulk micromachined structure is obtained by only few consecutive selective MEMS etching steps while protecting the wirebond pads with a simple lithograpy step. This approach not only reduces the fabrication cost but also increases the production yield. In addition, needing simple subtractive post-CMOS fabrication steps allows the CIR technology to be carried out in any CMOS and MEMS foundry in a truly fabless fashion, where industrially mature and Au-free wafer level vacuum packaging technologies can also be carried out, leading to cost advantage, simplicity, scalability, and flexibility. The CIR approach is used to implement an 80x80 FPA with 35 μm pixel pitch, namely MS0835A, using a 0.18 μm CMOS process. The fabricated sensor is measured to provide NETD (Noise Equivalent Temperature Difference) value of 163 mK at 17 fps (frames per second) and 71 mK at 4 fps with F/1.0 optics in a dewar environment. The measurement results of the wafer level vacuum packaged sensors with one side AR coating shows an NETD values of 112 mK at 4 fps with F/1.1 optics, i.e., demonstrates a good performance for high volume low-cost applications like advanced presence detection and human counting applications. The CIR approach of MikroSens is scalable and can be used to reduce the pixel pitch even further while increasing the array size if necessary for various other low-cost, high volume applications.

  18. A Label-Free Fluorescent Array Sensor Utilizing Liposome Encapsulating Calcein for Discriminating Target Proteins by Principal Component Analysis

    PubMed Central

    Imamura, Ryota; Murata, Naoki; Shimanouchi, Toshinori; Yamashita, Kaoru; Fukuzawa, Masayuki; Noda, Minoru

    2017-01-01

    A new fluorescent arrayed biosensor has been developed to discriminate species and concentrations of target proteins by using plural different phospholipid liposome species encapsulating fluorescent molecules, utilizing differences in permeation of the fluorescent molecules through the membrane to modulate liposome-target protein interactions. This approach proposes a basically new label-free fluorescent sensor, compared with the common technique of developed fluorescent array sensors with labeling. We have confirmed a high output intensity of fluorescence emission related to characteristics of the fluorescent molecules dependent on their concentrations when they leak from inside the liposomes through the perturbed lipid membrane. After taking an array image of the fluorescence emission from the sensor using a CMOS imager, the output intensities of the fluorescence were analyzed by a principal component analysis (PCA) statistical method. It is found from PCA plots that different protein species with several concentrations were successfully discriminated by using the different lipid membranes with high cumulative contribution ratio. We also confirmed that the accuracy of the discrimination by the array sensor with a single shot is higher than that of a single sensor with multiple shots. PMID:28714873

  19. A Label-Free Fluorescent Array Sensor Utilizing Liposome Encapsulating Calcein for Discriminating Target Proteins by Principal Component Analysis.

    PubMed

    Imamura, Ryota; Murata, Naoki; Shimanouchi, Toshinori; Yamashita, Kaoru; Fukuzawa, Masayuki; Noda, Minoru

    2017-07-15

    A new fluorescent arrayed biosensor has been developed to discriminate species and concentrations of target proteins by using plural different phospholipid liposome species encapsulating fluorescent molecules, utilizing differences in permeation of the fluorescent molecules through the membrane to modulate liposome-target protein interactions. This approach proposes a basically new label-free fluorescent sensor, compared with the common technique of developed fluorescent array sensors with labeling. We have confirmed a high output intensity of fluorescence emission related to characteristics of the fluorescent molecules dependent on their concentrations when they leak from inside the liposomes through the perturbed lipid membrane. After taking an array image of the fluorescence emission from the sensor using a CMOS imager, the output intensities of the fluorescence were analyzed by a principal component analysis (PCA) statistical method. It is found from PCA plots that different protein species with several concentrations were successfully discriminated by using the different lipid membranes with high cumulative contribution ratio. We also confirmed that the accuracy of the discrimination by the array sensor with a single shot is higher than that of a single sensor with multiple shots.

  20. A high sensitivity 20Mfps CMOS image sensor with readout speed of 1Tpixel/sec for visualization of ultra-high speed phenomena

    NASA Astrophysics Data System (ADS)

    Kuroda, R.; Sugawa, S.

    2017-02-01

    Ultra-high speed (UHS) CMOS image sensors with on-chop analog memories placed on the periphery of pixel array for the visualization of UHS phenomena are overviewed in this paper. The developed UHS CMOS image sensors consist of 400H×256V pixels and 128 memories/pixel, and the readout speed of 1Tpixel/sec is obtained, leading to 10 Mfps full resolution video capturing with consecutive 128 frames, and 20 Mfps half resolution video capturing with consecutive 256 frames. The first development model has been employed in the high speed video camera and put in practical use in 2012. By the development of dedicated process technologies, photosensitivity improvement and power consumption reduction were simultaneously achieved, and the performance improved version has been utilized in the commercialized high-speed video camera since 2015 that offers 10 Mfps with ISO16,000 photosensitivity. Due to the improved photosensitivity, clear images can be captured and analyzed even under low light condition, such as under a microscope as well as capturing of UHS light emission phenomena.

  1. Monolithic Integration of a Silicon Nanowire Field-Effect Transistors Array on a Complementary Metal-Oxide Semiconductor Chip for Biochemical Sensor Applications

    PubMed Central

    Livi, Paolo; Kwiat, Moria; Shadmani, Amir; Pevzner, Alexander; Navarra, Giulio; Rothe, Jörg; Stettler, Alexander; Chen, Yihui; Patolsky, Fernando; Hierlemann, Andreas

    2017-01-01

    We present a monolithic complementary metal-oxide semiconductor (CMOS)-based sensor system comprising an array of silicon nanowire field-effect transistors (FETs) and the signal-conditioning circuitry on the same chip. The silicon nanowires were fabricated by chemical vapor deposition methods and then transferred to the CMOS chip, where Ti/Pd/Ti contacts had been patterned via e-beam lithography. The on-chip circuitry measures the current flowing through each nanowire FET upon applying a constant source-drain voltage. The analog signal is digitized on chip and then transmitted to a receiving unit. The system has been successfully fabricated and tested by acquiring I−V curves of the bare nanowire-based FETs. Furthermore, the sensing capabilities of the complete system have been demonstrated by recording current changes upon nanowire exposure to solutions of different pHs, as well as by detecting different concentrations of Troponin T biomarkers (cTnT) through antibody-functionalized nanowire FETs. PMID:26348408

  2. Monolithic integration of a silicon nanowire field-effect transistors array on a complementary metal-oxide semiconductor chip for biochemical sensor applications.

    PubMed

    Livi, Paolo; Kwiat, Moria; Shadmani, Amir; Pevzner, Alexander; Navarra, Giulio; Rothe, Jörg; Stettler, Alexander; Chen, Yihui; Patolsky, Fernando; Hierlemann, Andreas

    2015-10-06

    We present a monolithic complementary metal-oxide semiconductor (CMOS)-based sensor system comprising an array of silicon nanowire field-effect transistors (FETs) and the signal-conditioning circuitry on the same chip. The silicon nanowires were fabricated by chemical vapor deposition methods and then transferred to the CMOS chip, where Ti/Pd/Ti contacts had been patterned via e-beam lithography. The on-chip circuitry measures the current flowing through each nanowire FET upon applying a constant source-drain voltage. The analog signal is digitized on chip and then transmitted to a receiving unit. The system has been successfully fabricated and tested by acquiring I-V curves of the bare nanowire-based FETs. Furthermore, the sensing capabilities of the complete system have been demonstrated by recording current changes upon nanowire exposure to solutions of different pHs, as well as by detecting different concentrations of Troponin T biomarkers (cTnT) through antibody-functionalized nanowire FETs.

  3. A Dynamic Range Enhanced Readout Technique with a Two-Step TDC for High Speed Linear CMOS Image Sensors.

    PubMed

    Gao, Zhiyuan; Yang, Congjie; Xu, Jiangtao; Nie, Kaiming

    2015-11-06

    This paper presents a dynamic range (DR) enhanced readout technique with a two-step time-to-digital converter (TDC) for high speed linear CMOS image sensors. A multi-capacitor and self-regulated capacitive trans-impedance amplifier (CTIA) structure is employed to extend the dynamic range. The gain of the CTIA is auto adjusted by switching different capacitors to the integration node asynchronously according to the output voltage. A column-parallel ADC based on a two-step TDC is utilized to improve the conversion rate. The conversion is divided into coarse phase and fine phase. An error calibration scheme is also proposed to correct quantization errors caused by propagation delay skew within -T(clk)~+T(clk). A linear CMOS image sensor pixel array is designed in the 0.13 μm CMOS process to verify this DR-enhanced high speed readout technique. The post simulation results indicate that the dynamic range of readout circuit is 99.02 dB and the ADC achieves 60.22 dB SNDR and 9.71 bit ENOB at a conversion rate of 2 MS/s after calibration, with 14.04 dB and 2.4 bit improvement, compared with SNDR and ENOB of that without calibration.

  4. High-Throughput and Label-Free Single Nanoparticle Sizing Based on Time-Resolved On-Chip Microscopy

    DTIC Science & Technology

    2015-02-17

    12,13 soot ,6,14 ice crystals in clouds,15 and engineered nano- materials,16 among others. While there exist various nanoparticle detection and sizing...the sample of interest is placed on an optoelectronic sensor -array with typically less than 0.5 mm gap (z2) between the sample and sensor planes such...that, under unit mag- nification, the entire sensor active area serves as the imaging FOV, easily reaching >2030 mm2 with state-of-the-art CMOS

  5. High-Speed Binary-Output Image Sensor

    NASA Technical Reports Server (NTRS)

    Fossum, Eric; Panicacci, Roger A.; Kemeny, Sabrina E.; Jones, Peter D.

    1996-01-01

    Photodetector outputs digitized by circuitry on same integrated-circuit chip. Developmental special-purpose binary-output image sensor designed to capture up to 1,000 images per second, with resolution greater than 10 to the 6th power pixels per image. Lower-resolution but higher-frame-rate prototype of sensor contains 128 x 128 array of photodiodes on complementary metal oxide/semiconductor (CMOS) integrated-circuit chip. In application for which it is being developed, sensor used to examine helicopter oil to determine whether amount of metal and sand in oil sufficient to warrant replacement.

  6. High-speed sorting of grains by color and surface texture

    USDA-ARS?s Scientific Manuscript database

    A high-speed, low-cost, image-based sorting device was developed to detect and separate grains with different colors/textures. The device directly combines a complementary metal–oxide–semiconductor (CMOS) color image sensor with a field-programmable gate array (FPGA) that was programmed to execute ...

  7. Optimization of CMOS image sensor utilizing variable temporal multisampling partial transfer technique to achieve full-frame high dynamic range with superior low light and stop motion capability

    NASA Astrophysics Data System (ADS)

    Kabir, Salman; Smith, Craig; Armstrong, Frank; Barnard, Gerrit; Schneider, Alex; Guidash, Michael; Vogelsang, Thomas; Endsley, Jay

    2018-03-01

    Differential binary pixel technology is a threshold-based timing, readout, and image reconstruction method that utilizes the subframe partial charge transfer technique in a standard four-transistor (4T) pixel CMOS image sensor to achieve a high dynamic range video with stop motion. This technology improves low light signal-to-noise ratio (SNR) by up to 21 dB. The method is verified in silicon using a Taiwan Semiconductor Manufacturing Company's 65 nm 1.1 μm pixel technology 1 megapixel test chip array and is compared with a traditional 4 × oversampling technique using full charge transfer to show low light SNR superiority of the presented technology.

  8. Fully Digital Arrays of Silicon Photomultipliers (dSiPM) - a Scalable Alternative to Vacuum Photomultiplier Tubes (PMT)

    NASA Astrophysics Data System (ADS)

    Haemisch, York; Frach, Thomas; Degenhardt, Carsten; Thon, Andreas

    Silicon Photomultipliers (SiPMs) have emerged as promising alternative to fast vacuum photomultiplier tubes (PMT). A fully digital implementation of the Silicon Photomultiplier (dSiPM) has been developed in order to overcome the deficiencies and limitations of the so far only analog SiPMs (aSiPMs). Our sensor is based on arrays of single photon avalanche photodiodes (SPADs) integrated in a standard CMOS process. Photons are detected directly by sensing the voltage at the SPAD anode using a dedicated cell electronics block next to each diode. This block also contains active quenching and recharge circuits as well as a one bit memory for the selective inhibit of detector cells. A balanced trigger network is used to propagate the trigger signal from all cells to the integrated time-to-digital converter. In consequence, photons are detected and counted as digital signals, thus making the sensor less susceptible to temperature variations and electronic noise. The integration with CMOS logic provides the added benefit of low power consumption and possible integration of data post-processing directly in the sensor. In this overview paper, we discuss the sensor architecture together with its characteristics with a focus on scalability and practicability aspects for applications in medical imaging, high energy- and astrophysics.

  9. Plasmonic nanohole arrays on Si-Ge heterostructures: an approach for integrated biosensors

    NASA Astrophysics Data System (ADS)

    Augel, L.; Fischer, I. A.; Dunbar, L. A.; Bechler, S.; Berrier, A.; Etezadi, D.; Hornung, F.; Kostecki, K.; Ozdemir, C. I.; Soler, M.; Altug, H.; Schulze, J.

    2016-03-01

    Nanohole array surface plasmon resonance (SPR) sensors offer a promising platform for high-throughput label-free biosensing. Integrating nanohole arrays with group-IV semiconductor photodetectors could enable low-cost and disposable biosensors compatible to Si-based complementary metal oxide semiconductor (CMOS) technology that can be combined with integrated circuitry for continuous monitoring of biosamples and fast sensor data processing. Such an integrated biosensor could be realized by structuring a nanohole array in the contact metal layer of a photodetector. We used Fouriertransform infrared spectroscopy to investigate nanohole arrays in a 100 nm Al film deposited on top of a vertical Si-Ge photodiode structure grown by molecular beam epitaxy (MBE). We find that the presence of a protein bilayer, constitute of protein AG and Immunoglobulin G (IgG), leads to a wavelength-dependent absorptance enhancement of ~ 8 %.

  10. Liquid crystal devices based on photoalignment and photopatterning materials

    NASA Astrophysics Data System (ADS)

    Chigrinov, Vladimir

    2014-02-01

    Liquid crystal (LC) display and photonics devices based on photo-alignment and photo-patterning LC cells are developed. A fast switchable grating based on ferroelectric liquid crystals and orthogonal planar alignment by means of photo alignments. Both 1D and 2D gratings have been constructed. The proposed diffracting element provides fast response time of around 20 μs, contrast of 7000:1 and high diffraction efficiency, at the electric field of 6V/μm. A switchable LC Fresnel zone lens was also developed with the efficiency of ~42% that can be further improved, and the switching time for the 3 μm thick cell is ~6.7 ms which is relatively fast in comparison of existing devices. Thus, because of the photoalignment technology the fabrication of Fresnel lens became considerably simpler than others. A thin high spatial resolution, photo-patterned micropolarizer array for complementary metal-oxide-semiconductor (CMOS) image sensors was implemented for the complete optical visualization of so called "invisible" objects, which are completely transparent (reflective) and colorless. Four Stokes parameters, which fully characterized the reflected light beam can be simultaneously detected using the array of photo-patterned polarizers on CMOS sensor plate. The cheap, high resolution photo-patterned LC matrix sensor was developed to be able successfully compete with the expensive and low reliable wire grid polarizer patterned arrays currently used for the purpose.

  11. Llamas: Large-area microphone arrays and sensing systems

    NASA Astrophysics Data System (ADS)

    Sanz-Robinson, Josue

    Large-area electronics (LAE) provides a platform to build sensing systems, based on distributing large numbers of densely spaced sensors over a physically-expansive space. Due to their flexible, "wallpaper-like" form factor, these systems can be seamlessly deployed in everyday spaces. They go beyond just supplying sensor readings, but rather they aim to transform the wealth of data from these sensors into actionable inferences about our physical environment. This requires vertically integrated systems that span the entirety of the signal processing chain, including transducers and devices, circuits, and signal processing algorithms. To this end we develop hybrid LAE / CMOS systems, which exploit the complementary strengths of LAE, enabling spatially distributed sensors, and CMOS ICs, providing computational capacity for signal processing. To explore the development of hybrid sensing systems, based on vertical integration across the signal processing chain, we focus on two main drivers: (1) thin-film diodes, and (2) microphone arrays for blind source separation: 1) Thin-film diodes are a key building block for many applications, such as RFID tags or power transfer over non-contact inductive links, which require rectifiers for AC-to-DC conversion. We developed hybrid amorphous / nanocrystalline silicon diodes, which are fabricated at low temperatures (<200 °C) to be compatible with processing on plastic, and have high current densities (5 A/cm2 at 1 V) and high frequency operation (cutoff frequency of 110 MHz). 2) We designed a system for separating the voices of multiple simultaneous speakers, which can ultimately be fed to a voice-command recognition engine for controlling electronic systems. On a device level, we developed flexible PVDF microphones, which were used to create a large-area microphone array. On a circuit level we developed localized a-Si TFT amplifiers, and a custom CMOS IC, for system control, sensor readout and digitization. On a signal processing level we developed an algorithm for blind source separation in a real, reverberant room, based on beamforming and binary masking. It requires no knowledge about the location of the speakers or microphones. Instead, it uses cluster analysis techniques to determine the time delays for beamforming; thus, adapting to the unique acoustic environment of the room.

  12. Hardware-based image processing for high-speed inspection of grains

    USDA-ARS?s Scientific Manuscript database

    A high-speed, low-cost, image-based sorting device was developed to detect and separate grains with slight color differences and small defects on grains The device directly combines a complementary metal–oxide–semiconductor (CMOS) color image sensor with a field-programmable gate array (FPGA) which...

  13. Design trade-off between spatial resolution and power consumption in CMOS biosensor circuit based on millimeter-wave LC oscillator array

    NASA Astrophysics Data System (ADS)

    Matsunaga, Maya; Kobayashi, Atsuki; Nakazato, Kazuo; Niitsu, Kiichi

    2018-03-01

    In this paper, we describe a trade-off between spatial resolution and power consumption in an LC oscillator-based CMOS biosensor, which can detect biomolecules by observing the resonance frequency shift due to changes in the complex permittivity of the biomolecules. The optimal operating frequency and improvement in the image resolution of the sensor output require a reduction in the size of the inductor. However, it is necessary to increase the transconductance of the cross-coupling transistor to achieve the oscillation condition, although the power consumption increases. We confirmed the trade-off between the spatial resolution and the power consumption of this sensor using SPICE simulation. A test chip was fabricated using a 65 nm CMOS process, and the transition in the peak frequency and the power consumption were measured. When the outer diameter of the inductor was 46 µm, the power consumption was 31.2 mW, which matched well with the simulation results.

  14. Uncooled Terahertz real-time imaging 2D arrays developed at LETI: present status and perspectives

    NASA Astrophysics Data System (ADS)

    Simoens, François; Meilhan, Jérôme; Dussopt, Laurent; Nicolas, Jean-Alain; Monnier, Nicolas; Sicard, Gilles; Siligaris, Alexandre; Hiberty, Bruno

    2017-05-01

    As for other imaging sensor markets, whatever is the technology, the commercial spread of terahertz (THz) cameras has to fulfil simultaneously the criteria of high sensitivity and low cost and SWAP (size, weight and power). Monolithic silicon-based 2D sensors integrated in uncooled THz real-time cameras are good candidates to meet these requirements. Over the past decade, LETI has been studying and developing such arrays with two complimentary technological approaches, i.e. antenna-coupled silicon bolometers and CMOS Field Effect Transistors (FET), both being compatible to standard silicon microelectronics processes. LETI has leveraged its know-how in thermal infrared bolometer sensors in developing a proprietary architecture for THz sensing. High technological maturity has been achieved as illustrated by the demonstration of fast scanning of large field of view and the recent birth of a commercial camera. In the FET-based THz field, recent works have been focused on innovative CMOS read-out-integrated circuit designs. The studied architectures take advantage of the large pixel pitch to enhance the flexibility and the sensitivity: an embedded in-pixel configurable signal processing chain dramatically reduces the noise. Video sequences at 100 frames per second using our 31x31 pixels 2D Focal Plane Arrays (FPA) have been achieved. The authors describe the present status of these developments and perspectives of performance evolutions are discussed. Several experimental imaging tests are also presented in order to illustrate the capabilities of these arrays to address industrial applications such as non-destructive testing (NDT), security or quality control of food.

  15. A robust color signal processing with wide dynamic range WRGB CMOS image sensor

    NASA Astrophysics Data System (ADS)

    Kawada, Shun; Kuroda, Rihito; Sugawa, Shigetoshi

    2011-01-01

    We have developed a robust color reproduction methodology by a simple calculation with a new color matrix using the formerly developed wide dynamic range WRGB lateral overflow integration capacitor (LOFIC) CMOS image sensor. The image sensor was fabricated through a 0.18 μm CMOS technology and has a 45 degrees oblique pixel array, the 4.2 μm effective pixel pitch and the W pixels. A W pixel was formed by replacing one of the two G pixels in the Bayer RGB color filter. The W pixel has a high sensitivity through the visible light waveband. An emerald green and yellow (EGY) signal is generated from the difference between the W signal and the sum of RGB signals. This EGY signal mainly includes emerald green and yellow lights. These colors are difficult to be reproduced accurately by the conventional simple linear matrix because their wave lengths are in the valleys of the spectral sensitivity characteristics of the RGB pixels. A new linear matrix based on the EGY-RGB signal was developed. Using this simple matrix, a highly accurate color processing with a large margin to the sensitivity fluctuation and noise has been achieved.

  16. A 256×256 low-light-level CMOS imaging sensor with digital CDS

    NASA Astrophysics Data System (ADS)

    Zou, Mei; Chen, Nan; Zhong, Shengyou; Li, Zhengfen; Zhang, Jicun; Yao, Li-bin

    2016-10-01

    In order to achieve high sensitivity for low-light-level CMOS image sensors (CIS), a capacitive transimpedance amplifier (CTIA) pixel circuit with a small integration capacitor is used. As the pixel and the column area are highly constrained, it is difficult to achieve analog correlated double sampling (CDS) to remove the noise for low-light-level CIS. So a digital CDS is adopted, which realizes the subtraction algorithm between the reset signal and pixel signal off-chip. The pixel reset noise and part of the column fixed-pattern noise (FPN) can be greatly reduced. A 256×256 CIS with CTIA array and digital CDS is implemented in the 0.35μm CMOS technology. The chip size is 7.7mm×6.75mm, and the pixel size is 15μm×15μm with a fill factor of 20.6%. The measured pixel noise is 24LSB with digital CDS in RMS value at dark condition, which shows 7.8× reduction compared to the image sensor without digital CDS. Running at 7fps, this low-light-level CIS can capture recognizable images with the illumination down to 0.1lux.

  17. A capacitive CMOS-MEMS sensor designed by multi-physics simulation for integrated CMOS-MEMS technology

    NASA Astrophysics Data System (ADS)

    Konishi, Toshifumi; Yamane, Daisuke; Matsushima, Takaaki; Masu, Kazuya; Machida, Katsuyuki; Toshiyoshi, Hiroshi

    2014-01-01

    This paper reports the design and evaluation results of a capacitive CMOS-MEMS sensor that consists of the proposed sensor circuit and a capacitive MEMS device implemented on the circuit. To design a capacitive CMOS-MEMS sensor, a multi-physics simulation of the electromechanical behavior of both the MEMS structure and the sensing LSI was carried out simultaneously. In order to verify the validity of the design, we applied the capacitive CMOS-MEMS sensor to a MEMS accelerometer implemented by the post-CMOS process onto a 0.35-µm CMOS circuit. The experimental results of the CMOS-MEMS accelerometer exhibited good agreement with the simulation results within the input acceleration range between 0.5 and 6 G (1 G = 9.8 m/s2), corresponding to the output voltages between 908.6 and 915.4 mV, respectively. Therefore, we have confirmed that our capacitive CMOS-MEMS sensor and the multi-physics simulation will be beneficial method to realize integrated CMOS-MEMS technology.

  18. Smart-Pixel Array Processors Based on Optimal Cellular Neural Networks for Space Sensor Applications

    NASA Technical Reports Server (NTRS)

    Fang, Wai-Chi; Sheu, Bing J.; Venus, Holger; Sandau, Rainer

    1997-01-01

    A smart-pixel cellular neural network (CNN) with hardware annealing capability, digitally programmable synaptic weights, and multisensor parallel interface has been under development for advanced space sensor applications. The smart-pixel CNN architecture is a programmable multi-dimensional array of optoelectronic neurons which are locally connected with their local neurons and associated active-pixel sensors. Integration of the neuroprocessor in each processor node of a scalable multiprocessor system offers orders-of-magnitude computing performance enhancements for on-board real-time intelligent multisensor processing and control tasks of advanced small satellites. The smart-pixel CNN operation theory, architecture, design and implementation, and system applications are investigated in detail. The VLSI (Very Large Scale Integration) implementation feasibility was illustrated by a prototype smart-pixel 5x5 neuroprocessor array chip of active dimensions 1380 micron x 746 micron in a 2-micron CMOS technology.

  19. Dielectrophoresis-Assisted Integration of 1024 Carbon Nanotube Sensors into a CMOS Microsystem.

    PubMed

    Seichepine, Florent; Rothe, Jörg; Dudina, Alexandra; Hierlemann, Andreas; Frey, Urs

    2017-05-01

    Carbon-nanotube (CNT)-based sensors offer the potential to detect single-molecule events and picomolar analyte concentrations. An important step toward applications of such nanosensors is their integration in large arrays. The availability of large arrays would enable multiplexed and parallel sensing, and the simultaneously obtained sensor signals would facilitate statistical analysis. A reliable method to fabricate an array of 1024 CNT-based sensors on a fully processed complementary-metal-oxide-semiconductor microsystem is presented. A high-yield process for the deposition of CNTs from a suspension by means of liquid-coupled floating-electrode dielectrophoresis (DEP), which yielded 80% of the sensor devices featuring between one and five CNTs, is developed. The mechanism of floating-electrode DEP on full arrays and individual devices to understand its self-limiting behavior is studied. The resistance distributions across the array of CNT devices with respect to different DEP parameters are characterized. The CNT devices are then operated as liquid-gated CNT field-effect-transistors (LG-CNTFET) in liquid environment. Current dependency to the gate voltage of up to two orders of magnitude is recorded. Finally, the sensors are validated by studying the pH dependency of the LG-CNTFET conductance and it is demonstrated that 73% of the CNT sensors of a given microsystem show a resistance decrease upon increasing the pH value. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. CNES developments of key detection technologies to prepare next generation focal planes for high resolution Earth observation

    NASA Astrophysics Data System (ADS)

    Materne, A.; Virmontois, C.; Bardoux, A.; Gimenez, T.; Biffi, J. M.; Laubier, D.; Delvit, J. M.

    2014-10-01

    This paper describes the activities managed by CNES (French National Space Agency) for the development of focal planes for next generation of optical high resolution Earth observation satellites, in low sun-synchronous orbit. CNES has launched a new programme named OTOS, to increase the level of readiness (TRL) of several key technologies for high resolution Earth observation satellites. The OTOS programme includes several actions in the field of detection and focal planes: a new generation of CCD and CMOS image sensors, updated analog front-end electronics and analog-to-digital converters. The main features that must be achieved on focal planes for high resolution Earth Observation, are: readout speed, signal to noise ratio at low light level, anti-blooming efficiency, geometric stability, MTF and line of sight stability. The next steps targeted are presented in comparison to the in-flight measured performance of the PLEIADES satellites launched in 2011 and 2012. The high resolution panchromatic channel is still based upon Backside illuminated (BSI) CCDs operated in Time Delay Integration (TDI). For the multispectral channel, the main evolution consists in moving to TDI mode and the competition is open with the concurrent development of a CCD solution versus a CMOS solution. New CCDs will be based upon several process blocks under evaluation on the e2v 6 inches BSI wafer manufacturing line. The OTOS strategy for CMOS image sensors investigates on one hand custom TDI solutions within a similar approach to CCDs, and, on the other hand, investigates ways to take advantage of existing performance of off-the-shelf 2D arrays CMOS image sensors. We present the characterization results obtained from test vehicles designed for custom TDI operation on several CIS technologies and results obtained before and after radiation on snapshot 2D arrays from the CMOSIS CMV family.

  1. 77 FR 26787 - Certain CMOS Image Sensors and Products Containing Same; Notice of Receipt of Complaint...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-07

    ... INTERNATIONAL TRADE COMMISSION [Docket No. 2895] Certain CMOS Image Sensors and Products.... International Trade Commission has received a complaint entitled Certain CMOS Image Sensors and Products... importation, and the sale within the United States after importation of certain CMOS image sensors and...

  2. Smart CMOS sensor for wideband laser threat detection

    NASA Astrophysics Data System (ADS)

    Schwarze, Craig R.; Sonkusale, Sameer

    2015-09-01

    The proliferation of lasers has led to their widespread use in applications ranging from short range standoff chemical detection to long range Lidar sensing and target designation operating across the UV to LWIR spectrum. Recent advances in high energy lasers have renewed the development of laser weapons systems. The ability to measure and assess laser source information is important to both identify a potential threat as well as determine safety and nominal hazard zone (NHZ). Laser detection sensors are required that provide high dynamic range, wide spectral coverage, pulsed and continuous wave detection, and large field of view. OPTRA, Inc. and Tufts have developed a custom ROIC smart pixel imaging sensor architecture and wavelength encoding optics for measurement of source wavelength, pulse length, pulse repetition frequency (PRF), irradiance, and angle of arrival. The smart architecture provides dual linear and logarithmic operating modes to provide 8+ orders of signal dynamic range and nanosecond pulse measurement capability that can be hybridized with the appropriate detector array to provide UV through LWIR laser sensing. Recent advances in sputtering techniques provide the capability for post-processing CMOS dies from the foundry and patterning PbS and PbSe photoconductors directly on the chip to create a single monolithic sensor array architecture for measuring sources operating from 0.26 - 5.0 microns, 1 mW/cm2 - 2 kW/cm2.

  3. SEM contour based metrology for microlens process studies in CMOS image sensor technologies

    NASA Astrophysics Data System (ADS)

    Lakcher, Amine; Ostrovsky, Alain; Le-Gratiet, Bertrand; Berthier, Ludovic; Bidault, Laurent; Ducoté, Julien; Jamin-Mornet, Clémence; Mortini, Etienne; Besacier, Maxime

    2018-03-01

    From the first digital cameras which appeared during the 70s to cameras of current smartphones, image sensors have undergone significant technological development in the last decades. The development of CMOS image sensor technologies in the 90s has been the main driver of the recent progresses. The main component of an image sensor is the pixel. A pixel contains a photodiode connected to transistors but only the photodiode area is light sensitive. This results in a significant loss of efficiency. To solve this issue, microlenses are used to focus the incident light on the photodiode. A microlens array is made out of a transparent material and has a spherical cap shape. To obtain this spherical shape, a lithography process is performed to generate resist blocks which are then annealed above their glass transition temperature (reflow). Even if the dimensions to consider are higher than in advanced IC nodes, microlenses are sensitive to process variability during lithography and reflow. A good control of the microlens dimensions is key to optimize the process and thus the performance of the final product. The purpose of this paper is to apply SEM contour metrology [1, 2, 3, 4] to microlenses in order to develop a relevant monitoring methodology and to propose new metrics to engineers to evaluate their process or optimize the design of the microlens arrays.

  4. A High-Speed, Event-Driven, Active Pixel Sensor Readout for Photon-Counting Microchannel Plate Detectors

    NASA Technical Reports Server (NTRS)

    Kimble, Randy A.; Pain, Bedabrata; Norton, Timothy J.; Haas, J. Patrick; Oegerle, William R. (Technical Monitor)

    2002-01-01

    Silicon array readouts for microchannel plate intensifiers offer several attractive features. In this class of detector, the electron cloud output of the MCP intensifier is converted to visible light by a phosphor; that light is then fiber-optically coupled to the silicon array. In photon-counting mode, the resulting light splashes on the silicon array are recognized and centroided to fractional pixel accuracy by off-chip electronics. This process can result in very high (MCP-limited) spatial resolution while operating at a modest MCP gain (desirable for dynamic range and long term stability). The principal limitation of intensified CCD systems of this type is their severely limited local dynamic range, as accurate photon counting is achieved only if there are not overlapping event splashes within the frame time of the device. This problem can be ameliorated somewhat by processing events only in pre-selected windows of interest of by using an addressable charge injection device (CID) for the readout array. We are currently pursuing the development of an intriguing alternative readout concept based on using an event-driven CMOS Active Pixel Sensor. APS technology permits the incorporation of discriminator circuitry within each pixel. When coupled with suitable CMOS logic outside the array area, the discriminator circuitry can be used to trigger the readout of small sub-array windows only when and where an event splash has been detected, completely eliminating the local dynamic range problem, while achieving a high global count rate capability and maintaining high spatial resolution. We elaborate on this concept and present our progress toward implementing an event-driven APS readout.

  5. Real-time imaging of microparticles and living cells with CMOS nanocapacitor arrays

    NASA Astrophysics Data System (ADS)

    Laborde, C.; Pittino, F.; Verhoeven, H. A.; Lemay, S. G.; Selmi, L.; Jongsma, M. A.; Widdershoven, F. P.

    2015-09-01

    Platforms that offer massively parallel, label-free biosensing can, in principle, be created by combining all-electrical detection with low-cost integrated circuits. Examples include field-effect transistor arrays, which are used for mapping neuronal signals and sequencing DNA. Despite these successes, however, bioelectronics has so far failed to deliver a broadly applicable biosensing platform. This is due, in part, to the fact that d.c. or low-frequency signals cannot be used to probe beyond the electrical double layer formed by screening salt ions, which means that under physiological conditions the sensing of a target analyte located even a short distance from the sensor (∼1 nm) is severely hampered. Here, we show that high-frequency impedance spectroscopy can be used to detect and image microparticles and living cells under physiological salt conditions. Our assay employs a large-scale, high-density array of nanoelectrodes integrated with CMOS electronics on a single chip and the sensor response depends on the electrical properties of the analyte, allowing impedance-based fingerprinting. With our platform, we image the dynamic attachment and micromotion of BEAS, THP1 and MCF7 cancer cell lines in real time at submicrometre resolution in growth medium, demonstrating the potential of the platform for label/tracer-free high-throughput screening of anti-tumour drug candidates.

  6. CAOS-CMOS camera.

    PubMed

    Riza, Nabeel A; La Torre, Juan Pablo; Amin, M Junaid

    2016-06-13

    Proposed and experimentally demonstrated is the CAOS-CMOS camera design that combines the coded access optical sensor (CAOS) imager platform with the CMOS multi-pixel optical sensor. The unique CAOS-CMOS camera engages the classic CMOS sensor light staring mode with the time-frequency-space agile pixel CAOS imager mode within one programmable optical unit to realize a high dynamic range imager for extreme light contrast conditions. The experimentally demonstrated CAOS-CMOS camera is built using a digital micromirror device, a silicon point-photo-detector with a variable gain amplifier, and a silicon CMOS sensor with a maximum rated 51.3 dB dynamic range. White light imaging of three different brightness simultaneously viewed targets, that is not possible by the CMOS sensor, is achieved by the CAOS-CMOS camera demonstrating an 82.06 dB dynamic range. Applications for the camera include industrial machine vision, welding, laser analysis, automotive, night vision, surveillance and multispectral military systems.

  7. Direct ultrasensitive electrical detection of prostate cancer biomarkers with CMOS-compatible n- and p-type silicon nanowire sensor arrays

    NASA Astrophysics Data System (ADS)

    Gao, Anran; Lu, Na; Dai, Pengfei; Fan, Chunhai; Wang, Yuelin; Li, Tie

    2014-10-01

    Sensitive and quantitative analysis of proteins is central to disease diagnosis, drug screening, and proteomic studies. Here, a label-free, real-time, simultaneous and ultrasensitive prostate-specific antigen (PSA) sensor was developed using CMOS-compatible silicon nanowire field effect transistors (SiNW FET). Highly responsive n- and p-type SiNW arrays were fabricated and integrated on a single chip with a complementary metal oxide semiconductor (CMOS) compatible anisotropic self-stop etching technique which eliminated the need for a hybrid method. The incorporated n- and p-type nanowires revealed complementary electrical response upon PSA binding, providing a unique means of internal control for sensing signal verification. The highly selective, simultaneous and multiplexed detection of PSA marker at attomolar concentrations, a level useful for clinical diagnosis of prostate cancer, was demonstrated. The detection ability was corroborated to be effective by comparing the detection results at different pH values. Furthermore, the real-time measurement was also carried out in a clinically relevant sample of blood serum, indicating the practicable development of rapid, robust, high-performance, and low-cost diagnostic systems.Sensitive and quantitative analysis of proteins is central to disease diagnosis, drug screening, and proteomic studies. Here, a label-free, real-time, simultaneous and ultrasensitive prostate-specific antigen (PSA) sensor was developed using CMOS-compatible silicon nanowire field effect transistors (SiNW FET). Highly responsive n- and p-type SiNW arrays were fabricated and integrated on a single chip with a complementary metal oxide semiconductor (CMOS) compatible anisotropic self-stop etching technique which eliminated the need for a hybrid method. The incorporated n- and p-type nanowires revealed complementary electrical response upon PSA binding, providing a unique means of internal control for sensing signal verification. The highly selective, simultaneous and multiplexed detection of PSA marker at attomolar concentrations, a level useful for clinical diagnosis of prostate cancer, was demonstrated. The detection ability was corroborated to be effective by comparing the detection results at different pH values. Furthermore, the real-time measurement was also carried out in a clinically relevant sample of blood serum, indicating the practicable development of rapid, robust, high-performance, and low-cost diagnostic systems. Electronic supplementary information (ESI) available: Electrical characterization of fabricated n- and p-type nanowires, and influence of Debye screening on PSA sensing. See DOI: 10.1039/c4nr03210a

  8. A study of pile-up in integrated time-correlated single photon counting systems

    NASA Astrophysics Data System (ADS)

    Arlt, Jochen; Tyndall, David; Rae, Bruce R.; Li, David D.-U.; Richardson, Justin A.; Henderson, Robert K.

    2013-10-01

    Recent demonstration of highly integrated, solid-state, time-correlated single photon counting (TCSPC) systems in CMOS technology is set to provide significant increases in performance over existing bulky, expensive hardware. Arrays of single photon single photon avalanche diode (SPAD) detectors, timing channels, and signal processing can be integrated on a single silicon chip with a degree of parallelism and computational speed that is unattainable by discrete photomultiplier tube and photon counting card solutions. New multi-channel, multi-detector TCSPC sensor architectures with greatly enhanced throughput due to minimal detector transit (dead) time or timing channel dead time are now feasible. In this paper, we study the potential for future integrated, solid-state TCSPC sensors to exceed the photon pile-up limit through analytic formula and simulation. The results are validated using a 10% fill factor SPAD array and an 8-channel, 52 ps resolution time-to-digital conversion architecture with embedded lifetime estimation. It is demonstrated that pile-up insensitive acquisition is attainable at greater than 10 times the pulse repetition rate providing over 60 dB of extended dynamic range to the TCSPC technique. Our results predict future CMOS TCSPC sensors capable of live-cell transient observations in confocal scanning microscopy, improved resolution of near-infrared optical tomography systems, and fluorescence lifetime activated cell sorting.

  9. A study of pile-up in integrated time-correlated single photon counting systems.

    PubMed

    Arlt, Jochen; Tyndall, David; Rae, Bruce R; Li, David D-U; Richardson, Justin A; Henderson, Robert K

    2013-10-01

    Recent demonstration of highly integrated, solid-state, time-correlated single photon counting (TCSPC) systems in CMOS technology is set to provide significant increases in performance over existing bulky, expensive hardware. Arrays of single photon single photon avalanche diode (SPAD) detectors, timing channels, and signal processing can be integrated on a single silicon chip with a degree of parallelism and computational speed that is unattainable by discrete photomultiplier tube and photon counting card solutions. New multi-channel, multi-detector TCSPC sensor architectures with greatly enhanced throughput due to minimal detector transit (dead) time or timing channel dead time are now feasible. In this paper, we study the potential for future integrated, solid-state TCSPC sensors to exceed the photon pile-up limit through analytic formula and simulation. The results are validated using a 10% fill factor SPAD array and an 8-channel, 52 ps resolution time-to-digital conversion architecture with embedded lifetime estimation. It is demonstrated that pile-up insensitive acquisition is attainable at greater than 10 times the pulse repetition rate providing over 60 dB of extended dynamic range to the TCSPC technique. Our results predict future CMOS TCSPC sensors capable of live-cell transient observations in confocal scanning microscopy, improved resolution of near-infrared optical tomography systems, and fluorescence lifetime activated cell sorting.

  10. Progress of the Swedish-Australian research collaboration on uncooled smart IR sensors

    NASA Astrophysics Data System (ADS)

    Liddiard, Kevin C.; Ringh, Ulf; Jansson, Christer; Reinhold, Olaf

    1998-10-01

    Progress is reported on the development of uncooled microbolometer IR focal plane detector arrays (IRFPDA) under a research collaboration between the Swedish Defence Research Establishment (FOA), and the Defence Science and Technology Organization (DSTO), Australia. The paper describes current focal plane detector arrays designed by Electro-optic Sensor Design (EOSD) for readout circuits developed by FOA. The readouts are fabricated in 0.8 micrometer CMOS, and have a novel signal conditioning and 16 bit parallel ADC design. The arrays are post-processed at DSTO on wafers supplied by FOA. During the past year array processing has been carried out at a new microengineering facility at DSTO, Salisbury, South Australia. A number of small format 16 X 16 arrays have been delivered to FOA for evaluation, and imaging has been demonstrated with these arrays. A 320 X 240 readout with 320 parallel 16 bit ADCs has been developed and IRFPDAs for this readout have been fabricated and are currently being evaluated.

  11. Rapid Bacterial Detection via an All-Electronic CMOS Biosensor

    PubMed Central

    Nikkhoo, Nasim; Cumby, Nichole; Gulak, P. Glenn; Maxwell, Karen L.

    2016-01-01

    The timely and accurate diagnosis of infectious diseases is one of the greatest challenges currently facing modern medicine. The development of innovative techniques for the rapid and accurate identification of bacterial pathogens in point-of-care facilities using low-cost, portable instruments is essential. We have developed a novel all-electronic biosensor that is able to identify bacteria in less than ten minutes. This technology exploits bacteriocins, protein toxins naturally produced by bacteria, as the selective biological detection element. The bacteriocins are integrated with an array of potassium-selective sensors in Complementary Metal Oxide Semiconductor technology to provide an inexpensive bacterial biosensor. An electronic platform connects the CMOS sensor to a computer for processing and real-time visualization. We have used this technology to successfully identify both Gram-positive and Gram-negative bacteria commonly found in human infections. PMID:27618185

  12. Novel Si-Ge-C Superlattices for More than Moore CMOS

    DTIC Science & Technology

    2016-03-31

    diodes can be entirely formed by epitaxial growth, CMOS Active Pixel Sensors can be made with Fully-Depleted SOI CMOS . One important advantage of...a NMOS Transfer Gate (TG), which could be part of a 4T pixel APS. PPDs are preferred in CMOS image sensors for the ability of the pinning layer to...than Moore” with the creation of active photonic devices monolithically integrated with CMOS . Applications include Multispectral CMOS Image Sensors

  13. A CMOS pixel sensor prototype for the outer layers of linear collider vertex detector

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Morel, F.; Hu-Guo, C.; Himmi, A.; Dorokhov, A.; Hu, Y.

    2015-01-01

    The International Linear Collider (ILC) expresses a stringent requirement for high precision vertex detectors (VXD). CMOS pixel sensors (CPS) have been considered as an option for the VXD of the International Large Detector (ILD), one of the detector concepts proposed for the ILC. MIMOSA-31 developed at IPHC-Strasbourg is the first CPS integrated with 4-bit column-level ADC for the outer layers of the VXD, adapted to an original concept minimizing the power consumption. It is composed of a matrix of 64 rows and 48 columns. The pixel concept combines in-pixel amplification with a correlated double sampling (CDS) operation in order to reduce the temporal noise and fixed pattern noise (FPN). At the bottom of the pixel array, each column is terminated with a self-triggered analog-to-digital converter (ADC). The ADC design was optimized for power saving at a sampling frequency of 6.25 MS/s. The prototype chip is fabricated in a 0.35 μm CMOS technology. This paper presents the details of the prototype chip and its test results.

  14. Vision communications based on LED array and imaging sensor

    NASA Astrophysics Data System (ADS)

    Yoo, Jong-Ho; Jung, Sung-Yoon

    2012-11-01

    In this paper, we propose a brand new communication concept, called as "vision communication" based on LED array and image sensor. This system consists of LED array as a transmitter and digital device which include image sensor such as CCD and CMOS as receiver. In order to transmit data, the proposed communication scheme simultaneously uses the digital image processing and optical wireless communication scheme. Therefore, the cognitive communication scheme is possible with the help of recognition techniques used in vision system. By increasing data rate, our scheme can use LED array consisting of several multi-spectral LEDs. Because arranged each LED can emit multi-spectral optical signal such as visible, infrared and ultraviolet light, the increase of data rate is possible similar to WDM and MIMO skills used in traditional optical and wireless communications. In addition, this multi-spectral capability also makes it possible to avoid the optical noises in communication environment. In our vision communication scheme, the data packet is composed of Sync. data and information data. Sync. data is used to detect the transmitter area and calibrate the distorted image snapshots obtained by image sensor. By making the optical rate of LED array be same with the frame rate (frames per second) of image sensor, we can decode the information data included in each image snapshot based on image processing and optical wireless communication techniques. Through experiment based on practical test bed system, we confirm the feasibility of the proposed vision communications based on LED array and image sensor.

  15. A 7 ke-SD-FWC 1.2 e-RMS Temporal Random Noise 128×256 Time-Resolved CMOS Image Sensor With Two In-Pixel SDs for Biomedical Applications.

    PubMed

    Seo, Min-Woong; Kawahito, Shoji

    2017-12-01

    A large full well capacity (FWC) for wide signal detection range and low temporal random noise for high sensitivity lock-in pixel CMOS image sensor (CIS) embedded with two in-pixel storage diodes (SDs) has been developed and presented in this paper. For fast charge transfer from photodiode to SDs, a lateral electric field charge modulator (LEFM) is used for the developed lock-in pixel. As a result, the time-resolved CIS achieves a very large SD-FWC of approximately 7ke-, low temporal random noise of 1.2e-rms at 20 fps with true correlated double sampling operation and fast intrinsic response less than 500 ps at 635 nm. The proposed imager has an effective pixel array of and a pixel size of . The sensor chip is fabricated by Dongbu HiTek 1P4M 0.11 CIS process.

  16. Nanosecond-laser induced crosstalk of CMOS image sensor

    NASA Astrophysics Data System (ADS)

    Zhu, Rongzhen; Wang, Yanbin; Chen, Qianrong; Zhou, Xuanfeng; Ren, Guangsen; Cui, Longfei; Li, Hua; Hao, Daoliang

    2018-02-01

    The CMOS Image Sensor (CIS) is photoelectricity image device which focused the photosensitive array, amplifier, A/D transfer, storage, DSP, computer interface circuit on the same silicon substrate[1]. It has low power consumption, high integration,low cost etc. With large scale integrated circuit technology progress, the noise suppression level of CIS is enhanced unceasingly, and its image quality is getting better and better. It has been in the security monitoring, biometrice, detection and imaging and even military reconnaissance and other field is widely used. CIS is easily disturbed and damaged while it is irradiated by laser. It is of great significance to study the effect of laser irradiation on optoelectronic countermeasure and device for the laser strengthening resistance is of great significance. There are some researchers have studied the laser induced disturbed and damaged of CIS. They focused on the saturation, supersaturated effects, and they observed different effects as for unsaturation, saturation, supersaturated, allsaturated and pixel flip etc. This paper research 1064nm laser interference effect in a typical before type CMOS, and observring the saturated crosstalk and half the crosstalk line. This paper extracted from cmos devices working principle and signal detection methods such as the Angle of the formation mechanism of the crosstalk line phenomenon are analyzed.

  17. Ultrasonic Fingerprint Sensor With Transmit Beamforming Based on a PMUT Array Bonded to CMOS Circuitry.

    PubMed

    Jiang, Xiaoyue; Tang, Hao-Yen; Lu, Yipeng; Ng, Eldwin J; Tsai, Julius M; Boser, Bernhard E; Horsley, David A

    2017-09-01

    In this paper, we present a single-chip 65 ×42 element ultrasonic pulse-echo fingerprint sensor with transmit (TX) beamforming based on piezoelectric micromachined ultrasonic transducers directly bonded to a CMOS readout application-specific integrated circuit (ASIC). The readout ASIC was realized in a standard 180-nm CMOS process with a 24-V high-voltage transistor option. Pulse-echo measurements are performed column-by-column in sequence using either one column or five columns to TX the ultrasonic pulse at 20 MHz. TX beamforming is used to focus the ultrasonic beam at the imaging plane where the finger is located, increasing the ultrasonic pressure and narrowing the 3-dB beamwidth to [Formula: see text], a factor of 6.4 narrower than nonbeamformed measurements. The surface of the sensor is coated with a poly-dimethylsiloxane (PDMS) layer to provide good acoustic impedance matching to skin. Scanning laser Doppler vibrometry of the PDMS surface was used to map the ultrasonic pressure field at the imaging surface, demonstrating the expected increase in pressure, and reduction in beamwidth. Imaging experiments were conducted using both PDMS phantoms and real fingerprints. The average image contrast is increased by a factor of 1.5 when beamforming is used.

  18. Real time in vivo imaging and measurement of serine protease activity in the mouse hippocampus using a dedicated complementary metal-oxide semiconductor imaging device.

    PubMed

    Ng, David C; Tamura, Hideki; Tokuda, Takashi; Yamamoto, Akio; Matsuo, Masamichi; Nunoshita, Masahiro; Ishikawa, Yasuyuki; Shiosaka, Sadao; Ohta, Jun

    2006-09-30

    The aim of the present study is to demonstrate the application of complementary metal-oxide semiconductor (CMOS) imaging technology for studying the mouse brain. By using a dedicated CMOS image sensor, we have successfully imaged and measured brain serine protease activity in vivo, in real-time, and for an extended period of time. We have developed a biofluorescence imaging device by packaging the CMOS image sensor which enabled on-chip imaging configuration. In this configuration, no optics are required whereby an excitation filter is applied onto the sensor to replace the filter cube block found in conventional fluorescence microscopes. The fully packaged device measures 350 microm thick x 2.7 mm wide, consists of an array of 176 x 144 pixels, and is small enough for measurement inside a single hemisphere of the mouse brain, while still providing sufficient imaging resolution. In the experiment, intraperitoneally injected kainic acid induced upregulation of serine protease activity in the brain. These events were captured in real time by imaging and measuring the fluorescence from a fluorogenic substrate that detected this activity. The entire device, which weighs less than 1% of the body weight of the mouse, holds promise for studying freely moving animals.

  19. Iterative current mode per pixel ADC for 3D SoftChip implementation in CMOS

    NASA Astrophysics Data System (ADS)

    Lachowicz, Stefan W.; Rassau, Alexander; Lee, Seung-Minh; Eshraghian, Kamran; Lee, Mike M.

    2003-04-01

    Mobile multimedia communication has rapidly become a significant area of research and development constantly challenging boundaries on a variety of technological fronts. The processing requirements for the capture, conversion, compression, decompression, enhancement, display, etc. of increasingly higher quality multimedia content places heavy demands even on current ULSI (ultra large scale integration) systems, particularly for mobile applications where area and power are primary considerations. The ADC presented in this paper is designed for a vertically integrated (3D) system comprising two distinct layers bonded together using Indium bump technology. The top layer is a CMOS imaging array containing analogue-to-digital converters, and a buffer memory. The bottom layer takes the form of a configurable array processor (CAP), a highly parallel array of soft programmable processors capable of carrying out complex processing tasks directly on data stored in the top plane. This paper presents a ADC scheme for the image capture plane. The analogue photocurrent or sampled voltage is transferred to the ADC via a column or a column/row bus. In the proposed system, an array of analogue-to-digital converters is distributed, so that a one-bit cell is associated with one sensor. The analogue-to-digital converters are algorithmic current-mode converters. Eight such cells are cascaded to form an 8-bit converter. Additionally, each photo-sensor is equipped with a current memory cell, and multiple conversions are performed with scaled values of the photocurrent for colour processing.

  20. Laser doppler blood flow imaging using a CMOS imaging sensor with on-chip signal processing.

    PubMed

    He, Diwei; Nguyen, Hoang C; Hayes-Gill, Barrie R; Zhu, Yiqun; Crowe, John A; Gill, Cally; Clough, Geraldine F; Morgan, Stephen P

    2013-09-18

    The first fully integrated 2D CMOS imaging sensor with on-chip signal processing for applications in laser Doppler blood flow (LDBF) imaging has been designed and tested. To obtain a space efficient design over 64 × 64 pixels means that standard processing electronics used off-chip cannot be implemented. Therefore the analog signal processing at each pixel is a tailored design for LDBF signals with balanced optimization for signal-to-noise ratio and silicon area. This custom made sensor offers key advantages over conventional sensors, viz. the analog signal processing at the pixel level carries out signal normalization; the AC amplification in combination with an anti-aliasing filter allows analog-to-digital conversion with a low number of bits; low resource implementation of the digital processor enables on-chip processing and the data bottleneck that exists between the detector and processing electronics has been overcome. The sensor demonstrates good agreement with simulation at each design stage. The measured optical performance of the sensor is demonstrated using modulated light signals and in vivo blood flow experiments. Images showing blood flow changes with arterial occlusion and an inflammatory response to a histamine skin-prick demonstrate that the sensor array is capable of detecting blood flow signals from tissue.

  1. A High-Speed, Event-Driven, Active Pixel Sensor Readout for Photon-Counting Microchannel Plate Detectors

    NASA Technical Reports Server (NTRS)

    Kimble, Randy A.; Pain, B.; Norton, T. J.; Haas, P.; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    Silicon array readouts for microchannel plate intensifiers offer several attractive features. In this class of detector, the electron cloud output of the MCP intensifier is converted to visible light by a phosphor; that light is then fiber-optically coupled to the silicon array. In photon-counting mode, the resulting light splashes on the silicon array are recognized and centroided to fractional pixel accuracy by off-chip electronics. This process can result in very high (MCP-limited) spatial resolution for the readout while operating at a modest MCP gain (desirable for dynamic range and long term stability). The principal limitation of intensified CCD systems of this type is their severely limited local dynamic range, as accurate photon counting is achieved only if there are not overlapping event splashes within the frame time of the device. This problem can be ameliorated somewhat by processing events only in pre-selected windows of interest or by using an addressable charge injection device (CID) for the readout array. We are currently pursuing the development of an intriguing alternative readout concept based on using an event-driven CMOS Active Pixel Sensor. APS technology permits the incorporation of discriminator circuitry within each pixel. When coupled with suitable CMOS logic outside the array area, the discriminator circuitry can be used to trigger the readout of small sub-array windows only when and where an event splash has been detected, completely eliminating the local dynamic range problem, while achieving a high global count rate capability and maintaining high spatial resolution. We elaborate on this concept and present our progress toward implementing an event-driven APS readout.

  2. DNA decorated carbon nanotube sensors on CMOS circuitry for environmental monitoring

    NASA Astrophysics Data System (ADS)

    Liu, Yu; Chen, Chia-Ling; Agarwal, V.; Li, Xinghui; Sonkusale, S.; Dokmeci, Mehmet R.; Wang, Ming L.

    2010-04-01

    Single-walled carbon nanotubes (SWNTs) with their large surface area, high aspect ratio are one of the novel materials which have numerous attractive features amenable for high sensitivity sensors. Several nanotube based sensors including, gas, chemical and biosensors have been demonstrated. Moreover, most of these sensors require off chip components to detect the variations in the signals making them complicated and hard to commercialize. Here we present a novel complementary metal oxide semiconductor (CMOS) integrated carbon nanotube sensors for portable high sensitivity chemical sensing applications. Multiple zincation steps have been developed to ascertain proper electrical connectivity between the carbon nanotubes and the foundry made CMOS circuitry. The SWNTs have been integrated onto (CMOS) circuitry as the feedback resistor of a Miller compensated operational amplifier utilizing low temperature Dielectrophoretic (DEP) assembly process which has been tailored to be compatible with the post-CMOS integration at the die level. Building nanotube sensors directly on commercial CMOS circuitry allows single chip solutions eliminating the need for long parasitic lines and numerous wire bonds. The carbon nanotube sensors realized on CMOS circuitry show strong response to various vapors including Dimethyl methylphosphonate and Dinitrotoluene. The remarkable set of attributes of the SWNTs realized on CMOS electronic chips provides an attractive platform for high sensitivity portable nanotube based bio and chemical sensors.

  3. CMOS direct time interval measurement of long-lived luminescence lifetimes.

    PubMed

    Yao, Lei; Yung, Ka Yi; Cheung, Maurice C; Chodavarapu, Vamsy P; Bright, Frank V

    2011-01-01

    We describe a Complementary Metal-Oxide Semiconductor (CMOS) Direct Time Interval Measurement (DTIM) Integrated Circuit (IC) to detect the decay (fall) time of the luminescence emission when analyte-sensitive luminophores are excited with an optical pulse. The CMOS DTIM IC includes 14 × 14 phototransistor array, transimpedance amplifier, regulated gain amplifier, fall time detector, and time-to-digital convertor. We examined the DTIM system to measure the emission lifetime of oxygen-sensitive luminophores tris(4,7-diphenyl-1, 10-phenanthroline) ruthenium(II) ([Ru(dpp)(3)](2+)) encapsulated in sol-gel derived xerogel thin-films. The DTIM system fabricated using TSMC 0.35 μm process functions to detect lifetimes from 4 μs to 14.4 μs but can be tuned to detect longer lifetimes. The system provides 8-bit digital output proportional to lifetimes and consumes 4.5 mW of power with 3.3 V DC supply. The CMOS system provides a useful platform for the development of reliable, robust, and miniaturized optical chemical sensors.

  4. A Fully Integrated Dual-Channel On-Coil CMOS Receiver for Array Coils in 1.5-10.5 T MRI.

    PubMed

    Sporrer, Benjamin; Wu, Lianbo; Bettini, Luca; Vogt, Christian; Reber, Jonas; Marjanovic, Josip; Burger, Thomas; Brunner, David O; Pruessmann, Klaas P; Troster, Gerhard; Huang, Qiuting

    2017-12-01

    Magnetic resonance imaging (MRI) is among the most important medical imaging modalities. Coil arrays and receivers with high channel counts (16 and more) have to be deployed to obtain the image quality and acquisition speed required by modern clinical protocols. In this paper, we report the theoretical analysis, the system-level design, and the circuit implementation of the first receiver IC (RXIC) for clinical MRI fully integrated in a modern CMOS technology. The dual-channel RXIC sits directly on the sensor coil, thus eliminating any RF cable otherwise required to transport the information out of the magnetic field. The first stage LNA was implemented using a noise-canceling architecture providing a highly reflective input used to decouple the individual channels of the array. Digitization is performed directly on-chip at base-band by means of a delta-sigma modulator, allowing the subsequent optical transmission of data. The presented receiver, implemented in a CMOS technology, is compatible with MRI scanners up to . It reaches sub- noise figure for MRI units and features a dynamic range up to at a power consumption below per channel, with an area occupation of . Mounted on a small-sized printed circuit board (PCB), the receiver IC has been employed in a commercial MRI scanner to acquire in-vivo images matching the quality of traditional systems, demonstrating the first step toward multichannel wearable MRI array coils.

  5. Adaptive focus for deep tissue using diffuse backscatter

    NASA Astrophysics Data System (ADS)

    Kress, Jeremy; Pourrezaei, Kambiz

    2014-02-01

    A system integrating high density diffuse optical imaging with adaptive optics using MEMS for deep tissue interaction is presented. In this system, a laser source is scanned over a high density fiber bundle using Digital Micromirror Device (DMD) and channeled to a tissue phantom. Backscatter is then collected from the tissue phantom by a high density fiber array of different fiber type and channeled to CMOS sensor for image acquisition. Intensity focus is directly verified using a second CMOS sensor which measures intensity transmitted though the tissue phantom. A set of training patterns are displayed on the DMD and backscatter is numerically fit to the transmission intensity. After the training patterns are displayed, adaptive focus is performed using only the backscatter and fitting functions. Additionally, tissue reconstruction and prediction of interference focusing by photoacoustic and optical tomographic methods is discussed. Finally, potential NIR applications such as in-vivo adaptive neural photostimulation and cancer targeting are discussed.

  6. A 256 pixel magnetoresistive biosensor microarray in 0.18μm CMOS

    PubMed Central

    Hall, Drew A.; Gaster, Richard S.; Makinwa, Kofi; Wang, Shan X.; Murmann, Boris

    2014-01-01

    Magnetic nanotechnologies have shown significant potential in several areas of nanomedicine such as imaging, therapeutics, and early disease detection. Giant magnetoresistive spin-valve (GMR SV) sensors coupled with magnetic nanotags (MNTs) possess great promise as ultra-sensitive biosensors for diagnostics. We report an integrated sensor interface for an array of 256 GMR SV biosensors designed in 0.18 μm CMOS. Arranged like an imager, each of the 16 column level readout channels contains an analog front- end and a compact ΣΔ modulator (0.054 mm2) with 84 dB of dynamic range and an input referred noise of 49 nT/√Hz. Performance is demonstrated through detection of an ovarian cancer biomarker, secretory leukocyte peptidase inhibitor (SLPI), spiked at concentrations as low as 10 fM. This system is designed as a replacement for optical protein microarrays while also providing real-time kinetics monitoring. PMID:24761029

  7. Effect of drain current on appearance probability and amplitude of random telegraph noise in low-noise CMOS image sensors

    NASA Astrophysics Data System (ADS)

    Ichino, Shinya; Mawaki, Takezo; Teramoto, Akinobu; Kuroda, Rihito; Park, Hyeonwoo; Wakashima, Shunichi; Goto, Tetsuya; Suwa, Tomoyuki; Sugawa, Shigetoshi

    2018-04-01

    Random telegraph noise (RTN), which occurs in in-pixel source follower (SF) transistors, has become one of the most critical problems in high-sensitivity CMOS image sensors (CIS) because it is a limiting factor of dark random noise. In this paper, the behaviors of RTN toward changes in SF drain current conditions were analyzed using a low-noise array test circuit measurement system with a floor noise of 35 µV rms. In addition to statistical analysis by measuring a large number of transistors (18048 transistors), we also analyzed the behaviors of RTN parameters such as amplitude and time constants in the individual transistors. It is demonstrated that the appearance probability of RTN becomes small under a small drain current condition, although large-amplitude RTN tends to appear in a very small number of cells.

  8. High-Speed Scanning Interferometer Using CMOS Image Sensor and FPGA Based on Multifrequency Phase-Tracking Detection

    NASA Technical Reports Server (NTRS)

    Ohara, Tetsuo

    2012-01-01

    A sub-aperture stitching optical interferometer can provide a cost-effective solution for an in situ metrology tool for large optics; however, the currently available technologies are not suitable for high-speed and real-time continuous scan. NanoWave s SPPE (Scanning Probe Position Encoder) has been proven to exhibit excellent stability and sub-nanometer precision with a large dynamic range. This same technology can transform many optical interferometers into real-time subnanometer precision tools with only minor modification. The proposed field-programmable gate array (FPGA) signal processing concept, coupled with a new-generation, high-speed, mega-pixel CMOS (complementary metal-oxide semiconductor) image sensor, enables high speed (>1 m/s) and real-time continuous surface profiling that is insensitive to variation of pixel sensitivity and/or optical transmission/reflection. This is especially useful for large optics surface profiling.

  9. Delta-Doped Back-Illuminated CMOS Imaging Arrays: Progress and Prospects

    NASA Technical Reports Server (NTRS)

    Hoenk, Michael E.; Jones, Todd J.; Dickie, Matthew R.; Greer, Frank; Cunningham, Thomas J.; Blazejewski, Edward; Nikzad, Shouleh

    2009-01-01

    In this paper, we report the latest results on our development of delta-doped, thinned, back-illuminated CMOS imaging arrays. As with charge-coupled devices, thinning and back-illumination are essential to the development of high performance CMOS imaging arrays. Problems with back surface passivation have emerged as critical to the prospects for incorporating CMOS imaging arrays into high performance scientific instruments, just as they did for CCDs over twenty years ago. In the early 1990's, JPL developed delta-doped CCDs, in which low temperature molecular beam epitaxy was used to form an ideal passivation layer on the silicon back surface. Comprising only a few nanometers of highly-doped epitaxial silicon, delta-doping achieves the stability and uniformity that are essential for high performance imaging and spectroscopy. Delta-doped CCDs were shown to have high, stable, and uniform quantum efficiency across the entire spectral range from the extreme ultraviolet through the near infrared. JPL has recently bump-bonded thinned, delta-doped CMOS imaging arrays to a CMOS readout, and demonstrated imaging. Delta-doped CMOS devices exhibit the high quantum efficiency that has become the standard for scientific-grade CCDs. Together with new circuit designs for low-noise readout currently under development, delta-doping expands the potential scientific applications of CMOS imaging arrays, and brings within reach important new capabilities, such as fast, high-sensitivity imaging with parallel readout and real-time signal processing. It remains to demonstrate manufacturability of delta-doped CMOS imaging arrays. To that end, JPL has acquired a new silicon MBE and ancillary equipment for delta-doping wafers up to 200mm in diameter, and is now developing processes for high-throughput, high yield delta-doping of fully-processed wafers with CCD and CMOS imaging devices.

  10. Direct protein detection with a nano-interdigitated array gate MOSFET.

    PubMed

    Tang, Xiaohui; Jonas, Alain M; Nysten, Bernard; Demoustier-Champagne, Sophie; Blondeau, Franoise; Prévot, Pierre-Paul; Pampin, Rémi; Godfroid, Edmond; Iñiguez, Benjamin; Colinge, Jean-Pierre; Raskin, Jean-Pierre; Flandre, Denis; Bayot, Vincent

    2009-08-15

    A new protein sensor is demonstrated by replacing the gate of a metal oxide semiconductor field effect transistor (MOSFET) with a nano-interdigitated array (nIDA). The sensor is able to detect the binding reaction of a typical antibody Ixodes ricinus immunosuppressor (anti-Iris) protein at a concentration lower than 1 ng/ml. The sensor exhibits a high selectivity and reproducible specific detection. We provide a simple model that describes the behavior of the sensor and explains the origin of its high sensitivity. The simulated and experimental results indicate that the drain current of nIDA-gate MOSFET sensor is significantly increased with the successive binding of the thiol layer, Iris and anti-Iris protein layers. It is found that the sensor detection limit can be improved by well optimizing the geometrical parameters of nIDA-gate MOSFET. This nanobiosensor, with real-time and label-free capabilities, can easily be used for the detection of other proteins, DNA, virus and cancer markers. Moreover, an on-chip associated electronics nearby the sensor can be integrated since its fabrication is compatible with complementary metal oxide semiconductor (CMOS) technology.

  11. Development and test of an active pixel sensor detector for heliospheric imager on solar orbiter and solar probe plus

    NASA Astrophysics Data System (ADS)

    Korendyke, Clarence M.; Vourlidas, Angelos; Plunkett, Simon P.; Howard, Russell A.; Wang, Dennis; Marshall, Cheryl J.; Waczynski, Augustyn; Janesick, James J.; Elliott, Thomas; Tun, Samuel; Tower, John; Grygon, Mark; Keller, David; Clifford, Gregory E.

    2013-10-01

    The Naval Research Laboratory is developing next generation CMOS imaging arrays for the Solar Orbiter and Solar Probe Plus missions. The device development is nearly complete with flight device delivery scheduled for summer of 2013. The 4Kx4K mosaic array with 10micron pixels is well suited to the panoramic imaging required for the Solar Orbiter mission. The devices are robust (<100krad) and exhibit minimal performance degradation with respect to radiation. The device design and performance are described.

  12. Expansion of CMOS array design techniques

    NASA Technical Reports Server (NTRS)

    Feller, A.; Ramondetta, P.

    1977-01-01

    The important features of the multiport (double entry) automatic placement and routing programs for standard cells are described. Measured performance and predicted performance were compared for seven CMOS/SOS array types and hybrids designed with the high speed CMOS/SOS cell family. The CMOS/SOS standard cell data sheets are listed and described.

  13. LinoSPAD: a time-resolved 256×1 CMOS SPAD line sensor system featuring 64 FPGA-based TDC channels running at up to 8.5 giga-events per second

    NASA Astrophysics Data System (ADS)

    Burri, Samuel; Homulle, Harald; Bruschini, Claudio; Charbon, Edoardo

    2016-04-01

    LinoSPAD is a reconfigurable camera sensor with a 256×1 CMOS SPAD (single-photon avalanche diode) pixel array connected to a low cost Xilinx Spartan 6 FPGA. The LinoSPAD sensor's line of pixels has a pitch of 24 μm and 40% fill factor. The FPGA implements an array of 64 TDCs and histogram engines capable of processing up to 8.5 giga-photons per second. The LinoSPAD sensor measures 1.68 mm×6.8 mm and each pixel has a direct digital output to connect to the FPGA. The chip is bonded on a carrier PCB to connect to the FPGA motherboard. 64 carry chain based TDCs sampled at 400 MHz can generate a timestamp every 7.5 ns with a mean time resolution below 25 ps per code. The 64 histogram engines provide time-of-arrival histograms covering up to 50 ns. An alternative mode allows the readout of 28 bit timestamps which have a range of up to 4.5 ms. Since the FPGA TDCs have considerable non-linearity we implemented a correction module capable of increasing histogram linearity at real-time. The TDC array is interfaced to a computer using a super-speed USB3 link to transfer over 150k histograms per second for the 12.5 ns reference period used in our characterization. After characterization and subsequent programming of the post-processing we measure an instrument response histogram shorter than 100 ps FWHM using a strong laser pulse with 50 ps FWHM. A timing resolution that when combined with the high fill factor makes the sensor well suited for a wide variety of applications from fluorescence lifetime microscopy over Raman spectroscopy to 3D time-of-flight.

  14. Sensitivity-Enhanced CMOS Phase Luminometry System Using Xerogel-Based Sensors.

    PubMed

    Lei Yao; Khan, R; Chodavarapu, V P; Tripathi, V S; Bright, F V

    2009-10-01

    We present the design and implementation of a phase luminometry sensor system with improved and tunable detection sensitivity achieved using a complementary metal-oxide semiconductor (CMOS) integrated circuit. We use sol-gel derived xerogel thin films as an immobilization media to house oxygen (O2) responsive luminescent molecules. The sensor operates on the principal of phase luminometry wherein a sinusoidal modulation signal is used to excite the luminophores encapsulated in the porous xerogel films and the corresponding phase shift of the emission signals is monitored. The phase shift is directly related to excited state lifetimes of the luminophores which in turn are related to the concentration of the target analyte species present in the vicinity of the luminophores. The CMOS IC, which consists of a 16 times 16 high-gain phototransistor array, current-to-voltage converter, amplifier and tunable phase shift detector, consumes an average power of 14 mW with 5-V power supply operating at a 38-kHz modulation frequency. The output of the IC is a dc voltage that corresponds to the detected luminescence phase shift with respect to the excitation signal. As a prototype, we demonstrate an oxygen sensor system by encapsulating the luminophore tris(4,7-diphenyl-1,10-phenanthroline)ruthenium(II) within the xerogel matrices. The sensor system showed a fast response on the order of few seconds and we obtained a detection sensitivity of 118 mV per 1% change in O2 concentration. The system demonstrates a novel concept to tune and improve the detection sensitivity for specific concentrations of the target analyte in many biomedical monitoring applications.

  15. A Biosensor-CMOS Platform and Integrated Readout Circuit in 0.18-μm CMOS Technology for Cancer Biomarker Detection.

    PubMed

    Alhoshany, Abdulaziz; Sivashankar, Shilpa; Mashraei, Yousof; Omran, Hesham; Salama, Khaled N

    2017-08-23

    This paper presents a biosensor-CMOS platform for measuring the capacitive coupling of biorecognition elements. The biosensor is designed, fabricated, and tested for the detection and quantification of a protein that reveals the presence of early-stage cancer. For the first time, the spermidine/spermine N1 acetyltransferase (SSAT) enzyme has been screened and quantified on the surface of a capacitive sensor. The sensor surface is treated to immobilize antibodies, and the baseline capacitance of the biosensor is reduced by connecting an array of capacitors in series for fixed exposure area to the analyte. A large sensing area with small baseline capacitance is implemented to achieve a high sensitivity to SSAT enzyme concentrations. The sensed capacitance value is digitized by using a 12-bit highly digital successive-approximation capacitance-to-digital converter that is implemented in a 0.18 μm CMOS technology. The readout circuit operates in the near-subthreshold regime and provides power and area efficient operation. The capacitance range is 16.137 pF with a 4.5 fF absolute resolution, which adequately covers the concentrations of 10 mg/L, 5 mg/L, 2.5 mg/L, and 1.25 mg/L of the SSAT enzyme. The concentrations were selected as a pilot study, and the platform was shown to demonstrate high sensitivity for SSAT enzymes on the surface of the capacitive sensor. The tested prototype demonstrated 42.5 μS of measurement time and a total power consumption of 2.1 μW.

  16. A Biosensor-CMOS Platform and Integrated Readout Circuit in 0.18-μm CMOS Technology for Cancer Biomarker Detection

    PubMed Central

    Alhoshany, Abdulaziz; Sivashankar, Shilpa; Mashraei, Yousof; Omran, Hesham; Salama, Khaled N.

    2017-01-01

    This paper presents a biosensor-CMOS platform for measuring the capacitive coupling of biorecognition elements. The biosensor is designed, fabricated, and tested for the detection and quantification of a protein that reveals the presence of early-stage cancer. For the first time, the spermidine/spermine N1 acetyltransferase (SSAT) enzyme has been screened and quantified on the surface of a capacitive sensor. The sensor surface is treated to immobilize antibodies, and the baseline capacitance of the biosensor is reduced by connecting an array of capacitors in series for fixed exposure area to the analyte. A large sensing area with small baseline capacitance is implemented to achieve a high sensitivity to SSAT enzyme concentrations. The sensed capacitance value is digitized by using a 12-bit highly digital successive-approximation capacitance-to-digital converter that is implemented in a 0.18 μm CMOS technology. The readout circuit operates in the near-subthreshold regime and provides power and area efficient operation. The capacitance range is 16.137 pF with a 4.5 fF absolute resolution, which adequately covers the concentrations of 10 mg/L, 5 mg/L, 2.5 mg/L, and 1.25 mg/L of the SSAT enzyme. The concentrations were selected as a pilot study, and the platform was shown to demonstrate high sensitivity for SSAT enzymes on the surface of the capacitive sensor. The tested prototype demonstrated 42.5 μS of measurement time and a total power consumption of 2.1 μW. PMID:28832523

  17. Performance of PHOTONIS' low light level CMOS imaging sensor for long range observation

    NASA Astrophysics Data System (ADS)

    Bourree, Loig E.

    2014-05-01

    Identification of potential threats in low-light conditions through imaging is commonly achieved through closed-circuit television (CCTV) and surveillance cameras by combining the extended near infrared (NIR) response (800-10000nm wavelengths) of the imaging sensor with NIR LED or laser illuminators. Consequently, camera systems typically used for purposes of long-range observation often require high-power lasers in order to generate sufficient photons on targets to acquire detailed images at night. While these systems may adequately identify targets at long-range, the NIR illumination needed to achieve such functionality can easily be detected and therefore may not be suitable for covert applications. In order to reduce dependency on supplemental illumination in low-light conditions, the frame rate of the imaging sensors may be reduced to increase the photon integration time and thus improve the signal to noise ratio of the image. However, this may hinder the camera's ability to image moving objects with high fidelity. In order to address these particular drawbacks, PHOTONIS has developed a CMOS imaging sensor (CIS) with a pixel architecture and geometry designed specifically to overcome these issues in low-light level imaging. By combining this CIS with field programmable gate array (FPGA)-based image processing electronics, PHOTONIS has achieved low-read noise imaging with enhanced signal-to-noise ratio at quarter moon illumination, all at standard video frame rates. The performance of this CIS is discussed herein and compared to other commercially available CMOS and CCD for long-range observation applications.

  18. CMOS Image Sensors: Electronic Camera On A Chip

    NASA Technical Reports Server (NTRS)

    Fossum, E. R.

    1995-01-01

    Recent advancements in CMOS image sensor technology are reviewed, including both passive pixel sensors and active pixel sensors. On- chip analog to digital converters and on-chip timing and control circuits permit realization of an electronic camera-on-a-chip. Highly miniaturized imaging systems based on CMOS image sensor technology are emerging as a competitor to charge-coupled devices for low cost uses.

  19. Flexible MEMS: A novel technology to fabricate flexible sensors and electronics

    NASA Astrophysics Data System (ADS)

    Tu, Hongen

    This dissertation presents the design and fabrication techniques used to fabricate flexible MEMS (Micro Electro Mechanical Systems) devices. MEMS devices and CMOS(Complementary Metal-Oxide-Semiconductor) circuits are traditionally fabricated on rigid substrates with inorganic semiconductor materials such as Silicon. However, it is highly desirable that functional elements like sensors, actuators or micro fluidic components to be fabricated on flexible substrates for a wide variety of applications. Due to the fact that flexible substrate is temperature sensitive, typically only low temperature materials, such as polymers, metals, and organic semiconductor materials, can be directly fabricated on flexible substrates. A novel technology based on XeF2(xenon difluoride) isotropic silicon etching and parylene conformal coating, which is able to monolithically incorporate high temperature materials and fluidic channels, was developed at Wayne State University. The technology was first implemented in the development of out-of-plane parylene microneedle arrays that can be individually addressed by integrated flexible micro-channels. These devices enable the delivery of chemicals with controlled temporal and spatial patterns and allow us to study neurotransmitter-based retinal prosthesis. The technology was further explored by adopting the conventional SOI-CMOS processes. High performance and high density CMOS circuits can be first fabricated on SOI wafers, and then be integrated into flexible substrates. Flexible p-channel MOSFETs (Metal-Oxide-Semiconductor Field-Effect-Transistors) were successfully integrated and tested. Integration of pressure sensors and flow sensors based on single crystal silicon has also been demonstrated. A novel smart yarn technology that enables the invisible integration of sensors and electronics into fabrics has been developed. The most significant advantage of this technology is its post-MEMS and post-CMOS compatibility. Various high-performance MEMS devices and electronics can be integrated into flexible substrates. The potential of our technology is enormous. Many wearable and implantable devices can be developed based on this technology.

  20. The CAOS camera platform: ushering in a paradigm change in extreme dynamic range imager design

    NASA Astrophysics Data System (ADS)

    Riza, Nabeel A.

    2017-02-01

    Multi-pixel imaging devices such as CCD, CMOS and Focal Plane Array (FPA) photo-sensors dominate the imaging world. These Photo-Detector Array (PDA) devices certainly have their merits including increasingly high pixel counts and shrinking pixel sizes, nevertheless, they are also being hampered by limitations in instantaneous dynamic range, inter-pixel crosstalk, quantum full well capacity, signal-to-noise ratio, sensitivity, spectral flexibility, and in some cases, imager response time. Recently invented is the Coded Access Optical Sensor (CAOS) Camera platform that works in unison with current Photo-Detector Array (PDA) technology to counter fundamental limitations of PDA-based imagers while providing high enough imaging spatial resolution and pixel counts. Using for example the Texas Instruments (TI) Digital Micromirror Device (DMD) to engineer the CAOS camera platform, ushered in is a paradigm change in advanced imager design, particularly for extreme dynamic range applications.

  1. CMOS image sensor-based implantable glucose sensor using glucose-responsive fluorescent hydrogel.

    PubMed

    Tokuda, Takashi; Takahashi, Masayuki; Uejima, Kazuhiro; Masuda, Keita; Kawamura, Toshikazu; Ohta, Yasumi; Motoyama, Mayumi; Noda, Toshihiko; Sasagawa, Kiyotaka; Okitsu, Teru; Takeuchi, Shoji; Ohta, Jun

    2014-11-01

    A CMOS image sensor-based implantable glucose sensor based on an optical-sensing scheme is proposed and experimentally verified. A glucose-responsive fluorescent hydrogel is used as the mediator in the measurement scheme. The wired implantable glucose sensor was realized by integrating a CMOS image sensor, hydrogel, UV light emitting diodes, and an optical filter on a flexible polyimide substrate. Feasibility of the glucose sensor was verified by both in vitro and in vivo experiments.

  2. Radiation tolerant compact image sensor using CdTe photodiode and field emitter array (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Masuzawa, Tomoaki; Neo, Yoichiro; Mimura, Hidenori; Okamoto, Tamotsu; Nagao, Masayoshi; Akiyoshi, Masafumi; Sato, Nobuhiro; Takagi, Ikuji; Tsuji, Hiroshi; Gotoh, Yasuhito

    2016-10-01

    A growing demand on incident detection is recognized since the Great East Japan Earthquake and successive accidents in Fukushima nuclear power plant in 2011. Radiation tolerant image sensors are powerful tools to collect crucial information at initial stages of such incidents. However, semiconductor based image sensors such as CMOS and CCD have limited tolerance to radiation exposure. Image sensors used in nuclear facilities are conventional vacuum tubes using thermal cathodes, which have large size and high power consumption. In this study, we propose a compact image sensor composed of a CdTe-based photodiode and a matrix-driven Spindt-type electron beam source called field emitter array (FEA). A basic principle of FEA-based image sensors is similar to conventional Vidicon type camera tubes, but its electron source is replaced from a thermal cathode to FEA. The use of a field emitter as an electron source should enable significant size reduction while maintaining high radiation tolerance. Current researches on radiation tolerant FEAs and development of CdTe based photoconductive films will be presented.

  3. Innovative monolithic detector for tri-spectral (THz, IR, Vis) imaging

    NASA Astrophysics Data System (ADS)

    Pocas, S.; Perenzoni, M.; Massari, N.; Simoens, F.; Meilhan, J.; Rabaud, W.; Martin, S.; Delplanque, B.; Imperinetti, P.; Goudon, V.; Vialle, C.; Arnaud, A.

    2012-10-01

    Fusion of multispectral images has been explored for many years for security and used in a number of commercial products. CEA-Leti and FBK have developed an innovative sensor technology that gathers monolithically on a unique focal plane arrays, pixels sensitive to radiation in three spectral ranges that are terahertz (THz), infrared (IR) and visible. This technology benefits of many assets for volume market: compactness, full CMOS compatibility on 200mm wafers, advanced functions of the CMOS read-out integrated circuit (ROIC), and operation at room temperature. The ROIC houses visible APS diodes while IR and THz detections are carried out by microbolometers collectively processed above the CMOS substrate. Standard IR bolometric microbridges (160x160 pixels) are surrounding antenna-coupled bolometers (32X32 pixels) built on a resonant cavity customized to THz sensing. This paper presents the different technological challenges achieved in this development and first electrical and sensitivity experimental tests.

  4. IR CMOS: near infrared enhanced digital imaging (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Pralle, Martin U.; Carey, James E.; Joy, Thomas; Vineis, Chris J.; Palsule, Chintamani

    2015-08-01

    SiOnyx has demonstrated imaging at light levels below 1 mLux (moonless starlight) at video frame rates with a 720P CMOS image sensor in a compact, low latency camera. Low light imaging is enabled by the combination of enhanced quantum efficiency in the near infrared together with state of the art low noise image sensor design. The quantum efficiency enhancements are achieved by applying Black Silicon, SiOnyx's proprietary ultrafast laser semiconductor processing technology. In the near infrared, silicon's native indirect bandgap results in low absorption coefficients and long absorption lengths. The Black Silicon nanostructured layer fundamentally disrupts this paradigm by enhancing the absorption of light within a thin pixel layer making 5 microns of silicon equivalent to over 300 microns of standard silicon. This results in a demonstrate 10 fold improvements in near infrared sensitivity over incumbent imaging technology while maintaining complete compatibility with standard CMOS image sensor process flows. Applications include surveillance, nightvision, and 1064nm laser see spot. Imaging performance metrics will be discussed. Demonstrated performance characteristics: Pixel size : 5.6 and 10 um Array size: 720P/1.3Mpix Frame rate: 60 Hz Read noise: 2 ele/pixel Spectral sensitivity: 400 to 1200 nm (with 10x QE at 1064nm) Daytime imaging: color (Bayer pattern) Nighttime imaging: moonless starlight conditions 1064nm laser imaging: daytime imaging out to 2Km

  5. CMOS Cell Sensors for Point-of-Care Diagnostics

    PubMed Central

    Adiguzel, Yekbun; Kulah, Haluk

    2012-01-01

    The burden of health-care related services in a global era with continuously increasing population and inefficient dissipation of the resources requires effective solutions. From this perspective, point-of-care diagnostics is a demanded field in clinics. It is also necessary both for prompt diagnosis and for providing health services evenly throughout the population, including the rural districts. The requirements can only be fulfilled by technologies whose productivity has already been proven, such as complementary metal-oxide-semiconductors (CMOS). CMOS-based products can enable clinical tests in a fast, simple, safe, and reliable manner, with improved sensitivities. Portability due to diminished sensor dimensions and compactness of the test set-ups, along with low sample and power consumption, is another vital feature. CMOS-based sensors for cell studies have the potential to become essential counterparts of point-of-care diagnostics technologies. Hence, this review attempts to inform on the sensors fabricated with CMOS technology for point-of-care diagnostic studies, with a focus on CMOS image sensors and capacitance sensors for cell studies. PMID:23112587

  6. CMOS cell sensors for point-of-care diagnostics.

    PubMed

    Adiguzel, Yekbun; Kulah, Haluk

    2012-01-01

    The burden of health-care related services in a global era with continuously increasing population and inefficient dissipation of the resources requires effective solutions. From this perspective, point-of-care diagnostics is a demanded field in clinics. It is also necessary both for prompt diagnosis and for providing health services evenly throughout the population, including the rural districts. The requirements can only be fulfilled by technologies whose productivity has already been proven, such as complementary metal-oxide-semiconductors (CMOS). CMOS-based products can enable clinical tests in a fast, simple, safe, and reliable manner, with improved sensitivities. Portability due to diminished sensor dimensions and compactness of the test set-ups, along with low sample and power consumption, is another vital feature. CMOS-based sensors for cell studies have the potential to become essential counterparts of point-of-care diagnostics technologies. Hence, this review attempts to inform on the sensors fabricated with CMOS technology for point-of-care diagnostic studies, with a focus on CMOS image sensors and capacitance sensors for cell studies.

  7. Design and Performance of a Pinned Photodiode CMOS Image Sensor Using Reverse Substrate Bias.

    PubMed

    Stefanov, Konstantin D; Clarke, Andrew S; Ivory, James; Holland, Andrew D

    2018-01-03

    A new pinned photodiode (PPD) CMOS image sensor with reverse biased p-type substrate has been developed and characterized. The sensor uses traditional PPDs with one additional deep implantation step to suppress the parasitic reverse currents, and can be fully depleted. The first prototypes have been manufactured on an 18 µm thick, 1000 Ω·cm epitaxial silicon wafers using 180 nm PPD image sensor process. Both front-side illuminated (FSI) and back-side illuminated (BSI) devices were manufactured in collaboration with Teledyne e2v. The characterization results from a number of arrays of 10 µm and 5.4 µm PPD pixels, with different shape, the size and the depth of the new implant are in good agreement with device simulations. The new pixels could be reverse-biased without parasitic leakage currents well beyond full depletion, and demonstrate nearly identical optical response to the reference non-modified pixels. The observed excessive charge sharing in some pixel variants is shown to not be a limiting factor in operation. This development promises to realize monolithic PPD CIS with large depleted thickness and correspondingly high quantum efficiency at near-infrared and soft X-ray wavelengths.

  8. Design and Performance of a Pinned Photodiode CMOS Image Sensor Using Reverse Substrate Bias †

    PubMed Central

    Clarke, Andrew S.; Ivory, James; Holland, Andrew D.

    2018-01-01

    A new pinned photodiode (PPD) CMOS image sensor with reverse biased p-type substrate has been developed and characterized. The sensor uses traditional PPDs with one additional deep implantation step to suppress the parasitic reverse currents, and can be fully depleted. The first prototypes have been manufactured on an 18 µm thick, 1000 Ω·cm epitaxial silicon wafers using 180 nm PPD image sensor process. Both front-side illuminated (FSI) and back-side illuminated (BSI) devices were manufactured in collaboration with Teledyne e2v. The characterization results from a number of arrays of 10 µm and 5.4 µm PPD pixels, with different shape, the size and the depth of the new implant are in good agreement with device simulations. The new pixels could be reverse-biased without parasitic leakage currents well beyond full depletion, and demonstrate nearly identical optical response to the reference non-modified pixels. The observed excessive charge sharing in some pixel variants is shown to not be a limiting factor in operation. This development promises to realize monolithic PPD CIS with large depleted thickness and correspondingly high quantum efficiency at near-infrared and soft X-ray wavelengths. PMID:29301379

  9. Low light CMOS contact imager with an integrated poly-acrylic emission filter for fluorescence detection.

    PubMed

    Dattner, Yonathan; Yadid-Pecht, Orly

    2010-01-01

    This study presents the fabrication of a low cost poly-acrylic acid (PAA) based emission filter integrated with a low light CMOS contact imager for fluorescence detection. The process involves the use of PAA as an adhesive for the emission filter. The poly-acrylic solution was chosen due its optical transparent properties, adhesive properties, miscibility with polar protic solvents and most importantly its bio-compatibility with a biological environment. The emission filter, also known as an absorption filter, involves dissolving an absorbing specimen in a polar protic solvent and mixing it with the PAA to uniformly bond the absorbing specimen and harden the filter. The PAA is optically transparent in solid form and therefore does not contribute to the absorbance of light in the visible spectrum. Many combinations of absorbing specimen and polar protic solvents can be derived, yielding different filter characteristics in different parts of the spectrum. We report a specific combination as a first example of implementation of our technology. The filter reported has excitation in the green spectrum and emission in the red spectrum, utilizing the increased quantum efficiency of the photo sensitive sensor array. The thickness of the filter (20 μm) was chosen by calculating the desired SNR using Beer-Lambert's law for liquids, Quantum Yield of the fluorophore and the Quantum Efficiency of the sensor array. The filters promising characteristics make it suitable for low light fluorescence detection. The filter was integrated with a fully functional low noise, low light CMOS contact imager and experimental results using fluorescence polystyrene micro-spheres are presented.

  10. CMOS image sensor-based implantable glucose sensor using glucose-responsive fluorescent hydrogel

    PubMed Central

    Tokuda, Takashi; Takahashi, Masayuki; Uejima, Kazuhiro; Masuda, Keita; Kawamura, Toshikazu; Ohta, Yasumi; Motoyama, Mayumi; Noda, Toshihiko; Sasagawa, Kiyotaka; Okitsu, Teru; Takeuchi, Shoji; Ohta, Jun

    2014-01-01

    A CMOS image sensor-based implantable glucose sensor based on an optical-sensing scheme is proposed and experimentally verified. A glucose-responsive fluorescent hydrogel is used as the mediator in the measurement scheme. The wired implantable glucose sensor was realized by integrating a CMOS image sensor, hydrogel, UV light emitting diodes, and an optical filter on a flexible polyimide substrate. Feasibility of the glucose sensor was verified by both in vitro and in vivo experiments. PMID:25426316

  11. CMOS Imaging Sensor Technology for Aerial Mapping Cameras

    NASA Astrophysics Data System (ADS)

    Neumann, Klaus; Welzenbach, Martin; Timm, Martin

    2016-06-01

    In June 2015 Leica Geosystems launched the first large format aerial mapping camera using CMOS sensor technology, the Leica DMC III. This paper describes the motivation to change from CCD sensor technology to CMOS for the development of this new aerial mapping camera. In 2002 the DMC first generation was developed by Z/I Imaging. It was the first large format digital frame sensor designed for mapping applications. In 2009 Z/I Imaging designed the DMC II which was the first digital aerial mapping camera using a single ultra large CCD sensor to avoid stitching of smaller CCDs. The DMC III is now the third generation of large format frame sensor developed by Z/I Imaging and Leica Geosystems for the DMC camera family. It is an evolution of the DMC II using the same system design with one large monolithic PAN sensor and four multi spectral camera heads for R,G, B and NIR. For the first time a 391 Megapixel large CMOS sensor had been used as PAN chromatic sensor, which is an industry record. Along with CMOS technology goes a range of technical benefits. The dynamic range of the CMOS sensor is approx. twice the range of a comparable CCD sensor and the signal to noise ratio is significantly better than with CCDs. Finally results from the first DMC III customer installations and test flights will be presented and compared with other CCD based aerial sensors.

  12. Recent Advances in Fluorescence Lifetime Analytical Microsystems: Contact Optics and CMOS Time-Resolved Electronics.

    PubMed

    Wei, Liping; Yan, Wenrong; Ho, Derek

    2017-12-04

    Fluorescence spectroscopy has become a prominent research tool with wide applications in medical diagnostics and bio-imaging. However, the realization of combined high-performance, portable, and low-cost spectroscopic sensors still remains a challenge, which has limited the technique to the laboratories. A fluorescence lifetime measurement seeks to obtain the characteristic lifetime from the fluorescence decay profile. Time-correlated single photon counting (TCSPC) and time-gated techniques are two key variations of time-resolved measurements. However, commercial time-resolved analysis systems typically contain complex optics and discrete electronic components, which lead to bulkiness and a high cost. These two limitations can be significantly mitigated using contact sensing and complementary metal-oxide-semiconductor (CMOS) implementation. Contact sensing simplifies the optics, whereas CMOS technology enables on-chip, arrayed detection and signal processing, significantly reducing size and power consumption. This paper examines recent advances in contact sensing and CMOS time-resolved circuits for the realization of fully integrated fluorescence lifetime measurement microsystems. The high level of performance from recently reported prototypes suggests that the CMOS-based contact sensing microsystems are emerging as sound technologies for application-specific, low-cost, and portable time-resolved diagnostic devices.

  13. Recent Advances in Fluorescence Lifetime Analytical Microsystems: Contact Optics and CMOS Time-Resolved Electronics

    PubMed Central

    Yan, Wenrong; Ho, Derek

    2017-01-01

    Fluorescence spectroscopy has become a prominent research tool with wide applications in medical diagnostics and bio-imaging. However, the realization of combined high-performance, portable, and low-cost spectroscopic sensors still remains a challenge, which has limited the technique to the laboratories. A fluorescence lifetime measurement seeks to obtain the characteristic lifetime from the fluorescence decay profile. Time-correlated single photon counting (TCSPC) and time-gated techniques are two key variations of time-resolved measurements. However, commercial time-resolved analysis systems typically contain complex optics and discrete electronic components, which lead to bulkiness and a high cost. These two limitations can be significantly mitigated using contact sensing and complementary metal-oxide-semiconductor (CMOS) implementation. Contact sensing simplifies the optics, whereas CMOS technology enables on-chip, arrayed detection and signal processing, significantly reducing size and power consumption. This paper examines recent advances in contact sensing and CMOS time-resolved circuits for the realization of fully integrated fluorescence lifetime measurement microsystems. The high level of performance from recently reported prototypes suggests that the CMOS-based contact sensing microsystems are emerging as sound technologies for application-specific, low-cost, and portable time-resolved diagnostic devices. PMID:29207568

  14. CMOS-micromachined, two-dimenisional transistor arrays for neural recording and stimulation.

    PubMed

    Lin, J S; Chang, S R; Chang, C H; Lu, S C; Chen, H

    2007-01-01

    In-plane microelectrode arrays have proven to be useful tools for studying the connectivities and the functions of neural tissues. However, seldom microelectrode arrays are monolithically-integrated with signal-processing circuits, without which the maximum number of electrodes is limited by the compromise with routing complexity and interferences. This paper proposes a CMOS-compatible, two-dimensional array of oxide-semiconductor field-effect transistors(OSFETs), capable of both recording and stimulating neuronal activities. The fabrication of the OSFETs not only requires simply die-level, post-CMOS micromachining process, but also retains metal layers for monolithic integration with signal-processing circuits. A CMOS microsystem containing the OSFET arrays and gain-programmable recording circuits has been fabricated and tested. The preliminary testing results are presented and discussed.

  15. The challenge of sCMOS image sensor technology to EMCCD

    NASA Astrophysics Data System (ADS)

    Chang, Weijing; Dai, Fang; Na, Qiyue

    2018-02-01

    In the field of low illumination image sensor, the noise of the latest scientific-grade CMOS image sensor is close to EMCCD, and the industry thinks it has the potential to compete and even replace EMCCD. Therefore we selected several typical sCMOS and EMCCD image sensors and cameras to compare their performance parameters. The results show that the signal-to-noise ratio of sCMOS is close to EMCCD, and the other parameters are superior. But signal-to-noise ratio is very important for low illumination imaging, and the actual imaging results of sCMOS is not ideal. EMCCD is still the first choice in the high-performance application field.

  16. High-voltage pixel sensors for ATLAS upgrade

    NASA Astrophysics Data System (ADS)

    Perić, I.; Kreidl, C.; Fischer, P.; Bompard, F.; Breugnon, P.; Clemens, J.-C.; Fougeron, D.; Liu, J.; Pangaud, P.; Rozanov, A.; Barbero, M.; Feigl, S.; Capeans, M.; Ferrere, D.; Pernegger, H.; Ristic, B.; Muenstermann, D.; Gonzalez Sevilla, S.; La Rosa, A.; Miucci, A.; Nessi, M.; Iacobucci, G.; Backhaus, M.; Hügging, Fabian; Krüger, H.; Hemperek, T.; Obermann, T.; Wermes, N.; Garcia-Sciveres, M.; Quadt, A.; Weingarten, J.; George, M.; Grosse-Knetter, J.; Rieger, J.; Bates, R.; Blue, A.; Buttar, C.; Hynds, D.

    2014-11-01

    The high-voltage (HV-) CMOS pixel sensors offer several good properties: a fast charge collection by drift, the possibility to implement relatively complex CMOS in-pixel electronics and the compatibility with commercial processes. The sensor element is a deep n-well diode in a p-type substrate. The n-well contains CMOS pixel electronics. The main charge collection mechanism is drift in a shallow, high field region, which leads to a fast charge collection and a high radiation tolerance. We are currently evaluating the use of the high-voltage detectors implemented in 180 nm HV-CMOS technology for the high-luminosity ATLAS upgrade. Our approach is replacing the existing pixel and strip sensors with the CMOS sensors while keeping the presently used readout ASICs. By intelligence we mean the ability of the sensor to recognize a particle hit and generate the address information. In this way we could benefit from the advantages of the HV sensor technology such as lower cost, lower mass, lower operating voltage, smaller pitch, smaller clusters at high incidence angles. Additionally we expect to achieve a radiation hardness necessary for ATLAS upgrade. In order to test the concept, we have designed two HV-CMOS prototypes that can be readout in two ways: using pixel and strip readout chips. In the case of the pixel readout, the connection between HV-CMOS sensor and the readout ASIC can be established capacitively.

  17. A CMOS high speed imaging system design based on FPGA

    NASA Astrophysics Data System (ADS)

    Tang, Hong; Wang, Huawei; Cao, Jianzhong; Qiao, Mingrui

    2015-10-01

    CMOS sensors have more advantages than traditional CCD sensors. The imaging system based on CMOS has become a hot spot in research and development. In order to achieve the real-time data acquisition and high-speed transmission, we design a high-speed CMOS imaging system on account of FPGA. The core control chip of this system is XC6SL75T and we take advantages of CameraLink interface and AM41V4 CMOS image sensors to transmit and acquire image data. AM41V4 is a 4 Megapixel High speed 500 frames per second CMOS image sensor with global shutter and 4/3" optical format. The sensor uses column parallel A/D converters to digitize the images. The CameraLink interface adopts DS90CR287 and it can convert 28 bits of LVCMOS/LVTTL data into four LVDS data stream. The reflected light of objects is photographed by the CMOS detectors. CMOS sensors convert the light to electronic signals and then send them to FPGA. FPGA processes data it received and transmits them to upper computer which has acquisition cards through CameraLink interface configured as full models. Then PC will store, visualize and process images later. The structure and principle of the system are both explained in this paper and this paper introduces the hardware and software design of the system. FPGA introduces the driven clock of CMOS. The data in CMOS is converted to LVDS signals and then transmitted to the data acquisition cards. After simulation, the paper presents a row transfer timing sequence of CMOS. The system realized real-time image acquisition and external controls.

  18. All-Digital Time-Domain CMOS Smart Temperature Sensor with On-Chip Linearity Enhancement.

    PubMed

    Chen, Chun-Chi; Chen, Chao-Lieh; Lin, Yi

    2016-01-30

    This paper proposes the first all-digital on-chip linearity enhancement technique for improving the accuracy of the time-domain complementary metal-oxide semiconductor (CMOS) smart temperature sensor. To facilitate on-chip application and intellectual property reuse, an all-digital time-domain smart temperature sensor was implemented using 90 nm Field Programmable Gate Arrays (FPGAs). Although the inverter-based temperature sensor has a smaller circuit area and lower complexity, two-point calibration must be used to achieve an acceptable inaccuracy. With the help of a calibration circuit, the influence of process variations was reduced greatly for one-point calibration support, reducing the test costs and time. However, the sensor response still exhibited a large curvature, which substantially affected the accuracy of the sensor. Thus, an on-chip linearity-enhanced circuit is proposed to linearize the curve and achieve a new linearity-enhanced output. The sensor was implemented on eight different Xilinx FPGA using 118 slices per sensor in each FPGA to demonstrate the benefits of the linearization. Compared with the unlinearized version, the maximal inaccuracy of the linearized version decreased from 5 °C to 2.5 °C after one-point calibration in a range of -20 °C to 100 °C. The sensor consumed 95 μW using 1 kSa/s. The proposed linearity enhancement technique significantly improves temperature sensing accuracy, avoiding costly curvature compensation while it is fully synthesizable for future Very Large Scale Integration (VLSI) system.

  19. All-Digital Time-Domain CMOS Smart Temperature Sensor with On-Chip Linearity Enhancement

    PubMed Central

    Chen, Chun-Chi; Chen, Chao-Lieh; Lin, Yi

    2016-01-01

    This paper proposes the first all-digital on-chip linearity enhancement technique for improving the accuracy of the time-domain complementary metal-oxide semiconductor (CMOS) smart temperature sensor. To facilitate on-chip application and intellectual property reuse, an all-digital time-domain smart temperature sensor was implemented using 90 nm Field Programmable Gate Arrays (FPGAs). Although the inverter-based temperature sensor has a smaller circuit area and lower complexity, two-point calibration must be used to achieve an acceptable inaccuracy. With the help of a calibration circuit, the influence of process variations was reduced greatly for one-point calibration support, reducing the test costs and time. However, the sensor response still exhibited a large curvature, which substantially affected the accuracy of the sensor. Thus, an on-chip linearity-enhanced circuit is proposed to linearize the curve and achieve a new linearity-enhanced output. The sensor was implemented on eight different Xilinx FPGA using 118 slices per sensor in each FPGA to demonstrate the benefits of the linearization. Compared with the unlinearized version, the maximal inaccuracy of the linearized version decreased from 5 °C to 2.5 °C after one-point calibration in a range of −20 °C to 100 °C. The sensor consumed 95 μW using 1 kSa/s. The proposed linearity enhancement technique significantly improves temperature sensing accuracy, avoiding costly curvature compensation while it is fully synthesizable for future Very Large Scale Integration (VLSI) system. PMID:26840316

  20. A functional hybrid memristor crossbar-array/CMOS system for data storage and neuromorphic applications.

    PubMed

    Kim, Kuk-Hwan; Gaba, Siddharth; Wheeler, Dana; Cruz-Albrecht, Jose M; Hussain, Tahir; Srinivasa, Narayan; Lu, Wei

    2012-01-11

    Crossbar arrays based on two-terminal resistive switches have been proposed as a leading candidate for future memory and logic applications. Here we demonstrate a high-density, fully operational hybrid crossbar/CMOS system composed of a transistor- and diode-less memristor crossbar array vertically integrated on top of a CMOS chip by taking advantage of the intrinsic nonlinear characteristics of the memristor element. The hybrid crossbar/CMOS system can reliably store complex binary and multilevel 1600 pixel bitmap images using a new programming scheme. © 2011 American Chemical Society

  1. The application of Fresnel zone plate based projection in optofluidic microscopy.

    PubMed

    Wu, Jigang; Cui, Xiquan; Lee, Lap Man; Yang, Changhuei

    2008-09-29

    Optofluidic microscopy (OFM) is a novel technique for low-cost, high-resolution on-chip microscopy imaging. In this paper we report the use of the Fresnel zone plate (FZP) based projection in OFM as a cost-effective and compact means for projecting the transmission through an OFM's aperture array onto a sensor grid. We demonstrate this approach by employing a FZP (diameter = 255 microm, focal length = 800 microm) that has been patterned onto a glass slide to project the transmission from an array of apertures (diameter = 1 microm, separation = 10 microm) onto a CMOS sensor. We are able to resolve the contributions from 44 apertures on the sensor under the illumination from a HeNe laser (wavelength = 633 nm). The imaging quality of the FZP determines the effective field-of-view (related to the number of resolvable transmissions from apertures) but not the image resolution of such an OFM system--a key distinction from conventional microscope systems. We demonstrate the capability of the integrated system by flowing the protist Euglena gracilis across the aperture array microfluidically and performing OFM imaging of the samples.

  2. A digital output piezoelectric accelerometer using a Pb(Zr, Ti)O3 thin film array electrically connected in series

    NASA Astrophysics Data System (ADS)

    Kobayashi, T.; Okada, H.; Masuda, T.; Maeda, R.; Itoh, T.

    2010-10-01

    A digital output piezoelectric accelerometer is proposed to realize an ultra-low power consumption wireless sensor node. The accelerometer has patterned piezoelectric thin films (piezoelectric plates) electrically connected in series accompanied by CMOS switches at the end of some of the piezoelectric plates. The connected piezoelectric plates amplify the output voltage without the use of amplifiers. The CMOS switches turn on when the output voltage of the piezoelectric plates is higher than the CMOS threshold voltage. The piezoelectric accelerometer converts the acceleration into a number of on-state CMOS switches, which can be called the digital output. The proposed digital output piezoelectric accelerometer, using Pb(Zr, Ti)O3 (PZT) thin films as the piezoelectric material, was fabricated through a microelectromechanical system (MEMS) microfabrication process. The output voltage was found to be amplified by the number of connected piezoelectric plates. The DC output voltage obtained by using an AC to DC conversion circuit is proportional to the number of connections. The results show the potential for realizing the proposed digital output piezoelectric accelerometer.

  3. 77 FR 33488 - Certain CMOS Image Sensors and Products Containing Same; Institution of Investigation Pursuant to...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-06

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-846] Certain CMOS Image Sensors and..., the sale for importation, and the sale within the United States after importation of certain CMOS image sensors and products containing same by reason of infringement of certain claims of U.S. Patent No...

  4. A sensitive optical micro-machined ultrasound sensor (OMUS) based on a silicon photonic ring resonator on an acoustical membrane.

    PubMed

    Leinders, S M; Westerveld, W J; Pozo, J; van Neer, P L M J; Snyder, B; O'Brien, P; Urbach, H P; de Jong, N; Verweij, M D

    2015-09-22

    With the increasing use of ultrasonography, especially in medical imaging, novel fabrication techniques together with novel sensor designs are needed to meet the requirements for future applications like three-dimensional intercardiac and intravascular imaging. These applications require arrays of many small elements to selectively record the sound waves coming from a certain direction. Here we present proof of concept of an optical micro-machined ultrasound sensor (OMUS) fabricated with a semi-industrial CMOS fabrication line. The sensor is based on integrated photonics, which allows for elements with small spatial footprint. We demonstrate that the first prototype is already capable of detecting pressures of 0.4 Pa, which matches the performance of the state of the art piezo-electric transducers while having a 65 times smaller spatial footprint. The sensor is compatible with MRI due to the lack of electronical wiring. Another important benefit of the use of integrated photonics is the easy interrogation of an array of elements. Hence, in future designs only two optical fibers are needed to interrogate an entire array, which minimizes the amount of connections of smart catheters. The demonstrated OMUS has potential applications in medical ultrasound imaging, non destructive testing as well as in flow sensing.

  5. Optical and x-ray characterization of two novel CMOS image sensors

    NASA Astrophysics Data System (ADS)

    Bohndiek, Sarah E.; Arvanitis, Costas D.; Venanzi, Cristian; Royle, Gary J.; Clark, Andy T.; Crooks, Jamie P.; Prydderch, Mark L.; Turchetta, Renato; Blue, Andrew; Speller, Robert D.

    2007-02-01

    A UK consortium (MI3) has been founded to develop advanced CMOS pixel designs for scientific applications. Vanilla, a 520x520 array of 25μm pixels benefits from flushed reset circuitry for low noise and random pixel access for region of interest (ROI) readout. OPIC, a 64x72 test structure array of 30μm digital pixels has thresholding capabilities for sparse readout at 3,700fps. Characterization is performed with both optical illumination and x-ray exposure via a scintillator. Vanilla exhibits 34+/-3e - read noise, interactive quantum efficiency of 54% at 500nm and can read a 6x6 ROI at 24,395fps. OPIC has 46+/-3e - read noise and a wide dynamic range of 65dB due to high full well capacity. Based on these characterization studies, Vanilla could be utilized in applications where demands include high spectral response and high speed region of interest readout while OPIC could be used for high speed, high dynamic range imaging.

  6. Ionizing doses and displacement damage testing of COTS CMOS imagers

    NASA Astrophysics Data System (ADS)

    Bernard, Frédéric; Petit, Sophie; Courtade, Sophie

    2017-11-01

    CMOS sensors begin to be a credible alternative to CCD sensors in some space missions. However, technology evolution of CMOS sensors is much faster than CCD one's. So a continuous technology evaluation is needed for CMOS imagers. Many of commercial COTS (Components Off The Shelf) CMOS sensors use organic filters, micro-lenses and non rad-hard technologies. An evaluation of the possibilities offered by such technologies is interesting before any custom development. This can be obtained by testing commercial COTS imagers. This article will present electro-optical performances evolution of off the shelves CMOS imagers after Ionizing Doses until 50kRad(Si) and Displacement Damage environment tests (until 1011 p/cm2 at 50 MeV). Dark current level and non uniformity evolutions are compared and discussed. Relative spectral response measurement and associated evolution with irradiation will also be presented and discussed. Tests have been performed on CNES detection benches.

  7. A CMOS One-chip Wireless Camera with Digital Image Transmission Function for Capsule Endoscopes

    NASA Astrophysics Data System (ADS)

    Itoh, Shinya; Kawahito, Shoji; Terakawa, Susumu

    This paper presents the design and implementation of a one-chip camera device for capsule endoscopes. This experimental chip integrates functional circuits required for capsule endoscopes and digital image transmission function. The integrated functional blocks include an image array, a timing generator, a clock generator, a voltage regulator, a 10b cyclic A/D converter, and a BPSK modulator. It can be operated autonomously with 3 pins (VDD, GND, and DATAOUT). A prototype image sensor chip which has 320x240 effective pixels was fabricated using 0.25μm CMOS image sensor process and the autonomous imaging was demonstrated. The chip size is 4.84mmx4.34mm. With a 2.0 V power supply, the analog part consumes 950μW and the total power consumption at 2 frames per second (fps) is 2.6mW. Error-free image transmission over a distance of 48cm at 2.5Mbps corresponding to 2fps has been succeeded with inductive coupling.

  8. Nano-Multiplication-Region Avalanche Photodiodes and Arrays

    NASA Technical Reports Server (NTRS)

    Zheng, Xinyu; Pain, Bedabrata; Cunningham, Thomas

    2008-01-01

    Nano-multiplication-region avalanche photodiodes (NAPDs), and imaging arrays of NAPDs integrated with complementary metal oxide/semiconductor (CMOS) active-pixel-sensor integrated circuitry, are being developed for applications in which there are requirements for high-sensitivity (including photoncounting) detection and imaging at wavelengths from about 250 to 950 nm. With respect to sensitivity and to such other characteristics as speed, geometric array format, radiation hardness, power demand of associated circuitry, size, weight, and robustness, NAPDs and arrays thereof are expected to be superior to prior photodetectors and arrays including CMOS active-pixel sensors (APSs), charge-coupled devices (CCDs), traditional APDs, and microchannelplate/ CCD combinations. Figure 1 depicts a conceptual NAPD array, integrated with APS circuitry, fabricated on a thick silicon-on-insulator wafer (SOI). Figure 2 presents selected aspects of the structure of a typical single pixel, which would include a metal oxide/semiconductor field-effect transistor (MOSFET) integrated with the NAPD. The NAPDs would reside in silicon islands formed on the buried oxide (BOX) layer of the SOI wafer. The silicon islands would be surrounded by oxide-filled insulation trenches, which, together with the BOX layer, would constitute an oxide embedding structure. There would be two kinds of silicon islands: NAPD islands for the NAPDs and MOSFET islands for in-pixel and global CMOS circuits. Typically, the silicon islands would be made between 5 and 10 m thick, but, if necessary, the thickness could be chosen outside this range. The side walls of the silicon islands would be heavily doped with electron-acceptor impurities (p+-doped) to form anodes for the photodiodes and guard layers for the MOSFETs. A nanoscale reach-through structure at the front (top in the figures) central position of each NAPD island would contain the APD multiplication region. Typically, the reach-through structure would be about 0.1 microns in diameter and between 0.3 and 0.4 nm high. The top layer in the reach-through structure would be heavily doped with electron-donor impurities (n+-doped) to make it act as a cathode. A layer beneath the cathode, between 0.1 and 0.2 nm thick, would be p-doped to a concentration .10(exp 17)cu cm. A thin n+-doped polysilicon pad would be formed on the top of the cathode to protect the cathode against erosion during a metal-silicon alloying step that would be part of the process of fabricating the array.

  9. MEMS capacitive pressure sensor monolithically integrated with CMOS readout circuit by using post CMOS processes

    NASA Astrophysics Data System (ADS)

    Jang, Munseon; Yun, Kwang-Seok

    2017-12-01

    In this paper, we presents a MEMS pressure sensor integrated with a readout circuit on a chip for an on-chip signal processing. The capacitive pressure sensor is formed on a CMOS chip by using a post-CMOS MEMS processes. The proposed device consists of a sensing capacitor that is square in shape, a reference capacitor and a readout circuitry based on a switched-capacitor scheme to detect capacitance change at various environmental pressures. The readout circuit was implemented by using a commercial 0.35 μm CMOS process with 2 polysilicon and 4 metal layers. Then, the pressure sensor was formed by wet etching of metal 2 layer through via hole structures. Experimental results show that the MEMS pressure sensor has a sensitivity of 11 mV/100 kPa at the pressure range of 100-400 kPa.

  10. Radiation hard pixel sensors using high-resistive wafers in a 150 nm CMOS processing line

    NASA Astrophysics Data System (ADS)

    Pohl, D.-L.; Hemperek, T.; Caicedo, I.; Gonella, L.; Hügging, F.; Janssen, J.; Krüger, H.; Macchiolo, A.; Owtscharenko, N.; Vigani, L.; Wermes, N.

    2017-06-01

    Pixel sensors using 8'' CMOS processing technology have been designed and characterized offering the benefits of industrial sensor fabrication, including large wafers, high throughput and yield, as well as low cost. The pixel sensors are produced using a 150 nm CMOS technology offered by LFoundry in Avezzano. The technology provides multiple metal and polysilicon layers, as well as metal-insulator-metal capacitors that can be employed for AC-coupling and redistribution layers. Several prototypes were fabricated and are characterized with minimum ionizing particles before and after irradiation to fluences up to 1.1 × 1015 neq cm-2. The CMOS-fabricated sensors perform equally well as standard pixel sensors in terms of noise and hit detection efficiency. AC-coupled sensors even reach 100% hit efficiency in a 3.2 GeV electron beam before irradiation.

  11. CMOS image sensor-based immunodetection by refractive-index change.

    PubMed

    Devadhasan, Jasmine P; Kim, Sanghyo

    2012-01-01

    A complementary metal oxide semiconductor (CMOS) image sensor is an intriguing technology for the development of a novel biosensor. Indeed, the CMOS image sensor mechanism concerning the detection of the antigen-antibody (Ag-Ab) interaction at the nanoscale has been ambiguous so far. To understand the mechanism, more extensive research has been necessary to achieve point-of-care diagnostic devices. This research has demonstrated a CMOS image sensor-based analysis of cardiovascular disease markers, such as C-reactive protein (CRP) and troponin I, Ag-Ab interactions on indium nanoparticle (InNP) substrates by simple photon count variation. The developed sensor is feasible to detect proteins even at a fg/mL concentration under ordinary room light. Possible mechanisms, such as dielectric constant and refractive-index changes, have been studied and proposed. A dramatic change in the refractive index after protein adsorption on an InNP substrate was observed to be a predominant factor involved in CMOS image sensor-based immunoassay.

  12. Circuit design for the retina-like image sensor based on space-variant lens array

    NASA Astrophysics Data System (ADS)

    Gao, Hongxun; Hao, Qun; Jin, Xuefeng; Cao, Jie; Liu, Yue; Song, Yong; Fan, Fan

    2013-12-01

    Retina-like image sensor is based on the non-uniformity of the human eyes and the log-polar coordinate theory. It has advantages of high-quality data compression and redundant information elimination. However, retina-like image sensors based on the CMOS craft have drawbacks such as high cost, low sensitivity and signal outputting efficiency and updating inconvenience. Therefore, this paper proposes a retina-like image sensor based on space-variant lens array, focusing on the circuit design to provide circuit support to the whole system. The circuit includes the following parts: (1) A photo-detector array with a lens array to convert optical signals to electrical signals; (2) a strobe circuit for time-gating of the pixels and parallel paths for high-speed transmission of the data; (3) a high-precision digital potentiometer for the I-V conversion, ratio normalization and sensitivity adjustment, a programmable gain amplifier for automatic generation control(AGC), and a A/D converter for the A/D conversion in every path; (4) the digital data is displayed on LCD and stored temporarily in DDR2 SDRAM; (5) a USB port to transfer the data to PC; (6) the whole system is controlled by FPGA. This circuit has advantages as lower cost, larger pixels, updating convenience and higher signal outputting efficiency. Experiments have proved that the grayscale output of every pixel basically matches the target and a non-uniform image of the target is ideally achieved in real time. The circuit can provide adequate technical support to retina-like image sensors based on space-variant lens array.

  13. Superresolution with the focused plenoptic camera

    NASA Astrophysics Data System (ADS)

    Georgiev, Todor; Chunev, Georgi; Lumsdaine, Andrew

    2011-03-01

    Digital images from a CCD or CMOS sensor with a color filter array must undergo a demosaicing process to combine the separate color samples into a single color image. This interpolation process can interfere with the subsequent superresolution process. Plenoptic superresolution, which relies on precise sub-pixel sampling across captured microimages, is particularly sensitive to such resampling of the raw data. In this paper we present an approach for superresolving plenoptic images that takes place at the time of demosaicing the raw color image data. Our approach exploits the interleaving provided by typical color filter arrays (e.g., Bayer filter) to further refine plenoptic sub-pixel sampling. Our rendering algorithm treats the color channels in a plenoptic image separately, which improves final superresolution by a factor of two. With appropriate plenoptic capture we show the theoretical possibility for rendering final images at full sensor resolution.

  14. A Fast Multiple Sampling Method for Low-Noise CMOS Image Sensors With Column-Parallel 12-bit SAR ADCs.

    PubMed

    Kim, Min-Kyu; Hong, Seong-Kwan; Kwon, Oh-Kyong

    2015-12-26

    This paper presents a fast multiple sampling method for low-noise CMOS image sensor (CIS) applications with column-parallel successive approximation register analog-to-digital converters (SAR ADCs). The 12-bit SAR ADC using the proposed multiple sampling method decreases the A/D conversion time by repeatedly converting a pixel output to 4-bit after the first 12-bit A/D conversion, reducing noise of the CIS by one over the square root of the number of samplings. The area of the 12-bit SAR ADC is reduced by using a 10-bit capacitor digital-to-analog converter (DAC) with four scaled reference voltages. In addition, a simple up/down counter-based digital processing logic is proposed to perform complex calculations for multiple sampling and digital correlated double sampling. To verify the proposed multiple sampling method, a 256 × 128 pixel array CIS with 12-bit SAR ADCs was fabricated using 0.18 μm CMOS process. The measurement results shows that the proposed multiple sampling method reduces each A/D conversion time from 1.2 μs to 0.45 μs and random noise from 848.3 μV to 270.4 μV, achieving a dynamic range of 68.1 dB and an SNR of 39.2 dB.

  15. Design and fabrication of vertically-integrated CMOS image sensors.

    PubMed

    Skorka, Orit; Joseph, Dileepan

    2011-01-01

    Technologies to fabricate integrated circuits (IC) with 3D structures are an emerging trend in IC design. They are based on vertical stacking of active components to form heterogeneous microsystems. Electronic image sensors will benefit from these technologies because they allow increased pixel-level data processing and device optimization. This paper covers general principles in the design of vertically-integrated (VI) CMOS image sensors that are fabricated by flip-chip bonding. These sensors are composed of a CMOS die and a photodetector die. As a specific example, the paper presents a VI-CMOS image sensor that was designed at the University of Alberta, and fabricated with the help of CMC Microsystems and Micralyne Inc. To realize prototypes, CMOS dies with logarithmic active pixels were prepared in a commercial process, and photodetector dies with metal-semiconductor-metal devices were prepared in a custom process using hydrogenated amorphous silicon. The paper also describes a digital camera that was developed to test the prototype. In this camera, scenes captured by the image sensor are read using an FPGA board, and sent in real time to a PC over USB for data processing and display. Experimental results show that the VI-CMOS prototype has a higher dynamic range and a lower dark limit than conventional electronic image sensors.

  16. Design and Fabrication of Vertically-Integrated CMOS Image Sensors

    PubMed Central

    Skorka, Orit; Joseph, Dileepan

    2011-01-01

    Technologies to fabricate integrated circuits (IC) with 3D structures are an emerging trend in IC design. They are based on vertical stacking of active components to form heterogeneous microsystems. Electronic image sensors will benefit from these technologies because they allow increased pixel-level data processing and device optimization. This paper covers general principles in the design of vertically-integrated (VI) CMOS image sensors that are fabricated by flip-chip bonding. These sensors are composed of a CMOS die and a photodetector die. As a specific example, the paper presents a VI-CMOS image sensor that was designed at the University of Alberta, and fabricated with the help of CMC Microsystems and Micralyne Inc. To realize prototypes, CMOS dies with logarithmic active pixels were prepared in a commercial process, and photodetector dies with metal-semiconductor-metal devices were prepared in a custom process using hydrogenated amorphous silicon. The paper also describes a digital camera that was developed to test the prototype. In this camera, scenes captured by the image sensor are read using an FPGA board, and sent in real time to a PC over USB for data processing and display. Experimental results show that the VI-CMOS prototype has a higher dynamic range and a lower dark limit than conventional electronic image sensors. PMID:22163860

  17. Rapid immuno-analytical system physically integrated with lens-free CMOS image sensor for food-borne pathogens.

    PubMed

    Jeon, Jin-Woo; Kim, Jee-Hyun; Lee, Jong-Mook; Lee, Won-Ho; Lee, Do-Young; Paek, Se-Hwan

    2014-02-15

    To realize an inexpensive, pocket-sized immunosensor system, a rapid test devise based on cross-flow immuno-chromatography was physically combined with a lens-free CMOS image sensor (CIS), which was then applied to the detection of the food-borne pathogen, Salmonella typhimurium (S. typhimurium). Two CISs, each retaining 1.3 mega pixel array, were mounted on a printed circuit board to fabricate a disposable sensing module, being connectable with a signal detection system. For the bacterial analysis, a cellulose membrane-based immunosensing platform, ELISA-on-a-chip (EOC), was employed, being integrated with the CIS module, and the antigen-antibody reaction sites were aligned with the respective sensor. In such sensor construction, the chemiluminescent signals produced from the EOC are transferred directly into the sensors and are converted to electric signals on the detector. The EOC-CIS integrated sensor was capable of detecting a traceable amount of the bacterium (4.22 × 10(3)CFU/mL), nearly comparable to that adopting a sophisticated detector such as cooled-charge-coupled device, while having greatly reduced dimensions and cost. Upon coupling with immuno-magnetic separation, the sensor showed an additional 67-fold enhancement in the detection limit. Furthermore, a real sample test was carried out for fish muscles inoculated with a sample of 3.3CFU S. typhimurium per 10 g, which was able to be detected earlier than 6h after the onset of pre-enrichment by culture. © 2013 Elsevier B.V. All rights reserved.

  18. Design of a multi-axis implantable MEMS sensor for intraosseous bone stress monitoring

    NASA Astrophysics Data System (ADS)

    Alfaro, Fernando; Weiss, Lee; Campbell, Phil; Miller, Mark; Fedder, Gary K.

    2009-08-01

    The capability to assess the biomechanical properties of living bone is important for basic research as well as the clinical management of skeletal trauma and disease. Even though radiodensitometric imaging is commonly used to infer bone quality, bone strength does not necessarily correlate well with these non-invasive measurements. This paper reports on the design, fabrication and initial testing of an implantable ultra-miniature multi-axis sensor for directly measuring bone stresses at a micro-scale. The device, which is fabricated with CMOS-MEMS processes, is intended to be permanently implanted within open fractures, or embedded in bone grafts, or placed on implants at the interfaces between bone and prosthetics. The stress sensor comprises an array of piezoresistive pixels to detect a stress tensor at the interfacial area between the MEMS chip and bone, with a resolution to 100 Pa, in 1 s averaging. The sensor system design and manufacture is also compatible with the integration of wireless RF telemetry, for power and data retrieval, all within a 3 mm × 3 mm × 0.3 mm footprint. The piezoresistive elements are integrated within a textured surface to enhance sensor integration with bone. Finite element analysis led to a sensor design for normal and shear stress detection. A wired sensor was fabricated in the Jazz 0.35 µm BiCMOS process and then embedded in mock bone material to characterize its response to tensile and bending loads up to 250 kPa.

  19. Camera-on-a-Chip

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Jet Propulsion Laboratory's research on a second generation, solid-state image sensor technology has resulted in the Complementary Metal- Oxide Semiconductor Active Pixel Sensor (CMOS), establishing an alternative to the Charged Coupled Device (CCD). Photobit Corporation, the leading supplier of CMOS image sensors, has commercialized two products of their own based on this technology: the PB-100 and PB-300. These devices are cameras on a chip, combining all camera functions. CMOS "active-pixel" digital image sensors offer several advantages over CCDs, a technology used in video and still-camera applications for 30 years. The CMOS sensors draw less energy, they use the same manufacturing platform as most microprocessors and memory chips, and they allow on-chip programming of frame size, exposure, and other parameters.

  20. Displacement damage effects on CMOS APS image sensors induced by neutron irradiation from a nuclear reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zujun, E-mail: wangzujun@nint.ac.cn; Huang, Shaoyan; Liu, Minbo

    The experiments of displacement damage effects on CMOS APS image sensors induced by neutron irradiation from a nuclear reactor are presented. The CMOS APS image sensors are manufactured in the standard 0.35 μm CMOS technology. The flux of neutron beams was about 1.33 × 10{sup 8} n/cm{sup 2}s. The three samples were exposed by 1 MeV neutron equivalent-fluence of 1 × 10{sup 11}, 5 × 10{sup 11}, and 1 × 10{sup 12} n/cm{sup 2}, respectively. The mean dark signal (K{sub D}), dark signal spike, dark signal non-uniformity (DSNU), noise (V{sub N}), saturation output signal voltage (V{sub S}), and dynamic rangemore » (DR) versus neutron fluence are investigated. The degradation mechanisms of CMOS APS image sensors are analyzed. The mean dark signal increase due to neutron displacement damage appears to be proportional to displacement damage dose. The dark images from CMOS APS image sensors irradiated by neutrons are presented to investigate the generation of dark signal spike.« less

  1. A Macroporous TiO2 Oxygen Sensor Fabricated Using Anodic Aluminium Oxide as an Etching Mask

    PubMed Central

    Lu, Chih-Cheng; Huang, Yong-Sheng; Huang, Jun-Wei; Chang, Chien-Kuo; Wu, Sheng-Po

    2010-01-01

    An innovative fabrication method to produce a macroporous Si surface by employing an anodic aluminium oxide (AAO) nanopore array layer as an etching template is presented. Combining AAO with a reactive ion etching (RIE) processes, a homogeneous and macroporous silicon surface can be effectively configured by modulating AAO process parameters and alumina film thickness, thus hopefully replacing conventional photolithography and electrochemical etch methods. The hybrid process integration is considered fully CMOS compatible thanks to the low-temperature AAO and CMOS processes. The gas-sensing characteristics of 50 nm TiO2 nanofilms deposited on the macroporous surface are compared with those of conventional plain (or non-porous) nanofilms to verify reduced response noise and improved sensitivity as a result of their macroporosity. Our experimental results reveal that macroporous geometry of the TiO2 chemoresistive gas sensor demonstrates 2-fold higher (∼33%) improved sensitivity than a non-porous sensor at different levels of oxygen exposure. In addition, the macroporous device exhibits excellent discrimination capability and significantly lessened response noise at 500 °C. Experimental results indicate that the hybrid process of such miniature and macroporous devices are compatible as well as applicable to integrated next generation bio-chemical sensors. PMID:22315561

  2. A macroporous TiO2 oxygen sensor fabricated using anodic aluminium oxide as an etching mask.

    PubMed

    Lu, Chih-Cheng; Huang, Yong-Sheng; Huang, Jun-Wei; Chang, Chien-Kuo; Wu, Sheng-Po

    2010-01-01

    An innovative fabrication method to produce a macroporous Si surface by employing an anodic aluminium oxide (AAO) nanopore array layer as an etching template is presented. Combining AAO with a reactive ion etching (RIE) processes, a homogeneous and macroporous silicon surface can be effectively configured by modulating AAO process parameters and alumina film thickness, thus hopefully replacing conventional photolithography and electrochemical etch methods. The hybrid process integration is considered fully CMOS compatible thanks to the low-temperature AAO and CMOS processes. The gas-sensing characteristics of 50 nm TiO(2) nanofilms deposited on the macroporous surface are compared with those of conventional plain (or non-porous) nanofilms to verify reduced response noise and improved sensitivity as a result of their macroporosity. Our experimental results reveal that macroporous geometry of the TiO(2) chemoresistive gas sensor demonstrates 2-fold higher (∼33%) improved sensitivity than a non-porous sensor at different levels of oxygen exposure. In addition, the macroporous device exhibits excellent discrimination capability and significantly lessened response noise at 500 °C. Experimental results indicate that the hybrid process of such miniature and macroporous devices are compatible as well as applicable to integrated next generation bio-chemical sensors.

  3. A CMOS Humidity Sensor for Passive RFID Sensing Applications

    PubMed Central

    Deng, Fangming; He, Yigang; Zhang, Chaolong; Feng, Wei

    2014-01-01

    This paper presents a low-cost low-power CMOS humidity sensor for passive RFID sensing applications. The humidity sensing element is implemented in standard CMOS technology without any further post-processing, which results in low fabrication costs. The interface of this humidity sensor employs a PLL-based architecture transferring sensor signal processing from the voltage domain to the frequency domain. Therefore this architecture allows the use of a fully digital circuit, which can operate on ultra-low supply voltage and thus achieves low-power consumption. The proposed humidity sensor has been fabricated in the TSMC 0.18 μm CMOS process. The measurements show this humidity sensor exhibits excellent linearity and stability within the relative humidity range. The sensor interface circuit consumes only 1.05 μW at 0.5 V supply voltage and reduces it at least by an order of magnitude compared to previous designs. PMID:24841250

  4. A CMOS humidity sensor for passive RFID sensing applications.

    PubMed

    Deng, Fangming; He, Yigang; Zhang, Chaolong; Feng, Wei

    2014-05-16

    This paper presents a low-cost low-power CMOS humidity sensor for passive RFID sensing applications. The humidity sensing element is implemented in standard CMOS technology without any further post-processing, which results in low fabrication costs. The interface of this humidity sensor employs a PLL-based architecture transferring sensor signal processing from the voltage domain to the frequency domain. Therefore this architecture allows the use of a fully digital circuit, which can operate on ultra-low supply voltage and thus achieves low-power consumption. The proposed humidity sensor has been fabricated in the TSMC 0.18 μm CMOS process. The measurements show this humidity sensor exhibits excellent linearity and stability within the relative humidity range. The sensor interface circuit consumes only 1.05 µW at 0.5 V supply voltage and reduces it at least by an order of magnitude compared to previous designs.

  5. A CMOS Imager with Focal Plane Compression using Predictive Coding

    NASA Technical Reports Server (NTRS)

    Leon-Salas, Walter D.; Balkir, Sina; Sayood, Khalid; Schemm, Nathan; Hoffman, Michael W.

    2007-01-01

    This paper presents a CMOS image sensor with focal-plane compression. The design has a column-level architecture and it is based on predictive coding techniques for image decorrelation. The prediction operations are performed in the analog domain to avoid quantization noise and to decrease the area complexity of the circuit, The prediction residuals are quantized and encoded by a joint quantizer/coder circuit. To save area resources, the joint quantizerlcoder circuit exploits common circuitry between a single-slope analog-to-digital converter (ADC) and a Golomb-Rice entropy coder. This combination of ADC and encoder allows the integration of the entropy coder at the column level. A prototype chip was fabricated in a 0.35 pm CMOS process. The output of the chip is a compressed bit stream. The test chip occupies a silicon area of 2.60 mm x 5.96 mm which includes an 80 X 44 APS array. Tests of the fabricated chip demonstrate the validity of the design.

  6. Radiation Hardening of Digital Color CMOS Camera-on-a-Chip Building Blocks for Multi-MGy Total Ionizing Dose Environments

    NASA Astrophysics Data System (ADS)

    Goiffon, Vincent; Rolando, Sébastien; Corbière, Franck; Rizzolo, Serena; Chabane, Aziouz; Girard, Sylvain; Baer, Jérémy; Estribeau, Magali; Magnan, Pierre; Paillet, Philippe; Van Uffelen, Marco; Mont Casellas, Laura; Scott, Robin; Gaillardin, Marc; Marcandella, Claude; Marcelot, Olivier; Allanche, Timothé

    2017-01-01

    The Total Ionizing Dose (TID) hardness of digital color Camera-on-a-Chip (CoC) building blocks is explored in the Multi-MGy range using 60Co gamma-ray irradiations. The performances of the following CoC subcomponents are studied: radiation hardened (RH) pixel and photodiode designs, RH readout chain, Color Filter Arrays (CFA) and column RH Analog-to-Digital Converters (ADC). Several radiation hardness improvements are reported (on the readout chain and on dark current). CFAs and ADCs degradations appear to be very weak at the maximum TID of 6 MGy(SiO2), 600 Mrad. In the end, this study demonstrates the feasibility of a MGy rad-hard CMOS color digital camera-on-a-chip, illustrated by a color image captured after 6 MGy(SiO2) with no obvious degradation. An original dark current reduction mechanism in irradiated CMOS Image Sensors is also reported and discussed.

  7. Giga-pixel lensfree holographic microscopy and tomography using color image sensors.

    PubMed

    Isikman, Serhan O; Greenbaum, Alon; Luo, Wei; Coskun, Ahmet F; Ozcan, Aydogan

    2012-01-01

    We report Giga-pixel lensfree holographic microscopy and tomography using color sensor-arrays such as CMOS imagers that exhibit Bayer color filter patterns. Without physically removing these color filters coated on the sensor chip, we synthesize pixel super-resolved lensfree holograms, which are then reconstructed to achieve ~350 nm lateral resolution, corresponding to a numerical aperture of ~0.8, across a field-of-view of ~20.5 mm(2). This constitutes a digital image with ~0.7 Billion effective pixels in both amplitude and phase channels (i.e., ~1.4 Giga-pixels total). Furthermore, by changing the illumination angle (e.g., ± 50°) and scanning a partially-coherent light source across two orthogonal axes, super-resolved images of the same specimen from different viewing angles are created, which are then digitally combined to synthesize tomographic images of the object. Using this dual-axis lensfree tomographic imager running on a color sensor-chip, we achieve a 3D spatial resolution of ~0.35 µm × 0.35 µm × ~2 µm, in x, y and z, respectively, creating an effective voxel size of ~0.03 µm(3) across a sample volume of ~5 mm(3), which is equivalent to >150 Billion voxels. We demonstrate the proof-of-concept of this lensfree optical tomographic microscopy platform on a color CMOS image sensor by creating tomograms of micro-particles as well as a wild-type C. elegans nematode.

  8. MT3250BA: a 320×256-50µm snapshot microbolometer ROIC for high-resistance detector arrays

    NASA Astrophysics Data System (ADS)

    Eminoglu, Selim; Akin, Tayfun

    2013-06-01

    This paper reports the development of a new microbolometer readout integrated circuit (MT3250BA) designed for high-resistance detector arrays. MT3250BA is the first microbolometer readout integrated circuit (ROIC) product from Mikro-Tasarim Ltd., which is a fabless IC design house specialized in the development of monolithic CMOS imaging sensors and ROICs for hybrid photonic imaging sensors and microbolometers. MT3250BA has a format of 320 × 256 and a pixel pitch of 50 µm, developed with a system-on-chip architecture in mind, where all the timing and biasing for this ROIC are generated on-chip without requiring any external inputs. MT3250BA is a highly configurable ROIC, where many of its features can be programmed through a 3-wire serial interface allowing on-the-fly configuration of many ROIC features. MT3250BA has 2 analog video outputs and 1 analog reference output for pseudo-differential operation, and the ROIC can be programmed to operate in the 1 or 2-output modes. A unique feature of MT3250BA is that it performs snapshot readout operation; therefore, the image quality will only be limited by the thermal time constant of the detector pixels, but not by the scanning speed of the ROIC, as commonly found in the conventional microbolometer ROICs performing line-by-line (rolling-line) readout operation. The signal integration is performed at the pixel level in parallel for the whole array, and signal integration time can be programmed from 0.1 µs up to 100 ms in steps of 0.1 µs. The ROIC is designed to work with high-resistance detector arrays with pixel resistance values higher than 250 kΩ. The detector bias voltage can be programmed on-chip over a 2 V range with a resolution of 1 mV. The ROIC has a measured input referred noise of 260 µV rms at 300 K. The ROIC can be used to build a microbolometer infrared sensor with an NETD value below 100 mK using a microbolometer detector array fabrication technology with a high detector resistance value (≥ 250 KΩ), a high TCR value (≥ 2.5 % / K), and a sufficiently low pixel thermal conductance (Gth ≤ 20 nW / K). The ROIC uses a single 3.3 V supply voltage and dissipates less than 75 mW in the 1-output mode at 60 fps. MT3250BA is fabricated using a mixed-signal CMOS process on 200 mm CMOS wafers, and tested wafers are available with test data and wafer map. A USB based compact test electronics and software are available for quick evaluation of this new microbolometer ROIC.

  9. Efficient demodulation scheme for rolling-shutter-patterning of CMOS image sensor based visible light communications.

    PubMed

    Chen, Chia-Wei; Chow, Chi-Wai; Liu, Yang; Yeh, Chien-Hung

    2017-10-02

    Recently even the low-end mobile-phones are equipped with a high-resolution complementary-metal-oxide-semiconductor (CMOS) image sensor. This motivates using a CMOS image sensor for visible light communication (VLC). Here we propose and demonstrate an efficient demodulation scheme to synchronize and demodulate the rolling shutter pattern in image sensor based VLC. The implementation algorithm is discussed. The bit-error-rate (BER) performance and processing latency are evaluated and compared with other thresholding schemes.

  10. CMOS image sensors as an efficient platform for glucose monitoring.

    PubMed

    Devadhasan, Jasmine Pramila; Kim, Sanghyo; Choi, Cheol Soo

    2013-10-07

    Complementary metal oxide semiconductor (CMOS) image sensors have been used previously in the analysis of biological samples. In the present study, a CMOS image sensor was used to monitor the concentration of oxidized mouse plasma glucose (86-322 mg dL(-1)) based on photon count variation. Measurement of the concentration of oxidized glucose was dependent on changes in color intensity; color intensity increased with increasing glucose concentration. The high color density of glucose highly prevented photons from passing through the polydimethylsiloxane (PDMS) chip, which suggests that the photon count was altered by color intensity. Photons were detected by a photodiode in the CMOS image sensor and converted to digital numbers by an analog to digital converter (ADC). Additionally, UV-spectral analysis and time-dependent photon analysis proved the efficiency of the detection system. This simple, effective, and consistent method for glucose measurement shows that CMOS image sensors are efficient devices for monitoring glucose in point-of-care applications.

  11. Studies for a 10 μs, thin, high resolution CMOS pixel sensor for future vertex detectors

    NASA Astrophysics Data System (ADS)

    Voutsinas, G.; Amar-Youcef, S.; Baudot, J.; Bertolone, G.; Brogna, A.; Chon-Sen, N.; Claus, G.; Colledani, C.; Dorokhov, A.; Dozière, G.; Dulinski, W.; Degerli, Y.; De Masi, R.; Deveaux, M.; Gelin, M.; Goffe, M.; Hu-Guo, Ch.; Himmi, A.; Jaaskelainen, K.; Koziel, M.; Morel, F.; Müntz, C.; Orsini, F.; Santos, C.; Schrader, C.; Specht, M.; Stroth, J.; Valin, I.; Wagner, F. M.; Winter, M.

    2011-06-01

    Future high energy physics (HEP) experiments require detectors with unprecedented performances for track and vertex reconstruction. These requirements call for high precision sensors, with low material budget and short integration time. The development of CMOS sensors for HEP applications was initiated at IPHC Strasbourg more than 10 years ago, motivated by the needs for vertex detectors at the International Linear Collider (ILC) [R. Turchetta et al, NIM A 458 (2001) 677]. Since then several other applications emerged. The first real scale digital CMOS sensor MIMOSA26 equips Flavour Tracker at RHIC, as well as for the microvertex detector of the CBM experiment at FAIR. MIMOSA sensors may also offer attractive performances for the ALICE upgrade at LHC. This paper will demonstrate the substantial performance improvement of CMOS sensors based on a high resistivity epitaxial layer. First studies for integrating the sensors into a detector system will be addressed and finally the way to go to a 10 μs readout sensor will be discussed.

  12. Toward CMOS image sensor based glucose monitoring.

    PubMed

    Devadhasan, Jasmine Pramila; Kim, Sanghyo

    2012-09-07

    Complementary metal oxide semiconductor (CMOS) image sensor is a powerful tool for biosensing applications. In this present study, CMOS image sensor has been exploited for detecting glucose levels by simple photon count variation with high sensitivity. Various concentrations of glucose (100 mg dL(-1) to 1000 mg dL(-1)) were added onto a simple poly-dimethylsiloxane (PDMS) chip and the oxidation of glucose was catalyzed with the aid of an enzymatic reaction. Oxidized glucose produces a brown color with the help of chromogen during enzymatic reaction and the color density varies with the glucose concentration. Photons pass through the PDMS chip with varying color density and hit the sensor surface. Photon count was recognized by CMOS image sensor depending on the color density with respect to the glucose concentration and it was converted into digital form. By correlating the obtained digital results with glucose concentration it is possible to measure a wide range of blood glucose levels with great linearity based on CMOS image sensor and therefore this technique will promote a convenient point-of-care diagnosis.

  13. Registration of Large Motion Blurred Images

    DTIC Science & Technology

    2016-05-09

    in handling the dynamics of the capturing system, for example, a drone. CMOS sensors , used in recent times, when employed in these cameras produce...handling the dynamics of the capturing system, for example, a drone. CMOS sensors , used in recent times, when employed in these cameras produce two types...blur in the captured image when there is camera motion during exposure. However, contemporary CMOS sensors employ an electronic rolling shutter (RS

  14. Applications of the Integrated High-Performance CMOS Image Sensor to Range Finders - from Optical Triangulation to the Automotive Field.

    PubMed

    Wu, Jih-Huah; Pen, Cheng-Chung; Jiang, Joe-Air

    2008-03-13

    With their significant features, the applications of complementary metal-oxidesemiconductor (CMOS) image sensors covers a very extensive range, from industrialautomation to traffic applications such as aiming systems, blind guidance, active/passiverange finders, etc. In this paper CMOS image sensor-based active and passive rangefinders are presented. The measurement scheme of the proposed active/passive rangefinders is based on a simple triangulation method. The designed range finders chieflyconsist of a CMOS image sensor and some light sources such as lasers or LEDs. Theimplementation cost of our range finders is quite low. Image processing software to adjustthe exposure time (ET) of the CMOS image sensor to enhance the performance oftriangulation-based range finders was also developed. An extensive series of experimentswere conducted to evaluate the performance of the designed range finders. From theexperimental results, the distance measurement resolutions achieved by the active rangefinder and the passive range finder can be better than 0.6% and 0.25% within themeasurement ranges of 1 to 8 m and 5 to 45 m, respectively. Feasibility tests onapplications of the developed CMOS image sensor-based range finders to the automotivefield were also conducted. The experimental results demonstrated that our range finders arewell-suited for distance measurements in this field.

  15. Organic-on-silicon complementary metal-oxide-semiconductor colour image sensors.

    PubMed

    Lim, Seon-Jeong; Leem, Dong-Seok; Park, Kyung-Bae; Kim, Kyu-Sik; Sul, Sangchul; Na, Kyoungwon; Lee, Gae Hwang; Heo, Chul-Joon; Lee, Kwang-Hee; Bulliard, Xavier; Satoh, Ryu-Ichi; Yagi, Tadao; Ro, Takkyun; Im, Dongmo; Jung, Jungkyu; Lee, Myungwon; Lee, Tae-Yon; Han, Moon Gyu; Jin, Yong Wan; Lee, Sangyoon

    2015-01-12

    Complementary metal-oxide-semiconductor (CMOS) colour image sensors are representative examples of light-detection devices. To achieve extremely high resolutions, the pixel sizes of the CMOS image sensors must be reduced to less than a micron, which in turn significantly limits the number of photons that can be captured by each pixel using silicon (Si)-based technology (i.e., this reduction in pixel size results in a loss of sensitivity). Here, we demonstrate a novel and efficient method of increasing the sensitivity and resolution of the CMOS image sensors by superposing an organic photodiode (OPD) onto a CMOS circuit with Si photodiodes, which consequently doubles the light-input surface area of each pixel. To realise this concept, we developed organic semiconductor materials with absorption properties selective to green light and successfully fabricated highly efficient green-light-sensitive OPDs without colour filters. We found that such a top light-receiving OPD, which is selective to specific green wavelengths, demonstrates great potential when combined with a newly designed Si-based CMOS circuit containing only blue and red colour filters. To demonstrate the effectiveness of this state-of-the-art hybrid colour image sensor, we acquired a real full-colour image using a camera that contained the organic-on-Si hybrid CMOS colour image sensor.

  16. Organic-on-silicon complementary metal–oxide–semiconductor colour image sensors

    PubMed Central

    Lim, Seon-Jeong; Leem, Dong-Seok; Park, Kyung-Bae; Kim, Kyu-Sik; Sul, Sangchul; Na, Kyoungwon; Lee, Gae Hwang; Heo, Chul-Joon; Lee, Kwang-Hee; Bulliard, Xavier; Satoh, Ryu-Ichi; Yagi, Tadao; Ro, Takkyun; Im, Dongmo; Jung, Jungkyu; Lee, Myungwon; Lee, Tae-Yon; Han, Moon Gyu; Jin, Yong Wan; Lee, Sangyoon

    2015-01-01

    Complementary metal–oxide–semiconductor (CMOS) colour image sensors are representative examples of light-detection devices. To achieve extremely high resolutions, the pixel sizes of the CMOS image sensors must be reduced to less than a micron, which in turn significantly limits the number of photons that can be captured by each pixel using silicon (Si)-based technology (i.e., this reduction in pixel size results in a loss of sensitivity). Here, we demonstrate a novel and efficient method of increasing the sensitivity and resolution of the CMOS image sensors by superposing an organic photodiode (OPD) onto a CMOS circuit with Si photodiodes, which consequently doubles the light-input surface area of each pixel. To realise this concept, we developed organic semiconductor materials with absorption properties selective to green light and successfully fabricated highly efficient green-light-sensitive OPDs without colour filters. We found that such a top light-receiving OPD, which is selective to specific green wavelengths, demonstrates great potential when combined with a newly designed Si-based CMOS circuit containing only blue and red colour filters. To demonstrate the effectiveness of this state-of-the-art hybrid colour image sensor, we acquired a real full-colour image using a camera that contained the organic-on-Si hybrid CMOS colour image sensor. PMID:25578322

  17. Surface-modified CMOS IC electrochemical sensor array targeting single chromaffin cells for highly parallel amperometry measurements.

    PubMed

    Huang, Meng; Delacruz, Joannalyn B; Ruelas, John C; Rathore, Shailendra S; Lindau, Manfred

    2018-01-01

    Amperometry is a powerful method to record quantal release events from chromaffin cells and is widely used to assess how specific drugs modify quantal size, kinetics of release, and early fusion pore properties. Surface-modified CMOS-based electrochemical sensor arrays allow simultaneous recordings from multiple cells. A reliable, low-cost technique is presented here for efficient targeting of single cells specifically to the electrode sites. An SU-8 microwell structure is patterned on the chip surface to provide insulation for the circuitry as well as cell trapping at the electrode sites. A shifted electrode design is also incorporated to increase the flexibility of the dimension and shape of the microwells. The sensitivity of the electrodes is validated by a dopamine injection experiment. Microwells with dimensions slightly larger than the cells to be trapped ensure excellent single-cell targeting efficiency, increasing the reliability and efficiency for on-chip single-cell amperometry measurements. The surface-modified device was validated with parallel recordings of live chromaffin cells trapped in the microwells. Rapid amperometric spikes with no diffusional broadening were observed, indicating that the trapped and recorded cells were in very close contact with the electrodes. The live cell recording confirms in a single experiment that spike parameters vary significantly from cell to cell but the large number of cells recorded simultaneously provides the statistical significance.

  18. High-speed imaging using CMOS image sensor with quasi pixel-wise exposure

    NASA Astrophysics Data System (ADS)

    Sonoda, T.; Nagahara, H.; Endo, K.; Sugiyama, Y.; Taniguchi, R.

    2017-02-01

    Several recent studies in compressive video sensing have realized scene capture beyond the fundamental trade-off limit between spatial resolution and temporal resolution using random space-time sampling. However, most of these studies showed results for higher frame rate video that were produced by simulation experiments or using an optically simulated random sampling camera, because there are currently no commercially available image sensors with random exposure or sampling capabilities. We fabricated a prototype complementary metal oxide semiconductor (CMOS) image sensor with quasi pixel-wise exposure timing that can realize nonuniform space-time sampling. The prototype sensor can reset exposures independently by columns and fix these amount of exposure by rows for each 8x8 pixel block. This CMOS sensor is not fully controllable via the pixels, and has line-dependent controls, but it offers flexibility when compared with regular CMOS or charge-coupled device sensors with global or rolling shutters. We propose a method to realize pseudo-random sampling for high-speed video acquisition that uses the flexibility of the CMOS sensor. We reconstruct the high-speed video sequence from the images produced by pseudo-random sampling using an over-complete dictionary.

  19. Carbon Nanotube Integration with a CMOS Process

    PubMed Central

    Perez, Maximiliano S.; Lerner, Betiana; Resasco, Daniel E.; Pareja Obregon, Pablo D.; Julian, Pedro M.; Mandolesi, Pablo S.; Buffa, Fabian A.; Boselli, Alfredo; Lamagna, Alberto

    2010-01-01

    This work shows the integration of a sensor based on carbon nanotubes using CMOS technology. A chip sensor (CS) was designed and manufactured using a 0.30 μm CMOS process, leaving a free window on the passivation layer that allowed the deposition of SWCNTs over the electrodes. We successfully investigated with the CS the effect of humidity and temperature on the electrical transport properties of SWCNTs. The possibility of a large scale integration of SWCNTs with CMOS process opens a new route in the design of more efficient, low cost sensors with high reproducibility in their manufacture. PMID:22319330

  20. Image sensor pixel with on-chip high extinction ratio polarizer based on 65-nm standard CMOS technology.

    PubMed

    Sasagawa, Kiyotaka; Shishido, Sanshiro; Ando, Keisuke; Matsuoka, Hitoshi; Noda, Toshihiko; Tokuda, Takashi; Kakiuchi, Kiyomi; Ohta, Jun

    2013-05-06

    In this study, we demonstrate a polarization sensitive pixel for a complementary metal-oxide-semiconductor (CMOS) image sensor based on 65-nm standard CMOS technology. Using such a deep-submicron CMOS technology, it is possible to design fine metal patterns smaller than the wavelengths of visible light by using a metal wire layer. We designed and fabricated a metal wire grid polarizer on a 20 × 20 μm(2) pixel for image sensor. An extinction ratio of 19.7 dB was observed at a wavelength 750 nm.

  1. A CMOS image sensor with stacked photodiodes for lensless observation system of digital enzyme-linked immunosorbent assay

    NASA Astrophysics Data System (ADS)

    Takehara, Hironari; Miyazawa, Kazuya; Noda, Toshihiko; Sasagawa, Kiyotaka; Tokuda, Takashi; Kim, Soo Hyeon; Iino, Ryota; Noji, Hiroyuki; Ohta, Jun

    2014-01-01

    A CMOS image sensor with stacked photodiodes was fabricated using 0.18 µm mixed signal CMOS process technology. Two photodiodes were stacked at the same position of each pixel of the CMOS image sensor. The stacked photodiodes consist of shallow high-concentration N-type layer (N+), P-type well (PW), deep N-type well (DNW), and P-type substrate (P-sub). PW and P-sub were shorted to ground. By monitoring the voltage of N+ and DNW individually, we can observe two monochromatic colors simultaneously without using any color filters. The CMOS image sensor is suitable for fluorescence imaging, especially contact imaging such as a lensless observation system of digital enzyme-linked immunosorbent assay (ELISA). Since the fluorescence increases with time in digital ELISA, it is possible to observe fluorescence accurately by calculating the difference from the initial relation between the pixel values for both photodiodes.

  2. Gun muzzle flash detection using a single photon avalanche diode array in 0.18µm CMOS technology

    NASA Astrophysics Data System (ADS)

    Savuskan, Vitali; Jakobson, Claudio; Merhav, Tomer; Shoham, Avi; Brouk, Igor; Nemirovsky, Yael

    2015-05-01

    In this study, a CMOS Single Photon Avalanche Diode (SPAD) 2D array is used to record and sample muzzle flash events in the visible spectrum, from representative weapons. SPADs detect the emission peaks of alkali salts, potassium or sodium, with spectral emission lines around 769nm and 589nm, respectively. The alkali salts are included in the gunpowder to suppress secondary flashes ignited during the muzzle flash event. The SPADs possess two crucial properties for muzzle flash imaging: (i) very high photon detection sensitivity, (ii) a unique ability to convert the optical signal to a digital signal at the source pixel, thus practically eliminating readout noise. The sole noise sources are the ones prior to the readout circuitry (optical signal distribution, avalanche initiation distribution and nonphotonic generation). This enables high sampling frequencies in the kilohertz range without significant SNR degradation, in contrast to regular CMOS image sensors. This research will demonstrate the SPAD's ability to accurately sample and reconstruct the temporal behavior of the muzzle flash in the visible wavelength, in the presence of sunlight. The reconstructed signal is clearly distinguishable from background clutter, through exploitation of flash temporal characteristics and signal processing, which will be reported. The frame rate of ~16 KHz was chosen as an optimum between SNR degradation and temporal profile recognition accuracy. In contrast to a single SPAD, the 2D array allows for multiple events to be processed simultaneously. Moreover, a significant field of view is covered, enabling comprehensive surveillance and imaging.

  3. A safety monitoring system for taxi based on CMOS imager

    NASA Astrophysics Data System (ADS)

    Liu, Zhi

    2005-01-01

    CMOS image sensors now become increasingly competitive with respect to their CCD counterparts, while adding advantages such as no blooming, simpler driving requirements and the potential of on-chip integration of sensor, analogue circuitry, and digital processing functions. A safety monitoring system for taxi based on cmos imager that can record field situation when unusual circumstance happened is described in this paper. The monitoring system is based on a CMOS imager (OV7120), which can output digital image data through parallel pixel data port. The system consists of a CMOS image sensor, a large capacity NAND FLASH ROM, a USB interface chip and a micro controller (AT90S8515). The structure of whole system and the test data is discussed and analyzed in detail.

  4. Heavy Ion Transient Characterization of a Photobit Hardened-by-Design Active Pixel Sensor Array

    NASA Technical Reports Server (NTRS)

    Marshall, Paul W.; Byers, Wheaton B.; Conger, Christopher; Eid, El-Sayed; Gee, George; Jones, Michael R.; Marshall, Cheryl J.; Reed, Robert; Pickel, Jim; Kniffin, Scott

    2002-01-01

    This paper presents heavy ion data on the single event transient (SET) response of a Photobit active pixel sensor (APS) four quadrant test chip with different radiation tolerant designs in a standard 0.35 micron CMOS process. The physical design techniques of enclosed geometry and P-channel guard rings are used to design the four N-type active photodiode pixels as described in a previous paper. Argon transient measurements on the 256 x 256 chip array as a function of incident angle show a significant variation in the amount of charge collected as well as the charge spreading dependent on the pixel type. The results are correlated with processing and design information provided by Photobit. In addition, there is a large degree of statistical variability between individual ion strikes. No latch-up is observed up to an LET of 106 MeV/mg/sq cm.

  5. A low-cost CMOS-MEMS piezoresistive accelerometer with large proof mass.

    PubMed

    Khir, Mohd Haris Md; Qu, Peng; Qu, Hongwei

    2011-01-01

    This paper reports a low-cost, high-sensitivity CMOS-MEMS piezoresistive accelerometer with large proof mass. In the device fabricated using ON Semiconductor 0.5 μm CMOS technology, an inherent CMOS polysilicon thin film is utilized as the piezoresistive sensing material. A full Wheatstone bridge was constructed through easy wiring allowed by the three metal layers in the 0.5 μm CMOS technology. The device fabrication process consisted of a standard CMOS process for sensor configuration, and a deep reactive ion etching (DRIE) based post-CMOS microfabrication for MEMS structure release. A bulk single-crystal silicon (SCS) substrate is included in the proof mass to increase sensor sensitivity. In device design and analysis, the self heating of the polysilicon piezoresistors and its effect to the sensor performance is also discussed. With a low operating power of 1.5 mW, the accelerometer demonstrates a sensitivity of 0.077 mV/g prior to any amplification. Dynamic tests have been conducted with a high-end commercial calibrating accelerometer as reference.

  6. Pixel super resolution using wavelength scanning

    DTIC Science & Technology

    2016-04-08

    the light source is adjusted to ~20 μW. The image sensor chip is a color CMOS sensor chip with a pixel size of 1.12 μm manufactured for cellphone...pitch (that is, ~ 1 μm in Figure 3a, using a CMOS sensor that has a 1.12-μm pixel pitch). For the same configuration depicted in Figure 3, utilizing...section). The a Lens-free raw holograms captured by 1.12 μm CMOS image sensor Field of view ≈ 20.5 mm2 Angle change directions for synthetic aperture

  7. CMOS sensor as charged particles and ionizing radiation detector

    NASA Astrophysics Data System (ADS)

    Cruz-Zaragoza, E.; Piña López, I.

    2015-01-01

    This paper reports results of CMOS sensor suitable for use as charged particles and ionizing radiation detector. The CMOS sensor with 640 × 480 pixels area has been integrated into an electronic circuit for detection of ionizing radiation and it was exposed to alpha particle (Am-241, Unat), beta (Sr-90), and gamma photons (Cs-137). Results show after long period of time (168 h) irradiation the sensor had not loss of functionality and also the energy of the charge particles and photons were very well obtained.

  8. Monolithic CMUT on CMOS Integration for Intravascular Ultrasound Applications

    PubMed Central

    Zahorian, Jaime; Hochman, Michael; Xu, Toby; Satir, Sarp; Gurun, Gokce; Karaman, Mustafa; Degertekin, F. Levent

    2012-01-01

    One of the most important promises of capacitive micromachined ultrasonic transducer (CMUT) technology is integration with electronics. This approach is required to minimize the parasitic capacitances in the receive mode, especially in catheter based volumetric imaging arrays where the elements need to be small. Furthermore, optimization of the available silicon area and minimized number of connections occurs when the CMUTs are fabricated directly above the associated electronics. Here, we describe successful fabrication and performance evaluation of CMUT arrays for intravascular imaging on custom designed CMOS receiver electronics from a commercial IC foundry. The CMUT on CMOS process starts with surface isolation and mechanical planarization of the CMOS electronics to reduce topography. The rest of the CMUT fabrication is achieved by modifying a low temperature micromachining process through the addition of a single mask and developing a dry etching step to produce sloped sidewalls for simple and reliable CMUT to CMOS interconnection. This CMUT to CMOS interconnect method reduced the parasitic capacitance by a factor of 200 when compared with a standard wire bonding method. Characterization experiments indicate that the CMUT on CMOS elements are uniform in frequency response and are similar to CMUTs simultaneously fabricated on standard silicon wafers without electronics integration. Experiments on a 1.6 mm diameter dual-ring CMUT array with a 15 MHz center frequency show that both the CMUTs and the integrated CMOS electronics are fully functional. The SNR measurements indicate that the performance is adequate for imaging CTOs located 1 cm away from the CMUT array. PMID:23443701

  9. Real-time, multiplexed electrochemical DNA detection using an active complementary metal-oxide-semiconductor biosensor array with integrated sensor electronics.

    PubMed

    Levine, Peter M; Gong, Ping; Levicky, Rastislav; Shepard, Kenneth L

    2009-03-15

    Optical biosensing based on fluorescence detection has arguably become the standard technique for quantifying extents of hybridization between surface-immobilized probes and fluorophore-labeled analyte targets in DNA microarrays. However, electrochemical detection techniques are emerging which could eliminate the need for physically bulky optical instrumentation, enabling the design of portable devices for point-of-care applications. Unlike fluorescence detection, which can function well using a passive substrate (one without integrated electronics), multiplexed electrochemical detection requires an electronically active substrate to analyze each array site and benefits from the addition of integrated electronic instrumentation to further reduce platform size and eliminate the electromagnetic interference that can result from bringing non-amplified signals off chip. We report on an active electrochemical biosensor array, constructed with a standard complementary metal-oxide-semiconductor (CMOS) technology, to perform quantitative DNA hybridization detection on chip using targets conjugated with ferrocene redox labels. A 4 x 4 array of gold working electrodes and integrated potentiostat electronics, consisting of control amplifiers and current-input analog-to-digital converters, on a custom-designed 5 mm x 3 mm CMOS chip drive redox reactions using cyclic voltammetry, sense DNA binding, and transmit digital data off chip for analysis. We demonstrate multiplexed and specific detection of DNA targets as well as real-time monitoring of hybridization, a task that is difficult, if not impossible, with traditional fluorescence-based microarrays.

  10. JPL CMOS Active Pixel Sensor Technology

    NASA Technical Reports Server (NTRS)

    Fossum, E. R.

    1995-01-01

    This paper will present the JPL-developed complementary metal- oxide-semiconductor (CMOS) active pixel sensor (APS) technology. The CMOS APS has achieved performance comparable to charge coupled devices, yet features ultra low power operation, random access readout, on-chip timing and control, and on-chip analog to digital conversion. Previously published open literature will be reviewed.

  11. High speed CMOS acquisition system based on FPGA embedded image processing for electro-optical measurements

    NASA Astrophysics Data System (ADS)

    Rosu-Hamzescu, Mihnea; Polonschii, Cristina; Oprea, Sergiu; Popescu, Dragos; David, Sorin; Bratu, Dumitru; Gheorghiu, Eugen

    2018-06-01

    Electro-optical measurements, i.e., optical waveguides and plasmonic based electrochemical impedance spectroscopy (P-EIS), are based on the sensitive dependence of refractive index of electro-optical sensors on surface charge density, modulated by an AC electrical field applied to the sensor surface. Recently, P-EIS has emerged as a new analytical tool that can resolve local impedance with high, optical spatial resolution, without using microelectrodes. This study describes a high speed image acquisition and processing system for electro-optical measurements, based on a high speed complementary metal-oxide semiconductor (CMOS) sensor and a field-programmable gate array (FPGA) board. The FPGA is used to configure CMOS parameters, as well as to receive and locally process the acquired images by performing Fourier analysis for each pixel, deriving the real and imaginary parts of the Fourier coefficients for the AC field frequencies. An AC field generator, for single or multi-sine signals, is synchronized with the high speed acquisition system for phase measurements. The system was successfully used for real-time angle-resolved electro-plasmonic measurements from 30 Hz up to 10 kHz, providing results consistent to ones obtained by a conventional electrical impedance approach. The system was able to detect amplitude variations with a relative variation of ±1%, even for rather low sampling rates per period (i.e., 8 samples per period). The PC (personal computer) acquisition and control software allows synchronized acquisition for multiple FPGA boards, making it also suitable for simultaneous angle-resolved P-EIS imaging.

  12. Applications of the Integrated High-Performance CMOS Image Sensor to Range Finders — from Optical Triangulation to the Automotive Field

    PubMed Central

    Wu, Jih-Huah; Pen, Cheng-Chung; Jiang, Joe-Air

    2008-01-01

    With their significant features, the applications of complementary metal-oxide semiconductor (CMOS) image sensors covers a very extensive range, from industrial automation to traffic applications such as aiming systems, blind guidance, active/passive range finders, etc. In this paper CMOS image sensor-based active and passive range finders are presented. The measurement scheme of the proposed active/passive range finders is based on a simple triangulation method. The designed range finders chiefly consist of a CMOS image sensor and some light sources such as lasers or LEDs. The implementation cost of our range finders is quite low. Image processing software to adjust the exposure time (ET) of the CMOS image sensor to enhance the performance of triangulation-based range finders was also developed. An extensive series of experiments were conducted to evaluate the performance of the designed range finders. From the experimental results, the distance measurement resolutions achieved by the active range finder and the passive range finder can be better than 0.6% and 0.25% within the measurement ranges of 1 to 8 m and 5 to 45 m, respectively. Feasibility tests on applications of the developed CMOS image sensor-based range finders to the automotive field were also conducted. The experimental results demonstrated that our range finders are well-suited for distance measurements in this field. PMID:27879789

  13. Carrier Plus: A sensor payload for Living With a Star Space Environment Testbed (LWS/SET)

    NASA Technical Reports Server (NTRS)

    Marshall, Cheryl J.; Moss, Steven; Howard, Regan; LaBel, Kenneth A.; Grycewicz, Tom; Barth, Janet L.; Brewer, Dana

    2003-01-01

    The Defense Threat Reduction Agency (DTR4) and National Aeronautics and Space Administration (NASA) Goddard Space Flight Center are collaborating to develop the Carrier Plus sensor experiment platform as a capability of the Space Environments Testbed (SET). The Space Environment Testbed (SET) provides flight opportunities for technology experiments as part of NASA's Living With a Star (LWS) program. The Carrier Plus will provide new capability to characterize sensor technologies such as state-of-the-art visible focal plane arrays (FPAs) in a natural space radiation environment. The technical objectives include on-orbit validation of recently developed FPA technologies and performance prediction methodologies, as well as characterization of the FPA radiation response to total ionizing dose damage, displacement damage and transients. It is expected that the sensor experiment will carry 4-6 FPAs and associated radiation correlative environment monitors (CEMs) for a 2006-2007 launch. Sensor technology candidates may include n- and p-charge coupled devices (CCDs), active pixel sensors (APS), and hybrid CMOS arrays. The presentation will describe the Carrier Plus goals and objectives, as well as provide details about the architecture and design. More information on the LWS program can be found at http://lws.gsfc.nasa.gov/. Business announcements for LWS/SET and program briefings are posted at http://lws-set.gsfc.nasa.gov

  14. A Fast Multiple Sampling Method for Low-Noise CMOS Image Sensors With Column-Parallel 12-bit SAR ADCs

    PubMed Central

    Kim, Min-Kyu; Hong, Seong-Kwan; Kwon, Oh-Kyong

    2015-01-01

    This paper presents a fast multiple sampling method for low-noise CMOS image sensor (CIS) applications with column-parallel successive approximation register analog-to-digital converters (SAR ADCs). The 12-bit SAR ADC using the proposed multiple sampling method decreases the A/D conversion time by repeatedly converting a pixel output to 4-bit after the first 12-bit A/D conversion, reducing noise of the CIS by one over the square root of the number of samplings. The area of the 12-bit SAR ADC is reduced by using a 10-bit capacitor digital-to-analog converter (DAC) with four scaled reference voltages. In addition, a simple up/down counter-based digital processing logic is proposed to perform complex calculations for multiple sampling and digital correlated double sampling. To verify the proposed multiple sampling method, a 256 × 128 pixel array CIS with 12-bit SAR ADCs was fabricated using 0.18 μm CMOS process. The measurement results shows that the proposed multiple sampling method reduces each A/D conversion time from 1.2 μs to 0.45 μs and random noise from 848.3 μV to 270.4 μV, achieving a dynamic range of 68.1 dB and an SNR of 39.2 dB. PMID:26712765

  15. Solution processed integrated pixel element for an imaging device

    NASA Astrophysics Data System (ADS)

    Swathi, K.; Narayan, K. S.

    2016-09-01

    We demonstrate the implementation of a solid state circuit/structure comprising of a high performing polymer field effect transistor (PFET) utilizing an oxide layer in conjunction with a self-assembled monolayer (SAM) as the dielectric and a bulk-heterostructure based organic photodiode as a CMOS-like pixel element for an imaging sensor. Practical usage of functional organic photon detectors requires on chip components for image capture and signal transfer as in the CMOS/CCD architecture rather than simple photodiode arrays in order to increase speed and sensitivity of the sensor. The availability of high performing PFETs with low operating voltage and photodiodes with high sensitivity provides the necessary prerequisite to implement a CMOS type image sensing device structure based on organic electronic devices. Solution processing routes in organic electronics offers relatively facile procedures to integrate these components, combined with unique features of large-area, form factor and multiple optical attributes. We utilize the inherent property of a binary mixture in a blend to phase-separate vertically and create a graded junction for effective photocurrent response. The implemented design enables photocharge generation along with on chip charge to voltage conversion with performance parameters comparable to traditional counterparts. Charge integration analysis for the passive pixel element using 2D TCAD simulations is also presented to evaluate the different processes that take place in the monolithic structure.

  16. Investigation of HV/HR-CMOS technology for the ATLAS Phase-II Strip Tracker Upgrade

    NASA Astrophysics Data System (ADS)

    Fadeyev, V.; Galloway, Z.; Grabas, H.; Grillo, A. A.; Liang, Z.; Martinez-Mckinney, F.; Seiden, A.; Volk, J.; Affolder, A.; Buckland, M.; Meng, L.; Arndt, K.; Bortoletto, D.; Huffman, T.; John, J.; McMahon, S.; Nickerson, R.; Phillips, P.; Plackett, R.; Shipsey, I.; Vigani, L.; Bates, R.; Blue, A.; Buttar, C.; Kanisauskas, K.; Maneuski, D.; Benoit, M.; Di Bello, F.; Caragiulo, P.; Dragone, A.; Grenier, P.; Kenney, C.; Rubbo, F.; Segal, J.; Su, D.; Tamma, C.; Das, D.; Dopke, J.; Turchetta, R.; Wilson, F.; Worm, S.; Ehrler, F.; Peric, I.; Gregor, I. M.; Stanitzki, M.; Hoeferkamp, M.; Seidel, S.; Hommels, L. B. A.; Kramberger, G.; Mandić, I.; Mikuž, M.; Muenstermann, D.; Wang, R.; Zhang, J.; Warren, M.; Song, W.; Xiu, Q.; Zhu, H.

    2016-09-01

    ATLAS has formed strip CMOS project to study the use of CMOS MAPS devices as silicon strip sensors for the Phase-II Strip Tracker Upgrade. This choice of sensors promises several advantages over the conventional baseline design, such as better resolution, less material in the tracking volume, and faster construction speed. At the same time, many design features of the sensors are driven by the requirement of minimizing the impact on the rest of the detector. Hence the target devices feature long pixels which are grouped to form a virtual strip with binary-encoded z position. The key performance aspects are radiation hardness compatibility with HL-LHC environment, as well as extraction of the full hit position with full-reticle readout architecture. To date, several test chips have been submitted using two different CMOS technologies. The AMS 350 nm is a high voltage CMOS process (HV-CMOS), that features the sensor bias of up to 120 V. The TowerJazz 180 nm high resistivity CMOS process (HR-CMOS) uses a high resistivity epitaxial layer to provide the depletion region on top of the substrate. We have evaluated passive pixel performance, and charge collection projections. The results strongly support the radiation tolerance of these devices to radiation dose of the HL-LHC in the strip tracker region. We also describe design features for the next chip submission that are motivated by our technology evaluation.

  17. An inverter-based capacitive trans-impedance amplifier readout with offset cancellation and temporal noise reduction for IR focal plane array

    NASA Astrophysics Data System (ADS)

    Chen, Hsin-Han; Hsieh, Chih-Cheng

    2013-09-01

    This paper presents a readout integrated circuit (ROIC) with inverter-based capacitive trans-impedance amplifier (CTIA) and pseudo-multiple sampling technique for infrared focal plane array (IRFPA). The proposed inverter-based CTIA with a coupling capacitor [1], executing auto-zeroing technique to cancel out the varied offset voltage from process variation, is used to substitute differential amplifier in conventional CTIA. The tunable detector bias is applied from a global external bias before exposure. This scheme not only retains stable detector bias voltage and signal injection efficiency, but also reduces the pixel area as well. Pseudo-multiple sampling technique [2] is adopted to reduce the temporal noise of readout circuit. The noise reduction performance is comparable to the conventional multiple sampling operation without need of longer readout time proportional to the number of samples. A CMOS image sensor chip with 55×65 pixel array has been fabricated in 0.18um CMOS technology. It achieves a 12um×12um pixel size, a frame rate of 72 fps, a power-per-pixel of 0.66uW/pixel, and a readout temporal noise of 1.06mVrms (16 times of pseudo-multiple sampling), respectively.

  18. Large Format CMOS-based Detectors for Diffraction Studies

    NASA Astrophysics Data System (ADS)

    Thompson, A. C.; Nix, J. C.; Achterkirchen, T. G.; Westbrook, E. M.

    2013-03-01

    Complementary Metal Oxide Semiconductor (CMOS) devices are rapidly replacing CCD devices in many commercial and medical applications. Recent developments in CMOS fabrication have improved their radiation hardness, device linearity, readout noise and thermal noise, making them suitable for x-ray crystallography detectors. Large-format (e.g. 10 cm × 15 cm) CMOS devices with a pixel size of 100 μm × 100 μm are now becoming available that can be butted together on three sides so that very large area detector can be made with no dead regions. Like CCD systems our CMOS systems use a GdOS:Tb scintillator plate to convert stopping x-rays into visible light which is then transferred with a fiber-optic plate to the sensitive surface of the CMOS sensor. The amount of light per x-ray on the sensor is much higher in the CMOS system than a CCD system because the fiber optic plate is only 3 mm thick while on a CCD system it is highly tapered and much longer. A CMOS sensor is an active pixel matrix such that every pixel is controlled and readout independently of all other pixels. This allows these devices to be readout while the sensor is collecting charge in all the other pixels. For x-ray diffraction detectors this is a major advantage since image frames can be collected continuously at up 20 Hz while the crystal is rotated. A complete diffraction dataset can be collected over five times faster than with CCD systems with lower radiation exposure to the crystal. In addition, since the data is taken fine-phi slice mode the 3D angular position of diffraction peaks is improved. We have developed a cooled 6 sensor CMOS detector with an active area of 28.2 × 29.5 cm with 100 μm × 100 μm pixels and a readout rate of 20 Hz. The detective quantum efficiency exceeds 60% over the range 8-12 keV. One, two and twelve sensor systems are also being developed for a variety of scientific applications. Since the sensors are butt able on three sides, even larger systems could be built at reasonable cost.

  19. Characterisation of a novel reverse-biased PPD CMOS image sensor

    NASA Astrophysics Data System (ADS)

    Stefanov, K. D.; Clarke, A. S.; Ivory, J.; Holland, A. D.

    2017-11-01

    A new pinned photodiode (PPD) CMOS image sensor (CIS) has been developed and characterised. The sensor can be fully depleted by means of reverse bias applied to the substrate, and the principle of operation is applicable to very thick sensitive volumes. Additional n-type implants under the pixel p-wells, called Deep Depletion Extension (DDE), have been added in order to eliminate the large parasitic substrate current that would otherwise be present in a normal device. The first prototype has been manufactured on a 18 μm thick, 1000 Ω .cm epitaxial silicon wafers using 180 nm PPD image sensor process at TowerJazz Semiconductor. The chip contains arrays of 10 μm and 5.4 μm pixels, with variations of the shape, size and the depth of the DDE implant. Back-side illuminated (BSI) devices were manufactured in collaboration with Teledyne e2v, and characterised together with the front-side illuminated (FSI) variants. The presented results show that the devices could be reverse-biased without parasitic leakage currents, in good agreement with simulations. The new 10 μm pixels in both BSI and FSI variants exhibit nearly identical photo response to the reference non-modified pixels, as characterised with the photon transfer curve. Different techniques were used to measure the depletion depth in FSI and BSI chips, and the results are consistent with the expected full depletion.

  20. CMOS image sensors: State-of-the-art

    NASA Astrophysics Data System (ADS)

    Theuwissen, Albert J. P.

    2008-09-01

    This paper gives an overview of the state-of-the-art of CMOS image sensors. The main focus is put on the shrinkage of the pixels : what is the effect on the performance characteristics of the imagers and on the various physical parameters of the camera ? How is the CMOS pixel architecture optimized to cope with the negative performance effects of the ever-shrinking pixel size ? On the other hand, the smaller dimensions in CMOS technology allow further integration on column level and even on pixel level. This will make CMOS imagers even smarter that they are already.

  1. CMOS image sensor for detection of interferon gamma protein interaction as a point-of-care approach.

    PubMed

    Marimuthu, Mohana; Kandasamy, Karthikeyan; Ahn, Chang Geun; Sung, Gun Yong; Kim, Min-Gon; Kim, Sanghyo

    2011-09-01

    Complementary metal oxide semiconductor (CMOS)-based image sensors have received increased attention owing to the possibility of incorporating them into portable diagnostic devices. The present research examined the efficiency and sensitivity of a CMOS image sensor for the detection of antigen-antibody interactions involving interferon gamma protein without the aid of expensive instruments. The highest detection sensitivity of about 1 fg/ml primary antibody was achieved simply by a transmission mechanism. When photons are prevented from hitting the sensor surface, a reduction in digital output occurs in which the number of photons hitting the sensor surface is approximately proportional to the digital number. Nanoscale variation in substrate thickness after protein binding can be detected with high sensitivity by the CMOS image sensor. Therefore, this technique can be easily applied to smartphones or any clinical diagnostic devices for the detection of several biological entities, with high impact on the development of point-of-care applications.

  2. Physical characterization and performance comparison of active- and passive-pixel CMOS detectors for mammography.

    PubMed

    Elbakri, I A; McIntosh, B J; Rickey, D W

    2009-03-21

    We investigated the physical characteristics of two complementary metal oxide semiconductor (CMOS) mammography detectors. The detectors featured 14-bit image acquisition, 50 microm detector element (del) size and an active area of 5 cm x 5 cm. One detector was a passive-pixel sensor (PPS) with signal amplification performed by an array of amplifiers connected to dels via data lines. The other detector was an active-pixel sensor (APS) with signal amplification performed at each del. Passive-pixel designs have higher read noise due to data line capacitance, and the APS represents an attempt to improve the noise performance of this technology. We evaluated the detectors' resolution by measuring the modulation transfer function (MTF) using a tilted edge. We measured the noise power spectra (NPS) and detective quantum efficiencies (DQE) using mammographic beam conditions specified by the IEC 62220-1-2 standard. Our measurements showed the APS to have much higher gain, slightly higher MTF, and higher NPS. The MTF of both sensors approached 10% near the Nyquist limit. DQE values near dc frequency were in the range of 55-67%, with the APS sensor DQE lower than the PPS DQE for all frequencies. Our results show that lower read noise specifications in this case do not translate into gains in the imaging performance of the sensor. We postulate that the lower fill factor of the APS is a possible cause for this result.

  3. Real-time DNA Amplification and Detection System Based on a CMOS Image Sensor.

    PubMed

    Wang, Tiantian; Devadhasan, Jasmine Pramila; Lee, Do Young; Kim, Sanghyo

    2016-01-01

    In the present study, we developed a polypropylene well-integrated complementary metal oxide semiconductor (CMOS) platform to perform the loop mediated isothermal amplification (LAMP) technique for real-time DNA amplification and detection simultaneously. An amplification-coupled detection system directly measures the photon number changes based on the generation of magnesium pyrophosphate and color changes. The photon number decreases during the amplification process. The CMOS image sensor observes the photons and converts into digital units with the aid of an analog-to-digital converter (ADC). In addition, UV-spectral studies, optical color intensity detection, pH analysis, and electrophoresis detection were carried out to prove the efficiency of the CMOS sensor based the LAMP system. Moreover, Clostridium perfringens was utilized as proof-of-concept detection for the new system. We anticipate that this CMOS image sensor-based LAMP method will enable the creation of cost-effective, label-free, optical, real-time and portable molecular diagnostic devices.

  4. A new 9T global shutter pixel with CDS technique

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Ma, Cheng; Zhou, Quan; Wang, Xinyang

    2015-04-01

    Benefiting from motion blur free, Global shutter pixel is very widely used in the design of CMOS image sensors for high speed applications such as motion vision, scientifically inspection, etc. In global shutter sensors, all pixel signal information needs to be stored in the pixel first and then waiting for readout. For higher frame rate, we need very fast operation of the pixel array. There are basically two ways for the in pixel signal storage, one is in charge domain, such as the one shown in [1], this needs complicated process during the pixel fabrication. The other one is in voltage domain, one example is the one in [2], this pixel is based on the 4T PPD technology and normally the driving of the high capacitive transfer gate limits the speed of the array operation. In this paper we report a new 9T global shutter pixel based on 3-T partially pinned photodiode (PPPD) technology. It incorporates three in-pixel storage capacitors allowing for correlated double sampling (CDS) and pipeline operation of the array (pixel exposure during the readout of the array). Only two control pulses are needed for all the pixels at the end of exposure which allows high speed exposure control.

  5. Monolithic CMUT-on-CMOS integration for intravascular ultrasound applications.

    PubMed

    Zahorian, Jaime; Hochman, Michael; Xu, Toby; Satir, Sarp; Gurun, Gokce; Karaman, Mustafa; Degertekin, F Levent

    2011-12-01

    One of the most important promises of capacitive micromachined ultrasonic transducer (CMUT) technology is integration with electronics. This approach is required to minimize the parasitic capacitances in the receive mode, especially in catheter-based volumetric imaging arrays, for which the elements must be small. Furthermore, optimization of the available silicon area and minimized number of connections occurs when the CMUTs are fabricated directly above the associated electronics. Here, we describe successful fabrication and performance evaluation of CMUT arrays for intravascular imaging on custom-designed CMOS receiver electronics from a commercial IC foundry. The CMUT-on-CMOS process starts with surface isolation and mechanical planarization of the CMOS electronics to reduce topography. The rest of the CMUT fabrication is achieved by modifying a low-temperature micromachining process through the addition of a single mask and developing a dry etching step to produce sloped sidewalls for simple and reliable CMUT-to-CMOS interconnection. This CMUT-to-CMOS interconnect method reduced the parasitic capacitance by a factor of 200 when compared with a standard wire-bonding method. Characterization experiments indicate that the CMUT-on-CMOS elements are uniform in frequency response and are similar to CMUTs simultaneously fabricated on standard silicon wafers without electronics integration. Ex- periments on a 1.6-mm-diameter dual-ring CMUT array with a center frequency of 15 MHz show that both the CMUTs and the integrated CMOS electronics are fully functional. The SNR measurements indicate that the performance is adequate for imaging chronic total occlusions located 1 cm from the CMUT array.

  6. Micro-light-pipe array with an excitation attenuation filter for lensless digital enzyme-linked immunosorbent assay

    NASA Astrophysics Data System (ADS)

    Takehara, Hironari; Nagasaki, Mizuki; Sasagawa, Kiyotaka; Takehara, Hiroaki; Noda, Toshihiko; Tokuda, Takashi; Ohta, Jun

    2016-03-01

    Digital enzyme-linked immunosorbent assay (ELISA) is used for detecting various biomarkers with hypersensitivity. We have been developing compact systems by replacing the fluorescence microscope with a CMOS image sensor. Here, we propose a micro-light-pipe array structure made of metal filled with dye-doped resin, which can be used as a fabrication substrate of the micro-reaction-chamber array of digital ELISA. The possibility that this structure enhances the coupling efficiency for fluorescence was simulated using a simple model. To realize the structure, we fabricated a 30-µm-thick micropipe array by copper electroplating around a thick photoresist pattern. The typical diameter of each fabricated micropipe was 10 µm. The pipes were filled with yellow-dye-doped epoxy resin. The transmittance ratio of fluorescence and excitation light could be controlled by adjusting the doping concentration. We confirmed that an angled excitation light incidence suppressed the leakage of excitation light.

  7. CMOS Active Pixel Sensor Technology and Reliability Characterization Methodology

    NASA Technical Reports Server (NTRS)

    Chen, Yuan; Guertin, Steven M.; Pain, Bedabrata; Kayaii, Sammy

    2006-01-01

    This paper describes the technology, design features and reliability characterization methodology of a CMOS Active Pixel Sensor. Both overall chip reliability and pixel reliability are projected for the imagers.

  8. A Low-Cost CMOS-MEMS Piezoresistive Accelerometer with Large Proof Mass

    PubMed Central

    Khir, Mohd Haris Md; Qu, Peng; Qu, Hongwei

    2011-01-01

    This paper reports a low-cost, high-sensitivity CMOS-MEMS piezoresistive accelerometer with large proof mass. In the device fabricated using ON Semiconductor 0.5 μm CMOS technology, an inherent CMOS polysilicon thin film is utilized as the piezoresistive sensing material. A full Wheatstone bridge was constructed through easy wiring allowed by the three metal layers in the 0.5 μm CMOS technology. The device fabrication process consisted of a standard CMOS process for sensor configuration, and a deep reactive ion etching (DRIE) based post-CMOS microfabrication for MEMS structure release. A bulk single-crystal silicon (SCS) substrate is included in the proof mass to increase sensor sensitivity. In device design and analysis, the self heating of the polysilicon piezoresistors and its effect to the sensor performance is also discussed. With a low operating power of 1.5 mW, the accelerometer demonstrates a sensitivity of 0.077 mV/g prior to any amplification. Dynamic tests have been conducted with a high-end commercial calibrating accelerometer as reference. PMID:22164052

  9. IR sensitivity enhancement of CMOS Image Sensor with diffractive light trapping pixels.

    PubMed

    Yokogawa, Sozo; Oshiyama, Itaru; Ikeda, Harumi; Ebiko, Yoshiki; Hirano, Tomoyuki; Saito, Suguru; Oinoue, Takashi; Hagimoto, Yoshiya; Iwamoto, Hayato

    2017-06-19

    We report on the IR sensitivity enhancement of back-illuminated CMOS Image Sensor (BI-CIS) with 2-dimensional diffractive inverted pyramid array structure (IPA) on crystalline silicon (c-Si) and deep trench isolation (DTI). FDTD simulations of semi-infinite thick c-Si having 2D IPAs on its surface whose pitches over 400 nm shows more than 30% improvement of light absorption at λ = 850 nm and the maximum enhancement of 43% with the 540 nm pitch at the wavelength is confirmed. A prototype BI-CIS sample with pixel size of 1.2 μm square containing 400 nm pitch IPAs shows 80% sensitivity enhancement at λ = 850 nm compared to the reference sample with flat surface. This is due to diffraction with the IPA and total reflection at the pixel boundary. The NIR images taken by the demo camera equip with a C-mount lens show 75% sensitivity enhancement in the λ = 700-1200 nm wavelength range with negligible spatial resolution degradation. Light trapping CIS pixel technology promises to improve NIR sensitivity and appears to be applicable to many different image sensor applications including security camera, personal authentication, and range finding Time-of-Flight camera with IR illuminations.

  10. A novel method to increase LinLog CMOS sensors' performance in high dynamic range scenarios.

    PubMed

    Martínez-Sánchez, Antonio; Fernández, Carlos; Navarro, Pedro J; Iborra, Andrés

    2011-01-01

    Images from high dynamic range (HDR) scenes must be obtained with minimum loss of information. For this purpose it is necessary to take full advantage of the quantification levels provided by the CCD/CMOS image sensor. LinLog CMOS sensors satisfy the above demand by offering an adjustable response curve that combines linear and logarithmic responses. This paper presents a novel method to quickly adjust the parameters that control the response curve of a LinLog CMOS image sensor. We propose to use an Adaptive Proportional-Integral-Derivative controller to adjust the exposure time of the sensor, together with control algorithms based on the saturation level and the entropy of the images. With this method the sensor's maximum dynamic range (120 dB) can be used to acquire good quality images from HDR scenes with fast, automatic adaptation to scene conditions. Adaptation to a new scene is rapid, with a sensor response adjustment of less than eight frames when working in real time video mode. At least 67% of the scene entropy can be retained with this method.

  11. A 32 x 32 capacitive micromachined ultrasonic transducer array manufactured in standard CMOS.

    PubMed

    Lemmerhirt, David F; Cheng, Xiaoyang; White, Robert; Rich, Collin A; Zhang, Man; Fowlkes, J Brian; Kripfgans, Oliver D

    2012-07-01

    As ultrasound imagers become increasingly portable and lower cost, breakthroughs in transducer technology will be needed to provide high-resolution, real-time 3-D imaging while maintaining the affordability needed for portable systems. This paper presents a 32 x 32 ultrasound array prototype, manufactured using a CMUT-in-CMOS approach whereby ultrasonic transducer elements and readout circuits are integrated on a single chip using a standard integrated circuit manufacturing process in a commercial CMOS foundry. Only blanket wet-etch and sealing steps are added to complete the MEMS devices after the CMOS process. This process typically yields better than 99% working elements per array, with less than ±1.5 dB variation in receive sensitivity among the 1024 individually addressable elements. The CMUT pulseecho frequency response is typically centered at 2.1 MHz with a -6 dB fractional bandwidth of 60%, and elements are arranged on a 250 μm hexagonal grid (less than half-wavelength pitch). Multiplexers and CMOS buffers within the array are used to make on-chip routing manageable, reduce the number of physical output leads, and drive the transducer cable. The array has been interfaced to a commercial imager as well as a set of custom transmit and receive electronics, and volumetric images of nylon fishing line targets have been produced.

  12. A CMOS IC-based multisite measuring system for stimulation and recording in neural preparations in vitro

    PubMed Central

    Tateno, Takashi; Nishikawa, Jun

    2014-01-01

    In this report, we describe the system integration of a complementary metal oxide semiconductor (CMOS) integrated circuit (IC) chip, capable of both stimulation and recording of neurons or neural tissues, to investigate electrical signal propagation within cellular networks in vitro. The overall system consisted of three major subunits: a 5.0 × 5.0 mm CMOS IC chip, a reconfigurable logic device (field-programmable gate array, FPGA), and a PC. To test the system, microelectrode arrays (MEAs) were used to extracellularly measure the activity of cultured rat cortical neurons and mouse cortical slices. The MEA had 64 bidirectional (stimulation and recording) electrodes. In addition, the CMOS IC chip was equipped with dedicated analog filters, amplification stages, and a stimulation buffer. Signals from the electrodes were sampled at 15.6 kHz with 16-bit resolution. The measured input-referred circuitry noise was 10.1 μ V root mean square (10 Hz to 100 kHz), which allowed reliable detection of neural signals ranging from several millivolts down to approximately 33 μ Vpp. Experiments were performed involving the stimulation of neurons with several spatiotemporal patterns and the recording of the triggered activity. An advantage over current MEAs, as demonstrated by our experiments, includes the ability to stimulate (voltage stimulation, 5-bit resolution) spatiotemporal patterns in arbitrary subsets of electrodes. Furthermore, the fast stimulation reset mechanism allowed us to record neuronal signals from a stimulating electrode around 3 ms after stimulation. We demonstrate that the system can be directly applied to, for example, auditory neural prostheses in conjunction with an acoustic sensor and a sound processing system. PMID:25346683

  13. A CMOS In-Pixel CTIA High Sensitivity Fluorescence Imager.

    PubMed

    Murari, Kartikeya; Etienne-Cummings, Ralph; Thakor, Nitish; Cauwenberghs, Gert

    2011-10-01

    Traditionally, charge coupled device (CCD) based image sensors have held sway over the field of biomedical imaging. Complementary metal oxide semiconductor (CMOS) based imagers so far lack sensitivity leading to poor low-light imaging. Certain applications including our work on animal-mountable systems for imaging in awake and unrestrained rodents require the high sensitivity and image quality of CCDs and the low power consumption, flexibility and compactness of CMOS imagers. We present a 132×124 high sensitivity imager array with a 20.1 μm pixel pitch fabricated in a standard 0.5 μ CMOS process. The chip incorporates n-well/p-sub photodiodes, capacitive transimpedance amplifier (CTIA) based in-pixel amplification, pixel scanners and delta differencing circuits. The 5-transistor all-nMOS pixel interfaces with peripheral pMOS transistors for column-parallel CTIA. At 70 fps, the array has a minimum detectable signal of 4 nW/cm(2) at a wavelength of 450 nm while consuming 718 μA from a 3.3 V supply. Peak signal to noise ratio (SNR) was 44 dB at an incident intensity of 1 μW/cm(2). Implementing 4×4 binning allowed the frame rate to be increased to 675 fps. Alternately, sensitivity could be increased to detect about 0.8 nW/cm(2) while maintaining 70 fps. The chip was used to image single cell fluorescence at 28 fps with an average SNR of 32 dB. For comparison, a cooled CCD camera imaged the same cell at 20 fps with an average SNR of 33.2 dB under the same illumination while consuming over a watt.

  14. A CMOS In-Pixel CTIA High Sensitivity Fluorescence Imager

    PubMed Central

    Murari, Kartikeya; Etienne-Cummings, Ralph; Thakor, Nitish; Cauwenberghs, Gert

    2012-01-01

    Traditionally, charge coupled device (CCD) based image sensors have held sway over the field of biomedical imaging. Complementary metal oxide semiconductor (CMOS) based imagers so far lack sensitivity leading to poor low-light imaging. Certain applications including our work on animal-mountable systems for imaging in awake and unrestrained rodents require the high sensitivity and image quality of CCDs and the low power consumption, flexibility and compactness of CMOS imagers. We present a 132×124 high sensitivity imager array with a 20.1 μm pixel pitch fabricated in a standard 0.5 μ CMOS process. The chip incorporates n-well/p-sub photodiodes, capacitive transimpedance amplifier (CTIA) based in-pixel amplification, pixel scanners and delta differencing circuits. The 5-transistor all-nMOS pixel interfaces with peripheral pMOS transistors for column-parallel CTIA. At 70 fps, the array has a minimum detectable signal of 4 nW/cm2 at a wavelength of 450 nm while consuming 718 μA from a 3.3 V supply. Peak signal to noise ratio (SNR) was 44 dB at an incident intensity of 1 μW/cm2. Implementing 4×4 binning allowed the frame rate to be increased to 675 fps. Alternately, sensitivity could be increased to detect about 0.8 nW/cm2 while maintaining 70 fps. The chip was used to image single cell fluorescence at 28 fps with an average SNR of 32 dB. For comparison, a cooled CCD camera imaged the same cell at 20 fps with an average SNR of 33.2 dB under the same illumination while consuming over a watt. PMID:23136624

  15. A CMOS IC-based multisite measuring system for stimulation and recording in neural preparations in vitro.

    PubMed

    Tateno, Takashi; Nishikawa, Jun

    2014-01-01

    In this report, we describe the system integration of a complementary metal oxide semiconductor (CMOS) integrated circuit (IC) chip, capable of both stimulation and recording of neurons or neural tissues, to investigate electrical signal propagation within cellular networks in vitro. The overall system consisted of three major subunits: a 5.0 × 5.0 mm CMOS IC chip, a reconfigurable logic device (field-programmable gate array, FPGA), and a PC. To test the system, microelectrode arrays (MEAs) were used to extracellularly measure the activity of cultured rat cortical neurons and mouse cortical slices. The MEA had 64 bidirectional (stimulation and recording) electrodes. In addition, the CMOS IC chip was equipped with dedicated analog filters, amplification stages, and a stimulation buffer. Signals from the electrodes were sampled at 15.6 kHz with 16-bit resolution. The measured input-referred circuitry noise was 10.1 μ V root mean square (10 Hz to 100 kHz), which allowed reliable detection of neural signals ranging from several millivolts down to approximately 33 μ Vpp. Experiments were performed involving the stimulation of neurons with several spatiotemporal patterns and the recording of the triggered activity. An advantage over current MEAs, as demonstrated by our experiments, includes the ability to stimulate (voltage stimulation, 5-bit resolution) spatiotemporal patterns in arbitrary subsets of electrodes. Furthermore, the fast stimulation reset mechanism allowed us to record neuronal signals from a stimulating electrode around 3 ms after stimulation. We demonstrate that the system can be directly applied to, for example, auditory neural prostheses in conjunction with an acoustic sensor and a sound processing system.

  16. A CMOS Time-Resolved Fluorescence Lifetime Analysis Micro-System

    PubMed Central

    Rae, Bruce R.; Muir, Keith R.; Gong, Zheng; McKendry, Jonathan; Girkin, John M.; Gu, Erdan; Renshaw, David; Dawson, Martin D.; Henderson, Robert K.

    2009-01-01

    We describe a CMOS-based micro-system for time-resolved fluorescence lifetime analysis. It comprises a 16 × 4 array of single-photon avalanche diodes (SPADs) fabricated in 0.35 μm high-voltage CMOS technology with in-pixel time-gated photon counting circuitry and a second device incorporating an 8 × 8 AlInGaN blue micro-pixellated light-emitting diode (micro-LED) array bump-bonded to an equivalent array of LED drivers realized in a standard low-voltage 0.35 μm CMOS technology, capable of producing excitation pulses with a width of 777 ps (FWHM). This system replaces instrumentation based on lasers, photomultiplier tubes, bulk optics and discrete electronics with a PC-based micro-system. Demonstrator lifetime measurements of colloidal quantum dot and Rhodamine samples are presented. PMID:22291564

  17. Design of a compact CMOS-compatible photonic antenna by topological optimization.

    PubMed

    Pita, Julián L; Aldaya, Ivan; Dainese, Paulo; Hernandez-Figueroa, Hugo E; Gabrielli, Lucas H

    2018-02-05

    Photonic antennas are critical in applications such as spectroscopy, photovoltaics, optical communications, holography, and sensors. In most of those applications, metallic antennas have been employed due to their reduced sizes. Nevertheless, compact metallic antennas suffer from high dissipative loss, wavelength-dependent radiation pattern, and they are difficult to integrate with CMOS technology. All-dielectric antennas have been proposed to overcome those disadvantages because, in contrast to metallic ones, they are CMOS-compatible, easier to integrate with typical silicon waveguides, and they generally present a broader wavelength range of operation. These advantages are achieved, however, at the expense of larger footprints that prevent dense integration and their use in massive phased arrays. In order to overcome this drawback, we employ topological optimization to design an all-dielectric compact antenna with vertical emission over a broad wavelength range. The fabricated device has a footprint of 1.78 µm × 1.78 µm and shows a shift in the direction of its main radiation lobe of only 4° over wavelengths ranging from 1470 nm to 1550 nm and a coupling efficiency bandwidth broader than 150 nm.

  18. Pick-and-place process for sensitivity improvement of the capacitive type CMOS MEMS 2-axis tilt sensor

    NASA Astrophysics Data System (ADS)

    Chang, Chun-I.; Tsai, Ming-Han; Liu, Yu-Chia; Sun, Chih-Ming; Fang, Weileun

    2013-09-01

    This study exploits the foundry available complimentary metal-oxide-semiconductor (CMOS) process and the packaging house available pick-and-place technology to implement a capacitive type micromachined 2-axis tilt sensor. The suspended micro mechanical structures such as the spring, stage and sensing electrodes are fabricated using the CMOS microelectromechanical systems (MEMS) processes. A bulk block is assembled onto the suspended stage by pick-and-place technology to increase the proof-mass of the tilt sensor. The low temperature UV-glue dispensing and curing processes are employed to bond the block onto the stage. Thus, the sensitivity of the CMOS MEMS capacitive type 2-axis tilt sensor is significantly improved. In application, this study successfully demonstrates the bonding of a bulk solder ball of 100 µm in diameter with a 2-axis tilt sensor fabricated using the standard TSMC 0.35 µm 2P4M CMOS process. Measurements show the sensitivities of the 2-axis tilt sensor are increased for 2.06-fold (x-axis) and 1.78-fold (y-axis) after adding the solder ball. Note that the sensitivity can be further improved by reducing the parasitic capacitance and the mismatch of sensing electrodes caused by the solder ball.

  19. A CMOS Front-End With Integrated Magnetoresistive Sensors for Biomolecular Recognition Detection Applications.

    PubMed

    Costa, Tiago; Cardoso, Filipe A; Germano, Jose; Freitas, Paulo P; Piedade, Moises S

    2017-10-01

    The development of giant magnetoresistive (GMR) sensors has demonstrated significant advantages in nanomedicine, particularly for ultrasensitive point-of-care diagnostics. To this end, the detection system is required to be compact, portable, and low power consuming at the same time that a maximum signal to noise ratio is maintained. This paper reports a CMOS front-end with integrated magnetoresistive sensors for biomolecular recognition detection applications. Based on the characterization of the GMR sensor's signal and noise, CMOS building blocks (i.e., current source, multiplexers, and preamplifier) were designed targeting a negligible noise when compared with the GMR sensor's noise and a low power consumption. The CMOS front-end was fabricated using AMS [Formula: see text] technology and the magnetoresistive sensors were post-fabricated on top of the CMOS chip with high yield ( [Formula: see text]). Due to its low circuit noise (16 [Formula: see text]) and overall equivalent magnetic noise ([Formula: see text]), the full system was able to detect 250 nm magnetic nanoparticles with a circuit imposed signal-to-noise ratio degradation of only -1.4 dB. Furthermore, the low power consumption (6.5 mW) and small dimensions ([Formula: see text] ) of the presented solution guarantees the portability of the detection system allowing its usage at the point-of-care.

  20. Architecture and applications of a high resolution gated SPAD image sensor

    PubMed Central

    Burri, Samuel; Maruyama, Yuki; Michalet, Xavier; Regazzoni, Francesco; Bruschini, Claudio; Charbon, Edoardo

    2014-01-01

    We present the architecture and three applications of the largest resolution image sensor based on single-photon avalanche diodes (SPADs) published to date. The sensor, fabricated in a high-voltage CMOS process, has a resolution of 512 × 128 pixels and a pitch of 24 μm. The fill-factor of 5% can be increased to 30% with the use of microlenses. For precise control of the exposure and for time-resolved imaging, we use fast global gating signals to define exposure windows as small as 4 ns. The uniformity of the gate edges location is ∼140 ps (FWHM) over the whole array, while in-pixel digital counting enables frame rates as high as 156 kfps. Currently, our camera is used as a highly sensitive sensor with high temporal resolution, for applications ranging from fluorescence lifetime measurements to fluorescence correlation spectroscopy and generation of true random numbers. PMID:25090572

  1. Monolithic optical phased-array transceiver in a standard SOI CMOS process.

    PubMed

    Abediasl, Hooman; Hashemi, Hossein

    2015-03-09

    Monolithic microwave phased arrays are turning mainstream in automotive radars and high-speed wireless communications fulfilling Gordon Moores 1965 prophecy to this effect. Optical phased arrays enable imaging, lidar, display, sensing, and holography. Advancements in fabrication technology has led to monolithic nanophotonic phased arrays, albeit without independent phase and amplitude control ability, integration with electronic circuitry, or including receive and transmit functions. We report the first monolithic optical phased array transceiver with independent control of amplitude and phase for each element using electronic circuitry that is tightly integrated with the nanophotonic components on one substrate using a commercial foundry CMOS SOI process. The 8 × 8 phased array chip includes thermo-optical tunable phase shifters and attenuators, nano-photonic antennas, and dedicated control electronics realized using CMOS transistors. The complex chip includes over 300 distinct optical components and over 74,000 distinct electrical components achieving the highest level of integration for any electronic-photonic system.

  2. Development of a 750x750 pixels CMOS imager sensor for tracking applications

    NASA Astrophysics Data System (ADS)

    Larnaudie, Franck; Guardiola, Nicolas; Saint-Pé, Olivier; Vignon, Bruno; Tulet, Michel; Davancens, Robert; Magnan, Pierre; Corbière, Franck; Martin-Gonthier, Philippe; Estribeau, Magali

    2017-11-01

    Solid-state optical sensors are now commonly used in space applications (navigation cameras, astronomy imagers, tracking sensors...). Although the charge-coupled devices are still widely used, the CMOS image sensor (CIS), which performances are continuously improving, is a strong challenger for Guidance, Navigation and Control (GNC) systems. This paper describes a 750x750 pixels CMOS image sensor that has been specially designed and developed for star tracker and tracking sensor applications. Such detector, that is featuring smart architecture enabling very simple and powerful operations, is built using the AMIS 0.5μm CMOS technology. It contains 750x750 rectangular pixels with 20μm pitch. The geometry of the pixel sensitive zone is optimized for applications based on centroiding measurements. The main feature of this device is the on-chip control and timing function that makes the device operation easier by drastically reducing the number of clocks to be applied. This powerful function allows the user to operate the sensor with high flexibility: measurement of dark level from masked lines, direct access to the windows of interest… A temperature probe is also integrated within the CMOS chip allowing a very precise measurement through the video stream. A complete electro-optical characterization of the sensor has been performed. The major parameters have been evaluated: dark current and its uniformity, read-out noise, conversion gain, Fixed Pattern Noise, Photo Response Non Uniformity, quantum efficiency, Modulation Transfer Function, intra-pixel scanning. The characterization tests are detailed in the paper. Co60 and protons irradiation tests have been also carried out on the image sensor and the results are presented. The specific features of the 750x750 image sensor such as low power CMOS design (3.3V, power consumption<100mW), natural windowing (that allows efficient and robust tracking algorithms), simple proximity electronics (because of the on-chip control and timing function) enabling a high flexibility architecture, make this imager a good candidate for high performance tracking applications.

  3. Amorphous selenium direct detection CMOS digital x-ray imager with 25 micron pixel pitch

    NASA Astrophysics Data System (ADS)

    Scott, Christopher C.; Abbaszadeh, Shiva; Ghanbarzadeh, Sina; Allan, Gary; Farrier, Michael; Cunningham, Ian A.; Karim, Karim S.

    2014-03-01

    We have developed a high resolution amorphous selenium (a-Se) direct detection imager using a large-area compatible back-end fabrication process on top of a CMOS active pixel sensor having 25 micron pixel pitch. Integration of a-Se with CMOS technology requires overcoming CMOS/a-Se interfacial strain, which initiates nucleation of crystalline selenium and results in high detector dark currents. A CMOS-compatible polyimide buffer layer was used to planarize the backplane and provide a low stress and thermally stable surface for a-Se. The buffer layer inhibits crystallization and provides detector stability that is not only a performance factor but also critical for favorable long term cost-benefit considerations in the application of CMOS digital x-ray imagers in medical practice. The detector structure is comprised of a polyimide (PI) buffer layer, the a-Se layer, and a gold (Au) top electrode. The PI layer is applied by spin-coating and is patterned using dry etching to open the backplane bond pads for wire bonding. Thermal evaporation is used to deposit the a-Se and Au layers, and the detector is operated in hole collection mode (i.e. a positive bias on the Au top electrode). High resolution a-Se diagnostic systems typically use 70 to 100 μm pixel pitch and have a pre-sampling modulation transfer function (MTF) that is significantly limited by the pixel aperture. Our results confirm that, for a densely integrated 25 μm pixel pitch CMOS array, the MTF approaches the fundamental material limit, i.e. where the MTF begins to be limited by the a-Se material properties and not the pixel aperture. Preliminary images demonstrating high spatial resolution have been obtained from a frst prototype imager.

  4. Lab-on-CMOS Integration of Microfluidics and Electrochemical Sensors

    PubMed Central

    Huang, Yue; Mason, Andrew J.

    2013-01-01

    This paper introduces a CMOS-microfluidics integration scheme for electrochemical microsystems. A CMOS chip was embedded into a micro-machined silicon carrier. By leveling the CMOS chip and carrier surface to within 100 nm, an expanded obstacle-free surface suitable for photolithography was achieved. Thin film metal planar interconnects were microfabricated to bridge CMOS pads to the perimeter of the carrier, leaving a flat and smooth surface for integrating microfluidic structures. A model device containing SU-8 microfluidic mixers and detection channels crossing over microelectrodes on a CMOS integrated circuit was constructed using the chip-carrier assembly scheme. Functional integrity of microfluidic structures and on-CMOS electrodes was verified by a simultaneous sample dilution and electrochemical detection experiment within multi-channel microfluidics. This lab-on-CMOS integration process is capable of high packing density, is suitable for wafer-level batch production, and opens new opportunities to combine the performance benefits of on-CMOS sensors with lab-on-chip platforms. PMID:23939616

  5. Lab-on-CMOS integration of microfluidics and electrochemical sensors.

    PubMed

    Huang, Yue; Mason, Andrew J

    2013-10-07

    This paper introduces a CMOS-microfluidics integration scheme for electrochemical microsystems. A CMOS chip was embedded into a micro-machined silicon carrier. By leveling the CMOS chip and carrier surface to within 100 nm, an expanded obstacle-free surface suitable for photolithography was achieved. Thin film metal planar interconnects were microfabricated to bridge CMOS pads to the perimeter of the carrier, leaving a flat and smooth surface for integrating microfluidic structures. A model device containing SU-8 microfluidic mixers and detection channels crossing over microelectrodes on a CMOS integrated circuit was constructed using the chip-carrier assembly scheme. Functional integrity of microfluidic structures and on-CMOS electrodes was verified by a simultaneous sample dilution and electrochemical detection experiment within multi-channel microfluidics. This lab-on-CMOS integration process is capable of high packing density, is suitable for wafer-level batch production, and opens new opportunities to combine the performance benefits of on-CMOS sensors with lab-on-chip platforms.

  6. Micromachined Thin-Film Sensors for SOI-CMOS Co-Integration

    NASA Astrophysics Data System (ADS)

    Laconte, Jean; Flandre, D.; Raskin, Jean-Pierre

    Co-integration of sensors with their associated electronics on a single silicon chip may provide many significant benefits regarding performance, reliability, miniaturization and process simplicity without significantly increasing the total cost. Micromachined Thin-Film Sensors for SOI-CMOS Co-integration covers the challenges and interests and demonstrates the successful co-integration of gas flow sensors on dielectric membrane, with their associated electronics, in CMOS-SOI technology. We firstly investigate the extraction of residual stress in thin layers and in their stacking and the release, in post-processing, of a 1 μm-thick robust and flat dielectric multilayered membrane using Tetramethyl Ammonium Hydroxide (TMAH) silicon micromachining solution.

  7. USB video image controller used in CMOS image sensor

    NASA Astrophysics Data System (ADS)

    Zhang, Wenxuan; Wang, Yuxia; Fan, Hong

    2002-09-01

    CMOS process is mainstream technique in VLSI, possesses high integration. SE402 is multifunction microcontroller, which integrates image data I/O ports, clock control, exposure control and digital signal processing into one chip. SE402 reduces the number of chips and PCB's room. The paper studies emphatically on USB video image controller used in CMOS image sensor and give the application on digital still camera.

  8. Results of the 2015 testbeam of a 180 nm AMS High-Voltage CMOS sensor prototype

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benoit, M.; de Mendizabal, J. Bilbao; Casse, G.

    We investigated the active pixel sensors based on the High-Voltage CMOS technology as a viable option for the future pixel tracker of the ATLAS experiment at the High-Luminosity LHC. Our paper reports on the testbeam measurements performed at the H8 beamline of the CERN Super Proton Synchrotron on a High-Voltage CMOS sensor prototype produced in 180 nm AMS technology. These results in terms of tracking efficiency and timing performance, for different threshold and bias conditions, are shown.

  9. Results of the 2015 testbeam of a 180 nm AMS High-Voltage CMOS sensor prototype

    DOE PAGES

    Benoit, M.; de Mendizabal, J. Bilbao; Casse, G.; ...

    2016-07-21

    We investigated the active pixel sensors based on the High-Voltage CMOS technology as a viable option for the future pixel tracker of the ATLAS experiment at the High-Luminosity LHC. Our paper reports on the testbeam measurements performed at the H8 beamline of the CERN Super Proton Synchrotron on a High-Voltage CMOS sensor prototype produced in 180 nm AMS technology. These results in terms of tracking efficiency and timing performance, for different threshold and bias conditions, are shown.

  10. CMOS: Efficient Clustered Data Monitoring in Sensor Networks

    PubMed Central

    2013-01-01

    Tiny and smart sensors enable applications that access a network of hundreds or thousands of sensors. Thus, recently, many researchers have paid attention to wireless sensor networks (WSNs). The limitation of energy is critical since most sensors are battery-powered and it is very difficult to replace batteries in cases that sensor networks are utilized outdoors. Data transmission between sensor nodes needs more energy than computation in a sensor node. In order to reduce the energy consumption of sensors, we present an approximate data gathering technique, called CMOS, based on the Kalman filter. The goal of CMOS is to efficiently obtain the sensor readings within a certain error bound. In our approach, spatially close sensors are grouped as a cluster. Since a cluster header generates approximate readings of member nodes, a user query can be answered efficiently using the cluster headers. In addition, we suggest an energy efficient clustering method to distribute the energy consumption of cluster headers. Our simulation results with synthetic data demonstrate the efficiency and accuracy of our proposed technique. PMID:24459444

  11. CMOS: efficient clustered data monitoring in sensor networks.

    PubMed

    Min, Jun-Ki

    2013-01-01

    Tiny and smart sensors enable applications that access a network of hundreds or thousands of sensors. Thus, recently, many researchers have paid attention to wireless sensor networks (WSNs). The limitation of energy is critical since most sensors are battery-powered and it is very difficult to replace batteries in cases that sensor networks are utilized outdoors. Data transmission between sensor nodes needs more energy than computation in a sensor node. In order to reduce the energy consumption of sensors, we present an approximate data gathering technique, called CMOS, based on the Kalman filter. The goal of CMOS is to efficiently obtain the sensor readings within a certain error bound. In our approach, spatially close sensors are grouped as a cluster. Since a cluster header generates approximate readings of member nodes, a user query can be answered efficiently using the cluster headers. In addition, we suggest an energy efficient clustering method to distribute the energy consumption of cluster headers. Our simulation results with synthetic data demonstrate the efficiency and accuracy of our proposed technique.

  12. Ultra-miniature wireless temperature sensor for thermal medicine applications.

    PubMed

    Khairi, Ahmad; Hung, Shih-Chang; Paramesh, Jeyanandh; Fedder, Gary; Rabin, Yoed

    2011-01-01

    This study presents a prototype design of an ultra-miniature, wireless, battery-less, and implantable temperature-sensor, with applications to thermal medicine such as cryosurgery, hyperthermia, and thermal ablation. The design aims at a sensory device smaller than 1.5 mm in diameter and 3 mm in length, to enable minimally invasive deployment through a hypodermic needle. While the new device may be used for local temperature monitoring, simultaneous data collection from an array of such sensors can be used to reconstruct the 3D temperature field in the treated area, offering a unique capability in thermal medicine. The new sensory device consists of three major subsystems: a temperature-sensing core, a wireless data-communication unit, and a wireless power reception and management unit. Power is delivered wirelessly to the implant from an external source using an inductive link. To meet size requirements while enhancing reliability and minimizing cost, the implant is fully integrated in a regular foundry CMOS technology (0.15 μm in the current study), including the implant-side inductor of the power link. A temperature-sensing core that consists of a proportional-to-absolute-temperature (PTAT) circuit has been designed and characterized. It employs a microwatt chopper stabilized op-amp and dynamic element-matched current sources to achieve high absolute accuracy. A second order sigma-delta (Σ-Δ) analog-to-digital converter (ADC) is designed to convert the temperature reading to a digital code, which is transmitted by backscatter through the same antenna used for receiving power. A high-efficiency multi-stage differential CMOS rectifier has been designed to provide a DC supply to the sensing and communication subsystems. This paper focuses on the development of the all-CMOS temperature sensing core circuitry part of the device, and briefly reviews the wireless power delivery and communication subsystems.

  13. Proof of principle study of the use of a CMOS active pixel sensor for proton radiography.

    PubMed

    Seco, Joao; Depauw, Nicolas

    2011-02-01

    Proof of principle study of the use of a CMOS active pixel sensor (APS) in producing proton radiographic images using the proton beam at the Massachusetts General Hospital (MGH). A CMOS APS, previously tested for use in s-ray radiation therapy applications, was used for proton beam radiographic imaging at the MGH. Two different setups were used as a proof of principle that CMOS can be used as proton imaging device: (i) a pen with two metal screws to assess spatial resolution of the CMOS and (ii) a phantom with lung tissue, bone tissue, and water to assess tissue contrast of the CMOS. The sensor was then traversed by a double scattered monoenergetic proton beam at 117 MeV, and the energy deposition inside the detector was recorded to assess its energy response. Conventional x-ray images with similar setup at voltages of 70 kVp and proton images using commercial Gafchromic EBT 2 and Kodak X-Omat V films were also taken for comparison purposes. Images were successfully acquired and compared to x-ray kVp and proton EBT2/X-Omat film images. The spatial resolution of the CMOS detector image is subjectively comparable to the EBT2 and Kodak X-Omat V film images obtained at the same object-detector distance. X-rays have apparent higher spatial resolution than the CMOS. However, further studies with different commercial films using proton beam irradiation demonstrate that the distance of the detector to the object is important to the amount of proton scatter contributing to the proton image. Proton images obtained with films at different distances from the source indicate that proton scatter significantly affects the CMOS image quality. Proton radiographic images were successfully acquired at MGH using a CMOS active pixel sensor detector. The CMOS demonstrated spatial resolution subjectively comparable to films at the same object-detector distance. Further work will be done in order to establish the spatial and energy resolution of the CMOS detector for protons. The development and use of CMOS in proton radiography could allow in vivo proton range checks, patient setup QA, and real-time tumor tracking.

  14. Real-time system for measuring three-dimensional shape of solder bump array by focus using varifocal mirror

    NASA Astrophysics Data System (ADS)

    Ishii, Akira; Tai, Haruka; Mitsudo, Jun

    2007-10-01

    This paper describes a real-time system for measuring the three-dimensional shape of solder bumps arrayed on an LSI chip-size-package (CSP) board presented for inspection based on the shape-from-focus technique. It uses a copper-alloy mirror deformed by a piezoelectric actuator as a varifocal mirror enabling a simple, fast, precise focusing mechanism without moving parts to be built. A practical measuring speed of 1.69 s/package for a small CSP board (4 x 4 mm2) was achieved by incorporating an exclusive field programmable gate array processor to calculate focus measure and by constructing a domed array of LEDs as a high-intensity, uniform illumination system so that a fast (150 fps) and high-resolution (1024 x 1024 pixels/frame) CMOS image sensor could be used. Accurate measurements of bump height were also achieved with errors of 10 μm (2σ) meeting the requirements for testing the coplanarity of a bump array.

  15. Development of Individually Addressable Micro-Mirror-Arrays for Space Applications

    NASA Technical Reports Server (NTRS)

    Dutta, Sanghamitra B.; Ewin, Audrey J.; Jhabvala, Murzy; Kotecki, Carl A.; Kuhn, Jonathan L.; Mott, D. Brent

    2000-01-01

    We have been developing a 32 x 32 prototype array of individually addressable Micro-Mirrors capable of operating at cryogenic temperature for Earth and Space Science applications. Micro-Mirror-Array technology has the potential to revolutionize imaging and spectroscopy systems for NASA's missions of the 21st century. They can be used as programmable slits for the Next Generation Space Telescope, as smart sensors for a steerable spectrometer, as neutral density filters for bright scene attenuation etc. The, entire fabrication process is carried out in the Detector Development Laboratory at NASA, GSFC. The fabrication process is low temperature compatible and involves integration of conventional CMOS technology and surface micro-machining used in MEMS. Aluminum is used as the mirror material and is built on a silicon substrate containing the CMOS address circuit. The mirrors are 100 microns x l00 microns in area and deflect by +/- 10 deg induced by electrostatic actuation between two parallel plate capacitors. A pair of thin aluminum torsion straps allow the mirrors to tilt. Finite-element-analysis and closed form solutions using electrostatic and mechanical torque for mirror operation were developed and the results were compared with laboratory performance. The results agree well both at room temperature and at cryogenic temperature. The development demonstrates the first cryogenic operation of two-dimensional Micro-Mirrors with bi-state operation. Larger arrays will be developed meeting requirements for different science applications. Theoretical analysis, fabrication process, laboratory test results and different science applications will be described in detail.

  16. Characterisation of capacitively coupled HV/HR-CMOS sensor chips for the CLIC vertex detector

    NASA Astrophysics Data System (ADS)

    Kremastiotis, I.

    2017-12-01

    The capacitive coupling between an active sensor and a readout ASIC has been considered in the framework of the CLIC vertex detector study. The CLICpix Capacitively Coupled Pixel Detector (C3PD) is a High-Voltage CMOS sensor chip produced in a commercial 180 nm HV-CMOS process for this purpose. The sensor was designed to be connected to the CLICpix2 readout chip. It therefore matches the dimensions of the readout chip, featuring a matrix of 128×128 square pixels with 25μm pitch. The sensor chip has been produced with the standard value for the substrate resistivity (~20 Ωcm) and it has been characterised in standalone testing mode, before receiving and testing capacitively coupled assemblies. The standalone measurement results show a rise time of ~20 ns for a power consumption of 5μW/pixel. Production of the C3PD HV-CMOS sensor chip with higher substrate resistivity wafers (~20, 80, 200 and 1000 Ωcm) is foreseen. The expected benefits of the higher substrate resistivity will be studied using future assemblies with the readout chip.

  17. Detection of pointing errors with CMOS-based camera in intersatellite optical communications

    NASA Astrophysics Data System (ADS)

    Yu, Si-yuan; Ma, Jing; Tan, Li-ying

    2005-01-01

    For very high data rates, intersatellite optical communications hold a potential performance edge over microwave communications. Acquisition and Tracking problem is critical because of the narrow transmit beam. A single array detector in some systems performs both spatial acquisition and tracking functions to detect pointing errors, so both wide field of view and high update rate is required. The past systems tend to employ CCD-based camera with complex readout arrangements, but the additional complexity reduces the applicability of the array based tracking concept. With the development of CMOS array, CMOS-based cameras can employ the single array detector concept. The area of interest feature of the CMOS-based camera allows a PAT system to specify portion of the array. The maximum allowed frame rate increases as the size of the area of interest decreases under certain conditions. A commercially available CMOS camera with 105 fps @ 640×480 is employed in our PAT simulation system, in which only part pixels are used in fact. Beams angle varying in the field of view can be detected after getting across a Cassegrain telescope and an optical focus system. Spot pixel values (8 bits per pixel) reading out from CMOS are transmitted to a DSP subsystem via IEEE 1394 bus, and pointing errors can be computed by the centroid equation. It was shown in test that: (1) 500 fps @ 100×100 is available in acquisition when the field of view is 1mrad; (2)3k fps @ 10×10 is available in tracking when the field of view is 0.1mrad.

  18. Hyperspectral CMOS imager

    NASA Astrophysics Data System (ADS)

    Jerram, P. A.; Fryer, M.; Pratlong, J.; Pike, A.; Walker, A.; Dierickx, B.; Dupont, B.; Defernez, A.

    2017-11-01

    CCDs have been used for many years for Hyperspectral imaging missions and have been extremely successful. These include the Medium Resolution Imaging Spectrometer (MERIS) [1] on Envisat, the Compact High Resolution Imaging Spectrometer (CHRIS) on Proba and the Ozone Monitoring Instrument operating in the UV spectral region. ESA are also planning a number of further missions that are likely to use CCD technology (Sentinel 3, 4 and 5). However CMOS sensors have a number of advantages which means that they will probably be used for hyperspectral applications in the longer term. There are two main advantages with CMOS sensors: First a hyperspectral image consists of spectral lines with a large difference in intensity; in a frame transfer CCD the faint spectral lines have to be transferred through the part of the imager illuminated by intense lines. This can lead to cross-talk and whilst this problem can be reduced by the use of split frame transfer and faster line rates CMOS sensors do not require a frame transfer and hence inherently will not suffer from this problem. Second, with a CMOS sensor the intense spectral lines can be read multiple times within a frame to give a significant increase in dynamic range. We will describe the design, and initial test of a CMOS sensor for use in hyperspectral applications. This device has been designed to give as high a dynamic range as possible with minimum cross-talk. The sensor has been manufactured on high resistivity epitaxial silicon wafers and is be back-thinned and left relatively thick in order to obtain the maximum quantum efficiency across the entire spectral range

  19. Design of a Low-Light-Level Image Sensor with On-Chip Sigma-Delta Analog-to- Digital Conversion

    NASA Technical Reports Server (NTRS)

    Mendis, Sunetra K.; Pain, Bedabrata; Nixon, Robert H.; Fossum, Eric R.

    1993-01-01

    The design and projected performance of a low-light-level active-pixel-sensor (APS) chip with semi-parallel analog-to-digital (A/D) conversion is presented. The individual elements have been fabricated and tested using MOSIS* 2 micrometer CMOS technology, although the integrated system has not yet been fabricated. The imager consists of a 128 x 128 array of active pixels at a 50 micrometer pitch. Each column of pixels shares a 10-bit A/D converter based on first-order oversampled sigma-delta (Sigma-Delta) modulation. The 10-bit outputs of each converter are multiplexed and read out through a single set of outputs. A semi-parallel architecture is chosen to achieve 30 frames/second operation even at low light levels. The sensor is designed for less than 12 e^- rms noise performance.

  20. Nanometric Integrated Temperature and Thermal Sensors in CMOS-SOI Technology.

    PubMed

    Malits, Maria; Nemirovsky, Yael

    2017-07-29

    This paper reviews and compares the thermal and noise characterization of CMOS (complementary metal-oxide-semiconductor) SOI (Silicon on insulator) transistors and lateral diodes used as temperature and thermal sensors. DC analysis of the measured sensors and the experimental results in a broad (300 K up to 550 K) temperature range are presented. It is shown that both sensors require small chip area, have low power consumption, and exhibit linearity and high sensitivity over the entire temperature range. However, the diode's sensitivity to temperature variations in CMOS-SOI technology is highly dependent on the diode's perimeter; hence, a careful calibration for each fabrication process is needed. In contrast, the short thermal time constant of the electrons in the transistor's channel enables measuring the instantaneous heating of the channel and to determine the local true temperature of the transistor. This allows accurate "on-line" temperature sensing while no additional calibration is needed. In addition, the noise measurements indicate that the diode's small area and perimeter causes a high 1/ f noise in all measured bias currents. This is a severe drawback for the sensor accuracy when using the sensor as a thermal sensor; hence, CMOS-SOI transistors are a better choice for temperature sensing.

  1. CMOS chip planarization by chemical mechanical polishing for a vertically stacked metal MEMS integration

    NASA Astrophysics Data System (ADS)

    Lee, Hocheol; Miller, Michele H.; Bifano, Thomas G.

    2004-01-01

    In this paper we present the planarization process of a CMOS chip for the integration of a microelectromechanical systems (MEMS) metal mirror array. The CMOS chip, which comes from a commercial foundry, has a bumpy passivation layer due to an underlying aluminum interconnect pattern (1.8 µm high), which is used for addressing individual micromirror array elements. To overcome the tendency for tilt error in the CMOS chip planarization, the approach is to sputter a thick layer of silicon nitride at low temperature and to surround the CMOS chip with dummy silicon pieces that define a polishing plane. The dummy pieces are first lapped down to the height of the CMOS chip, and then all pieces are polished. This process produced a chip surface with a root-mean-square flatness error of less than 100 nm, including tilt and curvature errors.

  2. Detection systems for mass spectrometry imaging: a perspective on novel developments with a focus on active pixel detectors.

    PubMed

    Jungmann, Julia H; Heeren, Ron M A

    2013-01-15

    Instrumental developments for imaging and individual particle detection for biomolecular mass spectrometry (imaging) and fundamental atomic and molecular physics studies are reviewed. Ion-counting detectors, array detection systems and high mass detectors for mass spectrometry (imaging) are treated. State-of-the-art detection systems for multi-dimensional ion, electron and photon detection are highlighted. Their application and performance in three different imaging modes--integrated, selected and spectral image detection--are described. Electro-optical and microchannel-plate-based systems are contrasted. The analytical capabilities of solid-state pixel detectors--both charge coupled device (CCD) and complementary metal oxide semiconductor (CMOS) chips--are introduced. The Medipix/Timepix detector family is described as an example of a CMOS hybrid active pixel sensor. Alternative imaging methods for particle detection and their potential for future applications are investigated. Copyright © 2012 John Wiley & Sons, Ltd.

  3. A 2x2 W-Band Reference Time-Shifted Phase-Locked Transmitter Array in 65nm CMOS Technology

    NASA Technical Reports Server (NTRS)

    Tang, Adrian; Virbila, Gabriel; Hsiao, Frank; Wu, Hao; Murphy, David; Mehdi, Imran; Siegel, P. H.; Chang, M-C. Frank

    2013-01-01

    This paper presents a complete 2x2 phased array transmitter system operating at W-band (90-95 GHz) which employs a PLL reference time-shifting approach instead of using traditional mm-wave phase shifters. PLL reference shifting enables a phased array to be distributed over multiple chips without the need for coherent mm-wave signal distribution between chips. The proposed phased array transmitter system consumes 248 mW per array element when implemented in a 65 nm CMOS technology.

  4. CMOS image sensor with contour enhancement

    NASA Astrophysics Data System (ADS)

    Meng, Liya; Lai, Xiaofeng; Chen, Kun; Yuan, Xianghui

    2010-10-01

    Imitating the signal acquisition and processing of vertebrate retina, a CMOS image sensor with bionic pre-processing circuit is designed. Integration of signal-process circuit on-chip can reduce the requirement of bandwidth and precision of the subsequent interface circuit, and simplify the design of the computer-vision system. This signal pre-processing circuit consists of adaptive photoreceptor, spatial filtering resistive network and Op-Amp calculation circuit. The adaptive photoreceptor unit with a dynamic range of approximately 100 dB has a good self-adaptability for the transient changes in light intensity instead of intensity level itself. Spatial low-pass filtering resistive network used to mimic the function of horizontal cell, is composed of the horizontal resistor (HRES) circuit and OTA (Operational Transconductance Amplifier) circuit. HRES circuit, imitating dendrite of the neuron cell, comprises of two series MOS transistors operated in weak inversion region. Appending two diode-connected n-channel transistors to a simple transconductance amplifier forms the OTA Op-Amp circuit, which provides stable bias voltage for the gate of MOS transistors in HRES circuit, while serves as an OTA voltage follower to provide input voltage for the network nodes. The Op-Amp calculation circuit with a simple two-stage Op-Amp achieves the image contour enhancing. By adjusting the bias voltage of the resistive network, the smoothing effect can be tuned to change the effect of image's contour enhancement. Simulations of cell circuit and 16×16 2D circuit array are implemented using CSMC 0.5μm DPTM CMOS process.

  5. Capacitive Micro Pressure Sensor Integrated with a Ring Oscillator Circuit on Chip

    PubMed Central

    Dai, Ching-Liang; Lu, Po-Wei; Chang, Chienliu; Liu, Cheng-Yang

    2009-01-01

    The study investigates a capacitive micro pressure sensor integrated with a ring oscillator circuit on a chip. The integrated capacitive pressure sensor is fabricated using the commercial CMOS (complementary metal oxide semiconductor) process and a post-process. The ring oscillator is employed to convert the capacitance of the pressure sensor into the frequency output. The pressure sensor consists of 16 sensing cells in parallel. Each sensing cell contains a top electrode and a lower electrode, and the top electrode is a sandwich membrane. The pressure sensor needs a post-CMOS process to release the membranes after completion of the CMOS process. The post-process uses etchants to etch the sacrificial layers, and to release the membranes. The advantages of the post-process include easy execution and low cost. Experimental results reveal that the pressure sensor has a high sensitivity of 7 Hz/Pa in the pressure range of 0–300 kPa. PMID:22303167

  6. Capacitive micro pressure sensor integrated with a ring oscillator circuit on chip.

    PubMed

    Dai, Ching-Liang; Lu, Po-Wei; Chang, Chienliu; Liu, Cheng-Yang

    2009-01-01

    The study investigates a capacitive micro pressure sensor integrated with a ring oscillator circuit on a chip. The integrated capacitive pressure sensor is fabricated using the commercial CMOS (complementary metal oxide semiconductor) process and a post-process. The ring oscillator is employed to convert the capacitance of the pressure sensor into the frequency output. The pressure sensor consists of 16 sensing cells in parallel. Each sensing cell contains a top electrode and a lower electrode, and the top electrode is a sandwich membrane. The pressure sensor needs a post-CMOS process to release the membranes after completion of the CMOS process. The post-process uses etchants to etch the sacrificial layers, and to release the membranes. The advantages of the post-process include easy execution and low cost. Experimental results reveal that the pressure sensor has a high sensitivity of 7 Hz/Pa in the pressure range of 0-300 kPa.

  7. Real-time biochemical sensor based on Raman scattering with CMOS contact imaging.

    PubMed

    Muyun Cao; Yuhua Li; Yadid-Pecht, Orly

    2015-08-01

    This work presents a biochemical sensor based on Raman scattering with Complementary metal-oxide-semiconductor (CMOS) contact imaging. This biochemical optical sensor is designed for detecting the concentration of solutions. The system is built with a laser diode, an optical filter, a sample holder and a commercial CMOS sensor. The output of the system is analyzed by an image processing program. The system provides instant measurements with a resolution of 0.2 to 0.4 Mol. This low cost and easy-operated small scale system is useful in chemical, biomedical and environmental labs for quantitative bio-chemical concentration detection with results reported comparable to a highly cost commercial spectrometer.

  8. Research-grade CMOS image sensors for remote sensing applications

    NASA Astrophysics Data System (ADS)

    Saint-Pe, Olivier; Tulet, Michel; Davancens, Robert; Larnaudie, Franck; Magnan, Pierre; Martin-Gonthier, Philippe; Corbiere, Franck; Belliot, Pierre; Estribeau, Magali

    2004-11-01

    Imaging detectors are key elements for optical instruments and sensors on board space missions dedicated to Earth observation (high resolution imaging, atmosphere spectroscopy...), Solar System exploration (micro cameras, guidance for autonomous vehicle...) and Universe observation (space telescope focal planes, guiding sensors...). This market has been dominated by CCD technology for long. Since the mid-90s, CMOS Image Sensors (CIS) have been competing with CCDs for consumer domains (webcams, cell phones, digital cameras...). Featuring significant advantages over CCD sensors for space applications (lower power consumption, smaller system size, better radiations behaviour...), CMOS technology is also expanding in this field, justifying specific R&D and development programs funded by national and European space agencies (mainly CNES, DGA and ESA). All along the 90s and thanks to their increasingly improving performances, CIS have started to be successfully used for more and more demanding space applications, from vision and control functions requiring low-level performances to guidance applications requiring medium-level performances. Recent technology improvements have made possible the manufacturing of research-grade CIS that are able to compete with CCDs in the high-performances arena. After an introduction outlining the growing interest of optical instruments designers for CMOS image sensors, this paper will present the existing and foreseen ways to reach high-level electro-optics performances for CIS. The developments and performances of CIS prototypes built using an imaging CMOS process will be presented in the corresponding section.

  9. Low-voltage 96 dB snapshot CMOS image sensor with 4.5 nW power dissipation per pixel.

    PubMed

    Spivak, Arthur; Teman, Adam; Belenky, Alexander; Yadid-Pecht, Orly; Fish, Alexander

    2012-01-01

    Modern "smart" CMOS sensors have penetrated into various applications, such as surveillance systems, bio-medical applications, digital cameras, cellular phones and many others. Reducing the power of these sensors continuously challenges designers. In this paper, a low power global shutter CMOS image sensor with Wide Dynamic Range (WDR) ability is presented. This sensor features several power reduction techniques, including a dual voltage supply, a selective power down, transistors with different threshold voltages, a non-rationed logic, and a low voltage static memory. A combination of all these approaches has enabled the design of the low voltage "smart" image sensor, which is capable of reaching a remarkable dynamic range, while consuming very low power. The proposed power-saving solutions have allowed the maintenance of the standard architecture of the sensor, reducing both the time and the cost of the design. In order to maintain the image quality, a relation between the sensor performance and power has been analyzed and a mathematical model, describing the sensor Signal to Noise Ratio (SNR) and Dynamic Range (DR) as a function of the power supplies, is proposed. The described sensor was implemented in a 0.18 um CMOS process and successfully tested in the laboratory. An SNR of 48 dB and DR of 96 dB were achieved with a power dissipation of 4.5 nW per pixel.

  10. Low-Voltage 96 dB Snapshot CMOS Image Sensor with 4.5 nW Power Dissipation per Pixel

    PubMed Central

    Spivak, Arthur; Teman, Adam; Belenky, Alexander; Yadid-Pecht, Orly; Fish, Alexander

    2012-01-01

    Modern “smart” CMOS sensors have penetrated into various applications, such as surveillance systems, bio-medical applications, digital cameras, cellular phones and many others. Reducing the power of these sensors continuously challenges designers. In this paper, a low power global shutter CMOS image sensor with Wide Dynamic Range (WDR) ability is presented. This sensor features several power reduction techniques, including a dual voltage supply, a selective power down, transistors with different threshold voltages, a non-rationed logic, and a low voltage static memory. A combination of all these approaches has enabled the design of the low voltage “smart” image sensor, which is capable of reaching a remarkable dynamic range, while consuming very low power. The proposed power-saving solutions have allowed the maintenance of the standard architecture of the sensor, reducing both the time and the cost of the design. In order to maintain the image quality, a relation between the sensor performance and power has been analyzed and a mathematical model, describing the sensor Signal to Noise Ratio (SNR) and Dynamic Range (DR) as a function of the power supplies, is proposed. The described sensor was implemented in a 0.18 um CMOS process and successfully tested in the laboratory. An SNR of 48 dB and DR of 96 dB were achieved with a power dissipation of 4.5 nW per pixel. PMID:23112588

  11. Advanced Sensors for TBI

    DTIC Science & Technology

    2015-07-01

    CMOS clean • Commercialization of the sensor is aided by this process as use of CMOS -clean commercial foundries will not be restricted Bench...AD_________________ Award Number: W81XWH-10-2-0040 TITLE: Advanced Sensors for TBI PRINCIPAL INVESTIGATOR: Bruce Lyeth, Ph.D. CONTRACTING...ABOVE ADDRESS. 1. REPORT DATE July 2015 2. REPORT TYPE Annual 3. DATES COVERED 1Jul2014 - 30Jun2015 4. TITLE AND SUBTITLE Advanced Sensors for TBI 5a

  12. Recent Design Development in Molecular Imaging for Breast Cancer Detection Using Nanometer CMOS Based Sensors.

    PubMed

    Nguyen, Dung C; Ma, Dongsheng Brian; Roveda, Janet M W

    2012-01-01

    As one of the key clinical imaging methods, the computed X-ray tomography can be further improved using new nanometer CMOS sensors. This will enhance the current technique's ability in terms of cancer detection size, position, and detection accuracy on the anatomical structures. The current paper reviewed designs of SOI-based CMOS sensors and their architectural design in mammography systems. Based on the existing experimental results, using the SOI technology can provide a low-noise (SNR around 87.8 db) and high-gain (30 v/v) CMOS imager. It is also expected that, together with the fast data acquisition designs, the new type of imagers may play important roles in the near-future high-dimensional images in additional to today's 2D imagers.

  13. Electron lithography STAR design guidelines. Part 3: The mosaic transistor array applied to custom microprocessors. Part 4: Stores logic arrays, SLAs implemented with clocked CMOS

    NASA Technical Reports Server (NTRS)

    Trotter, J. D.

    1982-01-01

    The Mosaic Transistor Array is an extension of the STAR system developed by NASA which has dedicated field cells designed to be specifically used in semicustom microprocessor applications. The Sandia radiation hard bulk CMOS process is utilized in order to satisfy the requirements of space flights. A design philosophy is developed which utilizes the strengths and recognizes the weaknesses of the Sandia process. A style of circuitry is developed which incorporates the low power and high drive capability of CMOS. In addition the density achieved is better than that for classic CMOS, although not as good as for NMOS. The basic logic functions for a data path are designed with compatible interface to the STAR grid system. In this manner either random logic or PLA type structures can be utilized for the control logic.

  14. A CMOS-MEMS clamped–clamped beam displacement amplifier for resonant switch applications

    NASA Astrophysics Data System (ADS)

    Liu, Jia-Ren; Lu, Shih-Chuan; Tsai, Chun-Pu; Li, Wei-Chang

    2018-06-01

    This paper presents a micromechanical clamped–clamped beam (CC-beam) displacement amplifier based on a CMOS-MEMS fabrication process platform. In particular, a 2.0 MHz resonant displacement amplifier composed of two identical CC-beams coupled by a mechanical beam at locations where the two beams have mismatched velocities exhibits a larger displacement, up to 9.96×, on one beam than that of the other. The displacement amplification prevents unwanted input impacting—the structure switches only to the output but not the input—required by resonant switch-based mechanical circuits (Kim et al 2009 22nd IEEE Int. Conf. on Micro Electro Mechanical Systems; Lin et al 2009 15th Int. Conf. on Solid-State Sensors, Actuators, & Microsystems (TRANSDUCERS’09) Li et al 2013 17th Int. Conf. on Solid-State Sensors, Actuators, & Microsystems (TRANSDUCERS’13)). Compared to a single CC-beam displacement amplifier, theory predicts that the displacement amplifying CC-beam array yields a larger overall output displacement for displacement gain beyond 1.13 thanks to the preserved input driving force. A complete analytical model predicts the resultant stiffness and displacement gain of the coupled CC-beam displacement amplifier that match well with finite element analysis (FEA) prediction and measured results.

  15. Process techniques of charge transfer time reduction for high speed CMOS image sensors

    NASA Astrophysics Data System (ADS)

    Zhongxiang, Cao; Quanliang, Li; Ye, Han; Qi, Qin; Peng, Feng; Liyuan, Liu; Nanjian, Wu

    2014-11-01

    This paper proposes pixel process techniques to reduce the charge transfer time in high speed CMOS image sensors. These techniques increase the lateral conductivity of the photo-generated carriers in a pinned photodiode (PPD) and the voltage difference between the PPD and the floating diffusion (FD) node by controlling and optimizing the N doping concentration in the PPD and the threshold voltage of the reset transistor, respectively. The techniques shorten the charge transfer time from the PPD diode to the FD node effectively. The proposed process techniques do not need extra masks and do not cause harm to the fill factor. A sub array of 32 × 64 pixels was designed and implemented in the 0.18 μm CIS process with five implantation conditions splitting the N region in the PPD. The simulation and measured results demonstrate that the charge transfer time can be decreased by using the proposed techniques. Comparing the charge transfer time of the pixel with the different implantation conditions of the N region, the charge transfer time of 0.32 μs is achieved and 31% of image lag was reduced by using the proposed process techniques.

  16. Frontend Receiver Electronics for High Frequency Monolithic CMUT-on-CMOS Imaging Arrays

    PubMed Central

    Gurun, Gokce; Hasler, Paul; Degertekin, F. Levent

    2012-01-01

    This paper describes the design of CMOS receiver electronics for monolithic integration with capacitive micromachined ultrasonic transducer (CMUT) arrays for high-frequency intravascular ultrasound imaging. A custom 8-inch wafer is fabricated in a 0.35 μm two-poly, four-metal CMOS process and then CMUT arrays are built on top of the application specific integrated circuits (ASICs) on the wafer. We discuss advantages of the single-chip CMUT-on-CMOS approach in terms of receive sensitivity and SNR. Low-noise and high-gain design of a transimpedance amplifier (TIA) optimized for a forward-looking volumetric-imaging CMUT array element is discussed as a challenging design example. Amplifier gain, bandwidth, dynamic range and power consumption trade-offs are discussed in detail. With minimized parasitics provided by the CMUT-on-CMOS approach, the optimized TIA design achieves a 90 fA/√Hz input referred current noise, which is less than the thermal-mechanical noise of the CMUT element. We show successful system operation with a pulse-echo measurement. Transducer noise-dominated detection in immersion is also demonstrated through output noise spectrum measurement of the integrated system at different CMUT bias voltages. A noise figure of 1.8 dB is obtained in the designed CMUT bandwidth of 10 MHz to 20 MHz. PMID:21859585

  17. Front-end receiver electronics for high-frequency monolithic CMUT-on-CMOS imaging arrays.

    PubMed

    Gurun, Gokce; Hasler, Paul; Degertekin, F

    2011-08-01

    This paper describes the design of CMOS receiver electronics for monolithic integration with capacitive micromachined ultrasonic transducer (CMUT) arrays for highfrequency intravascular ultrasound imaging. A custom 8-inch (20-cm) wafer is fabricated in a 0.35-μm two-poly, four-metal CMOS process and then CMUT arrays are built on top of the application specific integrated circuits (ASICs) on the wafer. We discuss advantages of the single-chip CMUT-on-CMOS approach in terms of receive sensitivity and SNR. Low-noise and high-gain design of a transimpedance amplifier (TIA) optimized for a forward-looking volumetric-imaging CMUT array element is discussed as a challenging design example. Amplifier gain, bandwidth, dynamic range, and power consumption trade-offs are discussed in detail. With minimized parasitics provided by the CMUT-on-CMOS approach, the optimized TIA design achieves a 90 fA/√Hz input-referred current noise, which is less than the thermal-mechanical noise of the CMUT element. We show successful system operation with a pulseecho measurement. Transducer-noise-dominated detection in immersion is also demonstrated through output noise spectrum measurement of the integrated system at different CMUT bias voltages. A noise figure of 1.8 dB is obtained in the designed CMUT bandwidth of 10 to 20 MHz.

  18. Low-noise low-jitter 32-pixels CMOS single-photon avalanche diodes array for single-photon counting from 300 nm to 900 nm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scarcella, Carmelo; Tosi, Alberto, E-mail: alberto.tosi@polimi.it; Villa, Federica

    2013-12-15

    We developed a single-photon counting multichannel detection system, based on a monolithic linear array of 32 CMOS SPADs (Complementary Metal-Oxide-Semiconductor Single-Photon Avalanche Diodes). All channels achieve a timing resolution of 100 ps (full-width at half maximum) and a photon detection efficiency of 50% at 400 nm. Dark count rate is very low even at room temperature, being about 125 counts/s for 50 μm active area diameter SPADs. Detection performance and microelectronic compactness of this CMOS SPAD array make it the best candidate for ultra-compact time-resolved spectrometers with single-photon sensitivity from 300 nm to 900 nm.

  19. CMOS Image Sensors for High Speed Applications.

    PubMed

    El-Desouki, Munir; Deen, M Jamal; Fang, Qiyin; Liu, Louis; Tse, Frances; Armstrong, David

    2009-01-01

    Recent advances in deep submicron CMOS technologies and improved pixel designs have enabled CMOS-based imagers to surpass charge-coupled devices (CCD) imaging technology for mainstream applications. The parallel outputs that CMOS imagers can offer, in addition to complete camera-on-a-chip solutions due to being fabricated in standard CMOS technologies, result in compelling advantages in speed and system throughput. Since there is a practical limit on the minimum pixel size (4∼5 μm) due to limitations in the optics, CMOS technology scaling can allow for an increased number of transistors to be integrated into the pixel to improve both detection and signal processing. Such smart pixels truly show the potential of CMOS technology for imaging applications allowing CMOS imagers to achieve the image quality and global shuttering performance necessary to meet the demands of ultrahigh-speed applications. In this paper, a review of CMOS-based high-speed imager design is presented and the various implementations that target ultrahigh-speed imaging are described. This work also discusses the design, layout and simulation results of an ultrahigh acquisition rate CMOS active-pixel sensor imager that can take 8 frames at a rate of more than a billion frames per second (fps).

  20. A Novel Method to Increase LinLog CMOS Sensors’ Performance in High Dynamic Range Scenarios

    PubMed Central

    Martínez-Sánchez, Antonio; Fernández, Carlos; Navarro, Pedro J.; Iborra, Andrés

    2011-01-01

    Images from high dynamic range (HDR) scenes must be obtained with minimum loss of information. For this purpose it is necessary to take full advantage of the quantification levels provided by the CCD/CMOS image sensor. LinLog CMOS sensors satisfy the above demand by offering an adjustable response curve that combines linear and logarithmic responses. This paper presents a novel method to quickly adjust the parameters that control the response curve of a LinLog CMOS image sensor. We propose to use an Adaptive Proportional-Integral-Derivative controller to adjust the exposure time of the sensor, together with control algorithms based on the saturation level and the entropy of the images. With this method the sensor’s maximum dynamic range (120 dB) can be used to acquire good quality images from HDR scenes with fast, automatic adaptation to scene conditions. Adaptation to a new scene is rapid, with a sensor response adjustment of less than eight frames when working in real time video mode. At least 67% of the scene entropy can be retained with this method. PMID:22164083

  1. 3-Axis Fully-Integrated Capacitive Tactile Sensor with Flip-Bonded CMOS on LTCC Interposer.

    PubMed

    Asano, Sho; Muroyama, Masanori; Nakayama, Takahiro; Hata, Yoshiyuki; Nonomura, Yutaka; Tanaka, Shuji

    2017-10-25

    This paper reports a 3-axis fully integrated differential capacitive tactile sensor surface-mountable on a bus line. The sensor integrates a flip-bonded complementary metal-oxide semiconductor (CMOS) with capacitive sensing circuits on a low temperature cofired ceramic (LTCC) interposer with Au through vias by Au-Au thermo-compression bonding. The CMOS circuit and bonding pads on the sensor backside were electrically connected through Au bumps and the LTCC interposer, and the differential capacitive gap was formed by an Au sealing frame. A diaphragm for sensing 3-axis force was formed in the CMOS substrate. The dimensions of the completed sensor are 2.5 mm in width, 2.5 mm in length, and 0.66 mm in thickness. The fabricated sensor output coded 3-axis capacitive sensing data according to applied 3-axis force by three-dimensional (3D)-printed pins. The measured sensitivity was as high as over 34 Count/mN for normal force and 14 to 15 Count/mN for shear force with small noise, which corresponds to less than 1 mN. The hysteresis and the average cross-sensitivity were also found to be less than 2% full scale and 11%, respectively.

  2. 3-Axis Fully-Integrated Capacitive Tactile Sensor with Flip-Bonded CMOS on LTCC Interposer †

    PubMed Central

    Asano, Sho; Nakayama, Takahiro; Hata, Yoshiyuki; Tanaka, Shuji

    2017-01-01

    This paper reports a 3-axis fully integrated differential capacitive tactile sensor surface-mountable on a bus line. The sensor integrates a flip-bonded complementary metal-oxide semiconductor (CMOS) with capacitive sensing circuits on a low temperature cofired ceramic (LTCC) interposer with Au through vias by Au-Au thermo-compression bonding. The CMOS circuit and bonding pads on the sensor backside were electrically connected through Au bumps and the LTCC interposer, and the differential capacitive gap was formed by an Au sealing frame. A diaphragm for sensing 3-axis force was formed in the CMOS substrate. The dimensions of the completed sensor are 2.5 mm in width, 2.5 mm in length, and 0.66 mm in thickness. The fabricated sensor output coded 3-axis capacitive sensing data according to applied 3-axis force by three-dimensional (3D)-printed pins. The measured sensitivity was as high as over 34 Count/mN for normal force and 14 to 15 Count/mN for shear force with small noise, which corresponds to less than 1 mN. The hysteresis and the average cross-sensitivity were also found to be less than 2% full scale and 11%, respectively. PMID:29068429

  3. Taking Advantage of Selective Change Driven Processing for 3D Scanning

    PubMed Central

    Vegara, Francisco; Zuccarello, Pedro; Boluda, Jose A.; Pardo, Fernando

    2013-01-01

    This article deals with the application of the principles of SCD (Selective Change Driven) vision to 3D laser scanning. Two experimental sets have been implemented: one with a classical CMOS (Complementary Metal-Oxide Semiconductor) sensor, and the other one with a recently developed CMOS SCD sensor for comparative purposes, both using the technique known as Active Triangulation. An SCD sensor only delivers the pixels that have changed most, ordered by the magnitude of their change since their last readout. The 3D scanning method is based on the systematic search through the entire image to detect pixels that exceed a certain threshold, showing the SCD approach to be ideal for this application. Several experiments for both capturing strategies have been performed to try to find the limitations in high speed acquisition/processing. The classical approach is limited by the sequential array acquisition, as predicted by the Nyquist–Shannon sampling theorem, and this has been experimentally demonstrated in the case of a rotating helix. These limitations are overcome by the SCD 3D scanning prototype achieving a significantly higher performance. The aim of this article is to compare both capturing strategies in terms of performance in the time and frequency domains, so they share all the static characteristics including resolution, 3D scanning method, etc., thus yielding the same 3D reconstruction in static scenes. PMID:24084110

  4. Fabrication and Characterization of a Micro Methanol Sensor Using the CMOS-MEMS Technique.

    PubMed

    Fong, Chien-Fu; Dai, Ching-Liang; Wu, Chyan-Chyi

    2015-10-23

    A methanol microsensor integrated with a micro heater manufactured using the complementary metal oxide semiconductor (CMOS)-microelectromechanical system (MEMS) technique was presented. The sensor has a capability of detecting low concentration methanol gas. Structure of the sensor is composed of interdigitated electrodes, a sensitive film and a heater. The heater located under the interdigitated electrodes is utilized to provide a working temperature to the sensitive film. The sensitive film prepared by the sol-gel method is tin dioxide doped cadmium sulfide, which is deposited on the interdigitated electrodes. To obtain the suspended structure and deposit the sensitive film, the sensor needs a post-CMOS process to etch the sacrificial silicon dioxide layer and silicon substrate. The methanol senor is a resistive type. A readout circuit converts the resistance variation of the sensor into the output voltage. The experimental results show that the methanol sensor has a sensitivity of 0.18 V/ppm.

  5. Fabrication and Characterization of a Micro Methanol Sensor Using the CMOS-MEMS Technique

    PubMed Central

    Fong, Chien-Fu; Dai, Ching-Liang; Wu, Chyan-Chyi

    2015-01-01

    A methanol microsensor integrated with a micro heater manufactured using the complementary metal oxide semiconductor (CMOS)-microelectromechanical system (MEMS) technique was presented. The sensor has a capability of detecting low concentration methanol gas. Structure of the sensor is composed of interdigitated electrodes, a sensitive film and a heater. The heater located under the interdigitated electrodes is utilized to provide a working temperature to the sensitive film. The sensitive film prepared by the sol-gel method is tin dioxide doped cadmium sulfide, which is deposited on the interdigitated electrodes. To obtain the suspended structure and deposit the sensitive film, the sensor needs a post-CMOS process to etch the sacrificial silicon dioxide layer and silicon substrate. The methanol senor is a resistive type. A readout circuit converts the resistance variation of the sensor into the output voltage. The experimental results show that the methanol sensor has a sensitivity of 0.18 V/ppm. PMID:26512671

  6. Proof of principle study of the use of a CMOS active pixel sensor for proton radiography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seco, Joao; Depauw, Nicolas

    2011-02-15

    Purpose: Proof of principle study of the use of a CMOS active pixel sensor (APS) in producing proton radiographic images using the proton beam at the Massachusetts General Hospital (MGH). Methods: A CMOS APS, previously tested for use in s-ray radiation therapy applications, was used for proton beam radiographic imaging at the MGH. Two different setups were used as a proof of principle that CMOS can be used as proton imaging device: (i) a pen with two metal screws to assess spatial resolution of the CMOS and (ii) a phantom with lung tissue, bone tissue, and water to assess tissuemore » contrast of the CMOS. The sensor was then traversed by a double scattered monoenergetic proton beam at 117 MeV, and the energy deposition inside the detector was recorded to assess its energy response. Conventional x-ray images with similar setup at voltages of 70 kVp and proton images using commercial Gafchromic EBT 2 and Kodak X-Omat V films were also taken for comparison purposes. Results: Images were successfully acquired and compared to x-ray kVp and proton EBT2/X-Omat film images. The spatial resolution of the CMOS detector image is subjectively comparable to the EBT2 and Kodak X-Omat V film images obtained at the same object-detector distance. X-rays have apparent higher spatial resolution than the CMOS. However, further studies with different commercial films using proton beam irradiation demonstrate that the distance of the detector to the object is important to the amount of proton scatter contributing to the proton image. Proton images obtained with films at different distances from the source indicate that proton scatter significantly affects the CMOS image quality. Conclusion: Proton radiographic images were successfully acquired at MGH using a CMOS active pixel sensor detector. The CMOS demonstrated spatial resolution subjectively comparable to films at the same object-detector distance. Further work will be done in order to establish the spatial and energy resolution of the CMOS detector for protons. The development and use of CMOS in proton radiography could allow in vivo proton range checks, patient setup QA, and real-time tumor tracking.« less

  7. Monolithic integration of GMR sensors for standard CMOS-IC current sensing

    NASA Astrophysics Data System (ADS)

    De Marcellis, A.; Reig, C.; Cubells-Beltrán, M.-D.; Madrenas, J.; Santos, J. D.; Cardoso, S.; Freitas, P. P.

    2017-09-01

    In this work we report on the development of Giant Magnetoresistive (GMR) sensors for off-line current measurements in standard integrated circuits. An ASIC has been specifically designed and fabricated in the well-known AMS-0.35 μm CMOS technology, including the electronic circuitry for sensor interfacing. It implements an oscillating circuit performing a voltage-to-frequency conversion. Subsequently, a fully CMOS-compatible low temperature post-process has been applied for depositing the GMR sensing devices in a full-bridge configuration onto the buried current straps. Sensitivity and resolution of these sensors have been investigated achieving experimental results that show a detection sensitivity of about 100 Hz/mA, with a resolution of about 5 μA.

  8. Microdot - A Four-Bit Microcontroller Designed for Distributed Low-End Computing in Satellites

    NASA Astrophysics Data System (ADS)

    2002-03-01

    Many satellites are an integrated collection of sensors and actuators that require dedicated real-time control. For single processor systems, additional sensors require an increase in computing power and speed to provide the multi-tasking capability needed to service each sensor. Faster processors cost more and consume more power, which taxes a satellite's power resources and may lead to shorter satellite lifetimes. An alternative design approach is a distributed network of small and low power microcontrollers designed for space that handle the computing requirements of each individual sensor and actuator. The design of microdot, a four-bit microcontroller for distributed low-end computing, is presented. The design is based on previous research completed at the Space Electronics Branch, Air Force Research Laboratory (AFRL/VSSE) at Kirtland AFB, NM, and the Air Force Institute of Technology at Wright-Patterson AFB, OH. The Microdot has 29 instructions and a 1K x 4 instruction memory. The distributed computing architecture is based on the Philips Semiconductor I2C Serial Bus Protocol. A prototype was implemented and tested using an Altera Field Programmable Gate Array (FPGA). The prototype was operable to 9.1 MHz. The design was targeted for fabrication in a radiation-hardened-by-design gate-array cell library for the TSMC 0.35 micrometer CMOS process.

  9. Low-Power RF SOI-CMOS Technology for Distributed Sensor Networks

    NASA Technical Reports Server (NTRS)

    Dogan, Numan S.

    2003-01-01

    The objective of this work is to design and develop Low-Power RF SOI-CMOS Technology for Distributed Sensor Networks. We briefly report on the accomplishments in this work. We also list the impact of this work on graduate student research training/involvement.

  10. Application of CMOS Technology to Silicon Photomultiplier Sensors.

    PubMed

    D'Ascenzo, Nicola; Zhang, Xi; Xie, Qingguo

    2017-09-25

    We use the 180 nm GLOBALFOUNDRIES (GF) BCDLite CMOS process for the production of a silicon photomultiplier prototype. We study the main characteristics of the developed sensor in comparison with commercial SiPMs obtained in custom technologies and other SiPMs developed with CMOS-compatible processes. We support our discussion with a transient modeling of the detection process of the silicon photomultiplier as well as with a series of static and dynamic experimental measurements in dark and illuminated environments.

  11. Improved Space Object Observation Techniques Using CMOS Detectors

    NASA Astrophysics Data System (ADS)

    Schildknecht, T.; Hinze, A.; Schlatter, P.; Silha, J.; Peltonen, J.; Santti, T.; Flohrer, T.

    2013-08-01

    CMOS-sensors, or in general Active Pixel Sensors (APS), are rapidly replacing CCDs in the consumer camera market. Due to significant technological advances during the past years these devices start to compete with CCDs also for demanding scientific imaging applications, in particular in the astronomy community. CMOS detectors offer a series of inherent advantages compared to CCDs, due to the structure of their basic pixel cells, which each contain their own amplifier and readout electronics. The most prominent advantages for space object observations are the extremely fast and flexible readout capabilities, feasibility for electronic shuttering and precise epoch registration, and the potential to perform image processing operations on-chip and in real-time. Presently applied and proposed optical observation strategies for space debris surveys and space surveillance applications had to be analyzed. The major design drivers were identified and potential benefits from using available and future CMOS sensors were assessed. The major challenges and design drivers for ground-based and space-based optical observation strategies have been analyzed. CMOS detector characteristics were critically evaluated and compared with the established CCD technology, especially with respect to the above mentioned observations. Similarly, the desirable on-chip processing functionalities which would further enhance the object detection and image segmentation were identified. Finally, the characteristics of a particular CMOS sensor available at the Zimmerwald observatory were analyzed by performing laboratory test measurements.

  12. Nanometric Integrated Temperature and Thermal Sensors in CMOS-SOI Technology

    PubMed Central

    Malits, Maria; Nemirovsky, Yael

    2017-01-01

    This paper reviews and compares the thermal and noise characterization of CMOS (complementary metal-oxide-semiconductor) SOI (Silicon on insulator) transistors and lateral diodes used as temperature and thermal sensors. DC analysis of the measured sensors and the experimental results in a broad (300 K up to 550 K) temperature range are presented. It is shown that both sensors require small chip area, have low power consumption, and exhibit linearity and high sensitivity over the entire temperature range. However, the diode’s sensitivity to temperature variations in CMOS-SOI technology is highly dependent on the diode’s perimeter; hence, a careful calibration for each fabrication process is needed. In contrast, the short thermal time constant of the electrons in the transistor’s channel enables measuring the instantaneous heating of the channel and to determine the local true temperature of the transistor. This allows accurate “on-line” temperature sensing while no additional calibration is needed. In addition, the noise measurements indicate that the diode’s small area and perimeter causes a high 1/f noise in all measured bias currents. This is a severe drawback for the sensor accuracy when using the sensor as a thermal sensor; hence, CMOS-SOI transistors are a better choice for temperature sensing. PMID:28758932

  13. A process modification for CMOS monolithic active pixel sensors for enhanced depletion, timing performance and radiation tolerance

    NASA Astrophysics Data System (ADS)

    Snoeys, W.; Aglieri Rinella, G.; Hillemanns, H.; Kugathasan, T.; Mager, M.; Musa, L.; Riedler, P.; Reidt, F.; Van Hoorne, J.; Fenigstein, A.; Leitner, T.

    2017-11-01

    For the upgrade of its Inner Tracking System, the ALICE experiment plans to install a new tracker fully constructed with monolithic active pixel sensors implemented in a standard 180 nm CMOS imaging sensor process, with a deep pwell allowing full CMOS within the pixel. Reverse substrate bias increases the tolerance to non-ionizing energy loss (NIEL) well beyond 1013 1 MeVneq /cm2, but does not allow full depletion of the sensitive layer and hence full charge collection by drift, mandatory for more extreme radiation tolerance. This paper describes a process modification to fully deplete the epitaxial layer even with a small charge collection electrode. It uses a low dose blanket deep high energy n-type implant in the pixel array and does not require significant circuit or layout changes so that the same design can be fabricated both in the standard and modified process. When exposed to a 55 Fe source at a reverse substrate bias of -6 V, pixels implemented in the standard and the modified process in a low and high dose variant for the deep n-type implant respectively yield a signal of about 115 mV, 110 mV and 90 mV at the output of a follower circuit. Signal rise times heavily affected by the speed of this circuit are 27 . 8 + / - 5 ns, 23 . 2 + / - 4 . 2 ns, and 22 . 2 + / - 3 . 7 ns rms, respectively. In a different setup, the single pixel signal from a 90 Sr source only degrades by less than 20% for the modified process after a 1015 1 MeVneq /cm2 irradiation, while the signal rise time only degrades by about 16 + / - 2 ns to 19 + / - 2 . 8 ns rms. From sensors implemented in the standard process no useful signal could be extracted after the same exposure. These first results indicate the process modification maintains low sensor capacitance, improves timing performance and increases NIEL tolerance by at least an order of magnitude.

  14. Flow-through nanohole array based sensor implemented on analogue smartphone components

    NASA Astrophysics Data System (ADS)

    Gomez-Cruz, Juan; Nair, Srijit; Ascanio, Gabriel; Escobedo, Carlos

    2017-08-01

    Mobile communications have massively populated the consumer electronics market over the past few years and it is now ubiquitous, providing a timeless opportunity for the development of smartphone-based technologies as point-of-care (POC) diagnosis tools1 . The expectation for a fully integrated smartphone-based sensor that enables applications such as environmental monitoring, explosive detection and biomedical analysis has increased among the scientific community in the past few years2,3. The commercialization forecast for smartphone-based sensing technologies is very promising, but reliable, miniature and cost-effective sensing platforms that can adapt to portable electronics in still under development. In this work, we present an integrated sensing platform based on flow-through metallic nanohole arrays. The nanohole arrays are 260 nm in diameter and 520 nm in pitch, fabricated using Focused Ion Beam (FIB) lithography. A white LED resembling a smartphone flash LED serves as light source to excite surface plasmons and the signal is recorded via a Complementary Metal-Oxide-Semiconductor (CMOS) module. The sensing abilities of the integrated sensing platform is demonstrated for the detection of (i) changes in bulk refractive index (RI), (ii) real-time monitoring of surface modification by receptor-analyte system of streptavidin-biotin.

  15. Neuromorphic optical sensor chip with color change-intensity change disambiguation

    NASA Astrophysics Data System (ADS)

    Fu, ZhenHong; Mao, Rui; Cartwright, Alexander N.; Titus, Albert H.

    2010-02-01

    In this paper, we describe the development of a novel, retina-like neuromorphic chip that has an array of two types of retina 'cells' arranged to mimic the fovea structure in certain animals. One of the two retina cell types performs irradiance detection and the other can perform color detection. Together, via the two parallel pathways the retina chip can perform color change intensity change disambiguation (CCICD). The irradiance detection cell has a wide-dynamic detection range that spans almost 3 orders of magnitude. The color detection cell has a buried double junction (BDJ) photodiode as the photoreceptor followed by two parallel logarithmic I-V convertors. The output from this is a color response which has at least a 50nm resolution for wavelengths from 400nm to 900nm. With these two cells, the array can perform color change -intensity change disambiguation (CCICD) to determine if a change in the output of the irradiance pathway is because of irradiance change, color change, or both. This biological retina-like neuromorphic sensor array is implemented in ON-SEMI 0.5μm technology, a standard CMOS fabrication process available at MOSIS.

  16. Polypyrrole Porous Micro Humidity Sensor Integrated with a Ring Oscillator Circuit on Chip

    PubMed Central

    Yang, Ming-Zhi; Dai, Ching-Liang; Lu, De-Hao

    2010-01-01

    This study presents the design and fabrication of a capacitive micro humidity sensor integrated with a five-stage ring oscillator circuit on chip using the complimentary metal oxide semiconductor (CMOS) process. The area of the humidity sensor chip is about 1 mm2. The humidity sensor consists of a sensing capacitor and a sensing film. The sensing capacitor is constructed from spiral interdigital electrodes that can enhance the sensitivity of the sensor. The sensing film of the sensor is polypyrrole, which is prepared by the chemical polymerization method, and the film has a porous structure. The sensor needs a post-CMOS process to coat the sensing film. The post-CMOS process uses a wet etching to etch the sacrificial layers, and then the polypyrrole is coated on the sensing capacitor. The sensor generates a change in capacitance when the sensing film absorbs or desorbs vapor. The ring oscillator circuit converts the capacitance variation of the sensor into the oscillation frequency output. Experimental results show that the sensitivity of the humidity sensor is about 99 kHz/%RH at 25 °C. PMID:22163459

  17. Polypyrrole porous micro humidity sensor integrated with a ring oscillator circuit on chip.

    PubMed

    Yang, Ming-Zhi; Dai, Ching-Liang; Lu, De-Hao

    2010-01-01

    This study presents the design and fabrication of a capacitive micro humidity sensor integrated with a five-stage ring oscillator circuit on chip using the complimentary metal oxide semiconductor (CMOS) process. The area of the humidity sensor chip is about 1 mm(2). The humidity sensor consists of a sensing capacitor and a sensing film. The sensing capacitor is constructed from spiral interdigital electrodes that can enhance the sensitivity of the sensor. The sensing film of the sensor is polypyrrole, which is prepared by the chemical polymerization method, and the film has a porous structure. The sensor needs a post-CMOS process to coat the sensing film. The post-CMOS process uses a wet etching to etch the sacrificial layers, and then the polypyrrole is coated on the sensing capacitor. The sensor generates a change in capacitance when the sensing film absorbs or desorbs vapor. The ring oscillator circuit converts the capacitance variation of the sensor into the oscillation frequency output. Experimental results show that the sensitivity of the humidity sensor is about 99 kHz/%RH at 25 °C.

  18. A noiseless, kHz frame rate imaging detector for AO wavefront sensors based on MCPs read out with the Medipix2 CMOS pixel chip

    NASA Astrophysics Data System (ADS)

    Vallerga, J. V.; McPhate, J. B.; Tremsin, A. S.; Siegmund, O. H. W.; Mikulec, B.; Clark, A. G.

    2004-12-01

    Future wavefront sensors in adaptive optics (AO) systems for the next generation of large telescopes (> 30 m diameter) will require large formats (512x512) , kHz frame rates, low readout noise (<3 electrons) and high optical QE. The current generation of CCDs cannot achieve the first three of these specifications simultaneously. We present a detector scheme that can meet the first three requirements with an optical QE > 40%. This detector consists of a vacuum tube with a proximity focused GaAs photocathode whose photoelectrons are amplified by microchannel plates and the resulting output charge cloud counted by a pixelated CMOS application specific integrated circuit (ASIC) called the Medipix2 (http://medipix.web.cern.ch/MEDIPIX/). Each 55 micron square pixel of the Medipix2 chip has an amplifier, discriminator and 14 bit counter and the 256x256 array can be read out in 287 microseconds. The chip is 3 side abuttable so a 512x512 array is feasible in one vacuum tube. We will present the first results with an open-faced, demountable version of the detector where we have mounted a pair of MCPs 500 microns above a Medipix2 readout inside a vacuum chamber and illuminated it with UV light. The results include: flat field response, spatial resolution, spatial linearity on the sub-pixel level and global event counting rate. We will also discuss the vacuum tube design and the fabrication issues associated with the Medipix2 surviving the tube making process.

  19. A 65 nm CMOS LNA for Bolometer Application

    NASA Astrophysics Data System (ADS)

    Huang, Tom Nan; Boon, Chirn Chye; Zhu, Forest Xi; Yi, Xiang; He, Xiaofeng; Feng, Guangyin; Lim, Wei Meng; Liu, Bei

    2016-04-01

    Modern bolometers generally consist of large-scale arrays of detectors. Implemented in conventional technologies, such bolometer arrays suffer from integrability and productivity issues. Recently, the development of CMOS technologies has presented an opportunity for the massive production of high-performance and highly integrated bolometers. This paper presents a 65-nm CMOS LNA designed for a millimeter-wave bolometer's pre-amplification stage. By properly applying some positive feedback, the noise figure of the proposed LNA is minimized at under 6 dB and the bandwidth is extended to 30 GHz.

  20. Research-grade CMOS image sensors for demanding space applications

    NASA Astrophysics Data System (ADS)

    Saint-Pé, Olivier; Tulet, Michel; Davancens, Robert; Larnaudie, Franck; Magnan, Pierre; Corbière, Franck; Martin-Gonthier, Philippe; Belliot, Pierre

    2004-06-01

    Imaging detectors are key elements for optical instruments and sensors on board space missions dedicated to Earth observation (high resolution imaging, atmosphere spectroscopy...), Solar System exploration (micro cameras, guidance for autonomous vehicle...) and Universe observation (space telescope focal planes, guiding sensors...). This market has been dominated by CCD technology for long. Since the mid-90s, CMOS Image Sensors (CIS) have been competing with CCDs for more and more consumer domains (webcams, cell phones, digital cameras...). Featuring significant advantages over CCD sensors for space applications (lower power consumption, smaller system size, better radiations behaviour...), CMOS technology is also expanding in this field, justifying specific R&D and development programs funded by national and European space agencies (mainly CNES, DGA, and ESA). All along the 90s and thanks to their increasingly improving performances, CIS have started to be successfully used for more and more demanding applications, from vision and control functions requiring low-level performances to guidance applications requiring medium-level performances. Recent technology improvements have made possible the manufacturing of research-grade CIS that are able to compete with CCDs in the high-performances arena. After an introduction outlining the growing interest of optical instruments designers for CMOS image sensors, this talk will present the existing and foreseen ways to reach high-level electro-optics performances for CIS. The developments of CIS prototypes built using an imaging CMOS process and of devices based on improved designs will be presented.

  1. Research-grade CMOS image sensors for demanding space applications

    NASA Astrophysics Data System (ADS)

    Saint-Pé, Olivier; Tulet, Michel; Davancens, Robert; Larnaudie, Franck; Magnan, Pierre; Corbière, Franck; Martin-Gonthier, Philippe; Belliot, Pierre

    2017-11-01

    Imaging detectors are key elements for optical instruments and sensors on board space missions dedicated to Earth observation (high resolution imaging, atmosphere spectroscopy...), Solar System exploration (micro cameras, guidance for autonomous vehicle...) and Universe observation (space telescope focal planes, guiding sensors...). This market has been dominated by CCD technology for long. Since the mid- 90s, CMOS Image Sensors (CIS) have been competing with CCDs for more and more consumer domains (webcams, cell phones, digital cameras...). Featuring significant advantages over CCD sensors for space applications (lower power consumption, smaller system size, better radiations behaviour...), CMOS technology is also expanding in this field, justifying specific R&D and development programs funded by national and European space agencies (mainly CNES, DGA, and ESA). All along the 90s and thanks to their increasingly improving performances, CIS have started to be successfully used for more and more demanding applications, from vision and control functions requiring low-level performances to guidance applications requiring medium-level performances. Recent technology improvements have made possible the manufacturing of research-grade CIS that are able to compete with CCDs in the high-performances arena. After an introduction outlining the growing interest of optical instruments designers for CMOS image sensors, this talk will present the existing and foreseen ways to reach high-level electro-optics performances for CIS. The developments of CIS prototypes built using an imaging CMOS process and of devices based on improved designs will be presented.

  2. Particle sensor array

    NASA Technical Reports Server (NTRS)

    Buehler, Martin G. (Inventor); Blaes, Brent R. (Inventor); Lieneweg, Udo (Inventor)

    1994-01-01

    A particle sensor array which in a preferred embodiment comprises a static random access memory having a plurality of ion-sensitive memory cells, each such cell comprising at least one pull-down field effect transistor having a sensitive drain surface area (such as by bloating) and at least one pull-up field effect transistor having a source connected to an offset voltage. The sensitive drain surface area and the offset voltage are selected for memory cell upset by incident ions such as alpha-particles. The static random access memory of the present invention provides a means for selectively biasing the memory cells into the same state in which each of the sensitive drain surface areas is reverse biased and then selectively reducing the reversed bias on these sensitive drain surface areas for increasing the upset sensitivity of the cells to ions. The resulting selectively sensitive memory cells can be used in a number of applications. By way of example, the present invention can be used for measuring the linear energy transfer of ion particles, as well as a device for assessing the resistance of CMOS latches to Cosmic Ray induced single event upsets. The sensor of the present invention can also be used to determine the uniformity of an ion beam.

  3. Pre-Clinical Tests of an Integrated CMOS Biomolecular Sensor for Cardiac Diseases Diagnosis.

    PubMed

    Lee, Jen-Kuang; Wang, I-Shun; Huang, Chi-Hsien; Chen, Yih-Fan; Huang, Nien-Tsu; Lin, Chih-Ting

    2017-11-26

    Coronary artery disease and its related complications pose great threats to human health. In this work, we aim to clinically evaluate a CMOS field-effect biomolecular sensor for cardiac biomarkers, cardiac-specific troponin-I (cTnI), N -terminal prohormone brain natriuretic peptide (NT-proBNP), and interleukin-6 (IL-6). The CMOS biosensor is implemented via a standard commercialized 0.35 μm CMOS process. To validate the sensing characteristics, in buffer conditions, the developed CMOS biosensor has identified the detection limits of IL-6, cTnI, and NT-proBNP as being 45 pM, 32 pM, and 32 pM, respectively. In clinical serum conditions, furthermore, the developed CMOS biosensor performs a good correlation with an enzyme-linked immuno-sorbent assay (ELISA) obtained from a hospital central laboratory. Based on this work, the CMOS field-effect biosensor poses good potential for accomplishing the needs of a point-of-care testing (POCT) system for heart disease diagnosis.

  4. Embedded CMOS basecalling for nanopore DNA sequencing.

    PubMed

    Chengjie Wang; Junli Zheng; Magierowski, Sebastian; Ghafar-Zadeh, Ebrahim

    2016-08-01

    DNA sequencing based on nanopore sensors is now entering the marketplace. The ability to interface this technology to established CMOS microelectronics promises significant improvements in functionality and miniaturization. Among the key functions to benefit from this interface will be basecalling, the conversion of raw electronic molecular signatures to nucleotide sequence predictions. This paper presents the design and performance potential of custom CMOS base-callers embedded alongside nanopore sensors. A basecalliing architecture implemented in 32-nm technology is discussed with the ability to process the equivalent of 20 human genomes per day in real-time at a power density of 5 W/cm2 assuming a 3-mer nanopore sensor.

  5. Application specific serial arithmetic arrays

    NASA Technical Reports Server (NTRS)

    Winters, K.; Mathews, D.; Thompson, T.

    1990-01-01

    High performance systolic arrays of serial-parallel multiplier elements may be rapidly constructed for specific applications by applying hardware description language techniques to a library of full-custom CMOS building blocks. Single clock pre-charged circuits have been implemented for these arrays at clock rates in excess of 100 Mhz using economical 2-micron (minimum feature size) CMOS processes, which may be quickly configured for a variety of applications. A number of application-specific arrays are presented, including a 2-D convolver for image processing, an integer polynomial solver, and a finite-field polynomial solver.

  6. A Review on Passive and Integrated Near-Field Microwave Biosensors

    PubMed Central

    Guha, Subhajit; Jamal, Farabi Ibne

    2017-01-01

    In this paper we review the advancement of passive and integrated microwave biosensors. The interaction of microwave with biological material is discussed in this paper. Passive microwave biosensors are microwave structures, which are fabricated on a substrate and are used for sensing biological materials. On the other hand, integrated biosensors are microwave structures fabricated in standard semiconductor technology platform (CMOS or BiCMOS). The CMOS or BiCMOS sensor technology offers a more compact sensing approach which has the potential in the future for point of care testing systems. Various applications of the passive and the integrated sensors have been discussed in this review paper. PMID:28946617

  7. Bio-Inspired Asynchronous Pixel Event Tricolor Vision Sensor.

    PubMed

    Lenero-Bardallo, Juan Antonio; Bryn, D H; Hafliger, Philipp

    2014-06-01

    This article investigates the potential of the first ever prototype of a vision sensor that combines tricolor stacked photo diodes with the bio-inspired asynchronous pixel event communication protocol known as Address Event Representation (AER). The stacked photo diodes are implemented in a 22 × 22 pixel array in a standard STM 90 nm CMOS process. Dynamic range is larger than 60 dB and pixels fill factor is 28%. The pixels employ either simple pulse frequency modulation (PFM) or a Time-to-First-Spike (TFS) mode. A heuristic linear combination of the chip's inherent pseudo colors serves to approximate RGB color representation. Furthermore, the sensor outputs can be processed to represent the radiation in the near infrared (NIR) band without employing external filters, and to color-encode direction of motion due to an asymmetry in the update rates of the different diode layers.

  8. Label free sensing of creatinine using a 6 GHz CMOS near-field dielectric immunosensor.

    PubMed

    Guha, S; Warsinke, A; Tientcheu, Ch M; Schmalz, K; Meliani, C; Wenger, Ch

    2015-05-07

    In this work we present a CMOS high frequency direct immunosensor operating at 6 GHz (C-band) for label free determination of creatinine. The sensor is fabricated in standard 0.13 μm SiGe:C BiCMOS process. The report also demonstrates the ability to immobilize creatinine molecules on a Si3N4 passivation layer of the standard BiCMOS/CMOS process, therefore, evading any further need of cumbersome post processing of the fabricated sensor chip. The sensor is based on capacitive detection of the amount of non-creatinine bound antibodies binding to an immobilized creatinine layer on the passivated sensor. The chip bound antibody amount in turn corresponds indirectly to the creatinine concentration used in the incubation phase. The determination of creatinine in the concentration range of 0.88-880 μM is successfully demonstrated in this work. A sensitivity of 35 MHz/10 fold increase in creatinine concentration (during incubation) at the centre frequency of 6 GHz is gained by the immunosensor. The results are compared with a standard optical measurement technique and the dynamic range and sensitivity is of the order of the established optical indication technique. The C-band immunosensor chip comprising an area of 0.3 mm(2) reduces the sensing area considerably, therefore, requiring a sample volume as low as 2 μl. The small analyte sample volume and label free approach also reduce the experimental costs in addition to the low fabrication costs offered by the batch fabrication technique of CMOS/BiCMOS process.

  9. An SOI CMOS-Based Multi-Sensor MEMS Chip for Fluidic Applications.

    PubMed

    Mansoor, Mohtashim; Haneef, Ibraheem; Akhtar, Suhail; Rafiq, Muhammad Aftab; De Luca, Andrea; Ali, Syed Zeeshan; Udrea, Florin

    2016-11-04

    An SOI CMOS multi-sensor MEMS chip, which can simultaneously measure temperature, pressure and flow rate, has been reported. The multi-sensor chip has been designed keeping in view the requirements of researchers interested in experimental fluid dynamics. The chip contains ten thermodiodes (temperature sensors), a piezoresistive-type pressure sensor and nine hot film-based flow rate sensors fabricated within the oxide layer of the SOI wafers. The silicon dioxide layers with embedded sensors are relieved from the substrate as membranes with the help of a single DRIE step after chip fabrication from a commercial CMOS foundry. Very dense sensor packing per unit area of the chip has been enabled by using technologies/processes like SOI, CMOS and DRIE. Independent apparatuses were used for the characterization of each sensor. With a drive current of 10 µA-0.1 µA, the thermodiodes exhibited sensitivities of 1.41 mV/°C-1.79 mV/°C in the range 20-300 °C. The sensitivity of the pressure sensor was 0.0686 mV/(V excit kPa) with a non-linearity of 0.25% between 0 and 69 kPa above ambient pressure. Packaged in a micro-channel, the flow rate sensor has a linearized sensitivity of 17.3 mV/(L/min) -0.1 in the tested range of 0-4.7 L/min. The multi-sensor chip can be used for simultaneous measurement of fluid pressure, temperature and flow rate in fluidic experiments and aerospace/automotive/biomedical/process industries.

  10. An SOI CMOS-Based Multi-Sensor MEMS Chip for Fluidic Applications †

    PubMed Central

    Mansoor, Mohtashim; Haneef, Ibraheem; Akhtar, Suhail; Rafiq, Muhammad Aftab; De Luca, Andrea; Ali, Syed Zeeshan; Udrea, Florin

    2016-01-01

    An SOI CMOS multi-sensor MEMS chip, which can simultaneously measure temperature, pressure and flow rate, has been reported. The multi-sensor chip has been designed keeping in view the requirements of researchers interested in experimental fluid dynamics. The chip contains ten thermodiodes (temperature sensors), a piezoresistive-type pressure sensor and nine hot film-based flow rate sensors fabricated within the oxide layer of the SOI wafers. The silicon dioxide layers with embedded sensors are relieved from the substrate as membranes with the help of a single DRIE step after chip fabrication from a commercial CMOS foundry. Very dense sensor packing per unit area of the chip has been enabled by using technologies/processes like SOI, CMOS and DRIE. Independent apparatuses were used for the characterization of each sensor. With a drive current of 10 µA–0.1 µA, the thermodiodes exhibited sensitivities of 1.41 mV/°C–1.79 mV/°C in the range 20–300 °C. The sensitivity of the pressure sensor was 0.0686 mV/(Vexcit kPa) with a non-linearity of 0.25% between 0 and 69 kPa above ambient pressure. Packaged in a micro-channel, the flow rate sensor has a linearized sensitivity of 17.3 mV/(L/min)−0.1 in the tested range of 0–4.7 L/min. The multi-sensor chip can be used for simultaneous measurement of fluid pressure, temperature and flow rate in fluidic experiments and aerospace/automotive/biomedical/process industries. PMID:27827904

  11. Commercialisation of CMOS integrated circuit technology in multi-electrode arrays for neuroscience and cell-based biosensors.

    PubMed

    Graham, Anthony H D; Robbins, Jon; Bowen, Chris R; Taylor, John

    2011-01-01

    The adaptation of standard integrated circuit (IC) technology as a transducer in cell-based biosensors in drug discovery pharmacology, neural interface systems and electrophysiology requires electrodes that are electrochemically stable, biocompatible and affordable. Unfortunately, the ubiquitous Complementary Metal Oxide Semiconductor (CMOS) IC technology does not meet the first of these requirements. For devices intended only for research, modification of CMOS by post-processing using cleanroom facilities has been achieved. However, to enable adoption of CMOS as a basis for commercial biosensors, the economies of scale of CMOS fabrication must be maintained by using only low-cost post-processing techniques. This review highlights the methodologies employed in cell-based biosensor design where CMOS-based integrated circuits (ICs) form an integral part of the transducer system. Particular emphasis will be placed on the application of multi-electrode arrays for in vitro neuroscience applications. Identifying suitable IC packaging methods presents further significant challenges when considering specific applications. The various challenges and difficulties are reviewed and some potential solutions are presented.

  12. Micromachined ultrasound transducers with improved coupling factors from a CMOS compatible process

    PubMed

    Eccardt; Niederer

    2000-03-01

    For medical high frequency acoustic imaging purposes the reduction in size of a single transducer element for one-dimensional and even more for two-dimensional arrays is more and more limited by fabrication and cabling technology. In the fields of industrial distance measurement and simple object recognition low cost phased arrays are lacking. Both problems can be solved with micromachined ultrasound transducers (MUTs). A single transducer is made of a large number of microscopic elements. Because of the array structure of these transducers, groups of elements can be built up and used as a phased array. By integrating parts of the sensor electronics on chip, the cabling effort for arrays can be reduced markedly. In contrast to standard ultrasonic technology, which is based on massive thickness resonators, vibrating membranes are the radiating elements of the MUTs. New micromachining technologies have emerged, allowing a highly reproducible fabrication of electrostatically driven membranes with gap heights below 500 nm. A microelectronic BiCMOS process was extended for surface micromechanics (T. Scheiter et al., Proceedings 11th European Conference on Solid-State Transducers, Warsaw, Vol. 3, 1997, pp. 1595-1598). Additional process steps were included for the realization of the membranes which form sealed cavities with the underlying substrate. Membrane and substrate are the opposite electrodes of a capacitive transducer. The transducers can be integrated monolithically on one chip together with the driving, preamplifying and multiplexing circuitry, thus reducing parasitic capacities and noise level significantly. Owing to their low mass the transducers are very well matched to fluid loads, resulting in a very high bandwidth of 50-100% (C. Eccardt et al., Proceedings Ultrasonics Symposium, San Antonio, Vol. 2, 1996, pp. 959-962; P.C. Eccardt et al., Proceedings of the 1997 Ultrasonics Symposium, Toronto, Vol. 2, 1997, pp. 1609-1618). In the following it is shown how the BiCMOS process has been modified to meet the demands for ultrasound generation and reception. Bias and driving voltages have been reduced down to the 10 V range. The electromechanical coupling is now almost comparable with that for piezoelectric transducers. The measurements exhibit sound pressures and bandwidths that are at least comparable with those of conventional piezoelectric transducer arrays.

  13. Characterization of various Si-photodiode junction combinations and layout specialities in 0.18µm CMOS and HV-CMOS technologies

    NASA Astrophysics Data System (ADS)

    Jonak-Auer, I.; Synooka, O.; Kraxner, A.; Roger, F.

    2017-12-01

    With the ongoing miniaturization of CMOS technologies the need for integrated optical sensors on smaller scale CMOS nodes arises. In this paper we report on the development and implementation of different optical sensor concepts in high performance 0.18µm CMOS and high voltage (HV) CMOS technologies on three different substrate materials. The integration process is such that complete modularity of the CMOS processes remains untouched and no additional masks or ion implantation steps are necessary for the sensor integration. The investigated processes support 1.8V and 3V standard CMOS functionality as well as HV transistors capable of operating voltages of 20V and 50V. These processes intrinsically offer a wide variety of junction combinations, which can be exploited for optical sensing purposes. The availability of junction depths from submicron to several microns enables the selection of spectral range from blue to infrared wavelengths. By appropriate layout the contributions of photo-generated carriers outside the target spectral range can be kept to a minimum. Furthermore by making use of other features intrinsically available in 0.18µm CMOS and HV-CMOS processes dark current rates of optoelectronic devices can be minimized. We present TCAD simulations as well as spectral responsivity, dark current and capacitance data measured for various photodiode layouts and the influence of different EPI and Bulk substrate materials thereon. We show examples of spectral responsivity of junction combinations optimized for peak sensitivity in the ranges of 400-500nm, 550-650nm and 700-900nm. Appropriate junction combination enables good spectral resolution for colour sensing applications even without any additional filter implementation. We also show that by appropriate use of shallow trenches dark current values of photodiodes can further be reduced.

  14. Tests of commercial colour CMOS cameras for astronomical applications

    NASA Astrophysics Data System (ADS)

    Pokhvala, S. M.; Reshetnyk, V. M.; Zhilyaev, B. E.

    2013-12-01

    We present some results of testing commercial colour CMOS cameras for astronomical applications. Colour CMOS sensors allow to perform photometry in three filters simultaneously that gives a great advantage compared with monochrome CCD detectors. The Bayer BGR colour system realized in colour CMOS sensors is close to the astronomical Johnson BVR system. The basic camera characteristics: read noise (e^{-}/pix), thermal noise (e^{-}/pix/sec) and electronic gain (e^{-}/ADU) for the commercial digital camera Canon 5D MarkIII are presented. We give the same characteristics for the scientific high performance cooled CCD camera system ALTA E47. Comparing results for tests of Canon 5D MarkIII and CCD ALTA E47 show that present-day commercial colour CMOS cameras can seriously compete with the scientific CCD cameras in deep astronomical imaging.

  15. Application of CMOS Technology to Silicon Photomultiplier Sensors

    PubMed Central

    D’Ascenzo, Nicola; Zhang, Xi; Xie, Qingguo

    2017-01-01

    We use the 180 nm GLOBALFOUNDRIES (GF) BCDLite CMOS process for the production of a silicon photomultiplier prototype. We study the main characteristics of the developed sensor in comparison with commercial SiPMs obtained in custom technologies and other SiPMs developed with CMOS-compatible processes. We support our discussion with a transient modeling of the detection process of the silicon photomultiplier as well as with a series of static and dynamic experimental measurements in dark and illuminated environments. PMID:28946675

  16. Integrated imaging sensor systems with CMOS active pixel sensor technology

    NASA Technical Reports Server (NTRS)

    Yang, G.; Cunningham, T.; Ortiz, M.; Heynssens, J.; Sun, C.; Hancock, B.; Seshadri, S.; Wrigley, C.; McCarty, K.; Pain, B.

    2002-01-01

    This paper discusses common approaches to CMOS APS technology, as well as specific results on the five-wire programmable digital camera-on-a-chip developed at JPL. The paper also reports recent research in the design, operation, and performance of APS imagers for several imager applications.

  17. CMOS Active Pixel Sensors for Low Power, Highly Miniaturized Imaging Systems

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R.

    1996-01-01

    The complementary metal-oxide-semiconductor (CMOS) active pixel sensor (APS) technology has been developed over the past three years by NASA at the Jet Propulsion Laboratory, and has reached a level of performance comparable to CCDs with greatly increased functionality but at a very reduced power level.

  18. A highly sensitive CMOS digital Hall sensor for low magnetic field applications.

    PubMed

    Xu, Yue; Pan, Hong-Bin; He, Shu-Zhuan; Li, Li

    2012-01-01

    Integrated CMOS Hall sensors have been widely used to measure magnetic fields. However, they are difficult to work with in a low magnetic field environment due to their low sensitivity and large offset. This paper describes a highly sensitive digital Hall sensor fabricated in 0.18 μm high voltage CMOS technology for low field applications. The sensor consists of a switched cross-shaped Hall plate and a novel signal conditioner. It effectively eliminates offset and low frequency 1/f noise by applying a dynamic quadrature offset cancellation technique. The measured results show the optimal Hall plate achieves a high current related sensitivity of about 310 V/AT. The whole sensor has a remarkable ability to measure a minimum ± 2 mT magnetic field and output a digital Hall signal in a wide temperature range from -40 °C to 120 °C.

  19. Color sensor and neural processor on one chip

    NASA Astrophysics Data System (ADS)

    Fiesler, Emile; Campbell, Shannon R.; Kempem, Lother; Duong, Tuan A.

    1998-10-01

    Low-cost, compact, and robust color sensor that can operate in real-time under various environmental conditions can benefit many applications, including quality control, chemical sensing, food production, medical diagnostics, energy conservation, monitoring of hazardous waste, and recycling. Unfortunately, existing color sensor are either bulky and expensive or do not provide the required speed and accuracy. In this publication we describe the design of an accurate real-time color classification sensor, together with preprocessing and a subsequent neural network processor integrated on a single complementary metal oxide semiconductor (CMOS) integrated circuit. This one-chip sensor and information processor will be low in cost, robust, and mass-producible using standard commercial CMOS processes. The performance of the chip and the feasibility of its manufacturing is proven through computer simulations based on CMOS hardware parameters. Comparisons with competing methodologies show a significantly higher performance for our device.

  20. Development of CMOS Active Pixel Image Sensors for Low Cost Commercial Applications

    NASA Technical Reports Server (NTRS)

    Fossum, E.; Gee, R.; Kemeny, S.; Kim, Q.; Mendis, S.; Nakamura, J.; Nixon, R.; Ortiz, M.; Pain, B.; Zhou, Z.; hide

    1994-01-01

    This paper describes ongoing research and development of CMOS active pixel image sensors for low cost commercial applications. A number of sensor designs have been fabricated and tested in both p-well and n-well technologies. Major elements in the development of the sensor include on-chip analog signal processing circuits for the reduction of fixed pattern noise, on-chip timing and control circuits and on-chip analog-to-digital conversion (ADC). Recent results and continuing efforts in these areas will be presented.

  1. Serial multiplier arrays for parallel computation

    NASA Technical Reports Server (NTRS)

    Winters, Kel

    1990-01-01

    Arrays of systolic serial-parallel multiplier elements are proposed as an alternative to conventional SIMD mesh serial adder arrays for applications that are multiplication intensive and require few stored operands. The design and operation of a number of multiplier and array configurations featuring locality of connection, modularity, and regularity of structure are discussed. A design methodology combining top-down and bottom-up techniques is described to facilitate development of custom high-performance CMOS multiplier element arrays as well as rapid synthesis of simulation models and semicustom prototype CMOS components. Finally, a differential version of NORA dynamic circuits requiring a single-phase uncomplemented clock signal introduced for this application.

  2. High responsivity CMOS imager pixel implemented in SOI technology

    NASA Technical Reports Server (NTRS)

    Zheng, X.; Wrigley, C.; Yang, G.; Pain, B.

    2000-01-01

    Availability of mature sub-micron CMOS technology and the advent of the new low noise active pixel sensor (APS) concept have enabled the development of low power, miniature, single-chip, CMOS digital imagers in the decade of the 1990's.

  3. Testbeam results of irradiated ams H18 HV-CMOS pixel sensor prototypes

    NASA Astrophysics Data System (ADS)

    Benoit, M.; Braccini, S.; Casse, G.; Chen, H.; Chen, K.; Di Bello, F. A.; Ferrere, D.; Golling, T.; Gonzalez-Sevilla, S.; Iacobucci, G.; Kiehn, M.; Lanni, F.; Liu, H.; Meng, L.; Merlassino, C.; Miucci, A.; Muenstermann, D.; Nessi, M.; Okawa, H.; Perić, I.; Rimoldi, M.; Ristić, B.; Barrero Pinto, M. Vicente; Vossebeld, J.; Weber, M.; Weston, T.; Wu, W.; Xu, L.; Zaffaroni, E.

    2018-02-01

    HV-CMOS pixel sensors are a promising option for the tracker upgrade of the ATLAS experiment at the LHC, as well as for other future tracking applications in which large areas are to be instrumented with radiation-tolerant silicon pixel sensors. We present results of testbeam characterisations of the 4th generation of Capacitively Coupled Pixel Detectors (CCPDv4) produced with the ams H18 HV-CMOS process that have been irradiated with different particles (reactor neutrons and 18 MeV protons) to fluences between 1× 1014 and 5× 1015 1-MeV- neq. The sensors were glued to ATLAS FE-I4 pixel readout chips and measured at the CERN SPS H8 beamline using the FE-I4 beam telescope. Results for all fluences are very encouraging with all hit efficiencies being better than 97% for bias voltages of 85 V. The sample irradiated to a fluence of 1× 1015 neq—a relevant value for a large volume of the upgraded tracker—exhibited 99.7% average hit efficiency. The results give strong evidence for the radiation tolerance of HV-CMOS sensors and their suitability as sensors for the experimental HL-LHC upgrades and future large-area silicon-based tracking detectors in high-radiation environments.

  4. Design and fabrication of a CMOS-compatible MHP gas sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Ying; Yu, Jun, E-mail: junyu@dlut.edu.cn; Wu, Hao

    2014-03-15

    A novel micro-hotplate (MHP) gas sensor is designed and fabricated with a standard CMOS technology followed by post-CMOS processes. The tungsten plugging between the first and the second metal layer in the CMOS processes is designed as zigzag resistor heaters embedded in the membrane. In the post-CMOS processes, the membrane is released by front-side bulk silicon etching, and excellent adiabatic performance of the sensor is obtained. Pt/Ti electrode films are prepared on the MHP before the coating of the SnO{sub 2} film, which are promising to present better contact stability compared with Al electrodes. Measurements show that at room temperaturemore » in atmosphere, the device has a low power consumption of ∼19 mW and a rapid thermal response of 8 ms for heating up to 300 °C. The tungsten heater exhibits good high temperature stability with a slight fluctuation (<0.3%) in the resistance at an operation temperature of 300 °C under constant heating mode for 336 h, and a satisfactory temperature coefficient of resistance of about 1.9‰/°C.« less

  5. Analog 65/130 nm CMOS 5 GHz Sub-Arrays with ROACH-2 FPGA Beamformers for Hybrid Aperture-Array Receivers

    DTIC Science & Technology

    2017-03-20

    sub-array, which is based on all-pass filters (APFs) is realized using 130 nm CMOS technology. Approximate- discrete Fourier transform (a-DFT...fixed beams are directed at known directions [9]. The proposed approximate- discrete Fourier transform (a-DFT) based multi-beamformer [9] yields L...to digital conversion daughter board. occurs in the discrete time domain (in ROACH-2 FPGA platform) following signal digitization (see Figs. 1(d) and

  6. High dynamic range CMOS (HDRC) imagers for safety systems

    NASA Astrophysics Data System (ADS)

    Strobel, Markus; Döttling, Dietmar

    2013-04-01

    The first part of this paper describes the high dynamic range CMOS (HDRC®) imager - a special type of CMOS image sensor with logarithmic response. The powerful property of a high dynamic range (HDR) image acquisition is detailed by mathematical definition and measurement of the optoelectronic conversion function (OECF) of two different HDRC imagers. Specific sensor parameters will be discussed including the pixel design for the global shutter readout. The second part will give an outline on the applications and requirements of cameras for industrial safety. Equipped with HDRC global shutter sensors SafetyEYE® is a high-performance stereo camera system for safe three-dimensional zone monitoring enabling new and more flexible solutions compared to existing safety guards.

  7. Fill-factor improvement of Si CMOS single-photon avalanche diode detector arrays by integration of diffractive microlens arrays.

    PubMed

    Intermite, Giuseppe; McCarthy, Aongus; Warburton, Ryan E; Ren, Ximing; Villa, Federica; Lussana, Rudi; Waddie, Andrew J; Taghizadeh, Mohammad R; Tosi, Alberto; Zappa, Franco; Buller, Gerald S

    2015-12-28

    Single-photon avalanche diode (SPAD) detector arrays generally suffer from having a low fill-factor, in which the photo-sensitive area of each pixel is small compared to the overall area of the pixel. This paper describes the integration of different configurations of high efficiency diffractive optical microlens arrays onto a 32 × 32 SPAD array, fabricated using a 0.35 µm CMOS technology process. The characterization of SPAD arrays with integrated microlens arrays is reported over the spectral range of 500-900 nm, and a range of f-numbers from f/2 to f/22. We report an average concentration factor of 15 measured for the entire SPAD array with integrated microlens array. The integrated SPAD and microlens array demonstrated a very high uniformity in overall efficiency.

  8. C-MOS bulk metal design handbook. [LSI standard cell (circuits)

    NASA Technical Reports Server (NTRS)

    Edge, T. M.

    1977-01-01

    The LSI standard cell array technique was used in the fabrication of more than 20 CMOS custom arrays. This technique consists of a series of computer programs and design automation techniques referred to as the Computer Aided Design And Test (CADAT) system that automatically translate a partitioned logic diagram into a set of instructions for driving an automatic plotter which generates precision mask artwork for complex LSI arrays of CMOS standard cells. The standard cell concept for producing LSI arrays begins with the design, layout, and validation of a group of custom circuits called standard cells. Once validated, these cells are given identification or pattern numbers and are permanently stored. To use one of these cells in a logic design, the user calls for the desired cell by pattern number. The Place, Route in Two Dimension (PR2D) computer program is then used to automatically generate the metalization and/or tunnels to interconnect the standard cells into the required function. Data sheets that describe the function, artwork, and performance of each of the standard cells, the general procedure for implementation of logic in CMOS standard cells, and additional detailed design information are presented.

  9. Design and simulation of multi-color infrared CMOS metamaterial absorbers

    NASA Astrophysics Data System (ADS)

    Cheng, Zhengxi; Chen, Yongping; Ma, Bin

    2016-05-01

    Metamaterial electromagnetic wave absorbers, which usually can be fabricated in a low weight thin film structure, have a near unity absorptivity in a special waveband, and therefore have been widely applied from microwave to optical waveband. To increase absorptance of CMOS MEMS devices in 2-5 μmm waveband, multi-color infrared metamaterial absorbers are designed with CSMC 0.5 μmm 2P3M and 0.18 μmm 1P6M CMOS technology in this work. Metal-insulator-metal (MIM) three-layer MMAs and Insulator-metal-insulator-metal (MIMI) four-layer MMAs are formed by CMOS metal interconnect layers and inter metal dielectrics layer. To broaden absorption waveband in 2-5μmm range, MMAs with a combination of different sizes cross bars are designed. The top metal layer is a periodic aluminum square array or cross bar array with width ranging from submicron to several microns. The absorption peak position and intensity of MMAs can be tuned by adjusting the top aluminum micro structure array. Post-CMOS process is adopted to fabricate MMAs. The infrared absorption spectra of MMAs are verified with finite element method simulation, and the effects of top metal structure sizes, patterns, and films thickness are also simulated and intensively discussed. The simulation results show that CMOS MEMS MMAs enhance infrared absorption in 2-20 μmm. The MIM broad MMA has an average absorptance of 0.22 in 2-5 μmm waveband, and 0.76 in 8-14 μm waveband. The CMOS metamaterial absorbers can be inherently integrated in many kinds of MEMS devices fabricated with CMOS technology, such as uncooled bolometers, infrared thermal emitters.

  10. MEMS compatible illumination and imaging micro-optical systems

    NASA Astrophysics Data System (ADS)

    Bräuer, A.; Dannberg, P.; Duparré, J.; Höfer, B.; Schreiber, P.; Scholles, M.

    2007-01-01

    The development of new MOEMS demands for cooperation between researchers in micromechanics, optoelectronics and microoptics at a very early state. Additionally, microoptical technologies being compatible with structured silicon have to be developed. The microoptical technologies used for two silicon based microsystems are described in the paper. First, a very small scanning laser projector with a volume of less than 2 cm 3, which operates with a directly modulated lasers collimated with a microlens, is shown. The laser radiation illuminates a 2D-MEMS scanning mirror. The optical design is optimized for high resolution (VGA). Thermomechanical stability is realized by design and using a structured ceramics motherboard. Secondly, an ultrathin CMOS-camera having an insect inspired imaging system has been realized. It is the first experimental realization of an artificial compound eye. Micro-optical design principles and technology is used. The overall thickness of the imaging system is only 320 μm, the diagonal field of view is 21°, and the f-number is 2.6. The monolithic device consists of an UV-replicated microlens array upon a thin silica substrate with a pinhole array in a metal layer on the back side. The pitch of the pinholes differs from that of the lens array to provide individual viewing angle for each channel. The imaging chip is directly glued to a CMOS sensor with adapted pitch. The whole camera is less than 1mm thick. New packaging methods for these systems are under development.

  11. Optomechanical System Development of the AWARE Gigapixel Scale Camera

    NASA Astrophysics Data System (ADS)

    Son, Hui S.

    Electronic focal plane arrays (FPA) such as CMOS and CCD sensors have dramatically improved to the point that digital cameras have essentially phased out film (except in very niche applications such as hobby photography and cinema). However, the traditional method of mating a single lens assembly to a single detector plane, as required for film cameras, is still the dominant design used in cameras today. The use of electronic sensors and their ability to capture digital signals that can be processed and manipulated post acquisition offers much more freedom of design at system levels and opens up many interesting possibilities for the next generation of computational imaging systems. The AWARE gigapixel scale camera is one such computational imaging system. By utilizing a multiscale optical design, in which a large aperture objective lens is mated with an array of smaller, well corrected relay lenses, we are able to build an optically simple system that is capable of capturing gigapixel scale images via post acquisition stitching of the individual pictures from the array. Properly shaping the array of digital cameras allows us to form an effectively continuous focal surface using off the shelf (OTS) flat sensor technology. This dissertation details developments and physical implementations of the AWARE system architecture. It illustrates the optomechanical design principles and system integration strategies we have developed through the course of the project by summarizing the results of the two design phases for AWARE: AWARE-2 and AWARE-10. These systems represent significant advancements in the pursuit of scalable, commercially viable snapshot gigapixel imaging systems and should serve as a foundation for future development of such systems.

  12. A novel optical detector concept for dedicated and multi-modality in vivo small animal imaging

    NASA Astrophysics Data System (ADS)

    Peter, Jörg; Schulz, Ralf B.; Unholtz, Daniel; Semmler, Wolfhard

    2007-07-01

    An optical detector suitable for inclusion in tomographic arrangements for non-contact in vivo bioluminescence and fluorescence imaging applications is proposed. It consists of a microlens array (MLA) intended for field-of-view definition, a large-field complementary metal-oxide-semiconductor (CMOS) chip for light detection, a septum mask for cross-talk suppression, and an exchangeable filter to block excitation light. Prototype detector units with sensitive areas of 2.5 cm x 5 cm each were assembled. The CMOS sensor constitutes a 512 x 1024 photodiode matrix at 48 μm pixel pitch. Refractive MLAs with plano-convex lenses of 480 μm in diameter and pitch were selected resulting in a 55 x 105 lens matrix. The CMOS sensor is aligned on the focal plane of the MLA at 2.15mm distance. To separate individual microlens images an opaque multi-bore septum mask of 2.1mm in thickness and bore diameters of 400 μm at 480 μm pitch, aligned with the lens pattern, is placed between MLA and CMOS. Intrinsic spatial detector resolution and sensitivity was evaluated experimentally as a function of detector-object distance. Due to its small overall dimensions such detectors can be favorably packed for tomographic imaging (optical diffusion tomography, ODT) yielding complete 2 π field-of-view coverage. We also present a design study of a device intended to simultaneously image positron labeled substrates (positron emission tomography, PET) and optical molecular probes in small animals such as mice and rats. It consists of a cylindrical allocation of optical detector units which form an inner detector ring while PET detector blocks are mounted in radial extension, those gaining complementary information in a single, intrinsically coregistered experimental data acquisition study. Finally, in a second design study we propose a method for integrated optical and magnetic resonance imaging (MRI) which yields in vivo functional/molecular information that is intrinsically registered with the anatomy of the image object.

  13. Advanced ROICs design for cooled IR detectors

    NASA Astrophysics Data System (ADS)

    Zécri, Michel; Maillart, Patrick; Sanson, Eric; Decaens, Gilbert; Lefoul, Xavier; Baud, Laurent

    2008-04-01

    The CMOS silicon focal plan array technologies hybridized with infrared detectors materials allow to cover a wide range of applications in the field of space, airborne and grounded-based imaging. Regarding other industries which are also using embedded systems, the requirements of such sensor assembly can be seen as very similar; high reliability, low weight, low power, radiation hardness for space applications and cost reduction. Comparing to CCDs technology, excepted the fact that CMOS fabrication uses standard commercial semiconductor foundry, the interest of this technology used in cooled IR sensors is its capability to operate in a wide range of temperature from 300K to cryogenic with a high density of integration and keeping at the same time good performances in term of frequency, noise and power consumption. The CMOS technology roadmap predict aggressive scaling down of device size, transistor threshold voltage, oxide and metal thicknesses to meet the growing demands for higher levels of integration and performance. At the same time infrared detectors manufacturing process is developing IR materials with a tunable cut-off wavelength capable to cover bandwidths from visible to 20μm. The requirements of third generation IR detectors are driving to scaling down the pixel pitch, to develop IR materials with high uniformity on larger formats, to develop Avalanche Photo Diodes (APD) and dual band technologies. These needs in IR detectors technologies developments associated to CMOS technology, used as a readout element, are offering new capabilities and new opportunities for cooled infrared FPAs. The exponential increase of new functionalities on chip, like the active 2D and 3D imaging, the on chip analog to digital conversion, the signal processing on chip, the bicolor, the dual band and DTI (Double Time Integration) mode ...is aiming to enlarge the field of application for cooled IR FPAs challenging by the way the design activity.

  14. Respiration detection chip with integrated temperature-insensitive MEMS sensors and CMOS signal processing circuits.

    PubMed

    Wei, Chia-Ling; Lin, Yu-Chen; Chen, Tse-An; Lin, Ren-Yi; Liu, Tin-Hao

    2015-02-01

    An airflow sensing chip, which integrates MEMS sensors with their CMOS signal processing circuits into a single chip, is proposed for respiration detection. Three micro-cantilever-based airflow sensors were designed and fabricated using a 0.35 μm CMOS/MEMS 2P4M mixed-signal polycide process. Two main differences were present among these three designs: they were either metal-covered or metal-free structures, and had either bridge-type or fixed-type reference resistors. The performances of these sensors were measured and compared, including temperature sensitivity and airflow sensitivity. Based on the measured results, the metal-free structure with fixed-type reference resistors is recommended for use, because it has the highest airflow sensitivity and also can effectively reduce the output voltage drift caused by temperature change.

  15. A novel input-parasitic compensation technique for a nanopore-based CMOS DNA detection sensor

    NASA Astrophysics Data System (ADS)

    Kim, Jungsuk

    2016-12-01

    This paper presents a novel input-parasitic compensation (IPC) technique for a nanopore-based complementary metal-oxide-semiconductor (CMOS) DNA detection sensor. A resistive-feedback transimpedance amplifier is typically adopted as the headstage of a DNA detection sensor to amplify the minute ionic currents generated from a nanopore and convert them to a readable voltage range for digitization. But, parasitic capacitances arising from the headstage input and the nanopore often cause headstage saturation during nanopore sensing, thereby resulting in significant DNA data loss. To compensate for the unwanted saturation, in this work, we propose an area-efficient and automated IPC technique, customized for a low-noise DNA detection sensor, fabricated using a 0.35- μm CMOS process; we demonstrated this prototype in a benchtop test using an α-hemolysin ( α-HL) protein nanopore.

  16. Study of prototypes of LFoundry active CMOS pixels sensors for the ATLAS detector

    NASA Astrophysics Data System (ADS)

    Vigani, L.; Bortoletto, D.; Ambroz, L.; Plackett, R.; Hemperek, T.; Rymaszewski, P.; Wang, T.; Krueger, H.; Hirono, T.; Caicedo Sierra, I.; Wermes, N.; Barbero, M.; Bhat, S.; Breugnon, P.; Chen, Z.; Godiot, S.; Pangaud, P.; Rozanov, A.

    2018-02-01

    Current high energy particle physics experiments at the LHC use hybrid silicon detectors, in both pixel and strip configurations, for their inner trackers. These detectors have proven to be very reliable and performant. Nevertheless, there is great interest in depleted CMOS silicon detectors, which could achieve a similar performance at lower cost of production. We present recent developments of this technology in the framework of the ATLAS CMOS demonstrator project. In particular, studies of two active sensors from LFoundry, CCPD_LF and LFCPIX, are shown.

  17. MMW/THz imaging using upconversion to visible, based on glow discharge detector array and CCD camera

    NASA Astrophysics Data System (ADS)

    Aharon, Avihai; Rozban, Daniel; Abramovich, Amir; Yitzhaky, Yitzhak; Kopeika, Natan S.

    2017-10-01

    An inexpensive upconverting MMW/THz imaging method is suggested here. The method is based on glow discharge detector (GDD) and silicon photodiode or simple CCD/CMOS camera. The GDD was previously found to be an excellent room-temperature MMW radiation detector by measuring its electrical current. The GDD is very inexpensive and it is advantageous due to its wide dynamic range, broad spectral range, room temperature operation, immunity to high power radiation, and more. An upconversion method is demonstrated here, which is based on measuring the visual light emitting from the GDD rather than its electrical current. The experimental setup simulates a setup that composed of a GDD array, MMW source, and a basic CCD/CMOS camera. The visual light emitting from the GDD array is directed to the CCD/CMOS camera and the change in the GDD light is measured using image processing algorithms. The combination of CMOS camera and GDD focal plane arrays can yield a faster, more sensitive, and very inexpensive MMW/THz camera, eliminating the complexity of the electronic circuits and the internal electronic noise of the GDD. Furthermore, three dimensional imaging systems based on scanning prohibited real time operation of such imaging systems. This is easily solved and is economically feasible using a GDD array. This array will enable us to acquire information on distance and magnitude from all the GDD pixels in the array simultaneously. The 3D image can be obtained using methods like frequency modulation continuous wave (FMCW) direct chirp modulation, and measuring the time of flight (TOF).

  18. Image Sensors Enhance Camera Technologies

    NASA Technical Reports Server (NTRS)

    2010-01-01

    In the 1990s, a Jet Propulsion Laboratory team led by Eric Fossum researched ways of improving complementary metal-oxide semiconductor (CMOS) image sensors in order to miniaturize cameras on spacecraft while maintaining scientific image quality. Fossum s team founded a company to commercialize the resulting CMOS active pixel sensor. Now called the Aptina Imaging Corporation, based in San Jose, California, the company has shipped over 1 billion sensors for use in applications such as digital cameras, camera phones, Web cameras, and automotive cameras. Today, one of every three cell phone cameras on the planet feature Aptina s sensor technology.

  19. High frame rate imaging systems developed in Northwest Institute of Nuclear Technology

    NASA Astrophysics Data System (ADS)

    Li, Binkang; Wang, Kuilu; Guo, Mingan; Ruan, Linbo; Zhang, Haibing; Yang, Shaohua; Feng, Bing; Sun, Fengrong; Chen, Yanli

    2007-01-01

    This paper presents high frame rate imaging systems developed in Northwest Institute of Nuclear Technology in recent years. Three types of imaging systems are included. The first type of system utilizes EG&G RETICON Photodiode Array (PDA) RA100A as the image sensor, which can work at up to 1000 frame per second (fps). Besides working continuously, the PDA system is also designed to switch to capture flash light event working mode. A specific time sequence is designed to satisfy this request. The camera image data can be transmitted to remote area by coaxial or optic fiber cable and then be stored. The second type of imaging system utilizes PHOTOBIT Complementary Metal Oxygen Semiconductor (CMOS) PB-MV13 as the image sensor, which has a high resolution of 1280 (H) ×1024 (V) pixels per frame. The CMOS system can operate at up to 500fps in full frame and 4000fps partially. The prototype scheme of the system is presented. The third type of imaging systems adopts charge coupled device (CCD) as the imagers. MINTRON MTV-1881EX, DALSA CA-D1 and CA-D6 camera head are used in the systems development. The features comparison of the RA100A, PB-MV13, and CA-D6 based systems are given in the end.

  20. Novel instrumentation of multispectral imaging technology for detecting tissue abnormity

    NASA Astrophysics Data System (ADS)

    Yi, Dingrong; Kong, Linghua

    2012-10-01

    Multispectral imaging is becoming a powerful tool in a wide range of biological and clinical studies by adding spectral, spatial and temporal dimensions to visualize tissue abnormity and the underlying biological processes. A conventional spectral imaging system includes two physically separated major components: a band-passing selection device (such as liquid crystal tunable filter and diffraction grating) and a scientific-grade monochromatic camera, and is expensive and bulky. Recently micro-arrayed narrow-band optical mosaic filter was invented and successfully fabricated to reduce the size and cost of multispectral imaging devices in order to meet the clinical requirement for medical diagnostic imaging applications. However the challenging issue of how to integrate and place the micro filter mosaic chip to the targeting focal plane, i.e., the imaging sensor, of an off-shelf CMOS/CCD camera is not reported anywhere. This paper presents the methods and results of integrating such a miniaturized filter with off-shelf CMOS imaging sensors to produce handheld real-time multispectral imaging devices for the application of early stage pressure ulcer (ESPU) detection. Unlike conventional multispectral imaging devices which are bulky and expensive, the resulting handheld real-time multispectral ESPU detector can produce multiple images at different center wavelengths with a single shot, therefore eliminates the image registration procedure required by traditional multispectral imaging technologies.

  1. SPADnet: a fully digital, scalable, and networked photonic component for time-of-flight PET applications

    NASA Astrophysics Data System (ADS)

    Bruschini, Claudio; Charbon, Edoardo; Veerappan, Chockalingam; Braga, Leo H. C.; Massari, Nicola; Perenzoni, Matteo; Gasparini, Leonardo; Stoppa, David; Walker, Richard; Erdogan, Ahmet; Henderson, Robert K.; East, Steve; Grant, Lindsay; Játékos, Balázs; Ujhelyi, Ferenc; Erdei, Gábor; Lörincz, Emöke; André, Luc; Maingault, Laurent; Jacolin, David; Verger, L.; Gros d'Aillon, Eric; Major, Peter; Papp, Zoltan; Nemeth, Gabor

    2014-05-01

    The SPADnet FP7 European project is aimed at a new generation of fully digital, scalable and networked photonic components to enable large area image sensors, with primary target gamma-ray and coincidence detection in (Time-of- Flight) Positron Emission Tomography (PET). SPADnet relies on standard CMOS technology, therefore allowing for MRI compatibility. SPADnet innovates in several areas of PET systems, from optical coupling to single-photon sensor architectures, from intelligent ring networks to reconstruction algorithms. It is built around a natively digital, intelligent SPAD (Single-Photon Avalanche Diode)-based sensor device which comprises an array of 8×16 pixels, each composed of 4 mini-SiPMs with in situ time-to-digital conversion, a multi-ring network to filter, carry, and process data produced by the sensors at 2Gbps, and a 130nm CMOS process enabling mass-production of photonic modules that are optically interfaced to scintillator crystals. A few tens of sensor devices are tightly abutted on a single PCB to form a so-called sensor tile, thanks to TSV (Through Silicon Via) connections to their backside (replacing conventional wire bonding). The sensor tile is in turn interfaced to an FPGA-based PCB on its back. The resulting photonic module acts as an autonomous sensing and computing unit, individually detecting gamma photons as well as thermal and Compton events. It determines in real time basic information for each scintillation event, such as exact time of arrival, position and energy, and communicates it to its peers in the field of view. Coincidence detection does therefore occur directly in the ring itself, in a differed and distributed manner to ensure scalability. The selected true coincidence events are then collected by a snooper module, from which they are transferred to an external reconstruction computer using Gigabit Ethernet.

  2. Commercialisation of CMOS Integrated Circuit Technology in Multi-Electrode Arrays for Neuroscience and Cell-Based Biosensors

    PubMed Central

    Graham, Anthony H. D.; Robbins, Jon; Bowen, Chris R.; Taylor, John

    2011-01-01

    The adaptation of standard integrated circuit (IC) technology as a transducer in cell-based biosensors in drug discovery pharmacology, neural interface systems and electrophysiology requires electrodes that are electrochemically stable, biocompatible and affordable. Unfortunately, the ubiquitous Complementary Metal Oxide Semiconductor (CMOS) IC technology does not meet the first of these requirements. For devices intended only for research, modification of CMOS by post-processing using cleanroom facilities has been achieved. However, to enable adoption of CMOS as a basis for commercial biosensors, the economies of scale of CMOS fabrication must be maintained by using only low-cost post-processing techniques. This review highlights the methodologies employed in cell-based biosensor design where CMOS-based integrated circuits (ICs) form an integral part of the transducer system. Particular emphasis will be placed on the application of multi-electrode arrays for in vitro neuroscience applications. Identifying suitable IC packaging methods presents further significant challenges when considering specific applications. The various challenges and difficulties are reviewed and some potential solutions are presented. PMID:22163884

  3. Towards an implantable bio-sensor platform for continuous real-time monitoring of anti-epileptic drugs.

    PubMed

    Hammoud, Abbas; Chamseddine, Ahmad; Nguyen, Dang K; Sawan, Mohamad

    2016-08-01

    The need of continuous real-time monitoring device for in-vivo drug level detection has been widely articulated lately. Such monitoring could guide drug posology and timing of intake, detect low or high drug levels, in order to take adequate measures, and give clinicians a valuable window into patients' health and their response to therapeutics. This paper presents a novel implantable bio-sensor based on impedance measurement capable of continuously monitoring various antiepileptic drug levels. This portable point-of-care microsystem replaces large and stationary conventional macrosystems, and is a one of a kind system designed with an array of electrodes to monitor various anti-epileptic drugs rather than one drug. The micro-system consists of (i) the front-end circuit including an inductive coil to receive energy from an external base station, and to exchange data with the latter; (ii) the power management block; (iii) the readout and control block; and (iv) the biosensor array. The electrical circuitry was designed using the 0.18-um CMOS process technology intended to be miniature and consume ultra-low power.

  4. Dual-polarized light-field imaging micro-system via a liquid-crystal microlens array for direct three-dimensional observation.

    PubMed

    Xin, Zhaowei; Wei, Dong; Xie, Xingwang; Chen, Mingce; Zhang, Xinyu; Liao, Jing; Wang, Haiwei; Xie, Changsheng

    2018-02-19

    Light-field imaging is a crucial and straightforward way of measuring and analyzing surrounding light worlds. In this paper, a dual-polarized light-field imaging micro-system based on a twisted nematic liquid-crystal microlens array (TN-LCMLA) for direct three-dimensional (3D) observation is fabricated and demonstrated. The prototyped camera has been constructed by integrating a TN-LCMLA with a common CMOS sensor array. By switching the working state of the TN-LCMLA, two orthogonally polarized light-field images can be remapped through the functioned imaging sensors. The imaging micro-system in conjunction with the electric-optical microstructure can be used to perform polarization and light-field imaging, simultaneously. Compared with conventional plenoptic cameras using liquid-crystal microlens array, the polarization-independent light-field images with a high image quality can be obtained in the arbitrary polarization state selected. We experimentally demonstrate characters including a relatively wide operation range in the manipulation of incident beams and the multiple imaging modes, such as conventional two-dimensional imaging, light-field imaging, and polarization imaging. Considering the obvious features of the TN-LCMLA, such as very low power consumption, providing multiple imaging modes mentioned, simple and low-cost manufacturing, the imaging micro-system integrated with this kind of liquid-crystal microstructure driven electrically presents the potential capability of directly observing a 3D object in typical scattering media.

  5. Thermopile Detector Arrays for Space Science Applications

    NASA Technical Reports Server (NTRS)

    Foote, M. C.; Kenyon, M.; Krueger, T. R.; McCann, T. A.; Chacon, R.; Jones, E. W.; Dickie, M. R.; Schofield, J. T.; McCleese, D. J.; Gaalema, S.

    2004-01-01

    Thermopile detectors are widely used in uncooled applications where small numbers of detectors are required, particularly in low-cost commercial applications or applications requiring accurate radiometry. Arrays of thermopile detectors, however, have not been developed to the extent of uncooled bolometer and pyroelectric/ferroelectric arrays. Efforts at JPL seek to remedy this deficiency by developing high performance thin-film thermopile detectors in both linear and two-dimensional formats. The linear thermopile arrays are produced by bulk micromachining and wire bonded to separate CMOS readout electronic chips. Such arrays are currently being fabricated for the Mars Climate Sounder instrument, scheduled for launch in 2005. Progress is also described towards realizing a two-dimensional thermopile array built over CMOS readout circuitry in the substrate.

  6. MONDO: A tracker for the characterization of secondary fast and ultrafast neutrons emitted in particle therapy

    NASA Astrophysics Data System (ADS)

    Mirabelli, R.; Battistoni, G.; Giacometti, V.; Patera, V.; Pinci, D.; Sarti, A.; Sciubba, A.; Traini, G.; Marafini, M.

    2018-01-01

    In Particle Therapy (PT) accelerated charged particles and light ions are used for treating tumors. One of the main limitation to the precision of PT is the emission of secondary particles due to the beam interaction with the patient: secondary emitted neutrons can release a significant dose far from the tumor. Therefore, a precise characterization of their flux, production energy and angle distribution is eagerly needed in order to improve the Treatment Planning Systems (TPS) codes. The principal aim of the MONDO (MOnitor for Neutron Dose in hadrOntherapy) project is the development of a tracking device optimized for the detection of fast and ultra-fast secondary neutrons emitted in PT. The detector consists of a matrix of scintillating square fibres coupled with a CMOS-based readout. Here, we present the characterization of the detector tracker prototype and CMOS-based digital SPAD (Single Photon Avalanche Diode) array sensor tested with protons at the Beam Test Facility (Frascati, Italy) and at the Proton Therapy Centre (Trento, Italy), respectively.

  7. An Energy-Efficient and High-Quality Video Transmission Architecture in Wireless Video-Based Sensor Networks.

    PubMed

    Aghdasi, Hadi S; Abbaspour, Maghsoud; Moghadam, Mohsen Ebrahimi; Samei, Yasaman

    2008-08-04

    Technological progress in the fields of Micro Electro-Mechanical Systems (MEMS) and wireless communications and also the availability of CMOS cameras, microphones and small-scale array sensors, which may ubiquitously capture multimedia content from the field, have fostered the development of low-cost limited resources Wireless Video-based Sensor Networks (WVSN). With regards to the constraints of videobased sensor nodes and wireless sensor networks, a supporting video stream is not easy to implement with the present sensor network protocols. In this paper, a thorough architecture is presented for video transmission over WVSN called Energy-efficient and high-Quality Video transmission Architecture (EQV-Architecture). This architecture influences three layers of communication protocol stack and considers wireless video sensor nodes constraints like limited process and energy resources while video quality is preserved in the receiver side. Application, transport, and network layers are the layers in which the compression protocol, transport protocol, and routing protocol are proposed respectively, also a dropping scheme is presented in network layer. Simulation results over various environments with dissimilar conditions revealed the effectiveness of the architecture in improving the lifetime of the network as well as preserving the video quality.

  8. Smart Sensors: Why and when the origin was and why and where the future will be

    NASA Astrophysics Data System (ADS)

    Corsi, C.

    2013-12-01

    Smart Sensors is a technique developed in the 70's when the processing capabilities, based on readout integrated with signal processing, was still far from the complexity needed in advanced IR surveillance and warning systems, because of the enormous amount of noise/unwanted signals emitted by operating scenario especially in military applications. The Smart Sensors technology was kept restricted within a close military environment exploding in applications and performances in the 90's years thanks to the impressive improvements in the integrated signal read-out and processing achieved by CCD-CMOS technologies in FPA. In fact the rapid advances of "very large scale integration" (VLSI) processor technology and mosaic EO detector array technology allowed to develop new generations of Smart Sensors with much improved signal processing by integrating microcomputers and other VLSI signal processors. inside the sensor structure achieving some basic functions of living eyes (dynamic stare, non-uniformity compensation, spatial and temporal filtering). New and future technologies (Nanotechnology, Bio-Organic Electronics, Bio-Computing) are lightning a new generation of Smart Sensors extending the Smartness from the Space-Time Domain to Spectroscopic Functional Multi-Domain Signal Processing. History and future forecasting of Smart Sensors will be reported.

  9. 32 x 16 CMOS smart pixel array for optical interconnects

    NASA Astrophysics Data System (ADS)

    Kim, Jongwoo; Guilfoyle, Peter S.; Stone, Richard V.; Hessenbruch, John M.; Choquette, Kent D.; Kiamilev, Fouad E.

    2000-05-01

    Free space optical interconnects can increase throughput capacities and eliminate much of the energy consumption required for `all electronic' systems. High speed optical interconnects can be achieved by integrating optoelectronic devices with conventional electronics. Smart pixel arrays have been developed which use optical interconnects. An individual smart pixel cell is composed of a vertical cavity surface emitting laser (VCSEL), a photodetector, an optical receiver, a laser driver, and digital logic circuitry. Oxide-confined VCSELs are being developed to operate at 850 nm with a threshold current of approximately 1 mA. Multiple quantum well photodetectors are being fabricated from AlGaAs for use with the 850 nm VCSELs. The VCSELs and photodetectors are being integrated with complementary metal oxide semiconductor (CMOS) circuitry using flip-chip bonding. CMOS circuitry is being integrated with a 32 X 16 smart pixel array. The 512 smart pixels are serially linked. Thus, an entire data stream may be clocked through the chip and output electrically by the last pixel. Electrical testing is being performed on the CMOS smart pixel array. Using an on-chip pseudo random number generator, a digital data sequence was cycled through the chip verifying operation of the digital circuitry. Although, the prototype chip was fabricated in 1.2 micrometers technology, simulations have demonstrated that the array can operate at 1 Gb/s per pixel using 0.5 micrometers technology.

  10. Ultra-miniature wireless temperature sensor for thermal medicine applications

    PubMed Central

    Khairi, Ahmad; Hung, Shih-Chang; Paramesh, Jeyanandh; Fedder, Gary; Rabin, Yoed

    2017-01-01

    This study presents a prototype design of an ultra-miniature, wireless, battery-less, and implantable temperature-sensor, with applications to thermal medicine such as cryosurgery, hyperthermia, and thermal ablation. The design aims at a sensory device smaller than 1.5 mm in diameter and 3 mm in length, to enable minimally invasive deployment through a hypodermic needle. While the new device may be used for local temperature monitoring, simultaneous data collection from an array of such sensors can be used to reconstruct the 3D temperature field in the treated area, offering a unique capability in thermal medicine. The new sensory device consists of three major subsystems: a temperature-sensing core, a wireless data-communication unit, and a wireless power reception and management unit. Power is delivered wirelessly to the implant from an external source using an inductive link. To meet size requirements while enhancing reliability and minimizing cost, the implant is fully integrated in a regular foundry CMOS technology (0.15 μm in the current study), including the implant-side inductor of the power link. A temperature-sensing core that consists of a proportional-to-absolute-temperature (PTAT) circuit has been designed and characterized. It employs a microwatt chopper stabilized op-amp and dynamic element-matched current sources to achieve high absolute accuracy. A second order sigma-delta (Σ-Δ) analog-to-digital converter (ADC) is designed to convert the temperature reading to a digital code, which is transmitted by backscatter through the same antenna used for receiving power. A high-efficiency multi-stage differential CMOS rectifier has been designed to provide a DC supply to the sensing and communication subsystems. This paper focuses on the development of the all-CMOS temperature sensing core circuitry part of the device, and briefly reviews the wireless power delivery and communication subsystems. PMID:28989222

  11. CMOS image sensor with organic photoconductive layer having narrow absorption band and proposal of stack type solid-state image sensors

    NASA Astrophysics Data System (ADS)

    Takada, Shunji; Ihama, Mikio; Inuiya, Masafumi

    2006-02-01

    Digital still cameras overtook film cameras in Japanese market in 2000 in terms of sales volume owing to their versatile functions. However, the image-capturing capabilities such as sensitivity and latitude of color films are still superior to those of digital image sensors. In this paper, we attribute the cause for the high performance of color films to their multi-layered structure, and propose the solid-state image sensors with stacked organic photoconductive layers having narrow absorption bands on CMOS read-out circuits.

  12. Fully depleted CMOS pixel sensor development and potential applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baudot, J.; Kachel, M.; CNRS, UMR7178, 67037 Strasbourg

    CMOS pixel sensors are often opposed to hybrid pixel sensors due to their very different sensitive layer. In standard CMOS imaging processes, a thin (about 20 μm) low resistivity epitaxial layer acts as the sensitive volume and charge collection is mostly driven by thermal agitation. In contrast, the so-called hybrid pixel technology exploits a thick (typically 300 μm) silicon sensor with high resistivity allowing for the depletion of this volume, hence charges drift toward collecting electrodes. But this difference is fading away with the recent availability of some CMOS imaging processes based on a relatively thick (about 50 μm) highmore » resistivity epitaxial layer which allows for full depletion. This evolution extents the range of applications for CMOS pixel sensors where their known assets, high sensitivity and granularity combined with embedded signal treatment, could potentially foster breakthrough in detection performances for specific scientific instruments. One such domain is the Xray detection for soft energies, typically below 10 keV, where the thin sensitive layer was previously severely impeding CMOS sensor usage. Another application becoming realistic for CMOS sensors, is the detection in environment with a high fluence of non-ionizing radiation, such as hadron colliders. However, when considering highly demanding applications, it is still to be proven that micro-circuits required to uniformly deplete the sensor at the pixel level, do not mitigate the sensitivity and efficiency required. Prototype sensors in two different technologies with resistivity higher than 1 kΩ, sensitive layer between 40 and 50 μm and featuring pixel pitch in the range 25 to 50 μm, have been designed and fabricated. Various biasing architectures were adopted to reach full depletion with only a few volts. Laboratory investigations with three types of sources (X-rays, β-rays and infrared light) demonstrated the validity of the approach with respect to depletion, keeping a low noise figure. Especially, an energy resolution of about 400 eV for 5 keV X-rays was obtained for single pixels. The prototypes have then been exposed to gradually increased fluences of neutrons, from 10{sup 13} to 5x10{sup 14} neq/cm{sup 2}. Again laboratory tests allowed to evaluate the signal over noise persistence on the different pixels implemented. Currently our development mostly targets the detection of soft X-rays, with the ambition to develop a pixel sensor matching counting rates as affordable with hybrid pixel sensors, but with an extended sensitivity to low energy and finer pixel about 25 x 25 μm{sup 2}. The original readout architecture proposed relies on a two tiers chip. The first tier consists of a sensor with a modest dynamic in order to insure low noise performances required by sensitivity. The interconnected second tier chip enhances the read-out speed by introducing massive parallelization. Performances reachable with this strategy combining counting and integration will be detailed. (authors)« less

  13. CMOS Electrochemical Instrumentation for Biosensor Microsystems: A Review.

    PubMed

    Li, Haitao; Liu, Xiaowen; Li, Lin; Mu, Xiaoyi; Genov, Roman; Mason, Andrew J

    2016-12-31

    Modern biosensors play a critical role in healthcare and have a quickly growing commercial market. Compared to traditional optical-based sensing, electrochemical biosensors are attractive due to superior performance in response time, cost, complexity and potential for miniaturization. To address the shortcomings of traditional benchtop electrochemical instruments, in recent years, many complementary metal oxide semiconductor (CMOS) instrumentation circuits have been reported for electrochemical biosensors. This paper provides a review and analysis of CMOS electrochemical instrumentation circuits. First, important concepts in electrochemical sensing are presented from an instrumentation point of view. Then, electrochemical instrumentation circuits are organized into functional classes, and reported CMOS circuits are reviewed and analyzed to illuminate design options and performance tradeoffs. Finally, recent trends and challenges toward on-CMOS sensor integration that could enable highly miniaturized electrochemical biosensor microsystems are discussed. The information in the paper can guide next generation electrochemical sensor design.

  14. CMOS Electrochemical Instrumentation for Biosensor Microsystems: A Review

    PubMed Central

    Li, Haitao; Liu, Xiaowen; Li, Lin; Mu, Xiaoyi; Genov, Roman; Mason, Andrew J.

    2016-01-01

    Modern biosensors play a critical role in healthcare and have a quickly growing commercial market. Compared to traditional optical-based sensing, electrochemical biosensors are attractive due to superior performance in response time, cost, complexity and potential for miniaturization. To address the shortcomings of traditional benchtop electrochemical instruments, in recent years, many complementary metal oxide semiconductor (CMOS) instrumentation circuits have been reported for electrochemical biosensors. This paper provides a review and analysis of CMOS electrochemical instrumentation circuits. First, important concepts in electrochemical sensing are presented from an instrumentation point of view. Then, electrochemical instrumentation circuits are organized into functional classes, and reported CMOS circuits are reviewed and analyzed to illuminate design options and performance tradeoffs. Finally, recent trends and challenges toward on-CMOS sensor integration that could enable highly miniaturized electrochemical biosensor microsystems are discussed. The information in the paper can guide next generation electrochemical sensor design. PMID:28042860

  15. Testbeam results of irradiated ams H18 HV-CMOS pixel sensor prototypes

    DOE PAGES

    Benoit, M.; Braccini, S.; Casse, G.; ...

    2018-02-08

    HV-CMOS pixel sensors are a promising option for the tracker upgrade of the ATLAS experiment at the LHC, as well as for other future tracking applications in which large areas are to be instrumented with radiation-tolerant silicon pixel sensors. We present results of testbeam characterisations of the 4 th generation of Capacitively Coupled Pixel Detectors (CCPDv4) produced with the ams H18 HV-CMOS process that have been irradiated with different particles (reactor neutrons and 18 MeV protons) to fluences between 1×10 14 and 5×10 15 1–MeV– n eq. The sensors were glued to ATLAS FE-I4 pixel readout chips and measured atmore » the CERN SPS H8 beamline using the FE-I4 beam telescope. Results for all fluences are very encouraging with all hit efficiencies being better than 97% for bias voltages of 85 V. The sample irradiated to a fluence of 1×10 15 neq—a relevant value for a large volume of the upgraded tracker—exhibited 99.7% average hit efficiency. Furthermore, the results give strong evidence for the radiation tolerance of HV-CMOS sensors and their suitability as sensors for the experimental HL-LHC upgrades and future large-area silicon-based tracking detectors in high-radiation environments.« less

  16. Testbeam results of irradiated ams H18 HV-CMOS pixel sensor prototypes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benoit, M.; Braccini, S.; Casse, G.

    HV-CMOS pixel sensors are a promising option for the tracker upgrade of the ATLAS experiment at the LHC, as well as for other future tracking applications in which large areas are to be instrumented with radiation-tolerant silicon pixel sensors. We present results of testbeam characterisations of the 4 th generation of Capacitively Coupled Pixel Detectors (CCPDv4) produced with the ams H18 HV-CMOS process that have been irradiated with different particles (reactor neutrons and 18 MeV protons) to fluences between 1×10 14 and 5×10 15 1–MeV– n eq. The sensors were glued to ATLAS FE-I4 pixel readout chips and measured atmore » the CERN SPS H8 beamline using the FE-I4 beam telescope. Results for all fluences are very encouraging with all hit efficiencies being better than 97% for bias voltages of 85 V. The sample irradiated to a fluence of 1×10 15 neq—a relevant value for a large volume of the upgraded tracker—exhibited 99.7% average hit efficiency. Furthermore, the results give strong evidence for the radiation tolerance of HV-CMOS sensors and their suitability as sensors for the experimental HL-LHC upgrades and future large-area silicon-based tracking detectors in high-radiation environments.« less

  17. Manufacture of Micromirror Arrays Using a CMOS-MEMS Technique

    PubMed Central

    Kao, Pin-Hsu; Dai, Ching-Liang; Hsu, Cheng-Chih; Wu, Chyan-Chyi

    2009-01-01

    In this study we used the commercial 0.35 μm CMOS (complementary metal oxide semiconductor) process and simple maskless post-processing to fabricate an array of micromirrors exhibiting high natural frequency. The micromirrors were manufactured from aluminum; the sacrificial layer was silicon dioxide. Because we fabricated the micromirror arrays using the standard CMOS process, they have the potential to be integrated with circuitry on a chip. For post-processing we used an etchant to remove the sacrificial layer and thereby suspend the micromirrors. The micromirror array contained a circular membrane and four fixed beams set symmetrically around and below the circular mirror; these four fan-shaped electrodes controlled the tilting of the micromirror. A MEMS (microelectromechanical system) motion analysis system and a confocal 3D-surface topography were used to characterize the properties and configuration of the micromirror array. Each micromirror could be rotated in four independent directions. Experimentally, we found that the micromirror had a tilting angle of about 2.55° when applying a driving voltage of 40 V. The natural frequency of the micromirrors was 59.1 kHz. PMID:22454581

  18. Manufacture of Micromirror Arrays Using a CMOS-MEMS Technique.

    PubMed

    Kao, Pin-Hsu; Dai, Ching-Liang; Hsu, Cheng-Chih; Wu, Chyan-Chyi

    2009-01-01

    In this study we used the commercial 0.35 μm CMOS (complementary metal oxide semiconductor) process and simple maskless post-processing to fabricate an array of micromirrors exhibiting high natural frequency. The micromirrors were manufactured from aluminum; the sacrificial layer was silicon dioxide. Because we fabricated the micromirror arrays using the standard CMOS process, they have the potential to be integrated with circuitry on a chip. For post-processing we used an etchant to remove the sacrificial layer and thereby suspend the micromirrors. The micromirror array contained a circular membrane and four fixed beams set symmetrically around and below the circular mirror; these four fan-shaped electrodes controlled the tilting of the micromirror. A MEMS (microelectromechanical system) motion analysis system and a confocal 3D-surface topography were used to characterize the properties and configuration of the micromirror array. Each micromirror could be rotated in four independent directions. Experimentally, we found that the micromirror had a tilting angle of about 2.55° when applying a driving voltage of 40 V. The natural frequency of the micromirrors was 59.1 kHz.

  19. An ultrasensitive method of real time pH monitoring with complementary metal oxide semiconductor image sensor.

    PubMed

    Devadhasan, Jasmine Pramila; Kim, Sanghyo

    2015-02-09

    CMOS sensors are becoming a powerful tool in the biological and chemical field. In this work, we introduce a new approach on quantifying various pH solutions with a CMOS image sensor. The CMOS image sensor based pH measurement produces high-accuracy analysis, making it a truly portable and user friendly system. pH indicator blended hydrogel matrix was fabricated as a thin film to the accurate color development. A distinct color change of red, green and blue (RGB) develops in the hydrogel film by applying various pH solutions (pH 1-14). The semi-quantitative pH evolution was acquired by visual read out. Further, CMOS image sensor absorbs the RGB color intensity of the film and hue value converted into digital numbers with the aid of an analog-to-digital converter (ADC) to determine the pH ranges of solutions. Chromaticity diagram and Euclidean distance represent the RGB color space and differentiation of pH ranges, respectively. This technique is applicable to sense the various toxic chemicals and chemical vapors by situ sensing. Ultimately, the entire approach can be integrated into smartphone and operable with the user friendly manner. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Analysis of neuronal cells of dissociated primary culture on high-density CMOS electrode array

    PubMed Central

    Matsuda, Eiko; Mita, Takeshi; Hubert, Julien; Bakkum, Douglas; Frey, Urs; Hierlemann, Andreas; Takahashi, Hirokazu; Ikegami, Takashi

    2017-01-01

    Spontaneous development of neuronal cells was recorded around 4–34 days in vitro (DIV) with high-density CMOS array, which enables detailed study of the spatio-temporal activity of neuronal culture. We used the CMOS array to characterize the evolution of the inter-spike interval (ISI) distribution from putative single neurons, and estimate the network structure based on transfer entropy analysis, where each node corresponds to a single neuron. We observed that the ISI distributions gradually obeyed the power law with maturation of the network. The amount of information transferred between neurons increased at the early stage of development, but decreased as the network matured. These results suggest that both ISI and transfer entropy were very useful for characterizing the dynamic development of cultured neural cells over a few weeks. PMID:24109870

  1. Characterization of silicon-gate CMOS/SOS integrated circuits processed with ion implantation

    NASA Technical Reports Server (NTRS)

    Woo, D. S.

    1980-01-01

    The double layer metallization technology applied on p type silicon gate CMOS/SOS integrated circuits is described. A smooth metal surface was obtained by using the 2% Si-sputtered Al. More than 10% probe yield was achieved on solar cell controller circuit TCS136 (or MSFC-SC101). Reliability tests were performed on 15 arrays at 150 C. Only three arrays failed during the burn in, and 18 arrays out of 22 functioning arrays maintained the leakage current below 100 milli-A. Analysis indicates that this technology will be a viable process if the metal short circuit problem between the two metals can be reduced.

  2. X-ray performance of 0.18 µm CMOS APS test arrays for solar observation

    NASA Astrophysics Data System (ADS)

    Dryer, B. J.; Holland, A. D.; Jerram, P.; Sakao, Taro

    2012-07-01

    Solar-C is the third generation solar observatory led by JAXA. The accepted ‘Plan-B’ payload calls for a radiation-hard solar-staring photon-counting x-ray spectrometer. CMOS APS technology offers advantages over CCDs for such an application such as increased radiation hardness and high frame rate (instrument target of 1000 fps). Looking towards the solution of a bespoke CMOS APS, this paper reports the x-ray spectroscopy performance, concentrating on charge collection efficiency and split event analysis, of two baseline e2v CMOS APSs not designed for x-ray performance, the EV76C454 and the Ocean Colour Imager (OCI) test array. The EV76C454 is an industrial 5T APS designed for machine vision, available back and front illuminated. The OCI test arrays have varying pixel design across the chips, but are 4T, back illuminated and have thin low-resistivity and thick high-resistivity variants. The OCI test arrays’ pixel variants allow understanding of how pixel design can affect x-ray performance.

  3. Fabrication of Ultra-Thin Printed Organic TFT CMOS Logic Circuits Optimized for Low-Voltage Wearable Sensor Applications.

    PubMed

    Takeda, Yasunori; Hayasaka, Kazuma; Shiwaku, Rei; Yokosawa, Koji; Shiba, Takeo; Mamada, Masashi; Kumaki, Daisuke; Fukuda, Kenjiro; Tokito, Shizuo

    2016-05-09

    Ultrathin electronic circuits that can be manufactured by using conventional printing technologies are key elements necessary to realize wearable health sensors and next-generation flexible electronic devices. Due to their low level of power consumption, complementary (CMOS) circuits using both types of semiconductors can be easily employed in wireless devices. Here, we describe ultrathin CMOS logic circuits, for which not only the source/drain electrodes but also the semiconductor layers were printed. Both p-type and n-type organic thin film transistor devices were employed in a D-flip flop circuit in the newly developed stacked structure and exhibited excellent electrical characteristics, including good carrier mobilities of 0.34 and 0.21 cm(2) V(-1) sec(-1), and threshold voltages of nearly 0 V with low operating voltages. These printed organic CMOS D-flip flop circuits exhibit operating frequencies of 75 Hz and demonstrate great potential for flexible and printed electronics technology, particularly for wearable sensor applications with wireless connectivity.

  4. Full-wafer fabrication by nanostencil lithography of micro/nanomechanical mass sensors monolithically integrated with CMOS.

    PubMed

    Arcamone, J; van den Boogaart, M A F; Serra-Graells, F; Fraxedas, J; Brugger, J; Pérez-Murano, F

    2008-07-30

    Wafer-scale nanostencil lithography (nSL) is used to define several types of silicon mechanical resonators, whose dimensions range from 20 µm down to 200 nm, monolithically integrated with CMOS circuits. We demonstrate the simultaneous patterning by nSL of ∼2000 nanodevices per wafer by post-processing standard CMOS substrates using one single metal evaporation, pattern transfer to silicon and subsequent etch of the sacrificial layer. Resonance frequencies in the MHz range were measured in air and vacuum. As proof-of-concept towards an application as high performance sensors, CMOS integrated nano/micromechanical resonators are successfully implemented as ultra-sensitive areal mass sensors. These devices demonstrate the ability to monitor the deposition of gold layers whose average thickness is smaller than a monolayer. Their areal mass sensitivity is in the range of 10(-11) g cm(-2) Hz(-1), and their thickness resolution corresponds to approximately a thousandth of a monolayer.

  5. Fabrication of Ultra-Thin Printed Organic TFT CMOS Logic Circuits Optimized for Low-Voltage Wearable Sensor Applications

    PubMed Central

    Takeda, Yasunori; Hayasaka, Kazuma; Shiwaku, Rei; Yokosawa, Koji; Shiba, Takeo; Mamada, Masashi; Kumaki, Daisuke; Fukuda, Kenjiro; Tokito, Shizuo

    2016-01-01

    Ultrathin electronic circuits that can be manufactured by using conventional printing technologies are key elements necessary to realize wearable health sensors and next-generation flexible electronic devices. Due to their low level of power consumption, complementary (CMOS) circuits using both types of semiconductors can be easily employed in wireless devices. Here, we describe ultrathin CMOS logic circuits, for which not only the source/drain electrodes but also the semiconductor layers were printed. Both p-type and n-type organic thin film transistor devices were employed in a D-flip flop circuit in the newly developed stacked structure and exhibited excellent electrical characteristics, including good carrier mobilities of 0.34 and 0.21 cm2 V−1 sec−1, and threshold voltages of nearly 0 V with low operating voltages. These printed organic CMOS D-flip flop circuits exhibit operating frequencies of 75 Hz and demonstrate great potential for flexible and printed electronics technology, particularly for wearable sensor applications with wireless connectivity. PMID:27157914

  6. Decoding mobile-phone image sensor rolling shutter effect for visible light communications

    NASA Astrophysics Data System (ADS)

    Liu, Yang

    2016-01-01

    Optical wireless communication (OWC) using visible lights, also known as visible light communication (VLC), has attracted significant attention recently. As the traditional OWC and VLC receivers (Rxs) are based on PIN photo-diode or avalanche photo-diode, deploying the complementary metal-oxide-semiconductor (CMOS) image sensor as the VLC Rx is attractive since nowadays nearly every person has a smart phone with embedded CMOS image sensor. However, deploying the CMOS image sensor as the VLC Rx is challenging. In this work, we propose and demonstrate two simple contrast ratio (CR) enhancement schemes to improve the contrast of the rolling shutter pattern. Then we describe their processing algorithms one by one. The experimental results show that both the proposed CR enhancement schemes can significantly mitigate the high-intensity fluctuations of the rolling shutter pattern and improve the bit-error-rate performance.

  7. Design and Characterization of a Built-In CMOS TID Smart Sensor

    NASA Astrophysics Data System (ADS)

    Agustin, Javier; Gil, Carlos; Lopez-Vallejo, Marisa; Ituero, Pablo

    2015-04-01

    This paper describes a total ionization dose (TID) sensor that presents the following advantages: it is a digital sensor able to be integrated in CMOS circuits; it has a configurable sensitivity that allows radiation doses ranging from very low to high levels; its interface helps to integrate this design in a multidisciplinary sensor network; and it is self-timed, hence it does not need a clock signal. We designed, implemented and manufactured the sensor in a 0.35 μm CMOS commercial technology. It was irradiated with a 60Co source. This test was used to characterize the sensor in terms of the radiation response up to 575 krad. After irradiation, we monitored the sensor to control charge redistribution and annealing effects for 80 hours. We also exposed our design to meticulous temperature analysis from 0 to 50°C and we studied the acceleration on the annealing phenomena due to high temperatures. Sensor calibration takes into account the results of all tests. Finally we propose to use this sensor in a self-recovery system. The sensor manufactured in this work has an area of 0.047 mm 2, of which 22% is dedicated to measuring radiation. Its energy per conversion is 463 pJ.

  8. Enhancing the far-UV sensitivity of silicon CMOS imaging arrays

    NASA Astrophysics Data System (ADS)

    Retherford, K. D.; Bai, Yibin; Ryu, Kevin K.; Gregory, J. A.; Welander, Paul B.; Davis, Michael W.; Greathouse, Thomas K.; Winter, Gregory S.; Suntharalingam, Vyshnavi; Beletic, James W.

    2014-07-01

    We report our progress toward optimizing backside-illuminated silicon PIN CMOS devices developed by Teledyne Imaging Sensors (TIS) for far-UV planetary science applications. This project was motivated by initial measurements at Southwest Research Institute (SwRI) of the far-UV responsivity of backside-illuminated silicon PIN photodiode test structures described in Bai et al., SPIE, 2008, which revealed a promising QE in the 100-200 nm range as reported in Davis et al., SPIE, 2012. Our effort to advance the capabilities of thinned silicon wafers capitalizes on recent innovations in molecular beam epitaxy (MBE) doping processes. Key achievements to date include: 1) Representative silicon test wafers were fabricated by TIS, and set up for MBE processing at MIT Lincoln Laboratory (LL); 2) Preliminary far-UV detector QE simulation runs were completed to aid MBE layer design; 3) Detector fabrication was completed through the pre-MBE step; and 4) Initial testing of the MBE doping process was performed on monitoring wafers, with detailed quality assessments. Early results suggest that potential challenges in optimizing the UV-sensitivity of silicon PIN type CMOS devices, compared with similar UV enhancement methods established for CCDs, have been mitigated through our newly developed methods. We will discuss the potential advantages of our approach and briefly describe future development steps.

  9. Flip-chip bonded optoelectronic integration based on ultrathin silicon (UTSi) CMOS

    NASA Astrophysics Data System (ADS)

    Hong, Sunkwang; Ho, Tawei; Zhang, Liping; Sawchuk, Alexander A.

    2003-06-01

    We describe the design and test of flip-chip bonded optoelectronic CMOS devices based on Peregrine Semiconductor's 0.5 micron Ultra-Thin Silicon on sapphire (UTSi) technology. The UTSi process eliminates the substrate leakage that typically results in crosstalk and reduces parasitic capacitance to the substrate, providing many benefits compared to bulk silicon CMOS. The low-loss synthetic sapphire substrate is optically transparent and has a coefficient of thermal expansion suitable for flip-chip bonding of vertical cavity surface emitting lasers (VCSELs) and detectors. We have designed two different UTSi CMOS chips. One contains a flip-chip bonded 1 x 4 photodiode array, a receiver array, a double edge triggered D-flip flop-based 2047-pattern pseudo random bit stream (PRBS) generator and a quadrature-phase LC-voltage controlled oscillator (VCO). The other chip contains a flip-chip bonded 1 x 4 VCSEL array, a driver array based on high-speed low-voltage differential signals (LVDS) and a full-balanced differential LC-VCO. Each VCSEL driver and receiver has individual input and bias voltage adjustments. Each UTSi chip is mounted on different printed circuit boards (PCBs) which have holes with about 1 mm radius for optical output and input paths through the sapphire substrate. We discuss preliminary testing of these chips.

  10. Lensless transport-of-intensity phase microscopy and tomography with a color LED matrix

    NASA Astrophysics Data System (ADS)

    Zuo, Chao; Sun, Jiasong; Zhang, Jialin; Hu, Yan; Chen, Qian

    2015-07-01

    We demonstrate lens-less quantitative phase microscopy and diffraction tomography based on a compact on-chip platform, using only a CMOS image sensor and a programmable color LED array. Based on multi-wavelength transport-of- intensity phase retrieval and multi-angle illumination diffraction tomography, this platform offers high quality, depth resolved images with a lateral resolution of ˜3.7μm and an axial resolution of ˜5μm, over wide large imaging FOV of 24mm2. The resolution and FOV can be further improved by using a larger image sensors with small pixels straightforwardly. This compact, low-cost, robust, portable platform with a decent imaging performance may offer a cost-effective tool for telemedicine needs, or for reducing health care costs for point-of-care diagnostics in resource-limited environments.

  11. Ultra-thin silicon (UTSi) on insulator CMOS transceiver and time-division multiplexed switch chips for smart pixel integration

    NASA Astrophysics Data System (ADS)

    Zhang, Liping; Sawchuk, Alexander A.

    2001-12-01

    We describe the design, fabrication and functionality of two different 0.5 micron CMOS optoelectronic integrated circuit (OEIC) chips based on the Peregrine Semiconductor Ultra-Thin Silicon on insulator technology. The Peregrine UTSi silicon- on-sapphire (SOS) technology is a member of the silicon-on- insulator (SOI) family. The low-loss synthetic sapphire substrate is optically transparent and has good thermal conductivity and coefficient of thermal expansion properties, which meet the requirements for flip-chip bonding of VCSELs and other optoelectronic input-output components. One chip contains transceiver and network components, including four channel high-speed CMOS transceiver modules, pseudo-random bit stream (PRBS) generators, a voltage controlled oscillator (VCO) and other test circuits. The transceiver chips can operate in both self-testing mode and networking mode. An on- chip clock and true-single-phase-clock (TSPC) D-flip-flop have been designed to generate a PRBS at over 2.5 Gb/s for the high-speed transceiver arrays to operate in self-testing mode. In the networking mode, an even number of transceiver chips forms a ring network through free-space or fiber ribbon interconnections. The second chip contains four channel optical time-division multiplex (TDM) switches, optical transceiver arrays, an active pixel detector and additional test devices. The eventual applications of these chips will require monolithic OEICs with integrated optical input and output. After fabrication and testing, the CMOS transceiver array dies will be packaged with 850 nm vertical cavity surface emitting lasers (VCSELs), and metal-semiconductor- metal (MSM) or GaAs p-i-n detector die arrays to achieve high- speed optical interconnections. The hybrid technique could be either wire bonding or flip-chip bonding of the CMOS SOS smart-pixel arrays with arrays of VCSELs and photodetectors onto an optoelectronic chip carrier as a multi-chip module (MCM).

  12. Label-free silicon photonic biosensor system with integrated detector array.

    PubMed

    Yan, Rongjin; Mestas, Santano P; Yuan, Guangwei; Safaisini, Rashid; Dandy, David S; Lear, Kevin L

    2009-08-07

    An integrated, inexpensive, label-free photonic waveguide biosensor system with multi-analyte capability has been implemented on a silicon photonics integrated circuit from a commercial CMOS line and tested with nanofilms. The local evanescent array coupled (LEAC) biosensor is based on a new physical phenomenon that is fundamentally different from the mechanisms of other evanescent field sensors. Increased local refractive index at the waveguide's upper surface due to the formation of a biological nanofilm causes local modulation of the evanescent field coupled into an array of photodetectors buried under the waveguide. The planar optical waveguide biosensor system exhibits sensitivity of 20%/nm photocurrent modulation in response to adsorbed bovine serum albumin (BSA) layers less than 3 nm thick. In addition to response to BSA, an experiment with patterned photoresist as well as beam propagation method simulations support the evanescent field shift principle. The sensing mechanism enables the integration of all optical and electronic components for a multi-analyte biosensor system on a chip.

  13. Label-free silicon photonic biosensor system with integrated detector array

    PubMed Central

    Yan, Rongjin; Mestas, Santano P.; Yuan, Guangwei; Safaisini, Rashid; Dandy, David S.

    2010-01-01

    An integrated, inexpensive, label-free photonic waveguide biosensor system with multi-analyte capability has been implemented on a silicon photonics integrated circuit from a commercial CMOS line and tested with nanofilms. The local evanescent array coupled (LEAC) biosensor is based on a new physical phenomenon that is fundamentally different from the mechanisms of other evanescent field sensors. Increased local refractive index at the waveguide’s upper surface due to the formation of a biological nanofilm causes local modulation of the evanescent field coupled into an array of photodetectors buried under the waveguide. The planar optical waveguide biosensor system exhibits sensitivity of 20%/nm photocurrent modulation in response to adsorbed bovine serum albumin (BSA) layers less than 3 nm thick. In addition to response to BSA, an experiment with patterned photoresist as well as beam propagation method simulations support the evanescent field shift principle. The sensing mechanism enables the integration of all optical and electronic components for a multi-analyte biosensor system on a chip. PMID:19606292

  14. Flip-chip fabrication of integrated micromirror arrays using a novel latching off-chip hinge mechanism

    NASA Astrophysics Data System (ADS)

    Michalicek, M. Adrian; Bright, Victor M.

    2001-10-01

    This paper presents the design, fabrication, modeling, and testing of various arrays of cantilever micromirror devices integrated atop CMOS control electronics. The upper layers of the arrays are prefabricated in the MUMPs process and then flip-chip transferred to CMOS receiving modules using a novel latching off-chip hinge mechanism. This mechanism allows the micromirror arrays to be released, rotated off the edge of the host module and then bonded to the receiving module using a standard probe station. The hinge mechanism supports the arrays by tethers that are severed to free the arrays once bonded. The resulting devices are inherently planarized since the bottom of the first releasable MUMPs layer becomes the surface of the integrated mirror. The working devices are formed by mirror surfaces bonded to address electrodes fabricated above static memory cells on the CMOS module. These arrays demonstrate highly desirable features such as compatible address potentials, less than 2 nm of RMS roughness, approximately 1 micrometers of lateral position accuracy and the unique ability to metallize reflective surfaces without masking. Ultimately, the off-chip hinge mechanism enables very low-cost, simple, reliable, repeatable and accurate assembly of advanced MEMS and integrated microsystems without specialized equipment or complex procedures.

  15. High-performance, mechanically flexible, and vertically integrated 3D carbon nanotube and InGaZnO complementary circuits with a temperature sensor.

    PubMed

    Honda, Wataru; Harada, Shingo; Ishida, Shohei; Arie, Takayuki; Akita, Seiji; Takei, Kuniharu

    2015-08-26

    A vertically integrated inorganic-based flexible complementary metal-oxide-semiconductor (CMOS) inverter with a temperature sensor with a high inverter gain of ≈50 and a low power consumption of <7 nW mm(-1) is demonstrated using a layer-by-layer assembly process. In addition, the negligible influence of the mechanical flexibility on the performance of the CMOS inverter and the temperature dependence of the CMOS inverter characteristics are discussed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Capacitance pressure sensor

    DOEpatents

    Eaton, William P.; Staple, Bevan D.; Smith, James H.

    2000-01-01

    A microelectromechanical (MEM) capacitance pressure sensor integrated with electronic circuitry on a common substrate and a method for forming such a device are disclosed. The MEM capacitance pressure sensor includes a capacitance pressure sensor formed at least partially in a cavity etched below the surface of a silicon substrate and adjacent circuitry (CMOS, BiCMOS, or bipolar circuitry) formed on the substrate. By forming the capacitance pressure sensor in the cavity, the substrate can be planarized (e.g. by chemical-mechanical polishing) so that a standard set of integrated circuit processing steps can be used to form the electronic circuitry (e.g. using an aluminum or aluminum-alloy interconnect metallization).

  17. Single Photon Counting Performance and Noise Analysis of CMOS SPAD-Based Image Sensors.

    PubMed

    Dutton, Neale A W; Gyongy, Istvan; Parmesan, Luca; Henderson, Robert K

    2016-07-20

    SPAD-based solid state CMOS image sensors utilising analogue integrators have attained deep sub-electron read noise (DSERN) permitting single photon counting (SPC) imaging. A new method is proposed to determine the read noise in DSERN image sensors by evaluating the peak separation and width (PSW) of single photon peaks in a photon counting histogram (PCH). The technique is used to identify and analyse cumulative noise in analogue integrating SPC SPAD-based pixels. The DSERN of our SPAD image sensor is exploited to confirm recent multi-photon threshold quanta image sensor (QIS) theory. Finally, various single and multiple photon spatio-temporal oversampling techniques are reviewed.

  18. System-in Package of Integrated Humidity Sensor Using CMOS-MEMS Technology.

    PubMed

    Lee, Sung Pil

    2015-10-01

    Temperature/humidity microchips with micropump were fabricated using a CMOS-MEMS process and combined with ZigBee modules to implement a sensor system in package (SIP) for a ubiquitous sensor network (USN) and/or a wireless communication system. The current of a diode temperature sensor to temperature and a normalized current of FET humidity sensor to relative humidity showed linear characteristics, respectively, and the use of the micropump has enabled a faster response. A wireless reception module using the same protocol as that in transmission systems processed the received data within 10 m and showed temperature and humidity values in the display.

  19. Robust Dehaze Algorithm for Degraded Image of CMOS Image Sensors.

    PubMed

    Qu, Chen; Bi, Du-Yan; Sui, Ping; Chao, Ai-Nong; Wang, Yun-Fei

    2017-09-22

    The CMOS (Complementary Metal-Oxide-Semiconductor) is a new type of solid image sensor device widely used in object tracking, object recognition, intelligent navigation fields, and so on. However, images captured by outdoor CMOS sensor devices are usually affected by suspended atmospheric particles (such as haze), causing a reduction in image contrast, color distortion problems, and so on. In view of this, we propose a novel dehazing approach based on a local consistent Markov random field (MRF) framework. The neighboring clique in traditional MRF is extended to the non-neighboring clique, which is defined on local consistent blocks based on two clues, where both the atmospheric light and transmission map satisfy the character of local consistency. In this framework, our model can strengthen the restriction of the whole image while incorporating more sophisticated statistical priors, resulting in more expressive power of modeling, thus, solving inadequate detail recovery effectively and alleviating color distortion. Moreover, the local consistent MRF framework can obtain details while maintaining better results for dehazing, which effectively improves the image quality captured by the CMOS image sensor. Experimental results verified that the method proposed has the combined advantages of detail recovery and color preservation.

  20. Charge collection and non-ionizing radiation tolerance of CMOS pixel sensors using a 0.18 μm CMOS process

    NASA Astrophysics Data System (ADS)

    Zhang, Ying; Zhu, Hongbo; Zhang, Liang; Fu, Min

    2016-09-01

    The proposed Circular Electron Positron Collider (CEPC) will be primarily aimed for precision measurements of the discovered Higgs boson. Its innermost vertex detector, which will play a critical role in heavy-flavor tagging, must be constructed with fine-pitched silicon pixel sensors with low power consumption and fast readout. CMOS pixel sensor (CPS), as one of the most promising candidate technologies, has already demonstrated its excellent performance in several high energy physics experiments. Therefore it has been considered for R&D for the CEPC vertex detector. In this paper, we present the preliminary studies to improve the collected signal charge over the equivalent input capacitance ratio (Q / C), which will be crucial to reduce the analog power consumption. We have performed detailed 3D device simulation and evaluated potential impacts from diode geometry, epitaxial layer properties and non-ionizing radiation damage. We have proposed a new approach to improve the treatment of the boundary conditions in simulation. Along with the TCAD simulation, we have designed the exploratory prototype utilizing the TowerJazz 0.18 μm CMOS imaging sensor process and we will verify the simulation results with future measurements.

  1. Subpixel mapping and test beam studies with a HV2FEI4v2 CMOS-Sensor-Hybrid Module for the ATLAS inner detector upgrade

    NASA Astrophysics Data System (ADS)

    Bisanz, T.; Große-Knetter, J.; Quadt, A.; Rieger, J.; Weingarten, J.

    2017-08-01

    The upgrade to the High Luminosity Large Hadron Collider will increase the instantaneous luminosity by more than a factor of 5, thus creating significant challenges to the tracking systems of all experiments. Recent advancement of active pixel detectors designed in CMOS processes provide attractive alternatives to the well-established hybrid design using passive sensors since they allow for smaller pixel sizes and cost effective production. This article presents studies of a high-voltage CMOS active pixel sensor designed for the ATLAS tracker upgrade. The sensor is glued to the read-out chip of the Insertable B-Layer, forming a capacitively coupled pixel detector. The pixel pitch of the device under test is 33× 125 μm2, while the pixels of the read-out chip have a pitch of 50× 250 μm2. Three pixels of the CMOS device are connected to one read-out pixel, the information of which of these subpixels is hit is encoded in the amplitude of the output signal (subpixel encoding). Test beam measurements are presented that demonstrate the usability of this subpixel encoding scheme.

  2. The implementation of CMOS sensors within a real time digital mammography intelligent imaging system: The I-ImaS System

    NASA Astrophysics Data System (ADS)

    Esbrand, C.; Royle, G.; Griffiths, J.; Speller, R.

    2009-07-01

    The integration of technology with healthcare has undoubtedly propelled the medical imaging sector well into the twenty first century. The concept of digital imaging introduced during the 1970s has since paved the way for established imaging techniques where digital mammography, phase contrast imaging and CT imaging are just a few examples. This paper presents a prototype intelligent digital mammography system designed and developed by a European consortium. The final system, the I-ImaS system, utilises CMOS monolithic active pixel sensor (MAPS) technology promoting on-chip data processing, enabling the acts of data processing and image acquisition to be achieved simultaneously; consequently, statistical analysis of tissue is achievable in real-time for the purpose of x-ray beam modulation via a feedback mechanism during the image acquisition procedure. The imager implements a dual array of twenty 520 pixel × 40 pixel CMOS MAPS sensing devices with a 32μm pixel size, each individually coupled to a 100μm thick thallium doped structured CsI scintillator. This paper presents the first intelligent images of real breast tissue obtained from the prototype system of real excised breast tissue where the x-ray exposure was modulated via the statistical information extracted from the breast tissue itself. Conventional images were experimentally acquired where the statistical analysis of the data was done off-line, resulting in the production of simulated real-time intelligently optimised images. The results obtained indicate real-time image optimisation using the statistical information extracted from the breast as a means of a feedback mechanisms is beneficial and foreseeable in the near future.

  3. Microlens performance limits in sub-2mum pixel CMOS image sensors.

    PubMed

    Huo, Yijie; Fesenmaier, Christian C; Catrysse, Peter B

    2010-03-15

    CMOS image sensors with smaller pixels are expected to enable digital imaging systems with better resolution. When pixel size scales below 2 mum, however, diffraction affects the optical performance of the pixel and its microlens, in particular. We present a first-principles electromagnetic analysis of microlens behavior during the lateral scaling of CMOS image sensor pixels. We establish for a three-metal-layer pixel that diffraction prevents the microlens from acting as a focusing element when pixels become smaller than 1.4 microm. This severely degrades performance for on and off-axis pixels in red, green and blue color channels. We predict that one-metal-layer or backside-illuminated pixels are required to extend the functionality of microlenses beyond the 1.4 microm pixel node.

  4. An Integrated Circuit for Chip-Based Analysis of Enzyme Kinetics and Metabolite Quantification.

    PubMed

    Cheah, Boon Chong; Macdonald, Alasdair Iain; Martin, Christopher; Streklas, Angelos J; Campbell, Gordon; Al-Rawhani, Mohammed A; Nemeth, Balazs; Grant, James P; Barrett, Michael P; Cumming, David R S

    2016-06-01

    We have created a novel chip-based diagnostic tools based upon quantification of metabolites using enzymes specific for their chemical conversion. Using this device we show for the first time that a solid-state circuit can be used to measure enzyme kinetics and calculate the Michaelis-Menten constant. Substrate concentration dependency of enzyme reaction rates is central to this aim. Ion-sensitive field effect transistors (ISFET) are excellent transducers for biosensing applications that are reliant upon enzyme assays, especially since they can be fabricated using mainstream microelectronics technology to ensure low unit cost, mass-manufacture, scaling to make many sensors and straightforward miniaturisation for use in point-of-care devices. Here, we describe an integrated ISFET array comprising 2(16) sensors. The device was fabricated with a complementary metal oxide semiconductor (CMOS) process. Unlike traditional CMOS ISFET sensors that use the Si3N4 passivation of the foundry for ion detection, the device reported here was processed with a layer of Ta2O5 that increased the detection sensitivity to 45 mV/pH unit at the sensor readout. The drift was reduced to 0.8 mV/hour with a linear pH response between pH 2-12. A high-speed instrumentation system capable of acquiring nearly 500 fps was developed to stream out the data. The device was then used to measure glucose concentration through the activity of hexokinase in the range of 0.05 mM-231 mM, encompassing glucose's physiological range in blood. Localised and temporal enzyme kinetics of hexokinase was studied in detail. These results present a roadmap towards a viable personal metabolome machine.

  5. Fabrication and characterization of high-K dielectric integrated silicon nanowire sensor for DNA sensing application (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Jayakumar, Ganesh; Legallais, Maxime; Hellström, Per-Erik; Mouis, Mireille; Stambouli, Valérie; Ternon, Céline; Östling, Mikael

    2016-09-01

    1D silicon nanowires (SiNW) are attractive for charge based DNA sensing applications due to their small size and large surface to volume ratio. An ideal portable biosensor is expected to have repeatable and reliable sensitivity, selectivity, low production cost and small feature size. Instead of using tools such as e-beam that are capital and time intensive, we propose a low cost CMOS self-aligned-double-patterning I-line lithography process to fabricate 60 nm wide SiNW. DNA probes are grafted on a thin dielectric layer that is deposited on top of the SiNW surface. Here we used HfO2 instead of the usual SiO2. Indeed, compared to SiO2, HfO2 has been reported to have higher amount of OH groups on its surface leading to enhanced signal quality. We also report preliminary biosensor characterizations. After HfO2 functionalization and single-stranded DNA probe grafting onto the SiNWs, the sensors were first put in contact with fluorophore labelled complementary DNA targets in order to test the efficiency of DNA hybridization optically. Then, a sequence of hybridization, de-hybridization and re-hybridization steps was followed by Id-Vg measurements in order to measure the electrical response of the sensors to target DNA as well as recycling capability. After each step, SiNW devices exhibited a threshold voltage shift larger than device-to-device dispersion, showing that both complementary DNA hybridization and de-hybridization can be electrically detected. These results are very encouraging as they open new frontiers for heterogeneous integration of liquid interacting array of nano sensors with CMOS circuits to fabricate a complete lab on chip.

  6. Compact SPAD-Based Pixel Architectures for Time-Resolved Image Sensors

    PubMed Central

    Perenzoni, Matteo; Pancheri, Lucio; Stoppa, David

    2016-01-01

    This paper reviews the state of the art of single-photon avalanche diode (SPAD) image sensors for time-resolved imaging. The focus of the paper is on pixel architectures featuring small pixel size (<25 μm) and high fill factor (>20%) as a key enabling technology for the successful implementation of high spatial resolution SPAD-based image sensors. A summary of the main CMOS SPAD implementations, their characteristics and integration challenges, is provided from the perspective of targeting large pixel arrays, where one of the key drivers is the spatial uniformity. The main analog techniques aimed at time-gated photon counting and photon timestamping suitable for compact and low-power pixels are critically discussed. The main features of these solutions are the adoption of analog counting techniques and time-to-analog conversion, in NMOS-only pixels. Reliable quantum-limited single-photon counting, self-referenced analog-to-digital conversion, time gating down to 0.75 ns and timestamping with 368 ps jitter are achieved. PMID:27223284

  7. Fundamental Problems of Hybrid CMOS/Nanodevice Circuits

    DTIC Science & Technology

    2010-12-14

    Development of an area-distributed CMOS/nanodevice interface We have carried out the first design of CMOS chips for the CMOS/nanodevice integration, and...got them fabricated in IBM’ 180-nm 7RF process (via MOSIS, Inc. silicon foundry). Each 44 mm2 chip assembly of the design consists of 4 component... chips , merged together for processing convenience. Each 22 mm2 component chip features two interface arrays, with 1010 vias each, with chip’s MOSFETs

  8. Improved Space Object Orbit Determination Using CMOS Detectors

    NASA Astrophysics Data System (ADS)

    Schildknecht, T.; Peltonen, J.; Sännti, T.; Silha, J.; Flohrer, T.

    2014-09-01

    CMOS-sensors, or in general Active Pixel Sensors (APS), are rapidly replacing CCDs in the consumer camera market. Due to significant technological advances during the past years these devices start to compete with CCDs also for demanding scientific imaging applications, in particular in the astronomy community. CMOS detectors offer a series of inherent advantages compared to CCDs, due to the structure of their basic pixel cells, which each contains their own amplifier and readout electronics. The most prominent advantages for space object observations are the extremely fast and flexible readout capabilities, feasibility for electronic shuttering and precise epoch registration, and the potential to perform image processing operations on-chip and in real-time. The major challenges and design drivers for ground-based and space-based optical observation strategies have been analyzed. CMOS detector characteristics were critically evaluated and compared with the established CCD technology, especially with respect to the above mentioned observations. Similarly, the desirable on-chip processing functionalities which would further enhance the object detection and image segmentation were identified. Finally, we simulated several observation scenarios for ground- and space-based sensor by assuming different observation and sensor properties. We will introduce the analyzed end-to-end simulations of the ground- and space-based strategies in order to investigate the orbit determination accuracy and its sensitivity which may result from different values for the frame-rate, pixel scale, astrometric and epoch registration accuracies. Two cases were simulated, a survey using a ground-based sensor to observe objects in LEO for surveillance applications, and a statistical survey with a space-based sensor orbiting in LEO observing small-size debris in LEO. The ground-based LEO survey uses a dynamical fence close to the Earth shadow a few hours after sunset. For the space-based scenario a sensor in a sun-synchronous LEO orbit, always pointing in the anti-sun direction to achieve optimum illumination conditions for small LEO debris, was simulated. For the space-based scenario the simulations showed a 20 130 % improvement of the accuracy of all orbital parameters when varying the frame rate from 1/3 fps, which is the fastest rate for a typical CCD detector, to 50 fps, which represents the highest rate of scientific CMOS cameras. Changing the epoch registration accuracy from a typical 20.0 ms for a mechanical shutter to 0.025 ms, the theoretical value for the electronic shutter of a CMOS camera, improved the orbit accuracy by 4 to 190 %. The ground-based scenario also benefit from the specific CMOS characteristics, but to a lesser extent.

  9. Room temperature 1040fps, 1 megapixel photon-counting image sensor with 1.1um pixel pitch

    NASA Astrophysics Data System (ADS)

    Masoodian, S.; Ma, J.; Starkey, D.; Wang, T. J.; Yamashita, Y.; Fossum, E. R.

    2017-05-01

    A 1Mjot single-bit quanta image sensor (QIS) implemented in a stacked backside-illuminated (BSI) process is presented. This is the first work to report a megapixel photon-counting CMOS-type image sensor to the best of our knowledge. A QIS with 1.1μm pitch tapered-pump-gate jots is implemented with cluster-parallel readout, where each cluster of jots is associated with its own dedicated readout electronics stacked under the cluster. Power dissipation is reduced with this cluster readout because of the reduced column bus parasitic capacitance, which is important for the development of 1Gjot arrays. The QIS functions at 1040fps with binary readout and dissipates only 17.6mW, including I/O pads. The readout signal chain uses a fully differential charge-transfer amplifier (CTA) gain stage before a 1b-ADC to achieve an energy/bit FOM of 16.1pJ/b and 6.9pJ/b for the whole sensor and gain stage+ADC, respectively. Analog outputs with on-chip gain are implemented for pixel characterization purposes.

  10. Affordable Wide-field Optical Space Surveillance using sCMOS and GPUs

    NASA Astrophysics Data System (ADS)

    Zimmer, P.; McGraw, J.; Ackermann, M.

    2016-09-01

    Recent improvements in sCMOS technology allow for affordable, wide-field, and rapid cadence surveillance from LEO to out past GEO using largely off-the-shelf hardware. sCMOS sensors, until very recently, suffered from several shortcomings when compared to CCD sensors - lower sensitivity, smaller physical size and less predictable noise characteristics. Sensors that overcome the first two of these are now available commercially and the principals at J.T. McGraw and Associates (JTMA) have developed observing strategies that minimize the impact of the third, while leveraging the key features of sCMOS, fast readout and low average readout noise. JTMA has integrated a new generation sCMOS sensor into an existing COTS telescope system in order to develop and test new detection techniques designed for uncued optical surveillance across a wide range of apparent object angular rates - from degree per second scale of LEO objects to a few arcseconds per second for objects out past GEO. One further complication arises from this: increased useful frame rate means increased data volume. Fortunately, GPU technology continues to advance at a breakneck pace and we report on the results and performance of our new detection techniques implemented on new generation GPUs. Early results show significance within 20% of the expected theoretical limiting signal-to-noise using commodity GPUs in near real time across a wide range of object parameters, closing the gap in detectivity between moving objects and tracked objects.

  11. Hybrid CMOS/Molecular Integrated Circuits

    NASA Astrophysics Data System (ADS)

    Stan, M. R.; Rose, G. S.; Ziegler, M. M.

    CMOS silicon technologies are likely to run out of steam in the next 10-15 years despite revolutionary advances in the past few decades. Molecular and other nanoscale technologies show significant promise but it is unlikely that they will completely replace CMOS, at least in the near term. This chapter explores opportunities for using CMOS and nanotechnology to enhance and complement each other in hybrid circuits. As an example of such a hybrid CMOS/nano system, a nanoscale programmable logic array (PLA) based on majority logic is described along with its supplemental CMOS circuitry. It is believed that such systems will be able to sustain the historical advances in the semiconductor industry while addressing manufacturability, yield, power, cost, and performance challenges.

  12. CMOS Ultralow Power Brain Signal Acquisition Front-Ends: Design and Human Testing.

    PubMed

    Karimi-Bidhendi, Alireza; Malekzadeh-Arasteh, Omid; Lee, Mao-Cheng; McCrimmon, Colin M; Wang, Po T; Mahajan, Akshay; Liu, Charles Yu; Nenadic, Zoran; Do, An H; Heydari, Payam

    2017-08-01

    Two brain signal acquisition (BSA) front-ends incorporating two CMOS ultralow power, low-noise amplifier arrays and serializers operating in mosfet weak inversion region are presented. To boost the amplifier's gain for a given current budget, cross-coupled-pair active load topology is used in the first stages of these two amplifiers. These two BSA front-ends are fabricated in 130 and 180 nm CMOS processes, occupying 5.45 mm 2 and 0.352 mm 2 of die areas, respectively (excluding pad rings). The CMOS 130-nm amplifier array is comprised of 64 elements, where each amplifier element consumes 0.216 μW from 0.4 V supply, has input-referred noise voltage (IRNoise) of 2.19 μV[Formula: see text] corresponding to a power efficiency factor (PEF) of 11.7, and occupies 0.044 mm 2 of die area. The CMOS 180 nm amplifier array employs 4 elements, where each element consumes 0.69 μW from 0.6 V supply with IRNoise of 2.3 μV[Formula: see text] (corresponding to a PEF of 31.3) and 0.051 mm 2 of die area. Noninvasive electroencephalographic and invasive electrocorticographic signals were recorded real time directly on able-bodied human subjects, showing feasibility of using these analog front-ends for future fully implantable BSA and brain- computer interface systems.

  13. Polarization-Analyzing CMOS Image Sensor With Monolithically Embedded Polarizer for Microchemistry Systems.

    PubMed

    Tokuda, T; Yamada, H; Sasagawa, K; Ohta, J

    2009-10-01

    This paper proposes and demonstrates a polarization-analyzing CMOS sensor based on image sensor architecture. The sensor was designed targeting applications for chiral analysis in a microchemistry system. The sensor features a monolithically embedded polarizer. Embedded polarizers with different angles were implemented to realize a real-time absolute measurement of the incident polarization angle. Although the pixel-level performance was confirmed to be limited, estimation schemes based on the variation of the polarizer angle provided a promising performance for real-time polarization measurements. An estimation scheme using 180 pixels in a 1deg step provided an estimation accuracy of 0.04deg. Polarimetric measurements of chiral solutions were also successfully performed to demonstrate the applicability of the sensor to optical chiral analysis.

  14. Photodiode area effect on performance of X-ray CMOS active pixel sensors

    NASA Astrophysics Data System (ADS)

    Kim, M. S.; Kim, Y.; Kim, G.; Lim, K. T.; Cho, G.; Kim, D.

    2018-02-01

    Compared to conventional TFT-based X-ray imaging devices, CMOS-based X-ray imaging sensors are considered next generation because they can be manufactured in very small pixel pitches and can acquire high-speed images. In addition, CMOS-based sensors have the advantage of integration of various functional circuits within the sensor. The image quality can also be improved by the high fill-factor in large pixels. If the size of the subject is small, the size of the pixel must be reduced as a consequence. In addition, the fill factor must be reduced to aggregate various functional circuits within the pixel. In this study, 3T-APS (active pixel sensor) with photodiodes of four different sizes were fabricated and evaluated. It is well known that a larger photodiode leads to improved overall performance. Nonetheless, if the size of the photodiode is > 1000 μm2, the degree to which the sensor performance increases as the photodiode size increases, is reduced. As a result, considering the fill factor, pixel-pitch > 32 μm is not necessary to achieve high-efficiency image quality. In addition, poor image quality is to be expected unless special sensor-design techniques are included for sensors with a pixel pitch of 25 μm or less.

  15. Three-dimensional crossbar arrays of self-rectifying Si/SiO 2/Si memristors

    DOE PAGES

    Li, Can; Han, Lili; Jiang, Hao; ...

    2017-06-05

    Memristors are promising building blocks for the next generation memory, unconventional computing systems and beyond. Currently common materials used to build memristors are not necessarily compatible with the silicon dominant complementary metal-oxide-semiconductor (CMOS) technology. Furthermore, external selector devices or circuits are usually required in order for large memristor arrays to function properly, resulting in increased circuit complexity. Here we demonstrate fully CMOS-compatible, all-silicon based and self-rectifying memristors that negate the need for external selectors in large arrays. It consists of p- and n-type doped single crystalline silicon electrodes and a thin chemically produced silicon oxide switching layer. The device exhibitsmore » repeatable resistance switching behavior with high rectifying ratio (10 5), high ON/OFF conductance ratio (10 4) and attractive retention at 300 °C. We further build a 5-layer 3-dimensional (3D) crossbar array of 100 nm memristors by stacking fluid supported silicon membranes. The CMOS compatibility and self-rectifying behavior open up opportunities for mass production of memristor arrays and 3D hybrid circuits on full-wafer scale silicon and flexible substrates without increasing circuit complexity.« less

  16. Single Photon Counting Performance and Noise Analysis of CMOS SPAD-Based Image Sensors

    PubMed Central

    Dutton, Neale A. W.; Gyongy, Istvan; Parmesan, Luca; Henderson, Robert K.

    2016-01-01

    SPAD-based solid state CMOS image sensors utilising analogue integrators have attained deep sub-electron read noise (DSERN) permitting single photon counting (SPC) imaging. A new method is proposed to determine the read noise in DSERN image sensors by evaluating the peak separation and width (PSW) of single photon peaks in a photon counting histogram (PCH). The technique is used to identify and analyse cumulative noise in analogue integrating SPC SPAD-based pixels. The DSERN of our SPAD image sensor is exploited to confirm recent multi-photon threshold quanta image sensor (QIS) theory. Finally, various single and multiple photon spatio-temporal oversampling techniques are reviewed. PMID:27447643

  17. Resolution Properties of a Calcium Tungstate (CaWO4) Screen Coupled to a CMOS Imaging Detector

    NASA Astrophysics Data System (ADS)

    Koukou, Vaia; Martini, Niki; Valais, Ioannis; Bakas, Athanasios; Kalyvas, Nektarios; Lavdas, Eleftherios; Fountos, George; Kandarakis, Ioannis; Michail, Christos

    2017-11-01

    The aim of the current work was to assess the resolution properties of a calcium tungstate (CaWO4) screen (screen coating thickness: 50.09 mg/cm2, actual thickness: 167.2 μm) coupled to a high resolution complementary metal oxide semiconductor (CMOS) digital imaging sensor. A 2.7x3.6 cm2 CaWO4 sample was extracted from an Agfa Curix universal screen and was coupled directly with the active area of the active pixel sensor (APS) CMOS sensor. Experiments were performed following the new IEC 62220-1-1:2015 International Standard, using an RQA-5 beam quality. Resolution was assessed in terms of the Modulation Transfer Function (MTF), using the slanted-edge method. The CaWO4/CMOS detector configuration was found with linear response, in the exposure range under investigation. The final MTF was obtained through averaging the oversampled edge spread function (ESF), using a custom-made software developed by our team, according to the IEC 62220-1-1:2015. Considering the renewed interest in calcium tungstate for various applications, along with the resolution results of this work, CaWO4 could be also considered for use in X-ray imaging devices such as charged-coupled devices (CCD) and CMOS.

  18. High Efficiency mm-Wave Transmitter Array

    DTIC Science & Technology

    2016-09-01

    SECURITY CLASSIFICATION OF: High efficiency, high power transmitters integrated in silicon at 45, 94 and 138 GHz were developed. Our approach...employs CMOS-SOI and SiGe HBT unit amplifiers, power -combined in free-space using antenna arrays to attain high power levels. In the baseline approach...the-art were made. At 45GHz, a single CMOS chip produced an RF power of 630mW, which yielded an EIRP of 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND

  19. Development of a low-cost sun sensor for nanosatellites

    NASA Astrophysics Data System (ADS)

    Antonello, Andrea; Olivieri, Lorenzo; Francesconi, Alessandro

    2018-03-01

    Sun sensors represent a common and reliable technology for attitude determination, employed in many space missions thanks to their limited size and weight. Typically, two-axis digital Sun sensors employ an array of active pixels arranged behind a small aperture; the position of the sunlight's spot allows to determine the direction of the Sun. With the advent of smaller vehicles such as CubeSats and Nanosats, there is the need to further reduce the size and weight of such devices: as a trade-off, this usually results in the curtail of the performances. Nowadays, state of the art Sun sensors for CubeSats have resolutions of about 0.5°, with fields of view in the ±45° to ±90° range, with off-the-self prices of several thousands of dollars. In this work we introduce a novel low-cost miniaturized Sun sensor, based on a commercial CMOS camera detector; its main feature is the reduced size with respect to state-of-the-art sensors developed from the same technology, making it employable on CubeSats. The sensor consists of a precisely machined pinhole with a 10 μm circular aperture, placed at a distance of 7 mm from the CMOS. The standoff distance and casing design allow for a maximum resolution of less than 0.03°, outperforming most of the products currently available for nano and pico platforms; furthermore, the nature of the technology allows for reduced size and lightweight characteristics. The design, development and laboratory tests of the sensor are here introduced, starting with the definition of the physical model, the geometrical layout and its theoretical resolution; a more accurate model was then developed in order to account for the geometrical deviations and deformations of the pinhole-projected light-spot, as well as to account for the background noise and disturbances to the electronics. Finally, the laboratory setup is presented along with the test campaigns: the results obtained are compared with the simulations, allowing for the validation of the theoretical model.

  20. Differential wide temperature range CMOS interface circuit for capacitive MEMS pressure sensors.

    PubMed

    Wang, Yucai; Chodavarapu, Vamsy P

    2015-02-12

    We describe a Complementary Metal-Oxide Semiconductor (CMOS) differential interface circuit for capacitive Micro-Electro-Mechanical Systems (MEMS) pressure sensors that is functional over a wide temperature range between -55 °C and 225 °C. The circuit is implemented using IBM 0.13 μm CMOS technology with 2.5 V power supply. A constant-gm biasing technique is used to mitigate performance degradation at high temperatures. The circuit offers the flexibility to interface with MEMS sensors with a wide range of the steady-state capacitance values from 0.5 pF to 10 pF. Simulation results show that the circuitry has excellent linearity and stability over the wide temperature range. Experimental results confirm that the temperature effects on the circuitry are small, with an overall linearity error around 2%.

  1. Differential Wide Temperature Range CMOS Interface Circuit for Capacitive MEMS Pressure Sensors

    PubMed Central

    Wang, Yucai; Chodavarapu, Vamsy P.

    2015-01-01

    We describe a Complementary Metal-Oxide Semiconductor (CMOS) differential interface circuit for capacitive Micro-Electro-Mechanical Systems (MEMS) pressure sensors that is functional over a wide temperature range between −55 °C and 225 °C. The circuit is implemented using IBM 0.13 μm CMOS technology with 2.5 V power supply. A constant-gm biasing technique is used to mitigate performance degradation at high temperatures. The circuit offers the flexibility to interface with MEMS sensors with a wide range of the steady-state capacitance values from 0.5 pF to 10 pF. Simulation results show that the circuitry has excellent linearity and stability over the wide temperature range. Experimental results confirm that the temperature effects on the circuitry are small, with an overall linearity error around 2%. PMID:25686312

  2. CMOS integration of inkjet-printed graphene for humidity sensing.

    PubMed

    Santra, S; Hu, G; Howe, R C T; De Luca, A; Ali, S Z; Udrea, F; Gardner, J W; Ray, S K; Guha, P K; Hasan, T

    2015-11-30

    We report on the integration of inkjet-printed graphene with a CMOS micro-electro-mechanical-system (MEMS) microhotplate for humidity sensing. The graphene ink is produced via ultrasonic assisted liquid phase exfoliation in isopropyl alcohol (IPA) using polyvinyl pyrrolidone (PVP) polymer as the stabilizer. We formulate inks with different graphene concentrations, which are then deposited through inkjet printing over predefined interdigitated gold electrodes on a CMOS microhotplate. The graphene flakes form a percolating network to render the resultant graphene-PVP thin film conductive, which varies in presence of humidity due to swelling of the hygroscopic PVP host. When the sensors are exposed to relative humidity ranging from 10-80%, we observe significant changes in resistance with increasing sensitivity from the amount of graphene in the inks. Our sensors show excellent repeatability and stability, over a period of several weeks. The location specific deposition of functional graphene ink onto a low cost CMOS platform has the potential for high volume, economic manufacturing and application as a new generation of miniature, low power humidity sensors for the internet of things.

  3. CMOS integration of inkjet-printed graphene for humidity sensing

    PubMed Central

    Santra, S.; Hu, G.; Howe, R. C. T.; De Luca, A.; Ali, S. Z.; Udrea, F.; Gardner, J. W.; Ray, S. K.; Guha, P. K.; Hasan, T.

    2015-01-01

    We report on the integration of inkjet-printed graphene with a CMOS micro-electro-mechanical-system (MEMS) microhotplate for humidity sensing. The graphene ink is produced via ultrasonic assisted liquid phase exfoliation in isopropyl alcohol (IPA) using polyvinyl pyrrolidone (PVP) polymer as the stabilizer. We formulate inks with different graphene concentrations, which are then deposited through inkjet printing over predefined interdigitated gold electrodes on a CMOS microhotplate. The graphene flakes form a percolating network to render the resultant graphene-PVP thin film conductive, which varies in presence of humidity due to swelling of the hygroscopic PVP host. When the sensors are exposed to relative humidity ranging from 10–80%, we observe significant changes in resistance with increasing sensitivity from the amount of graphene in the inks. Our sensors show excellent repeatability and stability, over a period of several weeks. The location specific deposition of functional graphene ink onto a low cost CMOS platform has the potential for high volume, economic manufacturing and application as a new generation of miniature, low power humidity sensors for the internet of things. PMID:26616216

  4. CMOS integration of inkjet-printed graphene for humidity sensing

    NASA Astrophysics Data System (ADS)

    Santra, S.; Hu, G.; Howe, R. C. T.; de Luca, A.; Ali, S. Z.; Udrea, F.; Gardner, J. W.; Ray, S. K.; Guha, P. K.; Hasan, T.

    2015-11-01

    We report on the integration of inkjet-printed graphene with a CMOS micro-electro-mechanical-system (MEMS) microhotplate for humidity sensing. The graphene ink is produced via ultrasonic assisted liquid phase exfoliation in isopropyl alcohol (IPA) using polyvinyl pyrrolidone (PVP) polymer as the stabilizer. We formulate inks with different graphene concentrations, which are then deposited through inkjet printing over predefined interdigitated gold electrodes on a CMOS microhotplate. The graphene flakes form a percolating network to render the resultant graphene-PVP thin film conductive, which varies in presence of humidity due to swelling of the hygroscopic PVP host. When the sensors are exposed to relative humidity ranging from 10-80%, we observe significant changes in resistance with increasing sensitivity from the amount of graphene in the inks. Our sensors show excellent repeatability and stability, over a period of several weeks. The location specific deposition of functional graphene ink onto a low cost CMOS platform has the potential for high volume, economic manufacturing and application as a new generation of miniature, low power humidity sensors for the internet of things.

  5. Development of CMOS Imager Block for Capsule Endoscope

    NASA Astrophysics Data System (ADS)

    Shafie, S.; Fodzi, F. A. M.; Tung, L. Q.; Lioe, D. X.; Halin, I. A.; Hasan, W. Z. W.; Jaafar, H.

    2014-04-01

    This paper presents the development of imager block to be associated in a capsule endoscopy system. Since the capsule endoscope is used to diagnose gastrointestinal diseases, the imager block must be in small size which is comfortable for the patients to swallow. In this project, a small size 1.5V button battery is used as the power supply while the voltage supply requirements for other components such as microcontroller and CMOS image sensor are higher. Therefore, a voltage booster circuit is proposed to boost up the voltage supply from 1.5V to 3.3V. A low power microcontroller is used to generate control pulses for the CMOS image sensor and to convert the 8-bits parallel data output to serial data to be transmitted to the display panel. The results show that the voltage booster circuit was able to boost the voltage supply from 1.5V to 3.3V. The microcontroller precisely controls the CMOS image sensor to produce parallel data which is then serialized again by the microcontroller. The serial data is then successfully translated to 2fps image and displayed on computer.

  6. X-ray imaging using digital cameras

    NASA Astrophysics Data System (ADS)

    Winch, Nicola M.; Edgar, Andrew

    2012-03-01

    The possibility of using the combination of a computed radiography (storage phosphor) cassette and a semiprofessional grade digital camera for medical or dental radiography is investigated. We compare the performance of (i) a Canon 5D Mk II single lens reflex camera with f1.4 lens and full-frame CMOS array sensor and (ii) a cooled CCD-based camera with a 1/3 frame sensor and the same lens system. Both systems are tested with 240 x 180 mm cassettes which are based on either powdered europium-doped barium fluoride bromide or needle structure europium-doped cesium bromide. The modulation transfer function for both systems has been determined and falls to a value of 0.2 at around 2 lp/mm, and is limited by light scattering of the emitted light from the storage phosphor rather than the optics or sensor pixelation. The modulation transfer function for the CsBr:Eu2+ plate is bimodal, with a high frequency wing which is attributed to the light-guiding behaviour of the needle structure. The detective quantum efficiency has been determined using a radioisotope source and is comparatively low at 0.017 for the CMOS camera and 0.006 for the CCD camera, attributed to the poor light harvesting by the lens. The primary advantages of the method are portability, robustness, digital imaging and low cost; the limitations are the low detective quantum efficiency and hence signal-to-noise ratio for medical doses, and restricted range of plate sizes. Representative images taken with medical doses are shown and illustrate the potential use for portable basic radiography.

  7. Theoretical performance analysis for CMOS based high resolution detectors.

    PubMed

    Jain, Amit; Bednarek, Daniel R; Rudin, Stephen

    2013-03-06

    High resolution imaging capabilities are essential for accurately guiding successful endovascular interventional procedures. Present x-ray imaging detectors are not always adequate due to their inherent limitations. The newly-developed high-resolution micro-angiographic fluoroscope (MAF-CCD) detector has demonstrated excellent clinical image quality; however, further improvement in performance and physical design may be possible using CMOS sensors. We have thus calculated the theoretical performance of two proposed CMOS detectors which may be used as a successor to the MAF. The proposed detectors have a 300 μm thick HL-type CsI phosphor, a 50 μm-pixel CMOS sensor with and without a variable gain light image intensifier (LII), and are designated MAF-CMOS-LII and MAF-CMOS, respectively. For the performance evaluation, linear cascade modeling was used. The detector imaging chains were divided into individual stages characterized by one of the basic processes (quantum gain, binomial selection, stochastic and deterministic blurring, additive noise). Ranges of readout noise and exposure were used to calculate the detectors' MTF and DQE. The MAF-CMOS showed slightly better MTF than the MAF-CMOS-LII, but the MAF-CMOS-LII showed far better DQE, especially for lower exposures. The proposed detectors can have improved MTF and DQE compared with the present high resolution MAF detector. The performance of the MAF-CMOS is excellent for the angiography exposure range; however it is limited at fluoroscopic levels due to additive instrumentation noise. The MAF-CMOS-LII, having the advantage of the variable LII gain, can overcome the noise limitation and hence may perform exceptionally for the full range of required exposures; however, it is more complex and hence more expensive.

  8. Fabrication and Characterization of CMOS-MEMS Magnetic Microsensors

    PubMed Central

    Hsieh, Chen-Hsuan; Dai, Ching-Liang; Yang, Ming-Zhi

    2013-01-01

    This study investigates the design and fabrication of magnetic microsensors using the commercial 0.35 μm complementary metal oxide semiconductor (CMOS) process. The magnetic sensor is composed of springs and interdigitated electrodes, and it is actuated by the Lorentz force. The finite element method (FEM) software CoventorWare is adopted to simulate the displacement and capacitance of the magnetic sensor. A post-CMOS process is utilized to release the suspended structure. The post-process uses an anisotropic dry etching to etch the silicon dioxide layer and an isotropic dry etching to remove the silicon substrate. When a magnetic field is applied to the magnetic sensor, it generates a change in capacitance. A sensing circuit is employed to convert the capacitance variation of the sensor into the output voltage. The experimental results show that the output voltage of the magnetic microsensor varies from 0.05 to 1.94 V in the magnetic field range of 5–200 mT. PMID:24172287

  9. Development of a modular test system for the silicon sensor R&D of the ATLAS Upgrade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, H.; Benoit, M.; Chen, H.

    High Voltage CMOS sensors are a promising technology for tracking detectors in collider experiments. Extensive R&D studies are being carried out by the ATLAS Collaboration for a possible use of HV-CMOS in the High Luminosity LHC upgrade of the Inner Tracker detector. CaRIBOu (Control and Readout Itk BOard) is a modular test system developed to test Silicon based detectors. It currently includes five custom designed boards, a Xilinx ZC706 development board, FELIX (Front-End LInk eXchange) PCIe card and a host computer. A software program has been developed in Python to control the CaRIBOu hardware. CaRIBOu has been used in themore » testbeam of the HV-CMOS sensor AMS180v4 at CERN. Preliminary results have shown that the test system is very versatile. In conclusion, further development is ongoing to adapt to different sensors, and to make it available to various lab test stands.« less

  10. Development of a modular test system for the silicon sensor R&D of the ATLAS Upgrade

    DOE PAGES

    Liu, H.; Benoit, M.; Chen, H.; ...

    2017-01-11

    High Voltage CMOS sensors are a promising technology for tracking detectors in collider experiments. Extensive R&D studies are being carried out by the ATLAS Collaboration for a possible use of HV-CMOS in the High Luminosity LHC upgrade of the Inner Tracker detector. CaRIBOu (Control and Readout Itk BOard) is a modular test system developed to test Silicon based detectors. It currently includes five custom designed boards, a Xilinx ZC706 development board, FELIX (Front-End LInk eXchange) PCIe card and a host computer. A software program has been developed in Python to control the CaRIBOu hardware. CaRIBOu has been used in themore » testbeam of the HV-CMOS sensor AMS180v4 at CERN. Preliminary results have shown that the test system is very versatile. In conclusion, further development is ongoing to adapt to different sensors, and to make it available to various lab test stands.« less

  11. A CMOS micromachined capacitive tactile sensor with integrated readout circuits and compensation of process variations.

    PubMed

    Tsai, Tsung-Heng; Tsai, Hao-Cheng; Wu, Tien-Keng

    2014-10-01

    This paper presents a capacitive tactile sensor fabricated in a standard CMOS process. Both of the sensor and readout circuits are integrated on a single chip by a TSMC 0.35 μm CMOS MEMS technology. In order to improve the sensitivity, a T-shaped protrusion is proposed and implemented. This sensor comprises the metal layer and the dielectric layer without extra thin film deposition, and can be completed with few post-processing steps. By a nano-indenter, the measured spring constant of the T-shaped structure is 2.19 kNewton/m. Fully differential correlated double sampling capacitor-to-voltage converter (CDS-CVC) and reference capacitor correction are utilized to compensate process variations and improve the accuracy of the readout circuits. The measured displacement-to-voltage transductance is 7.15 mV/nm, and the sensitivity is 3.26 mV/μNewton. The overall power dissipation is 132.8 μW.

  12. NV-CMOS HD camera for day/night imaging

    NASA Astrophysics Data System (ADS)

    Vogelsong, T.; Tower, J.; Sudol, Thomas; Senko, T.; Chodelka, D.

    2014-06-01

    SRI International (SRI) has developed a new multi-purpose day/night video camera with low-light imaging performance comparable to an image intensifier, while offering the size, weight, ruggedness, and cost advantages enabled by the use of SRI's NV-CMOS HD digital image sensor chip. The digital video output is ideal for image enhancement, sharing with others through networking, video capture for data analysis, or fusion with thermal cameras. The camera provides Camera Link output with HD/WUXGA resolution of 1920 x 1200 pixels operating at 60 Hz. Windowing to smaller sizes enables operation at higher frame rates. High sensitivity is achieved through use of backside illumination, providing high Quantum Efficiency (QE) across the visible and near infrared (NIR) bands (peak QE <90%), as well as projected low noise (<2h+) readout. Power consumption is minimized in the camera, which operates from a single 5V supply. The NVCMOS HD camera provides a substantial reduction in size, weight, and power (SWaP) , ideal for SWaP-constrained day/night imaging platforms such as UAVs, ground vehicles, fixed mount surveillance, and may be reconfigured for mobile soldier operations such as night vision goggles and weapon sights. In addition the camera with the NV-CMOS HD imager is suitable for high performance digital cinematography/broadcast systems, biofluorescence/microscopy imaging, day/night security and surveillance, and other high-end applications which require HD video imaging with high sensitivity and wide dynamic range. The camera comes with an array of lens mounts including C-mount and F-mount. The latest test data from the NV-CMOS HD camera will be presented.

  13. Radiation damage caused by cold neutrons in boron doped CMOS active pixel sensors

    NASA Astrophysics Data System (ADS)

    Linnik, B.; Bus, T.; Deveaux, M.; Doering, D.; Kudejova, P.; Wagner, F. M.; Yazgili, A.; Stroth, J.

    2017-05-01

    CMOS Monolithic Active Pixel Sensors (MAPS) are considered as an emerging technology in the field of charged particle tracking. They will be used in the vertex detectors of experiments like STAR, CBM and ALICE and are considered for the ILC and the tracker of ATLAS. In those applications, the sensors are exposed to sizeable radiation doses. While the tolerance of MAPS to ionizing radiation and fast hadrons is well known, the damage caused by low energy neutrons was not studied so far. Those slow neutrons may initiate nuclear fission of 10B dopants found in the B-doped silicon active medium of MAPS. This effect was expected to create an unknown amount of radiation damage beyond the predictions of the NIEL (Non Ionizing Energy Loss) model for pure silicon. We estimate the impact of this effect by calculating the additional NIEL created by this fission. Moreover, we show first measured data for CMOS sensors which were irradiated with cold neutrons. The empirical results contradict the prediction of the updated NIEL model both, qualitatively and quantitatively: the sensors irradiated with slow neutrons show an unexpected and strong acceptor removal, which is not observed in sensors irradiated with MeV neutrons.

  14. Restoration of out-of-focus images based on circle of confusion estimate

    NASA Astrophysics Data System (ADS)

    Vivirito, Paolo; Battiato, Sebastiano; Curti, Salvatore; La Cascia, M.; Pirrone, Roberto

    2002-11-01

    In this paper a new method for a fast out-of-focus blur estimation and restoration is proposed. It is suitable for CFA (Color Filter Array) images acquired by typical CCD/CMOS sensor. The method is based on the analysis of a single image and consists of two steps: 1) out-of-focus blur estimation via Bayer pattern analysis; 2) image restoration. Blur estimation is based on a block-wise edge detection technique. This edge detection is carried out on the green pixels of the CFA sensor image also called Bayer pattern. Once the blur level has been estimated the image is restored through the application of a new inverse filtering technique. This algorithm gives sharp images reducing ringing and crisping artifact, involving wider region of frequency. Experimental results show the effectiveness of the method, both in subjective and numerical way, by comparison with other techniques found in literature.

  15. Electron lithography STAR design guidelines. Part 2: The design of a STAR for space applications

    NASA Technical Reports Server (NTRS)

    Trotter, J. D.; Newman, W.

    1982-01-01

    The STAR design system developed by NASA enables any user with a logic diagram to design a semicustom digital MOS integrated circuit. The system is comprised of a library of standard logic cells and computr programs to place, route, and display designs implemented with cells from the library. Also described is the development of a radiation-hard array designed for the STAR system. The design is based on the CMOS silicon gate technology developed by SANDIA National Laboratories. The design rules used are given as well as the model parameters developed for the basic array element. Library cells of the CMOS metal gate and CMOS silicon gate technologies were simulated using SPICE, and the results are shown and compared.

  16. SPIDER: Next Generation Chip Scale Imaging Sensor Update

    NASA Astrophysics Data System (ADS)

    Duncan, A.; Kendrick, R.; Ogden, C.; Wuchenich, D.; Thurman, S.; Su, T.; Lai, W.; Chun, J.; Li, S.; Liu, G.; Yoo, S. J. B.

    2016-09-01

    The Lockheed Martin Advanced Technology Center (LM ATC) and the University of California at Davis (UC Davis) are developing an electro-optical (EO) imaging sensor called SPIDER (Segmented Planar Imaging Detector for Electro-optical Reconnaissance) that seeks to provide a 10x to 100x size, weight, and power (SWaP) reduction alternative to the traditional bulky optical telescope and focal-plane detector array. The substantial reductions in SWaP would reduce cost and/or provide higher resolution by enabling a larger-aperture imager in a constrained volume. Our SPIDER imager replaces the traditional optical telescope and digital focal plane detector array with a densely packed interferometer array based on emerging photonic integrated circuit (PIC) technologies that samples the object being imaged in the Fourier domain (i.e., spatial frequency domain), and then reconstructs an image. Our approach replaces the large optics and structures required by a conventional telescope with PICs that are accommodated by standard lithographic fabrication techniques (e.g., complementary metal-oxide-semiconductor (CMOS) fabrication). The standard EO payload integration and test process that involves precision alignment and test of optical components to form a diffraction limited telescope is, therefore, replaced by in-process integration and test as part of the PIC fabrication, which substantially reduces associated schedule and cost. This paper provides an overview of performance data on the second-generation PIC for SPIDER developed under the Defense Advanced Research Projects Agency (DARPA)'s SPIDER Zoom research funding. We also update the design description of the SPIDER Zoom imaging sensor and the second-generation PIC (high- and low resolution versions).

  17. A mathematical model of the inline CMOS matrix sensor for investigation of particles in hydraulic liquids

    NASA Astrophysics Data System (ADS)

    Kornilin, DV; Kudryavtsev, IA

    2016-10-01

    One of the most effective ways to diagnose the state of hydraulic system is an investigation of the particles in their liquids. The sizes of such particles range from 2 to 200 gm and their concentration and shape reveal important information about the current state of equipment and the necessity of maintenance. In-line automatic particle counters (APC), which are built into hydraulic system, are widely used for determination of particle size and concentration. These counters are based on a single photodiode and a light emitting diode (LED); however, samples of liquid are needed for analysis using microscope or industrial video camera in order to get information about particle shapes. The act of obtaining the sample leads to contamination by other particles from the air or from the sample tube, meaning that the results are usually corrupted. Using the CMOS or CCD matrix sensor without any lens for inline APC is the solution proposed by authors. In this case the matrix sensors are put into the liquid channel of the hydraulic system and illuminated by LED. This system could be stable in arduous conditions like high pressure and the vibration of the hydraulic system; however, the image or signal from that matrix sensor needs to be processed differently in comparison with the signal from microscope or industrial video camera because of relatively short distance between LED and sensor. This paper introduces mathematical model of a sensor with CMOS and LED, which can be built into hydraulic system. It is also provided a computational algorithm and results, which can be useful for calculation of particle sizes and shapes using the signal from the CMOS matrix sensor.

  18. Fixed Pattern Noise pixel-wise linear correction for crime scene imaging CMOS sensor

    NASA Astrophysics Data System (ADS)

    Yang, Jie; Messinger, David W.; Dube, Roger R.; Ientilucci, Emmett J.

    2017-05-01

    Filtered multispectral imaging technique might be a potential method for crime scene documentation and evidence detection due to its abundant spectral information as well as non-contact and non-destructive nature. Low-cost and portable multispectral crime scene imaging device would be highly useful and efficient. The second generation crime scene imaging system uses CMOS imaging sensor to capture spatial scene and bandpass Interference Filters (IFs) to capture spectral information. Unfortunately CMOS sensors suffer from severe spatial non-uniformity compared to CCD sensors and the major cause is Fixed Pattern Noise (FPN). IFs suffer from "blue shift" effect and introduce spatial-spectral correlated errors. Therefore, Fixed Pattern Noise (FPN) correction is critical to enhance crime scene image quality and is also helpful for spatial-spectral noise de-correlation. In this paper, a pixel-wise linear radiance to Digital Count (DC) conversion model is constructed for crime scene imaging CMOS sensor. Pixel-wise conversion gain Gi,j and Dark Signal Non-Uniformity (DSNU) Zi,j are calculated. Also, conversion gain is divided into four components: FPN row component, FPN column component, defects component and effective photo response signal component. Conversion gain is then corrected to average FPN column and row components and defects component so that the sensor conversion gain is uniform. Based on corrected conversion gain and estimated image incident radiance from the reverse of pixel-wise linear radiance to DC model, corrected image spatial uniformity can be enhanced to 7 times as raw image, and the bigger the image DC value within its dynamic range, the better the enhancement.

  19. A sub-nJ CMOS ECG classifier for wireless smart sensor.

    PubMed

    Chollet, Paul; Pallas, Remi; Lahuec, Cyril; Arzel, Matthieu; Seguin, Fabrice

    2017-07-01

    Body area sensor networks hold the promise of more efficient and cheaper medical care services through the constant monitoring of physiological markers such as heart beats. Continuously transmitting the electrocardiogram (ECG) signal requires most of the wireless ECG sensor energy budget. This paper presents the analog implantation of a classifier for ECG signals that can be embedded onto a sensor. The classifier is a sparse neural associative memory. It is implemented using the ST 65 nm CMOS technology and requires only 234 pJ per classification while achieving a 93.6% classification accuracy. The energy requirement is 6 orders of magnitude lower than a digital accelerator that performs a similar task. The lifespan of the resulting sensor is 191 times as large as that of a sensor sending all the data.

  20. A monolithic 640 × 512 CMOS imager with high-NIR sensitivity

    NASA Astrophysics Data System (ADS)

    Lauxtermann, Stefan; Fisher, John; McDougal, Michael

    2014-06-01

    In this paper we present first results from a backside illuminated CMOS image sensor that we fabricated on high resistivity silicon. Compared to conventional CMOS imagers, a thicker photosensitive membrane can be depleted when using silicon with low background doping concentration while maintaining low dark current and good MTF performance. The benefits of such a fully depleted silicon sensor are high quantum efficiency over a wide spectral range and a fast photo detector response. Combining these characteristics with the circuit complexity and manufacturing maturity available from a modern, mixed signal CMOS technology leads to a new type of sensor, with an unprecedented performance spectrum in a monolithic device. Our fully depleted, backside illuminated CMOS sensor was designed to operate at integration times down to 100nsec and frame rates up to 1000Hz. Noise in Integrate While Read (IWR) snapshot shutter operation for these conditions was simulated to be below 10e- at room temperature. 2×2 binning with a 4× increase in sensitivity and a maximum frame rate of 4000 Hz is supported. For application in hyperspectral imaging systems the full well capacity in each row can individually be programmed between 10ke-, 60ke- and 500ke-. On test structures we measured a room temperature dark current of 360pA/cm2 at a reverse bias of 3.3V. A peak quantum efficiency of 80% was measured with a single layer AR coating on the backside. Test images captured with the 50μm thick VGA imager between 30Hz and 90Hz frame rate show a strong response at NIR wavelengths.

  1. Analysis and Enhancement of Low-Light-Level Performance of Photodiode-Type CMOS Active Pixel Images Operated with Sub-Threshold Reset

    NASA Technical Reports Server (NTRS)

    Pain, Bedabrata; Yang, Guang; Ortiz, Monico; Wrigley, Christopher; Hancock, Bruce; Cunningham, Thomas

    2000-01-01

    Noise in photodiode-type CMOS active pixel sensors (APS) is primarily due to the reset (kTC) noise at the sense node, since it is difficult to implement in-pixel correlated double sampling for a 2-D array. Signal integrated on the photodiode sense node (SENSE) is calculated by measuring difference between the voltage on the column bus (COL) - before and after the reset (RST) is pulsed. Lower than kTC noise can be achieved with photodiode-type pixels by employing "softreset" technique. Soft-reset refers to resetting with both drain and gate of the n-channel reset transistor kept at the same potential, causing the sense node to be reset using sub-threshold MOSFET current. However, lowering of noise is achieved only at the expense higher image lag and low-light-level non-linearity. In this paper, we present an analysis to explain the noise behavior, show evidence of degraded performance under low-light levels, and describe new pixels that eliminate non-linearity and lag without compromising noise.

  2. Portable fiber-optic taper coupled optical microscopy platform

    NASA Astrophysics Data System (ADS)

    Wang, Weiming; Yu, Yan; Huang, Hui; Ou, Jinping

    2017-04-01

    The optical fiber taper coupled with CMOS has advantages of high sensitivity, compact structure and low distortion in the imaging platform. So it is widely used in low light, high speed and X-ray imaging systems. In the meanwhile, the peculiarity of the coupled structure can meet the needs of the demand in microscopy imaging. Toward this end, we developed a microscopic imaging platform based on the coupling of cellphone camera module and fiber optic taper for the measurement of the human blood samples and ascaris lumbricoides. The platform, weighing 70 grams, is based on the existing camera module of the smartphone and a fiber-optic array which providing a magnification factor of 6x.The top facet of the taper, on which samples are placed, serves as an irregular sampling grid for contact imaging. The magnified images of the sample, located on the bottom facet of the fiber, are then projected onto the CMOS sensor. This paper introduces the portable medical imaging system based on the optical fiber coupling with CMOS, and theoretically analyzes the feasibility of the system. The image data and process results either can be stored on the memory or transmitted to the remote medical institutions for the telemedicine. We validate the performance of this cell-phone based microscopy platform using human blood samples and test target, achieving comparable results to a standard bench-top microscope.

  3. A 94GHz Temperature Compensated Low Noise Amplifier in 45nm Silicon-on-Insulator Complementary Metal-Oxide Semiconductor (SOI CMOS)

    DTIC Science & Technology

    2014-01-01

    ring oscillator based temperature sensor will be designed to compensate for gain variations over temperature. For comparison to a competing solution...Simulated (Green) Capacitance of the GSG Pads ........................ 9 Figure 6: Die Picture and Schematic of the L-2L Coplanar Waveguides...complementary metal-oxide-semiconductor (CMOS) technology. A ring oscillator based temperature sensor was designed to compensate for gain variations

  4. A novel CMOS image sensor system for quantitative loop-mediated isothermal amplification assays to detect food-borne pathogens.

    PubMed

    Wang, Tiantian; Kim, Sanghyo; An, Jeong Ho

    2017-02-01

    Loop-mediated isothermal amplification (LAMP) is considered as one of the alternatives to the conventional PCR and it is an inexpensive portable diagnostic system with minimal power consumption. The present work describes the application of LAMP in real-time photon detection and quantitative analysis of nucleic acids integrated with a disposable complementary-metal-oxide semiconductor (CMOS) image sensor. This novel system works as an amplification-coupled detection platform, relying on a CMOS image sensor, with the aid of a computerized circuitry controller for the temperature and light sources. The CMOS image sensor captures the light which is passing through the sensor surface and converts into digital units using an analog-to-digital converter (ADC). This new system monitors the real-time photon variation, caused by the color changes during amplification. Escherichia coli O157 was used as a proof-of-concept target for quantitative analysis, and compared with the results for Staphylococcus aureus and Salmonella enterica to confirm the efficiency of the system. The system detected various DNA concentrations of E. coli O157 in a short time (45min), with a detection limit of 10fg/μL. The low-cost, simple, and compact design, with low power consumption, represents a significant advance in the development of a portable, sensitive, user-friendly, real-time, and quantitative analytic tools for point-of-care diagnosis. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Design and standalone characterisation of a capacitively coupled HV-CMOS sensor chip for the CLIC vertex detector

    NASA Astrophysics Data System (ADS)

    Kremastiotis, I.; Ballabriga, R.; Campbell, M.; Dannheim, D.; Fiergolski, A.; Hynds, D.; Kulis, S.; Peric, I.

    2017-09-01

    The concept of capacitive coupling between sensors and readout chips is under study for the vertex detector at the proposed high-energy CLIC electron positron collider. The CLICpix Capacitively Coupled Pixel Detector (C3PD) is an active High-Voltage CMOS sensor, designed to be capacitively coupled to the CLICpix2 readout chip. The chip is implemented in a commercial 180 nm HV-CMOS process and contains a matrix of 128×128 square pixels with 25μm pitch. First prototypes have been produced with a standard resistivity of ~20 Ωcm for the substrate and tested in standalone mode. The results show a rise time of ~20 ns, charge gain of 190 mV/ke- and ~40 e- RMS noise for a power consumption of 4.8μW/pixel. The main design aspects, as well as standalone measurement results, are presented.

  6. Sol-gel zinc oxide humidity sensors integrated with a ring oscillator circuit on-a-chip.

    PubMed

    Yang, Ming-Zhi; Dai, Ching-Liang; Wu, Chyan-Chyi

    2014-10-28

    The study develops an integrated humidity microsensor fabricated using the commercial 0.18 μm complementary metal oxide semiconductor (CMOS) process. The integrated humidity sensor consists of a humidity sensor and a ring oscillator circuit on-a-chip. The humidity sensor is composed of a sensitive film and branch interdigitated electrodes. The sensitive film is zinc oxide prepared by sol-gel method. After completion of the CMOS process, the sensor requires a post-process to remove the sacrificial oxide layer and to coat the zinc oxide film on the interdigitated electrodes. The capacitance of the sensor changes when the sensitive film adsorbs water vapor. The circuit is used to convert the capacitance of the humidity sensor into the oscillation frequency output. Experimental results show that the output frequency of the sensor changes from 84.3 to 73.4 MHz at 30 °C as the humidity increases 40 to 90%RH.

  7. Ultrahigh sensitivity endoscopic camera using a new CMOS image sensor: providing with clear images under low illumination in addition to fluorescent images.

    PubMed

    Aoki, Hisae; Yamashita, Hiromasa; Mori, Toshiyuki; Fukuyo, Tsuneo; Chiba, Toshio

    2014-11-01

    We developed a new ultrahigh-sensitive CMOS camera using a specific sensor that has a wide range of spectral sensitivity characteristics. The objective of this study is to present our updated endoscopic technology that has successfully integrated two innovative functions; ultrasensitive imaging as well as advanced fluorescent viewing. Two different experiments were conducted. One was carried out to evaluate the function of the ultrahigh-sensitive camera. The other was to test the availability of the newly developed sensor and its performance as a fluorescence endoscope. In both studies, the distance from the endoscopic tip to the target was varied and those endoscopic images in each setting were taken for further comparison. In the first experiment, the 3-CCD camera failed to display the clear images under low illumination, and the target was hardly seen. In contrast, the CMOS camera was able to display the targets regardless of the camera-target distance under low illumination. Under high illumination, imaging quality given by both cameras was quite alike. In the second experiment as a fluorescence endoscope, the CMOS camera was capable of clearly showing the fluorescent-activated organs. The ultrahigh sensitivity CMOS HD endoscopic camera is expected to provide us with clear images under low illumination in addition to the fluorescent images under high illumination in the field of laparoscopic surgery.

  8. SPAD array based TOF SoC design for unmanned vehicle

    NASA Astrophysics Data System (ADS)

    Pan, An; Xu, Yuan; Xie, Gang; Huang, Zhiyu; Zheng, Yanghao; Shi, Weiwei

    2018-03-01

    As for the requirement of unmanned-vehicle mobile Lidar system, this paper presents a SoC design based on pulsed TOF depth image sensor. This SoC has a detection range of 300m and detecting resolution of 1.5cm. Pixels are made of SPAD. Meanwhile, SoC adopts a structure of multi-pixel sharing TDC, which significantly reduces chip area and improve the fill factor of light-sensing surface area. SoC integrates a TCSPC module to achieve the functionality of receiving each photon, measuring photon flight time and processing depth information in one chip. The SOC is designed in the SMIC 0.13μm CIS CMOS technology

  9. Digital MOS integrated circuits

    NASA Astrophysics Data System (ADS)

    Elmasry, M. I.

    MOS in digital circuit design is considered along with aspects of digital VLSI, taking into account a comparison of MOSFET logic circuits, 1-micrometer MOSFET VLSI technology, a generalized guide for MOSFET miniaturization, processing technologies, novel circuit structures for VLSI, and questions of circuit and system design for VLSI. MOS memory cells and circuits are discussed, giving attention to a survey of high-density dynamic RAM cell concepts, one-device cells for dynamic random-access memories, variable resistance polysilicon for high density CMOS Ram, high performance MOS EPROMs using a stacked-gate cell, and the optimization of the latching pulse for dynamic flip-flop sensors. Programmable logic arrays are considered along with digital signal processors, microprocessors, static RAMs, and dynamic RAMs.

  10. CMOS cassette for digital upgrade of film-based mammography systems

    NASA Astrophysics Data System (ADS)

    Baysal, Mehmet A.; Toker, Emre

    2006-03-01

    While full-field digital mammography (FFDM) technology is gaining clinical acceptance, the overwhelming majority (96%) of the installed base of mammography systems are conventional film-screen (FSM) systems. A high performance, and economical digital cassette based product to conveniently upgrade FSM systems to FFDM would accelerate the adoption of FFDM, and make the clinical and technical advantages of FFDM available to a larger population of women. The planned FFDM cassette is based on our commercial Digital Radiography (DR) cassette for 10 cm x 10 cm field-of-view spot imaging and specimen radiography, utilizing a 150 micron columnar CsI(Tl) scintillator and 48 micron active-pixel CMOS sensor modules. Unlike a Computer Radiography (CR) cassette, which requires an external digitizer, our DR cassette transfers acquired images to a display workstation within approximately 5 seconds of exposure, greatly enhancing patient flow. We will present the physical performance of our prototype system against other FFDM systems in clinical use today, using established objective criteria such as the Modulation Transfer Function (MTF), Detective Quantum Efficiency (DQE), and subjective criteria, such as a contrast-detail (CD-MAM) observer performance study. Driven by the strong demand from the computer industry, CMOS technology is one of the lowest cost, and the most readily accessible technologies available for FFDM today. Recent popular use of CMOS imagers in high-end consumer cameras have also resulted in significant advances in the imaging performance of CMOS sensors against rivaling CCD sensors. This study promises to take advantage of these unique features to develop the first CMOS based FFDM upgrade cassette.

  11. RF Design of a Wideband CMOS Integrated Receiver for Phased Array Applications

    NASA Astrophysics Data System (ADS)

    Jackson, Suzy A.

    2004-06-01

    New silicon CMOS processes developed primarily for the burgeoning wireless networking market offer significant promise as a vehicle for the implementation of highly integrated receivers, especially at the lower end of the frequency range proposed for the Square Kilometre Array (SKA). An RF-CMOS ‘Receiver-on-a-Chip’ is being developed as part of an Australia Telescope program looking at technologies associated with the SKA. The receiver covers the frequency range 500 1700 MHz, with instantaneous IF bandwidth of 500 MHz and, on simulation, yields an input noise temperature of < 50 K at mid-band. The receiver will contain all active circuitry (LNA, bandpass filter, quadrature mixer, anti-aliasing filter, digitiser and serialiser) on one 0.18 μm RF-CMOS integrated circuit. This paper outlines receiver front-end development work undertaken to date, including design and simulation of an LNA using noise cancelling techniques to achieve a wideband input-power-match with little noise penalty.

  12. Ge quantum dot arrays grown by ultrahigh vacuum molecular-beam epitaxy on the Si(001) surface: nucleation, morphology, and CMOS compatibility.

    PubMed

    Yuryev, Vladimir A; Arapkina, Larisa V

    2011-09-05

    Issues of morphology, nucleation, and growth of Ge cluster arrays deposited by ultrahigh vacuum molecular beam epitaxy on the Si(001) surface are considered. Difference in nucleation of quantum dots during Ge deposition at low (≲600°C) and high (≳600°C) temperatures is studied by high resolution scanning tunneling microscopy. The atomic models of growth of both species of Ge huts--pyramids and wedges-- are proposed. The growth cycle of Ge QD arrays at low temperatures is explored. A problem of lowering of the array formation temperature is discussed with the focus on CMOS compatibility of the entire process; a special attention is paid upon approaches to reduction of treatment temperature during the Si(001) surface pre-growth cleaning, which is at once a key and the highest-temperature phase of the Ge/Si(001) quantum dot dense array formation process. The temperature of the Si clean surface preparation, the final high-temperature step of which is, as a rule, carried out directly in the MBE chamber just before the structure deposition, determines the compatibility of formation process of Ge-QD-array based devices with the CMOS manufacturing cycle. Silicon surface hydrogenation at the final stage of its wet chemical etching during the preliminary cleaning is proposed as a possible way of efficient reduction of the Si wafer pre-growth annealing temperature.

  13. Front end optimization for the monolithic active pixel sensor of the ALICE Inner Tracking System upgrade

    NASA Astrophysics Data System (ADS)

    Kim, D.; Aglieri Rinella, G.; Cavicchioli, C.; Chanlek, N.; Collu, A.; Degerli, Y.; Dorokhov, A.; Flouzat, C.; Gajanana, D.; Gao, C.; Guilloux, F.; Hillemanns, H.; Hristozkov, S.; Junique, A.; Keil, M.; Kofarago, M.; Kugathasan, T.; Kwon, Y.; Lattuca, A.; Mager, M.; Sielewicz, K. M.; Marin Tobon, C. A.; Marras, D.; Martinengo, P.; Mazza, G.; Mugnier, H.; Musa, L.; Pham, T. H.; Puggioni, C.; Reidt, F.; Riedler, P.; Rousset, J.; Siddhanta, S.; Snoeys, W.; Song, M.; Usai, G.; Van Hoorne, J. W.; Yang, P.

    2016-02-01

    ALICE plans to replace its Inner Tracking System during the second long shut down of the LHC in 2019 with a new 10 m2 tracker constructed entirely with monolithic active pixel sensors. The TowerJazz 180 nm CMOS imaging Sensor process has been selected to produce the sensor as it offers a deep pwell allowing full CMOS in-pixel circuitry and different starting materials. First full-scale prototypes have been fabricated and tested. Radiation tolerance has also been verified. In this paper the development of the charge sensitive front end and in particular its optimization for uniformity of charge threshold and time response will be presented.

  14. Signal-Conditioning Block of a 1 × 200 CMOS Detector Array for a Terahertz Real-Time Imaging System

    PubMed Central

    Yang, Jong-Ryul; Lee, Woo-Jae; Han, Seong-Tae

    2016-01-01

    A signal conditioning block of a 1 × 200 Complementary Metal-Oxide-Semiconductor (CMOS) detector array is proposed to be employed with a real-time 0.2 THz imaging system for inspecting large areas. The plasmonic CMOS detector array whose pixel size including an integrated antenna is comparable to the wavelength of the THz wave for the imaging system, inevitably carries wide pixel-to-pixel variation. To make the variant outputs from the array uniform, the proposed signal conditioning block calibrates the responsivity of each pixel by controlling the gate bias of each detector and the voltage gain of the lock-in amplifiers in the block. The gate bias of each detector is modulated to 1 MHz to improve the signal-to-noise ratio of the imaging system via the electrical modulation by the conditioning block. In addition, direct current (DC) offsets of the detectors in the array are cancelled by initializing the output voltage level from the block. Real-time imaging using the proposed signal conditioning block is demonstrated by obtaining images at the rate of 19.2 frame-per-sec of an object moving on the conveyor belt with a scan width of 20 cm and a scan speed of 25 cm/s. PMID:26950128

  15. Signal-Conditioning Block of a 1 × 200 CMOS Detector Array for a Terahertz Real-Time Imaging System.

    PubMed

    Yang, Jong-Ryul; Lee, Woo-Jae; Han, Seong-Tae

    2016-03-02

    A signal conditioning block of a 1 × 200 Complementary Metal-Oxide-Semiconductor (CMOS) detector array is proposed to be employed with a real-time 0.2 THz imaging system for inspecting large areas. The plasmonic CMOS detector array whose pixel size including an integrated antenna is comparable to the wavelength of the THz wave for the imaging system, inevitably carries wide pixel-to-pixel variation. To make the variant outputs from the array uniform, the proposed signal conditioning block calibrates the responsivity of each pixel by controlling the gate bias of each detector and the voltage gain of the lock-in amplifiers in the block. The gate bias of each detector is modulated to 1 MHz to improve the signal-to-noise ratio of the imaging system via the electrical modulation by the conditioning block. In addition, direct current (DC) offsets of the detectors in the array are cancelled by initializing the output voltage level from the block. Real-time imaging using the proposed signal conditioning block is demonstrated by obtaining images at the rate of 19.2 frame-per-sec of an object moving on the conveyor belt with a scan width of 20 cm and a scan speed of 25 cm/s.

  16. A new Recoil Proton Telescope for energy and fluence measurement of fast neutron fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lebreton, Lena; Bachaalany, Mario; Husson, Daniel

    The spectrometer ATHENA (Accurate Telescope for High Energy Neutron metrology Applications), is being developed at the IRSN / LMDN (Institut de Radioprotection et de Surete nucleaire / Laboratoire de Metrologie et de dosimetrie des neutrons) and aims at characterizing energy and fluence of fast neutron fields. The detector is a Recoil Proton Telescope and measures neutron fields in the range of 5 to 20 MeV. This telescope is intended to become a primary standard for both energy and fluence measurements. The neutron detection is achieved by a polyethylene radiator for n-p conversion, three 50{sub m} thick silicon sensors that usemore » CMOS technology for the proton tracking and a 3 mm thick silicon diode to measure the residual proton energy. This first prototype used CMOS sensors called MIMOSTAR, initially developed for heavy ion physics. The use of CMOS sensors and silicon diode increases the intrinsic efficiency of the detector by a factor of ten compared with conventional designs. The first prototype has already been done and was a successful study giving the results it offered in terms of energy and fluence measurements. For mono energetic beams going from 5 to 19 MeV, the telescope offered an energy resolution between 5 and 11% and fluence difference going from 5 to 7% compared to other home standards. A second and final prototype of the detector is being designed. It will hold upgraded CMOS sensors called FastPixN. These CMOS sensors are supposed to run 400 times faster than the older version and therefore give the telescope the ability to support neutron flux in the order of 107 to 108cm{sup 2}:s{sup 1}. The first prototypes results showed that a 50 m pixel size is enough for a precise scattering angle reconstruction. Simulations using MCNPX and GEANT4 are already in place for further improvements. A DeltaE diode will replace the third CMOS sensor and will be installed right before the silicon diode for a better recoil proton selection. The final prototype with its new geometry will increase the telescopes efficiency by a factor of 1.5. It will also cover some of the most important points in metrology; repeatability, reproducibility and sustainability. (authors)« less

  17. Twenty-four-micrometer-pitch microelectrode array with 6912-channel readout at 12 kHz via highly scalable implementation for high-spatial-resolution mapping of action potentials.

    PubMed

    Ogi, Jun; Kato, Yuri; Matoba, Yoshihisa; Yamane, Chigusa; Nagahata, Kazunori; Nakashima, Yusaku; Kishimoto, Takuya; Hashimoto, Shigeki; Maari, Koichi; Oike, Yusuke; Ezaki, Takayuki

    2017-12-19

    A 24-μm-pitch microelectrode array (MEA) with 6912 readout channels at 12 kHz and 23.2-μV rms random noise is presented. The aim is to reduce noise in a "highly scalable" MEA with a complementary metal-oxide-semiconductor integration circuit (CMOS-MEA), in which a large number of readout channels and a high electrode density can be expected. Despite the small dimension and the simplicity of the in-pixel circuit for the high electrode-density and the relatively large number of readout channels of the prototype CMOS-MEA chip developed in this work, the noise within the chip is successfully reduced to less than half that reported in a previous work, for a device with similar in-pixel circuit simplicity and a large number of readout channels. Further, the action potential was clearly observed on cardiomyocytes using the CMOS-MEA. These results indicate the high-scalability of the CMOS-MEA. The highly scalable CMOS-MEA provides high-spatial-resolution mapping of cell action potentials, and the mapping can aid understanding of complex activities in cells, including neuron network activities.

  18. Two-step single slope/SAR ADC with error correction for CMOS image sensor.

    PubMed

    Tang, Fang; Bermak, Amine; Amira, Abbes; Amor Benammar, Mohieddine; He, Debiao; Zhao, Xiaojin

    2014-01-01

    Conventional two-step ADC for CMOS image sensor requires full resolution noise performance in the first stage single slope ADC, leading to high power consumption and large chip area. This paper presents an 11-bit two-step single slope/successive approximation register (SAR) ADC scheme for CMOS image sensor applications. The first stage single slope ADC generates a 3-bit data and 1 redundant bit. The redundant bit is combined with the following 8-bit SAR ADC output code using a proposed error correction algorithm. Instead of requiring full resolution noise performance, the first stage single slope circuit of the proposed ADC can tolerate up to 3.125% quantization noise. With the proposed error correction mechanism, the power consumption and chip area of the single slope ADC are significantly reduced. The prototype ADC is fabricated using 0.18 μ m CMOS technology. The chip area of the proposed ADC is 7 μ m × 500 μ m. The measurement results show that the energy efficiency figure-of-merit (FOM) of the proposed ADC core is only 125 pJ/sample under 1.4 V power supply and the chip area efficiency is 84 k  μ m(2) · cycles/sample.

  19. Micro-scale characterization of a CMOS-based neutron detector for in-phantom measurements in radiation therapy

    NASA Astrophysics Data System (ADS)

    Arbor, Nicolas; Higueret, Stephane; Husson, Daniel

    2018-04-01

    The CMOS sensor AlphaRad has been designed at the IPHC Strasbourg for real-time monitoring of fast and thermal neutrons over a full energy spectrum. Completely integrated, highly transparent to photons and optimized for low power consumption, this sensor offers very interesting characteristics for the study of internal neutrons in radiation therapy with anthropomorphic phantoms. However, specific effects related to the CMOS metal substructure and to the charge collection process of low energy particles must be carefully estimated before being used for medical applications. We present a detailed characterization of the AlphaRad chip in the MeV energy range using proton and alpha micro-beam experiments performed at the AIFIRA facility (CENBG, Bordeaux). Two-dimensional maps of the charge collection were carried out on a micro-metric scale to be integrated into a Geant4 Monte Carlo simulation of the system. The gamma rejection, as well as the fast and thermal neutrons separation, were studied using both simulation and experimental data. The results highlight the potential of a future system based on CMOS sensor for in-phantom neutron detection in radiation therapies.

  20. Analyzing CMOS/SOS fabrication for LSI arrays

    NASA Technical Reports Server (NTRS)

    Ipri, A. C.

    1978-01-01

    Report discusses set of design rules that have been developed as result of work with test arrays. Set of optimum dimensions is given that would maximize process output and would correspondingly minimize costs in fabrication of large-scale integration (LSI) arrays.

  1. High-density CMOS Microelectrode Array System for Impedance Spectroscopy and Imaging of Biological Cells.

    PubMed

    Vijay, Viswam; Raziyeh, Bounik; Amir, Shadmani; Jelena, Dragas; Alicia, Boos Julia; Axel, Birchler; Jan, Müller; Yihui, Chen; Andreas, Hierlemann

    2017-01-26

    A monolithic measurement platform was implemented to enable label-free in-vitro electrical impedance spectroscopy measurements of cells on multi-functional CMOS microelectrode array. The array includes 59,760 platinum microelectrodes, densely packed within a 4.5 mm × 2.5 mm sensing region at a pitch of 13.5 μm. The 32 on-chip lock-in amplifiers can be used to measure the impedance of any arbitrarily chosen electrodes on the array by applying a sinusoidal voltage, generated by an on-chip waveform generator with a frequency range from 1 Hz to 1 MHz, and measuring the respective current. Proof-of-concept measurements of impedance sensing and imaging are shown in this paper. Correlations between cell detection through optical microscopy and electrochemical impedance scanning were established.

  2. Towards real-time VMAT verification using a prototype, high-speed CMOS active pixel sensor.

    PubMed

    Zin, Hafiz M; Harris, Emma J; Osmond, John P F; Allinson, Nigel M; Evans, Philip M

    2013-05-21

    This work investigates the feasibility of using a prototype complementary metal oxide semiconductor active pixel sensor (CMOS APS) for real-time verification of volumetric modulated arc therapy (VMAT) treatment. The prototype CMOS APS used region of interest read out on the chip to allow fast imaging of up to 403.6 frames per second (f/s). The sensor was made larger (5.4 cm × 5.4 cm) using recent advances in photolithographic technique but retains fast imaging speed with the sensor's regional read out. There is a paradigm shift in radiotherapy treatment verification with the advent of advanced treatment techniques such as VMAT. This work has demonstrated that the APS can track multi leaf collimator (MLC) leaves moving at 18 mm s(-1) with an automatic edge tracking algorithm at accuracy better than 1.0 mm even at the fastest imaging speed. Evaluation of the measured fluence distribution for an example VMAT delivery sampled at 50.4 f/s was shown to agree well with the planned fluence distribution, with an average gamma pass rate of 96% at 3%/3 mm. The MLC leaves motion and linac pulse rate variation delivered throughout the VMAT treatment can also be measured. The results demonstrate the potential of CMOS APS technology as a real-time radiotherapy dosimeter for delivery of complex treatments such as VMAT.

  3. A CMOS Luminescence Intensity and Lifetime Dual Sensor Based on Multicycle Charge Modulation.

    PubMed

    Fu, Guoqing; Sonkusale, Sameer R

    2018-06-01

    Luminescence plays an important role in many scientific and industrial applications. This paper proposes a novel complementary metal-oxide-semiconductor (CMOS) sensor chip that can realize both luminescence intensity and lifetime sensing. To enable high sensitivity, we propose parasitic insensitive multicycle charge modulation scheme for low-light lifetime extraction benefiting from simplicity, accuracy, and compatibility with deeply scaled CMOS process. The designed in-pixel capacitive transimpedance amplifier (CTIA) based structure is able to capture the weak luminescence-induced voltage signal by accumulating photon-generated charges in 25 discrete gated 10-ms time windows and 10-μs pulsewidth. A pinned photodiode on chip with 1.04 pA dark current is utilized for luminescence detection. The proposed CTIA-based circuitry can achieve 2.1-mV/(nW/cm 2 ) responsivity and 4.38-nW/cm 2 resolution at 630 nm wavelength for intensity measurement and 45-ns resolution for lifetime measurement. The sensor chip is employed for measuring time constants and luminescence lifetimes of an InGaN-based white light-emitting diode at different wavelengths. In addition, we demonstrate accurate measurement of the lifetime of an oxygen sensitive chromophore with sensitivity to oxygen concentration of 7.5%/ppm and 6%/ppm in both intensity and lifetime domain. This CMOS-enabled oxygen sensor was then employed to test water quality from different sources (tap water, lakes, and rivers).

  4. Column-parallel correlated multiple sampling circuits for CMOS image sensors and their noise reduction effects.

    PubMed

    Suh, Sungho; Itoh, Shinya; Aoyama, Satoshi; Kawahito, Shoji

    2010-01-01

    For low-noise complementary metal-oxide-semiconductor (CMOS) image sensors, the reduction of pixel source follower noises is becoming very important. Column-parallel high-gain readout circuits are useful for low-noise CMOS image sensors. This paper presents column-parallel high-gain signal readout circuits, correlated multiple sampling (CMS) circuits and their noise reduction effects. In the CMS, the gain of the noise cancelling is controlled by the number of samplings. It has a similar effect to that of an amplified CDS for the thermal noise but is a little more effective for 1/f and RTS noises. Two types of the CMS with simple integration and folding integration are proposed. In the folding integration, the output signal swing is suppressed by a negative feedback using a comparator and one-bit D-to-A converter. The CMS circuit using the folding integration technique allows to realize a very low-noise level while maintaining a wide dynamic range. The noise reduction effects of their circuits have been investigated with a noise analysis and an implementation of a 1Mpixel pinned photodiode CMOS image sensor. Using 16 samplings, dynamic range of 59.4 dB and noise level of 1.9 e(-) for the simple integration CMS and 75 dB and 2.2 e(-) for the folding integration CMS, respectively, are obtained.

  5. A zirconium dioxide ammonia microsensor integrated with a readout circuit manufactured using the 0.18 μm CMOS process.

    PubMed

    Lin, Guan-Ming; Dai, Ching-Liang; Yang, Ming-Zhi

    2013-03-15

    The study presents an ammonia microsensor integrated with a readout circuit on-a-chip fabricated using the commercial 0.18 μm complementary metal oxide semiconductor (CMOS) process. The integrated sensor chip consists of a heater, an ammonia sensor and a readout circuit. The ammonia sensor is constructed by a sensitive film and the interdigitated electrodes. The sensitive film is zirconium dioxide that is coated on the interdigitated electrodes. The heater is used to provide a working temperature to the sensitive film. A post-process is employed to remove the sacrificial layer and to coat zirconium dioxide on the sensor. When the sensitive film adsorbs or desorbs ammonia gas, the sensor produces a change in resistance. The readout circuit converts the resistance variation of the sensor into the output voltage. The experiments show that the integrated ammonia sensor has a sensitivity of 4.1 mV/ppm.

  6. Integrated circuit for SAW and MEMS sensors

    NASA Astrophysics Data System (ADS)

    Fischer, Wolf-Joachim; Koenig, Peter; Ploetner, Matthias; Hermann, Rudiger; Stab, Helmut

    2001-11-01

    The sensor processor circuit has been developed for hand-held devices used in industrial and environmental applications, such as on-line process monitoring. Thereby devices with SAW sensors or MEMS resonators will benefit from this processor especially. Up to 8 sensors can be connected to the circuit as multisensors or sensor arrays. Two sensor processors SP1 and SP2 for different applications are presented in this paper. The SP-1 chip has a PCMCIA interface which can be used for the program and data transfer. SAW sensors which are working in the frequency range from 80 MHz to 160 MHz can be connected to the processor directly. It is possible to use the new SP-2 chip fabricated in a 0.5(mu) CMOS process for SAW devices with a maximum frequency of 600 MHz. An on-chip analog-digital-converter (ADC) and 6 PWM modules support the development of high-miniaturized intelligent sensor systems We have developed a multi-SAW sensor system with this ASIC that manages the requirements on control as well as signal generation and storage and provides an interface to the PC and electronic devices on the board. Its low power consumption and its PCMCIA plug fulfil the requirements of small size and mobility. For this application sensors have been developed to detect hazardous gases in ambient air. Sensors with differently modified copper-phthalocyanine films are capable of detecting NO2 and O3, whereas those with a hyperbranched polyester film respond to NH3.

  7. Design and implementation of a CMOS light pulse receiver cell array for spatial optical communications.

    PubMed

    Sarker, Md Shakowat Zaman; Itoh, Shinya; Hamai, Moeta; Takai, Isamu; Andoh, Michinori; Yasutomi, Keita; Kawahito, Shoji

    2011-01-01

    A CMOS light pulse receiver (LPR) cell for spatial optical communications is designed and evaluated by device simulations and a prototype chip implementation. The LPR cell consists of a pinned photodiode and four transistors. It works under sub-threshold region of a MOS transistor and the source terminal voltage which responds to the logarithm of the photo current are read out with a source follower circuit. For finding the position of the light spot on the focal plane, an image pixel array is embedded on the same plane of the LPR cell array. A prototype chip with 640 × 240 image pixels and 640 × 240 LPR cells is implemented with 0.18 μm CMOS technology. A proposed model of the transient response of the LPR cell agrees with the result of the device simulations and measurements. Both imaging at 60 fps and optical communication at the carrier frequency of 1 MHz are successfully performed. The measured signal amplitude and the calculation results of photocurrents show that the spatial optical communication up to 100 m is feasible using a 10 × 10 LED array.

  8. A Multi-Resolution Mode CMOS Image Sensor with a Novel Two-Step Single-Slope ADC for Intelligent Surveillance Systems.

    PubMed

    Kim, Daehyeok; Song, Minkyu; Choe, Byeongseong; Kim, Soo Youn

    2017-06-25

    In this paper, we present a multi-resolution mode CMOS image sensor (CIS) for intelligent surveillance system (ISS) applications. A low column fixed-pattern noise (CFPN) comparator is proposed in 8-bit two-step single-slope analog-to-digital converter (TSSS ADC) for the CIS that supports normal, 1/2, 1/4, 1/8, 1/16, 1/32, and 1/64 mode of pixel resolution. We show that the scaled-resolution images enable CIS to reduce total power consumption while images hold steady without events. A prototype sensor of 176 × 144 pixels has been fabricated with a 0.18 μm 1-poly 4-metal CMOS process. The area of 4-shared 4T-active pixel sensor (APS) is 4.4 μm × 4.4 μm and the total chip size is 2.35 mm × 2.35 mm. The maximum power consumption is 10 mW (with full resolution) with supply voltages of 3.3 V (analog) and 1.8 V (digital) and 14 frame/s of frame rates.

  9. Development of CMOS MEMS inductive type tactile sensor with the integration of chrome steel ball force interface

    NASA Astrophysics Data System (ADS)

    Yeh, Sheng-Kai; Chang, Heng-Chung; Fang, Weileun

    2018-04-01

    This study presents an inductive tactile sensor with a chrome steel ball sensing interface based on the commercially available standard complementary metal-oxide-semiconductor (CMOS) process (the TSMC 0.18 µm 1P6M CMOS process). The tactile senor has a deformable polymer layer as the spring of the device and no fragile suspended thin film structures are required. As a tactile force is applied on the chrome steel ball, the polymer would deform. The distance between the chrome steel ball and the sensing coil would changed. Thus, the tactile force can be detected by the inductance change of the sensing coil. In short, the chrome steel ball acts as a tactile bump as well as the sensing interface. Experimental results show that the proposed inductive tactile sensor has a sensing range of 0-1.4 N with a sensitivity of 9.22(%/N) and nonlinearity of 2%. Preliminary wireless sensing test is also demonstrated. Moreover, the influence of the process and material issues on the sensor performances have also been investigated.

  10. Design automation techniques for custom LSI arrays

    NASA Technical Reports Server (NTRS)

    Feller, A.

    1975-01-01

    The standard cell design automation technique is described as an approach for generating random logic PMOS, CMOS or CMOS/SOS custom large scale integration arrays with low initial nonrecurring costs and quick turnaround time or design cycle. The system is composed of predesigned circuit functions or cells and computer programs capable of automatic placement and interconnection of the cells in accordance with an input data net list. The program generates a set of instructions to drive an automatic precision artwork generator. A series of support design automation and simulation programs are described, including programs for verifying correctness of the logic on the arrays, performing dc and dynamic analysis of MOS devices, and generating test sequences.

  11. Swap intensified WDR CMOS module for I2/LWIR fusion

    NASA Astrophysics Data System (ADS)

    Ni, Yang; Noguier, Vincent

    2015-05-01

    The combination of high resolution visible-near-infrared low light sensor and moderate resolution uncooled thermal sensor provides an efficient way for multi-task night vision. Tremendous progress has been made on uncooled thermal sensors (a-Si, VOx, etc.). It's possible to make a miniature uncooled thermal camera module in a tiny 1cm3 cube with <1W power consumption. For silicon based solid-state low light CCD/CMOS sensors have observed also a constant progress in terms of readout noise, dark current, resolution and frame rate. In contrast to thermal sensing which is intrinsic day&night operational, the silicon based solid-state sensors are not yet capable to do the night vision performance required by defense and critical surveillance applications. Readout noise, dark current are 2 major obstacles. The low dynamic range at high sensitivity mode of silicon sensors is also an important limiting factor, which leads to recognition failure due to local or global saturations & blooming. In this context, the image intensifier based solution is still attractive for the following reasons: 1) high gain and ultra-low dark current; 2) wide dynamic range and 3) ultra-low power consumption. With high electron gain and ultra low dark current of image intensifier, the only requirement on the silicon image pickup device are resolution, dynamic range and power consumption. In this paper, we present a SWAP intensified Wide Dynamic Range CMOS module for night vision applications, especially for I2/LWIR fusion. This module is based on a dedicated CMOS image sensor using solar-cell mode photodiode logarithmic pixel design which covers a huge dynamic range (> 140dB) without saturation and blooming. The ultra-wide dynamic range image from this new generation logarithmic sensor can be used directly without any image processing and provide an instant light accommodation. The complete module is slightly bigger than a simple ANVIS format I2 tube with <500mW power consumption.

  12. Fabrication and Characterization of a CMOS-MEMS Humidity Sensor.

    PubMed

    Dennis, John-Ojur; Ahmed, Abdelaziz-Yousif; Khir, Mohd-Haris

    2015-07-10

    This paper reports on the fabrication and characterization of a Complementary Metal Oxide Semiconductor-Microelectromechanical System (CMOS-MEMS) device with embedded microheater operated at relatively elevated temperatures (40 °C to 80 °C) for the purpose of relative humidity measurement. The sensing principle is based on the change in amplitude of the device due to adsorption or desorption of humidity on the active material layer of titanium dioxide (TiO2) nanoparticles deposited on the moving plate, which results in changes in the mass of the device. The sensor has been designed and fabricated through a standard 0.35 µm CMOS process technology and post-CMOS micromachining technique has been successfully implemented to release the MEMS structures. The sensor is operated in the dynamic mode using electrothermal actuation and the output signal measured using a piezoresistive (PZR) sensor connected in a Wheatstone bridge circuit. The output voltage of the humidity sensor increases from 0.585 mV to 30.580 mV as the humidity increases from 35% RH to 95% RH. The output voltage is found to be linear from 0.585 mV to 3.250 mV as the humidity increased from 35% RH to 60% RH, with sensitivity of 0.107 mV/% RH; and again linear from 3.250 mV to 30.580 mV as the humidity level increases from 60% RH to 95% RH, with higher sensitivity of 0.781 mV/% RH. On the other hand, the sensitivity of the humidity sensor increases linearly from 0.102 mV/% RH to 0.501 mV/% RH with increase in the temperature from 40 °C to 80 °C and a maximum hysteresis of 0.87% RH is found at a relative humidity of 80%. The sensitivity is also frequency dependent, increasing from 0.500 mV/% RH at 2 Hz to reach a maximum value of 1.634 mV/% RH at a frequency of 12 Hz, then decreasing to 1.110 mV/% RH at a frequency of 20 Hz. Finally, the CMOS-MEMS humidity sensor showed comparable response, recovery, and repeatability of measurements in three cycles as compared to a standard sensor that directly measures humidity in % RH.

  13. Fabrication and Characterization of a CMOS-MEMS Humidity Sensor

    PubMed Central

    Dennis, John-Ojur; Ahmed, Abdelaziz-Yousif; Khir, Mohd-Haris

    2015-01-01

    This paper reports on the fabrication and characterization of a Complementary Metal Oxide Semiconductor-Microelectromechanical System (CMOS-MEMS) device with embedded microheater operated at relatively elevated temperatures (40 °C to 80 °C) for the purpose of relative humidity measurement. The sensing principle is based on the change in amplitude of the device due to adsorption or desorption of humidity on the active material layer of titanium dioxide (TiO2) nanoparticles deposited on the moving plate, which results in changes in the mass of the device. The sensor has been designed and fabricated through a standard 0.35 µm CMOS process technology and post-CMOS micromachining technique has been successfully implemented to release the MEMS structures. The sensor is operated in the dynamic mode using electrothermal actuation and the output signal measured using a piezoresistive (PZR) sensor connected in a Wheatstone bridge circuit. The output voltage of the humidity sensor increases from 0.585 mV to 30.580 mV as the humidity increases from 35% RH to 95% RH. The output voltage is found to be linear from 0.585 mV to 3.250 mV as the humidity increased from 35% RH to 60% RH, with sensitivity of 0.107 mV/% RH; and again linear from 3.250 mV to 30.580 mV as the humidity level increases from 60% RH to 95% RH, with higher sensitivity of 0.781 mV/% RH. On the other hand, the sensitivity of the humidity sensor increases linearly from 0.102 mV/% RH to 0.501 mV/% RH with increase in the temperature from 40 °C to 80 °C and a maximum hysteresis of 0.87% RH is found at a relative humidity of 80%. The sensitivity is also frequency dependent, increasing from 0.500 mV/% RH at 2 Hz to reach a maximum value of 1.634 mV/% RH at a frequency of 12 Hz, then decreasing to 1.110 mV/% RH at a frequency of 20 Hz. Finally, the CMOS-MEMS humidity sensor showed comparable response, recovery, and repeatability of measurements in three cycles as compared to a standard sensor that directly measures humidity in % RH. PMID:26184204

  14. Design and Experimental Verification of a 0.19 V 53 μW 65 nm CMOS Integrated Supply-Sensing Sensor With a Supply-Insensitive Temperature Sensor and an Inductive-Coupling Transmitter for a Self-Powered Bio-sensing System Using a Biofuel Cell.

    PubMed

    Kobayashi, Atsuki; Ikeda, Kei; Ogawa, Yudai; Kai, Hiroyuki; Nishizawa, Matsuhiko; Nakazato, Kazuo; Niitsu, Kiichi

    2017-12-01

    In this paper, we present a self-powered bio-sensing system with the capability of proximity inductive-coupling communication for supply sensing and temperature monitoring. The proposed bio-sensing system includes a biofuel cell as a power source and a sensing frontend that is associated with the CMOS integrated supply-sensing sensor. The sensor consists of a digital-based gate leakage timer, a supply-insensitive time-domain temperature sensor, and a current-driven inductive-coupling transmitter and achieves low-voltage operation. The timer converts the output voltage from a biofuel cell to frequency. The temperature sensor provides a pulse width modulation (PWM) output that is not dependent on the supply voltage, and the associated inductive-coupling transmitter enables proximity communication. A test chip was fabricated in 65 nm CMOS technology and consumed 53 μW with a supply voltage of 190 mV. The low-voltage-friendly design satisfied the performance targets of each integrated sensor without any trimming. The chips allowed us to successfully demonstrate proximity communication with an asynchronous receiver, and the measurement results show the potential for self-powered operation using biofuel cells. The analysis and experimental verification of the system confirmed their robustness.

  15. Flow sensor based on monolithic integration of organic light-emitting diodes (OLEDs) and CMOS circuits

    NASA Astrophysics Data System (ADS)

    Reckziegel, S.; Kreye, D.; Puegner, T.; Vogel, U.; Scholles, M.; Grillberger, C.; Fehse, K.

    2009-02-01

    In this paper we present an optoelectronic integrated circuit (OEIC) based on monolithic integration of organic lightemitting diodes (OLEDs) and CMOS technology. By the use of integrated circuits, photodetectors and highly efficient OLEDs on the same silicon chip, novel OEICs with combined sensors and actuating elements can be realized. The OLEDs are directly deposited on the CMOS top metal. The metal layer serves as OLED bottom electrode and determines the bright area. Furthermore, the area below the OLED electrodes can be used for integrated circuits. The monolithic integration of actuators, sensors and electronics on a common silicon substrate brings significant advantages in most sensory applications. The developed OEIC combines three different types of sensors: a reflective sensor, a color sensor and a particle flow sensor and is configured with an orange (597nm) emitting p-i-n OLED. We describe the architecture of such a monolithic OEIC and demonstrate a method to determine the velocity of a fluid being conveyed pneumatically in a transparent capillary. The integrated OLEDs illuminate the capillary with the flowing fluid. The fluid has a random reflection profile. Depending on the velocity and a random contrast difference, more or less light is reflected back to the substrate. The integrated photodiodes located at different fixed points detect the reflected light and using crosscorrelation, the velocity is calculated from the time in which contrast differences move over a fixed distance.

  16. Electrohydrodynamic inkjet printing of Pd loaded SnO2 nanofibers on a CMOS micro hotplate for low power H2 detection

    NASA Astrophysics Data System (ADS)

    Wu, Hao; Yu, Jun; Cao, Rui; Yang, Yinghua; Tang, Zhenan

    2018-05-01

    A high-performance low-power micro hotplate (MHP) hydrogen sensor was fabricated through electrohydrodynamic (EHD) inkjet printing technique. Electrospun Pd loaded SnO2 nanofibers with lengths of 250-850 nm were precisely printed on the suspended central part of an MHP with an area of 100 um × 100 um. The printhead in the printing system was a low-cost metallic needle with an inner diameter of 110 um, which was large enough to prevent clogging by the nanofibers. The printing process was observed by a high-speed camera. Small droplets with diameters of 50-80 um were produced at each ejection by providing a high voltage to the metallic needle. It was found that the bridge-type MHPs used in our experiment can promote the positioning precision due to its bound effect to the droplet. In the gas sensing measurement, the Pd loaded SnO2 MHP gas sensor showed a remarkable response to H2 with a low power of only 9.1 mW. The experiment results demonstrate the excellent adequacy of EHD inkjet printing technique to realize effective mass fabrication of MHP gas sensors or sensor arrays.

  17. A high-throughput flow cytometry-on-a-CMOS platform for single-cell dielectric spectroscopy at microwave frequencies.

    PubMed

    Chien, Jun-Chau; Ameri, Ali; Yeh, Erh-Chia; Killilea, Alison N; Anwar, Mekhail; Niknejad, Ali M

    2018-06-06

    This work presents a microfluidics-integrated label-free flow cytometry-on-a-CMOS platform for the characterization of the cytoplasm dielectric properties at microwave frequencies. Compared with MHz impedance cytometers, operating at GHz frequencies offers direct intracellular permittivity probing due to electric fields penetrating through the cellular membrane. To overcome the detection challenges at high frequencies, the spectrometer employs on-chip oscillator-based sensors, which embeds simultaneous frequency generation, electrode excitation, and signal detection capabilities. By employing an injection-locking phase-detection technique, the spectrometer offers state-of-the-art sensitivity, achieving a less than 1 aFrms capacitance detection limit (or 5 ppm in frequency-shift) at a 100 kHz noise filtering bandwidth, enabling high throughput (>1k cells per s), with a measured cellular SNR of more than 28 dB. With CMOS/microfluidics co-design, we distribute four sensing channels at 6.5, 11, 17.5, and 30 GHz in an arrayed format whereas the frequencies are selected to center around the water relaxation frequency at 18 GHz. An issue in the integration of CMOS and microfluidics due to size mismatch is also addressed through introducing a cost-efficient epoxy-molding technique. With 3-D hydrodynamic focusing microfluidics, we perform characterization on four different cell lines including two breast cell lines (MCF-10A and MDA-MB-231) and two leukocyte cell lines (K-562 and THP-1). After normalizing the higher frequency signals to the 6.5 GHz ones, the size-independent dielectric opacity shows a differentiable distribution at 17.5 GHz between normal (0.905 ± 0.160, mean ± std.) and highly metastatic (1.033 ± 0.107) breast cells with p ≪ 0.001.

  18. Design of an integrated sensor system for the detection of traces of different molecules in the air

    NASA Astrophysics Data System (ADS)

    Strle, D.; Muševič, I.

    2015-04-01

    This article presents the design of a miniature detection system and its associated signal processing electronics, which can detect and selectively recognize vapor traces of different materials in the air - including explosives. It is based on the array of surface-functionalized COMB capacitive sensors and extremely low noise, analog, integrated electronic circuit, hardwired digital signal processing hardware and additional software running on a PC. The instrument is sensitive and selective, consumes a minimum amount of energy, is very small (few mm3) and cheap to produce in large quantities, and is insensitive to mechanical influences. Using an electronic detection system built of low noise analog front-end and hard-wired digital signal processing, it is possible to detect less than 0.3ppt of TNT molecules in the atmosphere (3 TNT molecules in 1013 molecules of the air) at 25°C on a 1 Hz bandwidth using very small volume and approx. 10 mA current from a 5V supply voltage. The sensors are implemented in a modified MEMS process and analog electronics in 0.18 um CMOS technology.

  19. Design of a CMOS readout circuit on ultra-thin flexible silicon chip for printed strain gauges

    NASA Astrophysics Data System (ADS)

    Elsobky, Mourad; Mahsereci, Yigit; Keck, Jürgen; Richter, Harald; Burghartz, Joachim N.

    2017-09-01

    Flexible electronics represents an emerging technology with features enabling several new applications such as wearable electronics and bendable displays. Precise and high-performance sensors readout chips are crucial for high quality flexible electronic products. In this work, the design of a CMOS readout circuit for an array of printed strain gauges is presented. The ultra-thin readout chip and the printed sensors are combined on a thin Benzocyclobutene/Polyimide (BCB/PI) substrate to form a Hybrid System-in-Foil (HySiF), which is used as an electronic skin for robotic applications. Each strain gauge utilizes a Wheatstone bridge circuit, where four Aerosol Jet® printed meander-shaped resistors form a full-bridge topology. The readout chip amplifies the output voltage difference (about 5 mV full-scale swing) of the strain gauge. One challenge during the sensor interface circuit design is to compensate for the relatively large dc offset (about 30 mV at 1 mA) in the bridge output voltage so that the amplified signal span matches the input range of an analog-to-digital converter (ADC). The circuit design uses the 0. 5 µm mixed-signal GATEFORESTTM technology. In order to achieve the mechanical flexibility, the chip fabrication is based on either back thinned wafers or the ChipFilmTM technology, which enables the manufacturing of silicon chips with a thickness of about 20 µm. The implemented readout chip uses a supply of 5 V and includes a 5-bit digital-to-analog converter (DAC), a differential difference amplifier (DDA), and a 10-bit successive approximation register (SAR) ADC. The circuit is simulated across process, supply and temperature corners and the simulation results indicate excellent performance in terms of circuit stability and linearity.

  20. Recent X-ray hybrid CMOS detector developments and measurements

    NASA Astrophysics Data System (ADS)

    Hull, Samuel V.; Falcone, Abraham D.; Burrows, David N.; Wages, Mitchell; Chattopadhyay, Tanmoy; McQuaide, Maria; Bray, Evan; Kern, Matthew

    2017-08-01

    The Penn State X-ray detector lab, in collaboration with Teledyne Imaging Sensors (TIS), have progressed their efforts to improve soft X-ray Hybrid CMOS detector (HCD) technology on multiple fronts. Having newly acquired a Teledyne cryogenic SIDECARTM ASIC for use with HxRG devices, measurements were performed with an H2RG HCD and the cooled SIDECARTM. We report new energy resolution and read noise measurements, which show a significant improvement over room temperature SIDECARTM operation. Further, in order to meet the demands of future high-throughput and high spatial resolution X-ray observatories, detectors with fast readout and small pixel sizes are being developed. We report on characteristics of new X-ray HCDs with 12.5 micron pitch that include in-pixel CDS circuitry and crosstalk-eliminating CTIA amplifiers. In addition, PSU and TIS are developing a new large-scale array Speedster-EXD device. The original 64 × 64 pixel Speedster-EXD prototype used comparators in each pixel to enable event driven readout with order of magnitude higher effective readout rates, which will now be implemented in a 550 × 550 pixel device. Finally, the detector lab is involved in a sounding rocket mission that is slated to fly in 2018 with an off-plane reflection grating array and an H2RG X-ray HCD. We report on the planned detector configuration for this mission, which will increase the NASA technology readiness level of X-ray HCDs to TRL 9.

  1. Performance Analysis of Visible Light Communication Using CMOS Sensors.

    PubMed

    Do, Trong-Hop; Yoo, Myungsik

    2016-02-29

    This paper elucidates the fundamentals of visible light communication systems that use the rolling shutter mechanism of CMOS sensors. All related information involving different subjects, such as photometry, camera operation, photography and image processing, are studied in tandem to explain the system. Then, the system performance is analyzed with respect to signal quality and data rate. To this end, a measure of signal quality, the signal to interference plus noise ratio (SINR), is formulated. Finally, a simulation is conducted to verify the analysis.

  2. Performance Analysis of Visible Light Communication Using CMOS Sensors

    PubMed Central

    Do, Trong-Hop; Yoo, Myungsik

    2016-01-01

    This paper elucidates the fundamentals of visible light communication systems that use the rolling shutter mechanism of CMOS sensors. All related information involving different subjects, such as photometry, camera operation, photography and image processing, are studied in tandem to explain the system. Then, the system performance is analyzed with respect to signal quality and data rate. To this end, a measure of signal quality, the signal to interference plus noise ratio (SINR), is formulated. Finally, a simulation is conducted to verify the analysis. PMID:26938535

  3. Quantitative evaluation of the accuracy and variance of individual pixels in a scientific CMOS (sCMOS) camera for computational imaging

    NASA Astrophysics Data System (ADS)

    Watanabe, Shigeo; Takahashi, Teruo; Bennett, Keith

    2017-02-01

    The"scientific" CMOS (sCMOS) camera architecture fundamentally differs from CCD and EMCCD cameras. In digital CCD and EMCCD cameras, conversion from charge to the digital output is generally through a single electronic chain, and the read noise and the conversion factor from photoelectrons to digital outputs are highly uniform for all pixels, although quantum efficiency may spatially vary. In CMOS cameras, the charge to voltage conversion is separate for each pixel and each column has independent amplifiers and analog-to-digital converters, in addition to possible pixel-to-pixel variation in quantum efficiency. The "raw" output from the CMOS image sensor includes pixel-to-pixel variability in the read noise, electronic gain, offset and dark current. Scientific camera manufacturers digitally compensate the raw signal from the CMOS image sensors to provide usable images. Statistical noise in images, unless properly modeled, can introduce errors in methods such as fluctuation correlation spectroscopy or computational imaging, for example, localization microscopy using maximum likelihood estimation. We measured the distributions and spatial maps of individual pixel offset, dark current, read noise, linearity, photoresponse non-uniformity and variance distributions of individual pixels for standard, off-the-shelf Hamamatsu ORCA-Flash4.0 V3 sCMOS cameras using highly uniform and controlled illumination conditions, from dark conditions to multiple low light levels between 20 to 1,000 photons / pixel per frame to higher light conditions. We further show that using pixel variance for flat field correction leads to errors in cameras with good factory calibration.

  4. Reduction of CMOS Image Sensor Read Noise to Enable Photon Counting.

    PubMed

    Guidash, Michael; Ma, Jiaju; Vogelsang, Thomas; Endsley, Jay

    2016-04-09

    Recent activity in photon counting CMOS image sensors (CIS) has been directed to reduction of read noise. Many approaches and methods have been reported. This work is focused on providing sub 1 e(-) read noise by design and operation of the binary and small signal readout of photon counting CIS. Compensation of transfer gate feed-through was used to provide substantially reduced CDS time and source follower (SF) bandwidth. SF read noise was reduced by a factor of 3 with this method. This method can be applied broadly to CIS devices to reduce the read noise for small signals to enable use as a photon counting sensor.

  5. BCB Bonding Technology of Back-Side Illuminated COMS Device

    NASA Astrophysics Data System (ADS)

    Wu, Y.; Jiang, G. Q.; Jia, S. X.; Shi, Y. M.

    2018-03-01

    Back-side illuminated CMOS(BSI) sensor is a key device in spaceborne hyperspectral imaging technology. Compared with traditional devices, the path of incident light is simplified and the spectral response is planarized by BSI sensors, which meets the requirements of quantitative hyperspectral imaging applications. Wafer bonding is the basic technology and key process of the fabrication of BSI sensors. 6 inch bonding of CMOS wafer and glass wafer was fabricated based on the low bonding temperature and high stability of BCB. The influence of different thickness of BCB on bonding strength was studied. Wafer bonding with high strength, high stability and no bubbles was fabricated by changing bonding conditions.

  6. NASA Tech Briefs, July 2012

    NASA Technical Reports Server (NTRS)

    2012-01-01

    Topics covered include: Instrument Suite for Vertical Characterization of the Ionosphere-Thermosphere System; Terahertz Radiation Heterodyne Detector Using Two-Dimensional Electron Gas in a GaN Heterostructure; Pattern Recognition Algorithm for High-Sensitivity Odorant Detection in Unknown Environments; Determining Performance Acceptability of Electrochemical Oxygen Sensors; Versatile Controller for Infrared Lamp and Heater Arrays; High-Speed Scanning Interferometer Using CMOS Image Sensor and FPGA Based on Multifrequency Phase-Tracking Detection; Ultra-Low-Power MEMS Selective Gas Sensors; Compact Receiver Front Ends for Submillimeter-Wave Applications; Dynamically Reconfigurable Systolic Array Accelerator; Blocking Losses With a Photon Counter; Motion-Capture-Enabled Software for Gestural Control of 3D Mod; Orbit Software Suite; CoNNeCT Baseband Processor Module Boot Code SoftWare (BCSW); Trajectory Software With Upper Atmosphere Model; ALSSAT Version 6.0; Employing a Grinding Technology to Assess the Microbial Density for Encapsulated Organisms; Demonstration of Minimally Machined Honeycomb Silicon Carbide Mirrors; Polyimide Aerogel Thin Films; Nanoengineered Thermal Materials Based on Carbon Nanotube Array Composites; Composite Laminate With Coefficient of Thermal Expansion Matching D263 Glass; Robust Tensioned Kevlar Suspension Design; Focal Plane Alignment Utilizing Optical CMM; Purifying, Separating, and Concentrating Cells From a Sample Low in Biomass; Virtual Ultrasound Guidance for Inexperienced Operators; Beat-to-Beat Blood Pressure Monitor; Non-Contact Conductivity Measurement for Automated Sample Processing Systems; An MSK Radar Waveform; Telescope Alignment From Sparsely Sampled Wavefront Measurements Over Pupil Subapertures; Method to Remove Particulate Matter from Dusty Gases at Low Pressures; Terahertz Quantum Cascade Laser With Efficient Coupling and Beam Profile; Measurement Via Optical Near-Nulling and Subaperture Stitching; 885-nm Pumped Ceramic Nd:YAG Master Oscillator Power Amplifier Laser System; Airborne Hyperspectral Imaging System; Heat Shield Employing Cured Thermal Protection Material Blocks Bonded in a Large-Cell Honeycomb Matrix; and Asymmetric Supercapacitor for Long-Duration Power Storage.

  7. Design of an Embedded CMOS Temperature Sensor for Passive RFID Tag Chips.

    PubMed

    Deng, Fangming; He, Yigang; Li, Bing; Zhang, Lihua; Wu, Xiang; Fu, Zhihui; Zuo, Lei

    2015-05-18

    This paper presents an ultra-low embedded power temperature sensor for passive RFID tags. The temperature sensor converts the temperature variation to a PTAT current, which is then transformed into a temperature-controlled frequency. A phase locked loop (PLL)-based sensor interface is employed to directly convert this temperature-controlled frequency into a corresponding digital output without an external reference clock. The fabricated sensor occupies an area of 0.021 mm2 using the TSMC 0.18 1P6M mixed-signal CMOS process. Measurement results of the embedded sensor within the tag system shows a 92 nW power dissipation under 1.0 V supply voltage at room temperature, with a sensing resolution of 0.15 °C/LSB and a sensing accuracy of -0.7/0.6 °C from -30 °C to 70 °C after 1-point calibration at 30 °C.

  8. Design of an Embedded CMOS Temperature Sensor for Passive RFID Tag Chips

    PubMed Central

    Deng, Fangming; He, Yigang; Li, Bing; Zhang, Lihua; Wu, Xiang; Fu, Zhihui; Zuo, Lei

    2015-01-01

    This paper presents an ultra-low embedded power temperature sensor for passive RFID tags. The temperature sensor converts the temperature variation to a PTAT current, which is then transformed into a temperature-controlled frequency. A phase locked loop (PLL)-based sensor interface is employed to directly convert this temperature-controlled frequency into a corresponding digital output without an external reference clock. The fabricated sensor occupies an area of 0.021 mm2 using the TSMC 0.18 1P6M mixed-signal CMOS process. Measurement results of the embedded sensor within the tag system shows a 92 nW power dissipation under 1.0 V supply voltage at room temperature, with a sensing resolution of 0.15 °C/LSB and a sensing accuracy of −0.7/0.6 °C from −30 °C to 70 °C after 1-point calibration at 30 °C. PMID:25993518

  9. CMOS nanoelectrode array for all-electrical intracellular electrophysiological imaging

    NASA Astrophysics Data System (ADS)

    Abbott, Jeffrey; Ye, Tianyang; Qin, Ling; Jorgolli, Marsela; Gertner, Rona S.; Ham, Donhee; Park, Hongkun

    2017-05-01

    Developing a new tool capable of high-precision electrophysiological recording of a large network of electrogenic cells has long been an outstanding challenge in neurobiology and cardiology. Here, we combine nanoscale intracellular electrodes with complementary metal-oxide-semiconductor (CMOS) integrated circuits to realize a high-fidelity all-electrical electrophysiological imager for parallel intracellular recording at the network level. Our CMOS nanoelectrode array has 1,024 recording/stimulation 'pixels' equipped with vertical nanoelectrodes, and can simultaneously record intracellular membrane potentials from hundreds of connected in vitro neonatal rat ventricular cardiomyocytes. We demonstrate that this network-level intracellular recording capability can be used to examine the effect of pharmaceuticals on the delicate dynamics of a cardiomyocyte network, thus opening up new opportunities in tissue-based pharmacological screening for cardiac and neuronal diseases as well as fundamental studies of electrogenic cells and their networks.

  10. Ge quantum dot arrays grown by ultrahigh vacuum molecular-beam epitaxy on the Si(001) surface: nucleation, morphology, and CMOS compatibility

    PubMed Central

    2011-01-01

    Issues of morphology, nucleation, and growth of Ge cluster arrays deposited by ultrahigh vacuum molecular beam epitaxy on the Si(001) surface are considered. Difference in nucleation of quantum dots during Ge deposition at low (≲600°C) and high (≳600°C) temperatures is studied by high resolution scanning tunneling microscopy. The atomic models of growth of both species of Ge huts--pyramids and wedges-- are proposed. The growth cycle of Ge QD arrays at low temperatures is explored. A problem of lowering of the array formation temperature is discussed with the focus on CMOS compatibility of the entire process; a special attention is paid upon approaches to reduction of treatment temperature during the Si(001) surface pre-growth cleaning, which is at once a key and the highest-temperature phase of the Ge/Si(001) quantum dot dense array formation process. The temperature of the Si clean surface preparation, the final high-temperature step of which is, as a rule, carried out directly in the MBE chamber just before the structure deposition, determines the compatibility of formation process of Ge-QD-array based devices with the CMOS manufacturing cycle. Silicon surface hydrogenation at the final stage of its wet chemical etching during the preliminary cleaning is proposed as a possible way of efficient reduction of the Si wafer pre-growth annealing temperature. PMID:21892938

  11. CMOS array design automation techniques

    NASA Technical Reports Server (NTRS)

    Lombardi, T.; Feller, A.

    1976-01-01

    The design considerations and the circuit development for a 4096-bit CMOS SOS ROM chip, the ATL078 are described. Organization of the ATL078 is 512 words by 8 bits. The ROM was designed to be programmable either at the metal mask level or by a directed laser beam after processing. The development of a 4K CMOS SOS ROM fills a void left by available ROM chip types, and makes the design of a totally major high speed system more realizable.

  12. A low-power integrated humidity CMOS sensor by printing-on-chip technology.

    PubMed

    Lee, Chang-Hung; Chuang, Wen-Yu; Cowan, Melissa A; Wu, Wen-Jung; Lin, Chih-Ting

    2014-05-23

    A low-power, wide-dynamic-range integrated humidity sensing chip is implemented using a printable polymer sensing material with an on-chip pulse-width-modulation interface circuit. By using the inkjet printing technique, poly(3,4-ethylene-dioxythiophene)/polystyrene sulfonate that has humidity sensing features can be printed onto the top metal layer of a 0.35 μm CMOS IC. The developed printing-on-chip humidity sensor achieves a heterogeneous three dimensional sensor system-on-chip architecture. The humidity sensing of the implemented printing-on-chip sensor system is experimentally tested. The sensor shows a sensitivity of 0.98% to humidity in the atmosphere. The maximum dynamic range of the readout circuit is 9.8 MΩ, which can be further tuned by the frequency of input signal to fit the requirement of the resistance of printed sensor. The power consumption keeps only 154 μW. This printing-on-chip sensor provides a practical solution to fulfill an ultra-small integrated sensor for the applications in miniaturized sensing systems.

  13. A Low-Power Integrated Humidity CMOS Sensor by Printing-on-Chip Technology

    PubMed Central

    Lee, Chang-Hung; Chuang, Wen-Yu; Cowan, Melissa A.; Wu, Wen-Jung; Lin, Chih-Ting

    2014-01-01

    A low-power, wide-dynamic-range integrated humidity sensing chip is implemented using a printable polymer sensing material with an on-chip pulse-width-modulation interface circuit. By using the inkjet printing technique, poly(3,4-ethylene-dioxythiophene)/polystyrene sulfonate that has humidity sensing features can be printed onto the top metal layer of a 0.35 μm CMOS IC. The developed printing-on-chip humidity sensor achieves a heterogeneous three dimensional sensor system-on-chip architecture. The humidity sensing of the implemented printing-on-chip sensor system is experimentally tested. The sensor shows a sensitivity of 0.98% to humidity in the atmosphere. The maximum dynamic range of the readout circuit is 9.8 MΩ, which can be further tuned by the frequency of input signal to fit the requirement of the resistance of printed sensor. The power consumption keeps only 154 μW. This printing-on-chip sensor provides a practical solution to fulfill an ultra-small integrated sensor for the applications in miniaturized sensing systems. PMID:24859027

  14. Sol-Gel Zinc Oxide Humidity Sensors Integrated with a Ring Oscillator Circuit On-a-Chip

    PubMed Central

    Yang, Ming-Zhi; Dai, Ching-Liang; Wu, Chyan-Chyi

    2014-01-01

    The study develops an integrated humidity microsensor fabricated using the commercial 0.18 μm complementary metal oxide semiconductor (CMOS) process. The integrated humidity sensor consists of a humidity sensor and a ring oscillator circuit on-a-chip. The humidity sensor is composed of a sensitive film and branch interdigitated electrodes. The sensitive film is zinc oxide prepared by sol-gel method. After completion of the CMOS process, the sensor requires a post-process to remove the sacrificial oxide layer and to coat the zinc oxide film on the interdigitated electrodes. The capacitance of the sensor changes when the sensitive film adsorbs water vapor. The circuit is used to convert the capacitance of the humidity sensor into the oscillation frequency output. Experimental results show that the output frequency of the sensor changes from 84.3 to 73.4 MHz at 30 °C as the humidity increases 40 to 90 %RH. PMID:25353984

  15. Ultrasensitive and label-free detection of pathogenic avian influenza DNA by using CMOS impedimetric sensors.

    PubMed

    Lai, Wei-An; Lin, Chih-Heng; Yang, Yuh-Shyong; Lu, Michael S-C

    2012-05-15

    This work presents miniaturized CMOS (complementary metal oxide semiconductor) sensors for non-faradic impedimetric detection of AIV (avian influenza virus) oligonucleotides. The signal-to-noise ratio is significantly improved by monolithic sensor integration to reduce the effect of parasitic capacitances. The use of sub-μm interdigitated microelectrodes is also beneficial for promoting the signal coupling efficiency. Capacitance changes associated with surface modification, functionalization, and DNA hybridization were extracted from the measured frequency responses based on an equivalent-circuit model. Hybridization of the AIV H5 capture and target DNA probes produced a capacitance reduction of -13.2 ± 2.1% for target DNA concentrations from 1 fM to 10 fM, while a capacitance increase was observed when H5 target DNA was replaced with non-complementary H7 target DNA. With the demonstrated superior sensing capabilities, this miniaturized CMOS sensing platform shows great potential for label-free point-of-care biosensing applications. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. CMOS Rad-Hard Front-End Electronics for Precise Sensors Measurements

    NASA Astrophysics Data System (ADS)

    Sordo-Ibáñez, Samuel; Piñero-García, Blanca; Muñoz-Díaz, Manuel; Ragel-Morales, Antonio; Ceballos-Cáceres, Joaquín; Carranza-González, Luis; Espejo-Meana, Servando; Arias-Drake, Alberto; Ramos-Martos, Juan; Mora-Gutiérrez, José Miguel; Lagos-Florido, Miguel Angel

    2016-08-01

    This paper reports a single-chip solution for the implementation of radiation-tolerant CMOS front-end electronics (FEE) for applications requiring the acquisition of base-band sensor signals. The FEE has been designed in a 0.35μm CMOS process, and implements a set of parallel conversion channels with high levels of configurability to adapt the resolution, conversion rate, as well as the dynamic input range for the required application. Each conversion channel has been designed with a fully-differential implementation of a configurable-gain instrumentation amplifier, followed by an also configurable dual-slope ADC (DS ADC) up to 16 bits. The ASIC also incorporates precise thermal monitoring, sensor conditioning and error detection functionalities to ensure proper operation in extreme environments. Experimental results confirm that the proposed topologies, in conjunction with the applied radiation-hardening techniques, are reliable enough to be used without loss in the performance in environments with an extended temperature range (between -25 and 125 °C) and a total dose beyond 300 krad.

  17. A CMOS-Compatible Poly-Si Nanowire Device with Hybrid Sensor/Memory Characteristics for System-on-Chip Applications

    PubMed Central

    Chen, Min-Cheng; Chen, Hao-Yu; Lin, Chia-Yi; Chien, Chao-Hsin; Hsieh, Tsung-Fan; Horng, Jim-Tong; Qiu, Jian-Tai; Huang, Chien-Chao; Ho, Chia-Hua; Yang, Fu-Liang

    2012-01-01

    This paper reports a versatile nano-sensor technology using “top-down” poly-silicon nanowire field-effect transistors (FETs) in the conventional Complementary Metal-Oxide Semiconductor (CMOS)-compatible semiconductor process. The nanowire manufacturing technique reduced nanowire width scaling to 50 nm without use of extra lithography equipment, and exhibited superior device uniformity. These n type polysilicon nanowire FETs have positive pH sensitivity (100 mV/pH) and sensitive deoxyribonucleic acid (DNA) detection ability (100 pM) at normal system operation voltages. Specially designed oxide-nitride-oxide buried oxide nanowire realizes an electrically Vth-adjustable sensor to compensate device variation. These nanowire FETs also enable non-volatile memory application for a large and steady Vth adjustment window (>2 V Programming/Erasing window). The CMOS-compatible manufacturing technique of polysilicon nanowire FETs offers a possible solution for commercial System-on-Chip biosensor application, which enables portable physiology monitoring and in situ recording. PMID:22666012

  18. Degradation of CMOS image sensors in deep-submicron technology due to γ-irradiation

    NASA Astrophysics Data System (ADS)

    Rao, Padmakumar R.; Wang, Xinyang; Theuwissen, Albert J. P.

    2008-09-01

    In this work, radiation induced damage mechanisms in deep submicron technology is resolved using finger gated-diodes (FGDs) as a radiation sensitive tool. It is found that these structures are simple yet efficient structures to resolve radiation induced damage in advanced CMOS processes. The degradation of the CMOS image sensors in deep-submicron technology due to γ-ray irradiation is studied by developing a model for the spectral response of the sensor and also by the dark-signal degradation as a function of STI (shallow-trench isolation) parameters. It is found that threshold shifts in the gate-oxide/silicon interface as well as minority carrier life-time variations in the silicon bulk are minimal. The top-layer material properties and the photodiode Si-SiO2 interface quality are degraded due to γ-ray irradiation. Results further suggest that p-well passivated structures are inevitable for radiation-hard designs. It was found that high electrical fields in submicron technologies pose a threat to high quality imaging in harsh environments.

  19. Memristor-CMOS hybrid integrated circuits for reconfigurable logic.

    PubMed

    Xia, Qiangfei; Robinett, Warren; Cumbie, Michael W; Banerjee, Neel; Cardinali, Thomas J; Yang, J Joshua; Wu, Wei; Li, Xuema; Tong, William M; Strukov, Dmitri B; Snider, Gregory S; Medeiros-Ribeiro, Gilberto; Williams, R Stanley

    2009-10-01

    Hybrid reconfigurable logic circuits were fabricated by integrating memristor-based crossbars onto a foundry-built CMOS (complementary metal-oxide-semiconductor) platform using nanoimprint lithography, as well as materials and processes that were compatible with the CMOS. Titanium dioxide thin-film memristors served as the configuration bits and switches in a data routing network and were connected to gate-level CMOS components that acted as logic elements, in a manner similar to a field programmable gate array. We analyzed the chips using a purpose-built testing system, and demonstrated the ability to configure individual devices, use them to wire up various logic gates and a flip-flop, and then reconfigure devices.

  20. Performance test and image correction of CMOS image sensor in radiation environment

    NASA Astrophysics Data System (ADS)

    Wang, Congzheng; Hu, Song; Gao, Chunming; Feng, Chang

    2016-09-01

    CMOS image sensors rival CCDs in domains that include strong radiation resistance as well as simple drive signals, so it is widely applied in the high-energy radiation environment, such as space optical imaging application and video monitoring of nuclear power equipment. However, the silicon material of CMOS image sensors has the ionizing dose effect in the high-energy rays, and then the indicators of image sensors, such as signal noise ratio (SNR), non-uniformity (NU) and bad point (BP) are degraded because of the radiation. The radiation environment of test experiments was generated by the 60Co γ-rays source. The camera module based on image sensor CMV2000 from CMOSIS Inc. was chosen as the research object. The ray dose used for the experiments was with a dose rate of 20krad/h. In the test experiences, the output signals of the pixels of image sensor were measured on the different total dose. The results of data analysis showed that with the accumulation of irradiation dose, SNR of image sensors decreased, NU of sensors was enhanced, and the number of BP increased. The indicators correction of image sensors was necessary, as it was the main factors to image quality. The image processing arithmetic was adopt to the data from the experiences in the work, which combined local threshold method with NU correction based on non-local means (NLM) method. The results from image processing showed that image correction can effectively inhibit the BP, improve the SNR, and reduce the NU.

Top