Sample records for cmos driven micro-pixel

  1. A CMOS Time-Resolved Fluorescence Lifetime Analysis Micro-System

    PubMed Central

    Rae, Bruce R.; Muir, Keith R.; Gong, Zheng; McKendry, Jonathan; Girkin, John M.; Gu, Erdan; Renshaw, David; Dawson, Martin D.; Henderson, Robert K.

    2009-01-01

    We describe a CMOS-based micro-system for time-resolved fluorescence lifetime analysis. It comprises a 16 × 4 array of single-photon avalanche diodes (SPADs) fabricated in 0.35 μm high-voltage CMOS technology with in-pixel time-gated photon counting circuitry and a second device incorporating an 8 × 8 AlInGaN blue micro-pixellated light-emitting diode (micro-LED) array bump-bonded to an equivalent array of LED drivers realized in a standard low-voltage 0.35 μm CMOS technology, capable of producing excitation pulses with a width of 777 ps (FWHM). This system replaces instrumentation based on lasers, photomultiplier tubes, bulk optics and discrete electronics with a PC-based micro-system. Demonstrator lifetime measurements of colloidal quantum dot and Rhodamine samples are presented. PMID:22291564

  2. CMOS Active-Pixel Image Sensor With Intensity-Driven Readout

    NASA Technical Reports Server (NTRS)

    Langenbacher, Harry T.; Fossum, Eric R.; Kemeny, Sabrina

    1996-01-01

    Proposed complementary metal oxide/semiconductor (CMOS) integrated-circuit image sensor automatically provides readouts from pixels in order of decreasing illumination intensity. Sensor operated in integration mode. Particularly useful in number of image-sensing tasks, including diffractive laser range-finding, three-dimensional imaging, event-driven readout of sparse sensor arrays, and star tracking.

  3. A focal plane metrology system and PSF centroiding experiment

    NASA Astrophysics Data System (ADS)

    Li, Haitao; Li, Baoquan; Cao, Yang; Li, Ligang

    2016-10-01

    In this paper, we present an overview of a detector array equipment metrology testbed and a micro-pixel centroiding experiment currently under development at the National Space Science Center, Chinese Academy of Sciences. We discuss on-going development efforts aimed at calibrating the intra-/inter-pixel quantum efficiency and pixel positions for scientific grade CMOS detector, and review significant progress in achieving higher precision differential centroiding for pseudo star images in large area back-illuminated CMOS detector. Without calibration of pixel positions and intrapixel response, we have demonstrated that the standard deviation of differential centroiding is below 2.0e-3 pixels.

  4. Fully depleted CMOS pixel sensor development and potential applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baudot, J.; Kachel, M.; CNRS, UMR7178, 67037 Strasbourg

    CMOS pixel sensors are often opposed to hybrid pixel sensors due to their very different sensitive layer. In standard CMOS imaging processes, a thin (about 20 μm) low resistivity epitaxial layer acts as the sensitive volume and charge collection is mostly driven by thermal agitation. In contrast, the so-called hybrid pixel technology exploits a thick (typically 300 μm) silicon sensor with high resistivity allowing for the depletion of this volume, hence charges drift toward collecting electrodes. But this difference is fading away with the recent availability of some CMOS imaging processes based on a relatively thick (about 50 μm) highmore » resistivity epitaxial layer which allows for full depletion. This evolution extents the range of applications for CMOS pixel sensors where their known assets, high sensitivity and granularity combined with embedded signal treatment, could potentially foster breakthrough in detection performances for specific scientific instruments. One such domain is the Xray detection for soft energies, typically below 10 keV, where the thin sensitive layer was previously severely impeding CMOS sensor usage. Another application becoming realistic for CMOS sensors, is the detection in environment with a high fluence of non-ionizing radiation, such as hadron colliders. However, when considering highly demanding applications, it is still to be proven that micro-circuits required to uniformly deplete the sensor at the pixel level, do not mitigate the sensitivity and efficiency required. Prototype sensors in two different technologies with resistivity higher than 1 kΩ, sensitive layer between 40 and 50 μm and featuring pixel pitch in the range 25 to 50 μm, have been designed and fabricated. Various biasing architectures were adopted to reach full depletion with only a few volts. Laboratory investigations with three types of sources (X-rays, β-rays and infrared light) demonstrated the validity of the approach with respect to depletion, keeping a low noise figure. Especially, an energy resolution of about 400 eV for 5 keV X-rays was obtained for single pixels. The prototypes have then been exposed to gradually increased fluences of neutrons, from 10{sup 13} to 5x10{sup 14} neq/cm{sup 2}. Again laboratory tests allowed to evaluate the signal over noise persistence on the different pixels implemented. Currently our development mostly targets the detection of soft X-rays, with the ambition to develop a pixel sensor matching counting rates as affordable with hybrid pixel sensors, but with an extended sensitivity to low energy and finer pixel about 25 x 25 μm{sup 2}. The original readout architecture proposed relies on a two tiers chip. The first tier consists of a sensor with a modest dynamic in order to insure low noise performances required by sensitivity. The interconnected second tier chip enhances the read-out speed by introducing massive parallelization. Performances reachable with this strategy combining counting and integration will be detailed. (authors)« less

  5. Recent progress and development of a speedster-EXD: a new event-triggered hybrid CMOS x-ray detector

    NASA Astrophysics Data System (ADS)

    Griffith, Christopher V.; Falcone, Abraham D.; Prieskorn, Zachary R.; Burrows, David N.

    2015-08-01

    We present the characterization of a new event-driven X-ray hybrid CMOS detector developed by Penn State University in collaboration with Teledyne Imaging Sensors. Along with its low susceptibility to radiation damage, low power consumption, and fast readout time to avoid pile-up, the Speedster-EXD has been designed with the capability to limit its readout to only those pixels containing charge, thus enabling even faster effective frame rates. The threshold for the comparator in each pixel can be set by the user so that only pixels with signal above the set threshold are read out. The Speedster-EXD hybrid CMOS detector also has two new in-pixel features that reduce noise from known noise sources: (1) a low-noise, high-gain CTIA amplifier to eliminate crosstalk from interpixel capacitance (IPC) and (2) in-pixel CDS subtraction to reduce kTC noise. We present the read noise, dark current, IPC, energy resolution, and gain variation measurements of one Speedster-EXD detector.

  6. Investigation of CMOS pixel sensor with 0.18 μm CMOS technology for high-precision tracking detector

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Fu, M.; Zhang, Y.; Yan, W.; Wang, M.

    2017-01-01

    The Circular Electron Positron Collider (CEPC) proposed by the Chinese high energy physics community is aiming to measure Higgs particles and their interactions precisely. The tracking detector including Silicon Inner Tracker (SIT) and Forward Tracking Disks (FTD) has driven stringent requirements on sensor technologies in term of spatial resolution, power consumption and readout speed. CMOS Pixel Sensor (CPS) is a promising candidate to approach these requirements. This paper presents the preliminary studies on the sensor optimization for tracking detector to achieve high collection efficiency while keeping necessary spatial resolution. Detailed studies have been performed on the charge collection using a 0.18 μm CMOS image sensor process. This process allows high resistivity epitaxial layer, leading to a significant improvement on the charge collection and therefore improving the radiation tolerance. Together with the simulation results, the first exploratory prototype has bee designed and fabricated. The prototype includes 9 different pixel arrays, which vary in terms of pixel pitch, diode size and geometry. The total area of the prototype amounts to 2 × 7.88 mm2.

  7. An asynchronous data-driven readout prototype for CEPC vertex detector

    NASA Astrophysics Data System (ADS)

    Yang, Ping; Sun, Xiangming; Huang, Guangming; Xiao, Le; Gao, Chaosong; Huang, Xing; Zhou, Wei; Ren, Weiping; Li, Yashu; Liu, Jianchao; You, Bihui; Zhang, Li

    2017-12-01

    The Circular Electron Positron Collider (CEPC) is proposed as a Higgs boson and/or Z boson factory for high-precision measurements on the Higgs boson. The precision of secondary vertex impact parameter plays an important role in such measurements which typically rely on flavor-tagging. Thus silicon CMOS Pixel Sensors (CPS) are the most promising technology candidate for a CEPC vertex detector, which can most likely feature a high position resolution, a low power consumption and a fast readout simultaneously. For the R&D of the CEPC vertex detector, we have developed a prototype MIC4 in the Towerjazz 180 nm CMOS Image Sensor (CIS) process. We have proposed and implemented a new architecture of asynchronous zero-suppression data-driven readout inside the matrix combined with a binary front-end inside the pixel. The matrix contains 128 rows and 64 columns with a small pixel pitch of 25 μm. The readout architecture has implemented the traditional OR-gate chain inside a super pixel combined with a priority arbiter tree between the super pixels, only reading out relevant pixels. The MIC4 architecture will be introduced in more detail in this paper. It will be taped out in May and will be characterized when the chip comes back.

  8. Scientific CMOS Pixels

    NASA Astrophysics Data System (ADS)

    Janesick, James; Gunawan, Ferry; Dosluoglu, Taner; Tower, John; McCaffrey, Niel

    2002-08-01

    High performance CMOS pixels are introduced; and their development is discussed. 3T (3-transistor) photodiode, 5T pinned diode, 6T photogate and 6T photogate back illuminated CMOS pixels are examined in detail, and the latter three are considered as scientific pixels. The advantages and disadvantagesof these options for scientific CMOS pixels are examined.Pixel characterization, which is used to gain a better understanding of CMOS pixels themselves, is also discussed.

  9. Scientific CMOS Pixels

    NASA Astrophysics Data System (ADS)

    Janesick, J.; Gunawan, F.; Dosluoglu, T.; Tower, J.; McCaffrey, N.

    High performance CMOS pixels are introduced and their development is discussed. 3T (3-transistor) photodiode, 5T pinned diode, 6T photogate and 6T photogate back illuminated CMOS pixels are examined in detail, and the latter three are considered as scientific pixels. The advantages and disadvantages of these options for scientific CMOS pixels are examined. Pixel characterization, which is used to gain a better understanding of CMOS pixels themselves, is also discussed.

  10. Demonstration of the CDMA-mode CAOS smart camera.

    PubMed

    Riza, Nabeel A; Mazhar, Mohsin A

    2017-12-11

    Demonstrated is the code division multiple access (CDMA)-mode coded access optical sensor (CAOS) smart camera suited for bright target scenarios. Deploying a silicon CMOS sensor and a silicon point detector within a digital micro-mirror device (DMD)-based spatially isolating hybrid camera design, this smart imager first engages the DMD starring mode with a controlled factor of 200 high optical attenuation of the scene irradiance to provide a classic unsaturated CMOS sensor-based image for target intelligence gathering. Next, this CMOS sensor provided image data is used to acquire a focused zone more robust un-attenuated true target image using the time-modulated CDMA-mode of the CAOS camera. Using four different bright light test target scenes, successfully demonstrated is a proof-of-concept visible band CAOS smart camera operating in the CDMA-mode using up-to 4096 bits length Walsh design CAOS pixel codes with a maximum 10 KHz code bit rate giving a 0.4096 seconds CAOS frame acquisition time. A 16-bit analog-to-digital converter (ADC) with time domain correlation digital signal processing (DSP) generates the CDMA-mode images with a 3600 CAOS pixel count and a best spatial resolution of one micro-mirror square pixel size of 13.68 μm side. The CDMA-mode of the CAOS smart camera is suited for applications where robust high dynamic range (DR) imaging is needed for un-attenuated un-spoiled bright light spectrally diverse targets.

  11. Development of high energy micro-tomography system at SPring-8

    NASA Astrophysics Data System (ADS)

    Uesugi, Kentaro; Hoshino, Masato

    2017-09-01

    A high energy X-ray micro-tomography system has been developed at BL20B2 in SPring-8. The available range of the energy is between 20keV and 113keV with a Si (511) double crystal monochromator. The system enables us to image large or heavy materials such as fossils and metals. The X-ray image detector consists of visible light conversion system and sCMOS camera. The effective pixel size is variable by changing a tandem lens between 6.5 μm/pixel and 25.5 μm/pixel discretely. The format of the camera is 2048 pixels x 2048 pixels. As a demonstration of the system, alkaline battery and a nodule from Bolivia were imaged. A detail of the structure of the battery and a female mold Trilobite were successfully imaged without breaking those fossils.

  12. Bioinspired architecture approach for a one-billion transistor smart CMOS camera chip

    NASA Astrophysics Data System (ADS)

    Fey, Dietmar; Komann, Marcus

    2007-05-01

    In the paper we present a massively parallel VLSI architecture for future smart CMOS camera chips with up to one billion transistors. To exploit efficiently the potential offered by future micro- or nanoelectronic devices traditional on central structures oriented parallel architectures based on MIMD or SIMD approaches will fail. They require too long and too many global interconnects for the distribution of code or the access to common memory. On the other hand nature developed self-organising and emergent principles to manage successfully complex structures based on lots of interacting simple elements. Therefore we developed a new as Marching Pixels denoted emergent computing paradigm based on a mixture of bio-inspired computing models like cellular automaton and artificial ants. In the paper we present different Marching Pixels algorithms and the corresponding VLSI array architecture. A detailed synthesis result for a 0.18 μm CMOS process shows that a 256×256 pixel image is processed in less than 10 ms assuming a moderate 100 MHz clock rate for the processor array. Future higher integration densities and a 3D chip stacking technology will allow the integration and processing of Mega pixels within the same time since our architecture is fully scalable.

  13. A safety monitoring system for taxi based on CMOS imager

    NASA Astrophysics Data System (ADS)

    Liu, Zhi

    2005-01-01

    CMOS image sensors now become increasingly competitive with respect to their CCD counterparts, while adding advantages such as no blooming, simpler driving requirements and the potential of on-chip integration of sensor, analogue circuitry, and digital processing functions. A safety monitoring system for taxi based on cmos imager that can record field situation when unusual circumstance happened is described in this paper. The monitoring system is based on a CMOS imager (OV7120), which can output digital image data through parallel pixel data port. The system consists of a CMOS image sensor, a large capacity NAND FLASH ROM, a USB interface chip and a micro controller (AT90S8515). The structure of whole system and the test data is discussed and analyzed in detail.

  14. The Speedster-EXD- A New Event-Driven Hybrid CMOS X-ray Detector

    NASA Astrophysics Data System (ADS)

    Griffith, Christopher V.; Falcone, Abraham D.; Prieskorn, Zachary R.; Burrows, David N.

    2016-01-01

    The Speedster-EXD is a new 64×64 pixel, 40-μm pixel pitch, 100-μm depletion depth hybrid CMOS x-ray detector with the capability of reading out only those pixels containing event charge, thus enabling fast effective frame rates. A global charge threshold can be specified, and pixels containing charge above this threshold are flagged and read out. The Speedster detector has also been designed with other advanced in-pixel features to improve performance, including a low-noise, high-gain capacitive transimpedance amplifier that eliminates interpixel capacitance crosstalk (IPC), and in-pixel correlated double sampling subtraction to reduce reset noise. We measure the best energy resolution on the Speedster-EXD detector to be 206 eV (3.5%) at 5.89 keV and 172 eV (10.0%) at 1.49 keV. The average IPC to the four adjacent pixels is measured to be 0.25%±0.2% (i.e., consistent with zero). The pixel-to-pixel gain variation is measured to be 0.80%±0.03%, and a Monte Carlo simulation is applied to better characterize the contributions to the energy resolution.

  15. Low-power priority Address-Encoder and Reset-Decoder data-driven readout for Monolithic Active Pixel Sensors for tracker system

    NASA Astrophysics Data System (ADS)

    Yang, P.; Aglieri, G.; Cavicchioli, C.; Chalmet, P. L.; Chanlek, N.; Collu, A.; Gao, C.; Hillemanns, H.; Junique, A.; Kofarago, M.; Keil, M.; Kugathasan, T.; Kim, D.; Kim, J.; Lattuca, A.; Marin Tobon, C. A.; Marras, D.; Mager, M.; Martinengo, P.; Mazza, G.; Mugnier, H.; Musa, L.; Puggioni, C.; Rousset, J.; Reidt, F.; Riedler, P.; Snoeys, W.; Siddhanta, S.; Usai, G.; van Hoorne, J. W.; Yi, J.

    2015-06-01

    Active Pixel Sensors used in High Energy Particle Physics require low power consumption to reduce the detector material budget, low integration time to reduce the possibilities of pile-up and fast readout to improve the detector data capability. To satisfy these requirements, a novel Address-Encoder and Reset-Decoder (AERD) asynchronous circuit for a fast readout of a pixel matrix has been developed. The AERD data-driven readout architecture operates the address encoding and reset decoding based on an arbitration tree, and allows us to readout only the hit pixels. Compared to the traditional readout structure of the rolling shutter scheme in Monolithic Active Pixel Sensors (MAPS), AERD can achieve a low readout time and a low power consumption especially for low hit occupancies. The readout is controlled at the chip periphery with a signal synchronous with the clock, allows a good digital and analogue signal separation in the matrix and a reduction of the power consumption. The AERD circuit has been implemented in the TowerJazz 180 nm CMOS Imaging Sensor (CIS) process with full complementary CMOS logic in the pixel. It works at 10 MHz with a matrix height of 15 mm. The energy consumed to read out one pixel is around 72 pJ. A scheme to boost the readout speed to 40 MHz is also discussed. The sensor chip equipped with AERD has been produced and characterised. Test results including electrical beam measurement are presented.

  16. Design and characterization of high precision in-pixel discriminators for rolling shutter CMOS pixel sensors with full CMOS capability

    NASA Astrophysics Data System (ADS)

    Fu, Y.; Hu-Guo, C.; Dorokhov, A.; Pham, H.; Hu, Y.

    2013-07-01

    In order to exploit the ability to integrate a charge collecting electrode with analog and digital processing circuitry down to the pixel level, a new type of CMOS pixel sensors with full CMOS capability is presented in this paper. The pixel array is read out based on a column-parallel read-out architecture, where each pixel incorporates a diode, a preamplifier with a double sampling circuitry and a discriminator to completely eliminate analog read-out bottlenecks. The sensor featuring a pixel array of 8 rows and 32 columns with a pixel pitch of 80 μm×16 μm was fabricated in a 0.18 μm CMOS process. The behavior of each pixel-level discriminator isolated from the diode and the preamplifier was studied. The experimental results indicate that all in-pixel discriminators which are fully operational can provide significant improvements in the read-out speed and the power consumption of CMOS pixel sensors.

  17. Investigation of HV/HR-CMOS technology for the ATLAS Phase-II Strip Tracker Upgrade

    NASA Astrophysics Data System (ADS)

    Fadeyev, V.; Galloway, Z.; Grabas, H.; Grillo, A. A.; Liang, Z.; Martinez-Mckinney, F.; Seiden, A.; Volk, J.; Affolder, A.; Buckland, M.; Meng, L.; Arndt, K.; Bortoletto, D.; Huffman, T.; John, J.; McMahon, S.; Nickerson, R.; Phillips, P.; Plackett, R.; Shipsey, I.; Vigani, L.; Bates, R.; Blue, A.; Buttar, C.; Kanisauskas, K.; Maneuski, D.; Benoit, M.; Di Bello, F.; Caragiulo, P.; Dragone, A.; Grenier, P.; Kenney, C.; Rubbo, F.; Segal, J.; Su, D.; Tamma, C.; Das, D.; Dopke, J.; Turchetta, R.; Wilson, F.; Worm, S.; Ehrler, F.; Peric, I.; Gregor, I. M.; Stanitzki, M.; Hoeferkamp, M.; Seidel, S.; Hommels, L. B. A.; Kramberger, G.; Mandić, I.; Mikuž, M.; Muenstermann, D.; Wang, R.; Zhang, J.; Warren, M.; Song, W.; Xiu, Q.; Zhu, H.

    2016-09-01

    ATLAS has formed strip CMOS project to study the use of CMOS MAPS devices as silicon strip sensors for the Phase-II Strip Tracker Upgrade. This choice of sensors promises several advantages over the conventional baseline design, such as better resolution, less material in the tracking volume, and faster construction speed. At the same time, many design features of the sensors are driven by the requirement of minimizing the impact on the rest of the detector. Hence the target devices feature long pixels which are grouped to form a virtual strip with binary-encoded z position. The key performance aspects are radiation hardness compatibility with HL-LHC environment, as well as extraction of the full hit position with full-reticle readout architecture. To date, several test chips have been submitted using two different CMOS technologies. The AMS 350 nm is a high voltage CMOS process (HV-CMOS), that features the sensor bias of up to 120 V. The TowerJazz 180 nm high resistivity CMOS process (HR-CMOS) uses a high resistivity epitaxial layer to provide the depletion region on top of the substrate. We have evaluated passive pixel performance, and charge collection projections. The results strongly support the radiation tolerance of these devices to radiation dose of the HL-LHC in the strip tracker region. We also describe design features for the next chip submission that are motivated by our technology evaluation.

  18. Fundamental performance differences between CMOS and CCD imagers, part IV

    NASA Astrophysics Data System (ADS)

    Janesick, James; Pinter, Jeff; Potter, Robert; Elliott, Tom; Andrews, James; Tower, John; Grygon, Mark; Keller, Dave

    2010-07-01

    This paper is a continuation of past papers written on fundamental performance differences of scientific CMOS and CCD imagers. New characterization results presented below include: 1). a new 1536 × 1536 × 8μm 5TPPD pixel CMOS imager, 2). buried channel MOSFETs for random telegraph noise (RTN) and threshold reduction, 3) sub-electron noise pixels, 4) 'MIM pixel' for pixel sensitivity (V/e-) control, 5) '5TPPD RING pixel' for large pixel, high-speed charge transfer applications, 6) pixel-to-pixel blooming control, 7) buried channel photo gate pixels and CMOSCCDs, 8) substrate bias for deep depletion CMOS imagers, 9) CMOS dark spikes and dark current issues and 10) high energy radiation damage test data. Discussions are also given to a 1024 × 1024 × 16 um 5TPPD pixel imager currently in fabrication and new stitched CMOS imagers that are in the design phase including 4k × 4k × 10 μm and 10k × 10k × 10 um imager formats.

  19. Technology and design of an active-matrix OLED on crystalline silicon direct-view display for a wristwatch computer

    NASA Astrophysics Data System (ADS)

    Sanford, James L.; Schlig, Eugene S.; Prache, Olivier; Dove, Derek B.; Ali, Tariq A.; Howard, Webster E.

    2002-02-01

    The IBM Research Division and eMagin Corp. jointly have developed a low-power VGA direct view active matrix OLED display, fabricated on a crystalline silicon CMOS chip. The display is incorporated in IBM prototype wristwatch computers running the Linus operating system. IBM designed the silicon chip and eMagin developed the organic stack and performed the back-end-of line processing and packaging. Each pixel is driven by a constant current source controlled by a CMOS RAM cell, and the display receives its data from the processor memory bus. This paper describes the OLED technology and packaging, and outlines the design of the pixel and display electronics and the processor interface. Experimental results are presented.

  20. Precision of FLEET Velocimetry Using High-speed CMOS Camera Systems

    NASA Technical Reports Server (NTRS)

    Peters, Christopher J.; Danehy, Paul M.; Bathel, Brett F.; Jiang, Naibo; Calvert, Nathan D.; Miles, Richard B.

    2015-01-01

    Femtosecond laser electronic excitation tagging (FLEET) is an optical measurement technique that permits quantitative velocimetry of unseeded air or nitrogen using a single laser and a single camera. In this paper, we seek to determine the fundamental precision of the FLEET technique using high-speed complementary metal-oxide semiconductor (CMOS) cameras. Also, we compare the performance of several different high-speed CMOS camera systems for acquiring FLEET velocimetry data in air and nitrogen free-jet flows. The precision was defined as the standard deviation of a set of several hundred single-shot velocity measurements. Methods of enhancing the precision of the measurement were explored such as digital binning (similar in concept to on-sensor binning, but done in post-processing), row-wise digital binning of the signal in adjacent pixels and increasing the time delay between successive exposures. These techniques generally improved precision; however, binning provided the greatest improvement to the un-intensified camera systems which had low signal-to-noise ratio. When binning row-wise by 8 pixels (about the thickness of the tagged region) and using an inter-frame delay of 65 micro sec, precisions of 0.5 m/s in air and 0.2 m/s in nitrogen were achieved. The camera comparison included a pco.dimax HD, a LaVision Imager scientific CMOS (sCMOS) and a Photron FASTCAM SA-X2, along with a two-stage LaVision High Speed IRO intensifier. Excluding the LaVision Imager sCMOS, the cameras were tested with and without intensification and with both short and long inter-frame delays. Use of intensification and longer inter-frame delay generally improved precision. Overall, the Photron FASTCAM SA-X2 exhibited the best performance in terms of greatest precision and highest signal-to-noise ratio primarily because it had the largest pixels.

  1. 10000 pixels wide CMOS frame imager for earth observation from a HALE UAV

    NASA Astrophysics Data System (ADS)

    Delauré, B.; Livens, S.; Everaerts, J.; Kleihorst, R.; Schippers, Gert; de Wit, Yannick; Compiet, John; Banachowicz, Bartosz

    2009-09-01

    MEDUSA is the lightweight high resolution camera, designed to be operated from a solar-powered Unmanned Aerial Vehicle (UAV) flying at stratospheric altitudes. The instrument is a technology demonstrator within the Pegasus program and targets applications such as crisis management and cartography. A special wide swath CMOS imager has been developed by Cypress Semiconductor Cooperation Belgium to meet the specific sensor requirements of MEDUSA. The CMOS sensor has a stitched design comprising a panchromatic and color sensor on the same die. Each sensor consists of 10000*1200 square pixels (5.5μm size, novel 6T architecture) with micro-lenses. The exposure is performed by means of a high efficiency snapshot shutter. The sensor is able to operate at a rate of 30fps in full frame readout. Due to a novel pixel design, the sensor has low dark leakage of the memory elements (PSNL) and low parasitic light sensitivity (PLS). Still it maintains a relative high QE (Quantum efficiency) and a FF (fill factor) of over 65%. It features an MTF (Modulation Transfer Function) higher than 60% at Nyquist frequency in both X and Y directions The measured optical/electrical crosstalk (expressed as MTF) of this 5.5um pixel is state-of-the art. These properties makes it possible to acquire sharp images also in low-light conditions.

  2. Quantitative evaluation of the accuracy and variance of individual pixels in a scientific CMOS (sCMOS) camera for computational imaging

    NASA Astrophysics Data System (ADS)

    Watanabe, Shigeo; Takahashi, Teruo; Bennett, Keith

    2017-02-01

    The"scientific" CMOS (sCMOS) camera architecture fundamentally differs from CCD and EMCCD cameras. In digital CCD and EMCCD cameras, conversion from charge to the digital output is generally through a single electronic chain, and the read noise and the conversion factor from photoelectrons to digital outputs are highly uniform for all pixels, although quantum efficiency may spatially vary. In CMOS cameras, the charge to voltage conversion is separate for each pixel and each column has independent amplifiers and analog-to-digital converters, in addition to possible pixel-to-pixel variation in quantum efficiency. The "raw" output from the CMOS image sensor includes pixel-to-pixel variability in the read noise, electronic gain, offset and dark current. Scientific camera manufacturers digitally compensate the raw signal from the CMOS image sensors to provide usable images. Statistical noise in images, unless properly modeled, can introduce errors in methods such as fluctuation correlation spectroscopy or computational imaging, for example, localization microscopy using maximum likelihood estimation. We measured the distributions and spatial maps of individual pixel offset, dark current, read noise, linearity, photoresponse non-uniformity and variance distributions of individual pixels for standard, off-the-shelf Hamamatsu ORCA-Flash4.0 V3 sCMOS cameras using highly uniform and controlled illumination conditions, from dark conditions to multiple low light levels between 20 to 1,000 photons / pixel per frame to higher light conditions. We further show that using pixel variance for flat field correction leads to errors in cameras with good factory calibration.

  3. A High-Speed, Event-Driven, Active Pixel Sensor Readout for Photon-Counting Microchannel Plate Detectors

    NASA Technical Reports Server (NTRS)

    Kimble, Randy A.; Pain, Bedabrata; Norton, Timothy J.; Haas, J. Patrick; Oegerle, William R. (Technical Monitor)

    2002-01-01

    Silicon array readouts for microchannel plate intensifiers offer several attractive features. In this class of detector, the electron cloud output of the MCP intensifier is converted to visible light by a phosphor; that light is then fiber-optically coupled to the silicon array. In photon-counting mode, the resulting light splashes on the silicon array are recognized and centroided to fractional pixel accuracy by off-chip electronics. This process can result in very high (MCP-limited) spatial resolution while operating at a modest MCP gain (desirable for dynamic range and long term stability). The principal limitation of intensified CCD systems of this type is their severely limited local dynamic range, as accurate photon counting is achieved only if there are not overlapping event splashes within the frame time of the device. This problem can be ameliorated somewhat by processing events only in pre-selected windows of interest of by using an addressable charge injection device (CID) for the readout array. We are currently pursuing the development of an intriguing alternative readout concept based on using an event-driven CMOS Active Pixel Sensor. APS technology permits the incorporation of discriminator circuitry within each pixel. When coupled with suitable CMOS logic outside the array area, the discriminator circuitry can be used to trigger the readout of small sub-array windows only when and where an event splash has been detected, completely eliminating the local dynamic range problem, while achieving a high global count rate capability and maintaining high spatial resolution. We elaborate on this concept and present our progress toward implementing an event-driven APS readout.

  4. CMOS image sensors: State-of-the-art

    NASA Astrophysics Data System (ADS)

    Theuwissen, Albert J. P.

    2008-09-01

    This paper gives an overview of the state-of-the-art of CMOS image sensors. The main focus is put on the shrinkage of the pixels : what is the effect on the performance characteristics of the imagers and on the various physical parameters of the camera ? How is the CMOS pixel architecture optimized to cope with the negative performance effects of the ever-shrinking pixel size ? On the other hand, the smaller dimensions in CMOS technology allow further integration on column level and even on pixel level. This will make CMOS imagers even smarter that they are already.

  5. CMOS Image Sensors for High Speed Applications.

    PubMed

    El-Desouki, Munir; Deen, M Jamal; Fang, Qiyin; Liu, Louis; Tse, Frances; Armstrong, David

    2009-01-01

    Recent advances in deep submicron CMOS technologies and improved pixel designs have enabled CMOS-based imagers to surpass charge-coupled devices (CCD) imaging technology for mainstream applications. The parallel outputs that CMOS imagers can offer, in addition to complete camera-on-a-chip solutions due to being fabricated in standard CMOS technologies, result in compelling advantages in speed and system throughput. Since there is a practical limit on the minimum pixel size (4∼5 μm) due to limitations in the optics, CMOS technology scaling can allow for an increased number of transistors to be integrated into the pixel to improve both detection and signal processing. Such smart pixels truly show the potential of CMOS technology for imaging applications allowing CMOS imagers to achieve the image quality and global shuttering performance necessary to meet the demands of ultrahigh-speed applications. In this paper, a review of CMOS-based high-speed imager design is presented and the various implementations that target ultrahigh-speed imaging are described. This work also discusses the design, layout and simulation results of an ultrahigh acquisition rate CMOS active-pixel sensor imager that can take 8 frames at a rate of more than a billion frames per second (fps).

  6. Fundamental performance differences of CMOS and CCD imagers: part V

    NASA Astrophysics Data System (ADS)

    Janesick, James R.; Elliott, Tom; Andrews, James; Tower, John; Pinter, Jeff

    2013-02-01

    Previous papers delivered over the last decade have documented developmental progress made on large pixel scientific CMOS imagers that match or surpass CCD performance. New data and discussions presented in this paper include: 1) a new buried channel CCD fabricated on a CMOS process line, 2) new data products generated by high performance custom scientific CMOS 4T/5T/6T PPD pixel imagers, 3) ultimate CTE and speed limits for large pixel CMOS imagers, 4) fabrication and test results of a flight 4k x 4k CMOS imager for NRL's SoloHi Solar Orbiter Mission, 5) a progress report on ultra large stitched Mk x Nk CMOS imager, 6) data generated by on-chip sub-electron CDS signal chain circuitry used in our imagers, 7) CMOS and CMOSCCD proton and electron radiation damage data for dose levels up to 10 Mrd, 8) discussions and data for a new class of PMOS pixel CMOS imagers and 9) future CMOS development work planned.

  7. A 128 x 128 CMOS Active Pixel Image Sensor for Highly Integrated Imaging Systems

    NASA Technical Reports Server (NTRS)

    Mendis, Sunetra K.; Kemeny, Sabrina E.; Fossum, Eric R.

    1993-01-01

    A new CMOS-based image sensor that is intrinsically compatible with on-chip CMOS circuitry is reported. The new CMOS active pixel image sensor achieves low noise, high sensitivity, X-Y addressability, and has simple timing requirements. The image sensor was fabricated using a 2 micrometer p-well CMOS process, and consists of a 128 x 128 array of 40 micrometer x 40 micrometer pixels. The CMOS image sensor technology enables highly integrated smart image sensors, and makes the design, incorporation and fabrication of such sensors widely accessible to the integrated circuit community.

  8. WE-AB-207A-01: BEST IN PHYSICS (IMAGING): High-Resolution Cone-Beam CT of the Extremities and Cancellous Bone Architecture with a CMOS Detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Q; Brehler, M; Sisniega, A

    Purpose: Extremity cone-beam CT (CBCT) with an amorphous silicon (aSi) flat-panel detector (FPD) provides low-dose volumetric imaging with high spatial resolution. We investigate the performance of the newer complementary metal-oxide semiconductor (CMOS) detectors to enhance resolution of extremities CBCT to ∼0.1 mm, enabling morphological analysis of trabecular bone. Quantitative in-vivo imaging of bone microarchitecture could present an important advance for osteoporosis and osteoarthritis diagnosis and therapy assessment. Methods: Cascaded systems models of CMOS- and FPD-based extremities CBCT were implemented. Performance was compared for a range of pixel sizes (0.05–0.4 mm), focal spot sizes (0.3–0.6 FS), and x-ray techniques (0.05–0.8 mAs/projection)more » using detectability of high-, low-, and all-frequency tasks for a nonprewhitening observer. Test-bench implementation of CMOS-based extremity CBCT involved a Teledyne DALSA Xineos3030HR detector with 0.099 mm pixels and a compact rotating anode x-ray source with 0.3 FS (IMD RTM37). Metrics of bone morphology obtained using CMOS-based CBCT were compared in cadaveric specimens to FPD-based system using a Varian PaxScan4030 (0.194 mm pixels). Results: Finer pixel size and reduced electronic noise for CMOS (136 e compared to 2000 e for FPD) resulted in ∼1.9× increase in detectability for high-frequency tasks and ∼1.1× increase for all-frequency tasks. Incorporation of the new x-ray source with reduced focal spot size (0.3 FS vs. 0.5 FS used on current extremities CBCT) improved detectability for CMOS-based CBCT by ∼1.7× for high-frequency tasks. Compared to FPD CBCT, the CMOS detector yielded improved agreement with micro-CT in measurements of trabecular thickness (∼1.7× reduction in relative error), bone volume (∼1.5× reduction), and trabecular spacing (∼3.5× reduction). Conclusion: Imaging performance modelling and experimentation indicate substantial improvements for high-frequency imaging tasks through adoption of the CMOS detector and small FS x-ray source, motivating the use of these components in a new system for quantitative in-vivo imaging of trabecular bone. Financial Support: US NIH grant R01EB018896. Qian Cao is a Howard Hughes Medical Institute International Student Research Fellow. Disclosures: W Zbijewski, J Siewerdsen and A Sisniega receive research funding from Carestream Health.« less

  9. A High-Speed, Event-Driven, Active Pixel Sensor Readout for Photon-Counting Microchannel Plate Detectors

    NASA Technical Reports Server (NTRS)

    Kimble, Randy A.; Pain, B.; Norton, T. J.; Haas, P.; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    Silicon array readouts for microchannel plate intensifiers offer several attractive features. In this class of detector, the electron cloud output of the MCP intensifier is converted to visible light by a phosphor; that light is then fiber-optically coupled to the silicon array. In photon-counting mode, the resulting light splashes on the silicon array are recognized and centroided to fractional pixel accuracy by off-chip electronics. This process can result in very high (MCP-limited) spatial resolution for the readout while operating at a modest MCP gain (desirable for dynamic range and long term stability). The principal limitation of intensified CCD systems of this type is their severely limited local dynamic range, as accurate photon counting is achieved only if there are not overlapping event splashes within the frame time of the device. This problem can be ameliorated somewhat by processing events only in pre-selected windows of interest or by using an addressable charge injection device (CID) for the readout array. We are currently pursuing the development of an intriguing alternative readout concept based on using an event-driven CMOS Active Pixel Sensor. APS technology permits the incorporation of discriminator circuitry within each pixel. When coupled with suitable CMOS logic outside the array area, the discriminator circuitry can be used to trigger the readout of small sub-array windows only when and where an event splash has been detected, completely eliminating the local dynamic range problem, while achieving a high global count rate capability and maintaining high spatial resolution. We elaborate on this concept and present our progress toward implementing an event-driven APS readout.

  10. High-voltage pixel sensors for ATLAS upgrade

    NASA Astrophysics Data System (ADS)

    Perić, I.; Kreidl, C.; Fischer, P.; Bompard, F.; Breugnon, P.; Clemens, J.-C.; Fougeron, D.; Liu, J.; Pangaud, P.; Rozanov, A.; Barbero, M.; Feigl, S.; Capeans, M.; Ferrere, D.; Pernegger, H.; Ristic, B.; Muenstermann, D.; Gonzalez Sevilla, S.; La Rosa, A.; Miucci, A.; Nessi, M.; Iacobucci, G.; Backhaus, M.; Hügging, Fabian; Krüger, H.; Hemperek, T.; Obermann, T.; Wermes, N.; Garcia-Sciveres, M.; Quadt, A.; Weingarten, J.; George, M.; Grosse-Knetter, J.; Rieger, J.; Bates, R.; Blue, A.; Buttar, C.; Hynds, D.

    2014-11-01

    The high-voltage (HV-) CMOS pixel sensors offer several good properties: a fast charge collection by drift, the possibility to implement relatively complex CMOS in-pixel electronics and the compatibility with commercial processes. The sensor element is a deep n-well diode in a p-type substrate. The n-well contains CMOS pixel electronics. The main charge collection mechanism is drift in a shallow, high field region, which leads to a fast charge collection and a high radiation tolerance. We are currently evaluating the use of the high-voltage detectors implemented in 180 nm HV-CMOS technology for the high-luminosity ATLAS upgrade. Our approach is replacing the existing pixel and strip sensors with the CMOS sensors while keeping the presently used readout ASICs. By intelligence we mean the ability of the sensor to recognize a particle hit and generate the address information. In this way we could benefit from the advantages of the HV sensor technology such as lower cost, lower mass, lower operating voltage, smaller pitch, smaller clusters at high incidence angles. Additionally we expect to achieve a radiation hardness necessary for ATLAS upgrade. In order to test the concept, we have designed two HV-CMOS prototypes that can be readout in two ways: using pixel and strip readout chips. In the case of the pixel readout, the connection between HV-CMOS sensor and the readout ASIC can be established capacitively.

  11. Commercial CMOS image sensors as X-ray imagers and particle beam monitors

    NASA Astrophysics Data System (ADS)

    Castoldi, A.; Guazzoni, C.; Maffessanti, S.; Montemurro, G. V.; Carraresi, L.

    2015-01-01

    CMOS image sensors are widely used in several applications such as mobile handsets webcams and digital cameras among others. Furthermore they are available across a wide range of resolutions with excellent spectral and chromatic responses. In order to fulfill the need of cheap systems as beam monitors and high resolution image sensors for scientific applications we exploited the possibility of using commercial CMOS image sensors as X-rays and proton detectors. Two different sensors have been mounted and tested. An Aptina MT9v034, featuring 752 × 480 pixels, 6μm × 6μm pixel size has been mounted and successfully tested as bi-dimensional beam profile monitor, able to take pictures of the incoming proton bunches at the DeFEL beamline (1-6 MeV pulsed proton beam) of the LaBeC of INFN in Florence. The naked sensor is able to successfully detect the interactions of the single protons. The sensor point-spread-function (PSF) has been qualified with 1MeV protons and is equal to one pixel (6 mm) r.m.s. in both directions. A second sensor MT9M032, featuring 1472 × 1096 pixels, 2.2 × 2.2 μm pixel size has been mounted on a dedicated board as high-resolution imager to be used in X-ray imaging experiments with table-top generators. In order to ease and simplify the data transfer and the image acquisition the system is controlled by a dedicated micro-processor board (DM3730 1GHz SoC ARM Cortex-A8) on which a modified LINUX kernel has been implemented. The paper presents the architecture of the sensor systems and the results of the experimental measurements.

  12. CMOS Active Pixel Sensor Technology and Reliability Characterization Methodology

    NASA Technical Reports Server (NTRS)

    Chen, Yuan; Guertin, Steven M.; Pain, Bedabrata; Kayaii, Sammy

    2006-01-01

    This paper describes the technology, design features and reliability characterization methodology of a CMOS Active Pixel Sensor. Both overall chip reliability and pixel reliability are projected for the imagers.

  13. Novel Si-Ge-C Superlattices for More than Moore CMOS

    DTIC Science & Technology

    2016-03-31

    diodes can be entirely formed by epitaxial growth, CMOS Active Pixel Sensors can be made with Fully-Depleted SOI CMOS . One important advantage of...a NMOS Transfer Gate (TG), which could be part of a 4T pixel APS. PPDs are preferred in CMOS image sensors for the ability of the pinning layer to...than Moore” with the creation of active photonic devices monolithically integrated with CMOS . Applications include Multispectral CMOS Image Sensors

  14. Small Pixel Hybrid CMOS X-ray Detectors

    NASA Astrophysics Data System (ADS)

    Hull, Samuel; Bray, Evan; Burrows, David N.; Chattopadhyay, Tanmoy; Falcone, Abraham; Kern, Matthew; McQuaide, Maria; Wages, Mitchell

    2018-01-01

    Concepts for future space-based X-ray observatories call for a large effective area and high angular resolution instrument to enable precision X-ray astronomy at high redshift and low luminosity. Hybrid CMOS detectors are well suited for such high throughput instruments, and the Penn State X-ray detector lab, in collaboration with Teledyne Imaging Sensors, has recently developed new small pixel hybrid CMOS X-ray detectors. These prototype 128x128 pixel devices have 12.5 micron pixel pitch, 200 micron fully depleted depth, and include crosstalk eliminating CTIA amplifiers and in-pixel correlated double sampling (CDS) capability. We report on characteristics of these new detectors, including the best read noise ever measured for an X-ray hybrid CMOS detector, 5.67 e- (RMS).

  15. Microlens performance limits in sub-2mum pixel CMOS image sensors.

    PubMed

    Huo, Yijie; Fesenmaier, Christian C; Catrysse, Peter B

    2010-03-15

    CMOS image sensors with smaller pixels are expected to enable digital imaging systems with better resolution. When pixel size scales below 2 mum, however, diffraction affects the optical performance of the pixel and its microlens, in particular. We present a first-principles electromagnetic analysis of microlens behavior during the lateral scaling of CMOS image sensor pixels. We establish for a three-metal-layer pixel that diffraction prevents the microlens from acting as a focusing element when pixels become smaller than 1.4 microm. This severely degrades performance for on and off-axis pixels in red, green and blue color channels. We predict that one-metal-layer or backside-illuminated pixels are required to extend the functionality of microlenses beyond the 1.4 microm pixel node.

  16. Monolithic active pixel sensor development for the upgrade of the ALICE inner tracking system

    NASA Astrophysics Data System (ADS)

    Aglieri, G.; Cavicchioli, C.; Chalmet, P. L.; Chanlek, N.; Collu, A.; Giubilato, P.; Hillemanns, H.; Junique, A.; Keil, M.; Kim, D.; Kim, J.; Kugathasan, T.; Lattuca, A.; Mager, M.; Marin Tobon, C. A.; Marras, D.; Martinengo, P.; Mattiazzo, S.; Mazza, G.; Mugnier, H.; Musa, L.; Pantano, D.; Puggioni, C.; Rousset, J.; Reidt, F.; Riedler, P.; Siddhanta, S.; Snoeys, W.; Usai, G.; van Hoorne, J. W.; Yang, P.; Yi, J.

    2013-12-01

    ALICE plans an upgrade of its Inner Tracking System for 2018. The development of a monolithic active pixel sensor for this upgrade is described. The TowerJazz 180 nm CMOS imaging sensor process has been chosen as it is possible to use full CMOS in the pixel due to the offering of a deep pwell and also to use different starting materials. The ALPIDE development is an alternative to approaches based on a rolling shutter architecture, and aims to reduce power consumption and integration time by an order of magnitude below the ALICE specifications, which would be quite beneficial in terms of material budget and background. The approach is based on an in-pixel binary front-end combined with a hit-driven architecture. Several prototypes have already been designed, submitted for fabrication and some of them tested with X-ray sources and particles in a beam. Analog power consumption has been limited by optimizing the Q/C of the sensor using Explorer chips. Promising but preliminary first results have also been obtained with a prototype ALPIDE. Radiation tolerance up to the ALICE requirements has also been verified.

  17. High responsivity CMOS imager pixel implemented in SOI technology

    NASA Technical Reports Server (NTRS)

    Zheng, X.; Wrigley, C.; Yang, G.; Pain, B.

    2000-01-01

    Availability of mature sub-micron CMOS technology and the advent of the new low noise active pixel sensor (APS) concept have enabled the development of low power, miniature, single-chip, CMOS digital imagers in the decade of the 1990's.

  18. Giga-pixel lensfree holographic microscopy and tomography using color image sensors.

    PubMed

    Isikman, Serhan O; Greenbaum, Alon; Luo, Wei; Coskun, Ahmet F; Ozcan, Aydogan

    2012-01-01

    We report Giga-pixel lensfree holographic microscopy and tomography using color sensor-arrays such as CMOS imagers that exhibit Bayer color filter patterns. Without physically removing these color filters coated on the sensor chip, we synthesize pixel super-resolved lensfree holograms, which are then reconstructed to achieve ~350 nm lateral resolution, corresponding to a numerical aperture of ~0.8, across a field-of-view of ~20.5 mm(2). This constitutes a digital image with ~0.7 Billion effective pixels in both amplitude and phase channels (i.e., ~1.4 Giga-pixels total). Furthermore, by changing the illumination angle (e.g., ± 50°) and scanning a partially-coherent light source across two orthogonal axes, super-resolved images of the same specimen from different viewing angles are created, which are then digitally combined to synthesize tomographic images of the object. Using this dual-axis lensfree tomographic imager running on a color sensor-chip, we achieve a 3D spatial resolution of ~0.35 µm × 0.35 µm × ~2 µm, in x, y and z, respectively, creating an effective voxel size of ~0.03 µm(3) across a sample volume of ~5 mm(3), which is equivalent to >150 Billion voxels. We demonstrate the proof-of-concept of this lensfree optical tomographic microscopy platform on a color CMOS image sensor by creating tomograms of micro-particles as well as a wild-type C. elegans nematode.

  19. SVGA and XGA active matrix microdisplays for head-mounted applications

    NASA Astrophysics Data System (ADS)

    Alvelda, Phillip; Bolotski, Michael; Brown, Imani L.

    2000-03-01

    The MicroDisplay Corporation's liquid crystal on silicon (LCOS) display devices are based on the union of several technologies with the extreme integration capability of conventionally fabricated CMOS substrates. The fast liquid crystal operation modes and new scalable high-performance pixel addressing architectures presented in this paper enable substantially improved color, contrast, and brightness while still satisfying the optical, packaging, and power requirements of portable applications. The entire suite of MicroDisplay's technologies was devised to create a line of mixed-signal application-specific integrated circuits (ASICs) in single-chip display systems. Mixed-signal circuits can integrate computing, memory, and communication circuitry on the same substrate as the display drivers and pixel array for a multifunctional complete system-on-a-chip. System-on-a-chip benefits also include reduced head supported weight requirements through the elimination of off-chip drive electronics.

  20. Image sensor pixel with on-chip high extinction ratio polarizer based on 65-nm standard CMOS technology.

    PubMed

    Sasagawa, Kiyotaka; Shishido, Sanshiro; Ando, Keisuke; Matsuoka, Hitoshi; Noda, Toshihiko; Tokuda, Takashi; Kakiuchi, Kiyomi; Ohta, Jun

    2013-05-06

    In this study, we demonstrate a polarization sensitive pixel for a complementary metal-oxide-semiconductor (CMOS) image sensor based on 65-nm standard CMOS technology. Using such a deep-submicron CMOS technology, it is possible to design fine metal patterns smaller than the wavelengths of visible light by using a metal wire layer. We designed and fabricated a metal wire grid polarizer on a 20 × 20 μm(2) pixel for image sensor. An extinction ratio of 19.7 dB was observed at a wavelength 750 nm.

  1. A 20 Mfps high frame-depth CMOS burst-mode imager with low power in-pixel NMOS-only passive amplifier

    NASA Astrophysics Data System (ADS)

    Wu, L.; San Segundo Bello, D.; Coppejans, P.; Craninckx, J.; Wambacq, P.; Borremans, J.

    2017-02-01

    This paper presents a 20 Mfps 32 × 84 pixels CMOS burst-mode imager featuring high frame depth with a passive in-pixel amplifier. Compared to the CCD alternatives, CMOS burst-mode imagers are attractive for their low power consumption and integration of circuitry such as ADCs. Due to storage capacitor size and its noise limitations, CMOS burst-mode imagers usually suffer from a lower frame depth than CCD implementations. In order to capture fast transitions over a longer time span, an in-pixel CDS technique has been adopted to reduce the required memory cells for each frame by half. Moreover, integrated with in-pixel CDS, an in-pixel NMOS-only passive amplifier alleviates the kTC noise requirements of the memory bank allowing the usage of smaller capacitors. Specifically, a dense 108-cell MOS memory bank (10fF/cell) has been implemented inside a 30μm pitch pixel, with an area of 25 × 30μm2 occupied by the memory bank. There is an improvement of about 4x in terms of frame depth per pixel area by applying in-pixel CDS and amplification. With the amplifier's gain of 3.3, an FD input-referred RMS noise of 1mV is achieved at 20 Mfps operation. While the amplification is done without burning DC current, including the pixel source follower biasing, the full pixel consumes 10μA at 3.3V supply voltage at full speed. The chip has been fabricated in imec's 130nm CMOS CIS technology.

  2. Design considerations for a new, high resolution Micro-Angiographic Fluoroscope based on a CMOS sensor (MAF-CMOS).

    PubMed

    Loughran, Brendan; Swetadri Vasan, S N; Singh, Vivek; Ionita, Ciprian N; Jain, Amit; Bednarek, Daniel R; Titus, Albert; Rudin, Stephen

    2013-03-06

    The detectors that are used for endovascular image-guided interventions (EIGI), particularly for neurovascular interventions, do not provide clinicians with adequate visualization to ensure the best possible treatment outcomes. Developing an improved x-ray imaging detector requires the determination of estimated clinical x-ray entrance exposures to the detector. The range of exposures to the detector in clinical studies was found for the three modes of operation: fluoroscopic mode, high frame-rate digital angiographic mode (HD fluoroscopic mode), and DSA mode. Using these estimated detector exposure ranges and available CMOS detector technical specifications, design requirements were developed to pursue a quantum limited, high resolution, dynamic x-ray detector based on a CMOS sensor with 50 μm pixel size. For the proposed MAF-CMOS, the estimated charge collected within the full exposure range was found to be within the estimated full well capacity of the pixels. Expected instrumentation noise for the proposed detector was estimated to be 50-1,300 electrons. Adding a gain stage such as a light image intensifier would minimize the effect of the estimated instrumentation noise on total image noise but may not be necessary to ensure quantum limited detector operation at low exposure levels. A recursive temporal filter may decrease the effective total noise by 2 to 3 times, allowing for the improved signal to noise ratios at the lowest estimated exposures despite consequent loss in temporal resolution. This work can serve as a guide for further development of dynamic x-ray imaging prototypes or improvements for existing dynamic x-ray imaging systems.

  3. Fundamental performance differences between CMOS and CCD imagers: part III

    NASA Astrophysics Data System (ADS)

    Janesick, James; Pinter, Jeff; Potter, Robert; Elliott, Tom; Andrews, James; Tower, John; Cheng, John; Bishop, Jeanne

    2009-08-01

    This paper is a status report on recent scientific CMOS imager developments since when previous publications were written. Focus today is being given on CMOS design and process optimization because fundamental problems affecting performance are now reasonably well understood. Topics found in this paper include discussions on a low cost custom scientific CMOS fabrication approach, substrate bias for deep depletion imagers, near IR and x-ray point-spread performance, custom fabricated high resisitivity epitaxial and SOI silicon wafers for backside illuminated imagers, buried channel MOSFETs for ultra low noise performance, 1 e- charge transfer imagers, high speed transfer pixels, RTS/ flicker noise versus MOSFET geometry, pixel offset and gain non uniformity measurements, high S/N dCDS/aCDS signal processors, pixel thermal dark current sources, radiation damage topics, CCDs fabricated in CMOS and future large CMOS imagers planned at Sarnoff.

  4. Amorphous selenium direct detection CMOS digital x-ray imager with 25 micron pixel pitch

    NASA Astrophysics Data System (ADS)

    Scott, Christopher C.; Abbaszadeh, Shiva; Ghanbarzadeh, Sina; Allan, Gary; Farrier, Michael; Cunningham, Ian A.; Karim, Karim S.

    2014-03-01

    We have developed a high resolution amorphous selenium (a-Se) direct detection imager using a large-area compatible back-end fabrication process on top of a CMOS active pixel sensor having 25 micron pixel pitch. Integration of a-Se with CMOS technology requires overcoming CMOS/a-Se interfacial strain, which initiates nucleation of crystalline selenium and results in high detector dark currents. A CMOS-compatible polyimide buffer layer was used to planarize the backplane and provide a low stress and thermally stable surface for a-Se. The buffer layer inhibits crystallization and provides detector stability that is not only a performance factor but also critical for favorable long term cost-benefit considerations in the application of CMOS digital x-ray imagers in medical practice. The detector structure is comprised of a polyimide (PI) buffer layer, the a-Se layer, and a gold (Au) top electrode. The PI layer is applied by spin-coating and is patterned using dry etching to open the backplane bond pads for wire bonding. Thermal evaporation is used to deposit the a-Se and Au layers, and the detector is operated in hole collection mode (i.e. a positive bias on the Au top electrode). High resolution a-Se diagnostic systems typically use 70 to 100 μm pixel pitch and have a pre-sampling modulation transfer function (MTF) that is significantly limited by the pixel aperture. Our results confirm that, for a densely integrated 25 μm pixel pitch CMOS array, the MTF approaches the fundamental material limit, i.e. where the MTF begins to be limited by the a-Se material properties and not the pixel aperture. Preliminary images demonstrating high spatial resolution have been obtained from a frst prototype imager.

  5. JPL CMOS Active Pixel Sensor Technology

    NASA Technical Reports Server (NTRS)

    Fossum, E. R.

    1995-01-01

    This paper will present the JPL-developed complementary metal- oxide-semiconductor (CMOS) active pixel sensor (APS) technology. The CMOS APS has achieved performance comparable to charge coupled devices, yet features ultra low power operation, random access readout, on-chip timing and control, and on-chip analog to digital conversion. Previously published open literature will be reviewed.

  6. Subpixel mapping and test beam studies with a HV2FEI4v2 CMOS-Sensor-Hybrid Module for the ATLAS inner detector upgrade

    NASA Astrophysics Data System (ADS)

    Bisanz, T.; Große-Knetter, J.; Quadt, A.; Rieger, J.; Weingarten, J.

    2017-08-01

    The upgrade to the High Luminosity Large Hadron Collider will increase the instantaneous luminosity by more than a factor of 5, thus creating significant challenges to the tracking systems of all experiments. Recent advancement of active pixel detectors designed in CMOS processes provide attractive alternatives to the well-established hybrid design using passive sensors since they allow for smaller pixel sizes and cost effective production. This article presents studies of a high-voltage CMOS active pixel sensor designed for the ATLAS tracker upgrade. The sensor is glued to the read-out chip of the Insertable B-Layer, forming a capacitively coupled pixel detector. The pixel pitch of the device under test is 33× 125 μm2, while the pixels of the read-out chip have a pitch of 50× 250 μm2. Three pixels of the CMOS device are connected to one read-out pixel, the information of which of these subpixels is hit is encoded in the amplitude of the output signal (subpixel encoding). Test beam measurements are presented that demonstrate the usability of this subpixel encoding scheme.

  7. CMOS Imaging of Pin-Printed Xerogel-Based Luminescent Sensor Microarrays.

    PubMed

    Yao, Lei; Yung, Ka Yi; Khan, Rifat; Chodavarapu, Vamsy P; Bright, Frank V

    2010-12-01

    We present the design and implementation of a luminescence-based miniaturized multisensor system using pin-printed xerogel materials which act as host media for chemical recognition elements. We developed a CMOS imager integrated circuit (IC) to image the luminescence response of the xerogel-based sensor array. The imager IC uses a 26 × 20 (520 elements) array of active pixel sensors and each active pixel includes a high-gain phototransistor to convert the detected optical signals into electrical currents. The imager includes a correlated double sampling circuit and pixel address/digital control circuit; the image data is read-out as coded serial signal. The sensor system uses a light-emitting diode (LED) to excite the target analyte responsive luminophores doped within discrete xerogel-based sensor elements. As a prototype, we developed a 4 × 4 (16 elements) array of oxygen (O 2 ) sensors. Each group of 4 sensor elements in the array (arranged in a row) is designed to provide a different and specific sensitivity to the target gaseous O 2 concentration. This property of multiple sensitivities is achieved by using a strategic mix of two oxygen sensitive luminophores ([Ru(dpp) 3 ] 2+ and ([Ru(bpy) 3 ] 2+ ) in each pin-printed xerogel sensor element. The CMOS imager consumes an average power of 8 mW operating at 1 kHz sampling frequency driven at 5 V. The developed prototype system demonstrates a low cost and miniaturized luminescence multisensor system.

  8. Radiation hard pixel sensors using high-resistive wafers in a 150 nm CMOS processing line

    NASA Astrophysics Data System (ADS)

    Pohl, D.-L.; Hemperek, T.; Caicedo, I.; Gonella, L.; Hügging, F.; Janssen, J.; Krüger, H.; Macchiolo, A.; Owtscharenko, N.; Vigani, L.; Wermes, N.

    2017-06-01

    Pixel sensors using 8'' CMOS processing technology have been designed and characterized offering the benefits of industrial sensor fabrication, including large wafers, high throughput and yield, as well as low cost. The pixel sensors are produced using a 150 nm CMOS technology offered by LFoundry in Avezzano. The technology provides multiple metal and polysilicon layers, as well as metal-insulator-metal capacitors that can be employed for AC-coupling and redistribution layers. Several prototypes were fabricated and are characterized with minimum ionizing particles before and after irradiation to fluences up to 1.1 × 1015 neq cm-2. The CMOS-fabricated sensors perform equally well as standard pixel sensors in terms of noise and hit detection efficiency. AC-coupled sensors even reach 100% hit efficiency in a 3.2 GeV electron beam before irradiation.

  9. A time-resolved image sensor for tubeless streak cameras

    NASA Astrophysics Data System (ADS)

    Yasutomi, Keita; Han, SangMan; Seo, Min-Woong; Takasawa, Taishi; Kagawa, Keiichiro; Kawahito, Shoji

    2014-03-01

    This paper presents a time-resolved CMOS image sensor with draining-only modulation (DOM) pixels for tube-less streak cameras. Although the conventional streak camera has high time resolution, the device requires high voltage and bulky system due to the structure with a vacuum tube. The proposed time-resolved imager with a simple optics realize a streak camera without any vacuum tubes. The proposed image sensor has DOM pixels, a delay-based pulse generator, and a readout circuitry. The delay-based pulse generator in combination with an in-pixel logic allows us to create and to provide a short gating clock to the pixel array. A prototype time-resolved CMOS image sensor with the proposed pixel is designed and implemented using 0.11um CMOS image sensor technology. The image array has 30(Vertical) x 128(Memory length) pixels with the pixel pitch of 22.4um. .

  10. Synchronous high speed multi-point velocity profile measurement by heterodyne interferometry

    NASA Astrophysics Data System (ADS)

    Hou, Xueqin; Xiao, Wen; Chen, Zonghui; Qin, Xiaodong; Pan, Feng

    2017-02-01

    This paper presents a synchronous multipoint velocity profile measurement system, which acquires the vibration velocities as well as images of vibrating objects by combining optical heterodyne interferometry and a high-speed CMOS-DVR camera. The high-speed CMOS-DVR camera records a sequence of images of the vibrating object. Then, by extracting and processing multiple pixels at the same time, a digital demodulation technique is implemented to simultaneously acquire the vibrating velocity of the target from the recorded sequences of images. This method is validated with an experiment. A piezoelectric ceramic plate with standard vibration characteristics is used as the vibrating target, which is driven by a standard sinusoidal signal.

  11. A 75-ps Gated CMOS Image Sensor with Low Parasitic Light Sensitivity

    PubMed Central

    Zhang, Fan; Niu, Hanben

    2016-01-01

    In this study, a 40 × 48 pixel global shutter complementary metal-oxide-semiconductor (CMOS) image sensor with an adjustable shutter time as low as 75 ps was implemented using a 0.5-μm mixed-signal CMOS process. The implementation consisted of a continuous contact ring around each p+/n-well photodiode in the pixel array in order to apply sufficient light shielding. The parasitic light sensitivity of the in-pixel storage node was measured to be 1/8.5 × 107 when illuminated by a 405-nm diode laser and 1/1.4 × 104 when illuminated by a 650-nm diode laser. The pixel pitch was 24 μm, the size of the square p+/n-well photodiode in each pixel was 7 μm per side, the measured random readout noise was 217 e− rms, and the measured dynamic range of the pixel of the designed chip was 5500:1. The type of gated CMOS image sensor (CIS) that is proposed here can be used in ultra-fast framing cameras to observe non-repeatable fast-evolving phenomena. PMID:27367699

  12. A 75-ps Gated CMOS Image Sensor with Low Parasitic Light Sensitivity.

    PubMed

    Zhang, Fan; Niu, Hanben

    2016-06-29

    In this study, a 40 × 48 pixel global shutter complementary metal-oxide-semiconductor (CMOS) image sensor with an adjustable shutter time as low as 75 ps was implemented using a 0.5-μm mixed-signal CMOS process. The implementation consisted of a continuous contact ring around each p+/n-well photodiode in the pixel array in order to apply sufficient light shielding. The parasitic light sensitivity of the in-pixel storage node was measured to be 1/8.5 × 10⁷ when illuminated by a 405-nm diode laser and 1/1.4 × 10⁴ when illuminated by a 650-nm diode laser. The pixel pitch was 24 μm, the size of the square p+/n-well photodiode in each pixel was 7 μm per side, the measured random readout noise was 217 e(-) rms, and the measured dynamic range of the pixel of the designed chip was 5500:1. The type of gated CMOS image sensor (CIS) that is proposed here can be used in ultra-fast framing cameras to observe non-repeatable fast-evolving phenomena.

  13. Pixel super resolution using wavelength scanning

    DTIC Science & Technology

    2016-04-08

    the light source is adjusted to ~20 μW. The image sensor chip is a color CMOS sensor chip with a pixel size of 1.12 μm manufactured for cellphone...pitch (that is, ~ 1 μm in Figure 3a, using a CMOS sensor that has a 1.12-μm pixel pitch). For the same configuration depicted in Figure 3, utilizing...section). The a Lens-free raw holograms captured by 1.12 μm CMOS image sensor Field of view ≈ 20.5 mm2 Angle change directions for synthetic aperture

  14. CMOS Image Sensors: Electronic Camera On A Chip

    NASA Technical Reports Server (NTRS)

    Fossum, E. R.

    1995-01-01

    Recent advancements in CMOS image sensor technology are reviewed, including both passive pixel sensors and active pixel sensors. On- chip analog to digital converters and on-chip timing and control circuits permit realization of an electronic camera-on-a-chip. Highly miniaturized imaging systems based on CMOS image sensor technology are emerging as a competitor to charge-coupled devices for low cost uses.

  15. Recent X-ray hybrid CMOS detector developments and measurements

    NASA Astrophysics Data System (ADS)

    Hull, Samuel V.; Falcone, Abraham D.; Burrows, David N.; Wages, Mitchell; Chattopadhyay, Tanmoy; McQuaide, Maria; Bray, Evan; Kern, Matthew

    2017-08-01

    The Penn State X-ray detector lab, in collaboration with Teledyne Imaging Sensors (TIS), have progressed their efforts to improve soft X-ray Hybrid CMOS detector (HCD) technology on multiple fronts. Having newly acquired a Teledyne cryogenic SIDECARTM ASIC for use with HxRG devices, measurements were performed with an H2RG HCD and the cooled SIDECARTM. We report new energy resolution and read noise measurements, which show a significant improvement over room temperature SIDECARTM operation. Further, in order to meet the demands of future high-throughput and high spatial resolution X-ray observatories, detectors with fast readout and small pixel sizes are being developed. We report on characteristics of new X-ray HCDs with 12.5 micron pitch that include in-pixel CDS circuitry and crosstalk-eliminating CTIA amplifiers. In addition, PSU and TIS are developing a new large-scale array Speedster-EXD device. The original 64 × 64 pixel Speedster-EXD prototype used comparators in each pixel to enable event driven readout with order of magnitude higher effective readout rates, which will now be implemented in a 550 × 550 pixel device. Finally, the detector lab is involved in a sounding rocket mission that is slated to fly in 2018 with an off-plane reflection grating array and an H2RG X-ray HCD. We report on the planned detector configuration for this mission, which will increase the NASA technology readiness level of X-ray HCDs to TRL 9.

  16. CMOS Active-Pixel Image Sensor With Simple Floating Gates

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R.; Nakamura, Junichi; Kemeny, Sabrina E.

    1996-01-01

    Experimental complementary metal-oxide/semiconductor (CMOS) active-pixel image sensor integrated circuit features simple floating-gate structure, with metal-oxide/semiconductor field-effect transistor (MOSFET) as active circuit element in each pixel. Provides flexibility of readout modes, no kTC noise, and relatively simple structure suitable for high-density arrays. Features desirable for "smart sensor" applications.

  17. Large Format CMOS-based Detectors for Diffraction Studies

    NASA Astrophysics Data System (ADS)

    Thompson, A. C.; Nix, J. C.; Achterkirchen, T. G.; Westbrook, E. M.

    2013-03-01

    Complementary Metal Oxide Semiconductor (CMOS) devices are rapidly replacing CCD devices in many commercial and medical applications. Recent developments in CMOS fabrication have improved their radiation hardness, device linearity, readout noise and thermal noise, making them suitable for x-ray crystallography detectors. Large-format (e.g. 10 cm × 15 cm) CMOS devices with a pixel size of 100 μm × 100 μm are now becoming available that can be butted together on three sides so that very large area detector can be made with no dead regions. Like CCD systems our CMOS systems use a GdOS:Tb scintillator plate to convert stopping x-rays into visible light which is then transferred with a fiber-optic plate to the sensitive surface of the CMOS sensor. The amount of light per x-ray on the sensor is much higher in the CMOS system than a CCD system because the fiber optic plate is only 3 mm thick while on a CCD system it is highly tapered and much longer. A CMOS sensor is an active pixel matrix such that every pixel is controlled and readout independently of all other pixels. This allows these devices to be readout while the sensor is collecting charge in all the other pixels. For x-ray diffraction detectors this is a major advantage since image frames can be collected continuously at up 20 Hz while the crystal is rotated. A complete diffraction dataset can be collected over five times faster than with CCD systems with lower radiation exposure to the crystal. In addition, since the data is taken fine-phi slice mode the 3D angular position of diffraction peaks is improved. We have developed a cooled 6 sensor CMOS detector with an active area of 28.2 × 29.5 cm with 100 μm × 100 μm pixels and a readout rate of 20 Hz. The detective quantum efficiency exceeds 60% over the range 8-12 keV. One, two and twelve sensor systems are also being developed for a variety of scientific applications. Since the sensors are butt able on three sides, even larger systems could be built at reasonable cost.

  18. 1024-Pixel CMOS Multimodality Joint Cellular Sensor/Stimulator Array for Real-Time Holistic Cellular Characterization and Cell-Based Drug Screening.

    PubMed

    Park, Jong Seok; Aziz, Moez Karim; Li, Sensen; Chi, Taiyun; Grijalva, Sandra Ivonne; Sung, Jung Hoon; Cho, Hee Cheol; Wang, Hua

    2018-02-01

    This paper presents a fully integrated CMOS multimodality joint sensor/stimulator array with 1024 pixels for real-time holistic cellular characterization and drug screening. The proposed system consists of four pixel groups and four parallel signal-conditioning blocks. Every pixel group contains 16 × 16 pixels, and each pixel includes one gold-plated electrode, four photodiodes, and in-pixel circuits, within a pixel footprint. Each pixel supports real-time extracellular potential recording, optical detection, charge-balanced biphasic current stimulation, and cellular impedance measurement for the same cellular sample. The proposed system is fabricated in a standard 130-nm CMOS process. Rat cardiomyocytes are successfully cultured on-chip. Measured high-resolution optical opacity images, extracellular potential recordings, biphasic current stimulations, and cellular impedance images demonstrate the unique advantages of the system for holistic cell characterization and drug screening. Furthermore, this paper demonstrates the use of optical detection on the on-chip cultured cardiomyocytes to real-time track their cyclic beating pattern and beating rate.

  19. CAOS-CMOS camera.

    PubMed

    Riza, Nabeel A; La Torre, Juan Pablo; Amin, M Junaid

    2016-06-13

    Proposed and experimentally demonstrated is the CAOS-CMOS camera design that combines the coded access optical sensor (CAOS) imager platform with the CMOS multi-pixel optical sensor. The unique CAOS-CMOS camera engages the classic CMOS sensor light staring mode with the time-frequency-space agile pixel CAOS imager mode within one programmable optical unit to realize a high dynamic range imager for extreme light contrast conditions. The experimentally demonstrated CAOS-CMOS camera is built using a digital micromirror device, a silicon point-photo-detector with a variable gain amplifier, and a silicon CMOS sensor with a maximum rated 51.3 dB dynamic range. White light imaging of three different brightness simultaneously viewed targets, that is not possible by the CMOS sensor, is achieved by the CAOS-CMOS camera demonstrating an 82.06 dB dynamic range. Applications for the camera include industrial machine vision, welding, laser analysis, automotive, night vision, surveillance and multispectral military systems.

  20. 32 x 16 CMOS smart pixel array for optical interconnects

    NASA Astrophysics Data System (ADS)

    Kim, Jongwoo; Guilfoyle, Peter S.; Stone, Richard V.; Hessenbruch, John M.; Choquette, Kent D.; Kiamilev, Fouad E.

    2000-05-01

    Free space optical interconnects can increase throughput capacities and eliminate much of the energy consumption required for `all electronic' systems. High speed optical interconnects can be achieved by integrating optoelectronic devices with conventional electronics. Smart pixel arrays have been developed which use optical interconnects. An individual smart pixel cell is composed of a vertical cavity surface emitting laser (VCSEL), a photodetector, an optical receiver, a laser driver, and digital logic circuitry. Oxide-confined VCSELs are being developed to operate at 850 nm with a threshold current of approximately 1 mA. Multiple quantum well photodetectors are being fabricated from AlGaAs for use with the 850 nm VCSELs. The VCSELs and photodetectors are being integrated with complementary metal oxide semiconductor (CMOS) circuitry using flip-chip bonding. CMOS circuitry is being integrated with a 32 X 16 smart pixel array. The 512 smart pixels are serially linked. Thus, an entire data stream may be clocked through the chip and output electrically by the last pixel. Electrical testing is being performed on the CMOS smart pixel array. Using an on-chip pseudo random number generator, a digital data sequence was cycled through the chip verifying operation of the digital circuitry. Although, the prototype chip was fabricated in 1.2 micrometers technology, simulations have demonstrated that the array can operate at 1 Gb/s per pixel using 0.5 micrometers technology.

  1. Organic-on-silicon complementary metal-oxide-semiconductor colour image sensors.

    PubMed

    Lim, Seon-Jeong; Leem, Dong-Seok; Park, Kyung-Bae; Kim, Kyu-Sik; Sul, Sangchul; Na, Kyoungwon; Lee, Gae Hwang; Heo, Chul-Joon; Lee, Kwang-Hee; Bulliard, Xavier; Satoh, Ryu-Ichi; Yagi, Tadao; Ro, Takkyun; Im, Dongmo; Jung, Jungkyu; Lee, Myungwon; Lee, Tae-Yon; Han, Moon Gyu; Jin, Yong Wan; Lee, Sangyoon

    2015-01-12

    Complementary metal-oxide-semiconductor (CMOS) colour image sensors are representative examples of light-detection devices. To achieve extremely high resolutions, the pixel sizes of the CMOS image sensors must be reduced to less than a micron, which in turn significantly limits the number of photons that can be captured by each pixel using silicon (Si)-based technology (i.e., this reduction in pixel size results in a loss of sensitivity). Here, we demonstrate a novel and efficient method of increasing the sensitivity and resolution of the CMOS image sensors by superposing an organic photodiode (OPD) onto a CMOS circuit with Si photodiodes, which consequently doubles the light-input surface area of each pixel. To realise this concept, we developed organic semiconductor materials with absorption properties selective to green light and successfully fabricated highly efficient green-light-sensitive OPDs without colour filters. We found that such a top light-receiving OPD, which is selective to specific green wavelengths, demonstrates great potential when combined with a newly designed Si-based CMOS circuit containing only blue and red colour filters. To demonstrate the effectiveness of this state-of-the-art hybrid colour image sensor, we acquired a real full-colour image using a camera that contained the organic-on-Si hybrid CMOS colour image sensor.

  2. Organic-on-silicon complementary metal–oxide–semiconductor colour image sensors

    PubMed Central

    Lim, Seon-Jeong; Leem, Dong-Seok; Park, Kyung-Bae; Kim, Kyu-Sik; Sul, Sangchul; Na, Kyoungwon; Lee, Gae Hwang; Heo, Chul-Joon; Lee, Kwang-Hee; Bulliard, Xavier; Satoh, Ryu-Ichi; Yagi, Tadao; Ro, Takkyun; Im, Dongmo; Jung, Jungkyu; Lee, Myungwon; Lee, Tae-Yon; Han, Moon Gyu; Jin, Yong Wan; Lee, Sangyoon

    2015-01-01

    Complementary metal–oxide–semiconductor (CMOS) colour image sensors are representative examples of light-detection devices. To achieve extremely high resolutions, the pixel sizes of the CMOS image sensors must be reduced to less than a micron, which in turn significantly limits the number of photons that can be captured by each pixel using silicon (Si)-based technology (i.e., this reduction in pixel size results in a loss of sensitivity). Here, we demonstrate a novel and efficient method of increasing the sensitivity and resolution of the CMOS image sensors by superposing an organic photodiode (OPD) onto a CMOS circuit with Si photodiodes, which consequently doubles the light-input surface area of each pixel. To realise this concept, we developed organic semiconductor materials with absorption properties selective to green light and successfully fabricated highly efficient green-light-sensitive OPDs without colour filters. We found that such a top light-receiving OPD, which is selective to specific green wavelengths, demonstrates great potential when combined with a newly designed Si-based CMOS circuit containing only blue and red colour filters. To demonstrate the effectiveness of this state-of-the-art hybrid colour image sensor, we acquired a real full-colour image using a camera that contained the organic-on-Si hybrid CMOS colour image sensor. PMID:25578322

  3. Linear dynamic range enhancement in a CMOS imager

    NASA Technical Reports Server (NTRS)

    Pain, Bedabrata (Inventor)

    2008-01-01

    A CMOS imager with increased linear dynamic range but without degradation in noise, responsivity, linearity, fixed-pattern noise, or photometric calibration comprises a linear calibrated dual gain pixel in which the gain is reduced after a pre-defined threshold level by switching in an additional capacitance. The pixel may include a novel on-pixel latch circuit that is used to switch in the additional capacitance.

  4. Theoretical performance analysis for CMOS based high resolution detectors.

    PubMed

    Jain, Amit; Bednarek, Daniel R; Rudin, Stephen

    2013-03-06

    High resolution imaging capabilities are essential for accurately guiding successful endovascular interventional procedures. Present x-ray imaging detectors are not always adequate due to their inherent limitations. The newly-developed high-resolution micro-angiographic fluoroscope (MAF-CCD) detector has demonstrated excellent clinical image quality; however, further improvement in performance and physical design may be possible using CMOS sensors. We have thus calculated the theoretical performance of two proposed CMOS detectors which may be used as a successor to the MAF. The proposed detectors have a 300 μm thick HL-type CsI phosphor, a 50 μm-pixel CMOS sensor with and without a variable gain light image intensifier (LII), and are designated MAF-CMOS-LII and MAF-CMOS, respectively. For the performance evaluation, linear cascade modeling was used. The detector imaging chains were divided into individual stages characterized by one of the basic processes (quantum gain, binomial selection, stochastic and deterministic blurring, additive noise). Ranges of readout noise and exposure were used to calculate the detectors' MTF and DQE. The MAF-CMOS showed slightly better MTF than the MAF-CMOS-LII, but the MAF-CMOS-LII showed far better DQE, especially for lower exposures. The proposed detectors can have improved MTF and DQE compared with the present high resolution MAF detector. The performance of the MAF-CMOS is excellent for the angiography exposure range; however it is limited at fluoroscopic levels due to additive instrumentation noise. The MAF-CMOS-LII, having the advantage of the variable LII gain, can overcome the noise limitation and hence may perform exceptionally for the full range of required exposures; however, it is more complex and hence more expensive.

  5. High-speed imaging using CMOS image sensor with quasi pixel-wise exposure

    NASA Astrophysics Data System (ADS)

    Sonoda, T.; Nagahara, H.; Endo, K.; Sugiyama, Y.; Taniguchi, R.

    2017-02-01

    Several recent studies in compressive video sensing have realized scene capture beyond the fundamental trade-off limit between spatial resolution and temporal resolution using random space-time sampling. However, most of these studies showed results for higher frame rate video that were produced by simulation experiments or using an optically simulated random sampling camera, because there are currently no commercially available image sensors with random exposure or sampling capabilities. We fabricated a prototype complementary metal oxide semiconductor (CMOS) image sensor with quasi pixel-wise exposure timing that can realize nonuniform space-time sampling. The prototype sensor can reset exposures independently by columns and fix these amount of exposure by rows for each 8x8 pixel block. This CMOS sensor is not fully controllable via the pixels, and has line-dependent controls, but it offers flexibility when compared with regular CMOS or charge-coupled device sensors with global or rolling shutters. We propose a method to realize pseudo-random sampling for high-speed video acquisition that uses the flexibility of the CMOS sensor. We reconstruct the high-speed video sequence from the images produced by pseudo-random sampling using an over-complete dictionary.

  6. Taking Advantage of Selective Change Driven Processing for 3D Scanning

    PubMed Central

    Vegara, Francisco; Zuccarello, Pedro; Boluda, Jose A.; Pardo, Fernando

    2013-01-01

    This article deals with the application of the principles of SCD (Selective Change Driven) vision to 3D laser scanning. Two experimental sets have been implemented: one with a classical CMOS (Complementary Metal-Oxide Semiconductor) sensor, and the other one with a recently developed CMOS SCD sensor for comparative purposes, both using the technique known as Active Triangulation. An SCD sensor only delivers the pixels that have changed most, ordered by the magnitude of their change since their last readout. The 3D scanning method is based on the systematic search through the entire image to detect pixels that exceed a certain threshold, showing the SCD approach to be ideal for this application. Several experiments for both capturing strategies have been performed to try to find the limitations in high speed acquisition/processing. The classical approach is limited by the sequential array acquisition, as predicted by the Nyquist–Shannon sampling theorem, and this has been experimentally demonstrated in the case of a rotating helix. These limitations are overcome by the SCD 3D scanning prototype achieving a significantly higher performance. The aim of this article is to compare both capturing strategies in terms of performance in the time and frequency domains, so they share all the static characteristics including resolution, 3D scanning method, etc., thus yielding the same 3D reconstruction in static scenes. PMID:24084110

  7. Three-dimensional cascaded system analysis of a 50 µm pixel pitch wafer-scale CMOS active pixel sensor x-ray detector for digital breast tomosynthesis.

    PubMed

    Zhao, C; Vassiljev, N; Konstantinidis, A C; Speller, R D; Kanicki, J

    2017-03-07

    High-resolution, low-noise x-ray detectors based on the complementary metal-oxide-semiconductor (CMOS) active pixel sensor (APS) technology have been developed and proposed for digital breast tomosynthesis (DBT). In this study, we evaluated the three-dimensional (3D) imaging performance of a 50 µm pixel pitch CMOS APS x-ray detector named DynAMITe (Dynamic Range Adjustable for Medical Imaging Technology). The two-dimensional (2D) angle-dependent modulation transfer function (MTF), normalized noise power spectrum (NNPS), and detective quantum efficiency (DQE) were experimentally characterized and modeled using the cascaded system analysis at oblique incident angles up to 30°. The cascaded system model was extended to the 3D spatial frequency space in combination with the filtered back-projection (FBP) reconstruction method to calculate the 3D and in-plane MTF, NNPS and DQE parameters. The results demonstrate that the beam obliquity blurs the 2D MTF and DQE in the high spatial frequency range. However, this effect can be eliminated after FBP image reconstruction. In addition, impacts of the image acquisition geometry and detector parameters were evaluated using the 3D cascaded system analysis for DBT. The result shows that a wider projection angle range (e.g.  ±30°) improves the low spatial frequency (below 5 mm -1 ) performance of the CMOS APS detector. In addition, to maintain a high spatial resolution for DBT, a focal spot size of smaller than 0.3 mm should be used. Theoretical analysis suggests that a pixelated scintillator in combination with the 50 µm pixel pitch CMOS APS detector could further improve the 3D image resolution. Finally, the 3D imaging performance of the CMOS APS and an indirect amorphous silicon (a-Si:H) thin-film transistor (TFT) passive pixel sensor (PPS) detector was simulated and compared.

  8. Three-dimensional cascaded system analysis of a 50 µm pixel pitch wafer-scale CMOS active pixel sensor x-ray detector for digital breast tomosynthesis

    NASA Astrophysics Data System (ADS)

    Zhao, C.; Vassiljev, N.; Konstantinidis, A. C.; Speller, R. D.; Kanicki, J.

    2017-03-01

    High-resolution, low-noise x-ray detectors based on the complementary metal-oxide-semiconductor (CMOS) active pixel sensor (APS) technology have been developed and proposed for digital breast tomosynthesis (DBT). In this study, we evaluated the three-dimensional (3D) imaging performance of a 50 µm pixel pitch CMOS APS x-ray detector named DynAMITe (Dynamic Range Adjustable for Medical Imaging Technology). The two-dimensional (2D) angle-dependent modulation transfer function (MTF), normalized noise power spectrum (NNPS), and detective quantum efficiency (DQE) were experimentally characterized and modeled using the cascaded system analysis at oblique incident angles up to 30°. The cascaded system model was extended to the 3D spatial frequency space in combination with the filtered back-projection (FBP) reconstruction method to calculate the 3D and in-plane MTF, NNPS and DQE parameters. The results demonstrate that the beam obliquity blurs the 2D MTF and DQE in the high spatial frequency range. However, this effect can be eliminated after FBP image reconstruction. In addition, impacts of the image acquisition geometry and detector parameters were evaluated using the 3D cascaded system analysis for DBT. The result shows that a wider projection angle range (e.g.  ±30°) improves the low spatial frequency (below 5 mm-1) performance of the CMOS APS detector. In addition, to maintain a high spatial resolution for DBT, a focal spot size of smaller than 0.3 mm should be used. Theoretical analysis suggests that a pixelated scintillator in combination with the 50 µm pixel pitch CMOS APS detector could further improve the 3D image resolution. Finally, the 3D imaging performance of the CMOS APS and an indirect amorphous silicon (a-Si:H) thin-film transistor (TFT) passive pixel sensor (PPS) detector was simulated and compared.

  9. A low-noise CMOS pixel direct charge sensor, Topmetal-II-

    DOE PAGES

    An, Mangmang; Chen, Chufeng; Gao, Chaosong; ...

    2015-12-12

    In this paper, we report the design and characterization of a CMOS pixel direct charge sensor, Topmetal-II-, fabricated in a standard 0.35 μm CMOS Integrated Circuit process. The sensor utilizes exposed metal patches on top of each pixel to directly collect charge. Each pixel contains a low-noise charge-sensitive preamplifier to establish the analog signal and a discriminator with tunable threshold to generate hits. The analog signal from each pixel is accessible through time-shared multiplexing over the entire array. Hits are read out digitally through a column-based priority logic structure. Tests show that the sensor achieved a <15e - analog noisemore » and a 200e - minimum threshold for digital readout per pixel. The sensor is capable of detecting both electrons and ions drifting in gas. Lastly, these characteristics enable its use as the charge readout device in future Time Projection Chambers without gaseous gain mechanism, which has unique advantages in low background and low rate-density experiments.« less

  10. A low-noise CMOS pixel direct charge sensor, Topmetal-II-

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    An, Mangmang; Chen, Chufeng; Gao, Chaosong

    In this paper, we report the design and characterization of a CMOS pixel direct charge sensor, Topmetal-II-, fabricated in a standard 0.35 μm CMOS Integrated Circuit process. The sensor utilizes exposed metal patches on top of each pixel to directly collect charge. Each pixel contains a low-noise charge-sensitive preamplifier to establish the analog signal and a discriminator with tunable threshold to generate hits. The analog signal from each pixel is accessible through time-shared multiplexing over the entire array. Hits are read out digitally through a column-based priority logic structure. Tests show that the sensor achieved a <15e - analog noisemore » and a 200e - minimum threshold for digital readout per pixel. The sensor is capable of detecting both electrons and ions drifting in gas. Lastly, these characteristics enable its use as the charge readout device in future Time Projection Chambers without gaseous gain mechanism, which has unique advantages in low background and low rate-density experiments.« less

  11. Highly sensitive and area-efficient CMOS image sensor using a PMOSFET-type photodetector with a built-in transfer gate

    NASA Astrophysics Data System (ADS)

    Seo, Sang-Ho; Kim, Kyoung-Do; Kong, Jae-Sung; Shin, Jang-Kyoo; Choi, Pyung

    2007-02-01

    In this paper, a new CMOS image sensor is presented, which uses a PMOSFET-type photodetector with a transfer gate that has a high and variable sensitivity. The proposed CMOS image sensor has been fabricated using a 0.35 μm 2-poly 4- metal standard CMOS technology and is composed of a 256 × 256 array of 7.05 × 7.10 μm pixels. The unit pixel has a configuration of a pseudo 3-transistor active pixel sensor (APS) with the PMOSFET-type photodetector with a transfer gate, which has a function of conventional 4-transistor APS. The generated photocurrent is controlled by the transfer gate of the PMOSFET-type photodetector. The maximum responsivity of the photodetector is larger than 1.0 × 10 3 A/W without any optical lens. Fabricated 256 × 256 CMOS image sensor exhibits a good response to low-level illumination as low as 5 lux.

  12. A Novel Multi-Aperture Based Sun Sensor Based on a Fast Multi-Point MEANSHIFT (FMMS) Algorithm

    PubMed Central

    You, Zheng; Sun, Jian; Xing, Fei; Zhang, Gao-Fei

    2011-01-01

    With the current increased widespread interest in the development and applications of micro/nanosatellites, it was found that we needed to design a small high accuracy satellite attitude determination system, because the star trackers widely used in large satellites are large and heavy, and therefore not suitable for installation on micro/nanosatellites. A Sun sensor + magnetometer is proven to be a better alternative, but the conventional sun sensor has low accuracy, and cannot meet the requirements of the attitude determination systems of micro/nanosatellites, so the development of a small high accuracy sun sensor with high reliability is very significant. This paper presents a multi-aperture based sun sensor, which is composed of a micro-electro-mechanical system (MEMS) mask with 36 apertures and an active pixels sensor (APS) CMOS placed below the mask at a certain distance. A novel fast multi-point MEANSHIFT (FMMS) algorithm is proposed to improve the accuracy and reliability, the two key performance features, of an APS sun sensor. When the sunlight illuminates the sensor, a sun spot array image is formed on the APS detector. Then the sun angles can be derived by analyzing the aperture image location on the detector via the FMMS algorithm. With this system, the centroid accuracy of the sun image can reach 0.01 pixels, without increasing the weight and power consumption, even when some missing apertures and bad pixels appear on the detector due to aging of the devices and operation in a harsh space environment, while the pointing accuracy of the single-aperture sun sensor using the conventional correlation algorithm is only 0.05 pixels. PMID:22163770

  13. CMOS Active Pixel Sensors for Low Power, Highly Miniaturized Imaging Systems

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R.

    1996-01-01

    The complementary metal-oxide-semiconductor (CMOS) active pixel sensor (APS) technology has been developed over the past three years by NASA at the Jet Propulsion Laboratory, and has reached a level of performance comparable to CCDs with greatly increased functionality but at a very reduced power level.

  14. Reset noise suppression in two-dimensional CMOS photodiode pixels through column-based feedback-reset

    NASA Technical Reports Server (NTRS)

    Pain, B.; Cunningham, T. J.; Hancock, B.; Yang, G.; Seshadri, S.; Ortiz, M.

    2002-01-01

    We present new CMOS photodiode imager pixel with ultra-low read noise through on-chip suppression of reset noise via column-based feedback circuitry. The noise reduction is achieved without introducing any image lag, and with insignificant reduction in quantum efficiency and full well.

  15. CMOS VLSI Active-Pixel Sensor for Tracking

    NASA Technical Reports Server (NTRS)

    Pain, Bedabrata; Sun, Chao; Yang, Guang; Heynssens, Julie

    2004-01-01

    An architecture for a proposed active-pixel sensor (APS) and a design to implement the architecture in a complementary metal oxide semiconductor (CMOS) very-large-scale integrated (VLSI) circuit provide for some advanced features that are expected to be especially desirable for tracking pointlike features of stars. The architecture would also make this APS suitable for robotic- vision and general pointing and tracking applications. CMOS imagers in general are well suited for pointing and tracking because they can be configured for random access to selected pixels and to provide readout from windows of interest within their fields of view. However, until now, the architectures of CMOS imagers have not supported multiwindow operation or low-noise data collection. Moreover, smearing and motion artifacts in collected images have made prior CMOS imagers unsuitable for tracking applications. The proposed CMOS imager (see figure) would include an array of 1,024 by 1,024 pixels containing high-performance photodiode-based APS circuitry. The pixel pitch would be 9 m. The operations of the pixel circuits would be sequenced and otherwise controlled by an on-chip timing and control block, which would enable the collection of image data, during a single frame period, from either the full frame (that is, all 1,024 1,024 pixels) or from within as many as 8 different arbitrarily placed windows as large as 8 by 8 pixels each. A typical prior CMOS APS operates in a row-at-a-time ( grolling-shutter h) readout mode, which gives rise to exposure skew. In contrast, the proposed APS would operate in a sample-first/readlater mode, suppressing rolling-shutter effects. In this mode, the analog readout signals from the pixels corresponding to the windows of the interest (which windows, in the star-tracking application, would presumably contain guide stars) would be sampled rapidly by routing them through a programmable diagonal switch array to an on-chip parallel analog memory array. The diagonal-switch and memory addresses would be generated by the on-chip controller. The memory array would be large enough to hold differential signals acquired from all 8 windows during a frame period. Following the rapid sampling from all the windows, the contents of the memory array would be read out sequentially by use of a capacitive transimpedance amplifier (CTIA) at a maximum data rate of 10 MHz. This data rate is compatible with an update rate of almost 10 Hz, even in full-frame operation

  16. Centroid measurement error of CMOS detector in the presence of detector noise for inter-satellite optical communications

    NASA Astrophysics Data System (ADS)

    Li, Xin; Zhou, Shihong; Ma, Jing; Tan, Liying; Shen, Tao

    2013-08-01

    CMOS is a good candidate tracking detector for satellite optical communications systems with outstanding feature of sub-window for the development of APS (Active Pixel Sensor) technology. For inter-satellite optical communications it is critical to estimate the direction of incident laser beam precisely by measuring the centroid position of incident beam spot. The presence of detector noise results in measurement error, which degrades the tracking performance of systems. In this research, the measurement error of CMOS is derived taking consideration of detector noise. It is shown that the measurement error depends on pixel noise, size of the tracking sub-window (pixels number), intensity of incident laser beam, relative size of beam spot. The influences of these factors are analyzed by numerical simulation. We hope the results obtained in this research will be helpful in the design of CMOS detector satellite optical communications systems.

  17. 1T Pixel Using Floating-Body MOSFET for CMOS Image Sensors.

    PubMed

    Lu, Guo-Neng; Tournier, Arnaud; Roy, François; Deschamps, Benoît

    2009-01-01

    We present a single-transistor pixel for CMOS image sensors (CIS). It is a floating-body MOSFET structure, which is used as photo-sensing device and source-follower transistor, and can be controlled to store and evacuate charges. Our investigation into this 1T pixel structure includes modeling to obtain analytical description of conversion gain. Model validation has been done by comparing theoretical predictions and experimental results. On the other hand, the 1T pixel structure has been implemented in different configurations, including rectangular-gate and ring-gate designs, and variations of oxidation parameters for the fabrication process. The pixel characteristics are presented and discussed.

  18. CMOS foveal image sensor chip

    NASA Technical Reports Server (NTRS)

    Scott, Peter (Inventor); Sridhar, Ramalingam (Inventor); Bandera, Cesar (Inventor); Xia, Shu (Inventor)

    2002-01-01

    A foveal image sensor integrated circuit comprising a plurality of CMOS active pixel sensors arranged both within and about a central fovea region of the chip. The pixels in the central fovea region have a smaller size than the pixels arranged in peripheral rings about the central region. A new photocharge normalization scheme and associated circuitry normalizes the output signals from the different size pixels in the array. The pixels are assembled into a multi-resolution rectilinear foveal image sensor chip using a novel access scheme to reduce the number of analog RAM cells needed. Localized spatial resolution declines monotonically with offset from the imager's optical axis, analogous to biological foveal vision.

  19. A 45 nm Stacked CMOS Image Sensor Process Technology for Submicron Pixel.

    PubMed

    Takahashi, Seiji; Huang, Yi-Min; Sze, Jhy-Jyi; Wu, Tung-Ting; Guo, Fu-Sheng; Hsu, Wei-Cheng; Tseng, Tung-Hsiung; Liao, King; Kuo, Chin-Chia; Chen, Tzu-Hsiang; Chiang, Wei-Chieh; Chuang, Chun-Hao; Chou, Keng-Yu; Chung, Chi-Hsien; Chou, Kuo-Yu; Tseng, Chien-Hsien; Wang, Chuan-Joung; Yaung, Dun-Nien

    2017-12-05

    A submicron pixel's light and dark performance were studied by experiment and simulation. An advanced node technology incorporated with a stacked CMOS image sensor (CIS) is promising in that it may enhance performance. In this work, we demonstrated a low dark current of 3.2 e - /s at 60 °C, an ultra-low read noise of 0.90 e - ·rms, a high full well capacity (FWC) of 4100 e - , and blooming of 0.5% in 0.9 μm pixels with a pixel supply voltage of 2.8 V. In addition, the simulation study result of 0.8 μm pixels is discussed.

  20. Miniaturized LEDs for flat-panel displays

    NASA Astrophysics Data System (ADS)

    Radauscher, Erich J.; Meitl, Matthew; Prevatte, Carl; Bonafede, Salvatore; Rotzoll, Robert; Gomez, David; Moore, Tanya; Raymond, Brook; Cok, Ronald; Fecioru, Alin; Trindade, António Jose; Fisher, Brent; Goodwin, Scott; Hines, Paul; Melnik, George; Barnhill, Sam; Bower, Christopher A.

    2017-02-01

    Inorganic light emitting diodes (LEDs) serve as bright pixel-level emitters in displays, from indoor/outdoor video walls with pixel sizes ranging from one to thirty millimeters to micro displays with more than one thousand pixels per inch. Pixel sizes that fall between those ranges, roughly 50 to 500 microns, are some of the most commercially significant ones, including flat panel displays used in smart phones, tablets, and televisions. Flat panel displays that use inorganic LEDs as pixel level emitters (μILED displays) can offer levels of brightness, transparency, and functionality that are difficult to achieve with other flat panel technologies. Cost-effective production of μILED displays requires techniques for precisely arranging sparse arrays of extremely miniaturized devices on a panel substrate, such as transfer printing with an elastomer stamp. Here we present lab-scale demonstrations of transfer printed μILED displays and the processes used to make them. Demonstrations include passive matrix μILED displays that use conventional off-the shelf drive ASICs and active matrix μILED displays that use miniaturized pixel-level control circuits from CMOS wafers. We present a discussion of key considerations in the design and fabrication of highly miniaturized emitters for μILED displays.

  1. Single photon detection using Geiger mode CMOS avalanche photodiodes

    NASA Astrophysics Data System (ADS)

    Lawrence, William G.; Stapels, Christopher; Augustine, Frank L.; Christian, James F.

    2005-10-01

    Geiger mode Avalanche Photodiodes fabricated using complementary metal-oxide-semiconductor (CMOS) fabrication technology combine high sensitivity detectors with pixel-level auxiliary circuitry. Radiation Monitoring Devices has successfully implemented CMOS manufacturing techniques to develop prototype detectors with active diameters ranging from 5 to 60 microns and measured detection efficiencies of up to 60%. CMOS active quenching circuits are included in the pixel layout. The actively quenched pixels have a quenching time less than 30 ns and a maximum count rate greater than 10 MHz. The actively quenched Geiger mode avalanche photodiode (GPD) has linear response at room temperature over six orders of magnitude. When operating in Geiger mode, these GPDs act as single photon-counting detectors that produce a digital output pulse for each photon with no associated read noise. Thermoelectrically cooled detectors have less than 1 Hz dark counts. The detection efficiency, dark count rate, and after-pulsing of two different pixel designs are measured and demonstrate the differences in the device operation. Additional applications for these devices include nuclear imaging and replacement of photomultiplier tubes in dosimeters.

  2. WE-G-204-05: Relative Object Detectability Evaluation of a New High Resolution A-Se Direct Detection System Compared to Indirect Micro-Angiographic Fluoroscopic (MAF) Detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russ, M; Nagesh, S Setlur; Ionita, C

    2015-06-15

    Purpose: To evaluate the task specific imaging performance of a new 25µm pixel pitch, 1000µm thick amorphous selenium direct detection system with CMOS readout for typical angiographic exposure parameters using the relative object detectability (ROD) metric. Methods: The ROD metric uses a simulated object function weighted at each spatial frequency by the detectors’ detective quantum efficiency (DQE), which is an intrinsic performance metric. For this study, the simulated objects were aluminum spheres of varying diameter (0.05–0.6mm). The weighted object function is then integrated over the full range of detectable frequencies inherent to each detector, and a ratio is taken ofmore » the resulting value for two detectors. The DQE for the 25µm detector was obtained from a simulation of a proposed a-Se detector using an exposure of 200µR for a 50keV x-ray beam. This a-Se detector was compared to two microangiographic fluoroscope (MAF) detectors [the MAF-CCD with pixel size of 35µm and Nyquist frequency of 14.2 cycles/mm and the MAF-CMOS with pixel size of 75µm and Nyquist frequency of 6.6 cycles/mm] and a standard flat-panel detector (FPD with pixel size of 194µm and Nyquist frequency of 2.5cycles/mm). Results: ROD calculations indicated vastly superior performance by the a-Se detector in imaging small aluminum spheres. For the 50µm diameter sphere, the ROD values for the a-Se detector compared to the MAF-CCD, the MAF-CMOS, and the FPD were 7.3, 9.3 and 58, respectively. Detector performance in the low frequency regime was dictated by each detector’s DQE(0) value. Conclusion: The a-Se with CMOS readout is unique and appears to have distinctive advantages of incomparable high resolution, low noise, no readout lag, and expandable design. The a-Se direct detection system will be a powerful imaging tool in angiography, with potential break-through applications in diagnosis and treatment of neuro-vascular disease. Supported by NIH Grant: 2R01EB002873 and an equipment grant from Toshiba Medical Systems Corporation.« less

  3. 50 μm pixel pitch wafer-scale CMOS active pixel sensor x-ray detector for digital breast tomosynthesis.

    PubMed

    Zhao, C; Konstantinidis, A C; Zheng, Y; Anaxagoras, T; Speller, R D; Kanicki, J

    2015-12-07

    Wafer-scale CMOS active pixel sensors (APSs) have been developed recently for x-ray imaging applications. The small pixel pitch and low noise are very promising properties for medical imaging applications such as digital breast tomosynthesis (DBT). In this work, we evaluated experimentally and through modeling the imaging properties of a 50 μm pixel pitch CMOS APS x-ray detector named DynAMITe (Dynamic Range Adjustable for Medical Imaging Technology). A modified cascaded system model was developed for CMOS APS x-ray detectors by taking into account the device nonlinear signal and noise properties. The imaging properties such as modulation transfer function (MTF), noise power spectrum (NPS), and detective quantum efficiency (DQE) were extracted from both measurements and the nonlinear cascaded system analysis. The results show that the DynAMITe x-ray detector achieves a high spatial resolution of 10 mm(-1) and a DQE of around 0.5 at spatial frequencies  <1 mm(-1). In addition, the modeling results were used to calculate the image signal-to-noise ratio (SNRi) of microcalcifications at various mean glandular dose (MGD). For an average breast (5 cm thickness, 50% glandular fraction), 165 μm microcalcifications can be distinguished at a MGD of 27% lower than the clinical value (~1.3 mGy). To detect 100 μm microcalcifications, further optimizations of the CMOS APS x-ray detector, image aquisition geometry and image reconstruction techniques should be considered.

  4. Design of an ultra low power CMOS pixel sensor for a future neutron personal dosimeter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Y.; Hu-Guo, C.; Husson, D.

    2011-07-01

    Despite a continuously increasing demand, neutron electronic personal dosimeters (EPDs) are still far from being completely established because their development is a very difficult task. A low-noise, ultra low power consumption CMOS pixel sensor for a future neutron personal dosimeter has been implemented in a 0.35 {mu}m CMOS technology. The prototype is composed of a pixel array for detection of charged particles, and the readout electronics is integrated on the same substrate for signal processing. The excess electrons generated by an impinging particle are collected by the pixel array. The charge collection time and the efficiency are the crucial pointsmore » of a CMOS detector. The 3-D device simulations using the commercially available Synopsys-SENTAURUS package address the detailed charge collection process. Within a time of 1.9 {mu}s, about 59% electrons created by the impact particle are collected in a cluster of 4 x 4 pixels with the pixel pitch of 80 {mu}m. A charge sensitive preamplifier (CSA) and a shaper are employed in the frond-end readout. The tests with electrical signals indicate that our prototype with a total active area of 2.56 x 2.56 mm{sup 2} performs an equivalent noise charge (ENC) of less than 400 e - and 314 {mu}W power consumption, leading to a promising prototype. (authors)« less

  5. CMOS image sensor with lateral electric field modulation pixels for fluorescence lifetime imaging with sub-nanosecond time response

    NASA Astrophysics Data System (ADS)

    Li, Zhuo; Seo, Min-Woong; Kagawa, Keiichiro; Yasutomi, Keita; Kawahito, Shoji

    2016-04-01

    This paper presents the design and implementation of a time-resolved CMOS image sensor with a high-speed lateral electric field modulation (LEFM) gating structure for time domain fluorescence lifetime measurement. Time-windowed signal charge can be transferred from a pinned photodiode (PPD) to a pinned storage diode (PSD) by turning on a pair of transfer gates, which are situated beside the channel. Unwanted signal charge can be drained from the PPD to the drain by turning on another pair of gates. The pixel array contains 512 (V) × 310 (H) pixels with 5.6 × 5.6 µm2 pixel size. The imager chip was fabricated using 0.11 µm CMOS image sensor process technology. The prototype sensor has a time response of 150 ps at 374 nm. The fill factor of the pixels is 5.6%. The usefulness of the prototype sensor is demonstrated for fluorescence lifetime imaging through simulation and measurement results.

  6. A robust color signal processing with wide dynamic range WRGB CMOS image sensor

    NASA Astrophysics Data System (ADS)

    Kawada, Shun; Kuroda, Rihito; Sugawa, Shigetoshi

    2011-01-01

    We have developed a robust color reproduction methodology by a simple calculation with a new color matrix using the formerly developed wide dynamic range WRGB lateral overflow integration capacitor (LOFIC) CMOS image sensor. The image sensor was fabricated through a 0.18 μm CMOS technology and has a 45 degrees oblique pixel array, the 4.2 μm effective pixel pitch and the W pixels. A W pixel was formed by replacing one of the two G pixels in the Bayer RGB color filter. The W pixel has a high sensitivity through the visible light waveband. An emerald green and yellow (EGY) signal is generated from the difference between the W signal and the sum of RGB signals. This EGY signal mainly includes emerald green and yellow lights. These colors are difficult to be reproduced accurately by the conventional simple linear matrix because their wave lengths are in the valleys of the spectral sensitivity characteristics of the RGB pixels. A new linear matrix based on the EGY-RGB signal was developed. Using this simple matrix, a highly accurate color processing with a large margin to the sensitivity fluctuation and noise has been achieved.

  7. CMOS sensors for atmospheric imaging

    NASA Astrophysics Data System (ADS)

    Pratlong, Jérôme; Burt, David; Jerram, Paul; Mayer, Frédéric; Walker, Andrew; Simpson, Robert; Johnson, Steven; Hubbard, Wendy

    2017-09-01

    Recent European atmospheric imaging missions have seen a move towards the use of CMOS sensors for the visible and NIR parts of the spectrum. These applications have particular challenges that are completely different to those that have driven the development of commercial sensors for applications such as cell-phone or SLR cameras. This paper will cover the design and performance of general-purpose image sensors that are to be used in the MTG (Meteosat Third Generation) and MetImage satellites and the technology challenges that they have presented. We will discuss how CMOS imagers have been designed with 4T pixel sizes of up to 250 μm square achieving good charge transfer efficiency, or low lag, with signal levels up to 2M electrons and with high line rates. In both devices a low noise analogue read-out chain is used with correlated double sampling to suppress the readout noise and give a maximum dynamic range that is significantly larger than in standard commercial devices. Radiation hardness is a particular challenge for CMOS detectors and both of these sensors have been designed to be fully radiation hard with high latch-up and single-event-upset tolerances, which is now silicon proven on MTG. We will also cover the impact of ionising radiation on these devices. Because with such large pixels the photodiodes have a large open area, front illumination technology is sufficient to meet the detection efficiency requirements but with thicker than standard epitaxial silicon to give improved IR response (note that this makes latch up protection even more important). However with narrow band illumination reflections from the front and back of the dielectric stack on the top of the sensor produce Fabry-Perot étalon effects, which have been minimised with process modifications. We will also cover the addition of precision narrow band filters inside the MTG package to provide a complete imaging subsystem. Control of reflected light is also critical in obtaining the required optical performance and this has driven the development of a black coating layer that can be applied between the active silicon regions.

  8. An ultra-low power CMOS image sensor with on-chip energy harvesting and power management capability.

    PubMed

    Cevik, Ismail; Huang, Xiwei; Yu, Hao; Yan, Mei; Ay, Suat U

    2015-03-06

    An ultra-low power CMOS image sensor with on-chip energy harvesting and power management capability is introduced in this paper. The photodiode pixel array can not only capture images but also harvest solar energy. As such, the CMOS image sensor chip is able to switch between imaging and harvesting modes towards self-power operation. Moreover, an on-chip maximum power point tracking (MPPT)-based power management system (PMS) is designed for the dual-mode image sensor to further improve the energy efficiency. A new isolated P-well energy harvesting and imaging (EHI) pixel with very high fill factor is introduced. Several ultra-low power design techniques such as reset and select boosting techniques have been utilized to maintain a wide pixel dynamic range. The chip was designed and fabricated in a 1.8 V, 1P6M 0.18 µm CMOS process. Total power consumption of the imager is 6.53 µW for a 96 × 96 pixel array with 1 V supply and 5 fps frame rate. Up to 30 μW of power could be generated by the new EHI pixels. The PMS is capable of providing 3× the power required during imaging mode with 50% efficiency allowing energy autonomous operation with a 72.5% duty cycle.

  9. Testbeam results of irradiated ams H18 HV-CMOS pixel sensor prototypes

    NASA Astrophysics Data System (ADS)

    Benoit, M.; Braccini, S.; Casse, G.; Chen, H.; Chen, K.; Di Bello, F. A.; Ferrere, D.; Golling, T.; Gonzalez-Sevilla, S.; Iacobucci, G.; Kiehn, M.; Lanni, F.; Liu, H.; Meng, L.; Merlassino, C.; Miucci, A.; Muenstermann, D.; Nessi, M.; Okawa, H.; Perić, I.; Rimoldi, M.; Ristić, B.; Barrero Pinto, M. Vicente; Vossebeld, J.; Weber, M.; Weston, T.; Wu, W.; Xu, L.; Zaffaroni, E.

    2018-02-01

    HV-CMOS pixel sensors are a promising option for the tracker upgrade of the ATLAS experiment at the LHC, as well as for other future tracking applications in which large areas are to be instrumented with radiation-tolerant silicon pixel sensors. We present results of testbeam characterisations of the 4th generation of Capacitively Coupled Pixel Detectors (CCPDv4) produced with the ams H18 HV-CMOS process that have been irradiated with different particles (reactor neutrons and 18 MeV protons) to fluences between 1× 1014 and 5× 1015 1-MeV- neq. The sensors were glued to ATLAS FE-I4 pixel readout chips and measured at the CERN SPS H8 beamline using the FE-I4 beam telescope. Results for all fluences are very encouraging with all hit efficiencies being better than 97% for bias voltages of 85 V. The sample irradiated to a fluence of 1× 1015 neq—a relevant value for a large volume of the upgraded tracker—exhibited 99.7% average hit efficiency. The results give strong evidence for the radiation tolerance of HV-CMOS sensors and their suitability as sensors for the experimental HL-LHC upgrades and future large-area silicon-based tracking detectors in high-radiation environments.

  10. An Ultra-Low Power CMOS Image Sensor with On-Chip Energy Harvesting and Power Management Capability

    PubMed Central

    Cevik, Ismail; Huang, Xiwei; Yu, Hao; Yan, Mei; Ay, Suat U.

    2015-01-01

    An ultra-low power CMOS image sensor with on-chip energy harvesting and power management capability is introduced in this paper. The photodiode pixel array can not only capture images but also harvest solar energy. As such, the CMOS image sensor chip is able to switch between imaging and harvesting modes towards self-power operation. Moreover, an on-chip maximum power point tracking (MPPT)-based power management system (PMS) is designed for the dual-mode image sensor to further improve the energy efficiency. A new isolated P-well energy harvesting and imaging (EHI) pixel with very high fill factor is introduced. Several ultra-low power design techniques such as reset and select boosting techniques have been utilized to maintain a wide pixel dynamic range. The chip was designed and fabricated in a 1.8 V, 1P6M 0.18 µm CMOS process. Total power consumption of the imager is 6.53 µW for a 96 × 96 pixel array with 1 V supply and 5 fps frame rate. Up to 30 μW of power could be generated by the new EHI pixels. The PMS is capable of providing 3× the power required during imaging mode with 50% efficiency allowing energy autonomous operation with a 72.5% duty cycle. PMID:25756863

  11. Active-Pixel Image Sensor With Analog-To-Digital Converters

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R.; Mendis, Sunetra K.; Pain, Bedabrata; Nixon, Robert H.

    1995-01-01

    Proposed single-chip integrated-circuit image sensor contains 128 x 128 array of active pixel sensors at 50-micrometer pitch. Output terminals of all pixels in each given column connected to analog-to-digital (A/D) converter located at bottom of column. Pixels scanned in semiparallel fashion, one row at time; during time allocated to scanning row, outputs of all active pixel sensors in row fed to respective A/D converters. Design of chip based on complementary metal oxide semiconductor (CMOS) technology, and individual circuit elements fabricated according to 2-micrometer CMOS design rules. Active pixel sensors designed to operate at video rate of 30 frames/second, even at low light levels. A/D scheme based on first-order Sigma-Delta modulation.

  12. Photon counting readout pixel array in 0.18-μm CMOS technology for on-line gamma-ray imaging of 103palladium seeds for permanent breast seed implant (PBSI) brachytherapy

    NASA Astrophysics Data System (ADS)

    Goldan, A. H.; Karim, K. S.; Reznik, A.; Caldwell, C. B.; Rowlands, J. A.

    2008-03-01

    Permanent breast seed implant (PBSI) brachytherapy technique was recently introduced as an alternative to high dose rate (HDR) brachytherapy and involves the permanent implantation of radioactive 103Palladium seeds into the surgical cavity of the breast for cancer treatment. To enable accurate seed implantation, this research introduces a gamma camera based on a hybrid amorphous selenium detector and CMOS readout pixel architecture for real-time imaging of 103Palladium seeds during the PBSI procedure. A prototype chip was designed and fabricated in 0.18-μm n-well CMOS process. We present the experimental results obtained from this integrated photon counting readout pixel.

  13. Photodiode area effect on performance of X-ray CMOS active pixel sensors

    NASA Astrophysics Data System (ADS)

    Kim, M. S.; Kim, Y.; Kim, G.; Lim, K. T.; Cho, G.; Kim, D.

    2018-02-01

    Compared to conventional TFT-based X-ray imaging devices, CMOS-based X-ray imaging sensors are considered next generation because they can be manufactured in very small pixel pitches and can acquire high-speed images. In addition, CMOS-based sensors have the advantage of integration of various functional circuits within the sensor. The image quality can also be improved by the high fill-factor in large pixels. If the size of the subject is small, the size of the pixel must be reduced as a consequence. In addition, the fill factor must be reduced to aggregate various functional circuits within the pixel. In this study, 3T-APS (active pixel sensor) with photodiodes of four different sizes were fabricated and evaluated. It is well known that a larger photodiode leads to improved overall performance. Nonetheless, if the size of the photodiode is > 1000 μm2, the degree to which the sensor performance increases as the photodiode size increases, is reduced. As a result, considering the fill factor, pixel-pitch > 32 μm is not necessary to achieve high-efficiency image quality. In addition, poor image quality is to be expected unless special sensor-design techniques are included for sensors with a pixel pitch of 25 μm or less.

  14. CMOS minimal array

    NASA Astrophysics Data System (ADS)

    Janesick, James; Cheng, John; Bishop, Jeanne; Andrews, James T.; Tower, John; Walker, Jeff; Grygon, Mark; Elliot, Tom

    2006-08-01

    A high performance prototype CMOS imager is introduced. Test data is reviewed for different array formats that utilize 3T photo diode, 5T pinned photo diode and 6T photo gate CMOS pixel architectures. The imager allows several readout modes including progressive scan, snap and windowed operation. The new imager is built on different silicon substrates including very high resistivity epitaxial wafers for deep depletion operation. Data products contained in this paper focus on sensor's read noise, charge capacity, charge transfer efficiency, thermal dark current, RTS dark spikes, QE, pixel cross- talk and on-chip analog circuitry performance.

  15. Results of the 2015 testbeam of a 180 nm AMS High-Voltage CMOS sensor prototype

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benoit, M.; de Mendizabal, J. Bilbao; Casse, G.

    We investigated the active pixel sensors based on the High-Voltage CMOS technology as a viable option for the future pixel tracker of the ATLAS experiment at the High-Luminosity LHC. Our paper reports on the testbeam measurements performed at the H8 beamline of the CERN Super Proton Synchrotron on a High-Voltage CMOS sensor prototype produced in 180 nm AMS technology. These results in terms of tracking efficiency and timing performance, for different threshold and bias conditions, are shown.

  16. Results of the 2015 testbeam of a 180 nm AMS High-Voltage CMOS sensor prototype

    DOE PAGES

    Benoit, M.; de Mendizabal, J. Bilbao; Casse, G.; ...

    2016-07-21

    We investigated the active pixel sensors based on the High-Voltage CMOS technology as a viable option for the future pixel tracker of the ATLAS experiment at the High-Luminosity LHC. Our paper reports on the testbeam measurements performed at the H8 beamline of the CERN Super Proton Synchrotron on a High-Voltage CMOS sensor prototype produced in 180 nm AMS technology. These results in terms of tracking efficiency and timing performance, for different threshold and bias conditions, are shown.

  17. Optical and Electric Multifunctional CMOS Image Sensors for On-Chip Biosensing Applications.

    PubMed

    Tokuda, Takashi; Noda, Toshihiko; Sasagawa, Kiyotaka; Ohta, Jun

    2010-12-29

    In this review, the concept, design, performance, and a functional demonstration of multifunctional complementary metal-oxide-semiconductor (CMOS) image sensors dedicated to on-chip biosensing applications are described. We developed a sensor architecture that allows flexible configuration of a sensing pixel array consisting of optical and electric sensing pixels, and designed multifunctional CMOS image sensors that can sense light intensity and electric potential or apply a voltage to an on-chip measurement target. We describe the sensors' architecture on the basis of the type of electric measurement or imaging functionalities.

  18. Study of prototypes of LFoundry active CMOS pixels sensors for the ATLAS detector

    NASA Astrophysics Data System (ADS)

    Vigani, L.; Bortoletto, D.; Ambroz, L.; Plackett, R.; Hemperek, T.; Rymaszewski, P.; Wang, T.; Krueger, H.; Hirono, T.; Caicedo Sierra, I.; Wermes, N.; Barbero, M.; Bhat, S.; Breugnon, P.; Chen, Z.; Godiot, S.; Pangaud, P.; Rozanov, A.

    2018-02-01

    Current high energy particle physics experiments at the LHC use hybrid silicon detectors, in both pixel and strip configurations, for their inner trackers. These detectors have proven to be very reliable and performant. Nevertheless, there is great interest in depleted CMOS silicon detectors, which could achieve a similar performance at lower cost of production. We present recent developments of this technology in the framework of the ATLAS CMOS demonstrator project. In particular, studies of two active sensors from LFoundry, CCPD_LF and LFCPIX, are shown.

  19. Preliminary performances measured on a CMOS long linear array for space application

    NASA Astrophysics Data System (ADS)

    Renard, Christophe; Artinian, Armand; Dantes, Didier; Lepage, Gérald; Diels, Wim

    2017-11-01

    This paper presents the design and the preliminary performances of a CMOS linear array, resulting from collaboration between Alcatel Alenia Space and Cypress Semiconductor BVBA, which takes advantage of emerging potentialities of CMOS technologies. The design of the sensor is presented: it includes 8000 panchromatic pixels with up to 25 rows used in TDI mode, and 4 lines of 2000 pixels for multispectral imaging. Main system requirements and detector tradeoffs are recalled, and the preliminary test results obtained with a first generation prototype are summarized and compared with predicted performances.

  20. First light from a very large area pixel array for high-throughput x-ray polarimetry

    NASA Astrophysics Data System (ADS)

    Bellazzini, R.; Spandre, G.; Minuti, M.; Baldini, L.; Brez, A.; Cavalca, F.; Latronico, L.; Omodei, N.; Massai, M. M.; Sgrò, C.; Costa, E.; Soffitta, P.; Krummenacher, F.; de Oliveira, R.

    2006-06-01

    We report on a large active area (15x15mm2), high channel density (470 pixels/mm2), self-triggering CMOS analog chip that we have developed as pixelized charge collecting electrode of a Micropattern Gas Detector. This device, which represents a big step forward both in terms of size and performance, is the last version of three generations of custom ASICs of increasing complexity. The CMOS pixel array has the top metal layer patterned in a matrix of 105600 hexagonal pixels at 50μm pitch. Each pixel is directly connected to the underneath full electronics chain which has been realized in the remaining five metal and single poly-silicon layers of a standard 0.18μm CMOS VLSI technology. The chip has customizable self-triggering capability and includes a signal pre-processing function for the automatic localization of the event coordinates. In this way it is possible to reduce significantly the readout time and the data volume by limiting the signal output only to those pixels belonging to the region of interest. The very small pixel area and the use of a deep sub-micron CMOS technology has brought the noise down to 50 electrons ENC. Results from in depth tests of this device when coupled to a fine pitch (50μm on a triangular pattern) Gas Electron Multiplier are presented. The matching of readout and gas amplification pitch allows getting optimal results. The application of this detector for Astronomical X-Ray Polarimetry is discussed. The experimental detector response to polarized and unpolarized X-ray radiation when working with two gas mixtures and two different photon energies is shown. Results from a full MonteCarlo simulation for several galactic and extragalactic astronomical sources are also reported.

  1. Light-controlled biphasic current stimulator IC using CMOS image sensors for high-resolution retinal prosthesis and in vitro experimental results with rd1 mouse.

    PubMed

    Oh, Sungjin; Ahn, Jae-Hyun; Lee, Sangmin; Ko, Hyoungho; Seo, Jong Mo; Goo, Yong-Sook; Cho, Dong-il Dan

    2015-01-01

    Retinal prosthetic devices stimulate retinal nerve cells with electrical signals proportional to the incident light intensities. For a high-resolution retinal prosthesis, it is necessary to reduce the size of the stimulator pixels as much as possible, because the retinal nerve cells are concentrated in a small area of approximately 5 mm × 5 mm. In this paper, a miniaturized biphasic current stimulator integrated circuit is developed for subretinal stimulation and tested in vitro. The stimulator pixel is miniaturized by using a complementary metal-oxide-semiconductor (CMOS) image sensor composed of three transistors. Compared to a pixel that uses a four-transistor CMOS image sensor, this new design reduces the pixel size by 8.3%. The pixel size is further reduced by simplifying the stimulation-current generating circuit, which provides a 43.9% size reduction when compared to the design reported to be the most advanced version to date for subretinal stimulation. The proposed design is fabricated using a 0.35 μm bipolar-CMOS-DMOS process. Each pixel is designed to fit in a 50 μ m × 55 μm area, which theoretically allows implementing more than 5000 pixels in the 5 mm × 5 mm area. Experimental results show that a biphasic current in the range of 0 to 300 μA at 12 V can be generated as a function of incident light intensities. Results from in vitro experiments with rd1 mice indicate that the proposed method can be effectively used for retinal prosthesis with a high resolution.

  2. All-CMOS night vision viewer with integrated microdisplay

    NASA Astrophysics Data System (ADS)

    Goosen, Marius E.; Venter, Petrus J.; du Plessis, Monuko; Faure, Nicolaas M.; Janse van Rensburg, Christo; Rademeyer, Pieter

    2014-02-01

    The unrivalled integration potential of CMOS has made it the dominant technology for digital integrated circuits. With the advent of visible light emission from silicon through hot carrier electroluminescence, several applications arose, all of which rely upon the advantages of mature CMOS technologies for a competitive edge in a very active and attractive market. In this paper we present a low-cost night vision viewer which employs only standard CMOS technologies. A commercial CMOS imager is utilized for near infrared image capturing with a 128x96 pixel all-CMOS microdisplay implemented to convey the image to the user. The display is implemented in a standard 0.35 μm CMOS process, with no process alterations or post processing. The display features a 25 μm pixel pitch and a 3.2 mm x 2.4 mm active area, which through magnification presents the virtual image to the user equivalent of a 19-inch display viewed from a distance of 3 meters. This work represents the first application of a CMOS microdisplay in a low-cost consumer product.

  3. Characterization and development of an event-driven hybrid CMOS x-ray detector

    NASA Astrophysics Data System (ADS)

    Griffith, Christopher

    2015-06-01

    Hybrid CMOS detectors (HCD) have provided great benefit to the infrared and optical fields of astronomy, and they are poised to do the same for X-ray astronomy. Infrared HCDs have already flown on the Hubble Space Telescope and the Wide-Field Infrared Survey Explorer (WISE) mission and are slated to fly on the James Webb Space Telescope (JWST). Hybrid CMOS X-ray detectors offer low susceptibility to radiation damage, low power consumption, and fast readout time to avoid pile-up. The fast readout time is necessary for future high throughput X-ray missions. The Speedster-EXD X-ray HCD presented in this dissertation offers new in-pixel features and reduces known noise sources seen on previous generation HCDs. The Speedster-EXD detector makes a great step forward in the development of these detectors for future space missions. This dissertation begins with an overview of future X-ray space mission concepts and their detector requirements. The background on the physics of semiconductor devices and an explanation of the detection of X-rays with these devices will be discussed followed by a discussion on CCDs and CMOS detectors. Next, hybrid CMOS X-ray detectors will be explained including their advantages and disadvantages. The Speedster-EXD detector and its new features will be outlined including its ability to only read out pixels which contain X-ray events. Test stand design and construction for the Speedster-EXD detector is outlined and the characterization of each parameter on two Speedster-EXD detectors is detailed including read noise, dark current, interpixel capacitance crosstalk (IPC), and energy resolution. Gain variation is also characterized, and a Monte Carlo simulation of its impact on energy resolution is described. This analysis shows that its effect can be successfully nullified with proper calibration, which would be important for a flight mission. Appendix B contains a study of the extreme tidal disruption event, Swift J1644+57, to search for periodicities in its X-ray light curve. iii.

  4. Low Power Camera-on-a-Chip Using CMOS Active Pixel Sensor Technology

    NASA Technical Reports Server (NTRS)

    Fossum, E. R.

    1995-01-01

    A second generation image sensor technology has been developed at the NASA Jet Propulsion Laboratory as a result of the continuing need to miniaturize space science imaging instruments. Implemented using standard CMOS, the active pixel sensor (APS) technology permits the integration of the detector array with on-chip timing, control and signal chain electronics, including analog-to-digital conversion.

  5. CMOS Active Pixel Sensors as energy-range detectors for proton Computed Tomography.

    PubMed

    Esposito, M; Anaxagoras, T; Evans, P M; Green, S; Manolopoulos, S; Nieto-Camero, J; Parker, D J; Poludniowski, G; Price, T; Waltham, C; Allinson, N M

    2015-06-03

    Since the first proof of concept in the early 70s, a number of technologies has been proposed to perform proton CT (pCT), as a means of mapping tissue stopping power for accurate treatment planning in proton therapy. Previous prototypes of energy-range detectors for pCT have been mainly based on the use of scintillator-based calorimeters, to measure proton residual energy after passing through the patient. However, such an approach is limited by the need for only a single proton passing through the energy-range detector in a read-out cycle. A novel approach to this problem could be the use of pixelated detectors, where the independent read-out of each pixel allows to measure simultaneously the residual energy of a number of protons in the same read-out cycle, facilitating a faster and more efficient pCT scan. This paper investigates the suitability of CMOS Active Pixel Sensors (APSs) to track individual protons as they go through a number of CMOS layers, forming an energy-range telescope. Measurements performed at the iThemba Laboratories will be presented and analysed in terms of correlation, to confirm capability of proton tracking for CMOS APSs.

  6. Contact CMOS imaging of gaseous oxygen sensor array

    PubMed Central

    Daivasagaya, Daisy S.; Yao, Lei; Yi Yung, Ka; Hajj-Hassan, Mohamad; Cheung, Maurice C.; Chodavarapu, Vamsy P.; Bright, Frank V.

    2014-01-01

    We describe a compact luminescent gaseous oxygen (O2) sensor microsystem based on the direct integration of sensor elements with a polymeric optical filter and placed on a low power complementary metal-oxide semiconductor (CMOS) imager integrated circuit (IC). The sensor operates on the measurement of excited-state emission intensity of O2-sensitive luminophore molecules tris(4,7-diphenyl-1,10-phenanthroline) ruthenium(II) ([Ru(dpp)3]2+) encapsulated within sol–gel derived xerogel thin films. The polymeric optical filter is made with polydimethylsiloxane (PDMS) that is mixed with a dye (Sudan-II). The PDMS membrane surface is molded to incorporate arrays of trapezoidal microstructures that serve to focus the optical sensor signals on to the imager pixels. The molded PDMS membrane is then attached with the PDMS color filter. The xerogel sensor arrays are contact printed on top of the PDMS trapezoidal lens-like microstructures. The CMOS imager uses a 32 × 32 (1024 elements) array of active pixel sensors and each pixel includes a high-gain phototransistor to convert the detected optical signals into electrical currents. Correlated double sampling circuit, pixel address, digital control and signal integration circuits are also implemented on-chip. The CMOS imager data is read out as a serial coded signal. The CMOS imager consumes a static power of 320 µW and an average dynamic power of 625 µW when operating at 100 Hz sampling frequency and 1.8 V DC. This CMOS sensor system provides a useful platform for the development of miniaturized optical chemical gas sensors. PMID:24493909

  7. Contact CMOS imaging of gaseous oxygen sensor array.

    PubMed

    Daivasagaya, Daisy S; Yao, Lei; Yi Yung, Ka; Hajj-Hassan, Mohamad; Cheung, Maurice C; Chodavarapu, Vamsy P; Bright, Frank V

    2011-10-01

    We describe a compact luminescent gaseous oxygen (O 2 ) sensor microsystem based on the direct integration of sensor elements with a polymeric optical filter and placed on a low power complementary metal-oxide semiconductor (CMOS) imager integrated circuit (IC). The sensor operates on the measurement of excited-state emission intensity of O 2 -sensitive luminophore molecules tris(4,7-diphenyl-1,10-phenanthroline) ruthenium(II) ([Ru(dpp) 3 ] 2+ ) encapsulated within sol-gel derived xerogel thin films. The polymeric optical filter is made with polydimethylsiloxane (PDMS) that is mixed with a dye (Sudan-II). The PDMS membrane surface is molded to incorporate arrays of trapezoidal microstructures that serve to focus the optical sensor signals on to the imager pixels. The molded PDMS membrane is then attached with the PDMS color filter. The xerogel sensor arrays are contact printed on top of the PDMS trapezoidal lens-like microstructures. The CMOS imager uses a 32 × 32 (1024 elements) array of active pixel sensors and each pixel includes a high-gain phototransistor to convert the detected optical signals into electrical currents. Correlated double sampling circuit, pixel address, digital control and signal integration circuits are also implemented on-chip. The CMOS imager data is read out as a serial coded signal. The CMOS imager consumes a static power of 320 µW and an average dynamic power of 625 µW when operating at 100 Hz sampling frequency and 1.8 V DC. This CMOS sensor system provides a useful platform for the development of miniaturized optical chemical gas sensors.

  8. 320 x 240 uncooled IRFPA with pixel wise thin film vacuum packaging

    NASA Astrophysics Data System (ADS)

    Yon, J.-J.; Dumont, G.; Rabaud, W.; Becker, S.; Carle, L.; Goudon, V.; Vialle, C.; Hamelin, A.; Arnaud, A.

    2012-10-01

    Silicon based vacuum packaging is a key enabling technology for achieving affordable uncooled Infrared Focal Plane Arrays (IRFPA) as required by the promising mass market for very low cost IR applications, such as automotive driving assistance, energy loss monitoring in buildings, motion sensors… Among the various approaches studied worldwide, the CEA, LETI is developing a unique technology where each bolometer pixel is sealed under vacuum at the wafer level, using an IR transparent thin film deposition. This technology referred to as PLP (Pixel Level Packaging), leads to an array of hermetic micro-caps each containing a single microbolometer. Since the successful demonstration that the PLP technology, when applied on a single microbolometer pixel, can provide the required vacuum < 10-3 mbar, the authors have pushed forward the development of the technology on fully operational QVGA readout circuits CMOS base wafers (320 x 240 pixels). In this outlook, the article reports on the electro optical performance obtained from this preliminary PLP based QVGA demonstrator. Apart from the response, noise and NETD distributions, the paper also puts emphasis on additional key features such as thermal time constant, image quality, and ageing properties.

  9. A 256×256 low-light-level CMOS imaging sensor with digital CDS

    NASA Astrophysics Data System (ADS)

    Zou, Mei; Chen, Nan; Zhong, Shengyou; Li, Zhengfen; Zhang, Jicun; Yao, Li-bin

    2016-10-01

    In order to achieve high sensitivity for low-light-level CMOS image sensors (CIS), a capacitive transimpedance amplifier (CTIA) pixel circuit with a small integration capacitor is used. As the pixel and the column area are highly constrained, it is difficult to achieve analog correlated double sampling (CDS) to remove the noise for low-light-level CIS. So a digital CDS is adopted, which realizes the subtraction algorithm between the reset signal and pixel signal off-chip. The pixel reset noise and part of the column fixed-pattern noise (FPN) can be greatly reduced. A 256×256 CIS with CTIA array and digital CDS is implemented in the 0.35μm CMOS technology. The chip size is 7.7mm×6.75mm, and the pixel size is 15μm×15μm with a fill factor of 20.6%. The measured pixel noise is 24LSB with digital CDS in RMS value at dark condition, which shows 7.8× reduction compared to the image sensor without digital CDS. Running at 7fps, this low-light-level CIS can capture recognizable images with the illumination down to 0.1lux.

  10. Mk x Nk gated CMOS imager

    NASA Astrophysics Data System (ADS)

    Janesick, James; Elliott, Tom; Andrews, James; Tower, John; Bell, Perry; Teruya, Alan; Kimbrough, Joe; Bishop, Jeanne

    2014-09-01

    Our paper will describe a recently designed Mk x Nk x 10 um pixel CMOS gated imager intended to be first employed at the LLNL National Ignition Facility (NIF). Fabrication involves stitching MxN 1024x1024x10 um pixel blocks together into a monolithic imager (where M = 1, 2, . .10 and N = 1, 2, . . 10). The imager has been designed for either NMOS or PMOS pixel fabrication using a base 0.18 um/3.3V CMOS process. Details behind the design are discussed with emphasis on a custom global reset feature which erases the imager of unwanted charge in ~1 us during the fusion ignition process followed by an exposure to obtain useful data. Performance data generated by prototype imagers designed similar to the Mk x Nk sensor is presented.

  11. A CMOS pixel sensor prototype for the outer layers of linear collider vertex detector

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Morel, F.; Hu-Guo, C.; Himmi, A.; Dorokhov, A.; Hu, Y.

    2015-01-01

    The International Linear Collider (ILC) expresses a stringent requirement for high precision vertex detectors (VXD). CMOS pixel sensors (CPS) have been considered as an option for the VXD of the International Large Detector (ILD), one of the detector concepts proposed for the ILC. MIMOSA-31 developed at IPHC-Strasbourg is the first CPS integrated with 4-bit column-level ADC for the outer layers of the VXD, adapted to an original concept minimizing the power consumption. It is composed of a matrix of 64 rows and 48 columns. The pixel concept combines in-pixel amplification with a correlated double sampling (CDS) operation in order to reduce the temporal noise and fixed pattern noise (FPN). At the bottom of the pixel array, each column is terminated with a self-triggered analog-to-digital converter (ADC). The ADC design was optimized for power saving at a sampling frequency of 6.25 MS/s. The prototype chip is fabricated in a 0.35 μm CMOS technology. This paper presents the details of the prototype chip and its test results.

  12. Testbeam results of irradiated ams H18 HV-CMOS pixel sensor prototypes

    DOE PAGES

    Benoit, M.; Braccini, S.; Casse, G.; ...

    2018-02-08

    HV-CMOS pixel sensors are a promising option for the tracker upgrade of the ATLAS experiment at the LHC, as well as for other future tracking applications in which large areas are to be instrumented with radiation-tolerant silicon pixel sensors. We present results of testbeam characterisations of the 4 th generation of Capacitively Coupled Pixel Detectors (CCPDv4) produced with the ams H18 HV-CMOS process that have been irradiated with different particles (reactor neutrons and 18 MeV protons) to fluences between 1×10 14 and 5×10 15 1–MeV– n eq. The sensors were glued to ATLAS FE-I4 pixel readout chips and measured atmore » the CERN SPS H8 beamline using the FE-I4 beam telescope. Results for all fluences are very encouraging with all hit efficiencies being better than 97% for bias voltages of 85 V. The sample irradiated to a fluence of 1×10 15 neq—a relevant value for a large volume of the upgraded tracker—exhibited 99.7% average hit efficiency. Furthermore, the results give strong evidence for the radiation tolerance of HV-CMOS sensors and their suitability as sensors for the experimental HL-LHC upgrades and future large-area silicon-based tracking detectors in high-radiation environments.« less

  13. Testbeam results of irradiated ams H18 HV-CMOS pixel sensor prototypes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benoit, M.; Braccini, S.; Casse, G.

    HV-CMOS pixel sensors are a promising option for the tracker upgrade of the ATLAS experiment at the LHC, as well as for other future tracking applications in which large areas are to be instrumented with radiation-tolerant silicon pixel sensors. We present results of testbeam characterisations of the 4 th generation of Capacitively Coupled Pixel Detectors (CCPDv4) produced with the ams H18 HV-CMOS process that have been irradiated with different particles (reactor neutrons and 18 MeV protons) to fluences between 1×10 14 and 5×10 15 1–MeV– n eq. The sensors were glued to ATLAS FE-I4 pixel readout chips and measured atmore » the CERN SPS H8 beamline using the FE-I4 beam telescope. Results for all fluences are very encouraging with all hit efficiencies being better than 97% for bias voltages of 85 V. The sample irradiated to a fluence of 1×10 15 neq—a relevant value for a large volume of the upgraded tracker—exhibited 99.7% average hit efficiency. Furthermore, the results give strong evidence for the radiation tolerance of HV-CMOS sensors and their suitability as sensors for the experimental HL-LHC upgrades and future large-area silicon-based tracking detectors in high-radiation environments.« less

  14. EDITORIAL: Micro-pixellated LEDs for science and instrumentation

    NASA Astrophysics Data System (ADS)

    Dawson, Martin D.; Neil, Mark A. A.

    2008-05-01

    This Cluster Issue of Journal of Physics D: Applied Physics highlights micro-pixellated gallium nitride light-emitting diodes or `micro-LEDs', an emerging technology offering considerable attractions for a broad range of scientific and instrumentation applications. It showcases the results of a Research Councils UK (RCUK) Basic Technology Research programme (http://bt-onethousand.photonics.ac.uk), running from 2004-2008, which has drawn together a multi-disciplinary and multi-institutional research partnership to develop these devices and explore their potential. Images of LEDs Examples of GaN micro-pixel LEDs in operation. Images supplied courtesy of the Guest Editors. The partnership, of physicists, engineers and chemists drawn from the University of Strathclyde, Heriot-Watt University, the University of Sheffield and Imperial College London, has sought to move beyond the established mass-market uses of gallium nitride LEDs in illumination and lighting. Instead, it focuses on specialised solid-state micro-projection devices the size of a match-head, containing up to several thousand individually-addressable micro-pixel elements emitting light in the ultraviolet or visible regions of the spectrum. Such sources are pattern-programmable under computer control and can project into materials fixed or high-frame rate optical images or spatially-controllable patterns of nanosecond excitation pulses. These materials can be as diverse as biological cells and tissues, biopolymers, photoresists and organic semiconductors, leading to new developments in optical microscopy, bio-sensing and chemical sensing, mask-free lithography and direct writing, and organic electronics. Particular areas of interest are multi-modal microscopy, integrated forms of organic semiconductor lasers, lab-on-a-chip, GaN/Si optoelectronics and hybrid inorganic/organic semiconductor structures. This Cluster Issue contains four invited papers and ten contributed papers. The invited papers serve to set the work in an international context. Fan et al, who introduced the original forms of these devices in 2000, give a historical perspective as well as illustrating some recent trends in their work. Xu et al, another of the main international groups in this area, concentrate on biological imaging and detection applications. One of the most exciting prospects for this technology is its compatibility with CMOS, and Charbon reviews recent results with single-photon detection arrays which facilitate integrated optical lab-on-chip devices in conjunction with the micro-LEDs. Belton et al, from within the project partnership, overview the hybrid inorganic/organic semiconductor structures achieved by combining gallium nitride optoelectronics with organic semiconductor materials. The contributed papers cover many other aspects related to the devices themselves, their integration with polymers and CMOS, and also cover several associated developments such as UV-emitting nitride materials, new polymers, and the broader use of LEDs in microscopy. Images of LED fibres Emission patterns generated at the end of a multicore image fibre 600 μm in diameter, from article 094013 by H Xu et al of Brown University. We would like to thank Paul French for suggesting this special issue, the staff of IOP Publishing for their help and support, Dr Caroline Vance for her administration of the programme, and EPSRC (particularly Dr Lindsey Weston) for organizational and financial support.

  15. Performance of a novel wafer scale CMOS active pixel sensor for bio-medical imaging.

    PubMed

    Esposito, M; Anaxagoras, T; Konstantinidis, A C; Zheng, Y; Speller, R D; Evans, P M; Allinson, N M; Wells, K

    2014-07-07

    Recently CMOS active pixels sensors (APSs) have become a valuable alternative to amorphous silicon and selenium flat panel imagers (FPIs) in bio-medical imaging applications. CMOS APSs can now be scaled up to the standard 20 cm diameter wafer size by means of a reticle stitching block process. However, despite wafer scale CMOS APS being monolithic, sources of non-uniformity of response and regional variations can persist representing a significant challenge for wafer scale sensor response. Non-uniformity of stitched sensors can arise from a number of factors related to the manufacturing process, including variation of amplification, variation between readout components, wafer defects and process variations across the wafer due to manufacturing processes. This paper reports on an investigation into the spatial non-uniformity and regional variations of a wafer scale stitched CMOS APS. For the first time a per-pixel analysis of the electro-optical performance of a wafer CMOS APS is presented, to address inhomogeneity issues arising from the stitching techniques used to manufacture wafer scale sensors. A complete model of the signal generation in the pixel array has been provided and proved capable of accounting for noise and gain variations across the pixel array. This novel analysis leads to readout noise and conversion gain being evaluated at pixel level, stitching block level and in regions of interest, resulting in a coefficient of variation ⩽1.9%. The uniformity of the image quality performance has been further investigated in a typical x-ray application, i.e. mammography, showing a uniformity in terms of CNR among the highest when compared with mammography detectors commonly used in clinical practice. Finally, in order to compare the detection capability of this novel APS with the technology currently used (i.e. FPIs), theoretical evaluation of the detection quantum efficiency (DQE) at zero-frequency has been performed, resulting in a higher DQE for this detector compared to FPIs. Optical characterization, x-ray contrast measurements and theoretical DQE evaluation suggest that a trade off can be found between the need of a large imaging area and the requirement of a uniform imaging performance, making the DynAMITe large area CMOS APS suitable for a range of bio-medical applications.

  16. Camera-on-a-Chip

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Jet Propulsion Laboratory's research on a second generation, solid-state image sensor technology has resulted in the Complementary Metal- Oxide Semiconductor Active Pixel Sensor (CMOS), establishing an alternative to the Charged Coupled Device (CCD). Photobit Corporation, the leading supplier of CMOS image sensors, has commercialized two products of their own based on this technology: the PB-100 and PB-300. These devices are cameras on a chip, combining all camera functions. CMOS "active-pixel" digital image sensors offer several advantages over CCDs, a technology used in video and still-camera applications for 30 years. The CMOS sensors draw less energy, they use the same manufacturing platform as most microprocessors and memory chips, and they allow on-chip programming of frame size, exposure, and other parameters.

  17. SVGA and XGA LCOS microdisplays for HMD applications

    NASA Astrophysics Data System (ADS)

    Bolotski, Michael; Alvelda, Phillip

    1999-07-01

    MicroDisplay liquid crystal on silicon (LCOS) display devices are based on a combination of technologies combined with the extreme integration capability of conventionally fabricated CMOS substrates. Two recent SVGA (800 X 600) pixel resolution designs were demonstrated based on 10 micron and 12.5-micron pixel pitch architectures. The resulting microdisplays measure approximately 10 mm and 12 mm in diagonal respectively. Further, an XGA (1024 X 768) resolution display fabricated with a 12.5-micron pixel pitch with a 16-mm diagonal was also demonstrated. Both the larger SVGA and the XGA design were based on the same 12.5-micron pixel-pitch design, demonstrating a quickly scalable design architecture for rapid prototyping life-cycles. All three microdisplay designs described above function in grayscale and high-performance Field-Sequential-Color (FSC) operating modes. The fast liquid crystal operating modes and new scalable high- performance pixel addressing architectures presented in this paper enable substantially improved color, contrast, and brightness while still satisfying the optical, packaging, and power requirements of portable commercial and defense applications including ultra-portable helmet, eyeglass, and heat-mounted systems. The entire suite of The MicroDisplay Corporation's technologies was devised to create a line of mixed-signal application-specific integrated circuits (ASIC) in single-chip display systems. Mixed-signal circuits can integrate computing, memory, and communication circuitry on the same substrate as the display drivers and pixel array for a multifunctional complete system-on-a-chip. For helmet and head-mounted displays this can include capabilities such as the incorporation of customized symbology and information storage directly on the display substrate. System-on-a-chip benefits also include reduced head supported weight requirements through the elimination of off-chip drive electronics.

  18. Optical and Electric Multifunctional CMOS Image Sensors for On-Chip Biosensing Applications

    PubMed Central

    Tokuda, Takashi; Noda, Toshihiko; Sasagawa, Kiyotaka; Ohta, Jun

    2010-01-01

    In this review, the concept, design, performance, and a functional demonstration of multifunctional complementary metal-oxide-semiconductor (CMOS) image sensors dedicated to on-chip biosensing applications are described. We developed a sensor architecture that allows flexible configuration of a sensing pixel array consisting of optical and electric sensing pixels, and designed multifunctional CMOS image sensors that can sense light intensity and electric potential or apply a voltage to an on-chip measurement target. We describe the sensors’ architecture on the basis of the type of electric measurement or imaging functionalities. PMID:28879978

  19. Optical design of microlens array for CMOS image sensors

    NASA Astrophysics Data System (ADS)

    Zhang, Rongzhu; Lai, Liping

    2016-10-01

    The optical crosstalk between the pixel units can influence the image quality of CMOS image sensor. In the meantime, the duty ratio of CMOS is low because of its pixel structure. These two factors cause the low detection sensitivity of CMOS. In order to reduce the optical crosstalk and improve the fill factor of CMOS image sensor, a microlens array has been designed and integrated with CMOS. The initial parameters of the microlens array have been calculated according to the structure of a CMOS. Then the parameters have been optimized by using ZEMAX and the microlens arrays with different substrate thicknesses have been compared. The results show that in order to obtain the best imaging quality, when the effect of optical crosstalk for CMOS is the minimum, the best distance between microlens array and CMOS is about 19.3 μm. When incident light successively passes through microlens array and the distance, obtaining the minimum facula is around 0.347 um in the active area. In addition, when the incident angle of the light is 0o 22o, the microlens array has obvious inhibitory effect on the optical crosstalk. And the anti-crosstalk distance between microlens array and CMOS is 0 μm 162 μm.

  20. Development of a 750x750 pixels CMOS imager sensor for tracking applications

    NASA Astrophysics Data System (ADS)

    Larnaudie, Franck; Guardiola, Nicolas; Saint-Pé, Olivier; Vignon, Bruno; Tulet, Michel; Davancens, Robert; Magnan, Pierre; Corbière, Franck; Martin-Gonthier, Philippe; Estribeau, Magali

    2017-11-01

    Solid-state optical sensors are now commonly used in space applications (navigation cameras, astronomy imagers, tracking sensors...). Although the charge-coupled devices are still widely used, the CMOS image sensor (CIS), which performances are continuously improving, is a strong challenger for Guidance, Navigation and Control (GNC) systems. This paper describes a 750x750 pixels CMOS image sensor that has been specially designed and developed for star tracker and tracking sensor applications. Such detector, that is featuring smart architecture enabling very simple and powerful operations, is built using the AMIS 0.5μm CMOS technology. It contains 750x750 rectangular pixels with 20μm pitch. The geometry of the pixel sensitive zone is optimized for applications based on centroiding measurements. The main feature of this device is the on-chip control and timing function that makes the device operation easier by drastically reducing the number of clocks to be applied. This powerful function allows the user to operate the sensor with high flexibility: measurement of dark level from masked lines, direct access to the windows of interest… A temperature probe is also integrated within the CMOS chip allowing a very precise measurement through the video stream. A complete electro-optical characterization of the sensor has been performed. The major parameters have been evaluated: dark current and its uniformity, read-out noise, conversion gain, Fixed Pattern Noise, Photo Response Non Uniformity, quantum efficiency, Modulation Transfer Function, intra-pixel scanning. The characterization tests are detailed in the paper. Co60 and protons irradiation tests have been also carried out on the image sensor and the results are presented. The specific features of the 750x750 image sensor such as low power CMOS design (3.3V, power consumption<100mW), natural windowing (that allows efficient and robust tracking algorithms), simple proximity electronics (because of the on-chip control and timing function) enabling a high flexibility architecture, make this imager a good candidate for high performance tracking applications.

  1. Comparative study of various pixel photodiodes for digital radiography: Junction structure, corner shape and noble window opening

    NASA Astrophysics Data System (ADS)

    Kang, Dong-Uk; Cho, Minsik; Lee, Dae Hee; Yoo, Hyunjun; Kim, Myung Soo; Bae, Jun Hyung; Kim, Hyoungtaek; Kim, Jongyul; Kim, Hyunduk; Cho, Gyuseong

    2012-05-01

    Recently, large-size 3-transistors (3-Tr) active pixel complementary metal-oxide silicon (CMOS) image sensors have been being used for medium-size digital X-ray radiography, such as dental computed tomography (CT), mammography and nondestructive testing (NDT) for consumer products. We designed and fabricated 50 µm × 50 µm 3-Tr test pixels having a pixel photodiode with various structures and shapes by using the TSMC 0.25-m standard CMOS process to compare their optical characteristics. The pixel photodiode output was continuously sampled while a test pixel was continuously illuminated by using 550-nm light at a constant intensity. The measurement was repeated 300 times for each test pixel to obtain reliable results on the mean and the variance of the pixel output at each sampling time. The sampling rate was 50 kHz, and the reset period was 200 msec. To estimate the conversion gain, we used the mean-variance method. From the measured results, the n-well/p-substrate photodiode, among 3 photodiode structures available in a standard CMOS process, showed the best performance at a low illumination equivalent to the typical X-ray signal range. The quantum efficiencies of the n+/p-well, n-well/p-substrate, and n+/p-substrate photodiodes were 18.5%, 62.1%, and 51.5%, respectively. From a comparison of pixels with rounded and rectangular corners, we found that a rounded corner structure could reduce the dark current in large-size pixels. A pixel with four rounded corners showed a reduced dark current of about 200fA compared to a pixel with four rectangular corners in our pixel sample size. Photodiodes with round p-implant openings showed about 5% higher dark current, but about 34% higher sensitivities, than the conventional photodiodes.

  2. Spatial optical crosstalk in CMOS image sensors integrated with plasmonic color filters.

    PubMed

    Yu, Yan; Chen, Qin; Wen, Long; Hu, Xin; Zhang, Hui-Fang

    2015-08-24

    Imaging resolution of complementary metal oxide semiconductor (CMOS) image sensor (CIS) keeps increasing to approximately 7k × 4k. As a result, the pixel size shrinks down to sub-2μm, which greatly increases the spatial optical crosstalk. Recently, plasmonic color filter was proposed as an alternative to conventional colorant pigmented ones. However, there is little work on its size effect and the spatial optical crosstalk in a model of CIS. By numerical simulation, we investigate the size effect of nanocross array plasmonic color filters and analyze the spatial optical crosstalk of each pixel in a Bayer array of a CIS with a pixel size of 1μm. It is found that the small pixel size deteriorates the filtering performance of nanocross color filters and induces substantial spatial color crosstalk. By integrating the plasmonic filters in the low Metal layer in standard CMOS process, the crosstalk reduces significantly, which is compatible to pigmented filters in a state-of-the-art backside illumination CIS.

  3. A CMOS image sensor with stacked photodiodes for lensless observation system of digital enzyme-linked immunosorbent assay

    NASA Astrophysics Data System (ADS)

    Takehara, Hironari; Miyazawa, Kazuya; Noda, Toshihiko; Sasagawa, Kiyotaka; Tokuda, Takashi; Kim, Soo Hyeon; Iino, Ryota; Noji, Hiroyuki; Ohta, Jun

    2014-01-01

    A CMOS image sensor with stacked photodiodes was fabricated using 0.18 µm mixed signal CMOS process technology. Two photodiodes were stacked at the same position of each pixel of the CMOS image sensor. The stacked photodiodes consist of shallow high-concentration N-type layer (N+), P-type well (PW), deep N-type well (DNW), and P-type substrate (P-sub). PW and P-sub were shorted to ground. By monitoring the voltage of N+ and DNW individually, we can observe two monochromatic colors simultaneously without using any color filters. The CMOS image sensor is suitable for fluorescence imaging, especially contact imaging such as a lensless observation system of digital enzyme-linked immunosorbent assay (ELISA). Since the fluorescence increases with time in digital ELISA, it is possible to observe fluorescence accurately by calculating the difference from the initial relation between the pixel values for both photodiodes.

  4. A 65k pixel, 150k frames-per-second camera with global gating and micro-lenses suitable for fluorescence lifetime imaging

    NASA Astrophysics Data System (ADS)

    Burri, Samuel; Powolny, François; Bruschini, Claudio E.; Michalet, Xavier; Regazzoni, Francesco; Charbon, Edoardo

    2014-05-01

    This paper presents our work on a 65k pixel single-photon avalanche diode (SPAD) based imaging sensor realized in a 0.35μm standard CMOS process. At a resolution of 512 by 128 pixels the sensor is read out in 6.4μs to deliver over 150k monochrome frames per second. The individual pixel has a size of 24μm2 and contains the SPAD with a 12T quenching and gating circuitry along with a memory element. The gating signals are distributed across the chip through a balanced tree to minimize the signal skew between the pixels. The array of pixels is row-addressable and data is sent out of the chip on 128 lines in parallel at a frequency of 80MHz. The system is controlled by an FPGA which generates the gating and readout signals and can be used for arbitrary real-time computation on the frames from the sensor. The communication protocol between the camera and a conventional PC is USB2. The active area of the chip is 5% and can be significantly improved with the application of a micro-lens array. A micro-lens array, for use with collimated light, has been designed and its performance is reviewed in the paper. Among other high-speed phenomena the gating circuitry capable of generating illumination periods shorter than 5ns can be used for Fluorescence Lifetime Imaging (FLIM). In order to measure the lifetime of fluorophores excited by a picosecond laser, the sensor's illumination period is synchronized with the excitation laser pulses. A histogram of the photon arrival times relative to the excitation is then constructed by counting the photons arriving during the sensitive time for several positions of the illumination window. The histogram for each pixel is transferred afterwards to a computer where software routines extract the lifetime at each location with an accuracy better than 100ps. We show results for fluorescence lifetime measurements using different fluorophores with lifetimes ranging from 150ps to 5ns.

  5. Proof of principle study of the use of a CMOS active pixel sensor for proton radiography.

    PubMed

    Seco, Joao; Depauw, Nicolas

    2011-02-01

    Proof of principle study of the use of a CMOS active pixel sensor (APS) in producing proton radiographic images using the proton beam at the Massachusetts General Hospital (MGH). A CMOS APS, previously tested for use in s-ray radiation therapy applications, was used for proton beam radiographic imaging at the MGH. Two different setups were used as a proof of principle that CMOS can be used as proton imaging device: (i) a pen with two metal screws to assess spatial resolution of the CMOS and (ii) a phantom with lung tissue, bone tissue, and water to assess tissue contrast of the CMOS. The sensor was then traversed by a double scattered monoenergetic proton beam at 117 MeV, and the energy deposition inside the detector was recorded to assess its energy response. Conventional x-ray images with similar setup at voltages of 70 kVp and proton images using commercial Gafchromic EBT 2 and Kodak X-Omat V films were also taken for comparison purposes. Images were successfully acquired and compared to x-ray kVp and proton EBT2/X-Omat film images. The spatial resolution of the CMOS detector image is subjectively comparable to the EBT2 and Kodak X-Omat V film images obtained at the same object-detector distance. X-rays have apparent higher spatial resolution than the CMOS. However, further studies with different commercial films using proton beam irradiation demonstrate that the distance of the detector to the object is important to the amount of proton scatter contributing to the proton image. Proton images obtained with films at different distances from the source indicate that proton scatter significantly affects the CMOS image quality. Proton radiographic images were successfully acquired at MGH using a CMOS active pixel sensor detector. The CMOS demonstrated spatial resolution subjectively comparable to films at the same object-detector distance. Further work will be done in order to establish the spatial and energy resolution of the CMOS detector for protons. The development and use of CMOS in proton radiography could allow in vivo proton range checks, patient setup QA, and real-time tumor tracking.

  6. Solar XUV Imaging and Non-dispersive Spectroscopy for Solar-C Enabled by Scientific CMOS APS Arrays

    NASA Astrophysics Data System (ADS)

    Stern, Robert A.; Lemen, J. R.; Shing, L.; Janesick, J.; Tower, J.

    2009-05-01

    Monolithic CMOS Advanced Pixel Sensor (APS) arrays are showing great promise as eventual replacements for the current workhorse of solar physics focal planes, the scientific CCD. CMOS APS devices have individually addressable pixels, increased radiation tolerance compared to CCDs, and require lower clock voltages, and thus lower power. However, commercially available CMOS chips, while suitable for use with intensifiers or fluorescent coatings, are generally not optimized for direct detection of EUV and X-ray photons. A high performance scientific CMOS array designed for these wavelengths will have significant new capabilities compared to CCDs, including the ability to read out small regions of the solar disk at high (sub sec) cadence, count single X-ray photons with Fano-limited energy resolution, and even operate at room temperature with good noise performance. Such capabilities will be crucial for future solar X-ray and EUV missions such as Solar-C. Sarnoff Corporation has developed scientific grade, monolithic CMOS arrays for X-ray imaging and photon counting. One prototype device, the "minimal" array, has 8 um pixels, is 15 to 25 um thick, is fabricated on high-resistivity ( 10 to 20 kohm-cm) Si wafers, and can be back-illuminated. These characteristics yield high quantum efficiency and high spatial resolution with minimal charge sharing among pixels, making it ideal for the detection of keV X-rays. When used with digital correlated double sampling, the array has demonstrated noise performance as low as 2 e, allowing single photon counting of X-rays over a range of temperatures. We report test results for this device in X-rays, and discuss the implications for future solar space missions.

  7. A CMOS-based high-resolution fluoroscope (HRF) detector prototype with 49.5μm pixels for use in endovascular image guided interventions (EIGI)

    NASA Astrophysics Data System (ADS)

    Russ, M.; Shankar, A.; Setlur Nagesh, S. V.; Ionita, C. N.; Bednarek, D. R.; Rudin, S.

    2017-03-01

    X-ray detectors to meet the high-resolution requirements for endovascular image-guided interventions (EIGIs) are being developed and evaluated. A new 49.5-micron pixel prototype detector is being investigated and compared to the current suite of high-resolution fluoroscopic (HRF) detectors. This detector featuring a 300-micron thick CsI(Tl) scintillator, and low electronic noise CMOS readout is designated the HRF- CMOS50. To compare the abilities of this detector with other existing high resolution detectors, a standard performance metric analysis was applied, including the determination of the modulation transfer function (MTF), noise power spectra (NPS), noise equivalent quanta (NEQ), and detective quantum efficiency (DQE) for a range of energies and exposure levels. The advantage of the smaller pixel size and reduced blurring due to the thin phosphor was exemplified when the MTF of the HRF-CMOS50 was compared to the other high resolution detectors, which utilize larger pixels, other optical designs or thicker scintillators. However, the thinner scintillator has the disadvantage of a lower quantum detective efficiency (QDE) for higher diagnostic x-ray energies. The performance of the detector as part of an imaging chain was examined by employing the generalized metrics GMTF, GNEQ, and GDQE, taking standard focal spot size and clinical imaging parameters into consideration. As expected, the disparaging effects of focal spot unsharpness, exacerbated by increasing magnification, degraded the higher-frequency performance of the HRF-CMOS50, while increasing scatter fraction diminished low-frequency performance. Nevertheless, the HRF-CMOS50 brings improved resolution capabilities for EIGIs, but would require increased sensitivity and dynamic range for future clinical application.

  8. Experimental single-chip color HDTV image acquisition system with 8M-pixel CMOS image sensor

    NASA Astrophysics Data System (ADS)

    Shimamoto, Hiroshi; Yamashita, Takayuki; Funatsu, Ryohei; Mitani, Kohji; Nojiri, Yuji

    2006-02-01

    We have developed an experimental single-chip color HDTV image acquisition system using 8M-pixel CMOS image sensor. The sensor has 3840 × 2160 effective pixels and is progressively scanned at 60 frames per second. We describe the color filter array and interpolation method to improve image quality with a high-pixel-count single-chip sensor. We also describe an experimental image acquisition system we used to measured spatial frequency characteristics in the horizontal direction. The results indicate good prospects for achieving a high quality single chip HDTV camera that reduces pseudo signals and maintains high spatial frequency characteristics within the frequency band for HDTV.

  9. Crosstalk quantification, analysis, and trends in CMOS image sensors.

    PubMed

    Blockstein, Lior; Yadid-Pecht, Orly

    2010-08-20

    Pixel crosstalk (CTK) consists of three components, optical CTK (OCTK), electrical CTK (ECTK), and spectral CTK (SCTK). The CTK has been classified into two groups: pixel-architecture dependent and pixel-architecture independent. The pixel-architecture-dependent CTK (PADC) consists of the sum of two CTK components, i.e., the OCTK and the ECTK. This work presents a short summary of a large variety of methods for PADC reduction. Following that, this work suggests a clear quantifiable definition of PADC. Three complementary metal-oxide-semiconductor (CMOS) image sensors based on different technologies were empirically measured, using a unique scanning technology, the S-cube. The PADC is analyzed, and technology trends are shown.

  10. A 45 nm Stacked CMOS Image Sensor Process Technology for Submicron Pixel †

    PubMed Central

    Takahashi, Seiji; Huang, Yi-Min; Sze, Jhy-Jyi; Wu, Tung-Ting; Guo, Fu-Sheng; Hsu, Wei-Cheng; Tseng, Tung-Hsiung; Liao, King; Kuo, Chin-Chia; Chen, Tzu-Hsiang; Chiang, Wei-Chieh; Chuang, Chun-Hao; Chou, Keng-Yu; Chung, Chi-Hsien; Chou, Kuo-Yu; Tseng, Chien-Hsien; Wang, Chuan-Joung; Yaung, Dun-Nien

    2017-01-01

    A submicron pixel’s light and dark performance were studied by experiment and simulation. An advanced node technology incorporated with a stacked CMOS image sensor (CIS) is promising in that it may enhance performance. In this work, we demonstrated a low dark current of 3.2 e−/s at 60 °C, an ultra-low read noise of 0.90 e−·rms, a high full well capacity (FWC) of 4100 e−, and blooming of 0.5% in 0.9 μm pixels with a pixel supply voltage of 2.8 V. In addition, the simulation study result of 0.8 μm pixels is discussed. PMID:29206162

  11. Log polar image sensor in CMOS technology

    NASA Astrophysics Data System (ADS)

    Scheffer, Danny; Dierickx, Bart; Pardo, Fernando; Vlummens, Jan; Meynants, Guy; Hermans, Lou

    1996-08-01

    We report on the design, design issues, fabrication and performance of a log-polar CMOS image sensor. The sensor is developed for the use in a videophone system for deaf and hearing impaired people, who are not capable of communicating through a 'normal' telephone. The system allows 15 detailed images per second to be transmitted over existing telephone lines. This framerate is sufficient for conversations by means of sign language or lip reading. The pixel array of the sensor consists of 76 concentric circles with (up to) 128 pixels per circle, in total 8013 pixels. The interior pixels have a pitch of 14 micrometers, up to 250 micrometers at the border. The 8013-pixels image is mapped (log-polar transformation) in a X-Y addressable 76 by 128 array.

  12. Characterisation of capacitively coupled HV/HR-CMOS sensor chips for the CLIC vertex detector

    NASA Astrophysics Data System (ADS)

    Kremastiotis, I.

    2017-12-01

    The capacitive coupling between an active sensor and a readout ASIC has been considered in the framework of the CLIC vertex detector study. The CLICpix Capacitively Coupled Pixel Detector (C3PD) is a High-Voltage CMOS sensor chip produced in a commercial 180 nm HV-CMOS process for this purpose. The sensor was designed to be connected to the CLICpix2 readout chip. It therefore matches the dimensions of the readout chip, featuring a matrix of 128×128 square pixels with 25μm pitch. The sensor chip has been produced with the standard value for the substrate resistivity (~20 Ωcm) and it has been characterised in standalone testing mode, before receiving and testing capacitively coupled assemblies. The standalone measurement results show a rise time of ~20 ns for a power consumption of 5μW/pixel. Production of the C3PD HV-CMOS sensor chip with higher substrate resistivity wafers (~20, 80, 200 and 1000 Ωcm) is foreseen. The expected benefits of the higher substrate resistivity will be studied using future assemblies with the readout chip.

  13. X-ray performance of 0.18 µm CMOS APS test arrays for solar observation

    NASA Astrophysics Data System (ADS)

    Dryer, B. J.; Holland, A. D.; Jerram, P.; Sakao, Taro

    2012-07-01

    Solar-C is the third generation solar observatory led by JAXA. The accepted ‘Plan-B’ payload calls for a radiation-hard solar-staring photon-counting x-ray spectrometer. CMOS APS technology offers advantages over CCDs for such an application such as increased radiation hardness and high frame rate (instrument target of 1000 fps). Looking towards the solution of a bespoke CMOS APS, this paper reports the x-ray spectroscopy performance, concentrating on charge collection efficiency and split event analysis, of two baseline e2v CMOS APSs not designed for x-ray performance, the EV76C454 and the Ocean Colour Imager (OCI) test array. The EV76C454 is an industrial 5T APS designed for machine vision, available back and front illuminated. The OCI test arrays have varying pixel design across the chips, but are 4T, back illuminated and have thin low-resistivity and thick high-resistivity variants. The OCI test arrays’ pixel variants allow understanding of how pixel design can affect x-ray performance.

  14. Imaging system design and image interpolation based on CMOS image sensor

    NASA Astrophysics Data System (ADS)

    Li, Yu-feng; Liang, Fei; Guo, Rui

    2009-11-01

    An image acquisition system is introduced, which consists of a color CMOS image sensor (OV9620), SRAM (CY62148), CPLD (EPM7128AE) and DSP (TMS320VC5509A). The CPLD implements the logic and timing control to the system. SRAM stores the image data, and DSP controls the image acquisition system through the SCCB (Omni Vision Serial Camera Control Bus). The timing sequence of the CMOS image sensor OV9620 is analyzed. The imaging part and the high speed image data memory unit are designed. The hardware and software design of the image acquisition and processing system is given. CMOS digital cameras use color filter arrays to sample different spectral components, such as red, green, and blue. At the location of each pixel only one color sample is taken, and the other colors must be interpolated from neighboring samples. We use the edge-oriented adaptive interpolation algorithm for the edge pixels and bilinear interpolation algorithm for the non-edge pixels to improve the visual quality of the interpolated images. This method can get high processing speed, decrease the computational complexity, and effectively preserve the image edges.

  15. Direct reading of charge multipliers with a self-triggering CMOS analog chip with 105 k pixels at 50 μm pitch

    NASA Astrophysics Data System (ADS)

    Bellazzini, R.; Spandre, G.; Minuti, M.; Baldini, L.; Brez, A.; Cavalca, F.; Latronico, L.; Omodei, N.; Massai, M. M.; Sgro', C.; Costa, E.; Soffitta, P.; Krummenacher, F.; de Oliveira, R.

    2006-10-01

    We report on a large area (15×15 mm2), high channel density (470 pixel/mm2), self-triggering CMOS analog chip that we have developed as a pixelized charge collecting electrode of a Micropattern Gas Detector. This device represents a big step forward both in terms of size and performance, and is in fact the last version of three generations of custom ASICs of increasing complexity. The top metal layer of the CMOS pixel array is patterned in a matrix of 105,600 hexagonal pixels with a 50 μm pitch. Each pixel is directly connected to the underlying full electronics chain which has been realized in the remaining five metal and single poly-silicon layers of a 0.18 μm VLSI technology. The chip, which has customizable self-triggering capabilities, also includes a signal pre-processing function for the automatic localization of the event coordinates. Thanks to these advances it is possible to significantly reduce the read-out time and the data volume by limiting the signal output only to those pixels belonging to the region of interest. In addition to the reduced read-out time and data volume, the very small pixel area and the use of a deep sub-micron CMOS technology has allowed bringing the noise down to 50 electrons ENC. Results from in depth tests of this device when coupled to a fine pitch (50 μm on a triangular pattern) Gas Electron Multiplier are presented. It was found that matching the read-out and gas amplification pitch allows getting optimal results. The experimental detector response to polarized and unpolarized X-ray radiation when working with two gas mixtures and two different photon energies is shown and the application of this detector for Astronomical X-ray Polarimetry is discussed. Results from a full Monte-Carlo simulation for several galactic and extragalactic astronomical sources are also reported.

  16. Smart CMOS image sensor for lightning detection and imaging.

    PubMed

    Rolando, Sébastien; Goiffon, Vincent; Magnan, Pierre; Corbière, Franck; Molina, Romain; Tulet, Michel; Bréart-de-Boisanger, Michel; Saint-Pé, Olivier; Guiry, Saïprasad; Larnaudie, Franck; Leone, Bruno; Perez-Cuevas, Leticia; Zayer, Igor

    2013-03-01

    We present a CMOS image sensor dedicated to lightning detection and imaging. The detector has been designed to evaluate the potentiality of an on-chip lightning detection solution based on a smart sensor. This evaluation is performed in the frame of the predevelopment phase of the lightning detector that will be implemented in the Meteosat Third Generation Imager satellite for the European Space Agency. The lightning detection process is performed by a smart detector combining an in-pixel frame-to-frame difference comparison with an adjustable threshold and on-chip digital processing allowing an efficient localization of a faint lightning pulse on the entire large format array at a frequency of 1 kHz. A CMOS prototype sensor with a 256×256 pixel array and a 60 μm pixel pitch has been fabricated using a 0.35 μm 2P 5M technology and tested to validate the selected detection approach.

  17. Innovative monolithic detector for tri-spectral (THz, IR, Vis) imaging

    NASA Astrophysics Data System (ADS)

    Pocas, S.; Perenzoni, M.; Massari, N.; Simoens, F.; Meilhan, J.; Rabaud, W.; Martin, S.; Delplanque, B.; Imperinetti, P.; Goudon, V.; Vialle, C.; Arnaud, A.

    2012-10-01

    Fusion of multispectral images has been explored for many years for security and used in a number of commercial products. CEA-Leti and FBK have developed an innovative sensor technology that gathers monolithically on a unique focal plane arrays, pixels sensitive to radiation in three spectral ranges that are terahertz (THz), infrared (IR) and visible. This technology benefits of many assets for volume market: compactness, full CMOS compatibility on 200mm wafers, advanced functions of the CMOS read-out integrated circuit (ROIC), and operation at room temperature. The ROIC houses visible APS diodes while IR and THz detections are carried out by microbolometers collectively processed above the CMOS substrate. Standard IR bolometric microbridges (160x160 pixels) are surrounding antenna-coupled bolometers (32X32 pixels) built on a resonant cavity customized to THz sensing. This paper presents the different technological challenges achieved in this development and first electrical and sensitivity experimental tests.

  18. Integration of nanostructured planar diffractive lenses dedicated to near infrared detection for CMOS image sensors.

    PubMed

    Lopez, Thomas; Massenot, Sébastien; Estribeau, Magali; Magnan, Pierre; Pardo, Fabrice; Pelouard, Jean-Luc

    2016-04-18

    This paper deals with the integration of metallic and dielectric nanostructured planar lenses into a pixel from a silicon based CMOS image sensor, for a monochromatic application at 1.064 μm. The first is a Plasmonic Lens, based on the phase delay through nanoslits, which has been found to be hardly compatible with current CMOS technology and exhibits a notable metallic absorption. The second is a dielectric Phase-Fresnel Lens integrated at the top of a pixel, it exhibits an Optical Efficiency (OE) improved by a few percent and an angle of view of 50°. The third one is a metallic diffractive lens integrated inside a pixel, which shows a better OE and an angle of view of 24°. The last two lenses exhibit a compatibility with a spectral band close to 1.064 μm.

  19. Design and standalone characterisation of a capacitively coupled HV-CMOS sensor chip for the CLIC vertex detector

    NASA Astrophysics Data System (ADS)

    Kremastiotis, I.; Ballabriga, R.; Campbell, M.; Dannheim, D.; Fiergolski, A.; Hynds, D.; Kulis, S.; Peric, I.

    2017-09-01

    The concept of capacitive coupling between sensors and readout chips is under study for the vertex detector at the proposed high-energy CLIC electron positron collider. The CLICpix Capacitively Coupled Pixel Detector (C3PD) is an active High-Voltage CMOS sensor, designed to be capacitively coupled to the CLICpix2 readout chip. The chip is implemented in a commercial 180 nm HV-CMOS process and contains a matrix of 128×128 square pixels with 25μm pitch. First prototypes have been produced with a standard resistivity of ~20 Ωcm for the substrate and tested in standalone mode. The results show a rise time of ~20 ns, charge gain of 190 mV/ke- and ~40 e- RMS noise for a power consumption of 4.8μW/pixel. The main design aspects, as well as standalone measurement results, are presented.

  20. Critical issues for the application of integrated MEMS/CMOS technologies to inertial measurement units

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, J.H.; Ellis, J.R.; Montague, S.

    1997-03-01

    One of the principal applications of monolithically integrated micromechanical/microelectronic systems has been accelerometers for automotive applications. As integrated MEMS/CMOS technologies such as those developed by U.C. Berkeley, Analog Devices, and Sandia National Laboratories mature, additional systems for more sensitive inertial measurements will enter the commercial marketplace. In this paper, the authors will examine key technology design rules which impact the performance and cost of inertial measurement devices manufactured in integrated MEMS/CMOS technologies. These design parameters include: (1) minimum MEMS feature size, (2) minimum CMOS feature size, (3) maximum MEMS linear dimension, (4) number of mechanical MEMS layers, (5) MEMS/CMOS spacing.more » In particular, the embedded approach to integration developed at Sandia will be examined in the context of these technology features. Presently, this technology offers MEMS feature sizes as small as 1 {micro}m, CMOS critical dimensions of 1.25 {micro}m, MEMS linear dimensions of 1,000 {micro}m, a single mechanical level of polysilicon, and a 100 {micro}m space between MEMS and CMOS. This is applicable to modern precision guided munitions.« less

  1. A Pixel Readout Chip in 40 nm CMOS Process for High Count Rate Imaging Systems with Minimization of Charge Sharing Effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maj, Piotr; Grybos, P.; Szczgiel, R.

    2013-11-07

    We present a prototype chip in 40 nm CMOS technology for readout of hybrid pixel detector. The prototype chip has a matrix of 18x24 pixels with a pixel pitch of 100 μm. It can operate both in single photon counting (SPC) mode and in C8P1 mode. In SPC the measured ENC is 84 e ₋rms (for the peaking time of 48 ns), while the effective offset spread is below 2 mV rms. In the C8P1 mode the chip reconstructs full charge deposited in the detector, even in the case of charge sharing, and it identifies a pixel with the largestmore » charge deposition. The chip architecture and preliminary measurements are reported.« less

  2. CMOS cassette for digital upgrade of film-based mammography systems

    NASA Astrophysics Data System (ADS)

    Baysal, Mehmet A.; Toker, Emre

    2006-03-01

    While full-field digital mammography (FFDM) technology is gaining clinical acceptance, the overwhelming majority (96%) of the installed base of mammography systems are conventional film-screen (FSM) systems. A high performance, and economical digital cassette based product to conveniently upgrade FSM systems to FFDM would accelerate the adoption of FFDM, and make the clinical and technical advantages of FFDM available to a larger population of women. The planned FFDM cassette is based on our commercial Digital Radiography (DR) cassette for 10 cm x 10 cm field-of-view spot imaging and specimen radiography, utilizing a 150 micron columnar CsI(Tl) scintillator and 48 micron active-pixel CMOS sensor modules. Unlike a Computer Radiography (CR) cassette, which requires an external digitizer, our DR cassette transfers acquired images to a display workstation within approximately 5 seconds of exposure, greatly enhancing patient flow. We will present the physical performance of our prototype system against other FFDM systems in clinical use today, using established objective criteria such as the Modulation Transfer Function (MTF), Detective Quantum Efficiency (DQE), and subjective criteria, such as a contrast-detail (CD-MAM) observer performance study. Driven by the strong demand from the computer industry, CMOS technology is one of the lowest cost, and the most readily accessible technologies available for FFDM today. Recent popular use of CMOS imagers in high-end consumer cameras have also resulted in significant advances in the imaging performance of CMOS sensors against rivaling CCD sensors. This study promises to take advantage of these unique features to develop the first CMOS based FFDM upgrade cassette.

  3. A CMOS image sensor with programmable pixel-level analog processing.

    PubMed

    Massari, Nicola; Gottardi, Massimo; Gonzo, Lorenzo; Stoppa, David; Simoni, Andrea

    2005-11-01

    A prototype of a 34 x 34 pixel image sensor, implementing real-time analog image processing, is presented. Edge detection, motion detection, image amplification, and dynamic-range boosting are executed at pixel level by means of a highly interconnected pixel architecture based on the absolute value of the difference among neighbor pixels. The analog operations are performed over a kernel of 3 x 3 pixels. The square pixel, consisting of 30 transistors, has a pitch of 35 microm with a fill-factor of 20%. The chip was fabricated in a 0.35 microm CMOS technology, and its power consumption is 6 mW with 3.3 V power supply. The device was fully characterized and achieves a dynamic range of 50 dB with a light power density of 150 nW/mm2 and a frame rate of 30 frame/s. The measured fixed pattern noise corresponds to 1.1% of the saturation level. The sensor's dynamic range can be extended up to 96 dB using the double-sampling technique.

  4. Photon small-field measurements with a CMOS active pixel sensor.

    PubMed

    Spang, F Jiménez; Rosenberg, I; Hedin, E; Royle, G

    2015-06-07

    In this work the dosimetric performance of CMOS active pixel sensors for the measurement of small photon beams is presented. The detector used consisted of an array of 520  × 520 pixels on a 25 µm pitch. Dosimetric parameters measured with this sensor were compared with data collected with an ionization chamber, a film detector and GEANT4 Monte Carlo simulations. The sensor performance for beam profiles measurements was evaluated for field sizes of 0.5  × 0.5 cm(2). The high spatial resolution achieved with this sensor allowed the accurate measurement of profiles, beam penumbrae and field size under lateral electronic disequilibrium. Field size and penumbrae agreed within 5.4% and 2.2% respectively with film measurements. Agreements with ionization chambers better than 1.0% were obtained when measuring tissue-phantom ratios. Output factor measurements were in good agreement with ionization chamber and Monte Carlo simulation. The data obtained from this imaging sensor can be easily analyzed to extract dosimetric information. The results presented in this work are promising for the development and implementation of CMOS active pixel sensors for dosimetry applications.

  5. Modeling and evaluation of a high-resolution CMOS detector for cone-beam CT of the extremities.

    PubMed

    Cao, Qian; Sisniega, Alejandro; Brehler, Michael; Stayman, J Webster; Yorkston, John; Siewerdsen, Jeffrey H; Zbijewski, Wojciech

    2018-01-01

    Quantitative assessment of trabecular bone microarchitecture in extremity cone-beam CT (CBCT) would benefit from the high spatial resolution, low electronic noise, and fast scan time provided by complementary metal-oxide semiconductor (CMOS) x-ray detectors. We investigate the performance of CMOS sensors in extremity CBCT, in particular with respect to potential advantages of thin (<0.7 mm) scintillators offering higher spatial resolution. A cascaded systems model of a CMOS x-ray detector incorporating the effects of CsI:Tl scintillator thickness was developed. Simulation studies were performed using nominal extremity CBCT acquisition protocols (90 kVp, 0.126 mAs/projection). A range of scintillator thickness (0.35-0.75 mm), pixel size (0.05-0.4 mm), focal spot size (0.05-0.7 mm), magnification (1.1-2.1), and dose (15-40 mGy) was considered. The detectability index was evaluated for both CMOS and a-Si:H flat-panel detector (FPD) configurations for a range of imaging tasks emphasizing spatial frequencies associated with feature size aobj. Experimental validation was performed on a CBCT test bench in the geometry of a compact orthopedic CBCT system (SAD = 43.1 cm, SDD = 56.0 cm, matching that of the Carestream OnSight 3D system). The test-bench studies involved a 0.3 mm focal spot x-ray source and two CMOS detectors (Dalsa Xineos-3030HR, 0.099 mm pixel pitch) - one with the standard CsI:Tl thickness of 0.7 mm (C700) and one with a custom 0.4 mm thick scintillator (C400). Measurements of modulation transfer function (MTF), detective quantum efficiency (DQE), and CBCT scans of a cadaveric knee (15 mGy) were obtained for each detector. Optimal detectability for high-frequency tasks (feature size of ~0.06 mm, consistent with the size of trabeculae) was ~4× for the C700 CMOS detector compared to the a-Si:H FPD at nominal system geometry of extremity CBCT. This is due to ~5× lower electronic noise of a CMOS sensor, which enables input quantum-limited imaging at smaller pixel size. Optimal pixel size for high-frequency tasks was <0.1 mm for a CMOS, compared to ~0.14 mm for an a-Si:H FPD. For this fine pixel pitch, detectability of fine features could be improved by using a thinner scintillator to reduce light spread blur. A 22% increase in detectability of 0.06 mm features was found for the C400 configuration compared to C700. An improvement in the frequency at 50% modulation (f 50 ) of MTF was measured, increasing from 1.8 lp/mm for C700 to 2.5 lp/mm for C400. The C400 configuration also achieved equivalent or better DQE as C700 for frequencies above ~2 mm -1 . Images of cadaver specimens confirmed improved visualization of trabeculae with the C400 sensor. The small pixel size of CMOS detectors yields improved performance in high-resolution extremity CBCT compared to a-Si:H FPDs, particularly when coupled with a custom 0.4 mm thick scintillator. The results indicate that adoption of a CMOS detector in extremity CBCT can benefit applications in quantitative imaging of trabecular microstructure in humans. © 2017 American Association of Physicists in Medicine.

  6. Design and fabrication of reflective spatial light modulator for high-dynamic-range wavefront control

    NASA Astrophysics Data System (ADS)

    Zhu, Hao; Bierden, Paul; Cornelissen, Steven; Bifano, Thomas; Kim, Jin-Hong

    2004-10-01

    This paper describes design and fabrication of a microelectromechanical metal spatial light modulator (SLM) integrated with complementary metal-oxide semiconductor (CMOS) electronics, for high-dynamic-range wavefront control. The metal SLM consists of a large array of piston-motion MEMS mirror segments (pixels) which can deflect up to 0.78 µm each. Both 32x32 and 150x150 arrays of the actuators (1024 and 22500 elements respectively) were fabricated onto the CMOS driver electronics and individual pixels were addressed. A new process has been developed to reduce the topography during the metal MEMS processing to fabricate mirror pixels with improved optical quality.

  7. A 4MP high-dynamic-range, low-noise CMOS image sensor

    NASA Astrophysics Data System (ADS)

    Ma, Cheng; Liu, Yang; Li, Jing; Zhou, Quan; Chang, Yuchun; Wang, Xinyang

    2015-03-01

    In this paper we present a 4 Megapixel high dynamic range, low dark noise and dark current CMOS image sensor, which is ideal for high-end scientific and surveillance applications. The pixel design is based on a 4-T PPD structure. During the readout of the pixel array, signals are first amplified, and then feed to a low- power column-parallel ADC array which is already presented in [1]. Measurement results show that the sensor achieves a dynamic range of 96dB, a dark noise of 1.47e- at 24fps speed. The dark current is 0.15e-/pixel/s at -20oC.

  8. Proof of principle study of the use of a CMOS active pixel sensor for proton radiography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seco, Joao; Depauw, Nicolas

    2011-02-15

    Purpose: Proof of principle study of the use of a CMOS active pixel sensor (APS) in producing proton radiographic images using the proton beam at the Massachusetts General Hospital (MGH). Methods: A CMOS APS, previously tested for use in s-ray radiation therapy applications, was used for proton beam radiographic imaging at the MGH. Two different setups were used as a proof of principle that CMOS can be used as proton imaging device: (i) a pen with two metal screws to assess spatial resolution of the CMOS and (ii) a phantom with lung tissue, bone tissue, and water to assess tissuemore » contrast of the CMOS. The sensor was then traversed by a double scattered monoenergetic proton beam at 117 MeV, and the energy deposition inside the detector was recorded to assess its energy response. Conventional x-ray images with similar setup at voltages of 70 kVp and proton images using commercial Gafchromic EBT 2 and Kodak X-Omat V films were also taken for comparison purposes. Results: Images were successfully acquired and compared to x-ray kVp and proton EBT2/X-Omat film images. The spatial resolution of the CMOS detector image is subjectively comparable to the EBT2 and Kodak X-Omat V film images obtained at the same object-detector distance. X-rays have apparent higher spatial resolution than the CMOS. However, further studies with different commercial films using proton beam irradiation demonstrate that the distance of the detector to the object is important to the amount of proton scatter contributing to the proton image. Proton images obtained with films at different distances from the source indicate that proton scatter significantly affects the CMOS image quality. Conclusion: Proton radiographic images were successfully acquired at MGH using a CMOS active pixel sensor detector. The CMOS demonstrated spatial resolution subjectively comparable to films at the same object-detector distance. Further work will be done in order to establish the spatial and energy resolution of the CMOS detector for protons. The development and use of CMOS in proton radiography could allow in vivo proton range checks, patient setup QA, and real-time tumor tracking.« less

  9. Large area CMOS active pixel sensor x-ray imager for digital breast tomosynthesis: Analysis, modeling, and characterization.

    PubMed

    Zhao, Chumin; Kanicki, Jerzy; Konstantinidis, Anastasios C; Patel, Tushita

    2015-11-01

    Large area x-ray imagers based on complementary metal-oxide-semiconductor (CMOS) active pixel sensor (APS) technology have been proposed for various medical imaging applications including digital breast tomosynthesis (DBT). The low electronic noise (50-300 e-) of CMOS APS x-ray imagers provides a possible route to shrink the pixel pitch to smaller than 75 μm for microcalcification detection and possible reduction of the DBT mean glandular dose (MGD). In this study, imaging performance of a large area (29×23 cm2) CMOS APS x-ray imager [Dexela 2923 MAM (PerkinElmer, London)] with a pixel pitch of 75 μm was characterized and modeled. The authors developed a cascaded system model for CMOS APS x-ray imagers using both a broadband x-ray radiation and monochromatic synchrotron radiation. The experimental data including modulation transfer function, noise power spectrum, and detective quantum efficiency (DQE) were theoretically described using the proposed cascaded system model with satisfactory consistency to experimental results. Both high full well and low full well (LFW) modes of the Dexela 2923 MAM CMOS APS x-ray imager were characterized and modeled. The cascaded system analysis results were further used to extract the contrast-to-noise ratio (CNR) for microcalcifications with sizes of 165-400 μm at various MGDs. The impact of electronic noise on CNR was also evaluated. The LFW mode shows better DQE at low air kerma (Ka<10 μGy) and should be used for DBT. At current DBT applications, air kerma (Ka∼10 μGy, broadband radiation of 28 kVp), DQE of more than 0.7 and ∼0.3 was achieved using the LFW mode at spatial frequency of 0.5 line pairs per millimeter (lp/mm) and Nyquist frequency ∼6.7 lp/mm, respectively. It is shown that microcalcifications of 165-400 μm in size can be resolved using a MGD range of 0.3-1 mGy, respectively. In comparison to a General Electric GEN2 prototype DBT system (at MGD of 2.5 mGy), an increased CNR (by ∼10) for microcalcifications was observed using the Dexela 2923 MAM CMOS APS x-ray imager at a lower MGD (2.0 mGy). The Dexela 2923 MAM CMOS APS x-ray imager is capable to achieve a high imaging performance at spatial frequencies up to 6.7 lp/mm. Microcalcifications of 165 μm are distinguishable based on reported data and their modeling results due to the small pixel pitch of 75 μm. At the same time, potential dose reduction is expected using the studied CMOS APS x-ray imager.

  10. Design of integrated eye tracker-display device for head mounted systems

    NASA Astrophysics Data System (ADS)

    David, Y.; Apter, B.; Thirer, N.; Baal-Zedaka, I.; Efron, U.

    2009-08-01

    We propose an Eye Tracker/Display system, based on a novel, dual function device termed ETD, which allows sharing the optical paths of the Eye tracker and the display and on-chip processing. The proposed ETD design is based on a CMOS chip combining a Liquid-Crystal-on-Silicon (LCoS) micro-display technology with near infrared (NIR) Active Pixel Sensor imager. The ET operation allows capturing the Near IR (NIR) light, back-reflected from the eye's retina. The retinal image is then used for the detection of the current direction of eye's gaze. The design of the eye tracking imager is based on the "deep p-well" pixel technology, providing low crosstalk while shielding the active pixel circuitry, which serves the imaging and the display drivers, from the photo charges generated in the substrate. The use of the ETD in the HMD Design enables a very compact design suitable for Smart Goggle applications. A preliminary optical, electronic and digital design of the goggle and its associated ETD chip and digital control, are presented.

  11. Depleted fully monolithic CMOS pixel detectors using a column based readout architecture for the ATLAS Inner Tracker upgrade

    NASA Astrophysics Data System (ADS)

    Wang, T.; Barbero, M.; Berdalovic, I.; Bespin, C.; Bhat, S.; Breugnon, P.; Caicedo, I.; Cardella, R.; Chen, Z.; Degerli, Y.; Egidos, N.; Godiot, S.; Guilloux, F.; Hemperek, T.; Hirono, T.; Krüger, H.; Kugathasan, T.; Hügging, F.; Marin Tobon, C. A.; Moustakas, K.; Pangaud, P.; Schwemling, P.; Pernegger, H.; Pohl, D.-L.; Rozanov, A.; Rymaszewski, P.; Snoeys, W.; Wermes, N.

    2018-03-01

    Depleted monolithic active pixel sensors (DMAPS), which exploit high voltage and/or high resistivity add-ons of modern CMOS technologies to achieve substantial depletion in the sensing volume, have proven to have high radiation tolerance towards the requirements of ATLAS in the high-luminosity LHC era. DMAPS integrating fast readout architectures are currently being developed as promising candidates for the outer pixel layers of the future ATLAS Inner Tracker, which will be installed during the phase II upgrade of ATLAS around year 2025. In this work, two DMAPS prototype designs, named LF-Monopix and TJ-Monopix, are presented. LF-Monopix was fabricated in the LFoundry 150 nm CMOS technology, and TJ-Monopix has been designed in the TowerJazz 180 nm CMOS technology. Both chips employ the same readout architecture, i.e. the column drain architecture, whereas different sensor implementation concepts are pursued. The paper makes a joint description of the two prototypes, so that their technical differences and challenges can be addressed in direct comparison. First measurement results for LF-Monopix will also be shown, demonstrating for the first time a fully functional fast readout DMAPS prototype implemented in the LFoundry technology.

  12. Charge collection and non-ionizing radiation tolerance of CMOS pixel sensors using a 0.18 μm CMOS process

    NASA Astrophysics Data System (ADS)

    Zhang, Ying; Zhu, Hongbo; Zhang, Liang; Fu, Min

    2016-09-01

    The proposed Circular Electron Positron Collider (CEPC) will be primarily aimed for precision measurements of the discovered Higgs boson. Its innermost vertex detector, which will play a critical role in heavy-flavor tagging, must be constructed with fine-pitched silicon pixel sensors with low power consumption and fast readout. CMOS pixel sensor (CPS), as one of the most promising candidate technologies, has already demonstrated its excellent performance in several high energy physics experiments. Therefore it has been considered for R&D for the CEPC vertex detector. In this paper, we present the preliminary studies to improve the collected signal charge over the equivalent input capacitance ratio (Q / C), which will be crucial to reduce the analog power consumption. We have performed detailed 3D device simulation and evaluated potential impacts from diode geometry, epitaxial layer properties and non-ionizing radiation damage. We have proposed a new approach to improve the treatment of the boundary conditions in simulation. Along with the TCAD simulation, we have designed the exploratory prototype utilizing the TowerJazz 0.18 μm CMOS imaging sensor process and we will verify the simulation results with future measurements.

  13. Development of CMOS Active Pixel Image Sensors for Low Cost Commercial Applications

    NASA Technical Reports Server (NTRS)

    Fossum, E.; Gee, R.; Kemeny, S.; Kim, Q.; Mendis, S.; Nakamura, J.; Nixon, R.; Ortiz, M.; Pain, B.; Zhou, Z.; hide

    1994-01-01

    This paper describes ongoing research and development of CMOS active pixel image sensors for low cost commercial applications. A number of sensor designs have been fabricated and tested in both p-well and n-well technologies. Major elements in the development of the sensor include on-chip analog signal processing circuits for the reduction of fixed pattern noise, on-chip timing and control circuits and on-chip analog-to-digital conversion (ADC). Recent results and continuing efforts in these areas will be presented.

  14. A 7 ke-SD-FWC 1.2 e-RMS Temporal Random Noise 128×256 Time-Resolved CMOS Image Sensor With Two In-Pixel SDs for Biomedical Applications.

    PubMed

    Seo, Min-Woong; Kawahito, Shoji

    2017-12-01

    A large full well capacity (FWC) for wide signal detection range and low temporal random noise for high sensitivity lock-in pixel CMOS image sensor (CIS) embedded with two in-pixel storage diodes (SDs) has been developed and presented in this paper. For fast charge transfer from photodiode to SDs, a lateral electric field charge modulator (LEFM) is used for the developed lock-in pixel. As a result, the time-resolved CIS achieves a very large SD-FWC of approximately 7ke-, low temporal random noise of 1.2e-rms at 20 fps with true correlated double sampling operation and fast intrinsic response less than 500 ps at 635 nm. The proposed imager has an effective pixel array of and a pixel size of . The sensor chip is fabricated by Dongbu HiTek 1P4M 0.11 CIS process.

  15. A Multi-Modality CMOS Sensor Array for Cell-Based Assay and Drug Screening.

    PubMed

    Chi, Taiyun; Park, Jong Seok; Butts, Jessica C; Hookway, Tracy A; Su, Amy; Zhu, Chengjie; Styczynski, Mark P; McDevitt, Todd C; Wang, Hua

    2015-12-01

    In this paper, we present a fully integrated multi-modality CMOS cellular sensor array with four sensing modalities to characterize different cell physiological responses, including extracellular voltage recording, cellular impedance mapping, optical detection with shadow imaging and bioluminescence sensing, and thermal monitoring. The sensor array consists of nine parallel pixel groups and nine corresponding signal conditioning blocks. Each pixel group comprises one temperature sensor and 16 tri-modality sensor pixels, while each tri-modality sensor pixel can be independently configured for extracellular voltage recording, cellular impedance measurement (voltage excitation/current sensing), and optical detection. This sensor array supports multi-modality cellular sensing at the pixel level, which enables holistic cell characterization and joint-modality physiological monitoring on the same cellular sample with a pixel resolution of 80 μm × 100 μm. Comprehensive biological experiments with different living cell samples demonstrate the functionality and benefit of the proposed multi-modality sensing in cell-based assay and drug screening.

  16. Detection of pointing errors with CMOS-based camera in intersatellite optical communications

    NASA Astrophysics Data System (ADS)

    Yu, Si-yuan; Ma, Jing; Tan, Li-ying

    2005-01-01

    For very high data rates, intersatellite optical communications hold a potential performance edge over microwave communications. Acquisition and Tracking problem is critical because of the narrow transmit beam. A single array detector in some systems performs both spatial acquisition and tracking functions to detect pointing errors, so both wide field of view and high update rate is required. The past systems tend to employ CCD-based camera with complex readout arrangements, but the additional complexity reduces the applicability of the array based tracking concept. With the development of CMOS array, CMOS-based cameras can employ the single array detector concept. The area of interest feature of the CMOS-based camera allows a PAT system to specify portion of the array. The maximum allowed frame rate increases as the size of the area of interest decreases under certain conditions. A commercially available CMOS camera with 105 fps @ 640×480 is employed in our PAT simulation system, in which only part pixels are used in fact. Beams angle varying in the field of view can be detected after getting across a Cassegrain telescope and an optical focus system. Spot pixel values (8 bits per pixel) reading out from CMOS are transmitted to a DSP subsystem via IEEE 1394 bus, and pointing errors can be computed by the centroid equation. It was shown in test that: (1) 500 fps @ 100×100 is available in acquisition when the field of view is 1mrad; (2)3k fps @ 10×10 is available in tracking when the field of view is 0.1mrad.

  17. Radiation hardness studies of AMS HV-CMOS 350 nm prototype chip HVStripV1

    DOE PAGES

    Kanisauskas, K.; Affolder, A.; Arndt, K.; ...

    2017-02-15

    CMOS active pixel sensors are being investigated for their potential use in the ATLAS inner tracker upgrade at the HL-LHC. The new inner tracker will have to handle a significant increase in luminosity while maintaining a sufficient signal-to-noise ratio and pulse shaping times. This paper focuses on the prototype chip "HVStripV1" (manufactured in the AMS HV-CMOS 350nm process) characterization before and after irradiation up to fluence levels expected for the strip region in the HL-LHC environment. The results indicate an increase of depletion region after irradiation for the same bias voltage by a factor of ≈2.4 and ≈2.8 for twomore » active pixels on the test chip. As a result, there was also a notable increase in noise levels from 85 e – to 386 e – and from 75 e – to 277 e – for the corresponding pixels.« less

  18. Radiation hardness studies of AMS HV-CMOS 350 nm prototype chip HVStripV1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kanisauskas, K.; Affolder, A.; Arndt, K.

    CMOS active pixel sensors are being investigated for their potential use in the ATLAS inner tracker upgrade at the HL-LHC. The new inner tracker will have to handle a significant increase in luminosity while maintaining a sufficient signal-to-noise ratio and pulse shaping times. This paper focuses on the prototype chip "HVStripV1" (manufactured in the AMS HV-CMOS 350nm process) characterization before and after irradiation up to fluence levels expected for the strip region in the HL-LHC environment. The results indicate an increase of depletion region after irradiation for the same bias voltage by a factor of ≈2.4 and ≈2.8 for twomore » active pixels on the test chip. As a result, there was also a notable increase in noise levels from 85 e – to 386 e – and from 75 e – to 277 e – for the corresponding pixels.« less

  19. Large CMOS imager using hadamard transform based multiplexing

    NASA Technical Reports Server (NTRS)

    Karasik, Boris S.; Wadsworth, Mark V.

    2005-01-01

    We have developed a concept design for a large (10k x 10k) CMOS imaging array whose elements are grouped in small subarrays with N pixels in each. The subarrays are code-division multiplexed using the Hadamard Transform (HT) based encoding. The Hadamard code improves the signal-to-noise (SNR) ratio to the reference of the read-out amplifier by a factor of N^1/2. This way of grouping pixels reduces the number of hybridization bumps by N. A single chip layout has been designed and the architecture of the imager has been developed to accommodate the HT base multiplexing into the existing CMOS technology. The imager architecture allows for a trade-off between the speed and the sensitivity. The envisioned imager would operate at a speed >100 fps with the pixel noise < 20 e-. The power dissipation would be 100 pW/pixe1. The combination of the large format, high speed, high sensitivity and low power dissipation can be very attractive for space reconnaissance applications.

  20. Fundamental performance differences between CMOS and CCD imagers: Part II

    NASA Astrophysics Data System (ADS)

    Janesick, James; Andrews, James; Tower, John; Grygon, Mark; Elliott, Tom; Cheng, John; Lesser, Michael; Pinter, Jeff

    2007-09-01

    A new class of CMOS imagers that compete with scientific CCDs is presented. The sensors are based on deep depletion backside illuminated technology to achieve high near infrared quantum efficiency and low pixel cross-talk. The imagers deliver very low read noise suitable for single photon counting - Fano-noise limited soft x-ray applications. Digital correlated double sampling signal processing necessary to achieve low read noise performance is analyzed and demonstrated for CMOS use. Detailed experimental data products generated by different pixel architectures (notably 3TPPD, 5TPPD and 6TPG designs) are presented including read noise, charge capacity, dynamic range, quantum efficiency, charge collection and transfer efficiency and dark current generation. Radiation damage data taken for the imagers is also reported.

  1. Front end optimization for the monolithic active pixel sensor of the ALICE Inner Tracking System upgrade

    NASA Astrophysics Data System (ADS)

    Kim, D.; Aglieri Rinella, G.; Cavicchioli, C.; Chanlek, N.; Collu, A.; Degerli, Y.; Dorokhov, A.; Flouzat, C.; Gajanana, D.; Gao, C.; Guilloux, F.; Hillemanns, H.; Hristozkov, S.; Junique, A.; Keil, M.; Kofarago, M.; Kugathasan, T.; Kwon, Y.; Lattuca, A.; Mager, M.; Sielewicz, K. M.; Marin Tobon, C. A.; Marras, D.; Martinengo, P.; Mazza, G.; Mugnier, H.; Musa, L.; Pham, T. H.; Puggioni, C.; Reidt, F.; Riedler, P.; Rousset, J.; Siddhanta, S.; Snoeys, W.; Song, M.; Usai, G.; Van Hoorne, J. W.; Yang, P.

    2016-02-01

    ALICE plans to replace its Inner Tracking System during the second long shut down of the LHC in 2019 with a new 10 m2 tracker constructed entirely with monolithic active pixel sensors. The TowerJazz 180 nm CMOS imaging Sensor process has been selected to produce the sensor as it offers a deep pwell allowing full CMOS in-pixel circuitry and different starting materials. First full-scale prototypes have been fabricated and tested. Radiation tolerance has also been verified. In this paper the development of the charge sensitive front end and in particular its optimization for uniformity of charge threshold and time response will be presented.

  2. Using polynomials to simplify fixed pattern noise and photometric correction of logarithmic CMOS image sensors.

    PubMed

    Li, Jing; Mahmoodi, Alireza; Joseph, Dileepan

    2015-10-16

    An important class of complementary metal-oxide-semiconductor (CMOS) image sensors are those where pixel responses are monotonic nonlinear functions of light stimuli. This class includes various logarithmic architectures, which are easily capable of wide dynamic range imaging, at video rates, but which are vulnerable to image quality issues. To minimize fixed pattern noise (FPN) and maximize photometric accuracy, pixel responses must be calibrated and corrected due to mismatch and process variation during fabrication. Unlike literature approaches, which employ circuit-based models of varying complexity, this paper introduces a novel approach based on low-degree polynomials. Although each pixel may have a highly nonlinear response, an approximately-linear FPN calibration is possible by exploiting the monotonic nature of imaging. Moreover, FPN correction requires only arithmetic, and an optimal fixed-point implementation is readily derived, subject to a user-specified number of bits per pixel. Using a monotonic spline, involving cubic polynomials, photometric calibration is also possible without a circuit-based model, and fixed-point photometric correction requires only a look-up table. The approach is experimentally validated with a logarithmic CMOS image sensor and is compared to a leading approach from the literature. The novel approach proves effective and efficient.

  3. A CMOS active pixel sensor for retinal stimulation

    NASA Astrophysics Data System (ADS)

    Prydderch, Mark L.; French, Marcus J.; Mathieson, Keith; Adams, Christopher; Gunning, Deborah; Laudanski, Jonathan; Morrison, James D.; Moodie, Alan R.; Sinclair, James

    2006-02-01

    Degenerative photoreceptor diseases, such as age-related macular degeneration and retinitis pigmentosa, are the most common causes of blindness in the western world. A potential cure is to use a microelectronic retinal prosthesis to provide electrical stimulation to the remaining healthy retinal cells. We describe a prototype CMOS Active Pixel Sensor capable of detecting a visual scene and translating it into a train of electrical pulses for stimulation of the retina. The sensor consists of a 10 x 10 array of 100 micron square pixels fabricated on a 0.35 micron CMOS process. Light incident upon each pixel is converted into output current pulse trains with a frequency related to the light intensity. These outputs are connected to a biocompatible microelectrode array for contact to the retinal cells. The flexible design allows experimentation with signal amplitudes and frequencies in order to determine the most appropriate stimulus for the retina. Neural processing in the retina can be studied by using the sensor in conjunction with a Field Programmable Gate Array (FPGA) programmed to behave as a neural network. The sensor has been integrated into a test system designed for studying retinal response. We present the most recent results obtained from this sensor.

  4. A CMOS In-Pixel CTIA High Sensitivity Fluorescence Imager.

    PubMed

    Murari, Kartikeya; Etienne-Cummings, Ralph; Thakor, Nitish; Cauwenberghs, Gert

    2011-10-01

    Traditionally, charge coupled device (CCD) based image sensors have held sway over the field of biomedical imaging. Complementary metal oxide semiconductor (CMOS) based imagers so far lack sensitivity leading to poor low-light imaging. Certain applications including our work on animal-mountable systems for imaging in awake and unrestrained rodents require the high sensitivity and image quality of CCDs and the low power consumption, flexibility and compactness of CMOS imagers. We present a 132×124 high sensitivity imager array with a 20.1 μm pixel pitch fabricated in a standard 0.5 μ CMOS process. The chip incorporates n-well/p-sub photodiodes, capacitive transimpedance amplifier (CTIA) based in-pixel amplification, pixel scanners and delta differencing circuits. The 5-transistor all-nMOS pixel interfaces with peripheral pMOS transistors for column-parallel CTIA. At 70 fps, the array has a minimum detectable signal of 4 nW/cm(2) at a wavelength of 450 nm while consuming 718 μA from a 3.3 V supply. Peak signal to noise ratio (SNR) was 44 dB at an incident intensity of 1 μW/cm(2). Implementing 4×4 binning allowed the frame rate to be increased to 675 fps. Alternately, sensitivity could be increased to detect about 0.8 nW/cm(2) while maintaining 70 fps. The chip was used to image single cell fluorescence at 28 fps with an average SNR of 32 dB. For comparison, a cooled CCD camera imaged the same cell at 20 fps with an average SNR of 33.2 dB under the same illumination while consuming over a watt.

  5. A CMOS In-Pixel CTIA High Sensitivity Fluorescence Imager

    PubMed Central

    Murari, Kartikeya; Etienne-Cummings, Ralph; Thakor, Nitish; Cauwenberghs, Gert

    2012-01-01

    Traditionally, charge coupled device (CCD) based image sensors have held sway over the field of biomedical imaging. Complementary metal oxide semiconductor (CMOS) based imagers so far lack sensitivity leading to poor low-light imaging. Certain applications including our work on animal-mountable systems for imaging in awake and unrestrained rodents require the high sensitivity and image quality of CCDs and the low power consumption, flexibility and compactness of CMOS imagers. We present a 132×124 high sensitivity imager array with a 20.1 μm pixel pitch fabricated in a standard 0.5 μ CMOS process. The chip incorporates n-well/p-sub photodiodes, capacitive transimpedance amplifier (CTIA) based in-pixel amplification, pixel scanners and delta differencing circuits. The 5-transistor all-nMOS pixel interfaces with peripheral pMOS transistors for column-parallel CTIA. At 70 fps, the array has a minimum detectable signal of 4 nW/cm2 at a wavelength of 450 nm while consuming 718 μA from a 3.3 V supply. Peak signal to noise ratio (SNR) was 44 dB at an incident intensity of 1 μW/cm2. Implementing 4×4 binning allowed the frame rate to be increased to 675 fps. Alternately, sensitivity could be increased to detect about 0.8 nW/cm2 while maintaining 70 fps. The chip was used to image single cell fluorescence at 28 fps with an average SNR of 32 dB. For comparison, a cooled CCD camera imaged the same cell at 20 fps with an average SNR of 33.2 dB under the same illumination while consuming over a watt. PMID:23136624

  6. The Multidimensional Integrated Intelligent Imaging project (MI-3)

    NASA Astrophysics Data System (ADS)

    Allinson, N.; Anaxagoras, T.; Aveyard, J.; Arvanitis, C.; Bates, R.; Blue, A.; Bohndiek, S.; Cabello, J.; Chen, L.; Chen, S.; Clark, A.; Clayton, C.; Cook, E.; Cossins, A.; Crooks, J.; El-Gomati, M.; Evans, P. M.; Faruqi, W.; French, M.; Gow, J.; Greenshaw, T.; Greig, T.; Guerrini, N.; Harris, E. J.; Henderson, R.; Holland, A.; Jeyasundra, G.; Karadaglic, D.; Konstantinidis, A.; Liang, H. X.; Maini, K. M. S.; McMullen, G.; Olivo, A.; O'Shea, V.; Osmond, J.; Ott, R. J.; Prydderch, M.; Qiang, L.; Riley, G.; Royle, G.; Segneri, G.; Speller, R.; Symonds-Tayler, J. R. N.; Triger, S.; Turchetta, R.; Venanzi, C.; Wells, K.; Zha, X.; Zin, H.

    2009-06-01

    MI-3 is a consortium of 11 universities and research laboratories whose mission is to develop complementary metal-oxide semiconductor (CMOS) active pixel sensors (APS) and to apply these sensors to a range of imaging challenges. A range of sensors has been developed: On-Pixel Intelligent CMOS (OPIC)—designed for in-pixel intelligence; FPN—designed to develop novel techniques for reducing fixed pattern noise; HDR—designed to develop novel techniques for increasing dynamic range; Vanilla/PEAPS—with digital and analogue modes and regions of interest, which has also been back-thinned; Large Area Sensor (LAS)—a novel, stitched LAS; and eLeNA—which develops a range of low noise pixels. Applications being developed include autoradiography, a gamma camera system, radiotherapy verification, tissue diffraction imaging, X-ray phase-contrast imaging, DNA sequencing and electron microscopy.

  7. The prototype of the Micro Vertex Detector of the CBM Experiment

    NASA Astrophysics Data System (ADS)

    Koziel, Michal; Amar-Youcef, Samir; Bialas, Norbert; Deveaux, Michael; Fröhlich, Ingo; Li, Qiyan; Michel, Jan; Milanović, Borislav; Müntz, Christian; Neumann, Bertram; Schrader, Christoph; Stroth, Joachim; Tischler, Tobias; Weirich, Roland; Wiebusch, Michael

    2013-12-01

    The Compressed Baryonic Matter (CBM) Experiment is one of the core experiments of the future FAIR facility at Darmstadt, Germany. This fixed-target experiment will explore the phase diagram of strongly interacting matter in the regime of highest net baryon densities with numerous probes, among them open charm. Reconstructing those short lived particles requires a vacuum compatible Micro Vertex Detector (MVD) with unprecedented properties. Its sensor technology has to feature a spatial resolution of <5 μm, a non-ionizing radiation tolerance of >1013 neq/cm2, an ionizing radiation tolerance of >3 Mrad and a time resolution of a few 10 μs. The MVD-prototype project aimed to study the integration the CMOS Monolithic Active Pixel Sensors foreseen for the MVD into an ultra light (0.3% X0) and a vacuum compatible detector system based on a cooling support made of CVD-diamond.

  8. Geiger-Mode Avalanche Photodiode Arrays Integrated to All-Digital CMOS Circuits

    DTIC Science & Technology

    2016-01-20

    Figure 7 4×4 GMAPD array wire bonded to CMOS timing circuits Figure 8 Low‐fill‐factor APD design used in lidar sensors The APD doping...epitaxial growth and the pixels are isolated by mesa etch. 128×32 lidar image sensors were built by bump bonding the APD arrays to a CMOS timing...passive image sensor with this large a format based on hybridization of a GMAPD array to a CMOS readout. Fig. 14 shows one of the first images taken

  9. Large area CMOS active pixel sensor x-ray imager for digital breast tomosynthesis: Analysis, modeling, and characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Chumin; Kanicki, Jerzy, E-mail: kanicki@eecs.umich.edu; Konstantinidis, Anastasios C.

    Purpose: Large area x-ray imagers based on complementary metal-oxide-semiconductor (CMOS) active pixel sensor (APS) technology have been proposed for various medical imaging applications including digital breast tomosynthesis (DBT). The low electronic noise (50–300 e{sup −}) of CMOS APS x-ray imagers provides a possible route to shrink the pixel pitch to smaller than 75 μm for microcalcification detection and possible reduction of the DBT mean glandular dose (MGD). Methods: In this study, imaging performance of a large area (29 × 23 cm{sup 2}) CMOS APS x-ray imager [Dexela 2923 MAM (PerkinElmer, London)] with a pixel pitch of 75 μm was characterizedmore » and modeled. The authors developed a cascaded system model for CMOS APS x-ray imagers using both a broadband x-ray radiation and monochromatic synchrotron radiation. The experimental data including modulation transfer function, noise power spectrum, and detective quantum efficiency (DQE) were theoretically described using the proposed cascaded system model with satisfactory consistency to experimental results. Both high full well and low full well (LFW) modes of the Dexela 2923 MAM CMOS APS x-ray imager were characterized and modeled. The cascaded system analysis results were further used to extract the contrast-to-noise ratio (CNR) for microcalcifications with sizes of 165–400 μm at various MGDs. The impact of electronic noise on CNR was also evaluated. Results: The LFW mode shows better DQE at low air kerma (K{sub a} < 10 μGy) and should be used for DBT. At current DBT applications, air kerma (K{sub a} ∼ 10 μGy, broadband radiation of 28 kVp), DQE of more than 0.7 and ∼0.3 was achieved using the LFW mode at spatial frequency of 0.5 line pairs per millimeter (lp/mm) and Nyquist frequency ∼6.7 lp/mm, respectively. It is shown that microcalcifications of 165–400 μm in size can be resolved using a MGD range of 0.3–1 mGy, respectively. In comparison to a General Electric GEN2 prototype DBT system (at MGD of 2.5 mGy), an increased CNR (by ∼10) for microcalcifications was observed using the Dexela 2923 MAM CMOS APS x-ray imager at a lower MGD (2.0 mGy). Conclusions: The Dexela 2923 MAM CMOS APS x-ray imager is capable to achieve a high imaging performance at spatial frequencies up to 6.7 lp/mm. Microcalcifications of 165 μm are distinguishable based on reported data and their modeling results due to the small pixel pitch of 75 μm. At the same time, potential dose reduction is expected using the studied CMOS APS x-ray imager.« less

  10. Hybrid UV Imager Containing Face-Up AlGaN/GaN Photodiodes

    NASA Technical Reports Server (NTRS)

    Zheng, Xinyu; Pain, Bedabrata

    2005-01-01

    A proposed hybrid ultraviolet (UV) image sensor would comprise a planar membrane array of face-up AlGaN/GaN photodiodes integrated with a complementary metal oxide/semiconductor (CMOS) readout-circuit chip. Each pixel in the hybrid image sensor would contain a UV photodiode on the AlGaN/GaN membrane, metal oxide/semiconductor field-effect transistor (MOSFET) readout circuitry on the CMOS chip underneath the photodiode, and a metal via connection between the photodiode and the readout circuitry (see figure). The proposed sensor design would offer all the advantages of comparable prior CMOS active-pixel sensors and AlGaN UV detectors while overcoming some of the limitations of prior (AlGaN/sapphire)/CMOS hybrid image sensors that have been designed and fabricated according to the methodology of flip-chip integration. AlGaN is a nearly ideal UV-detector material because its bandgap is wide and adjustable and it offers the potential to attain extremely low dark current. Integration of AlGaN with CMOS is necessary because at present there are no practical means of realizing readout circuitry in the AlGaN/GaN material system, whereas the means of realizing readout circuitry in CMOS are well established. In one variant of the flip-chip approach to integration, an AlGaN chip on a sapphire substrate is inverted (flipped) and then bump-bonded to a CMOS readout circuit chip; this variant results in poor quantum efficiency. In another variant of the flip-chip approach, an AlGaN chip on a crystalline AlN substrate would be bonded to a CMOS readout circuit chip; this variant is expected to result in narrow spectral response, which would be undesirable in many applications. Two other major disadvantages of flip-chip integration are large pixel size (a consequence of the need to devote sufficient area to each bump bond) and severe restriction on the photodetector structure. The membrane array of AlGaN/GaN photodiodes and the CMOS readout circuit for the proposed image sensor would be fabricated separately.

  11. CMOS Imaging of Temperature Effects on Pin-Printed Xerogel Sensor Microarrays.

    PubMed

    Lei Yao; Ka Yi Yung; Chodavarapu, Vamsy P; Bright, Frank V

    2011-04-01

    In this paper, we study the effect of temperature on the operation and performance of a xerogel-based sensor microarrays coupled to a complementary metal-oxide semiconductor (CMOS) imager integrated circuit (IC) that images the photoluminescence response from the sensor microarray. The CMOS imager uses a 32 × 32 (1024 elements) array of active pixel sensors and each pixel includes a high-gain phototransistor to convert the detected optical signals into electrical currents. A correlated double sampling circuit and pixel address/digital control/signal integration circuit are also implemented on-chip. The CMOS imager data are read out as a serial coded signal. The sensor system uses a light-emitting diode to excite target analyte responsive organometallic luminophores doped within discrete xerogel-based sensor elements. As a proto type, we developed a 3 × 3 (9 elements) array of oxygen (O2) sensors. Each group of three sensor elements in the array (arranged in a column) is designed to provide a different and specific sensitivity to the target gaseous O2 concentration. This property of multiple sensitivities is achieved by using a mix of two O2 sensitive luminophores in each pin-printed xerogel sensor element. The CMOS imager is designed to be low noise and consumes a static power of 320.4 μW and an average dynamic power of 624.6 μW when operating at 100-Hz sampling frequency and 1.8-V dc power supply.

  12. A Dual-Mode Large-Arrayed CMOS ISFET Sensor for Accurate and High-Throughput pH Sensing in Biomedical Diagnosis.

    PubMed

    Huang, Xiwei; Yu, Hao; Liu, Xu; Jiang, Yu; Yan, Mei; Wu, Dongping

    2015-09-01

    The existing ISFET-based DNA sequencing detects hydrogen ions released during the polymerization of DNA strands on microbeads, which are scattered into microwell array above the ISFET sensor with unknown distribution. However, false pH detection happens at empty microwells due to crosstalk from neighboring microbeads. In this paper, a dual-mode CMOS ISFET sensor is proposed to have accurate pH detection toward DNA sequencing. Dual-mode sensing, optical and chemical modes, is realized by integrating a CMOS image sensor (CIS) with ISFET pH sensor, and is fabricated in a standard 0.18-μm CIS process. With accurate determination of microbead physical locations with CIS pixel by contact imaging, the dual-mode sensor can correlate local pH for one DNA slice at one location-determined microbead, which can result in improved pH detection accuracy. Moreover, toward a high-throughput DNA sequencing, a correlated-double-sampling readout that supports large array for both modes is deployed to reduce pixel-to-pixel nonuniformity such as threshold voltage mismatch. The proposed CMOS dual-mode sensor is experimentally examined to show a well correlated pH map and optical image for microbeads with a pH sensitivity of 26.2 mV/pH, a fixed pattern noise (FPN) reduction from 4% to 0.3%, and a readout speed of 1200 frames/s. A dual-mode CMOS ISFET sensor with suppressed FPN for accurate large-arrayed pH sensing is proposed and demonstrated with state-of-the-art measured results toward accurate and high-throughput DNA sequencing. The developed dual-mode CMOS ISFET sensor has great potential for future personal genome diagnostics with high accuracy and low cost.

  13. A back-illuminated megapixel CMOS image sensor

    NASA Technical Reports Server (NTRS)

    Pain, Bedabrata; Cunningham, Thomas; Nikzad, Shouleh; Hoenk, Michael; Jones, Todd; Wrigley, Chris; Hancock, Bruce

    2005-01-01

    In this paper, we present the test and characterization results for a back-illuminated megapixel CMOS imager. The imager pixel consists of a standard junction photodiode coupled to a three transistor-per-pixel switched source-follower readout [1]. The imager also consists of integrated timing and control and bias generation circuits, and provides analog output. The analog column-scan circuits were implemented in such a way that the imager could be configured to run in off-chip correlated double-sampling (CDS) mode. The imager was originally designed for normal front-illuminated operation, and was fabricated in a commercially available 0.5 pn triple-metal CMOS-imager compatible process. For backside illumination, the imager was thinned by etching away the substrate was etched away in a post-fabrication processing step.

  14. The initial design of LAPAN's IR micro bolometer using mission analysis process

    NASA Astrophysics Data System (ADS)

    Bustanul, A.; Irwan, P.; M. T., Andi; Firman, B.

    2016-11-01

    As new player in Infra Red (IR) sector, uncooled, small, and lightweight IR Micro Bolometer has been chosen as one of payloads for LAPAN's next micro satellite project. Driven the desire to create our own IR Micro Bolometer, mission analysis design procedure has been applied. After tracing all possible missions, the Planck's and Wien's Law for black body, Temperature Responsivity (TR), and sub-pixel response had been utilized in order to determine the appropriate spectral radiance. The 3.8 - 4 μm wavelength were available to detect wild fire (forest fire) and active volcanoes, two major problems faced by Indonesia. In order to strengthen and broaden the result, iteration process had been used throughout the process. The analysis, then, were continued by calculating Ground pixel size, IFOV pixel, swath width, and focus length. Meanwhile, regarding of resolution, at least it is 400 m. The further procedure covered the integrated of optical design, wherein we combined among optical design software, Zemax, with mechanical analysis software (structure and thermal analysis), such as Nastran and Thermal Desktop / Sinda Fluint. The integration process was intended to produce high performance optical system of our IR Micro Bolometer that can be used under extreme environment. The results of all those analysis, either in graphs or in measurement, show that the initial design of LAPAN'S IR Micro Bolometer meets the determined requirement. However, it needs the further evaluation (iteration). This paper describes the initial design of LAPAN's IR Micro Bolometer using mission analysis process

  15. Optimization of CMOS image sensor utilizing variable temporal multisampling partial transfer technique to achieve full-frame high dynamic range with superior low light and stop motion capability

    NASA Astrophysics Data System (ADS)

    Kabir, Salman; Smith, Craig; Armstrong, Frank; Barnard, Gerrit; Schneider, Alex; Guidash, Michael; Vogelsang, Thomas; Endsley, Jay

    2018-03-01

    Differential binary pixel technology is a threshold-based timing, readout, and image reconstruction method that utilizes the subframe partial charge transfer technique in a standard four-transistor (4T) pixel CMOS image sensor to achieve a high dynamic range video with stop motion. This technology improves low light signal-to-noise ratio (SNR) by up to 21 dB. The method is verified in silicon using a Taiwan Semiconductor Manufacturing Company's 65 nm 1.1 μm pixel technology 1 megapixel test chip array and is compared with a traditional 4 × oversampling technique using full charge transfer to show low light SNR superiority of the presented technology.

  16. A MAPS Based Micro-Vertex Detector for the STAR Experiment

    DOE PAGES

    Schambach, Joachim; Anderssen, Eric; Contin, Giacomo; ...

    2015-06-18

    For the 2014 heavy ion run of RHIC a new micro-vertex detector called the Heavy Flavor Tracker (HFT) was installed in the STAR experiment. The HFT consists of three detector subsystems with various silicon technologies arranged in 4 approximately concentric cylinders close to the STAR interaction point designed to improve the STAR detector’s vertex resolution and extend its measurement capabilities in the heavy flavor domain. The two innermost HFT layers are placed at radii of 2.8 cm and 8 cm from the beam line. These layers are constructed with 400 high resolution sensors based on CMOS Monolithic Active Pixel Sensormore » (MAPS) technology arranged in 10-sensor ladders mounted on 10 thin carbon fiber sectors to cover a total silicon area of 0.16 m 2. Each sensor of this PiXeL (“PXL”) sub-detector combines a pixel array of 928 rows and 960 columns with a 20.7 μm pixel pitch together with front-end electronics and zero-suppression circuitry in one silicon die providing a sensitive area of ~3.8 cm 2. This sensor architecture features 185.6 μs readout time and 170 mW/cm 2 power dissipation. This low power dissipation allows the PXL detector to be air-cooled, and with the sensors thinned down to 50 μm results in a global material budget of only 0.4% radiation length per layer. A novel mechanical approach to detector insertion allows us to effectively install and integrate the PXL sub-detector within a 12 hour period during an on-going multi-month data taking period. The detector requirements, architecture and design, as well as the performance after installation, are presented in this paper.« less

  17. A research on radiation calibration of high dynamic range based on the dual channel CMOS

    NASA Astrophysics Data System (ADS)

    Ma, Kai; Shi, Zhan; Pan, Xiaodong; Wang, Yongsheng; Wang, Jianghua

    2017-10-01

    The dual channel complementary metal-oxide semiconductor (CMOS) can get high dynamic range (HDR) image through extending the gray level of the image by using image fusion with high gain channel image and low gain channel image in a same frame. In the process of image fusion with dual channel, it adopts the coefficients of radiation response of a pixel from dual channel in a same frame, and then calculates the gray level of the pixel in the HDR image. For the coefficients of radiation response play a crucial role in image fusion, it has to find an effective method to acquire these parameters. In this article, it makes a research on radiation calibration of high dynamic range based on the dual channel CMOS, and designs an experiment to calibrate the coefficients of radiation response for the sensor it used. In the end, it applies these response parameters in the dual channel CMOS which calibrates, and verifies the correctness and feasibility of the method mentioned in this paper.

  18. Active pixel image sensor with a winner-take-all mode of operation

    NASA Technical Reports Server (NTRS)

    Yadid-Pecht, Orly (Inventor); Mead, Carver (Inventor); Fossum, Eric R. (Inventor)

    2003-01-01

    An integrated CMOS semiconductor imaging device having two modes of operation that can be performed simultaneously to produce an output image and provide information of a brightest or darkest pixel in the image.

  19. Active pixel sensors with substantially planarized color filtering elements

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R. (Inventor); Kemeny, Sabrina E. (Inventor)

    1999-01-01

    A semiconductor imaging system preferably having an active pixel sensor array compatible with a CMOS fabrication process. Color-filtering elements such as polymer filters and wavelength-converting phosphors can be integrated with the image sensor.

  20. Design and fabrication of vertically-integrated CMOS image sensors.

    PubMed

    Skorka, Orit; Joseph, Dileepan

    2011-01-01

    Technologies to fabricate integrated circuits (IC) with 3D structures are an emerging trend in IC design. They are based on vertical stacking of active components to form heterogeneous microsystems. Electronic image sensors will benefit from these technologies because they allow increased pixel-level data processing and device optimization. This paper covers general principles in the design of vertically-integrated (VI) CMOS image sensors that are fabricated by flip-chip bonding. These sensors are composed of a CMOS die and a photodetector die. As a specific example, the paper presents a VI-CMOS image sensor that was designed at the University of Alberta, and fabricated with the help of CMC Microsystems and Micralyne Inc. To realize prototypes, CMOS dies with logarithmic active pixels were prepared in a commercial process, and photodetector dies with metal-semiconductor-metal devices were prepared in a custom process using hydrogenated amorphous silicon. The paper also describes a digital camera that was developed to test the prototype. In this camera, scenes captured by the image sensor are read using an FPGA board, and sent in real time to a PC over USB for data processing and display. Experimental results show that the VI-CMOS prototype has a higher dynamic range and a lower dark limit than conventional electronic image sensors.

  1. Design and Fabrication of Vertically-Integrated CMOS Image Sensors

    PubMed Central

    Skorka, Orit; Joseph, Dileepan

    2011-01-01

    Technologies to fabricate integrated circuits (IC) with 3D structures are an emerging trend in IC design. They are based on vertical stacking of active components to form heterogeneous microsystems. Electronic image sensors will benefit from these technologies because they allow increased pixel-level data processing and device optimization. This paper covers general principles in the design of vertically-integrated (VI) CMOS image sensors that are fabricated by flip-chip bonding. These sensors are composed of a CMOS die and a photodetector die. As a specific example, the paper presents a VI-CMOS image sensor that was designed at the University of Alberta, and fabricated with the help of CMC Microsystems and Micralyne Inc. To realize prototypes, CMOS dies with logarithmic active pixels were prepared in a commercial process, and photodetector dies with metal-semiconductor-metal devices were prepared in a custom process using hydrogenated amorphous silicon. The paper also describes a digital camera that was developed to test the prototype. In this camera, scenes captured by the image sensor are read using an FPGA board, and sent in real time to a PC over USB for data processing and display. Experimental results show that the VI-CMOS prototype has a higher dynamic range and a lower dark limit than conventional electronic image sensors. PMID:22163860

  2. CMOS Active Pixel Sensor Star Tracker with Regional Electronic Shutter

    NASA Technical Reports Server (NTRS)

    Yadid-Pecht, Orly; Pain, Bedabrata; Staller, Craig; Clark, Christopher; Fossum, Eric

    1996-01-01

    The guidance system in a spacecraft determines spacecraft attitude by matching an observed star field to a star catalog....An APS(active pixel sensor)-based system can reduce mass and power consumption and radiation effects compared to a CCD(charge-coupled device)-based system...This paper reports an APS (active pixel sensor) with locally variable times, achieved through individual pixel reset (IPR).

  3. SU-D-204-05: Quantitative Comparison of a High Resolution Micro-Angiographic Fluoroscopic (MAF) Detector with a Standard Flat Panel Detector (FPD) Using the New Metric of Generalized Measured Relative Object Detectability (GM-ROD)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russ, M; Ionita, C; Bednarek, D

    Purpose: In endovascular image-guided neuro-interventions, visualization of fine detail is paramount. For example, the ability of the interventionist to visualize the stent struts depends heavily on the x-ray imaging detector performance. Methods: A study to examine the relative performance of the high resolution MAF-CMOS (pixel size 75µm, Nyquist frequency 6.6 cycles/mm) and a standard Flat Panel Detector (pixel size 194µm, Nyquist frequency 2.5 cycles/mm) detectors in imaging a neuro stent was done using the Generalized Measured Relative Object Detectability (GM-ROD) metric. Low quantum noise images of a deployed stent were obtained by averaging 95 frames obtained by both detectors withoutmore » changing other exposure or geometric parameters. The square of the Fourier transform of each image is taken and divided by the generalized normalized noise power spectrum to give an effective measured task-specific signal-to-noise ratio. This expression is then integrated from 0 to each of the detector’s Nyquist frequencies, and the GM-ROD value is determined by taking a ratio of the integrals for the MAF-CMOS to that of the FPD. The lower bound of integration can be varied to emphasize high frequencies in the detector comparisons. Results: The MAF-CMOS detector exhibits vastly superior performance over the FPD when integrating over all frequencies, yielding a GM-ROD value of 63.1. The lower bound of integration was stepped up in increments of 0.5 cycles/mm for higher frequency comparisons. As the lower bound increased, the GM-ROD value was augmented, reflecting the superior performance of the MAF-CMOS in the high frequency regime. Conclusion: GM-ROD is a versatile metric that can provide quantitative detector and task dependent comparisons that can be used as a basis for detector selection. Supported by NIH Grant: 2R01EB002873 and an equipment grant from Toshiba Medical Systems Corporation.« less

  4. SOI CMOS Imager with Suppression of Cross-Talk

    NASA Technical Reports Server (NTRS)

    Pain, Bedabrata; Zheng, Xingyu; Cunningham, Thomas J.; Seshadri, Suresh; Sun, Chao

    2009-01-01

    A monolithic silicon-on-insulator (SOI) complementary metal oxide/semiconductor (CMOS) image-detecting integrated circuit of the active-pixel-sensor type, now undergoing development, is designed to operate at visible and near-infrared wavelengths and to offer a combination of high quantum efficiency and low diffusion and capacitive cross-talk among pixels. The imager is designed to be especially suitable for astronomical and astrophysical applications. The imager design could also readily be adapted to general scientific, biological, medical, and spectroscopic applications. One of the conditions needed to ensure both high quantum efficiency and low diffusion cross-talk is a relatively high reverse bias potential (between about 20 and about 50 V) on the photodiode in each pixel. Heretofore, a major obstacle to realization of this condition in a monolithic integrated circuit has been posed by the fact that the required high reverse bias on the photodiode is incompatible with metal oxide/semiconductor field-effect transistors (MOSFETs) in the CMOS pixel readout circuitry. In the imager now being developed, the SOI structure is utilized to overcome this obstacle: The handle wafer is retained and the photodiode is formed in the handle wafer. The MOSFETs are formed on the SOI layer, which is separated from the handle wafer by a buried oxide layer. The electrical isolation provided by the buried oxide layer makes it possible to bias the MOSFETs at CMOS-compatible potentials (between 0 and 3 V), while biasing the photodiode at the required higher potential, and enables independent optimization of the sensory and readout portions of the imager.

  5. Fixed Pattern Noise pixel-wise linear correction for crime scene imaging CMOS sensor

    NASA Astrophysics Data System (ADS)

    Yang, Jie; Messinger, David W.; Dube, Roger R.; Ientilucci, Emmett J.

    2017-05-01

    Filtered multispectral imaging technique might be a potential method for crime scene documentation and evidence detection due to its abundant spectral information as well as non-contact and non-destructive nature. Low-cost and portable multispectral crime scene imaging device would be highly useful and efficient. The second generation crime scene imaging system uses CMOS imaging sensor to capture spatial scene and bandpass Interference Filters (IFs) to capture spectral information. Unfortunately CMOS sensors suffer from severe spatial non-uniformity compared to CCD sensors and the major cause is Fixed Pattern Noise (FPN). IFs suffer from "blue shift" effect and introduce spatial-spectral correlated errors. Therefore, Fixed Pattern Noise (FPN) correction is critical to enhance crime scene image quality and is also helpful for spatial-spectral noise de-correlation. In this paper, a pixel-wise linear radiance to Digital Count (DC) conversion model is constructed for crime scene imaging CMOS sensor. Pixel-wise conversion gain Gi,j and Dark Signal Non-Uniformity (DSNU) Zi,j are calculated. Also, conversion gain is divided into four components: FPN row component, FPN column component, defects component and effective photo response signal component. Conversion gain is then corrected to average FPN column and row components and defects component so that the sensor conversion gain is uniform. Based on corrected conversion gain and estimated image incident radiance from the reverse of pixel-wise linear radiance to DC model, corrected image spatial uniformity can be enhanced to 7 times as raw image, and the bigger the image DC value within its dynamic range, the better the enhancement.

  6. SNR improvement for hyperspectral application using frame and pixel binning

    NASA Astrophysics Data System (ADS)

    Rehman, Sami Ur; Kumar, Ankush; Banerjee, Arup

    2016-05-01

    Hyperspectral imaging spectrometer systems are increasingly being used in the field of remote sensing for variety of civilian and military applications. The ability of such instruments in discriminating finer spectral features along with improved spatial and radiometric performance have made such instruments a powerful tool in the field of remote sensing. Design and development of spaceborne hyper spectral imaging spectrometers poses lot of technological challenges in terms of optics, dispersion element, detectors, electronics and mechanical systems. The main factors that define the type of detectors are the spectral region, SNR, dynamic range, pixel size, number of pixels, frame rate, operating temperature etc. Detectors with higher quantum efficiency and higher well depth are the preferred choice for such applications. CCD based Si detectors serves the requirement of high well depth for VNIR band spectrometers but suffers from smear. Smear can be controlled by using CMOS detectors. Si CMOS detectors with large format arrays are available. These detectors generally have smaller pitch and low well depth. Binning technique can be used with available CMOS detectors to meet the large swath, higher resolution and high SNR requirements. Availability of larger dwell time of satellite can be used to bin multiple frames to increase the signal collection even with lesser well depth detectors and ultimately increase the SNR. Lab measurements reveal that SNR improvement by frame binning is more in comparison to pixel binning. Effect of pixel binning as compared to the frame binning will be discussed and degradation of SNR as compared to theoretical value for pixel binning will be analyzed.

  7. Temporal Noise Analysis of Charge-Domain Sampling Readout Circuits for CMOS Image Sensors.

    PubMed

    Ge, Xiaoliang; Theuwissen, Albert J P

    2018-02-27

    This paper presents a temporal noise analysis of charge-domain sampling readout circuits for Complementary Metal-Oxide Semiconductor (CMOS) image sensors. In order to address the trade-off between the low input-referred noise and high dynamic range, a Gm-cell-based pixel together with a charge-domain correlated-double sampling (CDS) technique has been proposed to provide a way to efficiently embed a tunable conversion gain along the read-out path. Such readout topology, however, operates in a non-stationery large-signal behavior, and the statistical properties of its temporal noise are a function of time. Conventional noise analysis methods for CMOS image sensors are based on steady-state signal models, and therefore cannot be readily applied for Gm-cell-based pixels. In this paper, we develop analysis models for both thermal noise and flicker noise in Gm-cell-based pixels by employing the time-domain linear analysis approach and the non-stationary noise analysis theory, which help to quantitatively evaluate the temporal noise characteristic of Gm-cell-based pixels. Both models were numerically computed in MATLAB using design parameters of a prototype chip, and compared with both simulation and experimental results. The good agreement between the theoretical and measurement results verifies the effectiveness of the proposed noise analysis models.

  8. Signal-Conditioning Block of a 1 × 200 CMOS Detector Array for a Terahertz Real-Time Imaging System

    PubMed Central

    Yang, Jong-Ryul; Lee, Woo-Jae; Han, Seong-Tae

    2016-01-01

    A signal conditioning block of a 1 × 200 Complementary Metal-Oxide-Semiconductor (CMOS) detector array is proposed to be employed with a real-time 0.2 THz imaging system for inspecting large areas. The plasmonic CMOS detector array whose pixel size including an integrated antenna is comparable to the wavelength of the THz wave for the imaging system, inevitably carries wide pixel-to-pixel variation. To make the variant outputs from the array uniform, the proposed signal conditioning block calibrates the responsivity of each pixel by controlling the gate bias of each detector and the voltage gain of the lock-in amplifiers in the block. The gate bias of each detector is modulated to 1 MHz to improve the signal-to-noise ratio of the imaging system via the electrical modulation by the conditioning block. In addition, direct current (DC) offsets of the detectors in the array are cancelled by initializing the output voltage level from the block. Real-time imaging using the proposed signal conditioning block is demonstrated by obtaining images at the rate of 19.2 frame-per-sec of an object moving on the conveyor belt with a scan width of 20 cm and a scan speed of 25 cm/s. PMID:26950128

  9. Signal-Conditioning Block of a 1 × 200 CMOS Detector Array for a Terahertz Real-Time Imaging System.

    PubMed

    Yang, Jong-Ryul; Lee, Woo-Jae; Han, Seong-Tae

    2016-03-02

    A signal conditioning block of a 1 × 200 Complementary Metal-Oxide-Semiconductor (CMOS) detector array is proposed to be employed with a real-time 0.2 THz imaging system for inspecting large areas. The plasmonic CMOS detector array whose pixel size including an integrated antenna is comparable to the wavelength of the THz wave for the imaging system, inevitably carries wide pixel-to-pixel variation. To make the variant outputs from the array uniform, the proposed signal conditioning block calibrates the responsivity of each pixel by controlling the gate bias of each detector and the voltage gain of the lock-in amplifiers in the block. The gate bias of each detector is modulated to 1 MHz to improve the signal-to-noise ratio of the imaging system via the electrical modulation by the conditioning block. In addition, direct current (DC) offsets of the detectors in the array are cancelled by initializing the output voltage level from the block. Real-time imaging using the proposed signal conditioning block is demonstrated by obtaining images at the rate of 19.2 frame-per-sec of an object moving on the conveyor belt with a scan width of 20 cm and a scan speed of 25 cm/s.

  10. Temporal Noise Analysis of Charge-Domain Sampling Readout Circuits for CMOS Image Sensors †

    PubMed Central

    Theuwissen, Albert J. P.

    2018-01-01

    This paper presents a temporal noise analysis of charge-domain sampling readout circuits for Complementary Metal-Oxide Semiconductor (CMOS) image sensors. In order to address the trade-off between the low input-referred noise and high dynamic range, a Gm-cell-based pixel together with a charge-domain correlated-double sampling (CDS) technique has been proposed to provide a way to efficiently embed a tunable conversion gain along the read-out path. Such readout topology, however, operates in a non-stationery large-signal behavior, and the statistical properties of its temporal noise are a function of time. Conventional noise analysis methods for CMOS image sensors are based on steady-state signal models, and therefore cannot be readily applied for Gm-cell-based pixels. In this paper, we develop analysis models for both thermal noise and flicker noise in Gm-cell-based pixels by employing the time-domain linear analysis approach and the non-stationary noise analysis theory, which help to quantitatively evaluate the temporal noise characteristic of Gm-cell-based pixels. Both models were numerically computed in MATLAB using design parameters of a prototype chip, and compared with both simulation and experimental results. The good agreement between the theoretical and measurement results verifies the effectiveness of the proposed noise analysis models. PMID:29495496

  11. Using Polynomials to Simplify Fixed Pattern Noise and Photometric Correction of Logarithmic CMOS Image Sensors

    PubMed Central

    Li, Jing; Mahmoodi, Alireza; Joseph, Dileepan

    2015-01-01

    An important class of complementary metal-oxide-semiconductor (CMOS) image sensors are those where pixel responses are monotonic nonlinear functions of light stimuli. This class includes various logarithmic architectures, which are easily capable of wide dynamic range imaging, at video rates, but which are vulnerable to image quality issues. To minimize fixed pattern noise (FPN) and maximize photometric accuracy, pixel responses must be calibrated and corrected due to mismatch and process variation during fabrication. Unlike literature approaches, which employ circuit-based models of varying complexity, this paper introduces a novel approach based on low-degree polynomials. Although each pixel may have a highly nonlinear response, an approximately-linear FPN calibration is possible by exploiting the monotonic nature of imaging. Moreover, FPN correction requires only arithmetic, and an optimal fixed-point implementation is readily derived, subject to a user-specified number of bits per pixel. Using a monotonic spline, involving cubic polynomials, photometric calibration is also possible without a circuit-based model, and fixed-point photometric correction requires only a look-up table. The approach is experimentally validated with a logarithmic CMOS image sensor and is compared to a leading approach from the literature. The novel approach proves effective and efficient. PMID:26501287

  12. Fabrication and Characterization of CMOS-MEMS Thermoelectric Micro Generators

    PubMed Central

    Kao, Pin-Hsu; Shih, Po-Jen; Dai, Ching-Liang; Liu, Mao-Chen

    2010-01-01

    This work presents a thermoelectric micro generator fabricated by the commercial 0.35 μm complementary metal oxide semiconductor (CMOS) process and the post-CMOS process. The micro generator is composed of 24 thermocouples in series. Each thermocouple is constructed by p-type and n-type polysilicon strips. The output power of the generator depends on the temperature difference between the hot and cold parts in the thermocouples. In order to prevent heat-receiving in the cold part in the thermocouples, the cold part is covered with a silicon dioxide layer with low thermal conductivity to insulate the heat source. The hot part of the thermocouples is suspended and connected to an aluminum plate, to increases the heat-receiving area in the hot part. The generator requires a post-CMOS process to release the suspended structures. The post-CMOS process uses an anisotropic dry etching to remove the oxide sacrificial layer and an isotropic dry etching to etch the silicon substrate. Experimental results show that the micro generator has an output voltage of 67 μV at the temperature difference of 1 K. PMID:22205869

  13. A functional hybrid memristor crossbar-array/CMOS system for data storage and neuromorphic applications.

    PubMed

    Kim, Kuk-Hwan; Gaba, Siddharth; Wheeler, Dana; Cruz-Albrecht, Jose M; Hussain, Tahir; Srinivasa, Narayan; Lu, Wei

    2012-01-11

    Crossbar arrays based on two-terminal resistive switches have been proposed as a leading candidate for future memory and logic applications. Here we demonstrate a high-density, fully operational hybrid crossbar/CMOS system composed of a transistor- and diode-less memristor crossbar array vertically integrated on top of a CMOS chip by taking advantage of the intrinsic nonlinear characteristics of the memristor element. The hybrid crossbar/CMOS system can reliably store complex binary and multilevel 1600 pixel bitmap images using a new programming scheme. © 2011 American Chemical Society

  14. A Multi-Resolution Mode CMOS Image Sensor with a Novel Two-Step Single-Slope ADC for Intelligent Surveillance Systems.

    PubMed

    Kim, Daehyeok; Song, Minkyu; Choe, Byeongseong; Kim, Soo Youn

    2017-06-25

    In this paper, we present a multi-resolution mode CMOS image sensor (CIS) for intelligent surveillance system (ISS) applications. A low column fixed-pattern noise (CFPN) comparator is proposed in 8-bit two-step single-slope analog-to-digital converter (TSSS ADC) for the CIS that supports normal, 1/2, 1/4, 1/8, 1/16, 1/32, and 1/64 mode of pixel resolution. We show that the scaled-resolution images enable CIS to reduce total power consumption while images hold steady without events. A prototype sensor of 176 × 144 pixels has been fabricated with a 0.18 μm 1-poly 4-metal CMOS process. The area of 4-shared 4T-active pixel sensor (APS) is 4.4 μm × 4.4 μm and the total chip size is 2.35 mm × 2.35 mm. The maximum power consumption is 10 mW (with full resolution) with supply voltages of 3.3 V (analog) and 1.8 V (digital) and 14 frame/s of frame rates.

  15. An ultra-low power self-timed column-level ADC for a CMOS pixel sensor based vertex detector

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Wang, M.

    2014-11-01

    The International Large Detector (ILD) is a detector concept for the future linear collider experiment. The vertex detector is the key tool to achieve high precision measurements for flavor tagging, which puts stringent requirements on the CMOS pixel sensors. Due to the cooling systems which deteriorate the material budget and increase the multiple scattering, it is important to reduce the power consumption. This paper presents an ultra-low power self-timed column-level ADC for the CMOS pixel sensors, aiming to equip the outer layers of the vertex detector. The ADC was designed to operate in two modes (active and idle) adapted to the low hit density in the outer layers. The architecture employs an enhanced sample-and-hold circuit and a self-timed technique. The total power consumption with a 3-V supply is 225μW during idle mode, which is the most frequent situation. This value rises to 425μW in the case of the active mode. It occupies an area of 35 × 590μm2.

  16. A high sensitivity 20Mfps CMOS image sensor with readout speed of 1Tpixel/sec for visualization of ultra-high speed phenomena

    NASA Astrophysics Data System (ADS)

    Kuroda, R.; Sugawa, S.

    2017-02-01

    Ultra-high speed (UHS) CMOS image sensors with on-chop analog memories placed on the periphery of pixel array for the visualization of UHS phenomena are overviewed in this paper. The developed UHS CMOS image sensors consist of 400H×256V pixels and 128 memories/pixel, and the readout speed of 1Tpixel/sec is obtained, leading to 10 Mfps full resolution video capturing with consecutive 128 frames, and 20 Mfps half resolution video capturing with consecutive 256 frames. The first development model has been employed in the high speed video camera and put in practical use in 2012. By the development of dedicated process technologies, photosensitivity improvement and power consumption reduction were simultaneously achieved, and the performance improved version has been utilized in the commercialized high-speed video camera since 2015 that offers 10 Mfps with ISO16,000 photosensitivity. Due to the improved photosensitivity, clear images can be captured and analyzed even under low light condition, such as under a microscope as well as capturing of UHS light emission phenomena.

  17. Twenty-four-micrometer-pitch microelectrode array with 6912-channel readout at 12 kHz via highly scalable implementation for high-spatial-resolution mapping of action potentials.

    PubMed

    Ogi, Jun; Kato, Yuri; Matoba, Yoshihisa; Yamane, Chigusa; Nagahata, Kazunori; Nakashima, Yusaku; Kishimoto, Takuya; Hashimoto, Shigeki; Maari, Koichi; Oike, Yusuke; Ezaki, Takayuki

    2017-12-19

    A 24-μm-pitch microelectrode array (MEA) with 6912 readout channels at 12 kHz and 23.2-μV rms random noise is presented. The aim is to reduce noise in a "highly scalable" MEA with a complementary metal-oxide-semiconductor integration circuit (CMOS-MEA), in which a large number of readout channels and a high electrode density can be expected. Despite the small dimension and the simplicity of the in-pixel circuit for the high electrode-density and the relatively large number of readout channels of the prototype CMOS-MEA chip developed in this work, the noise within the chip is successfully reduced to less than half that reported in a previous work, for a device with similar in-pixel circuit simplicity and a large number of readout channels. Further, the action potential was clearly observed on cardiomyocytes using the CMOS-MEA. These results indicate the high-scalability of the CMOS-MEA. The highly scalable CMOS-MEA provides high-spatial-resolution mapping of cell action potentials, and the mapping can aid understanding of complex activities in cells, including neuron network activities.

  18. Solid-state image sensor with focal-plane digital photon-counting pixel array

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R. (Inventor); Pain, Bedabrata (Inventor)

    1995-01-01

    A photosensitive layer such as a-Si for a UV/visible wavelength band is provided for low light level imaging with at least a separate CMOS amplifier directly connected to each PIN photodetector diode to provide a focal-plane array of NxN pixels, and preferably a separate photon-counting CMOS circuit directly connected to each CMOS amplifier, although one row of counters may be time shared for reading out the photon flux rate of each diode in the array, together with a buffer memory for storing all rows of the NxN image frame before transfer to suitable storage. All CMOS circuitry is preferably fabricated in the same silicon layer as the PIN photodetector diode for a monolithic structure, but when the wavelength band of interest requires photosensitive material different from silicon, the focal-plane array may be fabricated separately on a different semiconductor layer bump-bonded or otherwise bonded for a virtually monolithic structure with one free terminal of each diode directly connected to the input terminal of its CMOS amplifier and digital counter for integration of the photon flux rate at each photodetector of the array.

  19. Characterization of pixel sensor designed in 180 nm SOI CMOS technology

    NASA Astrophysics Data System (ADS)

    Benka, T.; Havranek, M.; Hejtmanek, M.; Jakovenko, J.; Janoska, Z.; Marcisovska, M.; Marcisovsky, M.; Neue, G.; Tomasek, L.; Vrba, V.

    2018-01-01

    A new type of X-ray imaging Monolithic Active Pixel Sensor (MAPS), X-CHIP-02, was developed using a 180 nm deep submicron Silicon On Insulator (SOI) CMOS commercial technology. Two pixel matrices were integrated into the prototype chip, which differ by the pixel pitch of 50 μm and 100 μm. The X-CHIP-02 contains several test structures, which are useful for characterization of individual blocks. The sensitive part of the pixel integrated in the handle wafer is one of the key structures designed for testing. The purpose of this structure is to determine the capacitance of the sensitive part (diode in the MAPS pixel). The measured capacitance is 2.9 fF for 50 μm pixel pitch and 4.8 fF for 100 μm pixel pitch at -100 V (default operational voltage). This structure was used to measure the IV characteristics of the sensitive diode. In this work, we report on a circuit designed for precise determination of sensor capacitance and IV characteristics of both pixel types with respect to X-ray irradiation. The motivation for measurement of the sensor capacitance was its importance for the design of front-end amplifier circuits. The design of pixel elements, as well as circuit simulation and laboratory measurement techniques are described. The experimental results are of great importance for further development of MAPS sensors in this technology.

  20. ALPIDE: the Monolithic Active Pixel Sensor for the ALICE ITS upgrade

    NASA Astrophysics Data System (ADS)

    Šuljić, M.

    2016-11-01

    The upgrade of the ALICE vertex detector, the Inner Tracking System (ITS), is scheduled to be installed during the next long shutdown period (2019-2020) of the CERN Large Hadron Collider (LHC) . The current ITS will be replaced by seven concentric layers of Monolithic Active Pixel Sensors (MAPS) with total active surface of ~10 m2, thus making ALICE the first LHC experiment implementing MAPS detector technology on a large scale. The ALPIDE chip, based on TowerJazz 180 nm CMOS Imaging Process, is being developed for this purpose. A particular process feature, the deep p-well, is exploited so the full CMOS logic can be implemented over the active sensor area without impinging on the deposited charge collection. ALPIDE is implemented on silicon wafers with a high resistivity epitaxial layer. A single chip measures 15 mm by 30 mm and contains half a million pixels distributed in 512 rows and 1024 columns. In-pixel circuitry features amplification, shaping, discrimination and multi-event buffering. The readout is hit driven i.e. only addresses of hit pixels are sent to the periphery. The upgrade of the ITS presents two different sets of requirements for sensors of the inner and of the outer layers due to the significantly different track density, radiation level and active detector surface. The ALPIDE chip fulfils the stringent requirements in both cases. The detection efficiency is higher than 99%, fake-hit probability is orders of magnitude lower than the required 10-6 and spatial resolution within the required 5 μm. This performance is to be maintained even after a total ionising does (TID) of 2.7 Mrad and a non-ionising energy loss (NIEL) fluence of 1.7 × 1013 1 MeV neq/cm2, which is above what is expected during the detector lifetime. Readout rate of 100 kHz is provided and the power density of ALPIDE is less than 40 mW/cm2. This contribution will provide a summary of the ALPIDE features and main test results.

  1. Beyond CMOS: heterogeneous integration of III–V devices, RF MEMS and other dissimilar materials/devices with Si CMOS to create intelligent microsystems

    PubMed Central

    Kazior, Thomas E.

    2014-01-01

    Advances in silicon technology continue to revolutionize micro-/nano-electronics. However, Si cannot do everything, and devices/components based on other materials systems are required. What is the best way to integrate these dissimilar materials and to enhance the capabilities of Si, thereby continuing the micro-/nano-electronics revolution? In this paper, I review different approaches to heterogeneously integrate dissimilar materials with Si complementary metal oxide semiconductor (CMOS) technology. In particular, I summarize results on the successful integration of III–V electronic devices (InP heterojunction bipolar transistors (HBTs) and GaN high-electron-mobility transistors (HEMTs)) with Si CMOS on a common silicon-based wafer using an integration/fabrication process similar to a SiGe BiCMOS process (BiCMOS integrates bipolar junction and CMOS transistors). Our III–V BiCMOS process has been scaled to 200 mm diameter wafers for integration with scaled CMOS and used to fabricate radio-frequency (RF) and mixed signals circuits with on-chip digital control/calibration. I also show that RF microelectromechanical systems (MEMS) can be integrated onto this platform to create tunable or reconfigurable circuits. Thus, heterogeneous integration of III–V devices, MEMS and other dissimilar materials with Si CMOS enables a new class of high-performance integrated circuits that enhance the capabilities of existing systems, enable new circuit architectures and facilitate the continued proliferation of low-cost micro-/nano-electronics for a wide range of applications. PMID:24567473

  2. Beyond CMOS: heterogeneous integration of III-V devices, RF MEMS and other dissimilar materials/devices with Si CMOS to create intelligent microsystems.

    PubMed

    Kazior, Thomas E

    2014-03-28

    Advances in silicon technology continue to revolutionize micro-/nano-electronics. However, Si cannot do everything, and devices/components based on other materials systems are required. What is the best way to integrate these dissimilar materials and to enhance the capabilities of Si, thereby continuing the micro-/nano-electronics revolution? In this paper, I review different approaches to heterogeneously integrate dissimilar materials with Si complementary metal oxide semiconductor (CMOS) technology. In particular, I summarize results on the successful integration of III-V electronic devices (InP heterojunction bipolar transistors (HBTs) and GaN high-electron-mobility transistors (HEMTs)) with Si CMOS on a common silicon-based wafer using an integration/fabrication process similar to a SiGe BiCMOS process (BiCMOS integrates bipolar junction and CMOS transistors). Our III-V BiCMOS process has been scaled to 200 mm diameter wafers for integration with scaled CMOS and used to fabricate radio-frequency (RF) and mixed signals circuits with on-chip digital control/calibration. I also show that RF microelectromechanical systems (MEMS) can be integrated onto this platform to create tunable or reconfigurable circuits. Thus, heterogeneous integration of III-V devices, MEMS and other dissimilar materials with Si CMOS enables a new class of high-performance integrated circuits that enhance the capabilities of existing systems, enable new circuit architectures and facilitate the continued proliferation of low-cost micro-/nano-electronics for a wide range of applications.

  3. Ionizing radiation effects on CMOS imagers manufactured in deep submicron process

    NASA Astrophysics Data System (ADS)

    Goiffon, Vincent; Magnan, Pierre; Bernard, Frédéric; Rolland, Guy; Saint-Pé, Olivier; Huger, Nicolas; Corbière, Franck

    2008-02-01

    We present here a study on both CMOS sensors and elementary structures (photodiodes and in-pixel MOSFETs) manufactured in a deep submicron process dedicated to imaging. We designed a test chip made of one 128×128-3T-pixel array with 10 μm pitch and more than 120 isolated test structures including photodiodes and MOSFETs with various implants and different sizes. All these devices were exposed to ionizing radiation up to 100 krad and their responses were correlated to identify the CMOS sensor weaknesses. Characterizations in darkness and under illumination demonstrated that dark current increase is the major sensor degradation. Shallow trench isolation was identified to be responsible for this degradation as it increases the number of generation centers in photodiode depletion regions. Consequences on hardness assurance and hardening-by-design are discussed.

  4. Integrated imaging sensor systems with CMOS active pixel sensor technology

    NASA Technical Reports Server (NTRS)

    Yang, G.; Cunningham, T.; Ortiz, M.; Heynssens, J.; Sun, C.; Hancock, B.; Seshadri, S.; Wrigley, C.; McCarty, K.; Pain, B.

    2002-01-01

    This paper discusses common approaches to CMOS APS technology, as well as specific results on the five-wire programmable digital camera-on-a-chip developed at JPL. The paper also reports recent research in the design, operation, and performance of APS imagers for several imager applications.

  5. A low-noise wide-dynamic-range event-driven detector using SOI pixel technology for high-energy particle imaging

    NASA Astrophysics Data System (ADS)

    Shrestha, Sumeet; Kamehama, Hiroki; Kawahito, Shoji; Yasutomi, Keita; Kagawa, Keiichiro; Takeda, Ayaki; Tsuru, Takeshi Go; Arai, Yasuo

    2015-08-01

    This paper presents a low-noise wide-dynamic-range pixel design for a high-energy particle detector in astronomical applications. A silicon on insulator (SOI) based detector is used for the detection of wide energy range of high energy particles (mainly for X-ray). The sensor has a thin layer of SOI CMOS readout circuitry and a thick layer of high-resistivity detector vertically stacked in a single chip. Pixel circuits are divided into two parts; signal sensing circuit and event detection circuit. The event detection circuit consisting of a comparator and logic circuits which detect the incidence of high energy particle categorizes the incident photon it into two energy groups using an appropriate energy threshold and generate a two-bit code for an event and energy level. The code for energy level is then used for selection of the gain of the in-pixel amplifier for the detected signal, providing a function of high-dynamic-range signal measurement. The two-bit code for the event and energy level is scanned in the event scanning block and the signals from the hit pixels only are read out. The variable-gain in-pixel amplifier uses a continuous integrator and integration-time control for the variable gain. The proposed design allows the small signal detection and wide dynamic range due to the adaptive gain technique and capability of correlated double sampling (CDS) technique of kTC noise canceling of the charge detector.

  6. Vertical Isolation for Photodiodes in CMOS Imagers

    NASA Technical Reports Server (NTRS)

    Pain, Bedabrata

    2008-01-01

    In a proposed improvement in complementary metal oxide/semi conduct - or (CMOS) image detectors, two additional implants in each pixel would effect vertical isolation between the metal oxide/semiconductor field-effect transistors (MOSFETs) and the photodiode of the pixel. This improvement is expected to enable separate optimization of the designs of the photodiode and the MOSFETs so as to optimize their performances independently of each other. The purpose to be served by enabling this separate optimization is to eliminate or vastly reduce diffusion cross-talk, thereby increasing sensitivity, effective spatial resolution, and color fidelity while reducing noise.

  7. A low-power CMOS readout IC design for bolometer applications

    NASA Astrophysics Data System (ADS)

    Galioglu, Arman; Abbasi, Shahbaz; Shafique, Atia; Ceylan, Ömer; Yazici, Melik; Kaynak, Mehmet; Durmaz, Emre C.; Arsoy, Elif Gul; Gurbuz, Yasar

    2017-02-01

    A prototype of a readout IC (ROIC) designed for use in high temperature coefficient of resistance (TCR) SiGe microbolometers is presented. The prototype ROIC architecture implemented is based on a bridge with active and blind bolometer pixels with a capacitive transimpedance amplifier (CTIA) input stage and column parallel integration with serial readout. The ROIC is designed for use in high (>= 4 %/K) TCR and high detector resistance Si/SiGe microbolometers with 17x17 μm2 pixel sizes in development. The prototype has been designed and fabricated in 0.25- μm SiGe:C BiCMOS process.

  8. Design and Fabrication of High-Efficiency CMOS/CCD Imagers

    NASA Technical Reports Server (NTRS)

    Pain, Bedabrata

    2007-01-01

    An architecture for back-illuminated complementary metal oxide/semiconductor (CMOS) and charge-coupled-device (CCD) ultraviolet/visible/near infrared- light image sensors, and a method of fabrication to implement the architecture, are undergoing development. The architecture and method are expected to enable realization of the full potential of back-illuminated CMOS/CCD imagers to perform with high efficiency, high sensitivity, excellent angular response, and in-pixel signal processing. The architecture and method are compatible with next-generation CMOS dielectric-forming and metallization techniques, and the process flow of the method is compatible with process flows typical of the manufacture of very-large-scale integrated (VLSI) circuits. The architecture and method overcome all obstacles that have hitherto prevented high-yield, low-cost fabrication of back-illuminated CMOS/CCD imagers by use of standard VLSI fabrication tools and techniques. It is not possible to discuss the obstacles in detail within the space available for this article. Briefly, the obstacles are posed by the problems of generating light-absorbing layers having desired uniform and accurate thicknesses, passivation of surfaces, forming structures for efficient collection of charge carriers, and wafer-scale thinning (in contradistinction to diescale thinning). A basic element of the present architecture and method - the element that, more than any other, makes it possible to overcome the obstacles - is the use of an alternative starting material: Instead of starting with a conventional bulk-CMOS wafer that consists of a p-doped epitaxial silicon layer grown on a heavily-p-doped silicon substrate, one starts with a special silicon-on-insulator (SOI) wafer that consists of a thermal oxide buried between a lightly p- or n-doped, thick silicon layer and a device silicon layer of appropriate thickness and doping. The thick silicon layer is used as a handle: that is, as a mechanical support for the device silicon layer during micro-fabrication.

  9. Real-time micro-vibration multi-spot synchronous measurement within a region based on heterodyne interference

    NASA Astrophysics Data System (ADS)

    Lan, Ma; Xiao, Wen; Chen, Zonghui; Hao, Hongliang; Pan, Feng

    2018-01-01

    Real-time micro-vibration measurement is widely used in engineering applications. It is very difficult for traditional optical detection methods to achieve real-time need in a relatively high frequency and multi-spot synchronous measurement of a region at the same time,especially at the nanoscale. Based on the method of heterodyne interference, an experimental system of real-time measurement of micro - vibration is constructed to satisfy the demand in engineering applications. The vibration response signal is measured by combing optical heterodyne interferometry and a high-speed CMOS-DVR image acquisition system. Then, by extracting and processing multiple pixels at the same time, four digital demodulation technique are implemented to simultaneously acquire the vibrating velocity of the target from the recorded sequences of images. Different kinds of demodulation algorithms are analyzed and the results show that these four demodulation algorithms are suitable for different interference signals. Both autocorrelation algorithm and cross-correlation algorithm meet the needs of real-time measurements. The autocorrelation algorithm demodulates the frequency more accurately, while the cross-correlation algorithm is more accurate in solving the amplitude.

  10. Design of the low area monotonic trim DAC in 40 nm CMOS technology for pixel readout chips

    NASA Astrophysics Data System (ADS)

    Drozd, A.; Szczygiel, R.; Maj, P.; Satlawa, T.; Grybos, P.

    2014-12-01

    The recent research in hybrid pixel detectors working in single photon counting mode focuses on nanometer or 3D technologies which allow making pixels smaller and implementing more complex solutions in each of the pixels. Usually single pixel in readout electronics for X-ray detection comprises of charge amplifier, shaper and discriminator that allow classification of events occurring at the detector as true or false hits by comparing amplitude of the signal obtained with threshold voltage, which minimizes the influence of noise effects. However, making the pixel size smaller often causes problems with pixel to pixel uniformity and additional effects like charge sharing become more visible. To improve channel-to-channel uniformity or implement an algorithm for charge sharing effect minimization, small area trimming DACs working in each pixel independently are necessary. However, meeting the requirement of small area often results in poor linearity and even non-monotonicity. In this paper we present a novel low-area thermometer coded 6-bit DAC implemented in 40 nm CMOS technology. Monte Carlo simulations were performed on the described design proving that under all conditions designed DAC is inherently monotonic. Presented DAC was implemented in the prototype readout chip with 432 pixels working in single photon counting mode, with two trimming DACs in each pixel. Each DAC occupies the area of 8 μm × 18.5 μm. Measurements and chips' tests were performed to obtain reliable statistical results.

  11. AN ONLINE, RADIATION HARD PROTON ENERGY-RESOLVING SCINTILLATOR STACK FOR LASER-DRIVEN PROTON BUNCHES.

    PubMed

    Englbrecht, Franz Siegfried; Würl, Matthias; Olivari, Francesco; Ficorella, Andrea; Kreuzer, Christian; Lindner, Florian H; Palma, Matteo Dalla; Pancheri, Lucio; Betta, Gian-Franco Dalla; Schreiber, Jörg; Quaranta, Alberto; Parodi, Katia

    2018-02-03

    We report on a scintillator-based online detection system for the spectral characterization of polychromatic proton bunches. Using up to nine stacked layers of radiation hard polysiloxane scintillators, coupled to and readout edge-on by a large area pixelated CMOS detector, impinging polychromatic proton bunches were characterized. The energy spectra were reconstructed using calibration data and simulated using Monte-Carlo simulations. Despite the scintillator stack showed some problems like thickness inhomogeneities and unequal layer coupling, the prototype allows to obtain a first estimate of the energy spectrum of proton beams. © The Author(s) 2018. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Dynamically re-configurable CMOS imagers for an active vision system

    NASA Technical Reports Server (NTRS)

    Yang, Guang (Inventor); Pain, Bedabrata (Inventor)

    2005-01-01

    A vision system is disclosed. The system includes a pixel array, at least one multi-resolution window operation circuit, and a pixel averaging circuit. The pixel array has an array of pixels configured to receive light signals from an image having at least one tracking target. The multi-resolution window operation circuits are configured to process the image. Each of the multi-resolution window operation circuits processes each tracking target within a particular multi-resolution window. The pixel averaging circuit is configured to sample and average pixels within the particular multi-resolution window.

  13. Precision tracking with a single gaseous pixel detector

    NASA Astrophysics Data System (ADS)

    Tsigaridas, S.; van Bakel, N.; Bilevych, Y.; Gromov, V.; Hartjes, F.; Hessey, N. P.; de Jong, P.; Kluit, R.

    2015-09-01

    The importance of micro-pattern gaseous detectors has grown over the past few years after successful usage in a large number of applications in physics experiments and medicine. We develop gaseous pixel detectors using micromegas-based amplification structures on top of CMOS pixel readout chips. Using wafer post-processing we add a spark-protection layer and a grid to create an amplification region above the chip, allowing individual electrons released above the grid by the passage of ionising radiation to be recorded. The electron creation point is measured in 3D, using the pixel position for (x, y) and the drift time for z. The track can be reconstructed by fitting a straight line to these points. In this work we have used a pixel-readout-chip which is a small-scale prototype of Timepix3 chip (designed for both silicon and gaseous detection media). This prototype chip has several advantages over the existing Timepix chip, including a faster front-end (pre-amplifier and discriminator) and a faster TDC which reduce timewalk's contribution to the z position error. Although the chip is very small (sensitive area of 0.88 × 0.88mm2), we have built it into a detector with a short drift gap (1.3 mm), and measured its tracking performance in an electron beam at DESY. We present the results obtained, which lead to a significant improvement for the resolutions with respect to Timepix-based detectors.

  14. Improved Space Object Observation Techniques Using CMOS Detectors

    NASA Astrophysics Data System (ADS)

    Schildknecht, T.; Hinze, A.; Schlatter, P.; Silha, J.; Peltonen, J.; Santti, T.; Flohrer, T.

    2013-08-01

    CMOS-sensors, or in general Active Pixel Sensors (APS), are rapidly replacing CCDs in the consumer camera market. Due to significant technological advances during the past years these devices start to compete with CCDs also for demanding scientific imaging applications, in particular in the astronomy community. CMOS detectors offer a series of inherent advantages compared to CCDs, due to the structure of their basic pixel cells, which each contain their own amplifier and readout electronics. The most prominent advantages for space object observations are the extremely fast and flexible readout capabilities, feasibility for electronic shuttering and precise epoch registration, and the potential to perform image processing operations on-chip and in real-time. Presently applied and proposed optical observation strategies for space debris surveys and space surveillance applications had to be analyzed. The major design drivers were identified and potential benefits from using available and future CMOS sensors were assessed. The major challenges and design drivers for ground-based and space-based optical observation strategies have been analyzed. CMOS detector characteristics were critically evaluated and compared with the established CCD technology, especially with respect to the above mentioned observations. Similarly, the desirable on-chip processing functionalities which would further enhance the object detection and image segmentation were identified. Finally, the characteristics of a particular CMOS sensor available at the Zimmerwald observatory were analyzed by performing laboratory test measurements.

  15. Analysis and Enhancement of Low-Light-Level Performance of Photodiode-Type CMOS Active Pixel Images Operated with Sub-Threshold Reset

    NASA Technical Reports Server (NTRS)

    Pain, Bedabrata; Yang, Guang; Ortiz, Monico; Wrigley, Christopher; Hancock, Bruce; Cunningham, Thomas

    2000-01-01

    Noise in photodiode-type CMOS active pixel sensors (APS) is primarily due to the reset (kTC) noise at the sense node, since it is difficult to implement in-pixel correlated double sampling for a 2-D array. Signal integrated on the photodiode sense node (SENSE) is calculated by measuring difference between the voltage on the column bus (COL) - before and after the reset (RST) is pulsed. Lower than kTC noise can be achieved with photodiode-type pixels by employing "softreset" technique. Soft-reset refers to resetting with both drain and gate of the n-channel reset transistor kept at the same potential, causing the sense node to be reset using sub-threshold MOSFET current. However, lowering of noise is achieved only at the expense higher image lag and low-light-level non-linearity. In this paper, we present an analysis to explain the noise behavior, show evidence of degraded performance under low-light levels, and describe new pixels that eliminate non-linearity and lag without compromising noise.

  16. Vision Sensors and Cameras

    NASA Astrophysics Data System (ADS)

    Hoefflinger, Bernd

    Silicon charge-coupled-device (CCD) imagers have been and are a specialty market ruled by a few companies for decades. Based on CMOS technologies, active-pixel sensors (APS) began to appear in 1990 at the 1 μm technology node. These pixels allow random access, global shutters, and they are compatible with focal-plane imaging systems combining sensing and first-level image processing. The progress towards smaller features and towards ultra-low leakage currents has provided reduced dark currents and μm-size pixels. All chips offer Mega-pixel resolution, and many have very high sensitivities equivalent to ASA 12.800. As a result, HDTV video cameras will become a commodity. Because charge-integration sensors suffer from a limited dynamic range, significant processing effort is spent on multiple exposure and piece-wise analog-digital conversion to reach ranges >10,000:1. The fundamental alternative is log-converting pixels with an eye-like response. This offers a range of almost a million to 1, constant contrast sensitivity and constant colors, important features in professional, technical and medical applications. 3D retino-morphic stacking of sensing and processing on top of each other is being revisited with sub-100 nm CMOS circuits and with TSV technology. With sensor outputs directly on top of neurons, neural focal-plane processing will regain momentum, and new levels of intelligent vision will be achieved. The industry push towards thinned wafers and TSV enables backside-illuminated and other pixels with a 100% fill-factor. 3D vision, which relies on stereo or on time-of-flight, high-speed circuitry, will also benefit from scaled-down CMOS technologies both because of their size as well as their higher speed.

  17. A Stimulated Raman Scattering CMOS Pixel Using a High-Speed Charge Modulator and Lock-in Amplifier.

    PubMed

    Lioe, De Xing; Mars, Kamel; Kawahito, Shoji; Yasutomi, Keita; Kagawa, Keiichiro; Yamada, Takahiro; Hashimoto, Mamoru

    2016-04-13

    A complementary metal-oxide semiconductor (CMOS) lock-in pixel to observe stimulated Raman scattering (SRS) using a high speed lateral electric field modulator (LEFM) for photo-generated charges and in-pixel readout circuits is presented. An effective SRS signal generated after the SRS process is very small and needs to be extracted from an extremely large offset due to a probing laser signal. In order to suppress the offset components while amplifying high-frequency modulated small SRS signal components, the lock-in pixel uses a high-speed LEFM for demodulating the SRS signal, resistor-capacitor low-pass filter (RC-LPF) and switched-capacitor (SC) integrator with a fully CMOS differential amplifier. AC (modulated) components remained in the RC-LPF outputs are eliminated by the phase-adjusted sampling with the SC integrator and the demodulated DC (unmodulated) components due to the SRS signal are integrated over many samples in the SC integrator. In order to suppress further the residual offset and the low frequency noise (1/f noise) components, a double modulation technique is introduced in the SRS signal measurements, where the phase of high-frequency modulated laser beam before irradiation of a specimen is modulated at an intermediate frequency and the demodulation is done at the lock-in pixel output. A prototype chip for characterizing the SRS lock-in pixel is implemented and a successful operation is demonstrated. The reduction effects of residual offset and 1/f noise components are confirmed by the measurements. A ratio of the detected small SRS to offset a signal of less than 10(-)⁵ is experimentally demonstrated, and the SRS spectrum of a Benzonitrile sample is successfully observed.

  18. An analog VLSI chip emulating polarization vision of Octopus retina.

    PubMed

    Momeni, Massoud; Titus, Albert H

    2006-01-01

    Biological systems provide a wealth of information which form the basis for human-made artificial systems. In this work, the visual system of Octopus is investigated and its polarization sensitivity mimicked. While in actual Octopus retina, polarization vision is mainly based on the orthogonal arrangement of its photoreceptors, our implementation uses a birefringent micropolarizer made of YVO4 and mounted on a CMOS chip with neuromorphic circuitry to process linearly polarized light. Arranged in an 8 x 5 array with two photodiodes per pixel, each consuming typically 10 microW, this circuitry mimics both the functionality of individual Octopus retina cells by computing the state of polarization and the interconnection of these cells through a bias-controllable resistive network.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dragone, A; /SLAC; Pratte, J.F.

    An ASIC for the readout of signals from X-ray Active Matrix Pixel Sensor (XAMPS) detectors to be used at the Linac Coherent Light Source (LCLS) is presented. The X-ray Pump Probe (XPP) instrument, for which the ASIC has been designed, requires a large input dynamic range on the order of 104 photons at 8 keV with a resolution of half a photon FWHM. Due to the size of the pixel and the length of the readout line, large input capacitance is expected, leading to stringent requirement on the noise optimization. Furthermore, the large number of pixels needed for a goodmore » position resolution and the fixed LCLS beam period impose limitations on the time available for the single pixel readout. Considering the periodic nature of the LCLS beam, the ASIC developed for this application is a time-variant system providing low-noise charge integration, filtering and correlated double sampling. In order to cope with the large input dynamic range a charge pump scheme implementing a zero-balance measurement method has been introduced. It provides an on chip 3-bit coarse digital conversion of the integrated charge. The residual charge is sampled using correlated double sampling into analog memory and measured with the required resolution. The first 64 channel prototype of the ASIC has been fabricated in TSMC CMOS 0.25 {micro}m technology. In this paper, the ASIC architecture and performances are presented.« less

  20. An Over 90 dB Intra-Scene Single-Exposure Dynamic Range CMOS Image Sensor Using a 3.0 μm Triple-Gain Pixel Fabricated in a Standard BSI Process.

    PubMed

    Takayanagi, Isao; Yoshimura, Norio; Mori, Kazuya; Matsuo, Shinichiro; Tanaka, Shunsuke; Abe, Hirofumi; Yasuda, Naoto; Ishikawa, Kenichiro; Okura, Shunsuke; Ohsawa, Shinji; Otaka, Toshinori

    2018-01-12

    To respond to the high demand for high dynamic range imaging suitable for moving objects with few artifacts, we have developed a single-exposure dynamic range image sensor by introducing a triple-gain pixel and a low noise dual-gain readout circuit. The developed 3 μm pixel is capable of having three conversion gains. Introducing a new split-pinned photodiode structure, linear full well reaches 40 ke - . Readout noise under the highest pixel gain condition is 1 e - with a low noise readout circuit. Merging two signals, one with high pixel gain and high analog gain, and the other with low pixel gain and low analog gain, a single exposure dynamic rage (SEHDR) signal is obtained. Using this technology, a 1/2.7", 2M-pixel CMOS image sensor has been developed and characterized. The image sensor also employs an on-chip linearization function, yielding a 16-bit linear signal at 60 fps, and an intra-scene dynamic range of higher than 90 dB was successfully demonstrated. This SEHDR approach inherently mitigates the artifacts from moving objects or time-varying light sources that can appear in the multiple exposure high dynamic range (MEHDR) approach.

  1. An Over 90 dB Intra-Scene Single-Exposure Dynamic Range CMOS Image Sensor Using a 3.0 μm Triple-Gain Pixel Fabricated in a Standard BSI Process †

    PubMed Central

    Takayanagi, Isao; Yoshimura, Norio; Mori, Kazuya; Matsuo, Shinichiro; Tanaka, Shunsuke; Abe, Hirofumi; Yasuda, Naoto; Ishikawa, Kenichiro; Okura, Shunsuke; Ohsawa, Shinji; Otaka, Toshinori

    2018-01-01

    To respond to the high demand for high dynamic range imaging suitable for moving objects with few artifacts, we have developed a single-exposure dynamic range image sensor by introducing a triple-gain pixel and a low noise dual-gain readout circuit. The developed 3 μm pixel is capable of having three conversion gains. Introducing a new split-pinned photodiode structure, linear full well reaches 40 ke−. Readout noise under the highest pixel gain condition is 1 e− with a low noise readout circuit. Merging two signals, one with high pixel gain and high analog gain, and the other with low pixel gain and low analog gain, a single exposure dynamic rage (SEHDR) signal is obtained. Using this technology, a 1/2.7”, 2M-pixel CMOS image sensor has been developed and characterized. The image sensor also employs an on-chip linearization function, yielding a 16-bit linear signal at 60 fps, and an intra-scene dynamic range of higher than 90 dB was successfully demonstrated. This SEHDR approach inherently mitigates the artifacts from moving objects or time-varying light sources that can appear in the multiple exposure high dynamic range (MEHDR) approach. PMID:29329210

  2. An acquisition system for CMOS imagers with a genuine 10 Gbit/s bandwidth

    NASA Astrophysics Data System (ADS)

    Guérin, C.; Mahroug, J.; Tromeur, W.; Houles, J.; Calabria, P.; Barbier, R.

    2012-12-01

    This paper presents a high data throughput acquisition system for pixel detector readout such as CMOS imagers. This CMOS acquisition board offers a genuine 10 Gbit/s bandwidth to the workstation and can provide an on-line and continuous high frame rate imaging capability. On-line processing can be implemented either on the Data Acquisition Board or on the multi-cores workstation depending on the complexity of the algorithms. The different parts composing the acquisition board have been designed to be used first with a single-photon detector called LUSIPHER (800×800 pixels), developed in our laboratory for scientific applications ranging from nano-photonics to adaptive optics. The architecture of the acquisition board is presented and the performances achieved by the produced boards are described. The future developments (hardware and software) concerning the on-line implementation of algorithms dedicated to single-photon imaging are tackled.

  3. Pixel-based characterisation of CMOS high-speed camera systems

    NASA Astrophysics Data System (ADS)

    Weber, V.; Brübach, J.; Gordon, R. L.; Dreizler, A.

    2011-05-01

    Quantifying high-repetition rate laser diagnostic techniques for measuring scalars in turbulent combustion relies on a complete description of the relationship between detected photons and the signal produced by the detector. CMOS-chip based cameras are becoming an accepted tool for capturing high frame rate cinematographic sequences for laser-based techniques such as Particle Image Velocimetry (PIV) and Planar Laser Induced Fluorescence (PLIF) and can be used with thermographic phosphors to determine surface temperatures. At low repetition rates, imaging techniques have benefitted from significant developments in the quality of CCD-based camera systems, particularly with the uniformity of pixel response and minimal non-linearities in the photon-to-signal conversion. The state of the art in CMOS technology displays a significant number of technical aspects that must be accounted for before these detectors can be used for quantitative diagnostics. This paper addresses these issues.

  4. High resistivity CMOS pixel sensors and their application to the STAR PXL detector

    NASA Astrophysics Data System (ADS)

    Dorokhov, A.; Bertolone, G.; Baudot, J.; Colledani, C.; Claus, G.; Degerli, Y.; de Masi, R.; Deveaux, M.; Dozière, G.; Dulinski, W.; Gélin, M.; Goffe, M.; Himmi, A.; Hu-Guo, Ch.; Jaaskelainen, K.; Koziel, M.; Morel, F.; Santos, C.; Specht, M.; Valin, I.; Voutsinas, G.; Winter, M.

    2011-09-01

    CMOS pixel sensors are foreseen to equip the vertex detector (called PXL) of the upgraded inner tracking system of the STAR experiment at RHIC. The sensors (called ULTIMATE) are being designed and their architecture is being optimized for the PXL specifications, extrapolating from the MIMOSA-26 sensor realized for the EUDET beam telescope.The paper gives an overview of the ULTIMATE sensor specifications and of the adaptation of its forerunner, MIMOSA-26, to the PXL specifications.One of the main changes between MIMOSA-26 and ULTIMATE is the use of a high resistivity epitaxial layer. Recent performance assessments obtained with MIMOSA-26 sensors manufactured on such an epitaxial layer are presented, as well as results of beam tests obtained with a prototype probing improved versions of the MIMOSA-26 pixel design. They show drastic improvements of the pixel signal-to-noise ratio and of the sensor radiation tolerance with respect to the performances achieved with a standard, i.e. low resistivity, layer.

  5. CMOS active pixel sensors response to low energy light ions

    NASA Astrophysics Data System (ADS)

    Spiriti, E.; Finck, Ch.; Baudot, J.; Divay, C.; Juliani, D.; Labalme, M.; Rousseau, M.; Salvador, S.; Vanstalle, M.; Agodi, C.; Cuttone, G.; De Napoli, M.; Romano, F.

    2017-12-01

    Recently CMOS active pixel sensors have been used in Hadrontherapy ions fragmentation cross section measurements. Their main goal is to reconstruct tracks generated by the non interacting primary ions or by the produced fragments. In this framework the sensors, unexpectedly, demonstrated the possibility to obtain also some informations that could contribute to the ion type identification. The present analysis shows a clear dependency in charge and number of pixels per cluster (pixels with a collected amount of charge above a given threshold) with both fragment atomic number Z and energy loss in the sensor. This information, in the FIRST (F ragmentation of I ons R elevant for S pace and T herapy) experiment, has been used in the overall particle identification analysis algorithm. The aim of this paper is to present the data analysis and the obtained results. An empirical model was developed, in this paper, that reproduce the cluster size as function of the deposited energy in the sensor.

  6. Optical and x-ray characterization of two novel CMOS image sensors

    NASA Astrophysics Data System (ADS)

    Bohndiek, Sarah E.; Arvanitis, Costas D.; Venanzi, Cristian; Royle, Gary J.; Clark, Andy T.; Crooks, Jamie P.; Prydderch, Mark L.; Turchetta, Renato; Blue, Andrew; Speller, Robert D.

    2007-02-01

    A UK consortium (MI3) has been founded to develop advanced CMOS pixel designs for scientific applications. Vanilla, a 520x520 array of 25μm pixels benefits from flushed reset circuitry for low noise and random pixel access for region of interest (ROI) readout. OPIC, a 64x72 test structure array of 30μm digital pixels has thresholding capabilities for sparse readout at 3,700fps. Characterization is performed with both optical illumination and x-ray exposure via a scintillator. Vanilla exhibits 34+/-3e - read noise, interactive quantum efficiency of 54% at 500nm and can read a 6x6 ROI at 24,395fps. OPIC has 46+/-3e - read noise and a wide dynamic range of 65dB due to high full well capacity. Based on these characterization studies, Vanilla could be utilized in applications where demands include high spectral response and high speed region of interest readout while OPIC could be used for high speed, high dynamic range imaging.

  7. Monolithic Active Pixel Sensors (MAPS) in a Quadruple Well Technology for Nearly 100% Fill Factor and Full CMOS Pixels.

    PubMed

    Ballin, Jamie Alexander; Crooks, Jamie Phillip; Dauncey, Paul Dominic; Magnan, Anne-Marie; Mikami, Yoshiari; Miller, Owen Daniel; Noy, Matthew; Rajovic, Vladimir; Stanitzki, Marcel; Stefanov, Konstantin; Turchetta, Renato; Tyndel, Mike; Villani, Enrico Giulio; Watson, Nigel Keith; Wilson, John Allan

    2008-09-02

    In this paper we present a novel, quadruple well process developed in a modern 0.18 mm CMOS technology called INMAPS. On top of the standard process, we have added a deep P implant that can be used to form a deep P-well and provide screening of N-wells from the P-doped epitaxial layer. This prevents the collection of radiation-induced charge by unrelated N-wells, typically ones where PMOS transistors are integrated. The design of a sensor specifically tailored to a particle physics experiment is presented, where each 50 mm pixel has over 150 PMOS and NMOS transistors. The sensor has been fabricated in the INMAPS process and first experimental evidence of the effectiveness of this process on charge collection is presented, showing a significant improvement in efficiency.

  8. Recent progress of RD53 Collaboration towards next generation Pixel Read-Out Chip for HL-LHC

    DOE PAGES

    Demaria, N.

    2016-12-21

    This paper is a review of recent progress of RD53 Collaboration. Results obtained on the study of the radiation effects on 65 nm CMOS have matured enough to define first strategies to adopt in the design of analog and digital circuits. Critical building blocks and analog very front end chains have been designed, tested before and after 5–800 Mrad. Small prototypes of 64×64 pixels with complex digital architectures have been produced, and point to address the main issues of dealing with extremely high pixel rates, while operating at very small in-time thresholds in the analog front end. Lastly, the collaborationmore » is now proceeding at full speed towards the design of a large scale prototype, called RD53A, in 65 nm CMOS technology.« less

  9. Charged particle detection performances of CMOS pixel sensors produced in a 0.18 μm process with a high resistivity epitaxial layer

    NASA Astrophysics Data System (ADS)

    Senyukov, S.; Baudot, J.; Besson, A.; Claus, G.; Cousin, L.; Dorokhov, A.; Dulinski, W.; Goffe, M.; Hu-Guo, C.; Winter, M.

    2013-12-01

    The apparatus of the ALICE experiment at CERN will be upgraded in 2017/18 during the second long shutdown of the LHC (LS2). A major motivation for this upgrade is to extend the physics reach for charmed and beauty particles down to low transverse momenta. This requires a substantial improvement of the spatial resolution and the data rate capability of the ALICE Inner Tracking System (ITS). To achieve this goal, the new ITS will be equipped with 50 μm thin CMOS Pixel Sensors (CPS) covering either the three innermost layers or all the 7 layers of the detector. The CPS being developed for the ITS upgrade at IPHC (Strasbourg) is derived from the MIMOSA 28 sensor realised for the STAR-PXL at RHIC in a 0.35 μm CMOS process. In order to satisfy the ITS upgrade requirements in terms of readout speed and radiation tolerance, a CMOS process with a reduced feature size and a high resistivity epitaxial layer should be exploited. In this respect, the charged particle detection performance and radiation hardness of the TowerJazz 0.18 μm CMOS process were studied with the help of the first prototype chip MIMOSA 32. The beam tests performed with negative pions of 120 GeV/c at the CERN-SPS allowed to measure a signal-to-noise ratio (SNR) for the non-irradiated chip in the range between 22 and 32 depending on the pixel design. The chip irradiated with the combined dose of 1 MRad and 1013neq /cm2 was observed to yield an SNR ranging between 11 and 23 for coolant temperatures varying from 15 °C to 30 °C. These SNR values were measured to result in particle detection efficiencies above 99.5% and 98% before and after irradiation, respectively. These satisfactory results allow to validate the TowerJazz 0.18 μm CMOS process for the ALICE ITS upgrade.

  10. Precision of FLEET Velocimetry Using High-Speed CMOS Camera Systems

    NASA Technical Reports Server (NTRS)

    Peters, Christopher J.; Danehy, Paul M.; Bathel, Brett F.; Jiang, Naibo; Calvert, Nathan D.; Miles, Richard B.

    2015-01-01

    Femtosecond laser electronic excitation tagging (FLEET) is an optical measurement technique that permits quantitative velocimetry of unseeded air or nitrogen using a single laser and a single camera. In this paper, we seek to determine the fundamental precision of the FLEET technique using high-speed complementary metal-oxide semiconductor (CMOS) cameras. Also, we compare the performance of several different high-speed CMOS camera systems for acquiring FLEET velocimetry data in air and nitrogen free-jet flows. The precision was defined as the standard deviation of a set of several hundred single-shot velocity measurements. Methods of enhancing the precision of the measurement were explored such as digital binning (similar in concept to on-sensor binning, but done in post-processing), row-wise digital binning of the signal in adjacent pixels and increasing the time delay between successive exposures. These techniques generally improved precision; however, binning provided the greatest improvement to the un-intensified camera systems which had low signal-to-noise ratio. When binning row-wise by 8 pixels (about the thickness of the tagged region) and using an inter-frame delay of 65 microseconds, precisions of 0.5 meters per second in air and 0.2 meters per second in nitrogen were achieved. The camera comparison included a pco.dimax HD, a LaVision Imager scientific CMOS (sCMOS) and a Photron FASTCAM SA-X2, along with a two-stage LaVision HighSpeed IRO intensifier. Excluding the LaVision Imager sCMOS, the cameras were tested with and without intensification and with both short and long inter-frame delays. Use of intensification and longer inter-frame delay generally improved precision. Overall, the Photron FASTCAM SA-X2 exhibited the best performance in terms of greatest precision and highest signal-to-noise ratio primarily because it had the largest pixels.

  11. Spatial filtering self-velocimeter for vehicle application using a CMOS linear image sensor

    NASA Astrophysics Data System (ADS)

    He, Xin; Zhou, Jian; Nie, Xiaoming; Long, Xingwu

    2015-03-01

    The idea of using a spatial filtering velocimeter (SFV) to measure the velocity of a vehicle for an inertial navigation system is put forward. The presented SFV is based on a CMOS linear image sensor with a high-speed data rate, large pixel size, and built-in timing generator. These advantages make the image sensor suitable to measure vehicle velocity. The power spectrum of the output signal is obtained by fast Fourier transform and is corrected by a frequency spectrum correction algorithm. This velocimeter was used to measure the velocity of a conveyor belt driven by a rotary table and the measurement uncertainty is ˜0.54%. Furthermore, it was also installed on a vehicle together with a laser Doppler velocimeter (LDV) to measure self-velocity. The measurement result of the designed SFV is compared with that of the LDV. It is shown that the measurement result of the SFV is coincident with that of the LDV. Therefore, the designed SFV is suitable for a vehicle self-contained inertial navigation system.

  12. Design and Test of a 65nm CMOS Front-End with Zero Dead Time for Next Generation Pixel Detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaioni, L.; Braga, D.; Christian, D.

    This work is concerned with the experimental characterization of a synchronous analog processor with zero dead time developed in a 65 nm CMOS technology, conceived for pixel detectors at the HL-LHC experiment upgrades. It includes a low noise, fast charge sensitive amplifier with detector leakage compensation circuit, and a compact, single ended comparator able to correctly process hits belonging to two consecutive bunch crossing periods. A 2-bit Flash ADC is exploited for digital conversion immediately after the preamplifier. A description of the circuits integrated in the front-end processor and the initial characterization results are provided

  13. Nanosecond monolithic CMOS readout cell

    DOEpatents

    Souchkov, Vitali V.

    2004-08-24

    A pulse shaper is implemented in monolithic CMOS with a delay unit formed of a unity gain buffer. The shaper is formed of a difference amplifier having one input connected directly to an input signal and a second input connected to a delayed input signal through the buffer. An elementary cell is based on the pulse shaper and a timing circuit which gates the output of an integrator connected to the pulse shaper output. A detector readout system is formed of a plurality of elementary cells, each connected to a pixel of a pixel array, or to a microstrip of a plurality of microstrips, or to a detector segment.

  14. Design and image-quality performance of high resolution CMOS-based X-ray imaging detectors for digital mammography

    NASA Astrophysics Data System (ADS)

    Cha, B. K.; Kim, J. Y.; Kim, Y. J.; Yun, S.; Cho, G.; Kim, H. K.; Seo, C.-W.; Jeon, S.; Huh, Y.

    2012-04-01

    In digital X-ray imaging systems, X-ray imaging detectors based on scintillating screens with electronic devices such as charge-coupled devices (CCDs), thin-film transistors (TFT), complementary metal oxide semiconductor (CMOS) flat panel imagers have been introduced for general radiography, dental, mammography and non-destructive testing (NDT) applications. Recently, a large-area CMOS active-pixel sensor (APS) in combination with scintillation films has been widely used in a variety of digital X-ray imaging applications. We employed a scintillator-based CMOS APS image sensor for high-resolution mammography. In this work, both powder-type Gd2O2S:Tb and a columnar structured CsI:Tl scintillation screens with various thicknesses were fabricated and used as materials to convert X-ray into visible light. These scintillating screens were directly coupled to a CMOS flat panel imager with a 25 × 50 mm2 active area and a 48 μm pixel pitch for high spatial resolution acquisition. We used a W/Al mammographic X-ray source with a 30 kVp energy condition. The imaging characterization of the X-ray detector was measured and analyzed in terms of linearity in incident X-ray dose, modulation transfer function (MTF), noise-power spectrum (NPS) and detective quantum efficiency (DQE).

  15. Development of blood vessel searching system for HMS

    NASA Astrophysics Data System (ADS)

    Kandani, Hirofumi; Uenoya, Toshiyuki; Uetsuji, Yasutomo; Nakamachi, Eiji

    2008-08-01

    In this study, we develop a new 3D miniature blood vessel searching system by using near-infrared LED light, a CMOS camera module with an image processing unit for a health monitoring system (HMS), a drug delivery system (DDS) which requires very high performance for automatic micro blood volume extraction and automatic blood examination. Our objective is to fabricate a highly reliable micro detection system by utilizing image capturing, image processing, and micro blood extraction devices. For the searching system to determine 3D blood vessel location, we employ the stereo method. The stereo method is a common photogrammetric method. It employs the optical path principle to detect 3D location of the disparity between two cameras. The principle for blood vessel visualization is derived from the ratio of hemoglobin's absorption of the near-infrared LED light. To get a high quality blood vessel image, we adopted an LED, with peak a wavelength of 940nm. The LED is set on the dorsal side of the finger and it irradiates the human finger. A blood vessel image is captured by a CMOS camera module, which is set below the palmer side of the finger. 2D blood vessel location can be detected by the luminance distribution of a one pixel line. To examine the accuracy of our detecting system, we carried out experiments using finger phantoms with blood vessel diameters of 0.5, 0.75, 1.0mm, at the depths of 0.5 ~ 2.0 mm from the phantom's surface. The experimental results of the estimated depth obtained by our detecting system shows good agreements with the given depths, and the viability of this system is confirmed.

  16. A Low-Noise CMOS THz Imager Based on Source Modulation and an In-Pixel High-Q Passive Switched-Capacitor N-Path Filter.

    PubMed

    Boukhayma, Assim; Dupret, Antoine; Rostaing, Jean-Pierre; Enz, Christian

    2016-03-03

    This paper presents the first low noise complementary metal oxide semiconductor (CMOS) deletedCMOS terahertz (THz) imager based on source modulation and in-pixel high-Q filtering. The 31 × 31 focal plane array has been fully integrated in a 0 . 13 μ m standard CMOS process. The sensitivity has been improved significantly by modulating the active THz source that lights the scene and performing on-chip high-Q filtering. Each pixel encompass a broadband bow tie antenna coupled to an N-type metal-oxide-semiconductor (NMOS) detector that shifts the THz radiation, a low noise adjustable gain amplifier and a high-Q filter centered at the modulation frequency. The filter is based on a passive switched-capacitor (SC) N-path filter combined with a continuous-time broad-band Gm-C filter. A simplified analysis that helps in designing and tuning the passive SC N-path filter is provided. The characterization of the readout chain shows that a Q factor of 100 has been achieved for the filter with a good matching between the analytical calculation and the measurement results. An input-referred noise of 0 . 2 μ V RMS has been measured. Characterization of the chip with different THz wavelengths confirms the broadband feature of the antenna and shows that this THz imager reaches a total noise equivalent power of 0 . 6 nW at 270 GHz and 0 . 8 nW at 600 GHz.

  17. Terahertz Array Receivers with Integrated Antennas

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Goutam; Llombart, Nuria; Lee, Choonsup; Jung, Cecile; Lin, Robert; Cooper, Ken B.; Reck, Theodore; Siles, Jose; Schlecht, Erich; Peralta, Alessandro; hide

    2011-01-01

    Highly sensitive terahertz heterodyne receivers have been mostly single-pixel. However, now there is a real need of multi-pixel array receivers at these frequencies driven by the science and instrument requirements. In this paper we explore various receiver font-end and antenna architectures for use in multi-pixel integrated arrays at terahertz frequencies. Development of wafer-level integrated terahertz receiver front-end by using advanced semiconductor fabrication technologies has progressed very well over the past few years. Novel stacking of micro-machined silicon wafers which allows for the 3-dimensional integration of various terahertz receiver components in extremely small packages has made it possible to design multi-pixel heterodyne arrays. One of the critical technologies to achieve fully integrated system is the antenna arrays compatible with the receiver array architecture. In this paper we explore different receiver and antenna architectures for multi-pixel heterodyne and direct detector arrays for various applications such as multi-pixel high resolution spectrometer and imaging radar at terahertz frequencies.

  18. Laser-induced damage threshold of camera sensors and micro-optoelectromechanical systems

    NASA Astrophysics Data System (ADS)

    Schwarz, Bastian; Ritt, Gunnar; Koerber, Michael; Eberle, Bernd

    2017-03-01

    The continuous development of laser systems toward more compact and efficient devices constitutes an increasing threat to electro-optical imaging sensors, such as complementary metal-oxide-semiconductors (CMOS) and charge-coupled devices. These types of electronic sensors are used in day-to-day life but also in military or civil security applications. In camera systems dedicated to specific tasks, micro-optoelectromechanical systems, such as a digital micromirror device (DMD), are part of the optical setup. In such systems, the DMD can be located at an intermediate focal plane of the optics and it is also susceptible to laser damage. The goal of our work is to enhance the knowledge of damaging effects on such devices exposed to laser light. The experimental setup for the investigation of laser-induced damage is described in detail. As laser sources, both pulsed lasers and continuous-wave (CW)-lasers are used. The laser-induced damage threshold is determined by the single-shot method by increasing the pulse energy from pulse to pulse or in the case of CW-lasers, by increasing the laser power. Furthermore, we investigate the morphology of laser-induced damage patterns and the dependence of the number of destructive device elements on the laser pulse energy or laser power. In addition to the destruction of single pixels, we observe aftereffects, such as persistent dead columns or rows of pixels in the sensor image.

  19. Development of Gentle Slope Light Guide Structure in a 3.4 μm Pixel Pitch Global Shutter CMOS Image Sensor with Multiple Accumulation Shutter Technology.

    PubMed

    Sekine, Hiroshi; Kobayashi, Masahiro; Onuki, Yusuke; Kawabata, Kazunari; Tsuboi, Toshiki; Matsuno, Yasushi; Takahashi, Hidekazu; Inoue, Shunsuke; Ichikawa, Takeshi

    2017-12-09

    CMOS image sensors (CISs) with global shutter (GS) function are strongly required in order to avoid image degradation. However, CISs with GS function have generally been inferior to the rolling shutter (RS) CIS in performance, because they have more components. This problem is remarkable in small pixel pitch. The newly developed 3.4 µm pitch GS CIS solves this problem by using multiple accumulation shutter technology and the gentle slope light guide structure. As a result, the developed GS pixel achieves 1.8 e - temporal noise and 16,200 e - full well capacity with charge domain memory in 120 fps operation. The sensitivity and parasitic light sensitivity are 28,000 e - /lx·s and -89 dB, respectively. Moreover, the incident light angle dependence of sensitivity and parasitic light sensitivity are improved by the gentle slope light guide structure.

  20. Monolithic Active Pixel Sensors (MAPS) in a Quadruple Well Technology for Nearly 100% Fill Factor and Full CMOS Pixels

    PubMed Central

    Ballin, Jamie Alexander; Crooks, Jamie Phillip; Dauncey, Paul Dominic; Magnan, Anne-Marie; Mikami, Yoshinari; Miller, Owen Daniel; Noy, Matthew; Rajovic, Vladimir; Stanitzki, Marcel; Stefanov, Konstantin; Turchetta, Renato; Tyndel, Mike; Villani, Enrico Giulio; Watson, Nigel Keith; Wilson, John Allan

    2008-01-01

    In this paper we present a novel, quadruple well process developed in a modern 0.18 μm CMOS technology called INMAPS. On top of the standard process, we have added a deep P implant that can be used to form a deep P-well and provide screening of N-wells from the P-doped epitaxial layer. This prevents the collection of radiation-induced charge by unrelated N-wells, typically ones where PMOS transistors are integrated. The design of a sensor specifically tailored to a particle physics experiment is presented, where each 50 μm pixel has over 150 PMOS and NMOS transistors. The sensor has been fabricated in the INMAPS process and first experimental evidence of the effectiveness of this process on charge collection is presented, showing a significant improvement in efficiency. PMID:27873817

  1. Detection systems for mass spectrometry imaging: a perspective on novel developments with a focus on active pixel detectors.

    PubMed

    Jungmann, Julia H; Heeren, Ron M A

    2013-01-15

    Instrumental developments for imaging and individual particle detection for biomolecular mass spectrometry (imaging) and fundamental atomic and molecular physics studies are reviewed. Ion-counting detectors, array detection systems and high mass detectors for mass spectrometry (imaging) are treated. State-of-the-art detection systems for multi-dimensional ion, electron and photon detection are highlighted. Their application and performance in three different imaging modes--integrated, selected and spectral image detection--are described. Electro-optical and microchannel-plate-based systems are contrasted. The analytical capabilities of solid-state pixel detectors--both charge coupled device (CCD) and complementary metal oxide semiconductor (CMOS) chips--are introduced. The Medipix/Timepix detector family is described as an example of a CMOS hybrid active pixel sensor. Alternative imaging methods for particle detection and their potential for future applications are investigated. Copyright © 2012 John Wiley & Sons, Ltd.

  2. Efficient single-pixel multispectral imaging via non-mechanical spatio-spectral modulation.

    PubMed

    Li, Ziwei; Suo, Jinli; Hu, Xuemei; Deng, Chao; Fan, Jingtao; Dai, Qionghai

    2017-01-27

    Combining spectral imaging with compressive sensing (CS) enables efficient data acquisition by fully utilizing the intrinsic redundancies in natural images. Current compressive multispectral imagers, which are mostly based on array sensors (e.g, CCD or CMOS), suffer from limited spectral range and relatively low photon efficiency. To address these issues, this paper reports a multispectral imaging scheme with a single-pixel detector. Inspired by the spatial resolution redundancy of current spatial light modulators (SLMs) relative to the target reconstruction, we design an all-optical spectral splitting device to spatially split the light emitted from the object into several counterparts with different spectrums. Separated spectral channels are spatially modulated simultaneously with individual codes by an SLM. This no-moving-part modulation ensures a stable and fast system, and the spatial multiplexing ensures an efficient acquisition. A proof-of-concept setup is built and validated for 8-channel multispectral imaging within 420~720 nm wavelength range on both macro and micro objects, showing a potential for efficient multispectral imager in macroscopic and biomedical applications.

  3. ASIC Readout Circuit Architecture for Large Geiger Photodiode Arrays

    NASA Technical Reports Server (NTRS)

    Vasile, Stefan; Lipson, Jerold

    2012-01-01

    The objective of this work was to develop a new class of readout integrated circuit (ROIC) arrays to be operated with Geiger avalanche photodiode (GPD) arrays, by integrating multiple functions at the pixel level (smart-pixel or active pixel technology) in 250-nm CMOS (complementary metal oxide semiconductor) processes. In order to pack a maximum of functions within a minimum pixel size, the ROIC array is a full, custom application-specific integrated circuit (ASIC) design using a mixed-signal CMOS process with compact primitive layout cells. The ROIC array was processed to allow assembly in bump-bonding technology with photon-counting infrared detector arrays into 3-D imaging cameras (LADAR). The ROIC architecture was designed to work with either common- anode Si GPD arrays or common-cathode InGaAs GPD arrays. The current ROIC pixel design is hardwired prior to processing one of the two GPD array configurations, and it has the provision to allow soft reconfiguration to either array (to be implemented into the next ROIC array generation). The ROIC pixel architecture implements the Geiger avalanche quenching, bias, reset, and time to digital conversion (TDC) functions in full-digital design, and uses time domain over-sampling (vernier) to allow high temporal resolution at low clock rates, increased data yield, and improved utilization of the laser beam.

  4. Preliminary investigations of active pixel sensors in Nuclear Medicine imaging

    NASA Astrophysics Data System (ADS)

    Ott, Robert; Evans, Noel; Evans, Phil; Osmond, J.; Clark, A.; Turchetta, R.

    2009-06-01

    Three CMOS active pixel sensors have been investigated for their application to Nuclear Medicine imaging. Startracker with 525×525 25 μm square pixels has been coupled via a fibre optic stud to a 2 mm thick segmented CsI(Tl) crystal. Imaging tests were performed using 99mTc sources, which emit 140 keV gamma rays. The system was interfaced to a PC via FPGA-based DAQ and optical link enabling imaging rates of 10 f/s. System noise was measured to be >100e and it was shown that the majority of this noise was fixed pattern in nature. The intrinsic spatial resolution was measured to be ˜80 μm and the system spatial resolution measured with a slit was ˜450 μm. The second sensor, On Pixel Intelligent CMOS (OPIC), had 64×72 40 μm pixels and was used to evaluate noise characteristics and to develop a method of differentiation between fixed pattern and statistical noise. The third sensor, Vanilla, had 520×520 25 μm pixels and a measured system noise of ˜25e. This sensor was coupled directly to the segmented phosphor. Imaging results show that even at this lower level of noise the signal from 140 keV gamma rays is small as the light from the phosphor is spread over a large number of pixels. Suggestions for the 'ideal' sensor are made.

  5. Pulsed-neutron imaging by a high-speed camera and center-of-gravity processing

    NASA Astrophysics Data System (ADS)

    Mochiki, K.; Uragaki, T.; Koide, J.; Kushima, Y.; Kawarabayashi, J.; Taketani, A.; Otake, Y.; Matsumoto, Y.; Su, Y.; Hiroi, K.; Shinohara, T.; Kai, T.

    2018-01-01

    Pulsed-neutron imaging is attractive technique in the research fields of energy-resolved neutron radiography and RANS (RIKEN) and RADEN (J-PARC/JAEA) are small and large accelerator-driven pulsed-neutron facilities for its imaging, respectively. To overcome the insuficient spatial resolution of the conunting type imaging detectors like μ NID, nGEM and pixelated detectors, camera detectors combined with a neutron color image intensifier were investigated. At RANS center-of-gravity technique was applied to spots image obtained by a CCD camera and the technique was confirmed to be effective for improving spatial resolution. At RADEN a high-frame-rate CMOS camera was used and super resolution technique was applied and it was recognized that the spatial resolution was futhermore improved.

  6. Modulated CMOS camera for fluorescence lifetime microscopy.

    PubMed

    Chen, Hongtao; Holst, Gerhard; Gratton, Enrico

    2015-12-01

    Widefield frequency-domain fluorescence lifetime imaging microscopy (FD-FLIM) is a fast and accurate method to measure the fluorescence lifetime of entire images. However, the complexity and high costs involved in construction of such a system limit the extensive use of this technique. PCO AG recently released the first luminescence lifetime imaging camera based on a high frequency modulated CMOS image sensor, QMFLIM2. Here we tested and provide operational procedures to calibrate the camera and to improve the accuracy using corrections necessary for image analysis. With its flexible input/output options, we are able to use a modulated laser diode or a 20 MHz pulsed white supercontinuum laser as the light source. The output of the camera consists of a stack of modulated images that can be analyzed by the SimFCS software using the phasor approach. The nonuniform system response across the image sensor must be calibrated at the pixel level. This pixel calibration is crucial and needed for every camera settings, e.g. modulation frequency and exposure time. A significant dependency of the modulation signal on the intensity was also observed and hence an additional calibration is needed for each pixel depending on the pixel intensity level. These corrections are important not only for the fundamental frequency, but also for the higher harmonics when using the pulsed supercontinuum laser. With these post data acquisition corrections, the PCO CMOS-FLIM camera can be used for various biomedical applications requiring a large frame and high speed acquisition. © 2015 Wiley Periodicals, Inc.

  7. Recent Results on Gridpix Detectors:. AN Integrated Micromegas Grid and a Micromegas Ageing Test

    NASA Astrophysics Data System (ADS)

    Chefdeville, M.; Aarts, A.; van der Graaf, H.; van der Putten, S.

    2006-04-01

    A new gas-filled detector combining a Micromegas with a CMOS pixel chip has been recently tested. A procedure to integrate the Micromegas grid onto silicon wafers (‘wafer post processing’) has been developed. We aim to eventually integrate the grid on top of wafers of CMOS pixel chips. The first part of this contribution describes an application in vertex detection (GOSSIP). Then tests of the first detector prototype of a grid integrated on a bare silicon wafer are shown. Finally an ageing test of a Micromegas chamber is presented. After verifying the chambers' proportionality at a very high dose rates, the device was irradiated until ageing became apparent.

  8. A Low Power Digital Accumulation Technique for Digital-Domain CMOS TDI Image Sensor.

    PubMed

    Yu, Changwei; Nie, Kaiming; Xu, Jiangtao; Gao, Jing

    2016-09-23

    In this paper, an accumulation technique suitable for digital domain CMOS time delay integration (TDI) image sensors is proposed to reduce power consumption without degrading the rate of imaging. In terms of the slight variations of quantization codes among different pixel exposures towards the same object, the pixel array is divided into two groups: one is for coarse quantization of high bits only, and the other one is for fine quantization of low bits. Then, the complete quantization codes are composed of both results from the coarse-and-fine quantization. The equivalent operation comparably reduces the total required bit numbers of the quantization. In the 0.18 µm CMOS process, two versions of 16-stage digital domain CMOS TDI image sensor chains based on a 10-bit successive approximate register (SAR) analog-to-digital converter (ADC), with and without the proposed technique, are designed. The simulation results show that the average power consumption of slices of the two versions are 6 . 47 × 10 - 8 J/line and 7 . 4 × 10 - 8 J/line, respectively. Meanwhile, the linearity of the two versions are 99.74% and 99.99%, respectively.

  9. Novel CMOS photosensor with a gate-body tied NMOSFET structure

    NASA Astrophysics Data System (ADS)

    Kook, Youn-Jae; Jeong, Jae-Hun; Park, Young-June; Min, Hong-Shick

    2000-07-01

    A novel CMOS photosensor with a gate-body tied NMOSFET structure realized in the triple is well presented. The photocurrent is amplified by the lateral and vertical BJT action, which results in two different output photocurrents, which can be used for different applications within a pixel. The lateral action results in the drain current with a higher sensitivity at low light intensity. And the vertical action results in the collector current with uniform responsivity over wider range of the light intensity. The proposed photosensor in compatible with CMOS circuits.

  10. CMOS sensor as charged particles and ionizing radiation detector

    NASA Astrophysics Data System (ADS)

    Cruz-Zaragoza, E.; Piña López, I.

    2015-01-01

    This paper reports results of CMOS sensor suitable for use as charged particles and ionizing radiation detector. The CMOS sensor with 640 × 480 pixels area has been integrated into an electronic circuit for detection of ionizing radiation and it was exposed to alpha particle (Am-241, Unat), beta (Sr-90), and gamma photons (Cs-137). Results show after long period of time (168 h) irradiation the sensor had not loss of functionality and also the energy of the charge particles and photons were very well obtained.

  11. High speed wide field CMOS camera for Transneptunian Automatic Occultation Survey

    NASA Astrophysics Data System (ADS)

    Wang, Shiang-Yu; Geary, John C.; Amato, Stephen M.; Hu, Yen-Sang; Ling, Hung-Hsu; Huang, Pin-Jie; Furesz, Gabor; Chen, Hsin-Yo; Chang, Yin-Chang; Szentgyorgyi, Andrew; Lehner, Matthew; Norton, Timothy

    2014-08-01

    The Transneptunian Automated Occultation Survey (TAOS II) is a three robotic telescope project to detect the stellar occultation events generated by Trans Neptunian Objects (TNOs). TAOS II project aims to monitor about 10000 stars simultaneously at 20Hz to enable statistically significant event rate. The TAOS II camera is designed to cover the 1.7 degree diameter field of view (FoV) of the 1.3m telescope with 10 mosaic 4.5kx2k CMOS sensors. The new CMOS sensor has a back illumination thinned structure and high sensitivity to provide similar performance to that of the backillumination thinned CCDs. The sensor provides two parallel and eight serial decoders so the region of interests can be addressed and read out separately through different output channels efficiently. The pixel scale is about 0.6"/pix with the 16μm pixels. The sensors, mounted on a single Invar plate, are cooled to the operation temperature of about 200K by a cryogenic cooler. The Invar plate is connected to the dewar body through a supporting ring with three G10 bipods. The deformation of the cold plate is less than 10μm to ensure the sensor surface is always within ±40μm of focus range. The control electronics consists of analog part and a Xilinx FPGA based digital circuit. For each field star, 8×8 pixels box will be readout. The pixel rate for each channel is about 1Mpix/s and the total pixel rate for each camera is about 80Mpix/s. The FPGA module will calculate the total flux and also the centroid coordinates for every field star in each exposure.

  12. Backside illuminated CMOS-TDI line scanner for space applications

    NASA Astrophysics Data System (ADS)

    Cohen, O.; Ben-Ari, N.; Nevo, I.; Shiloah, N.; Zohar, G.; Kahanov, E.; Brumer, M.; Gershon, G.; Ofer, O.

    2017-09-01

    A new multi-spectral line scanner CMOS image sensor is reported. The backside illuminated (BSI) image sensor was designed for continuous scanning Low Earth Orbit (LEO) space applications including A custom high quality CMOS Active Pixels, Time Delayed Integration (TDI) mechanism that increases the SNR, 2-phase exposure mechanism that increases the dynamic Modulation Transfer Function (MTF), very low power internal Analog to Digital Converters (ADC) with resolution of 12 bit per pixel and on chip controller. The sensor has 4 independent arrays of pixels where each array is arranged in 2600 TDI columns with controllable TDI depth from 8 up to 64 TDI levels. A multispectral optical filter with specific spectral response per array is assembled at the package level. In this paper we briefly describe the sensor design and present some electrical and electro-optical recent measurements of the first prototypes including high Quantum Efficiency (QE), high MTF, wide range selectable Full Well Capacity (FWC), excellent linearity of approximately 1.3% in a signal range of 5-85% and approximately 1.75% in a signal range of 2-95% out of the signal span, readout noise of approximately 95 electrons with 64 TDI levels, negligible dark current and power consumption of less than 1.5W total for 4 bands sensor at all operation conditions .

  13. FDTD-based optical simulations methodology for CMOS image sensors pixels architecture and process optimization

    NASA Astrophysics Data System (ADS)

    Hirigoyen, Flavien; Crocherie, Axel; Vaillant, Jérôme M.; Cazaux, Yvon

    2008-02-01

    This paper presents a new FDTD-based optical simulation model dedicated to describe the optical performances of CMOS image sensors taking into account diffraction effects. Following market trend and industrialization constraints, CMOS image sensors must be easily embedded into even smaller packages, which are now equipped with auto-focus and short-term coming zoom system. Due to miniaturization, the ray-tracing models used to evaluate pixels optical performances are not accurate anymore to describe the light propagation inside the sensor, because of diffraction effects. Thus we adopt a more fundamental description to take into account these diffraction effects: we chose to use Maxwell-Boltzmann based modeling to compute the propagation of light, and to use a software with an FDTD-based (Finite Difference Time Domain) engine to solve this propagation. We present in this article the complete methodology of this modeling: on one hand incoherent plane waves are propagated to approximate a product-use diffuse-like source, on the other hand we use periodic conditions to limit the size of the simulated model and both memory and computation time. After having presented the correlation of the model with measurements we will illustrate its use in the case of the optimization of a 1.75μm pixel.

  14. Characterization of total ionizing dose damage in COTS pinned photodiode CMOS image sensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zujun, E-mail: wangzujun@nint.ac.cn; Ma, Wuying; Huang, Shaoyan

    The characterization of total ionizing dose (TID) damage in COTS pinned photodiode (PPD) CMOS image sensors (CISs) is investigated. The radiation experiments are carried out at a {sup 60}Co γ-ray source. The CISs are produced by 0.18-μm CMOS technology and the pixel architecture is 8T global shutter pixel with correlated double sampling (CDS) based on a 4T PPD front end. The parameters of CISs such as temporal domain, spatial domain, and spectral domain are measured at the CIS test system as the EMVA 1288 standard before and after irradiation. The dark current, random noise, dark signal non-uniformity (DSNU), photo responsemore » non-uniformity (PRNU), overall system gain, saturation output, dynamic range (DR), signal to noise ratio (SNR), quantum efficiency (QE), and responsivity versus the TID are reported. The behaviors of the tested CISs show remarkable degradations after radiation. The degradation mechanisms of CISs induced by TID damage are also analyzed.« less

  15. Characterization of total ionizing dose damage in COTS pinned photodiode CMOS image sensors

    NASA Astrophysics Data System (ADS)

    Wang, Zujun; Ma, Wuying; Huang, Shaoyan; Yao, Zhibin; Liu, Minbo; He, Baoping; Liu, Jing; Sheng, Jiangkun; Xue, Yuan

    2016-03-01

    The characterization of total ionizing dose (TID) damage in COTS pinned photodiode (PPD) CMOS image sensors (CISs) is investigated. The radiation experiments are carried out at a 60Co γ-ray source. The CISs are produced by 0.18-μm CMOS technology and the pixel architecture is 8T global shutter pixel with correlated double sampling (CDS) based on a 4T PPD front end. The parameters of CISs such as temporal domain, spatial domain, and spectral domain are measured at the CIS test system as the EMVA 1288 standard before and after irradiation. The dark current, random noise, dark signal non-uniformity (DSNU), photo response non-uniformity (PRNU), overall system gain, saturation output, dynamic range (DR), signal to noise ratio (SNR), quantum efficiency (QE), and responsivity versus the TID are reported. The behaviors of the tested CISs show remarkable degradations after radiation. The degradation mechanisms of CISs induced by TID damage are also analyzed.

  16. CMOS Image Sensor and System for Imaging Hemodynamic Changes in Response to Deep Brain Stimulation.

    PubMed

    Zhang, Xiao; Noor, Muhammad S; McCracken, Clinton B; Kiss, Zelma H T; Yadid-Pecht, Orly; Murari, Kartikeya

    2016-06-01

    Deep brain stimulation (DBS) is a therapeutic intervention used for a variety of neurological and psychiatric disorders, but its mechanism of action is not well understood. It is known that DBS modulates neural activity which changes metabolic demands and thus the cerebral circulation state. However, it is unclear whether there are correlations between electrophysiological, hemodynamic and behavioral changes and whether they have any implications for clinical benefits. In order to investigate these questions, we present a miniaturized system for spectroscopic imaging of brain hemodynamics. The system consists of a 144 ×144, [Formula: see text] pixel pitch, high-sensitivity, analog-output CMOS imager fabricated in a standard 0.35 μm CMOS process, along with a miniaturized imaging system comprising illumination, focusing, analog-to-digital conversion and μSD card based data storage. This enables stand alone operation without a computer, nor electrical or fiberoptic tethers. To achieve high sensitivity, the pixel uses a capacitive transimpedance amplifier (CTIA). The nMOS transistors are in the pixel while pMOS transistors are column-parallel, resulting in a fill factor (FF) of 26%. Running at 60 fps and exposed to 470 nm light, the CMOS imager has a minimum detectable intensity of 2.3 nW/cm(2) , a maximum signal-to-noise ratio (SNR) of 49 dB at 2.45 μW/cm(2) leading to a dynamic range (DR) of 61 dB while consuming 167 μA from a 3.3 V supply. In anesthetized rats, the system was able to detect temporal, spatial and spectral hemodynamic changes in response to DBS.

  17. 3-D readout-electronics packaging for high-bandwidth massively paralleled imager

    DOEpatents

    Kwiatkowski, Kris; Lyke, James

    2007-12-18

    Dense, massively parallel signal processing electronics are co-packaged behind associated sensor pixels. Microchips containing a linear or bilinear arrangement of photo-sensors, together with associated complex electronics, are integrated into a simple 3-D structure (a "mirror cube"). An array of photo-sensitive cells are disposed on a stacked CMOS chip's surface at a 45.degree. angle from light reflecting mirror surfaces formed on a neighboring CMOS chip surface. Image processing electronics are held within the stacked CMOS chip layers. Electrical connections couple each of said stacked CMOS chip layers and a distribution grid, the connections for distributing power and signals to components associated with each stacked CSMO chip layer.

  18. Advanced microlens and color filter process technology for the high-efficiency CMOS and CCD image sensors

    NASA Astrophysics Data System (ADS)

    Fan, Yang-Tung; Peng, Chiou-Shian; Chu, Cheng-Yu

    2000-12-01

    New markets are emerging for digital electronic image device, especially in visual communications, PC camera, mobile/cell phone, security system, toys, vehicle image system and computer peripherals for document capture. To enable one-chip image system that image sensor is with a full digital interface, can make image capture devices in our daily lives. Adding a color filter to such image sensor in a pattern of mosaics pixel or wide stripes can make image more real and colorful. We can say 'color filter makes the life more colorful color filter is? Color filter means can filter image light source except the color with specific wavelength and transmittance that is same as color filter itself. Color filter process is coating and patterning green, red and blue (or cyan, magenta and yellow) mosaic resists onto matched pixel in image sensing array pixels. According to the signal caught from each pixel, we can figure out the environment image picture. Widely use of digital electronic camera and multimedia applications today makes the feature of color filter becoming bright. Although it has challenge but it is very worthy to develop the process of color filter. We provide the best service on shorter cycle time, excellent color quality, high and stable yield. The key issues of advanced color process have to be solved and implemented are planarization and micro-lens technology. Lost of key points of color filter process technology have to consider will also be described in this paper.

  19. Implementation of material decomposition using an EMCCD and CMOS-based micro-CT system.

    PubMed

    Podgorsak, Alexander R; Nagesh, Sv Setlur; Bednarek, Daniel R; Rudin, Stephen; Ionita, Ciprian N

    2017-02-11

    This project assessed the effectiveness of using two different detectors to obtain dual-energy (DE) micro-CT data for the carrying out of material decomposition. A micro-CT coupled to either a complementary metal-oxide semiconductor (CMOS) or an electron multiplying CCD (EMCCD) detector was used to acquire image data of a 3D-printed phantom with channels filled with different materials. At any instance, materials such as iohexol contrast agent, water, and platinum were selected to make up the scanned object. DE micro-CT data was acquired, and slices of the scanned object were differentiated by material makeup. The success of the decomposition was assessed quantitatively through the computation of percentage normalized root-mean-square error (%NRMSE). Our results indicate a successful decomposition of iohexol for both detectors (%NRMSE values of 1.8 for EMCCD, 2.4 for CMOS), as well as platinum (%NRMSE value of 4.7). The CMOS detector performed material decomposition on air and water on average with 7 times more %NRMSE, possibly due to the decreased sensitivity of the CMOS system. Material decomposition showed the potential to differentiate between materials such as the iohexol and platinum, perhaps opening the door for its use in the neurovascular anatomical region. Work supported by Toshiba America Medical Systems, and partially supported by NIH grant 2R01EB002873.

  20. Implementation of material decomposition using an EMCCD and CMOS-based micro-CT system

    NASA Astrophysics Data System (ADS)

    Podgorsak, Alexander R.; Nagesh, S. V. Setlur; Bednarek, Daniel R.; Rudin, Stephen; Ionita, Ciprian N.

    2017-03-01

    This project assessed the effectiveness of using two different detectors to obtain dual-energy (DE) micro-CT data for the carrying out of material decomposition. A micro-CT coupled to either a complementary metal-oxide semiconductor (CMOS) or an electron multiplying CCD (EMCCD) detector was used to acquire image data of a 3D-printed phantom with channels filled with different materials. At any instance, materials such as iohexol contrast agent, water, and platinum were selected to make up the scanned object. DE micro-CT data was acquired, and slices of the scanned object were differentiated by material makeup. The success of the decomposition was assessed quantitatively through the computation of percentage normalized root-mean-square error (%NRMSE). Our results indicate a successful decomposition of iohexol for both detectors (%NRMSE values of 1.8 for EMCCD, 2.4 for CMOS), as well as platinum (%NRMSE value of 4.7). The CMOS detector performed material decomposition on air and water on average with 7 times more %NRMSE, possibly due to the decreased sensitivity of the CMOS system. Material decomposition showed the potential to differentiate between materials such as the iohexol and platinum, perhaps opening the door for its use in the neurovascular anatomical region. Work supported by Toshiba America Medical Systems, and partially supported by NIH grant 2R01EB002873.

  1. SU-E-I-25: Performance Evaluation of a Proposed CMOS-Based X-Ray Detector Using Linear Cascade Model Analysis.

    PubMed

    Jain, A; Bednarek, D; Rudin, S

    2012-06-01

    The need for high-resolution, dynamic x-ray imaging capability for neurovascular applications has put an ever increasing demand on x-ray detector technology. Present state-of-the-art detectors such as flat panels have limited resolution and noise performance. A linear cascade model analysis was used to estimate the theoretical performance for a proposed CMOS-based detector. The proposed CMOS-based detector was assumed to have a 300-micron thick HL type CsI phosphor, 35-micron pixels, a variable gain light image intensifier (LU), and 400 electron readout noise. The proposed detector has a CMOS sensor coupled to an LII which views the output of the CsI phosphor. For the analysis the whole imaging chain was divided into individual stages characterized by one of the basic processes (stochastic/deterministic blurring, binomial selection, quantum gain, additive noise). Standard linear cascade modeling was used for the propagation of signal and noise through the stages and an RQA5 spectrum was assumed. The gain, blurring or transmission of different stages was either measured or taken from manufacturer's specifications. The theoretically calculated MTF and DQE for the proposed detector were compared with a high-resolution, high-sensitive Micro-Angio Fluoroscope (MAF), predecessor of the proposed detector. Signal and noise for each of the 19 stages in the complete imaging chain were calculated and showed improved performance. For example, at 5 cycles/mm the MTF and DQE were 0.08 and 0.28, respectively, for the CMOS detector compared to 0.05 and 0.07 for the MAF detector. The proposed detector will have improved MTF and DQE and slimmer physical dimension due to the elimination of the large fiber-optic taper used in the MAF. Once operational, the proposed CMOS detector will serve as a further improvement over standard flat panel detectors compared to the MAF which is already receiving a very positive reception by neuro-vascular interventionalists. (Support:NIH-Grant R01EB002873) NIH Grants R01- EB008425, R01-EB002873 and an equipment grant from Toshiba Medical Systems Corp. © 2012 American Association of Physicists in Medicine.

  2. Use and imaging performance of CMOS flat panel imager with LiF/ZnS(Ag) and Gadox scintillation screens for neutron radiography

    NASA Astrophysics Data System (ADS)

    Cha, B. K.; kim, J. Y.; Kim, T. J.; Sim, C.; Cho, G.; Lee, D. H.; Seo, C.-W.; Jeon, S.; Huh, Y.

    2011-01-01

    In digital neutron radiography system, a thermal neutron imaging detector based on neutron-sensitive scintillating screens with CMOS(complementary metal oxide semiconductor) flat panel imager is introduced for non-destructive testing (NDT) application. Recently, large area CMOS APS (active-pixel sensor) in conjunction with scintillation films has been widely used in many digital X-ray imaging applications. Instead of typical imaging detectors such as image plates, cooled-CCD cameras and amorphous silicon flat panel detectors in combination with scintillation screens, we tried to apply a scintillator-based CMOS APS to neutron imaging detection systems for high resolution neutron radiography. In this work, two major Gd2O2S:Tb and 6LiF/ZnS:Ag scintillation screens with various thickness were fabricated by a screen printing method. These neutron converter screens consist of a dispersion of Gd2O2S:Tb and 6LiF/ZnS:Ag scintillating particles in acrylic binder. These scintillating screens coupled-CMOS flat panel imager with 25x50mm2 active area and 48μm pixel pitch was used for neutron radiography. Thermal neutron flux with 6x106n/cm2/s was utilized at the NRF facility of HANARO in KAERI. The neutron imaging characterization of the used detector was investigated in terms of relative light output, linearity and spatial resolution in detail. The experimental results of scintillating screen-based CMOS flat panel detectors demonstrate possibility of high sensitive and high spatial resolution imaging in neutron radiography system.

  3. A temperature characteristic research and compensation design for micro-machined gyroscope

    NASA Astrophysics Data System (ADS)

    Fu, Qiang; di, Xin-Peng; Chen, Wei-Ping; Yin, Liang; Liu, Xiao-Wei

    2017-02-01

    The all temperature range stability is the most important technology of MEMS angular velocity sensor according to the principle of capacity detecting. The correlation between driven force and zero-point of sensor is summarized according to the temperature characteristic of the air-damping and resonant frequency of sensor header. A constant trans-conductance high-linearity amplifier is designed to realize the low phase-drift and low amplitude-drift interface circuit at all-temperature range. The chip is fabricated in a standard 0.5 μm CMOS process. Compensation achieved by driven force to zero-point drift caused by the stiffness of physical construction and air-damping is adopted. Moreover, the driven force can be obtained from the drive-circuit to avoid the complex sampling. The test result shows that the zero-point drift is lower than 30∘/h (1-sigma) at the temperature range from -40∘C to 60∘C after three-order compensation made by driven force.

  4. Ultra-thin silicon (UTSi) on insulator CMOS transceiver and time-division multiplexed switch chips for smart pixel integration

    NASA Astrophysics Data System (ADS)

    Zhang, Liping; Sawchuk, Alexander A.

    2001-12-01

    We describe the design, fabrication and functionality of two different 0.5 micron CMOS optoelectronic integrated circuit (OEIC) chips based on the Peregrine Semiconductor Ultra-Thin Silicon on insulator technology. The Peregrine UTSi silicon- on-sapphire (SOS) technology is a member of the silicon-on- insulator (SOI) family. The low-loss synthetic sapphire substrate is optically transparent and has good thermal conductivity and coefficient of thermal expansion properties, which meet the requirements for flip-chip bonding of VCSELs and other optoelectronic input-output components. One chip contains transceiver and network components, including four channel high-speed CMOS transceiver modules, pseudo-random bit stream (PRBS) generators, a voltage controlled oscillator (VCO) and other test circuits. The transceiver chips can operate in both self-testing mode and networking mode. An on- chip clock and true-single-phase-clock (TSPC) D-flip-flop have been designed to generate a PRBS at over 2.5 Gb/s for the high-speed transceiver arrays to operate in self-testing mode. In the networking mode, an even number of transceiver chips forms a ring network through free-space or fiber ribbon interconnections. The second chip contains four channel optical time-division multiplex (TDM) switches, optical transceiver arrays, an active pixel detector and additional test devices. The eventual applications of these chips will require monolithic OEICs with integrated optical input and output. After fabrication and testing, the CMOS transceiver array dies will be packaged with 850 nm vertical cavity surface emitting lasers (VCSELs), and metal-semiconductor- metal (MSM) or GaAs p-i-n detector die arrays to achieve high- speed optical interconnections. The hybrid technique could be either wire bonding or flip-chip bonding of the CMOS SOS smart-pixel arrays with arrays of VCSELs and photodetectors onto an optoelectronic chip carrier as a multi-chip module (MCM).

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demaria, N.

    This paper is a review of recent progress of RD53 Collaboration. Results obtained on the study of the radiation effects on 65 nm CMOS have matured enough to define first strategies to adopt in the design of analog and digital circuits. Critical building blocks and analog very front end chains have been designed, tested before and after 5–800 Mrad. Small prototypes of 64×64 pixels with complex digital architectures have been produced, and point to address the main issues of dealing with extremely high pixel rates, while operating at very small in-time thresholds in the analog front end. Lastly, the collaborationmore » is now proceeding at full speed towards the design of a large scale prototype, called RD53A, in 65 nm CMOS technology.« less

  6. Polarization-Analyzing CMOS Image Sensor With Monolithically Embedded Polarizer for Microchemistry Systems.

    PubMed

    Tokuda, T; Yamada, H; Sasagawa, K; Ohta, J

    2009-10-01

    This paper proposes and demonstrates a polarization-analyzing CMOS sensor based on image sensor architecture. The sensor was designed targeting applications for chiral analysis in a microchemistry system. The sensor features a monolithically embedded polarizer. Embedded polarizers with different angles were implemented to realize a real-time absolute measurement of the incident polarization angle. Although the pixel-level performance was confirmed to be limited, estimation schemes based on the variation of the polarizer angle provided a promising performance for real-time polarization measurements. An estimation scheme using 180 pixels in a 1deg step provided an estimation accuracy of 0.04deg. Polarimetric measurements of chiral solutions were also successfully performed to demonstrate the applicability of the sensor to optical chiral analysis.

  7. Label-Free Biomedical Imaging Using High-Speed Lock-In Pixel Sensor for Stimulated Raman Scattering

    PubMed Central

    Mars, Kamel; Kawahito, Shoji; Yasutomi, Keita; Kagawa, Keiichiro; Yamada, Takahiro

    2017-01-01

    Raman imaging eliminates the need for staining procedures, providing label-free imaging to study biological samples. Recent developments in stimulated Raman scattering (SRS) have achieved fast acquisition speed and hyperspectral imaging. However, there has been a problem of lack of detectors suitable for MHz modulation rate parallel detection, detecting multiple small SRS signals while eliminating extremely strong offset due to direct laser light. In this paper, we present a complementary metal-oxide semiconductor (CMOS) image sensor using high-speed lock-in pixels for stimulated Raman scattering that is capable of obtaining the difference of Stokes-on and Stokes-off signal at modulation frequency of 20 MHz in the pixel before reading out. The generated small SRS signal is extracted and amplified in a pixel using a high-speed and large area lateral electric field charge modulator (LEFM) employing two-step ion implantation and an in-pixel pair of low-pass filter, a sample and hold circuit and a switched capacitor integrator using a fully differential amplifier. A prototype chip is fabricated using 0.11 μm CMOS image sensor technology process. SRS spectra and images of stearic acid and 3T3-L1 samples are successfully obtained. The outcomes suggest that hyperspectral and multi-focus SRS imaging at video rate is viable after slight modifications to the pixel architecture and the acquisition system. PMID:29120358

  8. Label-Free Biomedical Imaging Using High-Speed Lock-In Pixel Sensor for Stimulated Raman Scattering.

    PubMed

    Mars, Kamel; Lioe, De Xing; Kawahito, Shoji; Yasutomi, Keita; Kagawa, Keiichiro; Yamada, Takahiro; Hashimoto, Mamoru

    2017-11-09

    Raman imaging eliminates the need for staining procedures, providing label-free imaging to study biological samples. Recent developments in stimulated Raman scattering (SRS) have achieved fast acquisition speed and hyperspectral imaging. However, there has been a problem of lack of detectors suitable for MHz modulation rate parallel detection, detecting multiple small SRS signals while eliminating extremely strong offset due to direct laser light. In this paper, we present a complementary metal-oxide semiconductor (CMOS) image sensor using high-speed lock-in pixels for stimulated Raman scattering that is capable of obtaining the difference of Stokes-on and Stokes-off signal at modulation frequency of 20 MHz in the pixel before reading out. The generated small SRS signal is extracted and amplified in a pixel using a high-speed and large area lateral electric field charge modulator (LEFM) employing two-step ion implantation and an in-pixel pair of low-pass filter, a sample and hold circuit and a switched capacitor integrator using a fully differential amplifier. A prototype chip is fabricated using 0.11 μm CMOS image sensor technology process. SRS spectra and images of stearic acid and 3T3-L1 samples are successfully obtained. The outcomes suggest that hyperspectral and multi-focus SRS imaging at video rate is viable after slight modifications to the pixel architecture and the acquisition system.

  9. Backside illuminated CMOS-TDI line scan sensor for space applications

    NASA Astrophysics Data System (ADS)

    Cohen, Omer; Ofer, Oren; Abramovich, Gil; Ben-Ari, Nimrod; Gershon, Gal; Brumer, Maya; Shay, Adi; Shamay, Yaron

    2018-05-01

    A multi-spectral backside illuminated Time Delayed Integration Radiation Hardened line scan sensor utilizing CMOS technology was designed for continuous scanning Low Earth Orbit small satellite applications. The sensor comprises a single silicon chip with 4 independent arrays of pixels where each array is arranged in 2600 columns with 64 TDI levels. A multispectral optical filter whose spectral responses per array are adjustable per system requirement is assembled at the package level. A custom 4T Pixel design provides the required readout speed, low-noise, very low dark current, and high conversion gains. A 2-phase internally controlled exposure mechanism improves the sensor's dynamic MTF. The sensor high level of integration includes on-chip 12 bit per pixel analog to digital converters, on-chip controller, and CMOS compatible voltage levels. Thus, the power consumption and the weight of the supporting electronics are reduced, and a simple electrical interface is provided. An adjustable gain provides a Full Well Capacity ranging from 150,000 electrons up to 500,000 electrons per column and an overall readout noise per column of less than 120 electrons. The imager supports line rates ranging from 50 to 10,000 lines/sec, with power consumption of less than 0.5W per array. Thus, the sensor is characterized by a high pixel rate, a high dynamic range and a very low power. To meet a Latch-up free requirement RadHard architecture and design rules were utilized. In this paper recent electrical and electro-optical measurements of the sensor's Flight Models will be presented for the first time.

  10. Monolithic pixel development in TowerJazz 180 nm CMOS for the outer pixel layers in the ATLAS experiment

    NASA Astrophysics Data System (ADS)

    Berdalovic, I.; Bates, R.; Buttar, C.; Cardella, R.; Egidos Plaja, N.; Hemperek, T.; Hiti, B.; van Hoorne, J. W.; Kugathasan, T.; Mandic, I.; Maneuski, D.; Marin Tobon, C. A.; Moustakas, K.; Musa, L.; Pernegger, H.; Riedler, P.; Riegel, C.; Schaefer, D.; Schioppa, E. J.; Sharma, A.; Snoeys, W.; Solans Sanchez, C.; Wang, T.; Wermes, N.

    2018-01-01

    The upgrade of the ATLAS tracking detector (ITk) for the High-Luminosity Large Hadron Collider at CERN requires the development of novel radiation hard silicon sensor technologies. Latest developments in CMOS sensor processing offer the possibility of combining high-resistivity substrates with on-chip high-voltage biasing to achieve a large depleted active sensor volume. We have characterised depleted monolithic active pixel sensors (DMAPS), which were produced in a novel modified imaging process implemented in the TowerJazz 180 nm CMOS process in the framework of the monolithic sensor development for the ALICE experiment. Sensors fabricated in this modified process feature full depletion of the sensitive layer, a sensor capacitance of only a few fF and radiation tolerance up to 1015 neq/cm2. This paper summarises the measurements of charge collection properties in beam tests and in the laboratory using radioactive sources and edge TCT. The results of these measurements show significantly improved radiation hardness obtained for sensors manufactured using the modified process. This has opened the way to the design of two large scale demonstrators for the ATLAS ITk. To achieve a design compatible with the requirements of the outer pixel layers of the tracker, a charge sensitive front-end taking 500 nA from a 1.8 V supply is combined with a fast digital readout architecture. The low-power front-end with a 25 ns time resolution exploits the low sensor capacitance to reduce noise and analogue power, while the implemented readout architectures minimise power by reducing the digital activity.

  11. Simulation environment based on the Universal Verification Methodology

    NASA Astrophysics Data System (ADS)

    Fiergolski, A.

    2017-01-01

    Universal Verification Methodology (UVM) is a standardized approach of verifying integrated circuit designs, targeting a Coverage-Driven Verification (CDV). It combines automatic test generation, self-checking testbenches, and coverage metrics to indicate progress in the design verification. The flow of the CDV differs from the traditional directed-testing approach. With the CDV, a testbench developer, by setting the verification goals, starts with an structured plan. Those goals are targeted further by a developed testbench, which generates legal stimuli and sends them to a device under test (DUT). The progress is measured by coverage monitors added to the simulation environment. In this way, the non-exercised functionality can be identified. Moreover, the additional scoreboards indicate undesired DUT behaviour. Such verification environments were developed for three recent ASIC and FPGA projects which have successfully implemented the new work-flow: (1) the CLICpix2 65 nm CMOS hybrid pixel readout ASIC design; (2) the C3PD 180 nm HV-CMOS active sensor ASIC design; (3) the FPGA-based DAQ system of the CLICpix chip. This paper, based on the experience from the above projects, introduces briefly UVM and presents a set of tips and advices applicable at different stages of the verification process-cycle.

  12. An inverter-based capacitive trans-impedance amplifier readout with offset cancellation and temporal noise reduction for IR focal plane array

    NASA Astrophysics Data System (ADS)

    Chen, Hsin-Han; Hsieh, Chih-Cheng

    2013-09-01

    This paper presents a readout integrated circuit (ROIC) with inverter-based capacitive trans-impedance amplifier (CTIA) and pseudo-multiple sampling technique for infrared focal plane array (IRFPA). The proposed inverter-based CTIA with a coupling capacitor [1], executing auto-zeroing technique to cancel out the varied offset voltage from process variation, is used to substitute differential amplifier in conventional CTIA. The tunable detector bias is applied from a global external bias before exposure. This scheme not only retains stable detector bias voltage and signal injection efficiency, but also reduces the pixel area as well. Pseudo-multiple sampling technique [2] is adopted to reduce the temporal noise of readout circuit. The noise reduction performance is comparable to the conventional multiple sampling operation without need of longer readout time proportional to the number of samples. A CMOS image sensor chip with 55×65 pixel array has been fabricated in 0.18um CMOS technology. It achieves a 12um×12um pixel size, a frame rate of 72 fps, a power-per-pixel of 0.66uW/pixel, and a readout temporal noise of 1.06mVrms (16 times of pseudo-multiple sampling), respectively.

  13. Design and Simulations of an Energy Harvesting Capable CMOS Pixel for Implantable Retinal Prosthesis

    NASA Astrophysics Data System (ADS)

    Ansaripour, Iman; Karami, Mohammad Azim

    2017-12-01

    A new pixel is designed with the capability of imaging and energy harvesting for the retinal prosthesis implant in 0.18 µm standard Complementary Metal Oxide Semiconductor technology. The pixel conversion gain and dynamic range, are 2.05 \\upmu{{V}}/{{e}}^{ - } and 63.2 dB. The power consumption 53.12 pW per pixel while energy harvesting performance is 3.87 nW in 60 klx of illuminance per pixel. These results have been obtained using post layout simulation. In the proposed pixel structure, the high power production capability in energy harvesting mode covers the demanded energy by using all available p-n junction photo generated currents.

  14. Self-amplified CMOS image sensor using a current-mode readout circuit

    NASA Astrophysics Data System (ADS)

    Santos, Patrick M.; de Lima Monteiro, Davies W.; Pittet, Patrick

    2014-05-01

    The feature size of the CMOS processes decreased during the past few years and problems such as reduced dynamic range have become more significant in voltage-mode pixels, even though the integration of more functionality inside the pixel has become easier. This work makes a contribution on both sides: the possibility of a high signal excursion range using current-mode circuits together with functionality addition by making signal amplification inside the pixel. The classic 3T pixel architecture was rebuild with small modifications to integrate a transconductance amplifier providing a current as an output. The matrix with these new pixels will operate as a whole large transistor outsourcing an amplified current that will be used for signal processing. This current is controlled by the intensity of the light received by the matrix, modulated pixel by pixel. The output current can be controlled by the biasing circuits to achieve a very large range of output signal levels. It can also be controlled with the matrix size and this permits a very high degree of freedom on the signal level, observing the current densities inside the integrated circuit. In addition, the matrix can operate at very small integration times. Its applications would be those in which fast imaging processing, high signal amplification are required and low resolution is not a major problem, such as UV image sensors. Simulation results will be presented to support: operation, control, design, signal excursion levels and linearity for a matrix of pixels that was conceived using this new concept of sensor.

  15. Note: A disposable x-ray camera based on mass produced complementary metal-oxide-semiconductor sensors and single-board computers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoidn, Oliver R.; Seidler, Gerald T., E-mail: seidler@uw.edu

    We have integrated mass-produced commercial complementary metal-oxide-semiconductor (CMOS) image sensors and off-the-shelf single-board computers into an x-ray camera platform optimized for acquisition of x-ray spectra and radiographs at energies of 2–6 keV. The CMOS sensor and single-board computer are complemented by custom mounting and interface hardware that can be easily acquired from rapid prototyping services. For single-pixel detection events, i.e., events where the deposited energy from one photon is substantially localized in a single pixel, we establish ∼20% quantum efficiency at 2.6 keV with ∼190 eV resolution and a 100 kHz maximum detection rate. The detector platform’s useful intrinsic energymore » resolution, 5-μm pixel size, ease of use, and obvious potential for parallelization make it a promising candidate for many applications at synchrotron facilities, in laser-heating plasma physics studies, and in laboratory-based x-ray spectrometry.« less

  16. Laser-induced damage threshold of camera sensors and micro-opto-electro-mechanical systems

    NASA Astrophysics Data System (ADS)

    Schwarz, Bastian; Ritt, Gunnar; Körber, Michael; Eberle, Bernd

    2016-10-01

    The continuous development of laser systems towards more compact and efficient devices constitutes an increasing threat to electro-optical imaging sensors such as complementary metal-oxide-semiconductors (CMOS) and charge-coupled devices (CCD). These types of electronic sensors are used in day-to-day life but also in military or civil security applications. In camera systems dedicated to specific tasks, also micro-opto-electro-mechanical systems (MOEMS) like a digital micromirror device (DMD) are part of the optical setup. In such systems, the DMD can be located at an intermediate focal plane of the optics and it is also susceptible to laser damage. The goal of our work is to enhance the knowledge of damaging effects on such devices exposed to laser light. The experimental setup for the investigation of laser-induced damage is described in detail. As laser sources both pulsed lasers and continuous-wave (CW) lasers are used. The laser-induced damage threshold (LIDT) is determined by the single-shot method by increasing the pulse energy from pulse to pulse or in the case of CW-lasers, by increasing the laser power. Furthermore, we investigate the morphology of laser-induced damage patterns and the dependence of the number of destructed device elements on the laser pulse energy or laser power. In addition to the destruction of single pixels, we observe aftereffects like persisting dead columns or rows of pixels in the sensor image.

  17. Uncooled 17 μm ¼ VGA IRFPA development for compact and low power systems

    NASA Astrophysics Data System (ADS)

    Robert, P.; Tissot, J.; Pochic, D.; Gravot, V.; Bonnaire, F.; Clerambault, H.; Durand, A.; Tinnes, S.

    2012-11-01

    The high level of accumulated expertise by ULIS and CEA/LETI on uncooled microbolometers made from amorphous silicon enables ULIS to develop ¼ VGA IRFPA formats with 17μm pixel-pitch to enable the development of small power, small weight (SWAP) and high performance IR systems. ROIC architecture will be described where innovations are widely on-chip implemented to enable an easier operation by the user. The detector configuration (integration time, windowing, gain, scanning direction…), is driven by a standard I²C link. Like most of the visible arrays, the detector adopts the HSYNC/VSYNC free-run mode of operation driven with only one master clock (MC) supplied to the ROIC which feeds back pixel, line and frame synchronizations. On-chip PROM memory for customer operational condition storage is available for detector characteristics. Low power consumption has been taken into account and less than 60 mW is possible in analog mode at 60 Hz and < 175 mW in digital mode (14 bits). A wide electrical dynamic range (2.4V) is maintained despite the use of advanced CMOS node. The specific appeal of this unit lies in the high uniformity and easy operation it provides. The reduction of the pixel-pitch turns this TEC-less ¼ VGA array into a product well adapted for high resolution and compact systems. NETD of 35 mK and thermal time constant of 10 ms have been measured leading to 350 mK.ms figure of merit. We insist on NETD trade-off with wide thermal dynamic range, as well as the high characteristics uniformity and pixel operability, achieved thanks to the mastering of the amorphous silicon technology coupled with the ROIC design. This technology node associated with advanced packaging technique, paves the way to compact low power system.

  18. Easy to use uncooled ¼ VGA 17 µm FPA development for high performance compact and low-power systems

    NASA Astrophysics Data System (ADS)

    Robert, P.; Tissot, JL.; Pochic, D.; Gravot, V.; Bonnaire, F.; Clerambault, H.; Durand, A.; Tinnes, S.

    2012-06-01

    The high level of accumulated expertise by ULIS and CEA/LETI on uncooled microbolometers made from amorphous silicon enables ULIS to develop ¼ VGA IRFPA formats with 17μm pixel-pitch to enable the development of small power, small weight (SWAP) and high performance IR systems. ROIC architecture will be described where innovations are widely on-chip implemented to enable an easier operation by the user. The detector configuration (integration time, windowing, gain, scanning direction...), is driven by a standard I²C link. Like most of the visible arrays, the detector adopts the HSYNC/VSYNC free-run mode of operation driven with only one master clock (MC) supplied to the ROIC which feeds back pixel, line and frame synchronizations. On-chip PROM memory for customer operational condition storage is available for detector characteristics. Low power consumption has been taken into account and less than 60 mW is possible in analog mode at 60 Hz and < 175 mW in digital mode (14 bits). A wide electrical dynamic range (2.4V) is maintained despite the use of advanced CMOS node. The specific appeal of this unit lies in the high uniformity and easy operation it provides. The reduction of the pixel-pitch turns this TEC-less ¼ VGA array into a product well adapted for high resolution and compact systems. NETD of 35 mK and thermal time constant of 10 ms have been measured leading to 350 mK.ms figure of merit. We insist on NETD trade-off with wide thermal dynamic range, as well as the high characteristics uniformity and pixel operability, achieved thanks to the mastering of the amorphous silicon technology coupled with the ROIC design. This technology node associated with advanced packaging technique, paves the way to compact low power system.

  19. Solution processed integrated pixel element for an imaging device

    NASA Astrophysics Data System (ADS)

    Swathi, K.; Narayan, K. S.

    2016-09-01

    We demonstrate the implementation of a solid state circuit/structure comprising of a high performing polymer field effect transistor (PFET) utilizing an oxide layer in conjunction with a self-assembled monolayer (SAM) as the dielectric and a bulk-heterostructure based organic photodiode as a CMOS-like pixel element for an imaging sensor. Practical usage of functional organic photon detectors requires on chip components for image capture and signal transfer as in the CMOS/CCD architecture rather than simple photodiode arrays in order to increase speed and sensitivity of the sensor. The availability of high performing PFETs with low operating voltage and photodiodes with high sensitivity provides the necessary prerequisite to implement a CMOS type image sensing device structure based on organic electronic devices. Solution processing routes in organic electronics offers relatively facile procedures to integrate these components, combined with unique features of large-area, form factor and multiple optical attributes. We utilize the inherent property of a binary mixture in a blend to phase-separate vertically and create a graded junction for effective photocurrent response. The implemented design enables photocharge generation along with on chip charge to voltage conversion with performance parameters comparable to traditional counterparts. Charge integration analysis for the passive pixel element using 2D TCAD simulations is also presented to evaluate the different processes that take place in the monolithic structure.

  20. IR CMOS: near infrared enhanced digital imaging (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Pralle, Martin U.; Carey, James E.; Joy, Thomas; Vineis, Chris J.; Palsule, Chintamani

    2015-08-01

    SiOnyx has demonstrated imaging at light levels below 1 mLux (moonless starlight) at video frame rates with a 720P CMOS image sensor in a compact, low latency camera. Low light imaging is enabled by the combination of enhanced quantum efficiency in the near infrared together with state of the art low noise image sensor design. The quantum efficiency enhancements are achieved by applying Black Silicon, SiOnyx's proprietary ultrafast laser semiconductor processing technology. In the near infrared, silicon's native indirect bandgap results in low absorption coefficients and long absorption lengths. The Black Silicon nanostructured layer fundamentally disrupts this paradigm by enhancing the absorption of light within a thin pixel layer making 5 microns of silicon equivalent to over 300 microns of standard silicon. This results in a demonstrate 10 fold improvements in near infrared sensitivity over incumbent imaging technology while maintaining complete compatibility with standard CMOS image sensor process flows. Applications include surveillance, nightvision, and 1064nm laser see spot. Imaging performance metrics will be discussed. Demonstrated performance characteristics: Pixel size : 5.6 and 10 um Array size: 720P/1.3Mpix Frame rate: 60 Hz Read noise: 2 ele/pixel Spectral sensitivity: 400 to 1200 nm (with 10x QE at 1064nm) Daytime imaging: color (Bayer pattern) Nighttime imaging: moonless starlight conditions 1064nm laser imaging: daytime imaging out to 2Km

  1. Region-of-interest cone beam computed tomography (ROI CBCT) with a high resolution CMOS detector.

    PubMed

    Jain, A; Takemoto, H; Silver, M D; Nagesh, S V S; Ionita, C N; Bednarek, D R; Rudin, S

    Cone beam computed tomography (CBCT) systems with rotational gantries that have standard flat panel detectors (FPD) are widely used for the 3D rendering of vascular structures using Feldkamp cone beam reconstruction algorithms. One of the inherent limitations of these systems is limited resolution (<3 lp/mm). There are systems available with higher resolution but their small FOV limits them to small animal imaging only. In this work, we report on region-of-interest (ROI) CBCT with a high resolution CMOS detector (75 μm pixels, 600 μm HR-CsI) mounted with motorized detector changer on a commercial FPD-based C-arm angiography gantry (194 μm pixels, 600 μm HL-CsI). A cylindrical CT phantom and neuro stents were imaged with both detectors. For each detector a total of 209 images were acquired in a rotational protocol. The technique parameters chosen for the FPD by the imaging system were used for the CMOS detector. The anti-scatter grid was removed and the incident scatter was kept the same for both detectors with identical collimator settings. The FPD images were reconstructed for the 10 cm x10 cm FOV and the CMOS images were reconstructed for a 3.84 cm × 3.84 cm FOV. Although the reconstructed images from the CMOS detector demonstrated comparable contrast to the FPD images, the reconstructed 3D images of the neuro stent clearly showed that the CMOS detector improved delineation of smaller objects such as the stent struts (~70 μm) compared to the FPD. Further development and the potential for substantial clinical impact are suggested.

  2. A High-Voltage Integrated Circuit Engine for a Dielectrophoresis-based Programmable Micro-Fluidic Processor

    PubMed Central

    Current, K. Wayne; Yuk, Kelvin; McConaghy, Charles; Gascoyne, Peter R. C.; Schwartz, Jon A.; Vykoukal, Jody V.; Andrews, Craig

    2010-01-01

    A high-voltage (HV) integrated circuit has been demonstrated to transport droplets on programmable paths across its coated surface. This chip is the engine for a dielectrophoresis (DEP)-based micro-fluidic lab-on-a-chip system. This chip creates DEP forces that move and help inject droplets. Electrode excitation voltage and frequency are variable. With the electrodes driven with a 100V peak-to-peak periodic waveform, the maximum high-voltage electrode waveform frequency is about 200Hz. Data communication rate is variable up to 250kHz. This demonstration chip has a 32×32 array of nominally 100V electrode drivers. It is fabricated in a 130V SOI CMOS fabrication technology, dissipates a maximum of 1.87W, and is about 10.4 mm × 8.2 mm. PMID:23989241

  3. Noise Reduction Techniques and Scaling Effects towards Photon Counting CMOS Image Sensors

    PubMed Central

    Boukhayma, Assim; Peizerat, Arnaud; Enz, Christian

    2016-01-01

    This paper presents an overview of the read noise in CMOS image sensors (CISs) based on four-transistors (4T) pixels, column-level amplification and correlated multiple sampling. Starting from the input-referred noise analytical formula, process level optimizations, device choices and circuit techniques at the pixel and column level of the readout chain are derived and discussed. The noise reduction techniques that can be implemented at the column and pixel level are verified by transient noise simulations, measurement and results from recently-published low noise CIS. We show how recently-reported process refinement, leading to the reduction of the sense node capacitance, can be combined with an optimal in-pixel source follower design to reach a sub-0.3erms- read noise at room temperature. This paper also discusses the impact of technology scaling on the CIS read noise. It shows how designers can take advantage of scaling and how the Metal-Oxide-Semiconductor (MOS) transistor gate leakage tunneling current appears as a challenging limitation. For this purpose, both simulation results of the gate leakage current and 1/f noise data reported from different foundries and technology nodes are used.

  4. Design and Performance of a Pinned Photodiode CMOS Image Sensor Using Reverse Substrate Bias.

    PubMed

    Stefanov, Konstantin D; Clarke, Andrew S; Ivory, James; Holland, Andrew D

    2018-01-03

    A new pinned photodiode (PPD) CMOS image sensor with reverse biased p-type substrate has been developed and characterized. The sensor uses traditional PPDs with one additional deep implantation step to suppress the parasitic reverse currents, and can be fully depleted. The first prototypes have been manufactured on an 18 µm thick, 1000 Ω·cm epitaxial silicon wafers using 180 nm PPD image sensor process. Both front-side illuminated (FSI) and back-side illuminated (BSI) devices were manufactured in collaboration with Teledyne e2v. The characterization results from a number of arrays of 10 µm and 5.4 µm PPD pixels, with different shape, the size and the depth of the new implant are in good agreement with device simulations. The new pixels could be reverse-biased without parasitic leakage currents well beyond full depletion, and demonstrate nearly identical optical response to the reference non-modified pixels. The observed excessive charge sharing in some pixel variants is shown to not be a limiting factor in operation. This development promises to realize monolithic PPD CIS with large depleted thickness and correspondingly high quantum efficiency at near-infrared and soft X-ray wavelengths.

  5. Design and Performance of a Pinned Photodiode CMOS Image Sensor Using Reverse Substrate Bias †

    PubMed Central

    Clarke, Andrew S.; Ivory, James; Holland, Andrew D.

    2018-01-01

    A new pinned photodiode (PPD) CMOS image sensor with reverse biased p-type substrate has been developed and characterized. The sensor uses traditional PPDs with one additional deep implantation step to suppress the parasitic reverse currents, and can be fully depleted. The first prototypes have been manufactured on an 18 µm thick, 1000 Ω·cm epitaxial silicon wafers using 180 nm PPD image sensor process. Both front-side illuminated (FSI) and back-side illuminated (BSI) devices were manufactured in collaboration with Teledyne e2v. The characterization results from a number of arrays of 10 µm and 5.4 µm PPD pixels, with different shape, the size and the depth of the new implant are in good agreement with device simulations. The new pixels could be reverse-biased without parasitic leakage currents well beyond full depletion, and demonstrate nearly identical optical response to the reference non-modified pixels. The observed excessive charge sharing in some pixel variants is shown to not be a limiting factor in operation. This development promises to realize monolithic PPD CIS with large depleted thickness and correspondingly high quantum efficiency at near-infrared and soft X-ray wavelengths. PMID:29301379

  6. Tests of monolithic active pixel sensors at national synchrotron light source

    NASA Astrophysics Data System (ADS)

    Deptuch, G.; Besson, A.; Carini, G. A.; Siddons, D. P.; Szelezniak, M.; Winter, M.

    2007-01-01

    The paper discusses basic characterization of Monolithic Active Pixel Sensors (MAPS) carried out at the X12A beam-line at National Synchrotron Light Source (NSLS), Upton, NY, USA. The tested device was a MIMOSA V (MV) chip, back-thinned down to the epitaxial layer. This 1M pixels device features a pixel size of 17×17 μm2 and was designed in a 0.6 μm CMOS process. The X-ray beam energies used range from 5 to 12 keV. Examples of direct X-ray imaging capabilities are presented.

  7. Design of CMOS imaging system based on FPGA

    NASA Astrophysics Data System (ADS)

    Hu, Bo; Chen, Xiaolai

    2017-10-01

    In order to meet the needs of engineering applications for high dynamic range CMOS camera under the rolling shutter mode, a complete imaging system is designed based on the CMOS imaging sensor NSC1105. The paper decides CMOS+ADC+FPGA+Camera Link as processing architecture and introduces the design and implementation of the hardware system. As for camera software system, which consists of CMOS timing drive module, image acquisition module and transmission control module, the paper designs in Verilog language and drives it to work properly based on Xilinx FPGA. The ISE 14.6 emulator ISim is used in the simulation of signals. The imaging experimental results show that the system exhibits a 1280*1024 pixel resolution, has a frame frequency of 25 fps and a dynamic range more than 120dB. The imaging quality of the system satisfies the requirement of the index.

  8. A FPGA-based Cluster Finder for CMOS Monolithic Active Pixel Sensors of the MIMOSA-26 Family

    NASA Astrophysics Data System (ADS)

    Li, Qiyan; Amar-Youcef, S.; Doering, D.; Deveaux, M.; Fröhlich, I.; Koziel, M.; Krebs, E.; Linnik, B.; Michel, J.; Milanovic, B.; Müntz, C.; Stroth, J.; Tischler, T.

    2014-06-01

    CMOS Monolithic Active Pixel Sensors (MAPS) demonstrated excellent performances in the field of charged particle tracking. Among their strong points are an single point resolution few μm, a light material budget of 0.05% X0 in combination with a good radiation tolerance and high rate capability. Those features make the sensors a valuable technology for vertex detectors of various experiments in heavy ion and particle physics. To reduce the load on the event builders and future mass storage systems, we have developed algorithms suited for preprocessing and reducing the data streams generated by the MAPS. This real-time processing employs remaining free resources of the FPGAs of the readout controllers of the detector and complements the on-chip data reduction circuits of the MAPS.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Domengie, F., E-mail: florian.domengie@st.com; Morin, P.; Bauza, D.

    We propose a model for dark current induced by metallic contamination in a CMOS image sensor. Based on Shockley-Read-Hall kinetics, the expression of dark current proposed accounts for the electric field enhanced emission factor due to the Poole-Frenkel barrier lowering and phonon-assisted tunneling mechanisms. To that aim, we considered the distribution of the electric field magnitude and metal atoms in the depth of the pixel. Poisson statistics were used to estimate the random distribution of metal atoms in each pixel for a given contamination dose. Then, we performed a Monte-Carlo-based simulation for each pixel to set the number of metalmore » atoms the pixel contained and the enhancement factor each atom underwent, and obtained a histogram of the number of pixels versus dark current for the full sensor. Excellent agreement with the dark current histogram measured on an ion-implanted gold-contaminated imager has been achieved, in particular, for the description of the distribution tails due to the pixel regions in which the contaminant atoms undergo a large electric field. The agreement remains very good when increasing the temperature by 15 °C. We demonstrated that the amplification of the dark current generated for the typical electric fields encountered in the CMOS image sensors, which depends on the nature of the metal contaminant, may become very large at high electric field. The electron and hole emissions and the resulting enhancement factor are described as a function of the trap characteristics, electric field, and temperature.« less

  10. Experiments with synchronized sCMOS cameras

    NASA Astrophysics Data System (ADS)

    Steele, Iain A.; Jermak, Helen; Copperwheat, Chris M.; Smith, Robert J.; Poshyachinda, Saran; Soonthorntham, Boonrucksar

    2016-07-01

    Scientific-CMOS (sCMOS) cameras can combine low noise with high readout speeds and do not suffer the charge multiplication noise that effectively reduces the quantum efficiency of electron multiplying CCDs by a factor 2. As such they have strong potential in fast photometry and polarimetry instrumentation. In this paper we describe the results of laboratory experiments using a pair of commercial off the shelf sCMOS cameras based around a 4 transistor per pixel architecture. In particular using a both stable and a pulsed light sources we evaluate the timing precision that may be obtained when the cameras readouts are synchronized either in software or electronically. We find that software synchronization can introduce an error of 200-msec. With electronic synchronization any error is below the limit ( 50-msec) of our simple measurement technique.

  11. The FoCal prototype—an extremely fine-grained electromagnetic calorimeter using CMOS pixel sensors

    NASA Astrophysics Data System (ADS)

    de Haas, A. P.; Nooren, G.; Peitzmann, T.; Reicher, M.; Rocco, E.; Röhrich, D.; Ullaland, K.; van den Brink, A.; van Leeuwen, M.; Wang, H.; Yang, S.; Zhang, C.

    2018-01-01

    A prototype of a Si-W EM calorimeter was built with Monolithic Active Pixel Sensors as the active elements. With a pixel size of 30 μm it allows digital calorimetry, i.e. the particle's energy is determined by counting pixels, not by measuring the energy deposited. Although of modest size, with a width of only four Moliere radii, it has 39 million pixels. In this article the construction and tuning of the prototype is described. Results from beam tests are compared with predictions of GEANT-based Monte Carlo simulations. The shape of showers caused by electrons is shown in unprecedented detail. Results for energy and position resolution are also given.

  12. ALPIDE, the Monolithic Active Pixel Sensor for the ALICE ITS upgrade

    NASA Astrophysics Data System (ADS)

    Mager, M.; ALICE Collaboration

    2016-07-01

    A new 10 m2 inner tracking system based on seven concentric layers of Monolithic Active Pixel Sensors will be installed in the ALICE experiment during the second long shutdown of LHC in 2019-2020. The monolithic pixel sensors will be fabricated in the 180 nm CMOS Imaging Sensor process of TowerJazz. The ALPIDE design takes full advantage of a particular process feature, the deep p-well, which allows for full CMOS circuitry within the pixel matrix, while at the same time retaining the full charge collection efficiency. Together with the small feature size and the availability of six metal layers, this allowed a continuously active low-power front-end to be placed into each pixel and an in-matrix sparsification circuit to be used that sends only the addresses of hit pixels to the periphery. This approach led to a power consumption of less than 40 mWcm-2, a spatial resolution of around 5 μm, a peaking time of around 2 μs, while being radiation hard to some 1013 1 MeVneq /cm2, fulfilling or exceeding the ALICE requirements. Over the last years of R & D, several prototype circuits have been used to verify radiation hardness, and to optimize pixel geometry and in-pixel front-end circuitry. The positive results led to a submission of full-scale (3 cm×1.5 cm) sensor prototypes in 2014. They are being characterized in a comprehensive campaign that also involves several irradiation and beam tests. A summary of the results obtained and prospects towards the final sensor to instrument the ALICE Inner Tracking System are given.

  13. The implementation of CMOS sensors within a real time digital mammography intelligent imaging system: The I-ImaS System

    NASA Astrophysics Data System (ADS)

    Esbrand, C.; Royle, G.; Griffiths, J.; Speller, R.

    2009-07-01

    The integration of technology with healthcare has undoubtedly propelled the medical imaging sector well into the twenty first century. The concept of digital imaging introduced during the 1970s has since paved the way for established imaging techniques where digital mammography, phase contrast imaging and CT imaging are just a few examples. This paper presents a prototype intelligent digital mammography system designed and developed by a European consortium. The final system, the I-ImaS system, utilises CMOS monolithic active pixel sensor (MAPS) technology promoting on-chip data processing, enabling the acts of data processing and image acquisition to be achieved simultaneously; consequently, statistical analysis of tissue is achievable in real-time for the purpose of x-ray beam modulation via a feedback mechanism during the image acquisition procedure. The imager implements a dual array of twenty 520 pixel × 40 pixel CMOS MAPS sensing devices with a 32μm pixel size, each individually coupled to a 100μm thick thallium doped structured CsI scintillator. This paper presents the first intelligent images of real breast tissue obtained from the prototype system of real excised breast tissue where the x-ray exposure was modulated via the statistical information extracted from the breast tissue itself. Conventional images were experimentally acquired where the statistical analysis of the data was done off-line, resulting in the production of simulated real-time intelligently optimised images. The results obtained indicate real-time image optimisation using the statistical information extracted from the breast as a means of a feedback mechanisms is beneficial and foreseeable in the near future.

  14. Improved Space Object Orbit Determination Using CMOS Detectors

    NASA Astrophysics Data System (ADS)

    Schildknecht, T.; Peltonen, J.; Sännti, T.; Silha, J.; Flohrer, T.

    2014-09-01

    CMOS-sensors, or in general Active Pixel Sensors (APS), are rapidly replacing CCDs in the consumer camera market. Due to significant technological advances during the past years these devices start to compete with CCDs also for demanding scientific imaging applications, in particular in the astronomy community. CMOS detectors offer a series of inherent advantages compared to CCDs, due to the structure of their basic pixel cells, which each contains their own amplifier and readout electronics. The most prominent advantages for space object observations are the extremely fast and flexible readout capabilities, feasibility for electronic shuttering and precise epoch registration, and the potential to perform image processing operations on-chip and in real-time. The major challenges and design drivers for ground-based and space-based optical observation strategies have been analyzed. CMOS detector characteristics were critically evaluated and compared with the established CCD technology, especially with respect to the above mentioned observations. Similarly, the desirable on-chip processing functionalities which would further enhance the object detection and image segmentation were identified. Finally, we simulated several observation scenarios for ground- and space-based sensor by assuming different observation and sensor properties. We will introduce the analyzed end-to-end simulations of the ground- and space-based strategies in order to investigate the orbit determination accuracy and its sensitivity which may result from different values for the frame-rate, pixel scale, astrometric and epoch registration accuracies. Two cases were simulated, a survey using a ground-based sensor to observe objects in LEO for surveillance applications, and a statistical survey with a space-based sensor orbiting in LEO observing small-size debris in LEO. The ground-based LEO survey uses a dynamical fence close to the Earth shadow a few hours after sunset. For the space-based scenario a sensor in a sun-synchronous LEO orbit, always pointing in the anti-sun direction to achieve optimum illumination conditions for small LEO debris, was simulated. For the space-based scenario the simulations showed a 20 130 % improvement of the accuracy of all orbital parameters when varying the frame rate from 1/3 fps, which is the fastest rate for a typical CCD detector, to 50 fps, which represents the highest rate of scientific CMOS cameras. Changing the epoch registration accuracy from a typical 20.0 ms for a mechanical shutter to 0.025 ms, the theoretical value for the electronic shutter of a CMOS camera, improved the orbit accuracy by 4 to 190 %. The ground-based scenario also benefit from the specific CMOS characteristics, but to a lesser extent.

  15. A process modification for CMOS monolithic active pixel sensors for enhanced depletion, timing performance and radiation tolerance

    NASA Astrophysics Data System (ADS)

    Snoeys, W.; Aglieri Rinella, G.; Hillemanns, H.; Kugathasan, T.; Mager, M.; Musa, L.; Riedler, P.; Reidt, F.; Van Hoorne, J.; Fenigstein, A.; Leitner, T.

    2017-11-01

    For the upgrade of its Inner Tracking System, the ALICE experiment plans to install a new tracker fully constructed with monolithic active pixel sensors implemented in a standard 180 nm CMOS imaging sensor process, with a deep pwell allowing full CMOS within the pixel. Reverse substrate bias increases the tolerance to non-ionizing energy loss (NIEL) well beyond 1013 1 MeVneq /cm2, but does not allow full depletion of the sensitive layer and hence full charge collection by drift, mandatory for more extreme radiation tolerance. This paper describes a process modification to fully deplete the epitaxial layer even with a small charge collection electrode. It uses a low dose blanket deep high energy n-type implant in the pixel array and does not require significant circuit or layout changes so that the same design can be fabricated both in the standard and modified process. When exposed to a 55 Fe source at a reverse substrate bias of -6 V, pixels implemented in the standard and the modified process in a low and high dose variant for the deep n-type implant respectively yield a signal of about 115 mV, 110 mV and 90 mV at the output of a follower circuit. Signal rise times heavily affected by the speed of this circuit are 27 . 8 + / - 5 ns, 23 . 2 + / - 4 . 2 ns, and 22 . 2 + / - 3 . 7 ns rms, respectively. In a different setup, the single pixel signal from a 90 Sr source only degrades by less than 20% for the modified process after a 1015 1 MeVneq /cm2 irradiation, while the signal rise time only degrades by about 16 + / - 2 ns to 19 + / - 2 . 8 ns rms. From sensors implemented in the standard process no useful signal could be extracted after the same exposure. These first results indicate the process modification maintains low sensor capacitance, improves timing performance and increases NIEL tolerance by at least an order of magnitude.

  16. Image quality analysis of a color LCD as well as a monochrome LCD using a Foveon color CMOS camera

    NASA Astrophysics Data System (ADS)

    Dallas, William J.; Roehrig, Hans; Krupinski, Elizabeth A.

    2007-09-01

    We have combined a CMOS color camera with special software to compose a multi-functional image-quality analysis instrument. It functions as a colorimeter as well as measuring modulation transfer functions (MTF) and noise power spectra (NPS). It is presently being expanded to examine fixed-pattern noise and temporal noise. The CMOS camera has 9 μm square pixels and a pixel matrix of 2268 x 1512 x 3. The camera uses a sensor that has co-located pixels for all three primary colors. We have imaged sections of both a color and a monochrome LCD monitor onto the camera sensor with LCD-pixel-size to camera-pixel-size ratios of both 12:1 and 17.6:1. When used as an imaging colorimeter, each camera pixel is calibrated to provide CIE color coordinates and tristimulus values. This capability permits the camera to simultaneously determine chromaticity in different locations on the LCD display. After the color calibration with a CS-200 colorimeter the color coordinates of the display's primaries determined from the camera's luminance response are very close to those found from the CS-200. Only the color coordinates of the display's white point were in error. For calculating the MTF a vertical or horizontal line is displayed on the monitor. The captured image is color-matrix preprocessed, Fourier transformed then post-processed. For NPS, a uniform image is displayed on the monitor. Again, the image is pre-processed, transformed and processed. Our measurements show that the horizontal MTF's of both displays have a larger negative slope than that of the vertical MTF's. This behavior indicates that the horizontal MTF's are poorer than the vertical MTF's. However the modulations at the Nyquist frequency seem lower for the color LCD than for the monochrome LCD. The spatial noise of the color display in both directions is larger than that of the monochrome display. Attempts were also made to analyze the total noise in terms of spatial and temporal noise by applying subtractions of images taken at exactly the same exposure. Temporal noise seems to be significantly lower than spatial noise.

  17. Which Photodiode to Use: A Comparison of CMOS-Compatible Structures

    PubMed Central

    Murari, Kartikeya; Etienne-Cummings, Ralph; Thakor, Nitish; Cauwenberghs, Gert

    2010-01-01

    While great advances have been made in optimizing fabrication process technologies for solid state image sensors, the need remains to be able to fabricate high quality photosensors in standard CMOS processes. The quality metrics depend on both the pixel architecture and the photosensitive structure. This paper presents a comparison of three photodiode structures in terms of spectral sensitivity, noise and dark current. The three structures are n+/p-sub, n-well/p-sub and p+/n-well/p-sub. All structures were fabricated in a 0.5 μm 3-metal, 2-poly, n-well process and shared the same pixel and readout architectures. Two pixel structures were fabricated—the standard three transistor active pixel sensor, where the output depends on the photodiode capacitance, and one incorporating an in-pixel capacitive transimpedance amplifier where the output is dependent only on a designed feedback capacitor. The n-well/p-sub diode performed best in terms of sensitivity (an improvement of 3.5 × and 1.6 × over the n+/p-sub and p+/n-well/p-sub diodes, respectively) and signal-to-noise ratio (1.5 × and 1.2 × improvement over the n+/p-sub and p+/n-well/p-sub diodes, respectively) while the p+/n-well/p-sub diode had the minimum (33% compared to other two structures) dark current for a given sensitivity. PMID:20454596

  18. Which Photodiode to Use: A Comparison of CMOS-Compatible Structures.

    PubMed

    Murari, Kartikeya; Etienne-Cummings, Ralph; Thakor, Nitish; Cauwenberghs, Gert

    2009-07-01

    While great advances have been made in optimizing fabrication process technologies for solid state image sensors, the need remains to be able to fabricate high quality photosensors in standard CMOS processes. The quality metrics depend on both the pixel architecture and the photosensitive structure. This paper presents a comparison of three photodiode structures in terms of spectral sensitivity, noise and dark current. The three structures are n(+)/p-sub, n-well/p-sub and p(+)/n-well/p-sub. All structures were fabricated in a 0.5 mum 3-metal, 2-poly, n-well process and shared the same pixel and readout architectures. Two pixel structures were fabricated-the standard three transistor active pixel sensor, where the output depends on the photodiode capacitance, and one incorporating an in-pixel capacitive transimpedance amplifier where the output is dependent only on a designed feedback capacitor. The n-well/p-sub diode performed best in terms of sensitivity (an improvement of 3.5 x and 1.6 x over the n(+)/p-sub and p(+)/n-well/p-sub diodes, respectively) and signal-to-noise ratio (1.5 x and 1.2 x improvement over the n(+)/p-sub and p(+)/n-well/p-sub diodes, respectively) while the p(+)/n-well/p-sub diode had the minimum (33% compared to other two structures) dark current for a given sensitivity.

  19. An 80x80 microbolometer type thermal imaging sensor using the LWIR-band CMOS infrared (CIR) technology

    NASA Astrophysics Data System (ADS)

    Tankut, Firat; Cologlu, Mustafa H.; Askar, Hidir; Ozturk, Hande; Dumanli, Hilal K.; Oruc, Feyza; Tilkioglu, Bilge; Ugur, Beril; Akar, Orhan Sevket; Tepegoz, Murat; Akin, Tayfun

    2017-02-01

    This paper introduces an 80x80 microbolometer array with a 35 μm pixel pitch operating in the 8-12 μm wavelength range, where the detector is fabricated with the LWIR-band CMOS infrared technology, shortly named as CIR, which is a novel microbolometer implementation technique developed to reduce the detector cost in order to enable the use of microbolometer type sensors in high volume markets, such as the consumer market and IoT. Unlike the widely used conventional surface micromachined microbolometer approaches, MikroSens' CIR detector technology does not require the use of special high TCR materials like VOx or a-Si, instead, it allows to implement microbolometers with standard CMOS layers, where the suspended bulk micromachined structure is obtained by only few consecutive selective MEMS etching steps while protecting the wirebond pads with a simple lithograpy step. This approach not only reduces the fabrication cost but also increases the production yield. In addition, needing simple subtractive post-CMOS fabrication steps allows the CIR technology to be carried out in any CMOS and MEMS foundry in a truly fabless fashion, where industrially mature and Au-free wafer level vacuum packaging technologies can also be carried out, leading to cost advantage, simplicity, scalability, and flexibility. The CIR approach is used to implement an 80x80 FPA with 35 μm pixel pitch, namely MS0835A, using a 0.18 μm CMOS process. The fabricated sensor is measured to provide NETD (Noise Equivalent Temperature Difference) value of 163 mK at 17 fps (frames per second) and 71 mK at 4 fps with F/1.0 optics in a dewar environment. The measurement results of the wafer level vacuum packaged sensors with one side AR coating shows an NETD values of 112 mK at 4 fps with F/1.1 optics, i.e., demonstrates a good performance for high volume low-cost applications like advanced presence detection and human counting applications. The CIR approach of MikroSens is scalable and can be used to reduce the pixel pitch even further while increasing the array size if necessary for various other low-cost, high volume applications.

  20. A Computationally Efficient Visual Saliency Algorithm Suitable for an Analog CMOS Implementation.

    PubMed

    D'Angelo, Robert; Wood, Richard; Lowry, Nathan; Freifeld, Geremy; Huang, Haiyao; Salthouse, Christopher D; Hollosi, Brent; Muresan, Matthew; Uy, Wes; Tran, Nhut; Chery, Armand; Poppe, Dorothy C; Sonkusale, Sameer

    2018-06-27

    Computer vision algorithms are often limited in their application by the large amount of data that must be processed. Mammalian vision systems mitigate this high bandwidth requirement by prioritizing certain regions of the visual field with neural circuits that select the most salient regions. This work introduces a novel and computationally efficient visual saliency algorithm for performing this neuromorphic attention-based data reduction. The proposed algorithm has the added advantage that it is compatible with an analog CMOS design while still achieving comparable performance to existing state-of-the-art saliency algorithms. This compatibility allows for direct integration with the analog-to-digital conversion circuitry present in CMOS image sensors. This integration leads to power savings in the converter by quantizing only the salient pixels. Further system-level power savings are gained by reducing the amount of data that must be transmitted and processed in the digital domain. The analog CMOS compatible formulation relies on a pulse width (i.e., time mode) encoding of the pixel data that is compatible with pulse-mode imagers and slope based converters often used in imager designs. This letter begins by discussing this time-mode encoding for implementing neuromorphic architectures. Next, the proposed algorithm is derived. Hardware-oriented optimizations and modifications to this algorithm are proposed and discussed. Next, a metric for quantifying saliency accuracy is proposed, and simulation results of this metric are presented. Finally, an analog synthesis approach for a time-mode architecture is outlined, and postsynthesis transistor-level simulations that demonstrate functionality of an implementation in a modern CMOS process are discussed.

  1. Towards real-time VMAT verification using a prototype, high-speed CMOS active pixel sensor.

    PubMed

    Zin, Hafiz M; Harris, Emma J; Osmond, John P F; Allinson, Nigel M; Evans, Philip M

    2013-05-21

    This work investigates the feasibility of using a prototype complementary metal oxide semiconductor active pixel sensor (CMOS APS) for real-time verification of volumetric modulated arc therapy (VMAT) treatment. The prototype CMOS APS used region of interest read out on the chip to allow fast imaging of up to 403.6 frames per second (f/s). The sensor was made larger (5.4 cm × 5.4 cm) using recent advances in photolithographic technique but retains fast imaging speed with the sensor's regional read out. There is a paradigm shift in radiotherapy treatment verification with the advent of advanced treatment techniques such as VMAT. This work has demonstrated that the APS can track multi leaf collimator (MLC) leaves moving at 18 mm s(-1) with an automatic edge tracking algorithm at accuracy better than 1.0 mm even at the fastest imaging speed. Evaluation of the measured fluence distribution for an example VMAT delivery sampled at 50.4 f/s was shown to agree well with the planned fluence distribution, with an average gamma pass rate of 96% at 3%/3 mm. The MLC leaves motion and linac pulse rate variation delivered throughout the VMAT treatment can also be measured. The results demonstrate the potential of CMOS APS technology as a real-time radiotherapy dosimeter for delivery of complex treatments such as VMAT.

  2. Low-voltage 96 dB snapshot CMOS image sensor with 4.5 nW power dissipation per pixel.

    PubMed

    Spivak, Arthur; Teman, Adam; Belenky, Alexander; Yadid-Pecht, Orly; Fish, Alexander

    2012-01-01

    Modern "smart" CMOS sensors have penetrated into various applications, such as surveillance systems, bio-medical applications, digital cameras, cellular phones and many others. Reducing the power of these sensors continuously challenges designers. In this paper, a low power global shutter CMOS image sensor with Wide Dynamic Range (WDR) ability is presented. This sensor features several power reduction techniques, including a dual voltage supply, a selective power down, transistors with different threshold voltages, a non-rationed logic, and a low voltage static memory. A combination of all these approaches has enabled the design of the low voltage "smart" image sensor, which is capable of reaching a remarkable dynamic range, while consuming very low power. The proposed power-saving solutions have allowed the maintenance of the standard architecture of the sensor, reducing both the time and the cost of the design. In order to maintain the image quality, a relation between the sensor performance and power has been analyzed and a mathematical model, describing the sensor Signal to Noise Ratio (SNR) and Dynamic Range (DR) as a function of the power supplies, is proposed. The described sensor was implemented in a 0.18 um CMOS process and successfully tested in the laboratory. An SNR of 48 dB and DR of 96 dB were achieved with a power dissipation of 4.5 nW per pixel.

  3. Low-Voltage 96 dB Snapshot CMOS Image Sensor with 4.5 nW Power Dissipation per Pixel

    PubMed Central

    Spivak, Arthur; Teman, Adam; Belenky, Alexander; Yadid-Pecht, Orly; Fish, Alexander

    2012-01-01

    Modern “smart” CMOS sensors have penetrated into various applications, such as surveillance systems, bio-medical applications, digital cameras, cellular phones and many others. Reducing the power of these sensors continuously challenges designers. In this paper, a low power global shutter CMOS image sensor with Wide Dynamic Range (WDR) ability is presented. This sensor features several power reduction techniques, including a dual voltage supply, a selective power down, transistors with different threshold voltages, a non-rationed logic, and a low voltage static memory. A combination of all these approaches has enabled the design of the low voltage “smart” image sensor, which is capable of reaching a remarkable dynamic range, while consuming very low power. The proposed power-saving solutions have allowed the maintenance of the standard architecture of the sensor, reducing both the time and the cost of the design. In order to maintain the image quality, a relation between the sensor performance and power has been analyzed and a mathematical model, describing the sensor Signal to Noise Ratio (SNR) and Dynamic Range (DR) as a function of the power supplies, is proposed. The described sensor was implemented in a 0.18 um CMOS process and successfully tested in the laboratory. An SNR of 48 dB and DR of 96 dB were achieved with a power dissipation of 4.5 nW per pixel. PMID:23112588

  4. Binary CMOS image sensor with a gate/body-tied MOSFET-type photodetector for high-speed operation

    NASA Astrophysics Data System (ADS)

    Choi, Byoung-Soo; Jo, Sung-Hyun; Bae, Myunghan; Kim, Sang-Hwan; Shin, Jang-Kyoo

    2016-05-01

    In this paper, a binary complementary metal oxide semiconductor (CMOS) image sensor with a gate/body-tied (GBT) metal oxide semiconductor field effect transistor (MOSFET)-type photodetector is presented. The sensitivity of the GBT MOSFET-type photodetector, which was fabricated using the standard CMOS 0.35-μm process, is higher than the sensitivity of the p-n junction photodiode, because the output signal of the photodetector is amplified by the MOSFET. A binary image sensor becomes more efficient when using this photodetector. Lower power consumptions and higher speeds of operation are possible, compared to the conventional image sensors using multi-bit analog to digital converters (ADCs). The frame rate of the proposed image sensor is over 2000 frames per second, which is higher than those of the conventional CMOS image sensors. The output signal of an active pixel sensor is applied to a comparator and compared with a reference level. The 1-bit output data of the binary process is determined by this level. To obtain a video signal, the 1-bit output data is stored in the memory and is read out by horizontal scanning. The proposed chip is composed of a GBT pixel array (144 × 100), binary-process circuit, vertical scanner, horizontal scanner, and readout circuit. The operation mode can be selected from between binary mode and multi-bit mode.

  5. A photovoltaic-driven and energy-autonomous CMOS implantable sensor.

    PubMed

    Ayazian, Sahar; Akhavan, Vahid A; Soenen, Eric; Hassibi, Arjang

    2012-08-01

    An energy-autonomous, photovoltaic (PV)-driven and MRI-compatible CMOS implantable sensor is presented. On-chip P+/N-well diode arrays are used as CMOS-compatible PV cells to harvest μW's of power from the light that penetrates into the tissue. In this 2.5 mm × 2.5 mm sub-μW integrated system, the in-vivo physiological signals are first measured by using a subthreshold ring oscillator-based sensor, the acquired data is then modulated into a frequency-shift keying (FSK) signal, and finally transmitted neuromorphically to the skin surface by using a pair of polarized electrodes.

  6. Chip-scale fluorescence microscope based on a silo-filter complementary metal-oxide semiconductor image sensor.

    PubMed

    Ah Lee, Seung; Ou, Xiaoze; Lee, J Eugene; Yang, Changhuei

    2013-06-01

    We demonstrate a silo-filter (SF) complementary metal-oxide semiconductor (CMOS) image sensor for a chip-scale fluorescence microscope. The extruded pixel design with metal walls between neighboring pixels guides fluorescence emission through the thick absorptive filter to the photodiode of a pixel. Our prototype device achieves 13 μm resolution over a wide field of view (4.8 mm × 4.4 mm). We demonstrate bright-field and fluorescence longitudinal imaging of living cells in a compact, low-cost configuration.

  7. Fill-factor improvement of Si CMOS single-photon avalanche diode detector arrays by integration of diffractive microlens arrays.

    PubMed

    Intermite, Giuseppe; McCarthy, Aongus; Warburton, Ryan E; Ren, Ximing; Villa, Federica; Lussana, Rudi; Waddie, Andrew J; Taghizadeh, Mohammad R; Tosi, Alberto; Zappa, Franco; Buller, Gerald S

    2015-12-28

    Single-photon avalanche diode (SPAD) detector arrays generally suffer from having a low fill-factor, in which the photo-sensitive area of each pixel is small compared to the overall area of the pixel. This paper describes the integration of different configurations of high efficiency diffractive optical microlens arrays onto a 32 × 32 SPAD array, fabricated using a 0.35 µm CMOS technology process. The characterization of SPAD arrays with integrated microlens arrays is reported over the spectral range of 500-900 nm, and a range of f-numbers from f/2 to f/22. We report an average concentration factor of 15 measured for the entire SPAD array with integrated microlens array. The integrated SPAD and microlens array demonstrated a very high uniformity in overall efficiency.

  8. Charge Transfer Inefficiency in Pinned Photodiode CMOS image sensors: Simple Montecarlo modeling and experimental measurement based on a pulsed storage-gate method

    NASA Astrophysics Data System (ADS)

    Pelamatti, Alice; Goiffon, Vincent; Chabane, Aziouz; Magnan, Pierre; Virmontois, Cédric; Saint-Pé, Olivier; de Boisanger, Michel Breart

    2016-11-01

    The charge transfer time represents the bottleneck in terms of temporal resolution in Pinned Photodiode (PPD) CMOS image sensors. This work focuses on the modeling and estimation of this key parameter. A simple numerical model of charge transfer in PPDs is presented. The model is based on a Montecarlo simulation and takes into account both charge diffusion in the PPD and the effect of potential obstacles along the charge transfer path. This work also presents a new experimental approach for the estimation of the charge transfer time, called pulsed Storage Gate (SG) method. This method, which allows reproduction of a ;worst-case; transfer condition, is based on dedicated SG pixel structures and is particularly suitable to compare transfer efficiency performances for different pixel geometries.

  9. Charge transfer efficiency improvement of 4T pixel for high speed CMOS image sensor

    NASA Astrophysics Data System (ADS)

    Jin, Xiangliang; Liu, Weihui; Yang, Hongjiao; Tang, Lizhen; Yang, Jia

    2015-03-01

    The charge transfer efficiency improvement method is proposed by optimizing the electrical potential distribution along the transfer path from the PPD to the FD. In this work, we present a non-uniform doped transfer transistor channel, with the adjustments to the overlap length between the CPIA layer and the transfer gate, and the overlap length between the SEN layer and transfer gate. Theory analysis and TCAD simulation results show that the density of the residual charge reduces from 1e11 /cm3 to 1e9 /cm3, and the transfer time reduces from 500 ns to 143 ns, and the charge transfer efficiency is about 77 e-/ns. This optimizing design effectively improves the charge transfer efficiency of 4T pixel and the performance of 4T high speed CMOS image sensor.

  10. Flexible ultrathin-body single-photon avalanche diode sensors and CMOS integration.

    PubMed

    Sun, Pengfei; Ishihara, Ryoichi; Charbon, Edoardo

    2016-02-22

    We proposed the world's first flexible ultrathin-body single-photon avalanche diode (SPAD) as photon counting device providing a suitable solution to advanced implantable bio-compatible chronic medical monitoring, diagnostics and other applications. In this paper, we investigate the Geiger-mode performance of this flexible ultrathin-body SPAD comprehensively and we extend this work to the first flexible SPAD image sensor with in-pixel and off-pixel electronics integrated in CMOS. Experimental results show that dark count rate (DCR) by band-to-band tunneling can be reduced by optimizing multiplication doping. DCR by trap-assisted avalanche, which is believed to be originated from the trench etching process, could be further reduced, resulting in a DCR density of tens to hundreds of Hertz per micrometer square at cryogenic temperature. The influence of the trench etching process onto DCR is also proved by comparison with planar ultrathin-body SPAD structures without trench. Photon detection probability (PDP) can be achieved by wider depletion and drift regions and by carefully optimizing body thickness. PDP in frontside- (FSI) and backside-illumination (BSI) are comparable, thus making this technology suitable for both modes of illumination. Afterpulsing and crosstalk are negligible at 2µs dead time, while it has been proved, for the first time, that a CMOS SPAD pixel of this kind could work in a cryogenic environment. By appropriate choice of substrate, this technology is amenable to implantation for biocompatible photon-counting applications and wherever bended imaging sensors are essential.

  11. A Low-Noise CMOS THz Imager Based on Source Modulation and an In-Pixel High-Q Passive Switched-Capacitor N-Path Filter

    PubMed Central

    Boukhayma, Assim; Dupret, Antoine; Rostaing, Jean-Pierre; Enz, Christian

    2016-01-01

    This paper presents the first low noise complementary metal oxide semiconductor (CMOS) terahertz (THz) imager based on source modulation and in-pixel high-Q filtering. The 31×31 focal plane array has been fully integrated in a 0.13μm standard CMOS process. The sensitivity has been improved significantly by modulating the active THz source that lights the scene and performing on-chip high-Q filtering. Each pixel encompass a broadband bow tie antenna coupled to an N-type metal-oxide-semiconductor (NMOS) detector that shifts the THz radiation, a low noise adjustable gain amplifier and a high-Q filter centered at the modulation frequency. The filter is based on a passive switched-capacitor (SC) N-path filter combined with a continuous-time broad-band Gm-C filter. A simplified analysis that helps in designing and tuning the passive SC N-path filter is provided. The characterization of the readout chain shows that a Q factor of 100 has been achieved for the filter with a good matching between the analytical calculation and the measurement results. An input-referred noise of 0.2μV RMS has been measured. Characterization of the chip with different THz wavelengths confirms the broadband feature of the antenna and shows that this THz imager reaches a total noise equivalent power of 0.6 nW at 270 GHz and 0.8 nW at 600 GHz. PMID:26950131

  12. Development of CMOS pixel sensors for the upgrade of the ALICE Inner Tracking System

    NASA Astrophysics Data System (ADS)

    Molnar, L.

    2014-12-01

    The ALICE Collaboration is preparing a major upgrade of the current detector, planned for installation during the second long LHC shutdown in the years 2018-19, in order to enhance its low-momentum vertexing and tracking capability, and exploit the planned increase of the LHC luminosity with Pb beams. One of the cornerstones of the ALICE upgrade strategy is to replace the current Inner Tracking System in its entirety with a new, high resolution, low-material ITS detector. The new ITS will consist of seven concentric layers equipped with Monolithic Active Pixel Sensors (MAPS) implemented using the 0.18 μm CMOS technology of TowerJazz. In this contribution, the main key features of the ITS upgrade will be illustrated with emphasis on the functionality of the pixel chip. The ongoing developments on the readout architectures, which have been implemented in several fabricated prototypes, will be discussed. The operational features of these prototypes as well as the results of the characterisation tests before and after irradiation will also be presented.

  13. Radiation hard analog circuits for ALICE ITS upgrade

    NASA Astrophysics Data System (ADS)

    Gajanana, D.; Gromov, V.; Kuijer, P.; Kugathasan, T.; Snoeys, W.

    2016-03-01

    The ALICE experiment is planning to upgrade the ITS (Inner Tracking System) [1] detector during the LS2 shutdown. The present ITS will be fully replaced with a new one entirely based on CMOS monolithic pixel sensor chips fabricated in TowerJazz CMOS 0.18 μ m imaging technology. The large (3 cm × 1.5 cm = 4.5 cm2) ALPIDE (ALICE PIxel DEtector) sensor chip contains about 500 Kpixels, and will be used to cover a 10 m2 area with 12.5 Gpixels distributed over seven cylindrical layers. The ALPOSE chip was designed as a test chip for the various building blocks foreseen in the ALPIDE [2] pixel chip from CERN. The building blocks include: bandgap and Temperature sensor in four different flavours, and LDOs for powering schemes. One flavour of bandgap and temperature sensor will be included in the ALPIDE chip. Power consumption numbers have dropped very significantly making the use of LDOs less interesting, but in this paper all blocks are presented including measurement results before and after irradiation with neutrons to characterize robustness against displacement damage.

  14. Micro-scale characterization of a CMOS-based neutron detector for in-phantom measurements in radiation therapy

    NASA Astrophysics Data System (ADS)

    Arbor, Nicolas; Higueret, Stephane; Husson, Daniel

    2018-04-01

    The CMOS sensor AlphaRad has been designed at the IPHC Strasbourg for real-time monitoring of fast and thermal neutrons over a full energy spectrum. Completely integrated, highly transparent to photons and optimized for low power consumption, this sensor offers very interesting characteristics for the study of internal neutrons in radiation therapy with anthropomorphic phantoms. However, specific effects related to the CMOS metal substructure and to the charge collection process of low energy particles must be carefully estimated before being used for medical applications. We present a detailed characterization of the AlphaRad chip in the MeV energy range using proton and alpha micro-beam experiments performed at the AIFIRA facility (CENBG, Bordeaux). Two-dimensional maps of the charge collection were carried out on a micro-metric scale to be integrated into a Geant4 Monte Carlo simulation of the system. The gamma rejection, as well as the fast and thermal neutrons separation, were studied using both simulation and experimental data. The results highlight the potential of a future system based on CMOS sensor for in-phantom neutron detection in radiation therapies.

  15. Tracking Detectors in the STAR Experiment at RHIC

    NASA Astrophysics Data System (ADS)

    Wieman, Howard

    2015-04-01

    The STAR experiment at RHIC is designed to measure and identify the thousands of particles produced in 200 Gev/nucleon Au on Au collisions. This talk will focus on the design and construction of two of the main tracking detectors in the experiment, the TPC and the Heavy Flavor Tracker (HFT) pixel detector. The TPC is a solenoidal gas filled detector 4 meters in diameter and 4.2 meters long. It provides precise, continuous tracking and rate of energy loss in the gas (dE/dx) for particles at + - 1 units of pseudo rapidity. The tracking in a half Tesla magnetic field measures momentum and dE/dX provides particle ID. To detect short lived particles tracking close to the point of interaction is required. The HFT pixel detector is a two-layered, high resolution vertex detector located at a few centimeters radius from the collision point. It determines origins of the tracks to a few tens of microns for the purpose of extracting displaced vertices, allowing the identification of D mesons and other short-lived particles. The HFT pixel detector uses detector chips developed by the IPHC group at Strasbourg that are based on standard IC Complementary Metal-Oxide-Semiconductor (CMOS) technology. This is the first time that CMOS pixel chips have been incorporated in a collider application.

  16. IR sensitivity enhancement of CMOS Image Sensor with diffractive light trapping pixels.

    PubMed

    Yokogawa, Sozo; Oshiyama, Itaru; Ikeda, Harumi; Ebiko, Yoshiki; Hirano, Tomoyuki; Saito, Suguru; Oinoue, Takashi; Hagimoto, Yoshiya; Iwamoto, Hayato

    2017-06-19

    We report on the IR sensitivity enhancement of back-illuminated CMOS Image Sensor (BI-CIS) with 2-dimensional diffractive inverted pyramid array structure (IPA) on crystalline silicon (c-Si) and deep trench isolation (DTI). FDTD simulations of semi-infinite thick c-Si having 2D IPAs on its surface whose pitches over 400 nm shows more than 30% improvement of light absorption at λ = 850 nm and the maximum enhancement of 43% with the 540 nm pitch at the wavelength is confirmed. A prototype BI-CIS sample with pixel size of 1.2 μm square containing 400 nm pitch IPAs shows 80% sensitivity enhancement at λ = 850 nm compared to the reference sample with flat surface. This is due to diffraction with the IPA and total reflection at the pixel boundary. The NIR images taken by the demo camera equip with a C-mount lens show 75% sensitivity enhancement in the λ = 700-1200 nm wavelength range with negligible spatial resolution degradation. Light trapping CIS pixel technology promises to improve NIR sensitivity and appears to be applicable to many different image sensor applications including security camera, personal authentication, and range finding Time-of-Flight camera with IR illuminations.

  17. High dynamic range CMOS (HDRC) imagers for safety systems

    NASA Astrophysics Data System (ADS)

    Strobel, Markus; Döttling, Dietmar

    2013-04-01

    The first part of this paper describes the high dynamic range CMOS (HDRC®) imager - a special type of CMOS image sensor with logarithmic response. The powerful property of a high dynamic range (HDR) image acquisition is detailed by mathematical definition and measurement of the optoelectronic conversion function (OECF) of two different HDRC imagers. Specific sensor parameters will be discussed including the pixel design for the global shutter readout. The second part will give an outline on the applications and requirements of cameras for industrial safety. Equipped with HDRC global shutter sensors SafetyEYE® is a high-performance stereo camera system for safe three-dimensional zone monitoring enabling new and more flexible solutions compared to existing safety guards.

  18. Video-rate nanoscopy enabled by sCMOS camera-specific single-molecule localization algorithms

    PubMed Central

    Huang, Fang; Hartwich, Tobias M. P.; Rivera-Molina, Felix E.; Lin, Yu; Duim, Whitney C.; Long, Jane J.; Uchil, Pradeep D.; Myers, Jordan R.; Baird, Michelle A.; Mothes, Walther; Davidson, Michael W.; Toomre, Derek; Bewersdorf, Joerg

    2013-01-01

    Newly developed scientific complementary metal–oxide–semiconductor (sCMOS) cameras have the potential to dramatically accelerate data acquisition in single-molecule switching nanoscopy (SMSN) while simultaneously increasing the effective quantum efficiency. However, sCMOS-intrinsic pixel-dependent readout noise substantially reduces the localization precision and introduces localization artifacts. Here we present algorithms that overcome these limitations and provide unbiased, precise localization of single molecules at the theoretical limit. In combination with a multi-emitter fitting algorithm, we demonstrate single-molecule localization super-resolution imaging at up to 32 reconstructed images/second (recorded at 1,600–3,200 camera frames/second) in both fixed and living cells. PMID:23708387

  19. Low-noise low-jitter 32-pixels CMOS single-photon avalanche diodes array for single-photon counting from 300 nm to 900 nm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scarcella, Carmelo; Tosi, Alberto, E-mail: alberto.tosi@polimi.it; Villa, Federica

    2013-12-15

    We developed a single-photon counting multichannel detection system, based on a monolithic linear array of 32 CMOS SPADs (Complementary Metal-Oxide-Semiconductor Single-Photon Avalanche Diodes). All channels achieve a timing resolution of 100 ps (full-width at half maximum) and a photon detection efficiency of 50% at 400 nm. Dark count rate is very low even at room temperature, being about 125 counts/s for 50 μm active area diameter SPADs. Detection performance and microelectronic compactness of this CMOS SPAD array make it the best candidate for ultra-compact time-resolved spectrometers with single-photon sensitivity from 300 nm to 900 nm.

  20. Advanced illumination control algorithm for medical endoscopy applications

    NASA Astrophysics Data System (ADS)

    Sousa, Ricardo M.; Wäny, Martin; Santos, Pedro; Morgado-Dias, F.

    2015-05-01

    CMOS image sensor manufacturer, AWAIBA, is providing the world's smallest digital camera modules to the world market for minimally invasive surgery and one time use endoscopic equipment. Based on the world's smallest digital camera head and the evaluation board provided to it, the aim of this paper is to demonstrate an advanced fast response dynamic control algorithm of the illumination LED source coupled to the camera head, over the LED drivers embedded on the evaluation board. Cost efficient and small size endoscopic camera modules nowadays embed minimal size image sensors capable of not only adjusting gain and exposure time but also LED illumination with adjustable illumination power. The LED illumination power has to be dynamically adjusted while navigating the endoscope over changing illumination conditions of several orders of magnitude within fractions of the second to guarantee a smooth viewing experience. The algorithm is centered on the pixel analysis of selected ROIs enabling it to dynamically adjust the illumination intensity based on the measured pixel saturation level. The control core was developed in VHDL and tested in a laboratory environment over changing light conditions. The obtained results show that it is capable of achieving correction speeds under 1 s while maintaining a static error below 3% relative to the total number of pixels on the image. The result of this work will allow the integration of millimeter sized high brightness LED sources on minimal form factor cameras enabling its use in endoscopic surgical robotic or micro invasive surgery.

  1. Design and implementation of a CMOS light pulse receiver cell array for spatial optical communications.

    PubMed

    Sarker, Md Shakowat Zaman; Itoh, Shinya; Hamai, Moeta; Takai, Isamu; Andoh, Michinori; Yasutomi, Keita; Kawahito, Shoji

    2011-01-01

    A CMOS light pulse receiver (LPR) cell for spatial optical communications is designed and evaluated by device simulations and a prototype chip implementation. The LPR cell consists of a pinned photodiode and four transistors. It works under sub-threshold region of a MOS transistor and the source terminal voltage which responds to the logarithm of the photo current are read out with a source follower circuit. For finding the position of the light spot on the focal plane, an image pixel array is embedded on the same plane of the LPR cell array. A prototype chip with 640 × 240 image pixels and 640 × 240 LPR cells is implemented with 0.18 μm CMOS technology. A proposed model of the transient response of the LPR cell agrees with the result of the device simulations and measurements. Both imaging at 60 fps and optical communication at the carrier frequency of 1 MHz are successfully performed. The measured signal amplitude and the calculation results of photocurrents show that the spatial optical communication up to 100 m is feasible using a 10 × 10 LED array.

  2. Radiation damage caused by cold neutrons in boron doped CMOS active pixel sensors

    NASA Astrophysics Data System (ADS)

    Linnik, B.; Bus, T.; Deveaux, M.; Doering, D.; Kudejova, P.; Wagner, F. M.; Yazgili, A.; Stroth, J.

    2017-05-01

    CMOS Monolithic Active Pixel Sensors (MAPS) are considered as an emerging technology in the field of charged particle tracking. They will be used in the vertex detectors of experiments like STAR, CBM and ALICE and are considered for the ILC and the tracker of ATLAS. In those applications, the sensors are exposed to sizeable radiation doses. While the tolerance of MAPS to ionizing radiation and fast hadrons is well known, the damage caused by low energy neutrons was not studied so far. Those slow neutrons may initiate nuclear fission of 10B dopants found in the B-doped silicon active medium of MAPS. This effect was expected to create an unknown amount of radiation damage beyond the predictions of the NIEL (Non Ionizing Energy Loss) model for pure silicon. We estimate the impact of this effect by calculating the additional NIEL created by this fission. Moreover, we show first measured data for CMOS sensors which were irradiated with cold neutrons. The empirical results contradict the prediction of the updated NIEL model both, qualitatively and quantitatively: the sensors irradiated with slow neutrons show an unexpected and strong acceptor removal, which is not observed in sensors irradiated with MeV neutrons.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schambach, Joachim; Anderssen, Eric; Contin, Giacomo

    For the 2014 heavy ion run of RHIC a new micro-vertex detector called the Heavy Flavor Tracker (HFT) was installed in the STAR experiment. The HFT consists of three detector subsystems with various silicon technologies arranged in 4 approximately concentric cylinders close to the STAR interaction point designed to improve the STAR detector’s vertex resolution and extend its measurement capabilities in the heavy flavor domain. The two innermost HFT layers are placed at radii of 2.8 cm and 8 cm from the beam line. These layers are constructed with 400 high resolution sensors based on CMOS Monolithic Active Pixel Sensormore » (MAPS) technology arranged in 10-sensor ladders mounted on 10 thin carbon fiber sectors to cover a total silicon area of 0.16 m 2. Each sensor of this PiXeL (“PXL”) sub-detector combines a pixel array of 928 rows and 960 columns with a 20.7 μm pixel pitch together with front-end electronics and zero-suppression circuitry in one silicon die providing a sensitive area of ~3.8 cm 2. This sensor architecture features 185.6 μs readout time and 170 mW/cm 2 power dissipation. This low power dissipation allows the PXL detector to be air-cooled, and with the sensors thinned down to 50 μm results in a global material budget of only 0.4% radiation length per layer. A novel mechanical approach to detector insertion allows us to effectively install and integrate the PXL sub-detector within a 12 hour period during an on-going multi-month data taking period. The detector requirements, architecture and design, as well as the performance after installation, are presented in this paper.« less

  4. On the integration of ultrananocrystalline diamond (UNCD) with CMOS chip

    DOE PAGES

    Mi, Hongyi; Yuan, Hao -Chih; Seo, Jung -Hun; ...

    2017-03-27

    A low temperature deposition of high quality ultrananocrystalline diamond (UNCD) film onto a finished Si-based CMOS chip was performed to investigate the compatibility of the UNCD deposition process with CMOS devices for monolithic integration of MEMS on Si CMOS platform. DC and radio-frequency performances of the individual PMOS and NMOS devices on the CMOS chip before and after the UNCD deposition were characterized. Electrical characteristics of CMOS after deposition of the UNCD film remained within the acceptable ranges, namely showing small variations in threshold voltage V th, transconductance g m, cut-off frequency f T and maximum oscillation frequency f max.more » Finally, the results suggest that low temperature UNCD deposition is compatible with CMOS to realize monolithically integrated CMOS-driven MEMS/NEMS based on UNCD.« less

  5. On the integration of ultrananocrystalline diamond (UNCD) with CMOS chip

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mi, Hongyi; Yuan, Hao -Chih; Seo, Jung -Hun

    A low temperature deposition of high quality ultrananocrystalline diamond (UNCD) film onto a finished Si-based CMOS chip was performed to investigate the compatibility of the UNCD deposition process with CMOS devices for monolithic integration of MEMS on Si CMOS platform. DC and radio-frequency performances of the individual PMOS and NMOS devices on the CMOS chip before and after the UNCD deposition were characterized. Electrical characteristics of CMOS after deposition of the UNCD film remained within the acceptable ranges, namely showing small variations in threshold voltage V th, transconductance g m, cut-off frequency f T and maximum oscillation frequency f max.more » Finally, the results suggest that low temperature UNCD deposition is compatible with CMOS to realize monolithically integrated CMOS-driven MEMS/NEMS based on UNCD.« less

  6. High-Speed Scanning Interferometer Using CMOS Image Sensor and FPGA Based on Multifrequency Phase-Tracking Detection

    NASA Technical Reports Server (NTRS)

    Ohara, Tetsuo

    2012-01-01

    A sub-aperture stitching optical interferometer can provide a cost-effective solution for an in situ metrology tool for large optics; however, the currently available technologies are not suitable for high-speed and real-time continuous scan. NanoWave s SPPE (Scanning Probe Position Encoder) has been proven to exhibit excellent stability and sub-nanometer precision with a large dynamic range. This same technology can transform many optical interferometers into real-time subnanometer precision tools with only minor modification. The proposed field-programmable gate array (FPGA) signal processing concept, coupled with a new-generation, high-speed, mega-pixel CMOS (complementary metal-oxide semiconductor) image sensor, enables high speed (>1 m/s) and real-time continuous surface profiling that is insensitive to variation of pixel sensitivity and/or optical transmission/reflection. This is especially useful for large optics surface profiling.

  7. CMOS imager for pointing and tracking applications

    NASA Technical Reports Server (NTRS)

    Sun, Chao (Inventor); Pain, Bedabrata (Inventor); Yang, Guang (Inventor); Heynssens, Julie B. (Inventor)

    2006-01-01

    Systems and techniques to realize pointing and tracking applications with CMOS imaging devices. In general, in one implementation, the technique includes: sampling multiple rows and multiple columns of an active pixel sensor array into a memory array (e.g., an on-chip memory array), and reading out the multiple rows and multiple columns sampled in the memory array to provide image data with reduced motion artifact. Various operation modes may be provided, including TDS, CDS, CQS, a tracking mode to read out multiple windows, and/or a mode employing a sample-first-read-later readout scheme. The tracking mode can take advantage of a diagonal switch array. The diagonal switch array, the active pixel sensor array and the memory array can be integrated onto a single imager chip with a controller. This imager device can be part of a larger imaging system for both space-based applications and terrestrial applications.

  8. High-speed on-chip windowed centroiding using photodiode-based CMOS imager

    NASA Technical Reports Server (NTRS)

    Pain, Bedabrata (Inventor); Sun, Chao (Inventor); Yang, Guang (Inventor); Cunningham, Thomas J. (Inventor); Hancock, Bruce (Inventor)

    2003-01-01

    A centroid computation system is disclosed. The system has an imager array, a switching network, computation elements, and a divider circuit. The imager array has columns and rows of pixels. The switching network is adapted to receive pixel signals from the image array. The plurality of computation elements operates to compute inner products for at least x and y centroids. The plurality of computation elements has only passive elements to provide inner products of pixel signals the switching network. The divider circuit is adapted to receive the inner products and compute the x and y centroids.

  9. High-speed on-chip windowed centroiding using photodiode-based CMOS imager

    NASA Technical Reports Server (NTRS)

    Pain, Bedabrata (Inventor); Sun, Chao (Inventor); Yang, Guang (Inventor); Cunningham, Thomas J. (Inventor); Hancock, Bruce (Inventor)

    2004-01-01

    A centroid computation system is disclosed. The system has an imager array, a switching network, computation elements, and a divider circuit. The imager array has columns and rows of pixels. The switching network is adapted to receive pixel signals from the image array. The plurality of computation elements operates to compute inner products for at least x and y centroids. The plurality of computation elements has only passive elements to provide inner products of pixel signals the switching network. The divider circuit is adapted to receive the inner products and compute the x and y centroids.

  10. Mixed Linear/Square-Root Encoded Single Slope Ramp Provides a Fast, Low Noise Analog to Digital Converter with Very High Linearity for Focal Plane Arrays

    NASA Technical Reports Server (NTRS)

    Wrigley, Christopher James (Inventor); Hancock, Bruce R. (Inventor); Cunningham, Thomas J. (Inventor); Newton, Kenneth W. (Inventor)

    2014-01-01

    An analog-to-digital converter (ADC) converts pixel voltages from a CMOS image into a digital output. A voltage ramp generator generates a voltage ramp that has a linear first portion and a non-linear second portion. A digital output generator generates a digital output based on the voltage ramp, the pixel voltages, and comparator output from an array of comparators that compare the voltage ramp to the pixel voltages. A return lookup table linearizes the digital output values.

  11. Label-free CMOS bio sensor with on-chip noise reduction scheme for real-time quantitative monitoring of biomolecules.

    PubMed

    Seong-Jin Kim; Euisik Yoon

    2012-06-01

    We present a label-free CMOS field-effect transistor sensing array to detect the surface potential change affected by the negative charge in DNA molecules for real-time monitoring and quantification. The proposed CMOS bio sensor includes a new sensing pixel architecture implemented with correlated double sampling for reducing offset fixed pattern noise and 1/f noise of the sensing devices. We incorporated non-surface binding detection which allows real-time continuous monitoring of DNA concentrations without immobilizing them on the sensing surface. Various concentrations of 19-bp oligonucleotides solution can be discriminated using the prototype device fabricated in 1- μm double-poly double-metal standard CMOS process. The detection limit was measured as 1.1 ng/μl with a dynamic range of 40 dB and the transient response time was measured less than 20 seconds.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeffrey A Appel

    BTeV is a new Fermilab beauty and charm experiment designed to operate in the CZero region of the Tevatron collider. Critical to the success of BTeV is its pixel detector. The unique features of this pixel detector include its proximity to the beam, its operation with a beam crossing time of 132 ns, and the need for the detector information to be read out quickly enough to be used for the lowest level trigger. This talk presents an overview of the pixel detector design, giving the motivations for the technical choices made. The status of the current R&D on detectormore » components is also reviewed. Additional Pixel 2002 talks on the BTeV pixel detector are given by Dave Christian[1], Mayling Wong[2], and Sergio Zimmermann[3]. Table 1 gives a selection of pixel detector parameters for the ALICE, ATLAS, BTeV, and CMS experiments. Comparing the progression of this table, which I have been updating for the last several years, has shown a convergence of specifications. Nevertheless, significant differences endure. The BTeV data-driven readout, horizontal and vertical position resolution better than 9 {micro}m with the {+-} 300 mr forward acceptance, and positioning in vacuum and as close as 6 mm from the circulating beams remain unique. These features are driven by the physics goals of the BTeV experiment. Table 2 demonstrates that the vertex trigger performance made possible by these features is requisite for a very large fraction of the B meson decay physics which is so central to the motivation for BTeV. For most of the physics quantities of interest listed in the table, the vertex trigger is essential. The performance of the BTeV pixel detector may be summarized by looking at particular physics examples; e.g., the B{sub s} meson decay B{sub s} {yields} D{sub s}{sup -} K{sup +}. For that decay, studies using GEANT3 simulations provide quantitative measures of performance. For example, the separation between the B{sub s} decay point and the primary proton-antiproton interaction can be measured with an rms uncertainty of 138 {micro}m. This, with the uncertainty in the decay vertex position, leads to an uncertainty of the B{sub s} proper decay time of 46 fs. Even if the parameter x{sub s} equals 25 (where the current lower limit on x{sub s} is about 15), the corresponding relevant proper time is 400 fs. So, the detector resolution is more than adequate to make an excellent measurement of this parameter.« less

  13. Graphene/Si CMOS Hybrid Hall Integrated Circuits

    PubMed Central

    Huang, Le; Xu, Huilong; Zhang, Zhiyong; Chen, Chengying; Jiang, Jianhua; Ma, Xiaomeng; Chen, Bingyan; Li, Zishen; Zhong, Hua; Peng, Lian-Mao

    2014-01-01

    Graphene/silicon CMOS hybrid integrated circuits (ICs) should provide powerful functions which combines the ultra-high carrier mobility of graphene and the sophisticated functions of silicon CMOS ICs. But it is difficult to integrate these two kinds of heterogeneous devices on a single chip. In this work a low temperature process is developed for integrating graphene devices onto silicon CMOS ICs for the first time, and a high performance graphene/CMOS hybrid Hall IC is demonstrated. Signal amplifying/process ICs are manufactured via commercial 0.18 um silicon CMOS technology, and graphene Hall elements (GHEs) are fabricated on top of the passivation layer of the CMOS chip via a low-temperature micro-fabrication process. The sensitivity of the GHE on CMOS chip is further improved by integrating the GHE with the CMOS amplifier on the Si chip. This work not only paves the way to fabricate graphene/Si CMOS Hall ICs with much higher performance than that of conventional Hall ICs, but also provides a general method for scalable integration of graphene devices with silicon CMOS ICs via a low-temperature process. PMID:24998222

  14. Graphene/Si CMOS hybrid hall integrated circuits.

    PubMed

    Huang, Le; Xu, Huilong; Zhang, Zhiyong; Chen, Chengying; Jiang, Jianhua; Ma, Xiaomeng; Chen, Bingyan; Li, Zishen; Zhong, Hua; Peng, Lian-Mao

    2014-07-07

    Graphene/silicon CMOS hybrid integrated circuits (ICs) should provide powerful functions which combines the ultra-high carrier mobility of graphene and the sophisticated functions of silicon CMOS ICs. But it is difficult to integrate these two kinds of heterogeneous devices on a single chip. In this work a low temperature process is developed for integrating graphene devices onto silicon CMOS ICs for the first time, and a high performance graphene/CMOS hybrid Hall IC is demonstrated. Signal amplifying/process ICs are manufactured via commercial 0.18 um silicon CMOS technology, and graphene Hall elements (GHEs) are fabricated on top of the passivation layer of the CMOS chip via a low-temperature micro-fabrication process. The sensitivity of the GHE on CMOS chip is further improved by integrating the GHE with the CMOS amplifier on the Si chip. This work not only paves the way to fabricate graphene/Si CMOS Hall ICs with much higher performance than that of conventional Hall ICs, but also provides a general method for scalable integration of graphene devices with silicon CMOS ICs via a low-temperature process.

  15. ACE: Automatic Centroid Extractor for real time target tracking

    NASA Technical Reports Server (NTRS)

    Cameron, K.; Whitaker, S.; Canaris, J.

    1990-01-01

    A high performance video image processor has been implemented which is capable of grouping contiguous pixels from a raster scan image into groups and then calculating centroid information for each object in a frame. The algorithm employed to group pixels is very efficient and is guaranteed to work properly for all convex shapes as well as most concave shapes. Processing speeds are adequate for real time processing of video images having a pixel rate of up to 20 million pixels per second. Pixels may be up to 8 bits wide. The processor is designed to interface directly to a transputer serial link communications channel with no additional hardware. The full custom VLSI processor was implemented in a 1.6 mu m CMOS process and measures 7200 mu m on a side.

  16. Lab-on-CMOS Integration of Microfluidics and Electrochemical Sensors

    PubMed Central

    Huang, Yue; Mason, Andrew J.

    2013-01-01

    This paper introduces a CMOS-microfluidics integration scheme for electrochemical microsystems. A CMOS chip was embedded into a micro-machined silicon carrier. By leveling the CMOS chip and carrier surface to within 100 nm, an expanded obstacle-free surface suitable for photolithography was achieved. Thin film metal planar interconnects were microfabricated to bridge CMOS pads to the perimeter of the carrier, leaving a flat and smooth surface for integrating microfluidic structures. A model device containing SU-8 microfluidic mixers and detection channels crossing over microelectrodes on a CMOS integrated circuit was constructed using the chip-carrier assembly scheme. Functional integrity of microfluidic structures and on-CMOS electrodes was verified by a simultaneous sample dilution and electrochemical detection experiment within multi-channel microfluidics. This lab-on-CMOS integration process is capable of high packing density, is suitable for wafer-level batch production, and opens new opportunities to combine the performance benefits of on-CMOS sensors with lab-on-chip platforms. PMID:23939616

  17. Lab-on-CMOS integration of microfluidics and electrochemical sensors.

    PubMed

    Huang, Yue; Mason, Andrew J

    2013-10-07

    This paper introduces a CMOS-microfluidics integration scheme for electrochemical microsystems. A CMOS chip was embedded into a micro-machined silicon carrier. By leveling the CMOS chip and carrier surface to within 100 nm, an expanded obstacle-free surface suitable for photolithography was achieved. Thin film metal planar interconnects were microfabricated to bridge CMOS pads to the perimeter of the carrier, leaving a flat and smooth surface for integrating microfluidic structures. A model device containing SU-8 microfluidic mixers and detection channels crossing over microelectrodes on a CMOS integrated circuit was constructed using the chip-carrier assembly scheme. Functional integrity of microfluidic structures and on-CMOS electrodes was verified by a simultaneous sample dilution and electrochemical detection experiment within multi-channel microfluidics. This lab-on-CMOS integration process is capable of high packing density, is suitable for wafer-level batch production, and opens new opportunities to combine the performance benefits of on-CMOS sensors with lab-on-chip platforms.

  18. A microfluidic microprocessor: controlling biomimetic containers and cells using hybrid integrated circuit/microfluidic chips.

    PubMed

    Issadore, David; Franke, Thomas; Brown, Keith A; Westervelt, Robert M

    2010-11-07

    We present an integrated platform for performing biological and chemical experiments on a chip based on standard CMOS technology. We have developed a hybrid integrated circuit (IC)/microfluidic chip that can simultaneously control thousands of living cells and pL volumes of fluid, enabling a wide variety of chemical and biological tasks. Taking inspiration from cellular biology, phospholipid bilayer vesicles are used as robust picolitre containers for reagents on the chip. The hybrid chip can be programmed to trap, move, and porate individual living cells and vesicles and fuse and deform vesicles using electric fields. The IC spatially patterns electric fields in a microfluidic chamber using 128 × 256 (32,768) 11 × 11 μm(2) metal pixels, each of which can be individually driven with a radio frequency (RF) voltage. The chip's basic functions can be combined in series to perform complex biological and chemical tasks and can be performed in parallel on the chip's many pixels for high-throughput operations. The hybrid chip operates in two distinct modes, defined by the frequency of the RF voltage applied to the pixels: Voltages at MHz frequencies are used to trap, move, and deform objects using dielectrophoresis and voltages at frequencies below 1 kHz are used for electroporation and electrofusion. This work represents an important step towards miniaturizing the complex chemical and biological experiments used for diagnostics and research onto automated and inexpensive chips.

  19. Scalable Testing Platform for CMOS Read In Integrated Circuits

    DTIC Science & Technology

    2016-03-31

    light - emitting - diode (SLED) current on a monitor out (MOUT) pin. The MOUT pin can produce voltage or current readings, depending on the test case. The...in it means the SPI communication works correctly. Lighting up LEDs: All the RIICs have the corner pixels brought out to output pins. Thus...external LEDs can be connected to pins in order to test the behavior of the pixel drive circuitry. Lighting up LEDs is a great visual representation that

  20. Pitch dependence of the tolerance of CMOS monolithic active pixel sensors to non-ionizing radiation

    NASA Astrophysics Data System (ADS)

    Doering, D.; Deveaux, M.; Domachowski, M.; Fröhlich, I.; Koziel, M.; Müntz, C.; Scharrer, P.; Stroth, J.

    2013-12-01

    CMOS monolithic active pixel sensors (MAPS) have demonstrated excellent performance as tracking detectors for charged particles. They provide an outstanding spatial resolution (a few μm), a detection efficiency of ≳ 99.9 %, very low material budget (0.05 %X0) and good radiation tolerance (≳ 1 Mrad, ≳1013neq /cm2) (Deveaux et al. [1]). This makes them an interesting technology for various applications in heavy ion and particle physics. Their tolerance to bulk damage was recently improved by using high-resistivity (∼ 1 kΩ cm) epitaxial layers as sensitive volume (Deveaux et al. [1], Dorokhov et al. [2]). The radiation tolerance of conventional MAPS is known to depend on the pixel pitch. This is as a higher pitch extends the distance, which signal electrons have to travel by thermal diffusion before being collected. Increased diffusion paths turn into a higher probability of loosing signal charge due to recombination. Provided that a similar effect exists in MAPS with high-resistivity epitaxial layer, it could be used to extend their radiation tolerance further. We addressed this question with MIMOSA-18AHR prototypes, which were provided by the IPHC Strasbourg and irradiated with reactor neutrons. We report about the results of this study and provide evidences that MAPS with 10 μm pixel pitch tolerate doses of ≳ 3 ×1014neq /cm2.

  1. Characterisation of a novel reverse-biased PPD CMOS image sensor

    NASA Astrophysics Data System (ADS)

    Stefanov, K. D.; Clarke, A. S.; Ivory, J.; Holland, A. D.

    2017-11-01

    A new pinned photodiode (PPD) CMOS image sensor (CIS) has been developed and characterised. The sensor can be fully depleted by means of reverse bias applied to the substrate, and the principle of operation is applicable to very thick sensitive volumes. Additional n-type implants under the pixel p-wells, called Deep Depletion Extension (DDE), have been added in order to eliminate the large parasitic substrate current that would otherwise be present in a normal device. The first prototype has been manufactured on a 18 μm thick, 1000 Ω .cm epitaxial silicon wafers using 180 nm PPD image sensor process at TowerJazz Semiconductor. The chip contains arrays of 10 μm and 5.4 μm pixels, with variations of the shape, size and the depth of the DDE implant. Back-side illuminated (BSI) devices were manufactured in collaboration with Teledyne e2v, and characterised together with the front-side illuminated (FSI) variants. The presented results show that the devices could be reverse-biased without parasitic leakage currents, in good agreement with simulations. The new 10 μm pixels in both BSI and FSI variants exhibit nearly identical photo response to the reference non-modified pixels, as characterised with the photon transfer curve. Different techniques were used to measure the depletion depth in FSI and BSI chips, and the results are consistent with the expected full depletion.

  2. Synchrotron based planar imaging and digital tomosynthesis of breast and biopsy phantoms using a CMOS active pixel sensor.

    PubMed

    Szafraniec, Magdalena B; Konstantinidis, Anastasios C; Tromba, Giuliana; Dreossi, Diego; Vecchio, Sara; Rigon, Luigi; Sodini, Nicola; Naday, Steve; Gunn, Spencer; McArthur, Alan; Olivo, Alessandro

    2015-03-01

    The SYRMEP (SYnchrotron Radiation for MEdical Physics) beamline at Elettra is performing the first mammography study on human patients using free-space propagation phase contrast imaging. The stricter spatial resolution requirements of this method currently force the use of conventional films or specialized computed radiography (CR) systems. This also prevents the implementation of three-dimensional (3D) approaches. This paper explores the use of an X-ray detector based on complementary metal-oxide-semiconductor (CMOS) active pixel sensor (APS) technology as a possible alternative, for acquisitions both in planar and tomosynthesis geometry. Results indicate higher quality of the images acquired with the synchrotron set-up in both geometries. This improvement can be partly ascribed to the use of parallel, collimated and monochromatic synchrotron radiation (resulting in scatter rejection, no penumbra-induced blurring and optimized X-ray energy), and partly to phase contrast effects. Even though the pixel size of the used detector is still too large - and thus suboptimal - for free-space propagation phase contrast imaging, a degree of phase-induced edge enhancement can clearly be observed in the images. Copyright © 2014 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  3. Single-event transient imaging with an ultra-high-speed temporally compressive multi-aperture CMOS image sensor.

    PubMed

    Mochizuki, Futa; Kagawa, Keiichiro; Okihara, Shin-ichiro; Seo, Min-Woong; Zhang, Bo; Takasawa, Taishi; Yasutomi, Keita; Kawahito, Shoji

    2016-02-22

    In the work described in this paper, an image reproduction scheme with an ultra-high-speed temporally compressive multi-aperture CMOS image sensor was demonstrated. The sensor captures an object by compressing a sequence of images with focal-plane temporally random-coded shutters, followed by reconstruction of time-resolved images. Because signals are modulated pixel-by-pixel during capturing, the maximum frame rate is defined only by the charge transfer speed and can thus be higher than those of conventional ultra-high-speed cameras. The frame rate and optical efficiency of the multi-aperture scheme are discussed. To demonstrate the proposed imaging method, a 5×3 multi-aperture image sensor was fabricated. The average rising and falling times of the shutters were 1.53 ns and 1.69 ns, respectively. The maximum skew among the shutters was 3 ns. The sensor observed plasma emission by compressing it to 15 frames, and a series of 32 images at 200 Mfps was reconstructed. In the experiment, by correcting disparities and considering temporal pixel responses, artifacts in the reconstructed images were reduced. An improvement in PSNR from 25.8 dB to 30.8 dB was confirmed in simulations.

  4. Process techniques of charge transfer time reduction for high speed CMOS image sensors

    NASA Astrophysics Data System (ADS)

    Zhongxiang, Cao; Quanliang, Li; Ye, Han; Qi, Qin; Peng, Feng; Liyuan, Liu; Nanjian, Wu

    2014-11-01

    This paper proposes pixel process techniques to reduce the charge transfer time in high speed CMOS image sensors. These techniques increase the lateral conductivity of the photo-generated carriers in a pinned photodiode (PPD) and the voltage difference between the PPD and the floating diffusion (FD) node by controlling and optimizing the N doping concentration in the PPD and the threshold voltage of the reset transistor, respectively. The techniques shorten the charge transfer time from the PPD diode to the FD node effectively. The proposed process techniques do not need extra masks and do not cause harm to the fill factor. A sub array of 32 × 64 pixels was designed and implemented in the 0.18 μm CIS process with five implantation conditions splitting the N region in the PPD. The simulation and measured results demonstrate that the charge transfer time can be decreased by using the proposed techniques. Comparing the charge transfer time of the pixel with the different implantation conditions of the N region, the charge transfer time of 0.32 μs is achieved and 31% of image lag was reduced by using the proposed process techniques.

  5. Smart-Pixel Array Processors Based on Optimal Cellular Neural Networks for Space Sensor Applications

    NASA Technical Reports Server (NTRS)

    Fang, Wai-Chi; Sheu, Bing J.; Venus, Holger; Sandau, Rainer

    1997-01-01

    A smart-pixel cellular neural network (CNN) with hardware annealing capability, digitally programmable synaptic weights, and multisensor parallel interface has been under development for advanced space sensor applications. The smart-pixel CNN architecture is a programmable multi-dimensional array of optoelectronic neurons which are locally connected with their local neurons and associated active-pixel sensors. Integration of the neuroprocessor in each processor node of a scalable multiprocessor system offers orders-of-magnitude computing performance enhancements for on-board real-time intelligent multisensor processing and control tasks of advanced small satellites. The smart-pixel CNN operation theory, architecture, design and implementation, and system applications are investigated in detail. The VLSI (Very Large Scale Integration) implementation feasibility was illustrated by a prototype smart-pixel 5x5 neuroprocessor array chip of active dimensions 1380 micron x 746 micron in a 2-micron CMOS technology.

  6. Large-area low-temperature ultrananocrystaline diamond (UNCD) films and integration with CMOS devices for monolithically integrated diamond MEMD/NEMS-CMOS systems.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sumant, A.V.; Auciello, O.; Yuan, H.-C

    2009-05-01

    Because of exceptional mechanical, chemical, and tribological properties, diamond has a great potential to be used as a material for the development of high-performance MEMS and NEMS such as resonators and switches compatible with harsh environments, which involve mechanical motion and intermittent contact. Integration of such MEMS/NEMS devices with complementary metal oxide semiconductor (CMOS) microelectronics will provide a unique platform for CMOS-driven commercial MEMS/NEMS. The main hurdle to achieve diamond-CMOS integration is the relatively high substrate temperatures (600-800 C) required for depositing conventional diamond thin films, which are well above the CMOS operating thermal budget (400 C). Additionally, a materialsmore » integration strategy has to be developed to enable diamond-CMOS integration. Ultrananocrystalline diamond (UNCD), a novel material developed in thin film form at Argonne, is currently the only microwave plasma chemical vapor deposition (MPCVD) grown diamond film that can be grown at 400 C, and still retain exceptional mechanical, chemical, and tribological properties comparable to that of single crystal diamond. We have developed a process based on MPCVD to synthesize UNCD films on up to 200 mm in diameter CMOS wafers, which will open new avenues for the fabrication of monolithically integrated CMOS-driven MEMS/NEMS based on UNCD. UNCD films were grown successfully on individual Si-based CMOS chips and on 200 mm CMOS wafers at 400 C in a MPCVD system, using Ar-rich/CH4 gas mixture. The CMOS devices on the wafers were characterized before and after UNCD deposition. All devices were performing to specifications with very small degradation after UNCD deposition and processing. A threshold voltage degradation in the range of 0.08-0.44V and transconductance degradation in the range of 1.5-9% were observed.« less

  7. Monolithic CMOS imaging x-ray spectrometers

    NASA Astrophysics Data System (ADS)

    Kenter, Almus; Kraft, Ralph; Gauron, Thomas; Murray, Stephen S.

    2014-07-01

    The Smithsonian Astrophysical Observatory (SAO) in collaboration with SRI/Sarnoff is developing monolithic CMOS detectors optimized for x-ray astronomy. The goal of this multi-year program is to produce CMOS x-ray imaging spectrometers that are Fano noise limited over the 0.1-10keV energy band while incorporating the many benefits of CMOS technology. These benefits include: low power consumption, radiation "hardness", high levels of integration, and very high read rates. Small format test devices from a previous wafer fabrication run (2011-2012) have recently been back-thinned and tested for response below 1keV. These devices perform as expected in regards to dark current, read noise, spectral response and Quantum Efficiency (QE). We demonstrate that running these devices at rates ~> 1Mpix/second eliminates the need for cooling as shot noise from any dark current is greatly mitigated. The test devices were fabricated on 15μm, high resistivity custom (~30kΩ-cm) epitaxial silicon and have a 16 by 192 pixel format. They incorporate 16μm pitch, 6 Transistor Pinned Photo Diode (6TPPD) pixels which have ~40μV/electron sensitivity and a highly parallel analog CDS signal chain. Newer, improved, lower noise detectors have just been fabricated (October 2013). These new detectors are fabricated on 9μm epitaxial silicon and have a 1k by 1k format. They incorporate similar 16μm pitch, 6TPPD pixels but have ~ 50% higher sensitivity and much (3×) lower read noise. These new detectors have undergone preliminary testing for functionality in Front Illuminated (FI) form and are presently being prepared for back thinning and packaging. Monolithic CMOS devices such as these, would be ideal candidate detectors for the focal planes of Solar, planetary and other space-borne x-ray astronomy missions. The high through-put, low noise and excellent low energy response, provide high dynamic range and good time resolution; bright, time varying x-ray features could be temporally and spectrally resolved without saturation. We present details of our camera design and device performance with particular emphasis on those aspects of interest to single photon counting x-ray astronomy. These features include read noise, x-ray spectral response and quantum efficiency. Funding for this work has been provided in large part by NASA Grant NNX09AE86G and a grant from the Betty and Gordon Moore Foundation.

  8. High-resolution extremity cone-beam CT with a CMOS detector: Task-based optimization of scintillator thickness.

    PubMed

    Cao, Q; Brehler, M; Sisniega, A; Stayman, J W; Yorkston, J; Siewerdsen, J H; Zbijewski, W

    2017-03-01

    CMOS x-ray detectors offer small pixel sizes and low electronic noise that may support the development of novel high-resolution imaging applications of cone-beam CT (CBCT). We investigate the effects of CsI scintillator thickness on the performance of CMOS detectors in high resolution imaging tasks, in particular in quantitative imaging of bone microstructure in extremity CBCT. A scintillator thickness-dependent cascaded systems model of CMOS x-ray detectors was developed. Detectability in low-, high- and ultra-high resolution imaging tasks (Gaussian with FWHM of ~250 μ m, ~80 μ m and ~40 μ m, respectively) was studied as a function of scintillator thickness using the theoretical model. Experimental studies were performed on a CBCT test bench equipped with DALSA Xineos3030 CMOS detectors (99 μ m pixels) with CsI scintillator thicknesses of 400 μ m and 700 μ m, and a 0.3 FS compact rotating anode x-ray source. The evaluation involved a radiographic resolution gauge (0.6-5.0 lp/mm), a 127 μm tungsten wire for assessment of 3D resolution, a contrast phantom with tissue-mimicking inserts, and an excised fragment of human tibia for visual assessment of fine trabecular detail. Experimental studies show ~35% improvement in the frequency of 50% MTF modulation when using the 400 μ m scintillator compared to the standard nominal CsI thickness of 700 μ m. Even though the high-frequency DQE of the two detectors is comparable, theoretical studies show a 14% to 28% increase in detectability index ( d' 2 ) of high- and ultrahigh resolution tasks, respectively, for the detector with 400 μ m CsI compared to 700 μ m CsI. Experiments confirm the theoretical findings, showing improvements with the adoption of 400 μ m panel in the visibility of the radiographic pattern (2× improvement in peak-to-through distance at 4.6 lp/mm) and a 12.5% decrease in the FWHM of the tungsten wire. Reconstructions of the tibial plateau reveal enhanced visibility of trabecular structures with the CMOS detector with 400 μ m scinitllator. Applications on CMOS detectors in high resolution CBCT imaging of trabecular bone will benefit from using a thinner scintillator than the current standard in general radiography. The results support the translation of the CMOS sensor with 400 μ m CsI onto the clinical prototype of CMOS-based extremity CBCT.

  9. High-resolution extremity cone-beam CT with a CMOS detector: Task-based optimization of scintillator thickness

    PubMed Central

    Cao, Q.; Brehler, M.; Sisniega, A.; Stayman, J. W.; Yorkston, J.; Siewerdsen, J. H.; Zbijewski, W.

    2017-01-01

    Purpose CMOS x-ray detectors offer small pixel sizes and low electronic noise that may support the development of novel high-resolution imaging applications of cone-beam CT (CBCT). We investigate the effects of CsI scintillator thickness on the performance of CMOS detectors in high resolution imaging tasks, in particular in quantitative imaging of bone microstructure in extremity CBCT. Methods A scintillator thickness-dependent cascaded systems model of CMOS x-ray detectors was developed. Detectability in low-, high- and ultra-high resolution imaging tasks (Gaussian with FWHM of ~250 μm, ~80 μm and ~40 μm, respectively) was studied as a function of scintillator thickness using the theoretical model. Experimental studies were performed on a CBCT test bench equipped with DALSA Xineos3030 CMOS detectors (99 μm pixels) with CsI scintillator thicknesses of 400 μm and 700 μm, and a 0.3 FS compact rotating anode x-ray source. The evaluation involved a radiographic resolution gauge (0.6–5.0 lp/mm), a 127 μm tungsten wire for assessment of 3D resolution, a contrast phantom with tissue-mimicking inserts, and an excised fragment of human tibia for visual assessment of fine trabecular detail. Results Experimental studies show ~35% improvement in the frequency of 50% MTF modulation when using the 400 μm scintillator compared to the standard nominal CsI thickness of 700 μm. Even though the high-frequency DQE of the two detectors is comparable, theoretical studies show a 14% to 28% increase in detectability index (d′2) of high- and ultrahigh resolution tasks, respectively, for the detector with 400 μm CsI compared to 700 μm CsI. Experiments confirm the theoretical findings, showing improvements with the adoption of 400 μm panel in the visibility of the radiographic pattern (2× improvement in peak-to-through distance at 4.6 lp/mm) and a 12.5% decrease in the FWHM of the tungsten wire. Reconstructions of the tibial plateau reveal enhanced visibility of trabecular structures with the CMOS detector with 400 μm scinitllator. Conclusion Applications on CMOS detectors in high resolution CBCT imaging of trabecular bone will benefit from using a thinner scintillator than the current standard in general radiography. The results support the translation of the CMOS sensor with 400 μm CsI onto the clinical prototype of CMOS-based extremity CBCT. PMID:28989220

  10. Single-photon sensitive fast ebCMOS camera system for multiple-target tracking of single fluorophores: application to nano-biophotonics

    NASA Astrophysics Data System (ADS)

    Cajgfinger, Thomas; Chabanat, Eric; Dominjon, Agnes; Doan, Quang T.; Guerin, Cyrille; Houles, Julien; Barbier, Remi

    2011-03-01

    Nano-biophotonics applications will benefit from new fluorescent microscopy methods based essentially on super-resolution techniques (beyond the diffraction limit) on large biological structures (membranes) with fast frame rate (1000 Hz). This trend tends to push the photon detectors to the single-photon counting regime and the camera acquisition system to real time dynamic multiple-target tracing. The LUSIPHER prototype presented in this paper aims to give a different approach than those of Electron Multiplied CCD (EMCCD) technology and try to answer to the stringent demands of the new nano-biophotonics imaging techniques. The electron bombarded CMOS (ebCMOS) device has the potential to respond to this challenge, thanks to the linear gain of the accelerating high voltage of the photo-cathode, to the possible ultra fast frame rate of CMOS sensors and to the single-photon sensitivity. We produced a camera system based on a 640 kPixels ebCMOS with its acquisition system. The proof of concept for single-photon based tracking for multiple single-emitters is the main result of this paper.

  11. High-content analysis of single cells directly assembled on CMOS sensor based on color imaging.

    PubMed

    Tanaka, Tsuyoshi; Saeki, Tatsuya; Sunaga, Yoshihiko; Matsunaga, Tadashi

    2010-12-15

    A complementary metal oxide semiconductor (CMOS) image sensor was applied to high-content analysis of single cells which were assembled closely or directly onto the CMOS sensor surface. The direct assembling of cell groups on CMOS sensor surface allows large-field (6.66 mm×5.32 mm in entire active area of CMOS sensor) imaging within a second. Trypan blue-stained and non-stained cells in the same field area on the CMOS sensor were successfully distinguished as white- and blue-colored images under white LED light irradiation. Furthermore, the chemiluminescent signals of each cell were successfully visualized as blue-colored images on CMOS sensor only when HeLa cells were placed directly on the micro-lens array of the CMOS sensor. Our proposed approach will be a promising technique for real-time and high-content analysis of single cells in a large-field area based on color imaging. Copyright © 2010 Elsevier B.V. All rights reserved.

  12. Multiple-Event, Single-Photon Counting Imaging Sensor

    NASA Technical Reports Server (NTRS)

    Zheng, Xinyu; Cunningham, Thomas J.; Sun, Chao; Wang, Kang L.

    2011-01-01

    The single-photon counting imaging sensor is typically an array of silicon Geiger-mode avalanche photodiodes that are monolithically integrated with CMOS (complementary metal oxide semiconductor) readout, signal processing, and addressing circuits located in each pixel and the peripheral area of the chip. The major problem is its single-event method for photon count number registration. A single-event single-photon counting imaging array only allows registration of up to one photon count in each of its pixels during a frame time, i.e., the interval between two successive pixel reset operations. Since the frame time can t be too short, this will lead to very low dynamic range and make the sensor merely useful for very low flux environments. The second problem of the prior technique is a limited fill factor resulting from consumption of chip area by the monolithically integrated CMOS readout in pixels. The resulting low photon collection efficiency will substantially ruin any benefit gained from the very sensitive single-photon counting detection. The single-photon counting imaging sensor developed in this work has a novel multiple-event architecture, which allows each of its pixels to register as more than one million (or more) photon-counting events during a frame time. Because of a consequently boosted dynamic range, the imaging array of the invention is capable of performing single-photon counting under ultra-low light through high-flux environments. On the other hand, since the multiple-event architecture is implemented in a hybrid structure, back-illumination and close-to-unity fill factor can be realized, and maximized quantum efficiency can also be achieved in the detector array.

  13. Proton-counting radiography for proton therapy: a proof of principle using CMOS APS technology

    NASA Astrophysics Data System (ADS)

    Poludniowski, G.; Allinson, N. M.; Anaxagoras, T.; Esposito, M.; Green, S.; Manolopoulos, S.; Nieto-Camero, J.; Parker, D. J.; Price, T.; Evans, P. M.

    2014-06-01

    Despite the early recognition of the potential of proton imaging to assist proton therapy (Cormack 1963 J. Appl. Phys. 34 2722), the modality is still removed from clinical practice, with various approaches in development. For proton-counting radiography applications such as computed tomography (CT), the water-equivalent-path-length that each proton has travelled through an imaged object must be inferred. Typically, scintillator-based technology has been used in various energy/range telescope designs. Here we propose a very different alternative of using radiation-hard CMOS active pixel sensor technology. The ability of such a sensor to resolve the passage of individual protons in a therapy beam has not been previously shown. Here, such capability is demonstrated using a 36 MeV cyclotron beam (University of Birmingham Cyclotron, Birmingham, UK) and a 200 MeV clinical radiotherapy beam (iThemba LABS, Cape Town, SA). The feasibility of tracking individual protons through multiple CMOS layers is also demonstrated using a two-layer stack of sensors. The chief advantages of this solution are the spatial discrimination of events intrinsic to pixelated sensors, combined with the potential provision of information on both the range and residual energy of a proton. The challenges in developing a practical system are discussed.

  14. Proton-counting radiography for proton therapy: a proof of principle using CMOS APS technology

    PubMed Central

    Poludniowski, G; Allinson, N M; Anaxagoras, T; Esposito, M; Green, S; Manolopoulos, S; Nieto-Camero, J; Parker, D J; Price, T; Evans, P M

    2014-01-01

    Despite the early recognition of the potential of proton imaging to assist proton therapy the modality is still removed from clinical practice, with various approaches in development. For proton-counting radiography applications such as Computed Tomography (CT), the Water-Equivalent-Path-Length (WEPL) that each proton has travelled through an imaged object must be inferred. Typically, scintillator-based technology has been used in various energy/range telescope designs. Here we propose a very different alternative of using radiation-hard CMOS Active Pixel Sensor (APS) technology. The ability of such a sensor to resolve the passage of individual protons in a therapy beam has not been previously shown. Here, such capability is demonstrated using a 36 MeV cyclotron beam (University of Birmingham Cyclotron, Birmingham, UK) and a 200 MeV clinical radiotherapy beam (iThemba LABS, Cape Town, SA). The feasibility of tracking individual protons through multiple CMOS layers is also demonstrated using a two-layer stack of sensors. The chief advantages of this solution are the spatial discrimination of events intrinsic to pixelated sensors, combined with the potential provision of information on both the range and residual energy of a proton. The challenges in developing a practical system are discussed. PMID:24785680

  15. Advancing the technology of monolithic CMOS detectors for use as x-ray imaging spectrometers

    NASA Astrophysics Data System (ADS)

    Kenter, Almus; Kraft, Ralph; Gauron, Thomas; Amato, Stephen

    2017-08-01

    The Smithsonian Astrophysical Observatory (SAO) in collaboration with SRI/Sarnoff has been engaged in a multi year effort to advance the technology of monolithic back-thinned CMOS detectors for use as X-ray imaging spectrometers. The long term goal of this campaign is to produce X-ray Active Pixel Sensor (APS) detectors with Fano limited performance over the 0.1-10keV band while incorporating the many benefits of CMOS technology. These benefits include: low power consumption, radiation "hardness", high levels of integration, and very high read rates. Such devices would be ideal for candidate post 2020 decadal missions such as LYNX and for smaller more immediate applications such as CubeX. Devices from a recent fabrication have been back-thinned, packaged and tested for soft X-ray response. These devices have 16μm pitch, 6 Transistor Pinned Photo Diode (6TPPD) pixels with ˜135μV/electron sensitivity and a highly parallel signal chain. These new detectors are fabricated on 10μm epitaxial silicon and have a 1k by 1k format. We present details of our camera design and device performance with particular emphasis on those aspects of interest to single photon counting X-ray astronomy. These features include read noise, X-ray spectral response and quantum efficiency.

  16. A Fast Multiple Sampling Method for Low-Noise CMOS Image Sensors With Column-Parallel 12-bit SAR ADCs.

    PubMed

    Kim, Min-Kyu; Hong, Seong-Kwan; Kwon, Oh-Kyong

    2015-12-26

    This paper presents a fast multiple sampling method for low-noise CMOS image sensor (CIS) applications with column-parallel successive approximation register analog-to-digital converters (SAR ADCs). The 12-bit SAR ADC using the proposed multiple sampling method decreases the A/D conversion time by repeatedly converting a pixel output to 4-bit after the first 12-bit A/D conversion, reducing noise of the CIS by one over the square root of the number of samplings. The area of the 12-bit SAR ADC is reduced by using a 10-bit capacitor digital-to-analog converter (DAC) with four scaled reference voltages. In addition, a simple up/down counter-based digital processing logic is proposed to perform complex calculations for multiple sampling and digital correlated double sampling. To verify the proposed multiple sampling method, a 256 × 128 pixel array CIS with 12-bit SAR ADCs was fabricated using 0.18 μm CMOS process. The measurement results shows that the proposed multiple sampling method reduces each A/D conversion time from 1.2 μs to 0.45 μs and random noise from 848.3 μV to 270.4 μV, achieving a dynamic range of 68.1 dB and an SNR of 39.2 dB.

  17. Applications of holographic on-chip microscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Ozcan, Aydogan

    2017-02-01

    My research focuses on the use of computation/algorithms to create new optical microscopy, sensing, and diagnostic techniques, significantly improving existing tools for probing micro- and nano-objects while also simplifying the designs of these analysis tools. In this presentation, I will introduce a set of computational microscopes which use lens-free on-chip imaging to replace traditional lenses with holographic reconstruction algorithms. Basically, 3D images of specimens are reconstructed from their "shadows" providing considerably improved field-of-view (FOV) and depth-of-field, thus enabling large sample volumes to be rapidly imaged, even at nanoscale. These new computational microscopes routinely generate <1-2 billion pixels (giga-pixels), where even single viruses can be detected with a FOV that is <100 fold wider than other techniques. At the heart of this leapfrog performance lie self-assembled liquid nano-lenses that are computationally imaged on a chip. The field-of-view of these computational microscopes is equal to the active-area of the sensor-array, easily reaching, for example, <20 mm^2 or <10 cm^2 by employing state-of-the-art CMOS or CCD imaging chips, respectively. In addition to this remarkable increase in throughput, another major benefit of this technology is that it lends itself to field-portable and cost-effective designs which easily integrate with smartphones to conduct giga-pixel tele-pathology and microscopy even in resource-poor and remote settings where traditional techniques are difficult to implement and sustain, thus opening the door to various telemedicine applications in global health. Through the development of similar computational imagers, I will also report the discovery of new 3D swimming patterns observed in human and animal sperm. One of this newly discovered and extremely rare motion is in the form of "chiral ribbons" where the planar swings of the sperm head occur on an osculating plane creating in some cases a helical ribbon and in some others a twisted ribbon. Shedding light onto the statistics and biophysics of various micro-swimmers' 3D motion, these results provide an important example of how biomedical imaging significantly benefits from emerging computational algorithms/theories, revolutionizing existing tools for observing various micro- and nano-scale phenomena in innovative, high-throughput, and yet cost-effective ways.

  18. Few-Layer MoS2-Organic Thin-Film Hybrid Complementary Inverter Pixel Fabricated on a Glass Substrate.

    PubMed

    Lee, Hee Sung; Shin, Jae Min; Jeon, Pyo Jin; Lee, Junyeong; Kim, Jin Sung; Hwang, Hyun Chul; Park, Eunyoung; Yoon, Woojin; Ju, Sang-Yong; Im, Seongil

    2015-05-13

    Few-layer MoS2-organic thin-film hybrid complementary inverters demonstrate a great deal of device performance with a decent voltage gain of ≈12, a few hundred pW power consumption, and 480 Hz switching speed. As fabricated on glass, this hybrid CMOS inverter operates as a light-detecting pixel as well, using a thin MoS2 channel. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. A new 9T global shutter pixel with CDS technique

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Ma, Cheng; Zhou, Quan; Wang, Xinyang

    2015-04-01

    Benefiting from motion blur free, Global shutter pixel is very widely used in the design of CMOS image sensors for high speed applications such as motion vision, scientifically inspection, etc. In global shutter sensors, all pixel signal information needs to be stored in the pixel first and then waiting for readout. For higher frame rate, we need very fast operation of the pixel array. There are basically two ways for the in pixel signal storage, one is in charge domain, such as the one shown in [1], this needs complicated process during the pixel fabrication. The other one is in voltage domain, one example is the one in [2], this pixel is based on the 4T PPD technology and normally the driving of the high capacitive transfer gate limits the speed of the array operation. In this paper we report a new 9T global shutter pixel based on 3-T partially pinned photodiode (PPPD) technology. It incorporates three in-pixel storage capacitors allowing for correlated double sampling (CDS) and pipeline operation of the array (pixel exposure during the readout of the array). Only two control pulses are needed for all the pixels at the end of exposure which allows high speed exposure control.

  20. A Multidisciplinary Approach to High Throughput Nuclear Magnetic Resonance Spectroscopy

    PubMed Central

    Pourmodheji, Hossein; Ghafar-Zadeh, Ebrahim; Magierowski, Sebastian

    2016-01-01

    Nuclear Magnetic Resonance (NMR) is a non-contact, powerful structure-elucidation technique for biochemical analysis. NMR spectroscopy is used extensively in a variety of life science applications including drug discovery. However, existing NMR technology is limited in that it cannot run a large number of experiments simultaneously in one unit. Recent advances in micro-fabrication technologies have attracted the attention of researchers to overcome these limitations and significantly accelerate the drug discovery process by developing the next generation of high-throughput NMR spectrometers using Complementary Metal Oxide Semiconductor (CMOS). In this paper, we examine this paradigm shift and explore new design strategies for the development of the next generation of high-throughput NMR spectrometers using CMOS technology. A CMOS NMR system consists of an array of high sensitivity micro-coils integrated with interfacing radio-frequency circuits on the same chip. Herein, we first discuss the key challenges and recent advances in the field of CMOS NMR technology, and then a new design strategy is put forward for the design and implementation of highly sensitive and high-throughput CMOS NMR spectrometers. We thereafter discuss the functionality and applicability of the proposed techniques by demonstrating the results. For microelectronic researchers starting to work in the field of CMOS NMR technology, this paper serves as a tutorial with comprehensive review of state-of-the-art technologies and their performance levels. Based on these levels, the CMOS NMR approach offers unique advantages for high resolution, time-sensitive and high-throughput bimolecular analysis required in a variety of life science applications including drug discovery. PMID:27294925

  1. Silicon pixel-detector R&D for CLIC

    NASA Astrophysics Data System (ADS)

    Nürnberg, A.

    2016-11-01

    The physics aims at the future CLIC high-energy linear e+e- collider set very high precision requirements on the performance of the vertex and tracking detectors. Moreover, these detectors have to be well adapted to the experimental conditions, such as the time structure of the collisions and the presence of beam-induced backgrounds. The principal challenges are: a point resolution of a few μm, ultra-low mass (~ 0.2%X0 per layer for the vertex region and ~ 1%X0 per layer for the outer tracker), very low power dissipation (compatible with air-flow cooling in the inner vertex region) and pulsed power operation, complemented with ~ 10 ns time stamping capabilities. A highly granular all-silicon vertex and tracking detector system is under development, following an integrated approach addressing simultaneously the physics requirements and engineering constraints. For the vertex-detector region, hybrid pixel detectors with small pitch (25 μm) and analog readout are explored. For the outer tracking region, both hybrid concepts and fully integrated CMOS sensors are under consideration. The feasibility of ultra-thin sensor layers is validated with Timepix3 readout ASICs bump bonded to active edge planar sensors with 50 μm to 150 μm thickness. Prototypes of CLICpix readout ASICs implemented in 6525 nm CMOS technology with 25 μm pixel pitch have been produced. Hybridisation concepts have been developed for interconnecting these chips either through capacitive coupling to active HV-CMOS sensors or through bump-bonding to planar sensors. Recent R&D achievements include results from beam tests with all types of hybrid assemblies. Simulations based on Geant4 and TCAD are used to validate the experimental results and to assess and optimise the performance of various detector designs.

  2. First results on DEPFET Active Pixel Sensors fabricated in a CMOS foundry—a promising approach for new detector development and scientific instrumentation

    NASA Astrophysics Data System (ADS)

    Aschauer, S.; Majewski, P.; Lutz, G.; Soltau, H.; Holl, P.; Hartmann, R.; Schlosser, D.; Paschen, U.; Weyers, S.; Dreiner, S.; Klusmann, M.; Hauser, J.; Kalok, D.; Bechteler, A.; Heinzinger, K.; Porro, M.; Titze, B.; Strüder, L.

    2017-11-01

    DEPFET Active Pixel Sensors (APS) have been introduced as focal plane detectors for X-ray astronomy already in 1996. Fabricated on high resistivity, fully depleted silicon and back-illuminated they can provide high quantum efficiency and low noise operation even at very high read rates. In 2009 a new type of DEPFET APS, the DSSC (DEPFET Sensor with Signal Compression) was developed, which is dedicated to high-speed X-ray imaging at the European X-ray free electron laser facility (EuXFEL) in Hamburg. In order to resolve the enormous contrasts occurring in Free Electron Laser (FEL) experiments, this new DSSC-DEPFET sensor has the capability of nonlinear amplification, that is, high gain for low intensities in order to obtain single-photon detection capability, and reduced gain for high intensities to achieve high dynamic range for several thousand photons per pixel and frame. We call this property "signal compression". Starting in 2015, we have been fabricating DEPFET sensors in an industrial scale CMOS foundry maintaining the outstanding proven DEPFET properties and adding new capabilities due to the industrial-scale CMOS process. We will highlight these additional features and describe the progress achieved so far. In a first attempt on double-sided polished 725 μm thick 200 mm high resistivity float zone silicon wafers all relevant device related properties have been measured, such as leakage current, depletion voltage, transistor characteristics, noise and energy resolution for X-rays and the nonlinear response. The smaller feature size provided by the new technology allows for an advanced design and significant improvements in device performance. A brief summary of the present status will be given as well as an outlook on next steps and future perspectives.

  3. Studies for a 10 μs, thin, high resolution CMOS pixel sensor for future vertex detectors

    NASA Astrophysics Data System (ADS)

    Voutsinas, G.; Amar-Youcef, S.; Baudot, J.; Bertolone, G.; Brogna, A.; Chon-Sen, N.; Claus, G.; Colledani, C.; Dorokhov, A.; Dozière, G.; Dulinski, W.; Degerli, Y.; De Masi, R.; Deveaux, M.; Gelin, M.; Goffe, M.; Hu-Guo, Ch.; Himmi, A.; Jaaskelainen, K.; Koziel, M.; Morel, F.; Müntz, C.; Orsini, F.; Santos, C.; Schrader, C.; Specht, M.; Stroth, J.; Valin, I.; Wagner, F. M.; Winter, M.

    2011-06-01

    Future high energy physics (HEP) experiments require detectors with unprecedented performances for track and vertex reconstruction. These requirements call for high precision sensors, with low material budget and short integration time. The development of CMOS sensors for HEP applications was initiated at IPHC Strasbourg more than 10 years ago, motivated by the needs for vertex detectors at the International Linear Collider (ILC) [R. Turchetta et al, NIM A 458 (2001) 677]. Since then several other applications emerged. The first real scale digital CMOS sensor MIMOSA26 equips Flavour Tracker at RHIC, as well as for the microvertex detector of the CBM experiment at FAIR. MIMOSA sensors may also offer attractive performances for the ALICE upgrade at LHC. This paper will demonstrate the substantial performance improvement of CMOS sensors based on a high resistivity epitaxial layer. First studies for integrating the sensors into a detector system will be addressed and finally the way to go to a 10 μs readout sensor will be discussed.

  4. CMOS active pixel sensor type imaging system on a chip

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R. (Inventor); Nixon, Robert (Inventor)

    2011-01-01

    A single chip camera which includes an .[.intergrated.]. .Iadd.integrated .Iaddend.image acquisition portion and control portion and which has double sampling/noise reduction capabilities thereon. Part of the .[.intergrated.]. .Iadd.integrated .Iaddend.structure reduces the noise that is picked up during imaging.

  5. High-End CMOS Active Pixel Sensors For Space-Borne Imaging Instruments

    DTIC Science & Technology

    2005-07-13

    DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release, distribution unlimited 13. SUPPLEMENTARY NOTES See also ADM001791, Potentially Disruptive ... Technologies and Their Impact in Space Programs Held in Marseille, France on 4-6 July 2005. , The original document contains color images. 14

  6. Ionizing doses and displacement damage testing of COTS CMOS imagers

    NASA Astrophysics Data System (ADS)

    Bernard, Frédéric; Petit, Sophie; Courtade, Sophie

    2017-11-01

    CMOS sensors begin to be a credible alternative to CCD sensors in some space missions. However, technology evolution of CMOS sensors is much faster than CCD one's. So a continuous technology evaluation is needed for CMOS imagers. Many of commercial COTS (Components Off The Shelf) CMOS sensors use organic filters, micro-lenses and non rad-hard technologies. An evaluation of the possibilities offered by such technologies is interesting before any custom development. This can be obtained by testing commercial COTS imagers. This article will present electro-optical performances evolution of off the shelves CMOS imagers after Ionizing Doses until 50kRad(Si) and Displacement Damage environment tests (until 1011 p/cm2 at 50 MeV). Dark current level and non uniformity evolutions are compared and discussed. Relative spectral response measurement and associated evolution with irradiation will also be presented and discussed. Tests have been performed on CNES detection benches.

  7. Advanced imaging research and development at DARPA

    NASA Astrophysics Data System (ADS)

    Dhar, Nibir K.; Dat, Ravi

    2012-06-01

    Advances in imaging technology have huge impact on our daily lives. Innovations in optics, focal plane arrays (FPA), microelectronics and computation have revolutionized camera design. As a result, new approaches to camera design and low cost manufacturing is now possible. These advances are clearly evident in visible wavelength band due to pixel scaling, improvements in silicon material and CMOS technology. CMOS cameras are available in cell phones and many other consumer products. Advances in infrared imaging technology have been slow due to market volume and many technological barriers in detector materials, optics and fundamental limits imposed by the scaling laws of optics. There is of course much room for improvements in both, visible and infrared imaging technology. This paper highlights various technology development projects at DARPA to advance the imaging technology for both, visible and infrared. Challenges and potentials solutions are highlighted in areas related to wide field-of-view camera design, small pitch pixel, broadband and multiband detectors and focal plane arrays.

  8. MAPS development for the ALICE ITS upgrade

    NASA Astrophysics Data System (ADS)

    Yang, P.; Aglieri, G.; Cavicchioli, C.; Chalmet, P. L.; Chanlek, N.; Collu, A.; Gao, C.; Hillemanns, H.; Junique, A.; Kofarago, M.; Keil, M.; Kugathasan, T.; Kim, D.; Kim, J.; Lattuca, A.; Marin Tobon, C. A.; Marras, D.; Mager, M.; Martinengo, P.; Mazza, G.; Mugnier, H.; Musa, L.; Puggioni, C.; Rousset, J.; Reidt, F.; Riedler, P.; Snoeys, W.; Siddhanta, S.; Usai, G.; van Hoorne, J. W.; Yi, J.

    2015-03-01

    Monolithic Active Pixel Sensors (MAPS) offer the possibility to build pixel detectors and tracking layers with high spatial resolution and low material budget in commercial CMOS processes. Significant progress has been made in the field of MAPS in recent years, and they are now considered for the upgrades of the LHC experiments. This contribution will focus on MAPS detectors developed for the ALICE Inner Tracking System (ITS) upgrade and manufactured in the TowerJazz 180 nm CMOS imaging sensor process on wafers with a high resistivity epitaxial layer. Several sensor chip prototypes have been developed and produced to optimise both charge collection and readout circuitry. The chips have been characterised using electrical measurements, radioactive sources and particle beams. The tests indicate that the sensors satisfy the ALICE requirements and first prototypes with the final size of 1.5 × 3 cm2 have been produced in the first half of 2014. This contribution summarises the characterisation measurements and presents first results from the full-scale chips.

  9. Fabrication and Characterization of a Micro Methanol Sensor Using the CMOS-MEMS Technique.

    PubMed

    Fong, Chien-Fu; Dai, Ching-Liang; Wu, Chyan-Chyi

    2015-10-23

    A methanol microsensor integrated with a micro heater manufactured using the complementary metal oxide semiconductor (CMOS)-microelectromechanical system (MEMS) technique was presented. The sensor has a capability of detecting low concentration methanol gas. Structure of the sensor is composed of interdigitated electrodes, a sensitive film and a heater. The heater located under the interdigitated electrodes is utilized to provide a working temperature to the sensitive film. The sensitive film prepared by the sol-gel method is tin dioxide doped cadmium sulfide, which is deposited on the interdigitated electrodes. To obtain the suspended structure and deposit the sensitive film, the sensor needs a post-CMOS process to etch the sacrificial silicon dioxide layer and silicon substrate. The methanol senor is a resistive type. A readout circuit converts the resistance variation of the sensor into the output voltage. The experimental results show that the methanol sensor has a sensitivity of 0.18 V/ppm.

  10. Fabrication and Characterization of a Micro Methanol Sensor Using the CMOS-MEMS Technique

    PubMed Central

    Fong, Chien-Fu; Dai, Ching-Liang; Wu, Chyan-Chyi

    2015-01-01

    A methanol microsensor integrated with a micro heater manufactured using the complementary metal oxide semiconductor (CMOS)-microelectromechanical system (MEMS) technique was presented. The sensor has a capability of detecting low concentration methanol gas. Structure of the sensor is composed of interdigitated electrodes, a sensitive film and a heater. The heater located under the interdigitated electrodes is utilized to provide a working temperature to the sensitive film. The sensitive film prepared by the sol-gel method is tin dioxide doped cadmium sulfide, which is deposited on the interdigitated electrodes. To obtain the suspended structure and deposit the sensitive film, the sensor needs a post-CMOS process to etch the sacrificial silicon dioxide layer and silicon substrate. The methanol senor is a resistive type. A readout circuit converts the resistance variation of the sensor into the output voltage. The experimental results show that the methanol sensor has a sensitivity of 0.18 V/ppm. PMID:26512671

  11. Capacitive Micro Pressure Sensor Integrated with a Ring Oscillator Circuit on Chip

    PubMed Central

    Dai, Ching-Liang; Lu, Po-Wei; Chang, Chienliu; Liu, Cheng-Yang

    2009-01-01

    The study investigates a capacitive micro pressure sensor integrated with a ring oscillator circuit on a chip. The integrated capacitive pressure sensor is fabricated using the commercial CMOS (complementary metal oxide semiconductor) process and a post-process. The ring oscillator is employed to convert the capacitance of the pressure sensor into the frequency output. The pressure sensor consists of 16 sensing cells in parallel. Each sensing cell contains a top electrode and a lower electrode, and the top electrode is a sandwich membrane. The pressure sensor needs a post-CMOS process to release the membranes after completion of the CMOS process. The post-process uses etchants to etch the sacrificial layers, and to release the membranes. The advantages of the post-process include easy execution and low cost. Experimental results reveal that the pressure sensor has a high sensitivity of 7 Hz/Pa in the pressure range of 0–300 kPa. PMID:22303167

  12. Capacitive micro pressure sensor integrated with a ring oscillator circuit on chip.

    PubMed

    Dai, Ching-Liang; Lu, Po-Wei; Chang, Chienliu; Liu, Cheng-Yang

    2009-01-01

    The study investigates a capacitive micro pressure sensor integrated with a ring oscillator circuit on a chip. The integrated capacitive pressure sensor is fabricated using the commercial CMOS (complementary metal oxide semiconductor) process and a post-process. The ring oscillator is employed to convert the capacitance of the pressure sensor into the frequency output. The pressure sensor consists of 16 sensing cells in parallel. Each sensing cell contains a top electrode and a lower electrode, and the top electrode is a sandwich membrane. The pressure sensor needs a post-CMOS process to release the membranes after completion of the CMOS process. The post-process uses etchants to etch the sacrificial layers, and to release the membranes. The advantages of the post-process include easy execution and low cost. Experimental results reveal that the pressure sensor has a high sensitivity of 7 Hz/Pa in the pressure range of 0-300 kPa.

  13. Si light-emitting device in integrated photonic CMOS ICs

    NASA Astrophysics Data System (ADS)

    Xu, Kaikai; Snyman, Lukas W.; Aharoni, Herzl

    2017-07-01

    The motivation for integrated Si optoelectronics is the creation of low-cost photonics for mass-market applications. Especially, the growing demand for sensitive biochemical sensors in the environmental control or medicine leads to the development of integrated high resolution sensors. Here CMOS-compatible Si light-emitting device structures are presented for investigating the effect of various depletion layer profiles and defect engineering on the photonic transition in the 1.4-2.8 eV. A novel Si device is proposed to realize both a two-terminal Si-diode light-emitting device and a three-terminal Si gate-controlled diode light-emitting device in the same device structure. In addition to the spectral analysis, differences between two-terminal and three-terminal devices are discussed, showing the light emission efficiency change. The proposed Si optical source may find potential applications in micro-photonic systems and micro-optoelectro-mechanical systems (MOEMS) in CMOS integrated circuitry.

  14. Visible Wavelength Color Filters Using Dielectric Subwavelength Gratings for Backside-Illuminated CMOS Image Sensor Technologies.

    PubMed

    Horie, Yu; Han, Seunghoon; Lee, Jeong-Yub; Kim, Jaekwan; Kim, Yongsung; Arbabi, Amir; Shin, Changgyun; Shi, Lilong; Arbabi, Ehsan; Kamali, Seyedeh Mahsa; Lee, Hong-Seok; Hwang, Sungwoo; Faraon, Andrei

    2017-05-10

    We report transmissive color filters based on subwavelength dielectric gratings that can replace conventional dye-based color filters used in backside-illuminated CMOS image sensor (BSI CIS) technologies. The filters are patterned in an 80 nm-thick poly silicon film on a 115 nm-thick SiO 2 spacer layer. They are optimized for operating at the primary RGB colors, exhibit peak transmittance of 60-80%, and have an almost insensitive response over a ± 20° angular range. This technology enables shrinking of the pixel sizes down to near a micrometer.

  15. Thermal Radiometer Signal Processing Using Radiation Hard CMOS Application Specific Integrated Circuits for Use in Harsh Planetary Environments

    NASA Technical Reports Server (NTRS)

    Quilligan, G.; DuMonthier, J.; Aslam, S.; Lakew, B.; Kleyner, I.; Katz, R.

    2015-01-01

    Thermal radiometers such as proposed for the Europa Clipper flyby mission require low noise signal processing for thermal imaging with immunity to Total Ionizing Dose (TID) and Single Event Latchup (SEL). Described is a second generation Multi- Channel Digitizer (MCD2G) Application Specific Integrated Circuit (ASIC) that accurately digitizes up to 40 thermopile pixels with greater than 50 Mrad (Si) immunity TID and 174 MeV-sq cm/mg SEL. The MCD2G ASIC uses Radiation Hardened By Design (RHBD) techniques with a 180 nm CMOS process node.

  16. Image Sensors Enhance Camera Technologies

    NASA Technical Reports Server (NTRS)

    2010-01-01

    In the 1990s, a Jet Propulsion Laboratory team led by Eric Fossum researched ways of improving complementary metal-oxide semiconductor (CMOS) image sensors in order to miniaturize cameras on spacecraft while maintaining scientific image quality. Fossum s team founded a company to commercialize the resulting CMOS active pixel sensor. Now called the Aptina Imaging Corporation, based in San Jose, California, the company has shipped over 1 billion sensors for use in applications such as digital cameras, camera phones, Web cameras, and automotive cameras. Today, one of every three cell phone cameras on the planet feature Aptina s sensor technology.

  17. Thermal Radiometer Signal Processing using Radiation Hard CMOS Application Specific Integrated Circuits for use in Harsh Planetary Environments

    NASA Astrophysics Data System (ADS)

    Quilligan, G.; DuMonthier, J.; Aslam, S.; Lakew, B.; Kleyner, I.; Katz, R.

    2015-10-01

    Thermal radiometers such as proposed for the Europa Clipper flyby mission [1] require low noise signal processing for thermal imaging with immunity to Total Ionizing Dose (TID) and Single Event Latchup (SEL). Described is a second generation Multi- Channel Digitizer (MCD2G) Application Specific Integrated Circuit (ASIC) that accurately digitizes up to 40 thermopile pixels with greater than 50 Mrad (Si) immunity TID and 174 MeV-cm2/mg SEL. The MCD2G ASIC uses Radiation Hardened By Design (RHBD) techniques with a 180 nm CMOS process node.

  18. Physical characterization and performance comparison of active- and passive-pixel CMOS detectors for mammography.

    PubMed

    Elbakri, I A; McIntosh, B J; Rickey, D W

    2009-03-21

    We investigated the physical characteristics of two complementary metal oxide semiconductor (CMOS) mammography detectors. The detectors featured 14-bit image acquisition, 50 microm detector element (del) size and an active area of 5 cm x 5 cm. One detector was a passive-pixel sensor (PPS) with signal amplification performed by an array of amplifiers connected to dels via data lines. The other detector was an active-pixel sensor (APS) with signal amplification performed at each del. Passive-pixel designs have higher read noise due to data line capacitance, and the APS represents an attempt to improve the noise performance of this technology. We evaluated the detectors' resolution by measuring the modulation transfer function (MTF) using a tilted edge. We measured the noise power spectra (NPS) and detective quantum efficiencies (DQE) using mammographic beam conditions specified by the IEC 62220-1-2 standard. Our measurements showed the APS to have much higher gain, slightly higher MTF, and higher NPS. The MTF of both sensors approached 10% near the Nyquist limit. DQE values near dc frequency were in the range of 55-67%, with the APS sensor DQE lower than the PPS DQE for all frequencies. Our results show that lower read noise specifications in this case do not translate into gains in the imaging performance of the sensor. We postulate that the lower fill factor of the APS is a possible cause for this result.

  19. CMOS Imager Has Better Cross-Talk and Full-Well Performance

    NASA Technical Reports Server (NTRS)

    Pain, Bedabrata; Cunningham, Thomas J.

    2011-01-01

    A complementary metal oxide/semiconductor (CMOS) image detector now undergoing development is designed to exhibit less cross-talk and greater full-well capacity than do prior CMOS image detectors of the same type. Imagers of the type in question are designed to operate from low-voltage power supplies and are fabricated by processes that yield device features having dimensions in the deep submicron range. Because of the use of low supply potentials, maximum internal electric fields and depletion widths are correspondingly limited. In turn, these limitations are responsible for increases in cross-talk and decreases in charge-handling capacities. Moreover, for small pixels, lateral depletion cannot be extended. These adverse effects are even more accentuated in a back-illuminated CMOS imager, in which photogenerated charge carriers must travel across the entire thickness of the device. The figure shows a partial cross section of the structure in the device layer of the present developmental CMOS imager. (In a practical imager, the device layer would sit atop either a heavily doped silicon substrate or a thin silicon oxide layer on a silicon substrate, not shown here.) The imager chip is divided into two areas: area C, which contains readout circuits and other electronic circuits; and area I, which contains the imaging (photodetector and photogenerated-charge-collecting) pixel structures. Areas C and I are electrically isolated from each other by means of a trench filled with silicon oxide. The electrical isolation between areas C and I makes it possible to apply different supply potentials to these areas, thereby enabling optimization of the supply potential and associated design features for each area. More specifically, metal oxide semiconductor field-effect transistors (MOSFETs) that are typically included in CMOS imagers now reside in area C and can remain unchanged from established designs and operated at supply potentials prescribed for those designs, while the dopings and the lower supply potentials in area I can be tailored to optimize imager performance. In area I, the device layer includes an n+ -doped silicon layer on which is grown an n-doped silicon layer. A p-doped silicon layer is grown on top of the n -doped layer. The total imaging device thickness is the sum of the thickness of the n+, n, and p layers. A pixel photodiode is formed between a surface n+ implant, a p implant underneath it, the aforementioned p layer, and the n and n+ layers. Adjacent to the diode is a gate for transferring photogenerated charges out of the photodiode and into a floating diffusion formed by an implanted p+ layer on an implanted n-doped region. Metal contact pads are added to the back-side for providing back-side bias.

  20. Pseudo 2-transistor active pixel sensor using an n-well/gate-tied p-channel metal oxide semiconductor field eeffect transistor-type photodetector with built-in transfer gate

    NASA Astrophysics Data System (ADS)

    Seo, Sang-Ho; Seo, Min-Woong; Kong, Jae-Sung; Shin, Jang-Kyoo; Choi, Pyung

    2008-11-01

    In this paper, a pseudo 2-transistor active pixel sensor (APS) has been designed and fabricated by using an n-well/gate-tied p-channel metal oxide semiconductor field effect transistor (PMOSFET)-type photodetector with built-in transfer gate. The proposed sensor has been fabricated using a 0.35 μm 2-poly 4-metal standard complementary metal oxide semiconductor (CMOS) logic process. The pseudo 2-transistor APS consists of two NMOSFETs and one photodetector which can amplify the generated photocurrent. The area of the pseudo 2-transistor APS is 7.1 × 6.2 μm2. The sensitivity of the proposed pixel is 49 lux/(V·s). By using this pixel, a smaller pixel area and a higher level of sensitivity can be realized when compared with a conventional 3-transistor APS which uses a pn junction photodiode.

  1. The FE-I4 Pixel Readout Chip and the IBL Module

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barbero, Marlon; Arutinov, David; Backhaus, Malte

    2012-05-01

    FE-I4 is the new ATLAS pixel readout chip for the upgraded ATLAS pixel detector. Designed in a CMOS 130 nm feature size process, the IC is able to withstand higher radiation levels compared to the present generation of ATLAS pixel Front-End FE-I3, and can also cope with higher hit rate. It is thus suitable for intermediate radii pixel detector layers in the High Luminosity LHC environment, but also for the inserted layer at 3.3 cm known as the 'Insertable B-Layer' project (IBL), at a shorter timescale. In this paper, an introduction to the FE-I4 will be given, focusing on testmore » results from the first full size FE-I4A prototype which has been available since fall 2010. The IBL project will be introduced, with particular emphasis on the FE-I4-based module concept.« less

  2. Increasing the dynamic range of CMOS photodiode imagers

    NASA Technical Reports Server (NTRS)

    Pain, Bedabrata (Inventor); Cunningham, Thomas J. (Inventor); Hancock, Bruce R. (Inventor)

    2007-01-01

    A multiple-step reset process and circuit for resetting a voltage stored on a photodiode of an imaging device. A first stage of the reset occurs while a source and a drain of a pixel source-follower transistor are held at ground potential and the photodiode and a gate of the pixel source-follower transistor are charged to an initial reset voltage having potential less that of a supply voltage. A second stage of the reset occurs after the initial reset voltage is stored on the photodiode and the gate of the pixel source-follower transistor and the source and drain voltages of the pixel source-follower transistor are released from ground potential thereby allowing the source and drain voltages of the pixel source-follower transistor to assume ordinary values above ground potential and resulting in a capacitive feed-through effect that increases the voltage on the photodiode to a value greater than the initial reset voltage.

  3. The CAOS camera platform: ushering in a paradigm change in extreme dynamic range imager design

    NASA Astrophysics Data System (ADS)

    Riza, Nabeel A.

    2017-02-01

    Multi-pixel imaging devices such as CCD, CMOS and Focal Plane Array (FPA) photo-sensors dominate the imaging world. These Photo-Detector Array (PDA) devices certainly have their merits including increasingly high pixel counts and shrinking pixel sizes, nevertheless, they are also being hampered by limitations in instantaneous dynamic range, inter-pixel crosstalk, quantum full well capacity, signal-to-noise ratio, sensitivity, spectral flexibility, and in some cases, imager response time. Recently invented is the Coded Access Optical Sensor (CAOS) Camera platform that works in unison with current Photo-Detector Array (PDA) technology to counter fundamental limitations of PDA-based imagers while providing high enough imaging spatial resolution and pixel counts. Using for example the Texas Instruments (TI) Digital Micromirror Device (DMD) to engineer the CAOS camera platform, ushered in is a paradigm change in advanced imager design, particularly for extreme dynamic range applications.

  4. Bio-Inspired Asynchronous Pixel Event Tricolor Vision Sensor.

    PubMed

    Lenero-Bardallo, Juan Antonio; Bryn, D H; Hafliger, Philipp

    2014-06-01

    This article investigates the potential of the first ever prototype of a vision sensor that combines tricolor stacked photo diodes with the bio-inspired asynchronous pixel event communication protocol known as Address Event Representation (AER). The stacked photo diodes are implemented in a 22 × 22 pixel array in a standard STM 90 nm CMOS process. Dynamic range is larger than 60 dB and pixels fill factor is 28%. The pixels employ either simple pulse frequency modulation (PFM) or a Time-to-First-Spike (TFS) mode. A heuristic linear combination of the chip's inherent pseudo colors serves to approximate RGB color representation. Furthermore, the sensor outputs can be processed to represent the radiation in the near infrared (NIR) band without employing external filters, and to color-encode direction of motion due to an asymmetry in the update rates of the different diode layers.

  5. A compressed sensing X-ray camera with a multilayer architecture

    NASA Astrophysics Data System (ADS)

    Wang, Zhehui; Iaroshenko, O.; Li, S.; Liu, T.; Parab, N.; Chen, W. W.; Chu, P.; Kenyon, G. T.; Lipton, R.; Sun, K.-X.

    2018-01-01

    Recent advances in compressed sensing theory and algorithms offer new possibilities for high-speed X-ray camera design. In many CMOS cameras, each pixel has an independent on-board circuit that includes an amplifier, noise rejection, signal shaper, an analog-to-digital converter (ADC), and optional in-pixel storage. When X-ray images are sparse, i.e., when one of the following cases is true: (a.) The number of pixels with true X-ray hits is much smaller than the total number of pixels; (b.) The X-ray information is redundant; or (c.) Some prior knowledge about the X-ray images exists, sparse sampling may be allowed. Here we first illustrate the feasibility of random on-board pixel sampling (ROPS) using an existing set of X-ray images, followed by a discussion about signal to noise as a function of pixel size. Next, we describe a possible circuit architecture to achieve random pixel access and in-pixel storage. The combination of a multilayer architecture, sparse on-chip sampling, and computational image techniques, is expected to facilitate the development and applications of high-speed X-ray camera technology.

  6. Laser doppler blood flow imaging using a CMOS imaging sensor with on-chip signal processing.

    PubMed

    He, Diwei; Nguyen, Hoang C; Hayes-Gill, Barrie R; Zhu, Yiqun; Crowe, John A; Gill, Cally; Clough, Geraldine F; Morgan, Stephen P

    2013-09-18

    The first fully integrated 2D CMOS imaging sensor with on-chip signal processing for applications in laser Doppler blood flow (LDBF) imaging has been designed and tested. To obtain a space efficient design over 64 × 64 pixels means that standard processing electronics used off-chip cannot be implemented. Therefore the analog signal processing at each pixel is a tailored design for LDBF signals with balanced optimization for signal-to-noise ratio and silicon area. This custom made sensor offers key advantages over conventional sensors, viz. the analog signal processing at the pixel level carries out signal normalization; the AC amplification in combination with an anti-aliasing filter allows analog-to-digital conversion with a low number of bits; low resource implementation of the digital processor enables on-chip processing and the data bottleneck that exists between the detector and processing electronics has been overcome. The sensor demonstrates good agreement with simulation at each design stage. The measured optical performance of the sensor is demonstrated using modulated light signals and in vivo blood flow experiments. Images showing blood flow changes with arterial occlusion and an inflammatory response to a histamine skin-prick demonstrate that the sensor array is capable of detecting blood flow signals from tissue.

  7. Direct imaging detectors for electron microscopy

    NASA Astrophysics Data System (ADS)

    Faruqi, A. R.; McMullan, G.

    2018-01-01

    Electronic detectors used for imaging in electron microscopy are reviewed in this paper. Much of the detector technology is based on the developments in microelectronics, which have allowed the design of direct detectors with fine pixels, fast readout and which are sufficiently radiation hard for practical use. Detectors included in this review are hybrid pixel detectors, monolithic active pixel sensors based on CMOS technology and pnCCDs, which share one important feature: they are all direct imaging detectors, relying on directly converting energy in a semiconductor. Traditional methods of recording images in the electron microscope such as film and CCDs, are mentioned briefly along with a more detailed description of direct electronic detectors. Many applications benefit from the use of direct electron detectors and a few examples are mentioned in the text. In recent years one of the most dramatic advances in structural biology has been in the deployment of the new backthinned CMOS direct detectors to attain near-atomic resolution molecular structures with electron cryo-microscopy (cryo-EM). The development of direct detectors, along with a number of other parallel advances, has seen a very significant amount of new information being recorded in the images, which was not previously possible-and this forms the main emphasis of the review.

  8. Performance of a 512 x 512 Gated CMOS Imager with a 250 ps Exposure Time

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teruya, A T; Moody, J D; Hsing, W W

    2012-10-01

    We describe the performance of a 512x512 gated CMOS read out integrated circuit (ROIC) with a 250 ps exposure time. A low-skew, H-tree trigger distribution system is used to locally generate individual pixel gates in each 8x8 neighborhood of the ROIC. The temporal width of the gate is voltage controlled and user selectable via a precision potentiometer. The gating implementation was first validated in optical tests of a 64x64 pixel prototype ROIC developed as a proof-of-concept during the early phases of the development program. The layout of the H-Tree addresses each quadrant of the ROIC independently and admits operation ofmore » the ROIC in two modes. If “common mode” triggering is used, the camera provides a single 512x512 image. If independent triggers are used, the camera can provide up to four 256x256 images with a frame separation set by the trigger intervals. The ROIC design includes small (sub-pixel) optical photodiode structures to allow test and characterization of the ROIC using optical sources prior to bump bonding. Reported test results were obtained using short pulse, second harmonic Ti:Sapphire laser systems operating at λ~ 400 nm at sub-ps pulse widths.« less

  9. Selective photon counter for digital x-ray mammography tomosynthesis

    NASA Astrophysics Data System (ADS)

    Goldan, Amir H.; Karim, Karim S.; Rowlands, J. A.

    2006-03-01

    Photon counting is an emerging detection technique that is promising for mammography tomosynthesis imagers. In photon counting systems, the value of each image pixel is equal to the number of photons that interact with the detector. In this research, we introduce the design and implementation of a low noise, novel selective photon counting pixel for digital mammography tomosynthesis in crystalline silicon CMOS (complementary metal oxide semiconductor) 0.18 micron technology. The design comprises of a low noise charge amplifier (CA), two low offset voltage comparators, a decision-making unit (DMU), a mode selector, and a pseudo-random counter. Theoretical calculations and simulation results of linearity, gain, and noise of the photon counting pixel are presented.

  10. Image Accumulation in Pixel Detector Gated by Late External Trigger Signal and its Application in Imaging Activation Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jakubek, J.; Cejnarova, A.; Platkevic, M.

    Single quantum counting pixel detectors of Medipix type are starting to be used in various radiographic applications. Compared to standard devices for digital imaging (such as CCDs or CMOS sensors) they present significant advantages: direct conversion of radiation to electric signal, energy sensitivity, noiseless image integration, unlimited dynamic range, absolute linearity. In this article we describe usage of the pixel device TimePix for image accumulation gated by late trigger signal. Demonstration of the technique is given on imaging coincidence instrumental neutron activation analysis (Imaging CINAA). This method allows one to determine concentration and distribution of certain preselected element in anmore » inspected sample.« less

  11. Beam test results of a monolithic pixel sensor in the 0.18 μm tower-jazz technology with high resistivity epitaxial layer

    NASA Astrophysics Data System (ADS)

    Mattiazzo, S.; Aimo, I.; Baudot, J.; Bedda, C.; La Rocca, P.; Perez, A.; Riggi, F.; Spiriti, E.

    2015-10-01

    The ALICE experiment at CERN will undergo a major upgrade in the second Long LHC Shutdown in the years 2018-2019; this upgrade includes the full replacement of the Inner Tracking System (ITS), deploying seven layers of Monolithic Active Pixel Sensors (MAPS). For the development of the new ALICE ITS, the Tower-Jazz 0.18 μm CMOS imaging sensor process has been chosen as it is possible to use full CMOS in the pixel and different silicon wafers (including high resistivity epitaxial layers). A large test campaign has been carried out on several small prototype chips, designed to optimize the pixel sensor layout and the front-end electronics. Results match the target requirements both in terms of performance and of radiation hardness. Following this development, the first full scale chips have been designed, submitted and are currently under test, with promising results. A telescope composed of 4 planes of Mimosa-28 and 2 planes of Mimosa-18 chips is under development at the DAFNE Beam Test Facility (BTF) at the INFN Laboratori Nazionali di Frascati (LNF) in Italy with the final goal to perform a comparative test of the full scale prototypes. The telescope has been recently used to test a Mimosa-22THRb chip (a monolithic pixel sensor built in the 0.18 μm Tower-Jazz process) and we foresee to perform tests on the full scale chips for the ALICE ITS upgrade at the beginning of 2015. In this contribution we will describe some first measurements of spatial resolution, fake hit rate and detection efficiency of the Mimosa-22THRb chip obtained at the BTF facility in June 2014 with an electron beam of 500 MeV.

  12. Design and implementation of Gm-APD array readout integrated circuit for infrared 3D imaging

    NASA Astrophysics Data System (ADS)

    Zheng, Li-xia; Yang, Jun-hao; Liu, Zhao; Dong, Huai-peng; Wu, Jin; Sun, Wei-feng

    2013-09-01

    A single-photon detecting array of readout integrated circuit (ROIC) capable of infrared 3D imaging by photon detection and time-of-flight measurement is presented in this paper. The InGaAs avalanche photon diodes (APD) dynamic biased under Geiger operation mode by gate controlled active quenching circuit (AQC) are used here. The time-of-flight is accurately measured by a high accurate time-to-digital converter (TDC) integrated in the ROIC. For 3D imaging, frame rate controlling technique is utilized to the pixel's detection, so that the APD related to each pixel should be controlled by individual AQC to sense and quench the avalanche current, providing a digital CMOS-compatible voltage pulse. After each first sense, the detector is reset to wait for next frame operation. We employ counters of a two-segmental coarse-fine architecture, where the coarse conversion is achieved by a 10-bit pseudo-random linear feedback shift register (LFSR) in each pixel and a 3-bit fine conversion is realized by a ring delay line shared by all pixels. The reference clock driving the LFSR counter can be generated within the ring delay line Oscillator or provided by an external clock source. The circuit is designed and implemented by CSMC 0.5μm standard CMOS technology and the total chip area is around 2mm×2mm for 8×8 format ROIC with 150μm pixel pitch. The simulation results indicate that the relative time resolution of the proposed ROIC can achieve less than 1ns, and the preliminary test results show that the circuit function is correct.

  13. Design of a multi-axis implantable MEMS sensor for intraosseous bone stress monitoring

    NASA Astrophysics Data System (ADS)

    Alfaro, Fernando; Weiss, Lee; Campbell, Phil; Miller, Mark; Fedder, Gary K.

    2009-08-01

    The capability to assess the biomechanical properties of living bone is important for basic research as well as the clinical management of skeletal trauma and disease. Even though radiodensitometric imaging is commonly used to infer bone quality, bone strength does not necessarily correlate well with these non-invasive measurements. This paper reports on the design, fabrication and initial testing of an implantable ultra-miniature multi-axis sensor for directly measuring bone stresses at a micro-scale. The device, which is fabricated with CMOS-MEMS processes, is intended to be permanently implanted within open fractures, or embedded in bone grafts, or placed on implants at the interfaces between bone and prosthetics. The stress sensor comprises an array of piezoresistive pixels to detect a stress tensor at the interfacial area between the MEMS chip and bone, with a resolution to 100 Pa, in 1 s averaging. The sensor system design and manufacture is also compatible with the integration of wireless RF telemetry, for power and data retrieval, all within a 3 mm × 3 mm × 0.3 mm footprint. The piezoresistive elements are integrated within a textured surface to enhance sensor integration with bone. Finite element analysis led to a sensor design for normal and shear stress detection. A wired sensor was fabricated in the Jazz 0.35 µm BiCMOS process and then embedded in mock bone material to characterize its response to tensile and bending loads up to 250 kPa.

  14. CMOS nanoelectrode array for all-electrical intracellular electrophysiological imaging

    NASA Astrophysics Data System (ADS)

    Abbott, Jeffrey; Ye, Tianyang; Qin, Ling; Jorgolli, Marsela; Gertner, Rona S.; Ham, Donhee; Park, Hongkun

    2017-05-01

    Developing a new tool capable of high-precision electrophysiological recording of a large network of electrogenic cells has long been an outstanding challenge in neurobiology and cardiology. Here, we combine nanoscale intracellular electrodes with complementary metal-oxide-semiconductor (CMOS) integrated circuits to realize a high-fidelity all-electrical electrophysiological imager for parallel intracellular recording at the network level. Our CMOS nanoelectrode array has 1,024 recording/stimulation 'pixels' equipped with vertical nanoelectrodes, and can simultaneously record intracellular membrane potentials from hundreds of connected in vitro neonatal rat ventricular cardiomyocytes. We demonstrate that this network-level intracellular recording capability can be used to examine the effect of pharmaceuticals on the delicate dynamics of a cardiomyocyte network, thus opening up new opportunities in tissue-based pharmacological screening for cardiac and neuronal diseases as well as fundamental studies of electrogenic cells and their networks.

  15. Compact SPAD-Based Pixel Architectures for Time-Resolved Image Sensors

    PubMed Central

    Perenzoni, Matteo; Pancheri, Lucio; Stoppa, David

    2016-01-01

    This paper reviews the state of the art of single-photon avalanche diode (SPAD) image sensors for time-resolved imaging. The focus of the paper is on pixel architectures featuring small pixel size (<25 μm) and high fill factor (>20%) as a key enabling technology for the successful implementation of high spatial resolution SPAD-based image sensors. A summary of the main CMOS SPAD implementations, their characteristics and integration challenges, is provided from the perspective of targeting large pixel arrays, where one of the key drivers is the spatial uniformity. The main analog techniques aimed at time-gated photon counting and photon timestamping suitable for compact and low-power pixels are critically discussed. The main features of these solutions are the adoption of analog counting techniques and time-to-analog conversion, in NMOS-only pixels. Reliable quantum-limited single-photon counting, self-referenced analog-to-digital conversion, time gating down to 0.75 ns and timestamping with 368 ps jitter are achieved. PMID:27223284

  16. Method and apparatus for detection of charge on ions and particles

    DOEpatents

    Fuerstenau, Stephen Douglas; Soli, George Arthur

    2002-01-01

    The present invention provides a tessellated array detector with charge collecting plate (or cup) electrode pixels and amplifying circuitry integrated into each pixel making it sensitive to external electrostatic charge; a micro collector/amplifier pixel design possessing a small capacitance to ensure a high charge to voltage signal conversion for low noise/high sensitivity operation; a micro-fabricated array of such pixels to create a useful macroscopic target area for ion and charged particle collection.

  17. A Fast Multiple Sampling Method for Low-Noise CMOS Image Sensors With Column-Parallel 12-bit SAR ADCs

    PubMed Central

    Kim, Min-Kyu; Hong, Seong-Kwan; Kwon, Oh-Kyong

    2015-01-01

    This paper presents a fast multiple sampling method for low-noise CMOS image sensor (CIS) applications with column-parallel successive approximation register analog-to-digital converters (SAR ADCs). The 12-bit SAR ADC using the proposed multiple sampling method decreases the A/D conversion time by repeatedly converting a pixel output to 4-bit after the first 12-bit A/D conversion, reducing noise of the CIS by one over the square root of the number of samplings. The area of the 12-bit SAR ADC is reduced by using a 10-bit capacitor digital-to-analog converter (DAC) with four scaled reference voltages. In addition, a simple up/down counter-based digital processing logic is proposed to perform complex calculations for multiple sampling and digital correlated double sampling. To verify the proposed multiple sampling method, a 256 × 128 pixel array CIS with 12-bit SAR ADCs was fabricated using 0.18 μm CMOS process. The measurement results shows that the proposed multiple sampling method reduces each A/D conversion time from 1.2 μs to 0.45 μs and random noise from 848.3 μV to 270.4 μV, achieving a dynamic range of 68.1 dB and an SNR of 39.2 dB. PMID:26712765

  18. Performance of CMOS imager as sensing element for a Real-time Active Pixel Dosimeter for Interventional Radiology procedures

    NASA Astrophysics Data System (ADS)

    Magalotti, D.; Bissi, L.; Conti, E.; Paolucci, M.; Placidi, P.; Scorzoni, A.; Servoli, L.

    2014-01-01

    Staff members applying Interventional Radiology procedures are exposed to ionizing radiation, which can induce detrimental effects to the human body, and requires an improvement of radiation protection. This paper is focused on the study of the sensor element for a wireless real-time dosimeter to be worn by the medical staff during the interventional radiology procedures, in the framework of the Real-Time Active PIxel Dosimetry (RAPID) INFN project. We characterize a CMOS imager to be used as detection element for the photons scattered by the patient body. The CMOS imager has been first characterized in laboratory using fluorescence X-ray sources, then a PMMA phantom has been used to diffuse the X-ray photons from an angiography system. Different operating conditions have been used to test the detector response in realistic situations, by varying the X-ray tube parameters (continuous/pulsed mode, tube voltage and current, pulse parameters), the sensor parameters (gain, integration time) and the relative distance between sensor and phantom. The sensor response has been compared with measurements performed using passive dosimeters (TLD) and also with a certified beam, in an accredited calibration centre, in order to obtain an absolute calibration. The results are very encouraging, with dose and dose rate measurement uncertainties below the 10% level even for the most demanding Interventional Radiology protocols.

  19. Development and test of an active pixel sensor detector for heliospheric imager on solar orbiter and solar probe plus

    NASA Astrophysics Data System (ADS)

    Korendyke, Clarence M.; Vourlidas, Angelos; Plunkett, Simon P.; Howard, Russell A.; Wang, Dennis; Marshall, Cheryl J.; Waczynski, Augustyn; Janesick, James J.; Elliott, Thomas; Tun, Samuel; Tower, John; Grygon, Mark; Keller, David; Clifford, Gregory E.

    2013-10-01

    The Naval Research Laboratory is developing next generation CMOS imaging arrays for the Solar Orbiter and Solar Probe Plus missions. The device development is nearly complete with flight device delivery scheduled for summer of 2013. The 4Kx4K mosaic array with 10micron pixels is well suited to the panoramic imaging required for the Solar Orbiter mission. The devices are robust (<100krad) and exhibit minimal performance degradation with respect to radiation. The device design and performance are described.

  20. Random On-Board Pixel Sampling (ROPS) X-Ray Camera

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zhehui; Iaroshenko, O.; Li, S.

    Recent advances in compressed sensing theory and algorithms offer new possibilities for high-speed X-ray camera design. In many CMOS cameras, each pixel has an independent on-board circuit that includes an amplifier, noise rejection, signal shaper, an analog-to-digital converter (ADC), and optional in-pixel storage. When X-ray images are sparse, i.e., when one of the following cases is true: (a.) The number of pixels with true X-ray hits is much smaller than the total number of pixels; (b.) The X-ray information is redundant; or (c.) Some prior knowledge about the X-ray images exists, sparse sampling may be allowed. Here we first illustratemore » the feasibility of random on-board pixel sampling (ROPS) using an existing set of X-ray images, followed by a discussion about signal to noise as a function of pixel size. Next, we describe a possible circuit architecture to achieve random pixel access and in-pixel storage. The combination of a multilayer architecture, sparse on-chip sampling, and computational image techniques, is expected to facilitate the development and applications of high-speed X-ray camera technology.« less

  1. Design and fabrication of AlGaInP-based micro-light-emitting-diode array devices

    NASA Astrophysics Data System (ADS)

    Bao, Xingzhen; Liang, Jingqiu; Liang, Zhongzhu; Wang, Weibiao; Tian, Chao; Qin, Yuxin; Lü, Jinguang

    2016-04-01

    An integrated high-resolution (individual pixel size 80 μm×80 μm) solid-state self-emissive active matrix programmed with 320×240 micro-light-emitting-diode arrays structure was designed and fabricated on an AlGaInP semiconductor chip using micro electro-mechanical systems, microstructure and semiconductor fabricating techniques. Row pixels share a p-electrode and line pixels share an n-electrode. We experimentally investigated GaAs substrate thickness affects the electrical and optical characteristics of the pixels. For a 150-μm-thick GaAs substrate, the single pixel output power was 167.4 μW at 5 mA, and increased to 326.4 μW when current increase to 10 mA. The device investigated potentially plays an important role in many fields.

  2. Single-pixel camera with one graphene photodetector.

    PubMed

    Li, Gongxin; Wang, Wenxue; Wang, Yuechao; Yang, Wenguang; Liu, Lianqing

    2016-01-11

    Consumer cameras in the megapixel range are ubiquitous, but the improvement of them is hindered by the poor performance and high cost of traditional photodetectors. Graphene, a two-dimensional micro-/nano-material, recently has exhibited exceptional properties as a sensing element in a photodetector over traditional materials. However, it is difficult to fabricate a large-scale array of graphene photodetectors to replace the traditional photodetector array. To take full advantage of the unique characteristics of the graphene photodetector, in this study we integrated a graphene photodetector in a single-pixel camera based on compressive sensing. To begin with, we introduced a method called laser scribing for fabrication the graphene. It produces the graphene components in arbitrary patterns more quickly without photoresist contamination as do traditional methods. Next, we proposed a system for calibrating the optoelectrical properties of micro/nano photodetectors based on a digital micromirror device (DMD), which changes the light intensity by controlling the number of individual micromirrors positioned at + 12°. The calibration sensitivity is driven by the sum of all micromirrors of the DMD and can be as high as 10(-5)A/W. Finally, the single-pixel camera integrated with one graphene photodetector was used to recover a static image to demonstrate the feasibility of the single-pixel imaging system with the graphene photodetector. A high-resolution image can be recovered with the camera at a sampling rate much less than Nyquist rate. The study was the first demonstration for ever record of a macroscopic camera with a graphene photodetector. The camera has the potential for high-speed and high-resolution imaging at much less cost than traditional megapixel cameras.

  3. Ultra-low power high-dynamic range color pixel embedding RGB to r-g chromaticity transformation

    NASA Astrophysics Data System (ADS)

    Lecca, Michela; Gasparini, Leonardo; Gottardi, Massimo

    2014-05-01

    This work describes a novel color pixel topology that converts the three chromatic components from the standard RGB space into the normalized r-g chromaticity space. This conversion is implemented with high-dynamic range and with no dc power consumption, and the auto-exposure capability of the sensor ensures to capture a high quality chromatic signal, even in presence of very bright illuminants or in the darkness. The pixel is intended to become the basic building block of a CMOS color vision sensor, targeted to ultra-low power applications for mobile devices, such as human machine interfaces, gesture recognition, face detection. The experiments show that significant improvements of the proposed pixel with respect to standard cameras in terms of energy saving and accuracy on data acquisition. An application to skin color-based description is presented.

  4. Advancing the Technology of Monolithic CMOS detectors for their use as X-ray Imaging Spectrometers

    NASA Astrophysics Data System (ADS)

    Kenter, Almus

    The Smithsonian Astrophysical Observatory (SAO) proposes a two year program to further advance the scientific capabilities of monolithic CMOS detectors for use as x-ray imaging spectrometers. This proposal will build upon the progress achieved with funding from a previous APRA proposal that ended in 2013. As part of that previous proposal, x- ray optimized, highly versatile, monolithic CMOS imaging detectors and technology were developed and tested. The performance and capabilities of these devices were then demonstrated, with an emphasis on the performance advantages these devices have over CCDs and other technologies. The developed SAO/SRI-Sarnoff CMOS devices incorporate: Low noise, high sensitivity ("gain") pixels; Highly parallel on-chip signal chains; Standard and very high resistivity (30,000Ohm-cm) Si; Back-Side thinning and passivation. SAO demonstrated the performance benefits of each of these features in these devices. This new proposal high-lights the performance of this previous generation of devices, and segues into new technology and capability. The high sensitivity ( 135uV/e) 6 Transistor (6T) Pinned Photo Diode (PPD) pixels provided a large charge to voltage conversion gain to the detect and resolve even small numbers of photo electrons produced by x-rays. The on-chip, parallel signal chain processed an entire row of pixels in the same time that a CCD requires to processes a single pixel. The resulting high speed operation ( 1000 times faster than CCD) provide temporal resolution while mitigating dark current and allowed room temperature operation. The high resistivity Si provided full (over) depletion for thicker devices which increased QE for higher energy x-rays. In this proposal, SAO will investigate existing NMOS and existing PMOS devices as xray imaging spectrometers. Conventional CMOS imagers are NMOS. NMOS devices collect and measure photo-electrons. In contrast, PMOS devices collect and measure photo-holes. PMOS devices have various attributes that would make them superior for use in X-ray astronomy. In particular, PMOS has: "no" photo-charge recombination; "no" Random Telegraph Signal noise (RTS); and lower read noise. The existing SRI/Sarnoff PMOS devices are small and have been developed for non-intensified night vision applications, however, no x-ray evaluation of a monolithic PMOS device has ever been made. In addition to these PMOS devices, SAO will also evaluate existing NMOS scale-able format devices that can be fabricated in any rectangular size/shape using stitchable reticles. These "Mk by Nk" devices would be ideal for large X-ray focal planes or long grating readouts. The Sarnoff/SRI Mk by Nk format devices have been designed, with foresight, so that they can be fabricated in either PMOS or NMOS by changing a single fabrication reticle and by changing the type of Si substrate. If X-ray performance results are expected, this proposal will lead the way to future fabrication of Mk by Nk PMOS devices that would be ideal for X-ray astronomy missions such as "X-ray Surveyor". SAO will also investigate the interaction of directly deposited Optical Blocking Filters (OBFs) on various back side passivated devices, and their resultant effects on very "soft" x-ray response. The latest CMOS processes and very fast on-chip, and off-chip digital readout signal chains and camera systems will be demonstrated.

  5. How Many Pixels Does It Take to Make a Good 4"×6" Print? Pixel Count Wars Revisited

    NASA Astrophysics Data System (ADS)

    Kriss, Michael A.

    Digital still cameras emerged following the introduction of the Sony Mavica analog prototype camera in 1981. These early cameras produced poor image quality and did not challenge film cameras for overall quality. By 1995 digital still cameras in expensive SLR formats had 6 mega-pixels and produced high quality images (with significant image processing). In 2005 significant improvement in image quality was apparent and lower prices for digital still cameras (DSCs) started a rapid decline in film usage and film camera sells. By 2010 film usage was mostly limited to professionals and the motion picture industry. The rise of DSCs was marked by a “pixel war” where the driving feature of the cameras was the pixel count where even moderate cost, ˜120, DSCs would have 14 mega-pixels. The improvement of CMOS technology pushed this trend of lower prices and higher pixel counts. Only the single lens reflex cameras had large sensors and large pixels. The drive for smaller pixels hurt the quality aspects of the final image (sharpness, noise, speed, and exposure latitude). Only today are camera manufactures starting to reverse their course and producing DSCs with larger sensors and pixels. This paper will explore why larger pixels and sensors are key to the future of DSCs.

  6. High resolution 1280×1024, 15 μm pitch compact InSb IR detector with on-chip ADC

    NASA Astrophysics Data System (ADS)

    Nesher, O.; Pivnik, I.; Ilan, E.; Calalhorra, Z.; Koifman, A.; Vaserman, I.; Oiknine Schlesinger, J.; Gazit, R.; Hirsh, I.

    2009-05-01

    Over the last decade, SCD has developed and manufactured high quality InSb Focal Plane Arrays (FPAs), which are currently used in many applications worldwide. SCD's production line includes many different types of InSb FPA with formats of 320x256, 480x384 and 640x512 elements and with pitch sizes in the range of 15 to 30 μm. All these FPAs are available in various packaging configurations, including fully integrated Detector-Dewar-Cooler Assemblies (DDCA) with either closed-cycle Sterling or open-loop Joule-Thomson coolers. With an increasing need for higher resolution, SCD has recently developed a new large format 2-D InSb detector with 1280x1024 elements and a pixel size of 15μm. The InSb 15μm pixel technology has already been proven at SCD with the "Pelican" detector (640x512 elements), which was introduced at the Orlando conference in 2006. A new signal processor was developed at SCD for use in this mega-pixel detector. This Readout Integrated Circuit (ROIC) is designed for, and manufactured with, 0.18 μm CMOS technology. The migration from 0.5 to 0.18 μm CMOS technology supports SCD's roadmap for the reduction of pixel size and power consumption and is in line with the increasing demand for improved performance and on-chip functionality. Consequently, the new ROIC maintains the same level of performance and functionality with a 15 μm pitch, as exists in our 20 μm-pitch ROICs based on 0.5μm CMOS technology. Similar to Sebastian (SCD ROIC with A/D on chip), this signal processor also includes A/D converters on the chip and demonstrates the same level of performance, but with reduced power consumption. The pixel readout rate has been increased up to 160 MHz in order to support a high frame rate, resulting in 120 Hz operation with a window of 1024×1024 elements at ~130 mW. These A/D converters on chip save the need for using 16 A/D channels on board (in the case of an analog ROIC) which would operate at 10 MHz and consume about 8Watts A Dewar has been designed with a stiffened detector support to withstand harsh environmental conditions with a minimal contribution to the heat load of the detector. The combination of the 0.18μm-based low power CMOS technology for the ROIC and the stiffening of the detector support within the Dewar has enabled the use of the Ricor K508 cryo-cooler (0.5 W). This has created a high-resolution detector in a very compact package. In this paper we present the basic concept of the new detector. We will describe its construction and will present electrical and radiometric characterization results.

  7. Characterization of a thinned back illuminated MIMOSA V sensor as a visible light camera

    NASA Astrophysics Data System (ADS)

    Bulgheroni, Antonio; Bianda, Michele; Caccia, Massimo; Cappellini, Chiara; Mozzanica, Aldo; Ramelli, Renzo; Risigo, Fabio

    2006-09-01

    This paper reports the measurements that have been performed both in the Silicon Detector Laboratory at the University of Insubria (Como, Italy) and at the Instituto Ricerche SOlari Locarno (IRSOL) to characterize a CMOS pixel particle detector as a visible light camera. The CMOS sensor has been studied in terms of Quantum Efficiency in the visible spectrum, image blooming and reset inefficiency in saturation condition. The main goal of these measurements is to prove that this kind of particle detector can also be used as an ultra fast, 100% fill factor visible light camera in solar physics experiments.

  8. Single Photon Counting Performance and Noise Analysis of CMOS SPAD-Based Image Sensors.

    PubMed

    Dutton, Neale A W; Gyongy, Istvan; Parmesan, Luca; Henderson, Robert K

    2016-07-20

    SPAD-based solid state CMOS image sensors utilising analogue integrators have attained deep sub-electron read noise (DSERN) permitting single photon counting (SPC) imaging. A new method is proposed to determine the read noise in DSERN image sensors by evaluating the peak separation and width (PSW) of single photon peaks in a photon counting histogram (PCH). The technique is used to identify and analyse cumulative noise in analogue integrating SPC SPAD-based pixels. The DSERN of our SPAD image sensor is exploited to confirm recent multi-photon threshold quanta image sensor (QIS) theory. Finally, various single and multiple photon spatio-temporal oversampling techniques are reviewed.

  9. A noiseless, kHz frame rate imaging detector for AO wavefront sensors based on MCPs read out with the Medipix2 CMOS pixel chip

    NASA Astrophysics Data System (ADS)

    Vallerga, J. V.; McPhate, J. B.; Tremsin, A. S.; Siegmund, O. H. W.; Mikulec, B.; Clark, A. G.

    2004-12-01

    Future wavefront sensors in adaptive optics (AO) systems for the next generation of large telescopes (> 30 m diameter) will require large formats (512x512) , kHz frame rates, low readout noise (<3 electrons) and high optical QE. The current generation of CCDs cannot achieve the first three of these specifications simultaneously. We present a detector scheme that can meet the first three requirements with an optical QE > 40%. This detector consists of a vacuum tube with a proximity focused GaAs photocathode whose photoelectrons are amplified by microchannel plates and the resulting output charge cloud counted by a pixelated CMOS application specific integrated circuit (ASIC) called the Medipix2 (http://medipix.web.cern.ch/MEDIPIX/). Each 55 micron square pixel of the Medipix2 chip has an amplifier, discriminator and 14 bit counter and the 256x256 array can be read out in 287 microseconds. The chip is 3 side abuttable so a 512x512 array is feasible in one vacuum tube. We will present the first results with an open-faced, demountable version of the detector where we have mounted a pair of MCPs 500 microns above a Medipix2 readout inside a vacuum chamber and illuminated it with UV light. The results include: flat field response, spatial resolution, spatial linearity on the sub-pixel level and global event counting rate. We will also discuss the vacuum tube design and the fabrication issues associated with the Medipix2 surviving the tube making process.

  10. A 0.18 μm CMOS fluorescent detector system for bio-sensing application

    NASA Astrophysics Data System (ADS)

    Nan, Liu; Guoping, Chen; Zhiliang, Hong

    2009-01-01

    A CMOS fluorescent detector system for biological experiment is presented. This system integrates a CMOS compatible photodiode, a capacitive trans-impedance amplifier (CTIA), and a 12 bit pipelined analog-to-digital converter (ADC), and is implemented in a 0.18 μm standard CMOS process. Some special techniques, such as a 'contact imaging' detecting method, pseudo-differential architecture, dummy photodiodes, and a T-type reset switch, are adopted to achieve low-level sensing application. Experiment results show that the Nwell/Psub photodiode with CTIA pixel achieves a sensitivity of 0.1 A/W at 515 nm and a dark current of 300 fA with 300 mV reverse biased voltage. The maximum differential and integral nonlinearity of the designed ADC are 0.8 LSB and 3 LSB, respectively. With an integrating time of 50 ms, this system is sensitive to the fluorescence emitted by the fluorescein solution with concentration as low as 20 ng/mL and can generate 7 fA photocurrent. This chip occupies 3 mm2 and consumes 37 mW.

  11. Integration of Si-CMOS embedded photo detector array and mixed signal processing system with embedded optical waveguide input

    NASA Astrophysics Data System (ADS)

    Kim, Daeik D.; Thomas, Mikkel A.; Brooke, Martin A.; Jokerst, Nan M.

    2004-06-01

    Arrays of embedded bipolar junction transistor (BJT) photo detectors (PD) and a parallel mixed-signal processing system were fabricated as a silicon complementary metal oxide semiconductor (Si-CMOS) circuit for the integration optical sensors on the surface of the chip. The circuit was fabricated with AMI 1.5um n-well CMOS process and the embedded PNP BJT PD has a pixel size of 8um by 8um. BJT PD was chosen to take advantage of its higher gain amplification of photo current than that of PiN type detectors since the target application is a low-speed and high-sensitivity sensor. The photo current generated by BJT PD is manipulated by mixed-signal processing system, which consists of parallel first order low-pass delta-sigma oversampling analog-to-digital converters (ADC). There are 8 parallel ADCs on the chip and a group of 8 BJT PDs are selected with CMOS switches. An array of PD is composed of three or six groups of PDs depending on the number of rows.

  12. Resolution studies with the DATURA beam telescope

    NASA Astrophysics Data System (ADS)

    Jansen, H.

    2016-12-01

    Detailed studies of the resolution of a EUDET-type beam telescope are carried out using the DATURA beam telescope as an example. The EUDET-type beam telescopes make use of CMOS MIMOSA 26 pixel detectors for particle tracking allowing for precise characterisation of particle-sensing devices. A profound understanding of the performance of the beam telescope as a whole is obtained by a detailed characterisation of the sensors themselves. The differential intrinsic resolution as measured in a MIMOSA 26 sensor is extracted using an iterative pull method, and various quantities that depend on the size of the cluster produced by a traversing charged particle are discussed: the residual distribution, the intra-pixel residual-width distribution and the intra-pixel density distribution of track incident positions.

  13. Limits in point to point resolution of MOS based pixels detector arrays

    NASA Astrophysics Data System (ADS)

    Fourches, N.; Desforge, D.; Kebbiri, M.; Kumar, V.; Serruys, Y.; Gutierrez, G.; Leprêtre, F.; Jomard, F.

    2018-01-01

    In high energy physics point-to-point resolution is a key prerequisite for particle detector pixel arrays. Current and future experiments require the development of inner-detectors able to resolve the tracks of particles down to the micron range. Present-day technologies, although not fully implemented in actual detectors, can reach a 5-μm limit, this limit being based on statistical measurements, with a pixel-pitch in the 10 μm range. This paper is devoted to the evaluation of the building blocks for use in pixel arrays enabling accurate tracking of charged particles. Basing us on simulations we will make here a quantitative evaluation of the physical and technological limits in pixel size. Attempts to design small pixels based on SOI technology will be briefly recalled here. A design based on CMOS compatible technologies that allow a reduction of the pixel size below the micrometer is introduced here. Its physical principle relies on a buried carrier-localizing collecting gate. The fabrication process needed by this pixel design can be based on existing process steps used in silicon microelectronics. The pixel characteristics will be discussed as well as the design of pixel arrays. The existing bottlenecks and how to overcome them will be discussed in the light of recent ion implantation and material characterization experiments.

  14. A compressed sensing X-ray camera with a multilayer architecture

    DOE PAGES

    Wang, Zhehui; Laroshenko, O.; Li, S.; ...

    2018-01-25

    Recent advances in compressed sensing theory and algorithms offer new possibilities for high-speed X-ray camera design. In many CMOS cameras, each pixel has an independent on-board circuit that includes an amplifier, noise rejection, signal shaper, an analog-to-digital converter (ADC), and optional in-pixel storage. When X-ray images are sparse, i.e., when one of the following cases is true: (a.) The number of pixels with true X-ray hits is much smaller than the total number of pixels; (b.) The X-ray information is redundant; or (c.) Some prior knowledge about the X-ray images exists, sparse sampling may be allowed. In this work, wemore » first illustrate the feasibility of random on-board pixel sampling (ROPS) using an existing set of X-ray images, followed by a discussion about signal to noise as a function of pixel size. Next, we describe a possible circuit architecture to achieve random pixel access and in-pixel storage. The combination of a multilayer architecture, sparse on-chip sampling, and computational image techniques, is expected to facilitate the development and applications of high-speed X-ray camera technology.« less

  15. A compressed sensing X-ray camera with a multilayer architecture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zhehui; Laroshenko, O.; Li, S.

    Recent advances in compressed sensing theory and algorithms offer new possibilities for high-speed X-ray camera design. In many CMOS cameras, each pixel has an independent on-board circuit that includes an amplifier, noise rejection, signal shaper, an analog-to-digital converter (ADC), and optional in-pixel storage. When X-ray images are sparse, i.e., when one of the following cases is true: (a.) The number of pixels with true X-ray hits is much smaller than the total number of pixels; (b.) The X-ray information is redundant; or (c.) Some prior knowledge about the X-ray images exists, sparse sampling may be allowed. In this work, wemore » first illustrate the feasibility of random on-board pixel sampling (ROPS) using an existing set of X-ray images, followed by a discussion about signal to noise as a function of pixel size. Next, we describe a possible circuit architecture to achieve random pixel access and in-pixel storage. The combination of a multilayer architecture, sparse on-chip sampling, and computational image techniques, is expected to facilitate the development and applications of high-speed X-ray camera technology.« less

  16. X-ray Hybrid CMOS Detectors : Recent progress in development and characterization

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, Tanmoy; Falcone, Abraham; Burrows, David N.

    2017-08-01

    PennState high energy astronomy laboratory has been working on the development and characterization of Hybrid CMOS Detectors (HCDs) for last few years in collaboration with Teledyne Imaging Sensors (TIS). HCDs are preferred over X-ray CCDs due to their higher and flexible read out rate, radiation hardness and low power which make them more suitable for next generation large area X-ray telescopic missions. An H2RG detector with 36 micron pixel pitch and 18 micron ROIC, has been selected for a sounding rocket flight in 2018. The H2RG detector provides ~2.5 % energy resolution at 5.9 keV and ~7 e- read noise when coupled to a cryo-SIDECAR. We could also detect a clear Oxygen line (~0.5 keV) from the detector implying a lower energy threshold of ~0.3 keV. Further improvement in the energy resolution and read noise is currently under progress. We have been working on the characterization of small pixel HCDs (12.5 micron pixel; smallest pixel HCDs developed so far) which is important for the development of next generation high resolution X-ray spectroscopic instrument based on HCDs. Event recognition in HCDs is another exciting prospect which have been successfully shown to work with a 64 X 64 pixel prototype SPEEDSTAR-EXD which use comparators at each pixel to read out only those pixels having detectable signal, thereby providing an order of magnitude improvement in the read out rate. Currently, we are working on the development of a large area SPEEDSTAR-EXD array for the development of a full fledged instrument. HCDs due to their fast read out, can also be explored as a large FOV instrument to study GRB afterglows and variability and spectroscopic study of other astrophysical transients. In this context, we are characterizing a Lobster-HCD system at multiple energies and multiple off-axis angles for future rocket or CubeSate experiments. In this presentation, I will briefly present these new developments and experiments with HCDs and the analysis techniques.

  17. Estudio de un microcable de par trenzado para la comunicacion y lectura del modulo de pixeles del experimento CMS

    NASA Astrophysics Data System (ADS)

    Oliveros Tautiva, Sandra Jimena

    The Compact Muon Solenoid (CMS) is one of the two most important experiments at the Large Hadron Collider (LHC). The pixel detector is the component closest to the collision in CMS and it receives large doses of radiation which will affect its performance. The pixel detector will be replaced by a new one after four years. The aim is to reduce material in the sensitive zone of the new pixel detector, which leads to the implementation of a type of micro twisted pair cable that will replace the existing kapton cables and some connections will be eliminated. The purpose of this work was to study the viability of using these micro twisted pair cables in the existing 40 MHz analog readout. The electrical parameters of micro cables were determined, and operational tests were performed in a module using these cables for communicating and reading. Three different lengths of micro cables were used, 1.0, 1.5 and 2.0 m, in order to compare test results with those obtained using the kapton cable. It was found that the use of these cables does not affect the programming and reading of the pixels in one module, so the micro cables are viable to be used in place of the kapton cables.

  18. An airborne multispectral imaging system based on two consumer-grade cameras for agricultural remote sensing

    USDA-ARS?s Scientific Manuscript database

    This paper describes the design and evaluation of an airborne multispectral imaging system based on two identical consumer-grade cameras for agricultural remote sensing. The cameras are equipped with a full-frame complementary metal oxide semiconductor (CMOS) sensor with 5616 × 3744 pixels. One came...

  19. Statistical Analysis of the Random Telegraph Noise in a 1.1 μm Pixel, 8.3 MP CMOS Image Sensor Using On-Chip Time Constant Extraction Method.

    PubMed

    Chao, Calvin Yi-Ping; Tu, Honyih; Wu, Thomas Meng-Hsiu; Chou, Kuo-Yu; Yeh, Shang-Fu; Yin, Chin; Lee, Chih-Lin

    2017-11-23

    A study of the random telegraph noise (RTN) of a 1.1 μm pitch, 8.3 Mpixel CMOS image sensor (CIS) fabricated in a 45 nm backside-illumination (BSI) technology is presented in this paper. A noise decomposition scheme is used to pinpoint the noise source. The long tail of the random noise (RN) distribution is directly linked to the RTN from the pixel source follower (SF). The full 8.3 Mpixels are classified into four categories according to the observed RTN histogram peaks. A theoretical formula describing the RTN as a function of the time difference between the two phases of the correlated double sampling (CDS) is derived and validated by measured data. An on-chip time constant extraction method is developed and applied to the RTN analysis. The effects of readout circuit bandwidth on the settling ratios of the RTN histograms are investigated and successfully accounted for in a simulation using a RTN behavior model.

  20. Fully Integrated Linear Single Photon Avalanche Diode (SPAD) Array with Parallel Readout Circuit in a Standard 180 nm CMOS Process

    NASA Astrophysics Data System (ADS)

    Isaak, S.; Bull, S.; Pitter, M. C.; Harrison, Ian.

    2011-05-01

    This paper reports on the development of a SPAD device and its subsequent use in an actively quenched single photon counting imaging system, and was fabricated in a UMC 0.18 μm CMOS process. A low-doped p- guard ring (t-well layer) encircling the active area to prevent the premature reverse breakdown. The array is a 16×1 parallel output SPAD array, which comprises of an active quenched SPAD circuit in each pixel with the current value being set by an external resistor RRef = 300 kΩ. The SPAD I-V response, ID was found to slowly increase until VBD was reached at excess bias voltage, Ve = 11.03 V, and then rapidly increase due to avalanche multiplication. Digital circuitry to control the SPAD array and perform the necessary data processing was designed in VHDL and implemented on a FPGA chip. At room temperature, the dark count was found to be approximately 13 KHz for most of the 16 SPAD pixels and the dead time was estimated to be 40 ns.

  1. A SPAD-based 3D imager with in-pixel TDC for 145ps-accuracy ToF measurement

    NASA Astrophysics Data System (ADS)

    Vornicu, I.; Carmona-Galán, R.; Rodríguez-Vázquez, Á.

    2015-03-01

    The design and measurements of a CMOS 64 × 64 Single-Photon Avalanche-Diode (SPAD) array with in-pixel Time-to-Digital Converter (TDC) are presented. This paper thoroughly describes the imager at architectural and circuit level with particular emphasis on the characterization of the SPAD-detector ensemble. It is aimed to 2D imaging and 3D image reconstruction in low light environments. It has been fabricated in a standard 0.18μm CMOS process, i. e. without high voltage or low noise features. In these circumstances, we are facing a high number of dark counts and low photon detection efficiency. Several techniques have been applied to ensure proper functionality, namely: i) time-gated SPAD front-end with fast active-quenching/recharge circuit featuring tunable dead-time, ii) reverse start-stop scheme, iii) programmable time resolution of the TDC based on a novel pseudo-differential voltage controlled ring oscillator with fast start-up, iv) a global calibration scheme against temperature and process variation. Measurements results of individual SPAD-TDC ensemble jitter, array uniformity and time resolution programmability are also provided.

  2. Pixel pitch and particle energy influence on the dark current distribution of neutron irradiated CMOS image sensors.

    PubMed

    Belloir, Jean-Marc; Goiffon, Vincent; Virmontois, Cédric; Raine, Mélanie; Paillet, Philippe; Duhamel, Olivier; Gaillardin, Marc; Molina, Romain; Magnan, Pierre; Gilard, Olivier

    2016-02-22

    The dark current produced by neutron irradiation in CMOS Image Sensors (CIS) is investigated. Several CIS with different photodiode types and pixel pitches are irradiated with various neutron energies and fluences to study the influence of each of these optical detector and irradiation parameters on the dark current distribution. An empirical model is tested on the experimental data and validated on all the irradiated optical imagers. This model is able to describe all the presented dark current distributions with no parameter variation for neutron energies of 14 MeV or higher, regardless of the optical detector and irradiation characteristics. For energies below 1 MeV, it is shown that a single parameter has to be adjusted because of the lower mean damage energy per nuclear interaction. This model and these conclusions can be transposed to any silicon based solid-state optical imagers such as CIS or Charged Coupled Devices (CCD). This work can also be used when designing an optical imager instrument, to anticipate the dark current increase or to choose a mitigation technique.

  3. Noise Reduction Effect of Multiple-Sampling-Based Signal-Readout Circuits for Ultra-Low Noise CMOS Image Sensors.

    PubMed

    Kawahito, Shoji; Seo, Min-Woong

    2016-11-06

    This paper discusses the noise reduction effect of multiple-sampling-based signal readout circuits for implementing ultra-low-noise image sensors. The correlated multiple sampling (CMS) technique has recently become an important technology for high-gain column readout circuits in low-noise CMOS image sensors (CISs). This paper reveals how the column CMS circuits, together with a pixel having a high-conversion-gain charge detector and low-noise transistor, realizes deep sub-electron read noise levels based on the analysis of noise components in the signal readout chain from a pixel to the column analog-to-digital converter (ADC). The noise measurement results of experimental CISs are compared with the noise analysis and the effect of noise reduction to the sampling number is discussed at the deep sub-electron level. Images taken with three CMS gains of two, 16, and 128 show distinct advantage of image contrast for the gain of 128 (noise(median): 0.29 e - rms ) when compared with the CMS gain of two (2.4 e - rms ), or 16 (1.1 e - rms ).

  4. Noise Reduction Effect of Multiple-Sampling-Based Signal-Readout Circuits for Ultra-Low Noise CMOS Image Sensors

    PubMed Central

    Kawahito, Shoji; Seo, Min-Woong

    2016-01-01

    This paper discusses the noise reduction effect of multiple-sampling-based signal readout circuits for implementing ultra-low-noise image sensors. The correlated multiple sampling (CMS) technique has recently become an important technology for high-gain column readout circuits in low-noise CMOS image sensors (CISs). This paper reveals how the column CMS circuits, together with a pixel having a high-conversion-gain charge detector and low-noise transistor, realizes deep sub-electron read noise levels based on the analysis of noise components in the signal readout chain from a pixel to the column analog-to-digital converter (ADC). The noise measurement results of experimental CISs are compared with the noise analysis and the effect of noise reduction to the sampling number is discussed at the deep sub-electron level. Images taken with three CMS gains of two, 16, and 128 show distinct advantage of image contrast for the gain of 128 (noise(median): 0.29 e−rms) when compared with the CMS gain of two (2.4 e−rms), or 16 (1.1 e−rms). PMID:27827972

  5. Improved Signal Chains for Readout of CMOS Imagers

    NASA Technical Reports Server (NTRS)

    Pain, Bedabrata; Hancock, Bruce; Cunningham, Thomas

    2009-01-01

    An improved generic design has been devised for implementing signal chains involved in readout from complementary metal oxide/semiconductor (CMOS) image sensors and for other readout integrated circuits (ICs) that perform equivalent functions. The design applies to any such IC in which output signal charges from the pixels in a given row are transferred simultaneously into sampling capacitors at the bottoms of the columns, then voltages representing individual pixel charges are read out in sequence by sequentially turning on column-selecting field-effect transistors (FETs) in synchronism with source-follower- or operational-amplifier-based amplifier circuits. The improved design affords the best features of prior source-follower-and operational- amplifier-based designs while overcoming the major limitations of those designs. The limitations can be summarized as follows: a) For a source-follower-based signal chain, the ohmic voltage drop associated with DC bias current flowing through the column-selection FET causes unacceptable voltage offset, nonlinearity, and reduced small-signal gain. b) For an operational-amplifier-based signal chain, the required bias current and the output noise increase superlinearly with size of the pixel array because of a corresponding increase in the effective capacitance of the row bus used to couple the sampled column charges to the operational amplifier. The effect of the bus capacitance is to simultaneously slow down the readout circuit and increase noise through the Miller effect.

  6. An integrated CMOS bio-potential amplifier with a feed-forward DC cancellation topology.

    PubMed

    Parthasarathy, Jayant; Erdman, Arthur G; Redish, Aaron D; Ziaie, Babak

    2006-01-01

    This paper describes a novel technique to realize an integrated CMOS bio-potential amplifier with a feedforward DC cancellation topology. The amplifier is designed to provide substantial DC cancellation even while amplifying very low frequency signals. More than 80 dB offset rejection ratio is achieved without any external capacitors. The cancellation scheme is robust against process and temperature variations. The amplifier is fabricated through MOSIS AMI 1.5 microm technology (0.05 mm2 area). Measurement results show a gain of 43.5 dB in the pass band (<1 mHz-5 KHz), an input referred noise of 3.66 microVrms, and a current consumption of 22 microA.

  7. Gossip: Gaseous pixels

    NASA Astrophysics Data System (ADS)

    Koffeman, E. N.

    2007-12-01

    Several years ago a revolutionary miniature TPC was developed using a pixel chip with a Micromegas foil spanned over it. To overcome the mechanical stability problems and improve the positioning accuracy while spanning a foil on top of a small readout chip a process has been developed in which a Micromegas-like grid is applied on a CMOS wafer in a post-processing step. This aluminum grid is supported on insulating pillars that are created by etching after the grid has been made. The energy resolution (measured on the absorption of the X-rays from a 55Fe source) was remarkably good. Several geometries have since been tested and we now believe that a Gas On Slimmed Silicon Pixel chip' (Gossip) may be realized. The drift region of such a gaseous pixel detector would be reduced to a millimeter. Such a detector is potentially very radiation hard (SLHC vertexing) but aging and sparking must be eliminated.

  8. Heavy Ion Transient Characterization of a Photobit Hardened-by-Design Active Pixel Sensor Array

    NASA Technical Reports Server (NTRS)

    Marshall, Paul W.; Byers, Wheaton B.; Conger, Christopher; Eid, El-Sayed; Gee, George; Jones, Michael R.; Marshall, Cheryl J.; Reed, Robert; Pickel, Jim; Kniffin, Scott

    2002-01-01

    This paper presents heavy ion data on the single event transient (SET) response of a Photobit active pixel sensor (APS) four quadrant test chip with different radiation tolerant designs in a standard 0.35 micron CMOS process. The physical design techniques of enclosed geometry and P-channel guard rings are used to design the four N-type active photodiode pixels as described in a previous paper. Argon transient measurements on the 256 x 256 chip array as a function of incident angle show a significant variation in the amount of charge collected as well as the charge spreading dependent on the pixel type. The results are correlated with processing and design information provided by Photobit. In addition, there is a large degree of statistical variability between individual ion strikes. No latch-up is observed up to an LET of 106 MeV/mg/sq cm.

  9. The realization of an SVGA OLED-on-silicon microdisplay driving circuit

    NASA Astrophysics Data System (ADS)

    Bohua, Zhao; Ran, Huang; Fei, Ma; Guohua, Xie; Zhensong, Zhang; Huan, Du; Jiajun, Luo; Yi, Zhao

    2012-03-01

    An 800 × 600 pixel organic light-emitting diode-on-silicon (OLEDoS) driving circuit is proposed. The pixel cell circuit utilizes a subthreshold-voltage-scaling structure which can modulate the pixel current between 170 pA and 11.4 nA. In order to keep the voltage of the column bus at a relatively high level, the sample-and-hold circuits adopt a ping-pong operation. The driving circuit is fabricated in a commercially available 0.35 μm two-poly four-metal 3.3 V mixed-signal CMOS process. The pixel cell area is 15 × 15 μm2 and the total chip occupies 15.5 × 12.3 mm2. Experimental results show that the chip can work properly at a frame frequency of 60 Hz and has a 64 grayscale (monochrome) display. The total power consumption of the chip is about 85 mW with a 3.3V supply voltage.

  10. Fabrication of the planar angular rotator using the CMOS process

    NASA Astrophysics Data System (ADS)

    Dai, Ching-Liang; Chang, Chien-Liu; Chen, Hung-Lin; Chang, Pei-Zen

    2002-05-01

    In this investigation we propose a novel planar angular rotator fabricated by the conventional complementary metal-oxide semiconductor (CMOS) process. Following the 0.6 μm single poly triple metal (SPTM) CMOS process, the device is completed by a simple maskless, post-process etching step. The rotor of the planar angular rotator rotates around its geometric center with electrostatic actuation. The proposed design adopts an intelligent mechanism including the slider-crank system to permit simultaneous motion. The CMOS planar angular rotator could be driven with driving voltages of around 40 V. The design proposed here has a shorter response time and longer life, without problems of friction and wear, compared to the more common planar angular micromotor.

  11. Resolution Properties of a Calcium Tungstate (CaWO4) Screen Coupled to a CMOS Imaging Detector

    NASA Astrophysics Data System (ADS)

    Koukou, Vaia; Martini, Niki; Valais, Ioannis; Bakas, Athanasios; Kalyvas, Nektarios; Lavdas, Eleftherios; Fountos, George; Kandarakis, Ioannis; Michail, Christos

    2017-11-01

    The aim of the current work was to assess the resolution properties of a calcium tungstate (CaWO4) screen (screen coating thickness: 50.09 mg/cm2, actual thickness: 167.2 μm) coupled to a high resolution complementary metal oxide semiconductor (CMOS) digital imaging sensor. A 2.7x3.6 cm2 CaWO4 sample was extracted from an Agfa Curix universal screen and was coupled directly with the active area of the active pixel sensor (APS) CMOS sensor. Experiments were performed following the new IEC 62220-1-1:2015 International Standard, using an RQA-5 beam quality. Resolution was assessed in terms of the Modulation Transfer Function (MTF), using the slanted-edge method. The CaWO4/CMOS detector configuration was found with linear response, in the exposure range under investigation. The final MTF was obtained through averaging the oversampled edge spread function (ESF), using a custom-made software developed by our team, according to the IEC 62220-1-1:2015. Considering the renewed interest in calcium tungstate for various applications, along with the resolution results of this work, CaWO4 could be also considered for use in X-ray imaging devices such as charged-coupled devices (CCD) and CMOS.

  12. Dual-polarized light-field imaging micro-system via a liquid-crystal microlens array for direct three-dimensional observation.

    PubMed

    Xin, Zhaowei; Wei, Dong; Xie, Xingwang; Chen, Mingce; Zhang, Xinyu; Liao, Jing; Wang, Haiwei; Xie, Changsheng

    2018-02-19

    Light-field imaging is a crucial and straightforward way of measuring and analyzing surrounding light worlds. In this paper, a dual-polarized light-field imaging micro-system based on a twisted nematic liquid-crystal microlens array (TN-LCMLA) for direct three-dimensional (3D) observation is fabricated and demonstrated. The prototyped camera has been constructed by integrating a TN-LCMLA with a common CMOS sensor array. By switching the working state of the TN-LCMLA, two orthogonally polarized light-field images can be remapped through the functioned imaging sensors. The imaging micro-system in conjunction with the electric-optical microstructure can be used to perform polarization and light-field imaging, simultaneously. Compared with conventional plenoptic cameras using liquid-crystal microlens array, the polarization-independent light-field images with a high image quality can be obtained in the arbitrary polarization state selected. We experimentally demonstrate characters including a relatively wide operation range in the manipulation of incident beams and the multiple imaging modes, such as conventional two-dimensional imaging, light-field imaging, and polarization imaging. Considering the obvious features of the TN-LCMLA, such as very low power consumption, providing multiple imaging modes mentioned, simple and low-cost manufacturing, the imaging micro-system integrated with this kind of liquid-crystal microstructure driven electrically presents the potential capability of directly observing a 3D object in typical scattering media.

  13. Demonstration of 1024x1024 pixel dual-band QWIP focal plane array

    NASA Astrophysics Data System (ADS)

    Gunapala, S. D.; Bandara, S. V.; Liu, J. K.; Mumolo, J. M.; Ting, D. Z.; Hill, C. J.; Nguyen, J.; Rafol, S. B.

    2010-04-01

    QWIPs are well known for their stability, high pixel-pixel uniformity and high pixel operability which are quintessential parameters for large area imaging arrays. In this paper we report the first demonstration of the megapixel-simultaneously-readable and pixel-co-registered dual-band QWIP focal plane array (FPA). The dual-band QWIP device was developed by stacking two multi-quantum-well stacks tuned to absorb two different infrared wavelengths. The full width at half maximum (FWHM) of the mid-wave infrared (MWIR) band extends from 4.4 - 5.1 μm and FWHM of the long-wave infrared (LWIR) band extends from 7.8 - 8.8 μm. Dual-band QWIP detector arrays were hybridized with direct injection 30 μm pixel pitch megapixel dual-band simultaneously readable CMOS read out integrated circuits using the indium bump hybridization technique. The initial dual-band megapixel QWIP FPAs were cooled to 68K operating temperature. The preliminary data taken from the first megapixel QWIP FPA has shown system NE▵T of 27 and 40 mK for MWIR and LWIR bands respectively.

  14. Self-powered integrated systems-on-chip (energy chip)

    NASA Astrophysics Data System (ADS)

    Hussain, M. M.; Fahad, H.; Rojas, J.; Hasan, M.; Talukdar, A.; Oommen, J.; Mink, J.

    2010-04-01

    In today's world, consumer driven technology wants more portable electronic gadgets to be developed, and the next big thing in line is self-powered handheld devices. Therefore to reduce the power consumption as well as to supply sufficient power to run those devices, several critical technical challenges need to be overcome: a. Nanofabrication of macro/micro systems which incorporates the direct benefit of light weight (thus portability), low power consumption, faster response, higher sensitivity and batch production (low cost). b. Integration of advanced nano-materials to meet the performance/cost benefit trend. Nano-materials may offer new functionalities that were previously underutilized in the macro/micro dimension. c. Energy efficiency to reduce power consumption and to supply enough power to meet that low power demand. We present a pragmatic perspective on a self-powered integrated System on Chip (SoC). We envision the integrated device will have two objectives: low power consumption/dissipation and on-chip power generation for implementation into handheld or remote technologies for defense, space, harsh environments and medical applications. This paper provides insight on materials choices, intelligent circuit design, and CMOS compatible integration.

  15. Development of CMOS Active Pixel Image Sensors for Low Cost Commercial Applications

    NASA Technical Reports Server (NTRS)

    Gee, R.; Kemeny, S.; Kim, Q.; Mendis, S.; Nakamura, J.; Nixon, R.; Ortiz, M.; Pain, B.; Staller, C.; Zhou, Z; hide

    1994-01-01

    JPL, under sponsorship from the NASA Office of Advanced Concepts and Technology, has been developing a second-generation solid-state image sensor technology. Charge-coupled devices (CCD) are a well-established first generation image sensor technology. For both commercial and NASA applications, CCDs have numerous shortcomings. In response, the active pixel sensor (APS) technology has been under research. The major advantages of APS technology are the ability to integrate on-chip timing, control, signal-processing and analog-to-digital converter functions, reduced sensitivity to radiation effects, low power operation, and random access readout.

  16. Recent advances in Optical Computed Tomography (OCT) imaging system for three dimensional (3D) radiotherapy dosimetry

    NASA Astrophysics Data System (ADS)

    Rahman, Ahmad Taufek Abdul; Farah Rosli, Nurul; Zain, Shafirah Mohd; Zin, Hafiz M.

    2018-01-01

    Radiotherapy delivery techniques for cancer treatment are becoming more complex and highly focused, to enable accurate radiation dose delivery to the cancerous tissue and minimum dose to the healthy tissue adjacent to tumour. Instrument to verify the complex dose delivery in radiotherapy such as optical computed tomography (OCT) measures the dose from a three-dimensional (3D) radiochromic dosimeter to ensure the accuracy of the radiotherapy beam delivery to the patient. OCT measures the optical density in radiochromic material that changes predictably upon exposure to radiotherapy beams. OCT systems have been developed using a photodiode and charged coupled device (CCD) as the detector. The existing OCT imaging systems have limitation in terms of the accuracy and the speed of the measurement. Advances in on-pixel intelligence CMOS image sensor (CIS) will be exploited in this work to replace current detector in OCT imaging systems. CIS is capable of on-pixel signal processing at a very fast imaging speed (over several hundred images per second) that will allow improvement in the 3D measurement of the optical density. The paper will review 3D radiochromic dosimeters and OCT systems developed and discuss how CMOS based OCT imaging will provide accurate and fast optical density measurements in 3D. The paper will also discuss the configuration of the CMOS based OCT developed in this work and how it may improve the existing OCT system.

  17. SU-D-BRC-07: System Design for a 3D Volumetric Scintillation Detector Using SCMOS Cameras

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Darne, C; Robertson, D; Alsanea, F

    2016-06-15

    Purpose: The purpose of this project is to build a volumetric scintillation detector for quantitative imaging of 3D dose distributions of proton beams accurately in near real-time. Methods: The liquid scintillator (LS) detector consists of a transparent acrylic tank (20×20×20 cm{sup 3}) filled with a liquid scintillator that when irradiated with protons generates scintillation light. To track rapid spatial and dose variations in spot scanning proton beams we used three scientific-complementary metal-oxide semiconductor (sCMOS) imagers (2560×2160 pixels). The cameras collect optical signal from three orthogonal projections. To reduce system footprint two mirrors oriented at 45° to the tank surfaces redirectmore » scintillation light to cameras for capturing top and right views. Selection of fixed focal length objective lenses for these cameras was based on their ability to provide large depth of field (DoF) and required field of view (FoV). Multiple cross-hairs imprinted on the tank surfaces allow for image corrections arising from camera perspective and refraction. Results: We determined that by setting sCMOS to 16-bit dynamic range, truncating its FoV (1100×1100 pixels) to image the entire volume of the LS detector, and using 5.6 msec integration time imaging rate can be ramped up to 88 frames per second (fps). 20 mm focal length lens provides a 20 cm imaging DoF and 0.24 mm/pixel resolution. Master-slave camera configuration enable the slaves to initiate image acquisition instantly (within 2 µsec) after receiving a trigger signal. A computer with 128 GB RAM was used for spooling images from the cameras and can sustain a maximum recording time of 2 min per camera at 75 fps. Conclusion: The three sCMOS cameras are capable of high speed imaging. They can therefore be used for quick, high-resolution, and precise mapping of dose distributions from scanned spot proton beams in three dimensions.« less

  18. Magnetic Random Access Memory based non-volatile asynchronous Muller cell for ultra-low power autonomous applications

    NASA Astrophysics Data System (ADS)

    Di Pendina, G.; Zianbetov, E.; Beigne, E.

    2015-05-01

    Micro and nano electronic integrated circuit domain is today mainly driven by the advent of the Internet of Things for which the constraints are strong, especially in terms of power consumption and autonomy, not only during the computing phases but also during the standby or idle phases. In such ultra-low power applications, the circuit has to meet new constraints mainly linked to its changing energetic environment: long idle phases, automatic wake up, data back-up when the circuit is sporadically turned off, and ultra-low voltage power supply operation. Such circuits have to be completely autonomous regarding their unstable environment, while remaining in an optimum energetic configuration. Therefore, we propose in this paper the first MRAM-based non-volatile asynchronous Muller cell. This cell has been simulated and characterized in a very advanced 28 nm CMOS fully depleted silicon-on-insulator technology, presenting good power performance results due to an extremely efficient body biasing control together with ultra-wide supply voltage range from 160 mV up to 920 mV. The leakage current can be reduced to 154 pA thanks to reverse body biasing. We also propose an efficient standard CMOS bulk version of this cell in order to be compatible with different fabrication processes.

  19. Hot pixel generation in active pixel sensors: dosimetric and micro-dosimetric response

    NASA Technical Reports Server (NTRS)

    Scheick, Leif; Novak, Frank

    2003-01-01

    The dosimetric response of an active pixel sensor is analyzed. heavy ions are seen to damage the pixel in much the same way as gamma radiation. The probability of a hot pixel is seen to exhibit behavior that is not typical with other microdose effects.

  20. Increasing Linear Dynamic Range of a CMOS Image Sensor

    NASA Technical Reports Server (NTRS)

    Pain, Bedabrata

    2007-01-01

    A generic design and a corresponding operating sequence have been developed for increasing the linear-response dynamic range of a complementary metal oxide/semiconductor (CMOS) image sensor. The design provides for linear calibrated dual-gain pixels that operate at high gain at a low signal level and at low gain at a signal level above a preset threshold. Unlike most prior designs for increasing dynamic range of an image sensor, this design does not entail any increase in noise (including fixed-pattern noise), decrease in responsivity or linearity, or degradation of photometric calibration. The figure is a simplified schematic diagram showing the circuit of one pixel and pertinent parts of its column readout circuitry. The conventional part of the pixel circuit includes a photodiode having a small capacitance, CD. The unconventional part includes an additional larger capacitance, CL, that can be connected to the photodiode via a transfer gate controlled in part by a latch. In the high-gain mode, the signal labeled TSR in the figure is held low through the latch, which also helps to adapt the gain on a pixel-by-pixel basis. Light must be coupled to the pixel through a microlens or by back illumination in order to obtain a high effective fill factor; this is necessary to ensure high quantum efficiency, a loss of which would minimize the efficacy of the dynamic- range-enhancement scheme. Once the level of illumination of the pixel exceeds the threshold, TSR is turned on, causing the transfer gate to conduct, thereby adding CL to the pixel capacitance. The added capacitance reduces the conversion gain, and increases the pixel electron-handling capacity, thereby providing an extension of the dynamic range. By use of an array of comparators also at the bottom of the column, photocharge voltages on sampling capacitors in each column are compared with a reference voltage to determine whether it is necessary to switch from the high-gain to the low-gain mode. Depending upon the built-in offset in each pixel and in each comparator, the point at which the gain change occurs will be different, adding gain-dependent fixed pattern noise in each pixel. The offset, and hence the fixed pattern noise, is eliminated by sampling the pixel readout charge four times by use of four capacitors (instead of two such capacitors as in conventional design) connected to the bottom of the column via electronic switches SHS1, SHR1, SHS2, and SHR2, respectively, corresponding to high and low values of the signals TSR and RST. The samples are combined in an appropriate fashion to cancel offset-induced errors, and provide spurious-free imaging with extended dynamic range.

  1. Multiple-aperture optical design for micro-level cameras using 3D-printing method

    NASA Astrophysics Data System (ADS)

    Peng, Wei-Jei; Hsu, Wei-Yao; Cheng, Yuan-Chieh; Lin, Wen-Lung; Yu, Zong-Ru; Chou, Hsiao-Yu; Chen, Fong-Zhi; Fu, Chien-Chung; Wu, Chong-Syuan; Huang, Chao-Tsung

    2018-02-01

    The design of the ultra miniaturized camera using 3D-printing technology directly printed on to the complementary metal-oxide semiconductor (CMOS) imaging sensor is presented in this paper. The 3D printed micro-optics is manufactured using the femtosecond two-photon direct laser writing, and the figure error which could achieve submicron accuracy is suitable for the optical system. Because the size of the micro-level camera is approximately several hundreds of micrometers, the resolution is reduced much and highly limited by the Nyquist frequency of the pixel pitch. For improving the reduced resolution, one single-lens can be replaced by multiple-aperture lenses with dissimilar field of view (FOV), and then stitching sub-images with different FOV can achieve a high resolution within the central region of the image. The reason is that the angular resolution of the lens with smaller FOV is higher than that with larger FOV, and then the angular resolution of the central area can be several times than that of the outer area after stitching. For the same image circle, the image quality of the central area of the multi-lens system is significantly superior to that of a single-lens. The foveated image using stitching FOV breaks the limitation of the resolution for the ultra miniaturized imaging system, and then it can be applied such as biomedical endoscopy, optical sensing, and machine vision, et al. In this study, the ultra miniaturized camera with multi-aperture optics is designed and simulated for the optimum optical performance.

  2. Vacuum-compatible, ultra-low material budget Micro-Vertex Detector of the compressed baryonic matter experiment at FAIR

    NASA Astrophysics Data System (ADS)

    Koziel, Michal; Amar-Youcef, Samir; Bialas, Norbert; Deveaux, Michael; Fröhlich, Ingo; Klaus, Philipp; Michel, Jan; Milanović, Borislav; Müntz, Christian; Stroth, Joachim; Tischler, Tobias; Weirich, Roland; Wiebusch, Michael

    2017-02-01

    The Compressed Baryonic Matter (CBM) Experiment is one of the core experiments of the future FAIR facility near Darmstadt (Germany). The fixed-target experiment will explore the phase diagram of strongly interacting matter in the regime of high net baryon densities with numerous probes, among them open charm mesons. The Micro Vertex Detector (MVD) will provide the secondary vertex resolution of ∼ 50 μm along the beam axis, contribute to the background rejection in dielectron spectroscopy, and to the reconstruction of weak decays. The detector comprises four stations placed at 5, 10, 15, and 20 cm downstream the target and inside the target vacuum. The stations will be populated with highly granular CMOS Monolithic Active Pixel Sensors, which will feature a spatial resolution of < 5 μm, a non-ionizing radiation tolerance of >1013neq /cm2, an ionizing radiation tolerance of ∼ 3 Mrad, and a readout speed of a few 10 μs/frame. This work introduces the MVD-PRESTO project, which aims at integrating a precursor of the second station of the CBM-MVD meeting the following requirements: material budget of x /X0 < 0.5 %, vacuum compatibility, double-sided sensor integration on a Thermal Pyrolytic Graphite (TPG) carrier, and heat evacuation of about 350 mW/cm2/sensor with a temperature gradient of a few K/cm.

  3. A 1.2 Gb/s Data Transmission Unit in CMOS 0.18 μm technology for the ALICE Inner Tracking System front-end ASIC

    NASA Astrophysics Data System (ADS)

    Mazza, G.; Aglieri Rinella, G.; Benotto, F.; Corrales Morales, Y.; Kugathasan, T.; Lattuca, A.; Lupi, M.; Ravasenga, I.

    2017-02-01

    The upgrade of the ALICE Inner Tracking System is based on a Monolithic Active Pixel Sensor and ASIC designed in a CMOS 0.18 μ m process. In order to provide the required output bandwidth (1.2 Gb/s for the inner layers and 400 Mb/s for the outer ones) on a single high speed serial link, a custom Data Transmission Unit (DTU) has been developed in the same process. The DTU includes a clock multiplier PLL, a double data rate serializer and a pseudo-LVDS driver with pre-emphasis and is designed to be SEU tolerant.

  4. Single Photon Counting Performance and Noise Analysis of CMOS SPAD-Based Image Sensors

    PubMed Central

    Dutton, Neale A. W.; Gyongy, Istvan; Parmesan, Luca; Henderson, Robert K.

    2016-01-01

    SPAD-based solid state CMOS image sensors utilising analogue integrators have attained deep sub-electron read noise (DSERN) permitting single photon counting (SPC) imaging. A new method is proposed to determine the read noise in DSERN image sensors by evaluating the peak separation and width (PSW) of single photon peaks in a photon counting histogram (PCH). The technique is used to identify and analyse cumulative noise in analogue integrating SPC SPAD-based pixels. The DSERN of our SPAD image sensor is exploited to confirm recent multi-photon threshold quanta image sensor (QIS) theory. Finally, various single and multiple photon spatio-temporal oversampling techniques are reviewed. PMID:27447643

  5. Improved bandwidth and quantum efficiency in silicon photodiodes using photon-manipulating micro/nanostructures operating in the range of 700-1060 nm

    NASA Astrophysics Data System (ADS)

    Cansizoglu, Hilal; Gao, Yang; Ghandiparsi, Soroush; Kaya, Ahmet; Perez, Cesar Bartolo; Mayet, Ahmed; Ponizovskaya Devine, Ekaterina; Cansizoglu, Mehmet F.; Yamada, Toshishige; Elrefaie, Aly F.; Wang, Shih-Yuan; Islam, M. Saif

    2017-08-01

    Nanostructures allow broad spectrum and near-unity optical absorption and contributed to high performance low-cost Si photovoltaic devices. However, the efficiency is only a few percent higher than a conventional Si solar cell with thicker absorption layers. For high speed surface illuminated photodiodes, the thickness of the absorption layer is critical for short transit time and RC time. Recently a CMOS-compatible micro/nanohole silicon (Si) photodiode (PD) with more than 20 Gb/s data rate and with 52 % quantum efficiency (QE) at 850 nm was demonstrated. The achieved QE is over 400% higher than a similar Si PD with the same thickness but without absorption enhancement microstructure holes. The micro/nanoholes increases the QE by photon trapping, slow wave effects and generate a collective assemble of modes that radiate laterally, resulting in absorption enhancement and therefore increase in QE. Such Si PDs can be further designed to enhance the bandwidth (BW) of the PDs by reducing the device capacitance with etched holes in the pin junction. Here we present the BW and QE of Si PDs achievable with micro/nanoholes based on a combination of empirical evidence and device modeling. Higher than 50 Gb/s data rate with greater than 40% QE at 850 nm is conceivable in transceivers designed with such Si PDs that are integrated with photon trapping micro and nanostructures. By monolithic integration with CMOS/BiCMOS integrated circuits such as transimpedance amplifiers, equalizers, limiting amplifiers and other application specific integrated circuits (ASIC), the data rate can be increased to more than 50 Gb/s.

  6. Design and implementation of non-linear image processing functions for CMOS image sensor

    NASA Astrophysics Data System (ADS)

    Musa, Purnawarman; Sudiro, Sunny A.; Wibowo, Eri P.; Harmanto, Suryadi; Paindavoine, Michel

    2012-11-01

    Today, solid state image sensors are used in many applications like in mobile phones, video surveillance systems, embedded medical imaging and industrial vision systems. These image sensors require the integration in the focal plane (or near the focal plane) of complex image processing algorithms. Such devices must meet the constraints related to the quality of acquired images, speed and performance of embedded processing, as well as low power consumption. To achieve these objectives, low-level analog processing allows extracting the useful information in the scene directly. For example, edge detection step followed by a local maxima extraction will facilitate the high-level processing like objects pattern recognition in a visual scene. Our goal was to design an intelligent image sensor prototype achieving high-speed image acquisition and non-linear image processing (like local minima and maxima calculations). For this purpose, we present in this article the design and test of a 64×64 pixels image sensor built in a standard CMOS Technology 0.35 μm including non-linear image processing. The architecture of our sensor, named nLiRIC (non-Linear Rapid Image Capture), is based on the implementation of an analog Minima/Maxima Unit. This MMU calculates the minimum and maximum values (non-linear functions), in real time, in a 2×2 pixels neighbourhood. Each MMU needs 52 transistors and the pitch of one pixel is 40×40 mu m. The total area of the 64×64 pixels is 12.5mm2. Our tests have shown the validity of the main functions of our new image sensor like fast image acquisition (10K frames per second), minima/maxima calculations in less then one ms.

  7. New ultraportable display technology and applications

    NASA Astrophysics Data System (ADS)

    Alvelda, Phillip; Lewis, Nancy D.

    1998-08-01

    MicroDisplay devices are based on a combination of technologies rooted in the extreme integration capability of conventionally fabricated CMOS active-matrix liquid crystal display substrates. Customized diffraction grating and optical distortion correction technology for lens-system compensation allow the elimination of many lenses and systems-level components. The MicroDisplay Corporation's miniature integrated information display technology is rapidly leading to many new defense and commercial applications. There are no moving parts in MicroDisplay substrates, and the fabrication of the color generating gratings, already part of the CMOS circuit fabrication process, is effectively cost and manufacturing process-free. The entire suite of the MicroDisplay Corporation's technologies was devised to create a line of application- specific integrated circuit single-chip display systems with integrated computing, memory, and communication circuitry. Next-generation portable communication, computer, and consumer electronic devices such as truly portable monitor and TV projectors, eyeglass and head mounted displays, pagers and Personal Communication Services hand-sets, and wristwatch-mounted video phones are among the may target commercial markets for MicroDisplay technology. Defense applications range from Maintenance and Repair support, to night-vision systems, to portable projectors for mobile command and control centers.

  8. The Effects of Radiation on Imagery Sensors in Space

    NASA Technical Reports Server (NTRS)

    Mathis, Dylan

    2007-01-01

    Recent experience using high definition video on the International Space Station reveals camera pixel degradation due to particle radiation to be a much more significant problem with high definition cameras than with standard definition video. Although it may at first appear that increased pixel density on the imager is the logical explanation for this, the ISS implementations of high definition suggest a more complex causal and mediating factor mix. The degree of damage seems to vary from one type of camera to another, and this variation prompts a reconsideration of the possible factors in pixel loss, such as imager size, number of pixels, pixel aperture ratio, imager type (CCD or CMOS), method of error correction/concealment, and the method of compression used for recording or transmission. The problem of imager pixel loss due to particle radiation is not limited to out-of-atmosphere applications. Since particle radiation increases with altitude, it is not surprising to find anecdotal evidence that video cameras subject to many hours of airline travel show an increased incidence of pixel loss. This is even evident in some standard definition video applications, and pixel loss due to particle radiation only stands to become a more salient issue considering the continued diffusion of high definition video cameras in the marketplace.

  9. Design of a 16 gray scales 320 × 240 pixels OLED-on-silicon driving circuit

    NASA Astrophysics Data System (ADS)

    Ran, Huang; Xiaohui, Wang; Wenbo, Wang; Huan, Du; Zhengsheng, Han

    2009-01-01

    A 320×240 pixel organic-light-emitting-diode-on-silicon (OLEDoS) driving circuit is implemented using the standard 0.5 μm CMOS process of CSMC. It gives 16 gray scales with integrated 4 bit D/A converters. A three-transistor voltage-programmed OLED pixel driver is proposed, which can realize the very small current driving required for the OLEDoS microdisplay. Both the D/A converter and the pixel driver are implemented with pMOS devices. The pass-transistor and capacitance in the OLED pixel driver can be used to sample the output of the D/A converter. An additional pMOS is added to OLED pixel driver, which is used to control the D/A converter operating only when one row is on. This can reduce the circuit's power consumption. This driving circuit can work properly in a frame frequency of 50 Hz, and the final layout of this circuit is given. The pixel area is 28.4 × 28.4 μm2 and the display area is 10.7 × 8.0 mm2 (the diagonal is about 13 mm). The measured pixel gray scale voltage shows that the function of the driver circuit is correct, and the power consumption of the chip is about 350 mW.

  10. Novel Hybrid CMOS X-ray Detector Developments for Future Large Area and High Resolution X-ray Astronomy Missions

    NASA Astrophysics Data System (ADS)

    Falcone, Abe

    In the coming years, X-ray astronomy will require new soft X-ray detectors that can be read very quickly with low noise and can achieve small pixel sizes over a moderately large focal plane area. These requirements will be present for a variety of X-ray missions that will attempt to address science that was highly ranked by the 2010 Decadal Survey, including missions with science that overlaps with that of IXO and Athena, as well as other missions addressing science topics beyond those of IXO and Athena. An X-ray Surveyor mission was recently chosen by NASA for study by a Science & Technology Definition Team (STDT) so it can be considered as an option for an upcom-ing flagship mission. A mission such as this was endorsed by the NASA long term planning document entitled "Enduring Quests, Daring Visions," and a detailed description of one possible reali-zation of such a mission has been referred to as SMART-X, which was described in a recent NASA RFI response. This provides an example of a future mission concept with these requirements since it has high X-ray throughput and excellent spatial resolution. We propose to continue to modify current active pixel sensor designs, in particular the hybrid CMOS detectors that we have been working with for several years, and implement new in-pixel technologies that will allow us to achieve these ambitious and realistic requirements on a timeline that will make them available to upcoming X-ray missions. This proposal is a continuation of our program that has been work-ing on these developments for the past several years. The first 3 years of the program led to the development of a new circuit design for each pixel, which has now been shown to be suitable for a larger detector array. The proposed activity for the next four years will be to incorporate this pixel design into a new design of a full detector array (2k×2k pixels with digital output) and to fabricate this full-sized device so it can be thoroughly tested and characterized.

  11. Polypyrrole Porous Micro Humidity Sensor Integrated with a Ring Oscillator Circuit on Chip

    PubMed Central

    Yang, Ming-Zhi; Dai, Ching-Liang; Lu, De-Hao

    2010-01-01

    This study presents the design and fabrication of a capacitive micro humidity sensor integrated with a five-stage ring oscillator circuit on chip using the complimentary metal oxide semiconductor (CMOS) process. The area of the humidity sensor chip is about 1 mm2. The humidity sensor consists of a sensing capacitor and a sensing film. The sensing capacitor is constructed from spiral interdigital electrodes that can enhance the sensitivity of the sensor. The sensing film of the sensor is polypyrrole, which is prepared by the chemical polymerization method, and the film has a porous structure. The sensor needs a post-CMOS process to coat the sensing film. The post-CMOS process uses a wet etching to etch the sacrificial layers, and then the polypyrrole is coated on the sensing capacitor. The sensor generates a change in capacitance when the sensing film absorbs or desorbs vapor. The ring oscillator circuit converts the capacitance variation of the sensor into the oscillation frequency output. Experimental results show that the sensitivity of the humidity sensor is about 99 kHz/%RH at 25 °C. PMID:22163459

  12. Polypyrrole porous micro humidity sensor integrated with a ring oscillator circuit on chip.

    PubMed

    Yang, Ming-Zhi; Dai, Ching-Liang; Lu, De-Hao

    2010-01-01

    This study presents the design and fabrication of a capacitive micro humidity sensor integrated with a five-stage ring oscillator circuit on chip using the complimentary metal oxide semiconductor (CMOS) process. The area of the humidity sensor chip is about 1 mm(2). The humidity sensor consists of a sensing capacitor and a sensing film. The sensing capacitor is constructed from spiral interdigital electrodes that can enhance the sensitivity of the sensor. The sensing film of the sensor is polypyrrole, which is prepared by the chemical polymerization method, and the film has a porous structure. The sensor needs a post-CMOS process to coat the sensing film. The post-CMOS process uses a wet etching to etch the sacrificial layers, and then the polypyrrole is coated on the sensing capacitor. The sensor generates a change in capacitance when the sensing film absorbs or desorbs vapor. The ring oscillator circuit converts the capacitance variation of the sensor into the oscillation frequency output. Experimental results show that the sensitivity of the humidity sensor is about 99 kHz/%RH at 25 °C.

  13. Sub-pixel localisation of passive micro-coil fiducial markers in interventional MRI.

    PubMed

    Rea, Marc; McRobbie, Donald; Elhawary, Haytham; Tse, Zion T H; Lamperth, Michael; Young, Ian

    2009-04-01

    Electromechanical devices enable increased accuracy in surgical procedures, and the recent development of MRI-compatible mechatronics permits the use of MRI for real-time image guidance. Integrated imaging of resonant micro-coil fiducials provides an accurate method of tracking devices in a scanner with increased flexibility compared to gradient tracking. Here we report on the ability of ten different image-processing algorithms to track micro-coil fiducials with sub-pixel accuracy. Five algorithms: maximum pixel, barycentric weighting, linear interpolation, quadratic fitting and Gaussian fitting were applied both directly to the pixel intensity matrix and to the cross-correlation matrix obtained by 2D convolution with a reference image. Using images of a 3 mm fiducial marker and a pixel size of 1.1 mm, intensity linear interpolation, which calculates the position of the fiducial centre by interpolating the pixel data to find the fiducial edges, was found to give the best performance for minimal computing power; a maximum error of 0.22 mm was observed in fiducial localisation for displacements up to 40 mm. The inherent standard deviation of fiducial localisation was 0.04 mm. This work enables greater accuracy to be achieved in passive fiducial tracking.

  14. A Multipurpose CMOS Platform for Nanosensing

    PubMed Central

    Bonanno, Alberto; Sanginario, Alessandro; Marasso, Simone L.; Miccoli, Beatrice; Bejtka, Katarzyna; Benetto, Simone; Demarchi, Danilo

    2016-01-01

    This paper presents a customizable sensing system based on functionalized nanowires (NWs) assembled onto complementary metal oxide semiconductor (CMOS) technology. The Micro-for-Nano (M4N) chip integrates on top of the electronics an array of aluminum microelectrodes covered with gold by means of a customized electroless plating process. The NW assembly process is driven by an array of on-chip dielectrophoresis (DEP) generators, enabling a custom layout of different nanosensors on the same microelectrode array. The electrical properties of each assembled NW are singularly sensed through an in situ CMOS read-out circuit (ROC) that guarantees a low noise and reliable measurement. The M4N chip is directly connected to an external microcontroller for configuration and data processing. The processed data are then redirected to a workstation for real-time data visualization and storage during sensing experiments. As proof of concept, ZnO nanowires have been integrated onto the M4N chip to validate the approach that enables different kind of sensing experiments. The device has been then irradiated by an external UV source with adjustable power to measure the ZnO sensitivity to UV-light exposure. A maximum variation of about 80% of the ZnO-NW resistance has been detected by the M4N system when the assembled 5 μm × 500 nm single ZnO-NW is exposed to an estimated incident radiant UV-light flux in the range of 1 nW–229 nW. The performed experiments prove the efficiency of the platform conceived for exploiting any kind of material that can change its capacitance and/or resistance due to an external stimulus. PMID:27916911

  15. A Multipurpose CMOS Platform for Nanosensing.

    PubMed

    Bonanno, Alberto; Sanginario, Alessandro; Marasso, Simone L; Miccoli, Beatrice; Bejtka, Katarzyna; Benetto, Simone; Demarchi, Danilo

    2016-11-30

    This paper presents a customizable sensing system based on functionalized nanowires (NWs) assembled onto complementary metal oxide semiconductor (CMOS) technology. The Micro-for-Nano (M4N) chip integrates on top of the electronics an array of aluminum microelectrodes covered with gold by means of a customized electroless plating process. The NW assembly process is driven by an array of on-chip dielectrophoresis (DEP) generators, enabling a custom layout of different nanosensors on the same microelectrode array. The electrical properties of each assembled NW are singularly sensed through an in situ CMOS read-out circuit (ROC) that guarantees a low noise and reliable measurement. The M4N chip is directly connected to an external microcontroller for configuration and data processing. The processed data are then redirected to a workstation for real-time data visualization and storage during sensing experiments. As proof of concept, ZnO nanowires have been integrated onto the M4N chip to validate the approach that enables different kind of sensing experiments. The device has been then irradiated by an external UV source with adjustable power to measure the ZnO sensitivity to UV-light exposure. A maximum variation of about 80% of the ZnO-NW resistance has been detected by the M4N system when the assembled 5 μ m × 500 nm single ZnO-NW is exposed to an estimated incident radiant UV-light flux in the range of 1 nW-229 nW. The performed experiments prove the efficiency of the platform conceived for exploiting any kind of material that can change its capacitance and/or resistance due to an external stimulus.

  16. CMOS Amperometric ADC With High Sensitivity, Dynamic Range and Power Efficiency for Air Quality Monitoring.

    PubMed

    Li, Haitao; Boling, C Sam; Mason, Andrew J

    2016-08-01

    Airborne pollutants are a leading cause of illness and mortality globally. Electrochemical gas sensors show great promise for personal air quality monitoring to address this worldwide health crisis. However, implementing miniaturized arrays of such sensors demands high performance instrumentation circuits that simultaneously meet challenging power, area, sensitivity, noise and dynamic range goals. This paper presents a new multi-channel CMOS amperometric ADC featuring pixel-level architecture for gas sensor arrays. The circuit combines digital modulation of input currents and an incremental Σ∆ ADC to achieve wide dynamic range and high sensitivity with very high power efficiency and compact size. Fabricated in 0.5 [Formula: see text] CMOS, the circuit was measured to have 164 dB cross-scale dynamic range, 100 fA sensitivity while consuming only 241 [Formula: see text] and 0.157 [Formula: see text] active area per channel. Electrochemical experiments with liquid and gas targets demonstrate the circuit's real-time response to a wide range of analyte concentrations.

  17. Radiation Hardening of Digital Color CMOS Camera-on-a-Chip Building Blocks for Multi-MGy Total Ionizing Dose Environments

    NASA Astrophysics Data System (ADS)

    Goiffon, Vincent; Rolando, Sébastien; Corbière, Franck; Rizzolo, Serena; Chabane, Aziouz; Girard, Sylvain; Baer, Jérémy; Estribeau, Magali; Magnan, Pierre; Paillet, Philippe; Van Uffelen, Marco; Mont Casellas, Laura; Scott, Robin; Gaillardin, Marc; Marcandella, Claude; Marcelot, Olivier; Allanche, Timothé

    2017-01-01

    The Total Ionizing Dose (TID) hardness of digital color Camera-on-a-Chip (CoC) building blocks is explored in the Multi-MGy range using 60Co gamma-ray irradiations. The performances of the following CoC subcomponents are studied: radiation hardened (RH) pixel and photodiode designs, RH readout chain, Color Filter Arrays (CFA) and column RH Analog-to-Digital Converters (ADC). Several radiation hardness improvements are reported (on the readout chain and on dark current). CFAs and ADCs degradations appear to be very weak at the maximum TID of 6 MGy(SiO2), 600 Mrad. In the end, this study demonstrates the feasibility of a MGy rad-hard CMOS color digital camera-on-a-chip, illustrated by a color image captured after 6 MGy(SiO2) with no obvious degradation. An original dark current reduction mechanism in irradiated CMOS Image Sensors is also reported and discussed.

  18. Novel Hybrid CMOS X-ray Detector Developments for Future Large Area and High Resolution X-ray Astronomy Missions

    NASA Astrophysics Data System (ADS)

    Falcone, Abe

    In the coming years, X-ray astronomy will require new soft X-ray detectors that can be read very quickly with low noise and can achieve small pixel sizes over a moderately large focal plane area. These requirements will be present for a variety of X-ray missions that will attempt to address science that was highly ranked by the Decadal Review, including missions with science that over-laps with that of IXO and ATHENA, as well as other missions addressing science topics beyond those of IXO and ATHENA. An X-ray Surveyor mission was recently endorsed by the NASA long term planning document entitled "Enduring Quests, Daring Visions," and a detailed description of one possible realization of such a mission has been referred to as SMART-X, which was described in a recent NASA RFI response. This provides an example of a future mission concept with these requirements since it has high X-ray throughput and excellent spatial resolution. We propose to continue to modify current active pixel sensor designs, in particular the hybrid CMOS detectors that we have been working with for several years, and implement new in-pixel technologies that will allow us to achieve these ambitious and realistic requirements on a timeline that will make them available to upcoming X-ray missions. This proposal is a continuation of our program that has been working on these developments for the past several years.

  19. Optical and electrical characterization of a back-thinned CMOS active pixel sensor

    NASA Astrophysics Data System (ADS)

    Blue, Andrew; Clark, A.; Houston, S.; Laing, A.; Maneuski, D.; Prydderch, M.; Turchetta, R.; O'Shea, V.

    2009-06-01

    This work will report on the first work on the characterization of a back-thinned Vanilla-a 512×512 (25 μm squared) active pixel sensor (APS). Characterization of the detectors was carried out through the analysis of photon transfer curves to yield a measurement of full well capacity, noise levels, gain constants and linearity. Spectral characterization of the sensors was also performed in the visible and UV regions. A full comparison against non-back-thinned front illuminated Vanilla sensors is included. Such measurements suggest that the Vanilla APS will be suitable for a wide range of applications, including particle physics and biomedical imaging.

  20. A PFM-based MWIR DROIC employing off-pixel fine conversion of photocharge to digital using integrated column ADCs

    NASA Astrophysics Data System (ADS)

    Abbasi, S.; Galioglu, A.; Shafique, A.; Ceylan, O.; Yazici, M.; Gurbuz, Y.

    2017-02-01

    A 32x32 prototype of a digital readout IC (DROIC) for medium-wave infrared focal plane arrays (MWIR IR-FPAs) is presented. The DROIC employs in-pixel photocurrent to digital conversion based on a pulse frequency modulation (PFM) loop and boasts a novel feature of off-pixel residue conversion using 10-bit column SAR ADCs. The remaining charge at the end of integration in typical PFM based digital pixel sensors is usually wasted. Previous works employing in-pixel extended counting methods make use of extra memory and counters to convert this left-over charge to digital, thereby performing fine conversion of the incident photocurrent. This results in a low quantization noise and hence keeps the readout noise low. However, focal plane arrays (FPAs) with small pixel pitch are constrained in pixel area, which makes it difficult to benefit from in-pixel extended counting circuitry. Thus, in this work, a novel approach to measure the residue outside the pixel using column -parallel SAR ADCs has been proposed. Moreover, a modified version of the conventional PFM based pixel has been designed to help hold the residue charge and buffer it to the column ADC. In addition to the 2D array of pixels, the prototype consists of 32 SAR ADCs, a timing controller block and a memory block to buffer the residue data coming out of the ADCs. The prototype has been designed and fabricated in 90nm CMOS.

  1. Method of fabrication of display pixels driven by silicon thin film transistors

    DOEpatents

    Carey, Paul G.; Smith, Patrick M.

    1999-01-01

    Display pixels driven by silicon thin film transistors are fabricated on plastic substrates for use in active matrix displays, such as flat panel displays. The process for forming the pixels involves a prior method for forming individual silicon thin film transistors on low-temperature plastic substrates. Low-temperature substrates are generally considered as being incapable of withstanding sustained processing temperatures greater than about 200.degree. C. The pixel formation process results in a complete pixel and active matrix pixel array. A pixel (or picture element) in an active matrix display consists of a silicon thin film transistor (TFT) and a large electrode, which may control a liquid crystal light valve, an emissive material (such as a light emitting diode or LED), or some other light emitting or attenuating material. The pixels can be connected in arrays wherein rows of pixels contain common gate electrodes and columns of pixels contain common drain electrodes. The source electrode of each pixel TFT is connected to its pixel electrode, and is electrically isolated from every other circuit element in the pixel array.

  2. First tests of a novel radiation hard CMOS sensor process for Depleted Monolithic Active Pixel Sensors

    NASA Astrophysics Data System (ADS)

    Pernegger, H.; Bates, R.; Buttar, C.; Dalla, M.; van Hoorne, J. W.; Kugathasan, T.; Maneuski, D.; Musa, L.; Riedler, P.; Riegel, C.; Sbarra, C.; Schaefer, D.; Schioppa, E. J.; Snoeys, W.

    2017-06-01

    The upgrade of the ATLAS [1] tracking detector for the High-Luminosity Large Hadron Collider (LHC) at CERN requires novel radiation hard silicon sensor technologies. Significant effort has been put into the development of monolithic CMOS sensors but it has been a challenge to combine a low capacitance of the sensing node with full depletion of the sensitive layer. Low capacitance brings low analog power. Depletion of the sensitive layer causes the signal charge to be collected by drift sufficiently fast to separate hits from consecutive bunch crossings (25 ns at the LHC) and to avoid losing the charge by trapping. This paper focuses on the characterization of charge collection properties and detection efficiency of prototype sensors originally designed in the framework of the ALICE Inner Tracking System (ITS) upgrade [2]. The prototypes are fabricated both in the standard TowerJazz 180nm CMOS imager process [3] and in an innovative modification of this process developed in collaboration with the foundry, aimed to fully deplete the sensitive epitaxial layer and enhance the tolerance to non-ionizing energy loss. Sensors fabricated in standard and modified process variants were characterized using radioactive sources, focused X-ray beam and test beams before and after irradiation. Contrary to sensors manufactured in the standard process, sensors from the modified process remain fully functional even after a dose of 1015neq/cm2, which is the the expected NIEL radiation fluence for the outer pixel layers in the future ATLAS Inner Tracker (ITk) [4].

  3. The Europa Imaging System (EIS), a Camera Suite to investigate Europa's Geology, Ice Shell, and Potential for Current Activity

    NASA Astrophysics Data System (ADS)

    Turtle, E. P.; McEwen, A. S.; Osterman, S. N.; Boldt, J. D.; Strohbehn, K.; EIS Science Team

    2016-10-01

    EIS NAC and WAC use identical rad-hard rapid-readout 4k × 2k CMOS detectors for imaging during close (≤25 km) fast ( 4.5 km/s) Europa flybys. NAC achieves 0.5 m/pixel over a 2-km swath from 50 km, and WAC provides context pushbroom stereo imaging.

  4. A Fixed-Pattern Noise Correction Method Based on Gray Value Compensation for TDI CMOS Image Sensor.

    PubMed

    Liu, Zhenwang; Xu, Jiangtao; Wang, Xinlei; Nie, Kaiming; Jin, Weimin

    2015-09-16

    In order to eliminate the fixed-pattern noise (FPN) in the output image of time-delay-integration CMOS image sensor (TDI-CIS), a FPN correction method based on gray value compensation is proposed. One hundred images are first captured under uniform illumination. Then, row FPN (RFPN) and column FPN (CFPN) are estimated based on the row-mean vector and column-mean vector of all collected images, respectively. Finally, RFPN are corrected by adding the estimated RFPN gray value to the original gray values of pixels in the corresponding row, and CFPN are corrected by subtracting the estimated CFPN gray value from the original gray values of pixels in the corresponding column. Experimental results based on a 128-stage TDI-CIS show that, after correcting the FPN in the image captured under uniform illumination with the proposed method, the standard-deviation of row-mean vector decreases from 5.6798 to 0.4214 LSB, and the standard-deviation of column-mean vector decreases from 15.2080 to 13.4623 LSB. Both kinds of FPN in the real images captured by TDI-CIS are eliminated effectively with the proposed method.

  5. Vulnerability of CMOS image sensors in Megajoule Class Laser harsh environment.

    PubMed

    Goiffon, V; Girard, S; Chabane, A; Paillet, P; Magnan, P; Cervantes, P; Martin-Gonthier, P; Baggio, J; Estribeau, M; Bourgade, J-L; Darbon, S; Rousseau, A; Glebov, V Yu; Pien, G; Sangster, T C

    2012-08-27

    CMOS image sensors (CIS) are promising candidates as part of optical imagers for the plasma diagnostics devoted to the study of fusion by inertial confinement. However, the harsh radiative environment of Megajoule Class Lasers threatens the performances of these optical sensors. In this paper, the vulnerability of CIS to the transient and mixed pulsed radiation environment associated with such facilities is investigated during an experiment at the OMEGA facility at the Laboratory for Laser Energetics (LLE), Rochester, NY, USA. The transient and permanent effects of the 14 MeV neutron pulse on CIS are presented. The behavior of the tested CIS shows that active pixel sensors (APS) exhibit a better hardness to this harsh environment than a CCD. A first order extrapolation of the reported results to the higher level of radiation expected for Megajoule Class Laser facilities (Laser Megajoule in France or National Ignition Facility in the USA) shows that temporarily saturated pixels due to transient neutron-induced single event effects will be the major issue for the development of radiation-tolerant plasma diagnostic instruments whereas the permanent degradation of the CIS related to displacement damage or total ionizing dose effects could be reduced by applying well known mitigation techniques.

  6. CMOS detector arrays in a virtual 10-kilopixel camera for coherent terahertz real-time imaging.

    PubMed

    Boppel, Sebastian; Lisauskas, Alvydas; Max, Alexander; Krozer, Viktor; Roskos, Hartmut G

    2012-02-15

    We demonstrate the principle applicability of antenna-coupled complementary metal oxide semiconductor (CMOS) field-effect transistor arrays as cameras for real-time coherent imaging at 591.4 GHz. By scanning a few detectors across the image plane, we synthesize a focal-plane array of 100×100 pixels with an active area of 20×20 mm2, which is applied to imaging in transmission and reflection geometries. Individual detector pixels exhibit a voltage conversion loss of 24 dB and a noise figure of 41 dB for 16 μW of the local oscillator (LO) drive. For object illumination, we use a radio-frequency (RF) source with 432 μW at 590 GHz. Coherent detection is realized by quasioptical superposition of the image and the LO beam with 247 μW. At an effective frame rate of 17 Hz, we achieve a maximum dynamic range of 30 dB in the center of the image and more than 20 dB within a disk of 18 mm diameter. The system has been used for surface reconstruction resolving a height difference in the μm range.

  7. Design of a Low-Light-Level Image Sensor with On-Chip Sigma-Delta Analog-to- Digital Conversion

    NASA Technical Reports Server (NTRS)

    Mendis, Sunetra K.; Pain, Bedabrata; Nixon, Robert H.; Fossum, Eric R.

    1993-01-01

    The design and projected performance of a low-light-level active-pixel-sensor (APS) chip with semi-parallel analog-to-digital (A/D) conversion is presented. The individual elements have been fabricated and tested using MOSIS* 2 micrometer CMOS technology, although the integrated system has not yet been fabricated. The imager consists of a 128 x 128 array of active pixels at a 50 micrometer pitch. Each column of pixels shares a 10-bit A/D converter based on first-order oversampled sigma-delta (Sigma-Delta) modulation. The 10-bit outputs of each converter are multiplexed and read out through a single set of outputs. A semi-parallel architecture is chosen to achieve 30 frames/second operation even at low light levels. The sensor is designed for less than 12 e^- rms noise performance.

  8. Test beam measurement of the first prototype of the fast silicon pixel monolithic detector for the TT-PET project

    NASA Astrophysics Data System (ADS)

    Paolozzi, L.; Bandi, Y.; Benoit, M.; Cardarelli, R.; Débieux, S.; Forshaw, D.; Hayakawa, D.; Iacobucci, G.; Kaynak, M.; Miucci, A.; Nessi, M.; Ratib, O.; Ripiccini, E.; Rücker, H.; Valerio, P.; Weber, M.

    2018-04-01

    The TT-PET collaboration is developing a PET scanner for small animals with 30 ps time-of-flight resolution and sub-millimetre 3D detection granularity. The sensitive element of the scanner is a monolithic silicon pixel detector based on state-of-the-art SiGe BiCMOS technology. The first ASIC prototype for the TT-PET was produced and tested in the laboratory and with minimum ionizing particles. The electronics exhibit an equivalent noise charge below 600 e‑ RMS and a pulse rise time of less than 2 ns , in accordance with the simulations. The pixels with a capacitance of 0.8 pF were measured to have a detection efficiency greater than 99% and, although in the absence of the post-processing, a time resolution of approximately 200 ps .

  9. Pixelized Measurement of (99m)Tc-HDP Micro Particles Formed in Gamma Correction Phantom Pinhole Scan: a Reference Study.

    PubMed

    Jung, Joo-Young; Cheon, Gi Jeong; Lee, Yun-Sang; Ha, Seunggyun; Chae, Mi-Hye; Chung, Yong-An; Yoon, Do Kyun; Bahk, Yong-Whee

    2016-09-01

    Currently, traumatic bone diseases are diagnosed by assessing the micro (99m)Tc-hydroxymethylene diphosphonate (HDP) uptake in injured trabeculae with ongoing osteoneogenesis demonstrated by gamma correction pinhole scan (GCPS). However, the mathematic size quantification of micro-uptake is not yet available. We designed and performed this phantom-based study to set up an in-vitro model of the mathematical calculation of micro-uptake by the pixelized measurement. The micro (99m)Tc-HDP deposits used in this study were spontaneously formed both in a large standard flood and small house-made dish phantoms. The processing was as follows: first, phantoms were flooded with distilled water and (99m)Tc-HDP was therein injected to induce micro (99m)Tc-HDP deposition; second, the deposits were scanned using parallel-hole and pinhole collimator to generally survey (99m)Tc-HDP deposition pattern; and third, the scans underwent gamma correction (GC) to discern individual deposits for size measurement. In original naïve scans, tracer distribution was simply nebulous in appearance and, hence, could not be measured. Impressively, however, GCPS could discern individual micro deposits so that they were calculated by pixelized measurement. Phantoms naturally formed micro (99m)Tc-HDP deposits that are analogous to (99m)Tc-HDP uptake on in-vivo bone scan. The smallest one we measured was 0.414 mm. Flooded phantoms and therein injected (99m)Tc-HDP form nebulous micro (99m)Tc-HDP deposits that are rendered discernible by GCPB and precisely calculable using pixelized measurement. This method can be used for precise quantitative and qualitative diagnosis of bone and joint diseases at the trabecular level.

  10. Dual light field and polarization imaging using CMOS diffractive image sensors.

    PubMed

    Jayasuriya, Suren; Sivaramakrishnan, Sriram; Chuang, Ellen; Guruaribam, Debashree; Wang, Albert; Molnar, Alyosha

    2015-05-15

    In this Letter we present, to the best of our knowledge, the first integrated CMOS image sensor that can simultaneously perform light field and polarization imaging without the use of external filters or additional optical elements. Previous work has shown how photodetectors with two stacks of integrated metal gratings above them (called angle sensitive pixels) diffract light in a Talbot pattern to capture four-dimensional light fields. We show, in addition to diffractive imaging, that these gratings polarize incoming light and characterize the response of these sensors to polarization and incidence angle. Finally, we show two applications of polarization imaging: imaging stress-induced birefringence and identifying specular reflections in scenes to improve light field algorithms for these scenes.

  11. e2v CMOS and CCD sensors and systems for astronomy

    NASA Astrophysics Data System (ADS)

    Jorden, P. R.; Jerram, P. A.; Fryer, M.; Stefanov, K. D.

    2017-07-01

    e2v designs and manufactures a wide range of sensors for space and astronomy applications. This includes high performance CCDs for X-ray, visible and near-IR wavelengths. In this paper we illustrate the maturity of CMOS capability for these applications; examples are presented together with performance data. The majority of e2v sensors for these applications are back-thinned for highest spectral response and designed for very low read-out noise; the combination delivers high signal to noise ratio in association with a variety of formats and package designs. The growing e2v capability in delivery of sub-systems and cryogenic cameras is illustrated—including the 1.2 Giga-pixel J-PAS camera system.

  12. Low-power coprocessor for Haar-like feature extraction with pixel-based pipelined architecture

    NASA Astrophysics Data System (ADS)

    Luo, Aiwen; An, Fengwei; Fujita, Yuki; Zhang, Xiangyu; Chen, Lei; Jürgen Mattausch, Hans

    2017-04-01

    Intelligent analysis of image and video data requires image-feature extraction as an important processing capability for machine-vision realization. A coprocessor with pixel-based pipeline (CFEPP) architecture is developed for real-time Haar-like cell-based feature extraction. Synchronization with the image sensor’s pixel frequency and immediate usage of each input pixel for the feature-construction process avoids the dependence on memory-intensive conventional strategies like integral-image construction or frame buffers. One 180 nm CMOS prototype can extract the 1680-dimensional Haar-like feature vectors, applied in the speeded up robust features (SURF) scheme, using an on-chip memory of only 96 kb (kilobit). Additionally, a low power dissipation of only 43.45 mW at 1.8 V supply voltage is achieved during VGA video procession at 120 MHz frequency with more than 325 fps. The Haar-like feature-extraction coprocessor is further evaluated by the practical application of vehicle recognition, achieving the expected high accuracy which is comparable to previous work.

  13. Toward VIP-PIX: A Low Noise Readout ASIC for Pixelated CdTe Gamma-Ray Detectors for Use in the Next Generation of PET Scanners.

    PubMed

    Macias-Montero, Jose-Gabriel; Sarraj, Maher; Chmeissani, Mokhtar; Puigdengoles, Carles; Lorenzo, Gianluca De; Martínez, Ricardo

    2013-08-01

    VIP-PIX will be a low noise and low power pixel readout electronics with digital output for pixelated Cadmium Telluride (CdTe) detectors. The proposed pixel will be part of a 2D pixel-array detector for various types of nuclear medicine imaging devices such as positron-emission tomography (PET) scanners, Compton gamma cameras, and positron-emission mammography (PEM) scanners. Each pixel will include a SAR ADC that provides the energy deposited with 10-bit resolution. Simultaneously, the self-triggered pixel which will be connected to a global time-to-digital converter (TDC) with 1 ns resolution will provide the event's time stamp. The analog part of the readout chain and the ADC have been fabricated with TSMC 0.25 μ m mixed-signal CMOS technology and characterized with an external test pulse. The power consumption of these parts is 200 μ W from a 2.5 V supply. It offers 4 switchable gains from ±10 mV/fC to ±40 mV/fC and an input charge dynamic range of up to ±70 fC for the minimum gain for both polarities. Based on noise measurements, the expected equivalent noise charge (ENC) is 65 e - RMS at room temperature.

  14. A new high dynamic range ROIC with smart light intensity control unit

    NASA Astrophysics Data System (ADS)

    Yazici, Melik; Ceylan, Omer; Shafique, Atia; Abbasi, Shahbaz; Galioglu, Arman; Gurbuz, Yasar

    2017-05-01

    This journal presents a new high dynamic range ROIC with smart pixel which consists of two pre-amplifiers that are controlled by a circuit inside the pixel. Each pixel automatically decides which pre-amplifier is used according to the incoming illumination level. Instead of using single pre-amplifier, two input pre-amplifiers, which are optimized for different signal levels, are placed inside each pixel. The smart circuit mechanism, which decides the best input circuit according to the incoming light level, is also designed for each pixel. In short, an individual pixel has the ability to select the best input amplifier circuit that performs the best/highest SNR for the incoming signal level. A 32 × 32 ROIC prototype chip is designed to demonstrate the concept in 0.18 μ m CMOS technology. The prototype is optimized for NIR and SWIR bands. Instead of a detector, process variation optimized current sources are placed inside the ROIC. The chip achieves minimum 8.6 e- input referred noise and 98.9 dB dynamic range. It has the highest dynamic range in the literature in terms of analog ROICs for SWIR band. It is operating in room temperature and power consumption is 2.8 μ W per pixel.

  15. MT3825BA: a 384×288-25µm ROIC for uncooled microbolometer FPAs

    NASA Astrophysics Data System (ADS)

    Eminoglu, Selim; Gulden, M. Ali; Bayhan, Nusret; Incedere, O. Samet; Soyer, S. Tuncer; Ustundag, Cem M. B.; Isikhan, Murat; Kocak, Serhat; Turan, Ozge; Yalcin, Cem; Akin, Tayfun

    2014-06-01

    This paper reports the development of a new microbolometer Readout Integrated Circuit (ROIC) called MT3825BA. It has a format of 384 × 288 and a pixel pitch of 25μm. MT3825BA is Mikro-Tasarim's second microbolometer ROIC product, which is developed specifically for resistive surface micro-machined microbolometer detector arrays using high-TCR pixel materials, such as VOx and a-Si. MT3825BA has a system-on-chip architecture, where all the timing, biasing, and pixel non-uniformity correction (NUC) operations in the ROIC are applied using on-chip circuitry simplifying the use and system integration of this ROIC. The ROIC is designed to support pixel resistance values ranging from 30 KΩ to 100 KΩ. MT3825BA is operated using conventional row based readout method, where pixels in the array are read out in a row-by-row basis, where the applied bias for each pixel in a given row is updated at the beginning of each line period according to the applied line based NUC data. The NUC data is applied continuously in a row-by-row basis using the serial programming interface, which is also used to program user configurable features of the ROIC, such as readout gain, integration time, and number of analog video outputs. MT3825BA has a total of 4 analog video outputs and 2 analog reference outputs, placed at the top and bottom of the ROIC, which can be programmed to operate in the 1, 2, and 4-output modes, supporting frames rates well above 60 fps at a 3 MHz pixel output rate. The pixels in the array are read out with respect to reference pixels implemented above and below actual array pixels. The bias voltage of the pixels can be programmed over a 1.0 V range to compensate for the changes in the detector resistance values due to the variations coming from the manufacturing process or changes in the operating temperature. The ROIC has an on-chip integrated temperature sensor with a sensitivity of better than 5 mV / K, and the output of the temperature sensor can be read out the output as part of the analog video stream. MT3825BA can be used to build a microbolometer FPAs with an NETD value below 100 mK using a microbolometer detector array fabrication technology with a detector resistance value up to 100 KΩ, a high TCR value (< 2 % / K), and a sufficiently low pixel thermal conductance (Gth ≤ 20 nW / K). MT3825BA measures 13.0 mm × 13.5 mm and is fabricated on 200 mm CMOS wafers. The microbolometer ROIC wafers are engineered to have flat surface finish to simplify the wafer level detector fabrication and wafer level vacuum packaging (WLVP). The ROIC runs on 3.3 V analog and 1.8 V digital supplies, and dissipates less than 85 mW in the 2-output mode at 30 fps. Mikro-Tasarim provides tested ROIC wafers and offers compact test electronics and software for its ROIC customers to shorten their FPA and camera development cycles.

  16. MT3250BA: a 320×256-50µm snapshot microbolometer ROIC for high-resistance detector arrays

    NASA Astrophysics Data System (ADS)

    Eminoglu, Selim; Akin, Tayfun

    2013-06-01

    This paper reports the development of a new microbolometer readout integrated circuit (MT3250BA) designed for high-resistance detector arrays. MT3250BA is the first microbolometer readout integrated circuit (ROIC) product from Mikro-Tasarim Ltd., which is a fabless IC design house specialized in the development of monolithic CMOS imaging sensors and ROICs for hybrid photonic imaging sensors and microbolometers. MT3250BA has a format of 320 × 256 and a pixel pitch of 50 µm, developed with a system-on-chip architecture in mind, where all the timing and biasing for this ROIC are generated on-chip without requiring any external inputs. MT3250BA is a highly configurable ROIC, where many of its features can be programmed through a 3-wire serial interface allowing on-the-fly configuration of many ROIC features. MT3250BA has 2 analog video outputs and 1 analog reference output for pseudo-differential operation, and the ROIC can be programmed to operate in the 1 or 2-output modes. A unique feature of MT3250BA is that it performs snapshot readout operation; therefore, the image quality will only be limited by the thermal time constant of the detector pixels, but not by the scanning speed of the ROIC, as commonly found in the conventional microbolometer ROICs performing line-by-line (rolling-line) readout operation. The signal integration is performed at the pixel level in parallel for the whole array, and signal integration time can be programmed from 0.1 µs up to 100 ms in steps of 0.1 µs. The ROIC is designed to work with high-resistance detector arrays with pixel resistance values higher than 250 kΩ. The detector bias voltage can be programmed on-chip over a 2 V range with a resolution of 1 mV. The ROIC has a measured input referred noise of 260 µV rms at 300 K. The ROIC can be used to build a microbolometer infrared sensor with an NETD value below 100 mK using a microbolometer detector array fabrication technology with a high detector resistance value (≥ 250 KΩ), a high TCR value (≥ 2.5 % / K), and a sufficiently low pixel thermal conductance (Gth ≤ 20 nW / K). The ROIC uses a single 3.3 V supply voltage and dissipates less than 75 mW in the 1-output mode at 60 fps. MT3250BA is fabricated using a mixed-signal CMOS process on 200 mm CMOS wafers, and tested wafers are available with test data and wafer map. A USB based compact test electronics and software are available for quick evaluation of this new microbolometer ROIC.

  17. Magnetic Random Access Memory based non-volatile asynchronous Muller cell for ultra-low power autonomous applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Di Pendina, G., E-mail: gregory.dipendina@cea.fr, E-mail: eldar.zianbetov@cea.fr, E-mail: edith.beigne@cea.fr; Zianbetov, E., E-mail: gregory.dipendina@cea.fr, E-mail: eldar.zianbetov@cea.fr, E-mail: edith.beigne@cea.fr; CNRS, SPINTEC, F-38000 Grenoble

    2015-05-07

    Micro and nano electronic integrated circuit domain is today mainly driven by the advent of the Internet of Things for which the constraints are strong, especially in terms of power consumption and autonomy, not only during the computing phases but also during the standby or idle phases. In such ultra-low power applications, the circuit has to meet new constraints mainly linked to its changing energetic environment: long idle phases, automatic wake up, data back-up when the circuit is sporadically turned off, and ultra-low voltage power supply operation. Such circuits have to be completely autonomous regarding their unstable environment, while remainingmore » in an optimum energetic configuration. Therefore, we propose in this paper the first MRAM-based non-volatile asynchronous Muller cell. This cell has been simulated and characterized in a very advanced 28 nm CMOS fully depleted silicon-on-insulator technology, presenting good power performance results due to an extremely efficient body biasing control together with ultra-wide supply voltage range from 160 mV up to 920 mV. The leakage current can be reduced to 154 pA thanks to reverse body biasing. We also propose an efficient standard CMOS bulk version of this cell in order to be compatible with different fabrication processes.« less

  18. Design and fabrication of a CMOS-compatible MHP gas sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Ying; Yu, Jun, E-mail: junyu@dlut.edu.cn; Wu, Hao

    2014-03-15

    A novel micro-hotplate (MHP) gas sensor is designed and fabricated with a standard CMOS technology followed by post-CMOS processes. The tungsten plugging between the first and the second metal layer in the CMOS processes is designed as zigzag resistor heaters embedded in the membrane. In the post-CMOS processes, the membrane is released by front-side bulk silicon etching, and excellent adiabatic performance of the sensor is obtained. Pt/Ti electrode films are prepared on the MHP before the coating of the SnO{sub 2} film, which are promising to present better contact stability compared with Al electrodes. Measurements show that at room temperaturemore » in atmosphere, the device has a low power consumption of ∼19 mW and a rapid thermal response of 8 ms for heating up to 300 °C. The tungsten heater exhibits good high temperature stability with a slight fluctuation (<0.3%) in the resistance at an operation temperature of 300 °C under constant heating mode for 336 h, and a satisfactory temperature coefficient of resistance of about 1.9‰/°C.« less

  19. An integrated CMOS high voltage supply for lab-on-a-chip systems.

    PubMed

    Behnam, M; Kaigala, G V; Khorasani, M; Marshall, P; Backhouse, C J; Elliott, D G

    2008-09-01

    Electrophoresis is a mainstay of lab-on-a-chip (LOC) implementations of molecular biology procedures and is the basis of many medical diagnostics. High voltage (HV) power supplies are necessary in electrophoresis instruments and are a significant part of the overall system cost. This cost of instrumentation is a significant impediment to making LOC technologies more widely available. We believe one approach to overcoming this problem is to use microelectronic technology (complementary metal-oxide semiconductor, CMOS) to generate and control the HV. We present a CMOS-based chip (3 mm x 2.9 mm) that generates high voltages (hundreds of volts), switches HV outputs, and is powered by a 5 V input supply (total power of 28 mW) while being controlled using a standard computer serial interface. Microchip electrophoresis with laser induced fluorescence (LIF) detection is implemented using this HV CMOS chip. With the other advancements made in the LOC community (e.g. micro-fluidic and optical devices), these CMOS chips may ultimately enable 'true' LOC solutions where essentially all the microfluidics, photonics and electronics are on a single chip.

  20. Influence of peri-implant artifacts on bone morphometric analysis with micro-computed tomography.

    PubMed

    Song, Jin Wook; Cha, Jung Yul; Bechtold, Till Edward; Park, Young Chel

    2013-01-01

    To determine the optimal dilation pixel size distance from the mini-implant interface needed to compensate for the metal artifact on micro-computed tomography (micro-CT) for bone morphometric analysis. A total of 72 self-drilling mini-implants were placed into the buccal alveolar bone of six male beagle dogs. After 12 weeks of orthodontic loading, specimens were harvested and scanned with micro-CT (Skyscan 1076) at a resolution of 9 μm. Using the reload plug-in and dilation procedure of CTAn, the percentage of bone-implant contact (BIC) and bone volume density (BV/TV, bone volume/total volume), respectively, were measured from one to seven pixels from the metal implant surface. Each pixel size of dilation (PSD) were compared with that of a ground histologic section, and the optimal PSD for bone morphometric analysis using micro-CT was determined. BIC values from micro-CT analysis decreased when the PSD increased (P < .05). BIC from micro-CT showed the highest correlation coefficient with BIC from histologic slides when the PSD was 5 to 7 (P < .05), whereas BV/TV from micro-CT showed a very high correlation with BV/TV from histologic slides in all ranges (P < .0001). To measure BIC and BV/TV using micro-CT, at least 5 PSD from the metal implant surface is needed.

  1. Nanosecond-laser induced crosstalk of CMOS image sensor

    NASA Astrophysics Data System (ADS)

    Zhu, Rongzhen; Wang, Yanbin; Chen, Qianrong; Zhou, Xuanfeng; Ren, Guangsen; Cui, Longfei; Li, Hua; Hao, Daoliang

    2018-02-01

    The CMOS Image Sensor (CIS) is photoelectricity image device which focused the photosensitive array, amplifier, A/D transfer, storage, DSP, computer interface circuit on the same silicon substrate[1]. It has low power consumption, high integration,low cost etc. With large scale integrated circuit technology progress, the noise suppression level of CIS is enhanced unceasingly, and its image quality is getting better and better. It has been in the security monitoring, biometrice, detection and imaging and even military reconnaissance and other field is widely used. CIS is easily disturbed and damaged while it is irradiated by laser. It is of great significance to study the effect of laser irradiation on optoelectronic countermeasure and device for the laser strengthening resistance is of great significance. There are some researchers have studied the laser induced disturbed and damaged of CIS. They focused on the saturation, supersaturated effects, and they observed different effects as for unsaturation, saturation, supersaturated, allsaturated and pixel flip etc. This paper research 1064nm laser interference effect in a typical before type CMOS, and observring the saturated crosstalk and half the crosstalk line. This paper extracted from cmos devices working principle and signal detection methods such as the Angle of the formation mechanism of the crosstalk line phenomenon are analyzed.

  2. A Dynamic Range Enhanced Readout Technique with a Two-Step TDC for High Speed Linear CMOS Image Sensors.

    PubMed

    Gao, Zhiyuan; Yang, Congjie; Xu, Jiangtao; Nie, Kaiming

    2015-11-06

    This paper presents a dynamic range (DR) enhanced readout technique with a two-step time-to-digital converter (TDC) for high speed linear CMOS image sensors. A multi-capacitor and self-regulated capacitive trans-impedance amplifier (CTIA) structure is employed to extend the dynamic range. The gain of the CTIA is auto adjusted by switching different capacitors to the integration node asynchronously according to the output voltage. A column-parallel ADC based on a two-step TDC is utilized to improve the conversion rate. The conversion is divided into coarse phase and fine phase. An error calibration scheme is also proposed to correct quantization errors caused by propagation delay skew within -T(clk)~+T(clk). A linear CMOS image sensor pixel array is designed in the 0.13 μm CMOS process to verify this DR-enhanced high speed readout technique. The post simulation results indicate that the dynamic range of readout circuit is 99.02 dB and the ADC achieves 60.22 dB SNDR and 9.71 bit ENOB at a conversion rate of 2 MS/s after calibration, with 14.04 dB and 2.4 bit improvement, compared with SNDR and ENOB of that without calibration.

  3. Ultra-fast high-resolution hybrid and monolithic CMOS imagers in multi-frame radiography

    NASA Astrophysics Data System (ADS)

    Kwiatkowski, Kris; Douence, Vincent; Bai, Yibin; Nedrow, Paul; Mariam, Fesseha; Merrill, Frank; Morris, Christopher L.; Saunders, Andy

    2014-09-01

    A new burst-mode, 10-frame, hybrid Si-sensor/CMOS-ROIC FPA chip has been recently fabricated at Teledyne Imaging Sensors. The intended primary use of the sensor is in the multi-frame 800 MeV proton radiography at LANL. The basic part of the hybrid is a large (48×49 mm2) stitched CMOS chip of 1100×1100 pixel count, with a minimum shutter speed of 50 ns. The performance parameters of this chip are compared to the first generation 3-frame 0.5-Mpixel custom hybrid imager. The 3-frame cameras have been in continuous use for many years, in a variety of static and dynamic experiments at LANSCE. The cameras can operate with a per-frame adjustable integration time of ~ 120ns-to- 1s, and inter-frame time of 250ns to 2s. Given the 80 ms total readout time, the original and the new imagers can be externally synchronized to 0.1-to-5 Hz, 50-ns wide proton beam pulses, and record up to ~1000-frame radiographic movies typ. of 3-to-30 minute duration. The performance of the global electronic shutter is discussed and compared to that of a high-resolution commercial front-illuminated monolithic CMOS imager.

  4. SPAD array based TOF SoC design for unmanned vehicle

    NASA Astrophysics Data System (ADS)

    Pan, An; Xu, Yuan; Xie, Gang; Huang, Zhiyu; Zheng, Yanghao; Shi, Weiwei

    2018-03-01

    As for the requirement of unmanned-vehicle mobile Lidar system, this paper presents a SoC design based on pulsed TOF depth image sensor. This SoC has a detection range of 300m and detecting resolution of 1.5cm. Pixels are made of SPAD. Meanwhile, SoC adopts a structure of multi-pixel sharing TDC, which significantly reduces chip area and improve the fill factor of light-sensing surface area. SoC integrates a TCSPC module to achieve the functionality of receiving each photon, measuring photon flight time and processing depth information in one chip. The SOC is designed in the SMIC 0.13μm CIS CMOS technology

  5. Photon Counting Imaging with an Electron-Bombarded Pixel Image Sensor

    PubMed Central

    Hirvonen, Liisa M.; Suhling, Klaus

    2016-01-01

    Electron-bombarded pixel image sensors, where a single photoelectron is accelerated directly into a CCD or CMOS sensor, allow wide-field imaging at extremely low light levels as they are sensitive enough to detect single photons. This technology allows the detection of up to hundreds or thousands of photon events per frame, depending on the sensor size, and photon event centroiding can be employed to recover resolution lost in the detection process. Unlike photon events from electron-multiplying sensors, the photon events from electron-bombarded sensors have a narrow, acceleration-voltage-dependent pulse height distribution. Thus a gain voltage sweep during exposure in an electron-bombarded sensor could allow photon arrival time determination from the pulse height with sub-frame exposure time resolution. We give a brief overview of our work with electron-bombarded pixel image sensor technology and recent developments in this field for single photon counting imaging, and examples of some applications. PMID:27136556

  6. Low noise WDR ROIC for InGaAs SWIR image sensor

    NASA Astrophysics Data System (ADS)

    Ni, Yang

    2017-11-01

    Hybridized image sensors are actually the only solution for image sensing beyond the spectral response of silicon devices. By hybridization, we can combine the best sensing material and photo-detector design with high performance CMOS readout circuitry. In the infrared band, we are facing typically 2 configurations: high background situation and low background situation. The performance of high background sensors are conditioned mainly by the integration capacity in each pixel which is the case for mid-wave and long-wave infrared detectors. For low background situation, the detector's performance is mainly limited by the pixel's noise performance which is conditioned by dark signal and readout noise. In the case of reflection based imaging condition, the pixel's dynamic range is also an important parameter. This is the case for SWIR band imaging. We are particularly interested by InGaAs based SWIR image sensors.

  7. Fast frame rate rodent cardiac x-ray imaging using scintillator lens coupled to CMOS camera

    NASA Astrophysics Data System (ADS)

    Swathi Lakshmi, B.; Sai Varsha, M. K. N.; Kumar, N. Ashwin; Dixit, Madhulika; Krishnamurthi, Ganapathy

    2017-03-01

    Micro-Computed Tomography (MCT) systems for small animal imaging plays a critical role for monitoring disease progression and therapy evaluation. In this work, an in-house built micro-CT system equipped with a X-ray scintillator lens coupled to a commercial CMOS camera was used to test the feasibility of its application to Digital Subtraction Angiography (DSA). Literature has reported such studies being done with clinical X-ray tubes that can be pulsed rapidly or with rotating gantry systems, thus increasing the cost and infrastructural requirements.The feasibility of DSA was evaluated by injected Iodinated contrast agent (ICA) through the tail vein of a mouse. Projection images of the heart were acquired pre and post contrast using the high frame rate X-ray detector and processing done to visualize transit of ICA through the heart.

  8. Uncooled Terahertz real-time imaging 2D arrays developed at LETI: present status and perspectives

    NASA Astrophysics Data System (ADS)

    Simoens, François; Meilhan, Jérôme; Dussopt, Laurent; Nicolas, Jean-Alain; Monnier, Nicolas; Sicard, Gilles; Siligaris, Alexandre; Hiberty, Bruno

    2017-05-01

    As for other imaging sensor markets, whatever is the technology, the commercial spread of terahertz (THz) cameras has to fulfil simultaneously the criteria of high sensitivity and low cost and SWAP (size, weight and power). Monolithic silicon-based 2D sensors integrated in uncooled THz real-time cameras are good candidates to meet these requirements. Over the past decade, LETI has been studying and developing such arrays with two complimentary technological approaches, i.e. antenna-coupled silicon bolometers and CMOS Field Effect Transistors (FET), both being compatible to standard silicon microelectronics processes. LETI has leveraged its know-how in thermal infrared bolometer sensors in developing a proprietary architecture for THz sensing. High technological maturity has been achieved as illustrated by the demonstration of fast scanning of large field of view and the recent birth of a commercial camera. In the FET-based THz field, recent works have been focused on innovative CMOS read-out-integrated circuit designs. The studied architectures take advantage of the large pixel pitch to enhance the flexibility and the sensitivity: an embedded in-pixel configurable signal processing chain dramatically reduces the noise. Video sequences at 100 frames per second using our 31x31 pixels 2D Focal Plane Arrays (FPA) have been achieved. The authors describe the present status of these developments and perspectives of performance evolutions are discussed. Several experimental imaging tests are also presented in order to illustrate the capabilities of these arrays to address industrial applications such as non-destructive testing (NDT), security or quality control of food.

  9. A CMOS high speed imaging system design based on FPGA

    NASA Astrophysics Data System (ADS)

    Tang, Hong; Wang, Huawei; Cao, Jianzhong; Qiao, Mingrui

    2015-10-01

    CMOS sensors have more advantages than traditional CCD sensors. The imaging system based on CMOS has become a hot spot in research and development. In order to achieve the real-time data acquisition and high-speed transmission, we design a high-speed CMOS imaging system on account of FPGA. The core control chip of this system is XC6SL75T and we take advantages of CameraLink interface and AM41V4 CMOS image sensors to transmit and acquire image data. AM41V4 is a 4 Megapixel High speed 500 frames per second CMOS image sensor with global shutter and 4/3" optical format. The sensor uses column parallel A/D converters to digitize the images. The CameraLink interface adopts DS90CR287 and it can convert 28 bits of LVCMOS/LVTTL data into four LVDS data stream. The reflected light of objects is photographed by the CMOS detectors. CMOS sensors convert the light to electronic signals and then send them to FPGA. FPGA processes data it received and transmits them to upper computer which has acquisition cards through CameraLink interface configured as full models. Then PC will store, visualize and process images later. The structure and principle of the system are both explained in this paper and this paper introduces the hardware and software design of the system. FPGA introduces the driven clock of CMOS. The data in CMOS is converted to LVDS signals and then transmitted to the data acquisition cards. After simulation, the paper presents a row transfer timing sequence of CMOS. The system realized real-time image acquisition and external controls.

  10. [The optimizing design and experiment for a MOEMS micro-mirror spectrometer].

    PubMed

    Mo, Xiang-xia; Wen, Zhi-yu; Zhang, Zhi-hai; Guo, Yuan-jun

    2011-12-01

    A MOEMS micro-mirror spectrometer, which uses micro-mirror as a light switch so that spectrum can be detected by a single detector, has the advantages of transforming DC into AC, applying Hadamard transform optics without additional template, high pixel resolution and low cost. In this spectrometer, the vital problem is the conflict between the scales of slit and the light intensity. Hence, in order to improve the resolution of this spectrometer, the present paper gives the analysis of the new effects caused by micro structure, and optimal values of the key factors. Firstly, the effects of diffraction limitation, spatial sample rate and curved slit image on the resolution of the spectrum were proposed. Then, the results were simulated; the key values were tested on the micro mirror spectrometer. Finally, taking all these three effects into account, this micro system was optimized. With a scale of 70 mm x 130 mm, decreasing the height of the image at the plane of micro mirror can not diminish the influence of curved slit image in the spectrum; under the demand of spatial sample rate, the resolution must be twice over the pixel resolution; only if the width of the slit is 1.818 microm and the pixel resolution is 2.2786 microm can the spectrometer have the best performance.

  11. Proton Radiation Effects on Dark Signal Distribution of PPD CMOS Image Sensors: Both TID and DDD Effects.

    PubMed

    Xue, Yuanyuan; Wang, Zujun; Chen, Wei; Liu, Minbo; He, Baoping; Yao, Zhibin; Sheng, Jiangkun; Ma, Wuying; Dong, Guantao; Jin, Junshan

    2017-11-30

    Four-transistor (T) pinned photodiode (PPD) CMOS image sensors (CISs) with four-megapixel resolution using 11µm pitch high dynamic range pixel were radiated with 3 MeV and 10MeV protons. The dark signal was measured pre- and post-radiation, with the dark signal post irradiation showing a remarkable increase. A theoretical method of dark signal distribution pre- and post-radiation is used to analyze the degradation mechanisms of the dark signal distribution. The theoretical results are in good agreement with experimental results. This research would provide a good understanding of the proton radiation effects on the CIS and make it possible to predict the dark signal distribution of the CIS under the complex proton radiation environments.

  12. Characterisation results of the CMOS VISNIR spectral band detector for the METimage instrument

    NASA Astrophysics Data System (ADS)

    Pratlong, Jérôme; Schmuelling, Frank; Benitez, Victor; Breart De Boisanger, Michel; Skegg, Michael; Simpson, Robert; Bowring, Steve; Krzizok, Natalie

    2017-09-01

    The METimage instrument is part of the EPS-SG (EUMETSAT Polar System Second Generation) program. It will be situated on the MetOp-SG platform which in operation has an objective of collecting data for meteorology and climate monitoring as well as their forecasting. Teledyne e2v has developed and characterised the CMOS VISNIR detector flight module part of the METimage instrument. This paper will focus on the silicon results obtained from the CMOS VISNIR detector flight model. The detector is a large multi-linear device composed of 7 spectral bands covering a wavelength range from 428 nm to 923 nm (some bands are placed twice and added together to enhance the signal-to-noise performance). This detector uses a 4T pixel, with a size of 250μm square, presenting challenges to achieve good charge transfer efficiency with high conversion factor and good linearity for signal levels up to 2M electrons and with high line rates. Low noise has been achieved using correlated double sampling to suppress the read-out noise and give a maximum dynamic range that is significantly larger than in standard commercial devices. The photodiode occupies a significant fraction of the large pixel area. This makes it possible to meet the detection efficiency when front illuminated. A thicker than standard epitaxial silicon is used to improve NIR response. However, the dielectric stack on top of the sensor produces Fabry-Perot étalon effects, which are problematic for narrow band illumination as this causes the detection efficiency to vary significantly over a small wavelength range. In order to reduce this effect and to meet the specification, the silicon manufacturing process has been modified. The flight model will have black coating deposited between each spectral channel, onto the active silicon regions.

  13. Development of monolithic pixel detector with SOI technology for the ILC vertex detector

    NASA Astrophysics Data System (ADS)

    Yamada, M.; Ono, S.; Tsuboyama, T.; Arai, Y.; Haba, J.; Ikegami, Y.; Kurachi, I.; Togawa, M.; Mori, T.; Aoyagi, W.; Endo, S.; Hara, K.; Honda, S.; Sekigawa, D.

    2018-01-01

    We have been developing a monolithic pixel sensor for the International Linear Collider (ILC) vertex detector with the 0.2 μm FD-SOI CMOS process by LAPIS Semiconductor Co., Ltd. We aim to achieve a 3 μm single-point resolution required for the ILC with a 20×20 μm2 pixel. Beam bunch crossing at the ILC occurs every 554 ns in 1-msec-long bunch trains with an interval of 200 ms. Each pixel must record the charge and time stamp of a hit to identify a collision bunch for event reconstruction. Necessary functions include the amplifier, comparator, shift register, analog memory and time stamp implementation in each pixel, and column ADC and Zero-suppression logic on the chip. We tested the first prototype sensor, SOFIST ver.1, with a 120 GeV proton beam at the Fermilab Test Beam Facility in January 2017. SOFIST ver.1 has a charge sensitive amplifier and two analog memories in each pixel, and an 8-bit Wilkinson-type ADC is implemented for each column on the chip. We measured the residual of the hit position to the reconstructed track. The standard deviation of the residual distribution fitted by a Gaussian is better than 3 μm.

  14. Mapping Electrical Crosstalk in Pixelated Sensor Arrays

    NASA Technical Reports Server (NTRS)

    Seshadri, S.; Cole, D. M.; Hancock, B. R.; Smith, R. M.

    2008-01-01

    Electronic coupling effects such as Inter-Pixel Capacitance (IPC) affect the quantitative interpretation of image data from CMOS, hybrid visible and infrared imagers alike. Existing methods of characterizing IPC do not provide a map of the spatial variation of IPC over all pixels. We demonstrate a deterministic method that provides a direct quantitative map of the crosstalk across an imager. The approach requires only the ability to reset single pixels to an arbitrary voltage, different from the rest of the imager. No illumination source is required. Mapping IPC independently for each pixel is also made practical by the greater S/N ratio achievable for an electrical stimulus than for an optical stimulus, which is subject to both Poisson statistics and diffusion effects of photo-generated charge. The data we present illustrates a more complex picture of IPC in Teledyne HgCdTe and HyViSi focal plane arrays than is presently understood, including the presence of a newly discovered, long range IPC in the HyViSi FPA that extends tens of pixels in distance, likely stemming from extended field effects in the fully depleted substrate. The sensitivity of the measurement approach has been shown to be good enough to distinguish spatial structure in IPC of the order of 0.1%.

  15. Nano-Multiplication-Region Avalanche Photodiodes and Arrays

    NASA Technical Reports Server (NTRS)

    Zheng, Xinyu; Pain, Bedabrata; Cunningham, Thomas

    2008-01-01

    Nano-multiplication-region avalanche photodiodes (NAPDs), and imaging arrays of NAPDs integrated with complementary metal oxide/semiconductor (CMOS) active-pixel-sensor integrated circuitry, are being developed for applications in which there are requirements for high-sensitivity (including photoncounting) detection and imaging at wavelengths from about 250 to 950 nm. With respect to sensitivity and to such other characteristics as speed, geometric array format, radiation hardness, power demand of associated circuitry, size, weight, and robustness, NAPDs and arrays thereof are expected to be superior to prior photodetectors and arrays including CMOS active-pixel sensors (APSs), charge-coupled devices (CCDs), traditional APDs, and microchannelplate/ CCD combinations. Figure 1 depicts a conceptual NAPD array, integrated with APS circuitry, fabricated on a thick silicon-on-insulator wafer (SOI). Figure 2 presents selected aspects of the structure of a typical single pixel, which would include a metal oxide/semiconductor field-effect transistor (MOSFET) integrated with the NAPD. The NAPDs would reside in silicon islands formed on the buried oxide (BOX) layer of the SOI wafer. The silicon islands would be surrounded by oxide-filled insulation trenches, which, together with the BOX layer, would constitute an oxide embedding structure. There would be two kinds of silicon islands: NAPD islands for the NAPDs and MOSFET islands for in-pixel and global CMOS circuits. Typically, the silicon islands would be made between 5 and 10 m thick, but, if necessary, the thickness could be chosen outside this range. The side walls of the silicon islands would be heavily doped with electron-acceptor impurities (p+-doped) to form anodes for the photodiodes and guard layers for the MOSFETs. A nanoscale reach-through structure at the front (top in the figures) central position of each NAPD island would contain the APD multiplication region. Typically, the reach-through structure would be about 0.1 microns in diameter and between 0.3 and 0.4 nm high. The top layer in the reach-through structure would be heavily doped with electron-donor impurities (n+-doped) to make it act as a cathode. A layer beneath the cathode, between 0.1 and 0.2 nm thick, would be p-doped to a concentration .10(exp 17)cu cm. A thin n+-doped polysilicon pad would be formed on the top of the cathode to protect the cathode against erosion during a metal-silicon alloying step that would be part of the process of fabricating the array.

  16. High density pixel array and laser micro-milling method for fabricating array

    NASA Technical Reports Server (NTRS)

    McFall, James Earl (Inventor); Wiener-Avnear, Eliezer (Inventor)

    2003-01-01

    A pixel array device is fabricated by a laser micro-milling method under strict process control conditions. The device has an array of pixels bonded together with an adhesive filling the grooves between adjacent pixels. The array is fabricated by moving a substrate relative to a laser beam of predetermined intensity at a controlled, constant velocity along a predetermined path defining a set of grooves between adjacent pixels so that a predetermined laser flux per unit area is applied to the material, and repeating the movement for a plurality of passes of the laser beam until the grooves are ablated to a desired depth. The substrate is of an ultrasonic transducer material in one example for fabrication of a 2D ultrasonic phase array transducer. A substrate of phosphor material is used to fabricate an X-ray focal plane array detector.

  17. Pulsed laser deposition of piezoelectric lead zirconate titanate thin films maintaining a post-CMOS compatible thermal budget

    NASA Astrophysics Data System (ADS)

    Schatz, A.; Pantel, D.; Hanemann, T.

    2017-09-01

    Integration of lead zirconate titanate (Pb[Zrx,Ti1-x]O3 - PZT) thin films on complementary metal-oxide semiconductor substrates (CMOS) is difficult due to the usually high crystallization temperature of the piezoelectric perovskite PZT phase, which harms the CMOS circuits. In this work, a wafer-scale pulsed laser deposition tool was used to grow 1 μm thick PZT thin films on 150 mm diameter silicon wafers. Three different routes towards a post-CMOS compatible deposition process were investigated, maintaining a post-CMOS compatible thermal budget limit of 445 °C for 1 h (or 420 °C for 6 h). By crystallizing the perovskite LaNiO3 seed layer at 445 °C, the PZT deposition temperature can be lowered to below 400 °C, yielding a transverse piezoelectric coefficient e31,f of -9.3 C/m2. With the same procedure, applying a slightly higher PZT deposition temperature of 420 °C, an e31,f of -10.3 C/m2 can be reached. The low leakage current density of below 3 × 10-6 A/cm2 at 200 kV/cm allows for application of the post-CMOS compatible PZT thin films in low power micro-electro-mechanical-systems actuators.

  18. Design of a motion JPEG (M/JPEG) adapter card

    NASA Astrophysics Data System (ADS)

    Lee, D. H.; Sudharsanan, Subramania I.

    1994-05-01

    In this paper we describe a design of a high performance JPEG (Joint Photographic Experts Group) Micro Channel adapter card. The card, tested on a range of PS/2 platforms (models 50 to 95), can complete JPEG operations on a 640 by 240 pixel image within 1/60 of a second, thus enabling real-time capture and display of high quality digital video. The card accepts digital pixels for either a YUV 4:2:2 or an RGB 4:4:4 pixel bus and has been shown to handle up to 2.05 MBytes/second of compressed data. The compressed data is transmitted to a host memory area by Direct Memory Access operations. The card uses a single C-Cube's CL550 JPEG processor that complies with the baseline JPEG. We give broad descriptions of the hardware that controls the video interface, CL550, and the system interface. Some critical design points that enhance the overall performance of the M/JPEG systems are pointed out. The control of the adapter card is achieved by an interrupt driven software that runs under DOS. The software performs a variety of tasks that include change of color space (RGB or YUV), change of quantization and Huffman tables, odd and even field control and some diagnostic operations.

  19. On-chip skin color detection using a triple-well CMOS process

    NASA Astrophysics Data System (ADS)

    Boussaid, Farid; Chai, Douglas; Bouzerdoum, Abdesselam

    2004-03-01

    In this paper, a current-mode VLSI architecture enabling on read-out skin detection without the need for any on-chip memory elements is proposed. An important feature of the proposed architecture is that it removes the need for demosaicing. Color separation is achieved using the strong wavelength dependence of the absorption coefficient in silicon. This wavelength dependence causes a very shallow absorption of blue light and enables red light to penetrate deeply in silicon. A triple-well process, allowing a P-well to be placed inside an N-well, is chosen to fabricate three vertically integrated photodiodes acting as the RGB color detector for each pixel. Pixels of an input RGB image are classified as skin or non-skin pixels using a statistical skin color model, chosen to offer an acceptable trade-off between skin detection performance and implementation complexity. A single processing unit is used to classify all pixels of the input RGB image. This results in reduced mismatch and also in an increased pixel fill-factor. Furthermore, the proposed current-mode architecture is programmable, allowing external control of all classifier parameters to compensate for mismatch and changing lighting conditions.

  20. Flexible MEMS: A novel technology to fabricate flexible sensors and electronics

    NASA Astrophysics Data System (ADS)

    Tu, Hongen

    This dissertation presents the design and fabrication techniques used to fabricate flexible MEMS (Micro Electro Mechanical Systems) devices. MEMS devices and CMOS(Complementary Metal-Oxide-Semiconductor) circuits are traditionally fabricated on rigid substrates with inorganic semiconductor materials such as Silicon. However, it is highly desirable that functional elements like sensors, actuators or micro fluidic components to be fabricated on flexible substrates for a wide variety of applications. Due to the fact that flexible substrate is temperature sensitive, typically only low temperature materials, such as polymers, metals, and organic semiconductor materials, can be directly fabricated on flexible substrates. A novel technology based on XeF2(xenon difluoride) isotropic silicon etching and parylene conformal coating, which is able to monolithically incorporate high temperature materials and fluidic channels, was developed at Wayne State University. The technology was first implemented in the development of out-of-plane parylene microneedle arrays that can be individually addressed by integrated flexible micro-channels. These devices enable the delivery of chemicals with controlled temporal and spatial patterns and allow us to study neurotransmitter-based retinal prosthesis. The technology was further explored by adopting the conventional SOI-CMOS processes. High performance and high density CMOS circuits can be first fabricated on SOI wafers, and then be integrated into flexible substrates. Flexible p-channel MOSFETs (Metal-Oxide-Semiconductor Field-Effect-Transistors) were successfully integrated and tested. Integration of pressure sensors and flow sensors based on single crystal silicon has also been demonstrated. A novel smart yarn technology that enables the invisible integration of sensors and electronics into fabrics has been developed. The most significant advantage of this technology is its post-MEMS and post-CMOS compatibility. Various high-performance MEMS devices and electronics can be integrated into flexible substrates. The potential of our technology is enormous. Many wearable and implantable devices can be developed based on this technology.

Top