Science.gov

Sample records for cms drift tube

  1. Phase 1 upgrade of the CMS drift tubes read-out system

    NASA Astrophysics Data System (ADS)

    Navarro-Tobar, Á.; Triossi, A.; Fernández-Bedoya, C.; Redondo, I.; Redondo, D.; Sastre, J.; Cela-Ruiz, J. M.; Esteban, L.

    2017-03-01

    In order to cope with up to two times the nominal LHC luminosity, the second level of the readout system of the CMS Drift Tubes (DT) electronics needs to be redesigned to minimize event processing time and remove present bottlenecks. The μ ROS boards are μ TCA modules, which include a Xilinx Virtex-7 FPGA and are equipped with up to 6 12-channel optical receivers of the 240 Mbps input links. Each board collects the information from up to 72 input links (3 DT sectors), requiring a total of 25 boards. The design of the system and the first validation tests will be described.

  2. Status and future prospects of the Muon Drift Tubes System of CMS

    NASA Astrophysics Data System (ADS)

    Masetti, G.

    2017-01-01

    A key component of the CMS (Compact Muon Solenoid) experiment is its muon system. The tracking and triggering of muons in the central part relies on Drift Tube (DT) chambers. In 2013 and 2014 a number of improvements and upgrades were implemented, in particular concerning the readout and trigger electronics. The increase of luminosity expected by LHC will impose several constraints for rate reduction while maintaining high efficiency in the CMS Level 1 trigger system. In order to exploit the muon detector redundancy, a new trigger system has been designed. The TwinMux system is the early layer of the muon barrel region that combines the primitives information from different subdetectors: DT, Resistive Plate Chambers (RPC) and Outer Hadron Calorimeter (HO). Regarding the long term operation of the DT system, in order to cope with up to a factor 2 nominal LHC luminosity, several improvements will be implemented. The in-chamber local electronics will be modified to cope with the new rate and radiation environment. This paper will present, along with the main system improvements implemented in the system, the first performance results from data collected at 13 TeV center-of-mass energy during 2016, confirming the satisfactory operation of both DT performance and the TwinMux system. A review of the present status and plans for the DT system upgrades will be also described.

  3. FPGA-based algorithms for the new trigger system for the phase 2 upgrade of the CMS drift tubes detector

    NASA Astrophysics Data System (ADS)

    Cela-Ruiz, J.-M.

    2017-01-01

    The new luminosity conditions imposed after the LHC upgrade will require a dedicated upgrade of several subdetectors. To cope with the new requirements, CMS drift tubes subdetector electronics will be redesigned in order to achieve the new foreseen response speed. In particular, it is necessary to enhance the first stage of the trigger system (L1A). In this document we present the development of a software algorithm, based on the mean timer paradigm, capable of reconstructing muon trajectories and rejecting spurious signals. It has been initially written in C++ programming language, but designed with its portability to a FPGA VHDL code in mind.

  4. A Proposal for the Upgrade of the Muon Drift Tubes Trigger for the CMS Experiment at the HL-LHC

    NASA Astrophysics Data System (ADS)

    Pozzobon, Nicola; Zotto, Pierluigi; Montecassiano, Fabio

    2016-11-01

    A major upgrade of the readout and trigger electronics of the CMS Drift Tubes muon detector is foreseen in order to allow its efficient operation at the High Luminosity LHC. A proposal for a new L1 Trigger Primitives Generator for this detector is presented, featuring an algorithm operating on the time of charge collection measurements provided by the asynchronous readout of the new TDC system being developed. The algorithm is being designed around the implementation in state-of-the-art FPGA devices of the original development of a Compact Hough Transform (CHT) algorithm combined with a Majority Mean-Timer, to identify both the parent bunch crossing and the muon track parameters. The current state of the design is presented along with the performance requirements, focusing on the future developments.

  5. Pulsed Drift Tube Accelerator

    SciTech Connect

    Faltens, A.

    2004-10-25

    The pulsed drift-tube accelerator (DTA) concept was revived by Joe Kwan and John Staples and is being considered for the HEDP/WDM application. It could be used to reach the full energy or as an intermediate accelerator between the diode and a high gradient accelerator such as multi-beam r.f. In the earliest LBNL HIF proposals and conceptual drivers it was used as an extended injector to reach energies where an induction linac with magnetic quadrupoles is the best choice. For HEDP, because of the very short pulse duration, the DTA could provide an acceleration rate of about 1MV/m. This note is divided into two parts: the first, a design based on existing experience; the second, an optimistic extrapolation. The first accelerates 16 parallel K{sup +} beams at a constant line charge density of 0.25{micro} C/m per beam to 10 MeV; the second uses a stripper and charge selector at around 4MeV followed by further acceleration to reach 40 MeV. Both benefit from more compact sources than the present 2MV injector source, although that beam is the basis of the first design and is a viable option. A pulsed drift-tube accelerator was the first major HIF experiment at LBNL. It was designed to produce a 2{micro}s rectangular 1 Ampere C{sub s}{sup +} beam at 2MeV. It ran comfortably at 1.6MeV for several years, then at lower voltages and currents for other experiments, and remnants of that experiment are in use in present experiments, still running 25 years later. The 1A current, completely equivalent to 1.8A K{sup +}, was chosen to be intermediate between the beamlets appropriate for a multi-beam accelerator, and a single beam of, say, 10A, at injection energies. The original driver scenarios using one large beam on each side of the reactor rapidly fell out of favor because of the very high transverse and longitudinal fields from the beam space charge, circa 1MV/cm and 250 kV/cm respectively, near the chamber and because of aberrations in focusing a large diameter beam down to a 1

  6. Self-shielding flex-circuit drift tube, drift tube assembly and method of making

    DOEpatents

    Jones, David Alexander

    2016-04-26

    The present disclosure is directed to an ion mobility drift tube fabricated using flex-circuit technology in which every other drift electrode is on a different layer of the flex-circuit and each drift electrode partially overlaps the adjacent electrodes on the other layer. This results in a self-shielding effect where the drift electrodes themselves shield the interior of the drift tube from unwanted electro-magnetic noise. In addition, this drift tube can be manufactured with an integral flex-heater for temperature control. This design will significantly improve the noise immunity, size, weight, and power requirements of hand-held ion mobility systems such as those used for explosive detection.

  7. Coupled-cavity drift-tube linac

    DOEpatents

    Billen, James H.

    1996-01-01

    A coupled-cavity drift-tube linac (CCDTL) combines features of the Alvarez drift-tube linac (DTL) and the .pi.-mode coupled-cavity linac (CCL). In one embodiment, each accelerating cavity is a two-cell, 0-mode DTL. The center-to-center distance between accelerating gaps is .beta..lambda., where .lambda. is the free-space wavelength of the resonant mode. Adjacent accelerating cavities have oppositely directed electric fields, alternating in phase by 180 degrees. The chain of cavities operates in a .pi./2 structure mode so the coupling cavities are nominally unexcited. The CCDTL configuration provides an rf structure with high shunt impedance for intermediate velocity charged particles, i.e., particles with energies in the 20-200 MeV range.

  8. Coupled-cavity drift-tube linac

    DOEpatents

    Billen, J.H.

    1996-11-26

    A coupled-cavity drift-tube linac (CCDTL) combines features of the Alvarez drift-tube linac (DTL) and the {pi}-mode coupled-cavity linac (CCL). In one embodiment, each accelerating cavity is a two-cell, 0-mode DTL. The center-to-center distance between accelerating gaps is {beta}{lambda}, where {lambda} is the free-space wavelength of the resonant mode. Adjacent accelerating cavities have oppositely directed electric fields, alternating in phase by 180 degrees. The chain of cavities operates in a {pi}/2 structure mode so the coupling cavities are nominally unexcited. The CCDTL configuration provides an rf structure with high shunt impedance for intermediate velocity charged particles, i.e., particles with energies in the 20-200 MeV range. 5 figs.

  9. Effects of grids in drift tubes

    SciTech Connect

    Okamura M.; Yamauchi, H.

    2012-05-20

    In 2011, we upgraded a 201 MHz buncher in the proton injector for the alternating gradient synchrotron (AGS) - relativistic heavy ion collider (RHIC) complex. In the buncher we installed four grids made of tungsten to improve the transit time factor. The grid installed drift tubes have 32 mm of inner diameter and the each grid consists of four quadrants. The quadrants were cut out precisely from 1mm thick tungsten plates by a computerized numerically controlled (CNC) wire cutting electrical discharge machining (EDM). The 3D electric field of the grid was simulated.

  10. Variable-energy drift-tube linear accelerator

    DOEpatents

    Swenson, Donald A.; Boyd, Jr., Thomas J.; Potter, James M.; Stovall, James E.

    1984-01-01

    A linear accelerator system includes a plurality of post-coupled drift-tubes wherein each post coupler is bistably positionable to either of two positions which result in different field distributions. With binary control over a plurality of post couplers, a significant accumlative effect in the resulting field distribution is achieved yielding a variable-energy drift-tube linear accelerator.

  11. Variable-energy drift-tube linear accelerator

    DOEpatents

    Swenson, D.A.; Boyd, T.J. Jr.; Potter, J.M.; Stovall, J.E.

    A linear accelerator system includes a plurality of post-coupled drift-tubes wherein each post coupler is bistably positionable to either of two positions which result in different field distributions. With binary control over a plurality of post couplers, a significant accumlative effect in the resulting field distribution is achieved yielding a variable-energy drift-tube linear accelerator.

  12. Drift tube suspension for high intensity linear accelerators

    DOEpatents

    Liska, D.J.; Schamaun, R.G.; Clark, D.C.; Potter, R.C.; Frank, J.A.

    1980-03-11

    The disclosure relates to a drift tube suspension for high intensity linear accelerators. The system comprises a series of box-sections girders independently adjustably mounted on a linear accelerator. A plurality of drift tube holding stems are individually adjustably mounted on each girder.

  13. Drift tube suspension for high intensity linear accelerators

    DOEpatents

    Liska, Donald J.; Schamaun, Roger G.; Clark, Donald C.; Potter, R. Christopher; Frank, Joseph A.

    1982-01-01

    The disclosure relates to a drift tube suspension for high intensity linear accelerators. The system comprises a series of box-sections girders independently adjustably mounted on a linear accelerator. A plurality of drift tube holding stems are individually adjustably mounted on each girder.

  14. Proportional drift tubes for large area muon detectors

    NASA Technical Reports Server (NTRS)

    Cho, C.; Higashi, S.; Hiraoka, N.; Maruyama, A.; Okusawa, T.; Sato, T.; Suwada, T.; Takahashi, T.; Umeda, H.

    1985-01-01

    A proportional drift chamber which consists of eight rectangular drift tubes with cross section of 10 cm x 5 cm, a sense wire of 100 micron phi gold-plated tungsten wire and the length of 6 m, was tested using cosmic ray muons. Spatial resolution (rms) is between 0.5 and 1 mm over drift space of 50 mm, depending on incident angle and distance from sense wire.

  15. Thirty-five years of drift-tube linac experience

    SciTech Connect

    Knowles, H.B.

    1984-10-01

    The history of the drift-tube linear accelerator (linac) for the first 35 years of its existence is briefly reviewed. Both US and foreign experience is included. Particular attention is given to technological improvements, operational reliability, capital investment, and number of personnel committed to drift-tube linac (DTL) development. Preliminary data indicate that second- and third-generation (post-1960) DTLs have, in the US alone, operated for a combined total period of more than 75 machine-years and that very high reliability (>90%) has been achieved. Existing US drift-tube linacs represent a capital investment of at least $250 million (1983). Additional statistical evidence, derived from the proceedings of the last 11 linear accelerator conferences, supports the view that the DTL has achieved a mature technological base. The report concludes with a discussion of important recent advances in technology and their applications to the fourth generation of DTLs, many of which are now becoming operational.

  16. Field stability in two-stem drift-tube linacs

    SciTech Connect

    Billen, J.H.; Spalek, G.; Shapiro, A.H.

    1988-01-01

    Drift tubes supported by two stems have been considered for cryogenic drift-tube linacs (DTLs) to reduce vibrations and to minimize drift-tube deflections upon cool down. We investigated rf properties of two-stem DTL structures at room temperature and low power. Even apart is inherently more stable against tuning errors than a similar structure with single stems. The increased stability is higher for DTLs with shorter drift tubes. Ordinary quarter-wavelength-long post couplers actually destabilize the two-stem DTL fields; the extra stem raises the post coupler frequency compared to the frequency of the same post coupler extended beyond the tank wall into coaxial stub tuners. Adjustment of the stub lengths tunes the post-coupler frequencies, but post-coupler lengths in the tank have no effect, which suggests a field pattern different from traditional post couplers. The stabilized DTL resembles multiple-stem DTLs in which the angle between stems is varied to achieve stabilization. Adjusting the coaxial stub length is mechanically simpler than changing the stem azimuth angle. 5 refs., 6 figs., 1 tab.

  17. Compact Toroid Propagation in a Magnetized Drift Tube

    NASA Astrophysics Data System (ADS)

    Horton, Robert D.; Baker, Kevin L.; Hwang, David Q.; Evans, Russell W.

    2000-10-01

    Injection of a spheromak-like compact toroid (SCT) plasma into a toroidal plasma confinement device may require the SCT to propagate through a drift tube region occupied by a pre-existing magnetic field. This field is expected to extert a retarding force on the SCT, but may also result in a beneficial compression. The effects of transverse and longitudinal magnetic fields will be measured using the CTIX compact-toroid injector, together with a fast framing camera with an axial view of the formation, coaxial, and drift-tube regions. In the case of longitudinal magnetic field, comparisons will be made with the predictions of two-dimensional numerical simulation. The use of localized magnetic field to reduce plasma bridging of the insulating gap will also be investigated.

  18. The Measurement of Microforce-Sensor Thermal Drift Measured by Balance in Cms

    NASA Astrophysics Data System (ADS)

    Pan, Sheau-Shi; Lin, Yi-Ching; Huang, Jian-Lin; Chen, Sheng-Jui

    The micro-force sensors were widely used in the areas of micro-assembly, micro-factories, micro-robotics, MEMS characterization, Nano-manipulation, Biological and biomedical research, Material properties, etc. It was also used as a transfer standard in micro-force machine or instrument. The capacitance-type force sensor was used to sense forces with micro-Newton (sub-milligram) resolution. And it was used as a transducer for the micro-force instrument in CMS. In this paper, we will report the preliminary results of thermal drift properties in capacitance-type force sensor.

  19. Pressurized drift tubes scintillating fiber hadron calorimetry. Final report

    SciTech Connect

    Bromberg, C.; Huston, J.; Miller, R.

    1995-03-22

    Under this contract members of the MSU high energy physics group constructed a full-scale Pressurized Drift Tube Chamber intended for the GEM muon system at the SSC. They achieved a position resolution of <90 {mu} over the full 5 m{sup 2} area of the detector. This resolution satisfied the GEM resolution requirements of <100 {mu} by a comfortable margin. Based on their SSC work they developed a new technique for creating wire supports in drift tubes with an overall placement accuracy of <20 {mu}. This technique requires only simple jigging and can be duplicated and operated at low cost. Also, they participated in the design and testing of a hadron calorimeter prototype for GEM. This work lead the authors to develop a semi-automatic welding machine to fuse together two plastic optical fibers. Copies of this machine are currently in use in the CDF endplug upgrade at Fermilab and additional copies are used widely in calorimeter and fiber-tracker construction.

  20. LANSCE Drift Tube Linac Water Control System Refurbishment

    SciTech Connect

    Marroquin, Pilar S.

    2011-01-01

    There are several refurbishment projects underway at the Los Alamos National Laboratory LANSCE linear accelerator. Systems involved are: RF, water cooling, networks, diagnostics, timing, controls, etc. The Drift Tube Linac (DTL) portion of the accelerator consists of four DTL tanks, each with three independent water control systems. The systems are about 40 years old, use outdated and non-replaceable equipment and NIM bin control modules, are beyond their design life and provide unstable temperature control. Insufficient instrumentation and documentation further complicate efforts at maintaining system performance. Detailed design of the replacement cooling systems is currently in progress. Previous design experience on the SNS accelerator water cooling systems will be leveraged, see the SNS DTL FDR. Plans call for replacement of water piping, manifolds, pumps, valves, mix tanks, instrumentation (flow, pressure and temperature) and control system hardware and software. This presentation will focus on the control system design with specific attention on planned use of the National Instruments Compact RIO platform with the Experimental Physics and Industrial Control system (EPICS) software toolkit.

  1. Track chambers based on precision drift tubes housed inside 30 mm mylar pipe

    NASA Astrophysics Data System (ADS)

    Borisov, A.; Bozhko, N.; Fakhrutdinov, R.; Kozhin, A.; Leontiev, B.; Levin, A.

    2014-06-01

    We describe drift chambers consisting of 3 layers of 30 mm (OD) drift tubes made of double sided aluminized mylar film with thickness 0.125 mm. A single drift tube is self-supported structure withstanding 350 g tension of 50 microns sense wire located in the tube center with 10 microns precision with respect to end-plug outer surface. Such tubes allow to create drift chambers with small amount of material, construction of such chambers doesn't require hard frames. Twenty six chambers with working area from 0.8 × 1.0 to 2.5 × 2.0 m2 including 4440 tubes have been manufactured for experiments at 70-GeV proton accelerator at IHEP(Protvino).

  2. Drift of a flat particle at longitudinal oscillations of gas in an open tube

    NASA Astrophysics Data System (ADS)

    Zaripov, R. G.; Tkachenko, L. A.; R, Shaydullin L.

    2014-11-01

    The particle motion is experimentally investigated at nonlinear oscillations of gas in the tube and in the external field near the open end in the shock-free mode. Dependence is obtained for the coordinates of the particle along the tube from time for various frequencies and amplitudes of displacement of the piston. Drift is set for a particle from the open end of the tube to the piston. It is determined that the particle moves into an external field at the open end outside the tube without appreciable oscillations. Detected position of the particle at the open end, wherein the particle does not perform drift towards the inside and outside of the tube.

  3. Pulsed electron beam propagation in gases under pressure of 6.6 kPa in drift tube

    NASA Astrophysics Data System (ADS)

    Kholodnaya, G. E.; Sazonov, R. V.; Ponomarev, D. V.; Remnev, G. E.; Poloskov, A. V.

    2017-02-01

    This paper presents the results of an investigation of pulsed electron beam transport propagated in a drift tube filled with different gases (He, H2, N2, Ar, SF6, and CO2). The total pressure in the drift tube was 6.6 kPa. The experiments were carried out using a TEA-500 pulsed electron accelerator. The electron beam was propagated in the drift tube composed of two sections equipped with reverse current shunts. Under a pressure of 6.6 kPa, the maximum value of the electron beam charge closed on the walls of the drift tube was recorded when the beam was propagated in hydrogen and carbon dioxide. The minimum value of the electron beam charge closed on the walls of the drift tube was recorded for sulfur hexafluoride. The visualization of the pulsed electron beam energy losses onto the walls of the drift chamber was carried out using radiation-sensitive film.

  4. Analysis of Higher Order Modes Damping Techniques in 9 Cell Cavity with Modified Drift Tubes

    NASA Astrophysics Data System (ADS)

    Shashkov, Ya. V.; Mitrofanov, A. A.; Sobenin, N. P.; Zvyagintsev, V. L.

    Electrodynamic characteristics (EDC) of higher order modes (HOM) were calculated for a superconducting 9-cell accelerating cavity of eLinac accelerator with operating frequency of 1300 MHz. Several HOM damping techniques including damping with grooved, fluted and ridged beam pipes were analyzed and compared. The influence of the parameters of the drift tube on the HOM damping and on the parameters of the fundamental wave was analyzed.

  5. Construction and test of new precision drift-tube chambers for the ATLAS muon spectrometer

    NASA Astrophysics Data System (ADS)

    Kroha, H.; Kortner, O.; Schmidt-Sommerfeld, K.; Takasugi, E.

    2017-02-01

    ATLAS muon detector upgrades aim for increased acceptance for muon triggering and precision tracking and for improved rate capability of the muon chambers in the high-background regions of the detector with increasing LHC luminosity. The small-diameter Muon Drift Tube (sMDT) chambers have been developed for these purposes. With half of the drift-tube diameter of the MDT chambers and otherwise unchanged operating parameters, sMDT chambers share the advantages of the MDTs, but have an order of magnitude higher rate capability and can be installed in detector regions where MDT chambers do not fit in. The chamber assembly methods have been optimized for mass production, minimizing construction time and personnel. Sense wire positioning accuracies of 5 μm have been achieved in serial production for large-size chambers comprising several hundred drift tubes. The construction of new sMDT chambers for installation in the 2016/17 winter shutdown of the LHC and the design of sMDT chambers in combination with new RPC trigger chambers for replacement of the inner layer of the barrel muon spectrometer are in progress.

  6. Drift tube soft-landing for the production and characterization of materials: Applied to Cu clusters

    NASA Astrophysics Data System (ADS)

    Davila, Stephen J.; Birdwell, David O.; Verbeck, Guido F.

    2010-03-01

    We have recently developed a soft-landing (SL) instrument that is capable of depositing ions onto substrates for preparative and developmental research of new materials using a laser ablation source. This instrument was designed with a custom drift tube and a split-ring ion optic for the isolation of selected ions. The drift tube allows for the separation and thermalization of ions formed after laser ablation through collisions with an inert bath gas. These collisions allow the ions to be landed at energies below 1 eV onto substrates. The split-ring ion optic is capable of directing ions toward the detector or a landing substrate for selected components. Experiments will be shown ablating Cu using an Nd:YAG (1064 and 532 nm) for cluster formation and landing onto a muscovite (mica) surface. The laser ablation of Cu in 8 Torr of He gas gives a spectrum that contains multiple peaks corresponding to Cun, CunOm clusters, and their corresponding isomers. Atomic force microscopy and drift tube measurements were performed to characterize the performance characteristics of the instrument.

  7. LANSCE 201.25 MHz drift tube linac RF power status

    SciTech Connect

    Lyles, J.T.M.; Friedrichs, C.C., Jr.

    1996-09-01

    The Los Alamos Neutron Science Center linac provides high power proton beams for neutron science, tritium target development, nuclear physics, material science, isotope production, and weapons research. Number of simultaneous beam users places heavy demands on the RF powerplant, espcially the 201.25 MHz power amplifiers (PA) driving four drift tube linac cavities. Designed nearly 30 years ago, these amplifiers have operated at up to 3 Megawatts with duty factors of 12%. The number of power tubes, age of cooling and control subsystems, tube manufacturing problems, and operation near maximum PA tube ratings have all affected system reliability. By monitoring final power amplifier plate dissipation and tube vcauum, improved operating procedures have raised RF system reliability above 95% for operation periods in 1993-95. Higher beam current for a proposed Long Pulse Spallation Source (LPSS) cannot be delivered simultaneously with other beams at high duty factor, however. Plans are underway to develop a new final power amplifier which can use low-level RF modulations for amplitude control. With only a few power tubes, the system will deliver high peak power and duty factor, with improved DC to RF efficiency, and a simplified cooling system.

  8. Interdigital H -mode drift-tube linac design with alternative phase focusing for muon linac

    NASA Astrophysics Data System (ADS)

    Otani, M.; Mibe, T.; Yoshida, M.; Hasegawa, K.; Kondo, Y.; Hayashizaki, N.; Iwashita, Y.; Iwata, Y.; Kitamura, R.; Saito, N.

    2016-04-01

    We have developed an interdigital H-mode (IH) drift-tube linac (DTL) design with an alternative phase focusing (APF) scheme for a muon linac, in order to measure the anomalous magnetic moment and electric dipole moment (EDM) of muons at the Japan Proton Accelerator Research Complex (J-PARC). The IH-DTL accelerates muons from β =v /c =0.08 to 0.28 at an operational frequency of 324 MHz. The output beam emittances are calculated as 0.315 π and 0.195 π mm mrad in the horizontal and vertical directions, respectively, which satisfies the experimental requirement.

  9. Comparison of conventional and novel quadrupole drift tube magnets inspired by Klaus Halbach

    SciTech Connect

    Feinberg, B.

    1995-02-01

    Quadrupole drift tube magnets for a heavy-ion linac provide a demanding application of magnet technology. A comparison is made of three different solutions to the problem of providing an adjustable high-field-strength quadrupole magnet in a small volume. A conventional tape-wound electromagnet quadrupole magnet (conventional) is compared with an adjustable permanent-magnet/iron quadrupole magnet (hybrid) and a laced permanent-magnet/iron/electromagnet (laced). Data is presented from magnets constructed for the SuperHILAC heavy-ion linear accelerator, and conclusions are drawn for various applications.

  10. Selected Ion Flow-Drift Tube Mass Spectrometry: Quantification of Volatile Compounds in Air and Breath.

    PubMed

    Spesyvyi, Anatolii; Smith, David; Španěl, Patrik

    2015-12-15

    A selected ion flow-drift tube mass spectrometric analytical technique, SIFDT-MS, is described that extends the established selected ion flow tube mass spectrometry, SIFT-MS, by the inclusion of a static but variable E-field along the axis of the flow tube reactor in which the analytical ion-molecule chemistry occurs. The ion axial speed is increased in proportion to the reduced field strength E/N (N is the carrier gas number density), and the residence/reaction time, t, which is measured by Hadamard transform multiplexing, is correspondingly reduced. To ensure a proper understanding of the physics and ion chemistry underlying SIFDT-MS, ion diffusive loss to the walls of the flow-drift tube and the mobility of injected H3O(+) ions have been studied as a function of E/N. It is seen that the derived diffusion coefficient and mobility of H3O(+) ions are consistent with those previously reported. The rate coefficient has been determined at elevated E/N for the association reaction of the H3O(+) reagent ions with H2O molecules, which is the first step in the production of H3O(+)(H2O)1,2,3 reagent hydrate ions. The production of hydrated analyte ion was also experimentally investigated. The analytical performance of SIFDT-MS is demonstrated by the quantification of acetone and isoprene in exhaled breath. Finally, the essential features of SIFDT-MS and SIFT-MS are compared, notably pointing out that a much lower speed of the flow-drive pump is required for SIFDT-MS, which facilitates the development of smaller cost-effective analytical instruments for real time breath and fluid headspace analyses.

  11. The development of magnetic field measurement system for drift-tube linac quadrupole

    NASA Astrophysics Data System (ADS)

    Zhou, Jianxin; Kang, Wen; Yin, Baogui; Peng, Quanling; Li, Li; Liu, Huachang; Gong, Keyun; Li, Bo; Chen, Qiang; Li, Shuai; Liu, Yiqin

    2015-06-01

    In the China Spallation Neutron Source (CSNS) linac, a conventional 324 MHz drift-tube linac (DTL) accelerating an H- ion beam from 3 MeV to 80 MeV has been designed and manufactured. The electromagnetic quadrupoles (EMQs) are widely used in a DTL accelerator. The main challenge of DTLQ's structure is to house a strong gradient EMQ in the much reduced space of the drift-tube (DT). To verify the DTLQ's design specifications and fabrication quality, a precision harmonic coil measurement system has been developed, which is based on the high precision movement platform, the harmonic coil with ceramic frame and the special method to make the harmonic coil and the quadrupoles coaxial. After more than one year's continuous running, the magnetic field measurement system still performs accurately and stably. The field measurement of more than one hundred DTLQ has been finished. The components and function of the measurement system, the key point of the technology and the repeatability of the measurement results are described in this paper.

  12. First acceleration of a proton beam in a side coupled drift tube linac

    NASA Astrophysics Data System (ADS)

    Ronsivalle, C.; Picardi, L.; Ampollini, A.; Bazzano, G.; Marracino, F.; Nenzi, P.; Snels, C.; Surrenti, V.; Vadrucci, M.; Ambrosini, F.

    2015-07-01

    We report the first experiment aimed at the demonstration of low-energy protons acceleration by a high-efficiency S-band RF linear accelerator. The proton beam has been accelerated from 7 to 11.6 MeV by a 1 meter long SCDTL (Side Coupled Drift Tube Linac) module powered with 1.3 MW. The experiment has been done in the framework of the Italian TOP-IMPLART (Oncological Therapy with Protons-Intensity Modulated Proton Therapy Linear Accelerator for Radio-Therapy) project devoted to the realization of a proton therapy centre based on a proton linear accelerator for intensity modulated cancer treatments to be installed at IRE-IFO, the largest oncological hospital in Rome. It is the first proton therapy facility employing a full linear accelerator scheme based on high-frequency technology.

  13. Commissioning of the first drift tube linac module in the Ground Test Accelerator

    SciTech Connect

    Johnson, K.F.; Sander, O.R.; Atkins, W.H.; Bolme, G.O.; Bowling, S.; Cole, R.; Connolly, R.; Denney, P.; Erickson, J.; Gilpatrick, J.D.; Ingalls, W.B.; Kersteins, D.; Kraus, R.; Lysenko, W.P.; McMurry, D.; Mottershead, C.T.; Power, J.; Rose, C.; Rusthoi, D.P.; Sandoval, D.P.; Schneider, J.D.; Smith, M.; Vaughn, G.; Wadlinger, E.A.; Weiss, R.; Yuan, V.

    1993-06-01

    The Ground Test Accelerator (GTA) has the objective of verifying much of the technology required for producing high-brightness, high-current H{sup {minus}} beams. GTA commissioning is staged to verify the beam-dynamics design of each major accelerator component as it is brought on-line. The major components are the 35-keV H{sup {minus}} injector, the 2.5-MeV radio-frequency quadrupole (RFQ), the intertank matching section (IMS), the 3.2 MeV first 2{beta}{lambda} drift tube linac (DTL-1) module, and the 24-MeV GTA with 10 DTL modules. Results from the DTL-1 beam experiments will be presented.

  14. Restoring contaminated wires, removing gas contaminants, and aging studies of drift tube chambers

    NASA Astrophysics Data System (ADS)

    Marshall, Thomas

    2003-12-01

    The original muon detection system of the Fermilab D0 colliding beam experiment contained 12,000 drift cells 10 cm×5 cm in cross-section and up to 580 cm in length. The gas mixture used was Ar/CF 4/CO 2 (90:6:4). There was one recycling gas system for all the chambers. During the first year of operation, it was discovered that inefficient cells, all in regions of high radiation, had a contaminating shell of crud coating their wires. The source of the contaminant was outgassing of the cathode pads, which were made from a laminate of fiberglass and epoxy/polyester resin, with a copper cladding on one surface. The vapor formed a brittle sheath on the wires, but only in regions of high current discharge due to radiation from the accelerator and colliding beams. A method for cleaning wires in place was devised. By heating the wire quickly to a temperature close to the melting temperature of gold, the sheath was ripped to shreds and blown away. The procedure for "zapping" wires and for removing the contaminating vapor is presented. The upgraded D0 experiment now uses Iarocci-type mini-drift tubes for the forward muon system. The results of aging tests for these chambers are also presented.

  15. Space-charge saturation and current limits in cylindrical drift tubes and planar sheaths

    NASA Astrophysics Data System (ADS)

    Stephens, Kenneth Frank, II

    2000-12-01

    Space-charge effects play a dominant role in many areas of physics. In high-power microwave devices using high-current, relativistic electron beams, it places a limit on the amount of radiation a device can produce. Because the beam's space-charge can actually reflect a portion of the beam, the ability to accurately predict the amount of current a device can carry is needed. This current value is known as the space-charge limited current. Because of the mathematical difficulties, this limit is typically estimated from a one-dimensional theory. This work presents a two-dimensional theory for calculating an upper-bound for the space-charge limited current of relativistic electron beams propagating in grounded coaxial drift tubes. Applicable to annular beams of arbitrary radius and thickness, the theory includes the effect introduced by a finite-length drift tube of circular cross-section. Using Green's second identity, the need to solve Poisson's equation is transferred to solving a Sturm-Liouville eigenvalue problem, which is easily solved by elementary methods. In general, the resulting eigenvalue, which is required to estimate the limiting current, must be numerically determined. However, analytic expressions can be found for frequently encountered limiting cases. Space-charge effects also produce the fundamental collective behavior found in plasmas, especially in plasma sheaths. A plasma sheath is the transition region between a bulk plasma and an adjacent plasma-facing surface. The sheath controls the loss of particles from the plasma in order to maintain neutrality. Using a fully kinetic theory, the problem of a planar sheath with a single-minimum electric potential profile is investigated. Appropriate for single charge-state ions of arbitrary temperature, the theory includes the emission of warm electrons from the surface as well as a net current through the sheath and is compared to particle-in-cell simulations. Approximate expressions are developed for

  16. Matching the laser generated p bunch into a crossbar-H drift tube linac

    NASA Astrophysics Data System (ADS)

    Almomani, A.; Droba, M.; Ratzinger, U.; Hofmann, I.

    2012-05-01

    Proton bunches with energies up to 30 MeV have been measured at the PHELIX laser. Because of the laser-plasma interactions at a power density of about 4×1019W/cm2, a total yield of 1.5×1013protons was produced. For the reference energy of 10 MeV, the yield within ±0.5MeV was exceeding 1010protons. The important topic for a further acceleration of the laser generated bunch is the matching into the acceptance of an rf accelerator stage. With respect to the high space charge forces and the transit energy range, only drift tube linacs seem adequate for this purpose. A crossbar H-type (CH) cavity was chosen as the linac structure. Optimum emittance values for the linac injection are compared with the available laser generated beam parameters. Options for beam matching into a CH structure by a pulsed magnetic solenoid and by using the simulation codes LASIN and LORASR are presented.

  17. Straightforward and accurate technique for post-coupler stabilization in drift tube linac structures

    NASA Astrophysics Data System (ADS)

    Khalvati, Mohammad Reza; Ramberger, Suitbert

    2016-04-01

    The axial electric field of Alvarez drift tube linacs (DTLs) is known to be susceptible to variations due to static and dynamic effects like manufacturing tolerances and beam loading. Post-couplers are used to stabilize the accelerating fields of DTLs against tuning errors. Tilt sensitivity and its slope have been introduced as measures for the stability right from the invention of post-couplers but since then the actual stabilization has mostly been done by tedious iteration. In the present article, the local tilt-sensitivity slope TSn' is established as the principal measure for stabilization instead of tilt sensitivity or some visual slope, and its significance is developed on the basis of an equivalent-circuit diagram of the DTL. Experimental and 3D simulation results are used to analyze its behavior and to define a technique for stabilization that allows finding the best post-coupler settings with just four tilt-sensitivity measurements. CERN's Linac4 DTL Tank 2 and Tank 3 have been stabilized successfully using this technique. The final tilt-sensitivity error has been reduced from ±100 %/MHz down to ±3 %/MHz for Tank 2 and down to ±1 %/MHz for Tank 3. Finally, an accurate procedure for tuning the structure using slug tuners is discussed.

  18. A capture-gated neutron calorimeter using plastic scintillators and 3He drift tubes

    SciTech Connect

    Wang, Zhehui; Morris, Christopher L; Spaulding, Randy J; Bacon, Jeffrey D; Borozdin, Konstantin N; Chung, Kiwhan; Clark, Deborah J; Green, Jesse A; Greene, Steven J; Hogan, Gary E; Jason, Andrew; Lisowski, Paul W; Makela, Mark F; Mariam, Fessaha G; Miyadera, Haruo; Murray, Matthew M; Saunders, Alexander; Wysocki, Frederick J; Gray, Frederick E

    2010-01-01

    A segmented neutron calorimeter using nine 4-inch x 4-inch x 48-inch plastic scintillators and sixteen 2-inch-diameter 48-inch-long 200-mbar-{sup 3}He drift tubes is described. The correlated scintillator and neutron-capture events provide a means for n/{gamma} discrimination, critical to the neutron calorimetry when the {gamma} background is substantial and the {gamma} signals are comparable in amplitude to the neutron signals. A single-cell prototype was constructed and tested. It can distinguish between a {sup 17}N source and a {sup 252}Cf source when the {gamma} and the thermal neutron background are sufficiently small. The design and construction of the nine-cell segmented detector assembly follow the same principle. By recording the signals from individual scintillators, additional {gamma}-subtraction schemes, such as through the time-of-flight between two scintillators, may also be used. The variations of the light outputs from different parts of a scintillator bar are less than 10%.

  19. New type of drift tubes for gas-discharge detectors operating in vacuum: Production technology and quality control

    NASA Astrophysics Data System (ADS)

    Azorskii, N. I.; Gusakov, Yu. V.; Elsha, V. V.; Enik, T. L.; Ershov, Yu. V.; Kekelidze, V. D.; Kislov, E. M.; Kolesnikov, A. O.; Madigozhin, D. T.; Movchan, S. A.; Polenkevich, I. A.; Potrebenikov, Yu. K.; Samsonov, V. A.; Shkarovskiy, S. N.; Sotnikov, A. N.; Volkov, A. D.; Zinchenko, A. I.

    2017-01-01

    A device for fabricating thin-wall (straw) drift tubes using polyethylene terephthalate film 36 μm thick by ultrasonic welding is described together with the technique for controlling their quality. The joint width amounts to 0.4-1.0 mm. The joint breaking strength is 31.9 kg/mm2. The argon leakage from a tube of volume 188.6 cm3 under a pressure gradient of 1.0 atm does not exceed 0.3 × 10-3 cm3/min, which is mainly related to the absence of metallization in the joint vicinity. The high strength, the low tensile creep due to the absence of glued layers, the small value of gas leakage makes the new tubes capable of reliable and long-term operation in vacuum, which is confirmed by the operation of 7168 straw tubes for two years in the NA62 experiment.

  20. Effects of drift gas on collision cross sections of a protein standard in linear drift tube and traveling wave ion mobility mass spectrometry.

    PubMed

    Jurneczko, Ewa; Kalapothakis, Jason; Campuzano, Iain D G; Morris, Michael; Barran, Perdita E

    2012-10-16

    There has been a significant increase in the use of ion mobility mass spectrometry (IM-MS) to investigate conformations of proteins and protein complexes following electrospray ionization. Investigations which employ traveling wave ion mobility mass spectrometry (TW IM-MS) instrumentation rely on the use of calibrants to convert the arrival times of ions to collision cross sections (CCS) providing "hard numbers" of use to structural biology. It is common to use nitrogen as the buffer gas in TW IM-MS instruments and to calibrate by extrapolating from CCS measured in helium via drift tube (DT) IM-MS. In this work, both DT and TW IM-MS instruments are used to investigate the effects of different drift gases (helium, neon, nitrogen, and argon) on the transport of multiply charged ions of the protein myoglobin, frequently used as a standard in TW IM-MS studies. Irrespective of the drift gas used, recorded mass spectra are found to be highly similar. In contrast, the recorded arrival time distributions and the derived CCS differ greatly. At low charge states (7 ≤ z ≤ 11) where the protein is compact, the CCS scale with the polarizability of the gas; this is also the case for higher charge states (12 ≤ z ≤ 22) where the protein is more unfolded for the heavy gases (neon, argon, and nitrogen) but not the case for helium. This is here interpreted as a different conformational landscape being sampled by the lighter gas and potentially attributable to increased field heating by helium. Under nanoelectrospray ionization (nESI) conditions, where myoglobin is sprayed from an aqueous solution buffered to pH 6.8 with 20 mM ammonium acetate, in the DT IM-MS instrument, each buffer gas can yield a different arrival time distribution (ATD) for any given charge state.

  1. Scanning drift tube measurements of electron transport parameters in different gases: argon, synthetic air, methane and deuterium

    NASA Astrophysics Data System (ADS)

    Korolov, I.; Vass, M.; Donkó, Z.

    2016-10-01

    Measurements of transport coefficients of electrons in a scanning drift tube apparatus are reported for different gases: argon, synthetic air, methane and deuterium. The experimental system allows the spatio-temporal development of the electron swarms (‘swarm maps’) to be recorded and this information, when compared with the profiles predicted by theory, makes it possible to determine the ‘time-of-flight’ transport coefficients: the bulk drift velocity, the longitudinal diffusion coefficient and the effective ionization coefficient, in a well-defined way. From these data, the effective Townsend ionization coefficient is determined as well. The swarm maps provide, additionally, direct, unambiguous information about the hydrodynamic/non-hydrodynamic regimes of the swarms, aiding the selection of the proper regions applicable for the determination of the transport coefficients.

  2. Direct analysis in real time coupled to multiplexed drift tube ion mobility spectrometry for detecting toxic chemicals.

    PubMed

    Harris, Glenn A; Kwasnik, Mark; Fernández, Facundo M

    2011-03-15

    Current and future chemical threats to homeland security motivate the need for new chemical detection systems to provide border, transportation, and workplace security. We present the first successful coupling of a commercial direct analysis in real time (DART) ion source to a resistive glass monolithic drift tube ion mobility spectrometer (DTIMS) as the basis for a low maintenance, versatile, and robust chemical monitoring system. in situ ionization within the electric field gradient of the instrument enhances sensitivity and provides a safe sampling strategy. The instrument uses nitrogen as both the DART discharge and DTIMS drift gases, allowing for a high electric field to be used for ion separation while keeping cost-of-use low. With the use of a traditional signal averaging acquisition mode, the 95% probability of detection (POD) for analytes sampled from melting point capillary tubes was 11.81% v/v for DMMP, 1.13% v/v for 2-CEES, and 10.61 mM for methamidophos. Sensitivity was improved via a prototype transmission-mode geometry interface, resulting in an almost 2 orders of magnitude decrease in the POD level for DMMP (0.28% v/v). As an alternative to transmission mode operation, digital multiplexing of the DTIMS ion injection step was also implemented, finding a 3-fold improvement in signal-to-noise ratios for 200 μs gate injections and a 4.5-fold for 400 μs gate injections.

  3. Benchmarking Particle-in-Cell drift wave simulations with Eulerian simulations in a flux-tube

    NASA Astrophysics Data System (ADS)

    Chen, Yang; Parker, Scott; Wan, Weigang; Bravenec, Ronald; Wang, Eric; Candy, Jeff

    2012-10-01

    We present the implementation of a flux-tube option in the global turbulence code GEM.footnotetextY. Chen and S. E. Parker, J. Comp. Phys. 220, 839 (2007) This is necessary for benchmarking purposes because of the immense complexity involved in comparing global simulations. The global GEM assumes the magnetic equilibrium to be completely given. Our initial flux-tube implementation simply selects a radial location as the center of the flux-tube and a radial size of the flux-tube, sets all equilibrium quantities (B, ∇B, T, ∇T, the Jacobian etc.) to be equal to their values at the center of the flux-tube, and retains only a linear radial profile of the safety factor needed for boundary conditions. We found good agreement between GEM and GYRO/GS2 for the mode frequency/growth rate in the case of adiabatic electrons, but a difference of ˜15% in the growth rates when kinetic electrons are included. Our goal is to understand the origin of this moderate disagreement. An alternative local geometry model based on a local solution of the Grad-Shafranov equationfootnotetextJ. Candy, Plasma Phys. Control. Fusion 51, 105009 (2009) has been implemented and new benchmarking results from this model will be presented.

  4. Drift flux model as approximation of two fluid model for two phase dispersed and slug flow in tube

    SciTech Connect

    Nigmatulin, R.I.

    1995-09-01

    The analysis of one-dimensional schematizing for non-steady two-phase dispersed and slug flow in tube is presented. Quasi-static approximation, when inertia forces because of the accelerations of the phases may be neglected, is considered. Gas-liquid bubbly and slug vertical upward flows are analyzed. Non-trivial theoretical equations for slip velocity for these flows are derived. Juxtaposition of the derived equations for slip velocity with the famous Zuber-Findlay correlation as cross correlation coefficients is criticized. The generalization of non-steady drift flux Wallis theory taking into account influence of wall friction on the bubbly or slug flows for kinematical waves is considered.

  5. An Effective Approach for Coupling Direct Analysis in Real Time with Atmospheric Pressure Drift Tube Ion Mobility Spectrometry

    NASA Astrophysics Data System (ADS)

    Keelor, Joel D.; Dwivedi, Prabha; Fernández, Facundo M.

    2014-09-01

    Drift tube ion mobility spectrometry (DTIMS) has evolved as a robust analytical platform routinely used for screening small molecules across a broad suite of chemistries ranging from food and pharmaceuticals to explosives and environmental toxins. Most modern atmospheric pressure IM detectors employ corona discharge, photoionization, radioactive, or electrospray ion sources for efficient ion production. Coupling standalone DTIMS with ambient plasma-based techniques, however, has proven to be an exceptional challenge. Device sensitivity with near-ground ambient plasma sources is hindered by poor ion transmission at the source-instrument interface, where ion repulsion is caused by the strong electric field barrier of the high potential ion mobility spectrometry (IMS) inlet. To overcome this shortfall, we introduce a new ion source design incorporating a repeller point electrode used to shape the electric field profile and enable ion transmission from a direct analysis in real time (DART) plasma ion source. Parameter space characterization studies of the DART DTIMS setup were performed to ascertain the optimal configuration for the source assembly favoring ion transport. Preliminary system capabilities for the direct screening of solid pharmaceuticals are briefly demonstrated.

  6. Tuning of RF amplitude and phase for the separate-type drift tube linac in J-PARC

    NASA Astrophysics Data System (ADS)

    Shen, Guobao; Ikegami, Masanori

    2009-01-01

    It is important to accurately adjust the amplitude and the phase of RF power sources for a high intensity proton linac. J-PARC (Japan proton accelerator research complex) linac is one of those high-intensity linacs. J-PARC linac has 30 SDTL (separate-type drift tube linac) tanks to accelerate the negative hydrogen ions from 50 to 181 MeV. Two neighboring SDTL tanks are driven by one klystron, where the phase and the amplitude of these two tanks are controlled in terms of the vector sum. The target-value of the vector sum control should be determined with a beam-based tuning for each klystron. During the beam commissioning, the RF tuning has been performed with a phase scan method introducing a concept of phase signature matching. In the tuning, the output beam energy from the SDTL module is monitored while scanning the RF phase. Comparing the obtained phase dependence of the output beam energy with those from a numerical model, the target-values for the low-level RF control system has been tuned within the required accuracy of 1° in phase and 1% in amplitude. The same tuning procedure has successfully been applied to the RF tuning of buncher and debuncher cavities.

  7. Conformational ordering of biomolecules in the gas phase: nitrogen collision cross sections measured on a prototype high resolution drift tube ion mobility-mass spectrometer.

    PubMed

    May, Jody C; Goodwin, Cody R; Lareau, Nichole M; Leaptrot, Katrina L; Morris, Caleb B; Kurulugama, Ruwan T; Mordehai, Alex; Klein, Christian; Barry, William; Darland, Ed; Overney, Gregor; Imatani, Kenneth; Stafford, George C; Fjeldsted, John C; McLean, John A

    2014-02-18

    Ion mobility-mass spectrometry measurements which describe the gas-phase scaling of molecular size and mass are of both fundamental and pragmatic utility. Fundamentally, such measurements expand our understanding of intrinsic intramolecular folding forces in the absence of solvent. Practically, reproducible transport properties, such as gas-phase collision cross-section (CCS), are analytically useful metrics for identification and characterization purposes. Here, we report 594 CCS values obtained in nitrogen drift gas on an electrostatic drift tube ion mobility-mass spectrometry (IM-MS) instrument. The instrument platform is a newly developed prototype incorporating a uniform-field drift tube bracketed by electrodynamic ion funnels and coupled to a high resolution quadrupole time-of-flight mass spectrometer. The CCS values reported here are of high experimental precision (±0.5% or better) and represent four chemically distinct classes of molecules (quaternary ammonium salts, lipids, peptides, and carbohydrates), which enables structural comparisons to be made between molecules of different chemical compositions for the rapid "omni-omic" characterization of complex biological samples. Comparisons made between helium and nitrogen-derived CCS measurements demonstrate that nitrogen CCS values are systematically larger than helium values; however, general separation trends between chemical classes are retained regardless of the drift gas. These results underscore that, for the highest CCS accuracy, care must be exercised when utilizing helium-derived CCS values to calibrate measurements obtained in nitrogen, as is the common practice in the field.

  8. Conformational Ordering of Biomolecules in the Gas Phase: Nitrogen Collision Cross Sections Measured on a Prototype High Resolution Drift Tube Ion Mobility-Mass Spectrometer

    PubMed Central

    2014-01-01

    Ion mobility-mass spectrometry measurements which describe the gas-phase scaling of molecular size and mass are of both fundamental and pragmatic utility. Fundamentally, such measurements expand our understanding of intrinsic intramolecular folding forces in the absence of solvent. Practically, reproducible transport properties, such as gas-phase collision cross-section (CCS), are analytically useful metrics for identification and characterization purposes. Here, we report 594 CCS values obtained in nitrogen drift gas on an electrostatic drift tube ion mobility-mass spectrometry (IM-MS) instrument. The instrument platform is a newly developed prototype incorporating a uniform-field drift tube bracketed by electrodynamic ion funnels and coupled to a high resolution quadrupole time-of-flight mass spectrometer. The CCS values reported here are of high experimental precision (±0.5% or better) and represent four chemically distinct classes of molecules (quaternary ammonium salts, lipids, peptides, and carbohydrates), which enables structural comparisons to be made between molecules of different chemical compositions for the rapid “omni-omic” characterization of complex biological samples. Comparisons made between helium and nitrogen-derived CCS measurements demonstrate that nitrogen CCS values are systematically larger than helium values; however, general separation trends between chemical classes are retained regardless of the drift gas. These results underscore that, for the highest CCS accuracy, care must be exercised when utilizing helium-derived CCS values to calibrate measurements obtained in nitrogen, as is the common practice in the field. PMID:24446877

  9. Theoretical evaluation of peak capacity improvements by use of liquid chromatography combined with drift tube ion mobility-mass spectrometry.

    PubMed

    Causon, Tim J; Hann, Stephan

    2015-10-16

    In the domain of liquid phase separations, the quality of separation obtainable is most readily gauged by consideration of classical chromatographic peak capacity theory. Column-based multidimensional strategies for liquid chromatography remain the most attractive and practical route for increasing the number of spatially resolved components in order to reduce stress on necessary mass spectrometric detection. However, the stress placed on a chromatographic separation step as a second dimension in a comprehensive online methodology (i.e. online LC×LC) is rather high. As an alternative to online LC×LC combinations, coupling of HPLC with ion mobility spectrometry hyphenated to mass spectrometry (IMS-MS) has emerged as an attractive approach to permit comprehensive sampling of first dimension chromatographic peaks and subsequent introduction to an orthogonal IMS separation prior to measurement of ions by a mass spectrometer. In the present work, utilization of classical peak capacity and ion mobility theory allows theoretical assessment of the potential of two- (LC×IMS-MS) or even three-dimensional (LC×LC×IMS-MS) experimental setups to enhance peak capacity and, therefore, the number of correctly annotated features within the framework of complex, non-targeted analysis problems frequently addressed using HPLC-MS strategies. Theoretical calculations indicate that newly-available drift tube IMS-MS instrumentation can yield peak capacities of between 10 and 40 using nitrogen drift gas for typical non-targeted metabolomic, lipidomic and proteomic applications according to the expected reduced mobilities of components in the respective samples. Theoretically, this approach can significantly improve the overall peak capacity of conventional HPLC-(MS) methodologies to in excess of 10(4) depending upon the column length and gradient time employed. A more elaborate combination of LC×LC×IMS-MS would improve the ion suppression limitation and possibly allow access to

  10. Enhancing Biological Analyses with Three Dimensional Field Asymmetric Ion Mobility, Low Field Drift Tube Ion Mobility and Mass Spectrometry (μFAIMS/IMS-MS) Separations

    PubMed Central

    Zhang, Xing; Ibrahim, Yehia M.; Chen, Tsung-Chi; Kyle, Jennifer E.; Norheim, Randolph V.; Monroe, Matthew E.; Smith, Richard D.; Baker, Erin S.

    2015-01-01

    Multidimensional high throughput separations are ideal for analyzing distinct ion characteristics simultaneously in one analysis. We report on the first evaluation of a platform coupling a high speed field asymmetric ion mobility spectrometry microchip (μFAIMS) with drift tube ion mobility and mass spectrometry (IMS-MS). The μFAIMS/IMS-MS platform was used to analyze biological samples and simultaneously acquire multidimensional FAIMS compensation fields, IMS drift times, and accurate ion masses for the detected features. These separations thereby increased the overall measurement separation power, resulting in greater information content and more complete characterization of the complex samples. The separation conditions were optimized for sensitivity and resolving power by the selection of gas compositions and pressures in the FAIMS and IMS separation stages. The resulting performance provided three dimensional separations, benefitting both broad complex mixture studies and targeted analyses by improving isomeric separations and allowing detection of species obscured by interfering peaks. PMID:26140287

  11. Output beam energy measurement of a 100-MeV KOMAC drift tube linac by using a stripline beam position monitor

    NASA Astrophysics Data System (ADS)

    Kim, Han-Sung

    2015-10-01

    The 100-MeV proton linac at the KOMAC (Korea Multi-purpose Accelerator Complex) is composed of a 50-keV proton injector, a 3-MeV RFQ (radio-frequency quadrupole) and a 100-MeV DTL (drift tube linac). The proton beam is accelerated from 3 MeV to 100 MeV through 11 DTL tanks. The precise measurement of the proton-beam's energy at the output of each DTL tank is important for the longitudinal beam dynamics and can be performed by using a time-of-flight method with a BPM (beam position monitor), which is installed between each DTL tank. The details of the output beam energy measurement of the KOMAC DTL with stripline-type BPM and BPM signal processing, along with a comparison with the simulation results, will be presented in this paper.

  12. WATER PURITY DEVELOPMENT FOR THE COUPLED CAVITY LINAC (CCL) AND DRIFT TUBE LINAC (DTL) STRUCTURES OF THE SPALLATION NEUTRON SOURCE (SNS) LINAC

    SciTech Connect

    D. KATONAK; J. BERNARDIN; S. HOPKINS

    2001-06-01

    The Spallation Neutron Source (SNS) is a facility being designed for scientific and industrial research and development. SNS will generate and use neutrons as a diagnostic tool for medical purposes, material science, etc. The neutrons will be produced by bombarding a heavy metal target with a high-energy beam of protons, generated and accelerated with a linear particle accelerator, or linac. The low energy end of the linac consists of two room temperature copper structures, the drift tube linac (DTL), and the coupled cavity linac (CCL). Both of these accelerating structures use large amounts of electrical energy to accelerate the proton beam. Approximately 60-80% of the electrical energy is dissipated in the copper structure and must be removed. This is done using specifically designed water cooling passages within the linac's copper structure. Cooling water is supplied to these cooling passages by specially designed resonance control and water cooling systems. One of the primary components in the DTL and CCL water cooling systems, is a water purification system that is responsible for minimizing erosion, corrosion, scaling, biological growth, and hardware activation. The water purification system consists of filters, ion exchange resins, carbon beds, an oxygen scavenger, a UV source, and diagnostic instrumentation. This paper reviews related issues associated with water purification and describes the mechanical design of the SNS Linac water purification system.

  13. Electron motion analysis of a radial-radiated electron beam in a radial-line drift tube with finite magnetic field conducted

    NASA Astrophysics Data System (ADS)

    Dang, Fangchao; Zhang, Xiaoping; Zhong, Huihuang

    2017-02-01

    Radial-radiated electron beam is widely employed in radial-line structure microwave devices. The quality of the electron beam has a crucial effect on the operating performance of these devices. This paper analyzes theoretically this electron motion in a radial-line drift tube with finite magnetic field conducted. The beam width, spatial period, and fluctuation amplitude are quantitatively analyzed with different beam current parameters. By the particle-in-cell simulation, we examine the theoretical analysis under the condition of a designed realistic coil configuration. It indicates that the derived beam envelope function is capable of predicting the radial-radiated beam trajectory approximately. Meanwhile, it is found that the off-axial z-direction magnetic field, in spite of its greatly slight amplitude, is also one necessary consideration for the propagation characteristic of the radial-radiated electron beam. Furthermore, the presented electron motion analysis may be instructive for the design of the electronic optical system of the radial-line structure microwave devices.

  14. First results of CMS RPC performance at 13 TeV

    NASA Astrophysics Data System (ADS)

    Pedraza-Morales, M. I.; Shah, M. A.; Shopova, M.

    2016-12-01

    The muon spectrometer of the CMS (Compact Muon Solenoid) experiment at the Large Hadron Collider (LHC) is equipped with a redundant system made of Resistive Plate Chambers (RPCs) and Drift Tube (DT) chambers in the barrel, RPC and Cathode Strip Chambers (CSCs) in the endcap region. In this paper, the first results of the performance of the RPC system during 2015 with the LHC running at 13 TeV is presented. The stability of the RPC performance, in terms of efficiency, cluster size and noise, is reported.

  15. CMS-Wave

    DTIC Science & Technology

    2014-10-27

    2014 2. REPORT TYPE 3. DATES COVERED 00-00-2014 to 00-00-2014 4. TITLE AND SUBTITLE CMS -Wave 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM...Program CMS -Wave CMS -Wave is a two-dimensional spectral wind-wave generation and transformation model that employs a forward-marching, finite...difference method to solve the wave action conservation equation. Capabilities of CMS -Wave include wave shoaling, refraction, diffraction, reflection

  16. Stepwise formation of H3O(+)(H2O)n in an ion drift tube: Empirical effective temperature of association/dissociation reaction equilibrium in an electric field.

    PubMed

    Nakai, Yoichi; Hidaka, Hiroshi; Watanabe, Naoki; Kojima, Takao M

    2016-06-14

    We measured equilibrium constants for H3O(+)(H2O)n-1 + H2O↔H3O(+)(H2O)n (n = 4-9) reactions taking place in an ion drift tube with various applied electric fields at gas temperatures of 238-330 K. The zero-field reaction equilibrium constants were determined by extrapolation of those obtained at non-zero electric fields. From the zero-field reaction equilibrium constants, the standard enthalpy and entropy changes, ΔHn,n-1 (0) and ΔSn,n-1 (0), of stepwise association for n = 4-8 were derived and were in reasonable agreement with those measured in previous studies. We also examined the electric field dependence of the reaction equilibrium constants at non-zero electric fields for n = 4-8. An effective temperature for the reaction equilibrium constants at non-zero electric field was empirically obtained using a parameter describing the electric field dependence of the reaction equilibrium constants. Furthermore, the size dependence of the parameter was thought to reflect the evolution of the hydrogen-bond structure of H3O(+)(H2O)n with the cluster size. The reflection of structural information in the electric field dependence of the reaction equilibria is particularly noteworthy.

  17. Stepwise formation of H3O+(H2O)n in an ion drift tube: Empirical effective temperature of association/dissociation reaction equilibrium in an electric field

    NASA Astrophysics Data System (ADS)

    Nakai, Yoichi; Hidaka, Hiroshi; Watanabe, Naoki; Kojima, Takao M.

    2016-06-01

    We measured equilibrium constants for H3O+(H2O)n-1 + H2O↔H3O+(H2O)n (n = 4-9) reactions taking place in an ion drift tube with various applied electric fields at gas temperatures of 238-330 K. The zero-field reaction equilibrium constants were determined by extrapolation of those obtained at non-zero electric fields. From the zero-field reaction equilibrium constants, the standard enthalpy and entropy changes, Δ Hn , n - 1 0 and Δ Sn , n - 1 0 , of stepwise association for n = 4-8 were derived and were in reasonable agreement with those measured in previous studies. We also examined the electric field dependence of the reaction equilibrium constants at non-zero electric fields for n = 4-8. An effective temperature for the reaction equilibrium constants at non-zero electric field was empirically obtained using a parameter describing the electric field dependence of the reaction equilibrium constants. Furthermore, the size dependence of the parameter was thought to reflect the evolution of the hydrogen-bond structure of H3O+(H2O)n with the cluster size. The reflection of structural information in the electric field dependence of the reaction equilibria is particularly noteworthy.

  18. Drift reduction with drift control adjuvants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Numerous drift reduction adjuvants and spray deposition aids are available to applicators of crop production and protection chemicals. Performance of many of the newly introduced drift control adjuvants has not been well documented for aerial application. Five new drift control adjuvants were sele...

  19. Drift reduction with drift control adjuvants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Numerous drift reduction adjuvants and spray deposition aids are available to applicators of crop production and protection chemicals. Performance of many of the newly introduced drift control adjuvants has not been well documented for aerial application. Four new drift control adjuvants were sele...

  20. Neutron tubes

    DOEpatents

    Leung, Ka-Ngo; Lou, Tak Pui; Reijonen, Jani

    2008-03-11

    A neutron tube or generator is based on a RF driven plasma ion source having a quartz or other chamber surrounded by an external RF antenna. A deuterium or mixed deuterium/tritium (or even just a tritium) plasma is generated in the chamber and D or D/T (or T) ions are extracted from the plasma. A neutron generating target is positioned so that the ion beam is incident thereon and loads the target. Incident ions cause D-D or D-T (or T-T) reactions which generate neutrons. Various embodiments differ primarily in size of the chamber and position and shape of the neutron generating target. Some neutron generators are small enough for implantation in the body. The target may be at the end of a catheter-like drift tube. The target may have a tapered or conical surface to increase target surface area.

  1. The CMS Beam Halo Monitor electronics

    NASA Astrophysics Data System (ADS)

    Tosi, N.; Dabrowski, A. E.; Fabbri, F.; Grassi, T.; Hughes, E.; Mans, J.; Montanari, A.; Orfanelli, S.; Rusack, R.; Torromeo, G.; Stickland, D. P.; Stifter, K.

    2016-02-01

    The CMS Beam Halo Monitor has been successfully installed in the CMS cavern in LHC Long Shutdown 1 for measuring the machine induced background for LHC Run II. The system is based on 40 detector units composed of synthetic quartz Cherenkov radiators coupled to fast photomultiplier tubes (PMTs). The readout electronics chain uses many components developed for the Phase 1 upgrade to the CMS Hadronic Calorimeter electronics, with dedicated firmware and readout adapted to the beam monitoring requirements. The PMT signal is digitized by a charge integrating ASIC (QIE10), providing both the signal rise time, with few nanosecond resolution, and the charge integrated over one bunch crossing. The backend electronics uses microTCA technology and receives data via a high-speed 5 Gbps asynchronous link. It records histograms with sub-bunch crossing timing resolution and is read out via IPbus using the newly designed CMS data acquisition for non-event based data. The data is processed in real time and published to CMS and the LHC, providing online feedback on the beam quality. A dedicated calibration monitoring system has been designed to generate short triggered pulses of light to monitor the efficiency of the system. The electronics has been in operation since the first LHC beams of Run II and has served as the first demonstration of the new QIE10, Microsemi Igloo2 FPGA and high-speed 5 Gbps link with LHC data.

  2. Forward Physics at CMS

    SciTech Connect

    Solano, Ada

    2009-03-23

    A rich program of forward physics, including very low-x QCD dynamics, photon-induced processes, underlying event and energy flow distributions, diffraction in the presence of a hard scale and even the Higgs boson search in central exclusive production, is being studied by the CMS Collaboration, taking advantage of the forward detector instrumentation around the CMS interaction point at the LHC.

  3. RIA Superconducting Drift Tube Linac R & D

    SciTech Connect

    J. Popielarski; J. Bierwagen; S. Bricker; C. Compton; J. DeLauter; P. Glennon; T. Grimm; W. Hartung; D. Harvell; M. Hodek; M. Johnson; F. Marti; P. Miller; A. Moblo; D. Norton; L. Popielarski; J. Wlodarczak; R. C. York; A. Zeller

    2009-05-22

    Cavity and cryomodule development work for a superconducting ion linac has been underway for several years at the National Superconducting Cyclotron Laboratory. The original application of the work was the proposed Rare Isotope Accelerator. At present, the work is being continued for use with the Facility for Rare Isotope Beams (FRIB). The baseline linac for FRIB requires 4 types of superconducting cavities to cover the velocity range needed to accelerate an ion beam to 200 MeV/u: 2 types of quarter-wave resonator (QWR) and 2 types of half-wave resonator (HWR). Superconducting solenoids are used for focussing. Active and passive shielding is required to ensure that the solenoids’ field does not degrade the cavity performance. First prototypes of both QWR types and one HWR type have been fabricated and tested. A prototype solenoid has been procured and tested. A test cryomodule has been fabricated and tested. The test cryomodule contains one QWR, one HWR, one solenoid, and one super-ferric quadrupole. This report covers the design, fabrication, and testing of this cryomodule

  4. CMS workload management

    NASA Astrophysics Data System (ADS)

    Spiga, D.; CMS Collaboration

    2007-10-01

    From september 2007 the LHC accelerator will start its activity and CMS, one of the four experiments, will begin to take data. The CMS computing model is based on the the Grid paradigm where data is deployed and accessed on a number of geographically distributed computing centers. In addition to real data events, a large number of simulated ones will be produced in a similar, distributed manner. Both real and simulated data will be analyzed by physicist, at an expected rate of 100000 jobs per day submitted to the Grid infrastructure. In order to reach these goals, CMS is developing two tools for the workload management (plus a set of services): ProdAgent and CRAB. The ProdAgent deals with MonteCarlo production system: it creates and configures jobs, interacts with the Framework, merges outputs to a reasonable filesize and publishes the simulated data back into CMS data bookkeeping and data location services. CRAB (Cms Remote Analysis Builder) is the tool deployed ad hoc by CMS to access those remote data. CRAB allows a generic user, without specific knowledge of the Grid infrastructure, to access data and perform its analysis as simply as in a local environment. CRAB takes care to interact with all Data Management services, from data discovery and location to output file management. An overview of the current implementation of the components of the CMS workload management is presented in this work.

  5. CMS Analysis School Model

    SciTech Connect

    Malik, S.; Shipsey, I.; Cavanaugh, R.; Bloom, K.; Chan, Kai-Feng; D'Hondt, J.; Klima, B.; Narain, M.; Palla, F.; Rolandi, G.; Schörner-Sadenius, T.

    2014-01-01

    To impart hands-on training in physics analysis, CMS experiment initiated the concept of CMS Data Analysis School (CMSDAS). It was born over three years ago at the LPC (LHC Physics Centre), Fermilab and is based on earlier workshops held at the LPC and CLEO Experiment. As CMS transitioned from construction to the data taking mode, the nature of earlier training also evolved to include more of analysis tools, software tutorials and physics analysis. This effort epitomized as CMSDAS has proven to be a key for the new and young physicists to jump start and contribute to the physics goals of CMS by looking for new physics with the collision data. With over 400 physicists trained in six CMSDAS around the globe, CMS is trying to engage the collaboration in its discovery potential and maximize physics output. As a bigger goal, CMS is striving to nurture and increase engagement of the myriad talents, in the development of physics, service, upgrade, education of those new to CMS and the career development of younger members. An extension of the concept to the dedicated software and hardware schools is also planned, keeping in mind the ensuing upgrade phase.

  6. CMS Analysis School Model

    NASA Astrophysics Data System (ADS)

    Malik, S.; Shipsey, I.; Cavanaugh, R.; Bloom, K.; Chan, Kai-Feng; D'Hondt, J.; Klima, B.; Narain, M.; Palla, F.; Rolandi, G.; Schörner-Sadenius, T.

    2014-06-01

    To impart hands-on training in physics analysis, CMS experiment initiated the concept of CMS Data Analysis School (CMSDAS). It was born over three years ago at the LPC (LHC Physics Centre), Fermilab and is based on earlier workshops held at the LPC and CLEO Experiment. As CMS transitioned from construction to the data taking mode, the nature of earlier training also evolved to include more of analysis tools, software tutorials and physics analysis. This effort epitomized as CMSDAS has proven to be a key for the new and young physicists to jump start and contribute to the physics goals of CMS by looking for new physics with the collision data. With over 400 physicists trained in six CMSDAS around the globe, CMS is trying to engage the collaboration in its discovery potential and maximize physics output. As a bigger goal, CMS is striving to nurture and increase engagement of the myriad talents, in the development of physics, service, upgrade, education of those new to CMS and the career development of younger members. An extension of the concept to the dedicated software and hardware schools is also planned, keeping in mind the ensuing upgrade phase.

  7. CMS RATFOR System Manual.

    DTIC Science & Technology

    1979-07-01

    CMS RATFOR SYSTEM MANUAL.(U) U 79 S M CHOQUETTE, R J ORGASS AFOSR-79-O021 NCLASSIFIED VPI/SU-TM-79- AFOSR -TR-80-0277 NI MEhLlllllElIIIIIIII...GRADUATE PROGRAM IN NORTHERN VIRGINIA FAtheqsow, AC 20041 (703) 471-4600 CMS RATFOR SYSTEM MANUAL*t Stephen M. Choquette and Richard J. Orgass DTIO...the System Manual for the RATFOR preprocessor on the IBM CMS timesharing system . Included in this paper is a language description of RATPOR, an

  8. CMS tracker visualization tools

    NASA Astrophysics Data System (ADS)

    Mennea, M. S.; Osborne, I.; Regano, A.; Zito, G.

    2005-08-01

    This document will review the design considerations, implementations and performance of the CMS Tracker Visualization tools. In view of the great complexity of this sub-detector (more than 50 millions channels organized in 16540 modules each one of these being a complete detector), the standard CMS visualization tools (IGUANA and IGUANACMS) that provide basic 3D capabilities and integration within CMS framework, respectively, have been complemented with additional 2D graphics objects. Based on the experience acquired using this software to debug and understand both hardware and software during the construction phase, we propose possible future improvements to cope with online monitoring and event analysis during data taking.

  9. Phase 1 upgrade of the CMS forward hadronic calorimeter

    NASA Astrophysics Data System (ADS)

    Noonan, D.

    2017-02-01

    The CMS experiment at the Large Hadron Collider at CERN is upgrading the photo-detection and readout system of the forward hadronic calorimeter. The phase 1 upgrade of the CMS forward calorimeter requires the replacement of the current photomultiplier tubes, as well as the installation of a new front-end readout system. The new photomultiplier tubes contain a thinner window as well as multi-anode readout. The front-end electronics will use the QIE10 ASIC which combines signal digitization with timing information. The major components of the upgrade as well as the current status are described in this paper.

  10. CMS Space Monitoring

    NASA Astrophysics Data System (ADS)

    Ratnikova, N.; Huang, C.-H.; Sanchez-Hernandez, A.; Wildish, T.; Zhang, X.

    2014-06-01

    During the first LHC run, CMS stored about one hundred petabytes of data. Storage accounting and monitoring help to meet the challenges of storage management, such as efficient space utilization, fair share between users and groups and resource planning. We present a newly developed CMS space monitoring system based on the storage metadata dumps produced at the sites. The information extracted from the storage dumps is aggregated and uploaded to a central database. A web based data service is provided to retrieve the information for a given time interval and a range of sites, so it can be further aggregated and presented in the desired format. The system has been designed based on the analysis of CMS monitoring requirements and experiences of the other LHC experiments. In this paper, we demonstrate how the existing software components of the CMS data placement system, PhEDEx, have been re-used, dramatically reducing the development effort.

  11. CMS Space Monitoring

    SciTech Connect

    Ratnikova, N.; Huang, C.-H.; Sanchez-Hernandez, A.; Wildish, T.; Zhang, X.

    2014-01-01

    During the first LHC run, CMS stored about one hundred petabytes of data. Storage accounting and monitoring help to meet the challenges of storage management, such as efficient space utilization, fair share between users and groups and resource planning. We present a newly developed CMS space monitoring system based on the storage metadata dumps produced at the sites. The information extracted from the storage dumps is aggregated and uploaded to a central database. A web based data service is provided to retrieve the information for a given time interval and a range of sites, so it can be further aggregated and presented in the desired format. The system has been designed based on the analysis of CMS monitoring requirements and experiences of the other LHC experiments. In this paper, we demonstrate how the existing software components of the CMS data placement system, PhEDEx, have been re-used, dramatically reducing the development effort.

  12. Diffraction with CMS

    SciTech Connect

    Pereira, Antonio Vilela

    2011-07-15

    The observation of diffraction at LHC with the CMS detector at {radical}(s) = 900 and 2360 GeV is presented, along with a comparison of the data with the predictions of the PYTHIA and PHOJET generators.

  13. Repository Drift Backfilling Demonstrator

    SciTech Connect

    Londe, I.; Dubois, J.Ph.; Bauer, C.

    2008-07-01

    The 'Backfilling Demonstrator' is one of the technological demonstrators developed by ANDRA in the framework of the feasibility studies for a geological repository for high-level long-lived (HL-LL waste) within a clay formation. The demonstrator concerns the standard and supporting backfills as defined in Andra's 2005 design. The standard backfill is intended to fill up almost all drifts of the underground repository in order to limit any deformation of the rock after the degradation of the drift lining. The supporting backfill only concerns a small portion of the volume to be backfilled in order to counter the swelling pressure of the swelling clay contained in the sealing structures. The first objective of the demonstrator was to show the possibility of manufacturing a satisfactory backfill, in spite of the exiguity of the underground structures, and of reusing as much as possible the argillite muck. For the purpose of this experiment, the argillite muck was collected on Andra's work-site for the implementation of an underground research laboratory. Still ongoing, the second objective is to follow up the long-term evolution of the backfill. Approximately 200 m{sup 3} of compacted backfill material have been gathered in a large concrete tube simulating a repository drift. The standard backfill was manufactured exclusively with argillite. The supporting backfill was made by forming a mixture of argillite and sand. Operations were carried out mostly at Richwiller, close to Mulhouse, France. The objectives of the demonstrator were met: an application method was tested and proven satisfactory. The resulting dry densities are relatively high, although the moduli of deformation do not always reach the set goal. The selected objective for the demonstrator was a dry density corresponding to a relatively high compaction level (95% of the standard Proctor optimum [SPO]), for both pure argillite and the argillite-sand mixture. The plate-percussion compaction technique was

  14. Automating the CMS DAQ

    SciTech Connect

    Bauer, G.; et al.

    2014-01-01

    We present the automation mechanisms that have been added to the Data Acquisition and Run Control systems of the Compact Muon Solenoid (CMS) experiment during Run 1 of the LHC, ranging from the automation of routine tasks to automatic error recovery and context-sensitive guidance to the operator. These mechanisms helped CMS to maintain a data taking efficiency above 90% and to even improve it to 95% towards the end of Run 1, despite an increase in the occurrence of single-event upsets in sub-detector electronics at high LHC luminosity.

  15. Calculated nighttime eastward plasma drift velocities at low latitudes and their solar cycle dependence

    NASA Technical Reports Server (NTRS)

    Anderson, D. N.; Heelis, R. A.; Mcclure, J. P.

    1987-01-01

    After calculating ambient electron densities as a function of altitude, latitude and local time, a simplified expression is used to calculate F-region eastward plasma drifts given a zonal neutral wind model. The derived eastward plasma drift on a magnetic flux tube is examined as a function of the flux tube apex height. If the neutral wind is assumed to be independent of latitude the plasma drift maximizes along the flux tube which intercepts the F-region peak concentration at the Appleton anomaly. Above this altitude the velocity decreases to reflect a decrease in the flux tube integrated F-region Pedersen conductivity. For a latitude dependent wind the plasma drift tends to maximize along the flux tube which intercepts the F-peak at the dip equator. Above this altitude the drift decreases to reflect the latitude distribution of the wind.

  16. Exotica in CMS

    NASA Astrophysics Data System (ADS)

    Wulz, Claudia-Elisabeth

    2016-11-01

    Selected results on exotica searches with the CMS detector are presented. The main topics are dark matter, boosted objects, long-lived particles and classic narrow resonance searches. Most of the analyses were performed with data recorded at at centre of-mass energy of 8 TeV, but first results obtained at 13 TeV are also shown.

  17. Photodetectors for the CMS hadron calorimeters

    NASA Astrophysics Data System (ADS)

    Elias, J. E.; CMS Hadron Calorimeter Readout Group

    1997-02-01

    Hadronic energy measurements in the central and end cap regions of the Compact Muon Solenoid (CMS) detector will be made using sampling calorimeter techniques with plastic scintillator tiles as the sensitive layers. Plastic fibers doped with wavelength shifting fluors embedded in each tile are used to extract the scintillation light. Clear plastic wave guide fibers carry the shifted light to photodetectors located on the outer surface of the calorimeter structure. Environmental constraints and physics performance requirements for these photodetectors are presented. Candidate photodetector technologies are discussed, and the hybrid photomultiplier tube technology is identified as most promising.

  18. Dike/Drift Interactions

    SciTech Connect

    E. Gaffiney

    2004-11-23

    This report presents and documents the model components and analyses that represent potential processes associated with propagation of a magma-filled crack (dike) migrating upward toward the surface, intersection of the dike with repository drifts, flow of magma in the drifts, and post-magma emplacement effects on repository performance. The processes that describe upward migration of a dike and magma flow down the drift are referred to as the dike intrusion submodel. The post-magma emplacement processes are referred to as the post-intrusion submodel. Collectively, these submodels are referred to as a conceptual model for dike/drift interaction. The model components and analyses of the dike/drift interaction conceptual model provide the technical basis for assessing the potential impacts of an igneous intrusion on repository performance, including those features, events, and processes (FEPs) related to dike/drift interaction (Section 6.1).

  19. 42 CFR 405.800 - Appeals of CMS or a CMS contractor.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 2 2013-10-01 2013-10-01 false Appeals of CMS or a CMS contractor. 405.800 Section... Part B Program § 405.800 Appeals of CMS or a CMS contractor. A CMS contractor's (that is, a carrier... supplier enrollment application. If CMS or a CMS contractor denies a provider's or supplier's...

  20. 42 CFR 405.800 - Appeals of CMS or a CMS contractor.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 2 2012-10-01 2012-10-01 false Appeals of CMS or a CMS contractor. 405.800 Section... Part B Program § 405.800 Appeals of CMS or a CMS contractor. A CMS contractor's (that is, a carrier... supplier enrollment application. If CMS or a CMS contractor denies a provider's or supplier's...

  1. 42 CFR 405.874 - Appeals of CMS or a CMS contractor.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 2 2010-10-01 2010-10-01 false Appeals of CMS or a CMS contractor. 405.874 Section... Part B Program § 405.874 Appeals of CMS or a CMS contractor. A CMS contractor's (that is, a carrier... supplier enrollment application. If CMS or a CMS contractor denies a provider's or supplier's...

  2. 42 CFR 405.874 - Appeals of CMS or a CMS contractor.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 2 2011-10-01 2011-10-01 false Appeals of CMS or a CMS contractor. 405.874 Section... Part B Program § 405.874 Appeals of CMS or a CMS contractor. A CMS contractor's (that is, a carrier... supplier enrollment application. If CMS or a CMS contractor denies a provider's or supplier's...

  3. Free Drifting Buoys

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Information was exchanged between people directly involved with the development, use, and/or potential use of free drifting buoys. Tracking systems and techniques, where methods and accuracy of optical, radio, radar, satellite, and sonic tracking of free-drifting buoys were discussed. Deployment and retrieval covering methods currently used or planned in the deployment and retrieval of free-drifting buoys from boats, ships, helicopters, fixed platforms, and fixed-wing aircraft were reported. Simulation, sensors, and data emphasizing the status of water circulation modeling, and sensors useful on free-drifting buoys, and data display and analysis were described.

  4. Tube support

    DOEpatents

    Mullinax, Jerry L.

    1988-01-01

    A tube support for supporting horizontal tubes from an inclined vertical support tube passing between the horizontal tubes. A support button is welded to the vertical support tube. Two clamping bars or plates, the lower edges of one bearing on the support button, are removably bolted to the inclined vertical tube. The clamping bars provide upper and lower surface support for the horizontal tubes.

  5. Method for producing a tube

    DOEpatents

    Peterson, Kenneth A.; Rohde, Steven B.; Pfeifer, Kent B.; Turner, Timothy S.

    2007-01-02

    A method is described for producing tubular substrates having parallel spaced concentric rings of electrical conductors that can be used as the drift tube of an Ion Mobility Spectrometer (IMS). The invention comprises providing electrodes on the inside of a tube that are electrically connected to the outside of the tube through conductors that extend between adjacent plies of substrate that are combined to form the tube. Tubular substrates are formed from flexible polymeric printed wiring board materials, ceramic materials and material compositions of glass and ceramic, commonly known as Low Temperature Co-Fired Ceramic (LTCC). The adjacent plies are sealed together around the electrode.

  6. Higgs physics at CMS

    NASA Astrophysics Data System (ADS)

    Holzner, André G.

    2016-12-01

    This article reviews recent measurements of the properties of the standard model (SM) Higgs boson using data recorded with the CMS detector at the LHC: its mass, width and couplings to other SM particles. We also summarise highlights from searches for new physical phenomena in the Higgs sector as they are proposed in many extensions of the SM: flavour violating and invisible decay modes, resonances decaying into Higgs bosons and searches for additional Higgs bosons.

  7. Abstraction of Drift Seepage

    SciTech Connect

    J.T. Birkholzer

    2004-11-01

    This model report documents the abstraction of drift seepage, conducted to provide seepage-relevant parameters and their probability distributions for use in Total System Performance Assessment for License Application (TSPA-LA). Drift seepage refers to the flow of liquid water into waste emplacement drifts. Water that seeps into drifts may contact waste packages and potentially mobilize radionuclides, and may result in advective transport of radionuclides through breached waste packages [''Risk Information to Support Prioritization of Performance Assessment Models'' (BSC 2003 [DIRS 168796], Section 3.3.2)]. The unsaturated rock layers overlying and hosting the repository form a natural barrier that reduces the amount of water entering emplacement drifts by natural subsurface processes. For example, drift seepage is limited by the capillary barrier forming at the drift crown, which decreases or even eliminates water flow from the unsaturated fractured rock into the drift. During the first few hundred years after waste emplacement, when above-boiling rock temperatures will develop as a result of heat generated by the decay of the radioactive waste, vaporization of percolation water is an additional factor limiting seepage. Estimating the effectiveness of these natural barrier capabilities and predicting the amount of seepage into drifts is an important aspect of assessing the performance of the repository. The TSPA-LA therefore includes a seepage component that calculates the amount of seepage into drifts [''Total System Performance Assessment (TSPA) Model/Analysis for the License Application'' (BSC 2004 [DIRS 168504], Section 6.3.3.1)]. The TSPA-LA calculation is performed with a probabilistic approach that accounts for the spatial and temporal variability and inherent uncertainty of seepage-relevant properties and processes. Results are used for subsequent TSPA-LA components that may handle, for example, waste package corrosion or radionuclide transport.

  8. Ear Tubes

    MedlinePlus

    ... Marketplace Find an ENT Doctor Near You Ear Tubes Ear Tubes Patient Health Information News media interested ... throat specialist) may be considered. What are ear tubes? Ear tubes are tiny cylinders placed through the ...

  9. Quaternary contourite drifts of the Western Spitsbergen margin

    NASA Astrophysics Data System (ADS)

    Rebesco, Michele; Wåhlin, Anna; Laberg, Jan Sverre; Schauer, Ursula; Beszczynska-Möller, Agnieszka; Lucchi, Renata Giulia; Noormets, Riko; Accettella, Daniela; Zarayskaya, Yulia; Diviacco, Paolo

    2013-09-01

    The study of contourite drifts is an increasingly used tool for understanding the climate history of the oceans. In this paper we analyse two contourite drifts along the continental margin west of Spitsbergen, just south of the Fram Strait where significant water mass exchanges impact the Arctic climate. We detail the internal geometry and the morphologic characteristics of the two drifts on the base of multichannel seismic reflection data, sub-bottom profiles and bathymetry. These mounded features, that we propose to name Isfjorden and Bellsund drifts, are located on the continental slope between 1200 and 1800 m depth, whereas the upper slope is characterized by reduced- or non-deposition. The more distinct Isfjorden Drift is about 25 km wide and 45 km long, and over 200 ms TWT thick. We revise the 13 years-long time series of velocity, temperature, and salinity obtained from a mooring array across the Fram Strait. Two distinct current cores are visible in the long-term average. The shallower current core has an average northward velocity of about 20 cm/s, while the deeper bottom current core at about 1450 m depth has an average northward velocity of about 9 cm/s. We consider Norwegian Sea Deep Water episodically ventilated by relatively dense and turbid shelf water from the Barents Sea responsible for the accumulation of the contourites. The onset of the drift growth west of Spitsbergen is inferred to be about 1.3 Ma and related to the Early Pleistocene glacial expansion recorded in the area. The lack of mounded contouritic deposits on the continental slope of the Storfjorden is related to consecutive erosion by glacigenic debris flows. The Isfjorden and Bellsund drifts are inferred to contain the record of the regional palaeoceanography and glacial history and may constitute an excellent target of future scientific drilling.

  10. Quaternary Contourite Drifts of the Western Spitsbergen Margin

    NASA Astrophysics Data System (ADS)

    Laberg, J. S.; Rebesco, M.; Wahlin, A.; Schauer, U.; Beszczynska-Möller, A.; Lucchi, R. G.; Noormets, R.; Accettella, D.; Zarayskaya, Y.; Diviacco, P.

    2014-12-01

    The study of contourite drifts is an increasingly used tool for understanding the climate history of the oceans. In this paper we analyse two contourite drifts along the continental margin west of Spitsbergen, just south of the Fram Strait where significant water mass exchanges impact the Arctic climate. We detail the internal geometry and the morphologic characteristics of the two drifts on the base of multichannel seismic reflection data, sub-bottom profiles and bathymetry. These mounded features, that we propose to name Isfjorden and Bellsund drifts, are located on the continental slope between 1200 and 1800 m depth, whereas the upper slope is characterized by reduced- or non-deposition. The more distinct Isfjorden Drift is about 25 km wide and 45 km long, and over 200 ms TWT thick. We revise the 13 years-long time series of velocity, temperature, and salinity obtained from a mooring array across the Fram Strait. Two distinct current cores are visible in the long-term average. The shallower current core has an average northward velocity of about 20 cm/s, while the deeper bottom current core at about 1450 m depth has an average northward velocity of about 9 cm/s. We consider Norwegian Sea Deep Water episodically ventilated by relatively dense and turbid shelf water from the Barents Sea responsible for the accumulation of the contourites. The onset of the drift growth west of Spitsbergen is inferred to be about 1.3 Ma and related to the Early Pleistocene glacial expansion recorded in the area. The lack of mounded contouritic deposits on the continental slope of the Storfjorden is related to consecutive erosion by glacigenic debris flows. The Isfjorden and Bellsund drifts are inferred to contain the record of the regional palaeoceanography and glacial history and may constitute an excellent target of future scientific drilling.

  11. Status of RDMS CMS computing

    NASA Astrophysics Data System (ADS)

    Gavrilov, V.; Golutvin, I.; Kodolova, O.; Korenkov, V.; Levchuk, L.; Shmatov, S.; Tikhonenko, E.; Zhiltsov, V.

    2016-09-01

    The Compact Muon Solenoid (CMS) is a high-performance general-purpose detector at the Large Hadron Collider (LHC) at CERN. More than twenty institutes from Russia and Joint Institute for Nuclear Research (JINR) are involved in Russia and Dubna Member States (RDMS) CMS Collaboration. A proper computing grid-infrastructure has been constructed at the RDMS institutes for the participation in the running phase of the CMS experiment. Current status of RDMS CMS computing and plans of its development to the next LHC start are presented.

  12. Lithium drifted germanium system

    NASA Technical Reports Server (NTRS)

    Fjarlie, E. J.

    1969-01-01

    General characteristics of the lithium-drifted germanium photodiode-Dewar-preamplifier system and particular operating instructions for the device are given. Information is included on solving operational problems.

  13. Continental drift before 1900.

    PubMed

    Rupke, N A

    1970-07-25

    The idea that Francis Bacon and other seventeenth and eighteenth century thinkers first conceived the notion of continental drift does not stand up to close scrutiny. The few authors who expressed the idea viewed the process as a catastrophic event.

  14. The CMS trigger system

    DOE PAGES

    Khachatryan, Vardan

    2017-01-24

    This paper describes the CMS trigger system and its performance during Run 1 of the LHC. The trigger system consists of two levels designed to select events of potential physics interest from a GHz (MHz) interaction rate of proton-proton (heavy ion) collisions. The first level of the trigger is implemented in hardware, and selects events containing detector signals consistent with an electron, photon, muon, tau lepton, jet, or missing transverse energy. A programmable menu of up to 128 object-based algorithms is used to select events for subsequent processing. The trigger thresholds are adjusted to the LHC instantaneous luminosity during datamore » taking in order to restrict the output rate to 100 kHz, the upper limit imposed by the CMS readout electronics. The second level, implemented in software, further refines the purity of the output stream, selecting an average rate of 400 Hz for offline event storage. The objectives, strategy and performance of the trigger system during the LHC Run 1 are described.« less

  15. The CMS trigger system

    NASA Astrophysics Data System (ADS)

    Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Erö, J.; Flechl, M.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hartl, C.; Hörmann, N.; Hrubec, J.; Jeitler, M.; Knünz, V.; König, A.; Krammer, M.; Krätschmer, I.; Liko, D.; Matsushita, T.; Mikulec, I.; Rabady, D.; Rahbaran, B.; Rohringer, H.; Schieck, J.; Schöfbeck, R.; Strauss, J.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Alderweireldt, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Knutsson, A.; Lauwers, J.; Luyckx, S.; Van De Klundert, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Abu Zeid, S.; Blekman, F.; D'Hondt, J.; Daci, N.; De Bruyn, I.; Deroover, K.; Heracleous, N.; Keaveney, J.; Lowette, S.; Moreels, L.; Olbrechts, A.; Python, Q.; Strom, D.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Van Parijs, I.; Barria, P.; Brun, H.; Caillol, C.; Clerbaux, B.; De Lentdecker, G.; Fasanella, G.; Favart, L.; Grebenyuk, A.; Karapostoli, G.; Lenzi, T.; Léonard, A.; Maerschalk, T.; Marinov, A.; Perniè, L.; Randle-conde, A.; Reis, T.; Seva, T.; Vander Velde, C.; Vanlaer, P.; Yonamine, R.; Zenoni, F.; Zhang, F.; Beernaert, K.; Benucci, L.; Cimmino, A.; Crucy, S.; Dobur, D.; Fagot, A.; Garcia, G.; Gul, M.; Mccartin, J.; Ocampo Rios, A. A.; Poyraz, D.; Ryckbosch, D.; Salva, S.; Sigamani, M.; Strobbe, N.; Tytgat, M.; Van Driessche, W.; Yazgan, E.; Zaganidis, N.; Basegmez, S.; Beluffi, C.; Bondu, O.; Brochet, S.; Bruno, G.; Caudron, A.; Ceard, L.; Da Silveira, G. G.; Delaere, C.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Jafari, A.; Jez, P.; Komm, M.; Lemaitre, V.; Mertens, A.; Musich, M.; Nuttens, C.; Perrini, L.; Pin, A.; Piotrzkowski, K.; Popov, A.; Quertenmont, L.; Selvaggi, M.; Vidal Marono, M.; Beliy, N.; Hammad, G. H.; Aldá Júnior, W. L.; Alves, F. L.; Alves, G. A.; Brito, L.; Correa Martins Junior, M.; Hamer, M.; Hensel, C.; Mora Herrera, C.; Moraes, A.; Pol, M. E.; Rebello Teles, P.; Belchior Batista Das Chagas, E.; Carvalho, W.; Chinellato, J.; Custódio, A.; Da Costa, E. M.; Damiao, D. De Jesus; De Oliveira Martins, C.; Fonseca De Souza, S.; Huertas Guativa, L. M.; Malbouisson, H.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Prado Da Silva, W. L.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.; Ahuja, S.; Bernardes, C. A.; De Souza Santos, A.; Dogra, S.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Mercadante, P. G.; Moon, C. S.; Novaes, S. F.; Padula, Sandra S.; Romero Abad, D.; Ruiz Vargas, J. C.; Aleksandrov, A.; Hadjiiska, R.; Iaydjiev, P.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Vutova, M.; Dimitrov, A.; Glushkov, I.; Litov, L.; Pavlov, B.; Petkov, P.; Ahmad, M.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Cheng, T.; Du, R.; Jiang, C. H.; Plestina, R.; Romeo, F.; Shaheen, S. M.; Spiezia, A.; Tao, J.; Wang, C.; Wang, Z.; Zhang, H.; Asawatangtrakuldee, C.; Ban, Y.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Xu, Z.; Avila, C.; Cabrera, A.; Chaparro Sierra, L. F.; Florez, C.; Gomez, J. P.; Gomez Moreno, B.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Puljak, I.; Ribeiro Cipriano, P. M.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Kadija, K.; Luetic, J.; Micanovic, S.; Sudic, L.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.; Bodlak, M.; Finger, M.; Finger, M., Jr.; Assran, Y.; El Sawy, M.; Elgammal, S.; Ellithi Kamel, A.; Mahmoud, M. A.; Calpas, B.; Kadastik, M.; Murumaa, M.; Raidal, M.; Tiko, A.; Veelken, C.; Eerola, P.; Pekkanen, J.; Voutilainen, M.; Härkönen, J.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.; Talvitie, J.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Locci, E.; Machet, M.; Malcles, J.; Rander, J.; Rosowsky, A.; Titov, M.; Zghiche, A.; Antropov, I.; Baffioni, S.; Beaudette, F.; Busson, P.; Cadamuro, L.; Chapon, E.; Charlot, C.; Dahms, T.; Davignon, O.; Filipovic, N.; Florent, A.; Granier de Cassagnac, R.; Lisniak, S.; Mastrolorenzo, L.; Miné, P.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Pigard, P.; Regnard, S.; Salerno, R.; Sauvan, J. B.; Sirois, Y.; Strebler, T.; Yilmaz, Y.; Zabi, A.; Agram, J.-L.; Andrea, J.; Aubin, A.; Bloch, D.; Brom, J.-M.; Buttignol, M.; Chabert, E. C.; Chanon, N.; Collard, C.; Conte, E.; Coubez, X.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Goetzmann, C.; Le Bihan, A.-C.; Merlin, J. A.; Skovpen, K.; Van Hove, P.; Gadrat, S.; Beauceron, S.; Bernet, C.; Boudoul, G.; Bouvier, E.; Carrillo Montoya, C. A.; Chierici, R.; Contardo, D.; Courbon, B.; Depasse, P.; El Mamouni, H.; Fan, J.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Lagarde, F.; Laktineh, I. B.; Lethuillier, M.; Mirabito, L.; Pequegnot, A. L.; Perries, S.; Ruiz Alvarez, J. D.; Sabes, D.; Sgandurra, L.; Sordini, V.; Vander Donckt, M.; Verdier, P.; Viret, S.; Toriashvili, T.; Tsamalaidze, Z.; Autermann, C.; Beranek, S.; Edelhoff, M.; Feld, L.; Heister, A.; Kiesel, M. K.; Klein, K.; Lipinski, M.; Ostapchuk, A.; Preuten, M.; Raupach, F.; Schael, S.; Schulte, J. F.; Verlage, T.; Weber, H.; Wittmer, B.; Zhukov, V.; Ata, M.; Brodski, M.; Dietz-Laursonn, E.; Duchardt, D.; Endres, M.; Erdmann, M.; Erdweg, S.; Esch, T.; Fischer, R.; Güth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Klingebiel, D.; Knutzen, S.; Kreuzer, P.; Merschmeyer, M.; Meyer, A.; Millet, P.; Olschewski, M.; Padeken, K.; Papacz, P.; Pook, T.; Radziej, M.; Reithler, H.; Rieger, M.; Scheuch, F.; Sonnenschein, L.; Teyssier, D.; Thüer, S.; Cherepanov, V.; Erdogan, Y.; Flügge, G.; Geenen, H.; Geisler, M.; Hoehle, F.; Kargoll, B.; Kress, T.; Kuessel, Y.; Künsken, A.; Lingemann, J.; Nehrkorn, A.; Nowack, A.; Nugent, I. M.; Pistone, C.; Pooth, O.; Stahl, A.; Aldaya Martin, M.; Asin, I.; Bartosik, N.; Behnke, O.; Behrens, U.; Bell, A. J.; Borras, K.; Burgmeier, A.; Campbell, A.; Choudhury, S.; Costanza, F.; Diez Pardos, C.; Dolinska, G.; Dooling, S.; Dorland, T.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Flucke, G.; Gallo, E.; Garay Garcia, J.; Geiser, A.; Gizhko, A.; Gunnellini, P.; Hauk, J.; Hempel, M.; Jung, H.; Kalogeropoulos, A.; Karacheban, O.; Kasemann, M.; Katsas, P.; Kieseler, J.; Kleinwort, C.; Korol, I.; Lange, W.; Leonard, J.; Lipka, K.; Lobanov, A.; Lohmann, W.; Mankel, R.; Marfin, I.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mittag, G.; Mnich, J.; Mussgiller, A.; Naumann-Emme, S.; Nayak, A.; Ntomari, E.; Perrey, H.; Pitzl, D.; Placakyte, R.; Raspereza, A.; Roland, B.; Sahin, M. Ö.; Saxena, P.; Schoerner-Sadenius, T.; Schröder, M.; Seitz, C.; Spannagel, S.; Trippkewitz, K. D.; Walsh, R.; Wissing, C.; Blobel, V.; Centis Vignali, M.; Draeger, A. R.; Erfle, J.; Garutti, E.; Goebel, K.; Gonzalez, D.; Görner, M.; Haller, J.; Hoffmann, M.; Höing, R. S.; Junkes, A.; Klanner, R.; Kogler, R.; Kovalchuk, N.; Lapsien, T.; Lenz, T.; Marchesini, I.; Marconi, D.; Meyer, M.; Nowatschin, D.; Ott, J.; Pantaleo, F.; Peiffer, T.; Perieanu, A.; Pietsch, N.; Poehlsen, J.; Rathjens, D.; Sander, C.; Scharf, C.; Schettler, H.; Schleper, P.; Schlieckau, E.; Schmidt, A.; Schwandt, J.; Sola, V.; Stadie, H.; Steinbrück, G.; Tholen, H.; Troendle, D.; Usai, E.; Vanelderen, L.; Vanhoefer, A.; Vormwald, B.; Akbiyik, M.; Barth, C.; Baus, C.; Berger, J.; Böser, C.; Butz, E.; Chwalek, T.; Colombo, F.; De Boer, W.; Descroix, A.; Dierlamm, A.; Fink, S.; Frensch, F.; Friese, R.; Giffels, M.; Gilbert, A.; Haitz, D.; Hartmann, F.; Heindl, S. M.; Husemann, U.; Katkov, I.; Kornmayer, A.; Lobelle Pardo, P.; Maier, B.; Mildner, H.; Mozer, M. U.; Müller, T.; Müller, Th.; Plagge, M.; Quast, G.; Rabbertz, K.; Röcker, S.; Roscher, F.; Sieber, G.; Simonis, H. J.; Stober, F. M.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weber, M.; Weiler, T.; Wöhrmann, C.; Wolf, R.; Anagnostou, G.; Daskalakis, G.; Geralis, T.; Giakoumopoulou, V. A.; Kyriakis, A.; Loukas, D.; Psallidas, A.; Topsis-Giotis, I.; Agapitos, A.; Kesisoglou, S.; Panagiotou, A.; Saoulidou, N.; Tziaferi, E.; Evangelou, I.; Flouris, G.; Foudas, C.; Kokkas, P.; Loukas, N.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Strologas, J.; Bencze, G.; Hajdu, C.; Hazi, A.; Hidas, P.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.; Beni, N.; Czellar, S.; Karancsi, J.; Molnar, J.; Szillasi, Z.; Bartók, M.; Makovec, A.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Mal, P.; Mandal, K.; Sahoo, D. K.; Sahoo, N.; Swain, S. K.; Bansal, S.; Beri, S. B.; Bhatnagar, V.; Chawla, R.; Gupta, R.; Bhawandeep, U.; Kalsi, A. K.; Kaur, A.; Kaur, M.; Kumar, R.; Mehta, A.; Mittal, M.; Singh, J. B.; Walia, G.; Kumar, Ashok; Bhardwaj, A.; Choudhary, B. C.; Garg, R. B.; Kumar, A.; Malhotra, S.; Naimuddin, M.; Nishu, N.; Ranjan, K.; Sharma, R.; Sharma, V.; Bhattacharya, S.; Chatterjee, K.; Dey, S.; Dutta, S.; Jain, Sa.; Majumdar, N.; Modak, A.; Mondal, K.; Mukherjee, S.; Mukhopadhyay, S.; Roy, A.; Roy, D.; Chowdhury, S. Roy; Sarkar, S.; Sharan, M.; Abdulsalam, A.; Chudasama, R.; Dutta, D.; Jha, V.; Kumar, V.; Mohanty, A. K.; Pant, L. M.; Shukla, P.; Topkar, A.; Aziz, T.; Banerjee, S.; Bhowmik, S.; Chatterjee, R. M.; Dewanjee, R. K.; Dugad, S.; Ganguly, S.; Ghosh, S.; Guchait, M.; Gurtu, A.; Kole, G.; Kumar, S.; Mahakud, B.; Maity, M.; Majumder, G.; Mazumdar, K.; Mitra, S.; Mohanty, G. B.; Parida, B.; Sarkar, T.; Sur, N.; Sutar, B.; Wickramage, N.; Chauhan, S.; Dube, S.; Kothekar, K.; Sharma, S.; Bakhshiansohi, H.; Behnamian, H.; Etesami, S. M.; Fahim, A.; Goldouzian, R.; Khakzad, M.; Najafabadi, M. Mohammadi; Naseri, M.; Paktinat Mehdiabadi, S.; Rezaei Hosseinabadi, F.; Safarzadeh, B.; Zeinali, M.; Felcini, M.; Grunewald, M.; Abbrescia, M.; Calabria, C.; Caputo, C.; Colaleo, A.; Creanza, D.; Cristella, L.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; Miniello, G.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Ranieri, A.; Selvaggi, G.; Silvestris, L.; Venditti, R.; Verwilligen, P.; Abbiendi, G.; Battilana, C.; Benvenuti, A. C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Chhibra, S. S.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Travaglini, R.; Cappello, G.; Chiorboli, M.; Costa, S.; Di Mattia, A.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Gonzi, S.; Gori, V.; Lenzi, P.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Tropiano, A.; Viliani, L.; Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.; Primavera, F.; Calvelli, V.; Ferro, F.; Lo Vetere, M.; Monge, M. R.; Robutti, E.; Tosi, S.; Brianza, L.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Gerosa, R.; Ghezzi, A.; Govoni, P.; Malvezzi, S.; Manzoni, R. A.; Marzocchi, B.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; Tabarelli de Fatis, T.; Buontempo, S.; Cavallo, N.; Di Guida, S.; Esposito, M.; Fabozzi, F.; Iorio, A. O. M.; Lanza, G.; Lista, L.; Meola, S.; Merola, M.; Paolucci, P.; Sciacca, C.; Thyssen, F.; Bacchetta, N.; Bellato, M.; Benato, L.; Bisello, D.; Boletti, A.; Carlin, R.; Checchia, P.; Dall'Osso, M.; Dosselli, U.; Gasparini, F.; Gasparini, U.; Gozzelino, A.; Lacaprara, S.; Margoni, M.; Meneguzzo, A. T.; Montecassiano, F.; Passaseo, M.; Pazzini, J.; Pegoraro, M.; Pozzobon, N.; Simonetto, F.; Torassa, E.; Tosi, M.; Vanini, S.; Ventura, S.; Zanetti, M.; Zotto, P.; Zucchetta, A.; Zumerle, G.; Braghieri, A.; Magnani, A.; Montagna, P.; Ratti, S. P.; Re, V.; Riccardi, C.; Salvini, P.; Vai, I.; Vitulo, P.; Alunni Solestizi, L.; Biasini, M.; Bilei, G. M.; Ciangottini, D.; Fanò, L.; Lariccia, P.; Mantovani, G.; Menichelli, M.; Saha, A.; Santocchia, A.; Androsov, K.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Donato, S.; Fedi, G.; Foà, L.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Serban, A. T.; Spagnolo, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Barone, L.; Cavallari, F.; D'imperio, G.; Del Re, D.; Diemoz, M.; Gelli, S.; Jorda, C.; Longo, E.; Margaroli, F.; Meridiani, P.; Organtini, G.; Paramatti, R.; Preiato, F.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Traczyk, P.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bellan, R.; Biino, C.; Cartiglia, N.; Costa, M.; Covarelli, R.; Degano, A.; Demaria, N.; Finco, L.; Kiani, B.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Monteil, E.; Obertino, M. M.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Pinna Angioni, G. L.; Ravera, F.; Romero, A.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Tamponi, U.; Belforte, S.; Candelise, V.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; La Licata, C.; Marone, M.; Schizzi, A.; Zanetti, A.; Kropivnitskaya, A.; Nam, S. K.; Kim, D. H.; Kim, G. N.; Kim, M. S.; Kong, D. J.; Lee, S.; Oh, Y. D.; Sakharov, A.; Son, D. C.; Brochero Cifuentes, J. A.; Kim, H.; Kim, T. J.; Song, S.; Choi, S.; Go, Y.; Gyun, D.; Hong, B.; Jo, M.; Kim, H.; Kim, Y.; Lee, B.; Lee, K.; Lee, K. S.; Lee, S.; Park, S. K.; Roh, Y.; Yoo, H. D.; Choi, M.; Kim, H.; Kim, J. H.; Lee, J. S. H.; Park, I. C.; Ryu, G.; Ryu, M. S.; Choi, Y.; Goh, J.; Kim, D.; Kwon, E.; Lee, J.; Yu, I.; Dudenas, V.; Juodagalvis, A.; Vaitkus, J.; Ahmed, I.; Ibrahim, Z. A.; Komaragiri, J. R.; Ali, M. A. B. Md; Mohamad Idris, F.; Abdullah, W. A. T. Wan; Yusli, M. N.; Casimiro Linares, E.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-De La Cruz, I.; Hernandez-Almada, A.; Lopez-Fernandez, R.; Sanchez-Hernandez, A.; Carrillo Moreno, S.; Vazquez Valencia, F.; Pedraza, I.; Salazar Ibarguen, H. A.; Morelos Pineda, A.; Krofcheck, D.; Butler, P. H.; Ahmad, A.; Ahmad, M.; Hassan, Q.; Hoorani, H. R.; Khan, W. A.; Khurshid, T.; Shoaib, M.; Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Górski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Zalewski, P.; Brona, G.; Bunkowski, K.; Byszuk, A.; Doroba, K.; Kalinowski, A.; Kierzkowski, K.; Konecki, M.; Krolikowski, J.; Misiura, M.; Oklinski, W.; Olszewski, M.; Pozniak, K.; Walczak, M.; Zabolotny, W.; Bargassa, P.; Silva, C. Beirão Da Cruz E.; Di Francesco, A.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Leonardo, N.; Lloret Iglesias, L.; Nguyen, F.; Rodrigues Antunes, J.; Seixas, J.; Toldaiev, O.; Vadruccio, D.; Varela, J.; Vischia, P.; Afanasiev, S.; Bunin, P.; Gavrilenko, M.; Golutvin, I.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Konoplyanikov, V.; Lanev, A.; Malakhov, A.; Matveev, V.; Moisenz, P.; Palichik, V.; Perelygin, V.; Shmatov, S.; Shulha, S.; Skatchkov, N.; Smirnov, V.; Zarubin, A.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Kuznetsova, E.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Karneyeu, A.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Pozdnyakov, I.; Safronov, G.; Spiridonov, A.; Vlasov, E.; Zhokin, A.; Bylinkin, A.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Mesyats, G.; Rusakov, S. V.; Baskakov, A.; Belyaev, A.; Boos, E.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Kaminskiy, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Myagkov, I.; Obraztsov, S.; Petrushanko, S.; Savrin, V.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Milosevic, J.; Rekovic, V.; Alcaraz Maestre, J.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Domínguez Vázquez, D.; Escalante Del Valle, A.; Fernandez Bedoya, C.; Fernández Ramos, J. P.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Navarro De Martino, E.; Pérez-Calero Yzquierdo, A.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Santaolalla, J.; Soares, M. S.; Albajar, C.; de Trocóniz, J. F.; Missiroli, M.; Moran, D.; Cuevas, J.; Fernandez Menendez, J.; Folgueras, S.; Gonzalez Caballero, I.; Palencia Cortezon, E.; Vizan Garcia, J. M.; Cabrillo, I. J.; Calderon, A.; Castiñeiras De Saa, J. R.; De Castro Manzano, P.; Duarte Campderros, J.; Fernandez, M.; Garcia-Ferrero, J.; Gomez, G.; Lopez Virto, A.; Marco, J.; Marco, R.; Martinez Rivero, C.; Matorras, F.; Munoz Sanchez, F. J.; Piedra Gomez, J.; Rodrigo, T.; Rodríguez-Marrero, A. Y.; Ruiz-Jimeno, A.; Scodellaro, L.; Trevisani, N.; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Benaglia, A.; Bendavid, J.; Benhabib, L.; Benitez, J. F.; Berruti, G. M.; Bloch, P.; Bocci, A.; Bonato, A.; Botta, C.; Breuker, H.; Camporesi, T.; Castello, R.; Cerminara, G.; D'Alfonso, M.; d'Enterria, D.; Dabrowski, A.; Daponte, V.; David, A.; De Gruttola, M.; De Guio, F.; De Roeck, A.; De Visscher, S.; Di Marco, E.; Dobson, M.; Dordevic, M.; Dorney, B.; du Pree, T.; Dünser, M.; Dupont, N.; Elliott-Peisert, A.; Franzoni, G.; Funk, W.; Gigi, D.; Gill, K.; Giordano, D.; Girone, M.; Glege, F.; Guida, R.; Gundacker, S.; Guthoff, M.; Hammer, J.; Harris, P.; Hegeman, J.; Innocente, V.; Janot, P.; Kirschenmann, H.; Kortelainen, M. J.; Kousouris, K.; Krajczar, K.; Lecoq, P.; Lourenço, C.; Lucchini, M. T.; Magini, N.; Malgeri, L.; Mannelli, M.; Martelli, A.; Masetti, L.; Meijers, F.; Mersi, S.; Meschi, E.; Moortgat, F.; Morovic, S.; Mulders, M.; Nemallapudi, M. V.; Neugebauer, H.; Orfanelli, S.; Orsini, L.; Pape, L.; Perez, E.; Peruzzi, M.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Piparo, D.; Racz, A.; Rolandi, G.; Rovere, M.; Ruan, M.; Sakulin, H.; Schäfer, C.; Schwick, C.; Seidel, M.; Sharma, A.; Silva, P.; Simon, M.; Sphicas, P.; Steggemann, J.; Stieger, B.; Stoye, M.; Takahashi, Y.; Treille, D.; Triossi, A.; Tsirou, A.; Veres, G. I.; Wardle, N.; Wöhri, H. K.; Zagozdzinska, A.; Zeuner, W. D.; Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Renker, D.; Rohe, T.; Bachmair, F.; Bäni, L.; Bianchini, L.; Casal, B.; Dissertori, G.; Dittmar, M.; Donegà, M.; Eller, P.; Grab, C.; Heidegger, C.; Hits, D.; Hoss, J.; Kasieczka, G.; Lustermann, W.; Mangano, B.; Marionneau, M.; Martinez Ruiz del Arbol, P.; Masciovecchio, M.; Meister, D.; Micheli, F.; Musella, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pata, J.; Pauss, F.; Perrozzi, L.; Quittnat, M.; Rossini, M.; Starodumov, A.; Takahashi, M.; Tavolaro, V. R.; Theofilatos, K.; Wallny, R.; Aarrestad, T. K.; Amsler, C.; Caminada, L.; Canelli, M. F.; Chiochia, V.; De Cosa, A.; Galloni, C.; Hinzmann, A.; Hreus, T.; Kilminster, B.; Lange, C.; Ngadiuba, J.; Pinna, D.; Robmann, P.; Ronga, F. J.; Salerno, D.; Yang, Y.; Cardaci, M.; Chen, K. H.; Doan, T. H.; Jain, Sh.; Khurana, R.; Konyushikhin, M.; Kuo, C. M.; Lin, W.; Lu, Y. J.; Yu, S. S.; Kumar, Arun; Bartek, R.; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Chen, P. H.; Dietz, C.; Fiori, F.; Grundler, U.; Hou, W.-S.; Hsiung, Y.; Liu, Y. F.; Lu, R.-S.; Miñano Moya, M.; Petrakou, E.; Tsai, J. f.; Tzeng, Y. M.; Asavapibhop, B.; Kovitanggoon, K.; Singh, G.; Srimanobhas, N.; Suwonjandee, N.; Adiguzel, A.; Bakirci, M. N.; Demiroglu, Z. S.; Dozen, C.; Eskut, E.; Girgis, S.; Gokbulut, G.; Guler, Y.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Onengut, G.; Ozdemir, K.; Polatoz, A.; Sunar Cerci, D.; Tali, B.; Topakli, H.; Vergili, M.; Zorbilmez, C.; Akin, I. V.; Bilin, B.; Bilmis, S.; Isildak, B.; Karapinar, G.; Yalvac, M.; Zeyrek, M.; Gülmez, E.; Kaya, M.; Kaya, O.; Yetkin, E. A.; Yetkin, T.; Cakir, A.; Cankocak, K.; Sen, S.; Vardarlı, F. I.; Grynyov, B.; Levchuk, L.; Sorokin, P.; Aggleton, R.; Ball, F.; Beck, L.; Brooke, J. J.; Clement, E.; Cussans, D.; Flacher, H.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Jacob, J.; Kreczko, L.; Lucas, C.; Meng, Z.; Newbold, D. M.; Paramesvaran, S.; Poll, A.; Sakuma, T.; Seif El Nasr-storey, S.; Senkin, S.; Smith, D.; Smith, V. J.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Calligaris, L.; Cieri, D.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Williams, T.; Womersley, W. J.; Worm, S. D.; Baber, M.; Bainbridge, R.; Buchmuller, O.; Bundock, A.; Burton, D.; Casasso, S.; Citron, M.; Colling, D.; Corpe, L.; Cripps, N.; Dauncey, P.; Davies, G.; De Wit, A.; Della Negra, M.; Dunne, P.; Elwood, A.; Ferguson, W.; Fulcher, J.; Futyan, D.; Hall, G.; Iles, G.; Kenzie, M.; Lane, R.; Lucas, R.; Lyons, L.; Magnan, A.-M.; Malik, S.; Nash, J.; Nikitenko, A.; Pela, J.; Pesaresi, M.; Petridis, K.; Raymond, D. M.; Richards, A.; Rose, A.; Seez, C.; Tapper, A.; Uchida, K.; Vazquez Acosta, M.; Virdee, T.; Zenz, S. C.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leggat, D.; Leslie, D.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.; Borzou, A.; Call, K.; Dittmann, J.; Hatakeyama, K.; Liu, H.; Pastika, N.; Charaf, O.; Cooper, S. I.; Henderson, C.; Rumerio, P.; Arcaro, D.; Avetisyan, A.; Bose, T.; Fantasia, C.; Gastler, D.; Lawson, P.; Rankin, D.; Richardson, C.; Rohlf, J.; St. John, J.; Sulak, L.; Zou, D.; Alimena, J.; Berry, E.; Bhattacharya, S.; Cutts, D.; Dhingra, N.; Ferapontov, A.; Garabedian, A.; Hakala, J.; Heintz, U.; Laird, E.; Landsberg, G.; Mao, Z.; Narain, M.; Piperov, S.; Sagir, S.; Syarif, R.; Breedon, R.; Breto, G.; Calderon De La Barca Sanchez, M.; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Gardner, M.; Ko, W.; Lander, R.; Mulhearn, M.; Pellett, D.; Pilot, J.; Ricci-Tam, F.; Shalhout, S.; Smith, J.; Squires, M.; Stolp, D.; Tripathi, M.; Wilbur, S.; Yohay, R.; Cousins, R.; Everaerts, P.; Farrell, C.; Hauser, J.; Ignatenko, M.; Saltzberg, D.; Takasugi, E.; Valuev, V.; Weber, M.; Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Hanson, G.; Heilman, J.; Ivova PANEVA, M.; Jandir, P.; Kennedy, E.; Lacroix, F.; Long, O. R.; Luthra, A.; Malberti, M.; Olmedo Negrete, M.; Shrinivas, A.; Wei, H.; Wimpenny, S.; Yates, B. R.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; D'Agnolo, R. T.; Derdzinski, M.; Holzner, A.; Kelley, R.; Klein, D.; Letts, J.; Macneill, I.; Olivito, D.; Padhi, S.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Tadel, M.; Vartak, A.; Wasserbaech, S.; Welke, C.; Würthwein, F.; Yagil, A.; Zevi Della Porta, G.; Bradmiller-Feld, J.; Campagnari, C.; Dishaw, A.; Dutta, V.; Flowers, K.; Sevilla, M. Franco; Geffert, P.; George, C.; Golf, F.; Gouskos, L.; Gran, J.; Incandela, J.; Mccoll, N.; Mullin, S. D.; Richman, J.; Stuart, D.; Suarez, I.; West, C.; Yoo, J.; Anderson, D.; Apresyan, A.; Bornheim, A.; Bunn, J.; Chen, Y.; Duarte, J.; Mott, A.; Newman, H. B.; Pena, C.; Pierini, M.; Spiropulu, M.; Vlimant, J. R.; Xie, S.; Zhu, R. Y.; Andrews, M. B.; Azzolini, V.; Calamba, A.; Carlson, B.; Ferguson, T.; Paulini, M.; Russ, J.; Sun, M.; Vogel, H.; Vorobiev, I.; Cumalat, J. P.; Ford, W. T.; Gaz, A.; Jensen, F.; Johnson, A.; Krohn, M.; Mulholland, T.; Nauenberg, U.; Stenson, K.; Wagner, S. R.; Alexander, J.; Chatterjee, A.; Chaves, J.; Chu, J.; Dittmer, S.; Eggert, N.; Mirman, N.; Kaufman, G. Nicolas; Patterson, J. R.; Rinkevicius, A.; Ryd, A.; Skinnari, L.; Soffi, L.; Sun, W.; Tan, S. M.; Teo, W. D.; Thom, J.; Thompson, J.; Tucker, J.; Weng, Y.; Wittich, P.; Abdullin, S.; Albrow, M.; Anderson, J.; Apollinari, G.; Banerjee, S.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bolla, G.; Burkett, K.; Butler, J. N.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gottschalk, E.; Gray, L.; Green, D.; Grünendahl, S.; Gutsche, O.; Hanlon, J.; Hare, D.; Harris, R. M.; Hasegawa, S.; Hirschauer, J.; Hu, Z.; Jayatilaka, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Jung, A. W.; Klima, B.; Kreis, B.; Kwan, S.; Lammel, S.; Linacre, J.; Lincoln, D.; Lipton, R.; Liu, T.; Lopes De Sá, R.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Martinez Outschoorn, V. I.; Maruyama, S.; Mason, D.; McBride, P.; Merkel, P.; Mishra, K.; Mrenna, S.; Nahn, S.; Newman-Holmes, C.; O'Dell, V.; Pedro, K.; Prokofyev, O.; Rakness, G.; Sexton-Kennedy, E.; Soha, A.; Spalding, W. J.; Spiegel, L.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vernieri, C.; Verzocchi, M.; Vidal, R.; Weber, H. A.; Whitbeck, A.; Yang, F.; Acosta, D.; Avery, P.; Bortignon, P.; Bourilkov, D.; Carnes, A.; Carver, M.; Curry, D.; Das, S.; Di Giovanni, G. P.; Field, R. D.; Furic, I. K.; Gleyzer, S. V.; Hugon, J.; Konigsberg, J.; Korytov, A.; Low, J. F.; Ma, P.; Matchev, K.; Mei, H.; Milenovic, P.; Mitselmakher, G.; Rank, D.; Rossin, R.; Shchutska, L.; Snowball, M.; Sperka, D.; Terentyev, N.; Thomas, L.; Wang, J.; Wang, S.; Yelton, J.; Hewamanage, S.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.; Ackert, A.; Adams, J. R.; Adams, T.; Askew, A.; Bochenek, J.; Diamond, B.; Haas, J.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Khatiwada, A.; Prosper, H.; Weinberg, M.; Baarmand, M. M.; Bhopatkar, V.; Colafranceschi, S.; Hohlmann, M.; Kalakhety, H.; Noonan, D.; Roy, T.; Yumiceva, F.; Adams, M. R.; Apanasevich, L.; Berry, D.; Betts, R. R.; Bucinskaite, I.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Kurt, P.; O'Brien, C.; Sandoval Gonzalez, I. D.; Silkworth, C.; Turner, P.; Varelas, N.; Wu, Z.; Zakaria, M.; Bilki, B.; Clarida, W.; Dilsiz, K.; Durgut, S.; Gandrajula, R. P.; Haytmyradov, M.; Khristenko, V.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Snyder, C.; Tiras, E.; Wetzel, J.; Yi, K.; Anderson, I.; Barnett, B. A.; Blumenfeld, B.; Eminizer, N.; Fehling, D.; Feng, L.; Gritsan, A. V.; Maksimovic, P.; Martin, C.; Osherson, M.; Roskes, J.; Sady, A.; Sarica, U.; Swartz, M.; Xiao, M.; Xin, Y.; You, C.; Baringer, P.; Bean, A.; Benelli, G.; Bruner, C.; Kenny, R. P., III; Majumder, D.; Malek, M.; Murray, M.; Sanders, S.; Stringer, R.; Wang, Q.; Ivanov, A.; Kaadze, K.; Khalil, S.; Makouski, M.; Maravin, Y.; Mohammadi, A.; Saini, L. K.; Skhirtladze, N.; Toda, S.; Lange, D.; Rebassoo, F.; Wright, D.; Anelli, C.; Baden, A.; Baron, O.; Belloni, A.; Calvert, B.; Eno, S. C.; Ferraioli, C.; Gomez, J. A.; Hadley, N. J.; Jabeen, S.; Kellogg, R. G.; Kolberg, T.; Kunkle, J.; Lu, Y.; Mignerey, A. C.; Shin, Y. H.; Skuja, A.; Tonjes, M. B.; Tonwar, S. C.; Apyan, A.; Barbieri, R.; Baty, A.; Bierwagen, K.; Brandt, S.; Busza, W.; Cali, I. A.; Demiragli, Z.; Di Matteo, L.; Gomez Ceballos, G.; Goncharov, M.; Gulhan, D.; Iiyama, Y.; Innocenti, G. M.; Klute, M.; Kovalskyi, D.; Lai, Y. S.; Lee, Y.-J.; Levin, A.; Luckey, P. D.; Marini, A. C.; Mcginn, C.; Mironov, C.; Narayanan, S.; Niu, X.; Paus, C.; Ralph, D.; Roland, C.; Roland, G.; Salfeld-Nebgen, J.; Stephans, G. S. F.; Sumorok, K.; Varma, M.; Velicanu, D.; Veverka, J.; Wang, J.; Wang, T. W.; Wyslouch, B.; Yang, M.; Zhukova, V.; Dahmes, B.; Evans, A.; Finkel, A.; Gude, A.; Hansen, P.; Kalafut, S.; Kao, S. C.; Klapoetke, K.; Kubota, Y.; Lesko, Z.; Mans, J.; Nourbakhsh, S.; Ruckstuhl, N.; Rusack, R.; Tambe, N.; Turkewitz, J.; Acosta, J. G.; Oliveros, S.; Avdeeva, E.; Bloom, K.; Bose, S.; Claes, D. R.; Dominguez, A.; Fangmeier, C.; Gonzalez Suarez, R.; Kamalieddin, R.; Keller, J.; Knowlton, D.; Kravchenko, I.; Meier, F.; Monroy, J.; Ratnikov, F.; Siado, J. E.; Snow, G. R.; Alyari, M.; Dolen, J.; George, J.; Godshalk, A.; Harrington, C.; Iashvili, I.; Kaisen, J.; Kharchilava, A.; Kumar, A.; Rappoccio, S.; Roozbahani, B.; Alverson, G.; Barberis, E.; Baumgartel, D.; Chasco, M.; Hortiangtham, A.; Massironi, A.; Morse, D. M.; Nash, D.; Orimoto, T.; Teixeira De Lima, R.; Trocino, D.; Wang, R.-J.; Wood, D.; Zhang, J.; Hahn, K. A.; Kubik, A.; Mucia, N.; Odell, N.; Pollack, B.; Pozdnyakov, A.; Schmitt, M.; Stoynev, S.; Sung, K.; Trovato, M.; Velasco, M.; Brinkerhoff, A.; Dev, N.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Lynch, S.; Marinelli, N.; Meng, F.; Mueller, C.; Musienko, Y.; Pearson, T.; Planer, M.; Reinsvold, A.; Ruchti, R.; Smith, G.; Taroni, S.; Valls, N.; Wayne, M.; Wolf, M.; Woodard, A.; Antonelli, L.; Brinson, J.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Hart, A.; Hill, C.; Hughes, R.; Ji, W.; Kotov, K.; Ling, T. Y.; Liu, B.; Luo, W.; Puigh, D.; Rodenburg, M.; Winer, B. L.; Wulsin, H. W.; Driga, O.; Elmer, P.; Hardenbrook, J.; Hebda, P.; Koay, S. A.; Lujan, P.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Palmer, C.; Piroué, P.; Saka, H.; Stickland, D.; Tully, C.; Zuranski, A.; Malik, S.; Barnes, V. E.; Benedetti, D.; Bortoletto, D.; Gutay, L.; Jha, M. K.; Jones, M.; Jung, K.; Miller, D. H.; Neumeister, N.; Radburn-Smith, B. C.; Shi, X.; Shipsey, I.; Silvers, D.; Sun, J.; Svyatkovskiy, A.; Wang, F.; Xie, W.; Xu, L.; Parashar, N.; Stupak, J.; Adair, A.; Akgun, B.; Chen, Z.; Ecklund, K. M.; Geurts, F. J. M.; Guilbaud, M.; Li, W.; Michlin, B.; Northup, M.; Padley, B. P.; Redjimi, R.; Roberts, J.; Rorie, J.; Tu, Z.; Zabel, J.; Betchart, B.; Bodek, A.; de Barbaro, P.; Demina, R.; Eshaq, Y.; Ferbel, T.; Galanti, M.; Garcia-Bellido, A.; Han, J.; Harel, A.; Hindrichs, O.; Khukhunaishvili, A.; Petrillo, G.; Tan, P.; Verzetti, M.; Arora, S.; Barker, A.; Chou, J. P.; Contreras-Campana, C.; Contreras-Campana, E.; Duggan, D.; Ferencek, D.; Gershtein, Y.; Gray, R.; Halkiadakis, E.; Hidas, D.; Hughes, E.; Kaplan, S.; Kunnawalkam Elayavalli, R.; Lath, A.; Nash, K.; Panwalkar, S.; Park, M.; Salur, S.; Schnetzer, S.; Sheffield, D.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.; Foerster, M.; Riley, G.; Rose, K.; Spanier, S.; York, A.; Bouhali, O.; Castaneda Hernandez, A.; Dalchenko, M.; De Mattia, M.; Delgado, A.; Dildick, S.; Eusebi, R.; Gilmore, J.; Kamon, T.; Krutelyov, V.; Mueller, R.; Osipenkov, I.; Pakhotin, Y.; Patel, R.; Perloff, A.; Rose, A.; Safonov, A.; Tatarinov, A.; Ulmer, K. A.; Akchurin, N.; Cowden, C.; Damgov, J.; Dragoiu, C.; Dudero, P. R.; Faulkner, J.; Kunori, S.; Lamichhane, K.; Lee, S. W.; Libeiro, T.; Undleeb, S.; Volobouev, I.; Appelt, E.; Delannoy, A. G.; Greene, S.; Gurrola, A.; Janjam, R.; Johns, W.; Maguire, C.; Mao, Y.; Melo, A.; Ni, H.; Sheldon, P.; Snook, B.; Tuo, S.; Velkovska, J.; Xu, Q.; Arenton, M. W.; Cox, B.; Francis, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Li, H.; Lin, C.; Neu, C.; Sinthuprasith, T.; Sun, X.; Wang, Y.; Wolfe, E.; Wood, J.; Xia, F.; Clarke, C.; Harr, R.; Karchin, P. E.; Kottachchi Kankanamge Don, C.; Lamichhane, P.; Sturdy, J.; Belknap, D. A.; Carlsmith, D.; Cepeda, M.; Dasu, S.; Dodd, L.; Duric, S.; Gomber, B.; Grothe, M.; Hall-Wilton, R.; Herndon, M.; Hervé, A.; Klabbers, P.; Lanaro, A.; Levine, A.; Long, K.; Loveless, R.; Mohapatra, A.; Ojalvo, I.; Perry, T.; Pierro, G. A.; Polese, G.; Ruggles, T.; Sarangi, T.; Savin, A.; Sharma, A.; Smith, N.; Smith, W. H.; Taylor, D.; Woods, N.

    2017-01-01

    This paper describes the CMS trigger system and its performance during Run 1 of the LHC. The trigger system consists of two levels designed to select events of potential physics interest from a GHz (MHz) interaction rate of proton-proton (heavy ion) collisions. The first level of the trigger is implemented in hardware, and selects events containing detector signals consistent with an electron, photon, muon, τ lepton, jet, or missing transverse energy. A programmable menu of up to 128 object-based algorithms is used to select events for subsequent processing. The trigger thresholds are adjusted to the LHC instantaneous luminosity during data taking in order to restrict the output rate to 100 kHz, the upper limit imposed by the CMS readout electronics. The second level, implemented in software, further refines the purity of the output stream, selecting an average rate of 400 Hz for offline event storage. The objectives, strategy and performance of the trigger system during the LHC Run 1 are described.

  16. Opportunistic Resource Usage in CMS

    SciTech Connect

    Kreuzer, Peter; Hufnagel, Dirk; Dykstra, D.; Gutsche, O.; Tadel, M.; Sfiligoi, I.; Letts, J.; Wuerthwein, F.; McCrea, A.; Bockelman, B.; Fajardo, E.; Linares, L.; Wagner, R.; Konstantinov, P.; Blumenfeld, B.; Bradley, D.

    2014-01-01

    CMS is using a tiered setup of dedicated computing resources provided by sites distributed over the world and organized in WLCG. These sites pledge resources to CMS and are preparing them especially for CMS to run the experiment's applications. But there are more resources available opportunistically both on the GRID and in local university and research clusters which can be used for CMS applications. We will present CMS' strategy to use opportunistic resources and prepare them dynamically to run CMS applications. CMS is able to run its applications on resources that can be reached through the GRID, through EC2 compliant cloud interfaces. Even resources that can be used through ssh login nodes can be harnessed. All of these usage modes are integrated transparently into the GlideIn WMS submission infrastructure, which is the basis of CMS' opportunistic resource usage strategy. Technologies like Parrot to mount the software distribution via CVMFS and xrootd for access to data and simulation samples via the WAN are used and will be described. We will summarize the experience with opportunistic resource usage and give an outlook for the restart of LHC data taking in 2015.

  17. Opportunistic Resource Usage in CMS

    NASA Astrophysics Data System (ADS)

    Kreuzer, Peter; Hufnagel, Dirk; Dykstra, D.; Gutsche, O.; Tadel, M.; Sfiligoi, I.; Letts, J.; Wuerthwein, F.; McCrea, A.; Bockelman, B.; Fajardo, E.; Linares, L.; Wagner, R.; Konstantinov, P.; Blumenfeld, B.; Bradley, D.; Cms Collaboration

    2014-06-01

    CMS is using a tiered setup of dedicated computing resources provided by sites distributed over the world and organized in WLCG. These sites pledge resources to CMS and are preparing them especially for CMS to run the experiment's applications. But there are more resources available opportunistically both on the GRID and in local university and research clusters which can be used for CMS applications. We will present CMS' strategy to use opportunistic resources and prepare them dynamically to run CMS applications. CMS is able to run its applications on resources that can be reached through the GRID, through EC2 compliant cloud interfaces. Even resources that can be used through ssh login nodes can be harnessed. All of these usage modes are integrated transparently into the GlideIn WMS submission infrastructure, which is the basis of CMS' opportunistic resource usage strategy. Technologies like Parrot to mount the software distribution via CVMFS and xrootd for access to data and simulation samples via the WAN are used and will be described. We will summarize the experience with opportunistic resource usage and give an outlook for the restart of LHC data taking in 2015.

  18. Drift Scale THM Model

    SciTech Connect

    J. Rutqvist

    2004-10-07

    This model report documents the drift scale coupled thermal-hydrological-mechanical (THM) processes model development and presents simulations of the THM behavior in fractured rock close to emplacement drifts. The modeling and analyses are used to evaluate the impact of THM processes on permeability and flow in the near-field of the emplacement drifts. The results from this report are used to assess the importance of THM processes on seepage and support in the model reports ''Seepage Model for PA Including Drift Collapse'' and ''Abstraction of Drift Seepage'', and to support arguments for exclusion of features, events, and processes (FEPs) in the analysis reports ''Features, Events, and Processes in Unsaturated Zone Flow and Transport and Features, Events, and Processes: Disruptive Events''. The total system performance assessment (TSPA) calculations do not use any output from this report. Specifically, the coupled THM process model is applied to simulate the impact of THM processes on hydrologic properties (permeability and capillary strength) and flow in the near-field rock around a heat-releasing emplacement drift. The heat generated by the decay of radioactive waste results in elevated rock temperatures for thousands of years after waste emplacement. Depending on the thermal load, these temperatures are high enough to cause boiling conditions in the rock, resulting in water redistribution and altered flow paths. These temperatures will also cause thermal expansion of the rock, with the potential of opening or closing fractures and thus changing fracture permeability in the near-field. Understanding the THM coupled processes is important for the performance of the repository because the thermally induced permeability changes potentially effect the magnitude and spatial distribution of percolation flux in the vicinity of the drift, and hence the seepage of water into the drift. This is important because a sufficient amount of water must be available within a

  19. Drift Degradation Analysis

    SciTech Connect

    D. Kicker

    2004-09-16

    Degradation of underground openings as a function of time is a natural and expected occurrence for any subsurface excavation. Over time, changes occur to both the stress condition and the strength of the rock mass due to several interacting factors. Once the factors contributing to degradation are characterized, the effects of drift degradation can typically be mitigated through appropriate design and maintenance of the ground support system. However, for the emplacement drifts of the geologic repository at Yucca Mountain, it is necessary to characterize drift degradation over a 10,000-year period, which is well beyond the functional period of the ground support system. This document provides an analysis of the amount of drift degradation anticipated in repository emplacement drifts for discrete events and time increments extending throughout the 10,000-year regulatory period for postclosure performance. This revision of the drift degradation analysis was developed to support the license application and fulfill specific agreement items between the U.S. Nuclear Regulatory Commission (NRC) and the U.S. Department of Energy (DOE). The earlier versions of ''Drift Degradation Analysis'' (BSC 2001 [DIRS 156304]) relied primarily on the DRKBA numerical code, which provides for a probabilistic key-block assessment based on realistic fracture patterns determined from field mapping in the Exploratory Studies Facility (ESF) at Yucca Mountain. A key block is defined as a critical block in the surrounding rock mass of an excavation, which is removable and oriented in an unsafe manner such that it is likely to move into an opening unless support is provided. However, the use of the DRKBA code to determine potential rockfall data at the repository horizon during the postclosure period has several limitations: (1) The DRKBA code cannot explicitly apply dynamic loads due to seismic ground motion. (2) The DRKBA code cannot explicitly apply loads due to thermal stress. (3) The DRKBA

  20. Spiral silicon drift detectors

    SciTech Connect

    Rehak, P.; Gatti, E.; Longoni, A.; Sampietro, M.; Holl, P.; Lutz, G.; Kemmer, J.; Prechtel, U.; Ziemann, T.

    1988-01-01

    An advanced large area silicon photodiode (and x-ray detector), called Spiral Drift Detector, was designed, produced and tested. The Spiral Detector belongs to the family of silicon drift detectors and is an improvement of the well known Cylindrical Drift Detector. In both detectors, signal electrons created in silicon by fast charged particles or photons are drifting toward a practically point-like collection anode. The capacitance of the anode is therefore kept at the minimum (0.1pF). The concentric rings of the cylindrical detector are replaced by a continuous spiral in the new detector. The spiral geometry detector design leads to a decrease of the detector leakage current. In the spiral detector all electrons generated at the silicon-silicon oxide interface are collected on a guard sink rather than contributing to the detector leakage current. The decrease of the leakage current reduces the parallel noise of the detector. This decrease of the leakage current and the very small capacities of the detector anode with a capacitively matched preamplifier may improve the energy resolution of Spiral Drift Detectors operating at room temperature down to about 50 electrons rms. This resolution is in the range attainable at present only by cooled semiconductor detectors. 5 refs., 10 figs.

  1. SAA drift: Experimental results

    NASA Astrophysics Data System (ADS)

    Grigoryan, O. R.; Romashova, V. V.; Petrov, A. N.

    According to the paleomagnetic analysis there are variations of Earth’s magnetic field connected with magnetic moment changing. These variations affect on the South Atlantic Anomaly (SAA) location. Indeed different observations approved the existence of the SAA westward drift rate (0.1 1.0 deg/year) and northward drift rate (approximately 0.1 deg/year). In this work, we present the analysis of experimental results obtained in Scobeltsyn Institute of Nuclear Physics, Moscow State University (SINP MSU) onboard different Earth’s artificial satellites (1972 2003). The fluxes of protons with energy >50 MeV, gamma quanta with energy >500 keV and neutrons with energy 0.1 1.0 MeV in the SAA region have been analyzed. The mentioned above experimental data were obtained onboard the orbital stations Salut-6 (1979), MIR (1991, 1998) and ISS (2003) by the similar experimental equipment. The comparison of the data obtained during these two decades of investigations confirms the fact that the SAA drifts westward. Moreover the analysis of fluxes of electrons with energy about hundreds keV (Cosmos-484 (1972) and Active (Interkosmos-24, 1991) satellites) verified not only the SAA westward drift but northward drift also.

  2. TUBE TESTER

    DOEpatents

    Gittings, H.T. Jr.; Kalbach, J.F.

    1958-01-14

    This patent relates to tube testing, and in particular describes a tube tester for automatic testing of a number of vacuum tubes while in service and as frequently as may be desired. In it broadest aspects the tube tester compares a particular tube with a standard tube tarough a difference amplifier. An unbalanced condition in the circuit of the latter produced by excessive deviation of the tube in its characteristics from standard actuates a switch mechanism stopping the testing cycle and indicating the defective tube.

  3. CMS Software Notebook. First Edition.

    DTIC Science & Technology

    1979-07-01

    For example, one of my file managing procedures will permit a user to enter the CMS subset to look for a missing file when it is not possible to...Box 17186 Washington, D.C. 20041 CMS userid: ORGASS Please specify if you want the user’s manual or the systems manual. The latter is designed for...8217 CMS SOFTWARE NOTEBOOK*t (First Edition) edited by Richard J. Orgass DT ’ Technical Memorandum No. 79-6 K. July 31, 1979 . ABSTRACT A brief description

  4. High resolution drift chambers

    SciTech Connect

    Va'vra, J.

    1985-07-01

    High precision drift chambers capable of achieving less than or equal to 50 ..mu..m resolutions are discussed. In particular, we compare so called cool and hot gases, various charge collection geometries, several timing techniques and we also discuss some systematic problems. We also present what we would consider an ''ultimate'' design of the vertex chamber. 50 refs., 36 figs., 6 tabs.

  5. Dike Propagation Near Drifts

    SciTech Connect

    NA

    2002-03-04

    The purpose of this Analysis and Model Report (AMR) supporting the Site Recommendation/License Application (SR/LA) for the Yucca Mountain Project is the development of elementary analyses of the interactions of a hypothetical dike with a repository drift (i.e., tunnel) and with the drift contents at the potential Yucca Mountain repository. This effort is intended to support the analysis of disruptive events for Total System Performance Assessment (TSPA). This AMR supports the Process Model Report (PMR) on disruptive events (CRWMS M&O 2000a). This purpose is documented in the development plan (DP) ''Coordinate Modeling of Dike Propagation Near Drifts Consequences for TSPA-SR/LA'' (CRWMS M&O 2000b). Evaluation of that Development Plan and the work to be conducted to prepare Interim Change Notice (ICN) 1 of this report, which now includes the design option of ''Open'' drifts, indicated that no revision to that DP was needed. These analyses are intended to provide reasonable bounds for a number of expected effects: (1) Temperature changes to the waste package from exposure to magma; (2) The gas flow available to degrade waste containers during the intrusion; (3) Movement of the waste package as it is displaced by the gas, pyroclasts and magma from the intruding dike (the number of packages damaged); (4) Movement of the backfill (Backfill is treated here as a design option); (5) The nature of the mechanics of the dike/drift interaction. These analyses serve two objectives: to provide preliminary analyses needed to support evaluation of the consequences of an intrusive event and to provide a basis for addressing some of the concerns of the Nuclear Regulatory Commission (NRC) expressed in the Igneous Activity Issue Resolution Status Report.

  6. CMS multicore scheduling strategy

    SciTech Connect

    Perez-Calero Yzquierdo, Antonio; Hernandez, Jose; Holzman, Burt; Majewski, Krista; McCrea, Alison

    2014-01-01

    In the next years, processor architectures based on much larger numbers of cores will be most likely the model to continue 'Moore's Law' style throughput gains. This not only results in many more jobs in parallel running the LHC Run 1 era monolithic applications, but also the memory requirements of these processes push the workernode architectures to the limit. One solution is parallelizing the application itself, through forking and memory sharing or through threaded frameworks. CMS is following all of these approaches and has a comprehensive strategy to schedule multicore jobs on the GRID based on the glideinWMS submission infrastructure. The main component of the scheduling strategy, a pilot-based model with dynamic partitioning of resources that allows the transition to multicore or whole-node scheduling without disallowing the use of single-core jobs, is described. This contribution also presents the experiences made with the proposed multicore scheduling schema and gives an outlook of further developments working towards the restart of the LHC in 2015.

  7. Diogene pictorial drift chamber

    SciTech Connect

    Gosset, J.

    1984-01-01

    A pictorial drift chamber, called DIOGENE, has been installed at Saturne in order to study central collisions of high energy heavy ions. It has been adapted from the JADE internal detector, with two major differences to be taken into account. First, the center-of-mass of these collisions is not identical to the laboratory reference frame. Second, the energy loss and the momentum ranges of the particles to be detected are different from the ones in JADE. It was also tried to keep the cost as small as possible, hence the choice of minimum size and minimum number of sensitive wires. Moreover the wire planes are shifted from the beam axis: this trick helps very much to quickly reject the bad tracks caused by the ambiguity of measuring drift distances (positive or negative) through times (always positive).

  8. CMS@home: Enabling Volunteer Computing Usage for CMS

    NASA Astrophysics Data System (ADS)

    Field, L.; Borras, H.; Spiga, D.; Riahi, H.

    2015-12-01

    Volunteer computing remains a largely untapped opportunistic resource for the LHC experiments. The use of virtualization in this domain was pioneered by the Test4Theory project and enabled the running of high energy particle physics simulations on home computers. This paper describes the model for CMS to run workloads using a similar volunteer computing platform. It is shown how the original approach is exploited to map onto the existing CMS workflow and identifies missing functionality along with the components and changes that are required. The final implementation of the prototype is detailed along with the identification of areas that would benefit from further development.

  9. Feeding Tubes

    MedlinePlus

    ... Feeding Tubes Health Information Sheet Q & A with Experts Patient Stories Social Security Disability Application Process For Kids ... Feeding Tubes Health Information Sheet Q & A with Experts Patient Stories Social Security Disability Application Process For Kids ...

  10. Upgrades for the CMS simulation

    SciTech Connect

    Lange, D. J.; Hildreth, M.; Ivantchenko, V. N.; Osborne, I.

    2015-05-22

    Over the past several years, the CMS experiment has made significant changes to its detector simulation application. The geometry has been generalized to include modifications being made to the CMS detector for 2015 operations, as well as model improvements to the simulation geometry of the current CMS detector and the implementation of a number of approved and possible future detector configurations. These include both completely new tracker and calorimetry systems. We have completed the transition to Geant4 version 10, we have made significant progress in reducing the CPU resources required to run our Geant4 simulation. These have been achieved through both technical improvements and through numerical techniques. Substantial speed improvements have been achieved without changing the physics validation benchmarks that the experiment uses to validate our simulation application for use in production. As a result, we will discuss the methods that we implemented and the corresponding demonstrated performance improvements deployed for our 2015 simulation application.

  11. The Recent Results from CMS

    NASA Astrophysics Data System (ADS)

    Kim, Tae Jeong

    The Large Hadron Collider (LHC) at CERN sitting astride the Franco-Swiss border near Geneva has accumulated the proton and proton collision data corresponding to an integrated luminosity of around 5 fb-1 at the center of mass energy 7 TeV in 2011 and around 20 fb-1 at 8 TeV in 2012 with the Compact Muon Solenoid (CMS) detector. The CMS detector is designed to investigate the wide range of particle physics including testing perturbative QCD and searching for Brout-Englert-Higgs (BEH) boson as well as new physics phenomena beyond the Standard Model. Observation of a new boson has moved the phase from hunting for the SM BEH boson to evaluating the consistency of this new particle with the SM expectation. The latest results from the CMS collaboration will be presented.

  12. Tracheostomy tubes.

    PubMed

    Hess, Dean R; Altobelli, Neila P

    2014-06-01

    Tracheostomy tubes are used to administer positive-pressure ventilation, to provide a patent airway, and to provide access to the lower respiratory tract for airway clearance. They are available in a variety of sizes and styles from several manufacturers. The dimensions of tracheostomy tubes are given by their inner diameter, outer diameter, length, and curvature. Differences in dimensions between tubes with the same inner diameter from different manufacturers are not commonly appreciated but may have important clinical implications. Tracheostomy tubes can be cuffed or uncuffed and may be fenestrated. Some tracheostomy tubes are designed with an inner cannula. It is important for clinicians caring for patients with a tracheostomy tube to appreciate the nuances of various tracheostomy tube designs and to select a tube that appropriately fits the patient. The optimal frequency of changing a chronic tracheostomy tube is controversial. Specialized teams may be useful in managing patients with a tracheostomy. Speech can be facilitated with a speaking valve in patients with a tracheostomy tube who are breathing spontaneously. In mechanically ventilated patients with a tracheostomy, a talking tracheostomy tube, a deflated cuff technique with a speaking valve, or a deflated cuff technique without a speaking valve can be used to facilitate speech.

  13. CMS-2 to Ada Translator Evaluation.

    DTIC Science & Technology

    1997-09-01

    these translators, and to provide information to CMS -2 project managers to assist them in the evaluation of costs and risks of translating CMS -2 to Ada....The objective of this evaluation was to determine the maturity of the CMS -2 to Ada translators and associated tools, to determine the capabilities of

  14. 42 CFR 401.108 - CMS rulings.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 2 2013-10-01 2013-10-01 false CMS rulings. 401.108 Section 401.108 Public Health... GENERAL ADMINISTRATIVE REQUIREMENTS Confidentiality and Disclosure § 401.108 CMS rulings. (a) After... regulations, but which has been adopted by CMS as having precedent, may be published in the Federal...

  15. 42 CFR 401.108 - CMS rulings.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 2 2014-10-01 2014-10-01 false CMS rulings. 401.108 Section 401.108 Public Health... GENERAL ADMINISTRATIVE REQUIREMENTS Confidentiality and Disclosure § 401.108 CMS rulings. (a) After... regulations, but which has been adopted by CMS as having precedent, may be published in the Federal...

  16. 42 CFR 401.108 - CMS rulings.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 2 2011-10-01 2011-10-01 false CMS rulings. 401.108 Section 401.108 Public Health... GENERAL ADMINISTRATIVE REQUIREMENTS Confidentiality and Disclosure § 401.108 CMS rulings. (a) After... regulations, but which has been adopted by CMS as having precedent, may be published in the Federal...

  17. 42 CFR 401.108 - CMS rulings.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 2 2012-10-01 2012-10-01 false CMS rulings. 401.108 Section 401.108 Public Health... GENERAL ADMINISTRATIVE REQUIREMENTS Confidentiality and Disclosure § 401.108 CMS rulings. (a) After... regulations, but which has been adopted by CMS as having precedent, may be published in the Federal...

  18. 42 CFR 401.108 - CMS rulings.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 2 2010-10-01 2010-10-01 false CMS rulings. 401.108 Section 401.108 Public Health... GENERAL ADMINISTRATIVE REQUIREMENTS Confidentiality and Disclosure § 401.108 CMS rulings. (a) After... regulations, but which has been adopted by CMS as having precedent, may be published in the Federal...

  19. 45 CFR 150.203 - Circumstances requiring CMS enforcement.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 45 Public Welfare 1 2012-10-01 2012-10-01 false Circumstances requiring CMS enforcement. 150.203... CARE ACCESS CMS ENFORCEMENT IN GROUP AND INDIVIDUAL INSURANCE MARKETS CMS Enforcement Processes for... requiring CMS enforcement. CMS enforces HIPAA requirements to the extent warranted (as determined by CMS)...

  20. 45 CFR 150.203 - Circumstances requiring CMS enforcement.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 45 Public Welfare 1 2011-10-01 2011-10-01 false Circumstances requiring CMS enforcement. 150.203... CARE ACCESS CMS ENFORCEMENT IN GROUP AND INDIVIDUAL INSURANCE MARKETS CMS Enforcement Processes for... requiring CMS enforcement. CMS enforces HIPAA requirements to the extent warranted (as determined by CMS)...

  1. The CMS DBS query language

    NASA Astrophysics Data System (ADS)

    Kuznetsov, Valentin; Riley, Daniel; Afaq, Anzar; Sekhri, Vijay; Guo, Yuyi; Lueking, Lee

    2010-04-01

    The CMS experiment has implemented a flexible and powerful system enabling users to find data within the CMS physics data catalog. The Dataset Bookkeeping Service (DBS) comprises a database and the services used to store and access metadata related to CMS physics data. To this, we have added a generalized query system in addition to the existing web and programmatic interfaces to the DBS. This query system is based on a query language that hides the complexity of the underlying database structure by discovering the join conditions between database tables. This provides a way of querying the system that is simple and straightforward for CMS data managers and physicists to use without requiring knowledge of the database tables or keys. The DBS Query Language uses the ANTLR tool to build the input query parser and tokenizer, followed by a query builder that uses a graph representation of the DBS schema to construct the SQL query sent to underlying database. We will describe the design of the query system, provide details of the language components and overview of how this component fits into the overall data discovery system architecture.

  2. Drift-Scale Radionuclide Transport

    SciTech Connect

    J. Houseworth

    2004-09-22

    The purpose of this model report is to document the drift scale radionuclide transport model, taking into account the effects of emplacement drifts on flow and transport in the vicinity of the drift, which are not captured in the mountain-scale unsaturated zone (UZ) flow and transport models ''UZ Flow Models and Submodels'' (BSC 2004 [DIRS 169861]), ''Radionuclide Transport Models Under Ambient Conditions'' (BSC 2004 [DIRS 164500]), and ''Particle Tracking Model and Abstraction of Transport Process'' (BSC 2004 [DIRS 170041]). The drift scale radionuclide transport model is intended to be used as an alternative model for comparison with the engineered barrier system (EBS) radionuclide transport model ''EBS Radionuclide Transport Abstraction'' (BSC 2004 [DIRS 169868]). For that purpose, two alternative models have been developed for drift-scale radionuclide transport. One of the alternative models is a dual continuum flow and transport model called the drift shadow model. The effects of variations in the flow field and fracture-matrix interaction in the vicinity of a waste emplacement drift are investigated through sensitivity studies using the drift shadow model (Houseworth et al. 2003 [DIRS 164394]). In this model, the flow is significantly perturbed (reduced) beneath the waste emplacement drifts. However, comparisons of transport in this perturbed flow field with transport in an unperturbed flow field show similar results if the transport is initiated in the rock matrix. This has led to a second alternative model, called the fracture-matrix partitioning model, that focuses on the partitioning of radionuclide transport between the fractures and matrix upon exiting the waste emplacement drift. The fracture-matrix partitioning model computes the partitioning, between fractures and matrix, of diffusive radionuclide transport from the invert (for drifts without seepage) into the rock water. The invert is the structure constructed in a drift to provide the floor of the

  3. Drift Velocity of Electrons in Hot and Moist Air mixtures

    NASA Astrophysics Data System (ADS)

    Abner, Douglas

    1999-10-01

    The drift velocity of electrons in hot and moist air is presented. The apparatus consisted of a pulsed Townsend-type drift tube with an oil-free vacuum system and employed a temperature controller and heating system to regulate the temperature of the gas mixture and chamber to within 0.1 deg. C. over a range of ambient to 200 deg C. The drift tube is equipped with a movable anode allowing the anode-cathode separation to be varied from 0.8 to 7.4 cm. Water vapor concentration in the air mixture ranged from 0.7510.0Temperature was varied from ambient to 150 deg C. E/N (electric field normalized to gas density) ranged from 1.0 to 16 Td (1 Td = 10-17 V-cm2). Comparisons of data collected at elevated temperature, data collected at ambient temperature, and Boltzmann transport equation calculations show the effects of enhanced rotational and vibrational populations on the drift velocity.

  4. Progress in semiconductor drift detectors

    SciTech Connect

    Rehak, P.; Walton, J.; Gatti, E.; Longoni, A.; Sanpietro, M.; Kemmer, J.; Dietl, H.; Holl, P.; Klanner, R.; Lutz, G.

    1985-01-01

    Progress in testing semiconductor drift detectors is reported. Generally better position and energy resolutions were obtained than resolutions published previously. The improvement is mostly due to new electronics better matched to different detectors. It is shown that semiconductor drift detectors are becoming versatile and reliable detectors for position and energy measurements.

  5. Feeding tube insertion - gastrostomy

    MedlinePlus

    ... tube insertion; G-tube insertion; PEG tube insertion; Stomach tube insertion; Percutaneous endoscopic gastrostomy tube insertion ... and down the esophagus, which leads to the stomach. After the endoscopy tube is inserted, the skin ...

  6. CTF Void Drift Validation Study

    SciTech Connect

    Salko, Robert K.; Gosdin, Chris; Avramova, Maria N.; Gergar, Marcus

    2015-10-26

    This milestone report is a summary of work performed in support of expansion of the validation and verification (V&V) matrix for the thermal-hydraulic subchannel code, CTF. The focus of this study is on validating the void drift modeling capabilities of CTF and verifying the supporting models that impact the void drift phenomenon. CTF uses a simple turbulent-diffusion approximation to model lateral cross-flow due to turbulent mixing and void drift. The void drift component of the model is based on the Lahey and Moody model. The models are a function of two-phase mass, momentum, and energy distribution in the system; therefore, it is necessary to correctly model the ow distribution in rod bundle geometry as a first step to correctly calculating the void distribution due to void drift.

  7. Superconducting drift-tube cavity development for the RIA driver.

    SciTech Connect

    Shepard, K. W.; Kelly, M. P.; Fuerst, J. D.

    2002-09-23

    This paper reports the design and development of two intermediate-velocity superconducting cavities and design of an associated cryomodule for the RIA driver linac. The two cavity types are a 115 MHz, {beta}{sub GEOM} = 0.15 quarter-wave resonant (QWR) cavity, and a 173 MHz, {beta}{sub GEOM} = 0.26 half-wave loaded cavity. Both cavities are well-corrected for dipole and quadrupole asymmetries in the accelerating field. The cryomodule is being designed to incorporate a separate vacuum system for cavity vacuum to provide a particulate-free environment for the superconducting cavities.

  8. Characterization of 1800 Hamamatsu R7600-M4 PMTs for CMS HF Calorimeter upgrade

    NASA Astrophysics Data System (ADS)

    Akgun, U.; Funk, G.; Corso, J.; Jia, Z.; Southwick, D.; Adams, L.; Kingyon, J.; Tiras, E.; Munhollon, T.; Troendle, E.; Bruecken, P.; Khristenko, V.; Onel, Y.

    2014-06-01

    The Hadronic Forward calorimeters of the CMS experiment are Cherenkov calorimeters that use quartz fibers and 1728 photomultiplier tubes (PMTs) for readout. The CMS detector upgrade project requires the current Hamamatsu R7525 PMTs to be replaced with 4-anode, high quantum efficiency R7600-M4 PMTs. The new PMTs will improve the detector resolution, as well as the capability of removing fake events due to signal created in the glass window of the PMT. Here, we report the dark current, anode gain, transit time, transit time spread, pulse width, rise time, and linearity measurements performed on 1800 Hamamatsu R7600-200-M4 PMTs.

  9. Virtual data in CMS production

    SciTech Connect

    Arbree, A. et al.

    2004-08-26

    Initial applications of the GriPhyN Chimera Virtual Data System have been performed within the context of CMS Production of Monte Carlo Simulated Data. The GriPhyN Chimera system consists of four primary components: (1) a Virtual Data Language, which is used to describe virtual data products, (2) a Virtual Data Catalog, which is used to store virtual data entries, (3) an Abstract Planner, which resolves all dependencies of a particular virtual data product and forms a location and existence independent plan, (4) a Concrete Planner, which maps an abstract, logical plan onto concrete, physical grid resources accounting for staging in/out files and publishing results to a replica location service. A CMS Workflow Planner, MCRunJob, is used to generate virtual data products using the Virtual Data Language. Subsequently, a prototype workflow manager, known as WorkRunner, is used to schedule the instantiation of virtual data products across a grid.

  10. CMS Web-Based Monitoring

    SciTech Connect

    Badgett, William; Lopez-Perez, Juan Antonio; Maeshima, Kaori; Soha, Aron; Sulmanas, Balys; Wan, Zongru

    2010-01-01

    With the growth in size and complexity of High Energy Physics experiments, and the accompanying increase in the number of collaborators spread across the globe, the importance of widely relaying timely monitoring and status information has grown. To this end, we present online Web Based Monitoring solutions from the CMS experiment at CERN. The web tools developed present data to the user from many underlying heterogeneous sources, from real time messaging system to relational databases. We provide the power to combine and correlate data in both graphical and tabular formats of interest to the experimentalist, with data such as beam conditions, luminosity, trigger rates, detector conditions and many others, allowing for flexibility on the user side. We also present some examples of how this system has been used during CMS commissioning and early beam collision running at the Large Hadron Collider.

  11. The CMS High Level Trigger

    NASA Astrophysics Data System (ADS)

    Trocino, Daniele

    2014-06-01

    The CMS experiment has been designed with a two-level trigger system: the Level-1 Trigger, implemented in custom-designed electronics, and the High-Level Trigger (HLT), a streamlined version of the CMS offline reconstruction software running on a computer farm. A software trigger system requires a tradeoff between the complexity of the algorithms running with the available computing power, the sustainable output rate, and the selection efficiency. We present the performance of the main triggers used during the 2012 data taking, ranging from simple single-object selections to more complex algorithms combining different objects, and applying analysis-level reconstruction and selection. We discuss the optimisation of the trigger and the specific techniques to cope with the increasing LHC pile-up, reducing its impact on the physics performance.

  12. The CMS integration grid testbed

    SciTech Connect

    Graham, Gregory E.

    2004-08-26

    The CMS Integration Grid Testbed (IGT) comprises USCMS Tier-1 and Tier-2 hardware at the following sites: the California Institute of Technology, Fermi National Accelerator Laboratory, the University of California at San Diego, and the University of Florida at Gainesville. The IGT runs jobs using the Globus Toolkit with a DAGMan and Condor-G front end. The virtual organization (VO) is managed using VO management scripts from the European Data Grid (EDG). Gridwide monitoring is accomplished using local tools such as Ganglia interfaced into the Globus Metadata Directory Service (MDS) and the agent based Mona Lisa. Domain specific software is packaged and installed using the Distribution After Release (DAR) tool of CMS, while middleware under the auspices of the Virtual Data Toolkit (VDT) is distributed using Pacman. During a continuous two month span in Fall of 2002, over 1 million official CMS GEANT based Monte Carlo events were generated and returned to CERN for analysis while being demonstrated at SC2002. In this paper, we describe the process that led to one of the world's first continuously available, functioning grids.

  13. Upgrades for the CMS simulation

    DOE PAGES

    Lange, D. J.; Hildreth, M.; Ivantchenko, V. N.; ...

    2015-05-22

    Over the past several years, the CMS experiment has made significant changes to its detector simulation application. The geometry has been generalized to include modifications being made to the CMS detector for 2015 operations, as well as model improvements to the simulation geometry of the current CMS detector and the implementation of a number of approved and possible future detector configurations. These include both completely new tracker and calorimetry systems. We have completed the transition to Geant4 version 10, we have made significant progress in reducing the CPU resources required to run our Geant4 simulation. These have been achieved throughmore » both technical improvements and through numerical techniques. Substantial speed improvements have been achieved without changing the physics validation benchmarks that the experiment uses to validate our simulation application for use in production. As a result, we will discuss the methods that we implemented and the corresponding demonstrated performance improvements deployed for our 2015 simulation application.« less

  14. Gastrostomy Tube (G-Tube)

    MedlinePlus

    ... warmth at the tube site; discharge that's yellow, green, or foul-smelling; fever) excessive bleeding or drainage from the tube site severe abdominal pain persistent vomiting or diarrhea trouble passing gas or having a bowel movement pink-red tissue (called granulation tissue) coming out ...

  15. 3-dimensional Oil Drift Simulations

    NASA Astrophysics Data System (ADS)

    Wettre, C.; Reistad, M.; Hjøllo, B.Å.

    Simulation of oil drift has been an ongoing activity at the Norwegian Meteorological Institute since the 1970's. The Marine Forecasting Centre provides a 24-hour service for the Norwegian Pollution Control Authority and the oil companies operating in the Norwegian sector. The response time is 30 minutes. From 2002 the service is extended to simulation of oil drift from oil spills in deep water, using the DeepBlow model developed by SINTEF Applied Chemistry. The oil drift model can be applied both for instantaneous and continuous releases. The changes in the mass of oil and emulsion as a result of evaporation and emulsion are computed. For oil spill at deep water, hydrate formation and gas dissolution are taken into account. The properties of the oil depend on the oil type, and in the present version 64 different types of oil can be simulated. For accurate oil drift simulations it is important to have the best possible data on the atmospheric and oceanic conditions. The oil drift simulations at the Norwegian Meteorological Institute are always based on the most updated data from numerical models of the atmosphere and the ocean. The drift of the surface oil is computed from the vectorial sum of the surface current from the ocean model and the wave induced Stokes drift computed from wave energy spectra from the wave prediction model. In the new model the current distribution with depth is taken into account when calculating the drift of the dispersed oil droplets. Salinity and temperature profiles from the ocean model are needed in the DeepBlow model. The result of the oil drift simulations can be plotted on sea charts used for navigation, either as trajectory plots or particle plots showing the situation at a given time. The results can also be sent as data files to be included in the user's own GIS system.

  16. Hemoglobin Drift after Cardiac Surgery

    PubMed Central

    George, Timothy J.; Beaty, Claude A.; Kilic, Arman; Haggerty, Kara A.; Frank, Steven M.; Savage, William J.; Whitman, Glenn J.

    2013-01-01

    Introduction Recent literature suggests that a restrictive approach to red blood cell transfusions is associated with improved outcomes in cardiac surgery (CS) patients. Even in the absence of bleeding, intravascular fluid shifts cause hemoglobin levels to drift postoperatively, possibly confounding the decision to transfuse. We undertook this study to define the natural progression of hemoglobin levels in postoperative CS patients. Methods We included all CS patients from 10/10-03/11 who did not receive a postoperative transfusion. Primary stratification was by intraoperative transfusion status. Change in hemoglobin was evaluated relative to the initial postoperative hemoglobin. Maximal drift was defined as the maximum minus the minimum hemoglobin for a given hospitalization. Final drift was defined as the difference between initial and discharge hemoglobin. Results Our final cohort included 199 patients, 71(36%) received an intraoperative transfusion while 128(64%) did not. The average initial and final hemoglobin for all patients were 11.0±1.4g/dL and 9.9±1.3g/dL, respectively, an final drift of 1.1±1.4g/dL. The maximal drift was 1.8±1.1g/dL and was similar regardless of intraoperative transfusion status(p=0.9). Although all patients’ hemoglobin initially dropped, 79% of patients reached a nadir and experienced a mean recovery of 0.7±0.7g/dL by discharge. On multivariable analysis, increasing CPB time was significantly associated with total hemoglobin drift(Coefficient/hour: 0.3[0.1–0.5]g/dL, p=0.02). Conclusions In this first report of hemoglobin drift following CS, although all postoperative patients experienced downward hemoglobin drift, 79% of patients exhibited hemoglobin recovery prior to discharge. Physicians should consider the eventual upward hemoglobin drift prior to administering red cell transfusions. PMID:22609121

  17. Enabling opportunistic resources for CMS Computing Operations

    DOE PAGES

    Hufnagel, Dirk

    2015-12-23

    With the increased pressure on computing brought by the higher energy and luminosity from the LHC in Run 2, CMS Computing Operations expects to require the ability to utilize opportunistic resources resources not owned by, or a priori configured for CMS to meet peak demands. In addition to our dedicated resources we look to add computing resources from non CMS grids, cloud resources, and national supercomputing centers. CMS uses the HTCondor/glideinWMS job submission infrastructure for all its batch processing, so such resources will need to be transparently integrated into its glideinWMS pool. Bosco and parrot wrappers are used to enablemore » access and bring the CMS environment into these non CMS resources. Finally, we describe our strategy to supplement our native capabilities with opportunistic resources and our experience so far using them.« less

  18. Enabling opportunistic resources for CMS Computing Operations

    SciTech Connect

    Hufnagel, Dick

    2015-11-19

    With the increased pressure on computing brought by the higher energy and luminosity from the LHC in Run 2, CMS Computing Operations expects to require the ability to utilize “opportunistic” resources — resources not owned by, or a priori configured for CMS — to meet peak demands. In addition to our dedicated resources we look to add computing resources from non CMS grids, cloud resources, and national supercomputing centers. CMS uses the HTCondor/glideinWMS job submission infrastructure for all its batch processing, so such resources will need to be transparently integrated into its glideinWMS pool. Bosco and parrot wrappers are used to enable access and bring the CMS environment into these non CMS resources. Here we describe our strategy to supplement our native capabilities with opportunistic resources and our experience so far using them.

  19. Enabling opportunistic resources for CMS Computing Operations

    NASA Astrophysics Data System (ADS)

    Hufnagel, D.; CMS Collaboration

    2015-12-01

    With the increased pressure on computing brought by the higher energy and luminosity from the LHC in Run 2, CMS Computing Operations expects to require the ability to utilize opportunistic resources resources not owned by, or a priori configured for CMS to meet peak demands. In addition to our dedicated resources we look to add computing resources from non CMS grids, cloud resources, and national supercomputing centers. CMS uses the HTCondor/glideinWMS job submission infrastructure for all its batch processing, so such resources will need to be transparently integrated into its glideinWMS pool. Bosco and parrot wrappers are used to enable access and bring the CMS environment into these non CMS resources. Here we describe our strategy to supplement our native capabilities with opportunistic resources and our experience so far using them.

  20. Enabling opportunistic resources for CMS Computing Operations

    SciTech Connect

    Hufnagel, Dirk

    2015-12-23

    With the increased pressure on computing brought by the higher energy and luminosity from the LHC in Run 2, CMS Computing Operations expects to require the ability to utilize opportunistic resources resources not owned by, or a priori configured for CMS to meet peak demands. In addition to our dedicated resources we look to add computing resources from non CMS grids, cloud resources, and national supercomputing centers. CMS uses the HTCondor/glideinWMS job submission infrastructure for all its batch processing, so such resources will need to be transparently integrated into its glideinWMS pool. Bosco and parrot wrappers are used to enable access and bring the CMS environment into these non CMS resources. Finally, we describe our strategy to supplement our native capabilities with opportunistic resources and our experience so far using them.

  1. Coastal Modeling System (CMS) Users Manuel

    DTIC Science & Technology

    1992-08-01

    AD-A268 830 , INSTRUCTION REPORT CERC-91-1 COASTAL MODELING SYSTEM ( CMS ) USER’S MANUAL by Mary A. Cialone, David J. Mark, Lucia W. Chou, David A...THE COASTAL MODELING SYSTEM USER’S MANUAL Supplement 1 Issued August 1992 Enclosed are additions and corrections to the Coastal Modeling System ( CMS ...COVERED1 August 1992 Supplement I to September 1991 Manual 4. TITLE AND SUBTITLE S. FUNDING NUMBERS Coastal Modeling System ( CMS ) User’s Manual WU

  2. The CMS Journey to LHC Physics

    SciTech Connect

    2011-02-09

    An overview of the design, the construction and physics of CMS will be given. A history of construction, encompassing the R&D; and challenges faced over the last decade and a half, will be recalled using selected examples. CMS is currently in the final stages of installation and commissioning is gathering pace. After a short status report of where CMS stands today some of the expected (great) physics to come will be outlined. * Tea & coffee will be served at 16:00.

  3. The CMS Journey to LHC Physics

    ScienceCinema

    None

    2016-07-12

    An overview of the design, the construction and physics of CMS will be given. A history of construction, encompassing the R&D; and challenges faced over the last decade and a half, will be recalled using selected examples. CMS is currently in the final stages of installation and commissioning is gathering pace. After a short status report of where CMS stands today some of the expected (great) physics to come will be outlined. * Tea & coffee will be served at 16:00.

  4. 42 CFR 422.510 - Termination of contract by CMS.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 3 2011-10-01 2011-10-01 false Termination of contract by CMS. 422.510 Section 422... Advantage Organizations § 422.510 Termination of contract by CMS. (a) Termination by CMS. CMS may at any time terminate a contract if CMS determines that the MA organization meets any of the following:...

  5. 42 CFR 422.510 - Termination of contract by CMS.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 3 2012-10-01 2012-10-01 false Termination of contract by CMS. 422.510 Section 422... Medicare Advantage Organizations § 422.510 Termination of contract by CMS. (a) Termination by CMS. CMS may at any time terminate a contract if CMS determines that the MA organization meets any of...

  6. 42 CFR 423.509 - Termination of contract by CMS.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 3 2014-10-01 2014-10-01 false Termination of contract by CMS. 423.509 Section 423... and Contracts with Part D plan sponsors § 423.509 Termination of contract by CMS. (a) Termination by CMS. CMS may at any time terminate a contract if CMS determines that the Part D plan sponsor meets...

  7. 42 CFR 422.510 - Termination of contract by CMS.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 3 2013-10-01 2013-10-01 false Termination of contract by CMS. 422.510 Section 422... Medicare Advantage Organizations § 422.510 Termination of contract by CMS. (a) Termination by CMS. CMS may at any time terminate a contract if CMS determines that the MA organization meets any of...

  8. 42 CFR 423.509 - Termination of contract by CMS.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 3 2013-10-01 2013-10-01 false Termination of contract by CMS. 423.509 Section 423... and Contracts with Part D plan sponsors § 423.509 Termination of contract by CMS. (a) Termination by CMS. CMS may at any time terminate a contract if CMS determines that the Part D plan sponsor meets...

  9. 42 CFR 423.509 - Termination of contract by CMS.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 3 2010-10-01 2010-10-01 false Termination of contract by CMS. 423.509 Section 423... Contracts with Part D plan sponsors § 423.509 Termination of contract by CMS. (a) Termination by CMS. CMS may at any time terminate a contract if CMS determines that the Part D plan sponsor meets any of...

  10. 42 CFR 422.510 - Termination of contract by CMS.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 3 2014-10-01 2014-10-01 false Termination of contract by CMS. 422.510 Section 422... Medicare Advantage Organizations § 422.510 Termination of contract by CMS. (a) Termination by CMS. CMS may at any time terminate a contract if CMS determines that the MA organization meets any of...

  11. 45 CFR 150.203 - Circumstances requiring CMS enforcement.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 45 Public Welfare 1 2013-10-01 2013-10-01 false Circumstances requiring CMS enforcement. 150.203... CARE ACCESS CMS ENFORCEMENT IN GROUP AND INDIVIDUAL INSURANCE MARKETS CMS Enforcement Processes for... requiring CMS enforcement. CMS enforces PHS Act requirement to the extent warranted (as determined by...

  12. 42 CFR 422.510 - Termination of contract by CMS.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 3 2010-10-01 2010-10-01 false Termination of contract by CMS. 422.510 Section 422... Advantage Organizations § 422.510 Termination of contract by CMS. (a) Termination by CMS. CMS may at any time terminate a contract if CMS determines that the MA organization meets any of the following:...

  13. 42 CFR 423.509 - Termination of contract by CMS.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 3 2012-10-01 2012-10-01 false Termination of contract by CMS. 423.509 Section 423... and Contracts with Part D plan sponsors § 423.509 Termination of contract by CMS. (a) Termination by CMS. CMS may at any time terminate a contract if CMS determines that the Part D plan sponsor meets...

  14. 42 CFR 423.509 - Termination of contract by CMS.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 3 2011-10-01 2011-10-01 false Termination of contract by CMS. 423.509 Section 423... Contracts with Part D plan sponsors § 423.509 Termination of contract by CMS. (a) Termination by CMS. CMS may at any time terminate a contract if CMS determines that the Part D plan sponsor meets any of...

  15. 45 CFR 150.203 - Circumstances requiring CMS enforcement.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 45 Public Welfare 1 2014-10-01 2014-10-01 false Circumstances requiring CMS enforcement. 150.203... CARE ACCESS CMS ENFORCEMENT IN GROUP AND INDIVIDUAL INSURANCE MARKETS CMS Enforcement Processes for... requiring CMS enforcement. CMS enforces PHS Act requirement to the extent warranted (as determined by...

  16. MACSYMA at CMS. Version 309.3.

    DTIC Science & Technology

    1987-08-01

    these examples are quite complicated. 1.1 Invoking Macsyma To use Macsvma on the CMS VAX you must first log in to the computer (see the System Manager ...1.8 C MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANOARDS-1963-A % JoI *ur~FILE LJ2 rCMS Technical Summary Report #88-3 f% MACSYMA AT CMS ...MACSYMA AT CMS . VERSION 309.3 Distribution/ W. Hereman, Y. Nagel and J. Strikwerda AvaIlcblflty Cces Technical Summary Report #88-3 ’Dist Sr~ci

  17. Time-dependent drift Hamiltonian

    SciTech Connect

    Boozer, A.H.

    1983-03-01

    The lowest-order drift equations are given in a canonical magnetic coordinate form for time-dependent magnetic and electric fields. The advantages of the canonical Hamiltonian form are also discussed.

  18. Protective tubes for sodium heated water tubes

    DOEpatents

    Essebaggers, Jan

    1979-01-01

    A heat exchanger in which water tubes are heated by liquid sodium which minimizes the results of accidental contact between the water and the sodium caused by failure of one or more of the water tubes. A cylindrical protective tube envelopes each water tube and the sodium flows axially in the annular spaces between the protective tubes and the water tubes.

  19. Multiple tube premixing device

    DOEpatents

    Uhm, Jong Ho; Varatharajan, Balachandar; Ziminsky, Willy Steve; Kraemer, Gilbert Otto; Yilmaz, Ertan; Lacy, Benjamin; Stevenson, Christian; Felling, David

    2012-12-11

    The present application provides a premixer for a combustor. The premixer may include a fuel plenum with a number of fuel tubes and a burner tube with a number of air tubes. The fuel tubes extend about the air tubes.

  20. Multiple tube premixing device

    DOEpatents

    Uhm, Jong Ho; Naidu, Balachandar; Ziminksy, Willy Steve; Kraemer, Gilbert Otto; Yilmaz, Ertan; Lacy, Benjamin; Stevenson, Christian; Felling, David

    2013-08-13

    The present application provides a premixer for a combustor. The premixer may include a fuel plenum with a number of fuel tubes and a burner tube with a number of air tubes. The fuel tubes extend about the air tubes.

  1. The Drifting Star

    NASA Astrophysics Data System (ADS)

    2008-04-01

    By studying in great detail the 'ringing' of a planet-harbouring star, a team of astronomers using ESO's 3.6-m telescope have shown that it must have drifted away from the metal-rich Hyades cluster. This discovery has implications for theories of star and planet formation, and for the dynamics of our Milky Way. ESO PR Photo 09a/08 ESO PR Photo 09a/08 Iota Horologii The yellow-orange star Iota Horologii, located 56 light-years away towards the southern Horologium ("The Clock") constellation, belongs to the so-called "Hyades stream", a large number of stars that move in the same direction. Previously, astronomers using an ESO telescope had shown that the star harbours a planet, more than 2 times as large as Jupiter and orbiting in 320 days (ESO 12/99). But until now, all studies were unable to pinpoint the exact characteristics of the star, and hence to understand its origin. A team of astronomers, led by Sylvie Vauclair from the University of Toulouse, France, therefore decided to use the technique of 'asteroseismology' to unlock the star's secrets. "In the same way as geologists monitor how seismic waves generated by earthquakes propagate through the Earth and learn about the inner structure of our planet, it is possible to study sound waves running through a star, which forms a sort of large, spherical bell," says Vauclair. The 'ringing' from this giant musical instrument provides astronomers with plenty of information about the physical conditions in the star's interior. And to 'listen to the music', the astronomers used one of the best instruments available. The observations were conducted in November 2006 during 8 consecutive nights with the state-of-the-art HARPS spectrograph mounted on the ESO 3.6-m telescope at La Silla. Up to 25 'notes' could be identified in the unique dataset, most of them corresponding to waves having a period of about 6.5 minutes. These observations allowed the astronomers to obtain a very precise portrait of Iota Horologii: its

  2. The CMS tracker control system

    NASA Astrophysics Data System (ADS)

    Dierlamm, A.; Dirkes, G. H.; Fahrer, M.; Frey, M.; Hartmann, F.; Masetti, L.; Militaru, O.; Shah, S. Y.; Stringer, R.; Tsirou, A.

    2008-07-01

    The Tracker Control System (TCS) is a distributed control software to operate about 2000 power supplies for the silicon modules of the CMS Tracker and monitor its environmental sensors. TCS must thus be able to handle about 104 power supply parameters, about 103 environmental probes from the Programmable Logic Controllers of the Tracker Safety System (TSS), about 105 parameters read via DAQ from the DCUs in all front end hybrids and from CCUs in all control groups. TCS is built on top of an industrial SCADA program (PVSS) extended with a framework developed at CERN (JCOP) and used by all LHC experiments. The logical partitioning of the detector is reflected in the hierarchical structure of the TCS, where commands move down to the individual hardware devices, while states are reported up to the root which is interfaced to the broader CMS control system. The system computes and continuously monitors the mean and maximum values of critical parameters and updates the percentage of currently operating hardware. Automatic procedures switch off selected parts of the detector using detailed granularity and avoiding widespread TSS intervention.

  3. 23 CFR 500.109 - CMS.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 23 Highways 1 2012-04-01 2012-04-01 false CMS. 500.109 Section 500.109 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION TRANSPORTATION INFRASTRUCTURE MANAGEMENT MANAGEMENT AND MONITORING SYSTEMS Management Systems § 500.109 CMS. (a) For purposes of this part, congestion means the level...

  4. 23 CFR 500.109 - CMS.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 23 Highways 1 2011-04-01 2011-04-01 false CMS. 500.109 Section 500.109 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION TRANSPORTATION INFRASTRUCTURE MANAGEMENT MANAGEMENT AND MONITORING SYSTEMS Management Systems § 500.109 CMS. (a) For purposes of this part, congestion means the level...

  5. 23 CFR 500.109 - CMS.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 23 Highways 1 2014-04-01 2014-04-01 false CMS. 500.109 Section 500.109 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION TRANSPORTATION INFRASTRUCTURE MANAGEMENT MANAGEMENT AND MONITORING SYSTEMS Management Systems § 500.109 CMS. (a) For purposes of this part, congestion means the level...

  6. 23 CFR 500.109 - CMS.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 23 Highways 1 2013-04-01 2013-04-01 false CMS. 500.109 Section 500.109 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION TRANSPORTATION INFRASTRUCTURE MANAGEMENT MANAGEMENT AND MONITORING SYSTEMS Management Systems § 500.109 CMS. (a) For purposes of this part, congestion means the level...

  7. 23 CFR 500.109 - CMS.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 23 Highways 1 2010-04-01 2010-04-01 false CMS. 500.109 Section 500.109 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION TRANSPORTATION INFRASTRUCTURE MANAGEMENT MANAGEMENT AND MONITORING SYSTEMS Management Systems § 500.109 CMS. (a) For purposes of this part, congestion means the level...

  8. The status of the CMS experiment

    SciTech Connect

    Green, Dan; /Fermilab

    2009-01-01

    The CMS experiment was completely assembled in the fall of 2008 after a decade of design, construction and installation. During the last two years, cosmic ray data were taken on a regular basis. These data have enabled CMS to align the detector components, both spatially and temporally. Initial use of muons has also established the relative alignment of the CMS tracking and muon systems. In addition, the CMS calorimetry has been crosschecked with test beam data, thus providing an initial energy calibration of CMS calorimetry to about 5%. The CMS magnet has been powered and field mapped. The trigger and data acquisition systems have been installed and run at full speed. The tiered data analysis system has been exercised at full design bandwidth for Tier0, Tier1 and Tier2 sites. Monte Carlo simulation of the CMS detector has been constructed at a detailed geometric level and has been tuned to test beam and other production data to provide a realistic model of the CMS detector prior to first collisions.

  9. CMS: Present status, limitations, and upgrade plans

    SciTech Connect

    Cheung, H.W.K.; /Fermilab

    2011-09-01

    An overview of the CMS upgrade plans will be presented. A brief status of the CMS detector will be given, covering some of the issues we have so far experienced. This will be followed by an overview of the various CMS upgrades planned, covering the main motivations for them, and the various R&D efforts for the possibilities under study. The CMS detector has been working extremely well since the start of data-taking at the LHC as is evidenced by the numerous excellent results published by CMS and presented at this workshop and recent conferences. Less well documented are the various issues that have been encountered with the detector. In the spirit of this workshop I will cover some of these issues with particular emphasis on problems that motivate some of the upgrades to the CMS detector for this decade of data-taking. Though the CMS detector has been working extremely well and expectations are great for making the most of the LHC luminosity, there have been a number of issues encountered so far. Some of these have been described and while none currently presents a problem for physics performance, some of them are expected to become more problematic, especially at the highest Phase 1 luminosities for which the majority of the integrated luminosity will be collected. These motivate upgrades for various parts of the CMS detector so that the current excellent physics performance can be maintained or even surpassed in the realm of the highest Phase 1 luminosities.

  10. The diverse use of clouds by CMS

    SciTech Connect

    Andronis, Anastasios; Bauer, Daniela; Chaze, Olivier; Colling, David; Dobson, Marc; Fayer, Simon; Girone, Maria; Grandi, Claudio; Huffman, Adam; Hufnagel, Dirk; Khan, Farrukh Aftab; Lahiff, Andrew; McCrae, Alison; Rand, Duncan; Sgaravatto, Massimo; Tiradani, Anthony; Zhang, Xiaomei

    2015-12-23

    The resources CMS is using are increasingly being offered as clouds. In Run 2 of the LHC the majority of CMS CERN resources, both in Meyrin and at the Wigner Computing Centre, will be presented as cloud resources on which CMS will have to build its own infrastructure. This infrastructure will need to run all of the CMS workflows including: Tier 0, production and user analysis. In addition, the CMS High Level Trigger will provide a compute resource comparable in scale to the total offered by the CMS Tier 1 sites, when it is not running as part of the trigger system. During these periods a cloud infrastructure will be overlaid on this resource, making it accessible for general CMS use. Finally, CMS is starting to utilise cloud resources being offered by individual institutes and is gaining experience to facilitate the use of opportunistically available cloud resources. Lastly, we present a snap shot of this infrastructure and its operation at the time of the CHEP2015 conference.

  11. The diverse use of clouds by CMS

    DOE PAGES

    Andronis, Anastasios; Bauer, Daniela; Chaze, Olivier; ...

    2015-12-23

    The resources CMS is using are increasingly being offered as clouds. In Run 2 of the LHC the majority of CMS CERN resources, both in Meyrin and at the Wigner Computing Centre, will be presented as cloud resources on which CMS will have to build its own infrastructure. This infrastructure will need to run all of the CMS workflows including: Tier 0, production and user analysis. In addition, the CMS High Level Trigger will provide a compute resource comparable in scale to the total offered by the CMS Tier 1 sites, when it is not running as part of themore » trigger system. During these periods a cloud infrastructure will be overlaid on this resource, making it accessible for general CMS use. Finally, CMS is starting to utilise cloud resources being offered by individual institutes and is gaining experience to facilitate the use of opportunistically available cloud resources. Lastly, we present a snap shot of this infrastructure and its operation at the time of the CHEP2015 conference.« less

  12. Getting Started with Drupal WebCMS

    EPA Pesticide Factsheets

    Drupal WebCMS is accessible to EPA employees, and to onsite and offsite contractors. There are several roles in Drupal WebCMS and each allows a certain set of actions in the system. Users can have different roles in different web areas.

  13. Final Technical Report CMS fast optical calorimetry

    SciTech Connect

    Winn, David R.

    2012-07-12

    This is the final report of CMS FAST OPTICAL CALORIMETRY, a grant to Fairfield University for development, construction, installation and operation of the forward calorimeter on CMS, and for upgrades of the forward and endcap calorimeters for higher luminosity and radiation damage amelioration.

  14. The Status of the Cms Experiment

    NASA Astrophysics Data System (ADS)

    Green, Dan

    The CMS experiment was completely assembled in the fall of 2008 after a decade of design, construction and installation. During the last two years, cosmic ray data were taken on a regular basis. These data have enabled CMS to align the detector components, both spatially and temporally. Initial use of muons has also established the relative alignment of the CMS tracking and muon systems. In addition, the CMS calorimetry has been crosschecked with test beam data, thus providing an initial energy calibration of CMS calorimetry to about 5%. The CMS magnet has been powered and field mapped. The trigger and data acquisition systems have been installed and run at full speed. The tiered data analysis system has been exercised at full design bandwidth for Tier0, Tier1 and Tier2 sites. Monte Carlo simulation of the CMS detector has been constructed at a detailed geometric level and has been tuned to test beam and other production data to provide a realistic model of the CMS detector prior to first collisions.

  15. Behavior of Flotsam in the California Current System Utilizing Surface Drift of RAFOS Floats

    DTIC Science & Technology

    2012-09-01

    illustrates approximate water level when floating on the ocean surface. Float is constructed from a 0.08 m by 1.52 m glass tube...such as the “ Great Pacific Garbage Patch” (Howell et al. 2012) or possibly washed ashore (Maximenko et al. 2012). Flotsam drifts in the surface...is constructed from a 0.08 m by 1.52 m glass tube, which houses the electronics required for operation. 4 Figure 1. RAFOS Float (Woods Hole

  16. SKIROC2_CMS an ASIC for testing CMS HGCAL

    NASA Astrophysics Data System (ADS)

    Borg, J.; Callier, S.; Coko, D.; Dulucq, F.; de La Taille, C.; Raux, L.; Sculac, T.; Thienpont, D.

    2017-02-01

    SKIROC2_CMS is a chip derived from CALICE SKIROC2 that provides 64 channels of low noise charge preamplifiers optimized for 50 pF pin diodes and 10 pC dynamic range. They are followed by high gain and low gain 25 ns shapers, a 13-deep 40 MHz analog memory used as a waveform sampler at 40 MHz. and 12-bit ADCs. A fast shaper followed by discriminator and TDC provide timing information to an accuracy of 50 ps, in order to test TOT and TOA techniques at system level and in test-beam. The chip was sent to fabrication in January 2016 in AMS SiGe 0,35 μm and was received in May. It was tested in the lab during the summer and will be mounted on sensors for beam-tests in the fall.

  17. Drift-Scale Radionuclide Transport

    SciTech Connect

    P.R. Dixon

    2004-02-17

    The purpose of this Model Report is to document two models for drift-scale radionuclide transport. This has been developed in accordance with ''Technical Work Plan for: Performance Assessment Unsaturated Zone'' (Bechtel SAIC Company, LLC (BSC) 2002 [160819]), which includes planning documents for the technical work scope, content, and management of this Model Report in Section 1.15, Work Package AUZM11, ''Drift-Scale Radionuclide Transport.'' The technical work scope for this Model Report calls for development of a process-level model and an abstraction model representing diffusive release from the invert to the rocks, partitioned between fracture and matrix, as compared to the fracture-release approach used in the Site Recommendation. The invert is the structure constructed in a drift to provide the floor of that drift. The plan for validation of the models documented in this Model Report is given in Section I-5 of Attachment I in BSC (2002 [160819]). Note that the model validation presented in Section 7 deviates from the technical work plan (BSC 2002 [160819], Section I-5) in that an independent technical review specifically for model validation has not been conducted, nor publication in a peer-reviewed journal. Model validation presented in Section 7 is based on corroboration with alternative mathematical models, which is also called out by the technical work plan (BSC 2002 [160819], Section I-5), and is sufficient based on the requirements of AP-SIII.10Q for model validation. See Section 7 for additional discussion. The phenomenon of flow and transport in the vicinity of the waste emplacement drift are evaluated in this model report under ambient thermal, chemical, and mechanical conditions. This includes the effects of water diversion around an emplacement drift and the flow and transport behavior expected in a fractured rock below the drift. The reason for a separate assessment of drift-scale transport is that the effects of waste emplacement drifts on flow

  18. In-Drift Microbial Communities

    SciTech Connect

    D. Jolley

    2000-11-09

    As directed by written work direction (CRWMS M and O 1999f), Performance Assessment (PA) developed a model for microbial communities in the engineered barrier system (EBS) as documented here. The purpose of this model is to assist Performance Assessment and its Engineered Barrier Performance Section in modeling the geochemical environment within a potential repository drift for TSPA-SR/LA, thus allowing PA to provide a more detailed and complete near-field geochemical model and to answer the key technical issues (KTI) raised in the NRC Issue Resolution Status Report (IRSR) for the Evolution of the Near Field Environment (NFE) Revision 2 (NRC 1999). This model and its predecessor (the in-drift microbial communities model as documented in Chapter 4 of the TSPA-VA Technical Basis Document, CRWMS M and O 1998a) was developed to respond to the applicable KTIs. Additionally, because of the previous development of the in-drift microbial communities model as documented in Chapter 4 of the TSPA-VA Technical Basis Document (CRWMS M and O 1998a), the M and O was effectively able to resolve a previous KTI concern regarding the effects of microbial processes on seepage and flow (NRC 1998). This document supercedes the in-drift microbial communities model as documented in Chapter 4 of the TSPA-VA Technical Basis Document (CRWMS M and O 1998a). This document provides the conceptual framework of the revised in-drift microbial communities model to be used in subsequent performance assessment (PA) analyses.

  19. SAA drift:experimental results

    NASA Astrophysics Data System (ADS)

    Grigoryan, O. R.; Kudela, K.; Romashova, V. V.; Drozdov, A. Yu.

    According to the paleomagnetic analysis there are variations of Earth's magnetic field connected with magnetic momentum changing. Besides these variations affects on the trapped belt South Atlantic Anomaly (SAA) location. Indeed different observations including Space Shuttle short-time flights approved the existence SAA westward drift with speed 0.1-1.0 (deg/year) and northward drift with speed approximately 0.1 (deg/year). In this work we present the analysis of experimental results obtained in SINP MSU in 1972-2003 from different satellites. There were analyzed the fluxes of protons with energy > 50 MeV, gamma quanta with energy > 500 keV and neutrons with energy 0.1-1.0 MeV in SAA area and their maxima location. The data about fluxes were obtained onboard the orbital stations ``Salut-6'' (1979), MIR (1991, 1998) and ISS (2003) by the identical experimental equipment. The comparison of the data obtained during these two decades of investigations confirms the fact of the SAA westward drift. Moreover the same analysis of maximum flux location of electrons with hundreds keV energy (satellites ``Kosmos-484'' (1972), ``Interkosmos-17'' (1977) and ``Activny'' (``Interkosmos-24'', 1991)) confirmed not only the SAA westward drift but northward drift also.

  20. Tube Feedings.

    ERIC Educational Resources Information Center

    Plummer, Nancy

    This module on tube feedings is intended for use in inservice or continuing education programs for persons who work in long-term care. Instructor information, including teaching suggestions and a listing of recommended audiovisual materials and their sources appear first. The module goal and objectives are then provided. A brief discussion follows…

  1. CMS results on multijet correlations

    SciTech Connect

    Safronov, Grigory

    2015-04-10

    We present recent CMS measurements on multijet correlations using forward and low-p{sub T} jets, focusing on searches for BFKL and saturation phenomena. In pp collisions at √(s)=7 TeV, azimuthal correlations in dijets separated in rapidity by up to 9.4 units were measured. The results are compared to BFKL- and DGLAP-based predictions. In pp collisions at √(s)=8 TeV, cross sections for jets with p{sub T} > 21 GeV and |y| < 4.7, and for track-jets with p{sub T} > 1 GeV (minijets) are presented. The minijet results are sensitive to the bound imposed by the total inelastic cross section, and are compared to various models for taming the growth of the 2 → 2 cross section at low p{sub T}.

  2. Status of the construction of the Gluex Forward Drift Chambers

    NASA Astrophysics Data System (ADS)

    Taylor, Simon

    2013-04-01

    Currently under construction at the Thomas Jefferson National Accelerator Facility in Newport News, Virginia, the full GlueX detector is designed to study gluonic degrees of freedom through the production of ``hybrid'' mesons with exotic quantum numbers. To accomplish this task the detector requires high acceptance and reasonably good resolution for both charged and neutral particles. The core of the detector is housed within the bore of a 2.0 Tesla solenoidal magnet. Charged particles emanating from the target for angles greater than about 20 degrees with respect to the beam line will be tracked with a straw-tube detector (the Central Drift Chamber). Forward-going charged particles will be detected using the Forward Drift Chambers (FDC). I will describe the design and construction of the FDC and present preliminary resolution measurements.

  3. CMS centres worldwide: A new collaborative infrastructure

    SciTech Connect

    Taylor, Lucas; Gottschalk, Erik; /Fermilab

    2010-01-01

    The CMS Experiment at the LHC is establishing a global network of inter-connected 'CMS Centres' for controls, operations and monitoring. These support: (1) CMS data quality monitoring, detector calibrations, and analysis; and (2) computing operations for the processing, storage and distribution of CMS data. We describe the infrastructure, computing, software, and communications systems required to create an effective and affordable CMS Centre. We present our highly successful operations experiences with the major CMS Centres at CERN, Fermilab, and DESY during the LHC first beam data-taking and cosmic ray commissioning work. The status of the various centres already operating or under construction in Asia, Europe, Russia, South America, and the USA is also described. We emphasise the collaborative communications aspects. For example, virtual co-location of experts in CMS Centres Worldwide is achieved using high-quality permanently-running 'telepresence' video links. Generic Web-based tools have been developed and deployed for monitoring, control, display management and outreach.

  4. The CMS Masterclass and Particle Physics Outreach

    SciTech Connect

    Cecire, Kenneth; Bardeen, Marjorie; McCauley, Thomas

    2014-01-01

    The CMS Masterclass enables high school students to analyse authentic CMS data. Students can draw conclusions on key ratios and particle masses by combining their analyses. In particular, they can use the ratio of W^+ to W^- candidates to probe the structure of the proton, they can find the mass of the Z boson, and they can identify additional particles including, tentatively, the Higgs boson. In the United States, masterclasses are part of QuarkNet, a long-term program that enables students and teachers to use cosmic ray and particle physics data for learning with an emphasis on data from CMS.

  5. Forecast of iceberg ensemble drift

    SciTech Connect

    El-Tahan, M.S.; El-Tahan, H.W.; Venkatesh, S.

    1983-05-01

    The objectives of the study are to gain a better understanding of the characteristics of iceberg motion and the factors controlling iceberg drift, and to develop an iceberg ensemble drift forecast system to be operated by the Canadian Atmospheric Environment Service. An extensive review of field and theoretical studies on iceberg behaviour, and the factors controlling iceberg motion has been carried out. Long term and short term behaviour of icebergs are critically examined. A quantitative assessment of the effects of the factors controlling iceberg motion is presented. The study indicated that wind and currents are the primary driving forces. Coriolis Force and ocean surface slope also have significant effects. As for waves, only the higher waves have a significant effect. Iceberg drift is also affected by iceberg size characteristics. Based on the findings of the study a comprehensive computerized forecast system to predict the drift of iceberg ensembles off Canada's east coast has been designed. The expected accuracy of the forecast system is discussed and recommendations are made for future improvements to the system.

  6. Drift Hamiltonian in magnetic coordinates

    SciTech Connect

    White, R.B.; Boozer, A.H.; Hay, R.

    1982-02-01

    A Hamiltonian formulation of the guiding-center drift in arbitrary, steady state, magnetic and electric fields is given. The canonical variables of this formulation are simply related to the magnetic coordinates. The modifications required to treat ergodic magnetic fields using magnetic coordinates are explicitly given in the Hamiltonian formulation.

  7. 42 CFR 426.517 - CMS' statement regarding new evidence.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 3 2014-10-01 2014-10-01 false CMS' statement regarding new evidence. 426.517... COVERAGE DETERMINATIONS Review of an NCD § 426.517 CMS' statement regarding new evidence. (a) CMS may... clinical experts; and (5) Presented during any hearing. (b) CMS may submit a statement regarding...

  8. 42 CFR 489.53 - Termination by CMS.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 5 2014-10-01 2014-10-01 false Termination by CMS. 489.53 Section 489.53 Public... Reinstatement After Termination § 489.53 Termination by CMS. (a) Basis for termination of agreement with any provider. CMS may terminate the agreement with any provider if CMS finds that any of the following...

  9. 42 CFR 489.53 - Termination by CMS.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 5 2012-10-01 2012-10-01 false Termination by CMS. 489.53 Section 489.53 Public... Reinstatement After Termination § 489.53 Termination by CMS. (a) Basis for termination of agreement with any provider. CMS may terminate the agreement with any provider if CMS finds that any of the following...

  10. 42 CFR 489.53 - Termination by CMS.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 5 2013-10-01 2013-10-01 false Termination by CMS. 489.53 Section 489.53 Public... Reinstatement After Termination § 489.53 Termination by CMS. (a) Basis for termination of agreement with any provider. CMS may terminate the agreement with any provider if CMS finds that any of the following...

  11. 42 CFR 460.20 - Notice of CMS determination.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 4 2014-10-01 2014-10-01 false Notice of CMS determination. 460.20 Section 460.20... ELDERLY (PACE) PACE Organization Application and Waiver Process § 460.20 Notice of CMS determination. (a... application to CMS, CMS takes one of the following actions: (1) Approves the application. (2) Denies...

  12. 42 CFR 426.517 - CMS' statement regarding new evidence.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 3 2011-10-01 2011-10-01 false CMS' statement regarding new evidence. 426.517... DETERMINATIONS Review of an NCD § 426.517 CMS' statement regarding new evidence. (a) CMS may review any new... experts; and (5) Presented during any hearing. (b) CMS may submit a statement regarding whether the...

  13. 42 CFR 489.53 - Termination by CMS.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 5 2010-10-01 2010-10-01 false Termination by CMS. 489.53 Section 489.53 Public... Reinstatement After Termination § 489.53 Termination by CMS. (a) Basis for termination of agreement with any provider. CMS may terminate the agreement with any provider if CMS finds that any of the following...

  14. 42 CFR 460.20 - Notice of CMS determination.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 4 2013-10-01 2013-10-01 false Notice of CMS determination. 460.20 Section 460.20... ELDERLY (PACE) PACE Organization Application and Waiver Process § 460.20 Notice of CMS determination. (a... application to CMS, CMS takes one of the following actions: (1) Approves the application. (2) Denies...

  15. 42 CFR 426.517 - CMS' statement regarding new evidence.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 3 2012-10-01 2012-10-01 false CMS' statement regarding new evidence. 426.517... COVERAGE DETERMINATIONS Review of an NCD § 426.517 CMS' statement regarding new evidence. (a) CMS may... clinical experts; and (5) Presented during any hearing. (b) CMS may submit a statement regarding...

  16. 42 CFR 460.20 - Notice of CMS determination.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 4 2011-10-01 2011-10-01 false Notice of CMS determination. 460.20 Section 460.20... ELDERLY (PACE) PACE Organization Application and Waiver Process § 460.20 Notice of CMS determination. (a... application to CMS, CMS takes one of the following actions: (1) Approves the application. (2) Denies...

  17. 42 CFR 426.517 - CMS' statement regarding new evidence.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 3 2010-10-01 2010-10-01 false CMS' statement regarding new evidence. 426.517... DETERMINATIONS Review of an NCD § 426.517 CMS' statement regarding new evidence. (a) CMS may review any new... experts; and (5) Presented during any hearing. (b) CMS may submit a statement regarding whether the...

  18. 42 CFR 426.517 - CMS' statement regarding new evidence.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 3 2013-10-01 2013-10-01 false CMS' statement regarding new evidence. 426.517... COVERAGE DETERMINATIONS Review of an NCD § 426.517 CMS' statement regarding new evidence. (a) CMS may... clinical experts; and (5) Presented during any hearing. (b) CMS may submit a statement regarding...

  19. 42 CFR 489.53 - Termination by CMS.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 5 2011-10-01 2011-10-01 false Termination by CMS. 489.53 Section 489.53 Public... Reinstatement After Termination § 489.53 Termination by CMS. (a) Basis for termination of agreement with any provider. CMS may terminate the agreement with any provider if CMS finds that any of the following...

  20. 42 CFR 460.20 - Notice of CMS determination.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 4 2012-10-01 2012-10-01 false Notice of CMS determination. 460.20 Section 460.20... ELDERLY (PACE) PACE Organization Application and Waiver Process § 460.20 Notice of CMS determination. (a... application to CMS, CMS takes one of the following actions: (1) Approves the application. (2) Denies...

  1. QUANTIZING TUBE

    DOEpatents

    Jensen, A.S.; Gray, G.W.

    1958-07-01

    Beam deflection tubes are described for use in switching or pulse amplitude analysis. The salient features of the invention reside in the target arrangement whereby outputs are obtained from a plurality of collector electrodes each correspondlng with a non-overlapping range of amplitudes of the input sigmal. The tube is provded with mcans for deflecting the electron beam a1ong a line in accordance with the amplitude of an input signal. The target structure consists of a first dymode positioned in the path of the beam wlth slots spaced a1ong thc deflection line, and a second dymode posltioned behind the first dainode. When the beam strikes the solid portions along the length of the first dymode the excited electrons are multiplied and collected in separate collector electrodes spaced along the beam line. Similarly, the electrons excited when the beam strikes the second dynode are multiplied and collected in separate electrodes spaced along the length of the second dyode.

  2. Electron tube

    DOEpatents

    Suyama, Motohiro [Hamamatsu, JP; Fukasawa, Atsuhito [Hamamatsu, JP; Arisaka, Katsushi [Los Angeles, CA; Wang, Hanguo [North Hills, CA

    2011-12-20

    An electron tube of the present invention includes: a vacuum vessel including a face plate portion made of synthetic silica and having a surface on which a photoelectric surface is provided, a stem portion arranged facing the photoelectric surface and made of synthetic silica, and a side tube portion having one end connected to the face plate portion and the other end connected to the stem portion and made of synthetic silica; a projection portion arranged in the vacuum vessel, extending from the stem portion toward the photoelectric surface, and made of synthetic silica; and an electron detector arranged on the projection portion, for detecting electrons from the photoelectric surface, and made of silicon.

  3. Chest tube insertion

    MedlinePlus

    Chest drainage tube insertion; Insertion of tube into chest; Tube thoracostomy; Pericardial drain ... When your chest tube is inserted, you will lie on your side or sit partly upright, with one arm over your head. Sometimes, ...

  4. Predicting dataset popularity for the CMS experiment

    NASA Astrophysics Data System (ADS)

    Kuznetsov, V.; Li, T.; Giommi, L.; Bonacorsi, D.; Wildish, T.

    2016-10-01

    The CMS experiment at the LHC accelerator at CERN relies on its computing infrastructure to stay at the frontier of High Energy Physics, searching for new phenomena and making discoveries. Even though computing plays a significant role in physics analysis we rarely use its data to predict the system behavior itself. A basic information about computing resources, user activities and site utilization can be really useful for improving the throughput of the system and its management. In this paper, we discuss a first CMS analysis of dataset popularity based on CMS meta-data which can be used as a model for dynamic data placement and provide the foundation of data-driven approach for the CMS computing infrastructure.

  5. Nasogastric feeding tube

    MedlinePlus

    Feeding - nasogastric tube; NG tube; Bolus feeding; Continuous pump feeding; Gavage tube ... If your child has an NG tube, try to keep your child from touching or pulling on the tube. After your nurse teaches you how to flush the tube ...

  6. Evolution: drift will tear us apart.

    PubMed

    Maderspacher, Florian

    2012-11-06

    That the widely scattered geographical distribution of some animals could be due to continental drift is a neat idea. Now, cave animals provide evidence for extreme long-term persistence on continents drifting apart.

  7. File level provenance tracking in CMS

    SciTech Connect

    Jones, C.D.; Kowalkowski, J.; Paterno, M.; Sexton-Kennedy, L.; Tanenbaum, W.; Riley, D.S.; /Cornell U., LEPP

    2009-05-01

    The CMS off-line framework stores provenance information within CMS's standard ROOT event data files. The provenance information is used to track how each data product was constructed, including what other data products were read to do the construction. We will present how the framework gathers the provenance information, the efforts necessary to minimize the space used to store the provenance in the file and the tools that will be available to use the provenance.

  8. CRAB: Distributed analysis tool for CMS

    NASA Astrophysics Data System (ADS)

    Sala, Leonardo; CMS Collaboration

    2012-12-01

    CMS has a distributed computing model, based on a hierarchy of tiered regional computing centers and adopts a data driven model for the end user analysis. This model foresees that jobs are submitted to the analysis resources where data are hosted. The increasing complexity of the whole computing infrastructure makes the simple analysis work flow more and more complicated for the end user. CMS has developed and deployed a dedicated tool named CRAB (CMS Remote Analysis Builder) in order to guarantee the physicists an efficient access to the distributed data whilst hiding the underlying complexity. This tool is used by CMS to enable the running of physics analysis jobs in a transparent manner over data distributed across sites. It factorizes out the interaction with the underlying batch farms, grid infrastructure and CMS data management tools, allowing the user to deal only with a simple and intuitive interface. We present the CRAB architecture, as well as the current status and lessons learnt in deploying this tool for use by the CMS collaboration. We also present the future development of the CRAB system.

  9. Virtual data in CMS analysis

    SciTech Connect

    A. Arbree et al.

    2003-10-01

    The use of virtual data for enhancing the collaboration between large groups of scientists is explored in several ways: by defining ''virtual'' parameter spaces which can be searched and shared in an organized way by a collaboration of scientists in the course of their analysis; by providing a mechanism to log the provenance of results and the ability to trace them back to the various stages in the analysis of real or simulated data; by creating ''check points'' in the course of an analysis to permit collaborators to explore their own analysis branches by refining selections, improving the signal to background ratio, varying the estimation of parameters, etc.; by facilitating the audit of an analysis and the reproduction of its results by a different group, or in a peer review context. We describe a prototype for the analysis of data from the CMS experiment based on the virtual data system Chimera and the object-oriented data analysis framework ROOT. The Chimera system is used to chain together several steps in the analysis process including the Monte Carlo generation of data, the simulation of detector response, the reconstruction of physics objects and their subsequent analysis, histogramming and visualization using the ROOT framework.

  10. CMS-Wave Model: Part 4. An Automated Procedure for CMS-Wave in Resource-Demanding Applications

    DTIC Science & Technology

    2011-04-01

    user’s manual for CMS -Wave are available (Lin et al. 2008, 2006; Demirbilek et al. 2007). CMS -Wave is part of the Coastal Modeling System developed...at the same level as the subfolders. Figure 2 shows the contents of the Visser_1991 example subfolder, including two CMS -Wave simulations, named as...and the surrounding area (red line denotes the CMS domain). The Coastal Modeling System ( CMS ) was applied to evaluate current and sedimentation

  11. Tube furnace

    DOEpatents

    Foster, Kenneth G.; Frohwein, Eugene J.; Taylor, Robert W.; Bowen, David W.

    1991-01-01

    A vermiculite insulated tube furnace is heated by a helically-wound resistance wire positioned within a helical groove on the surface of a ceramic cylinder, that in turn is surroundingly disposed about a doubly slotted stainless steel cylindrical liner. For uniform heating, the pitch of the helix is of shorter length over the two end portions of the ceramic cylinder. The furnace is of large volume, provides uniform temperature, offers an extremely precise programmed heating capability, features very rapid cool-down, and has a modest electrical power requirement.

  12. Tube furnace

    SciTech Connect

    Foster, K.G.; Frohwein, E.J.; Taylor, R.W.; Bowen, D.W.

    1990-12-31

    A vermiculite insulated tube furnace is heated by a helically-wound resistance wire positioned within a helical groove on the surface of a ceramic cylinder, that in turn is surroundingly disposed about a doubly slotted stainless steel cylindrical liner. For uniform heating, the pitch of the helix is of shorter length over the two end portions of the ceramic cylinder. The furnace is of large volume, provides uniform temperature, offers an extremely precise programmed heating capability, features very rapid cool-down, and has a modest electrical power requirement.

  13. Tube furnace

    SciTech Connect

    Foster, K.G.; Frohwein, E.J.; Taylor, R.W.; Bowen, D.W.

    1990-01-01

    A vermiculite insulated tube furnace is heated by a helically-wound resistance wire positioned within a helical groove on the surface of a ceramic cylinder, that in turn is surroundingly disposed about a doubly slotted stainless steel cylindrical liner. For uniform heating, the pitch of the helix is of shorter length over the two end portions of the ceramic cylinder. The furnace is of large volume, provides uniform temperature, offers an extremely precise programmed heating capability, features very rapid cool-down, and has a modest electrical power requirement.

  14. A Pascalian lateral drift sensor

    NASA Astrophysics Data System (ADS)

    Jansen, H.

    2016-09-01

    A novel concept of a layer-wise produced semiconductor sensor for precise particle tracking is proposed herein. In contrast to common semiconductor sensors, local regions with increased doping concentration deep in the bulk termed charge guides increase the lateral drift of free charges on their way to the read-out electrode. This lateral drift enables charge sharing independent of the incident position of the traversing particle. With a regular grid of charge guides the lateral charge distribution resembles a normalised Pascal's triangle for particles that are stopped in depths lower than the depth of the first layer of the charge guides. For minimum ionising particles a sum of binomial distributions describes the lateral charge distribution. This concept decouples the achievable sensor resolution from the pitch size as the characteristic length is replaced by the lateral distance of the charge guides.

  15. Random drift and culture change.

    PubMed Central

    Bentley, R. Alexander; Hahn, Matthew W.; Shennan, Stephen J.

    2004-01-01

    We show that the frequency distributions of cultural variants, in three different real-world examples--first names, archaeological pottery and applications for technology patents--follow power laws that can be explained by a simple model of random drift. We conclude that cultural and economic choices often reflect a decision process that is value-neutral; this result has far-reaching testable implications for social-science research. PMID:15306315

  16. Tapered pulse tube for pulse tube refrigerators

    DOEpatents

    Swift, Gregory W.; Olson, Jeffrey R.

    1999-01-01

    Thermal insulation of the pulse tube in a pulse-tube refrigerator is maintained by optimally varying the radius of the pulse tube to suppress convective heat loss from mass flux streaming in the pulse tube. A simple cone with an optimum taper angle will often provide sufficient improvement. Alternatively, the pulse tube radius r as a function of axial position x can be shaped with r(x) such that streaming is optimally suppressed at each x.

  17. Abstraction of Seepage into Drifts

    SciTech Connect

    M.L. Wilson; C.K. Ho

    2000-09-26

    A total-system performance assessment (TSPA) for a potential nuclear-waste repository requires an estimate of the amount of water that might contact waste. This paper describes the model used for part of that estimation in a recent TSPA for the Yucca Mountain site. The discussion is limited to estimation of how much water might enter emplacement drifts; additional considerations related to flow within the drifts, and how much water might actually contact waste, are not addressed here. The unsaturated zone at Yucca Mountain is being considered for the potential repository, and a drift opening in unsaturated rock tends to act as a capillary barrier and divert much of the percolating water around it. For TSPA, the important questions regarding seepage are how many waste packages might be subjected to water flow and how much flow those packages might see. Because of heterogeneity of the rock and uncertainty about the future (how the climate will evolve, etc.), it is not possible to predict seepage amounts or locations with certainty. Thus, seepage is treated as a stochastic quantity in TSPA simulations, with the magnitude and spatial distribution of seepage sampled from uncertainty distributions. The distillation of the essential components of process modeling into a form suitable for use in TSPA simulations is referred to as abstraction. In the following sections, seepage process models and abstractions will be summarized and then some illustrative results are presented.

  18. Shear wall ultimate drift limits

    SciTech Connect

    Duffey, T.A.; Goldman, A.; Farrar, C.R.

    1994-04-01

    Drift limits for reinforced-concrete shear walls are investigated by reviewing the open literature for appropriate experimental data. Drift values at ultimate are determined for walls with aspect ratios ranging up to a maximum of 3.53 and undergoing different types of lateral loading (cyclic static, monotonic static, and dynamic). Based on the geometry of actual nuclear power plant structures exclusive of containments and concerns regarding their response during seismic (i.e.,cyclic) loading, data are obtained from pertinent references for which the wall aspect ratio is less than or equal to approximately 1, and for which testing is cyclic in nature (typically displacement controlled). In particular, lateral deflections at ultimate load, and at points in the softening region beyond ultimate for which the load has dropped to 90, 80, 70, 60, and 50 percent of its ultimate value, are obtained and converted to drift information. The statistical nature of the data is also investigated. These data are shown to be lognormally distributed, and an analysis of variance is performed. The use of statistics to estimate Probability of Failure for a shear wall structure is illustrated.

  19. Grain Size of the North-Atlantic Drifts Sediments: is the Gloria Drift a Contourite Drift?

    NASA Astrophysics Data System (ADS)

    Dorokhova, E.; Sivkov, V.; Bashirova, L.

    2015-12-01

    Mean size of mineral particles of 10-63 fraction, so-called sortable silt mean size (SS) (McCave, 1995) and modes of grain-size distribution were used as proxies for reconstruction of paleocurrents intensity variations in the North Atlantic. It was assumed that the first mode (3-8 μm) is formed as the result of normal pelagic sedimentation and the second mode (10-30 μm) appears under the bottom currents influence. The sediments with bimodal grain-size distribution (the second mode varies from 10 to 28 μm) correlate with increased SS (up to 18-23 μm) in the Hatton and Snorry Drifts, indicating an increase in contour currents intensity during MIS 1, 3 and 5e. In contrast, there are no any relationships between grain size distribution (high SS values, appearance of bimodal distributions) and climatic cyclicity of variations in contour currents intensity at the Gloria Drift. Moreover, the Gloria Drift sediments differ from the contourite sediments of the Snorry and Hatton Drifts by shifting of the second mode toward the coarse particles (25-40 μm), higher sedimentation rates and higher IRD content. This evidence puts in doubt the contourite origin of the Gloria Drift. At the same time, we have identified the similarity between the Gloria Drift sediments and IRD-containing hemiturbidites of Labrador Sea (Hesse and Khodabakhsh, 2006). Fine-grained sediment lofting has been inferred for ice marginal regions of the northwest Labrador Sea. Sediment failure on the Labrador Slope predominantly produces muddy turbidity currents, because the slope sediments are mud-dominated. Their deposits are the indicative muddy spill-over turbidites of the NAMOC levees and the levees of the tributaries to the NAMOC. Dispersal of the IRD throughout the graded mud layers is evidence that the two processes, ice rafting and the delivery of the fines by lofting, occurred simultaneously. This work was supported by Russian Scientific Fund (grant No. 14-50-00095).

  20. Tube-in-tube thermophotovoltaic generator

    DOEpatents

    Ashcroft, J.; Campbell, B.; DePoy, D.

    1998-06-30

    A thermophotovoltaic device includes at least one thermal radiator tube, a cooling tube concentrically disposed within each thermal radiator tube and an array of thermophotovoltaic cells disposed on the exterior surface of the cooling tube. A shell having a first end and a second end surrounds the thermal radiator tube. Inner and outer tubesheets, each having an aperture corresponding to each cooling tube, are located at each end of the shell. The thermal radiator tube extends within the shell between the inner tubesheets. The cooling tube extends within the shell through the corresponding apertures of the two inner tubesheets to the corresponding apertures of the two outer tubesheets. A plurality of the thermal radiator tubes can be arranged in a staggered or an in-line configuration within the shell. 8 figs.

  1. Tube-in-tube thermophotovoltaic generator

    SciTech Connect

    Ashcroft, John; Campbell, Brian; DePoy, David

    1998-01-01

    A thermophotovoltaic device includes at least one thermal radiator tube, a cooling tube concentrically disposed within each thermal radiator tube and an array of thermophotovoltaic cells disposed on the exterior surface of the cooling tube. A shell having a first end and a second end surrounds the thermal radiator tube. Inner and outer tubesheets, each having an aperture corresponding to each cooling tube, are located at each end of the shell. The thermal radiator tube extends within the shell between the inner tubesheets. The cooling tube extends within the shell through the corresponding apertures of the two inner tubesheets to the corresponding apertures of the two outer tubesheets. A plurality of the thermal radiator tubes can be arranged in a staggered or an in-line configuration within the shell.

  2. Validation of software releases for CMS

    SciTech Connect

    Gutsche, Oliver; /Fermilab

    2009-03-01

    The CMS software stack currently consists of more than 2 Million lines of code developed by over 250 authors with a new version being released every week. CMS has setup a release validation process for quality assurance which enables the developers to compare to previous releases and references. This process provides the developers with reconstructed datasets of real data and MC samples. The samples span the whole range of detector effects and important physics signatures to benchmark the performance of the software. They are used to investigate interdependency effects of software packages and to find and fix bugs. The samples have to be available in a very short time after a release is published to fit into the streamlined CMS development cycle. The standard CMS processing infrastructure and dedicated resources at CERN and FNAL are used to achieve a very short turnaround of 24 hours. The here described release validation process is an integral part of CMS software development and contributes significantly to ensure stable production and analysis. It's success emphasizes the importance of a streamlined release validation process for projects with a large code basis and significant number of developers and can function as an example for future projects.

  3. Gastrostomy feeding tube - bolus

    MedlinePlus

    Feeding - gastrostomy tube - bolus; G-tube - bolus; Gastrostomy button - bolus; Bard Button - bolus; MIC-KEY - bolus ... Your child's gastrostomy tube (G-tube) is a special tube in your child's stomach that will help deliver food and medicines until your ...

  4. CMS HF calorimeter PMTs and Ξ$+\\atop{c}$ lifetime measurement

    SciTech Connect

    Akgun, Ugur

    2003-12-01

    This thesis consists of two parts: In the first part we describe the Photomultiplier Tube (PMT) selection and testing processes for the Hadronic Forward (HF) calorimeter of the CMS, a Large Hadron Collier (LHC) experiment at CERN. We report the evaluation process of the candidate PMTs from three different manufacturers, the complete tests performed on the 2300 Hamamatsu PMTs which will be used in the HF calorimeter, and the details of the PMT Test Station that is in University of Iowa CMS Laboratories. In the second part we report the Ξ$+\\atop{c}$ lifetime measurement from SELEX, the charm hadro-production experiment at Fermilab. Based upon 301 ± 31 events from three di.erent decay channels, by using the binned maximum likelihood technique, we observe the lifetime of Ξ$+\\atop{c}$ as 427 ± 31 ± 13 fs.

  5. Exotic quarkonium states in CMS

    NASA Astrophysics Data System (ADS)

    Cristella, Leonardo

    2017-03-01

    The studies of the production of the X(3872), either prompt or from B hadron decays, and of the J/ψϕ mass spectrum in B hadron decays have been carried out by using pp collisions at √s = 7 TeV collected with the CMS detector at the LHC. The cross-section ratio of the X(3872) with respect to the ψ(2S ) in the J/ψπ+π- decay channel and the fraction of X(3872) coming from B-hadron decays are measured as a function of transverse momentum (pT), covering unprecedentedly high values of pT. For the first time, the prompt production cross section for the X(3872) times the unknown branching fraction for the decay of X(3872) →J/ψπ+π- is extracted differentially in pT and compared to theoretical predictions based on the Non-Relativistic QCD (NRQCD) factorization approach. The dipion invariant-mass spectrum of the J/ψπ+π- system in the X(3872) decay is also investigated. A peaking structure in the J/ψϕ mass spectrum near threshold is observed in B± → J/ψϕK± decays. The data sample, selected on the basis of the dimuon decay mode of the J/ψ, corresponds to an integrated luminosity of 5.2 fb-1. Fitting the structure to an S-wave relativistic Breit-Wigner lineshape above a three-body phase-space nonresonant component gives a signal statistical significance exceeding five standard deviations. The fitted mass and width values are m = 4148.0 ± 2.4(stat.) ± 6.3(syst.) MeV and Γ = 28-11+15 (stat.) ± 19(syst.) MeV, respectively. Evidence for an additional peaking structure at higher J/ψϕ mass is also reported. The search for resonance-like structures in the Bs0π± invariant mass spectrum do not show any unexpected result. An upper limit on the relative production of the claimed X(5568) and Bs multiplied by the unknown branching fraction of the decay X(5568) → Bsπ± is estimated to be 3.9% at 95% CL in the most conservative case.

  6. The Physics of the CMS Experiment

    SciTech Connect

    Sanabria, J. C.

    2007-10-26

    The Large Hadron Collider (LHC) at CERN will start running 2008 producing proton-proton collisions with a center-of-mass energy of 14 TeV. Four large experiments will operate together with this accelerator: ALICE, ATLAS, CMS and LHCb. The main scientific goal of this project is to understand in detail the mechanism for electro-weak symmetry breaking and to search for physics beyond the standard model of particles. ATLAS and CMS are general purpose detectors designed for search and discovery of new physics, and optimized to search for Higgs and signals of supersymmetric matter (SUSY). In this paper the main features of the CMS detector will be presented and its potential for Higgs and SUSY discoveries will be discussed.

  7. Fireworks: A physics event display for CMS

    SciTech Connect

    Kovalskyi, D.; Tadel, M.; Mrak-Tadel, A.; Bellenot, B.; Kuznetsov, V.; Jones, C.D.; Bauerdick, L. Case, M.; Mulmenstadt, J.; Yagil, A.; /UC, San Diego

    2010-01-01

    Fireworks is a CMS event display which is specialized for the physics studies case. This specialization allows us to use a stylized rather than 3D-accurate representation when appropriate. Data handling is greatly simplified by using only reconstructed information and ideal geometry. Fireworks provides an easy-to-use interface which allows a physicist to concentrate only on the data in which he is interested. Data is presented via graphical and textual views. Fireworks is built using the Eve subsystem of the CERN ROOT project and CMS's FWLite project. The FWLite project was part of CMS's recent code redesign which separates data classes into libraries separate from algorithms producing the data and uses ROOT directly for C++ object storage, thereby allowing the data classes to be used directly in ROOT.

  8. Calorimeter Simulation with Hadrons in CMS

    SciTech Connect

    Piperov, Stefan; /Sofiya, Inst. Nucl. Res. /Fermilab

    2008-11-01

    CMS is using Geant4 to simulate the detector setup for the forthcoming data from the LHC. Validation of physics processes inside Geant4 is a major concern in view of getting a proper description of jets and missing energy for signal and background events. This is done by carrying out an extensive studies with test beam using the prototypes or real detector modules of the CMS calorimeter. These data are matched with Geant4 predictions using the same framework that is used for the entire CMS detector. Tuning of the Geant4 models is carried out and steps to be used in reproducing detector signals are defined in view of measurements of energy response, energy resolution, transverse and longitudinal shower profiles for a variety of hadron beams over a broad energy spectrum between 2 to 300 GeV/c. The tuned Monte Carlo predictions match many of these measurements within systematic uncertainties.

  9. Feeding tube - infants

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/007235.htm Feeding tube - infants To use the sharing features on this page, please enable JavaScript. A feeding tube is a small, soft, plastic tube placed ...

  10. Tracheostomy tube - eating

    MedlinePlus

    ... page: //medlineplus.gov/ency/patientinstructions/000464.htm Tracheostomy tube - eating To use the sharing features on this ... you swallow foods or liquids. Eating and Tracheostomy Tubes When you get your tracheostomy tube, or trach, ...

  11. Eustachian tube patency

    MedlinePlus

    ... page: //medlineplus.gov/ency/article/001630.htm Eustachian tube patency To use the sharing features on this page, please enable JavaScript. Eustachian tube patency refers to how much the eustachian tube ...

  12. Spiral biasing adaptor for use in Si drift detectors and Si drift detector arrays

    DOEpatents

    Li, Zheng; Chen, Wei

    2016-07-05

    A drift detector array, preferably a silicon drift detector (SDD) array, that uses a low current biasing adaptor is disclosed. The biasing adaptor is customizable for any desired geometry of the drift detector single cell with minimum drift time of carriers. The biasing adaptor has spiral shaped ion-implants that generate the desired voltage profile. The biasing adaptor can be processed on the same wafer as the drift detector array and only one biasing adaptor chip/side is needed for one drift detector array to generate the voltage profiles on the front side and back side of the detector array.

  13. Beyond the discovery: Higgs results from CMS

    NASA Astrophysics Data System (ADS)

    Mankel, Rainer

    2016-11-01

    The observation of a Higgs boson at a mass near 125 GeV in the year 2012 has been a milestone for elementary particle physics. Since this fundamental discovery, the CMS collaboration has scrutinized the complete LHC Run I dataset in depth, and studied the properties of the observed state in full detail. This includes investigations of more elusive production and decay modes, as well as searches for first indications of an extended Higgs sector, which would represent very likely a promising gateway to new physics. This article summarizes recent Higgs results from the CMS experiment.

  14. Physics with CMS and Electronic Upgrades

    SciTech Connect

    Rohlf, James W.

    2016-08-01

    The current funding is for continued work on the Compact Muon Solenoid (CMS) at the CERN Large Hadron Collider (LHC) as part of the Energy Frontier experimental program. The current budget year covers the first year of physics running at 13 TeV (Run 2). During this period we have concentrated on commisioning of the μTCA electronics, a new standard for distribution of CMS trigger and timing control signals and high bandwidth data aquistiion as well as participating in Run 2 physics.

  15. Heat exchanger tube mounts

    DOEpatents

    Wolowodiuk, W.; Anelli, J.; Dawson, B.E.

    1974-01-01

    A heat exchanger in which tubes are secured to a tube sheet by internal bore welding is described. The tubes may be moved into place in preparation for welding with comparatively little trouble. A number of segmented tube support plates are provided which allow a considerable portion of each of the tubes to be moved laterally after the end thereof has been positioned in preparation for internal bore welding to the tube sheet. (auth)

  16. The Fallacy of Drifting Snow

    NASA Astrophysics Data System (ADS)

    Andreas, Edgar L.

    2011-12-01

    A common parametrization over snow-covered surfaces that are undergoing saltation is that the aerodynamic roughness length for wind speed ( z 0) scales as {α u_ast^2/g}, where u * is the friction velocity, g is the acceleration of gravity, and α is an empirical constant. Data analyses seem to support this scaling: many published plots of z 0 measured over snow demonstrate proportionality to {u_ast^2 }. In fact, I show similar plots here that are based on two large eddy-covariance datasets: one collected over snow-covered Arctic sea ice; another collected over snow-covered Antarctic sea ice. But in these and in most such plots from the literature, the independent variable, u *, was used to compute z 0 in the first place; the plots thus suffer from fictitious correlation that causes z 0 to unavoidably increase with u * without any intervening physics. For these two datasets, when I plot z 0 against u * derived from a bulk flux algorithm—and thus minimize the fictitious correlation— z 0 is independent of u * in the drifting snow region, u * ≥ 0.30 ms-1. I conclude that the relation {z_0 = α u_ast^2/g} when snow is drifting is a fallacy fostered by analyses that suffer from fictitious correlation.

  17. Investigations of SPS Orbit Drifts

    SciTech Connect

    Drøsdal, Lene; Bracco, Chiara; Cornelis, Karel; Goddard, Brennan; Kain, Verena; Meddahi, Malika; Wenninger, Jorg; Gianfelice-Wendt, Eliana

    2014-07-01

    The LHC is filled from the last pre-injector, the Super Proton Synchrotron (SPS), via two 3 km long transfer lines, TI 2 and TI 8. Over the LHC injection processes, a drift of the beam trajectories has been observed in TI 2 and TI 8, requiring regular correction of the trajectories, in order to ensure clean injection into the LHC. Investigations of the trajectory variations in the transfer lines showed that the main source of short term trajectory drifts are current variations of the SPS extraction septa (MSE). The stability of the power converters has been improved, but the variations are still present and further improvements are being investigated. The stability over a longer period of time cannot be explained by this source alone. The analysis of trajectory variations shows that there are also slow variations in the SPS closed orbit at extraction. A set of SPS orbit measurements has been saved and analysed. These observations will be used together with simulations and observed field errors to locate the second source of variations.

  18. WORLD SURFACE CURRENTS FROM SHIP'S DRIFT OBSERVATIONS

    SciTech Connect

    Duncan, C.P.; Schladow, S.G.

    1980-11-01

    Over 4 million observations of ship's drift are on file at the U.S. National Oceanographic Data Centre, in Washington, D. C., representing a vast amount of information on ocean surface currents. The observed drift speeds are dependent on the frequency of occurence of the particular current speeds and the frequency of observation. By comparing frequency of observation with the drift speeds observed it is possible to confirm known current patterns and detect singularities in surface currents.

  19. Electron injection in semiconductor drift detectors

    SciTech Connect

    Rehak, P. ); Gatti, E.; Longoni, A.; Sampietro, M.; Castoldi, A. ); Vacchi, A. )

    1990-01-01

    The paper reports the first successful results of a simple MOS structure to inject electrons at a given position in Silicon Drift Detectors. The structure allows on-line calibration of the drift velocity of electrons within the detector. The calibration is a practical method to trace the temperature dependence of the electron mobility. Several of these injection structures can be implemented in silicon drift detectors without additional steps in the fabrication process. 5 refs., 11 figs.

  20. Drift chamber tracking with neural networks

    SciTech Connect

    Lindsey, C.S.; Denby, B.; Haggerty, H.

    1992-10-01

    We discuss drift chamber tracking with a commercial log VLSI neural network chip. Voltages proportional to the drift times in a 4-layer drift chamber were presented to the Intel ETANN chip. The network was trained to provide the intercept and slope of straight tracks traversing the chamber. The outputs were recorded and later compared off line to conventional track fits. Two types of network architectures were studied. Applications of neural network tracking to high energy physics detector triggers is discussed.

  1. Particle Tracking Model (PTM) with Coastal Modeling System (CMS)

    DTIC Science & Technology

    2014-10-31

    System ( CMS ) 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER...www.erdc.usace.army.mil/Missions/WaterResources/CIRP.aspx Coastal Inlets Research Program Particle Tracking Model (PTM) with Coastal Modeling System ( CMS ) The...System ( CMS ), which provides coupled wave and current forcing for PTM simulations. CMS -PTM is implemented in the Surface-water Modeling System, a

  2. THERMAL EVALUATION OF DIFFERENT DRIFT DIAMETER SIZES

    SciTech Connect

    H.M. Wade

    1999-01-04

    The purpose of this calculation is to estimate the thermal response of a repository-emplaced waste package and its corresponding drift wall surface temperature with different drift diameters. The case examined is that of a 21 pressurized water reactor (PWR) uncanistered fuel (UCF) waste package loaded with design basis spent nuclear fuel assemblies. This calculation evaluates a 3.5 meter to 6.5 meter drift diameter range in increments of 1.0 meters. The time-dependent temperatures of interest, as determined by this calculation, are the spent nuclear fuel cladding temperature, the waste package surface temperature, and the drift wall surface temperature.

  3. Biology Undergraduates’ Misconceptions about Genetic Drift

    PubMed Central

    Andrews, T. M.; Price, R. M.; Mead, L. S.; McElhinny, T. L.; Thanukos, A.; Perez, K. E.; Herreid, C. F.; Terry, D. R.; Lemons, P. P.

    2012-01-01

    This study explores biology undergraduates’ misconceptions about genetic drift. We use qualitative and quantitative methods to describe students’ definitions, identify common misconceptions, and examine differences before and after instruction on genetic drift. We identify and describe five overarching categories that include 16 distinct misconceptions about genetic drift. The accuracy of students’ conceptions ranges considerably, from responses indicating only superficial, if any, knowledge of any aspect of evolution to responses indicating knowledge of genetic drift but confusion about the nuances of genetic drift. After instruction, a significantly greater number of responses indicate some knowledge of genetic drift (p = 0.005), but 74.6% of responses still contain at least one misconception. We conclude by presenting a framework that organizes how students’ conceptions of genetic drift change with instruction. We also articulate three hypotheses regarding undergraduates’ conceptions of evolution in general and genetic drift in particular. We propose that: 1) students begin with undeveloped conceptions of evolution that do not recognize different mechanisms of change; 2) students develop more complex, but still inaccurate, conceptual frameworks that reflect experience with vocabulary but still lack deep understanding; and 3) some new misconceptions about genetic drift emerge as students comprehend more about evolution. PMID:22949422

  4. 42 CFR 438.724 - Notice to CMS.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 4 2012-10-01 2012-10-01 false Notice to CMS. 438.724 Section 438.724 Public...) MEDICAL ASSISTANCE PROGRAMS MANAGED CARE Sanctions § 438.724 Notice to CMS. (a) The State must give the CMS Regional Office written notice whenever it imposes or lifts a sanction for one of the...

  5. 42 CFR 425.200 - Agreement with CMS.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 3 2012-10-01 2012-10-01 false Agreement with CMS. 425.200 Section 425.200 Public... Agreement § 425.200 Agreement with CMS. (a) General. In order to participate in the Shared Savings Program, an ACO must enter into a participation agreement with CMS for a period of not less than three...

  6. 42 CFR 422.210 - Assurances to CMS.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 3 2014-10-01 2014-10-01 false Assurances to CMS. 422.210 Section 422.210 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... to CMS. (a) Assurances to CMS. Each organization will provide assurance satisfactory to the...

  7. 42 CFR 460.18 - CMS evaluation of applications.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 4 2010-10-01 2010-10-01 false CMS evaluation of applications. 460.18 Section 460... ELDERLY (PACE) PACE Organization Application and Waiver Process § 460.18 CMS evaluation of applications. CMS evaluates an application for approval as a PACE organization on the basis of the...

  8. 42 CFR 457.1003 - CMS review of waiver requests.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 4 2012-10-01 2012-10-01 false CMS review of waiver requests. 457.1003 Section 457.1003 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES... Waivers: General Provisions § 457.1003 CMS review of waiver requests. CMS will review the waiver...

  9. 42 CFR 438.724 - Notice to CMS.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 4 2010-10-01 2010-10-01 false Notice to CMS. 438.724 Section 438.724 Public...) MEDICAL ASSISTANCE PROGRAMS MANAGED CARE Sanctions § 438.724 Notice to CMS. (a) The State must give the CMS Regional Office written notice whenever it imposes or lifts a sanction for one of the...

  10. 42 CFR 460.18 - CMS evaluation of applications.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 4 2012-10-01 2012-10-01 false CMS evaluation of applications. 460.18 Section 460... ELDERLY (PACE) PACE Organization Application and Waiver Process § 460.18 CMS evaluation of applications. CMS evaluates an application for approval as a PACE organization on the basis of the...

  11. 42 CFR 411.386 - CMS's advisory opinions as exclusive.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 2 2013-10-01 2013-10-01 false CMS's advisory opinions as exclusive. 411.386... Relationships Between Physicians and Entities Furnishing Designated Health Services § 411.386 CMS's advisory... described in § 411.370. CMS has not and does not issue a binding advisory opinion on the subject matter...

  12. 42 CFR 411.379 - When CMS accepts a request.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 2 2014-10-01 2014-10-01 false When CMS accepts a request. 411.379 Section 411.379... Physicians and Entities Furnishing Designated Health Services § 411.379 When CMS accepts a request. (a) Upon receiving a request for an advisory opinion, CMS promptly makes an initial determination of whether...

  13. 42 CFR 411.386 - CMS's advisory opinions as exclusive.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 2 2014-10-01 2014-10-01 false CMS's advisory opinions as exclusive. 411.386... Relationships Between Physicians and Entities Furnishing Designated Health Services § 411.386 CMS's advisory... described in § 411.370. CMS has not and does not issue a binding advisory opinion on the subject matter...

  14. 42 CFR 405.1834 - CMS reviewing official procedure.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 2 2010-10-01 2010-10-01 false CMS reviewing official procedure. 405.1834 Section... Determinations and Appeals § 405.1834 CMS reviewing official procedure. (a) Scope. A provider that is a party to... Administrator by a designated CMS reviewing official who considers whether the decision of the...

  15. 42 CFR 438.724 - Notice to CMS.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 4 2011-10-01 2011-10-01 false Notice to CMS. 438.724 Section 438.724 Public...) MEDICAL ASSISTANCE PROGRAMS MANAGED CARE Sanctions § 438.724 Notice to CMS. (a) The State must give the CMS Regional Office written notice whenever it imposes or lifts a sanction for one of the...

  16. 42 CFR 411.379 - When CMS accepts a request.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 2 2013-10-01 2013-10-01 false When CMS accepts a request. 411.379 Section 411.379... Physicians and Entities Furnishing Designated Health Services § 411.379 When CMS accepts a request. (a) Upon receiving a request for an advisory opinion, CMS promptly makes an initial determination of whether...

  17. 42 CFR 411.386 - CMS's advisory opinions as exclusive.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 2 2010-10-01 2010-10-01 false CMS's advisory opinions as exclusive. 411.386... Relationships Between Physicians and Entities Furnishing Designated Health Services § 411.386 CMS's advisory... described in § 411.370. CMS has not and does not issue a binding advisory opinion on the subject matter...

  18. 42 CFR 460.18 - CMS evaluation of applications.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 4 2014-10-01 2014-10-01 false CMS evaluation of applications. 460.18 Section 460... ELDERLY (PACE) PACE Organization Application and Waiver Process § 460.18 CMS evaluation of applications. CMS evaluates an application for approval as a PACE organization on the basis of the...

  19. 42 CFR 457.1003 - CMS review of waiver requests.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 4 2013-10-01 2013-10-01 false CMS review of waiver requests. 457.1003 Section 457.1003 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES... Waivers: General Provisions § 457.1003 CMS review of waiver requests. CMS will review the waiver...

  20. 42 CFR 425.200 - Agreement with CMS.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 3 2013-10-01 2013-10-01 false Agreement with CMS. 425.200 Section 425.200 Public... Agreement § 425.200 Agreement with CMS. (a) General. In order to participate in the Shared Savings Program, an ACO must enter into a participation agreement with CMS for a period of not less than three...

  1. 42 CFR 405.1834 - CMS reviewing official procedure.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 2 2012-10-01 2012-10-01 false CMS reviewing official procedure. 405.1834 Section... Determinations and Appeals § 405.1834 CMS reviewing official procedure. (a) Scope. A provider that is a party to... Administrator by a designated CMS reviewing official who considers whether the decision of the...

  2. 42 CFR 457.1003 - CMS review of waiver requests.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 4 2010-10-01 2010-10-01 false CMS review of waiver requests. 457.1003 Section 457.1003 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES... Waivers: General Provisions § 457.1003 CMS review of waiver requests. CMS will review the waiver...

  3. 42 CFR 403.248 - Administrative review of CMS determinations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 2 2013-10-01 2013-10-01 false Administrative review of CMS determinations. 403... Certification Program: General Provisions § 403.248 Administrative review of CMS determinations. (a) This section provides for administrative review if CMS determines— (1) Not to certify a policy; or (2) That...

  4. 42 CFR 422.210 - Assurances to CMS.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 3 2011-10-01 2011-10-01 false Assurances to CMS. 422.210 Section 422.210 Public...) MEDICARE PROGRAM MEDICARE ADVANTAGE PROGRAM Relationships With Providers § 422.210 Assurances to CMS. (a) Assurances to CMS. Each organization will provide assurance satisfactory to the Secretary that...

  5. 42 CFR 411.386 - CMS's advisory opinions as exclusive.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 2 2012-10-01 2012-10-01 false CMS's advisory opinions as exclusive. 411.386... Relationships Between Physicians and Entities Furnishing Designated Health Services § 411.386 CMS's advisory... described in § 411.370. CMS has not and does not issue a binding advisory opinion on the subject matter...

  6. 42 CFR 438.724 - Notice to CMS.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 4 2013-10-01 2013-10-01 false Notice to CMS. 438.724 Section 438.724 Public...) MEDICAL ASSISTANCE PROGRAMS MANAGED CARE Sanctions § 438.724 Notice to CMS. (a) The State must give the CMS Regional Office written notice whenever it imposes or lifts a sanction for one of the...

  7. 42 CFR 411.386 - CMS's advisory opinions as exclusive.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 2 2011-10-01 2011-10-01 false CMS's advisory opinions as exclusive. 411.386... Relationships Between Physicians and Entities Furnishing Designated Health Services § 411.386 CMS's advisory... described in § 411.370. CMS has not and does not issue a binding advisory opinion on the subject matter...

  8. 42 CFR 433.320 - Procedures for refunds to CMS.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 4 2014-10-01 2014-10-01 false Procedures for refunds to CMS. 433.320 Section 433... Overpayments to Providers § 433.320 Procedures for refunds to CMS. (a) Basic requirements. (1) The agency must refund the Federal share of overpayments that are subject to recovery to CMS through a credit on...

  9. 42 CFR 425.200 - Agreement with CMS.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 3 2014-10-01 2014-10-01 false Agreement with CMS. 425.200 Section 425.200 Public... Agreement § 425.200 Agreement with CMS. (a) General. In order to participate in the Shared Savings Program, an ACO must enter into a participation agreement with CMS for a period of not less than three...

  10. 42 CFR 405.1834 - CMS reviewing official procedure.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 2 2011-10-01 2011-10-01 false CMS reviewing official procedure. 405.1834 Section... Determinations and Appeals § 405.1834 CMS reviewing official procedure. (a) Scope. A provider that is a party to... Administrator by a designated CMS reviewing official who considers whether the decision of the...

  11. 42 CFR 403.248 - Administrative review of CMS determinations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 2 2014-10-01 2014-10-01 false Administrative review of CMS determinations. 403... Certification Program: General Provisions § 403.248 Administrative review of CMS determinations. (a) This section provides for administrative review if CMS determines— (1) Not to certify a policy; or (2) That...

  12. 42 CFR 403.248 - Administrative review of CMS determinations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 2 2011-10-01 2011-10-01 false Administrative review of CMS determinations. 403... Certification Program: General Provisions § 403.248 Administrative review of CMS determinations. (a) This section provides for administrative review if CMS determines— (1) Not to certify a policy; or (2) That...

  13. 42 CFR 422.2264 - Guidelines for CMS review.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 3 2010-10-01 2010-10-01 false Guidelines for CMS review. 422.2264 Section 422... Guidelines for CMS review. In reviewing marketing material or election forms under § 422.2262 of this part, CMS determines that the marketing materials— (a) Provide, in a format (and, where appropriate,...

  14. 42 CFR 422.210 - Assurances to CMS.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 3 2012-10-01 2012-10-01 false Assurances to CMS. 422.210 Section 422.210 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... to CMS. (a) Assurances to CMS. Each organization will provide assurance satisfactory to the...

  15. 42 CFR 433.320 - Procedures for refunds to CMS.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 4 2011-10-01 2011-10-01 false Procedures for refunds to CMS. 433.320 Section 433... Overpayments to Providers § 433.320 Procedures for refunds to CMS. (a) Basic requirements. (1) The agency must refund the Federal share of overpayments that are subject to recovery to CMS through a credit on...

  16. 42 CFR 411.379 - When CMS accepts a request.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 2 2012-10-01 2012-10-01 false When CMS accepts a request. 411.379 Section 411.379... Physicians and Entities Furnishing Designated Health Services § 411.379 When CMS accepts a request. (a) Upon receiving a request for an advisory opinion, CMS promptly makes an initial determination of whether...

  17. 42 CFR 460.18 - CMS evaluation of applications.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 4 2011-10-01 2011-10-01 false CMS evaluation of applications. 460.18 Section 460... ELDERLY (PACE) PACE Organization Application and Waiver Process § 460.18 CMS evaluation of applications. CMS evaluates an application for approval as a PACE organization on the basis of the...

  18. 42 CFR 422.210 - Assurances to CMS.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 3 2013-10-01 2013-10-01 false Assurances to CMS. 422.210 Section 422.210 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... to CMS. (a) Assurances to CMS. Each organization will provide assurance satisfactory to the...

  19. 42 CFR 433.320 - Procedures for refunds to CMS.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 4 2012-10-01 2012-10-01 false Procedures for refunds to CMS. 433.320 Section 433... Overpayments to Providers § 433.320 Procedures for refunds to CMS. (a) Basic requirements. (1) The agency must refund the Federal share of overpayments that are subject to recovery to CMS through a credit on...

  20. 42 CFR 405.1834 - CMS reviewing official procedure.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 2 2013-10-01 2013-10-01 false CMS reviewing official procedure. 405.1834 Section... Determinations and Appeals § 405.1834 CMS reviewing official procedure. (a) Scope. A provider that is a party to... Administrator by a designated CMS reviewing official who considers whether the decision of the...

  1. 42 CFR 411.379 - When CMS accepts a request.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 2 2010-10-01 2010-10-01 false When CMS accepts a request. 411.379 Section 411.379... Physicians and Entities Furnishing Designated Health Services § 411.379 When CMS accepts a request. (a) Upon receiving a request for an advisory opinion, CMS promptly makes an initial determination of whether...

  2. 42 CFR 460.18 - CMS evaluation of applications.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 4 2013-10-01 2013-10-01 false CMS evaluation of applications. 460.18 Section 460... ELDERLY (PACE) PACE Organization Application and Waiver Process § 460.18 CMS evaluation of applications. CMS evaluates an application for approval as a PACE organization on the basis of the...

  3. 42 CFR 433.320 - Procedures for refunds to CMS.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 4 2013-10-01 2013-10-01 false Procedures for refunds to CMS. 433.320 Section 433... Overpayments to Providers § 433.320 Procedures for refunds to CMS. (a) Basic requirements. (1) The agency must refund the Federal share of overpayments that are subject to recovery to CMS through a credit on...

  4. 42 CFR 422.210 - Assurances to CMS.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 3 2010-10-01 2010-10-01 false Assurances to CMS. 422.210 Section 422.210 Public...) MEDICARE PROGRAM MEDICARE ADVANTAGE PROGRAM Relationships With Providers § 422.210 Assurances to CMS. (a) Assurances to CMS. Each organization will provide assurance satisfactory to the Secretary that...

  5. 42 CFR 438.724 - Notice to CMS.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 4 2014-10-01 2014-10-01 false Notice to CMS. 438.724 Section 438.724 Public...) MEDICAL ASSISTANCE PROGRAMS MANAGED CARE Sanctions § 438.724 Notice to CMS. (a) The State must give the CMS Regional Office written notice whenever it imposes or lifts a sanction for one of the...

  6. 42 CFR 411.379 - When CMS accepts a request.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 2 2011-10-01 2011-10-01 false When CMS accepts a request. 411.379 Section 411.379... Physicians and Entities Furnishing Designated Health Services § 411.379 When CMS accepts a request. (a) Upon receiving a request for an advisory opinion, CMS promptly makes an initial determination of whether...

  7. 42 CFR 433.320 - Procedures for refunds to CMS.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 4 2010-10-01 2010-10-01 false Procedures for refunds to CMS. 433.320 Section 433... Overpayments to Providers § 433.320 Procedures for refunds to CMS. (a) Basic requirements. (1) The agency must refund the Federal share of overpayments that are subject to recovery to CMS through a credit on...

  8. 42 CFR 457.1003 - CMS review of waiver requests.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 4 2011-10-01 2011-10-01 false CMS review of waiver requests. 457.1003 Section 457.1003 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES... Waivers: General Provisions § 457.1003 CMS review of waiver requests. CMS will review the waiver...

  9. 42 CFR 457.1003 - CMS review of waiver requests.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 4 2014-10-01 2014-10-01 false CMS review of waiver requests. 457.1003 Section 457.1003 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES... Waivers: General Provisions § 457.1003 CMS review of waiver requests. CMS will review the waiver...

  10. 42 CFR 403.248 - Administrative review of CMS determinations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 2 2012-10-01 2012-10-01 false Administrative review of CMS determinations. 403... Certification Program: General Provisions § 403.248 Administrative review of CMS determinations. (a) This section provides for administrative review if CMS determines— (1) Not to certify a policy; or (2) That...

  11. 42 CFR 405.1834 - CMS reviewing official procedure.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 2 2014-10-01 2014-10-01 false CMS reviewing official procedure. 405.1834 Section... Determinations and Appeals § 405.1834 CMS reviewing official procedure. (a) Scope. A provider that is a party to... Administrator by a designated CMS reviewing official who considers whether the decision of the...

  12. 42 CFR 403.248 - Administrative review of CMS determinations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 2 2010-10-01 2010-10-01 false Administrative review of CMS determinations. 403... Certification Program: General Provisions § 403.248 Administrative review of CMS determinations. (a) This section provides for administrative review if CMS determines— (1) Not to certify a policy; or (2) That...

  13. Commissioning of the CMS High Level Trigger

    SciTech Connect

    Agostino, Lorenzo; et al.

    2009-08-01

    The CMS experiment will collect data from the proton-proton collisions delivered by the Large Hadron Collider (LHC) at a centre-of-mass energy up to 14 TeV. The CMS trigger system is designed to cope with unprecedented luminosities and LHC bunch-crossing rates up to 40 MHz. The unique CMS trigger architecture only employs two trigger levels. The Level-1 trigger is implemented using custom electronics, while the High Level Trigger (HLT) is based on software algorithms running on a large cluster of commercial processors, the Event Filter Farm. We present the major functionalities of the CMS High Level Trigger system as of the starting of LHC beams operations in September 2008. The validation of the HLT system in the online environment with Monte Carlo simulated data and its commissioning during cosmic rays data taking campaigns are discussed in detail. We conclude with the description of the HLT operations with the first circulating LHC beams before the incident occurred the 19th September 2008.

  14. CMS results on exclusive and diffractive production

    SciTech Connect

    Alves, Gilvan A.

    2015-04-10

    We present recent CMS measurements of diffractive and exclusive processes, using data collected at 7 TeV at the LHC. Measurements of soft single- and double-diffractive cross sections are presented, as well as measurements of photon-induced processes including studies of exclusive WW production via photon-photon exchange.

  15. The CMS Remote Analysis Builder (CRAB)

    SciTech Connect

    Spiga, D.; Cinquilli, M.; Servoli, L.; Lacaprara, S.; Fanzago, F.; Dorigo, A.; Merlo, M.; Farina, F.; Fanfani, A.; Codispoti, G.; Bacchi, W.; /INFN, Bologna /Bologna U /CERN /INFN, CNAF /INFN, Trieste /Fermilab

    2008-01-22

    The CMS experiment will produce several Pbytes of data every year, to be distributed over many computing centers geographically distributed in different countries. Analysis of this data will be also performed in a distributed way, using grid infrastructure. CRAB (CMS Remote Analysis Builder) is a specific tool, designed and developed by the CMS collaboration, that allows a transparent access to distributed data to end physicist. Very limited knowledge of underlying technicalities are required to the user. CRAB interacts with the local user environment, the CMS Data Management services and with the Grid middleware. It is able to use WLCG, gLite and OSG middleware. CRAB has been in production and in routine use by end-users since Spring 2004. It has been extensively used in studies to prepare the Physics Technical Design Report (PTDR) and in the analysis of reconstructed event samples generated during the Computing Software and Analysis Challenge (CSA06). This involved generating thousands of jobs per day at peak rates. In this paper we discuss the current implementation of CRAB, the experience with using it in production and the plans to improve it in the immediate future.

  16. Commissioning of the CMS Forward Pixel Detector

    SciTech Connect

    Kumar, Ashish; /SUNY, Buffalo

    2008-12-01

    The Compact Muon Solenoid (CMS) experiment is scheduled for physics data taking in summer 2009 after the commissioning of high energy proton-proton collisions at Large Hadron Collider (LHC). At the core of the CMS all-silicon tracker is the silicon pixel detector, comprising three barrel layers and two pixel disks in the forward and backward regions, accounting for a total of 66 million channels. The pixel detector will provide high-resolution, 3D tracking points, essential for pattern recognition and precise vertexing, while being embedded in a hostile radiation environment. The end disks of the pixel detector, known as the Forward Pixel detector, has been assembled and tested at Fermilab, USA. It has 18 million pixel cells with dimension 100 x 150 {micro}m{sup 2}. The complete forward pixel detector was shipped to CERN in December 2007, where it underwent extensive system tests for commissioning prior to the installation. The pixel system was put in its final place inside the CMS following the installation and bake out of the LHC beam pipe in July 2008. It has been integrated with other sub-detectors in the readout since September 2008 and participated in the cosmic data taking. This report covers the strategy and results from commissioning of CMS forward pixel detector at CERN.

  17. On the onset of surface wind drift at short fetches as observed in a wind wave flume

    NASA Astrophysics Data System (ADS)

    Ocampo-Torres, Francisco J.; Branger, Hubert; Osuna, Pedro; Robles, Lucia

    2014-05-01

    Ocean surface drift is of great relevance to properly model wind waves and specially the early stages of surface waves development and ocean-atmosphere fluxes during incipient wind events and storms. In particular, wave models are not so accurate predicting wave behaviour at short fetches, where wind drift onset might be very important. The onset of surface drift induced by wind and waves is being studied through detailed laboratory measurements in a large wind-wave flume. Wind stress over the water surface, waves and surface drift are measured in the 40m long wind-wave tank at IRPHE, Marseille. While momentum fluxes are estimated directly through the eddy correlation method in a station about the middle of the tank, they provide reference information to the corresponding surface drift onset recorded at rather short non-dimensional fetches. At each experimental run very low wind was on (about 1m/s) for a certain period and suddenly it was constantly accelerated to reach about 13 m/s (as well as 8 and 5 m/s during different runs) in about 15 sec to as long as 600 sec. The wind was kept constant at that high speed for 2 to 10 min, and then suddenly and constantly decelerate to 0. Surface drift values were up to 0.5 cm/s for the highest wind while very distinctive shear was detected in the upper 1.5 cm. Rather linear variation of surface drift was observed with depth. Evolution of the surface drift velocity is analysed and onset behaviour is addressed with particular emphasis in accelerated winds. This work represents a RugDiSMar Project (CONACYT 155793) contribution. The support from ANUIES-ECOS M09-U01 project, CONACYT-187112 Estancia Sabática, and Institute Carnot, is greatly acknowledged.

  18. Channel control ASIC for the CMS hadron calorimeter front end readout module

    SciTech Connect

    Ray Yarema et al.

    2002-09-26

    The Channel Control ASIC (CCA) is used along with a custom Charge Integrator and Encoder (QIE) ASIC to digitize signals from the hybrid photo diodes (HPDs) and photomultiplier tubes (PMTs) in the CMS hadron calorimeter. The CCA sits between the QIE and the data acquisition system. All digital signals to and from the QIE pass through the CCA chip. One CCA chip interfaces with two QIE channels. The CCA provides individually delayed clocks to each of the QIE chips in addition to various control signals. The QIE sends digitized PMT or HPD signals and time slice information to the CCA, which sends the data to the data acquisition system through an optical link.

  19. Scalability, Scintillation Readout and Charge Drift in a Kilogram Scale Solid Xenon Particle Detector

    SciTech Connect

    Yoo, J.; Cease, H.; Jaskierny, W. F.; Markley, D.; Pahlka, R. B.; Balakishiyeva, D.; Saab, T.; Filipenko, M.

    2014-10-23

    We report a demonstration of the scalability of optically transparent xenon in the solid phase for use as a particle detector above a kilogram scale. We employ a liquid nitrogen cooled cryostat combined with a xenon purification and chiller system to measure the scintillation light output and electron drift speed from both the solid and liquid phases of xenon. Scintillation light output from sealed radioactive sources is measured by a set of high quantum efficiency photomultiplier tubes suitable for cryogenic applications. We observed a reduced amount of photons in solid phase compared to that in liquid phase. We used a conventional time projection chamber system to measure the electron drift time in a kilogram of solid xenon and observed faster electron drift speed in the solid phase xenon compared to that in the liquid phase.

  20. The Genetic Drift Inventory: A Tool for Measuring What Advanced Undergraduates Have Mastered about Genetic Drift

    ERIC Educational Resources Information Center

    Price, Rebecca M.; Andrews, Tessa C.; McElhinny, Teresa L.; Mead, Louise S.; Abraham, Joel K.; Thanukos, Anna; Perez, Kathryn E.

    2014-01-01

    Understanding genetic drift is crucial for a comprehensive understanding of biology, yet it is difficult to learn because it combines the conceptual challenges of both evolution and randomness. To help assess strategies for teaching genetic drift, we have developed and evaluated the Genetic Drift Inventory (GeDI), a concept inventory that measures…

  1. The spaced antenna drift method

    NASA Technical Reports Server (NTRS)

    Hocking, W. K.

    1983-01-01

    The spaced antenna drift method is a simple and relatively inexpensive method for determination of atmospheric wind velocities using radars. The technique has been extensively tested in the mesosphere at high and medium frequencies, and found to give reliable results. Recently, the method has also been applied to VHF observations of the troposphere and stratosphere, and results appear to be reliable. This paper discusses briefly the principle of the method, and investigates both its strengths and weaknesses. Some discussions concerning criticisms of the technique are also given, and it is concluded that while these criticisms may be of some concern at times, appropriate care can ensure that the method is at least as viable as any other method of remote wind measurement. At times, the technique has definite advantages.

  2. The ARGUS microvertex drift chamber

    NASA Astrophysics Data System (ADS)

    Michel, E.; Schmidt-Parzefall, W.; Appuhn, R. D.; Buchmüller, J.; Kolanoski, H.; Kreimeier, B.; Lange, A.; Siegmund, T.; Walther, A.; Edwards, K. W.; Fernholz, R. C.; Kapitza, H.; MacFarlane, D. B.; O'Neill, M.; Parsons, J. A.; Prentice, J. D.; Seidel, S. C.; Tsipolitis, G.; Ball, S.; Babaev, A.; Danilov, M.; Tichomirov, I.

    1989-11-01

    The ARGUS collaboration is currently building a new microvertex drift chamber (μVDC) as an upgrade of their detector. The μVDC is optimized for B-meson physics at DORIS energies. Important design features are minimal multiple scattering for low-momentum particles and three-dimensional reconstruction of decay vertices with equal resolutions in r- φ and r- z. Vertex resolutions of 15-25 μm are expected. Prototypes of the μVDC have been tested with different gas mixtures at various pressures. Spatial resolutions as small as 20 μm were obtained using CO 2/propane at 4 bar and DME at 1 bar. New readout electronics have been developed for the μVDC aiming at low thresholds for the TDC measurements. Employing a novel idea for noise and cross-talk suppression, which is based on a discrimination against short pulses, very low threshold settings are possible.

  3. Single wire drift chamber design

    SciTech Connect

    Krider, J.

    1987-03-30

    This report summarizes the design and prototype tests of single wire drift chambers to be used in Fermilab test beam lines. The goal is to build simple, reliable detectors which require a minimum of electronics. Spatial resolution should match the 300 ..mu..m rms resolution of the 1 mm proportional chambers that they will replace. The detectors will be used in beams with particle rates up to 20 KHz. Single track efficiency should be at least 99%. The first application will be in the MT beamline, which has been designed for calibration of CDF detectors. A set of four x-y modules will be used to track and measure the momentum of beam particles.

  4. Autoresonant control of drift waves

    NASA Astrophysics Data System (ADS)

    Shagalov, A. G.; Rasmussen, J. Juul; Naulin, V.

    2017-03-01

    The control of nonlinear drift waves in a magnetized plasmas column has been investigated. The studies are based on the Hasegawa–Mima model, which is solved on a disk domain with radial inhomogeneity of the plasma density. The system is forced by a rotating potential with varying frequency defined on the boundary. To excite and control the waves we apply the autoresonant effect, taking place when the amplitude of the forcing exceeds a threshold value and the waves are phase-locked with the forcing. We demonstrate that the autoresonant approach is applicable for excitation of a range of steady nonlinear waves of the lowest azimuthal mode numbers and for controlling their amplitudes and phases. We also demonstrate the excitation of zonal flows (m = 0 modes), which are controlled via the forced modes.

  5. Quantitative proteomic analysis of CMS-related changes in Honglian CMS rice anther.

    PubMed

    Sun, Qingping; Hu, Chaofeng; Hu, Jun; Li, Shaoqing; Zhu, Yingguo

    2009-10-01

    Honglian (HL) cytoplasmic male sterility (CMS) is one of the rice CMS types and has been widely used in hybrid rice production in China. The CMS line (Yuetai A, YTA) has a Yuetai B (maintainer line, YTB) nuclear genome, but has a rearranged mitochondrial (mt) genome consisting of Yuetai B. The fertility of hybrid (HL-6) was restored by restorer gene in nuclear genome of restorer line (9311). We used isotope-code affinity tag (ICAT) technology to perform the protein profiling of uninucleate stage rice anther and identify the CMS-HL related proteins. Two separate ICAT analyses were performed in this study: (1) anthers from YTA versus anthers from YTB, and (2) anthers from YTA versus anthers from HL-6. Based on the two analyses, a total of 97 unique proteins were identified and quantified in uninucleate stage rice anther under the error rate of less than 10%, of which eight proteins showed abundance changes of at least twofold between YTA and YTB. Triosephosphate isomerase, fructokinase II, DNA-binding protein GBP16 and ribosomal protein L3B were over-expressed in YTB, while oligopeptide transporter, floral organ regulator 1, kinase and S-adenosyl-L: -methionine synthetase were over-expressed in YTA. Reduction of the proteins associated with energy production and lesser ATP equivalents detected in CMS anther indicated that the low level of energy production played an important role in inducing CMS-HL.

  6. Bender/Coiler for Tubing

    NASA Technical Reports Server (NTRS)

    Stoltzfus, J. M.

    1983-01-01

    Easy-to-use tool makes coils of tubing. Tubing to be bend clamped with stop post. Die positioned snugly against tubing. Operator turns handle to slide die along tubing, pushing tubing into spiral groove on mandrel.

  7. Practical acoustic thermometry with twin-tube and single-tube sensors

    SciTech Connect

    De Podesta, M.; Sutton, G.; Edwards, G.; Stanger, L.; Preece, H.

    2015-07-01

    Accurate measurement of high temperatures in a nuclear environment presents unique challenges. All secondary techniques inevitably drift because the thermometric materials in thermocouples and resistance sensors are sensitive not just to temperature, but also their own chemical and physical composition. The solution is to use primary methods that rely on fundamental links between measurable physical properties and temperature. In the nuclear field the best known technique is the measurement of Johnson Noise in a resistor (See Paper 80 at this conference). In this paper we describe the measurement of temperature in terms of the speed of sound in a gas confined in a tube - an acoustic waveguide. Acoustic thermometry is the most accurate technique of primary thermometry ever devised with the best uncertainty of measurement below 0.001 C. In contrast, the acoustic technique described in this work has a much larger uncertainty, approximately 1 deg. C. But the cost and ease of use are improved by several orders of magnitude, making implementation eminently practical. We first describe the basic construction and method of operation of thermometers using twin-tubes and single tubes. We then present results using a twin-tube design showing that showing long term stability (i.e. no detectable drift) at 700 deg. C over periods of several weeks. We then outline how the technique may be developed for different nuclear applications. (authors)

  8. DRIFT: a directionally sensitive dark matter detector

    NASA Astrophysics Data System (ADS)

    Morgan, Ben; Drift; Uk Dark Matter Collaborations

    2003-11-01

    Directional Recoil Identification From Tracks-I (DRIFT) is the world's first WIMP dark matter detector with sensitivity to the directions of nuclear recoils. The distribution of WIMP induced nuclear recoil directions offers the most powerful way of positively identifying a WIMP signal. This paper discusses the DRIFT-I detector and considers future high spatial resolution readout schemes.

  9. Spray drift reduction test method correlation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    ASTM Standard E609 Terminology Relating to Pesticides defines drift as “The physical movement of an agrochemical through the air at the time of application or soon thereafter to any non or off target site.” Since there are many commercial tank mix adjuvants designed to reduce spray drift, ASTM esta...

  10. The high momentum spectrometer drift chambers

    NASA Astrophysics Data System (ADS)

    Abbott, D.; Baker, O. K.; Beaufait, J.; Bennett, C.; Bryant, E.; Carlini, R.; Kross, B.; McCauley, A.; Naing, W.; Shin, T.; Vulcan, W.

    1992-12-01

    The High Momentum Spectrometer in Hall C will use planar drift chambers for charged particle track reconstruction. The chambers are constructed using well understood technology and a conventional gas mixture. Two (plus one spare) drift chambers will be constructed for this spectrometers. Each chamber will contain 6 planes of readout channels. This paper describes the chamber design and gas handling system used.

  11. Spray Drift Issues and Technologies for Mitigation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Herbicide-induced plant damage due to off-target spray drift has become a major problem in some regions prompting States to take regulatory action regarding drift mitigation. For example, the Arkansas Plant Board has proposed new regulations regarding spray of Glyphosate and 2, 4-D. These regulation...

  12. Biology Undergraduates' Misconceptions about Genetic Drift

    ERIC Educational Resources Information Center

    Andrews, T. M.; Price, R. M.; Mead, L. S.; McElhinny, T. L.; Thanukos, A.; Perez, K. E.; Herreid, C. F.; Terry, D. R.; Lemons, P. P.

    2012-01-01

    This study explores biology undergraduates' misconceptions about genetic drift. We use qualitative and quantitative methods to describe students' definitions, identify common misconceptions, and examine differences before and after instruction on genetic drift. We identify and describe five overarching categories that include 16 distinct…

  13. Resistive Drift Waves in a Bumpy Torus

    SciTech Connect

    J.L.V. Lewandowski

    2004-01-12

    A computational study of resistive drift waves in the edge plasma of a bumpy torus is presented. The magnetohydrodynamic equilibrium is obtained from a three-dimensional local equilibrium model. The use of a local magnetohydrodynamic equilibrium model allows for a computationally efficient systematic study of the impact of the magnetic field structure on drift wave stability.

  14. Ground Control for Emplacement Drifts for LA

    SciTech Connect

    Y. Sun

    2004-07-09

    The purpose of this calculation is to analyze the stability of repository emplacement drifts during the preclosure period, and to provide a final ground support method for emplacement drifts for the License Application (LA). The scope of the work includes determination of input parameter values and loads, selection of appropriate process and methods for the calculation, application of selected methods, such as empirical or analytical, to the calculation, development and execution of numerical models, and evaluation of results. Results from this calculation are limited to use for design of the emplacement drifts and the final ground support system installed in these drifts. The design of non-emplacement openings and their ground support systems is covered in the ''Ground Control for Non-Emplacement Drifts for LA'' (BSC 2004c).

  15. Low latitude electrodynamic plasma drifts - A review

    NASA Technical Reports Server (NTRS)

    Fejer, B. G.

    1991-01-01

    The characteristics and driving mechanisms of low latitude ExB plasma drifts and electric fields particularly at F-region heights are reviewed. It is concluded that the general characteristics of the quiet-time plasma can be explained as resulting from E- and F-region dynamo and interhemispheric coupling processes. The disturbance dynamo effects are found to be responsible for the drift perturbations following the periods of enhanced magnetic activity. The prompt penetration of high-latitude electric fields to lower latitudes produces large perturbations on the upward/poleward drifts, but has no significant effect on the low-latitude and the equatorial zonal drifts. Detailed low-latitude and global numerical models for studying the characteristics of plasma drifts are capable of reproducing the latitudinal variation of the perturbation electric fields and their diurnal variations.

  16. A drift chamber with a new type of straws for operation in vacuum

    NASA Astrophysics Data System (ADS)

    Azorskiy, N.; Glonti, L.; Gusakov, Yu.; Elsha, V.; Enik, T.; Kakurin, S.; Kekelidze, V.; Kislov, E.; Kolesnikov, A.; Madigozhin, D.; Movchan, S.; Polenkevich, I.; Potrebenikov, Yu.; Samsonov, V.; Shkarovskiy, S.; Sotnikov, S.; Zinchenko, A.; Danielsson, H.; Bendotti, J.; Degrange, J.; Dixon, N.; Lichard, P.; Morant, J.; Palladino, V.; Gomez, F. Perez; Ruggiero, G.; Vergain, M.

    2016-07-01

    A 2150×2150 mm2 registration area drift chamber capable of working in vacuum is presented. Thin-wall tubes (straws) of a new type are used in the chamber. A large share of these 9.80 mm diameter drift tubes are made in Dubna from metalized 36 μm Mylar film welded along the generatrix using an ultrasonic welding machine created at JINR. The main features of the chamber and some characteristics of the drift tubes are described. Four such chambers with the X, Y, U, V coordinates each, containing 7168 straws in total, are designed and produced at JINR and CERN. They are installed in the vacuum volume of the NA62 setup in order to study the ultra-rare decay K+ →π+ vv bar and to search for and study rare meson decays. In autumn 2014 the chambers were used for the first time for the data taking in the experimental run of the NA62 at CERN's SPS.

  17. Field investigation of the drift shadow

    SciTech Connect

    Su, Grace W.; Kneafsey, Timothy J.; Ghezzehei, Teamrat A.; Marshall, Brian D.; Cook, Paul J.

    2005-09-08

    A drift shadow is an area immediately beneath an undergroundvoidthat, in theory, will be relatively drier than the surrounding rockmass. Numerical and analytical models of water flow through unsaturatedrock predict the existence of a drift shadow, but field tests confirmingits existence have yet to be performed. Proving the existence of driftshadows and understanding their hydrologic and transport characteristicscould provide a better understanding of how contaminants move in thesubsurface if released from waste emplacement drifts such as the proposednuclear waste repository at Yucca Mountain, Nevada. We describe the fieldprogram that will be used to investigate the existence of a drift shadowand the corresponding hydrological process at the Hazel-Atlas silica-sandmine located at the Black Diamond Mines Regional Preserve in Antioch,California. The location and configuration of this mine makes it anexcellent site to observe and measure drift shadow characteristics. Themine is located in a porous sandstone unit of the Domengine Formation, anapproximately 230 meter thick series of interbedded Eocene-age shales,coals, and massive-bedded sandstones. The mining method used at the minerequired the development of two parallel drifts, one above the other,driven along the strike of the mined sandstone stratum. Thisconfiguration provides the opportunity to introduce water into the rockmass in the upper drift and to observe and measure its flow around theunderlying drift. The passive and active hydrologic tests to be performedare described. In the passive method, cores will be obtained in a radialpattern around a drift and will be sectioned and analyzed for in-situwater content and chemical constituents. With the active hydrologic test,water will be introduced into the upper drift of the two parallel driftsand the flow of the water will be tracked as it passes near the bottomdrift. Tensiometers, electrical resistance probes, neutron probes, andground penetrating radar may be

  18. Drift stabilizer for reciprocating free-piston devices

    DOEpatents

    Ward, William C.; Corey, John A.; Swift, Gregory W.

    2003-05-20

    A free-piston device has a stabilized piston drift. A piston having a frequency of reciprocation over a stroke length and with first and second sides facing first and second variable volumes, respectively, for containing a working fluid defining an acoustic wavelength at the frequency of reciprocation. A bypass tube waveguide connects the first and second variable volumes at all times during reciprocation of the piston. The waveguide has a relatively low impedance for steady flow and a relatively high impedance for oscillating flow at the frequency of reciprocation of the piston, so that steady flow returns fluid leakage from about the piston between the first and second volumes while oscillating flow is not diverted through the waveguide. Thus, net leakage about the piston is returned during each stroke of the piston while oscillating leakage is not allowed and pressure buildup on either the first or second side of the piston is avoided to provide a stable piston location.

  19. CMS RATFOR User’s Manual.

    DTIC Science & Technology

    1979-07-01

    timesharing system . Included in this paper is a language description of RATFOR, a discussion of how to use RATFOR on CMS , sample terminal sessions and a...character constants. There is an include facility so that large programs can be constructed out of a mul- titude of small files without using the system ...second author at the above address. \\ * Research sponsored by the Air Force Office of Scientific Research . Air Force Systems Command, under Grant No

  20. Lustre filesystem for CMS storage element (SE)

    NASA Astrophysics Data System (ADS)

    Wu, Y.; Kim, B.; Avery, P.; Fu, Y.; Bourilkov, D.; Taylor, C.; Prescott, C.; Rodriguez, J.

    2011-12-01

    This paper presents our effort to integrate the Lustre filesystem with BeStMan, GridFTP and Ganglia to make it a fully functional WLCG SE (Storage Element). We first describe the configuration of our Lustre filesystem at the University of Florida and our integration process. We then present benchmark performance figures and IO rates from the CMS analysis jobs and the WAN data transfer performance that are conducted on the Lustre SE.

  1. CMS memo OKs use of standing orders.

    PubMed

    2008-12-01

    The Centers for Medicare & Medicaid Services (CMS) has reversed course and clarified the use of standing orders in a manner that is much more favorable to EDs. Initiation of standing orders or protocols no longer requires prior authorization by a physician. Documentation still is required, and it must be entered into the medical record, but it can be entered following implementation of the standing order. Nurses can administer drugs if approved by protocol and if it is within their nursing scope of practice.

  2. Regional CMS Modeling: Southwest Florida Gulf Coast

    DTIC Science & Technology

    2016-05-01

    and Atmospheric Administration ( NOAA ) buoys, the WaveWatch III model, and wave hindcasts by ERDC Wave Information Study (WIS). Water level data may...including all of Tampa Bay. The SWFL Regional CMS Model was driven along the ocean boundary with 6-minute (min) measured water levels from NOAA ...conditions using NOAA measured water levels for subgrids for any time period for which the NOAA National Ocean Survey (NOS) has measurements at

  3. Genetic Drift of HIV Populations in Culture

    PubMed Central

    Voronin, Yegor; Holte, Sarah; Overbaugh, Julie; Emerman, Michael

    2009-01-01

    Populations of Human Immunodeficiency Virus type 1 (HIV-1) undergo a surprisingly large amount of genetic drift in infected patients despite very large population sizes, which are predicted to be mostly deterministic. Several models have been proposed to explain this phenomenon, but all of them implicitly assume that the process of virus replication itself does not contribute to genetic drift. We developed an assay to measure the amount of genetic drift for HIV populations replicating in cell culture. The assay relies on creation of HIV populations of known size and measurements of variation in frequency of a neutral allele. Using this assay, we show that HIV undergoes approximately ten times more genetic drift than would be expected from its population size, which we defined as the number of infected cells in the culture. We showed that a large portion of the increase in genetic drift is due to non-synchronous infection of target cells. When infections are synchronized, genetic drift for the virus is only 3-fold higher than expected from its population size. Thus, the stochastic nature of biological processes involved in viral replication contributes to increased genetic drift in HIV populations. We propose that appreciation of these effects will allow better understanding of the evolutionary forces acting on HIV in infected patients. PMID:19300501

  4. The CMS experiment at the CERN LHC

    NASA Astrophysics Data System (ADS)

    CMS Collaboration; Chatrchyan, S.; Hmayakyan, G.; Khachatryan, V.; Sirunyan, A. M.; Adam, W.; Bauer, T.; Bergauer, T.; Bergauer, H.; Dragicevic, M.; Erö, J.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Glaser, P.; Hartl, C.; Hoermann, N.; Hrubec, J.; Hänsel, S.; Jeitler, M.; Kastner, K.; Krammer, M.; Magrans de Abril, I.; Markytan, M.; Mikulec, I.; Neuherz, B.; Nöbauer, T.; Oberegger, M.; Padrta, M.; Pernicka, M.; Porth, P.; Rohringer, H.; Schmid, S.; Schreiner, T.; Stark, R.; Steininger, H.; Strauss, J.; Taurok, A.; Uhl, D.; Waltenberger, W.; Walzel, G.; Widl, E.; Wulz, C.-E.; Petrov, V.; Prosolovich, V.; Chekhovsky, V.; Dvornikov, O.; Emeliantchik, I.; Litomin, A.; Makarenko, V.; Marfin, I.; Mossolov, V.; Shumeiko, N.; Solin, A.; Stefanovitch, R.; Suarez Gonzalez, J.; Tikhonov, A.; Fedorov, A.; Korzhik, M.; Missevitch, O.; Zuyeuski, R.; Beaumont, W.; Cardaci, M.; DeLanghe, E.; DeWolf, E. A.; Delmeire, E.; Ochesanu, S.; Tasevsky, M.; Van Mechelen, P.; D'Hondt, J.; DeWeirdt, S.; Devroede, O.; Goorens, R.; Hannaert, S.; Heyninck, J.; Maes, J.; Mozer, M. U.; Tavernier, S.; Van Doninck, W.; Van Lancker, L.; Van Mulders, P.; Villella, I.; Wastiels, C.; Yu, C.; Bouhali, O.; Charaf, O.; Clerbaux, B.; DeHarenne, P.; DeLentdecker, G.; Dewulf, J. P.; Elgammal, S.; Gindroz, R.; Hammad, G. H.; Mahmoud, T.; Neukermans, L.; Pins, M.; Pins, R.; Rugovac, S.; Stefanescu, J.; Sundararajan, V.; Vander Velde, C.; Vanlaer, P.; Wickens, J.; Tytgat, M.; Assouak, S.; Bonnet, J. L.; Bruno, G.; Caudron, J.; DeCallatay, B.; DeFavereau DeJeneret, J.; DeVisscher, S.; Demin, P.; Favart, D.; Felix, C.; Florins, B.; Forton, E.; Giammanco, A.; Grégoire, G.; Jonckman, M.; Kcira, D.; Keutgen, T.; Lemaitre, V.; Michotte, D.; Militaru, O.; Ovyn, S.; Pierzchala, T.; Piotrzkowski, K.; Roberfroid, V.; Rouby, X.; Schul, N.; Van der Aa, O.; Beliy, N.; Daubie, E.; Herquet, P.; Alves, G.; Pol, M. E.; Souza, M. H. G.; Vaz, M.; DeJesus Damiao, D.; Oguri, V.; Santoro, A.; Sznajder, A.; DeMoraes Gregores, E.; Iope, R. L.; Novaes, S. F.; Tomei, T.; Anguelov, T.; Antchev, G.; Atanasov, I.; Damgov, J.; Darmenov, N.; Dimitrov, L.; Genchev, V.; Iaydjiev, P.; Marinov, A.; Piperov, S.; Stoykova, S.; Sultanov, G.; Trayanov, R.; Vankov, I.; Cheshkov, C.; Dimitrov, A.; Dyulendarova, M.; Glushkov, I.; Kozhuharov, V.; Litov, L.; Makariev, M.; Marinova, E.; Markov, S.; Mateev, M.; Nasteva, I.; Pavlov, B.; Petev, P.; Petkov, P.; Spassov, V.; Toteva, Z.; Velev, V.; Verguilov, V.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Jiang, C. H.; Liu, B.; Shen, X. Y.; Sun, H. S.; Tao, J.; Wang, J.; Yang, M.; Zhang, Z.; Zhao, W. R.; Zhuang, H. L.; Ban, Y.; Cai, J.; Ge, Y. C.; Liu, S.; Liu, H. T.; Liu, L.; Qian, S. J.; Wang, Q.; Xue, Z. H.; Yang, Z. C.; Ye, Y. L.; Ying, J.; Li, P. J.; Liao, J.; Xue, Z. L.; Yan, D. S.; Yuan, H.; Carrillo Montoya, C. A.; Sanabria, J. C.; Godinovic, N.; Puljak, I.; Soric, I.; Antunovic, Z.; Dzelalija, M.; Marasovic, K.; Brigljevic, V.; Kadija, K.; Morovic, S.; Fereos, R.; Nicolaou, C.; Papadakis, A.; Ptochos, F.; Razis, P. A.; Tsiakkouri, D.; Zinonos, Z.; Hektor, A.; Kadastik, M.; Kannike, K.; Lippmaa, E.; Müntel, M.; Raidal, M.; Rebane, L.; Aarnio, P. A.; Anttila, E.; Banzuzi, K.; Bulteau, P.; Czellar, S.; Eiden, N.; Eklund, C.; Engstrom, P.; Heikkinen, A.; Honkanen, A.; Härkönen, J.; Karimäki, V.; Katajisto, H. M.; Kinnunen, R.; Klem, J.; Kortesmaa, J.; Kotamäki, M.; Kuronen, A.; Lampén, T.; Lassila-Perini, K.; Lefébure, V.; Lehti, S.; Lindén, T.; Luukka, P. R.; Michal, S.; Moura Brigido, F.; Mäenpää, T.; Nyman, T.; Nystén, J.; Pietarinen, E.; Skog, K.; Tammi, K.; Tuominen, E.; Tuominiemi, J.; Ungaro, D.; Vanhala, T. P.; Wendland, L.; Williams, C.; Iskanius, M.; Korpela, A.; Polese, G.; Tuuva, T.; Bassompierre, G.; Bazan, A.; David, P. Y.; Ditta, J.; Drobychev, G.; Fouque, N.; Guillaud, J. P.; Hermel, V.; Karneyeu, A.; LeFlour, T.; Lieunard, S.; Maire, M.; Mendiburu, P.; Nedelec, P.; Peigneux, J. P.; Schneegans, M.; Sillou, D.; Vialle, J. P.; Anfreville, M.; Bard, J. P.; Besson, P.; Bougamont, E.; Boyer, M.; Bredy, P.; Chipaux, R.; Dejardin, M.; Denegri, D.; Descamps, J.; Fabbro, B.; Faure, J. L.; Ganjour, S.; Gentit, F. X.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Jeanney, C.; Kircher, F.; Lemaire, M. C.; Lemoigne, Y.; Levesy, B.; Locci, E.; Lottin, J. P.; Mandjavidze, I.; Mur, M.; Pansart, J. P.; Payn, A.; Rander, J.; Reymond, J. M.; Rolquin, J.; Rondeaux, F.; Rosowsky, A.; Rousse, J. Y. A.; Sun, Z. H.; Tartas, J.; Van Lysebetten, A.; Venault, P.; Verrecchia, P.; Anduze, M.; Badier, J.; Baffioni, S.; Bercher, M.; Bernet, C.; Berthon, U.; Bourotte, J.; Busata, A.; Busson, P.; Cerutti, M.; Chamont, D.; Charlot, C.; Collard, C.; Debraine, A.; Decotigny, D.; Dobrzynski, L.; Ferreira, O.; Geerebaert, Y.; Gilly, J.; Gregory, C.; Guevara Riveros, L.; Haguenauer, M.; Karar, A.; Koblitz, B.; Lecouturier, D.; Mathieu, A.; Milleret, G.; Miné, P.; Paganini, P.; Poilleux, P.; Pukhaeva, N.; Regnault, N.; Romanteau, T.; Semeniouk, I.; Sirois, Y.; Thiebaux, C.; Vanel, J. C.; Zabi, A.; Agram, J. L.; Albert, A.; Anckenmann, L.; Andrea, J.; Anstotz, F.; Bergdolt, A. M.; Berst, J. D.; Blaes, R.; Bloch, D.; Brom, J. M.; Cailleret, J.; Charles, F.; Christophel, E.; Claus, G.; Coffin, J.; Colledani, C.; Croix, J.; Dangelser, E.; Dick, N.; Didierjean, F.; Drouhin, F.; Dulinski, W.; Ernenwein, J. P.; Fang, R.; Fontaine, J. C.; Gaudiot, G.; Geist, W.; Gelé, D.; Goeltzenlichter, T.; Goerlach, U.; Graehling, P.; Gross, L.; Hu, C. Guo; Helleboid, J. M.; Henkes, T.; Hoffer, M.; Hoffmann, C.; Hosselet, J.; Houchu, L.; Hu, Y.; Huss, D.; Illinger, C.; Jeanneau, F.; Juillot, P.; Kachelhoffer, T.; Kapp, M. R.; Kettunen, H.; Lakehal Ayat, L.; LeBihan, A. C.; Lounis, A.; Maazouzi, C.; Mack, V.; Majewski, P.; Mangeol, D.; Michel, J.; Moreau, S.; Olivetto, C.; Pallarès, A.; Patois, Y.; Pralavorio, P.; Racca, C.; Riahi, Y.; Ripp-Baudot, I.; Schmitt, P.; Schunck, J. P.; Schuster, G.; Schwaller, B.; Sigward, M. H.; Sohler, J. L.; Speck, J.; Strub, R.; Todorov, T.; Turchetta, R.; Van Hove, P.; Vintache, D.; Zghiche, A.; Ageron, M.; Augustin, J. E.; Baty, C.; Baulieu, G.; Bedjidian, M.; Blaha, J.; Bonnevaux, A.; Boudoul, G.; Brunet, P.; Chabanat, E.; Chabert, E. C.; Chierici, R.; Chorowicz, V.; Combaret, C.; Contardo, D.; Della Negra, R.; Depasse, P.; Drapier, O.; Dupanloup, M.; Dupasquier, T.; El Mamouni, H.; Estre, N.; Fay, J.; Gascon, S.; Giraud, N.; Girerd, C.; Guillot, G.; Haroutunian, R.; Ille, B.; Lethuillier, M.; Lumb, N.; Martin, C.; Mathez, H.; Maurelli, G.; Muanza, S.; Pangaud, P.; Perries, S.; Ravat, O.; Schibler, E.; Schirra, F.; Smadja, G.; Tissot, S.; Trocme, B.; Vanzetto, S.; Walder, J. P.; Bagaturia, Y.; Mjavia, D.; Mzhavia, A.; Tsamalaidze, Z.; Roinishvili, V.; Adolphi, R.; Anagnostou, G.; Brauer, R.; Braunschweig, W.; Esser, H.; Feld, L.; Karpinski, W.; Khomich, A.; Klein, K.; Kukulies, C.; Lübelsmeyer, K.; Olzem, J.; Ostaptchouk, A.; Pandoulas, D.; Pierschel, G.; Raupach, F.; Schael, S.; Schultz von Dratzig, A.; Schwering, G.; Siedling, R.; Thomas, M.; Weber, M.; Wittmer, B.; Wlochal, M.; Adamczyk, F.; Adolf, A.; Altenhöfer, G.; Bechstein, S.; Bethke, S.; Biallass, P.; Biebel, O.; Bontenackels, M.; Bosseler, K.; Böhm, A.; Erdmann, M.; Faissner, H.; Fehr, B.; Fesefeldt, H.; Fetchenhauer, G.; Frangenheim, J.; Frohn, J. H.; Grooten, J.; Hebbeker, T.; Hermann, S.; Hermens, E.; Hilgers, G.; Hoepfner, K.; Hof, C.; Jacobi, E.; Kappler, S.; Kirsch, M.; Kreuzer, P.; Kupper, R.; Lampe, H. R.; Lanske, D.; Mameghani, R.; Meyer, A.; Meyer, S.; Moers, T.; Müller, E.; Pahlke, R.; Philipps, B.; Rein, D.; Reithler, H.; Reuter, W.; Rütten, P.; Schulz, S.; Schwarthoff, H.; Sobek, W.; Sowa, M.; Stapelberg, T.; Szczesny, H.; Teykal, H.; Teyssier, D.; Tomme, H.; Tomme, W.; Tonutti, M.; Tsigenov, O.; Tutas, J.; Vandenhirtz, J.; Wagner, H.; Wegner, M.; Zeidler, C.; Beissel, F.; Davids, M.; Duda, M.; Flügge, G.; Giffels, M.; Hermanns, T.; Heydhausen, D.; Kalinin, S.; Kasselmann, S.; Kaussen, G.; Kress, T.; Linn, A.; Nowack, A.; Perchalla, L.; Poettgens, M.; Pooth, O.; Sauerland, P.; Stahl, A.; Tornier, D.; Zoeller, M. H.; Behrens, U.; Borras, K.; Flossdorf, A.; Hatton, D.; Hegner, B.; Kasemann, M.; Mankel, R.; Meyer, A.; Mnich, J.; Rosemann, C.; Youngman, C.; Zeuner, W. D.; Bechtel, F.; Buhmann, P.; Butz, E.; Flucke, G.; Hamdorf, R. H.; Holm, U.; Klanner, R.; Pein, U.; Schirm, N.; Schleper, P.; Steinbrück, G.; Van Staa, R.; Wolf, R.; Atz, B.; Barvich, T.; Blüm, P.; Boegelspacher, F.; Bol, H.; Chen, Z. Y.; Chowdhury, S.; DeBoer, W.; Dehm, P.; Dirkes, G.; Fahrer, M.; Felzmann, U.; Frey, M.; Furgeri, A.; Gregoriev, E.; Hartmann, F.; Hauler, F.; Heier, S.; Kärcher, K.; Ledermann, B.; Mueller, S.; Müller, Th; Neuberger, D.; Piasecki, C.; Quast, G.; Rabbertz, K.; Sabellek, A.; Scheurer, A.; Schilling, F. P.; Simonis, H. J.; Skiba, A.; Steck, P.; Theel, A.; Thümmel, W. H.; Trunov, A.; Vest, A.; Weiler, T.; Weiser, C.; Weseler, S.; Zhukov, V.; Barone, M.; Daskalakis, G.; Dimitriou, N.; Fanourakis, G.; Filippidis, C.; Geralis, T.; Kalfas, C.; Karafasoulis, K.; Koimas, A.; Kyriakis, A.; Kyriazopoulou, S.; Loukas, D.; Markou, A.; Markou, C.; Mastroyiannopoulos, N.; Mavrommatis, C.; Mousa, J.; Papadakis, I.; Petrakou, E.; Siotis, I.; Theofilatos, K.; Tzamarias, S.; Vayaki, A.; Vermisoglou, G.; Zachariadou, A.; Gouskos, L.; Karapostoli, G.; Katsas, P.; Panagiotou, A.; Papadimitropoulos, C.; Aslanoglou, X.; Evangelou, I.; Kokkas, P.; Manthos, N.; Papadopoulos, I.; Triantis, F. A.; Bencze, G.; Boldizsar, L.; Debreczeni, G.; Hajdu, C.; Hidas, P.; Horvath, D.; Kovesarki, P.; Laszlo, A.; Odor, G.; Patay, G.; Sikler, F.; Veres, G.; Vesztergombi, G.; Zalan, P.; Fenyvesi, A.; Imrek, J.; Molnar, J.; Novak, D.; Palinkas, J.; Szekely, G.; Beni, N.; Kapusi, A.; Marian, G.; Radics, B.; Raics, P.; Szabo, Z.; Szillasi, Z.; Trocsanyi, Z. L.; Zilizi, G.; Bawa, H. S.; Beri, S. B.; Bhandari, V.; Bhatnagar, V.; Kaur, M.; Kohli, J. M.; Kumar, A.; Singh, B.; Singh, J. B.; Arora, S.; Bhattacharya, S.; Chatterji, S.; Chauhan, S.; Choudhary, B. C.; Gupta, P.; Jha, M.; Ranjan, K.; Shivpuri, R. K.; Srivastava, A. K.; Choudhury, R. K.; Dutta, D.; Ghodgaonkar, M.; Kailas, S.; Kataria, S. K.; Mohanty, A. K.; Pant, L. M.; Shukla, P.; Topkar, A.; Aziz, T.; Banerjee, Sunanda; Bose, S.; Chendvankar, S.; Deshpande, P. V.; Guchait, M.; Gurtu, A.; Maity, M.; Majumder, G.; Mazumdar, K.; Nayak, A.; Patil, M. R.; Sharma, S.; Sudhakar, K.; Acharya, B. S.; Banerjee, Sudeshna; Bheesette, S.; Dugad, S.; Kalmani, S. D.; Lakkireddi, V. R.; Mondal, N. K.; Panyam, N.; Verma, P.; Arfaei, H.; Hashemi, M.; Najafabadi, M. Mohammadi; Moshaii, A.; Paktinat Mehdiabadi, S.; Felcini, M.; Grunewald, M.; Abadjiev, K.; Abbrescia, M.; Barbone, L.; Cariola, P.; Chiumarulo, F.; Clemente, A.; Colaleo, A.; Creanza, D.; DeFilippis, N.; DePalma, M.; DeRobertis, G.; Donvito, G.; Ferorelli, R.; Fiore, L.; Franco, M.; Giordano, D.; Guida, R.; Iaselli, G.; Lacalamita, N.; Loddo, F.; Maggi, G.; Maggi, M.; Manna, N.; Marangelli, B.; Mennea, M. S.; My, S.; Natali, S.; Nuzzo, S.; Papagni, G.; Pinto, C.; Pompili, A.; Pugliese, G.; Ranieri, A.; Romano, F.; Roselli, G.; Sala, G.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Trentadue, R.; Tupputi, S.; Zito, G.; Abbiendi, G.; Bacchi, W.; Battilana, C.; Benvenuti, A. C.; Boldini, M.; Bonacorsi, D.; Braibant-Giacomelli, S.; Cafaro, V. D.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Ciocca, C.; Codispoti, G.; Cuffiani, M.; D'Antone, I.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Finelli, S.; Giacomelli, P.; Giordano, V.; Giunta, M.; Grandi, C.; Guerzoni, M.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Odorici, F.; Paolucci, A.; Pellegrini, G.; Perrotta, A.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Torromeo, G.; Travaglini, R.; Veronese, G. P.; Albergo, S.; Chiorboli, M.; Costa, S.; Galanti, M.; Gatto Rotondo, G.; Giudice, N.; Guardone, N.; Noto, F.; Potenza, R.; Saizu, M. A.; Salemi, G.; Sutera, C.; Tricomi, A.; Tuve, C.; Bellucci, L.; Brianzi, M.; Broccolo, G.; Catacchini, E.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Frosali, S.; Genta, C.; Landi, G.; Lenzi, P.; Macchiolo, A.; Maletta, F.; Manolescu, F.; Marchettini, C.; Masetti, L.; Mersi, S.; Meschini, M.; Minelli, C.; Paoletti, S.; Parrini, G.; Scarlini, E.; Sguazzoni, G.; Benussi, L.; Bertani, M.; Bianco, S.; Caponero, M.; Colonna, D.; Daniello, L.; Fabbri, F.; Felli, F.; Giardoni, M.; La Monaca, A.; Ortenzi, B.; Pallotta, M.; Paolozzi, A.; Paris, C.; Passamonti, L.; Pierluigi, D.; Ponzio, B.; Pucci, C.; Russo, A.; Saviano, G.; Fabbricatore, P.; Farinon, S.; Greco, M.; Musenich, R.; Badoer, S.; Berti, L.; Biasotto, M.; Fantinel, S.; Frizziero, E.; Gastaldi, U.; Gulmini, M.; Lelli, F.; Maron, G.; Squizzato, S.; Toniolo, N.; Traldi, S.; Banfi, S.; Bertoni, R.; Bonesini, M.; Carbone, L.; Cerati, G. B.; Chignoli, F.; D'Angelo, P.; DeMin, A.; Dini, P.; Farina, F. M.; Ferri, F.; Govoni, P.; Magni, S.; Malberti, M.; Malvezzi, S.; Mazza, R.; Menasce, D.; Miccio, V.; Moroni, L.; Negri, P.; Paganoni, M.; Pedrini, D.; Pullia, A.; Ragazzi, S.; Redaelli, N.; Rovere, M.; Sala, L.; Sala, S.; Salerno, R.; Tabarelli de Fatis, T.; Tancini, V.; Taroni, S.; Boiano, A.; Cassese, F.; Cassese, C.; Cimmino, A.; D'Aquino, B.; Lista, L.; Lomidze, D.; Noli, P.; Paolucci, P.; Passeggio, G.; Piccolo, D.; Roscilli, L.; Sciacca, C.; Vanzanella, A.; Azzi, P.; Bacchetta, N.; Barcellan, L.; Bellato, M.; Benettoni, M.; Bisello, D.; Borsato, E.; Candelori, A.; Carlin, R.; Castellani, L.; Checchia, P.; Ciano, L.; Colombo, A.; Conti, E.; Da Rold, M.; Dal Corso, F.; DeGiorgi, M.; DeMattia, M.; Dorigo, T.; Dosselli, U.; Fanin, C.; Galet, G.; Gasparini, F.; Gasparini, U.; Giraldo, A.; Giubilato, P.; Gonella, F.; Gresele, A.; Griggio, A.; Guaita, P.; Kaminskiy, A.; Karaevskii, S.; Khomenkov, V.; Kostylev, D.; Lacaprara, S.; Lazzizzera, I.; Lippi, I.; Loreti, M.; Margoni, M.; Martinelli, R.; Mattiazzo, S.; Mazzucato, M.; Meneguzzo, A. T.; Modenese, L.; Montecassiano, F.; Neviani, A.; Nigro, M.; Paccagnella, A.; Pantano, D.; Parenti, A.; Passaseo, M.; Pedrotta, R.; Pegoraro, M.; Rampazzo, G.; Reznikov, S.; Ronchese, P.; Sancho Daponte, A.; Sartori, P.; Stavitskiy, I.; Tessaro, M.; Torassa, E.; Triossi, A.; Vanini, S.; Ventura, S.; Ventura, L.; Verlato, M.; Zago, M.; Zatti, F.; Zotto, P.; Zumerle, G.; Baesso, P.; Belli, G.; Berzano, U.; Bricola, S.; Grelli, A.; Musitelli, G.; Nardò, R.; Necchi, M. M.; Pagano, D.; Ratti, S. P.; Riccardi, C.; Torre, P.; Vicini, A.; Vitulo, P.; Viviani, C.; Aisa, D.; Aisa, S.; Ambroglini, F.; Angarano, M. M.; Babucci, E.; Benedetti, D.; Biasini, M.; Bilei, G. M.; Bizzaglia, S.; Brunetti, M. T.; Caponeri, B.; Checcucci, B.; Covarelli, R.; Dinu, N.; Fanò, L.; Farnesini, L.; Giorgi, M.; Lariccia, P.; Mantovani, G.; Moscatelli, F.; Passeri, D.; Piluso, A.; Placidi, P.; Postolache, V.; Santinelli, R.; Santocchia, A.; Servoli, L.; Spiga, D.; Azzurri, P.; Bagliesi, G.; Balestri, G.; Basti, A.; Bellazzini, R.; Benucci, L.; Bernardini, J.; Berretta, L.; Bianucci, S.; Boccali, T.; Bocci, A.; Borrello, L.; Bosi, F.; Bracci, F.; Brez, A.; Calzolari, F.; Castaldi, R.; Cazzola, U.; Ceccanti, M.; Cecchi, R.; Cerri, C.; Cucoanes, A. S.; Dell'Orso, R.; Dobur, D.; Dutta, S.; Fiori, F.; Foà, L.; Gaggelli, A.; Gennai, S.; Giassi, A.; Giusti, S.; Kartashov, D.; Kraan, A.; Latronico, L.; Ligabue, F.; Linari, S.; Lomtadze, T.; Lungu, G. A.; Magazzu, G.; Mammini, P.; Mariani, F.; Martinelli, G.; Massa, M.; Messineo, A.; Moggi, A.; Palla, F.; Palmonari, F.; Petragnani, G.; Petrucciani, G.; Profeti, A.; Raffaelli, F.; Rizzi, D.; Sanguinetti, G.; Sarkar, S.; Segneri, G.; Sentenac, D.; Serban, A. T.; Slav, A.; Spagnolo, P.; Spandre, G.; Tenchini, R.; Tolaini, S.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Vos, M.; Zaccarelli, L.; Baccaro, S.; Barone, L.; Bartoloni, A.; Borgia, B.; Capradossi, G.; Cavallari, F.; Cecilia, A.; D'Angelo, D.; Dafinei, I.; DelRe, D.; Di Marco, E.; Diemoz, M.; Ferrara, G.; Gargiulo, C.; Guerra, S.; Iannone, M.; Longo, E.; Montecchi, M.; Nuccetelli, M.; Organtini, G.; Palma, A.; Paramatti, R.; Pellegrino, F.; Rahatlou, S.; Rovelli, C.; Safai Tehrani, F.; Zullo, A.; Alampi, G.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bellan, R.; Benotto, F.; Biino, C.; Bolognesi, S.; Borgia, M. A.; Botta, C.; Brasolin, A.; Cartiglia, N.; Castello, R.; Cerminara, G.; Cirio, R.; Cordero, M.; Costa, M.; Dattola, D.; Daudo, F.; Dellacasa, G.; Demaria, N.; Dughera, G.; Dumitrache, F.; Farano, R.; Ferrero, G.; Filoni, E.; Kostyleva, G.; Larsen, H. E.; Mariotti, C.; Marone, M.; Maselli, S.; Menichetti, E.; Mereu, P.; Migliore, E.; Mila, G.; Monaco, V.; Musich, M.; Nervo, M.; Obertino, M. M.; Panero, R.; Parussa, A.; Pastrone, N.; Peroni, C.; Petrillo, G.; Romero, A.; Ruspa, M.; Sacchi, R.; Scalise, M.; Solano, A.; Staiano, A.; Trapani, P. P.; Trocino, D.; Vaniev, V.; Vilela Pereira, A.; Zampieri, A.; Belforte, S.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; Kavka, C.; Penzo, A.; Kim, Y. E.; Nam, S. K.; Kim, D. H.; Kim, G. N.; Kim, J. C.; Kong, D. J.; Ro, S. R.; Son, D. C.; Park, S. Y.; Kim, Y. J.; Kim, J. Y.; Lim, I. T.; Pac, M. Y.; Lee, S. J.; Jung, S. Y.; Rhee, J. T.; Ahn, S. H.; Hong, B. S.; Jeng, Y. K.; Kang, M. H.; Kim, H. C.; Kim, J. H.; Kim, T. J.; Lee, K. S.; Lim, J. K.; Moon, D. H.; Park, I. C.; Park, S. K.; Ryu, M. S.; Sim, K.-S.; Son, K. J.; Hong, S. J.; Choi, Y. I.; Castilla Valdez, H.; Sanchez Hernandez, A.; Carrillo Moreno, S.; Morelos Pineda, A.; Aerts, A.; Van der Stok, P.; Weffers, H.; Allfrey, P.; Gray, R. N. C.; Hashimoto, M.; Krofcheck, D.; Bell, A. J.; Bernardino Rodrigues, N.; Butler, P. H.; Churchwell, S.; Knegjens, R.; Whitehead, S.; Williams, J. C.; Aftab, Z.; Ahmad, U.; Ahmed, I.; Ahmed, W.; Asghar, M. I.; Asghar, S.; Dad, G.; Hafeez, M.; Hoorani, H. R.; Hussain, I.; Hussain, N.; Iftikhar, M.; Khan, M. S.; Mehmood, K.; Osman, A.; Shahzad, H.; Zafar, A. R.; Ali, A.; Bashir, A.; Jan, A. M.; Kamal, A.; Khan, F.; Saeed, M.; Tanwir, S.; Zafar, M. A.; Blocki, J.; Cyz, A.; Gladysz-Dziadus, E.; Mikocki, S.; Rybczynski, M.; Turnau, J.; Wlodarczyk, Z.; Zychowski, P.; Bunkowski, K.; Cwiok, M.; Czyrkowski, H.; Dabrowski, R.; Dominik, W.; Doroba, K.; Kalinowski, A.; Kierzkowski, K.; Konecki, M.; Krolikowski, J.; Kudla, I. M.; Pietrusinski, M.; Pozniak, K.; Zabolotny, W.; Zych, P.; Gokieli, R.; Goscilo, L.; Górski, M.; Nawrocki, K.; Traczyk, P.; Wrochna, G.; Zalewski, P.; Pozniak, K. T.; Romaniuk, R.; Zabolotny, W. M.; Alemany-Fernandez, R.; Almeida, C.; Almeida, N.; Araujo Vila Verde, A. S.; Barata Monteiro, T.; Bluj, M.; Da Mota Silva, S.; Tinoco Mendes, A. David; Freitas Ferreira, M.; Gallinaro, M.; Husejko, M.; Jain, A.; Kazana, M.; Musella, P.; Nobrega, R.; Rasteiro Da Silva, J.; Ribeiro, P. Q.; Santos, M.; Silva, P.; Silva, S.; Teixeira, I.; Teixeira, J. P.; Varela, J.; Varner, G.; Vaz Cardoso, N.; Altsybeev, I.; Babich, K.; Belkov, A.; Belotelov, I.; Bunin, P.; Chesnevskaya, S.; Elsha, V.; Ershov, Y.; Filozova, I.; Finger, M.; Finger, M., Jr.; Golunov, A.; Golutvin, I.; Gorbounov, N.; Gramenitski, I.; Kalagin, V.; Kamenev, A.; Karjavin, V.; Khabarov, S.; Khabarov, V.; Kiryushin, Y.; Konoplyanikov, V.; Korenkov, V.; Kozlov, G.; Kurenkov, A.; Lanev, A.; Lysiakov, V.; Malakhov, A.; Melnitchenko, I.; Mitsyn, V. V.; Moisenz, K.; Moisenz, P.; Movchan, S.; Nikonov, E.; Oleynik, D.; Palichik, V.; Perelygin, V.; Petrosyan, A.; Rogalev, E.; Samsonov, V.; Savina, M.; Semenov, R.; Sergeev, S.; Shmatov, S.; Shulha, S.; Smirnov, V.; Smolin, D.; Tcheremoukhine, A.; Teryaev, O.; Tikhonenko, E.; Urkinbaev, A.; Vasil'ev, S.; Vishnevskiy, A.; Volodko, A.; Zamiatin, N.; Zarubin, A.; Zarubin, P.; Zubarev, E.; Bondar, N.; Gavrikov, Y.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Kozlov, V.; Lebedev, V.; Makarenkov, G.; Moroz, F.; Neustroev, P.; Obrant, G.; Orishchin, E.; Petrunin, A.; Shcheglov, Y.; Shchetkovskiy, A.; Sknar, V.; Skorobogatov, V.; Smirnov, I.; Sulimov, V.; Tarakanov, V.; Uvarov, L.; Vavilov, S.; Velichko, G.; Volkov, S.; Vorobyev, A.; Chmelev, D.; Druzhkin, D.; Ivanov, A.; Kudinov, V.; Logatchev, O.; Onishchenko, S.; Orlov, A.; Sakharov, V.; Smetannikov, V.; Tikhomirov, A.; Zavodthikov, S.; Andreev, Yu; Anisimov, A.; Duk, V.; Gninenko, S.; Golubev, N.; Gorbunov, D.; Kirsanov, M.; Krasnikov, N.; Matveev, V.; Pashenkov, A.; Pastsyak, A.; Postoev, V. E.; Sadovski, A.; Skassyrskaia, A.; Solovey, Alexander; Solovey, Anatoly; Soloviev, D.; Toropin, A.; Troitsky, S.; Alekhin, A.; Baldov, A.; Epshteyn, V.; Gavrilov, V.; Ilina, N.; Kaftanov, V.; Karpishin, V.; Kiselevich, I.; Kolosov, V.; Kossov, M.; Krokhotin, A.; Kuleshov, S.; Oulianov, A.; Pozdnyakov, A.; Safronov, G.; Semenov, S.; Stepanov, N.; Stolin, V.; Vlasov, E.; Zaytsev, V.; Boos, E.; Dubinin, M.; Dudko, L.; Ershov, A.; Eyyubova, G.; Gribushin, A.; Ilyin, V.; Klyukhin, V.; Kodolova, O.; Kruglov, N. A.; Kryukov, A.; Lokhtin, I.; Malinina, L.; Mikhaylin, V.; Petrushanko, S.; Sarycheva, L.; Savrin, V.; Shamardin, L.; Sherstnev, A.; Snigirev, A.; Teplov, K.; Vardanyan, I.; Fomenko, A. M.; Konovalova, N.; Kozlov, V.; Lebedev, A. I.; Lvova, N.; Rusakov, S. V.; Terkulov, A.; Abramov, V.; Akimenko, S.; Artamonov, A.; Ashimova, A.; Azhgirey, I.; Bitioukov, S.; Chikilev, O.; Datsko, K.; Filine, A.; Godizov, A.; Goncharov, P.; Grishin, V.; Inyakin, A.; Kachanov, V.; Kalinin, A.; Khmelnikov, A.; Konstantinov, D.; Korablev, A.; Krychkine, V.; Krinitsyn, A.; Levine, A.; Lobov, I.; Lukanin, V.; Mel'nik, Y.; Molchanov, V.; Petrov, V.; Petukhov, V.; Pikalov, V.; Ryazanov, A.; Ryutin, R.; Shelikhov, V.; Skvortsov, V.; Slabospitsky, S.; Sobol, A.; Sytine, A.; Talov, V.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Zelepoukine, S.; Lukyanov, V.; Mamaeva, G.; Prilutskaya, Z.; Rumyantsev, I.; Sokha, S.; Tataurschikov, S.; Vasilyev, I.; Adzic, P.; Anicin, I.; Djordjevic, M.; Jovanovic, D.; Maletic, D.; Puzovic, J.; Smiljkovic, N.; Aguayo Navarrete, E.; Aguilar-Benitez, M.; Ahijado Munoz, J.; Alarcon Vega, J. M.; Alberdi, J.; Alcaraz Maestre, J.; Aldaya Martin, M.; Arce, P.; Barcala, J. M.; Berdugo, J.; Blanco Ramos, C. L.; Burgos Lazaro, C.; Caballero Bejar, J.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Chercoles Catalán, J. J.; Colino, N.; Daniel, M.; DeLa Cruz, B.; Delgado Peris, A.; Fernandez Bedoya, C.; Ferrando, A.; Fouz, M. C.; Francia Ferrero, D.; Garcia Romero, J.; Garcia-Abia, P.; Gonzalez Lopez, O.; Hernandez, J. M.; Josa, M. I.; Marin, J.; Merino, G.; Molinero, A.; Navarrete, J. J.; Oller, J. C.; Puerta Pelayo, J.; Puras Sanchez, J. C.; Ramirez, J.; Romero, L.; Villanueva Munoz, C.; Willmott, C.; Yuste, C.; Albajar, C.; de Trocóniz, J. F.; Jimenez, I.; Macias, R.; Teixeira, R. F.; Cuevas, J.; Fernández Menéndez, J.; Gonzalez Caballero, I.; Lopez-Garcia, J.; Naves Sordo, H.; Vizan Garcia, J. M.; Cabrillo, I. J.; Calderon, A.; Cano Fernandez, D.; Diaz Merino, I.; Duarte Campderros, J.; Fernandez, M.; Fernandez Menendez, J.; Figueroa, C.; Garcia Moral, L. A.; Gomez, G.; Gomez Casademunt, F.; Gonzalez Sanchez, J.; Gonzalez Suarez, R.; Jorda, C.; Lobelle Pardo, P.; Lopez Garcia, A.; Lopez Virto, A.; Marco, J.; Marco, R.; Martinez Rivero, C.; Martinez Ruiz del Arbol, P.; Matorras, F.; Orviz Fernandez, P.; Patino Revuelta, A.; Rodrigo, T.; Rodriguez Gonzalez, D.; Ruiz Jimeno, A.; Scodellaro, L.; Sobron Sanudo, M.; Vila, I.; Vilar Cortabitarte, R.; Barbero, M.; Goldin, D.; Henrich, B.; Tauscher, L.; Vlachos, S.; Wadhwa, M.; Abbaneo, D.; Abbas, S. M.; Ahmed, I.; Akhtar, S.; Akhtar, M. I.; Albert, E.; Alidra, M.; Ashby, S.; Aspell, P.; Auffray, E.; Baillon, P.; Ball, A.; Bally, S. L.; Bangert, N.; Barillère, R.; Barney, D.; Beauceron, S.; Beaudette, F.; Benelli, G.; Benetta, R.; Benichou, J. L.; Bialas, W.; Bjorkebo, A.; Blechschmidt, D.; Bloch, C.; Bloch, P.; Bonacini, S.; Bos, J.; Bosteels, M.; Boyer, V.; Branson, A.; Breuker, H.; Bruneliere, R.; Buchmuller, O.; Campi, D.; Camporesi, T.; Caner, A.; Cano, E.; Carrone, E.; Cattai, A.; Chatelain, J. P.; Chauvey, M.; Christiansen, T.; Ciganek, M.; Cittolin, S.; Cogan, J.; Conde Garcia, A.; Cornet, H.; Corrin, E.; Corvo, M.; Cucciarelli, S.; Curé, B.; D'Enterria, D.; DeRoeck, A.; de Visser, T.; Delaere, C.; Delattre, M.; Deldicque, C.; Delikaris, D.; Deyrail, D.; Di Vincenzo, S.; Domeniconi, A.; Dos Santos, S.; Duthion, G.; Edera, L. M.; Elliott-Peisert, A.; Eppard, M.; Fanzago, F.; Favre, M.; Foeth, H.; Folch, R.; Frank, N.; Fratianni, S.; Freire, M. A.; Frey, A.; Fucci, A.; Funk, W.; Gaddi, A.; Gagliardi, F.; Gastal, M.; Gateau, M.; Gayde, J. C.; Gerwig, H.; Ghezzi, A.; Gigi, D.; Gill, K.; Giolo-Nicollerat, A. S.; Girod, J. P.; Glege, F.; Glessing, W.; Gomez-Reino Garrido, R.; Goudard, R.; Grabit, R.; Grillet, J. P.; Gutierrez Llamas, P.; Gutierrez Mlot, E.; Gutleber, J.; Hall-wilton, R.; Hammarstrom, R.; Hansen, M.; Harvey, J.; Hervé, A.; Hill, J.; Hoffmann, H. F.; Holzner, A.; Honma, A.; Hufnagel, D.; Huhtinen, M.; Ilie, S. D.; Innocente, V.; Jank, W.; Janot, P.; Jarron, P.; Jeanrenaud, M.; Jouvel, P.; Kerkach, R.; Kloukinas, K.; Kottelat, L. J.; Labbé, J. C.; Lacroix, D.; Lagrue, X.; Lasseur, C.; Laure, E.; Laurens, J. F.; Lazeyras, P.; LeGoff, J. M.; Lebeau, M.; Lecoq, P.; Lemeilleur, F.; Lenzi, M.; Leonardo, N.; Leonidopoulos, C.; Letheren, M.; Liendl, M.; Limia-Conde, F.; Linssen, L.; Ljuslin, C.; Lofstedt, B.; Loos, R.; Lopez Perez, J. A.; Lourenco, C.; Lyonnet, A.; Machard, A.; Mackenzie, R.; Magini, N.; Maire, G.; Malgeri, L.; Malina, R.; Mannelli, M.; Marchioro, A.; Martin, J.; Meijers, F.; Meridiani, P.; Meschi, E.; Meyer, T.; Meynet Cordonnier, A.; Michaud, J. F.; Mirabito, L.; Moser, R.; Mossiere, F.; Muffat-Joly, J.; Mulders, M.; Mulon, J.; Murer, E.; Mättig, P.; Oh, A.; Onnela, A.; Oriunno, M.; Orsini, L.; Osborne, J. A.; Paillard, C.; Pal, I.; Papotti, G.; Passardi, G.; Patino-Revuelta, A.; Patras, V.; Perea Solano, B.; Perez, E.; Perinic, G.; Pernot, J. F.; Petagna, P.; Petiot, P.; Petit, P.; Petrilli, A.; Pfeiffer, A.; Piccut, C.; Pimiä, M.; Pintus, R.; Pioppi, M.; Placci, A.; Pollet, L.; Postema, H.; Price, M. J.; Principe, R.; Racz, A.; Radermacher, E.; Ranieri, R.; Raymond, G.; Rebecchi, P.; Rehn, J.; Reynaud, S.; Rezvani Naraghi, H.; Ricci, D.; Ridel, M.; Risoldi, M.; Rodrigues Simoes Moreira, P.; Rohlev, A.; Roiron, G.; Rolandi, G.; Rumerio, P.; Runolfsson, O.; Ryjov, V.; Sakulin, H.; Samyn, D.; Santos Amaral, L. C.; Sauce, H.; Sbrissa, E.; Scharff-Hansen, P.; Schieferdecker, P.; Schlatter, W. D.; Schmitt, B.; Schmuecker, H. G.; Schröder, M.; Schwick, C.; Schäfer, C.; Segoni, I.; Sempere Roldán, P.; Sgobba, S.; Sharma, A.; Siegrist, P.; Sigaud, C.; Sinanis, N.; Sobrier, T.; Sphicas, P.; Spiropulu, M.; Stefanini, G.; Strandlie, A.; Szoncsó, F.; Taylor, B. G.; Teller, O.; Thea, A.; Tournefier, E.; Treille, D.; Tropea, P.; Troska, J.; Tsesmelis, E.; Tsirou, A.; Valls, J.; Van Vulpen, I.; Vander Donckt, M.; Vasey, F.; Vazquez Acosta, M.; Veillet, L.; Vichoudis, P.; Waurick, G.; Wellisch, J. P.; Wertelaers, P.; Wilhelmsson, M.; Willers, I. M.; Winkler, M.; Zanetti, M.; Bertl, W.; Deiters, K.; Dick, P.; Erdmann, W.; Feichtinger, D.; Gabathuler, K.; Hochman, Z.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; König, S.; Poerschke, P.; Renker, D.; Rohe, T.; Sakhelashvili, T.; Starodumov, A.; Aleksandrov, V.; Behner, F.; Beniozef, I.; Betev, B.; Blau, B.; Brett, A. M.; Caminada, L.; Chen, Z.; Chivarov, N.; Da Silva Di Calafiori, D.; Dambach, S.; Davatz, G.; Delachenal, V.; Della Marina, R.; Dimov, H.; Dissertori, G.; Dittmar, M.; Djambazov, L.; Dröge, M.; Eggel, C.; Ehlers, J.; Eichler, R.; Elmiger, M.; Faber, G.; Freudenreich, K.; Fuchs, J. F.; Georgiev, G. M.; Grab, C.; Haller, C.; Herrmann, J.; Hilgers, M.; Hintz, W.; Hofer, Hans; Hofer, Heinz; Horisberger, U.; Horvath, I.; Hristov, A.; Humbertclaude, C.; Iliev, B.; Kastli, W.; Kruse, A.; Kuipers, J.; Langenegger, U.; Lecomte, P.; Lejeune, E.; Leshev, G.; Lesmond, C.; List, B.; Luckey, P. D.; Lustermann, W.; Maillefaud, J. D.; Marchica, C.; Maurisset, A.; Meier, B.; Milenovic, P.; Milesi, M.; Moortgat, F.; Nanov, I.; Nardulli, A.; Nessi-Tedaldi, F.; Panev, B.; Pape, L.; Pauss, F.; Petrov, E.; Petrov, G.; Peynekov, M. M.; Pitzl, D.; Punz, T.; Riboni, P.; Riedlberger, J.; Rizzi, A.; Ronga, F. J.; Roykov, P. A.; Röser, U.; Schinzel, D.; Schöning, A.; Sourkov, A.; Stanishev, K.; Stoenchev, S.; Stöckli, F.; Suter, H.; Trüb, P.; Udriot, S.; Uzunova, D. G.; Veltchev, I.; Viertel, G.; von Gunten, H. P.; Waldmeier-Wicki, S.; Weber, R.; Weber, M.; Weng, J.; Wensveen, M.; Wittgenstein, F.; Zagoursky, K.; Alagoz, E.; Amsler, C.; Chiochia, V.; Hoermann, C.; Regenfus, C.; Robmann, P.; Rommerskirchen, T.; Schmidt, A.; Steiner, S.; Tsirigkas, D.; Wilke, L.; Blyth, S.; Chang, Y. H.; Chen, E. A.; Go, A.; Hung, C. C.; Kuo, C. M.; Li, S. W.; Lin, W.; Chang, P.; Chao, Y.; Chen, K. F.; Gao, Z.; Hou, G. W. S.; Hsiung, Y. B.; Lei, Y. J.; Lin, S. W.; Lu, R. S.; Shiu, J. G.; Tzeng, Y. M.; Ueno, K.; Velikzhanin, Y.; Wang, C. C.; Wang, M.-Z.; Aydin, S.; Azman, A.; Bakirci, M. N.; Basegmez, S.; Cerci, S.; Dumanoglu, I.; Erturk, S.; Eskut, E.; Kayis Topaksu, A.; Kisoglu, H.; Kurt, P.; Ozdemir, K.; Ozdes Koca, N.; Ozkurt, H.; Ozturk, S.; Polatöz, A.; Sogut, K.; Topakli, H.; Vergili, M.; Önengüt, G.; Gamsizkan, H.; Sekmen, S.; Serin-Zeyrek, M.; Sever, R.; Zeyrek, M.; Deliomeroglu, M.; Gülmez, E.; Isiksal, E.; Kaya, M.; Kaya, O.; Ozkorucuklu, S.; Sonmez, N.; Grinev, B.; Lyubynskiy, V.; Senchyshyn, V.; Levchuk, L.; Lukyanenko, S.; Soroka, D.; Sorokin, P.; Zub, S.; Anjum, A.; Baker, N.; Hauer, T.; McClatchey, R.; Odeh, M.; Rogulin, D.; Solomonides, A.; Brooke, J. J.; Croft, R.; Cussans, D.; Evans, D.; Frazier, R.; Grant, N.; Hansen, M.; Head, R. D.; Heath, G. P.; Heath, H. F.; Hill, C.; Huckvale, B.; Jackson, J.; Lynch, C.; Mackay, C. K.; Metson, S.; Nash, S. J.; Newbold, D. M.; Presland, A. D.; Probert, M. G.; Reid, E. C.; Smith, V. J.; Tapper, R. J.; Walton, R.; Bateman, E.; Bell, K. W.; Brown, R. M.; Camanzi, B.; Church, I. T.; Cockerill, D. J. A.; Cole, J. E.; Connolly, J. F.; Coughlan, J. A.; Flower, P. S.; Ford, P.; Francis, V. B.; French, M. J.; Galagedera, S. B.; Gannon, W.; Gay, A. P. R.; Geddes, N. I.; Greenhalgh, R. J. S.; Halsall, R. N. J.; Haynes, W. J.; Hill, J. A.; Jacob, F. R.; Jeffreys, P. W.; Jones, L. L.; Kennedy, B. W.; Lintern, A. L.; Lodge, A. B.; Maddox, A. J.; Morrissey, Q. R.; Murray, P.; Patrick, G. N.; Pattison, C. A. X.; Pearson, M. R.; Quinton, S. P. H.; Rogers, G. J.; Salisbury, J. G.; Shah, A. A.; Shepherd-Themistocleous, C. H.; Smith, B. J.; Sproston, M.; Stephenson, R.; Taghavi, S.; Tomalin, I. R.; Torbet, M. J.; Williams, J. H.; Womersley, W. J.; Worm, S. D.; Xing, F.; Apollonio, M.; Arteche, F.; Bainbridge, R.; Barber, G.; Barrillon, P.; Batten, J.; Beuselinck, R.; Brambilla Hall, P. M.; Britton, D.; Cameron, W.; Clark, D. E.; Clark, I. W.; Colling, D.; Cripps, N.; Davies, G.; Della Negra, M.; Dewhirst, G.; Dris, S.; Foudas, C.; Fulcher, J.; Futyan, D.; Graham, D. J.; Greder, S.; Greenwood, S.; Hall, G.; Hassard, J. F.; Hays, J.; Iles, G.; Kasey, V.; Khaleeq, M.; Leaver, J.; Lewis, P.; MacEvoy, B. C.; Maroney, O.; McLeod, E. M.; Miller, D. G.; Nash, J.; Nikitenko, A.; Noah Messomo, E.; Noy, M.; Papageorgiou, A.; Pesaresi, M.; Petridis, K.; Price, D. R.; Qu, X.; Raymond, D. M.; Rose, A.; Rutherford, S.; Ryan, M. J.; Sciacca, F.; Seez, C.; Sharp, P.; Sidiropoulos, G.; Stettler, M.; Stoye, M.; Striebig, J.; Takahashi, M.; Tallini, H.; Tapper, A.; Timlin, C.; Toudup, L.; Virdee, T.; Wakefield, S.; Walsham, P.; Wardrope, D.; Wingham, M.; Zhang, Y.; Zorba, O.; Da Via, C.; Goitom, I.; Hobson, P. R.; Imrie, D. C.; Reid, I.; Selby, C.; Sharif, O.; Teodorescu, L.; Watts, S. J.; Yaselli, I.; Hazen, E.; Heering, A.; Heister, A.; Lawlor, C.; Lazic, D.; Machado, E.; Rohlf, J.; Sulak, L.; Varela Rodriguez, F.; Wu, S. X.; Avetisyan, A.; Bose, T.; Christofek, L.; Cutts, D.; Esen, S.; Hooper, R.; Landsberg, G.; Narain, M.; Nguyen, D.; Speer, T.; Tsang, K. V.; Breedon, R.; Case, M.; Chertok, M.; Conway, J.; Cox, P. T.; Dolen, J.; Erbacher, R.; Fisyak, Y.; Friis, E.; Grim, G.; Holbrook, B.; Ko, W.; Kopecky, A.; Lander, R.; Lin, F. C.; Lister, A.; Maruyama, S.; Pellett, D.; Rowe, J.; Searle, M.; Smith, J.; Soha, A.; Squires, M.; Tripathi, M.; Vasquez Sierra, R.; Veelken, C.; Andreev, V.; Arisaka, K.; Bonushkin, Y.; Chandramouly, S.; Cline, D.; Cousins, R.; Erhan, S.; Hauser, J.; Ignatenko, M.; Jarvis, C.; Lisowski, B.; Matthey, C.; Mohr, B.; Mumford, J.; Otwinowski, S.; Pischalnikov, Y.; Rakness, G.; Schlein, P.; Shi, Y.; Tannenbaum, B.; Tucker, J.; Valuev, V.; Wallny, R.; Wang, H. G.; Yang, X.; Zheng, Y.; Andreeva, J.; Babb, J.; Campana, S.; Chrisman, D.; Clare, R.; Ellison, J.; Fortin, D.; Gary, J. W.; Gorn, W.; Hanson, G.; Jeng, G. Y.; Kao, S. C.; Layter, J. G.; Liu, F.; Liu, H.; Luthra, A.; Pasztor, G.; Rick, H.; Satpathy, A.; Shen, B. C.; Stringer, R.; Sytnik, V.; Tran, P.; Villa, S.; Wilken, R.; Wimpenny, S.; Zer-Zion, D.; Branson, J. G.; Coarasa Perez, J. A.; Dusinberre, E.; Kelley, R.; Lebourgeois, M.; Letts, J.; Lipeles, E.; Mangano, B.; Martin, T.; Mojaver, M.; Muelmenstaedt, J.; Norman, M.; Paar, H. P.; Petrucci, A.; Pi, H.; Pieri, M.; Rana, A.; Sani, M.; Sharma, V.; Simon, S.; White, A.; Würthwein, F.; Yagil, A.; Affolder, A.; Allen, A.; Campagnari, C.; D'Alfonso, M.; Dierlamm, A.; Garberson, J.; Hale, D.; Incandela, J.; Kalavase, P.; Koay, S. A.; Kovalskyi, D.; Krutelyov, V.; Kyre, S.; Lamb, J.; Lowette, S.; Nikolic, M.; Pavlunin, V.; Rebassoo, F.; Ribnik, J.; Richman, J.; Rossin, R.; Shah, Y. S.; Stuart, D.; Swain, S.; Vlimant, J. R.; White, D.; Witherell, M.; Bornheim, A.; Bunn, J.; Chen, J.; Denis, G.; Galvez, P.; Gataullin, M.; Legrand, I.; Litvine, V.; Ma, Y.; Mao, R.; Nae, D.; Narsky, I.; Newman, H. B.; Orimoto, T.; Rogan, C.; Shevchenko, S.; Steenberg, C.; Su, X.; Thomas, M.; Timciuc, V.; van Lingen, F.; Veverka, J.; Voicu, B. R.; Weinstein, A.; Wilkinson, R.; Xia, Y.; Yang, Y.; Zhang, L. Y.; Zhu, K.; Zhu, R. Y.; Ferguson, T.; Jang, D. W.; Jun, S. Y.; Paulini, M.; Russ, J.; Terentyev, N.; Vogel, H.; Vorobiev, I.; Bunce, M.; Cumalat, J. P.; Dinardo, M. E.; Drell, B. R.; Ford, W. T.; Givens, K.; Heyburn, B.; Johnson, D.; Nauenberg, U.; Stenson, K.; Wagner, S. R.; Agostino, L.; Alexander, J.; Blekman, F.; Cassel, D.; Das, S.; Duboscq, J. E.; Gibbons, L. K.; Heltsley, B.; Jones, C. D.; Kuznetsov, V.; Patterson, J. R.; Riley, D.; Ryd, A.; Stroiney, S.; Sun, W.; Thom, J.; Vaughan, J.; Wittich, P.; Beetz, C. P.; Cirino, G.; Podrasky, V.; Sanzeni, C.; Winn, D.; Abdullin, S.; Afaq, M. A.; Albrow, M.; Amundson, J.; Apollinari, G.; Atac, M.; Badgett, W.; Bakken, J. A.; Baldin, B.; Banicz, K.; Bauerdick, L. A. T.; Baumbaugh, A.; Berryhill, J.; Bhat, P. C.; Binkley, M.; Bloch, I.; Borcherding, F.; Boubekeur, A.; Bowden, M.; Burkett, K.; Butler, J. N.; Cheung, H. W. K.; Chevenier, G.; Chlebana, F.; Churin, I.; Cihangir, S.; Dagenhart, W.; Demarteau, M.; Dykstra, D.; Eartly, D. P.; Elias, J. E.; Elvira, V. D.; Evans, D.; Fisk, I.; Freeman, J.; Gaines, I.; Gartung, P.; Geurts, F. J. M.; Giacchetti, L.; Glenzinski, D. A.; Gottschalk, E.; Grassi, T.; Green, D.; Grimm, C.; Guo, Y.; Gutsche, O.; Hahn, A.; Hanlon, J.; Harris, R. M.; Hesselroth, T.; Holm, S.; Holzman, B.; James, E.; Jensen, H.; Johnson, M.; Joshi, U.; Klima, B.; Kossiakov, S.; Kousouris, K.; Kowalkowski, J.; Kramer, T.; Kwan, S.; Lei, C. M.; Leininger, M.; Los, S.; Lueking, L.; Lukhanin, G.; Lusin, S.; Maeshima, K.; Marraffino, J. M.; Mason, D.; McBride, P.; Miao, T.; Moccia, S.; Mokhov, N.; Mrenna, S.; Murray, S. J.; Newman-Holmes, C.; Noeding, C.; O'Dell, V.; Paterno, M.; Petravick, D.; Pordes, R.; Prokofyev, O.; Ratnikova, N.; Ronzhin, A.; Sekhri, V.; Sexton-Kennedy, E.; Sfiligoi, I.; Shaw, T. M.; Skup, E.; Smith, R. P.; Spalding, W. J.; Spiegel, L.; Stavrianakou, M.; Stiehr, G.; Stone, A. L.; Suzuki, I.; Tan, P.; Tanenbaum, W.; Temple, L. E.; Tkaczyk, S.; Uplegger, L.; Vaandering, E. W.; Vidal, R.; Wands, R.; Wenzel, H.; Whitmore, J.; Wicklund, E.; Wu, W. M.; Wu, Y.; Yarba, J.; Yarba, V.; Yumiceva, F.; Yun, J. C.; Zimmerman, T.; Acosta, D.; Avery, P.; Barashko, V.; Bartalini, P.; Bourilkov, D.; Cavanaugh, R.; Dolinsky, S.; Drozdetskiy, A.; Field, R. D.; Fu, Y.; Furic, I. K.; Gorn, L.; Holmes, D.; Kim, B. J.; Klimenko, S.; Konigsberg, J.; Korytov, A.; Kotov, K.; Levchenko, P.; Madorsky, A.; Matchev, K.; Mitselmakher, G.; Pakhotin, Y.; Prescott, C.; Ramond, L.; Ramond, P.; Schmitt, M.; Scurlock, B.; Stasko, J.; Stoeck, H.; Wang, D.; Yelton, J.; Gaultney, V.; Kramer, L.; Lebolo, L. M.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.; Adams, T.; Askew, A.; Atramentov, O.; Bertoldi, M.; Dharmaratna, W. G. D.; Gershtein, Y.; Gleyzer, S. V.; Hagopian, S.; Hagopian, V.; Jenkins, C. J.; Johnson, K. F.; Prosper, H.; Simek, D.; Thomaston, J.; Baarmand, M.; Baksay, L.; Guragain, S.; Hohlmann, M.; Mermerkaya, H.; Ralich, R.; Vodopiyanov, I.; Adams, M. R.; Anghel, I. M.; Apanasevich, L.; Barannikova, O.; Bazterra, V. E.; Betts, R. R.; Dragoiu, C.; Garcia-Solis, E. J.; Gerber, C. E.; Hofman, D. J.; Hollis, R.; Iordanova, A.; Khalatian, S.; Mironov, C.; Shabalina, E.; Smoron, A.; Varelas, N.; Akgun, U.; Albayrak, E. A.; Ayan, A. S.; Briggs, R.; Cankocak, K.; Clarida, W.; Cooper, A.; Debbins, P.; Duru, F.; Fountain, M.; McCliment, E.; Merlo, J. P.; Mestvirishvili, A.; Miller, M. J.; Moeller, A.; Newsom, C. R.; Norbeck, E.; Olson, J.; Onel, Y.; Perera, L.; Schmidt, I.; Wang, S.; Yetkin, T.; Anderson, E. W.; Chakir, H.; Hauptman, J. M.; Lamsa, J.; Barnett, B. A.; Blumenfeld, B.; Chien, C. Y.; Giurgiu, G.; Gritsan, A.; Kim, D. W.; Lae, C. K.; Maksimovic, P.; Swartz, M.; Tran, N.; Baringer, P.; Bean, A.; Chen, J.; Coppage, D.; Grachov, O.; Murray, M.; Radicci, V.; Wood, J. S.; Zhukova, V.; Bandurin, D.; Bolton, T.; Kaadze, K.; Kahl, W. E.; Maravin, Y.; Onoprienko, D.; Sidwell, R.; Wan, Z.; Dahmes, B.; Gronberg, J.; Hollar, J.; Lange, D.; Wright, D.; Wuest, C. R.; Baden, D.; Bard, R.; Eno, S. C.; Ferencek, D.; Hadley, N. J.; Kellogg, R. G.; Kirn, M.; Kunori, S.; Lockner, E.; Ratnikov, F.; Santanastasio, F.; Skuja, A.; Toole, T.; Wang, L.; Wetstein, M.; Alver, B.; Ballintijn, M.; Bauer, G.; Busza, W.; Gomez Ceballos, G.; Hahn, K. A.; Harris, P.; Klute, M.; Kravchenko, I.; Li, W.; Loizides, C.; Ma, T.; Nahn, S.; Paus, C.; Pavlon, S.; Piedra Gomez, J.; Roland, C.; Roland, G.; Rudolph, M.; Stephans, G.; Sumorok, K.; Vaurynovich, S.; Wenger, E. A.; Wyslouch, B.; Bailleux, D.; Cooper, S.; Cushman, P.; DeBenedetti, A.; Dolgopolov, A.; Dudero, P. R.; Egeland, R.; Franzoni, G.; Gilbert, W. J.; Gong, D.; Grahl, J.; Haupt, J.; Klapoetke, K.; Kronkvist, I.; Kubota, Y.; Mans, J.; Rusack, R.; Sengupta, S.; Sherwood, B.; Singovsky, A.; Vikas, P.; Zhang, J.; Booke, M.; Cremaldi, L. M.; Godang, R.; Kroeger, R.; Reep, M.; Reidy, J.; Sanders, D. A.; Sonnek, P.; Summers, D.; Watkins, S.; Bloom, K.; Bockelman, B.; Claes, D. R.; Dominguez, A.; Eads, M.; Furukawa, M.; Keller, J.; Kelly, T.; Lundstedt, C.; Malik, S.; Snow, G. R.; Swanson, D.; Ecklund, K. M.; Iashvili, I.; Kharchilava, A.; Kumar, A.; Strang, M.; Alverson, G.; Barberis, E.; Boeriu, O.; Eulisse, G.; McCauley, T.; Musienko, Y.; Muzaffar, S.; Osborne, I.; Reucroft, S.; Swain, J.; Taylor, L.; Tuura, L.; Gobbi, B.; Kubantsev, M.; Kubik, A.; Ofierzynski, R. A.; Schmitt, M.; Spencer, E.; Stoynev, S.; Szleper, M.; Velasco, M.; Won, S.; Andert, K.; Baumbaugh, B.; Beiersdorf, B. A.; Castle, L.; Chorny, J.; Goussiou, A.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kolberg, T.; Marchant, J.; Marinelli, N.; McKenna, M.; Ruchti, R.; Vigneault, M.; Wayne, M.; Wiand, D.; Bylsma, B.; Durkin, L. S.; Gilmore, J.; Gu, J.; Killewald, P.; Ling, T. Y.; Rush, C. J.; Sehgal, V.; Williams, G.; Adam, N.; Chidzik, S.; Denes, P.; Elmer, P.; Garmash, A.; Gerbaudo, D.; Halyo, V.; Jones, J.; Marlow, D.; Olsen, J.; Piroué, P.; Stickland, D.; Tully, C.; Werner, J. S.; Wildish, T.; Wynhoff, S.; Xie, Z.; Huang, X. T.; Lopez, A.; Mendez, H.; Ramirez Vargas, J. E.; Zatserklyaniy, A.; Apresyan, A.; Arndt, K.; Barnes, V. E.; Bolla, G.; Bortoletto, D.; Bujak, A.; Everett, A.; Fahling, M.; Garfinkel, A. F.; Gutay, L.; Ippolito, N.; Kozhevnikov, Y.; Laasanen, A. T.; Liu, C.; Maroussov, V.; Medved, S.; Merkel, P.; Miller, D. H.; Miyamoto, J.; Neumeister, N.; Pompos, A.; Roy, A.; Sedov, A.; Shipsey, I.; Cuplov, V.; Parashar, N.; Bargassa, P.; Lee, S. J.; Liu, J. H.; Maronde, D.; Matveev, M.; Nussbaum, T.; Padley, B. P.; Roberts, J.; Tumanov, A.; Bodek, A.; Budd, H.; Cammin, J.; Chung, Y. S.; DeBarbaro, P.; Demina, R.; Ginther, G.; Gotra, Y.; Korjenevski, S.; Miner, D. C.; Sakumoto, W.; Slattery, P.; Zielinski, M.; Bhatti, A.; Demortier, L.; Goulianos, K.; Hatakeyama, K.; Mesropian, C.; Bartz, E.; Chuang, S. H.; Doroshenko, J.; Halkiadakis, E.; Jacques, P. F.; Khits, D.; Lath, A.; Macpherson, A.; Plano, R.; Rose, K.; Schnetzer, S.; Somalwar, S.; Stone, R.; Watts, T. L.; Cerizza, G.; Hollingsworth, M.; Lazoflores, J.; Ragghianti, G.; Spanier, S.; York, A.; Aurisano, A.; Golyash, A.; Kamon, T.; Nguyen, C. N.; Pivarski, J.; Safonov, A.; Toback, D.; Weinberger, M.; Akchurin, N.; Berntzon, L.; Carrell, K. W.; Gumus, K.; Jeong, C.; Kim, H.; Lee, S. W.; McGonagill, B. G.; Roh, Y.; Sill, A.; Spezziga, M.; Thomas, R.; Volobouev, I.; Washington, E.; Wigmans, R.; Yazgan, E.; Bapty, T.; Engh, D.; Florez, C.; Johns, W.; Keskinpala, T.; Luiggi Lopez, E.; Neema, S.; Nordstrom, S.; Pathak, S.; Sheldon, P.; Andelin, D.; Arenton, M. W.; Balazs, M.; Buehler, M.; Conetti, S.; Cox, B.; Hirosky, R.; Humphrey, M.; Imlay, R.; Ledovskoy, A.; Phillips, D., II; Powell, H.; Ronquest, M.; Yohay, R.; Anderson, M.; Baek, Y. W.; Bellinger, J. N.; Bradley, D.; Cannarsa, P.; Carlsmith, D.; Crotty, I.; Dasu, S.; Feyzi, F.; Gorski, T.; Gray, L.; Grogg, K. S.; Grothe, M.; Jaworski, M.; Klabbers, P.; Klukas, J.; Lanaro, A.; Lazaridis, C.; Leonard, J.; Loveless, R.; Magrans de Abril, M.; Mohapatra, A.; Ott, G.; Smith, W. H.; Weinberg, M.; Wenman, D.; Atoian, G. S.; Dhawan, S.; Issakov, V.; Neal, H.; Poblaguev, A.; Zeller, M. E.; Abdullaeva, G.; Avezov, A.; Fazylov, M. I.; Gasanov, E. M.; Khugaev, A.; Koblik, Y. N.; Nishonov, M.; Olimov, K.; Umaraliev, A.; Yuldashev, B. S.

    2008-08-01

    The Compact Muon Solenoid (CMS) detector is described. The detector operates at the Large Hadron Collider (LHC) at CERN. It was conceived to study proton-proton (and lead-lead) collisions at a centre-of-mass energy of 14 TeV (5.5 TeV nucleon-nucleon) and at luminosities up to 1034 cm-2 s-1 (1027 cm-2 s-1). At the core of the CMS detector sits a high-magnetic-field and large-bore superconducting solenoid surrounding an all-silicon pixel and strip tracker, a lead-tungstate scintillating-crystals electromagnetic calorimeter, and a brass-scintillator sampling hadron calorimeter. The iron yoke of the flux-return is instrumented with four stations of muon detectors covering most of the 4π solid angle. Forward sampling calorimeters extend the pseudorapidity coverage to high values (|η| <= 5) assuring very good hermeticity. The overall dimensions of the CMS detector are a length of 21.6 m, a diameter of 14.6 m and a total weight of 12500 t.

  5. The Electron Drift Instrument for Cluster

    NASA Technical Reports Server (NTRS)

    Paschmann, G.; Melzner, F.; Frenzel, R.; Vaith, H.; Parigger, P.; Pagel, U.; Bauer, O. H.; Haerendel, G.; Baumjohann, W.; Scopke, N.

    1997-01-01

    The Electron Drift Instrument (EDI) measures the drift of a weak beam of test electrons that, when emitted in certain directions, return to the spacecraft after one or more gyrations. This drift is related to the electric field and the gradient in the magnetic field, and these quantities can, by use of different electron energies, be determined separately. As a by-product, the magnetic field strength is also measured. The present paper describes the scientific objectives, the experimental method, and the technical realization of the various elements of the instrument.

  6. FIELD INVESTIGATIONS OF THE DRIFT SHADOW

    SciTech Connect

    G. W. Su, T. J. Kneafsey, T. A. Ghezzehei, B. D. Marshall, and P. J. Cook

    2006-01-15

    The ''Drift Shadow'' is defined as the relatively drier region that forms below subsurface cavities or drifts in unsaturated rock. Its existence has been predicted through analytical and numerical models of unsaturated flow. However, these theoretical predictions have not been demonstrated empirically to date. In this project they plan to test the drift shadow concept through field investigations and compare our observations to simulations. Based on modeling studies they have an identified suitable site to perform the study at an inactive mine in a sandstone formation. Pretest modeling studies and preliminary characterization of the site are being used to develop the field scale tests.

  7. Ion Drift Meter for Dynamics Explorer

    NASA Technical Reports Server (NTRS)

    Heelis, R. A.; Hanson, W. B.; Lippincott, C. R.; Zuccaro, D. R.

    1982-01-01

    The ion drift meter for Dynamics Explorer B is discussed. It measures two mutually perpendicular angles of arrival of thermal ions with respect to the sensor look directions. These angles lie in the vertical and horizontal planes and may be thought of as pitch and yaw in the conventional aerodynamic sense. The components of the ion drift velocity along vertical and horizontal axes through the spacecraft body are derived to first order from knowledge of the spacecraft velocity vector and more accurately with additional knowledge of the component of ion drift along the sensor look direction.

  8. Interaction between a drifting spiral and defects

    SciTech Connect

    Zou, X.; Levine, H. ); Kessler, D.A. )

    1993-02-01

    Spiral waves, a type of reentrant excitation,'' are believed to be associated with the most dangerous cardiac arrhythmias, including ventricular tachycardia and fibrillation. Recent experimental findings have implicated defective regions as a means of trapping spirals which would otherwise drift and (eventually) disappear. Here, we model the myocardium as a simple excitable medium and study via simulation the interaction between a drifting spiral and one or more such defects. We interpret our results in terms of a criterion for the transition between trapped and untrapped drifting spirals.

  9. Collisional Drift Waves in Stellarator Plasmas

    SciTech Connect

    J.L.V. Lewandowski

    2003-10-07

    A computational study of resistive drift waves in the edge plasma of a stellarator with an helical magnetic axis is presented. Three coupled field equations, describing the collisional drift wave dynamics in the linear approximation, are solved as an initial-value problem along the magnetic field line. The magnetohydrodynamic equilibrium is obtained from a three-dimensional local equilibrium model. The use of a local magnetohydrodynamic equilibrium model allows for a computationally efficient systematic study of the impact of the magnetic field structure on drift wave stability.

  10. PEG tube insertion -- discharge

    MedlinePlus

    ... shower or bathe. Keeping the PEG-tube in Place If the feeding tube comes out, the stoma ... eds. Pfenninger and Fowler's Procedures for Primary Care . 3rd ed. Philadelphia, PA: Elsevier Mosby; 2011:chap 100. ...

  11. Glass tube splitting tool

    NASA Technical Reports Server (NTRS)

    Klein, J. A.; Murray, C. D.; Stein, J. A.

    1971-01-01

    Tool accurately splits glass tubing so cuts are aligned 180 deg apart and reassembled tube forms low pressure, gastight enclosure. Device should interest industries using cylindrical closed glass containers.

  12. Eustachian tube (image)

    MedlinePlus

    ... are more common in children because their eustachian tubes are shorter, narrower, and more horizontal than in ... become trapped when the tissue of the eustachian tube becomes swollen from colds or allergies. Bacteria trapped ...

  13. Neural Tube Defects

    MedlinePlus

    Neural tube defects are birth defects of the brain, spine, or spinal cord. They happen in the first month ... she is pregnant. The two most common neural tube defects are spina bifida and anencephaly. In spina ...

  14. Nonlinear electrostatic drift Kelvin-Helmholtz instability

    NASA Technical Reports Server (NTRS)

    Sharma, Avadhesh C.; Srivastava, Krishna M.

    1993-01-01

    Nonlinear analysis of electrostatic drift Kelvin-Helmholtz instability is performed. It is shown that the analysis leads to the propagation of the weakly nonlinear dispersive waves, and the nonlinear behavior is governed by the nonlinear Burger's equation.

  15. Drift of continental rafts with asymmetric heating.

    PubMed

    Knopoff, L; Poehls, K A; Smith, R C

    1972-06-02

    A laboratory model of a lithospheric raft is propelled through a viscous asthenospheric layer with constant velocity of scaled magnitude appropriate to continental drift. The propulsion is due to differential heat concentration in the model oceanic and continental crusts.

  16. Guide tube flow diffuser

    SciTech Connect

    Berringer, R.T.; Myron, D.L.

    1980-11-04

    A nuclear reactor upper internal guide tube has a flow diffuser integral with its bottom end. The guide tube provides guidance for control rods during their ascent or descent from the reactor core. The flow diffuser serves to divert the upward flow of reactor coolant around the outside of the guide tube thereby limiting the amount of coolant flow and turbulence within the guide tube, thus enhancing the ease of movement of the control rods.

  17. Effects of Fault Displacement on Emplacement Drifts

    SciTech Connect

    F. Duan

    2000-04-25

    The purpose of this analysis is to evaluate potential effects of fault displacement on emplacement drifts, including drip shields and waste packages emplaced in emplacement drifts. The output from this analysis not only provides data for the evaluation of long-term drift stability but also supports the Engineered Barrier System (EBS) process model report (PMR) and Disruptive Events Report currently under development. The primary scope of this analysis includes (1) examining fault displacement effects in terms of induced stresses and displacements in the rock mass surrounding an emplacement drift and (2 ) predicting fault displacement effects on the drip shield and waste package. The magnitude of the fault displacement analyzed in this analysis bounds the mean fault displacement corresponding to an annual frequency of exceedance of 10{sup -5} adopted for the preclosure period of the repository and also supports the postclosure performance assessment. This analysis is performed following the development plan prepared for analyzing effects of fault displacement on emplacement drifts (CRWMS M&O 2000). The analysis will begin with the identification and preparation of requirements, criteria, and inputs. A literature survey on accommodating fault displacements encountered in underground structures such as buried oil and gas pipelines will be conducted. For a given fault displacement, the least favorable scenario in term of the spatial relation of a fault to an emplacement drift is chosen, and the analysis is then performed analytically. Based on the analysis results, conclusions are made regarding the effects and consequences of fault displacement on emplacement drifts. Specifically, the analysis will discuss loads which can be induced by fault displacement on emplacement drifts, drip shield and/or waste packages during the time period of postclosure.

  18. Assessment of HF Drift Data Reliability

    DTIC Science & Technology

    2005-06-13

    the array, making the beamforming computations very efficient. The station can operate in four different modes: 1) Scanning ionogram , 2) Drift ionogram ...3) Fixed Frequency ionogram 4) Oblique ionogram . Real-time ionograms with the results of their automatic scaling and the history of past soundings...are currently available on the official web site of Athens Digisonde (http://www.iono.noa.gr). For the post-processing of the drift ionogram , the

  19. Microhole Tubing Bending Report

    DOE Data Explorer

    Oglesby, Ken

    2012-01-01

    A downhole tubing bending study was made and is reported herein. IT contains a report and 2 excel spreadsheets to calculate tubing bending and to estimate contact points of the tubing to the drilled hole wall (creating a new support point).

  20. 1992 tubing tables

    SciTech Connect

    Not Available

    1992-01-01

    This paper is helpful to those designing oil well completions or purchasing tubing with proprietary or premium connections. Tables contain specifications and application data for over 100 different tubing joints, including those used with fiberglass pipe. The tables this year contain dimensional and performance data for coiled tubing.

  1. CMS Reverse Engineering and Encore/Model Integration

    DTIC Science & Technology

    1991-10-31

    Systems , Dam Neck, as follows: Module - 1 consisting of two files containing 5,600 lines of CMS -2Y source code. This module is a portion of the common...initial demonstration system is currently operational which produces a CADRE Teamwork/ SD structure chart from CMS source code. This demonstrates the...case kind(N) is when auto_datadesign => process-autodatadesign(N, flags); when cms - system => process_cmssystem(N, flags); (similarly for all italicized

  2. Use of the PTM with CMS Quadtree Grids

    DTIC Science & Technology

    2012-04-01

    simulation through coupling the Coastal Modeling System ( CMS ) with a quadtree grid and Version 2.1 of the Particle Tracking Model (PTM) in the Surface...water Modeling System (SMS). A CMS /PTM application is presented to demonstrate the recent changes in the SMS interface of the PTM. INTRODUCTION: The...from the contents of the cards file.  Boundary conditions - This file has information about what to do for the PTM along the boundaries of the CMS

  3. 42 CFR 416.30 - Terms of agreement with CMS.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 3 2014-10-01 2014-10-01 false Terms of agreement with CMS. 416.30 Section 416.30... § 416.30 Terms of agreement with CMS. As part of the agreement under § 416.26 the ASC must agree to the... specified in subpart C of this part and to report promptly to CMS any failure to do so. (b) Limitation...

  4. 42 CFR 416.30 - Terms of agreement with CMS.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 3 2012-10-01 2012-10-01 false Terms of agreement with CMS. 416.30 Section 416.30... § 416.30 Terms of agreement with CMS. As part of the agreement under § 416.26 the ASC must agree to the... specified in subpart C of this part and to report promptly to CMS any failure to do so. (b) Limitation...

  5. 42 CFR 416.30 - Terms of agreement with CMS.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 3 2013-10-01 2013-10-01 false Terms of agreement with CMS. 416.30 Section 416.30... § 416.30 Terms of agreement with CMS. As part of the agreement under § 416.26 the ASC must agree to the... specified in subpart C of this part and to report promptly to CMS any failure to do so. (b) Limitation...

  6. 42 CFR 416.30 - Terms of agreement with CMS.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 3 2011-10-01 2011-10-01 false Terms of agreement with CMS. 416.30 Section 416.30... of agreement with CMS. As part of the agreement under § 416.26 the ASC must agree to the following... in subpart C of this part and to report promptly to CMS any failure to do so. (b) Limitation...

  7. 42 CFR 416.30 - Terms of agreement with CMS.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 3 2010-10-01 2010-10-01 false Terms of agreement with CMS. 416.30 Section 416.30... of agreement with CMS. As part of the agreement under § 416.26 the ASC must agree to the following... in subpart C of this part and to report promptly to CMS any failure to do so. (b) Limitation...

  8. 42 CFR 425.218 - Termination of the agreement by CMS.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 3 2012-10-01 2012-10-01 false Termination of the agreement by CMS. 425.218... and Participation Agreement § 425.218 Termination of the agreement by CMS. (a) General. CMS may... termination by CMS. CMS may terminate the participation agreement for reasons including, but not limited...

  9. 42 CFR 425.218 - Termination of the agreement by CMS.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 3 2013-10-01 2013-10-01 false Termination of the agreement by CMS. 425.218... and Participation Agreement § 425.218 Termination of the agreement by CMS. (a) General. CMS may... termination by CMS. CMS may terminate the participation agreement for reasons including, but not limited...

  10. 42 CFR 425.218 - Termination of the agreement by CMS.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 3 2014-10-01 2014-10-01 false Termination of the agreement by CMS. 425.218... and Participation Agreement § 425.218 Termination of the agreement by CMS. (a) General. CMS may... termination by CMS. CMS may terminate the participation agreement for reasons including, but not limited...

  11. Thermodynamics Insights for the Redshift Drift

    NASA Astrophysics Data System (ADS)

    Zhang, Ming-Jian; Liu, Wen-Biao

    2015-01-01

    The secular redshift drift is a potential measurement to directly probe the cosmic expansion. Previous study on the redshift drift mainly focused on the model-dependent simulation. Apparently, the physical insights on the redshift drift are very necessary. So in this paper, it is investigated using thermodynamics on the apparent, Hubble and event horizons. Thermodynamics could analytically present the model-independent upper bounds of redshift drift. For specific assumption on the cosmological parameters, we find that the thermodynamics bounds are nearly one order of magnitude larger than the expectation in standard ΛCDM model. We then examine ten observed redshift drift from Green Bank Telescope at redshift 0.09 < z < 0.69, and find that these observational results are inconsistent with the thermodynamics. The size of the errorbars on these measurements is about three orders of magnitude larger than the effect of thermodynamical bounds for the redshift drift. Obviously, we have not yet hit any instrumental systematics at the shift level of 1m s-1 yr-1.

  12. CMS-2 Reverse Engineering and ENCORE/MODEL Integration

    DTIC Science & Technology

    1992-05-01

    14399 S92 6 01 0,68 I. Table of Contents CMS2 Reverse Engineering and NENCORE/MODEL Integration Study Final Report Part I CMS -2 Reverse Engineering...Automated extraction of design information from an existing software system written in CMS -2 can be used to document that system as-built, and that I The...Cadre Technologies Inc.a N00114-91 -C-0240 Final Report May 1992 The key features of the CMS RET system are: *The interactive visual interface to the

  13. Using the CMS threaded framework in a production environment

    SciTech Connect

    Jones, C. D.; Contreras, L.; Gartung, P.; Hufnagel, D.; Sexton-Kennedy, L.

    2015-12-23

    During 2014, the CMS Offline and Computing Organization completed the necessary changes to use the CMS threaded framework in the full production environment. We will briefly discuss the design of the CMS Threaded Framework, in particular how the design affects scaling performance. We will then cover the effort involved in getting both the CMSSW application software and the workflow management system ready for using multiple threads for production. Finally, we will present metrics on the performance of the application and workflow system as well as the difficulties which were uncovered. As a result, we will end with CMS' plans for using the threaded framework to do production for LHC Run 2.

  14. 21 CFR 868.5800 - Tracheostomy tube and tube cuff.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Tracheostomy tube and tube cuff. 868.5800 Section... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5800 Tracheostomy tube and tube cuff. (a) Identification. A tracheostomy tube and tube cuff is a device intended to be placed into...

  15. 21 CFR 868.5800 - Tracheostomy tube and tube cuff.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Tracheostomy tube and tube cuff. 868.5800 Section... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5800 Tracheostomy tube and tube cuff. (a) Identification. A tracheostomy tube and tube cuff is a device intended to be placed into...

  16. 21 CFR 868.5800 - Tracheostomy tube and tube cuff.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Tracheostomy tube and tube cuff. 868.5800 Section... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5800 Tracheostomy tube and tube cuff. (a) Identification. A tracheostomy tube and tube cuff is a device intended to be placed into...

  17. Pollen tube development.

    PubMed

    Johnson, Mark A; Kost, Benedikt

    2010-01-01

    Pollen tubes grow rapidly in a strictly polarized manner as they transport male reproductive cells through female flower tissues to bring about fertilization. Vegetative pollen tube cells are an excellent model system to investigate processes underlying directional cell expansion. In this chapter, we describe materials and methods required for (1) the identification of novel factors essential for polarized cell growth through the isolation and analysis of Arabidopsis mutants with defects in pollen tube growth and (2) the detailed functional characterization of pollen tube proteins based on transient transformation and microscopic analysis of cultured tobacco pollen tubes.

  18. REACTOR COOLANT TUBE SEAL

    DOEpatents

    Morris, W.J.

    1958-12-01

    A plle-flattenlng control element and a fluid seal therefore to permit movement of the element into a liquld contnining region of a neutronlc reactor are described. The device consists of flattened, thin-walled aluminum tubing contalnlng a uniform mixture of thermal neutron absorbing material, and a number of soft rubber closures for the process tubes, having silts capable of passing the flattened elements therethrough, but effectively sealing the process tubes against fluld leaknge by compression of the rubber. The flattened tubing is sufficiently flexible to enable it to conform to the configuratlon of the annular spacing surrounding the fuel elements ln the process tubes.

  19. Searching for extra-dimensions at CMS

    NASA Astrophysics Data System (ADS)

    Benucci, Leonardo

    2009-06-01

    A possible solution to the hierarchy problem is the presence of extra space dimensions beyond the three ones which are known from our everyday experience. The phenomenological ADD model of large extra-dimensions predicts a ETmiss +jet signature. Randall-Sundrum-type extra-dimensions predict di-lepton and di-jet resonances. This contribution addresses an overview of experimental issues and discovery potential for these new particles at the LHC, focusing on perspectives with the CMS detector during early data taking.

  20. The upgrade of the CMS Global Trigger

    NASA Astrophysics Data System (ADS)

    Wittmann, J.; Arnold, B.; Bergauer, H.; Jeitler, M.; Matsushita, T.; Rabady, D.; Rahbaran, B.; Wulz, C.-E.

    2016-02-01

    The Global Trigger is the final step of the CMS Level-1 Trigger. Previously implemented in VME, it has been redesigned and completely rebuilt in MicroTCA technology, using the Virtex-7 FPGA chip family. It will allow to implement trigger algorithms close to the final physics selection. The new system is presented, together with performance tests undertaken in parallel operation with the legacy system during the initial months of Run II of the LHC at a beam energy of 13 TeV.

  1. The simulation of the CMS electromagnetic calorimeter

    NASA Astrophysics Data System (ADS)

    Cossutti, F.

    2008-07-01

    The CMS Collaboration has developed a detailed simulation of the electromagnetic calorimeter (ECAL), which has been fully integrated in the collaboration software framework CMSSW. The simulation is based on the Geant4 detector simulation toolkit for the modelling of the passage of particles through matter and magnetic field. The geometrical description of the detector is being re-implemented using the DetectorDescription language, combining an XML based description with the algorithmic definition of the position of the elements. The ECAL simulation software is fully operational and has been validated using real data from the ECAL test beam experiment that took place in summer 2006.

  2. Study of Zγ Helicity Distributions at CMS

    NASA Astrophysics Data System (ADS)

    Chakaberia, Irakli; CMS Collaboration

    2011-04-01

    Measurement of the production of electroweak gauge bosons (γ, W, Z) provides important tests of the standard model. The production of a diboson final state at the Large Hadron Collider (LHC) can occur by quark-antiquark annihilation (t-channel) or by boson self-interaction (s-channel). The s-channel production provides a unique probe of triple gauge boson couplings (TGC) and the effects of new physics on these couplings. I present a study of the helicity angle distributions in the Zγ production process at the CMS experiment at the CERN LHC and an examination of the sensitivity of these distributions to new physics.

  3. Heat tube device

    NASA Technical Reports Server (NTRS)

    Khattar, Mukesh K. (Inventor)

    1990-01-01

    The present invention discloses a heat tube device through which a working fluid can be circulated to transfer heat to air in a conventional air conditioning system. The heat tube device is disposable about a conventional cooling coil of the air conditioning system and includes a plurality of substantially U-shaped tubes connected to a support structure. The support structure includes members for allowing the heat tube device to be readily positioned about the cooling coil. An actuatable adjustment device is connected to the U-shaped tubes for allowing, upon actuation thereof, for the heat tubes to be simultaneously rotated relative to the cooling coil for allowing the heat transfer from the heat tube device to air in the air conditioning system to be selectively varied.

  4. Intercostal drainage tube or intracardiac drainage tube?

    PubMed Central

    Anitha, N.; Kamath, S. Ganesh; Khymdeit, Edison; Prabhu, Manjunath

    2016-01-01

    Although insertion of chest drain tubes is a common medical practice, there are risks associated with this procedure, especially when inexperienced physicians perform it. Wrong insertion of the tube has been known to cause morbidity and occasional mortality. We report a case where the left ventricle was accidentally punctured leading to near-exsanguination. This report is to highlight the need for experienced physicians to supervise the procedure and train the younger physician in the safe performance of the procedure. PMID:27397467

  5. Gas analyzer's drift leads to systematic error in maximal oxygen uptake and maximal respiratory exchange ratio determination

    PubMed Central

    Garcia-Tabar, Ibai; Eclache, Jean P.; Aramendi, José F.; Gorostiaga, Esteban M.

    2015-01-01

    The aim was to examine the drift in the measurements of fractional concentration of oxygen (FO2) and carbon dioxide (FCO2) of a Nafion-using metabolic cart during incremental maximal exercise in 18 young and 12 elderly males, and to propose a way in which the drift can be corrected. The drift was verified by comparing the pre-test calibration values with the immediate post-test verification values of the calibration gases. The system demonstrated an average downscale drift (P < 0.001) in FO2 and FCO2 of −0.18% and −0.05%, respectively. Compared with measured values, corrected average maximal oxygen uptakevalues were 5–6% lower (P < 0.001) whereas corrected maximal respiratory exchange ratio values were 8–9% higher (P < 0.001). The drift was not due to an electronic instability in the analyzers because it was reverted after 20 min of recovery from the end of the exercise. The drift may be related to an incomplete removal of water vapor from the expired gas during transit through the Nafion conducting tube. These data demonstrate the importance of checking FO2 and FCO2 values by regular pre-test calibrations and post-test verifications, and also the importance of correcting a possible shift immediately after exercise. PMID:26578980

  6. Ion mobility mass spectrometry of peptide, protein, and protein complex ions using a radio-frequency confining drift cell.

    PubMed

    Allen, Samuel J; Giles, Kevin; Gilbert, Tony; Bush, Matthew F

    2016-02-07

    Ion mobility mass spectrometry experiments enable the characterization of mass, assembly, and shape of biological molecules and assemblies. Here, a new radio-frequency confining drift cell is characterized and used to measure the mobilities of peptide, protein, and protein complex ions. The new drift cell replaced the traveling-wave ion mobility cell in a Waters Synapt G2 HDMS. Methods for operating the drift cell and determining collision cross section values using this experimental set up are presented within the context of the original instrument control software. Collision cross sections for 349 cations and anions are reported, 155 of which are for ions that have not been characterized previously using ion mobility. The values for the remaining ions are similar to those determined using a previous radio-frequency confining drift cell and drift tubes without radial confinement. Using this device under 2 Torr of helium gas and an optimized drift voltage, denatured and native-like ions exhibited average apparent resolving powers of 14.2 and 16.5, respectively. For ions with high mobility, which are also low in mass, the apparent resolving power is limited by contributions from ion gating. In contrast, the arrival-time distributions of low-mobility, native-like ions are not well explained using only contributions from ion gating and diffusion. For those species, the widths of arrival-time distributions are most consistent with the presence of multiple structures in the gas phase.

  7. Gas analyzer's drift leads to systematic error in maximal oxygen uptake and maximal respiratory exchange ratio determination.

    PubMed

    Garcia-Tabar, Ibai; Eclache, Jean P; Aramendi, José F; Gorostiaga, Esteban M

    2015-01-01

    The aim was to examine the drift in the measurements of fractional concentration of oxygen (FO2) and carbon dioxide (FCO2) of a Nafion-using metabolic cart during incremental maximal exercise in 18 young and 12 elderly males, and to propose a way in which the drift can be corrected. The drift was verified by comparing the pre-test calibration values with the immediate post-test verification values of the calibration gases. The system demonstrated an average downscale drift (P < 0.001) in FO2 and FCO2 of -0.18% and -0.05%, respectively. Compared with measured values, corrected average maximal oxygen uptakevalues were 5-6% lower (P < 0.001) whereas corrected maximal respiratory exchange ratio values were 8-9% higher (P < 0.001). The drift was not due to an electronic instability in the analyzers because it was reverted after 20 min of recovery from the end of the exercise. The drift may be related to an incomplete removal of water vapor from the expired gas during transit through the Nafion conducting tube. These data demonstrate the importance of checking FO2 and FCO2 values by regular pre-test calibrations and post-test verifications, and also the importance of correcting a possible shift immediately after exercise.

  8. 77 FR 31618 - Medicaid Program; Announcement of Requirements and Registration for CMS Provider Screening...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-29

    ... HUMAN SERVICES Centers for Medicare & Medicaid Services (CMS) Medicaid Program; Announcement of Requirements and Registration for CMS Provider Screening Innovator Challenge AGENCY: Centers for Medicare & Medicaid Services (CMS), HHS. ACTION: Notice. SUMMARY: The Centers for Medicare & Medicaid Services...

  9. CMS distributed data analysis with CRAB3

    NASA Astrophysics Data System (ADS)

    Mascheroni, M.; Balcas, J.; Belforte, S.; Bockelman, B. P.; Hernandez, J. M.; Ciangottini, D.; Konstantinov, P. B.; Silva, J. M. D.; Ali, M. A. B. M.; Melo, A. M.; Riahi, H.; Tanasijczuk, A. J.; Yusli, M. N. B.; Wolf, M.; Woodard, A. E.; Vaandering, E.

    2015-12-01

    The CMS Remote Analysis Builder (CRAB) is a distributed workflow management tool which facilitates analysis tasks by isolating users from the technical details of the Grid infrastructure. Throughout LHC Run 1, CRAB has been successfully employed by an average of 350 distinct users each week executing about 200,000 jobs per day. CRAB has been significantly upgraded in order to face the new challenges posed by LHC Run 2. Components of the new system include 1) a lightweight client, 2) a central primary server which communicates with the clients through a REST interface, 3) secondary servers which manage user analysis tasks and submit jobs to the CMS resource provisioning system, and 4) a central service to asynchronously move user data from temporary storage in the execution site to the desired storage location. The new system improves the robustness, scalability and sustainability of the service. Here we provide an overview of the new system, operation, and user support, report on its current status, and identify lessons learned from the commissioning phase and production roll-out.

  10. CMS distributed data analysis with CRAB3

    SciTech Connect

    Mascheroni, M.; Balcas, J.; Belforte, S.; Bockelman, B. P.; Hernandez, J. M.; Ciangottini, D.; Konstantinov, P. B.; Silva, J. M. D.; Ali, M. A. B. M.; Melo, A. M.; Riahi, H.; Tanasijczuk, A. J.; Yusli, M. N. B.; Wolf, M.; Woodard, A. E.; Vaandering, E.

    2015-12-23

    The CMS Remote Analysis Builder (CRAB) is a distributed workflow management tool which facilitates analysis tasks by isolating users from the technical details of the Grid infrastructure. Throughout LHC Run 1, CRAB has been successfully employed by an average of 350 distinct users each week executing about 200,000 jobs per day.CRAB has been significantly upgraded in order to face the new challenges posed by LHC Run 2. Components of the new system include 1) a lightweight client, 2) a central primary server which communicates with the clients through a REST interface, 3) secondary servers which manage user analysis tasks and submit jobs to the CMS resource provisioning system, and 4) a central service to asynchronously move user data from temporary storage in the execution site to the desired storage location. Furthermore, the new system improves the robustness, scalability and sustainability of the service.Here we provide an overview of the new system, operation, and user support, report on its current status, and identify lessons learned from the commissioning phase and production roll-out.

  11. The Phase1 CMS Pixel detector upgrade

    NASA Astrophysics Data System (ADS)

    Tavolaro, V. R.

    2016-12-01

    The pixel detector of the CMS experiment will be replaced in an extended end-of-year shutdown during winter 2016/2017 with an upgraded one able to cope with peak instantaneous luminosities beyond the nominal LHC instantaneous luminosity of 1 × 1034 cm-2 s-1. Under the conditions expected in the coming years, which will see an increase of a factor two in instantaneous luminosity, the present system would experience a dynamic inefficiency caused mainly by data losses due to buffer overflows. The Phase I upgrade of the CMS pixel detector, described in this paper, will operate at full efficiency at an instantaneous luminosity of 2 × 1034 cm-2 s-1 and beyond, thanks to a new readout chip. The new detector will feature one additional tracking point both in the barrel and in the forward regions, while reducing the material budget as a result of a new CO2 cooling system and optimised layout of the services. In this paper, the design and the technological choices of the Phase I detector will be reviewed and the status of the construction of the detector and the performance of its components will be discussed.

  12. Status of the CMS pixel project

    SciTech Connect

    Uplegger, Lorenzo; /Fermilab

    2008-01-01

    The Compact Muon Solenoid Experiment (CMS) will start taking data at the Large Hadron Collider (LHC) in 2008. The closest detector to the interaction point is the silicon pixel detector which is the heart of the tracking system. It consists of three barrel layers and two pixel disks on each side of the interaction point for a total of 66 million channels. Its proximity to the interaction point means there will be very large particle fluences and therefore a radiation-tolerant design is necessary. The pixel detector will be crucial to achieve a good vertex resolution and will play a key role in pattern recognition and track reconstruction. The results from test beam runs prove that the expected performances can be achieved. The detector is currently being assembled and will be ready for insertion into CMS in early 2008. During the assembly phase, a thorough electronic test is being done to check the functionality of each channel to guarantee the performance required to achieve the physics goals. This report will present the final detector design, the status of the production as well as results from test beam runs to validate the expected performance.

  13. Status of the CMS Detector Control System

    NASA Astrophysics Data System (ADS)

    Bauer, Gerry; Behrens, Ulf; Bowen, Matthew; Branson, James; Bukowiec, Sebastian; Cittolin, Sergio; Coarasa, Jose Antonio; Deldicque, Christian; Dobson, Marc; Dupont, Aymeric; Erhan, Samim; Flossdorf, Alexander; Gigi, Dominique; Glege, Frank; Gomez-Reino, Robert; Hartl, Christian; Hegeman, Jeroen; Holzner, Andre; Hwong, Yi Ling; Masetti, Lorenzo; Meijers, Frans; Meschi, Emilio; Mommsen, Remigius K.; O'Dell, Vivian; Orsini, Luciano; Paus, Christoph; Petrucci, Andrea; Pieri, Marco; Polese, Giovanni; Racz, Attila; Raginel, Olivier; Sakulin, Hannes; Sani, Matteo; Schwick, Christoph; Shpakov, Dennis; Simon, Michal; Cristian Spataru, Andrei; Sumorok, Konstanty

    2012-12-01

    The Compact Muon Solenoid (CMS) is a CERN multi-purpose experiment that exploits the physics of the Large Hadron Collider (LHC). The Detector Control System (DCS) is responsible for ensuring the safe, correct and efficient operation of the experiment, and has contributed to the recording of high quality physics data. The DCS is programmed to automatically react to the LHC operational mode. CMS sub-detectors’ bias voltages are set depending on the machine mode and particle beam conditions. An operator provided with a small set of screens supervises the system status summarized from the approximately 6M monitored parameters. Using the experience of nearly two years of operation with beam the DCS automation software has been enhanced to increase the system efficiency by minimizing the time required by sub-detectors to prepare for physics data taking. From the infrastructure point of view the DCS will be subject to extensive modifications in 2012. The current rack mounted control PCs will be replaced by a redundant pair of DELL Blade systems. These blade servers are a high-density modular solution that incorporates servers and networking into a single chassis that provides shared power, cooling and management. This infrastructure modification associated with the migration to blade servers will challenge the DCS software and hardware factorization capabilities. The on-going studies for this migration together with the latest modifications are discussed in the paper.

  14. CMS distributed data analysis with CRAB3

    DOE PAGES

    Mascheroni, M.; Balcas, J.; Belforte, S.; ...

    2015-12-23

    The CMS Remote Analysis Builder (CRAB) is a distributed workflow management tool which facilitates analysis tasks by isolating users from the technical details of the Grid infrastructure. Throughout LHC Run 1, CRAB has been successfully employed by an average of 350 distinct users each week executing about 200,000 jobs per day.CRAB has been significantly upgraded in order to face the new challenges posed by LHC Run 2. Components of the new system include 1) a lightweight client, 2) a central primary server which communicates with the clients through a REST interface, 3) secondary servers which manage user analysis tasks andmore » submit jobs to the CMS resource provisioning system, and 4) a central service to asynchronously move user data from temporary storage in the execution site to the desired storage location. Furthermore, the new system improves the robustness, scalability and sustainability of the service.Here we provide an overview of the new system, operation, and user support, report on its current status, and identify lessons learned from the commissioning phase and production roll-out.« less

  15. Performance of the CMS High Level Trigger

    NASA Astrophysics Data System (ADS)

    Perrotta, Andrea

    2015-12-01

    The CMS experiment has been designed with a 2-level trigger system. The first level is implemented using custom-designed electronics. The second level is the so-called High Level Trigger (HLT), a streamlined version of the CMS offline reconstruction software running on a computer farm. For Run II of the Large Hadron Collider, the increases in center-of-mass energy and luminosity will raise the event rate to a level challenging for the HLT algorithms. The increase in the number of interactions per bunch crossing, on average 25 in 2012, and expected to be around 40 in Run II, will be an additional complication. We present here the expected performance of the main triggers that will be used during the 2015 data taking campaign, paying particular attention to the new approaches that have been developed to cope with the challenges of the new run. This includes improvements in HLT electron and photon reconstruction as well as better performing muon triggers. We will also present the performance of the improved tracking and vertexing algorithms, discussing their impact on the b-tagging performance as well as on the jet and missing energy reconstruction.

  16. Drift emplaced waste package thermal response

    SciTech Connect

    Ruffner, D.J.; Johnson, G.L.; Platt, E.A.; Blink, J.A.; Doering, T.W.

    1993-01-01

    Thermal calculations of the effects of radioactive waste decay heat on the I repository at Yucca Mountain, Nevada have been conducted by the Yucca Mountain Site Characterization Project (YMP) at Lawrence Livermore National Laboratory (LLNL) in conjunction with the B&W Fuel Company. For a number of waste package spacings, these 3D transient calculations use the TOPAZ3D code to predict drift wall temperatures to 10,000 years following emplacement. Systematic tcniperature variation occurs as a function of fuel age at emplacement and Areal Mass Loading (AML) during the first few centuries after emplacement. After about 1000 years, emplacement age is not a strong driver on rock temperature; AML has a larger impact. High AMLs occur when large waste packages are emplaced end-tocnd in drifts. Drift emplacement of equivalent packages results in lower rock teniperatures than borehole emplacement. For an emplacement scheme with 50% of the drift length occupied by packages, an AML of 138 MTU/acre is about three times higher than the Site Characterization Plan-Conceptual Design (SCP-CD) value. With this higher AML (requiring only 1/3 of the SCP-CD repository footprint), peak drift wall temperatures do not exceed 160*C, but rock temperatures excetd the boiling point of water for about 3000 years. These TOPAZ3D results Iiive been compared with reasonable agreement with two other computer codes.

  17. Drift emplaced waste package thermal response

    SciTech Connect

    Ruffner, D.J.; Johnson, G.L.; Platt, E.A.; Blink, J.A.; Doering, T.W.

    1993-12-31

    Thermal calculations of the effects of radioactive waste decay heat on the potential repository at Yucca Mountain, Nevada, have been conducted by the Yucca Mountain Site Characterization Project (YMP) at Lawrence Livermore National Lab. (LLNL) in conjunction with the B&W Fuel Co. For a number of waste package spacings, these 3D transient calculations use the TOPAZ3D code to predict drift wall temperatures to 10,000 years following emplacement. Systematic temperature variation occurs as a function of fuel age at emplacement and Areal Mass Loading (AML) during the first few centuries after emplacement. After about 1000 years, emplacement age is not a strong driver on rock temperature; AML has a larger impact. High AMLs occur when large waste packages are emplaced end-to-end in drifts. Drift emplacement of equivalent packages results in lower rock temperatures than borehole emplacement. For an emplacement scheme with 50% of the drift length occupied by packages, an AML of 138 MTU/acre is about three times higher than the Site Characterization Plan-Conceptual Design (SCP-CD) value. With this higher AML (requiring only 1/3 of the SCP-CD repository footprint), peak drift wall temperatures do not exceed 160{degrees}C, but rock temperatures exceed the boiling point of water for about 3000 years. These TOPAZ3D results have been compared with reasonable agreement with two other computer codes.

  18. Pulse Tube Refrigerator

    NASA Astrophysics Data System (ADS)

    Matsubara, Yoichi

    The pulse tube refrigerator is one of the regenerative cycle refrigerators such as Stirling cycle or Gifford-McMahon cycle which gives the cooling temperature below 150 K down to liquid helium temperature. In 1963, W. E. Gifford invented a simple refrigeration cycle which is composed of compressor, regenerator and simple tube named as pulse tube which gives a similar function of the expander in Stirling or Gifford-McMahon cycle. The thermodynamically performance of this pulse tube refrigerator is inferior to that of other regenerative cycles. In 1984, however, Mikulin and coworkers made a significant advance in pulse tube configuration called as orifice pulse tube. After this, several modifications of the pulse tube hot end configuration have been developed. With those modifications, the thermodynamic performance of the pulse tube refrigerator became the same order to that of Stirling and Gifford-McMahon refrigerator. This article reviews the brief history of the pulse tube refrigerator development in the view point of its thermodynamically efficiency. Simplified theories of the energy flow in the pulse tube have also been described.

  19. The generalized drift flux approach: Identification of the void-drift closure law

    NASA Technical Reports Server (NTRS)

    Boure, J. A.

    1989-01-01

    The main characteristics and the potential advantages of generalized drift flux models are presented. In particular it is stressed that the issue on the propagation properties and on the mathematical nature (hyperbolic or not) of the model and the problem of closure are easier to tackle than in two fluid models. The problem of identifying the differential void-drift closure law inherent to generalized drift flux models is then addressed. Such a void-drift closure, based on wave properties, is proposed for bubbly flows. It involves a drift relaxation time which is of the order of 0.25 s. It is observed that, although wave properties provide essential closure validity tests, they do not represent an easily usable source of quantitative information on the closure laws.

  20. Proteomic Analysis of Male-Fertility Restoration in CMS Onion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The production of hybrid-onion seed is dependent on cytoplasmic-genic male sterility (CMS) systems. For the most commonly used CMS, male-sterile (S) cytoplasm interacts with a dominant allele at one nuclear male-fertility restoration locus (Ms) to condition male fertility. We are using proteomics ...

  1. Proteomic analyses of male-fertility restoration in CMS onion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The production of hybrid-onion seed is dependent on cytoplasmic-genic male sterility (CMS) systems. For the most commonly used CMS, male-sterile (S) cytoplasm interacts with a dominant allele at one nuclear male-fertility restoration locus (Ms) to condition male fertility. We are using a proteomics ...

  2. 45 CFR 150.203 - Circumstances requiring CMS enforcement.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... individual market. If a State has notified CMS that it is implementing an acceptable alternative mechanism in... requirements of § 148.120, CMS's determination focuses on the following: (1) Whether the State's mechanism meets the requirements for an acceptable alternative mechanism. (2) Whether the State is...

  3. Risk factors for cardiomyopathy syndrome (CMS) in Norwegian salmon farming.

    PubMed

    Bang Jensen, Britt; Brun, Edgar; Fineid, Birgitte; Larssen, Rolf Bjerke; Kristoffersen, Anja B

    2013-12-12

    Cardiomyopathy syndrome (CMS) has been an economically important disease in Norwegian aquaculture since the 1990s. In this study, data on monthly production characteristics and case registrations were combined in a cohort study and supplemented with a questionnaire-based case-control survey on management factors in order to identify risk factors for CMS. The cohort study included cases and controls from 2005 to 2012. From this dataset differences between all cases and controls were analyzed by a mixed effect multivariate logistic regression. From this we found that the probability of CMS increased with increasing time in the sea, infection pressure, and cohort size, and that cohorts which had previously been diagnosed with heart and skeletal muscle inflammation or which were in farms with a history of CMS in previous cohorts had double the odds of developing CMS. The model was then used to calculate the predicted value for each cohort from which additional data were obtained via the questionnaire-based survey and used as offset for calculating the probability of CMS in a semi-univariate analysis of additional risk factors. Finally, the model was used to calculate the probability of developing CMS in 100 different scenarios in which the cohorts were subject to increasingly worse conditions with regards to the risk factors from the dataset. We believe that this exercise is a good way of communicating the findings to farmers, so they can make informed decisions when trying to avoid CMS in their fish cohorts.

  4. P-type silicon drift detectors

    SciTech Connect

    Walton, J.T.; Krieger, B.; Krofcheck, D.; O`Donnell, R.; Odyniec, G.; Partlan, M.D.; Wang, N.W.

    1995-06-01

    Preliminary results on 16 CM{sup 2}, position-sensitive silicon drift detectors, fabricated for the first time on p-type silicon substrates, are presented. The detectors were designed, fabricated, and tested recently at LBL and show interesting properties which make them attractive for use in future physics experiments. A pulse count rate of approximately 8 {times} l0{sup 6} s{sup {minus}1} is demonstrated by the p-type silicon drift detectors. This count rate estimate is derived by measuring simultaneous tracks produced by a laser and photolithographic mask collimator that generates double tracks separated by 50 {mu}m to 1200 {mu}m. A new method of using ion-implanted polysilicon to produce precise valued bias resistors on the silicon drift detectors is also discussed.

  5. Dealing with concept drifts in process mining.

    PubMed

    Bose, R P Jagadeesh Chandra; van der Aalst, Wil M P; Zliobaite, Indre; Pechenizkiy, Mykola

    2014-01-01

    Although most business processes change over time, contemporary process mining techniques tend to analyze these processes as if they are in a steady state. Processes may change suddenly or gradually. The drift may be periodic (e.g., because of seasonal influences) or one-of-a-kind (e.g., the effects of new legislation). For the process management, it is crucial to discover and understand such concept drifts in processes. This paper presents a generic framework and specific techniques to detect when a process changes and to localize the parts of the process that have changed. Different features are proposed to characterize relationships among activities. These features are used to discover differences between successive populations. The approach has been implemented as a plug-in of the ProM process mining framework and has been evaluated using both simulated event data exhibiting controlled concept drifts and real-life event data from a Dutch municipality.

  6. Drift due to viscous vortex rings

    NASA Astrophysics Data System (ADS)

    Morrell, Thomas; Spagnolie, Saverio; Thiffeault, Jean-Luc

    2016-11-01

    Biomixing is the study of fluid mixing due to swimming organisms. While large organisms typically produce turbulent flows in their wake, small organisms produce less turbulent wakes; the main mechanism of mixing is the induced net particle displacement (drift). Several experiments have examined this drift for small jellyfish, which produce vortex rings that trap and transport a fair amount of fluid. Inviscid theory implies infinite particle displacements for the trapped fluid, so the effect of viscosity must be included to understand the damping of real vortex motion. We use a model viscous vortex ring to compute particle displacements and other relevant quantities, such as the integrated moments of the displacement. Fluid entrainment at the tail end of a growing vortex 'envelope' is found to play an important role in the total fluid transport and drift. Partially supported by NSF Grant DMS-1109315.

  7. Lunar Lava Tube Sensing

    NASA Technical Reports Server (NTRS)

    York, Cheryl Lynn; Walden, Bryce; Billings, Thomas L.; Reeder, P. Douglas

    1992-01-01

    Large (greater than 300 m diameter) lava tube caverns appear to exist on the Moon and could provide substantial safety and cost benefits for lunar bases. Over 40 m of basalt and regolith constitute the lava tube roof and would protect both construction and operations. Constant temperatures of -20 C reduce thermal stress on structures and machines. Base designs need not incorporate heavy shielding, so lightweight materials can be used and construction can be expedited. Identification and characterization of lava tube caverns can be incorporated into current precursor lunar mission plans. Some searches can even be done from Earth. Specific recommendations for lunar lava tube search and exploration are (1) an Earth-based radar interferometer, (2) an Earth-penetrating radar (EPR) orbiter, (3) kinetic penetrators for lunar lava tube confirmation, (4) a 'Moon Bat' hovering rocket vehicle, and (5) the use of other proposed landers and orbiters to help find lunar lava tubes.

  8. Conduction cooled tube supports

    DOEpatents

    Worley, Arthur C.; Becht, IV, Charles

    1984-01-01

    In boilers, process tubes are suspended by means of support studs that are in thermal contact with and attached to the metal roof casing of the boiler and the upper bend portions of the process tubes. The support studs are sufficiently short that when the boiler is in use, the support studs are cooled by conduction of heat to the process tubes and the roof casing thereby maintaining the temperature of the stud so that it does not exceed 1400.degree. F.

  9. Programming DNA tube circumferences.

    PubMed

    Yin, Peng; Hariadi, Rizal F; Sahu, Sudheer; Choi, Harry M T; Park, Sung Ha; Labean, Thomas H; Reif, John H

    2008-08-08

    Synthesizing molecular tubes with monodisperse, programmable circumferences is an important goal shared by nanotechnology, materials science, and supermolecular chemistry. We program molecular tube circumferences by specifying the complementarity relationships between modular domains in a 42-base single-stranded DNA motif. Single-step annealing results in the self-assembly of long tubes displaying monodisperse circumferences of 4, 5, 6, 7, 8, 10, or 20 DNA helices.

  10. Ruggedized electronographic tube development

    NASA Technical Reports Server (NTRS)

    Nevin, S.

    1981-01-01

    Because of their glass components and lack of far ultraviolet sensitivity, currently available Spectracons are not suited for rocket launch. Technology developed for second generation image tubes and for magnetically focused image tubes can be applied to improve the optical and mechanical properties of these magnetically focused electronographic tubes whose 40 kilovolt signal electrons exit a 4-micrometer thick mica window and penetrate a photographic recording emulsion.

  11. Retrograde gastrojejunostomy tube migration.

    PubMed

    Adesina, Adeleke; Rammohan, Guhan; Jeanmonod, Rebecca

    2014-01-01

    Percutaneous enteral feeding tubes are placed about 250,000 times each year in the United States. Although they are relatively safe, their placement may be complicated by perforation, infection, bleeding, vomiting, dislodgment, and obstruction. There have been numerous reports of antegrade migration of gastrojejunostomy (G-J) tubes. We report a case of G-J tube regurgitation following protracted vomiting and discuss the management of this very rare entity.

  12. COAXIAL TUBE COUPLING

    DOEpatents

    Niemoth, H.R.

    1963-02-26

    BS>This patent shows a device for quickly coupling coaxial tubes in metal-to-metal fashion, so as to be suitable for use in a nuclear reactor. A threaded coliar urges a tapered metal extension on the outer coaxial tube into a tapered seat in the device and simultaneously exerts pressure through a coaxial helical spring so that a similar extension on the inner tube seats in a similar seat near the other end. (AEC)

  13. TUBE SPLITTING APPARATUS

    DOEpatents

    Frantz, C.E.; Cawley, W.E.

    1961-05-01

    A tool is described for cutting a coolant tube adapted to contain fuel elements to enable the tube to be removed from a graphite moderator mass. The tool splits the tube longitudinally into halves and curls the longitudinal edges of the halves inwardly so that they occupy less space and can be moved radially inwardly away from the walls of the hole in the graphite for easy removal from the graphite.

  14. Drift Mode Calculations in Nonaxisymmetric Geometry

    SciTech Connect

    G. Rewoldt; L.-P. Ku; W.A. Cooper; W.M. Tang

    1999-07-01

    A fully kinetic assessment of the stability properties of toroidal drift modes has been obtained for nonaxisymmetric (stellarator) geometry, in the electrostatic limit. This calculation is a comprehensive solution of the linearized gyrokinetic equation, using the lowest-order ''ballooning representation'' for high toroidal mode number instabilities, with a model collision operator. Results for toroidal drift waves destabilized by temperature gradients and/or trapped particle dynamics are presented, using three-dimensional magnetohydrodynamic equilibria generated as part of a design effort for a quasiaxisymmetric stellarator. Comparisons of these results with those obtained for typical tokamak cases indicate that the basic trends are similar.

  15. Generalized Drift-Diffusion Model In Semiconductors

    SciTech Connect

    Mesbah, S.; Bendib-Kalache, K.; Bendib, A.

    2008-09-23

    A new drift-diffusion model is proposed based on the computation of the stationary nonlocal current density. The semi classical Boltzmann equation is solved keeping all the anisotropies of the distribution function with the use of the continued fractions. The conductivity is calculated in the linear approximation and for arbitrary collision frequency with respect to Kv{sub t} where K{sup -1} is the characteristic length scale of the system and V{sub t} is the thermal velocity. The nonlocal conductivity can be used to close the generalized drift-diffusion equations valid for arbitrary collisionality.

  16. Aging and epigenetic drift: a vicious cycle.

    PubMed

    Issa, Jean-Pierre

    2014-01-01

    The term epigenetics refers to stable patterns of gene expression that are seen during differentiation or X chromosome inactivation and are not dependent on dynamic changes in coding DNA. These gene expression states are encoded in the epigenome - a collection of marks on DNA or on histone tails that are established during embryogenesis. Genome-wide studies in aging cells and tissues have uncovered stochastic DNA methylation drift (gradual increases or decreases at specific loci) that reflects imperfect maintenance of epigenetic marks. Drift creates epigenetic mosaicism in aging stem cells that could potentially restrict their plasticity and worsen phenotypes such as stem cell exhaustion and focal proliferative defects that can lead to cancer.

  17. Drifts of Dust or Something Else?

    NASA Technical Reports Server (NTRS)

    2004-01-01

    While the interior and far walls of the crater dubbed 'Bonneville' can be seen in the background, the dominant foreground features in this 180-degree navigation camera mosaic are the wind-deposited drifts of dust or sand. NASA's Mars Exploration Rover Spirit completed this mosaic on sol 71, March 15, 2004, from its newest location at the rim of 'Bonneville' crater.

    Scientists are interested in these formations in part because they might give insight into the processes that formed some of the material within the crater. Thermal emission measurements by the rover indicate that the dark material just below the far rim of this crater is spectrally similar to rocks that scientists have analyzed along their journey to this location. They want to know why this soil-like material has a spectrum that more closely resembles rocks rather than other soils examined so far. The drifts seen in the foreground of this mosaic might have the answer. Scientists hypothesize that these drifts might consist of wind-deposited particles that are the same as the dark material found against the back wall of the crater. If so, Spirit may spend time studying the material and help scientists understand why it is different from other fine-grained material seen at Gusev.

    The drifts appear to be lighter in color than the dark material deposited on the back wall of the crater. They might be covered by a thin deposit of martian dust, or perhaps the drift is like other drifts seen during Spirit's journey and is just a collection of martian dust.

    To find out, Spirit will spend some of sol 72 digging its wheels into the drift to uncover its interior. After backing up a bit, Spirit will use the panoramic camera and miniature thermal emission spectrometer to analyze the scuffed area. If the interior material has a similar spectrum to the dark deposit in the crater, then Spirit will most likely stay here a little longer to study the drift with the instruments on its robotic arm. If the

  18. Continental drift under the Third Reich.

    PubMed

    Buffetaut, Eric

    2003-12-01

    Contrary to what happened in many other countries in the 1930s and 1940s, Alfred Wegener's theory of continental drift was not generally rejected in Nazi Germany, although several leading German geologists of the time did not accept it. It was actually presented as the modern view of Earth history in books and magazine articles aimed at the general public. Although outlandish geological theories such as Hörbiger's Welteislehre were favoured by some Nazi dignitaries, they were not widely accepted in scientific circles. On the other hand, continental drift received official support under the Third Reich, at a time when it was ignored or ridiculed by most earth scientists outside Germany.

  19. Do the pyramids show continental drift?

    PubMed

    Pawley, G S; Abrahamsen, N

    1973-03-02

    The mystery of the orientation of the Great Pyramids of Giza has remained unexplained for many decades. The general alignment is 4 minutes west of north. It is argued that this is not a builders' error but is caused by movement over the centuries. Modern theories of continental drift do not predict quite such large movements, but other causes of polar wandering give even smaller shifts. Thus, continental drift is the most likely explanation, although somewhat implausible, especially as relevant measurements have been made over a 50-year period, whereas geophysical measurements of sea-floor spreading relate to million-year time scales.

  20. The effects of CT drift on xenon/CT measurement of regional cerebral blood flow.

    PubMed

    Kearfott, K J; Lu, H C; Rottenberg, D A; Deck, M D

    1984-01-01

    A systematic increase in computed tomography (CT) number of approximately 0.13 Hounsfield unit per scan (HU/scan) was observed when serial DeltaScan 2020 CT scans of a uniform water phantom were equally spaced at 0.5, 1.0, or 2.0 min and a shaped aluminum beam-hardening filter was employed. Much smaller drifts (less than 0.06 HU/scan) were observed with flat aluminum or shaped beryllium oxide filters. This machine drift, which was not associated with a rise in water phantom temperature and did not consistently correlate with estimated x-ray tube heat, could result in a significant overestimation of regional cerebral blood flow (rCBF) for a xenon/CT rCBF protocol involving 5-7 sequential scans obtained at 1-min interscan intervals.

  1. Sapphire tube pressure vessel

    SciTech Connect

    Outwater, J.O.

    2000-05-23

    A pressure vessel is provided for observing corrosive fluids at high temperatures and pressures. A transparent Teflon bag contains the corrosive fluid and provides an inert barrier. The Teflon bag is placed within a sapphire tube, which forms a pressure boundary. The tube is received within a pipe including a viewing window. The combination of the Teflon bag, sapphire tube and pipe provides a strong and inert pressure vessel. In an alternative embodiment, tie rods connect together compression fittings at opposite ends of the sapphire tube.

  2. Composite Pulse Tube

    NASA Technical Reports Server (NTRS)

    Martin, Jerry L.; Cloyd, Jason H.

    2007-01-01

    A modification of the design of the pulse tube in a pulse-tube cryocooler reduces axial thermal conductance while preserving radial thermal conductance. It is desirable to minimize axial thermal conductance in the pulse-tube wall to minimize leakage of heat between the warm and cold ends of the pulse tube. At the same time, it is desirable to maximize radial thermal conductance at the cold end of the pulse tube to ensure adequate thermal contact between (1) a heat exchanger in the form of a stack of copper screens inside the pulse tube at the cold end and (2) the remainder of the cold tip, which is the object to which the heat load is applied and from which heat must be removed. The modified design yields a low-heat-leak pulse tube that can be easily integrated with a cold tip. A typical pulse tube of prior design is either a thin-walled metal tube or a metal tube with a nonmetallic lining. It is desirable that the outer surface of a pulse tube be cylindrical (in contradistinction to tapered) to simplify the design of a regenerator that is also part of the cryocooler. Under some conditions, it is desirable to taper the inner surface of the pulse tube to reduce acoustic streaming. The combination of a cylindrical outer surface and a tapered inner surface can lead to unacceptably large axial conduction if the pulse tube is made entirely of metal. Making the pulse-tube wall of a nonmetallic, lowthermal- conductivity material would not solve the problem because the wall would not afford the needed thermal contact for the stack of screens in the cold end. The modified design calls for fabricating the pulse tube in two parts: a longer, nonmetallic part that is tapered on the inside and cylindrical on the outside and a shorter, metallic part that is cylindrical on both the inside and the outside. The nonmetallic part can be made from G-10 fiberglass-reinforced epoxy or other low-thermal-conductivity, cryogenically compatible material. The metallic part must have high

  3. Wound tube heat exchanger

    DOEpatents

    Ecker, Amir L.

    1983-01-01

    What is disclosed is a wound tube heat exchanger in which a plurality of tubes having flattened areas are held contiguous adjacent flattened areas of tubes by a plurality of windings to give a double walled heat exchanger. The plurality of windings serve as a plurality of effective force vectors holding the conduits contiguous heat conducting walls of another conduit and result in highly efficient heat transfer. The resulting heat exchange bundle is economical and can be coiled into the desired shape. Also disclosed are specific embodiments such as the one in which the tubes are expanded against their windings after being coiled to insure highly efficient heat transfer.

  4. Sapphire tube pressure vessel

    DOEpatents

    Outwater, John O.

    2000-01-01

    A pressure vessel is provided for observing corrosive fluids at high temperatures and pressures. A transparent Teflon bag contains the corrosive fluid and provides an inert barrier. The Teflon bag is placed within a sapphire tube, which forms a pressure boundary. The tube is received within a pipe including a viewing window. The combination of the Teflon bag, sapphire tube and pipe provides a strong and inert pressure vessel. In an alternative embodiment, tie rods connect together compression fittings at opposite ends of the sapphire tube.

  5. Fuel nozzle tube retention

    DOEpatents

    Cihlar, David William; Melton, Patrick Benedict

    2017-02-28

    A system for retaining a fuel nozzle premix tube includes a retention plate and a premix tube which extends downstream from an outlet of a premix passage defined along an aft side of a fuel plenum body. The premix tube includes an inlet end and a spring support feature which is disposed proximate to the inlet end. The premix tube extends through the retention plate. The spring retention feature is disposed between an aft side of the fuel plenum and the retention plate. The system further includes a spring which extends between the spring retention feature and the retention plate.

  6. Small-scale lacustrine drifts in Lake Champlain, Vermont

    USGS Publications Warehouse

    Manley, Patricia L.; Manley, T.O.; Hayo, Kathryn; Cronin, Thomas

    2012-01-01

    High resolution CHIRP (Compressed High Intensity Radar Pulse) seismic profiles reveal the presence of two lacustrine sediment drifts located in Lake Champlain's Juniper Deep. Both drifts are positive features composed of highly laminated sediments. Drift B sits on a basement high while Drift A is built on a trough-filling acoustically-transparent sediment unit inferred to be a mass-transport event. These drifts are oriented approximately north–south and are parallel to a steep ridge along the eastern shore of the basin. Drift A, located at the bottom of a structural trough, is classified as a confined, elongate drift that transitions northward to become a system of upslope asymmetric mudwaves. Drift B is perched atop a structural high to the west of Drift A and is classified as a detached elongate drift. Bottom current depositional control was investigated using Acoustic Doppler Current Profilers (ADCPs) located across Drift A. Sediment cores were taken at the crest and at the edges of the Drift A and were dated. Drift source, deposition, and evolution show that these drifts are formed by a water column shear with the highest deposition occurring along its crest and western flank and began developing circa 8700–8800 year BP.

  7. Optimizing CMS build infrastructure via Apache Mesos

    NASA Astrophysics Data System (ADS)

    Abdurachmanov, David; Degano, Alessandro; Elmer, Peter; Eulisse, Giulio; Mendez, David; Muzaffar, Shahzad

    2015-12-01

    The Offline Software of the CMS Experiment at the Large Hadron Collider (LHC) at CERN consists of 6M lines of in-house code, developed over a decade by nearly 1000 physicists, as well as a comparable amount of general use open-source code. A critical ingredient to the success of the construction and early operation of the WLCG was the convergence, around the year 2000, on the use of a homogeneous environment of commodity x86-64 processors and Linux. Apache Mesos is a cluster manager that provides efficient resource isolation and sharing across distributed applications, or frameworks. It can run Hadoop, Jenkins, Spark, Aurora, and other applications on a dynamically shared pool of nodes. We present how we migrated our continuous integration system to schedule jobs on a relatively small Apache Mesos enabled cluster and how this resulted in better resource usage, higher peak performance and lower latency thanks to the dynamic scheduling capabilities of Mesos.

  8. Radiation simulations of the CMS detector

    NASA Astrophysics Data System (ADS)

    Stoddard, Graham J.

    This thesis presents results of recent radiation simulations for the Compact Muon Solenoid detector at the Large Hadron Collider at CERN performed using the Monte Carlo simulation package FLUKA. High statistics simulations with a fine granularity in the detector were carried out using the Condor batch system at the Fermilab LHC Physics Center. In addition, an existing web tool for accessing and displaying simulation data was upgraded. The FLUKA data and previously generated MARS Monte Carlo data can be plotted using 1-D or 2-D plotting functionalities along R and Z, the transverse distance from the beamline and the distance along the beamline, respectively. Comparisons between the data sets have been carried out; the effect of particle transport thresholds in both packages was explored, comparisons with zero magnetic field in the CMS solenoid and full field are made, a model of non-ionizing energy losses is examined, and sensitive areas of interest within the simulation are identified.

  9. Estimating job runtime for CMS analysis jobs

    NASA Astrophysics Data System (ADS)

    Sfiligoi, I.

    2014-06-01

    The basic premise of pilot systems is to create an overlay scheduling system on top of leased resources. And by definition, leases have a limited lifetime, so any job that is scheduled on such resources must finish before the lease is over, or it will be killed and all the computation is wasted. In order to effectively schedule jobs to resources, the pilot system thus requires the expected runtime of the users' jobs. Past studies have shown that relying on user provided estimates is not a valid strategy, so the system should try to make an estimate by itself. This paper provides a study of the historical data obtained from the Compact Muon Solenoid (CMS) experiment's Analysis Operations submission system. Clear patterns are observed, suggesting that making prediction of an expected job lifetime range is achievable with high confidence level in this environment.

  10. Optimizing CMS build infrastructure via Apache Mesos

    SciTech Connect

    Abdurachmanov, David; Degano, Alessandro; Elmer, Peter; Eulisse, Giulio; Mendez, David; Muzaffar, Shahzad

    2015-12-23

    The Offline Software of the CMS Experiment at the Large Hadron Collider (LHC) at CERN consists of 6M lines of in-house code, developed over a decade by nearly 1000 physicists, as well as a comparable amount of general use open-source code. A critical ingredient to the success of the construction and early operation of the WLCG was the convergence, around the year 2000, on the use of a homogeneous environment of commodity x86-64 processors and Linux.Apache Mesos is a cluster manager that provides efficient resource isolation and sharing across distributed applications, or frameworks. It can run Hadoop, Jenkins, Spark, Aurora, and other applications on a dynamically shared pool of nodes. Lastly, we present how we migrated our continuous integration system to schedule jobs on a relatively small Apache Mesos enabled cluster and how this resulted in better resource usage, higher peak performance and lower latency thanks to the dynamic scheduling capabilities of Mesos.

  11. Steam generator tube failures

    SciTech Connect

    MacDonald, P.E.; Shah, V.N.; Ward, L.W.; Ellison, P.G.

    1996-04-01

    A review and summary of the available information on steam generator tubing failures and the impact of these failures on plant safety is presented. The following topics are covered: pressurized water reactor (PWR), Canadian deuterium uranium (CANDU) reactor, and Russian water moderated, water cooled energy reactor (VVER) steam generator degradation, PWR steam generator tube ruptures, the thermal-hydraulic response of a PWR plant with a faulted steam generator, the risk significance of steam generator tube rupture accidents, tubing inspection requirements and fitness-for-service criteria in various countries, and defect detection reliability and sizing accuracy. A significant number of steam generator tubes are defective and are removed from service or repaired each year. This wide spread damage has been caused by many diverse degradation mechanisms, some of which are difficult to detect and predict. In addition, spontaneous tube ruptures have occurred at the rate of about one every 2 years over the last 20 years, and incipient tube ruptures (tube failures usually identified with leak detection monitors just before rupture) have been occurring at the rate of about one per year. These ruptures have caused complex plant transients which have not always been easy for the reactor operators to control. Our analysis shows that if more than 15 tubes rupture during a main steam line break, the system response could lead to core melting. Although spontaneous and induced steam generator tube ruptures are small contributors to the total core damage frequency calculated in probabilistic risk assessments, they are risk significant because the radionuclides are likely to bypass the reactor containment building. The frequency of steam generator tube ruptures can be significantly reduced through appropriate and timely inspections and repairs or removal from service.

  12. Stable discrete representation of relativistically drifting plasmas

    NASA Astrophysics Data System (ADS)

    Kirchen, M.; Lehe, R.; Godfrey, B. B.; Dornmair, I.; Jalas, S.; Peters, K.; Vay, J.-L.; Maier, A. R.

    2016-10-01

    Representing the electrodynamics of relativistically drifting particle ensembles in discrete, co-propagating Galilean coordinates enables the derivation of a Particle-In-Cell algorithm that is intrinsically free of the numerical Cherenkov instability for plasmas flowing at a uniform velocity. Application of the method is shown by modeling plasma accelerators in a Lorentz-transformed optimal frame of reference.

  13. Psychometric Consequences of Subpopulation Item Parameter Drift

    ERIC Educational Resources Information Center

    Huggins-Manley, Anne Corinne

    2017-01-01

    This study defines subpopulation item parameter drift (SIPD) as a change in item parameters over time that is dependent on subpopulations of examinees, and hypothesizes that the presence of SIPD in anchor items is associated with bias and/or lack of invariance in three psychometric outcomes. Results show that SIPD in anchor items is associated…

  14. Unmanned seismometer levels self, corrects drift errors

    NASA Technical Reports Server (NTRS)

    Sutton, G.

    1964-01-01

    Four-component, three-axis, feedback-controlled seismograph incorporates electronic circuitry for leveling and for monitoring the feedback signal required for servo-centering. Viscous damping of the earth-motion signal, compensation of the residual long-term drift, and centering of the seismometers are provided by automatic mechanisms.

  15. Plate Tectonics and Continental Drift: Classroom Ideas.

    ERIC Educational Resources Information Center

    Stout, Prentice K.

    1983-01-01

    Suggests various classroom studies related to plate tectonics and continental drift, including comments on and sources of resource materials useful in teaching the topics. A complete list of magazine articles on the topics from the Sawyer Marine Resource Collection may be obtained by contacting the author. (JN)

  16. Drift waves in helically symmetric stellarators

    SciTech Connect

    Rafiq, T.; Hegna, C.

    2005-11-15

    The local linear stability of electron drift waves and ion temperature gradient modes (ITG) is investigated in a quasihelically symmetric (QHS) stellarator and a conventional asymmetric (Mirror) stellarator. The geometric details of the different equilibria are emphasized. Eigenvalue equations for the models are derived using the ballooning mode formalism and solved numerically using a standard shooting technique in a fully three-dimensional stellarator configuration. While the eigenfunctions have a similar shape in both magnetic geometries, they are slightly more localized along the field line in the QHS case. The most unstable electron drift modes are strongly localized at the symmetry points (where stellarator symmetry is present) and in the regions where normal curvature is unfavorable and magnitude of the local magnetic shear and magnetic field is minimum. The presence of a large positive local magnetic shear in the bad curvature region is found to be destabilizing. Electron drift modes are found to be more affected by the normal curvature than by the geodesic curvature. The threshold of stability of the ITG modes in terms of {eta}{sub i} is found to be 2/3 in this fluid model consistent with the smallest threshold for toroidal geometry with adiabatic electrons. Optimization to favorable drift wave stability has small field line curvature, short connection lengths, the proper combination of geodesic curvature and local magnetic shear, large values of local magnetic shear, and the compression of flux surfaces in the unfavorable curvature region.

  17. Drift correction of electronic tongue responses

    NASA Astrophysics Data System (ADS)

    Holmin, Susanne; Krantz-Rülcker, Christina; Lundström, Ingemar; Winquist, Fredrik

    2001-08-01

    In this article, drift correction algorithms were used in order to remove linear drift in multivariate spaces of two data sets obtained by an electronic tongue based on voltammetry. The electronic tongue consisted of various metal electrodes (Au, Ir, Pt, Rh) combined with pattern recognition tools, such as principal component analysis. The first data set contained different types of liquid, from well defined to more complex solutions. The second data set contained different black and green teas. Component correction (CC) was compared to a simple additive correction. In CC, the drift direction of measured reference solutions in a multivariate space was subtracted from other types of solution. In additive correction, responses from reference samples were subtracted from other samples. CC showed similar or better performance in reducing drift compared to additive correction for the two data sets. The additive correction method was dependent on the fact that the differences in between samples of a reference solution were similar to the changes in between samples of other liquids, which was not the case with CC.

  18. Drift Nets on the High Seas.

    ERIC Educational Resources Information Center

    Clearing, 1990

    1990-01-01

    Information is provided on the use and misuse of drift nets used internationally in the Pacific Ocean. An activity in which students acquire some understanding of the history of fishing and the effects of modern technologies on fish populations is included. (KR)

  19. Method for shaping polyethylene tubing

    NASA Technical Reports Server (NTRS)

    Kramer, R. C.

    1981-01-01

    Method forms polyethylene plastic tubing into configurations previously only possible with metal tubing. By using polyethylene in place of copper or stain less steel tubing inlow pressure systems, fabrication costs are significantly reduced. Polyethylene tubing can be used whenever low pressure tubing is needed in oil operations, aircraft and space applications, powerplants, and testing laboratories.

  20. Performance studies and improvements of CMS distributed data transfers

    NASA Astrophysics Data System (ADS)

    Bonacorsi, D.; Flix, J.; Kaselis, R.; Letts, J.; Magini, N.; Sartirana, A.

    2012-12-01

    CMS computing needs reliable, stable and fast connections among multi-tiered distributed infrastructures. CMS experiment relies on File Transfer Services (FTS) for data distribution, a low level data movement service responsible for moving sets of files from one site to another, while allowing participating sites to control the network resource usage. FTS servers are provided by Tier-0 and Tier-1 centers and used by all the computing sites in CMS, subject to established CMS and sites setup policies, including all the virtual organizations making use of the Grid resources at the site, and properly dimensioned to satisfy all the requirements for them. Managing the service efficiently needs good knowledge of the CMS needs for all kind of transfer routes, and the sharing and interference with other VOs using the same FTS transfer managers. This contribution deals with a complete revision of all FTS servers used by CMS, customizing the topologies and improving their setup in order to keep CMS transferring data to the desired levels, as well as performance studies for all kind of transfer routes, including overheads measurements introduced by SRM servers and storage systems, FTS server misconfigurations and identification of congested channels, historical transfer throughputs per stream, file-latency studies,… This information is retrieved directly from the FTS servers through the FTS Monitor webpages and conveniently archived for further analysis. The project provides an interface for all these values, to ease the analysis of the data.

  1. Pyrotechnic Tubing Connector

    NASA Technical Reports Server (NTRS)

    Graves, Thomas J.; Yang, Robert A.

    1988-01-01

    Tool forms mechanical seal at joint without levers or hydraulic apparatus. Proposed tool intended for use in outer space used on Earth by heavily garbed workers to join tubing in difficult environments. Called Pyrotool, used with Lokring (or equivalent) fittings. Piston slides in cylinder when pushed by gas from detonating pyrotechnic charge. Impulse of piston compresses fittings, sealing around butting ends of tubes.

  2. Fallopian Tube Catheterization

    PubMed Central

    Thurmond, Amy Suzanne

    2013-01-01

    Fallopian tube catheterization is used for treatment of infertility caused by proximal tubal occlusion, and has replaced surgical treatment for this condition. More recently, fallopian tube catheterization has been used for tubal sterilization. Interventional radiologists tested numerous methods for tubal occlusion using the rabbit as an animal model. As a result, a tubal device has recently been Food and Drug Administration approved for permanent sterilization using hysteroscopic guidance; it can also be placed fluoroscopically by fallopian tube catheterization as an “off-label” procedure. This is a 5-year continuation and update on a procedure that has been done by interventional radiologists for 25 years; history of the development of fallopian tube catheterization in women has been published in detail in this journal. Highlighted in this article will be description of the basic components needed for fallopian tube catheterization. PMID:24436565

  3. JINR Tier-1 centre for the CMS experiment at LHC

    NASA Astrophysics Data System (ADS)

    Astakhov, N. S.; Baginyan, A. S.; Belov, S. D.; Dolbilov, A. G.; Golunov, A. O.; Gorbunov, I. N.; Gromova, N. I.; Kadochnikov, I. S.; Kashunin, I. A.; Korenkov, V. V.; Mitsyn, V. V.; Pelevanyuk, I. S.; Shmatov, S. V.; Strizh, T. A.; Tikhonenko, E. A.; Trofimov, V. V.; Voitishin, N. N.; Zhiltsov, V. E.

    2016-09-01

    An overview of the JINR Tier-1 centre for the CMS experiment at the LHC is given. Special emphasis is placed on the main tasks and services of the CMS Tier-1 at JINR. In February 2015 the JINR CMS Tier-1 resources were increased to the level that was outlined in JINR's rollout plan: CPU 2400 cores (28800 HEP-Spec06), 2.4 PB disks, and 5.0 PB tapes. The first results of the Tier-1 operations received during the LHC Run-2 start are presented.

  4. Maximum drift velocity of electrons in selectively doped InAlAs/InGaAs/InAlAs heterostructures with InAs inserts

    SciTech Connect

    Silenas, A.; Pozela, Yu. Pozela, K.; Juciene, V.; Vasil'evskii, I. S.; Galiev, G. B.; Pushkarev, S. S.; Klimov, E. A.

    2013-03-15

    The dependence of the electron mobility and drift velocity on the growth conditions, thickness, and doping of an InAs insert placed at the center of the quantum well in a selectively doped InAlAs/InGaAs/InAlAs heterostructure has been investigated. Record enhancement of the maximum drift velocity to (2-4) Multiplication-Sign 10{sup 7} cm/s in an electric field of 5 Multiplication-Sign 10{sup 3} V/cm has been obtained in a 17-nm-wide quantum well with an undoped 4-nm-thick InAs insert. In the structures with additional doping of the InAs insert, which facilitates an increase in the density of electrons in the quantum well to 4.0 Multiplication-Sign 10{sup 12} cm{sup -2}, the maximum drift velocity is as high as 2 Multiplication-Sign 10{sup 7} cm/s in an electric field of 7 Multiplication-Sign 10{sup 3} V/cm.

  5. Validation testing of drift reduction technology testing protocol

    EPA Science Inventory

    A number of pesticide application technologies offer the potential to reduce spray drift from pesticide applications. However, limited information exists on the effectiveness of these technologies in reducing spray drift. Working with a stakeholder technical panel under EPA's Env...

  6. The Effects of Clock Drift on the Mars Exploration Rovers

    NASA Technical Reports Server (NTRS)

    Ali, Khaled S.; Vanelli, C. Anthony

    2012-01-01

    All clocks drift by some amount, and the mission clock on the Mars Exploration Rovers (MER) is no exception. The mission clock on both MER rovers drifted significantly since the rovers were launched, and it is still drifting on the Opportunity rover. The drift rate is temperature dependent. Clock drift causes problems for onboard behaviors and spacecraft operations, such as attitude estimation, driving, operation of the robotic arm, pointing for imaging, power analysis, and telecom analysis. The MER operations team has techniques to deal with some of these problems. There are a few techniques for reducing and eliminating the clock drift, but each has drawbacks. This paper presents an explanation of what is meant by clock drift on the rovers, its relationship to temperature, how we measure it, what problems it causes, how we deal with those problems, and techniques for reducing the drift.

  7. 42 CFR 405.1063 - Applicability of laws, regulations and CMS Rulings.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 2 2010-10-01 2010-10-01 false Applicability of laws, regulations and CMS Rulings... Medicare Coverage Policies § 405.1063 Applicability of laws, regulations and CMS Rulings. (a) All laws and... the MAC. (b) CMS Rulings are published under the authority of the Administrator, CMS. Consistent...

  8. 42 CFR 460.42 - Suspension of enrollment or payment by CMS.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 4 2011-10-01 2011-10-01 false Suspension of enrollment or payment by CMS. 460.42... enrollment or payment by CMS. (a) Enrollment. If a PACE organization commits one or more violations specified in § 460.40, CMS may suspend enrollment of Medicare beneficiaries after the date CMS notifies...

  9. 42 CFR 405.1063 - Applicability of laws, regulations and CMS Rulings.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 2 2014-10-01 2014-10-01 false Applicability of laws, regulations and CMS Rulings... Medicare Coverage Policies § 405.1063 Applicability of laws, regulations and CMS Rulings. (a) All laws and... the MAC. (b) CMS Rulings are published under the authority of the Administrator, CMS. Consistent...

  10. 42 CFR 460.48 - Additional actions by CMS or the State.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 4 2012-10-01 2012-10-01 false Additional actions by CMS or the State. 460.48... CMS or the State. After consultation with the State administering agency, if CMS determines that the PACE organization is not in substantial compliance with requirements in this part, CMS or the...

  11. 42 CFR 482.74 - Condition of participation: Notification to CMS.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 5 2012-10-01 2012-10-01 false Condition of participation: Notification to CMS... participation: Notification to CMS. (a) A transplant center must notify CMS immediately of any significant... conditions of participation. Instances in which CMS should receive information for follow up, as...

  12. 42 CFR 460.42 - Suspension of enrollment or payment by CMS.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 4 2013-10-01 2013-10-01 false Suspension of enrollment or payment by CMS. 460.42... enrollment or payment by CMS. (a) Enrollment. If a PACE organization commits one or more violations specified in § 460.40, CMS may suspend enrollment of Medicare beneficiaries after the date CMS notifies...

  13. 42 CFR 405.2440 - Conditions for reinstatement after termination by CMS.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... CMS. 405.2440 Section 405.2440 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF... § 405.2440 Conditions for reinstatement after termination by CMS. When CMS has terminated an agreement with a FQHC, CMS does not enter into another agreement with the FQHC to participate in the...

  14. 42 CFR 460.48 - Additional actions by CMS or the State.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 4 2010-10-01 2010-10-01 false Additional actions by CMS or the State. 460.48... CMS or the State. After consultation with the State administering agency, if CMS determines that the PACE organization is not in substantial compliance with requirements in this part, CMS or the...

  15. 42 CFR 460.40 - Violations for which CMS may impose sanctions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 4 2013-10-01 2013-10-01 false Violations for which CMS may impose sanctions. 460... for which CMS may impose sanctions. In addition to other remedies authorized by law, CMS may impose any of the sanctions specified in §§ 460.42 and 460.46 if CMS determines that a PACE...

  16. 42 CFR 460.40 - Violations for which CMS may impose sanctions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 4 2014-10-01 2014-10-01 false Violations for which CMS may impose sanctions. 460... for which CMS may impose sanctions. In addition to other remedies authorized by law, CMS may impose any of the sanctions specified in §§ 460.42 and 460.46 if CMS determines that a PACE...

  17. 42 CFR 460.42 - Suspension of enrollment or payment by CMS.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 4 2012-10-01 2012-10-01 false Suspension of enrollment or payment by CMS. 460.42... enrollment or payment by CMS. (a) Enrollment. If a PACE organization commits one or more violations specified in § 460.40, CMS may suspend enrollment of Medicare beneficiaries after the date CMS notifies...

  18. 42 CFR 405.2440 - Conditions for reinstatement after termination by CMS.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... CMS. 405.2440 Section 405.2440 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF... § 405.2440 Conditions for reinstatement after termination by CMS. When CMS has terminated an agreement with a Federally qualified health center, CMS will not enter into another agreement with the...

  19. 42 CFR 460.42 - Suspension of enrollment or payment by CMS.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 4 2010-10-01 2010-10-01 false Suspension of enrollment or payment by CMS. 460.42... enrollment or payment by CMS. (a) Enrollment. If a PACE organization commits one or more violations specified in § 460.40, CMS may suspend enrollment of Medicare beneficiaries after the date CMS notifies...

  20. 42 CFR 460.48 - Additional actions by CMS or the State.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 4 2013-10-01 2013-10-01 false Additional actions by CMS or the State. 460.48... CMS or the State. After consultation with the State administering agency, if CMS determines that the PACE organization is not in substantial compliance with requirements in this part, CMS or the...

  1. 23 CFR 971.214 - Federal lands congestion management system (CMS).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 23 Highways 1 2013-04-01 2013-04-01 false Federal lands congestion management system (CMS). 971... Federal lands congestion management system (CMS). (a) For purposes of this section, congestion means the...) Develop criteria to determine when a CMS is to be implemented for a specific FH; and (2) Have CMS...

  2. 42 CFR 426.415 - CMS' role in the LCD review.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 3 2014-10-01 2014-10-01 false CMS' role in the LCD review. 426.415 Section 426... DETERMINATIONS Review of an LCD § 426.415 CMS' role in the LCD review. CMS may provide to the ALJ, and all parties to the LCD review, information identifying the person who represents the contractor or CMS,...

  3. 42 CFR 460.48 - Additional actions by CMS or the State.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 4 2014-10-01 2014-10-01 false Additional actions by CMS or the State. 460.48... CMS or the State. After consultation with the State administering agency, if CMS determines that the PACE organization is not in substantial compliance with requirements in this part, CMS or the...

  4. 42 CFR 482.74 - Condition of participation: Notification to CMS.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 5 2011-10-01 2011-10-01 false Condition of participation: Notification to CMS... participation: Notification to CMS. (a) A transplant center must notify CMS immediately of any significant... conditions of participation. Instances in which CMS should receive information for follow up, as...

  5. 42 CFR 482.74 - Condition of participation: Notification to CMS.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 5 2013-10-01 2013-10-01 false Condition of participation: Notification to CMS... participation: Notification to CMS. (a) A transplant center must notify CMS immediately of any significant... conditions of participation. Instances in which CMS should receive information for follow up, as...

  6. 42 CFR 426.415 - CMS' role in the LCD review.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 3 2011-10-01 2011-10-01 false CMS' role in the LCD review. 426.415 Section 426... Review of an LCD § 426.415 CMS' role in the LCD review. CMS may provide to the ALJ, and all parties to the LCD review, information identifying the person who represents the contractor or CMS, if...

  7. 42 CFR 482.74 - Condition of participation: Notification to CMS.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 5 2014-10-01 2014-10-01 false Condition of participation: Notification to CMS... participation: Notification to CMS. (a) A transplant center must notify CMS immediately of any significant... conditions of participation. Instances in which CMS should receive information for follow up, as...

  8. 42 CFR 460.48 - Additional actions by CMS or the State.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 4 2011-10-01 2011-10-01 false Additional actions by CMS or the State. 460.48... CMS or the State. After consultation with the State administering agency, if CMS determines that the PACE organization is not in substantial compliance with requirements in this part, CMS or the...

  9. 42 CFR 405.2440 - Conditions for reinstatement after termination by CMS.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... CMS. 405.2440 Section 405.2440 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF... § 405.2440 Conditions for reinstatement after termination by CMS. When CMS has terminated an agreement with a Federally qualified health center, CMS will not enter into another agreement with the...

  10. 23 CFR 971.214 - Federal lands congestion management system (CMS).

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 23 Highways 1 2014-04-01 2014-04-01 false Federal lands congestion management system (CMS). 971... Federal lands congestion management system (CMS). (a) For purposes of this section, congestion means the...) Develop criteria to determine when a CMS is to be implemented for a specific FH; and (2) Have CMS...

  11. 42 CFR 405.2440 - Conditions for reinstatement after termination by CMS.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... CMS. 405.2440 Section 405.2440 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF... § 405.2440 Conditions for reinstatement after termination by CMS. When CMS has terminated an agreement with a Federally qualified health center, CMS will not enter into another agreement with the...

  12. 42 CFR 460.40 - Violations for which CMS may impose sanctions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 4 2011-10-01 2011-10-01 false Violations for which CMS may impose sanctions. 460... for which CMS may impose sanctions. In addition to other remedies authorized by law, CMS may impose any of the sanctions specified in §§ 460.42 and 460.46 if CMS determines that a PACE...

  13. 42 CFR 460.42 - Suspension of enrollment or payment by CMS.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 4 2014-10-01 2014-10-01 false Suspension of enrollment or payment by CMS. 460.42... enrollment or payment by CMS. (a) Enrollment. If a PACE organization commits one or more violations specified in § 460.40, CMS may suspend enrollment of Medicare beneficiaries after the date CMS notifies...

  14. 42 CFR 460.40 - Violations for which CMS may impose sanctions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 4 2012-10-01 2012-10-01 false Violations for which CMS may impose sanctions. 460... for which CMS may impose sanctions. In addition to other remedies authorized by law, CMS may impose any of the sanctions specified in §§ 460.42 and 460.46 if CMS determines that a PACE...

  15. 42 CFR 426.415 - CMS' role in the LCD review.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 3 2012-10-01 2012-10-01 false CMS' role in the LCD review. 426.415 Section 426... DETERMINATIONS Review of an LCD § 426.415 CMS' role in the LCD review. CMS may provide to the ALJ, and all parties to the LCD review, information identifying the person who represents the contractor or CMS,...

  16. 23 CFR 971.214 - Federal lands congestion management system (CMS).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 23 Highways 1 2010-04-01 2010-04-01 false Federal lands congestion management system (CMS). 971... Federal lands congestion management system (CMS). (a) For purposes of this section, congestion means the...) Develop criteria to determine when a CMS is to be implemented for a specific FH; and (2) Have CMS...

  17. 42 CFR 405.1063 - Applicability of laws, regulations and CMS Rulings.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 2 2013-10-01 2013-10-01 false Applicability of laws, regulations and CMS Rulings... Medicare Coverage Policies § 405.1063 Applicability of laws, regulations and CMS Rulings. (a) All laws and... the MAC. (b) CMS Rulings are published under the authority of the Administrator, CMS. Consistent...

  18. 42 CFR 405.2440 - Conditions for reinstatement after termination by CMS.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... CMS. 405.2440 Section 405.2440 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF... § 405.2440 Conditions for reinstatement after termination by CMS. When CMS has terminated an agreement with a Federally qualified health center, CMS will not enter into another agreement with the...

  19. 42 CFR 460.40 - Violations for which CMS may impose sanctions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 4 2010-10-01 2010-10-01 false Violations for which CMS may impose sanctions. 460... for which CMS may impose sanctions. In addition to other remedies authorized by law, CMS may impose any of the sanctions specified in §§ 460.42 and 460.46 if CMS determines that a PACE...

  20. 42 CFR 482.74 - Condition of participation: Notification to CMS.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 5 2010-10-01 2010-10-01 false Condition of participation: Notification to CMS... participation: Notification to CMS. (a) A transplant center must notify CMS immediately of any significant... conditions of participation. Instances in which CMS should receive information for follow up, as...

  1. 42 CFR 405.1063 - Applicability of laws, regulations and CMS Rulings.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 2 2011-10-01 2011-10-01 false Applicability of laws, regulations and CMS Rulings... Medicare Coverage Policies § 405.1063 Applicability of laws, regulations and CMS Rulings. (a) All laws and... the MAC. (b) CMS Rulings are published under the authority of the Administrator, CMS. Consistent...

  2. 42 CFR 426.415 - CMS' role in the LCD review.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 3 2013-10-01 2013-10-01 false CMS' role in the LCD review. 426.415 Section 426... DETERMINATIONS Review of an LCD § 426.415 CMS' role in the LCD review. CMS may provide to the ALJ, and all parties to the LCD review, information identifying the person who represents the contractor or CMS,...

  3. 42 CFR 423.2063 - Applicability of laws, regulations and CMS Rulings.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 3 2010-10-01 2010-10-01 false Applicability of laws, regulations and CMS Rulings..., ALJ Hearings, MAC review, and Judicial Review § 423.2063 Applicability of laws, regulations and CMS... on ALJs and the MAC. (b) CMS Rulings are published under the authority of the CMS...

  4. 42 CFR 423.2063 - Applicability of laws, regulations and CMS Rulings.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 3 2011-10-01 2011-10-01 false Applicability of laws, regulations and CMS Rulings..., ALJ Hearings, MAC review, and Judicial Review § 423.2063 Applicability of laws, regulations and CMS... on ALJs and the MAC. (b) CMS Rulings are published under the authority of the CMS...

  5. 42 CFR 426.415 - CMS' role in the LCD review.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 3 2010-10-01 2010-10-01 false CMS' role in the LCD review. 426.415 Section 426... Review of an LCD § 426.415 CMS' role in the LCD review. CMS may provide to the ALJ, and all parties to the LCD review, information identifying the person who represents the contractor or CMS, if...

  6. 42 CFR 405.1063 - Applicability of laws, regulations and CMS Rulings.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 2 2012-10-01 2012-10-01 false Applicability of laws, regulations and CMS Rulings... Medicare Coverage Policies § 405.1063 Applicability of laws, regulations and CMS Rulings. (a) All laws and... the MAC. (b) CMS Rulings are published under the authority of the Administrator, CMS. Consistent...

  7. 23 CFR 971.214 - Federal lands congestion management system (CMS).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 23 Highways 1 2011-04-01 2011-04-01 false Federal lands congestion management system (CMS). 971... Federal lands congestion management system (CMS). (a) For purposes of this section, congestion means the...) Develop criteria to determine when a CMS is to be implemented for a specific FH; and (2) Have CMS...

  8. Drift-Scale THC Seepage Model

    SciTech Connect

    C.R. Bryan

    2005-02-17

    The purpose of this report (REV04) is to document the thermal-hydrologic-chemical (THC) seepage model, which simulates the composition of waters that could potentially seep into emplacement drifts, and the composition of the gas phase. The THC seepage model is processed and abstracted for use in the total system performance assessment (TSPA) for the license application (LA). This report has been developed in accordance with ''Technical Work Plan for: Near-Field Environment and Transport: Coupled Processes (Mountain-Scale TH/THC/THM, Drift-Scale THC Seepage, and Post-Processing Analysis for THC Seepage) Report Integration'' (BSC 2005 [DIRS 172761]). The technical work plan (TWP) describes planning information pertaining to the technical scope, content, and management of this report. The plan for validation of the models documented in this report is given in Section 2.2.2, ''Model Validation for the DS THC Seepage Model,'' of the TWP. The TWP (Section 3.2.2) identifies Acceptance Criteria 1 to 4 for ''Quantity and Chemistry of Water Contacting Engineered Barriers and Waste Forms'' (NRC 2003 [DIRS 163274]) as being applicable to this report; however, in variance to the TWP, Acceptance Criterion 5 has also been determined to be applicable, and is addressed, along with the other Acceptance Criteria, in Section 4.2 of this report. Also, three FEPS not listed in the TWP (2.2.10.01.0A, 2.2.10.06.0A, and 2.2.11.02.0A) are partially addressed in this report, and have been added to the list of excluded FEPS in Table 6.1-2. This report has been developed in accordance with LP-SIII.10Q-BSC, ''Models''. This report documents the THC seepage model and a derivative used for validation, the Drift Scale Test (DST) THC submodel. The THC seepage model is a drift-scale process model for predicting the composition of gas and water that could enter waste emplacement drifts and the effects of mineral alteration on flow in rocks surrounding drifts. The DST THC submodel uses a drift

  9. Drift instabilities in current sheets with guide field

    SciTech Connect

    Yoon, P. H.; Lui, A. T. Y.

    2008-07-15

    Drift instabilities in current sheets with or without the guide field are investigated with a newly developed improved electrostatic dispersion relation. Traditional (local) theories of lower-hybrid drift instability typically assumes small electron drift speed, and expand the electron distribution function in Taylor series. This approximate treatment is removed in this paper. The resulting formalism is uniformly valid for an arbitrary magnitude of relative ion and electron drift speeds, and is valid for an arbitrary strength of the guide field.

  10. [Enteral tube feeding].

    PubMed

    Haller, Alois

    2014-03-01

    Tube feeding is an integral part of medical therapies, and can be easily managed also in the outpatient setting. Tube feeding by the stomach or small intestine with nasogastral or nasojejunal tubes is common in clinical practice. Long-term nutrition is usually provided through a permanent tube, i. e. a percutaneous endoscopic gastrostomy (PEG). Modern portable nutrition pumps are used to cover the patient's nutritional needs. Enteral nutrition is always indicated if patients can not or should not eat or if nutritional requirements cannot be covered within 3 days after an intervention, e. g. after abdominal surgery. Industrially produced tube feedings with defined substrate concentrations are being used; different compositions of nutrients, such as glutamine fish oil etc., are used dependent on the the condition of the patient. Enteral nutrition may be associated with complications of the tube, e. g. dislocation, malposition or obstruction, as well as the feeding itself, e. g.hyperglycaemia, electrolyte disturbances, refeeding syndrome diarrhea or aspiration). However, the benefit of tube feeding usually exceeds the potential harm substantially.

  11. Ocean modelling aspects for drift applications

    NASA Astrophysics Data System (ADS)

    Stephane, L.; Pierre, D.

    2010-12-01

    Nowadays, many authorities in charge of rescue-at-sea operations lean on operational oceanography products to outline research perimeters. Moreover, current fields estimated with sophisticated ocean forecasting systems can be used as input data for oil spill/ adrift object fate models. This emphasises the necessity of an accurate sea state forecast, with a mastered level of reliability. This work focuses on several problems inherent to drift modeling, dealing in the first place with the efficiency of the oceanic current field representation. As we want to discriminate the relevance of a particular physical process or modeling option, the idea is to generate series of current fields of different characteristics and then qualify them in term of drift prediction efficiency. Benchmarked drift scenarios were set up from real surface drifters data, collected in the Mediterranean sea and off the coasts of Angola. The time and space scales that we are interested in are about 72 hr forecasts (typical timescale communicated in case of crisis), for distance errors that we hope about a few dozen of km around the forecast (acceptable for reconnaissance by aircrafts) For the ocean prediction, we used some regional oceanic configurations based on the NEMO 2.3 code, nested into Mercator 1/12° operational system. Drift forecasts were computed offline with Mothy (Météo France oil spill modeling system) and Ariane (B. Blanke, 1997), a Lagrangian diagnostic tool. We were particularly interested in the importance of the horizontal resolution, vertical mixing schemes, and any processes that may impact the surface layer. The aim of the study is to ultimately point at the most suitable set of parameters for drift forecast use inside operational oceanic systems. We are also motivated in assessing the relevancy of ensemble forecasts regarding determinist predictions. Several tests showed that mis-described observed trajectories can finally be modelled statistically by using uncertainties

  12. Longevity of Emplacement Drift Ground Support Materials

    SciTech Connect

    Tang, David H.

    2001-05-30

    The purpose of this analysis is to evaluate the factors affecting the longevity of emplacement drift ground support materials and to develop a basis for the selection of materials for ground support that will function throughout the preclosure period of a potential repository at Yucca Mountain. REV 01 ICN 01 of this analysis is developed in accordance with AP-3.10Q, Analyses and Models, Revision 2, ICN 4, and prepared in accordance with the Technical Work Plan for Subsurface Design Section FY 01 Work Activities (CRWMS M&O 2001a). The objective of this analysis is to update the previous analysis (CRWMS M&O 2000a) to account for related changes in the Ground Control System Description Document (CRWMS M&O 2000b), the Monitored Geologic Repository Project Description Document, which is included in the Requirements and Criteria for Implementing a Repository Design that can be Operated Over a Range of Thermal Modes (BSC 2001), input information, and in environmental conditions, and to provide updated information on candidate ground support materials. Candidate materials for ground support are carbon steel and cement grout. Steel is mainly used for steel sets, lagging, channel, rock bolts, and wire mesh. Cement grout is only considered in the case of grouted rock bolts. Candidate materials for the emplacement drift invert are carbon steel and granular natural material. Materials are evaluated for the repository emplacement drift environment based on the updated thermal loading condition and waste package design. The analysis consists of the following tasks: (1) Identify factors affecting the longevity of ground support materials for use in emplacement drifts. (2) Review existing documents concerning the behavior of candidate ground support materials during the preclosure period. (3) Evaluate impacts of temperature and radiation effects on mechanical and thermal properties of steel. Assess corrosion potential of steel at emplacement drift environment. (4) Evaluate factors

  13. DRIFTSIM, A Computer Program for Estimating Spray Drift Distances

    Technology Transfer Automated Retrieval System (TEKTRAN)

    One of the severe problems with spraying pesticides is the spray drift. Drift is a problem if chemicals are sprayed too close to residential areas, livestock facilities, bodies of water, or sensitive crops. Complaints regarding spray drift are routinely brought to state departments of agriculture,...

  14. Age of marginal Wisconsin drift at corry, northwestern Pennsylvania

    USGS Publications Warehouse

    Droste, J.B.; Rubin, M.; White, G.W.

    1959-01-01

    Marl began to accumulate about 14,000 years ago, as determined by radiocarbon dating, in a pond in a kettle hole in Kent drift at Corry, Pa., 9 miles inside the Wisconsin drift margin. This radiocarbon age represents the minimum time since the disappearance of the ice from Corry and confirms an assignment of Cary age to the drift.

  15. Using the CMS threaded framework in a production environment

    DOE PAGES

    Jones, C. D.; Contreras, L.; Gartung, P.; ...

    2015-12-23

    During 2014, the CMS Offline and Computing Organization completed the necessary changes to use the CMS threaded framework in the full production environment. We will briefly discuss the design of the CMS Threaded Framework, in particular how the design affects scaling performance. We will then cover the effort involved in getting both the CMSSW application software and the workflow management system ready for using multiple threads for production. Finally, we will present metrics on the performance of the application and workflow system as well as the difficulties which were uncovered. As a result, we will end with CMS' plans formore » using the threaded framework to do production for LHC Run 2.« less

  16. Triggering on New Physics with the CMS Detector

    SciTech Connect

    Bose, Tulika

    2016-07-29

    The BU CMS group led by PI Tulika Bose has made several significant contributions to the CMS trigger and to the analysis of the data collected by the CMS experiment. Group members have played a leading role in the optimization of trigger algorithms, the development of trigger menus, and the online operation of the CMS High-Level Trigger. The group’s data analysis projects have concentrated on a broad spectrum of topics that take full advantage of their strengths in jets and calorimetry, trigger, lepton identification as well as their considerable experience in hadron collider physics. Their publications cover several searches for new heavy gauge bosons, vector-like quarks as well as diboson resonances.

  17. Implementation of NASTRAN on the IBM/370 CMS operating system

    NASA Technical Reports Server (NTRS)

    Britten, S. S.; Schumacker, B.

    1980-01-01

    The NASA Structural Analysis (NASTRAN) computer program is operational on the IBM 360/370 series computers. While execution of NASTRAN has been described and implemented under the virtual storage operating systems of the IBM 370 models, the IBM 370/168 computer can also operate in a time-sharing mode under the virtual machine operating system using the Conversational Monitor System (CMS) subset. The changes required to make NASTRAN operational under the CMS operating system are described.

  18. Searches for New Physics with Photons in CMS at LHC

    NASA Astrophysics Data System (ADS)

    Newman, Harvey

    2010-02-01

    A brief summary of the CMS discovery potential for new physics involving signatures with photons in the final state is presented. In particular, searches in the coming years for ADD gravitons, Unparticles and Gauge-Mediated Supersymmetry in diphoton final states, and searches for compositeness in excited lepton decays are described. Since the discovery in these channels will rely heavily on performance of the CMS electromagnetic calorimeter, the relevant aspects of its design and operation in situ at the LHC are also discussed. )

  19. The run control and monitoring system of the CMS experiment

    SciTech Connect

    Bauer, Gerry; Boyer, Vincent; Branson, James; Brett, Angela; Cano, Eric; Carboni, Andrea; Ciganek, Marek; Cittolin, Sergio; O'Dell, Vivian; Erhan, Samim; Gigi, Dominique; /CERN /Kyungpook Natl. U. /MIT /UCLA /CERN /INFN, Legnaro

    2007-10-01

    The CMS experiment at the LHC at CERN will start taking data in 2008. To configure, control and monitor the experiment during data-taking the Run Control and Monitoring System (RCMS) was developed. This paper describes the architecture and the technology used to implement the RCMS, as well as the deployment and commissioning strategy of this important component of the online software for the CMS experiment.

  20. CMS Made Simple: A ROOT-less workflow for educating undergraduates about CMS data analysis

    NASA Astrophysics Data System (ADS)

    Muenkel, Jessica; Bellis, Matthew; CMS Collaboration

    2015-04-01

    Involving students in research is an important part of the undergraduate experience. By working on a problem where the answer is unknown, students apply what they learn in the classroom to a real-world challenge, which reinforce the more theoretical aspects of their courses. Many undergraduates are drawn to the idea of working on big particle physics experiments like CMS (Compact Muon Solenoid) at the Large Hadron Collider (LHC), but the threshold is high for them to contribute to an analysis. Those of us who perform research spend much of our time debugging scripts and C + + code, usually specific to that one experiment. If an undergraduate is not going on to grad school in particle physics, much of that work can be wasted on them. However, there are many general skills that students can learn by working on parts of a particle physics analysis (relativistic kinematics, statistics, coding, etc.), and so it is worth trying to lower the threshold to engage students. In this poster, we present a suite of datasets and tools, built around the Python programming language that simplify the workflow and allow a student to interact with CMS data immediately. While it is a staple of the particle physics community, we avoid using the ROOT toolkit, so as to stick to more broadly used tools that the students can take with them. These tools are being used to supplement the educational examples for the CERN Open Data Portal, a project to make LHC datasets available to the general public. The successes and limitations of CMS Made Simple will be discussed and links are provided to these tools.

  1. Bottle appeal drifts across the Pacific

    NASA Astrophysics Data System (ADS)

    Ebbesmeyer, Curtis; Ingraham, W. James, Jr.; McKinnon, Richard; Okubo, Akira; Wang, Dong-Ping; Strickland, Richard; Willing, Peter

    Pacific drift currents were used by a group of oceanographers to estimate the path of a drift bottle that was found on a beach of Barkley Sound in Vancouver Island by Richard Strickland on June 10, 1990. The Chinese rice wine bottle, which remained unopened until December 18, 1991, contained six leaflets, one appealing for the release of China's well-known dissident, Wei Jingsheng. The bottle was one of thousands set adrift as part of a propaganda effort from the islands of Quemoy and Matsu off mainland China shortly after Wei was sentenced in 1979 to 15 years in prison (see Figure 1 for locations). Wei was in poor health and still in prison when the bottle made its way across the Pacific Ocean.

  2. Test Particles, Test Modes and Drift Turbulence

    SciTech Connect

    Vlad, Madalina; Spineanu, Florin

    2008-10-15

    Strong electrostatic turbulence in magnetically confined plasmas is characterized by trapping or eddying of test particle trajectories produced by the ExB stochastic drift. Trapping is shown to produce non-standard statistics of trajectories: non-Gaussian distribution, memory effects and quasi-coherence. Two types of effects produced by trapping are analyzed. The first type concerns particle and energy transport and consists in very strong nonlinear modification of the diffusion coefficients. Anomalous diffusion regimes are obtained when the other components of the motion (particle collisions, plasma rotation, the motion along the confining magnetic field) do not destroy trajectory eddying. The second type of effects are evidenced by studying test modes on turbulent plasma. We show that trappyng provides the physical mechanism for the inverse cascade observed in drift turbulence.

  3. Electromagnetic nonlinear gyrokinetics with polarization drift

    SciTech Connect

    Duthoit, F.-X.; Hahm, T. S.; Wang, Lu

    2014-08-15

    A set of new nonlinear electromagnetic gyrokinetic Vlasov equation with polarization drift and gyrokinetic Maxwell equations is systematically derived by using the Lie-transform perturbation method in toroidal geometry. For the first time, we recover the drift-kinetic expression for parallel acceleration [R. M. Kulsrud, in Basic Plasma Physics, edited by A. A. Galeev and R. N. Sudan (North-Holland, Amsterdam, 1983)] from the nonlinear gyrokinetic equations, thereby bridging a gap between the two formulations. This formalism should be useful in addressing nonlinear ion Compton scattering of intermediate-mode-number toroidal Alfvén eigenmodes for which the polarization current nonlinearity [T. S. Hahm and L. Chen, Phys. Rev. Lett. 74, 266 (1995)] and the usual finite Larmor radius effects should compete.

  4. Longevity of emplacement drift ground support materials

    SciTech Connect

    Tang, David

    2000-04-01

    The purpose of this analysis is to evaluate the factors affecting the longevity of emplacement drift ground support materials and to develop a basis for the selection of materials for ground support that will function throughout the preclosure period of a potential repository at Yucca Mountain. The Development Plan (DP) for this analysis is given in Longevity of Emplacement Drift Ground Support Materials (CRWMS M and O 1999a). The objective of this analysis is to update the previous analysis (CRWMS M and O 2000a) to account for related changes in the Ground Control System Description Document (CRWMS M and O 2000b), the Monitored Geologic Repository Project Description Document (CRWMS M and O 1999b), and in environmental conditions, and to provide updated information on candidate ground support materials.

  5. Electromagnetic nonlinear gyrokinetics with polarization drift

    NASA Astrophysics Data System (ADS)

    Duthoit, F.-X.; Hahm, T. S.; Wang, Lu

    2014-08-01

    A set of new nonlinear electromagnetic gyrokinetic Vlasov equation with polarization drift and gyrokinetic Maxwell equations is systematically derived by using the Lie-transform perturbation method in toroidal geometry. For the first time, we recover the drift-kinetic expression for parallel acceleration [R. M. Kulsrud, in Basic Plasma Physics, edited by A. A. Galeev and R. N. Sudan (North-Holland, Amsterdam, 1983)] from the nonlinear gyrokinetic equations, thereby bridging a gap between the two formulations. This formalism should be useful in addressing nonlinear ion Compton scattering of intermediate-mode-number toroidal Alfvén eigenmodes for which the polarization current nonlinearity [T. S. Hahm and L. Chen, Phys. Rev. Lett. 74, 266 (1995)] and the usual finite Larmor radius effects should compete.

  6. Mining Concept-Drifting Data Streams

    NASA Astrophysics Data System (ADS)

    Wang, Haixun; Yu, Philip S.; Han, Jiawei

    Knowledge discovery from infinite data streams is an important and difficult task. We are facing two challenges, the overwhelming volume and the concept drifts of the streaming data. In this chapter, we introduce a general framework for mining concept-drifting data streams using weighted ensemble classifiers. We train an ensemble of classification models, such as C4.5, RIPPER, naive Bayesian, etc., from sequential chunks of the data stream. The classifiers in the ensemble are judiciously weighted based on their expected classification accuracy on the test data under the time-evolving environment. Thus, the ensemble approach improves both the efficiency in learning the model and the accuracy in performing classification. Our empirical study shows that the proposed methods have substantial advantage over single-classifier approaches in prediction accuracy, and the ensemble framework is effective for a variety of classification models.

  7. Rough differential equations with unbounded drift term

    NASA Astrophysics Data System (ADS)

    Riedel, S.; Scheutzow, M.

    2017-01-01

    We study controlled differential equations driven by a rough path (in the sense of T. Lyons) with an additional, possibly unbounded drift term. We show that the equation induces a solution flow if the drift grows at most linearly. Furthermore, we show that the semiflow exists assuming only appropriate one-sided growth conditions. We provide bounds for both the flow and the semiflow. Applied to stochastic analysis, our results imply strong completeness and the existence of a stochastic (semi)flow for a large class of stochastic differential equations. If the driving process is Gaussian, we can further deduce (essentially) sharp tail estimates for the (semi)flow and a Freidlin-Wentzell-type large deviation result.

  8. Gas sensor with attenuated drift characteristic

    DOEpatents

    Chen, Ing-Shin [Danbury, CT; Chen, Philip S. H. [Bethel, CT; Neuner, Jeffrey W [Bethel, CT; Welch, James [Fairfield, CT; Hendrix, Bryan [Danbury, CT; Dimeo, Jr., Frank [Danbury, CT

    2008-05-13

    A sensor with an attenuated drift characteristic, including a layer structure in which a sensing layer has a layer of diffusional barrier material on at least one of its faces. The sensor may for example be constituted as a hydrogen gas sensor including a palladium/yttrium layer structure formed on a micro-hotplate base, with a chromium barrier layer between the yttrium layer and the micro-hotplate, and with a tantalum barrier layer between the yttrium layer and an overlying palladium protective layer. The gas sensor is useful for detection of a target gas in environments susceptible to generation or incursion of such gas, and achieves substantial (e.g., >90%) reduction of signal drift from the gas sensor in extended operation, relative to a corresponding gas sensor lacking the diffusional barrier structure of the invention

  9. Passive appendages generate drift through symmetry breaking

    PubMed Central

    Lācis, U.; Brosse, N.; Ingremeau, F.; Mazzino, A.; Lundell, F.; Kellay, H.; Bagheri, S.

    2014-01-01

    Plants and animals use plumes, barbs, tails, feathers, hairs and fins to aid locomotion. Many of these appendages are not actively controlled, instead they have to interact passively with the surrounding fluid to generate motion. Here, we use theory, experiments and numerical simulations to show that an object with a protrusion in a separated flow drifts sideways by exploiting a symmetry-breaking instability similar to the instability of an inverted pendulum. Our model explains why the straight position of an appendage in a fluid flow is unstable and how it stabilizes either to the left or right of the incoming flow direction. It is plausible that organisms with appendages in a separated flow use this newly discovered mechanism for locomotion; examples include the drift of plumed seeds without wind and the passive reorientation of motile animals. PMID:25354545

  10. Evolution of CMS Workload Management Towards Multicore Job Support

    SciTech Connect

    Perez-Calero Yzquierdo, A.; Hernández, J. M.; Khan, F. A.; Letts, J.; Majewski, K.; Rodrigues, A. M.; McCrea, A.; Vaandering, E.

    2015-12-23

    The successful exploitation of multicore processor architectures is a key element of the LHC distributed computing system in the coming era of the LHC Run 2. High-pileup complex-collision events represent a challenge for the traditional sequential programming in terms of memory and processing time budget. The CMS data production and processing framework is introducing the parallel execution of the reconstruction and simulation algorithms to overcome these limitations. CMS plans to execute multicore jobs while still supporting singlecore processing for other tasks difficult to parallelize, such as user analysis. The CMS strategy for job management thus aims at integrating single and multicore job scheduling across the Grid. This is accomplished by employing multicore pilots with internal dynamic partitioning of the allocated resources, capable of running payloads of various core counts simultaneously. An extensive test programme has been conducted to enable multicore scheduling with the various local batch systems available at CMS sites, with the focus on the Tier-0 and Tier-1s, responsible during 2015 of the prompt data reconstruction. Scale tests have been run to analyse the performance of this scheduling strategy and ensure an efficient use of the distributed resources. This paper presents the evolution of the CMS job management and resource provisioning systems in order to support this hybrid scheduling model, as well as its deployment and performance tests, which will enable CMS to transition to a multicore production model for the second LHC run.

  11. Improving CMS data transfers among its distributed computing facilities

    NASA Astrophysics Data System (ADS)

    Flix, J.; Magini, N.; Sartirana, A.

    2011-12-01

    CMS computing needs reliable, stable and fast connections among multi-tiered computing infrastructures. For data distribution, the CMS experiment relies on a data placement and transfer system, PhEDEx, managing replication operations at each site in the distribution network. PhEDEx uses the File Transfer Service (FTS), a low level data movement service responsible for moving sets of files from one site to another, while allowing participating sites to control the network resource usage. FTS servers are provided by Tier-0 and Tier-1 centres and are used by all computing sites in CMS, according to the established policy. FTS needs to be set up according to the Grid site's policies, and properly configured to satisfy the requirements of all Virtual Organizations making use of the Grid resources at the site. Managing the service efficiently requires good knowledge of the CMS needs for all kinds of transfer workflows. This contribution deals with a revision of FTS servers used by CMS, collecting statistics on their usage, customizing the topologies and improving their setup in order to keep CMS transferring data at the desired levels in a reliable and robust way.

  12. Evolution of CMS workload management towards multicore job support

    NASA Astrophysics Data System (ADS)

    Pérez-Calero Yzquierdo, A.; Hernández, J. M.; Khan, F. A.; Letts, J.; Majewski, K.; Rodrigues, A. M.; McCrea, A.; Vaandering, E.

    2015-12-01

    The successful exploitation of multicore processor architectures is a key element of the LHC distributed computing system in the coming era of the LHC Run 2. High-pileup complex-collision events represent a challenge for the traditional sequential programming in terms of memory and processing time budget. The CMS data production and processing framework is introducing the parallel execution of the reconstruction and simulation algorithms to overcome these limitations. CMS plans to execute multicore jobs while still supporting singlecore processing for other tasks difficult to parallelize, such as user analysis. The CMS strategy for job management thus aims at integrating single and multicore job scheduling across the Grid. This is accomplished by employing multicore pilots with internal dynamic partitioning of the allocated resources, capable of running payloads of various core counts simultaneously. An extensive test programme has been conducted to enable multicore scheduling with the various local batch systems available at CMS sites, with the focus on the Tier-0 and Tier-1s, responsible during 2015 of the prompt data reconstruction. Scale tests have been run to analyse the performance of this scheduling strategy and ensure an efficient use of the distributed resources. This paper presents the evolution of the CMS job management and resource provisioning systems in order to support this hybrid scheduling model, as well as its deployment and performance tests, which will enable CMS to transition to a multicore production model for the second LHC run.

  13. Oceanic sediment volumes and continental drift.

    PubMed

    Gilluly, J

    1969-11-21

    The volume of sediment off the Atlantic Coast of the United States is at least six times as great as that off the Pacific Coast. This disparity is readily accounted for if the continent is drifting westward and has overrun large volumes of sediment on a former Benioff zone. Such an overrunning is also consonant with many features of the geology of the western United States.

  14. Inertial Orientation Trackers with Drift Compensation

    NASA Technical Reports Server (NTRS)

    Foxlin, Eric M.

    2008-01-01

    A class of inertial-sensor systems with drift compensation has been invented for use in measuring the orientations of human heads (and perhaps other, similarly sized objects). These systems can be designed to overcome some of the limitations of prior orientation-measuring systems that are based, variously, on magnetic, optical, mechanical-linkage, and acoustical principles. The orientation signals generated by the systems of this invention could be used for diverse purposes, including controlling head-orientation-dependent virtual reality visual displays or enabling persons whose limbs are paralyzed to control machinery by means of head motions. The inventive concept admits to variations too numerous to describe here, making it necessary to limit this description to a typical system, the selected aspects of which are illustrated in the figure. A set of sensors is mounted on a bracket on a band or a cap that gently but firmly grips the wearer s head to be tracked. Among the sensors are three drift-sensitive rotationrate sensors (e.g., integrated-circuit angular- rate-measuring gyroscopes), which put out DC voltages nominally proportional to the rates of rotation about their sensory axes. These sensors are mounted in mutually orthogonal orientations for measuring rates of rotation about the roll, pitch, and yaw axes of the wearer s head. The outputs of these rate sensors are conditioned and digitized, and the resulting data are fed to an integrator module implemented in software in a digital computer. In the integrator module, the angular-rate signals are jointly integrated by any of several established methods to obtain a set of angles that represent approximately the orientation of the head in an external, inertial coordinate system. Because some drift is always present as a component of an angular position computed by integrating the outputs of angular-rate sensors, the orientation signal is processed further in a drift-compensator software module.

  15. Drift mode accelerometry for spaceborne gravity measurements

    NASA Astrophysics Data System (ADS)

    Conklin, John W.

    2015-11-01

    A drift mode accelerometer is a precision instrument for spacecraft that overcomes much of the acceleration noise and readout dynamic range limitations of traditional electrostatic accelerometers. It has the potential of achieving acceleration noise performance similar to that of drag-free systems over a restricted frequency band without the need for external drag-free control or continuous spacecraft propulsion. Like traditional accelerometers, the drift mode accelerometer contains a high-density test mass surrounded by an electrode housing, which can control and sense all six degrees of freedom of the test mass. Unlike traditional accelerometers, the suspension system is operated with a low duty cycle so that the limiting suspension force noise only acts over brief, known time intervals, which can be neglected in the data analysis. The readout is performed using a laser interferometer which is immune to the dynamic range limitations of even the best voltage references typically used to determine the inertial acceleration of electrostatic accelerometers. The drift mode accelerometer is a novel offshoot of the like-named operational mode of the LISA Pathfinder spacecraft, in which its test mass suspension system is cycled on and off to estimate the acceleration noise associated with the front-end electronics. This paper presents the concept of a drift mode accelerometer, describes the operation of such a device, develops models for its performance with respect to non-drag-free satellite geodesy and gravitational wave missions, and discusses plans for testing the performance of a prototype sensor in the laboratory using torsion pendula.

  16. The CMS Tracker Detector Control System

    NASA Astrophysics Data System (ADS)

    Yousaf Shah, S.; Tsirou, Andromachi; Verdini, Piero Giorgio; Hartmann, Frank; Masetti, Lorenzo; Dirkes, Guido H.; Stringer, Robert; Fahrer, Manuel

    2009-06-01

    The Compact Muon Solenoid DCS (CMS) Silicon Strip Tracker is by far the largest detector ever built in micro-strip technology. It has an active surface area of 198 m 2 consisting of 15,148 silicon modules with 9,316,352 readout channels read via 75,376 Analog Pipeline Voltage (APV) front-end chips and a total of 24,244 sensors. The Detector Control System (DCS) for the Tracker is a distributed control system that operates ˜2000 power supplies for the silicon modules and also monitors its environmental sensors. The DCS receives information from about 10 3 environmental probes (temperature and humidity sensors) located inside the detector's volume and values from these probes are driven through the Programmable Logic Controllers (PLC) of the Detector Safety System (DSS). A total of 10 5 parameters are read out from the dedicated chips in the front-end electronics of the detector via the data acquisition system, and a total of 10 5 parameters are read from the power supply modules. All these parameters are monitored, evaluated and correlated with the detector layout; actions are taken under specific conditions. The hardware for DCS consists of 10 PCs and 10 PLC systems that are continuously running the necessary control and safety routines. The DCS is a fundamental tool for the Tracker operation and its safety.

  17. Optimizing CMS build infrastructure via Apache Mesos

    DOE PAGES

    Abdurachmanov, David; Degano, Alessandro; Elmer, Peter; ...

    2015-12-23

    The Offline Software of the CMS Experiment at the Large Hadron Collider (LHC) at CERN consists of 6M lines of in-house code, developed over a decade by nearly 1000 physicists, as well as a comparable amount of general use open-source code. A critical ingredient to the success of the construction and early operation of the WLCG was the convergence, around the year 2000, on the use of a homogeneous environment of commodity x86-64 processors and Linux.Apache Mesos is a cluster manager that provides efficient resource isolation and sharing across distributed applications, or frameworks. It can run Hadoop, Jenkins, Spark, Aurora,more » and other applications on a dynamically shared pool of nodes. Lastly, we present how we migrated our continuous integration system to schedule jobs on a relatively small Apache Mesos enabled cluster and how this resulted in better resource usage, higher peak performance and lower latency thanks to the dynamic scheduling capabilities of Mesos.« less

  18. Thermal blooming effects of gas on laser propagation in a closed tube

    NASA Astrophysics Data System (ADS)

    Yu, Huahua; Hu, Peng; An, Jianzhu; Zhang, Feizhou

    2015-02-01

    Thermal blooming effect of inner optical path remarkably affects far-field beam quality and energy distributions which should be taken into account in high energy laser (HEL) system. A physical model of thermal blooming is established. Based on the model, numerical simulations are carried out to study both the influences of absorptions of laser energy and tube structures on laser propagation in a closed tube. The natural convection of gas is numerically simulated by computational fluid dynamics (CFD) method. Gas temperature distributions, additional phase differences (APDs), variations of beam quality and drifts of mass center in far-field under different absorptions of laser energy and tube structures (Z-shaped and U-shaped) are compared, respectively. By analysis of numerical simulation results, the switch time of heat conduction and heat convection in gas is distinguished, which significantly affects the variations of beam quality and drifts of mass center in far-field. In addition, it also indicates that less absorption of laser energy improves beam quality and delays the switch time of beam quality between two heat transfer mechanisms. Therefore, it is significant to control the absorptions of laser energy for HEL system in practice. Different tube structures owning different beam paths change the distributions of APDs and thus influence beam quality. APDs of the two horizontal sections are the same (superposition effect) for Z-shaped tube while inverse (compensation effect) for U-shaped tube. It is shown that drifts of mass center in far-field are greatly suppressed for U-shaped tube than that of Z-shaped tube and beam quality is also improved.

  19. Snorkeling and Jones tubes.

    PubMed

    Lam, Lewis Y W; Weatherhead, Robert G

    2015-01-01

    We report a case of tympanic membrane rupture during snorkeling in a 17-year-old young man who had previously undergone bilateral Jones tubes placed for epiphora. To our knowledge, this phenomenon has not been previously reported.

  20. Enteral nutrition by tube.

    PubMed

    Armstrong, P J; Hand, M S; Frederick, G S

    1990-01-01

    When oral intake is unsatisfactory or contraindicated, maintenance of nutrition by tube feeding is an alternative to the parenteral route. A large volume of research data supports the decision to use the enteral route whenever possible. Entry of food into the alimentary tract is a stimulus to structural and functional maintenance of that tract. Enteral nutrition can be given via indwelling nasoesophageal, pharyngostomy, esophagostomy, percutaneous or surgical gastrostomy, or enterostomy tube. Use of an appropriate catheter, familiarity with the technique used, and careful patient selection and monitoring are important factors in successful tube feeding. Blenderized pet food diets should be fed whenever possible; commercially available liquid diets provide an alternative when tube caliber or patient factors preclude the use of blenderized foods.