Sample records for cmut array integrated

  1. Miniaturized ultrasound imaging probes enabled by CMUT arrays with integrated frontend electronic circuits.

    PubMed

    Khuri-Yakub, B T; Oralkan, Omer; Nikoozadeh, Amin; Wygant, Ira O; Zhuang, Steve; Gencel, Mustafa; Choe, Jung Woo; Stephens, Douglas N; de la Rama, Alan; Chen, Peter; Lin, Feng; Dentinger, Aaron; Wildes, Douglas; Thomenius, Kai; Shivkumar, Kalyanam; Mahajan, Aman; Seo, Chi Hyung; O'Donnell, Matthew; Truong, Uyen; Sahn, David J

    2010-01-01

    Capacitive micromachined ultrasonic transducer (CMUT) arrays are conveniently integrated with frontend integrated circuits either monolithically or in a hybrid multichip form. This integration helps with reducing the number of active data processing channels for 2D arrays. This approach also preserves the signal integrity for arrays with small elements. Therefore CMUT arrays integrated with electronic circuits are most suitable to implement miniaturized probes required for many intravascular, intracardiac, and endoscopic applications. This paper presents examples of miniaturized CMUT probes utilizing 1D, 2D, and ring arrays with integrated electronics.

  2. Miniaturized Ultrasound Imaging Probes Enabled by CMUT Arrays with Integrated Frontend Electronic Circuits

    PubMed Central

    Khuri-Yakub, B. (Pierre) T.; Oralkan, Ömer; Nikoozadeh, Amin; Wygant, Ira O.; Zhuang, Steve; Gencel, Mustafa; Choe, Jung Woo; Stephens, Douglas N.; de la Rama, Alan; Chen, Peter; Lin, Feng; Dentinger, Aaron; Wildes, Douglas; Thomenius, Kai; Shivkumar, Kalyanam; Mahajan, Aman; Seo, Chi Hyung; O’Donnell, Matthew; Truong, Uyen; Sahn, David J.

    2010-01-01

    Capacitive micromachined ultrasonic transducer (CMUT) arrays are conveniently integrated with frontend integrated circuits either monolithically or in a hybrid multichip form. This integration helps with reducing the number of active data processing channels for 2D arrays. This approach also preserves the signal integrity for arrays with small elements. Therefore CMUT arrays integrated with electronic circuits are most suitable to implement miniaturized probes required for many intravascular, intracardiac, and endoscopic applications. This paper presents examples of miniaturized CMUT probes utilizing 1D, 2D, and ring arrays with integrated electronics. PMID:21097106

  3. Design of a front-end integrated circuit for 3D acoustic imaging using 2D CMUT arrays.

    PubMed

    Ciçek, Ihsan; Bozkurt, Ayhan; Karaman, Mustafa

    2005-12-01

    Integration of front-end electronics with 2D capacitive micromachined ultrasonic transducer (CMUT) arrays has been a challenging issue due to the small element size and large channel count. We present design and verification of a front-end drive-readout integrated circuit for 3D ultrasonic imaging using 2D CMUT arrays. The circuit cell dedicated to a single CMUT array element consists of a high-voltage pulser and a low-noise readout amplifier. To analyze the circuit cell together with the CMUT element, we developed an electrical CMUT model with parameters derived through finite element analysis, and performed both the pre- and postlayout verification. An experimental chip consisting of 4 X 4 array of the designed circuit cells, each cell occupying a 200 X 200 microm2 area, was formed for the initial test studies and scheduled for fabrication in 0.8 microm, 50 V CMOS technology. The designed circuit is suitable for integration with CMUT arrays through flip-chip bonding and the CMUT-on-CMOS process.

  4. Monolithic CMUT on CMOS Integration for Intravascular Ultrasound Applications

    PubMed Central

    Zahorian, Jaime; Hochman, Michael; Xu, Toby; Satir, Sarp; Gurun, Gokce; Karaman, Mustafa; Degertekin, F. Levent

    2012-01-01

    One of the most important promises of capacitive micromachined ultrasonic transducer (CMUT) technology is integration with electronics. This approach is required to minimize the parasitic capacitances in the receive mode, especially in catheter based volumetric imaging arrays where the elements need to be small. Furthermore, optimization of the available silicon area and minimized number of connections occurs when the CMUTs are fabricated directly above the associated electronics. Here, we describe successful fabrication and performance evaluation of CMUT arrays for intravascular imaging on custom designed CMOS receiver electronics from a commercial IC foundry. The CMUT on CMOS process starts with surface isolation and mechanical planarization of the CMOS electronics to reduce topography. The rest of the CMUT fabrication is achieved by modifying a low temperature micromachining process through the addition of a single mask and developing a dry etching step to produce sloped sidewalls for simple and reliable CMUT to CMOS interconnection. This CMUT to CMOS interconnect method reduced the parasitic capacitance by a factor of 200 when compared with a standard wire bonding method. Characterization experiments indicate that the CMUT on CMOS elements are uniform in frequency response and are similar to CMUTs simultaneously fabricated on standard silicon wafers without electronics integration. Experiments on a 1.6 mm diameter dual-ring CMUT array with a 15 MHz center frequency show that both the CMUTs and the integrated CMOS electronics are fully functional. The SNR measurements indicate that the performance is adequate for imaging CTOs located 1 cm away from the CMUT array. PMID:23443701

  5. Monolithic CMUT-on-CMOS integration for intravascular ultrasound applications.

    PubMed

    Zahorian, Jaime; Hochman, Michael; Xu, Toby; Satir, Sarp; Gurun, Gokce; Karaman, Mustafa; Degertekin, F Levent

    2011-12-01

    One of the most important promises of capacitive micromachined ultrasonic transducer (CMUT) technology is integration with electronics. This approach is required to minimize the parasitic capacitances in the receive mode, especially in catheter-based volumetric imaging arrays, for which the elements must be small. Furthermore, optimization of the available silicon area and minimized number of connections occurs when the CMUTs are fabricated directly above the associated electronics. Here, we describe successful fabrication and performance evaluation of CMUT arrays for intravascular imaging on custom-designed CMOS receiver electronics from a commercial IC foundry. The CMUT-on-CMOS process starts with surface isolation and mechanical planarization of the CMOS electronics to reduce topography. The rest of the CMUT fabrication is achieved by modifying a low-temperature micromachining process through the addition of a single mask and developing a dry etching step to produce sloped sidewalls for simple and reliable CMUT-to-CMOS interconnection. This CMUT-to-CMOS interconnect method reduced the parasitic capacitance by a factor of 200 when compared with a standard wire-bonding method. Characterization experiments indicate that the CMUT-on-CMOS elements are uniform in frequency response and are similar to CMUTs simultaneously fabricated on standard silicon wafers without electronics integration. Ex- periments on a 1.6-mm-diameter dual-ring CMUT array with a center frequency of 15 MHz show that both the CMUTs and the integrated CMOS electronics are fully functional. The SNR measurements indicate that the performance is adequate for imaging chronic total occlusions located 1 cm from the CMUT array.

  6. Frontend Receiver Electronics for High Frequency Monolithic CMUT-on-CMOS Imaging Arrays

    PubMed Central

    Gurun, Gokce; Hasler, Paul; Degertekin, F. Levent

    2012-01-01

    This paper describes the design of CMOS receiver electronics for monolithic integration with capacitive micromachined ultrasonic transducer (CMUT) arrays for high-frequency intravascular ultrasound imaging. A custom 8-inch wafer is fabricated in a 0.35 μm two-poly, four-metal CMOS process and then CMUT arrays are built on top of the application specific integrated circuits (ASICs) on the wafer. We discuss advantages of the single-chip CMUT-on-CMOS approach in terms of receive sensitivity and SNR. Low-noise and high-gain design of a transimpedance amplifier (TIA) optimized for a forward-looking volumetric-imaging CMUT array element is discussed as a challenging design example. Amplifier gain, bandwidth, dynamic range and power consumption trade-offs are discussed in detail. With minimized parasitics provided by the CMUT-on-CMOS approach, the optimized TIA design achieves a 90 fA/√Hz input referred current noise, which is less than the thermal-mechanical noise of the CMUT element. We show successful system operation with a pulse-echo measurement. Transducer noise-dominated detection in immersion is also demonstrated through output noise spectrum measurement of the integrated system at different CMUT bias voltages. A noise figure of 1.8 dB is obtained in the designed CMUT bandwidth of 10 MHz to 20 MHz. PMID:21859585

  7. Front-end receiver electronics for high-frequency monolithic CMUT-on-CMOS imaging arrays.

    PubMed

    Gurun, Gokce; Hasler, Paul; Degertekin, F

    2011-08-01

    This paper describes the design of CMOS receiver electronics for monolithic integration with capacitive micromachined ultrasonic transducer (CMUT) arrays for highfrequency intravascular ultrasound imaging. A custom 8-inch (20-cm) wafer is fabricated in a 0.35-μm two-poly, four-metal CMOS process and then CMUT arrays are built on top of the application specific integrated circuits (ASICs) on the wafer. We discuss advantages of the single-chip CMUT-on-CMOS approach in terms of receive sensitivity and SNR. Low-noise and high-gain design of a transimpedance amplifier (TIA) optimized for a forward-looking volumetric-imaging CMUT array element is discussed as a challenging design example. Amplifier gain, bandwidth, dynamic range, and power consumption trade-offs are discussed in detail. With minimized parasitics provided by the CMUT-on-CMOS approach, the optimized TIA design achieves a 90 fA/√Hz input-referred current noise, which is less than the thermal-mechanical noise of the CMUT element. We show successful system operation with a pulseecho measurement. Transducer-noise-dominated detection in immersion is also demonstrated through output noise spectrum measurement of the integrated system at different CMUT bias voltages. A noise figure of 1.8 dB is obtained in the designed CMUT bandwidth of 10 to 20 MHz.

  8. Thermal-Mechanical Noise Based CMUT Characterization and Sensing

    PubMed Central

    Gurun, Gokce; Hochman, Michael; Hasler, Paul; Degertekin, F. Levent

    2012-01-01

    When capacitive micromachined ultrasonic transducers (CMUTs) are monolithically integrated with custom-designed low-noise electronics, the output noise of the system can be dominated by the CMUT thermal-mechanical noise both in air and in immersion even for devices with low capacitance. Since the thermal-mechanical noise can be related to the electrical admittance of the CMUTs, this provides an effective means of device characterization. This approach yields a novel method to test the functionality and uniformity of CMUT arrays and the integrated electronics where a direct connection to CMUT array element terminals is not available. These measurements can be performed in air at the wafer level, suitable for batch manufacturing and testing. We demonstrate this method on the elements of an 800-μm diameter CMUT-on-CMOS array designed for intravascular imaging in the 10-20 MHz range. Noise measurements in air show the expected resonance behavior and spring softening effects. Noise measurements in immersion for the same array provide useful information on both the acoustic cross talk and radiation properties of the CMUT array elements. The good agreement between a CMUT model based on finite difference and boundary element method and the noise measurements validates the model and indicates that the output noise is indeed dominated by thermal-mechanical noise. The measurement method can be exploited to implement CMUT based passive sensors to measure immersion medium properties, or other parameters affecting the electro-mechanics of the CMUT structure. PMID:22718877

  9. Thermal-mechanical-noise-based CMUT characterization and sensing.

    PubMed

    Gurun, Gokce; Hochman, Michael; Hasler, Paul; Degertekin, F Levent

    2012-06-01

    When capacitive micromachined ultrasonic transducers (CMUTs) are monolithically integrated with custom-designed low-noise electronics, the output noise of the system can be dominated by the CMUT thermal-mechanical noise both in air and in immersion even for devices with low capacitance. Because the thermal-mechanical noise can be related to the electrical admittance of the CMUTs, this provides an effective means of device characterization. This approach yields a novel method to test the functionality and uniformity of CMUT arrays and the integrated electronics when a direct connection to CMUT array element terminals is not available. Because these measurements can be performed in air at the wafer level, the approach is suitable for batch manufacturing and testing. We demonstrate this method on the elements of an 800-μm-diameter CMUT-on-CMOS array designed for intravascular imaging in the 10 to 20 MHz range. Noise measurements in air show the expected resonance behavior and spring softening effects. Noise measurements in immersion for the same array provide useful information on both the acoustic cross talk and radiation properties of the CMUT array elements. The good agreement between a CMUT model based on finite difference and boundary element methods and the noise measurements validates the model and indicates that the output noise is indeed dominated by thermal-mechanical noise. The measurement method can be exploited to implement CMUT-based passive sensors to measure immersion medium properties, or other parameters affecting the electro-mechanics of the CMUT structure.

  10. Forward-Looking Intracardiac Ultrasound Imaging Using a 1-D CMUT Array Integrated With Custom Front-End Electronics

    PubMed Central

    Nikoozadeh, Amin; Wygant, Ira O.; Lin, Der-Song; Oralkan, Ömer; Ergun, A. Sanlı; Stephens, Douglas N.; Thomenius, Kai E.; Dentinger, Aaron M.; Wildes, Douglas; Akopyan, Gina; Shivkumar, Kalyanam; Mahajan, Aman; Sahn, David J.; Khuri-Yakub, Butrus T.

    2009-01-01

    Minimally invasive catheter-based electrophysiological (EP) interventions are becoming a standard procedure in diagnosis and treatment of cardiac arrhythmias. As a result of technological advances that enable small feature sizes and a high level of integration, nonfluoroscopic intracardiac echocardiography (ICE) imaging catheters are attracting increasing attention. ICE catheters improve EP procedural guidance while reducing the undesirable use of fluoroscopy, which is currently the common catheter guidance method. Phased-array ICE catheters have been in use for several years now, although only for side-looking imaging. We are developing a forward-looking ICE catheter for improved visualization. In this effort, we fabricate a 24-element, fine-pitch 1-D array of capacitive micromachined ultrasonic transducers (CMUT), with a total footprint of 1.73 mm × 1.27 mm. We also design a custom integrated circuit (IC) composed of 24 identical blocks of transmit/receive circuitry, measuring 2.1 mm × 2.1 mm. The transmit circuitry is capable of delivering 25-V unipolar pulses, and the receive circuitry includes a transimpedance preamplifier followed by an output buffer. The CMUT array and the custom IC are designed to be mounted at the tip of a 10-Fr catheter for high-frame-rate forward-looking intracardiac imaging. Through-wafer vias incorporated in the CMUT array provide access to individual array elements from the back side of the array. We successfully flip-chip bond a CMUT array to the custom IC with 100% yield. We coat the device with a layer of polydimethylsiloxane (PDMS) to electrically isolate the device for imaging in water and tissue. The pulse-echo in water from a total plane reflector has a center frequency of 9.2 MHz with a 96% fractional bandwidth. Finally, we demonstrate the imaging capability of the integrated device on commercial phantoms and on a beating ex vivo rabbit heart (Langendorff model) using a commercial ultrasound imaging system. PMID:19126489

  11. A low power, area efficient fpga based beamforming technique for 1-D CMUT arrays.

    PubMed

    Joseph, Bastin; Joseph, Jose; Vanjari, Siva Rama Krishna

    2015-08-01

    A low power area efficient digital beamformer targeting low frequency (2MHz) 1-D linear Capacitive Micromachined Ultrasonic Transducer (CMUT) array is developed. While designing the beamforming logic, the symmetry of the CMUT array is well exploited to reduce the area and power consumption. The proposed method is verified in Matlab by clocking an Arbitrary Waveform Generator(AWG). The architecture is successfully implemented in Xilinx Spartan 3E FPGA kit to check its functionality. The beamforming logic is implemented for 8, 16, 32, and 64 element CMUTs targeting Application Specific Integrated Circuit (ASIC) platform at Vdd 1.62V for UMC 90nm technology. It is observed that the proposed architecture consumes significantly lesser power and area (1.2895 mW power and 47134.4 μm(2) area for a 64 element digital beamforming circuit) compared to the conventional square root based algorithm.

  12. Capacitive micromachined ultrasonic transducers for medical imaging and therapy.

    PubMed

    Khuri-Yakub, Butrus T; Oralkan, Omer

    2011-05-01

    Capacitive micromachined ultrasonic transducers (CMUTs) have been subject to extensive research for the last two decades. Although they were initially developed for air-coupled applications, today their main application space is medical imaging and therapy. This paper first presents a brief description of CMUTs, their basic structure, and operating principles. Our progression of developing several generations of fabrication processes is discussed with an emphasis on the advantages and disadvantages of each process. Monolithic and hybrid approaches for integrating CMUTs with supporting integrated circuits are surveyed. Several prototype transducer arrays with integrated frontend electronic circuits we developed and their use for 2-D and 3-D, anatomical and functional imaging, and ablative therapies are described. The presented results prove the CMUT as a MEMS technology for many medical diagnostic and therapeutic applications.

  13. Capacitive micromachined ultrasonic transducers for medical imaging and therapy

    PubMed Central

    Khuri-Yakub, Butrus T.; Oralkan, Ömer

    2011-01-01

    Capacitive micromachined ultrasonic transducers (CMUTs) have been subject to extensive research for the last two decades. Although they were initially developed for air-coupled applications, today their main application space is medical imaging and therapy. This paper first presents a brief description of CMUTs, their basic structure, and operating principles. Our progression of developing several generations of fabrication processes is discussed with an emphasis on the advantages and disadvantages of each process. Monolithic and hybrid approaches for integrating CMUTs with supporting integrated circuits are surveyed. Several prototype transducer arrays with integrated frontend electronic circuits we developed and their use for 2-D and 3-D, anatomical and functional imaging, and ablative therapies are described. The presented results prove the CMUT as a MEMS technology for many medical diagnostic and therapeutic applications. PMID:21860542

  14. Acoustic backing in 3-D integration of CMUT with front-end electronics.

    PubMed

    Berg, Sigrid; Rønnekleiv, Arne

    2012-07-01

    Capacitive micromachined ultrasonic transducers (CMUTs) have shown promising qualities for medical imaging. However, there are still some problems to be investigated, and some challenges to overcome. Acoustic backing is necessary to prevent SAWs excited in the surface of the silicon substrate from affecting the transmit pattern from the array. In addition, echoes resulting from bulk waves in the substrate must be removed. There is growing interest in integrating electronic circuits to do some of the beamforming directly below the transducer array. This may be easier to achieve for CMUTs than for traditional piezoelectric transducers. We will present simulations showing that the thickness of the silicon substrate and thicknesses and acoustic properties of the bonding material must be considered, especially when designing highfrequency transducers. Through simulations, we compare the acoustic properties of 3-D stacks bonded with three different bonding techniques; solid-liquid interdiffusion (SLID) bonding, direct fusion bonding, and anisotropic conductive adhesives (ACA). We look at a CMUT array with a center frequency of 30 MHz and three silicon wafers underneath, having a total silicon thickness of 100 μm. We find that fusion bonding is most beneficial if we want to prevent surface waves from damaging the array response, but SLID and ACA are also promising if bonding layer thicknesses can be reduced.

  15. Equivalent circuit-based analysis of CMUT cell dynamics in arrays.

    PubMed

    Oguz, H K; Atalar, Abdullah; Köymen, Hayrettin

    2013-05-01

    Capacitive micromachined ultrasonic transducers (CMUTs) are usually composed of large arrays of closely packed cells. In this work, we use an equivalent circuit model to analyze CMUT arrays with multiple cells. We study the effects of mutual acoustic interactions through the immersion medium caused by the pressure field generated by each cell acting upon the others. To do this, all the cells in the array are coupled through a radiation impedance matrix at their acoustic terminals. An accurate approximation for the mutual radiation impedance is defined between two circular cells, which can be used in large arrays to reduce computational complexity. Hence, a performance analysis of CMUT arrays can be accurately done with a circuit simulator. By using the proposed model, one can very rapidly obtain the linear frequency and nonlinear transient responses of arrays with an arbitrary number of CMUT cells. We performed several finite element method (FEM) simulations for arrays with small numbers of cells and showed that the results are very similar to those obtained by the equivalent circuit model.

  16. Ex-vivo HIFU experiments using a 32 × 32-element CMUT array

    PubMed Central

    Yoon, Hyo-Seon; Chang, Chienliu; Jang, Ji Hoon; Bhuyan, Anshuman; Choe, Jung Woo; Nikoozadeh, Amin; Watkins, Ronald D.; Stephens, Douglas N.; Pauly, Kim Butts; Khuri-Yakub, Butrus T.

    2016-01-01

    High-intensity focused ultrasound (HIFU) has been used as noninvasive treatment for various diseases. For these therapeutic applications, capacitive micromachined ultrasonic transducers (CMUTs) have advantages that make them potentially preferred transducers over traditional piezoelectric transducers. In this paper, we present the design and the fabrication process of an 8 × 8-mm2, 32 × 32-element 2-D CMUT array for HIFU applications. To reduce the system complexity for addressing the 1024 transducer elements, we propose to group the CMUT array elements into eight HIFU channels based on the phase delay from the CMUT element to the targeted focal point. Designed to focus at an 8-mm depth with a 5-MHz exciting frequency, this grouping scheme was realized using a custom application-specific integrated circuit (ASIC). With a 40-V DC bias and a 60-V peak-to-peak AC excitation, the surface pressure was measured 1.2 MPa peak-to-peak and stayed stable for a long enough time to create a lesion. With this DC and AC voltage combination, the measured peak-to-peak output pressure at the focus was 8.5 MPa, which is expected to generate a lesion in a minute according to the temperature simulation. Following ex-vivo tissue experiments successfully demonstrated its capability to make lesions in both bovine muscle and liver tissue. PMID:27913330

  17. A 1-MHz 2-D CMUT array for HIFU thermal ablation

    NASA Astrophysics Data System (ADS)

    Yoon, Hyo-Seon; Vaithilingam, Srikant; Park, Kwan Kyu; Nikoozadeh, Amin; Firouzi, Kamyar; Choe, Jung Woo; Watkins, Ronald D.; Oguz, Huseyin Kagan; Kupnik, Mario; Pauly, Kim Butts; Khuri-Yakub, Pierre

    2017-03-01

    We developed a fully-populated 2-D capacitive micromachined ultrasonic transducer (CMUT) array for high intensity focused ultrasound (HIFU) treatment. The 2-D CMUT array, which consists of 20 × 20 square CMUT elements with an element-to-element pitch of 1 mm, was designed and fabricated using the thick-buried-oxide (BOX) fabrication process. It was then assembled on a custom interface board that can provide various array configurations depending on the desired applications. In this study, the interface board groups the CMUT array elements into eight channels, based on the phase delay from the element to the targeted focal point at a 20-mm distance from the array surface, which corresponds to an F-number of 1. An 8-channel phase generating system supplies continuous waves with eight different phases to the eight channels of the CMUT array through bias-tees and amplifiers. This array aperture, grouped into eight channels, gives a focusing gain of 6.09 according to field simulation using Field II. Assuming a peak-to-peak pressure of 1 MPa at the surface of the array, our custom temperature simulator predicts successful tissue ablation at the focus. During the measurements, each channel was tuned with a series inductor for an operational frequency of 1 MHz. With a CMUT DC bias of 100 V and a 1-MHz AC input voltage of 55 V, we achieved peak-to-peak output pressures of 173.9 kPa and 568.7 kPa at the array surface and at the focus, respectively. The focusing gain calculated from this measurement is 3.27, which is lower than the simulated gain of 6.09 because of the mutual radiation impedance among the CMUT cells. Further optimization of the operating condition of this array and design improvements for reducing the effect of mutual radiation impedance are currently on-going.

  18. Single-Chip CMUT-on-CMOS Front-End System for Real-Time Volumetric IVUS and ICE Imaging

    PubMed Central

    Gurun, Gokce; Tekes, Coskun; Zahorian, Jaime; Xu, Toby; Satir, Sarp; Karaman, Mustafa; Hasler, Jennifer; Degertekin, F. Levent

    2014-01-01

    Intravascular ultrasound (IVUS) and intracardiac echography (ICE) catheters with real-time volumetric ultrasound imaging capability can provide unique benefits to many interventional procedures used in the diagnosis and treatment of coronary and structural heart diseases. Integration of CMUT arrays with front-end electronics in single-chip configuration allows for implementation of such catheter probes with reduced interconnect complexity, miniaturization, and high mechanical flexibility. We implemented a single-chip forward-looking (FL) ultrasound imaging system by fabricating a 1.4-mm-diameter dual-ring CMUT array using CMUT-on-CMOS technology on a front-end IC implemented in 0.35-µm CMOS process. The dual-ring array has 56 transmit elements and 48 receive elements on two separate concentric annular rings. The IC incorporates a 25-V pulser for each transmitter and a low-noise capacitive transimpedance amplifier (TIA) for each receiver, along with digital control and smart power management. The final shape of the silicon chip is a 1.5-mm-diameter donut with a 430-µm center hole for a guide wire. The overall front-end system requires only 13 external connections and provides 4 parallel RF outputs while consuming an average power of 20 mW. We measured RF A-scans from the integrated single-chip array which show full functionality at 20.1 MHz with 43% fractional bandwidth. We also tested and demonstrated the image quality of the system on a wire phantom and an ex-vivo chicken heart sample. The measured axial and lateral point resolutions are 92 µm and 251 µm, respectively. We successfully acquired volumetric imaging data from the ex-vivo chicken heart with 60 frames per second without any signal averaging. These demonstrative results indicate that single-chip CMUT-on-CMOS systems have the potential to produce real-time volumetric images with image quality and speed suitable for catheter based clinical applications. PMID:24474131

  19. Single-chip CMUT-on-CMOS front-end system for real-time volumetric IVUS and ICE imaging.

    PubMed

    Gurun, Gokce; Tekes, Coskun; Zahorian, Jaime; Xu, Toby; Satir, Sarp; Karaman, Mustafa; Hasler, Jennifer; Degertekin, F Levent

    2014-02-01

    Intravascular ultrasound (IVUS) and intracardiac echography (ICE) catheters with real-time volumetric ultrasound imaging capability can provide unique benefits to many interventional procedures used in the diagnosis and treatment of coronary and structural heart diseases. Integration of capacitive micromachined ultrasonic transducer (CMUT) arrays with front-end electronics in single-chip configuration allows for implementation of such catheter probes with reduced interconnect complexity, miniaturization, and high mechanical flexibility. We implemented a single-chip forward-looking (FL) ultrasound imaging system by fabricating a 1.4-mm-diameter dual-ring CMUT array using CMUT-on-CMOS technology on a front-end IC implemented in 0.35-μm CMOS process. The dual-ring array has 56 transmit elements and 48 receive elements on two separate concentric annular rings. The IC incorporates a 25-V pulser for each transmitter and a low-noise capacitive transimpedance amplifier (TIA) for each receiver, along with digital control and smart power management. The final shape of the silicon chip is a 1.5-mm-diameter donut with a 430-μm center hole for a guide wire. The overall front-end system requires only 13 external connections and provides 4 parallel RF outputs while consuming an average power of 20 mW. We measured RF A-scans from the integrated single- chip array which show full functionality at 20.1 MHz with 43% fractional bandwidth. We also tested and demonstrated the image quality of the system on a wire phantom and an ex vivo chicken heart sample. The measured axial and lateral point resolutions are 92 μm and 251 μm, respectively. We successfully acquired volumetric imaging data from the ex vivo chicken heart at 60 frames per second without any signal averaging. These demonstrative results indicate that single-chip CMUT-on-CMOS systems have the potential to produce realtime volumetric images with image quality and speed suitable for catheter-based clinical applications.

  20. An integrated circuit with transmit beamforming flip-chip bonded to a 2-D CMUT array for 3-D ultrasound imaging.

    PubMed

    Wygant, Ira O; Jamal, Nafis S; Lee, Hyunjoo J; Nikoozadeh, Amin; Oralkan, Omer; Karaman, Mustafa; Khuri-Yakub, Butrus T

    2009-10-01

    State-of-the-art 3-D medical ultrasound imaging requires transmitting and receiving ultrasound using a 2-D array of ultrasound transducers with hundreds or thousands of elements. A tight combination of the transducer array with integrated circuitry eliminates bulky cables connecting the elements of the transducer array to a separate system of electronics. Furthermore, preamplifiers located close to the array can lead to improved receive sensitivity. A combined IC and transducer array can lead to a portable, high-performance, and inexpensive 3-D ultrasound imaging system. This paper presents an IC flip-chip bonded to a 16 x 16-element capacitive micromachined ultrasonic transducer (CMUT) array for 3-D ultrasound imaging. The IC includes a transmit beamformer that generates 25-V unipolar pulses with programmable focusing delays to 224 of the 256 transducer elements. One-shot circuits allow adjustment of the pulse widths for different ultrasound transducer center frequencies. For receiving reflected ultrasound signals, the IC uses the 32-elements along the array diagonals. The IC provides each receiving element with a low-noise 25-MHz-bandwidth transimpedance amplifier. Using a field-programmable gate array (FPGA) clocked at 100 MHz to operate the IC, the IC generated properly timed transmit pulses with 5-ns accuracy. With the IC flip-chip bonded to a CMUT array, we show that the IC can produce steered and focused ultrasound beams. We present 2-D and 3-D images of a wire phantom and 2-D orthogonal cross-sectional images (Bscans) of a latex heart phantom.

  1. Integrated HIFU Drive System on a Chip for CMUT-Based Catheter Ablation System.

    PubMed

    Farhanieh, Omid; Sahafi, Ali; Bardhan Roy, Rupak; Ergun, Arif Sanli; Bozkurt, Ayhan

    2017-06-01

    Conventional High Intensity Focused Ultrasound (HIFU) is a therapeutic modality which is extracorporeally administered. In applications where a relatively small HIFU lesion is required, an intravascular HIFU probe can be deployed to the ablation site. In this paper, we demonstrate the design and implementation a fully integrated HIFU drive system on a chip to be placed on a 6 Fr catheter probe. An 8-element capacitive micromachined ultrasound transducer (CMUT) ring array of 2 mm diameter has been used as the ultrasound source. The driver chip is fabricated in 0.35 μm AMS high-voltage CMOS technology and comprises eight continuous-wave (CW) high-voltage CMUT drivers (10.9 ns and 9.4 ns rise and fall times at 20 V pp output into a 15 pF), an eight-channel digital beamformer (8-12 MHz output frequency with 11.25 ° phase accuracy) and a phase locked loop with an integrated VCO as a tunable clock source (128-192 MHz). The chip occupies 1.85 × 1.8 mm 2 area including input and output (I/O) pads. When the transducer array is immersed in sunflower oil and driven by the IC with eight 20 V pp CW pulses at 10 MHz, real-time thermal images of the HIFU beam indicate that the focal temperature rises by 16.8  ° C in 11 seconds. Each HV driver consumes around 67 mW of power when driving the CMUT array at 10 MHz, which adds up to 560 mW for the whole chip. FEM based analysis reveals that the outer surface temperature of the catheter is expected to remain below the 42  ° C tissue damage limit during therapy.

  2. Deep Tissue Photoacoustic Imaging Using a Miniaturized 2-D Capacitive Micromachined Ultrasonic Transducer Array

    PubMed Central

    Kothapalli, Sri-Rajasekhar; Ma, Te-Jen; Vaithilingam, Srikant; Oralkan, Ömer

    2014-01-01

    In this paper, we demonstrate 3-D photoacoustic imaging (PAI) of light absorbing objects embedded as deep as 5 cm inside strong optically scattering phantoms using a miniaturized (4 mm × 4 mm × 500 µm), 2-D capacitive micromachined ultrasonic transducer (CMUT) array of 16 × 16 elements with a center frequency of 5.5 MHz. Two-dimensional tomographic images and 3-D volumetric images of the objects placed at different depths are presented. In addition, we studied the sensitivity of CMUT-based PAI to the concentration of indocyanine green dye at 5 cm depth inside the phantom. Under optimized experimental conditions, the objects at 5 cm depth can be imaged with SNR of about 35 dB and a spatial resolution of approximately 500 µm. Results demonstrate that CMUTs with integrated front-end amplifier circuits are an attractive choice for achieving relatively high depth sensitivity for PAI. PMID:22249594

  3. High-power CMUTs: design and experimental verification.

    PubMed

    Yamaner, F Yalçin; Olçum, Selim; Oğuz, H Kağan; Bozkurt, Ayhan; Köymen, Hayrettin; Atalar, Abdullah

    2012-06-01

    Capacitive micromachined ultrasonic transducers (CMUTs) have great potential to compete with piezoelectric transducers in high-power applications. As the output pressures increase, nonlinearity of CMUT must be reconsidered and optimization is required to reduce harmonic distortions. In this paper, we describe a design approach in which uncollapsed CMUT array elements are sized so as to operate at the maximum radiation impedance and have gap heights such that the generated electrostatic force can sustain a plate displacement with full swing at the given drive amplitude. The proposed design enables high output pressures and low harmonic distortions at the output. An equivalent circuit model of the array is used that accurately simulates the uncollapsed mode of operation. The model facilities the design of CMUT parameters for high-pressure output, without the intensive need for computationally involved FEM tools. The optimized design requires a relatively thick plate compared with a conventional CMUT plate. Thus, we used a silicon wafer as the CMUT plate. The fabrication process involves an anodic bonding process for bonding the silicon plate with the glass substrate. To eliminate the bias voltage, which may cause charging problems, the CMUT array is driven with large continuous wave signals at half of the resonant frequency. The fabricated arrays are tested in an oil tank by applying a 125-V peak 5-cycle burst sinusoidal signal at 1.44 MHz. The applied voltage is increased until the plate is about to touch the bottom electrode to get the maximum peak displacement. The observed pressure is about 1.8 MPa with -28 dBc second harmonic at the surface of the array.

  4. A high-frequency transimpedance amplifier for CMOS integrated 2D CMUT array towards 3D ultrasound imaging.

    PubMed

    Huang, Xiwei; Cheong, Jia Hao; Cha, Hyouk-Kyu; Yu, Hongbin; Je, Minkyu; Yu, Hao

    2013-01-01

    One transimpedance amplifier based CMOS analog front-end (AFE) receiver is integrated with capacitive micromachined ultrasound transducers (CMUTs) towards high frequency 3D ultrasound imaging. Considering device specifications from CMUTs, the TIA is designed to amplify received signals from 17.5MHz to 52.5MHz with center frequency at 35MHz; and is fabricated in Global Foundry 0.18-µm 30-V high-voltage (HV) Bipolar/CMOS/DMOS (BCD) process. The measurement results show that the TIA with power-supply 6V can reach transimpedance gain of 61dBΩ and operating frequency from 17.5MHz to 100MHz. The measured input referred noise is 27.5pA/√Hz. Acoustic pulse-echo testing is conducted to demonstrate the receiving functionality of the designed 3D ultrasound imaging system.

  5. Biasing of Capacitive Micromachined Ultrasonic Transducers.

    PubMed

    Caliano, Giosue; Matrone, Giulia; Savoia, Alessandro Stuart

    2017-02-01

    Capacitive micromachined ultrasonic transducers (CMUTs) represent an effective alternative to piezoelectric transducers for medical ultrasound imaging applications. They are microelectromechanical devices fabricated using silicon micromachining techniques, developed in the last two decades in many laboratories. The interest for this novel transducer technology relies on its full compatibility with standard integrated circuit technology that makes it possible to integrate on the same chip the transducers and the electronics, thus enabling the realization of extremely low-cost and high-performance devices, including both 1-D or 2-D arrays. Being capacitive transducers, CMUTs require a high bias voltage to be properly operated in pulse-echo imaging applications. The typical bias supply residual ripple of high-quality high-voltage (HV) generators is in the millivolt range, which is comparable with the amplitude of the received echo signals, and it is particularly difficult to minimize. The aim of this paper is to analyze the classical CMUT biasing circuits, highlighting the features of each one, and to propose two novel HV generator architectures optimized for CMUT biasing applications. The first circuit proposed is an ultralow-residual ripple (<5 [Formula: see text]) HV generator that uses an extremely stable sinusoidal power oscillator topology. The second circuit employs a commercially available integrated step-up converter characterized by a particularly efficient switching topology. The circuit is used to bias the CMUT by charging a buffer capacitor synchronously with the pulsing sequence, thus reducing the impact of the switching noise on the received echo signals. The small area of the circuit (about 1.5 cm 2 ) makes it possible to generate the bias voltage inside the probe, very close to the CMUT, making the proposed solution attractive for portable applications. Measurements and experiments are shown to demonstrate the effectiveness of the new approaches presented.

  6. Design and simulation of a tactile display based on a CMUT array

    NASA Astrophysics Data System (ADS)

    Chouvardas, Vasilios G.; Hatalis, Miltiadis K.; Miliou, Amalia N.

    2012-10-01

    In this article, we present the design of a tactile display based on a CMUT-phased array. The array implements a 'pixel' of the display and is used to focus airborne ultrasound energy on the skin surface. The pressure field, generated by the focused ultrasound waves, is used to excite the mechanoreceptors under the skin and transmit tactile information. The results of Finite Element Analysis (FEA) of the Capacitive Micromachined Ultrasonic Transducer (CMUT) and the CMUT-phased array for ultrasound emission are presented. The 3D models of the device and the array were developed using a commercial FEA package. Modelling and simulations were performed using the parameters from the POLYMUMPS surface micromachining technology from MEMSCAP. During the analysis of the phased array, several parameters were studied in order to determine their importance in the design of the tactile display. The output of the array is compared with the acoustic intensity thresholds in order to prove the feasibility of the design. Taking into account the density of the mechanoreceptors in the skin, we conclude that there should be at least one receptor under the excitation area formed on the skin.

  7. Integrated circuits for volumetric ultrasound imaging with 2-D CMUT arrays.

    PubMed

    Bhuyan, Anshuman; Choe, Jung Woo; Lee, Byung Chul; Wygant, Ira O; Nikoozadeh, Amin; Oralkan, Ömer; Khuri-Yakub, Butrus T

    2013-12-01

    Real-time volumetric ultrasound imaging systems require transmit and receive circuitry to generate ultrasound beams and process received echo signals. The complexity of building such a system is high due to requirement of the front-end electronics needing to be very close to the transducer. A large number of elements also need to be interfaced to the back-end system and image processing of a large dataset could affect the imaging volume rate. In this work, we present a 3-D imaging system using capacitive micromachined ultrasonic transducer (CMUT) technology that addresses many of the challenges in building such a system. We demonstrate two approaches in integrating the transducer and the front-end electronics. The transducer is a 5-MHz CMUT array with an 8 mm × 8 mm aperture size. The aperture consists of 1024 elements (32 × 32) with an element pitch of 250 μm. An integrated circuit (IC) consists of a transmit beamformer and receive circuitry to improve the noise performance of the overall system. The assembly was interfaced with an FPGA and a back-end system (comprising of a data acquisition system and PC). The FPGA provided the digital I/O signals for the IC and the back-end system was used to process the received RF echo data (from the IC) and reconstruct the volume image using a phased array imaging approach. Imaging experiments were performed using wire and spring targets, a ventricle model and a human prostrate. Real-time volumetric images were captured at 5 volumes per second and are presented in this paper.

  8. Towards a Reduced-Wire Interface for CMUT-Based Intravascular Ultrasound Imaging Systems

    PubMed Central

    Lim, Jaemyung; Tekes, Coskun; Degertekin, F. Levent; Ghovanloo, Maysam

    2016-01-01

    Having intravascular ultrasound (IVUS) imaging capability on guide wires used in cardiovascular interventions may eliminate the need for separate IVUS catheters and expand the use of IVUS in a larger portion of the vasculature. High frequency capacitive micro machined ultrasonic transducer (CMUT) arrays should be integrated with interface electronics and placed on the guide wire for this purpose. Besides small size, this system-on-a-chip (SoC) front-end should connect to the back-end imaging system with a minimum number of wires to preserve the critical mechanical properties of the guide wire. We present a 40 MHz CMUT array interface SoC, which will eventually use only two wires for power delivery and transmits image data using a combination of analog-to-time conversion (ATC) and an impulse radio ultra-wideband (IR-UWB) wireless link. The proof-of-concept prototype ASIC consumes only 52.8 mW and occupies 4.07 mm2 in a 0.35-μm standard CMOS process. A rectifier and regulator power the rest of the SoC at 3.3 V from a 10 MHz power carrier that is supplied through a 2.4 m micro-coax cable with an overall efficiency of 49.1%. Echo signals from an 8-element CMUT array are amplified by a transimpedance amplifier (TIA) array and down-converted to baseband by quadrature sampling using a 40 MHz clock, derived from the power carrier. The ATC generates pulse-width-modulated (PWM) samples at 2 × 10 MS/s with 6 bit resolution, while the entire system achieved 5.1 ENOB. Preliminary images from the prototype system are presented, and alternative data transmission and possible future directions towards practical implementation are discussed. PMID:27662686

  9. Towards a Reduced-Wire Interface for CMUT-Based Intravascular Ultrasound Imaging Systems.

    PubMed

    Lim, Jaemyung; Tekes, Coskun; Degertekin, F Levent; Ghovanloo, Maysam

    2017-04-01

    Having intravascular ultrasound (IVUS) imaging capability on guide wires used in cardiovascular interventions may eliminate the need for separate IVUS catheters and expand the use of IVUS in a larger portion of the vasculature. High frequency capacitive micro machined ultrasonic transducer (CMUT) arrays should be integrated with interface electronics and placed on the guide wire for this purpose. Besides small size, this system-on-a-chip (SoC) front-end should connect to the back-end imaging system with a minimum number of wires to preserve the critical mechanical properties of the guide wire. We present a 40 MHz CMUT array interface SoC, which will eventually use only two wires for power delivery and transmits image data using a combination of analog-to-time conversion (ATC) and an impulse radio ultra-wideband (IR-UWB) wireless link. The proof-of-concept prototype ASIC consumes only 52.8 mW and occupies 4.07 [Formula: see text] in a 0.35- [Formula: see text] standard CMOS process. A rectifier and regulator power the rest of the SoC at 3.3 V from a 10 MHz power carrier that is supplied through a 2.4 m micro-coax cable with an overall efficiency of 49.1%. Echo signals from an 8-element CMUT array are amplified by a transimpedance amplifier (TIA) array and down-converted to baseband by quadrature sampling using a 40 MHz clock, derived from the power carrier. The ATC generates pulse-width-modulated (PWM) samples at 2 × 10 MS/s with 6 bit resolution, while the entire system achieved 5.1 ENOB. Preliminary images from the prototype system are presented, and alternative data transmission and possible future directions towards practical implementation are discussed.

  10. Characterization and Optimization Design of the Polymer-Based Capacitive Micro-Arrayed Ultrasonic Transducer

    NASA Astrophysics Data System (ADS)

    Chiou, De-Yi; Chen, Mu-Yueh; Chang, Ming-Wei; Deng, Hsu-Cheng

    2007-11-01

    This study constructs an electromechanical finite element model of the polymer-based capacitive micro-arrayed ultrasonic transducer (P-CMUT). The electrostatic-structural coupled-field simulations are performed to investigate the operational characteristics, such as collapse voltage and resonant frequency. The numerical results are found to be in good agreement with experimental observations. The study of influence of each defined parameter on the collapse voltage and resonant frequency are also presented. To solve some conflict problems in diversely physical fields, an integrated design method is developed to optimize the geometric parameters of the P-CMUT. The optimization search routine conducted using the genetic algorithm (GA) is connected with the commercial FEM software ANSYS to obtain the best design variable using multi-objective functions. The results show that the optimal parameter values satisfy the conflicting objectives, namely to minimize the collapse voltage while simultaneously maintaining a customized frequency. Overall, the present result indicates that the combined FEM/GA optimization scheme provides an efficient and versatile approach of optimization design of the P-CMUT.

  11. Super-resolution imaging using multi- electrode CMUTs: theoretical design and simulation using point targets.

    PubMed

    You, Wei; Cretu, Edmond; Rohling, Robert

    2013-11-01

    This paper investigates a low computational cost, super-resolution ultrasound imaging method that leverages the asymmetric vibration mode of CMUTs. Instead of focusing on the broadband received signal on the entire CMUT membrane, we utilize the differential signal received on the left and right part of the membrane obtained by a multi-electrode CMUT structure. The differential signal reflects the asymmetric vibration mode of the CMUT cell excited by the nonuniform acoustic pressure field impinging on the membrane, and has a resonant component in immersion. To improve the resolution, we propose an imaging method as follows: a set of manifold matrices of CMUT responses for multiple focal directions are constructed off-line with a grid of hypothetical point targets. During the subsequent imaging process, the array sequentially steers to multiple angles, and the amplitudes (weights) of all hypothetical targets at each angle are estimated in a maximum a posteriori (MAP) process with the manifold matrix corresponding to that angle. Then, the weight vector undergoes a directional pruning process to remove the false estimation at other angles caused by the side lobe energy. Ultrasound imaging simulation is performed on ring and linear arrays with a simulation program adapted with a multi-electrode CMUT structure capable of obtaining both average and differential received signals. Because the differential signals from all receiving channels form a more distinctive temporal pattern than the average signals, better MAP estimation results are expected than using the average signals. The imaging simulation shows that using differential signals alone or in combination with the average signals produces better lateral resolution than the traditional phased array or using the average signals alone. This study is an exploration into the potential benefits of asymmetric CMUT responses for super-resolution imaging.

  12. Linear and nonlinear equivalent circuit modeling of CMUTs.

    PubMed

    Lohfink, Annette; Eccardt, Peter-Christian

    2005-12-01

    Using piston radiator and plate capacitance theory capacitive micromachined ultrasound transducers (CMUT) membrane cells can be described by one-dimensional (1-D) model parameters. This paper describes in detail a new method, which derives a 1-D model for CMUT arrays from finite-element methods (FEM) simulations. A few static and harmonic FEM analyses of a single CMUT membrane cell are sufficient to derive the mechanical and electrical parameters of an equivalent piston as the moving part of the cell area. For an array of parallel-driven cells, the acoustic parameters are derived as a complex mechanical fluid impedance, depending on the membrane shape form. As a main advantage, the nonlinear behavior of the CMUT can be investigated much easier and faster compared to FEM simulations, e.g., for a design of the maximum applicable voltage depending on the input signal. The 1-D parameter model allows an easy description of the CMUT behavior in air and fluids and simplifies the investigation of wave propagation within the connecting fluid represented by FEM or transmission line matrix (TLM) models.

  13. A cMUT probe for ultrasound-guided focused ultrasound targeted therapy.

    PubMed

    Gross, Dominique; Coutier, Caroline; Legros, Mathieu; Bouakaz, Ayache; Certon, Dominique

    2015-06-01

    Ultrasound-mediated targeted therapy represents a promising strategy in the arsenal of modern therapy. Capacitive micromachined ultrasonic transducer (cMUT) technology could overcome some difficulties encountered by traditional piezoelectric transducers. In this study, we report on the design, fabrication, and characterization of an ultrasound-guided focused ultrasound (USgFUS) cMUT probe dedicated to preclinical evaluation of targeted therapy (hyperthermia, thermosensitive liposomes activation, and sonoporation) at low frequency (1 MHz) with simultaneous ultrasonic imaging and guidance (15 to 20 MHz). The probe embeds two types of cMUT arrays to perform the modalities of targeted therapy and imaging respectively. The wafer-bonding process flow employed for the manufacturing of the cMUTs is reported. One of its main features is the possibility of implementing two different gap heights on the same wafer. All the design and characterization steps of the devices are described and discussed, starting from the array design up to the first in vitro measurements: optical (microscopy) and electrical (impedance) measurements, arrays' electroacoustic responses, focused pressure field mapping (maximum peak-to-peak pressure = 2.5 MPa), and the first B-scan image of a wire-target phantom.

  14. A 32 x 32 capacitive micromachined ultrasonic transducer array manufactured in standard CMOS.

    PubMed

    Lemmerhirt, David F; Cheng, Xiaoyang; White, Robert; Rich, Collin A; Zhang, Man; Fowlkes, J Brian; Kripfgans, Oliver D

    2012-07-01

    As ultrasound imagers become increasingly portable and lower cost, breakthroughs in transducer technology will be needed to provide high-resolution, real-time 3-D imaging while maintaining the affordability needed for portable systems. This paper presents a 32 x 32 ultrasound array prototype, manufactured using a CMUT-in-CMOS approach whereby ultrasonic transducer elements and readout circuits are integrated on a single chip using a standard integrated circuit manufacturing process in a commercial CMOS foundry. Only blanket wet-etch and sealing steps are added to complete the MEMS devices after the CMOS process. This process typically yields better than 99% working elements per array, with less than ±1.5 dB variation in receive sensitivity among the 1024 individually addressable elements. The CMUT pulseecho frequency response is typically centered at 2.1 MHz with a -6 dB fractional bandwidth of 60%, and elements are arranged on a 250 μm hexagonal grid (less than half-wavelength pitch). Multiplexers and CMOS buffers within the array are used to make on-chip routing manageable, reduce the number of physical output leads, and drive the transducer cable. The array has been interfaced to a commercial imager as well as a set of custom transmit and receive electronics, and volumetric images of nylon fishing line targets have been produced.

  15. A Large Signal Model for CMUT Arrays with Arbitrary Membrane Geometries Operating in Non-Collapsed Mode

    PubMed Central

    Satir, Sarp; Zahorian, Jaime; Degertekin, F. Levent

    2014-01-01

    A large signal, transient model has been developed to predict the output characteristics of a CMUT array operated in the non-collapse mode. The model is based on separation of the nonlinear electrostatic voltage-to-force relation and the linear acoustic array response. For linear acoustic radiation and crosstalk effects, the boundary element method is used. The stiffness matrix in the vibroacoustics calculations is obtained using static finite element analysis of a single membrane which can have arbitrary geometry and boundary conditions. A lumped modeling approach is used to reduce the order of the system for modeling the transient nonlinear electrostatic actuation. To accurately capture the dynamics of the non-uniform electrostatic force distribution over the CMUT electrode during large deflections, the membrane electrode is divided into patches shaped to match higher order membrane modes, each introducing a variable to the system model. This reduced order nonlinear lumped model is solved in the time domain using Simulink. The model has two linear blocks to calculate the displacement profile of the electrode patches and the output pressure for a given force distribution over the array, respectively. The force to array displacement block uses the linear acoustic model, and the Rayleigh integral is evaluated to calculate the pressure at any field point. Using the model, the transient transmitted pressure can be simulated for different large signal drive signal configurations. The acoustic model is verified by comparison to harmonic FEA in vacuum and fluid for high and low aspect ratio membranes as well as mass-loaded membranes. The overall Simulink model is verified by comparison to transient 3D FEA and experimental results for different large drive signals; and an example for a phased array simulation is given. PMID:24158297

  16. A 5 meter range non-planar CMUT array for Automotive Collision Avoidance

    NASA Astrophysics Data System (ADS)

    Hernandez Aguirre, Jonathan

    A discretized hyperbolic paraboloid geometry capacitive micromachined ultrasonic transducer (CMUT) array has been designed and fabricated for automotive collision avoidance. The array is designed to operate at 40 kHz, beamwidth of 40° with a maximum sidelobe intensity of -10dB. An SOI based fabrication technology has been used for the 5x5 array with 5 sensing surfaces along each x and y axis and 7 elevation levels. An assembly and packaging technique has been developed to realize the non-planar geometry in a PGA-68 package. A highly accurate mathematical method has been presented for analytical characterization of capacitive micromachined ultrasonic transducers (CMUTs) built with square diaphragms. The method uses a new two-dimensional polynomial function to more accurately predict the deflection curve of a multilayer square diaphragm subject to both mechanical and electrostatic pressure and a new capacitance model that takes into account the contribution of the fringing field capacitances.

  17. CMUT Fabrication Based On A Thick Buried Oxide Layer.

    PubMed

    Kupnik, Mario; Vaithilingam, Srikant; Torashima, Kazutoshi; Wygant, Ira O; Khuri-Yakub, Butrus T

    2010-10-01

    We introduce a versatile fabrication process for direct wafer-bonded CMUTs. The objective is a flexible fabrication platform for single element transducers, 1D and 2D arrays, and reconfigurable arrays. The main process features are: A low number of litho masks (five for a fully populated 2D array); a simple fabrication sequence on standard MEMS tools without complicated wafer handling (carrier wafers); an improved device reliability; a wide design space in terms of operation frequency and geometric parameters (cell diameter, gap height, effective insulation layer thickness); and a continuous front face of the transducer (CMUT plate) that is connected to ground (shielding for good SNR and human safety in medical applications). All of this is achieved by connecting the hot electrodes individually through a thick buried oxide layer, i.e. from the handle layer of an SOI substrate to silicon electrodes located in each CMUT cell built in the device layer. Vertical insulation trenches are used to isolate these silicon electrodes from the rest of the substrate. Thus, the high electric field is only present where required - in the evacuated gap region of the device and not in the insulation layer of the post region. Array elements (1D and 2D) are simply defined be etching insulation trenches into the handle wafer of the SOI substrate.

  18. CMUT Fabrication Based On A Thick Buried Oxide Layer

    PubMed Central

    Kupnik, Mario; Vaithilingam, Srikant; Torashima, Kazutoshi; Wygant, Ira O.; Khuri-Yakub, Butrus T.

    2010-01-01

    We introduce a versatile fabrication process for direct wafer-bonded CMUTs. The objective is a flexible fabrication platform for single element transducers, 1D and 2D arrays, and reconfigurable arrays. The main process features are: A low number of litho masks (five for a fully populated 2D array); a simple fabrication sequence on standard MEMS tools without complicated wafer handling (carrier wafers); an improved device reliability; a wide design space in terms of operation frequency and geometric parameters (cell diameter, gap height, effective insulation layer thickness); and a continuous front face of the transducer (CMUT plate) that is connected to ground (shielding for good SNR and human safety in medical applications). All of this is achieved by connecting the hot electrodes individually through a thick buried oxide layer, i.e. from the handle layer of an SOI substrate to silicon electrodes located in each CMUT cell built in the device layer. Vertical insulation trenches are used to isolate these silicon electrodes from the rest of the substrate. Thus, the high electric field is only present where required – in the evacuated gap region of the device and not in the insulation layer of the post region. Array elements (1D and 2D) are simply defined be etching insulation trenches into the handle wafer of the SOI substrate. PMID:22685377

  19. Receive-Noise Analysis of Capacitive Micromachined Ultrasonic Transducers.

    PubMed

    Bozkurt, Ayhan; Yaralioglu, G Goksenin

    2016-11-01

    This paper presents an analysis of thermal (Johnson) noise received from the radiation medium by otherwise noiseless capacitive micromachined ultrasonic transducer (CMUT) membranes operating in their fundamental resonance mode. Determination of thermal noise received by multiple numbers of transducers or a transducer array requires the assessment of cross-coupling through the radiation medium, as well as the self-radiation impedance of the individual transducer. We show that the total thermal noise received by the cells of a CMUT has insignificant correlation, and is independent of the radiation impedance, but is only determined by the mass of each membrane and the electromechanical transformer ratio. The proof is based on the analytical derivations for a simple transducer with two cells, and extended to transducers with numerous cells using circuit simulators. We used a first-order model, which incorporates the fundamental resonance of the CMUT. Noise power is calculated by integrating over the entire spectrum; hence, the presented figures are an upper bound for the noise. The presented analyses are valid for a transimpedance amplifier in the receive path. We use the analysis results to calculate the minimum detectable pressure of a CMUT. We also provide an analysis based on the experimental data to show that output noise power is limited by and comparable to the theoretical upper limit.

  20. First In Vivo Use of a Capacitive Micromachined Ultrasound Transducer Array–Based Imaging and Ablation Catheter

    PubMed Central

    Stephens, Douglas N.; Truong, Uyen T.; Nikoozadeh, Amin; Oralkan, Ömer; Seo, Chi Hyung; Cannata, Jonathan; Dentinger, Aaron; Thomenius, Kai; de la Rama, Alan; Nguyen, Tho; Lin, Feng; Khuri-Yakub, Pierre; Mahajan, Aman; Shivkumar, Kalyanam; O’Donnell, Matt; Sahn, David J.

    2012-01-01

    Objectives The primary objective was to test in vivo for the first time the general operation of a new multifunctional intracardiac echocardiography (ICE) catheter constructed with a microlinear capacitive micromachined ultrasound transducer (ML-CMUT) imaging array. Secondarily, we examined the compatibility of this catheter with electroanatomic mapping (EAM) guidance and also as a radiofrequency ablation (RFA) catheter. Preliminary thermal strain imaging (TSI)-derived temperature data were obtained from within the endocardium simultaneously during RFA to show the feasibility of direct ablation guidance procedures. Methods The new 9F forward-looking ICE catheter was constructed with 3 complementary technologies: a CMUT imaging array with a custom electronic array buffer, catheter surface electrodes for EAM guidance, and a special ablation tip, that permits simultaneous TSI and RFA. In vivo imaging studies of 5 anesthetized porcine models with 5 CMUT catheters were performed. Results The ML-CMUT ICE catheter provided high-resolution real-time wideband 2-dimensional (2D) images at greater than 8 MHz and is capable of both RFA and EAM guidance. Although the 24-element array aperture dimension is only 1.5 mm, the imaging depth of penetration is greater than 30 mm. The specially designed ultrasound-compatible metalized plastic tip allowed simultaneous imaging during ablation and direct acquisition of TSI data for tissue ablation temperatures. Postprocessing analysis showed a first-order correlation between TSI and temperature, permitting early development temperature-time relationships at specific myocardial ablation sites. Conclusions Multifunctional forward-looking ML-CMUT ICE catheters, with simultaneous intracardiac guidance, ultrasound imaging, and RFA, may offer a new means to improve interventional ablation procedures. PMID:22298868

  1. Two Capacitive Micro-Machined Ultrasonic Transducers for Wind Speed Measurement

    PubMed Central

    Bui, Gia Thinh; Jiang, Yu-Tsung; Pang, Da-Chen

    2016-01-01

    This paper presents a new wind speed measurement method using a single capacitive micro-machined ultrasonic transducer (CMUT). The CMUT was arranged perpendicular to the direction of the wind flow, and a reflector was set up a short distance away, facing the CMUT. To reduce the size, weight, cost, and power consumption of conventional ultrasonic anemometers this study proposes two CMUT designs for the measurement of wind speed using either the amplitude of the signal or the time of flight (TOF). Each CMUT with a double array element design can transmit and receive signals in five different operation modes. Experiments showed that the two CMUT designs utilizing the TOF were better than those utilizing the amplitude of the signal for wind speed measurements ranging from 1 m/s to 10 m/s, providing a measurement error of less than 0.2 m/s. These results indicate that the sensitivity of the TOF is independent of the five operation modes. PMID:27271625

  2. Two Capacitive Micro-Machined Ultrasonic Transducers for Wind Speed Measurement.

    PubMed

    Bui, Gia Thinh; Jiang, Yu-Tsung; Pang, Da-Chen

    2016-06-02

    This paper presents a new wind speed measurement method using a single capacitive micro-machined ultrasonic transducer (CMUT). The CMUT was arranged perpendicular to the direction of the wind flow, and a reflector was set up a short distance away, facing the CMUT. To reduce the size, weight, cost, and power consumption of conventional ultrasonic anemometers this study proposes two CMUT designs for the measurement of wind speed using either the amplitude of the signal or the time of flight (TOF). Each CMUT with a double array element design can transmit and receive signals in five different operation modes. Experiments showed that the two CMUT designs utilizing the TOF were better than those utilizing the amplitude of the signal for wind speed measurements ranging from 1 m/s to 10 m/s, providing a measurement error of less than 0.2 m/s. These results indicate that the sensitivity of the TOF is independent of the five operation modes.

  3. Micromachined capacitive ultrasonic immersion transducer array

    NASA Astrophysics Data System (ADS)

    Jin, Xuecheng

    Capacitive micromachined ultrasonic transducers (cMUTs) have emerged as an attractive alternative to conventional piezoelectric ultrasonic transducers. They offer performance advantages of wide bandwidth and sensitivity that have heretofore been attainable. In addition, micromachining technology, which has benefited from the fast-growing microelectronics industry, enables cMUT array fabrication and electronics integration. This thesis describes the design and fabrication of micromachined capacitive ultrasonic immersion transducer arrays. The basic transducer electrical equivalent circuit is derived from Mason's theory. The effects of Lamb waves and Stoneley waves on cross coupling and acoustic losses are discussed. Electrical parasitics such as series resistance and shunt capacitance are also included in the model of the transducer. Transducer fabrication technology is systematically studied. Device dimension control in both vertical and horizontal directions, process alternatives and variations in membrane formation, via etch and cavity sealing, and metalization as well as their impact on transducer performance are summarized. Both 64 and 128 element 1-D array transducers are fabricated. Transducers are characterized in terms of electrical input impedance, bandwidth, sensitivity, dynamic range, impulse response and angular response, and their performance is compared with theoretical simulation. Various schemes for cross coupling reduction is analyzed, implemented, and verified with both experiments and theory. Preliminary results of immersion imaging are presented using 64 elements 1-D array transducers for active source imaging.

  4. Volumetric Real-Time Imaging Using a CMUT Ring Array

    PubMed Central

    Choe, Jung Woo; Oralkan, Ömer; Nikoozadeh, Amin; Gencel, Mustafa; Stephens, Douglas N.; O’Donnell, Matthew; Sahn, David J.; Khuri-Yakub, Butrus T.

    2012-01-01

    A ring array provides a very suitable geometry for forward-looking volumetric intracardiac and intravascular ultrasound imaging. We fabricated an annular 64-element capacitive micromachined ultrasonic transducer (CMUT) array featuring a 10-MHz operating frequency and a 1.27-mm outer radius. A custom software suite was developed to run on a PC-based imaging system for real-time imaging using this device. This paper presents simulated and experimental imaging results for the described CMUT ring array. Three different imaging methods—flash, classic phased array (CPA), and synthetic phased array (SPA)—were used in the study. For SPA imaging, two techniques to improve the image quality—Hadamard coding and aperture weighting—were also applied. The results show that SPA with Hadamard coding and aperture weighting is a good option for ring-array imaging. Compared with CPA, it achieves better image resolution and comparable signal-to-noise ratio at a much faster image acquisition rate. Using this method, a fast frame rate of up to 463 volumes per second is achievable if limited only by the ultrasound time of flight; with the described system we reconstructed three cross-sectional images in real-time at 10 frames per second, which was limited by the computation time in synthetic beamforming. PMID:22718870

  5. Volumetric real-time imaging using a CMUT ring array.

    PubMed

    Choe, Jung Woo; Oralkan, Ömer; Nikoozadeh, Amin; Gencel, Mustafa; Stephens, Douglas N; O'Donnell, Matthew; Sahn, David J; Khuri-Yakub, Butrus T

    2012-06-01

    A ring array provides a very suitable geometry for forward-looking volumetric intracardiac and intravascular ultrasound imaging. We fabricated an annular 64-element capacitive micromachined ultrasonic transducer (CMUT) array featuring a 10-MHz operating frequency and a 1.27-mm outer radius. A custom software suite was developed to run on a PC-based imaging system for real-time imaging using this device. This paper presents simulated and experimental imaging results for the described CMUT ring array. Three different imaging methods--flash, classic phased array (CPA), and synthetic phased array (SPA)--were used in the study. For SPA imaging, two techniques to improve the image quality--Hadamard coding and aperture weighting--were also applied. The results show that SPA with Hadamard coding and aperture weighting is a good option for ring-array imaging. Compared with CPA, it achieves better image resolution and comparable signal-to-noise ratio at a much faster image acquisition rate. Using this method, a fast frame rate of up to 463 volumes per second is achievable if limited only by the ultrasound time of flight; with the described system we reconstructed three cross-sectional images in real-time at 10 frames per second, which was limited by the computation time in synthetic beamforming.

  6. Quantitative comparison of PZT and CMUT probes for photoacoustic imaging: Experimental validation.

    PubMed

    Vallet, Maëva; Varray, François; Boutet, Jérôme; Dinten, Jean-Marc; Caliano, Giosuè; Savoia, Alessandro Stuart; Vray, Didier

    2017-12-01

    Photoacoustic (PA) signals are short ultrasound (US) pulses typically characterized by a single-cycle shape, often referred to as N-shape. The spectral content of such wideband signals ranges from a few hundred kilohertz to several tens of megahertz. Typical reception frequency responses of classical piezoelectric US imaging transducers, based on PZT technology, are not sufficiently broadband to fully preserve the entire information contained in PA signals, which are then filtered, thus limiting PA imaging performance. Capacitive micromachined ultrasonic transducers (CMUT) are rapidly emerging as a valid alternative to conventional PZT transducers in several medical ultrasound imaging applications. As compared to PZT transducers, CMUTs exhibit both higher sensitivity and significantly broader frequency response in reception, making their use attractive in PA imaging applications. This paper explores the advantages of the CMUT larger bandwidth in PA imaging by carrying out an experimental comparative study using various CMUT and PZT probes from different research laboratories and manufacturers. PA acquisitions are performed on a suture wire and on several home-made bimodal phantoms with both PZT and CMUT probes. Three criteria, based on the evaluation of pure receive impulse response, signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) respectively, have been used for a quantitative comparison of imaging results. The measured fractional bandwidths of the CMUT arrays are larger compared to PZT probes. Moreover, both SNR and CNR are enhanced by at least 6 dB with CMUT technology. This work highlights the potential of CMUT technology for PA imaging through qualitative and quantitative parameters.

  7. MEMS based Doppler velocity measurement system

    NASA Astrophysics Data System (ADS)

    Shin, Minchul

    The design, fabrication, modeling and characterization of a capacitive micromachined ultrasonic transducer (cMUT) based in-air Doppler velocity measurement system using a 1 cm2 planar array are described. Continuous wave operation in a narrowband was chosen in order to maximize range, as it allows for better rejection of broadband noise. The sensor array has a 160-185 kHz resonant frequency to achieve a 10 degree beamwidth. A model for the cMUT and the acoustic system which includes electrical, mechanical, and acoustic components is provided. Furthermore, characterization of the cMUT sensor with a variety of testing procedures is provided. Laser Doppler vibrometry (LDV), beampattern, reflection, and velocity testing characterize the performance of the sensors. The sensor is capable of measuring the velocity of a moving specular reflector with a resolution of 5 cm/s, an update rate of 0.016 second, and a range of 1.5 m.

  8. Large Area MEMS Based Ultrasound Device for Cancer Detection.

    PubMed

    Wodnicki, Robert; Thomenius, Kai; Hooi, Fong Ming; Sinha, Sumedha P; Carson, Paul L; Lin, Der-Song; Zhuang, Xuefeng; Khuri-Yakub, Pierre; Woychik, Charles

    2011-08-21

    We present image results obtained using a prototype ultrasound array which demonstrates the fundamental architecture for a large area MEMS based ultrasound device for detection of breast cancer. The prototype array consists of a tiling of capacitive Micro-Machined Ultrasound Transducers (cMUTs) which have been flip-chip attached to a rigid organic substrate. The pitch on the cMUT elements is 185 um and the operating frequency is nominally 9 MHz. The spatial resolution of the new probe is comparable to production PZT probes, however the sensitivity is reduced by conditions that should be correctable. Simulated opposed-view image registration and Speed of Sound volume reconstruction results for ultrasound in the mammographic geometry are also presented.

  9. Large area MEMS based ultrasound device for cancer detection

    NASA Astrophysics Data System (ADS)

    Wodnicki, Robert; Thomenius, Kai; Ming Hooi, Fong; Sinha, Sumedha P.; Carson, Paul L.; Lin, Der-Song; Zhuang, Xuefeng; Khuri-Yakub, Pierre; Woychik, Charles

    2011-08-01

    We present image results obtained using a prototype ultrasound array that demonstrates the fundamental architecture for a large area MEMS based ultrasound device for detection of breast cancer. The prototype array consists of a tiling of capacitive Micromachined Ultrasound Transducers (cMUTs) that have been flip-chip attached to a rigid organic substrate. The pitch on the cMUT elements is 185 μm and the operating frequency is nominally 9 MHz. The spatial resolution of the new probe is comparable to those of production PZT probes; however the sensitivity is reduced by conditions that should be correctable. Simulated opposed-view image registration and Speed of Sound volume reconstruction results for ultrasound in the mammographic geometry are also presented.

  10. 3-D airborne ultrasound synthetic aperture imaging based on capacitive micromachined ultrasonic transducers.

    PubMed

    Park, Kwan Kyu; Khuri-Yakub, Butrus T

    2013-09-01

    In this paper, we present an airborne 3-D volumetric imaging system based on capacitive micromachined ultrasonic transducers (CMUTs). For this purpose we fabricated 89-kHz CMUTs where each CMUT is made of a circular single-crystal silicon plate with a radius of 1mm and a thickness of 20 μm, which is actuated by electrostatic force through a 20-μm vacuum gap. The measured transmit sensitivity at 300-V DC bias is 14.6 Pa/V and 24.2 Pa/V, when excited by a 30-cycle burst and a continuous wave, respectively. The measured receive sensitivity at 300-V DC bias is 16.6 mV/Pa (-35.6 dB re 1 V/Pa) for a 30-cycle burst. A 26×26 2-D array was implemented by mechanical scanning a co-located transmitter and receiver using the classic synthetic aperture (CSA) method. The measurement of a 1.6λ-size target at a distance of 500 mm presented a lateral resolution of 3.17° and also showed good agreement with the theoretical point spread function. The 3-D imaging of two plates at a distance of 350 mm and 400 mm was constructed to exhibit the capability of the imaging system. This study experimentally demonstrates that a 2-D CMUT array can be used for practical 3-D imaging applications in air, such as a human-machine interface. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Development of a Novel Transparent Flexible Capacitive Micromachined Ultrasonic Transducer

    PubMed Central

    Pang, Da-Chen; Chang, Cheng-Min

    2017-01-01

    This paper presents the world’s first transparent flexible capacitive micromachined ultrasonic transducer (CMUT) that was fabricated through a roll-lamination technique. This polymer-based CMUT has advantages of transparency, flexibility, and non-contacting detection which provide unique functions in display panel applications. Comprising an indium tin oxide-polyethylene terephthalate (ITO-PET) substrate, SU-8 sidewall and vibrating membranes, and silver nanowire transparent electrode, the transducer has visible-light transmittance exceeding 80% and can operate on curved surfaces with a 40 mm radius of curvature. Unlike the traditional silicon-based high temperature process, the CMUT can be fabricated on a flexible substrate at a temperature below 100 °C to reduce residual stress introduced at high temperature. The CMUT on the curved surfaces can detect a flat target and finger at distances up to 50 mm and 40 mm, respectively. The transparent flexible CMUT provides a better human-machine interface than existing touch panels because it can be integrated with a display panel for non-contacting control in a health conscious environment and the flexible feature is critical for curved display and wearable electronics. PMID:28632157

  12. Feasibility of MR-Temperature Mapping of Ultrasonic Heating from a CMUT

    PubMed Central

    Wong, Serena H.; Watkins, Ronald D.; Kupnik, Mario; Butts-Pauly, Kim; Khuri-Yakub, Butrus T.

    2014-01-01

    In the last decade, high intensity focused ultrasound (HIFU) has gained popularity as a minimally-invasive and non-invasive therapeutic tool for treatment of cancers, arrhythmias, and other medical conditions. HIFU therapy is often guided by magnetic resonance imaging (MRI), which provides anatomical images for therapeutic device placement, temperature maps for treatment guidance, and post-operative evaluation of the region of interest. While piezoelectric transducers are dominantly used for MR-guided HIFU, capacitive micromachined ultrasonic transducers (CMUTs) show competitive advantages such as ease of fabrication, integration with electronics, improved efficiency, and reduction of self-heating. In this paper, we will show our first results of an unfocused CMUT transducer monitored by MR-temperature maps. This 2.51 mm by 2.32 mm, unfocused CMUT heated a HIFU phantom by 14°C in 2.5 min. This temperature rise was successfully monitored by MR thermometry in a 3.0 T General Electric scanner. PMID:18467225

  13. Capacitive micromachined ultrasonic transducers (CMUTs) with isolation posts.

    PubMed

    Huang, Yongli; Zhuang, Xuefeng; Haeggstrom, Edward O; Ergun, A Sanli; Cheng, Ching-Hsiang; Khuri-Yakub, Butrus T

    2008-03-01

    In this paper, an improved design of a capacitive micromachined ultrasonic transducer (CMUT) is presented. The design improvement aims to address the reliability issues of a CMUT and to extend the device operation beyond the contact (collapse) voltage. The major design novelty is the isolation posts in the vacuum cavities of the CMUT cells instead of full-coverage insulation layers in conventional CMUTs. This eliminates the contact voltage drifting due to charging caused by the insulation layer, and enables repeatable CMUT operation in the post-contact regime. Ultrasonic tests of the CMUTs with isolation posts (PostCMUTs) in air (electrical input impedance and capacitance vs. bias voltage) and immersion (transmission and reception) indicate acoustic performance similar to that obtained from conventional CMUTs while no undesired side effects of this new design is observed.

  14. A three-mask process for fabricating vacuum-sealed capacitive micromachined ultrasonic transducers using anodic bonding.

    PubMed

    Yamaner, F Yalçın; Zhang, Xiao; Oralkan, Ömer

    2015-05-01

    This paper introduces a simplified fabrication method for vacuum-sealed capacitive micromachined ultrasonic transducer (CMUT) arrays using anodic bonding. Anodic bonding provides the established advantages of wafer-bondingbased CMUT fabrication processes, including process simplicity, control over plate thickness and properties, high fill factor, and ability to implement large vibrating cells. In addition to these, compared with fusion bonding, anodic bonding can be performed at lower processing temperatures, i.e., 350°C as opposed to 1100°C; surface roughness requirement for anodic bonding is more than 10 times more relaxed, i.e., 5-nm rootmean- square (RMS) roughness as opposed to 0.5 nm for fusion bonding; anodic bonding can be performed on smaller contact area and hence improves the fill factor for CMUTs. Although anodic bonding has been previously used for CMUT fabrication, a CMUT with a vacuum cavity could not have been achieved, mainly because gas is trapped inside the cavities during anodic bonding. In the approach we present in this paper, the vacuum cavity is achieved by opening a channel in the plate structure to evacuate the trapped gas and subsequently sealing this channel by conformal silicon nitride deposition in the vacuum environment. The plate structure of the fabricated CMUT consists of the single-crystal silicon device layer of a silicon-on-insulator wafer and a thin silicon nitride insulation layer. The presented fabrication approach employs only three photolithographic steps and combines the advantages of anodic bonding with the advantages of a patterned metal bottom electrode on an insulating substrate, specifically low parasitic series resistance and low parasitic shunt capacitance. In this paper, the developed fabrication scheme is described in detail, including process recipes. The fabricated transducers are characterized using electrical input impedance measurements in air and hydrophone measurements in immersion. A representative design is used to demonstrate immersion operation in conventional, collapse-snapback, and collapse modes. In collapsemode operation, an output pressure of 1.67 MPa pp is shown at 7 MHz on the surface of the transducer for 60-Vpp, 3-cycle sinusoidal excitation at 30-V dc bias.

  15. Fabricating capacitive micromachined ultrasonic transducers with a novel silicon-nitride-based wafer bonding process.

    PubMed

    Logan, Andrew; Yeow, John T W

    2009-05-01

    We report the fabrication and experimental testing of 1-D 23-element capacitive micromachined ultrasonic transducer (CMUT) arrays that have been fabricated using a novel wafer-bonding process whereby the membrane and the insulation layer are both silicon nitride. The membrane and cell cavities are deposited and patterned on separate wafers and fusion-bonded in a vacuum environment to create CMUT cells. A user-grown silicon-nitride membrane layer avoids the need for expensive silicon-on-insulator (SOI) wafers, reduces parasitic capacitance, and reduces dielectric charging. It allows more freedom in selecting the membrane thickness while also providing the benefits of wafer-bonding fabrication such as excellent fill factor, ease of vacuum sealing, and a simplified fabrication process when compared with the more standard sacrificial release process. The devices fabricated have a cell diameter of 22 microm, a membrane thickness of 400 nm, a gap depth of 150 nm, and an insulation thickness of 250 nm. The resonant frequency of the CMUT in air is 17 MHz and has an attenuation compensated center frequency of approximately 9 MHz in immersion with a -6 dB fractional bandwidth of 123%. This paper presents the fabrication process and some characterization results.

  16. Fabrication and characterization of SU-8-based capacitive micromachined ultrasonic transducer for airborne applications

    NASA Astrophysics Data System (ADS)

    Joseph, Jose; Singh, Shiv Govind; Vanjari, Siva Rama Krishna

    2018-01-01

    We present a successful fabrication and characterization of a capacitive micromachined ultrasonic transducer (CMUT) with SU-8 as the membrane material. The goal of this research is to develop a post-CMOS compatible CMUT that can be monolithically integrated with the CMOS circuitry. The fabrication is based on a simple, three mask process, with all wet etching steps involved so that the device can be realized with minimal laboratory conditions. The maximum temperature involved in the whole process flow was 140°C, and hence, it is post-CMOS compatible. The fabricated device exhibited a resonant frequency of 835 kHz with bandwidth 62 kHz, when characterized in air. The pull-in and snapback characteristics of the device were analyzed. The influence of membrane radius on the center frequency and bandwidth was also experimentally evaluated by fabricating CMUTs with membrane radius varying from 30 to 54 μm with an interval of 4 μm. These devices were vibrating at frequencies from 5.2 to 1.8 MHz with an average Q-factor of 23.41. Acoustic characterization of the fabricated devices was performed in air, demonstrating the applicability of SU-8 CMUTs in airborne applications.

  17. Design of a Collapse-Mode CMUT With an Embossed Membrane for Improving Output Pressure.

    PubMed

    Yu, Yuanyu; Pun, Sio Hang; Mak, Peng Un; Cheng, Ching-Hsiang; Wang, Jiujiang; Mak, Pui-In; Vai, Mang I

    2016-06-01

    Capacitive micromachined ultrasonic transducers (CMUTs) have emerged as a competitive alternative to piezoelectric ultrasonic transducers, especially in medical ultrasound imaging and therapeutic ultrasound applications, which require high output pressure. However, as compared with piezoelectric ultrasonic transducers, the output pressure capability of CMUTs remains to be improved. In this paper, a novel structure is proposed by forming an embossed vibrating membrane on a CMUT cell operating in the collapse mode to increase the maximum output pressure. By using a beam model in undamped conditions and finite-element analysis simulations, the proposed embossed structure showed improvement on the maximum output pressure of the CMUT cell when the embossed pattern was placed on the estimated location of the peak deflection. As compared with a uniform membrane CMUT cell worked in the collapse mode, the proposed CMUT cell can yield the maximum output pressure by 51.1% and 88.1% enhancement with a single embossed pattern made of Si3N4 and nickel, respectively. The maximum output pressures were improved by 34.9% (a single Si3N4 embossed pattern) and 46.7% (a single nickel embossed pattern) with the uniform membrane when the center frequencies of both original and embossed CMUT designs were similar.

  18. A Comparative Analysis of CMUT Receiving Architectures for the Design Optimization of Integrated Transceiver Front Ends.

    PubMed

    Sautto, Marco; Savoia, Alessandro Stuart; Quaglia, Fabio; Caliano, Giosue; Mazzanti, Andrea

    2017-05-01

    A formal comparison between fundamental RX amplifier configurations for capacitive micromachined ultrasonic transducers (CMUTs) is proposed in this paper. The impact on both RX and the pulse-echo frequency response and on the output SNR is thoroughly analyzed and discussed. It is shown that the resistive-feedback amplifier yields a bandpass RX frequency response, while both open-loop voltage and capacitive-feedback amplifiers exhibit a low-pass frequency response. For a given power dissipation, it is formally proved that a capacitive-feedback amplifier provides a remarkable SNR improvement against the commonly adopted resistive feedback stage, achieved at the expense of a reduced pulse-echo center frequency, making its use convenient in low-frequency and midfrequency ultrasound imaging applications. The advantage mostly comes from a much lower noise contributed by the active devices, especially with low- Q , broadband transducers. The results of the analysis are applied to the design of a CMUT front end in BIPOLAR-CMOS-DMOS Silicon-on-Insulator technology operating at 10-MHz center frequency. It comprises a low-power RX amplifier, a high-voltage Transmission/Reception switch, and a 100-V TX driver. Extensive electrical characterization, pulse-echo measurements, and imaging results are shown. Compared with previously reported CMUT front ends, this transceiver demonstrates the highest dynamic range and state-of-the-art noise performance with an RX amplifier power dissipation of 1 mW.

  19. A Pixel Pitch-Matched Ultrasound Receiver for 3-D Photoacoustic Imaging With Integrated Delta-Sigma Beamformer in 28-nm UTBB FD-SOI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Man-Chia; Perez, Aldo Pena; Kothapalli, Sri-Rajasekhar

    This study presents a pixel pitch-matched readout chip for 3-D photoacoustic (PA) imaging, featuring a dedicated signal conditioning and delta-sigma modulation integrated within a pixel area of 250 μm by 250 μm. The proof-of-concept receiver was implemented in an STMicroelectronics's 28-nm Fully Depleted Silicon On Insulator technology, and interfaces to a 4 × 4 subarray of capacitive micromachined ultrasound transducers (CMUTs). The front-end signal conditioning in each pixel employs a coarse/fine gain tuning architecture to fulfill the 90-dB dynamic range requirement of the application. The employed delta-sigma beamforming architecture obviates the need for area-consuming Nyquist ADCs and thereby enables anmore » efficient in-pixel A/D conversion. The per-pixel switched-capacitor ΔΣ modulator leverages slewing-dominated and area-optimized inverter-based amplifiers. It occupies only 1/4th of the pixel, and its area compares favorably with state-of-the-art designs that offer the same SNR and bandwidth. The modulator's measured peak signal-to-noise-and-distortion ratio is 59.9 dB for a 10-MHz input bandwidth, and it consumes 6.65 mW from a 1V supply. The overall subarray beamforming approach improves the area per channel by 7.4 times and the single-channel SNR by 8 dB compared to prior art with similar delay resolution and power dissipation. Finally, the functionality of the designed chip was evaluated within a PA imaging experiment, employing a flip-chip bonded 2-D CMUT array.« less

  20. A Pixel Pitch-Matched Ultrasound Receiver for 3-D Photoacoustic Imaging With Integrated Delta-Sigma Beamformer in 28-nm UTBB FD-SOI

    DOE PAGES

    Chen, Man-Chia; Perez, Aldo Pena; Kothapalli, Sri-Rajasekhar; ...

    2017-10-16

    This study presents a pixel pitch-matched readout chip for 3-D photoacoustic (PA) imaging, featuring a dedicated signal conditioning and delta-sigma modulation integrated within a pixel area of 250 μm by 250 μm. The proof-of-concept receiver was implemented in an STMicroelectronics's 28-nm Fully Depleted Silicon On Insulator technology, and interfaces to a 4 × 4 subarray of capacitive micromachined ultrasound transducers (CMUTs). The front-end signal conditioning in each pixel employs a coarse/fine gain tuning architecture to fulfill the 90-dB dynamic range requirement of the application. The employed delta-sigma beamforming architecture obviates the need for area-consuming Nyquist ADCs and thereby enables anmore » efficient in-pixel A/D conversion. The per-pixel switched-capacitor ΔΣ modulator leverages slewing-dominated and area-optimized inverter-based amplifiers. It occupies only 1/4th of the pixel, and its area compares favorably with state-of-the-art designs that offer the same SNR and bandwidth. The modulator's measured peak signal-to-noise-and-distortion ratio is 59.9 dB for a 10-MHz input bandwidth, and it consumes 6.65 mW from a 1V supply. The overall subarray beamforming approach improves the area per channel by 7.4 times and the single-channel SNR by 8 dB compared to prior art with similar delay resolution and power dissipation. Finally, the functionality of the designed chip was evaluated within a PA imaging experiment, employing a flip-chip bonded 2-D CMUT array.« less

  1. Design of an ultrasonic micro-array for near field sensing during retinal microsurgery.

    PubMed

    Clarke, Clyde; Etienne-Cummings, Ralph

    2006-01-01

    A method for obtaining the optimal and specific sensor parameters for a tool-tip mountable ultrasonic transducer micro-array is presented. The ultrasonic transducer array sensor parameters, such as frequency of operation, element size, inter-element spacing, number of elements and transducer geometry are obtained using a quadratic programming method to obtain a maximum directivity while being constrained to a total array size of 4 mm2 and the required resolution for retinal imaging. The technique is used to design a uniformly spaced NxN transducer array that is capable of resolving structures in the retina that are as small as 2 microm from a distance of 100 microm. The resultant 37x37 array of 16 microm transducers with 26 microm spacing will be realized as a Capacitive Micromachined Ultrasonic Transducer (CMUT) array and used for imaging and robotic guidance during retinal microsurgery.

  2. CMUTs with high-K atomic layer deposition dielectric material insulation layer.

    PubMed

    Xu, Toby; Tekes, Coskun; Degertekin, F

    2014-12-01

    Use of high-κ dielectric, atomic layer deposition (ALD) materials as an insulation layer material for capacitive micromachined ultrasonic transducers (CMUTs) is investigated. The effect of insulation layer material and thickness on CMUT performance is evaluated using a simple parallel plate model. The model shows that both high dielectric constant and the electrical breakdown strength are important for the dielectric material, and significant performance improvement can be achieved, especially as the vacuum gap thickness is reduced. In particular, ALD hafnium oxide (HfO2) is evaluated and used as an improvement over plasma-enhanced chemical vapor deposition (PECVD) silicon nitride (Six)Ny)) for CMUTs fabricated by a low-temperature, complementary metal oxide semiconductor transistor-compatible, sacrificial release method. Relevant properties of ALD HfO2) such as dielectric constant and breakdown strength are characterized to further guide CMUT design. Experiments are performed on parallel fabricated test CMUTs with 50-nm gap and 16.5-MHz center frequency to measure and compare pressure output and receive sensitivity for 200-nm PECVD Six)Ny) and 100-nm HfO2) insulation layers. Results for this particular design show a 6-dB improvement in receiver output with the collapse voltage reduced by one-half; while in transmit mode, half the input voltage is needed to achieve the same maximum output pressure.

  3. Air-coupled MUMPs capacitive micromachined ultrasonic transducers with resonant cavities.

    PubMed

    Octavio Manzanares, Alberto; Montero de Espinosa, Francisco

    2012-04-01

    This work reports performance improvements of air-coupled capacitive micromachined ultrasonic transducers (CMUTs) using resonant cavities. In order to perform this work, we have designed and manufactured a CMUT employing multi-user microelectromechanical systems (MEMS) processes (MUMPs). The transducer was designed using Helmholtz resonator principles. This was characterised by the dimensions of the cavity and several acoustic ports, which had the form of holes in the CMUT plate. The MUMPs process has the advantage of being low cost which allows the manufacture of economic prototypes. In this paper we show the effects of the resonant cavities and acoustic ports in CMUTs using laser Doppler vibrometry and acoustical measurements. We also use Finite Element (FE) simulations in order to support experimental measurements. The results show that it is possible to enhance the output pressure and bandwidth in air by tuning the resonance frequency of the plate (f(p)) with that of the Helmholtz resonator (f(H)). The experimental measurements show the plate resonance along with an additional resonance in the output pressure spectrum. This appears due to the effect of the new resonant cavities in the transducer. FE simulations show an increase of 11 dB in the output pressure with respect to that of a theoretical vacuum-sealed cavity MUMPs CMUT by properly tuning the transducer. The bandwidth has been also analyzed by calculating the mechanical Q factor of the tuned CMUT. This has been estimated as 4.5 compared with 7.75 for the vacuum-sealed cavity MUMPs CMUT. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. CMUTs with High-K Atomic Layer Deposition Dielectric Material Insulation Layer

    PubMed Central

    Xu, Toby; Tekes, Coskun; Degertekin, F. Levent

    2014-01-01

    Use of high-κ dielectric, atomic layer deposition (ALD) materials as an insulation layer material for capacitive micromachined ultrasonic transducers (CMUTs) is investigated. The effect of insulation layer material and thickness on CMUT performance is evaluated using a simple parallel plate model. The model shows that both high dielectric constant and the electrical breakdown strength are important for the dielectric material, and significant performance improvement can be achieved, especially as the vacuum gap thickness is reduced. In particular, ALD hafnium oxide (HfO2) is evaluated and used as an improvement over plasma-enhanced chemical vapor deposition (PECVD) silicon nitride (SixNy) for CMUTs fabricated by a low-temperature, complementary metal oxide semiconductor transistor-compatible, sacrificial release method. Relevant properties of ALD HfO2 such as dielectric constant and breakdown strength are characterized to further guide CMUT design. Experiments are performed on parallel fabricated test CMUTs with 50-nm gap and 16.5-MHz center frequency to measure and compare pressure output and receive sensitivity for 200-nm PECVD SixNy and 100-nm HfO2 insulation layers. Results for this particular design show a 6-dB improvement in receiver output with the collapse voltage reduced by one-half; while in transmit mode, half the input voltage is needed to achieve the same maximum output pressure. PMID:25474786

  5. Dual-Electrode CMUT With Non-Uniform Membranes for High Electromechanical Coupling Coefficient and High Bandwidth Operation

    PubMed Central

    Guldiken, Rasim O.; Zahorian, Jaime; Yamaner, F. Y.; Degertekin, F. L.

    2010-01-01

    In this paper, we report measurement results on dual-electrode CMUT demonstrating electromechanical coupling coefficient (k2) of 0.82 at 90% of collapse voltage as well as 136% 3 dB one-way fractional bandwidth at the transducer surface around the design frequency of 8 MHz. These results are within 5% of the predictions of the finite element simulations. The large bandwidth is achieved mainly by utilizing a non-uniform membrane, introducing center mass to the design, whereas the dual-electrode structure provides high coupling coefficient in a large dc bias range without collapsing the membrane. In addition, the non-uniform membrane structure improves the transmit sensitivity of the dual-electrode CMUT by about 2dB as compared with a dual electrode CMUT with uniform membrane. PMID:19574135

  6. Chemical vapor detection using a capacitive micromachined ultrasonic transducer.

    PubMed

    Lee, Hyunjoo J; Park, Kwan Kyu; Kupnik, Mario; Oralkan, O; Khuri-Yakub, Butrus T

    2011-12-15

    Distributed sensing of gas-phase chemicals using highly sensitive and inexpensive sensors is of great interest for many defense and consumer applications. In this paper we present ppb-level detection of dimethyl methylphosphonate (DMMP), a common simulant for sarin gas, with a ppt-level resolution using an improved capacitive micromachined ultrasonic transducer (CMUT) as a resonant chemical sensor. The improved CMUT operates at a higher resonant frequency of 47.7 MHz and offers an improved mass sensitivity of 48.8 zg/Hz/μm(2) by a factor of 2.7 compared to the previous CMUT sensors developed. A low-noise oscillator using the CMUT resonant sensor as the frequency-selective device was developed for real-time sensing, which exhibits an Allan deviation of 1.65 Hz (3σ) in the presence of a gas flow; this translates into a mass resolution of 80.5 zg/μm(2). The CMUT resonant sensor is functionalized with a 50-nm thick DKAP polymer developed at Sandia National Laboratory for dimethyl methylphosphonate (DMMP) detection. To demonstrate ppb-level detection of the improved chemical sensor system, the sensor performance was tested at a certified lab (MIT Lincoln Laboratory), which is equipped with an experimental chemical setup that reliably and accurately delivers a wide range of low concentrations down to 10 ppb. We report a high volume sensitivity of 34.5 ± 0.79 pptv/Hz to DMMP and a good selectivity of the polymer to DMMP with respect to dodecane and 1-octanol.

  7. Non-contact thermoacoustic detection of embedded targets using airborne-capacitive micromachined ultrasonic transducers

    NASA Astrophysics Data System (ADS)

    Nan, Hao; Boyle, Kevin C.; Apte, Nikhil; Aliroteh, Miaad S.; Bhuyan, Anshuman; Nikoozadeh, Amin; Khuri-Yakub, Butrus T.; Arbabian, Amin

    2015-02-01

    A radio frequency (RF)/ultrasound hybrid imaging system using airborne capacitive micromachined ultrasonic transducers (CMUTs) is proposed for the remote detection of embedded objects in highly dispersive media (e.g., water, soil, and tissue). RF excitation provides permittivity contrast, and ultra-sensitive airborne-ultrasound detection measures thermoacoustic-generated acoustic waves that initiate at the boundaries of the embedded target, go through the medium-air interface, and finally reach the transducer. Vented wideband CMUTs interface to 0.18 μm CMOS low-noise amplifiers to provide displacement detection sensitivity of 1.3 pm at the transducer surface. The carefully designed vented CMUT structure provides a fractional bandwidth of 3.5% utilizing the squeeze-film damping of the air in the cavity.

  8. Electrostatic and Small-Signal Analysis of CMUTs With Circular and Square Anisotropic Plates.

    PubMed

    Funding la Cour, Mette; Christiansen, Thomas Lehrmann; Jensen, Jørgen Arendt; Thomsen, Erik Vilain

    2015-08-01

    Traditionally, capacitive micromachined ultrasonic transducers (CMUTs) are modeled using the isotropic plate equation, and this leads to deviations between analytical calculations and finite element modeling (FEM). In this paper, the deflection is calculated for both circular and square plates using the full anisotropic plate equation. It is shown that the anisotropic calculations match excellently with FEM, whereas an isotropic approach causes up to 10% deviations in deflection. For circular plates, an exact solution can be found. For square plates using the Galerkin method, and utilizing the symmetry of the silicon crystal, a compact and accurate expression for the deflection can be obtained. The deviation from FEM in center deflection is <0.1%. The theory of multilayer plates is also applied to the CMUT. The deflection of a square plate was measured on fabricated CMUTs using a white light interferometer. Fitting the plate parameter for the anisotropic calculated deflection to the measurement, a deviation of 0.07% is seen. Electrostatic and small-signal dynamic analysis are performed using energy considerations including anisotropy. The stable position, effective spring constant, pullin distance, and pull-in voltage are found for both circular and square anisotropic plates, and the pressure dependence is included by comparison with the corresponding analysis for a parallel plate. Measurements on fabricated devices with both circular and square plates subjected to increasing bias voltage are performed, and it is observed that the models including anisotropic effects are within the uncertainty interval of the measurements. Finally, a lumped element small-signal model for both circular and square anisotropic plates is derived to describe the dynamics of the CMUT.

  9. Encapsulation of Capacitive Micromachined Ultrasonic Transducers Using Viscoelastic Polymer

    PubMed Central

    Lin, Der-Song; Zhuang, Xuefeng; Wong, Serena H.; Kupnik, Mario; Khuri-Yakub, Butrus Thomas

    2010-01-01

    The packaging of a medical imaging or therapeutic ultrasound transducer should provide protective insulation while maintaining high performance. For a capacitive micromachined ultrasonic transducer (CMUT), an ideal encapsulation coating would therefore require a limited and predictable change on the static operation point and the dynamic performance, while insulating the high dc and dc actuation voltages from the environment. To fulfill these requirements, viscoelastic materials, such as polydimethylsiloxane (PDMS), were investigated for an encapsulation material. In addition, PDMS, with a glass-transition temperature below room temperature, provides a low Young's modulus that preserves the static behavior; at higher frequencies for ultrasonic operation, this material becomes stiffer and acoustically matches to water. In this paper, we demonstrate the modeling and implementation of the viscoelastic polymer as the encapsulation material. We introduce a finite element model (FEM) that addresses viscoelasticity. This enables us to correctly calculate both the static operation point and the dynamic behavior of the CMUT. CMUTs designed for medical imaging and therapeutic ultrasound were fabricated and encapsulated. Static and dynamic measurements were used to verify the FEM and show excellent agreement. This paper will help in the design process for optimizing the static and the dynamic behavior of viscoelastic-polymer-coated CMUTs. PMID:21170294

  10. Applications of airborne ultrasound in human-computer interaction.

    PubMed

    Dahl, Tobias; Ealo, Joao L; Bang, Hans J; Holm, Sverre; Khuri-Yakub, Pierre

    2014-09-01

    Airborne ultrasound is a rapidly developing subfield within human-computer interaction (HCI). Touchless ultrasonic interfaces and pen tracking systems are part of recent trends in HCI and are gaining industry momentum. This paper aims to provide the background and overview necessary to understand the capabilities of ultrasound and its potential future in human-computer interaction. The latest developments on the ultrasound transducer side are presented, focusing on capacitive micro-machined ultrasonic transducers, or CMUTs. Their introduction is an important step toward providing real, low-cost multi-sensor array and beam-forming options. We also provide a unified mathematical framework for understanding and analyzing algorithms used for ultrasound detection and tracking for some of the most relevant applications. Copyright © 2014. Published by Elsevier B.V.

  11. Transceiver Design for CMUT-Based Super-Resolution Ultrasound Imaging.

    PubMed

    Behnamfar, Parisa; Molavi, Reza; Mirabbasi, Shahriar

    2016-04-01

    A recently introduced structure for the capacitive micromachined ultrasonic transducers (CMUTs) has focused on the applications of the asymmetric mode of vibration and has shown promising results in construction of super-resolution ultrasound images. This paper presents the first implementation and experimental results of a transceiver circuit to interface such CMUT structures. The multiple input/multiple output receiver in this work supports both fundamental and asymmetric modes of operation and includes transimpedance amplifiers and low-power variable-gain stages. These circuit blocks are designed considering the trade-offs between gain, input impedance, noise, linearity and power consumption. The high-voltage transmitter can generate pulse voltages up to 60 V while occupying a considerably small area. The overall circuit is designed and laid out in a 0.35 μm CMOS process and a four-channel transceiver occupies 0.86 × 0.38 mm(2). The prototype chip is characterized in both electrical and mechanical domains. Measurement results show that each receiver channel has a nominal gain of 110 dBΩ with a 3 dB bandwidth of 9 MHz while consuming 1.02 mW from a 3.3 V supply. The receiver is also highly linear, with 1 dB compression point of minimum 1.05 V which is considerably higher than the previously reported designs. The transmitter consumes 98.1 mW from a 30 V supply while generating 1.38 MHz, 30 V pulses. The CMOS-CMUT system is tested in the transmit mode and shows full functionality in air medium.

  12. Capacitive micromachined ultrasonic transducers using commercial multi-user MUMPs process: capability and limitations

    PubMed Central

    Liu, Jessica; Oakley, Clyde; Shandas, Robin

    2009-01-01

    The objective of this work is to construct capacitive micromachined ultrasouind transducers (cMUTs) using multi-user MEMS (MicroElectroMechanical Systems) process (MUMPs) and to analyze the capability of this process relative to the customized processes commonly in use. The MUMPs process has the advantages of low cost and accessibility to general users since it is not necessary to have access to customized fabrication capability such as wafer-bonding and sacrificial release processes. While other researchers have reported fabricating cMUTs using the MUMPs process none has reported the limitations in the process that arise due to the use of standard design rules that place limitations on the material thicknesses, gap thicknesses, and materials that may be used. In this paper we explain these limitations, and analyze the capabilities using 1D modeling, Finite Element Analysis, and experimental devices. We show that one of the limitations is that collapse voltage and center frequency can not be controlled independently. However, center frequencies up to 9 MHz can be achieved with collapse voltages of less than 200 volts making such devices suitable for medical and non-destructive evaluation imaging applications. Since the membrane and base electrodes are made of polysilicon, there is a larger series resistance than that resulting from processes that use metal electrodes. We show that the series resistance is not a significant problem. The conductive polysilicon can also destroy the cMUT if the top membrane is pulled in the bottom. As a solution we propose the application of an additional dielectric layer. Finally we demonstrate a device built with a novel beam construction that produces transmitted pressure pulse into air with 6% bandwidth and agrees reasonably well with the 1D model. We conclude that cMUTS made with MUMPS process have some limitations that are not present in customized processes. However these limitations may be overcome with the proper design considerations that we have presented putting a low cost, highly accessible means of making cMUT devices into the hands of academic and industrial researchers. PMID:19640557

  13. Electromechanical coupling factor of capacitive micromachined ultrasonic transducers.

    PubMed

    Caronti, Alessandro; Carotenuto, Riccardo; Pappalardo, Massimo

    2003-01-01

    Recently, a linear, analytical distributed model for capacitive micromachined ultrasonic transducers (CMUTs) was presented, and an electromechanical equivalent circuit based on the theory reported was used to describe the behavior of the transducer [IEEE Trans. Ultrason. Ferroelectr. Freq. Control 49, 159-168 (2002)]. The distributed model is applied here to calculate the dynamic coupling factor k(w) of a lossless CMUT, based on a definition that involves the energies stored in a dynamic vibration cycle, and the results are compared with those obtained with a lumped model. A strong discrepancy is found between the two models as the bias voltage increases. The lumped model predicts an increasing dynamic k factor up to unity, whereas the distributed model predicts a more realistic saturation of this parameter to values substantially lower. It is demonstrated that the maximum value of k(w), corresponding to an operating point close to the diaphragm collapse, is 0.4 for a CMUT single cell with a circular membrane diaphragm and no parasitic capacitance (0.36 for a cell with a circular plate diaphragm). This means that the dynamic coupling factor of a CMUT is comparable to that of a piezoceramic plate oscillating in the thickness mode. Parasitic capacitance decreases the value of k(w), because it does not contribute to the energy conversion. The effective coupling factor k(eff) is also investigated, showing that this parameter coincides with k(w) within the lumped model approximation, but a quite different result is obtained if a computation is made with the more accurate distributed model. As a consequence, k(eff), which can be measured from the transducer electrical impedance, does not give a reliable value of the actual dynamic coupling factor.

  14. Electromechanical coupling factor of capacitive micromachined ultrasonic transducers

    NASA Astrophysics Data System (ADS)

    Caronti, Alessandro; Carotenuto, Riccardo; Pappalardo, Massimo

    2003-01-01

    Recently, a linear, analytical distributed model for capacitive micromachined ultrasonic transducers (CMUTs) was presented, and an electromechanical equivalent circuit based on the theory reported was used to describe the behavior of the transducer [IEEE Trans. Ultrason. Ferroelectr. Freq. Control 49, 159-168 (2002)]. The distributed model is applied here to calculate the dynamic coupling factor kw of a lossless CMUT, based on a definition that involves the energies stored in a dynamic vibration cycle, and the results are compared with those obtained with a lumped model. A strong discrepancy is found between the two models as the bias voltage increases. The lumped model predicts an increasing dynamic k factor up to unity, whereas the distributed model predicts a more realistic saturation of this parameter to values substantially lower. It is demonstrated that the maximum value of kw, corresponding to an operating point close to the diaphragm collapse, is 0.4 for a CMUT single cell with a circular membrane diaphragm and no parasitic capacitance (0.36 for a cell with a circular plate diaphragm). This means that the dynamic coupling factor of a CMUT is comparable to that of a piezoceramic plate oscillating in the thickness mode. Parasitic capacitance decreases the value of kw, because it does not contribute to the energy conversion. The effective coupling factor keff is also investigated, showing that this parameter coincides with kw within the lumped model approximation, but a quite different result is obtained if a computation is made with the more accurate distributed model. As a consequence, keff, which can be measured from the transducer electrical impedance, does not give a reliable value of the actual dynamic coupling factor.

  15. Response of capacitive micromachined ultrasonic transducers

    NASA Astrophysics Data System (ADS)

    Ge, Lifeng

    2008-10-01

    Capacitive micromachined ultrasonic transducers (CMUTs) have been developed for airborne ultrasonic applications, acoustic imaging, and chemical and biological detections. Much attention is also paid how to optimize their performance, so that the accurate simulation of the transmitting response of the CMUTs becomes extremely significant. This paper focuses on determining the total input mechanical impedance accountings for damping, and its resistance part is obtained by the calculated natural frequency and equivalent lumped parameters, and the typical 3-dB bandwidth. Thus, the transmitting response can be calculated by using the input mechanical impedance. Moreover, the equivalent electrical circuit can be also established by the determined lumped parameters.

  16. Advanced devices for photoacoustic imaging to improve cancer and cerebrovascular medicine

    NASA Astrophysics Data System (ADS)

    Montilla Marien, Leonardo Gabriel

    Recent clinical studies have demonstrated that photoacoustic imaging (PAI) provides important diagnostic information for breast cancer staging. Despite these promising studies, PAI remains an unfeasible option for clinics due to the cost to implement, the required large modification in user conduct and the inflexibility of the hardware to accommodate other applications for the incremental enhancement in diagnostic information. The research described in this dissertation addresses these issues by designing attachments to clinical ultrasound probes and incorporating custom detectors into commercial ultrasound scanners. The ultimate benefit of these handheld devices is to expand the capability of current ultrasound systems and facilitate the translation of PAI to enhance cancer diagnostics and neurosurgical outcomes. Photoacoustic enabling devices (PEDs) were designed as attachments to two clinical ultrasound probes optimized for breast cancer diagnostics. PAI uses pulsed laser excitation to create transient heating (<1°C) and thermoelastic expansion that is detected as an ultrasonic emission. These ultrasonic emissions are remotely sensed to construct noninvasive images with optical contrast at depths much greater than other optical modalities. The PEDs are feasible in terms of cost, user familiarity and flexibility for various applications. Another possible application for PAI is in assisting neurosurgeons treating aneurysms. Aneurysms are often treated by placing a clip to prevent blood flow into the aneurysm. However, this procedure has risks associated with damaging nearby vessels. One of the developed PEDs demonstrated the feasibility to three-dimensionally image tiny microvasculature (<0.3mm) beyond large blood occlusions (>2.4mm) in a phantom model. The capability to use this during surgery would suggest decreasing the risks associated with these treatments. However, clinical ultrasound arrays are not clinically feasible for microsurgical applications due to their bulky size and linear scanning requirements for 3D. Therefore, capacitive micromachined ultrasound transducer (CMUT) two-dimensional arrays compatible with standard ultrasound scanners were used to generate real-time 3D photoacoustic images. Future probes, designed incorporating CMUT arrays, would be relatively simple to fabricate and a convenient upgrade to existing clinical ultrasound equipment. Eventually, a handheld tool with the ability to visualize, in real-time 3D, the desired microvasculature, would assist surgical procedures. The potential implications of PAI devices compatible with standard ultrasound equipment would be a streamlined cost efficient solution for translating photoacoustics into clinical practice. The practitioner could then explore the benefits of the enhanced contrast adjunctive to current ultrasound applications. Clinical availability of PAI could enhance breast cancer diagnostics and cerebrovascular surgical outcomes.

  17. Modeling and Characterization of cMUT-based Devices Applied to Galvanic Isolation

    NASA Astrophysics Data System (ADS)

    Heller, Jacques; Boulmé, Audren; Alquier, Daniel; Ngo, Sophie; Perroteau, Marie; Certon, Domnique

    This paper describes a new way of using cMUT technology: galvanic isolation for power electronics. These devices work like acoustic transformers, except that piezoelectricity is replaced by cMUT technology. Primary and secondary circuits are two cMUT-based transducers respectively layered on each side of a silicon substrate, through which the ultrasonic triggering signal is transmitted. A specific model based on a commercial finite element code was implemented to simulate these devices. A particular attention was paid on the modeling of the cMUT/substrate coupling which is a key feature for the intended application. First experimental results performed for model validation are presented here and discussed.

  18. Review of piezoelectric micromachined ultrasonic transducers and their applications

    NASA Astrophysics Data System (ADS)

    Jung, Joontaek; Lee, Wonjun; Kang, Woojin; Shin, Eunjung; Ryu, Jungho; Choi, Hongsoo

    2017-11-01

    In recent decades, micromachined ultrasonic transducers (MUTs) have been investigated as an alternative to conventional piezocomposite ultrasonic transducers, primarily due to the advantages that microelectromechanical systems provide. Miniaturized ultrasonic systems require ultrasonic transducers integrated with complementary metal-oxide-semiconductor circuits. Hence, piezoelectric MUTs (pMUTs) and capacitive MUTs (cMUTs) have been developed as the most favorable solutions. This paper reviews the basic equations to understand the characteristics of thin-film-based piezoelectric devices and presents recent research on pMUTs, including current approaches and limitations. Methods to improve the coupling coefficient of pMUTs are also investigated, such as device structure, materials, and fabrication techniques. The device structure improvements include multielectrode pMUTs, partially clamped boundary conditions, and 3D pMUTs (curved and domed types), where the latter can provide an electromechanical coupling coefficient of up to 45%. The piezoelectric coefficient (e 31) can be increased by controlling the crystal texture (seed layer of γ-Al2O3), using single-crystal (PMN-PT) materials, or control of residual stresses (using SiO2 layer). Arrays of pMUTs can be implemented for various applications including intravascular ultrasound, fingerprint sensors, rangefinders in air, and wireless power supply systems. pMUTs are expected to be an ideal solution for applications such as mobile biometric security (fingerprint sensors) and rangefinders due to their superior power efficiency and compact size.

  19. Anodic bonding using SOI wafer for fabrication of capacitive micromachined ultrasonic transducers

    NASA Astrophysics Data System (ADS)

    Bellaredj, M.; Bourbon, G.; Walter, V.; Le Moal, P.; Berthillier, M.

    2014-02-01

    In medical ultrasound imaging, mostly piezoelectric crystals are used as ultrasonic transducers. Capacitive micromachined ultrasonic transducers (CMUTs) introduced around 1994 have been shown to be a good alternative to conventional piezoelectric transducers in various aspects, such as sensitivity, transduction efficiency or bandwidth. This paper focuses on a fabrication process for CMUTs using anodic bonding of a silicon on insulator wafer on a glass wafer. The processing steps are described leading to a good control of the mechanical response of the membrane. This technology makes possible the fabrication of large membranes and can extend the frequency range of CMUTs to lower frequencies of operation. Silicon membranes having radii of 50, 70, 100 and 150 µm and a 1.5 µm thickness are fabricated and electromechanically characterized using an auto-balanced bridge impedance analyzer. Resonant frequencies from 0.6 to 2.3 MHz and an electromechanical coupling coefficient around 55% are reported. The effects of residual stress in the membranes and uncontrolled clamping conditions are clearly responsible for the discrepancies between experimental and theoretical values of the first resonance frequency. The residual stress in the membranes is determined to be between 90 and 110 MPa. The actual boundary conditions are between the clamped condition and the simply supported condition and can be modeled with a torsional stiffness of 2.10-7 Nm rad-1 in the numerical model.

  20. Efficient Broadband Simulation of Fluid-Structure Coupling for Membrane-Type Acoustic Transducer Arrays Using the Multilevel Fast Multipole Algorithm.

    PubMed

    Shieh, Bernard; Sabra, Karim G; Degertekin, F Levent

    2016-11-01

    A boundary element model provides great flexibility for the simulation of membrane-type micromachined ultrasonic transducers (MUTs) in terms of membrane shape, actuating mechanism, and array layout. Acoustic crosstalk is accounted for through a mutual impedance matrix that captures the primary crosstalk mechanism of dispersive-guided modes generated at the fluid-solid interface. However, finding the solution to the fully populated boundary element matrix equation using standard techniques requires computation time and memory usage that scales by the cube and by the square of the number of nodes, respectively, limiting simulation to a small number of membranes. We implement a solver with improved speed and efficiency through the application of a multilevel fast multipole algorithm (FMA). By approximating the fields of collections of nodes using multipole expansions of the free-space Green's function, an FMA solver can enable the simulation of hundreds of thousands of nodes while incurring an approximation error that is controllable. Convergence is drastically improved using a problem-specific block-diagonal preconditioner. We demonstrate the solver's capabilities by simulating a 32-element 7-MHz 1-D capacitive MUT (CMUT) phased array with 2880 membranes. The array is simulated using 233280 nodes for a very wide frequency band up to 50 MHz. For a simulation with 15210 nodes, the FMA solver performed ten times faster and used 32 times less memory than a standard solver based on LU decomposition. We investigate the effects of mesh density and phasing on the predicted array response and find that it is necessary to use about seven nodes over the width of the membrane to observe convergence of the solution-even below the first membrane resonance frequency-due to the influence of higher order membrane modes.

  1. Modal parameter identification of a CMUT membrane using response data only

    NASA Astrophysics Data System (ADS)

    Lardiès, Joseph; Bourbon, Gilles; Moal, Patrice Le; Kacem, Najib; Walter, Vincent; Le, Thien-Phu

    2018-03-01

    Capacitive micromachined ultrasonic transducers (CMUTs) are microelectromechanical systems used for the generation of ultrasounds. The fundamental element of the transducer is a clamped thin metallized membrane that vibrates under voltage variations. To control such oscillations and to optimize its dynamic response it is necessary to know the modal parameters of the membrane such as resonance frequency, damping and stiffness coefficients. The purpose of this work is to identify these parameters using only the time data obtained from the membrane center displacement. Dynamic measurements are conducted in time domain and we use two methods to identify the modal parameters: a subspace method based on an innovation model of the state-space representation and the continuous wavelet transform method based on the use of the ridge of the wavelet transform of the displacement. Experimental results are presented showing the effectiveness of these two procedures in modal parameter identification.

  2. Design and test of a capacitance detection circuit based on a transimpedance amplifier

    NASA Astrophysics Data System (ADS)

    Linfeng, Mu; Wendong, Zhang; Changde, He; Rui, Zhang; Jinlong, Song; Chenyang, Xue

    2015-07-01

    This paper presents a transimpedance amplifier (TIA) capacitance detection circuit aimed at detecting micro-capacitance, which is caused by ultrasonic stimulation applied to the capacitive micro-machined ultrasonic transducer (CMUT). In the capacitance interface, a TIA is adopted to amplify the received signal with a center frequency of 400 kHz, and finally detect ultrasound pressure. The circuit has a strong anti-stray property and this paper also studies the calculation of compensation capacity in detail. To ensure high resolution, noise analysis is conducted. After optimization, the detected minimum ultrasound pressure is 2.1 Pa, which is two orders of magnitude higher than the former. The test results showed that the circuit was sensitive to changes in ultrasound pressure and the distance between the CMUT and stumbling block, which also successfully demonstrates the functionality of the developed TIA of the analog-front-end receiver. Project supported by the National Natural Science Foundation of China (No. 61127008) and the Subsidized Program of the National High Technology Research and Development Program of China (No. 2011AA040404).

  3. Micromachined ultrasonic transducers for air-coupled nondestructive evaluation

    NASA Astrophysics Data System (ADS)

    Hansen, Sean T.; Degertekin, F. Levent; Khuri-Yakub, Butrus T.

    1999-01-01

    Conventional methods of ultrasonic non-destructive evaluation (NDE) use liquids to couple sound waves into the test samples. This either requires immersion of the parts to be examined or the use of complex and bulky water squirting systems that must be scanned over the structure. Air-coupled ultrasonic systems eliminate these requirements if the losses at air-solid interfaces are tolerable. Micromachined capacitive ultrasonic transducers (cMUTs) have been shown to have more than 100 dB dynamic range when used in the bistatic transmission mode. In this paper, we present results of a pitch-catch transmission system using cMUTs that achieves a 103 dB dynamic range. Each transducer consists of 10,000 silicon nitride membranes of 100 micrometers diameter connected in parallel. This geometry result in transducers with a resonant frequency around 2.3 MHz. These transducers can be used in transmission experiments at normal incident to the sample or to excite and detect guided waves in aluminum and composite plates. In this paper we present ultrasonic defect detection results from both through transmission and guided Lamb wave experiments in aluminum and composite plates, such as those used in aircraft.

  4. Miniaturized diffraction based interferometric distance measurement sensor

    NASA Astrophysics Data System (ADS)

    Kim, Byungki

    In this thesis, new metrology hardware is designed, fabricated, and tested to provide improvements over current MEMS metrology. The metrology system is a micromachined scanning interferometer (muSI) having a sub-nm resolution in a compact design. The proposed microinterferometer forms a phase sensitive diffraction grating with interferomeric sensitivity, while adding the capability of better lateral resolution by focusing the laser to a smaller spot size. A detailed diffraction model of the microinterferometer was developed to simulate the device performance and to suggest the location of photo detectors for integrated optoelectronics. A particular device is fabricated on a fused silica substrate using aluminum to form the deformable diffraction grating fingers and AZ P4620 photo resist (PR) for the microlens. The details of the fabrication processes are presented. The structure also enables optoelectronics to be integrated so that the interferometer with photo detectors can fit in an area that is 1 mm x 1 mm. The scanning results using a fixed grating muSI demonstrated that it could measure vibration profile as well as static vertical (less than a half wave length) and lateral dimension of MEMS. The muSI, which is integrated with photo diodes, demonstrated its operation by scanning a cMUT. The PID control has been tested and resulted in improvement in scanned images. The integrated muSI demonstrated that the deformable grating could be used to tune the measurement keep the interferometer in quadrature for highest sensitivity.

  5. Fill-factor improvement of Si CMOS single-photon avalanche diode detector arrays by integration of diffractive microlens arrays.

    PubMed

    Intermite, Giuseppe; McCarthy, Aongus; Warburton, Ryan E; Ren, Ximing; Villa, Federica; Lussana, Rudi; Waddie, Andrew J; Taghizadeh, Mohammad R; Tosi, Alberto; Zappa, Franco; Buller, Gerald S

    2015-12-28

    Single-photon avalanche diode (SPAD) detector arrays generally suffer from having a low fill-factor, in which the photo-sensitive area of each pixel is small compared to the overall area of the pixel. This paper describes the integration of different configurations of high efficiency diffractive optical microlens arrays onto a 32 × 32 SPAD array, fabricated using a 0.35 µm CMOS technology process. The characterization of SPAD arrays with integrated microlens arrays is reported over the spectral range of 500-900 nm, and a range of f-numbers from f/2 to f/22. We report an average concentration factor of 15 measured for the entire SPAD array with integrated microlens array. The integrated SPAD and microlens array demonstrated a very high uniformity in overall efficiency.

  6. Design structure for in-system redundant array repair in integrated circuits

    DOEpatents

    Bright, Arthur A.; Crumley, Paul G.; Dombrowa, Marc; Douskey, Steven M.; Haring, Rudolf A.; Oakland, Steven F.; Quellette, Michael R.; Strissel, Scott A.

    2008-11-25

    A design structure for repairing an integrated circuit during operation of the integrated circuit. The integrated circuit comprising of a multitude of memory arrays and a fuse box holding control data for controlling redundancy logic of the arrays. The design structure provides the integrated circuit with a control data selector for passing the control data from the fuse box to the memory arrays; providing a source of alternate control data, external of the integrated circuit; and connecting the source of alternate control data to the control data selector. The design structure further passes the alternate control data from the source thereof, through the control data selector and to the memory arrays to control the redundancy logic of the memory arrays.

  7. Analysis of an integrated 8-channel Tx/Rx body array for use as a body coil in 7-Tesla MRI

    NASA Astrophysics Data System (ADS)

    Orzada, Stephan; Bitz, Andreas K.; Johst, Sören; Gratz, Marcel; Völker, Maximilian N.; Kraff, Oliver; Abuelhaija, Ashraf; Fiedler, Thomas M.; Solbach, Klaus; Quick, Harald H.; Ladd, Mark E.

    2017-06-01

    Object In this work an 8-channel array integrated into the gap between the gradient coil and bore liner of a 7-Tesla whole-body magnet is presented that would allow a workflow closer to that of systems at lower magnetic fields that have a built-in body coil; this integrated coil is compared to a local 8-channel array built from identical elements placed directly on the patient. Materials and Methods SAR efficiency and the homogeneity of the right-rotating B1 field component (B_1^+) are investigated numerically and compared to the local array. Power efficiency measurements are performed in the MRI System. First in vivo gradient echo images are acquired with the integrated array. Results While the remote array shows a slightly better performance in terms of B_1^+ homogeneity, the power efficiency and the SAR efficiency are inferior to those of the local array: the transmit voltage has to be increased by a factor of 3.15 to achieve equal flip angles in a central axial slice. The g-factor calculations show a better parallel imaging g-factor for the local array. The field of view of the integrated array is larger than that of the local array. First in vivo images with the integrated array look subjectively promising. Conclusion Although some RF performance parameters of the integrated array are inferior to a tight-fitting local array, these disadvantages might be compensated by the use of amplifiers with higher power and the use of local receive arrays. In addition, the distant placement provides the potential to include more elements in the array design.

  8. Integrated infrared detector arrays for low-background applications

    NASA Technical Reports Server (NTRS)

    Mccreight, C. R.; Goebel, J. H.

    1982-01-01

    Advanced infrared detector and detector array technology is being developed and characterized for future NASA space astronomy applications. Si:Bi charge-injection-device arrays have been obtained, and low-background sensitivities comparable to that of good discrete detectors have been measured. Intrinsic arrays are being assessed, and laboratory and telescope data have been collected on a monolithic InSb CCD array. For wavelengths longer than 30 microns, improved Ge:Ga detectors have been produced, and steps have been taken to prove the feasibility of an integrated extrinsic germanium array. Other integrated arrays and cryogenic components are also under investigation.

  9. Terahertz Array Receivers with Integrated Antennas

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Goutam; Llombart, Nuria; Lee, Choonsup; Jung, Cecile; Lin, Robert; Cooper, Ken B.; Reck, Theodore; Siles, Jose; Schlecht, Erich; Peralta, Alessandro; hide

    2011-01-01

    Highly sensitive terahertz heterodyne receivers have been mostly single-pixel. However, now there is a real need of multi-pixel array receivers at these frequencies driven by the science and instrument requirements. In this paper we explore various receiver font-end and antenna architectures for use in multi-pixel integrated arrays at terahertz frequencies. Development of wafer-level integrated terahertz receiver front-end by using advanced semiconductor fabrication technologies has progressed very well over the past few years. Novel stacking of micro-machined silicon wafers which allows for the 3-dimensional integration of various terahertz receiver components in extremely small packages has made it possible to design multi-pixel heterodyne arrays. One of the critical technologies to achieve fully integrated system is the antenna arrays compatible with the receiver array architecture. In this paper we explore different receiver and antenna architectures for multi-pixel heterodyne and direct detector arrays for various applications such as multi-pixel high resolution spectrometer and imaging radar at terahertz frequencies.

  10. Monolithic optical integrated control circuitry for GaAs MMIC-based phased arrays

    NASA Technical Reports Server (NTRS)

    Bhasin, K. B.; Ponchak, G. E.; Kascak, T. J.

    1985-01-01

    Gallium arsenide (GaAs) monolithic microwave integrated circuits (MMIC's) show promise in phased-array antenna applications for future space communications systems. Their efficient usage will depend on the control of amplitude and phase signals for each MMIC element in the phased array and in the low-loss radiofrequency feed. For a phased array contining several MMIC elements a complex system is required to control and feed each element. The characteristics of GaAs MMIC's for 20/30-GHz phased-array systems are discussed. The optical/MMIC interface and the desired characteristics of optical integrated circuits (OIC's) for such an interface are described. Anticipated fabrication considerations for eventual full monolithic integration of optical integrated circuits with MMIC's on a GaAs substrate are presented.

  11. Method and apparatus for in-system redundant array repair on integrated circuits

    DOEpatents

    Bright, Arthur A [Croton-on-Hudson, NY; Crumley, Paul G [Yorktown Heights, NY; Dombrowa, Marc B [Bronx, NY; Douskey, Steven M [Rochester, MN; Haring, Rudolf A [Cortlandt Manor, NY; Oakland, Steven F [Colchester, VT; Ouellette, Michael R [Westford, VT; Strissel, Scott A [Byron, MN

    2008-07-29

    Disclosed is a method of repairing an integrated circuit of the type comprising of a multitude of memory arrays and a fuse box holding control data for controlling redundancy logic of the arrays. The method comprises the steps of providing the integrated circuit with a control data selector for passing the control data from the fuse box to the memory arrays; providing a source of alternate control data, external of the integrated circuit; and connecting the source of alternate control data to the control data selector. The method comprises the further step of, at a given time, passing the alternate control data from the source thereof, through the control data selector and to the memory arrays to control the redundancy logic of the memory arrays.

  12. Method and apparatus for in-system redundant array repair on integrated circuits

    DOEpatents

    Bright, Arthur A [Croton-on-Hudson, NY; Crumley, Paul G [Yorktown Heights, NY; Dombrowa, Marc B [Bronx, NY; Douskey, Steven M [Rochester, MN; Haring, Rudolf A [Cortlandt Manor, NY; Oakland, Steven F [Colchester, VT; Ouellette, Michael R [Westford, VT; Strissel, Scott A [Byron, MN

    2008-07-08

    Disclosed is a method of repairing an integrated circuit of the type comprising of a multitude of memory arrays and a fuse box holding control data for controlling redundancy logic of the arrays. The method comprises the steps of providing the integrated circuit with a control data selector for passing the control data from the fuse box to the memory arrays; providing a source of alternate control data, external of the integrated circuit; and connecting the source of alternate control data to the control data selector. The method comprises the further step of, at a given time, passing the alternate control data from the source thereof, through the control data selector and to the memory arrays to control the redundancy logic of the memory arrays.

  13. Method and apparatus for in-system redundant array repair on integrated circuits

    DOEpatents

    Bright, Arthur A.; Crumley, Paul G.; Dombrowa, Marc B.; Douskey, Steven M.; Haring, Rudolf A.; Oakland, Steven F.; Ouellette, Michael R.; Strissel, Scott A.

    2007-12-18

    Disclosed is a method of repairing an integrated circuit of the type comprising of a multitude of memory arrays and a fuse box holding control data for controlling redundancy logic of the arrays. The method comprises the steps of providing the integrated circuit with a control data selector for passing the control data from the fuse box to the memory arrays; providing a source of alternate control data, external of the integrated circuit; and connecting the source of alternate control data to the control data selector. The method comprises the further step of, at a given time, passing the alternate control data from the source thereof, through the control data selector and to the memory arrays to control the redundancy logic of the memory arrays.

  14. Optoelectronic Infrastructure for Radio Frequency and Optical Phased Arrays

    NASA Technical Reports Server (NTRS)

    Cai, Jianhong

    2015-01-01

    Optoelectronic integrated circuits offer radiation-hardened solutions for satellite systems in addition to improved size, weight, power, and bandwidth characteristics. ODIS, Inc., has developed optoelectronic integrated circuit technology for sensing and data transfer in phased arrays. The technology applies integrated components (lasers, amplifiers, modulators, detectors, and optical waveguide switches) to a radio frequency (RF) array with true time delay for beamsteering. Optical beamsteering is achieved by controlling the current in a two-dimensional (2D) array. In this project, ODIS integrated key components to produce common RF-optical aperture operation.

  15. Method for producing a hybridization of detector array and integrated circuit for readout

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R. (Inventor); Grunthaner, Frank J. (Inventor)

    1993-01-01

    A process is explained for fabricating a detector array in a layer of semiconductor material on one substrate and an integrated readout circuit in a layer of semiconductor material on a separate substrate in order to select semiconductor material for optimum performance of each structure, such as GaAs for the detector array and Si for the integrated readout circuit. The detector array layer is lifted off its substrate, laminated on the metallized surface on the integrated surface, etched with reticulating channels to the surface of the integrated circuit, and provided with interconnections between the detector array pixels and the integrated readout circuit through the channels. The adhesive material for the lamination is selected to be chemically stable to provide electrical and thermal insulation and to provide stress release between the two structures fabricated in semiconductor materials that may have different coefficients of thermal expansion.

  16. SNPConvert: SNP Array Standardization and Integration in Livestock Species.

    PubMed

    Nicolazzi, Ezequiel Luis; Marras, Gabriele; Stella, Alessandra

    2016-06-09

    One of the main advantages of single nucleotide polymorphism (SNP) array technology is providing genotype calls for a specific number of SNP markers at a relatively low cost. Since its first application in animal genetics, the number of available SNP arrays for each species has been constantly increasing. However, conversely to that observed in whole genome sequence data analysis, SNP array data does not have a common set of file formats or coding conventions for allele calling. Therefore, the standardization and integration of SNP array data from multiple sources have become an obstacle, especially for users with basic or no programming skills. Here, we describe the difficulties related to handling SNP array data, focusing on file formats, SNP allele coding, and mapping. We also present SNPConvert suite, a multi-platform, open-source, and user-friendly set of tools to overcome these issues. This tool, which can be integrated with open-source and open-access tools already available, is a first step towards an integrated system to standardize and integrate any type of raw SNP array data. The tool is available at: https://github. com/nicolazzie/SNPConvert.git.

  17. Electronic Switch Arrays for Managing Microbattery Arrays

    NASA Technical Reports Server (NTRS)

    Mojarradi, Mohammad; Alahmad, Mahmoud; Sukumar, Vinesh; Zghoul, Fadi; Buck, Kevin; Hess, Herbert; Li, Harry; Cox, David

    2008-01-01

    Integrated circuits have been invented for managing the charging and discharging of such advanced miniature energy-storage devices as planar arrays of microscopic energy-storage elements [typically, microscopic electrochemical cells (microbatteries) or microcapacitors]. The architecture of these circuits enables implementation of the following energy-management options: dynamic configuration of the elements of an array into a series or parallel combination of banks (subarrarys), each array comprising a series of parallel combination of elements; direct addressing of individual banks for charging/or discharging; and, disconnection of defective elements and corresponding reconfiguration of the rest of the array to utilize the remaining functional elements to obtain the desited voltage and current performance. An integrated circuit according to the invention consists partly of a planar array of field-effect transistors that function as switches for routing electric power among the energy-storage elements, the power source, and the load. To connect the energy-storage elements to the power source for charging, a specific subset of switches is closed; to connect the energy-storage elements to the load for discharging, a different specific set of switches is closed. Also included in the integrated circuit is circuitry for monitoring and controlling charging and discharging. The control and monitoring circuitry, the switching transistors, and interconnecting metal lines are laid out on the integrated-circuit chip in a pattern that registers with the array of energy-storage elements. There is a design option to either (1) fabricate the energy-storage elements in the corresponding locations on, and as an integral part of, this integrated circuit; or (2) following a flip-chip approach, fabricate the array of energy-storage elements on a separate integrated-circuit chip and then align and bond the two chips together.

  18. Performance Analysis of a NASA Integrated Network Array

    NASA Technical Reports Server (NTRS)

    Nessel, James A.

    2012-01-01

    The Space Communications and Navigation (SCaN) Program is planning to integrate its individual networks into a unified network which will function as a single entity to provide services to user missions. This integrated network architecture is expected to provide SCaN customers with the capabilities to seamlessly use any of the available SCaN assets to support their missions to efficiently meet the collective needs of Agency missions. One potential optimal application of these assets, based on this envisioned architecture, is that of arraying across existing networks to significantly enhance data rates and/or link availabilities. As such, this document provides an analysis of the transmit and receive performance of a proposed SCaN inter-network antenna array. From the study, it is determined that a fully integrated internetwork array does not provide any significant advantage over an intra-network array, one in which the assets of an individual network are arrayed for enhanced performance. Therefore, it is the recommendation of this study that NASA proceed with an arraying concept, with a fundamental focus on a network-centric arraying.

  19. Chemistry integrated circuit: chemical system on a complementary metal oxide semiconductor integrated circuit.

    PubMed

    Nakazato, Kazuo

    2014-03-28

    By integrating chemical reactions on a large-scale integration (LSI) chip, new types of device can be created. For biomedical applications, monolithically integrated sensor arrays for potentiometric, amperometric and impedimetric sensing of biomolecules have been developed. The potentiometric sensor array detects pH and redox reaction as a statistical distribution of fluctuations in time and space. For the amperometric sensor array, a microelectrode structure for measuring multiple currents at high speed has been proposed. The impedimetric sensor array is designed to measure impedance up to 10 MHz. The multimodal sensor array will enable synthetic analysis and make it possible to standardize biosensor chips. Another approach is to create new functional devices by integrating molecular systems with LSI chips, for example image sensors that incorporate biological materials with a sensor array. The quantum yield of the photoelectric conversion of photosynthesis is 100%, which is extremely difficult to achieve by artificial means. In a recently developed process, a molecular wire is plugged directly into a biological photosynthetic system to efficiently conduct electrons to a gold electrode. A single photon can be detected at room temperature using such a system combined with a molecular single-electron transistor.

  20. Flat dielectric metasurface lens array for three dimensional integral imaging

    NASA Astrophysics Data System (ADS)

    Zhang, Jianlei; Wang, Xiaorui; Yang, Yi; Yuan, Ying; Wu, Xiongxiong

    2018-05-01

    In conventional integral imaging, the singlet refractive lens array limits the imaging performance due to its prominent aberrations. Different from the refractive lens array relying on phase modulation via phase change accumulated along the optical paths, metasurfaces composed of nano-scatters can produce phase abrupt over the scale of wavelength. In this letter, we propose a novel lens array consisting of two neighboring flat dielectric metasurfaces for integral imaging system. The aspherical phase profiles of the metasurfaces are optimized to improve imaging performance. The simulation results show that our designed 5 × 5 metasurface-based lens array exhibits high image quality at designed wavelength 865 nm.

  1. EML Array fabricated by SAG technique monolithically integrated with a buried ridge AWG multiplexer

    NASA Astrophysics Data System (ADS)

    Xu, Junjie; Liang, Song; Zhang, Zhike; An, Junming; Zhu, Hongliang; Wang, Wei

    2017-06-01

    We report the fabrication of a ten channel electroabsorption modulated DFB laser (EML) array. Different emission wavelengths of the laser array are obtained by selective area growth (SAG) technique, which is also used for the integration of electroabsorption modulators (EAM) with the lasers. An arrayed waveguide grating (AWG) combiner is integrated monolithically with the laser array by butt-joint regrowth (BJR) technique. A buried ridge waveguide structure is adopted for the AWG combiner. A self aligned fabrication procedure is adopted for the fabrication of the waveguide structure of the device to eliminate the misalignment between the laser active waveguide and the passive waveguide. A Ti thin film heater is integrated for each laser in the array. With the help of the heaters, ten laser emissions with 1.8 nm channel spacing are obtained. The integrated EAM has a larger than 11 dB static extinction ratios and larger than 8 GHz small signal modulation bandwidths. The light power collected in the output waveguide of the AWG is larger than -13 dBm for each wavelength.

  2. Spacecraft level impacts of integrating concentrator solar arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, D.M.; Piszczor, M.F. Jr.

    1994-12-31

    The paper describes the results of a study to determine the impacts of integrating concentrator solar arrays on spacecraft design and performance. First, concentrator array performance is summarized for the AEC-Able/Entech SCARLET array, the Ioffe refractive and reflective concepts being developed in Russia, the Martin Marietta SLATS system, and other concentrator concepts that have been designed or developed. Concentrator array performance is compared to rigid and flex blanket planar array technologies at the array level. Then other impacts on the spacecraft are quantified. Conclusions highlight the most important results as they relate to recommended approaches in developing concentrator arrays formore » satellites.« less

  3. Integrated injection-locked semiconductor diode laser

    DOEpatents

    Hadley, G. Ronald; Hohimer, John P.; Owyoung, Adelbert

    1991-01-01

    A continuous wave integrated injection-locked high-power diode laser array is provided with an on-chip independently-controlled master laser. The integrated injection locked high-power diode laser array is capable of continuous wave lasing in a single near-diffraction limited output beam at single-facet power levels up to 125 mW (250 mW total). Electronic steering of the array emission over an angle of 0.5 degrees is obtained by varying current to the master laser. The master laser injects a laser beam into the slave array by reflection of a rear facet.

  4. Monolithic integration of an InP-based 4 × 25 GHz photodiode array to an O-band arrayed waveguide grating demultiplexer

    NASA Astrophysics Data System (ADS)

    Ye, Han; Han, Qin; Lv, Qianqian; Pan, Pan; An, Junming; Yang, Xiaohong

    2017-12-01

    We demonstrate the monolithic integration of a uni-traveling carrier photodiode array with a 4 channel, O-band arrayed waveguide grating demultiplexer on the InP platform by the selective area growth technique. An extended coupling layer at the butt-joint is adopted to ensure both good fabrication compatibility and high photodiode quantum efficiency of 77%. The fabricated integrated chip exhibits a uniform bandwidth over 25 GHz for each channel and a crosstalk below -22 dB.

  5. Realization of integral 3-dimensional image using fabricated tunable liquid lens array

    NASA Astrophysics Data System (ADS)

    Lee, Muyoung; Kim, Junoh; Kim, Cheol Joong; Lee, Jin Su; Won, Yong Hyub

    2015-03-01

    Electrowetting has been widely studied for various optical applications such as optical switch, sensor, prism, and display. In this study, vari-focal liquid lens array is developed using electrowetting principle to construct integral 3-dimensional imaging. The electrowetting principle that changes the surface tension by applying voltage has several advantages to realize active optical device such as fast response time, low electrical consumption, and no mechanical moving parts. Two immiscible liquids that are water and oil are used for forming lens. By applying a voltage to the water, the focal length of the lens could be tuned as changing contact angle of water. The fabricated electrowetting vari-focal liquid lens array has 1mm diameter spherical lens shape that has 1.6mm distance between each lens. The number of lenses on the panel is 23x23 and the focal length of the lens array is simultaneously tuned from -125 to 110 diopters depending on the applied voltage. The fabricated lens array is implemented to integral 3-dimensional imaging. A 3D object is reconstructed by fabricated liquid lens array with 23x23 elemental images that are generated by 3D max tools. When liquid lens array is tuned as convex state. From vari-focal liquid lens array implemented integral imaging system, we expect that depth enhanced integral imaging can be realized in the near future.

  6. Plasmonic nanohole arrays on Si-Ge heterostructures: an approach for integrated biosensors

    NASA Astrophysics Data System (ADS)

    Augel, L.; Fischer, I. A.; Dunbar, L. A.; Bechler, S.; Berrier, A.; Etezadi, D.; Hornung, F.; Kostecki, K.; Ozdemir, C. I.; Soler, M.; Altug, H.; Schulze, J.

    2016-03-01

    Nanohole array surface plasmon resonance (SPR) sensors offer a promising platform for high-throughput label-free biosensing. Integrating nanohole arrays with group-IV semiconductor photodetectors could enable low-cost and disposable biosensors compatible to Si-based complementary metal oxide semiconductor (CMOS) technology that can be combined with integrated circuitry for continuous monitoring of biosamples and fast sensor data processing. Such an integrated biosensor could be realized by structuring a nanohole array in the contact metal layer of a photodetector. We used Fouriertransform infrared spectroscopy to investigate nanohole arrays in a 100 nm Al film deposited on top of a vertical Si-Ge photodiode structure grown by molecular beam epitaxy (MBE). We find that the presence of a protein bilayer, constitute of protein AG and Immunoglobulin G (IgG), leads to a wavelength-dependent absorptance enhancement of ~ 8 %.

  7. Operational considerations of the Advanced Photovoltaic Solar Array

    NASA Technical Reports Server (NTRS)

    Stella, Paul M.; Kurland, Richard M.

    1992-01-01

    Issues affecting the long-term operational performance of the Advanced Photovoltaic Solar Array (APSA) are discussed, with particular attention given to circuit electrical integrity from shadowed and cracked cell modules. The successful integration of individual advanced array components provides a doubling of array specific performance from the previous NASA-developed advanced array (SAFE). Flight test modules both recently fabricated and under fabrication are described. The development of advanced high-performance blanket technology for future APSA enhancement is presented.

  8. Operational considerations of the Advanced Photovoltaic Solar Array

    NASA Astrophysics Data System (ADS)

    Stella, Paul M.; Kurland, Richard M.

    Issues affecting the long-term operational performance of the Advanced Photovoltaic Solar Array (APSA) are discussed, with particular attention given to circuit electrical integrity from shadowed and cracked cell modules. The successful integration of individual advanced array components provides a doubling of array specific performance from the previous NASA-developed advanced array (SAFE). Flight test modules both recently fabricated and under fabrication are described. The development of advanced high-performance blanket technology for future APSA enhancement is presented.

  9. Microfabricated ion trap array

    DOEpatents

    Blain, Matthew G [Albuquerque, NM; Fleming, James G [Albuquerque, NM

    2006-12-26

    A microfabricated ion trap array, comprising a plurality of ion traps having an inner radius of order one micron, can be fabricated using surface micromachining techniques and materials known to the integrated circuits manufacturing and microelectromechanical systems industries. Micromachining methods enable batch fabrication, reduced manufacturing costs, dimensional and positional precision, and monolithic integration of massive arrays of ion traps with microscale ion generation and detection devices. Massive arraying enables the microscale ion traps to retain the resolution, sensitivity, and mass range advantages necessary for high chemical selectivity. The reduced electrode voltage enables integration of the microfabricated ion trap array with on-chip circuit-based rf operation and detection electronics (i.e., cell phone electronics). Therefore, the full performance advantages of the microfabricated ion trap array can be realized in truly field portable, handheld microanalysis systems.

  10. A finite element-boundary integral method for conformal antenna arrays on a circular cylinder

    NASA Technical Reports Server (NTRS)

    Kempel, Leo C.; Volakis, John L.; Woo, Alex C.; Yu, C. Long

    1992-01-01

    Conformal antenna arrays offer many cost and weight advantages over conventional antenna systems. In the past, antenna designers have had to resort to expensive measurements in order to develop a conformal array design. This is due to the lack of rigorous mathematical models for conformal antenna arrays, and as a result the design of conformal arrays is primarily based on planar antenna design concepts. Recently, we have found the finite element-boundary integral method to be very successful in modeling large planar arrays of arbitrary composition in a metallic plane. Herewith we shall extend this formulation for conformal arrays on large metallic cylinders. In this we develop the mathematical formulation. In particular we discuss the finite element equations, the shape elements, and the boundary integral evaluation, and it is shown how this formulation can be applied with minimal computation and memory requirements. The implementation shall be discussed in a later report.

  11. A finite element-boundary integral method for conformal antenna arrays on a circular cylinder

    NASA Technical Reports Server (NTRS)

    Kempel, Leo C.; Volakis, John L.

    1992-01-01

    Conformal antenna arrays offer many cost and weight advantages over conventional antenna systems. In the past, antenna designers have had to resort to expensive measurements in order to develop a conformal array design. This was due to the lack of rigorous mathematical models for conformal antenna arrays. As a result, the design of conformal arrays was primarily based on planar antenna design concepts. Recently, we have found the finite element-boundary integral method to be very successful in modeling large planar arrays of arbitrary composition in a metallic plane. We are extending this formulation to conformal arrays on large metallic cylinders. In doing so, we will develop a mathematical formulation. In particular, we discuss the finite element equations, the shape elements, and the boundary integral evaluation. It is shown how this formulation can be applied with minimal computation and memory requirements.

  12. In-situ device integration of large-area patterned organic nanowire arrays for high-performance optical sensors

    PubMed Central

    Wu, Yiming; Zhang, Xiujuan; Pan, Huanhuan; Deng, Wei; Zhang, Xiaohong; Zhang, Xiwei; Jie, Jiansheng

    2013-01-01

    Single-crystalline organic nanowires (NWs) are important building blocks for future low-cost and efficient nano-optoelectronic devices due to their extraordinary properties. However, it remains a critical challenge to achieve large-scale organic NW array assembly and device integration. Herein, we demonstrate a feasible one-step method for large-area patterned growth of cross-aligned single-crystalline organic NW arrays and their in-situ device integration for optical image sensors. The integrated image sensor circuitry contained a 10 × 10 pixel array in an area of 1.3 × 1.3 mm2, showing high spatial resolution, excellent stability and reproducibility. More importantly, 100% of the pixels successfully operated at a high response speed and relatively small pixel-to-pixel variation. The high yield and high spatial resolution of the operational pixels, along with the high integration level of the device, clearly demonstrate the great potential of the one-step organic NW array growth and device construction approach for large-scale optoelectronic device integration. PMID:24287887

  13. Orthogonally referenced integrated ensemble for navigation and timing

    DOEpatents

    Smith, Stephen Fulton; Moore, James Anthony

    2013-02-26

    An orthogonally referenced integrated ensemble for navigation and timing includes a dual-polyhedral oscillator array, including an outer sensing array of oscillators and an inner clock array of oscillators situated inside the outer sensing array. The outer sensing array includes a first pair of sensing oscillators situated along a first axis of the outer sensing array, a second pair of sensing oscillators situated along a second axis of the outer sensing array, and a third pair of sensing oscillators situated along a third axis of the outer sensing array. The inner clock array of oscillators includes a first pair of clock oscillators situated along a first axis of the inner clock array, a second pair of clock oscillators situated along a second axis of the inner clock array, and a third pair of clock oscillators situated along a third axis of the inner clock array.

  14. Orthogonally referenced integrated ensemble for navigation and timing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Stephen Fulton; Moore, James Anthony

    2014-04-01

    An orthogonally referenced integrated ensemble for navigation and timing includes a dual-polyhedral oscillator array, including an outer sensing array of oscillators and an inner clock array of oscillators situated inside the outer sensing array. The outer sensing array includes a first pair of sensing oscillators situated along a first axis of the outer sensing array, a second pair of sensing oscillators situated along a second axis of the outer sensing array, and a third pair of sensing oscillators situated along a third axis of the outer sensing array. The inner clock array of oscillators includes a first pair of clockmore » oscillators situated along a first axis of the inner clock array, a second pair of clock oscillators situated along a second axis of the inner clock array, and a third pair of clock oscillators situated along a third axis of the inner clock array.« less

  15. Integrated injection-locked semiconductor diode laser

    DOEpatents

    Hadley, G.R.; Hohimer, J.P.; Owyoung, A.

    1991-02-19

    A continuous wave integrated injection-locked high-power diode laser array is provided with an on-chip independently-controlled master laser. The integrated injection locked high-power diode laser array is capable of continuous wave lasing in a single near-diffraction limited output beam at single-facet power levels up to 125 mW (250 mW total). Electronic steering of the array emission over an angle of 0.5 degrees is obtained by varying current to the master laser. The master laser injects a laser beam into the slave array by reflection of a rear facet. 18 figures.

  16. Development of FIR arrays with integrating amplifiers

    NASA Technical Reports Server (NTRS)

    Young, Erick T.

    1988-01-01

    The development of optimized photoconductor arrays suitable for far infrared space astronomical applications are described. Although the primary impetus is the production of a 16 by 16 element Ge:Ga demonstration array for SIRTF, the extension of this technology to Large Deployable Reflector (LDR) is considered. The optimization of Ge:Ga and Ge:Be photoconductor materials is discussed. In collaboration with Lawrence Berkeley Laboratory, measurements of FIR photoconductors with quantum efficiencies greater than 20 percent at 100 micrometers, and dark currents below 300 electrons/s are presented. Integrating J-FET amplifier technology is discussed. The current generation of integrating amplifiers has a demonstrated read noise of less than 20 electrons for an integration time of 100 s. The design is shown for a stackable 16 x n Ge:Ga array that utilizes a 16-channel monolithic version of the J-FET integrator. A part of the design is the use of a thin, thermally insulating substrate that allows the electronics to operate at the optimum temperature of 50 K while maintaining thermal and optical isolation from the detectors at 2 K. The power dissipation for the array is less than 16 mW. The array design may particularly be applicable to high resolution imaging spectrometers for LDR.

  17. Development of FIR arrays with integrating amplifiers

    NASA Astrophysics Data System (ADS)

    Young, Erick T.

    1988-08-01

    The development of optimized photoconductor arrays suitable for far infrared space astronomical applications are described. Although the primary impetus is the production of a 16 by 16 element Ge:Ga demonstration array for SIRTF, the extension of this technology to Large Deployable Reflector (LDR) is considered. The optimization of Ge:Ga and Ge:Be photoconductor materials is discussed. In collaboration with Lawrence Berkeley Laboratory, measurements of FIR photoconductors with quantum efficiencies greater than 20 percent at 100 micrometers, and dark currents below 300 electrons/s are presented. Integrating J-FET amplifier technology is discussed. The current generation of integrating amplifiers has a demonstrated read noise of less than 20 electrons for an integration time of 100 s. The design is shown for a stackable 16 x n Ge:Ga array that utilizes a 16-channel monolithic version of the J-FET integrator. A part of the design is the use of a thin, thermally insulating substrate that allows the electronics to operate at the optimum temperature of 50 K while maintaining thermal and optical isolation from the detectors at 2 K. The power dissipation for the array is less than 16 mW. The array design may particularly be applicable to high resolution imaging spectrometers for LDR.

  18. Integrated infrared detector arrays for low-background astronomy

    NASA Technical Reports Server (NTRS)

    Mccreight, C. R.

    1979-01-01

    Existing integrated infrared detector array technology is being evaluated under low-background conditions to determine its applicability in orbiting astronomical applications where extended integration times and photometric accuracy are of interest. Preliminary performance results of a 1 x 20 elements InSb CCD array under simulated astronomical conditions are presented. Using the findings of these tests, improved linear- and area-array technology will be developed for use in NASA programs such as the Shuttle Infrared Telescope Facility. For wavelengths less than 30 microns, extrinsic silicon and intrinsic arrays with CCD readout will be evaluated and improved as required, while multiplexed arrays of Ge:Ga for wavelengths in the range 30 to 120 microns will be developed as fundamental understanding of this material improves. Future efforts will include development of improved drive and readout circuitry, and consideration of alternate multiplexing schemes.

  19. Integrated residential photovoltaic array development

    NASA Technical Reports Server (NTRS)

    Shepard, N. F., Jr.

    1981-01-01

    The design details of an optimized integrated residential photovoltaic module/array are presented. This selected design features a waterproofing and mounting scheme which was devised to simplify the installation procedures by the avoidance of complex gasketed or caulked joints, while still maintaining a high confidence that the watertight integrity of the integral roofing surface will be achieved for the design lifetime of the system. The production and installation costs for the selected module/array design are reported for a range of annual production rates as a function of the cost of solar cells.

  20. Integrated Electrode Arrays for Neuro-Prosthetic Implants

    NASA Technical Reports Server (NTRS)

    Brandon, Erik; Mojarradi, Mohammede

    2003-01-01

    Arrays of electrodes integrated with chip-scale packages and silicon-based integrated circuits have been proposed for use as medical electronic implants, including neuro-prosthetic devices that might be implanted in brains of patients who suffer from strokes, spinal-cord injuries, or amyotrophic lateral sclerosis. The electrodes of such a device would pick up signals from neurons in the cerebral cortex, and the integrated circuit would perform acquisition and preprocessing of signal data. The output of the integrated circuit could be used to generate, for example, commands for a robotic arm. Electrode arrays capable of acquiring electrical signals from neurons already exist, but heretofore, there has been no convenient means to integrate these arrays with integrated-circuit chips. Such integration is needed in order to eliminate the need for the extensive cabling now used to pass neural signals to data-acquisition and -processing equipment outside the body. The proposed integration would enable progress toward neuro-prostheses that would be less restrictive of patients mobility. An array of electrodes would comprise a set of thin wires of suitable length and composition protruding from and supported by a fine-pitch micro-ball grid array or chip-scale package (see figure). The associated integrated circuit would be mounted on the package face opposite the probe face, using the solder bumps (the balls of the ball grid array) to make the electrical connections between the probes and the input terminals of the integrated circuit. The key innovation is the insertion of probe wires of the appropriate length and material into the solder bumps through a reflow process, thereby fixing the probes in place and electrically connecting them with the integrated circuit. The probes could be tailored to any distribution of lengths and made of any suitable metal that could be drawn into fine wires. Furthermore, the wires could be coated with an insulating layer using anodization or other processes, to achieve the correct electrical impedance. The probe wires and the packaging materials must be biocompatible using such materials as lead-free solders. For protection, the chip and package can be coated with parylene.

  1. ASIC Readout Circuit Architecture for Large Geiger Photodiode Arrays

    NASA Technical Reports Server (NTRS)

    Vasile, Stefan; Lipson, Jerold

    2012-01-01

    The objective of this work was to develop a new class of readout integrated circuit (ROIC) arrays to be operated with Geiger avalanche photodiode (GPD) arrays, by integrating multiple functions at the pixel level (smart-pixel or active pixel technology) in 250-nm CMOS (complementary metal oxide semiconductor) processes. In order to pack a maximum of functions within a minimum pixel size, the ROIC array is a full, custom application-specific integrated circuit (ASIC) design using a mixed-signal CMOS process with compact primitive layout cells. The ROIC array was processed to allow assembly in bump-bonding technology with photon-counting infrared detector arrays into 3-D imaging cameras (LADAR). The ROIC architecture was designed to work with either common- anode Si GPD arrays or common-cathode InGaAs GPD arrays. The current ROIC pixel design is hardwired prior to processing one of the two GPD array configurations, and it has the provision to allow soft reconfiguration to either array (to be implemented into the next ROIC array generation). The ROIC pixel architecture implements the Geiger avalanche quenching, bias, reset, and time to digital conversion (TDC) functions in full-digital design, and uses time domain over-sampling (vernier) to allow high temporal resolution at low clock rates, increased data yield, and improved utilization of the laser beam.

  2. Nano-array integrated monolithic devices: toward rational materials design and multi-functional performance by scalable nanostructures assembly

    DOE PAGES

    Wang, Sibo; Ren, Zheng; Guo, Yanbing; ...

    2016-03-21

    We report the scalable three-dimensional (3-D) integration of functional nanostructures into applicable platforms represents a promising technology to meet the ever-increasing demands of fabricating high performance devices featuring cost-effectiveness, structural sophistication and multi-functional enabling. Such an integration process generally involves a diverse array of nanostructural entities (nano-entities) consisting of dissimilar nanoscale building blocks such as nanoparticles, nanowires, and nanofilms made of metals, ceramics, or polymers. Various synthetic strategies and integration methods have enabled the successful assembly of both structurally and functionally tailored nano-arrays into a unique class of monolithic devices. The performance of nano-array based monolithic devices is dictated bymore » a few important factors such as materials substrate selection, nanostructure composition and nano-architecture geometry. Therefore, the rational material selection and nano-entity manipulation during the nano-array integration process, aiming to exploit the advantageous characteristics of nanostructures and their ensembles, are critical steps towards bridging the design of nanostructure integrated monolithic devices with various practical applications. In this article, we highlight the latest research progress of the two-dimensional (2-D) and 3-D metal and metal oxide based nanostructural integrations into prototype devices applicable with ultrahigh efficiency, good robustness and improved functionality. Lastly, selective examples of nano-array integration, scalable nanomanufacturing and representative monolithic devices such as catalytic converters, sensors and batteries will be utilized as the connecting dots to display a roadmap from hierarchical nanostructural assembly to practical nanotechnology implications ranging from energy, environmental, to chemical and biotechnology areas.« less

  3. Nano-array integrated monolithic devices: toward rational materials design and multi-functional performance by scalable nanostructures assembly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Sibo; Ren, Zheng; Guo, Yanbing

    We report the scalable three-dimensional (3-D) integration of functional nanostructures into applicable platforms represents a promising technology to meet the ever-increasing demands of fabricating high performance devices featuring cost-effectiveness, structural sophistication and multi-functional enabling. Such an integration process generally involves a diverse array of nanostructural entities (nano-entities) consisting of dissimilar nanoscale building blocks such as nanoparticles, nanowires, and nanofilms made of metals, ceramics, or polymers. Various synthetic strategies and integration methods have enabled the successful assembly of both structurally and functionally tailored nano-arrays into a unique class of monolithic devices. The performance of nano-array based monolithic devices is dictated bymore » a few important factors such as materials substrate selection, nanostructure composition and nano-architecture geometry. Therefore, the rational material selection and nano-entity manipulation during the nano-array integration process, aiming to exploit the advantageous characteristics of nanostructures and their ensembles, are critical steps towards bridging the design of nanostructure integrated monolithic devices with various practical applications. In this article, we highlight the latest research progress of the two-dimensional (2-D) and 3-D metal and metal oxide based nanostructural integrations into prototype devices applicable with ultrahigh efficiency, good robustness and improved functionality. Lastly, selective examples of nano-array integration, scalable nanomanufacturing and representative monolithic devices such as catalytic converters, sensors and batteries will be utilized as the connecting dots to display a roadmap from hierarchical nanostructural assembly to practical nanotechnology implications ranging from energy, environmental, to chemical and biotechnology areas.« less

  4. Integrated residential photovoltaic array development

    NASA Technical Reports Server (NTRS)

    Royal, G. C., III

    1981-01-01

    Sixteen conceptual designs of residential photovoltaic arrays are described. Each design concept was evaluated by an industry advisory panel using a comprehensive set of technical, economic and institutional criteria. Key electrical and mechanical concerns that effect further array subsystem development are also discussed. Three integrated array design concepts were selected by the advisory panel for further optimization and development. From these concepts a single one will be selected for detailed analysis and prototype fabrication. The three concepts selected are: (1) An array of frameless panels/modules sealed in a T shaped zipper locking neoprene gasket grid pressure fitted into an extruded aluminum channel grid fastened across the rafters. (2) An array of frameless modules pressure fitted in a series of zipper locking EPDM rubber extrusions adhesively bonded to the roof. Series string voltage is developed using a set of integral tongue connectors and positioning blocks. (3) An array of frameless modules sealed by a silicone adhesive in a prefabricated grid of rigid tape and sheet metal attached to the roof.

  5. Detector arrays for low-background space infrared astronomy

    NASA Technical Reports Server (NTRS)

    Mccreight, C. R.; Mckelvey, M. E.; Goebel, J. H.; Anderson, G. M.; Lee, J. H.

    1986-01-01

    The status of development and characterization tests of integrated infrared detector array technology for astronomy applications is described. The devices under development include intrinsic, extrinsic silicon, and extrinsic germanium detectors, with hybrid silicon multiplexers. Laboratory test results and successful astronomy imagery have established the usefulness of integrated arrays in low-background astronomy applications.

  6. Detector arrays for low-background space infrared astronomy

    NASA Technical Reports Server (NTRS)

    Mccreight, C. R.; Mckelvey, M. E.; Goebel, J. H.; Anderson, G. M.; Lee, J. H.

    1986-01-01

    The status of development and characterization tests of integrated infrared detector array technology for astronomy applications is described. The devices under development include intrinsic, extrinsic silicon, and extrinsic germanium detectors, with hybrid silicon multiplexers. Laboratary test results and successful astronomy imagery have established the usefulness of integrated arrays in low-background astronomy applications.

  7. Integrated filter and detector array for spectral imaging

    NASA Technical Reports Server (NTRS)

    Labaw, Clayton C. (Inventor)

    1992-01-01

    A spectral imaging system having an integrated filter and photodetector array is disclosed. The filter has narrow transmission bands which vary in frequency along the photodetector array. The frequency variation of the transmission bands is matched to, and aligned with, the frequency variation of a received spectral image. The filter is deposited directly on the photodetector array by a low temperature deposition process. By depositing the filter directly on the photodetector array, permanent alignment is achieved for all temperatures, spectral crosstalk is substantially eliminated, and a high signal to noise ratio is achieved.

  8. Broadband optical antireflection enhancement by integrating antireflective nanoislands with silicon nanoconical-frustum arrays.

    PubMed

    Park, Haesung; Shin, Dongheok; Kang, Gumin; Baek, Seunghwa; Kim, Kyoungsik; Padilla, Willie J

    2011-12-22

    Based on conventional colloidal nanosphere lithography, we experimentally demonstrate novel graded-index nanostructures for broadband optical antireflection enhancement including the near-ultraviolet (NUV) region by integrating residual polystyrene antireflective (AR) nanoislands coating arrays with silicon nano-conical-frustum arrays. This is a feasible optimized integration method of two major approaches for antireflective surfaces: quarter-wavelength AR coating and biomimetic moth's eye structure. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Integration of Organic Electrochemical and Field-Effect Transistors for Ultraflexible, High Temporal Resolution Electrophysiology Arrays.

    PubMed

    Lee, Wonryung; Kim, Dongmin; Rivnay, Jonathan; Matsuhisa, Naoji; Lonjaret, Thomas; Yokota, Tomoyuki; Yawo, Hiromu; Sekino, Masaki; Malliaras, George G; Someya, Takao

    2016-11-01

    Integration of organic electrochemical transistors and organic field-effect transistors is successfully realized on a 600 nm thick parylene film toward an electrophysiology array. A single cell of an integrated device and a 2 × 2 electrophysiology array succeed in detecting electromyogram with local stimulation of the motor nerve bundle of a transgenic rat by a laser pulse. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Integrated Array/Metadata Analytics

    NASA Astrophysics Data System (ADS)

    Misev, Dimitar; Baumann, Peter

    2015-04-01

    Data comes in various forms and types, and integration usually presents a problem that is often simply ignored and solved with ad-hoc solutions. Multidimensional arrays are an ubiquitous data type, that we find at the core of virtually all science and engineering domains, as sensor, model, image, statistics data. Naturally, arrays are richly described by and intertwined with additional metadata (alphanumeric relational data, XML, JSON, etc). Database systems, however, a fundamental building block of what we call "Big Data", lack adequate support for modelling and expressing these array data/metadata relationships. Array analytics is hence quite primitive or non-existent at all in modern relational DBMS. Recognizing this, we extended SQL with a new SQL/MDA part seamlessly integrating multidimensional array analytics into the standard database query language. We demonstrate the benefits of SQL/MDA with real-world examples executed in ASQLDB, an open-source mediator system based on HSQLDB and rasdaman, that already implements SQL/MDA.

  11. Monolithic optical phased-array transceiver in a standard SOI CMOS process.

    PubMed

    Abediasl, Hooman; Hashemi, Hossein

    2015-03-09

    Monolithic microwave phased arrays are turning mainstream in automotive radars and high-speed wireless communications fulfilling Gordon Moores 1965 prophecy to this effect. Optical phased arrays enable imaging, lidar, display, sensing, and holography. Advancements in fabrication technology has led to monolithic nanophotonic phased arrays, albeit without independent phase and amplitude control ability, integration with electronic circuitry, or including receive and transmit functions. We report the first monolithic optical phased array transceiver with independent control of amplitude and phase for each element using electronic circuitry that is tightly integrated with the nanophotonic components on one substrate using a commercial foundry CMOS SOI process. The 8 × 8 phased array chip includes thermo-optical tunable phase shifters and attenuators, nano-photonic antennas, and dedicated control electronics realized using CMOS transistors. The complex chip includes over 300 distinct optical components and over 74,000 distinct electrical components achieving the highest level of integration for any electronic-photonic system.

  12. Integrated titer plate-injector head for microdrop array preparation, storage and transfer

    DOEpatents

    Swierkowski, Stefan P.

    2000-01-01

    An integrated titer plate-injector head for preparing and storing two-dimensional (2-D) arrays of microdrops and for ejecting part or all of the microdrops and inserting same precisely into 2-D arrays of deposition sites with micrometer precision. The titer plate-injector head includes integrated precision formed nozzles with appropriate hydrophobic surface features and evaporative constraints. A reusable pressure head with a pressure equalizing feature is added to the titer plate to perform simultaneous precision sample ejection. The titer plate-injector head may be utilized in various applications including capillary electrophoresis, chemical flow injection analysis, microsample array preparation, etc.

  13. Multiple-viewing-zone integral imaging using a dynamic barrier array for three-dimensional displays.

    PubMed

    Choi, Heejin; Min, Sung-Wook; Jung, Sungyong; Park, Jae-Hyeung; Lee, Byoungho

    2003-04-21

    In spite of many advantages of integral imaging, the viewing zone in which an observer can see three-dimensional images is limited within a narrow range. Here, we propose a novel method to increase the number of viewing zones by using a dynamic barrier array. We prove our idea by fabricating and locating the dynamic barrier array between a lens array and a display panel. By tilting the barrier array, it is possible to distribute images for each viewing zone. Thus, the number of viewing zones can be increased with an increment of the states of the barrier array tilt.

  14. The tapered slot antenna - A new integrated element for millimeter-wave applications

    NASA Technical Reports Server (NTRS)

    Yngvesson, K. Sigfrid; Kim, Young-Sik; Korzeniowski, T. L.; Kollberg, Erik L.; Johansson, Joakim F.

    1989-01-01

    Tapered slot antennas (TSAs) with a number of potential applications as single elements and focal-plane arrays are discussed. TSAs are fabricated with photolithographic techniques and integrated in either hybrid or MMIC circuits with receiver or transmitter components. They offer considerably narrower beams than other integrated antenna elements and have high aperture efficiency and packing density as array elements. Both the circuit and radiation properties of TSAs are reviewed. Topics covered include: antenna beamwidth, directivity, and gain of single-element TSAs; their beam shape and the effect of different taper shapes; and the input impedance and the effects of using thick dielectrics. These characteristics are also given for TSA arrays, as are the circuit properties of the array elements. Different array structures and their applications are also described.

  15. Integrated Solar-Panel Antenna Array for CubeSats

    NASA Technical Reports Server (NTRS)

    Baktur, Reyhan

    2016-01-01

    The goal of the Integrated Solar-Panel Antenna Array for CubeSats (ISAAC) project is to design and demonstrate an effective and efficien toptically transparent, high-gain, lightweight, conformal X-band antenna array that is integrated with the solar panels of a CubeSat. The targeted demonstration is for a Near Earth Network (NEN)radio at X-band, but the design can be easilyscaled to other network radios for higher frequencies. ISAAC is a less expensive and more flexible design for communication systemscompared to a deployed dish antenna or the existing integrated solar panel antenna design.

  16. Ultra-wideband WDM VCSEL arrays by lateral heterogeneous integration

    NASA Astrophysics Data System (ADS)

    Geske, Jon

    Advancements in heterogeneous integration are a driving factor in the development of evermore sophisticated and functional electronic and photonic devices. Such advancements will merge the optical and electronic capabilities of different material systems onto a common integrated device platform. This thesis presents a new lateral heterogeneous integration technology called nonplanar wafer bonding. The technique is capable of integrating multiple dissimilar semiconductor device structures on the surface of a substrate in a single wafer bond step, leaving different integrated device structures adjacent to each other on the wafer surface. Material characterization and numerical simulations confirm that the material quality is not compromised during the process. Nonplanar wafer bonding is used to fabricate ultra-wideband wavelength division multiplexed (WDM) vertical-cavity surface-emitting laser (VCSEL) arrays. The optically-pumped VCSEL arrays span 140 nm from 1470 to 1610 nm, a record wavelength span for devices operating in this wavelength range. The array uses eight wavelength channels to span the 140 nm with all channels separated by precisely 20 nm. All channels in the array operate single mode to at least 65°C with output power uniformity of +/- 1 dB. The ultra-wideband WDM VCSEL arrays are a significant first step toward the development of a single-chip source for optical networks based on coarse WDM (CWDM), a low-cost alternative to traditional dense WDM. The CWDM VCSEL arrays make use of fully-oxidized distributed Bragg reflectors (DBRs) to provide the wideband reflectivity required for optical feedback and lasing across 140 rim. In addition, a novel optically-pumped active region design is presented. It is demonstrated, with an analytical model and experimental results, that the new active-region design significantly improves the carrier uniformity in the quantum wells and results in a 50% lasing threshold reduction and a 20°C improvement in the peak operating temperature of the devices. This thesis investigates the integration and fabrication technologies required to fabricate ultra-wideband WDM VCSEL arrays. The complete device design and fabrication process is presented along with actual device results from completed CWDM VCSEL arrays. Future recommendations for improvements are presented, along with a roadmap toward a final electrically-pumped single-chip source for CWDM applications.

  17. Flip-chip fabrication of integrated micromirror arrays using a novel latching off-chip hinge mechanism

    NASA Astrophysics Data System (ADS)

    Michalicek, M. Adrian; Bright, Victor M.

    2001-10-01

    This paper presents the design, fabrication, modeling, and testing of various arrays of cantilever micromirror devices integrated atop CMOS control electronics. The upper layers of the arrays are prefabricated in the MUMPs process and then flip-chip transferred to CMOS receiving modules using a novel latching off-chip hinge mechanism. This mechanism allows the micromirror arrays to be released, rotated off the edge of the host module and then bonded to the receiving module using a standard probe station. The hinge mechanism supports the arrays by tethers that are severed to free the arrays once bonded. The resulting devices are inherently planarized since the bottom of the first releasable MUMPs layer becomes the surface of the integrated mirror. The working devices are formed by mirror surfaces bonded to address electrodes fabricated above static memory cells on the CMOS module. These arrays demonstrate highly desirable features such as compatible address potentials, less than 2 nm of RMS roughness, approximately 1 micrometers of lateral position accuracy and the unique ability to metallize reflective surfaces without masking. Ultimately, the off-chip hinge mechanism enables very low-cost, simple, reliable, repeatable and accurate assembly of advanced MEMS and integrated microsystems without specialized equipment or complex procedures.

  18. Mean convergence theorems and weak laws of large numbers for weighted sums of random variables under a condition of weighted integrability

    NASA Astrophysics Data System (ADS)

    Ordóñez Cabrera, Manuel; Volodin, Andrei I.

    2005-05-01

    From the classical notion of uniform integrability of a sequence of random variables, a new concept of integrability (called h-integrability) is introduced for an array of random variables, concerning an array of constantsE We prove that this concept is weaker than other previous related notions of integrability, such as Cesàro uniform integrability [Chandra, Sankhya Ser. A 51 (1989) 309-317], uniform integrability concerning the weights [Ordóñez Cabrera, Collect. Math. 45 (1994) 121-132] and Cesàro [alpha]-integrability [Chandra and Goswami, J. Theoret. ProbabE 16 (2003) 655-669]. Under this condition of integrability and appropriate conditions on the array of weights, mean convergence theorems and weak laws of large numbers for weighted sums of an array of random variables are obtained when the random variables are subject to some special kinds of dependence: (a) rowwise pairwise negative dependence, (b) rowwise pairwise non-positive correlation, (c) when the sequence of random variables in every row is [phi]-mixing. Finally, we consider the general weak law of large numbers in the sense of Gut [Statist. Probab. Lett. 14 (1992) 49-52] under this new condition of integrability for a Banach space setting.

  19. Integrated residential photovoltaic array development

    NASA Astrophysics Data System (ADS)

    Shepard, N. F., Jr.

    1981-12-01

    An advanced, universally-mountable, integrated residential photovoltaic array concept was defined based upon an in-depth formulation and evaluation of three candidate approaches which were synthesized from existing or proposed residential array concepts. The impact of module circuitry and process sequence is considered and technology gaps and performance drivers associated with residential photovoltaic array concepts are identified. The actual learning experience gained from the comparison of the problem areas of the hexagonal shingle design with the rectangular module design led to what is considered an advanced array concept. Building the laboratory mockup provided actual experience and the opportunity to uncover additional technology gaps.

  20. Integrated residential photovoltaic array development

    NASA Technical Reports Server (NTRS)

    Shepard, N. F., Jr.

    1981-01-01

    An advanced, universally-mountable, integrated residential photovoltaic array concept was defined based upon an in-depth formulation and evaluation of three candidate approaches which were synthesized from existing or proposed residential array concepts. The impact of module circuitry and process sequence is considered and technology gaps and performance drivers associated with residential photovoltaic array concepts are identified. The actual learning experience gained from the comparison of the problem areas of the hexagonal shingle design with the rectangular module design led to what is considered an advanced array concept. Building the laboratory mockup provided actual experience and the opportunity to uncover additional technology gaps.

  1. Semicustom integrated circuits and the standard transistor array radix (STAR)

    NASA Technical Reports Server (NTRS)

    Edge, T. M.

    1977-01-01

    The development, application, pros and cons of the semicustom and custom approach to the integration of circuits are described. Improvements in terms of cost, reliability, secrecy, power, and size reduction are examined. Also presented is the standard transistor array radix, a semicustom approach to digital integrated circuits that offers the advantages of both custom and semicustom approaches to integration.

  2. A finite element-boundary integral method for cavities in a circular cylinder

    NASA Technical Reports Server (NTRS)

    Kempel, Leo C.; Volakis, John L.

    1992-01-01

    Conformal antenna arrays offer many cost and weight advantages over conventional antenna systems. However, due to a lack of rigorous mathematical models for conformal antenna arrays, antenna designers resort to measurement and planar antenna concepts for designing non-planar conformal antennas. Recently, we have found the finite element-boundary integral method to be very successful in modeling large planar arrays of arbitrary composition in a metallic plane. We extend this formulation to conformal arrays on large metallic cylinders. In this report, we develop the mathematical formulation. In particular, we discuss the shape functions, the resulting finite elements and the boundary integral equations, and the solution of the conformal finite element-boundary integral system. Some validation results are presented and we further show how this formulation can be applied with minimal computational and memory resources.

  3. Integrated residential photovoltaic array development

    NASA Technical Reports Server (NTRS)

    Shepard, N. F., Jr.

    1981-01-01

    Three basic module design concepts were analyzed with respect to both production and installation costs. The results of this evaluation were used to synthesize a fourth design which incorporates the best features of these initial concepts to produce a module/array design approach which offers the promise of a substantial reduction in the installed cost of a residential array. A unique waterproofing and mounting scheme was used to reduce the cost of installing an integral array while still maintaining a high probability that the installed array will be watertight for the design lifetime of the system. This recommended concept will also permit the array to be mounted as a direct or stand-off installation with no changes to the module design.

  4. Proceedings of the Second Infrared Detector Technology Workshop

    NASA Technical Reports Server (NTRS)

    Mccreight, C. R. (Compiler)

    1986-01-01

    The workshop focused on infrared detector, detector array, and cryogenic electronic technologies relevant to low-background space astronomy. Papers are organized into the following categories: discrete infrared detectors and readout electronics; advanced bolometers; intrinsic integrated infrared arrays; and extrinsic integrated infrared arrays. Status reports on the Space Infrared Telescope Facility (SIRTF) and Infrared Space Observatory (ISO) programs are also included.

  5. Breath-Taking Patterns: Discontinuous Hydrophilic Regions for Photonic Crystal Beads Assembly and Patterns Revisualization.

    PubMed

    Du, Xuemin; Wang, Juan; Cui, Huanqing; Zhao, Qilong; Chen, Hongxu; He, Le; Wang, Yunlong

    2017-11-01

    Surfaces patterned with hydrophilic and hydrophobic regions provide robust and versatile means for investigating the wetting behaviors of liquids, surface properties analysis, and producing patterned arrays. However, the fabrication of integral and uniform arrays onto these open systems remains a challenge, thus restricting them from being used in practical applications. Here, we present a simple yet powerful approach for the fabrication of water droplet arrays and the assembly of photonic crystal bead arrays based on hydrophilic-hydrophobic patterned substrates. Various integral arrays are simply prepared in a high-quality output with a low cost, large scale, and uniform size control. By simply taking a breath, which brings moisture to the substrate surface, complex hydrophilic-hydrophobic outlined images can be revisualized in the discontinuous hydrophilic regions. Integration of hydrogel photonic crystal bead arrays into the "breath-taking" process results in breath-responsive photonic crystal beads, which can change their colors upon a mild exhalation. This state-of-the-art technology not only provides an effective methodology for the preparation of patterned arrays but also demonstrates intriguing applications in information storage and biochemical sensors.

  6. LIGHTWEIGHT INTEGRATED SOLAR ARRAY AND TRANSCEIVER

    NASA Image and Video Library

    2016-09-23

    JOHN CARR, RIGHT, CO-PRINCIPAL INVESTIGATOR FOR NASA'S LIGHTWEIGHT INTEGRATED SOLAR ARRAY AND TRANSCEIVER PROJECT, TALKS WITH GREG LAUE, DIRECTOR OF AEROSPACE PRODUCTS FOR NEXOLVE, MANUFACTURER OF THE THIN-FILM TECHNOLOGY AND A PARTNER IN THE PROJECT.

  7. Silicon photonics fiber-to-the-home transceiver array based on transfer-printing-based integration of III-V photodetectors.

    PubMed

    Zhang, Jing; De Groote, Andreas; Abbasi, Amin; Loi, Ruggero; O'Callaghan, James; Corbett, Brian; Trindade, António José; Bower, Christopher A; Roelkens, Gunther

    2017-06-26

    A 4-channel silicon photonics transceiver array for Point-to-Point (P2P) fiber-to-the-home (FTTH) optical networks at the central office (CO) side is demonstrated. A III-V O-band photodetector array was integrated onto the silicon photonic transmitter through transfer printing technology, showing a polarization-independent responsivity of 0.39 - 0.49 A/W in the O-band. The integrated PDs (30 × 40 μm 2 mesa) have a 3 dB bandwidth of 11.5 GHz at -3 V bias. Together with high-speed C-band silicon ring modulators whose bandwidth is up to 15 GHz, operation of the transceiver array at 10 Gbit/s is demonstrated. The use of transfer printing for the integration of the III-V photodetectors allows for an efficient use of III-V material and enables the scalable integration of III-V devices on silicon photonics wafers, thereby reducing their cost.

  8. Piezoelectric Micromachined Ultrasound Transducer (PMUT) Arrays for Integrated Sensing, Actuation and Imaging

    PubMed Central

    Qiu, Yongqiang; Gigliotti, James V.; Wallace, Margeaux; Griggio, Flavio; Demore, Christine E. M.; Cochran, Sandy; Trolier-McKinstry, Susan

    2015-01-01

    Many applications of ultrasound for sensing, actuation and imaging require miniaturized and low power transducers and transducer arrays integrated with electronic systems. Piezoelectric micromachined ultrasound transducers (PMUTs), diaphragm-like thin film flexural transducers typically formed on silicon substrates, are a potential solution for integrated transducer arrays. This paper presents an overview of the current development status of PMUTs and a discussion of their suitability for miniaturized and integrated devices. The thin film piezoelectric materials required to functionalize these devices are discussed, followed by the microfabrication techniques used to create PMUT elements and the constraints the fabrication imposes on device design. Approaches for electrical interconnection and integration with on-chip electronics are discussed. Electrical and acoustic measurements from fabricated PMUT arrays with up to 320 diaphragm elements are presented. The PMUTs are shown to be broadband devices with an operating frequency which is tunable by tailoring the lateral dimensions of the flexural membrane or the thicknesses of the constituent layers. Finally, the outlook for future development of PMUT technology and the potential applications made feasible by integrated PMUT devices are discussed. PMID:25855038

  9. Piezoelectric micromachined ultrasound transducer (PMUT) arrays for integrated sensing, actuation and imaging.

    PubMed

    Qiu, Yongqiang; Gigliotti, James V; Wallace, Margeaux; Griggio, Flavio; Demore, Christine E M; Cochran, Sandy; Trolier-McKinstry, Susan

    2015-04-03

    Many applications of ultrasound for sensing, actuation and imaging require miniaturized and low power transducers and transducer arrays integrated with electronic systems. Piezoelectric micromachined ultrasound transducers (PMUTs), diaphragm-like thin film flexural transducers typically formed on silicon substrates, are a potential solution for integrated transducer arrays. This paper presents an overview of the current development status of PMUTs and a discussion of their suitability for miniaturized and integrated devices. The thin film piezoelectric materials required to functionalize these devices are discussed, followed by the microfabrication techniques used to create PMUT elements and the constraints the fabrication imposes on device design. Approaches for electrical interconnection and integration with on-chip electronics are discussed. Electrical and acoustic measurements from fabricated PMUT arrays with up to 320 diaphragm elements are presented. The PMUTs are shown to be broadband devices with an operating frequency which is tunable by tailoring the lateral dimensions of the flexural membrane or the thicknesses of the constituent layers. Finally, the outlook for future development of PMUT technology and the potential applications made feasible by integrated PMUT devices are discussed.

  10. Planar waveguide integrated spatial filter array

    NASA Astrophysics Data System (ADS)

    Ai, Jun; Dimov, Fedor; Lyon, Richard; Rakuljic, Neven; Griffo, Chris; Xia, Xiaowei; Arik, Engin

    2013-09-01

    An innovative integrated spatial filter array (iSFA) was developed for the nulling interferometer for the detection of earth-like planets and life beyond our solar system. The coherent iSFA comprised a 2D planar lightwave circuit (PLC) array coupled with a pair of 2D lenslet arrays in a hexagonal grid to achieve the optimum fill factor and throughput. The silica-on-silicon waveguide mode field diameter and numerical aperture (NA) were designed to match with the Airy disc and NA of the microlens for optimum coupling. The lenslet array was coated with a chromium pinhole array at the focal plane to pass the single-mode waveguide but attenuate the higher modes. We assembled a 32 by 30 array by stacking 32 chips that were produced by photolithography from a 6-in. silicon wafer. Each chip has 30 planar waveguides. The PLC array is inherently polarization-maintaining (PM) and requires much less alignment in contrast to a fiber array, where each PM fiber must be placed individually and oriented correctly. The PLC array offers better scalability than the fiber bundle array for large arrays of over 1,000 waveguides.

  11. Integrated detector array technology for infrared astronomy

    NASA Technical Reports Server (NTRS)

    Mccreight, c. R.; Goebel, J. H.; Mckelvey, M. E.; Stafford, P. S.; Lee, J. H.

    1984-01-01

    The status of laboratory and telescope tests of integrated infrared detector array technology for astronomical applications is described. The devices tested represent a number of extrinsic and intrinsic detector materials and various multiplexer designs. Infrared arrays have now been used in successful astronomical applications. These have shown that device sensitivities can be comparable to those of discrete detector systems and excellent astronomical imagery can be produced.

  12. Integrated dynamic analysis simulation of space stations with controllable solar arrays (supplemental data and analyses)

    NASA Technical Reports Server (NTRS)

    Heinrichs, J. A.; Fee, J. J.

    1972-01-01

    Space station and solar array data and the analyses which were performed in support of the integrated dynamic analysis study. The analysis methods and the formulated digital simulation were developed. Control systems for space station altitude control and solar array orientation control include generic type control systems. These systems have been digitally coded and included in the simulation.

  13. A 60-GHz interferometer with a local oscillator integrated antenna array for divertor simulation experiments on GAMMA 10/PDX

    NASA Astrophysics Data System (ADS)

    Kohagura, J.; Yoshikawa, M.; Wang, X.; Kuwahara, D.; Ito, N.; Nagayama, Y.; Shima, Y.; Nojiri, K.; Sakamoto, M.; Nakashima, Y.; Mase, A.

    2016-11-01

    In conventional multichannel/imaging microwave diagnostics of interferometry, reflectometry, and electron cyclotron emission measurements, a local oscillator (LO) signal is commonly supplied to a receiver array via irradiation using LO optics. In this work, we present a 60-GHz interferometer with a new eight-channel receiver array, called a local oscillator integrated antenna array (LIA). An outstanding feature of LIA is that it incorporates a frequency quadrupler integrated circuit for LO supply to each channel. This enables simple and uniform LO supply to the receiver array using only a 15-GHz LO source and a coaxial cable transmission line instead of using an expensive 60-GHz source, LO optics, and a waveguide transmission line. The new interferometer system is first applied to measure electron line-averaged density inside the divertor simulation experimental module (D-module) on GAMMA 10/PDX tandem mirror device.

  14. A 60-GHz interferometer with a local oscillator integrated antenna array for divertor simulation experiments on GAMMA 10/PDX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kohagura, J., E-mail: kohagura@prc.tsukuba.ac.jp; Yoshikawa, M.; Shima, Y.

    In conventional multichannel/imaging microwave diagnostics of interferometry, reflectometry, and electron cyclotron emission measurements, a local oscillator (LO) signal is commonly supplied to a receiver array via irradiation using LO optics. In this work, we present a 60-GHz interferometer with a new eight-channel receiver array, called a local oscillator integrated antenna array (LIA). An outstanding feature of LIA is that it incorporates a frequency quadrupler integrated circuit for LO supply to each channel. This enables simple and uniform LO supply to the receiver array using only a 15-GHz LO source and a coaxial cable transmission line instead of using an expensivemore » 60-GHz source, LO optics, and a waveguide transmission line. The new interferometer system is first applied to measure electron line-averaged density inside the divertor simulation experimental module (D-module) on GAMMA 10/PDX tandem mirror device.« less

  15. A 60-GHz interferometer with a local oscillator integrated antenna array for divertor simulation experiments on GAMMA 10/PDX.

    PubMed

    Kohagura, J; Yoshikawa, M; Wang, X; Kuwahara, D; Ito, N; Nagayama, Y; Shima, Y; Nojiri, K; Sakamoto, M; Nakashima, Y; Mase, A

    2016-11-01

    In conventional multichannel/imaging microwave diagnostics of interferometry, reflectometry, and electron cyclotron emission measurements, a local oscillator (LO) signal is commonly supplied to a receiver array via irradiation using LO optics. In this work, we present a 60-GHz interferometer with a new eight-channel receiver array, called a local oscillator integrated antenna array (LIA). An outstanding feature of LIA is that it incorporates a frequency quadrupler integrated circuit for LO supply to each channel. This enables simple and uniform LO supply to the receiver array using only a 15-GHz LO source and a coaxial cable transmission line instead of using an expensive 60-GHz source, LO optics, and a waveguide transmission line. The new interferometer system is first applied to measure electron line-averaged density inside the divertor simulation experimental module (D-module) on GAMMA 10/PDX tandem mirror device.

  16. Low-background detector arrays for infrared astronomy

    NASA Technical Reports Server (NTRS)

    Mccreight, C. R.; Estrada, J. A.; Goebel, J. H.; Mckelvey, M. E.; Mckibbin, D. D.; Mcmurray, R. E., Jr.; Weber, T. T.

    1989-01-01

    The status of a program which develops and characterizes integrated infrared (IR) detector array technology for space astronomical applications is described. The devices under development include intrinsic, extrinsic silicon, and extrinsic germanium detectors, coupled to silicon readout electronics. Low-background laboratory test results include measurements of responsivity, noise, dark current, temporal response, and the effects of gamma-radiation. In addition, successful astronomical imagery has been obtained on some arrays from this program. These two aspects of the development combine to demonstrate the strong potential for integrated array technology for IR space astronomy.

  17. A design concept for an MMIC (Monolithic Microwave Integrated Circuit) microstrip phased array

    NASA Technical Reports Server (NTRS)

    Lee, Richard Q.; Smetana, Jerry; Acosta, Roberto

    1987-01-01

    A conceptual design for a microstrip phased array with monolithic microwave integrated circuit (MMIC) amplitude and phase controls is described. The MMIC devices used are 20 GHz variable power amplifiers and variable phase shifters recently developed by NASA contractors for applications in future Ka proposed design, which concept is for a general NxN element array of rectangular lattice geometry. Subarray excitation is incorporated in the MMIC phased array design to reduce the complexity of the beam forming network and the number of MMIC components required.

  18. Nanowire active-matrix circuitry for low-voltage macroscale artificial skin.

    PubMed

    Takei, Kuniharu; Takahashi, Toshitake; Ho, Johnny C; Ko, Hyunhyub; Gillies, Andrew G; Leu, Paul W; Fearing, Ronald S; Javey, Ali

    2010-10-01

    Large-scale integration of high-performance electronic components on mechanically flexible substrates may enable new applications in electronics, sensing and energy. Over the past several years, tremendous progress in the printing and transfer of single-crystalline, inorganic micro- and nanostructures on plastic substrates has been achieved through various process schemes. For instance, contact printing of parallel arrays of semiconductor nanowires (NWs) has been explored as a versatile route to enable fabrication of high-performance, bendable transistors and sensors. However, truly macroscale integration of ordered NW circuitry has not yet been demonstrated, with the largest-scale active systems being of the order of 1 cm(2) (refs 11,15). This limitation is in part due to assembly- and processing-related obstacles, although larger-scale integration has been demonstrated for randomly oriented NWs (ref. 16). Driven by this challenge, here we demonstrate macroscale (7×7 cm(2)) integration of parallel NW arrays as the active-matrix backplane of a flexible pressure-sensor array (18×19 pixels). The integrated sensor array effectively functions as an artificial electronic skin, capable of monitoring applied pressure profiles with high spatial resolution. The active-matrix circuitry operates at a low operating voltage of less than 5 V and exhibits superb mechanical robustness and reliability, without performance degradation on bending to small radii of curvature (2.5 mm) for over 2,000 bending cycles. This work presents the largest integration of ordered NW-array active components, and demonstrates a model platform for future integration of nanomaterials for practical applications.

  19. Collective photonic-plasmonic resonances in noble metal - dielectric nanoparticle hybrid arrays

    DOE PAGES

    Hong, Yan; Reinhard, Björn M.

    2014-10-27

    Coherent scattering of gold and silver nanoparticles (NPs) in regular arrays can generate Surface Lattice Resonances (SLRs) with characteristically sharp spectral features. Herein, we investigate collective resonances in compositionally more complex arrays comprising NP clusters and NPs with different chemical compositions at pre-defined lattice sites. We first characterize the impact of NP clustering by exchanging individual gold NPs in the array through dimers of electromagnetically strongly coupled gold NPs. Then, we analyze hybrid arrays that contain both gold metal NP dimers and high refractive index dielectric NPs as building blocks. We demonstrate that the integration of gold NP clusters andmore » dielectric NPs into one array enhances E-field intensities not only in the vicinity of the NPs but also in the ambient medium of the entire array. In addition, this work shows that the ability to integrate multiple building blocks with different resonance conditions in one array provides new degrees of freedom for engineering optical fields in the array plane with variable amplitude and phase.« less

  20. Integrated sensor with frame memory and programmable resolution for light adaptive imaging

    NASA Technical Reports Server (NTRS)

    Zhou, Zhimin (Inventor); Fossum, Eric R. (Inventor); Pain, Bedabrata (Inventor)

    2004-01-01

    An image sensor operable to vary the output spatial resolution according to a received light level while maintaining a desired signal-to-noise ratio. Signals from neighboring pixels in a pixel patch with an adjustable size are added to increase both the image brightness and signal-to-noise ratio. One embodiment comprises a sensor array for receiving input signals, a frame memory array for temporarily storing a full frame, and an array of self-calibration column integrators for uniform column-parallel signal summation. The column integrators are capable of substantially canceling fixed pattern noise.

  1. Characteristics of Monolithically Integrated InGaAs Active Pixel Imager Array

    NASA Technical Reports Server (NTRS)

    Kim, Q.; Cunningham, T. J.; Pain, B.; Lange, M. J.; Olsen, G. H.

    2000-01-01

    Switching and amplifying characteristics of a newly developed monolithic InGaAs Active Pixel Imager Array are presented. The sensor array is fabricated from InGaAs material epitaxially deposited on an InP substrate. It consists of an InGaAs photodiode connected to InP depletion-mode junction field effect transistors (JFETs) for low leakage, low power, and fast control of circuit signal amplifying, buffering, selection, and reset. This monolithically integrated active pixel sensor configuration eliminates the need for hybridization with silicon multiplexer. In addition, the configuration allows the sensor to be front illuminated, making it sensitive to visible as well as near infrared signal radiation. Adapting the existing 1.55 micrometer fiber optical communication technology, this integration will be an ideal system of optoelectronic integration for dual band (Visible/IR) applications near room temperature, for use in atmospheric gas sensing in space, and for target identification on earth. In this paper, two different types of small 4 x 1 test arrays will be described. The effectiveness of switching and amplifying circuits will be discussed in terms of circuit effectiveness (leakage, operating frequency, and temperature) in preparation for the second phase demonstration of integrated, two-dimensional monolithic InGaAs active pixel sensor arrays for applications in transportable shipboard surveillance, night vision, and emission spectroscopy.

  2. A high-performance photovoltaic concentrator array - The mini-dome Fresnel lens concentrator with 30 percent efficient GaAs/GaSb tandem cells

    NASA Technical Reports Server (NTRS)

    Piszczor, M. F.; Brinker, D. J.; Flood, D. J.; Avery, J. E.; Fraas, L. M.; Fairbanks, E. S.; Yerkes, J. W.; O'Neill, M. J.

    1991-01-01

    A high-efficiency, lightweight space photovoltaic concentrator array is described. Previous work on the minidome Fresnel lens concentrator concept is being integrated with Boeing's 30 percent efficient tandem GaAs/GaSb concentrator cells into a high-performance photovoltaic array. Calculations indicate that, in the near term, such an array can achieve 300 W/sq m at a specific power of 100 W/kg. Emphasis of the program has now shifted to integrating the concentrator lens, tandem cell, and supporting panel structure into a space-qualifiable array. A description is presented of the current status of component and prototype panel testing and the development of a flight panel for the Photovoltaic Array Space Power Plus Diagnostics (PASP PLUS) flight experiment.

  3. Multispectral linear array visible and shortwave infrared sensors

    NASA Astrophysics Data System (ADS)

    Tower, J. R.; Warren, F. B.; Pellon, L. E.; Strong, R.; Elabd, H.; Cope, A. D.; Hoffmann, D. M.; Kramer, W. M.; Longsderff, R. W.

    1984-08-01

    All-solid state pushbroom sensors for multispectral linear array (MLA) instruments to replace mechanical scanners used on LANDSAT satellites are introduced. A buttable, four-spectral-band, linear-format charge coupled device (CCD) and a buttable, two-spectral-band, linear-format, shortwave infrared CCD are described. These silicon integrated circuits may be butted end to end to provide multispectral focal planes with thousands of contiguous, in-line photosites. The visible CCD integrated circuit is organized as four linear arrays of 1024 pixels each. Each array views the scene in a different spectral window, resulting in a four-band sensor. The shortwave infrared (SWIR) sensor is organized as 2 linear arrays of 512 detectors each. Each linear array is optimized for performance at a different wavelength in the SWIR band.

  4. A high-performance photovoltaic concentrator array - The mini-dome Fresnel lens concentrator with 30 percent efficient GaAs/GaSb tandem cells

    NASA Astrophysics Data System (ADS)

    Piszczor, M. F.; Brinker, D. J.; Flood, D. J.; Avery, J. E.; Fraas, L. M.; Fairbanks, E. S.; Yerkes, J. W.; O'Neill, M. J.

    A high-efficiency, lightweight space photovoltaic concentrator array is described. Previous work on the minidome Fresnel lens concentrator concept is being integrated with Boeing's 30 percent efficient tandem GaAs/GaSb concentrator cells into a high-performance photovoltaic array. Calculations indicate that, in the near term, such an array can achieve 300 W/sq m at a specific power of 100 W/kg. Emphasis of the program has now shifted to integrating the concentrator lens, tandem cell, and supporting panel structure into a space-qualifiable array. A description is presented of the current status of component and prototype panel testing and the development of a flight panel for the Photovoltaic Array Space Power Plus Diagnostics (PASP PLUS) flight experiment.

  5. Heterogeneously integrated III-V/silicon dual-mode distributed feedback laser array for terahertz generation.

    PubMed

    Shao, Haifeng; Keyvaninia, Shahram; Vanwolleghem, Mathias; Ducournau, Guillaume; Jiang, Xiaoqing; Morthier, Geert; Lampin, Jean-Francois; Roelkens, Gunther

    2014-11-15

    We demonstrate an integrated distributed feedback (DFB) laser array as a dual-wavelength source for narrowband terahertz (THz) generation. The laser array is composed of four heterogeneously integrated III-V-on-silicon DFB lasers with different lengths enabling dual-mode lasing tolerant to process variations, bias fluctuations, and ambient temperature variations. By optical heterodyning the two modes emitted by the dual-wavelength DFB laser in the laser array using a THz photomixer composed of an uni-traveling carrier photodiode (UTC-PD), a narrow and stable carrier signal with a frequency of 0.357 THz is generated. The central operating frequency and the emitted terahertz wave linewidth are analyzed, along with their dependency on the bias current applied to the laser diode and ambient temperature.

  6. Field ionization characteristics of an ion source array for neutron generators

    NASA Astrophysics Data System (ADS)

    Bargsten Johnson, B.; Schwoebel, P. R.; Resnick, P. J.; Holland, C. E.; Hertz, K. L.; Chichester, D. L.

    2013-11-01

    A new deuterium ion source is being developed to improve the performance of existing compact neutron generators. The ion source is a microfabricated array of metal tips with an integrated gate (i.e., grid) and produces deuterium ions by field ionizing (or field desorbing) a supply of deuterium gas. Deuterium field ion currents from arrays at source temperatures of 77 K and 293 K are studied. Ion currents from single etched-wire tips operating under the same conditions are used to help understand array results. I-F characteristics of the arrays were found to follow trends similar to those of the better understood single etched-wire tip results; however, the fields achieved by the arrays are limited by electrical breakdown of the structure. Neutron production by field ionization at 293 K was demonstrated for the first time from microfabricated array structures with integrated gates.

  7. Optoelectronic Integrated Circuits For Neural Networks

    NASA Technical Reports Server (NTRS)

    Psaltis, D.; Katz, J.; Kim, Jae-Hoon; Lin, S. H.; Nouhi, A.

    1990-01-01

    Many threshold devices placed on single substrate. Integrated circuits containing optoelectronic threshold elements developed for use as planar arrays of artificial neurons in research on neural-network computers. Mounted with volume holograms recorded in photorefractive crystals serving as dense arrays of variable interconnections between neurons.

  8. Organic electrochemical transistor array for recording transepithelial ion transport of human airway epithelial cells.

    PubMed

    Yao, Chunlei; Xie, Changyan; Lin, Peng; Yan, Feng; Huang, Pingbo; Hsing, I-Ming

    2013-12-03

    An organic electrochemical transistor array is integrated with human airway epithelial cells. This integration provides a novel method to couple transepithelial ion transport with electrical current. Activation and inhibition of transepithelial ion transport are readily detected with excellent time resolution. The organic electrochemical transistor array serves as a promising platform for physiological studies and drug testing. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Defense Industrial Base Assessment: U.S. Integrated Circuit Design and Fabrication Capability

    DTIC Science & Technology

    2009-05-01

    in the U.S for the period 2003-2006, with projections to 2011.6 The resulting draft OTE survey was field tested for accuracy and usability with a...custom application specific integrated circuits (ASICs) to field programmable gate arrays (FPGAs). Companies of all sizes can manufacture these IC...able to design one-time Electronically Programmable Gate Arrays (EPGAs) while nine are able to design Field Programmable Gate Arrays (FPGAs). Eight

  10. Recent developments in OLED-based chemical and biological sensors

    NASA Astrophysics Data System (ADS)

    Shinar, Joseph; Zhou, Zhaoqun; Cai, Yuankun; Shinar, Ruth

    2007-09-01

    Recent developments in the structurally integrated OLED-based platform of luminescent chemical and biological sensors are reviewed. In this platform, an array of OLED pixels, which is structurally integrated with the sensing elements, is used as the photoluminescence (PL) excitation source. The structural integration is achieved by fabricating the OLED array and the sensing element on opposite sides of a common glass substrate or on two glass substrates that are attached back-to-back. As it does not require optical fibers, lens, or mirrors, it results in a uniquely simple, low-cost, and potentially rugged geometry. The recent developments on this platform include the following: (1) Enhancing the performance of gas-phase and dissolved oxygen sensors. This is achieved by (a) incorporating high-dielectric TiO II nanoparticles in the oxygen-sensitive Pt and Pd octaethylporphyrin (PtOEP and PdOEP, respectively)- doped polystyrene (PS) sensor films, and (b) embedding the oxygen-sensitive dyes in a matrix of polymer blends such as PS:polydimethylsiloxane (PDMS). (2) Developing sensor arrays for simultaneous detection of multiple serum analytes, including oxygen, glucose, lactate, and alcohol. The sensing element for each analyte consists of a PtOEP-doped PS oxygen sensor, and a solution containing the oxidase enzyme specific to the analyte. Each sensing element is coupled to two individually addressable OLED pixels and a Si photodiode photodetector (PD). (3) Enhancing the integration of the platform, whereby a PD array is also structurally integrated with the OLED array and sensing elements. This enhanced integration is achieved by fabricating an array of amorphous or nanocrystalline Si-based PDs, followed by fabrication of the OLED pixels in the gaps between these Si PDs.

  11. A 7T Spine Array Based on Electric Dipole Transmitters

    PubMed Central

    Duan, Qi; Nair, Govind; Gudino, Natalia; de Zwart, Jacco A.; van Gelderen, Peter; Murphy-Boesch, Joe; Reich, Daniel S.; Duyn, Jeff H.; Merkle, Hellmut

    2015-01-01

    Purpose In this work the feasibility of using an array of electric dipole antennas for RF transmission in spine MRI at high field is explored. Method A 2-channel transmit array based on an electric dipole design was quantitatively optimized for 7T spine imaging and integrated with a receive array combining 8 loop coils. Using B1+ mapping, the transmit efficiency of the dipole array was compared to a design using quadrature loop pairs. The radio-frequency (RF) energy deposition for each array was measured using a home-built dielectric phantom and MR thermometry. The performance of the proposed array was qualitatively demonstrated in human studies. Results The results indicate dramatically improved transmit efficiency for the dipole design as compared to the loop excitation. Up to 76% gain was achieved within the spinal region. Conclusion For imaging of the spine, electric-dipole based transmitters provided an attractive alternative to the traditional loop-based design. Easy integration with existing receive array technology facilitates practical use at high field. PMID:26190585

  12. Producibility of Vertically Integrated Photodiode (VIP)tm scanning focal plane arrays

    NASA Astrophysics Data System (ADS)

    Turner, Arthur M.; Teherani, Towfik; Ehmke, John C.; Pettitt, Cindy; Conlon, Peggy; Beck, Jeffrey D.; McCormack, Kent; Colombo, Luigi; Lahutsky, Tom; Murphy, Terry; Williams, Robert L.

    1994-07-01

    Vertically integrated photodiode, VIPTM, technology is now being used to produce second generation infrared focal plane arrays with high yields and performance. The VIPTM process employs planar, ion implanted, n on p diodes in HgCdTe which is epoxy hybridized directly to the read out integrated circuits on 100 mm Si wafers. The process parameters that are critical for high performance and yield include: HgCdTe dislocation density and thickness, backside passivation, frontside passivation, and junction formation. Producibility of infrared focal plane arrays (IRFPAs) is also significantly enhanced by read out integrated circuits (ROICs) which have the ability to deselect defective pixels. Cold probe screening before lab dewar assembly reduces costs and improves cycle times. The 240 X 1 and 240 X 2 scanning array formats are used to demonstrate the effect of process optimization, deselect, and cold probe screening on yield and cycle time. The versatility of the VIPTM technology and its extension to large area arrays is demonstrated using 240/288 X 4 and 480 X 5 TDI formats. Finally, the high performance of VIPTM IRFPAs is demonstrated by comparing data from a 480 X 5 to the SADA-II specification.

  13. Integrated arrays of air-dielectric graphene transistors as transparent active-matrix pressure sensors for wide pressure ranges.

    PubMed

    Shin, Sung-Ho; Ji, Sangyoon; Choi, Seiho; Pyo, Kyoung-Hee; Wan An, Byeong; Park, Jihun; Kim, Joohee; Kim, Ju-Young; Lee, Ki-Suk; Kwon, Soon-Yong; Heo, Jaeyeong; Park, Byong-Guk; Park, Jang-Ung

    2017-03-31

    Integrated electronic circuitries with pressure sensors have been extensively researched as a key component for emerging electronics applications such as electronic skins and health-monitoring devices. Although existing pressure sensors display high sensitivities, they can only be used for specific purposes due to the narrow range of detectable pressure (under tens of kPa) and the difficulty of forming highly integrated arrays. However, it is essential to develop tactile pressure sensors with a wide pressure range in order to use them for diverse application areas including medical diagnosis, robotics or automotive electronics. Here we report an unconventional approach for fabricating fully integrated active-matrix arrays of pressure-sensitive graphene transistors with air-dielectric layers simply formed by folding two opposing panels. Furthermore, this realizes a wide tactile pressure sensing range from 250 Pa to ∼3 MPa. Additionally, fabrication of pressure sensor arrays and transparent pressure sensors are demonstrated, suggesting their substantial promise as next-generation electronics.

  14. Integrated arrays of air-dielectric graphene transistors as transparent active-matrix pressure sensors for wide pressure ranges

    NASA Astrophysics Data System (ADS)

    Shin, Sung-Ho; Ji, Sangyoon; Choi, Seiho; Pyo, Kyoung-Hee; Wan An, Byeong; Park, Jihun; Kim, Joohee; Kim, Ju-Young; Lee, Ki-Suk; Kwon, Soon-Yong; Heo, Jaeyeong; Park, Byong-Guk; Park, Jang-Ung

    2017-03-01

    Integrated electronic circuitries with pressure sensors have been extensively researched as a key component for emerging electronics applications such as electronic skins and health-monitoring devices. Although existing pressure sensors display high sensitivities, they can only be used for specific purposes due to the narrow range of detectable pressure (under tens of kPa) and the difficulty of forming highly integrated arrays. However, it is essential to develop tactile pressure sensors with a wide pressure range in order to use them for diverse application areas including medical diagnosis, robotics or automotive electronics. Here we report an unconventional approach for fabricating fully integrated active-matrix arrays of pressure-sensitive graphene transistors with air-dielectric layers simply formed by folding two opposing panels. Furthermore, this realizes a wide tactile pressure sensing range from 250 Pa to ~3 MPa. Additionally, fabrication of pressure sensor arrays and transparent pressure sensors are demonstrated, suggesting their substantial promise as next-generation electronics.

  15. Integrated arrays of air-dielectric graphene transistors as transparent active-matrix pressure sensors for wide pressure ranges

    PubMed Central

    Shin, Sung-Ho; Ji, Sangyoon; Choi, Seiho; Pyo, Kyoung-Hee; Wan An, Byeong; Park, Jihun; Kim, Joohee; Kim, Ju-Young; Lee, Ki-Suk; Kwon, Soon-Yong; Heo, Jaeyeong; Park, Byong-Guk; Park, Jang-Ung

    2017-01-01

    Integrated electronic circuitries with pressure sensors have been extensively researched as a key component for emerging electronics applications such as electronic skins and health-monitoring devices. Although existing pressure sensors display high sensitivities, they can only be used for specific purposes due to the narrow range of detectable pressure (under tens of kPa) and the difficulty of forming highly integrated arrays. However, it is essential to develop tactile pressure sensors with a wide pressure range in order to use them for diverse application areas including medical diagnosis, robotics or automotive electronics. Here we report an unconventional approach for fabricating fully integrated active-matrix arrays of pressure-sensitive graphene transistors with air-dielectric layers simply formed by folding two opposing panels. Furthermore, this realizes a wide tactile pressure sensing range from 250 Pa to ∼3 MPa. Additionally, fabrication of pressure sensor arrays and transparent pressure sensors are demonstrated, suggesting their substantial promise as next-generation electronics. PMID:28361867

  16. Vertically Integrated MEMS SOI Composite Porous Silicon-Crystalline Silicon Cantilever-Array Sensors: Concept for Continuous Sensing of Explosives and Warfare Agents

    NASA Astrophysics Data System (ADS)

    Stolyarova, Sara; Shemesh, Ariel; Aharon, Oren; Cohen, Omer; Gal, Lior; Eichen, Yoav; Nemirovsky, Yael

    This study focuses on arrays of cantilevers made of crystalline silicon (c-Si), using SOI wafers as the starting material and using bulk micromachining. The arrays are subsequently transformed into composite porous silicon-crystalline silicon cantilevers, using a unique vapor phase process tailored for providing a thin surface layer of porous silicon on one side only. This results in asymmetric cantilever arrays, with one side providing nano-structured porous large surface, which can be further coated with polymers, thus providing additional sensing capabilities and enhanced sensing. The c-Si cantilevers are vertically integrated with a bottom silicon die with electrodes allowing electrostatic actuation. Flip Chip bonding is used for the vertical integration. The readout is provided by a sensitive Capacitance to Digital Converter. The fabrication, processing and characterization results are reported. The reported study is aimed towards achieving miniature cantilever chips with integrated readout for sensing explosives and chemical warfare agents in the field.

  17. Lipid Multilayer Grating Arrays Integrated by Nanointaglio for Vapor Sensing by an Optical Nose

    PubMed Central

    Lowry, Troy W.; Prommapan, Plengchart; Rainer, Quinn; Van Winkle, David; Lenhert, Steven

    2015-01-01

    Lipid multilayer gratings are recently invented nanomechanical sensor elements that are capable of transducing molecular binding to fluid lipid multilayers into optical signals in a label free manner due to shape changes in the lipid nanostructures. Here, we show that nanointaglio is suitable for the integration of chemically different lipid multilayer gratings into a sensor array capable of distinguishing vapors by means of an optical nose. Sensor arrays composed of six different lipid formulations are integrated onto a surface and their optical response to three different vapors (water, ethanol and acetone) in air as well as pH under water is monitored as a function of time. Principal component analysis of the array response results in distinct clustering indicating the suitability of the arrays for distinguishing these analytes. Importantly, the nanointaglio process used here is capable of producing lipid gratings out of different materials with sufficiently uniform heights for the fabrication of an optical nose. PMID:26308001

  18. Conceptual design of a hybrid Ge:Ga detector array

    NASA Technical Reports Server (NTRS)

    Parry, C. M.

    1984-01-01

    For potential applications in space infrared astronomy missions such as the Space Infrared Telescope Facility and the Large Deployable Reflector, integrated arrays of long-wavelength detectors are desired. The results of a feasibility study which developed a design for applying integrated array techniques to a long-wavelength (gallium-doped germanium) material to achieve spectral coverage between 30 and 200 microns are presented. An approach which builds up a two-dimensional array by stacking linear detector modules is presented. The spectral response of the Ge:Ga detectors is extended to 200 microns by application of uniaxial stress to the stack of modules. The detectors are assembled with 1 mm spacing between the elements. Multiplexed readout of each module is accomplished with integration sampling of a metal-oxide-semiconductor (MOS) switch chip. Aspects of the overall design, including the anticipated level of particle effects on the array in the space environment, a transparent electrode design for 200 microns response, estimates of optical crosstalk, and mechanical stress design calculations are included.

  19. Wave field synthesis of a virtual source located in proximity to a loudspeaker array.

    PubMed

    Lee, Jung-Min; Choi, Jung-Woo; Kim, Yang-Hann

    2013-09-01

    For the derivation of 2.5-dimensional operator in wave field synthesis, a virtual source is assumed to be positioned far from a loudspeaker array. However, such far-field approximation inevitably results in a reproduction error when the virtual source is placed adjacent to an array. In this paper, a method is proposed to generate a virtual source close to and behind a continuous line array of loudspeakers. A driving function is derived by reducing a surface integral (Rayleigh integral) to a line integral based on the near-field assumption. The solution is then combined with the far-field formula of wave field synthesis by introducing a weighting function that can adjust the near- and far-field contribution of each driving function. This enables production of a virtual source anywhere in relation to the array. Simulations show the proposed method can reduce the reproduction error to below -18 dB, regardless of the virtual source position.

  20. Monolithic Microwave Integrated Circuit (MMIC) Phased Array Demonstrated With ACTS

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Monolithic Microwave Integrated Circuit (MMIC) arrays developed by the NASA Lewis Research Center and the Air Force Rome Laboratory were demonstrated in aeronautical terminals and in mobile or fixed Earth terminals linked with NASA's Advanced Communications Technology Satellite (ACTS). Four K/Ka-band experimental arrays were demonstrated between May 1994 and May 1995. Each array had GaAs MMIC devices at each radiating element for electronic beam steering and distributed power amplification. The 30-GHz transmit array used in uplinks to ACTS was developed by Lewis and Texas Instruments. The three 20-GHz receive arrays used in downlinks from ACTS were developed in cooperation with the Air Force Rome Laboratory, taking advantage of existing Air Force integrated-circuit, active-phased-array development contracts with the Boeing Company and Lockheed Martin Corporation. Four demonstrations, each related to an application of high interest to both commercial and Department of Defense organizations, were conducted. The location, type of link, and the data rate achieved for each of the applications is shown. In one demonstration-- an aeronautical terminal experiment called AERO-X--a duplex voice link between an aeronautical terminal on the Lewis Learjet and ACTS was achieved. Two others demonstrated duplex voice links (and in one case, interactive video links as well) between ACTS and an Army high-mobility, multipurpose wheeled vehicle (HMMWV, or "humvee"). In the fourth demonstration, the array was on a fixed mount and was electronically steered toward ACTS. Lewis served as project manager for all demonstrations and as overall system integrator. Lewis engineers developed the array system including a controller for open-loop tracking of ACTS during flight and HMMWV motion, as well as a laptop data display and recording system used in all demonstrations. The Jet Propulsion Laboratory supported the AERO-X program, providing elements of the ACTS Mobile Terminal. The successful performance of experimental, proof-of-concept MMIC K/Ka-band arrays developed with U.S. industry in field demonstrations with ACTS indicates that high density MMIC integration at 20 and 30 GHz is indeed feasible. The successful development and demonstration of the MMIC array systems was possible only because of significant intergovernmental and Government/industry cooperation and the high level of teamwork within Lewis. The results provide a strong incentive for continuing the focused development of MMIC-array technology for satellite communications applications, with emphasis on packaging and cost issues, and for continuing the planning and conducting of other appropriate demonstrations or experiments of phased-array technology with ACTS. Given the present pressures on reducing funding for research and development in Government and industry, the extent to which this can be continued in a cooperative manner will determine whether MMIC array technology will make the transition from the proof-of-concept level to the operational system level.

  1. Test Structures For Bumpy Integrated Circuits

    NASA Technical Reports Server (NTRS)

    Buehler, Martin G.; Sayah, Hoshyar R.

    1989-01-01

    Cross-bridge resistors added to comb and serpentine patterns. Improved combination of test structures built into integrated circuit used to evaluate design rules, fabrication processes, and quality of interconnections. Consist of meshing serpentines and combs, and cross bridge. Structures used to make electrical measurements revealing defects in design or fabrication. Combination of test structures includes three comb arrays, two serpentine arrays, and cross bridge. Made of aluminum or polycrystalline silicon, depending on material in integrated-circuit layers evaluated. Aluminum combs and serpentine arrays deposited over steps made by polycrystalline silicon and diffusion layers, while polycrystalline silicon versions of these structures used to cross over steps made by thick oxide layer.

  2. Polymer Waveguide Fabrication Techniques

    NASA Astrophysics Data System (ADS)

    Ramey, Delvan A.

    1985-01-01

    The ability of integrated optic systems to compete in signal processing aplications with more traditional analog and digital electronic systems is discussed. The Acousto-Optic Spectrum Analyzer is an example which motivated the particular work discussed herein. Provided real time processing is more critical than absolute accuracy, such integrated optic systems fulfill a design need. Fan-out waveguide arrays allow crosstalk in system detector arrays to be controlled without directly limiting system resolution. A polyurethane pattern definition process was developed in order to demonstrate fan-out arrays. This novel process is discussed, along with further research needs. Integrated optic system market penetration would be enhanced by development of commercial processes of this type.

  3. Deterministic Coupling of Quantum Emitters in 2D Materials to Plasmonic Nanocavity Arrays.

    PubMed

    Tran, Toan Trong; Wang, Danqing; Xu, Zai-Quan; Yang, Ankun; Toth, Milos; Odom, Teri W; Aharonovich, Igor

    2017-04-12

    Quantum emitters in two-dimensional materials are promising candidates for studies of light-matter interaction and next generation, integrated on-chip quantum nanophotonics. However, the realization of integrated nanophotonic systems requires the coupling of emitters to optical cavities and resonators. In this work, we demonstrate hybrid systems in which quantum emitters in 2D hexagonal boron nitride (hBN) are deterministically coupled to high-quality plasmonic nanocavity arrays. The plasmonic nanoparticle arrays offer a high-quality, low-loss cavity in the same spectral range as the quantum emitters in hBN. The coupled emitters exhibit enhanced emission rates and reduced fluorescence lifetimes, consistent with Purcell enhancement in the weak coupling regime. Our results provide the foundation for a versatile approach for achieving scalable, integrated hybrid systems based on low-loss plasmonic nanoparticle arrays and 2D materials.

  4. Integrated parallel reception, excitation, and shimming (iPRES).

    PubMed

    Han, Hui; Song, Allen W; Truong, Trong-Kha

    2013-07-01

    To develop a new concept for a hardware platform that enables integrated parallel reception, excitation, and shimming. This concept uses a single coil array rather than separate arrays for parallel excitation/reception and B0 shimming. It relies on a novel design that allows a radiofrequency current (for excitation/reception) and a direct current (for B0 shimming) to coexist independently in the same coil. Proof-of-concept B0 shimming experiments were performed with a two-coil array in a phantom, whereas B0 shimming simulations were performed with a 48-coil array in the human brain. Our experiments show that individually optimized direct currents applied in each coil can reduce the B0 root-mean-square error by 62-81% and minimize distortions in echo-planar images. The simulations show that dynamic shimming with the 48-coil integrated parallel reception, excitation, and shimming array can reduce the B0 root-mean-square error in the prefrontal and temporal regions by 66-79% as compared with static second-order spherical harmonic shimming and by 12-23% as compared with dynamic shimming with a 48-coil conventional shim array. Our results demonstrate the feasibility of the integrated parallel reception, excitation, and shimming concept to perform parallel excitation/reception and B0 shimming with a unified coil system as well as its promise for in vivo applications. Copyright © 2013 Wiley Periodicals, Inc.

  5. CMOS-micromachined, two-dimenisional transistor arrays for neural recording and stimulation.

    PubMed

    Lin, J S; Chang, S R; Chang, C H; Lu, S C; Chen, H

    2007-01-01

    In-plane microelectrode arrays have proven to be useful tools for studying the connectivities and the functions of neural tissues. However, seldom microelectrode arrays are monolithically-integrated with signal-processing circuits, without which the maximum number of electrodes is limited by the compromise with routing complexity and interferences. This paper proposes a CMOS-compatible, two-dimensional array of oxide-semiconductor field-effect transistors(OSFETs), capable of both recording and stimulating neuronal activities. The fabrication of the OSFETs not only requires simply die-level, post-CMOS micromachining process, but also retains metal layers for monolithic integration with signal-processing circuits. A CMOS microsystem containing the OSFET arrays and gain-programmable recording circuits has been fabricated and tested. The preliminary testing results are presented and discussed.

  6. Integrated focal plane arrays for millimeter-wave astronomy

    NASA Astrophysics Data System (ADS)

    Bock, James J.; Goldin, Alexey; Hunt, Cynthia; Lange, Andrew E.; Leduc, Henry G.; Day, Peter K.; Vayonakis, Anastasios; Zmuidzinas, Jonas

    2002-02-01

    We are developing focal plane arrays of bolometric detectors for sub-millimeter and millimeter-wave astrophysics. We propose a flexible array architecture using arrays of slot antennae coupled via low-loss superconducting Nb transmission line to microstrip filters and antenna-coupled bolometers. By combining imaging and filtering functions with transmission line, we are able to realize unique structures such as a multi-band polarimeter and a planar, dispersive spectrometer. Micro-strip bolometers have significantly smaller active volume than standard detectors with extended absorbers, and can realize higher sensitivity and speed of response. The integrated array has natural immunity to stray radiation or spectral leaks, and minimizes the suspended mass operating at 0.1-0.3 K. We also discuss future space-borne spectroscopy and polarimetry applications. .

  7. GaAs optoelectronic neuron arrays

    NASA Technical Reports Server (NTRS)

    Lin, Steven; Grot, Annette; Luo, Jiafu; Psaltis, Demetri

    1993-01-01

    A simple optoelectronic circuit integrated monolithically in GaAs to implement sigmoidal neuron responses is presented. The circuit integrates a light-emitting diode with one or two transistors and one or two photodetectors. The design considerations for building arrays with densities of up to 10,000/sq cm are discussed.

  8. Optical micromachined ultrasound transducers (OMUT)--a new approach for high-frequency transducers.

    PubMed

    Tadayon, Mohammad Amin; Ashkenazi, Shai

    2013-09-01

    The sensitivity and reliability of piezoelectric ultrasound transducers severely degrade in applications requiring high frequency and small element size. Alternative technologies such as capacitive micromachined ultrasound transducers (CMUT) and optical sensing and generation of ultrasound have been proposed and studied for several decades. In this paper, we present a new type of device based on optical micromachined ultrasound transducer (OMUT) technology. OMUTs rely on microfabrication techniques to construct micrometerscale air cavities capped by an elastic membrane. A modified photoresist bonding process has been developed to facilitate the fabrication of these devices. We will describe the design, fabrication, and testing of prototype OMUT devices which implement a receive-only function. Future design modifications are proposed for incorporating complete transmit¿receive functionality in a single element.

  9. Integrated Arrays on Silicon at Terahertz Frequencies

    NASA Technical Reports Server (NTRS)

    Chattopadhayay, Goutam; Lee, Choonsup; Jung, Cecil; Lin, Robert; Peralta, Alessandro; Mehdi, Imran; Llombert, Nuria; Thomas, Bertrand

    2011-01-01

    In this paper we explore various receiver font-end and antenna architecture for use in integrated arrays at terahertz frequencies. Development of wafer-level integrated terahertz receiver front-end by using advanced semiconductor fabrication technologies and use of novel integrated antennas with silicon micromachining are reported. We report novel stacking of micromachined silicon wafers which allows for the 3-dimensional integration of various terahertz receiver components in extremely small packages which easily leads to the development of 2- dimensioanl multi-pixel receiver front-ends in the terahertz frequency range. We also report an integrated micro-lens antenna that goes with the silicon micro-machined front-end. The micro-lens antenna is fed by a waveguide that excites a silicon lens antenna through a leaky-wave or electromagnetic band gap (EBG) resonant cavity. We utilized advanced semiconductor nanofabrication techniques to design, fabricate, and demonstrate a super-compact, low-mass submillimeter-wave heterodyne frontend. When the micro-lens antenna is integrated with the receiver front-end we will be able to assemble integrated heterodyne array receivers for various applications such as multi-pixel high resolution spectrometer and imaging radar at terahertz frequencies.

  10. Monolithically integrated distributed feedback laser array wavelength-selectable light sources for WDM-PON application

    NASA Astrophysics Data System (ADS)

    Chen, Xin; Zhao, Jianyi; Zhou, Ning; Huang, Xiaodong; Cao, Mingde; Wang, Lei; Liu, Wen

    2015-01-01

    The monolithic integration of 1.5-μm four channels phase shift distributed feedback lasers array (DFB-LD array) with 4×1 multi-mode interference (MMI) optical combiner is demonstrated. A home developed process mainly consists of butt-joint regrowth (BJR) and simultaneous thermal and ultraviolet nanoimprint lithography (STU-NIL) is implemented to fabricate gratings and integrated devices. The threshold currents of the lasers are less than 10 mA and the side mode suppression ratios (SMSR) are better than 40 dB for all channels. Quasi-continuous tuning is realized over 7.5 nm wavelength region with the 30 °C temperature variation. The results indicate that the integration device we proposed can be used in wavelength division multiplexing passive optical networks (WDM-PON).

  11. Integrated Lens Antennas for Multi-Pixel Receivers

    NASA Technical Reports Server (NTRS)

    Lee, Choonsup; Chattopadhyay, Goutam

    2011-01-01

    Future astrophysics and planetary experiments are expected to require large focal plane arrays with thousands of detectors. Feedhorns have excellent performance, but their mass, size, fabrication challenges, and expense become prohibitive for very large focal plane arrays. Most planar antenna designs produce broad beam patterns, and therefore require additional elements for efficient coupling to the telescope optics, such as substrate lenses or micromachined horns. An antenna array with integrated silicon microlenses that can be fabricated photolithographically effectively addresses these issues. This approach eliminates manual assembly of arrays of lenses and reduces assembly errors and tolerances. Moreover, an antenna array without metallic horns will reduce mass of any planetary instrument significantly. The design has a monolithic array of lens-coupled, leaky-wave antennas operating in the millimeter- and submillimeter-wave frequencies. Electromagnetic simulations show that the electromagnetic fields in such lens-coupled antennas are mostly confined in approximately 12 15 . This means that one needs to design a small-angle sector lens that is much easier to fabricate using standard lithographic techniques, instead of a full hyper-hemispherical lens. Moreover, this small-angle sector lens can be easily integrated with the antennas in an array for multi-pixel imager and receiver implementation. The leaky antenna is designed using double-slot irises and fed with TE10 waveguide mode. The lens implementation starts with a silicon substrate. Photoresist with appropriate thickness (optimized for the lens size) is spun on the substrate and then reflowed to get the desired lens structure. An antenna array integrated with individual lenses for higher directivity and excellent beam profile will go a long way in realizing multi-pixel arrays and imagers. This technology will enable a new generation of compact, low-mass, and highly efficient antenna arrays for use in multi-pixel receivers and imagers for future planetary and astronomical instruments. These antenna arrays can also be used in radars and imagers for contraband detection at stand-off distances. This will be enabling technology for future balloon-borne, smaller explorer class mission (SMEX), and other missions, and for a wide range of proposed planetary sounders and radars for planetary bodies.

  12. Low-cost solar array project and Proceedings of the 15th Project Integration Meeting

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Progress made by the Low-Cost Solar Array Project during the period December 1979 to April 1980 is described. Project analysis and integration, technology development in silicon material, large area silicon sheet and encapsulation, production process and equipment development, engineering, and operation are included.

  13. Characterization of silicon-gate CMOS/SOS integrated circuits processed with ion implantation

    NASA Technical Reports Server (NTRS)

    Woo, D. S.

    1980-01-01

    The double layer metallization technology applied on p type silicon gate CMOS/SOS integrated circuits is described. A smooth metal surface was obtained by using the 2% Si-sputtered Al. More than 10% probe yield was achieved on solar cell controller circuit TCS136 (or MSFC-SC101). Reliability tests were performed on 15 arrays at 150 C. Only three arrays failed during the burn in, and 18 arrays out of 22 functioning arrays maintained the leakage current below 100 milli-A. Analysis indicates that this technology will be a viable process if the metal short circuit problem between the two metals can be reduced.

  14. Concepts and Development of Bio-Inspired Distributed Embedded Wired/Wireless Sensor Array Architectures for Acoustic Wave Sensing in Integrated Aerospace Vehicles

    NASA Technical Reports Server (NTRS)

    Ghoshal, Anindya; Prosser, William H.; Kirikera, Goutham; Schulz, Mark J.; Hughes, Derke J.; Orisamolu, Wally

    2003-01-01

    This paper discusses the modeling of acoustic emissions in plate structures and their sensing by embedded or surface bonded piezoelectric sensor arrays. Three different modeling efforts for acoustic emission (AE) wave generation and propagation are discussed briefly along with their advantages and disadvantages. Continuous sensors placed at right angles on a plate are being discussed as a new approach to measure and locate the source of acoustic waves. Evolutionary novel signal processing algorithms and bio-inspired distributed sensor array systems are used on large structures and integrated aerospace vehicles for AE source localization and preliminary results are presented. These systems allow for a great reduction in the amount of data that needs to be processed and also reduce the chances of false alarms from ambient noises. It is envisioned that these biomimetic sensor arrays and signal processing techniques will be useful for both wireless and wired sensor arrays for real time health monitoring of large integrated aerospace vehicles and earth fixed civil structures. The sensor array architectures can also be used with other types of sensors and for other applications.

  15. Monolithic integration of multiple wavelength vertical-cavity surface-emitting lasers by mask molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Saito, Hideaki; Ogura, Ichiro; Sugimoto, Yoshimasa; Kasahara, Kenichi

    1995-05-01

    The monolithic incorporation and performance of vertical-cavity surface-emitting lasers (VCSELs) emitting at two distinct wavelengths, which were suited for application to wavelength division multiplexing (WDM) systems were reported. The monolithic integration of two-wavelength VCSEL arrays was achieved by using mask molecular beam epitaxy. This method can generate arrays that have the desired integration area size and wavelength separation.

  16. An update on the Deep Space 1 power system: SCARLET integration and test results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, D.M.; Murphy, D.M.

    1998-07-01

    The Solar Concentrator Arrays with Refractive Linear Element Technology (SCARLET) system for the Deep Space 1 (DS1) spacecraft have been completed and delivered to JPL for integration with the spacecraft. This paper describes the array assembly, the qualification test program, and the results of the qualification tests. The array will provide power to the DS1 spacecraft and its NSTAR ion electric propulsion system. Launch is scheduled for October, 1998 from Kennedy Space Center, FL.

  17. Closed-Form Evaluation of Mutual Coupling in a Planar Array of Circular Apertures

    NASA Technical Reports Server (NTRS)

    Bailey, M. C.

    1996-01-01

    The integral expression for the mutual admittance between circular apertures in a planar array is evaluated in closed form. Very good accuracy is realized when compared with values that were obtained by numerical integration. Utilization of this closed-form expression, for all element pairs that are separated by more than one element spacing, yields extremely accurate results and significantly reduces the computation time that is required to analyze the performance of a large electronically scanning antenna array.

  18. Design of diffractive microlens array integration with focal plane arrays

    NASA Astrophysics Data System (ADS)

    Chen, Sihai; Yi, Xinjian; Li, Yi; He, Miao; Chen, Sixiang; Kong, Lingbin

    2000-10-01

    The IR spectrum from 3 to 5micrometers has numerous applications in both military and civil industries. High performance at high operating temperature is often important in these applications. Conventional Focal Plane Arrays (FPAs) without integration with concentrator such as microlens have poor sensitivity and low signal-to-noise ratio because of their lower fill factor. The binary optics microlens arrays reported in this paper are designed for integration with FPAs. Thus, the FPAs' fill factor, sensitivity, and signal- to-noise ratio can be improved while retaining a given image resolution and optical collection area. In the paper, we discussed the 256(Horizontal)x290(Vertical) microlens arrays designed for a center wavelength of 4micrometers , with 50micrometers (Horizontalx33micrometers (Vertical) quadrate pixel dimension and a speed (F number) of F/1.96. PtSi FPAs were fabricated on the front side of a 400-micrometers -thick Si substrate. The designed diffractive microlens arrays will be etched on the back side of the same wafer in a register fashion and it will be reported in other paper. Considering the diffraction efficiency, 8-phase-level approximation is enough. For the diffraction efficiency of 8-phase-level diffractive microlens reaches 95%. The process only need three mask-level, so we designed and fabricated three masks with the same dimension 4'x4'. Also, a set of fine verniers was designed and fabricated on each mask to allow accurate alignment during the fabrication process. Through a computer simulation, the microlens arrays are nearly diffraction limited, with the diffraction efficiency of 93%, a bit lower than the theoretical value of 95%. Introduction of microlens arrays has the ability to increase the FPAs' fill factor to 100%, while it is only about 21.6% without microlens. To our knowledge, this is the first trial of integration large area microlens arrays with FPAs at home.

  19. SMEX-Lite Modular Solar Array Architecture

    NASA Technical Reports Server (NTRS)

    Lyons, John W.; Day, John (Technical Monitor)

    2002-01-01

    The NASA Small Explorer (SMEX) missions have typically had three years between mission definition and launch. This short schedule has posed significant challenges with respect to solar array design and procurement. Typically, the solar panel geometry is frozen prior to going out with a procurement. However, with the SMEX schedule, it has been virtually impossible to freeze the geometry in time to avoid scheduling problems with integrating the solar panels to the spacecraft. A modular solar array architecture was developed to alleviate this problem. This approach involves procuring sufficient modules for multiple missions and assembling the modules onto a solar array framework that is unique to each mission. The modular approach removes the solar array from the critical path of the SMEX integration and testing schedule. It also reduces the cost per unit area of the solar arrays and facilitates the inclusion of experiments involving new solar cell or panel technologies in the SMEX missions.

  20. Integrated optical phased arrays for quasi-Bessel-beam generation.

    PubMed

    Notaros, Jelena; Poulton, Christopher V; Byrd, Matthew J; Raval, Manan; Watts, Michael R

    2017-09-01

    Integrated optical phased arrays for generating quasi-Bessel beams are proposed and experimentally demonstrated in a CMOS-compatible platform. Owing to their elongated central beams, Bessel beams have applications in a range of fields, including multiparticle trapping and laser lithography. In this Letter, continuous Bessel theory is manipulated to formulate the phase and amplitude conditions necessary for generating free-space-propagating Bessel-Gauss beams using on-chip optical phased arrays. Discussion of the effects of select phased array parameters on the generated beam's figures of merit is included. A one-dimensional splitter-tree-based phased array architecture is modified to enable arbitrary passive control of the array's element phase and amplitude distributions. This architecture is used to experimentally demonstrate on-chip quasi-Bessel-beam generation with a ∼14  mm Bessel length and ∼30  μm power full width at half maximum.

  1. A Distributed Amplifier System for Bilayer Lipid Membrane (BLM) Arrays With Noise and Individual Offset Cancellation.

    PubMed

    Crescentini, Marco; Thei, Frederico; Bennati, Marco; Saha, Shimul; de Planque, Maurits R R; Morgan, Hywel; Tartagni, Marco

    2015-06-01

    Lipid bilayer membrane (BLM) arrays are required for high throughput analysis, for example drug screening or advanced DNA sequencing. Complex microfluidic devices are being developed but these are restricted in terms of array size and structure or have integrated electronic sensing with limited noise performance. We present a compact and scalable multichannel electrophysiology platform based on a hybrid approach that combines integrated state-of-the-art microelectronics with low-cost disposable fluidics providing a platform for high-quality parallel single ion channel recording. Specifically, we have developed a new integrated circuit amplifier based on a novel noise cancellation scheme that eliminates flicker noise derived from devices under test and amplifiers. The system is demonstrated through the simultaneous recording of ion channel activity from eight bilayer membranes. The platform is scalable and could be extended to much larger array sizes, limited only by electronic data decimation and communication capabilities.

  2. Waterproof stretchable optoelectronics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rogers, John A.; Kim, Rak-Hwan; Kim, Dae-Hyeong

    Described herein are flexible and stretchable LED arrays and methods utilizing flexible and stretchable LED arrays. Assembly of flexible LED arrays alongside flexible plasmonic crystals is useful for construction of fluid monitors, permitting sensitive detection of fluid refractive index and composition. Co-integration of flexible LED arrays with flexible photodetector arrays is useful for construction of flexible proximity sensors. Application of stretchable LED arrays onto flexible threads as light emitting sutures provides novel means for performing radiation therapy on wounds.

  3. Advancements of the Lightweight Integrated Solar Array and Transceiver (LISA-T) Small Spacecraft System

    NASA Technical Reports Server (NTRS)

    Lockett, Tiffany Russell; Martinez, Armando; Boyd, Darren; SanSouice, Michael; Farmer, Brandon; Schneider, Todd; Laue, Greg; Fabisinski, Leo; Johnson, Les; Carr, John A.

    2015-01-01

    This paper describes recent advancements of the Lightweight Integrated Solar Array and Transceiver (LISA-T) currently being developed at NASA's Marshall Space Flight Center. The LISA-T array comprises a launch stowed, orbit deployed structure on which thin-film photovoltaic (PV) and antenna devices are embedded. The system provides significant electrical power generation at low weights, high stowage efficiency, and without the need for solar tracking. Leveraging high-volume terrestrial-market PVs also gives the potential for lower array costs. LISA-T is addressing the power starvation epidemic currently seen by many small-scale satellites while also enabling the application of deployable antenna arrays. Herein, an overview of the system and its applications are presented alongside sub-system development progress and environmental testing plans.

  4. Advancements of the Lightweight Integrated Solar Array and Transceiver (LISA-T) Small Spacecraft System

    NASA Technical Reports Server (NTRS)

    Russell, Tiffany; Martinez, Armando; Boyd, Darren; SanSoucie, Michael; Farmer, Brandon; Schneider, Todd; Fabisinski, Leo; Johnson, Les; Carr, John A.

    2015-01-01

    This paper describes recent advancements of the Lightweight Integrated Solar Array and Transceiver (LISA-T) currently being developed at NASA's Marshall Space Flight Center. The LISA-T array comprises a launch stowed, orbit deployed structure on which thin-film photovoltaic (PV) and antenna devices are embedded. The system provides significant electrical power generation at low weights, high stowage efficiency, and without the need for solar tracking. Leveraging high-volume terrestrial-market PVs also gives the potential for lower array costs. LISA-T is addressing the power starvation epidemic currently seen by many small-scale satellites while also enabling the application of deployable antenna arrays. Herein, an overview of the system and its applications are presented alongside sub-system development progress and environmental testing plans/initial results.

  5. Modeling Charge Collection in Detector Arrays

    NASA Technical Reports Server (NTRS)

    Hardage, Donna (Technical Monitor); Pickel, J. C.

    2003-01-01

    A detector array charge collection model has been developed for use as an engineering tool to aid in the design of optical sensor missions for operation in the space radiation environment. This model is an enhancement of the prototype array charge collection model that was developed for the Next Generation Space Telescope (NGST) program. The primary enhancements were accounting for drift-assisted diffusion by Monte Carlo modeling techniques and implementing the modeling approaches in a windows-based code. The modeling is concerned with integrated charge collection within discrete pixels in the focal plane array (FPA), with high fidelity spatial resolution. It is applicable to all detector geometries including monolithc charge coupled devices (CCDs), Active Pixel Sensors (APS) and hybrid FPA geometries based on a detector array bump-bonded to a readout integrated circuit (ROIC).

  6. Integrated circuit package with lead structure and method of preparing the same

    NASA Technical Reports Server (NTRS)

    Kennedy, B. W. (Inventor)

    1973-01-01

    A beam-lead integrated circuit package assembly including a beam-lead integrated circuit chip, a lead frame array bonded to projecting fingers of the chip, a rubber potting compound disposed around the chip, and an encapsulating molded plastic is described. The lead frame array is prepared by photographically printing a lead pattern on a base metal sheet, selectively etching to remove metal between leads, and plating with gold. Joining of the chip to the lead frame array is carried out by thermocompression bonding of mating goldplated surfaces. A small amount of silicone rubber is then applied to cover the chip and bonded joints, and the package is encapsulated with epoxy resin, applied by molding.

  7. Integrated residential photovoltaic array development

    NASA Astrophysics Data System (ADS)

    Shepard, N. F., Jr.

    1981-02-01

    An optimum integrated residential photovoltaic array/module is addressed. Nineteen existing or proposed systems intended for residential applications are described. Each of these systems is rated against a comprehensive set of evaluation criteria in an effort to formulate three module design concepts for further study and analysis. This evaluation led to a number of observations which are enumerated and should be considered in future module and array designs. Three module concepts are presented as baseline design approaches to be further analyzed and optimized. These options include: (1) a rectangular, direct mounted, shingle type module; (2) an integrally mounted module with nonconductive exposed elements; and (3) an aluminum framed, stand off module. Preliminary design drawings are presented for each of these module configurations.

  8. Integrated residential photovoltaic array development

    NASA Technical Reports Server (NTRS)

    Shepard, N. F., Jr.

    1981-01-01

    An optimum integrated residential photovoltaic array/module is addressed. Nineteen existing or proposed systems intended for residential applications are described. Each of these systems is rated against a comprehensive set of evaluation criteria in an effort to formulate three module design concepts for further study and analysis. This evaluation led to a number of observations which are enumerated and should be considered in future module and array designs. Three module concepts are presented as baseline design approaches to be further analyzed and optimized. These options include: (1) a rectangular, direct mounted, shingle type module; (2) an integrally mounted module with nonconductive exposed elements; and (3) an aluminum framed, stand off module. Preliminary design drawings are presented for each of these module configurations.

  9. Integrating IR detector imaging systems

    NASA Technical Reports Server (NTRS)

    Bailey, G. C. (Inventor)

    1984-01-01

    An integrating IR detector array for imaging is provided in a hybrid circuit with InSb mesa diodes in a linear array, a single J-FET preamplifier for readout, and a silicon integrated circuit multiplexer. Thin film conductors in a fan out pattern deposited on an Al2O3 substrate connect the diodes to the multiplexer, and thick film conductors also connect the reset switch and preamplifier to the multiplexer. Two phase clock pulses are applied with a logic return signal to the multiplexer through triax comprised of three thin film conductors deposited between layers. A lens focuses a scanned image onto the diode array for horizontal read out while a scanning mirror provides vertical scan.

  10. Scalable continuous flow synthesis of ZnO nanorod arrays in 3-D ceramic honeycomb substrates for low-temperature desulfurization

    DOE PAGES

    Wang, Sibo; Wu, Yunchao; Miao, Ran; ...

    2017-07-26

    Scalable and cost-effective synthesis and assembly of technologically important nanostructures in three-dimensional (3D) substrates hold keys to bridge the demonstrated nanotechnologies in academia with industrially relevant scalable manufacturing. In this paper, using ZnO nanorod arrays as an example, a hydrothermal-based continuous flow synthesis (CFS) method is successfully used to integrate the nano-arrays in multi-channeled monolithic cordierite. Compared to the batch process, CFS enhances the average growth rate of nano-arrays by 125%, with the average length increasing from 2 μm to 4.5 μm within the same growth time of 4 hours. The precursor utilization efficiency of CFS is enhanced by 9more » times compared to that of batch process by preserving the majority of precursors in recyclable solution. Computational fluid dynamic simulation suggests a steady-state solution flow and mass transport inside the channels of honeycomb substrates, giving rise to steady and consecutive growth of ZnO nano-arrays with an average length of 10 μm in 12 h. The monolithic ZnO nano-array-integrated cordierite obtained through CFS shows enhanced low-temperature (200 °C) desulfurization capacity and recyclability in comparison to ZnO powder wash-coated cordierite. This can be attributed to exposed ZnO {101¯0} planes, better dispersion and stronger interactions between sorbent and reactant in the ZnO nanorod arrays, as well as the sintering-resistance of nano-array configurations during sulfidation–regeneration cycles. Finally, with the demonstrated scalable synthesis and desulfurization performance of ZnO nano-arrays, a promising, industrially relevant integration strategy is provided to fabricate metal oxide nano-array-based monolithic devices for various environmental and energy applications.« less

  11. Scalable continuous flow synthesis of ZnO nanorod arrays in 3-D ceramic honeycomb substrates for low-temperature desulfurization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Sibo; Wu, Yunchao; Miao, Ran

    Scalable and cost-effective synthesis and assembly of technologically important nanostructures in three-dimensional (3D) substrates hold keys to bridge the demonstrated nanotechnologies in academia with industrially relevant scalable manufacturing. In this paper, using ZnO nanorod arrays as an example, a hydrothermal-based continuous flow synthesis (CFS) method is successfully used to integrate the nano-arrays in multi-channeled monolithic cordierite. Compared to the batch process, CFS enhances the average growth rate of nano-arrays by 125%, with the average length increasing from 2 μm to 4.5 μm within the same growth time of 4 hours. The precursor utilization efficiency of CFS is enhanced by 9more » times compared to that of batch process by preserving the majority of precursors in recyclable solution. Computational fluid dynamic simulation suggests a steady-state solution flow and mass transport inside the channels of honeycomb substrates, giving rise to steady and consecutive growth of ZnO nano-arrays with an average length of 10 μm in 12 h. The monolithic ZnO nano-array-integrated cordierite obtained through CFS shows enhanced low-temperature (200 °C) desulfurization capacity and recyclability in comparison to ZnO powder wash-coated cordierite. This can be attributed to exposed ZnO {101¯0} planes, better dispersion and stronger interactions between sorbent and reactant in the ZnO nanorod arrays, as well as the sintering-resistance of nano-array configurations during sulfidation–regeneration cycles. Finally, with the demonstrated scalable synthesis and desulfurization performance of ZnO nano-arrays, a promising, industrially relevant integration strategy is provided to fabricate metal oxide nano-array-based monolithic devices for various environmental and energy applications.« less

  12. A 7T spine array based on electric dipole transmitters.

    PubMed

    Duan, Qi; Nair, Govind; Gudino, Natalia; de Zwart, Jacco A; van Gelderen, Peter; Murphy-Boesch, Joe; Reich, Daniel S; Duyn, Jeff H; Merkle, Hellmut

    2015-10-01

    The goal of this study was to explore the feasibility of using an array of electric dipole antennas for RF transmission in spine MRI at high fields. A two-channel transmit array based on an electric dipole design was quantitatively optimized for 7T spine imaging and integrated with a receive array combining eight loop coils. Using B1+ mapping, the transmit efficiency of the dipole array was compared with a design using quadrature loop pairs. The radiofrequency energy deposition for each array was measured using a home-built dielectric phantom and MR thermometry. The performance of the proposed array was qualitatively demonstrated in human studies. The results indicate dramatically improved transmit efficiency for the dipole design compared with the loop excitation. A gain of up to 76% was achieved within the spinal region. For imaging of the spine, electric dipole-based transmitters provide an attractive alternative to the traditional loop-based design. Easy integration with existing receive array technology facilitates practical use at high fields. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.

  13. Fabrication of heterogeneous nanomaterial array by programmable heating and chemical supply within microfluidic platform towards multiplexed gas sensing application

    PubMed Central

    Yang, Daejong; Kang, Kyungnam; Kim, Donghwan; Li, Zhiyong; Park, Inkyu

    2015-01-01

    A facile top-down/bottom-up hybrid nanofabrication process based on programmable temperature control and parallel chemical supply within microfluidic platform has been developed for the all liquid-phase synthesis of heterogeneous nanomaterial arrays. The synthesized materials and locations can be controlled by local heating with integrated microheaters and guided liquid chemical flow within microfluidic platform. As proofs-of-concept, we have demonstrated the synthesis of two types of nanomaterial arrays: (i) parallel array of TiO2 nanotubes, CuO nanospikes and ZnO nanowires, and (ii) parallel array of ZnO nanowire/CuO nanospike hybrid nanostructures, CuO nanospikes and ZnO nanowires. The laminar flow with negligible ionic diffusion between different precursor solutions as well as localized heating was verified by numerical calculation and experimental result of nanomaterial array synthesis. The devices made of heterogeneous nanomaterial array were utilized as a multiplexed sensor for toxic gases such as NO2 and CO. This method would be very useful for the facile fabrication of functional nanodevices based on highly integrated arrays of heterogeneous nanomaterials. PMID:25634814

  14. Flat Plate Solar Array Project: Proceedings of the 20th Project Integration Meeting

    NASA Technical Reports Server (NTRS)

    Mcdonald, R. R.

    1982-01-01

    Progress made by the Flat-Plate Solar Array Project during the period November 1981 to April 1982 is reported. Project analysis and integration, technology research in silicon material, large-area silicon sheet and environmental isolation, cell and module formation, engineering sciences, and module performance and failure analysis are covered.

  15. Individually addressable cathodes with integrated focusing stack or detectors

    DOEpatents

    Thomas, Clarence E.; Baylor, Larry R.; Voelkl, Edgar; Simpson, Michael L.; Paulus, Michael J.; Lowndes, Douglas; Whealton, John; Whitson, John C.; Wilgen, John B.

    2005-07-12

    Systems and method are described for addressable field emission array (AFEA) chips. A plurality of individually addressable cathodes are integrated with an electrostatic focusing stack and/or a plurality of detectors on the addressable field emission array. The systems and methods provide advantages including the avoidance of space-charge blow-up.

  16. Geiger-Mode Avalanche Photodiode Arrays Integrated to All-Digital CMOS Circuits.

    PubMed

    Aull, Brian

    2016-04-08

    This article reviews MIT Lincoln Laboratory's work over the past 20 years to develop photon-sensitive image sensors based on arrays of silicon Geiger-mode avalanche photodiodes. Integration of these detectors to all-digital CMOS readout circuits enable exquisitely sensitive solid-state imagers for lidar, wavefront sensing, and passive imaging.

  17. An array of virtual Frisch-grid CdZnTe detectors and a front-end application-specific integrated circuit for large-area position-sensitive gamma-ray cameras.

    PubMed

    Bolotnikov, A E; Ackley, K; Camarda, G S; Cherches, C; Cui, Y; De Geronimo, G; Fried, J; Hodges, D; Hossain, A; Lee, W; Mahler, G; Maritato, M; Petryk, M; Roy, U; Salwen, C; Vernon, E; Yang, G; James, R B

    2015-07-01

    We developed a robust and low-cost array of virtual Frisch-grid CdZnTe detectors coupled to a front-end readout application-specific integrated circuit (ASIC) for spectroscopy and imaging of gamma rays. The array operates as a self-reliant detector module. It is comprised of 36 close-packed 6 × 6 × 15 mm(3) detectors grouped into 3 × 3 sub-arrays of 2 × 2 detectors with the common cathodes. The front-end analog ASIC accommodates up to 36 anode and 9 cathode inputs. Several detector modules can be integrated into a single- or multi-layer unit operating as a Compton or a coded-aperture camera. We present the results from testing two fully assembled modules and readout electronics. The further enhancement of the arrays' performance and reduction of their cost are possible by using position-sensitive virtual Frisch-grid detectors, which allow for accurate corrections of the response of material non-uniformities caused by crystal defects.

  18. Microphone Array

    NASA Astrophysics Data System (ADS)

    Bader, Rolf

    This chapter deals with microphone arrays. It is arranged according to the different methods available to proceed through the different problems and through the different mathematical methods. After discussing general properties of different array types, such as plane arrays, spherical arrays, or scanning arrays, it proceeds to the signal processing tools that are most used in speech processing. In the third section, backpropagating methods based on the Helmholtz-Kirchhoff integral are discussed, which result in spatial radiation patterns of vibrating bodies or air.

  19. Analyzing CMOS/SOS fabrication for LSI arrays

    NASA Technical Reports Server (NTRS)

    Ipri, A. C.

    1978-01-01

    Report discusses set of design rules that have been developed as result of work with test arrays. Set of optimum dimensions is given that would maximize process output and would correspondingly minimize costs in fabrication of large-scale integration (LSI) arrays.

  20. Configuration study for a 30 GHz monolithic receive array: Technical assessment

    NASA Technical Reports Server (NTRS)

    Nester, W. H.; Cleaveland, B.; Edward, B.; Gotkis, S.; Hesserbacker, G.; Loh, J.; Mitchell, B.

    1984-01-01

    The current status of monolithic microwave integrated circuits (MMICs) in phased array feeds is discussed from the point of view of cost performance, reliability, and design considerations. Transitions to MMICs, compatible antenna radiating elements and reliability considerations are addressed. Hybrid antennas, feed array antenna technology, and offset reflectors versus phased arrays are examined.

  1. The SCARLET development program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, D.M.; Piszczor, M.F. Jr.

    1995-12-31

    The paper describes the SCARLET program that has developed an exciting new type of spacecraft solar array. The program includes design, fabrication, testing, and integration to the Comet satellite and has been accomplished in a half year time period. Background of the program, an overview of satellite integration benefits and concerns for concentrator arrays, and a summary of the program development process and rationale arc included. The history making first SCARLET array will be flown on the Comet spacecraft which will be launched on a Conestoga launch vehicle from Wallops Island in July 1995.

  2. A comprehensive biosensor integrated with a ZnO nanorod FET array for selective detection of glucose, cholesterol and urea.

    PubMed

    Ahmad, Rafiq; Tripathy, Nirmalya; Park, Jin-Ho; Hahn, Yoon-Bong

    2015-08-04

    We report a novel straightforward approach for simultaneous and highly-selective detection of multi-analytes (i.e. glucose, cholesterol and urea) using an integrated field-effect transistor (i-FET) array biosensor without any interference in each sensor response. Compared to analytically-measured data, performance of the ZnO nanorod based i-FET array biosensor is found to be highly reliable for rapid detection of multi-analytes in mice blood, and serum and blood samples of diabetic dogs.

  3. Assembly and Integration Process of the First High Density Detector Array for the Atacama Cosmology Telescope

    NASA Technical Reports Server (NTRS)

    Li, Yaqiong; Choi, Steve; Ho, Shuay-Pwu; Crowley, Kevin T.; Salatino, Maria; Simon, Sara M.; Staggs, Suzanne T.; Nati, Federico; Wollack, Edward J.

    2016-01-01

    The Advanced ACTPol (AdvACT) upgrade on the Atacama Cosmology Telescope (ACT) consists of multichroicTransition Edge Sensor (TES) detector arrays to measure the Cosmic Microwave Background (CMB) polarization anisotropies in multiple frequency bands. The first AdvACT detector array, sensitive to both 150 and 230 GHz, is fabricated on a 150 mm diameter wafer and read out with a completely different scheme compared to ACTPol. Approximately 2000 TES bolometers are packed into the wafer leading to both a much denser detector density and readout circuitry. The demonstration of the assembly and integration of the AdvACT arrays is important for the next generation CMB experiments, which will continue to increase the pixel number and density. We present the detailed assembly process of the first AdvACT detector array.

  4. Integrated infrared and visible image sensors

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R. (Inventor); Pain, Bedabrata (Inventor)

    2000-01-01

    Semiconductor imaging devices integrating an array of visible detectors and another array of infrared detectors into a single module to simultaneously detect both the visible and infrared radiation of an input image. The visible detectors and the infrared detectors may be formed either on two separate substrates or on the same substrate by interleaving visible and infrared detectors.

  5. Integrated Solar Array and Reflectarray Antenna for High Bandwidth Cubesats

    NASA Technical Reports Server (NTRS)

    Lewis, Dorothy; Martinez, Andres; Petro, Andrew

    2015-01-01

    The Integrated Solar Array and Reflectarray Antenna (ISARA) mission will demonstrate a reflectarray antenna that increases downlink data rates for Cube- Sats from the existing baseline rate of 9.6 kilobits per second (kbps) to more than 100 megabits per second (Mbps). The ISARA spacecraft is slated for launch no earlier than Dec. 1, 2015.

  6. Integrated field emission array for ion desorption

    DOEpatents

    Resnick, Paul J; Hertz, Kristin L.; Holland, Christopher; Chichester, David

    2016-08-23

    An integrated field emission array for ion desorption includes an electrically conductive substrate; a dielectric layer lying over the electrically conductive substrate comprising a plurality of laterally separated cavities extending through the dielectric layer; a like plurality of conically-shaped emitter tips on posts, each emitter tip/post disposed concentrically within a laterally separated cavity and electrically contacting the substrate; and a gate electrode structure lying over the dielectric layer, including a like plurality of circular gate apertures, each gate aperture disposed concentrically above an emitter tip/post to provide a like plurality of annular gate electrodes and wherein the lower edge of each annular gate electrode proximate the like emitter tip/post is rounded. Also disclosed herein are methods for fabricating an integrated field emission array.

  7. Integrated field emission array for ion desorption

    DOEpatents

    Resnick, Paul J; Hertz, Kristin L; Holland, Christopher; Chichester, David; Schwoebel, Paul

    2013-09-17

    An integrated field emission array for ion desorption includes an electrically conductive substrate; a dielectric layer lying over the electrically conductive substrate comprising a plurality of laterally separated cavities extending through the dielectric layer; a like plurality of conically-shaped emitter tips on posts, each emitter tip/post disposed concentrically within a laterally separated cavity and electrically contacting the substrate; and a gate electrode structure lying over the dielectric layer, including a like plurality of circular gate apertures, each gate aperture disposed concentrically above an emitter tip/post to provide a like plurality of annular gate electrodes and wherein the lower edge of each annular gate electrode proximate the like emitter tip/post is rounded. Also disclosed herein are methods for fabricating an integrated field emission array.

  8. Generating and controlling homogeneous air turbulence using random jet arrays

    NASA Astrophysics Data System (ADS)

    Carter, Douglas; Petersen, Alec; Amili, Omid; Coletti, Filippo

    2016-12-01

    The use of random jet arrays, already employed in water tank facilities to generate zero-mean-flow homogeneous turbulence, is extended to air as a working fluid. A novel facility is introduced that uses two facing arrays of individually controlled jets (256 in total) to force steady homogeneous turbulence with negligible mean flow, shear, and strain. Quasi-synthetic jet pumps are created by expanding pressurized air through small straight nozzles and are actuated by fast-response low-voltage solenoid valves. Velocity fields, two-point correlations, energy spectra, and second-order structure functions are obtained from 2D PIV and are used to characterize the turbulence from the integral-to-the Kolmogorov scales. Several metrics are defined to quantify how well zero-mean-flow homogeneous turbulence is approximated for a wide range of forcing and geometric parameters. With increasing jet firing time duration, both the velocity fluctuations and the integral length scales are augmented and therefore the Reynolds number is increased. We reach a Taylor-microscale Reynolds number of 470, a large-scale Reynolds number of 74,000, and an integral-to-Kolmogorov length scale ratio of 680. The volume of the present homogeneous turbulence, the largest reported to date in a zero-mean-flow facility, is much larger than the integral length scale, allowing for the natural development of the energy cascade. The turbulence is found to be anisotropic irrespective of the distance between the jet arrays. Fine grids placed in front of the jets are effective at modulating the turbulence, reducing both velocity fluctuations and integral scales. Varying the jet-to-jet spacing within each array has no effect on the integral length scale, suggesting that this is dictated by the length scale of the jets.

  9. A 400 KHz line rate 2048-pixel stitched SWIR linear array

    NASA Astrophysics Data System (ADS)

    Anchlia, Ankur; Vinella, Rosa M.; Gielen, Daphne; Wouters, Kristof; Vervenne, Vincent; Hooylaerts, Peter; Deroo, Pieter; Ruythooren, Wouter; De Gaspari, Danny; Das, Jo; Merken, Patrick

    2016-05-01

    Xenics has developed a family of stitched SWIR long linear arrays that operate up to 400 KHz of line rate. These arrays serve medical and industrial applications that require high line rates as well as space applications that require long linear arrays. The arrays are based on a modular ROIC design concept: modules of 512 pixels are stitched during fabrication to achieve 512, 1024 and 2048 pixel arrays. Each 512-pixel module has its own on-chip digital sequencer, analog readout chain and 4 output buffers. This modular concept enables a long array to run at a high line rates irrespective of the array length, which limits the line rate in a traditional linear array. The ROIC is flip-chipped with InGaAs detector arrays. The FPA has a pixel pitch of 12.5μm and has two pixel flavors: square (12.5μm) and rectangular (250μm). The frontend circuit is based on Capacitive Trans-impedance Amplifier (CTIA) to attain stable detector bias, and good linearity and signal integrity, especially at high speeds. The CTIA has an input auto-zero mechanism that allows to have low detector bias (<20mV). An on-chip Correlated Double Sample (CDS) facilitates removal of CTIA KTC and 1/f noise, and other offsets, achieving low noise performance. There are five gain modes in the FPA giving the full well range from 85Ke- to 40Me-. The measured input referred noise is 35e-rms in the highest gain mode. The FPA operates in Integrate While Read mode and, at a master clock rate of 60MHz and a minimum integration time of 1.4μs, achieves the highest line rate of 400 KHz. In this paper, design details and measurements results are presented in order to demonstrate the array performance.

  10. SNPchiMp v.3: integrating and standardizing single nucleotide polymorphism data for livestock species.

    PubMed

    Nicolazzi, Ezequiel L; Caprera, Andrea; Nazzicari, Nelson; Cozzi, Paolo; Strozzi, Francesco; Lawley, Cindy; Pirani, Ali; Soans, Chandrasen; Brew, Fiona; Jorjani, Hossein; Evans, Gary; Simpson, Barry; Tosser-Klopp, Gwenola; Brauning, Rudiger; Williams, John L; Stella, Alessandra

    2015-04-10

    In recent years, the use of genomic information in livestock species for genetic improvement, association studies and many other fields has become routine. In order to accommodate different market requirements in terms of genotyping cost, manufacturers of single nucleotide polymorphism (SNP) arrays, private companies and international consortia have developed a large number of arrays with different content and different SNP density. The number of currently available SNP arrays differs among species: ranging from one for goats to more than ten for cattle, and the number of arrays available is increasing rapidly. However, there is limited or no effort to standardize and integrate array- specific (e.g. SNP IDs, allele coding) and species-specific (i.e. past and current assemblies) SNP information. Here we present SNPchiMp v.3, a solution to these issues for the six major livestock species (cow, pig, horse, sheep, goat and chicken). Original data was collected directly from SNP array producers and specific international genome consortia, and stored in a MySQL database. The database was then linked to an open-access web tool and to public databases. SNPchiMp v.3 ensures fast access to the database (retrieving within/across SNP array data) and the possibility of annotating SNP array data in a user-friendly fashion. This platform allows easy integration and standardization, and it is aimed at both industry and research. It also enables users to easily link the information available from the array producer with data in public databases, without the need of additional bioinformatics tools or pipelines. In recognition of the open-access use of Ensembl resources, SNPchiMp v.3 was officially credited as an Ensembl E!mpowered tool. Availability at http://bioinformatics.tecnoparco.org/SNPchimp.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kay, Randolph R; Campbell, David V; Shinde, Subhash L

    A modular, scalable focal plane array is provided as an array of integrated circuit dice, wherein each die includes a given amount of modular pixel array circuitry. The array of dice effectively multiplies the amount of modular pixel array circuitry to produce a larger pixel array without increasing die size. Desired pixel pitch across the enlarged pixel array is preserved by forming die stacks with each pixel array circuitry die stacked on a separate die that contains the corresponding signal processing circuitry. Techniques for die stack interconnections and die stack placement are implemented to ensure that the desired pixel pitchmore » is preserved across the enlarged pixel array.« less

  12. Structurally Integrated Antenna Concepts for HALE UAVs

    NASA Technical Reports Server (NTRS)

    Cravey, Robin L.; Vedeler, Erik; Goins, Larry; Young, W. Robert; Lawrence, Roland W.

    2006-01-01

    This technical memorandum describes work done in support of the Multifunctional Structures and Materials Team under the Vehicle Systems Program's ITAS (Integrated Tailored Aero Structures) Project during FY 2005. The Electromagnetics and Sensors Branch (ESB) developed three ultra lightweight antenna concepts compatible with HALE UAVs (High Altitude Long Endurance Unmanned Aerial Vehicles). ESB also developed antenna elements that minimize the interaction between elements and the vehicle to minimize the impact of wing flexure on the EM (electromagnetic) performance of the integrated array. In addition, computer models were developed to perform phase correction for antenna arrays whose elements are moving relative to each other due to wing deformations expected in HALE vehicle concepts. Development of lightweight, conformal or structurally integrated antenna elements and compensating for the impact of a lightweight, flexible structure on a large antenna array are important steps in the realization of HALE UAVs for microwave applications such as passive remote sensing and communications.

  13. K-Band Phased Array Developed for Low- Earth-Orbit Satellite Communications

    NASA Technical Reports Server (NTRS)

    Anzic, Godfrey

    1999-01-01

    Future rapid deployment of low- and medium-Earth-orbit satellite constellations that will offer various narrow- to wide-band wireless communications services will require phased-array antennas that feature wide-angle and superagile electronic steering of one or more antenna beams. Antennas, which employ monolithic microwave integrated circuits (MMIC), are perfectly suited for this application. Under a cooperative agreement, an MMIC-based, K-band phased-array antenna is being developed with 50/50 cost sharing by the NASA Lewis Research Center and Raytheon Systems Company. The transmitting array, which will operate at 19 gigahertz (GHz), is a state-of-the-art design that features dual, independent, electronically steerable beam operation ( 42 ), a stand-alone thermal management, and a high-density tile architecture. This array can transmit 622 megabits per second (Mbps) in each beam from Earth orbit to small Earth terminals. The weight of the total array package is expected to be less than 8 lb. The tile integration technology (flip chip MMIC tile) chosen for this project represents a major advancement in phased-array engineering and holds much promise for reducing manufacturing costs.

  14. DFT algorithms for bit-serial GaAs array processor architectures

    NASA Technical Reports Server (NTRS)

    Mcmillan, Gary B.

    1988-01-01

    Systems and Processes Engineering Corporation (SPEC) has developed an innovative array processor architecture for computing Fourier transforms and other commonly used signal processing algorithms. This architecture is designed to extract the highest possible array performance from state-of-the-art GaAs technology. SPEC's architectural design includes a high performance RISC processor implemented in GaAs, along with a Floating Point Coprocessor and a unique Array Communications Coprocessor, also implemented in GaAs technology. Together, these data processors represent the latest in technology, both from an architectural and implementation viewpoint. SPEC has examined numerous algorithms and parallel processing architectures to determine the optimum array processor architecture. SPEC has developed an array processor architecture with integral communications ability to provide maximum node connectivity. The Array Communications Coprocessor embeds communications operations directly in the core of the processor architecture. A Floating Point Coprocessor architecture has been defined that utilizes Bit-Serial arithmetic units, operating at very high frequency, to perform floating point operations. These Bit-Serial devices reduce the device integration level and complexity to a level compatible with state-of-the-art GaAs device technology.

  15. Structural-electrical coupling optimisation for radiating and scattering performances of active phased array antenna

    NASA Astrophysics Data System (ADS)

    Wang, Congsi; Wang, Yan; Wang, Zhihai; Wang, Meng; Yuan, Shuai; Wang, Weifeng

    2018-04-01

    It is well known that calculating and reducing of radar cross section (RCS) of the active phased array antenna (APAA) are both difficult and complicated. It remains unresolved to balance the performance of the radiating and scattering when the RCS is reduced. Therefore, this paper develops a structure and scattering array factor coupling model of APAA based on the phase errors of radiated elements generated by structural distortion and installation error of the array. To obtain the optimal radiating and scattering performance, an integrated optimisation model is built to optimise the installation height of all the radiated elements in normal direction of the array, in which the particle swarm optimisation method is adopted and the gain loss and scattering array factor are selected as the fitness function. The simulation indicates that the proposed coupling model and integrated optimisation method can effectively decrease the RCS and that the necessary radiating performance can be simultaneously guaranteed, which demonstrate an important application value in engineering design and structural evaluation of APAA.

  16. Ontology-based, Tissue MicroArray oriented, image centered tissue bank

    PubMed Central

    Viti, Federica; Merelli, Ivan; Caprera, Andrea; Lazzari, Barbara; Stella, Alessandra; Milanesi, Luciano

    2008-01-01

    Background Tissue MicroArray technique is becoming increasingly important in pathology for the validation of experimental data from transcriptomic analysis. This approach produces many images which need to be properly managed, if possible with an infrastructure able to support tissue sharing between institutes. Moreover, the available frameworks oriented to Tissue MicroArray provide good storage for clinical patient, sample treatment and block construction information, but their utility is limited by the lack of data integration with biomolecular information. Results In this work we propose a Tissue MicroArray web oriented system to support researchers in managing bio-samples and, through the use of ontologies, enables tissue sharing aimed at the design of Tissue MicroArray experiments and results evaluation. Indeed, our system provides ontological description both for pre-analysis tissue images and for post-process analysis image results, which is crucial for information exchange. Moreover, working on well-defined terms it is then possible to query web resources for literature articles to integrate both pathology and bioinformatics data. Conclusions Using this system, users associate an ontology-based description to each image uploaded into the database and also integrate results with the ontological description of biosequences identified in every tissue. Moreover, it is possible to integrate the ontological description provided by the user with a full compliant gene ontology definition, enabling statistical studies about correlation between the analyzed pathology and the most commonly related biological processes. PMID:18460177

  17. SCARLET I: Mechanization solutions for deployable concentrator optics integrated with rigid array technology

    NASA Technical Reports Server (NTRS)

    Wachholz, James J.; Murphy, David M.

    1996-01-01

    The SCARLET I (Solar Concentrator Army with Refractive Linear Element Technology) solar array wing was designed and built to demonstrate, in flight, the feasibility of integrating deployable concentrator optics within the design envelope of typical rigid array technology. Innovative mechanism designs were used throughout the array, and a full series of qualification tests were successfully performed in anticipation of a flight on the Multiple Experiment Transporter to Earth Orbit and Return (METEOR) spacecraft. Even though the Conestoga launch vehicle was unable to place the spacecraft in orbit, the program effort was successful in achieving the milestones of analytical and design development functional validation, and flight qualification, thus leading to a future flight evaluation for the SCARLET technology.

  18. Integrated microelectrode array and microfluidics for temperature clamp of sensory neurons in culture.

    PubMed

    Pearce, Thomas M; Wilson, J Adam; Oakes, S George; Chiu, Shing-Yan; Williams, Justin C

    2005-01-01

    A device for cell culture is presented that combines MEMS technology and liquid-phase photolithography to create a microfluidic chip that influences and records electrical cellular activity. A photopolymer channel network is formed on top of a multichannel microelectrode array. Preliminary results indicated successful local thermal control within microfluidic channels and control of lamina position over the electrode array. To demonstrate the biological application of such a device, adult dissociated dorsal root ganglion neurons with a subpopulation of thermally-sensitive cells are attached onto the electrode array. Using laminar flow, dynamic control of local temperature of the neural cells was achieved while maintaining a constant chemical culture medium. Recording the expected altered cellular activity confirms the success of the integrated device.

  19. SCARLET I: Mechanization solutions for deployable concentrator optics integrated with rigid array technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wachholz, J.J.; Murphy, D.M.

    1996-05-01

    The SCARLET I (Solar Concentrator Army with Refractive Linear Element Technology) solar array wing was designed and built to demonstrate, in flight, the feasibility of integrating deployable concentrator optics within the design envelope of typical rigid array technology. Innovative mechanism designs were used throughout the array, and a full series of qualification tests were successfully performed in anticipation of a flight on the Multiple Experiment Transporter to Earth Orbit and Return (METEOR) spacecraft. Even though the Conestoga launch vehicle was unable to place the spacecraft in orbit, the program effort was successful in achieving the milestones of analytical and designmore » development functional validation, and flight qualification, thus leading to a future flight evaluation for the SCARLET technology.« less

  20. A 16-Channel Distributed-Feedback Laser Array with a Monolithic Integrated Arrayed Waveguide Grating Multiplexer for a Wavelength Division Multiplex-Passive Optical Network System Network

    NASA Astrophysics Data System (ADS)

    Zhao, Jian-Yi; Chen, Xin; Zhou, Ning; Huang, Xiao-Dong; Cao, Ming-De; Liu, Wen

    2014-07-01

    A 16-channel distributed-feedback (DFB) laser array with a monolithic integrated arrayed waveguide grating multiplexer for a wavelength division multiplex-passive optical network system is fabricated by using the butt-joint metal organic chemical vapor deposition technology and nanoimpirnt technology. The results show that the threshold current is about 20-30 mA at 25°C. The DFB laser side output power is about 16 mW with a 150 mA injection current. The lasing wavelength is from 1550 nm to 1575 nm covering a more than 25 nm range with 200 GHz channel space. A more than 55 dB sidemode suppression ratio is obtained.

  1. Recent developments in electroabsorption modulators at Acreo Swedish ICT

    NASA Astrophysics Data System (ADS)

    Wang, Qin; Zhang, Andy Z.; Almqvist, Susanne; Junique, Stephane; Noharet, Bertrand; Platt, Duncan; Salter, Michael; Andersson, Jan Y.

    2015-03-01

    Three types of electroabsorption modulators (EAMs) based on III-V semiconductor multiple quantum wells (MQW) are presented in this work. One is a novel monolithic integration traveling-wave EAM for an analog optical transmitter/transceiver to achieve integrated photonic mm-wave functions for broadband connectivity. Another one is composed of an integrated EAM 1D array in a photonic beam-former as a Ku-band phased array antenna for seamless aeronautical networking through integration of data links, radios, and antennas. The third one addresses the use of MQW EAMs in free space optical links through biological tissue for transcutaneous communication.

  2. The Lightweight Integrated Solar Array and Transceiver (LISA-T): Second Generation Advancements and the Future of SmallSat Power Generation

    NASA Technical Reports Server (NTRS)

    Carr, John A.; Boyd, Darren; Martinez, Armando; SanSoucie, Michael; Johnson, Les; Laue, Greg; Farmer, Brandon; Smith, Joseph C.; Robertson, Barrett; Johnson, Mark

    2016-01-01

    This paper describes the second generation advancements of the Lightweight Integrated Solar Array and Transceiver (LISA-T) currently being developed at NASA's Marshall Space Flight Center. LISA-T is a launch stowed, orbit deployed array on which thin-film photovoltaic and antenna elements are embedded. Inherently, small satellites are limited in surface area, volume, and mass allocation; driving competition between power, communications, and GN&C (guidance navigation and control) subsystems. This restricts payload capability and limits the value of these low-cost satellites. LISA-T is addressing this issue, deploying large-area arrays from a reduced volume and mass envelope - greatly enhancing power generation and communications capabilities of small spacecraft. A matrix of options are in development, including planar (pointed) and omnidirectional (non-pointed) arrays. The former is seeking the highest performance possible while the latter is seeking GN&C simplicity. In both cases, power generation ranges from tens of watts to several hundred with an expected specific power >250W/kg and a stowed power density >200kW/m(sub 3). Options for leveraging both high performance, 'typical cost' triple junction thin-film solar cells as well as moderate performance, low cost cells are being developed. Alongside, both UHF (ultra high frequency) and S-band antennas are being integrated into the array to move their space claim away from the spacecraft and open the door for omnidirectional communications and electronically steered phase arrays.

  3. Embedded arrays of vertically aligned carbon nanotube carpets and methods for making them

    DOEpatents

    Kim, Myung Jong; Nicholas, Nolan Walker; Kittrell, W. Carter; Schmidt, Howard K.

    2015-06-30

    According to some embodiments, the present invention provides a system and method for supporting a carbon nanotube array that involve an entangled carbon nanotube mat integral with the array, where the mat is embedded in an embedding material. The embedding material may be depositable on a carbon nanotube. A depositable material may be metallic or nonmetallic. The embedding material may be an adhesive material. The adhesive material may optionally be mixed with a metal powder. The embedding material may be supported by a substrate or self-supportive. The embedding material may be conductive or nonconductive. The system and method provide superior mechanical and, when applicable, electrical, contact between the carbon nanotubes in the array and the embedding material. The optional use of a conductive material for the embedding material provides a mechanism useful for integration of carbon nanotube arrays into electronic devices.

  4. Robust Functionalization of Large Microelectrode Arrays by Using Pulsed Potentiostatic Deposition

    PubMed Central

    Rothe, Joerg; Frey, Olivier; Madangopal, Rajtarun; Rickus, Jenna; Hierlemann, Andreas

    2016-01-01

    Surface modification of microelectrodes is a central step in the development of microsensors and microsensor arrays. Here, we present an electrodeposition scheme based on voltage pulses. Key features of this method are uniformity in the deposited electrode coatings, flexibility in the overall deposition area, i.e., the sizes and number of the electrodes to be coated, and precise control of the surface texture. Deposition and characterization of four different materials are demonstrated, including layers of high-surface-area platinum, gold, conducting polymer poly(ethylenedioxythiophene), also known as PEDOT, and the non-conducting polymer poly(phenylenediamine), also known as PPD. The depositions were conducted using a fully integrated complementary metal-oxide-semiconductor (CMOS) chip with an array of 1024 microelectrodes. The pulsed potentiostatic deposition scheme is particularly suitable for functionalization of individual electrodes or electrode subsets of large integrated microelectrode arrays: the required deposition waveforms are readily available in an integrated system, the same deposition parameters can be used to functionalize the surface of either single electrodes or large arrays of thousands of electrodes, and the deposition method proved to be robust and reproducible for all materials tested. PMID:28025569

  5. Development of a 1K x 1K GaAs QWIP Far IR Imaging Array

    NASA Technical Reports Server (NTRS)

    Jhabvala, M.; Choi, K.; Goldberg, A.; La, A.; Gunapala, S.

    2003-01-01

    In the on-going evolution of GaAs Quantum Well Infrared Photodetectors (QWIPs) we have developed a 1,024 x 1,024 (1K x1K), 8.4-9 microns infrared focal plane array (FPA). This 1 megapixel detector array is a hybrid using the Rockwell TCM 8050 silicon readout integrated circuit (ROIC) bump bonded to a GaAs QWIP array fabricated jointly by engineers at the Goddard Space Flight Center (GSFC) and the Army Research Laboratory (ARL). The finished hybrid is thinned at the Jet Propulsion Lab. Prior to this development the largest format array was a 512 x 640 FPA. We have integrated the 1K x 1K array into an imaging camera system and performed tests over the 40K-90K temperature range achieving BLIP performance at an operating temperature of 76K (f/2 camera system). The GaAs array is relatively easy to fabricate once the superlattice structure of the quantum wells has been defined and grown. The overall arrays costs are currently dominated by the costs associated with the silicon readout since the GaAs array fabrication is based on high yield, well-established GaAs processing capabilities. In this paper we will present the first results of our 1K x 1K QWIP array development including fabrication methodology, test data and our imaging results.

  6. Experimental demonstration of monolithically integrated 16 channel DFB laser array fabricated by nanoimprint lithography with AWG multiplexer and SOA for WDM-PON application

    NASA Astrophysics Data System (ADS)

    Zhao, Jianyi; Chen, Xin; Zhou, Ning; Huang, Xiaodong; Cao, Mingde; Wang, Lei; Liu, Wen

    2015-03-01

    A 16-channel monolithically integrated distributed feedback (DFB) laser array with arrayed waveguide gratings (AWGs) multiplexer and semiconductor optical amplifier (SOA) has been fabricated using nanoimprint technology. Selective lasing wavelength with 200 GHz frequency space has been obtained. The typical threshold current is between 20 mA and 30 mA. The output power is higher than 1 mW with 350 mA current in SOA. The side mode suppression ratio (SMSR) of the spectrum is better than 40 dB.

  7. Nonvolatile Array Of Synapses For Neural Network

    NASA Technical Reports Server (NTRS)

    Tawel, Raoul

    1993-01-01

    Elements of array programmed with help of ultraviolet light. A 32 x 32 very-large-scale integrated-circuit array of electronic synapses serves as building-block chip for analog neural-network computer. Synaptic weights stored in nonvolatile manner. Makes information content of array invulnerable to loss of power, and, by eliminating need for circuitry to refresh volatile synaptic memory, makes architecture simpler and more compact.

  8. Study program for encapsulation materials interface for low-cost solar array

    NASA Technical Reports Server (NTRS)

    Kaelble, D. H.; Mansfeld, F. B.; Kendig, M.; Leung, C.

    1981-01-01

    The service integrity of the bonded interface in solar cell modules used in solar arrays is addressed. The development of AC impedance as a nondestructive evaluation (NDE) methodology for solar arrays is reported along with development of corrosion models and materials selection criteria for corrosion resistant interfaces.

  9. Transition-Edge Sensor Pixel Parameter Design of the Microcalorimeter Array for the X-Ray Integral Field Unit on Athena

    NASA Technical Reports Server (NTRS)

    Smith, S. J.; Adams, J. S.; Bandler, S. R.; Betancourt-Martinez, G. L.; Chervenak, J. A.; Chiao, M. P.; Eckart, M. E.; Finkbeiner, F. M.; Kelley, R. L.; Kilbourne, C. A.; hide

    2016-01-01

    The focal plane of the X-ray integral field unit (X-IFU) for ESA's Athena X-ray observatory will consist of approximately 4000 transition edge sensor (TES) x-ray microcalorimeters optimized for the energy range of 0.2 to 12 kiloelectronvolts. The instrument will provide unprecedented spectral resolution of approximately 2.5 electronvolts at energies of up to 7 kiloelectronvolts and will accommodate photon fluxes of 1 milliCrab (90 counts per second) for point source observations. The baseline configuration is a uniform large pixel array (LPA) of 4.28 arcseconds pixels that is read out using frequency domain multiplexing (FDM). However, an alternative configuration under study incorporates an 18 by × 18 small pixel array (SPA) of 2 arcseconds pixels in the central approximately 36 arcseconds region. This hybrid array configuration could be designed to accommodate higher fluxes of up to 10 milliCrabs (900 counts per second) or alternately for improved spectral performance (less than 1.5 electronvolts) at low count-rates. In this paper we report on the TES pixel designs that are being optimized to meet these proposed LPA and SPA configurations. In particular we describe details of how important TES parameters are chosen to meet the specific mission criteria such as energy resolution, count-rate and quantum efficiency, and highlight performance trade-offs between designs. The basis of the pixel parameter selection is discussed in the context of existing TES arrays that are being developed for solar and x-ray astronomy applications. We describe the latest results on DC biased diagnostic arrays as well as large format kilo-pixel arrays and discuss the technical challenges associated with integrating different array types on to a single detector die.

  10. Transition-edge sensor pixel parameter design of the microcalorimeter array for the x-ray integral field unit on Athena

    NASA Astrophysics Data System (ADS)

    Smith, S. J.; Adams, J. S.; Bandler, S. R.; Betancourt-Martinez, G. L.; Chervenak, J. A.; Chiao, M. P.; Eckart, M. E.; Finkbeiner, F. M.; Kelley, R. L.; Kilbourne, C. A.; Miniussi, A. R.; Porter, F. S.; Sadleir, J. E.; Sakai, K.; Wakeham, N. A.; Wassell, E. J.; Yoon, W.; Bennett, D. A.; Doriese, W. B.; Fowler, J. W.; Hilton, G. C.; Morgan, K. M.; Pappas, C. G.; Reintsema, C. N.; Swetz, D. S.; Ullom, J. N.; Irwin, K. D.; Akamatsu, H.; Gottardi, L.; den Hartog, R.; Jackson, B. D.; van der Kuur, J.; Barret, D.; Peille, P.

    2016-07-01

    The focal plane of the X-ray integral field unit (X-IFU) for ESA's Athena X-ray observatory will consist of 4000 transition edge sensor (TES) x-ray microcalorimeters optimized for the energy range of 0.2 to 12 keV. The instrument will provide unprecedented spectral resolution of 2.5 eV at energies of up to 7 keV and will accommodate photon fluxes of 1 mCrab (90 cps) for point source observations. The baseline configuration is a uniform large pixel array (LPA) of 4.28" pixels that is read out using frequency domain multiplexing (FDM). However, an alternative configuration under study incorporates an 18 × 18 small pixel array (SPA) of 2" pixels in the central 36" region. This hybrid array configuration could be designed to accommodate higher fluxes of up to 10 mCrab (900 cps) or alternately for improved spectral performance (< 1.5 eV) at low count-rates. In this paper we report on the TES pixel designs that are being optimized to meet these proposed LPA and SPA configurations. In particular we describe details of how important TES parameters are chosen to meet the specific mission criteria such as energy resolution, count-rate and quantum efficiency, and highlight performance trade-offs between designs. The basis of the pixel parameter selection is discussed in the context of existing TES arrays that are being developed for solar and x-ray astronomy applications. We describe the latest results on DC biased diagnostic arrays as well as large format kilo-pixel arrays and discuss the technical challenges associated with integrating different array types on to a single detector die.

  11. LIGHTWEIGHT INTEGRATED SOLAR ARRAY AND TRANSCEIVER

    NASA Image and Video Library

    2016-09-23

    JOHN CARR, CO-PRINCIPAL INVESTIGATOR FOR NASA'S LIGHTWEIGHT INTEGRATED SOLAR ARRAY AND TRANSCEIVER PROJECT, KNEELS TO SHOW HOW ONE OF THE THIN-FILM SIDES OR "PETALS" IN WHICH PHOTO-VOLTAIC CELLS ARE EMBEDDED, IS FOLDED AND STOWED BEFORE LAUNCH. LOOKING ON DURING A DEMONSTRATION AFTER TESTING AT NEXOLVE, ARE LES JOHNSON, LEFT, ALSO CO-PRINCIPAL INVESTIGATOR, AND DARREN BOYD, RIGHT, THE RADIO FREQUENCY LEAD FOR THE PROJECT.

  12. Three-Dimensional Waveguide Arrays for Coupling Between Fiber-Optic Connectors and Surface-Mounted Optoelectronic Devices

    NASA Astrophysics Data System (ADS)

    Hiramatsu, Seiki; Kinoshita, Masao

    2005-09-01

    This paper describes the fabrication of novel surface-mountable waveguide connectors and presents test results for them. To ensure more highly integrated and low-cost fabrication, we propose new three-dimensional (3-D) waveguide arrays that feature two-dimensionally integrated optical inputs/outputs and optical path redirection. A wafer-level stack and lamination process was used to fabricate the waveguide arrays. Vertical-cavity surface-emitting lasers (VCSELs) and photodiodes were directly mounted on the arrays and combined with mechanical transferable ferrule using active alignment. With the help of a flip-chip bonder, the waveguide connectors were mounted on a printed circuit board by solder bumps. Using mechanical transferable connectors, which can easily plug into the waveguide connectors, we obtained multi-gigabits-per-second transmission performance.

  13. Development of a low cost integrated 15 kW A.C. solar tracking sub-array for grid connected PV power system applications

    NASA Astrophysics Data System (ADS)

    Stern, M.; West, R.; Fourer, G.; Whalen, W.; Van Loo, M.; Duran, G.

    1997-02-01

    Utility Power Group has achieved a significant reduction in the installed cost of grid-connected PV systems. The two part technical approach focused on 1) The utilization of a large area factory assembled PV panel, and 2) The integration and packaging of all sub-array power conversion and control functions within a single factory produced enclosure. Eight engineering prototype 15kW ac single axis solar tracking sub-arrays were designed, fabricated, and installed at the Sacramento Municipal Utility District's Hedge Substation site in 1996 and are being evaluated for performance and reliability. A number of design enhancements will be implemented in 1997 and demonstrated by the field deployment and operation of over twenty advanced sub-array PV power systems.

  14. Quasi-Talbot effect of orbital angular momentum beams for generation of optical vortex arrays by multiplexing metasurface design.

    PubMed

    Gao, Hui; Li, Yang; Chen, Lianwei; Jin, Jinjin; Pu, Mingbo; Li, Xiong; Gao, Ping; Wang, Changtao; Luo, Xiangang; Hong, Minghui

    2018-01-03

    The quasi-Talbot effect of orbital angular momentum (OAM) beams, in which the centers are placed in a rotationally symmetric position, is demonstrated both numerically and experimentally for the first time. Since its multiplication factor is much higher than the conventional fractional Talbot effect, the quasi-Talbot effect can be used in the generation of vortex beam arrays. A metasurface based on this theory was designed and fabricated to test the validity of this assumption. The agreement between the numerical and measured results suggests the practicability of this method to realize vortex beam arrays with high integrated levels, which can open a new door to achieve various potential uses related to optical vortex arrays in integrated optical systems for wide-ranging applications.

  15. Excitation of a Parallel Plate Waveguide by an Array of Rectangular Waveguides

    NASA Technical Reports Server (NTRS)

    Rengarajan, Sembiam

    2011-01-01

    This work addresses the problem of excitation of a parallel plate waveguide by an array of rectangular waveguides that arises in applications such as the continuous transverse stub (CTS) antenna and dual-polarized parabolic cylindrical reflector antennas excited by a scanning line source. In order to design the junction region between the parallel plate waveguide and the linear array of rectangular waveguides, waveguide sizes have to be chosen so that the input match is adequate for the range of scan angles for both polarizations. Electromagnetic wave scattered by the junction of a parallel plate waveguide by an array of rectangular waveguides is analyzed by formulating coupled integral equations for the aperture electric field at the junction. The integral equations are solved by the method of moments. In order to make the computational process efficient and accurate, the method of weighted averaging was used to evaluate rapidly oscillating integrals encountered in the moment matrix. In addition, the real axis spectral integral is evaluated in a deformed contour for speed and accuracy. The MoM results for a large finite array have been validated by comparing its reflection coefficients with corresponding results for an infinite array generated by the commercial finite element code, HFSS. Once the aperture electric field is determined by MoM, the input reflection coefficients at each waveguide port, and coupling for each polarization over the range of useful scan angles, are easily obtained. Results for the input impedance and coupling characteristics for both the vertical and horizontal polarizations are presented over a range of scan angles. It is shown that the scan range is limited to about 35 for both polarizations and therefore the optimum waveguide is a square of size equal to about 0.62 free space wavelength.

  16. Arrays of Carbon Nanotubes as RF Filters in Waveguides

    NASA Technical Reports Server (NTRS)

    Hoppe, Daniel; Hunt, Brian; Hoenk, Michael; Noca, Flavio; Xu, Jimmy

    2003-01-01

    Brushlike arrays of carbon nanotubes embedded in microstrip waveguides provide highly efficient (high-Q) mechanical resonators that will enable ultraminiature radio-frequency (RF) integrated circuits. In its basic form, this invention is an RF filter based on a carbon nanotube array embedded in a microstrip (or coplanar) waveguide, as shown in Figure 1. In addition, arrays of these nanotube-based RF filters can be used as an RF filter bank. Applications of this new nanotube array device include a variety of communications and signal-processing technologies. High-Q resonators are essential for stable, low-noise communications, and radar applications. Mechanical oscillators can exhibit orders of magnitude higher Qs than electronic resonant circuits, which are limited by resistive losses. This has motivated the development of a variety of mechanical resonators, including bulk acoustic wave (BAW) resonators, surface acoustic wave (SAW) resonators, and Si and SiC micromachined resonators (known as microelectromechanical systems or MEMS). There is also a strong push to extend the resonant frequencies of these oscillators into the GHz regime of state-of-the-art electronics. Unfortunately, the BAW and SAW devices tend to be large and are not easily integrated into electronic circuits. MEMS structures have been integrated into circuits, but efforts to extend MEMS resonant frequencies into the GHz regime have been difficult because of scaling problems with the capacitively-coupled drive and readout. In contrast, the proposed devices would be much smaller and hence could be more readily incorporated into advanced RF (more specifically, microwave) integrated circuits.

  17. Approximation of the exponential integral (well function) using sampling methods

    NASA Astrophysics Data System (ADS)

    Baalousha, Husam Musa

    2015-04-01

    Exponential integral (also known as well function) is often used in hydrogeology to solve Theis and Hantush equations. Many methods have been developed to approximate the exponential integral. Most of these methods are based on numerical approximations and are valid for a certain range of the argument value. This paper presents a new approach to approximate the exponential integral. The new approach is based on sampling methods. Three different sampling methods; Latin Hypercube Sampling (LHS), Orthogonal Array (OA), and Orthogonal Array-based Latin Hypercube (OA-LH) have been used to approximate the function. Different argument values, covering a wide range, have been used. The results of sampling methods were compared with results obtained by Mathematica software, which was used as a benchmark. All three sampling methods converge to the result obtained by Mathematica, at different rates. It was found that the orthogonal array (OA) method has the fastest convergence rate compared with LHS and OA-LH. The root mean square error RMSE of OA was in the order of 1E-08. This method can be used with any argument value, and can be used to solve other integrals in hydrogeology such as the leaky aquifer integral.

  18. Space Power Amplification with Active Linearly Tapered Slot Antenna Array

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Lee, Richard Q.

    1993-01-01

    A space power amplifier composed of active linearly tapered slot antennas (LTSA's) has been demonstrated and shown to have a gain of 30 dB at 20 GHz. In each of the antenna elements, a GaAs monolithic microwave integrated circuit (MMIC) three-stage power amplifier is integrated with two LTSA's. The LTSA and the MMIC power amplifier has a gain of 11 dB and power added efficiency of 14 percent respectively. The design is suitable for constructing a large array using monolithic integration techniques.

  19. Ultrasonic fingerprint sensor using a piezoelectric micromachined ultrasonic transducer array integrated with complementary metal oxide semiconductor electronics

    NASA Astrophysics Data System (ADS)

    Lu, Y.; Tang, H.; Fung, S.; Wang, Q.; Tsai, J. M.; Daneman, M.; Boser, B. E.; Horsley, D. A.

    2015-06-01

    This paper presents an ultrasonic fingerprint sensor based on a 24 × 8 array of 22 MHz piezoelectric micromachined ultrasonic transducers (PMUTs) with 100 μm pitch, fully integrated with 180 nm complementary metal oxide semiconductor (CMOS) circuitry through eutectic wafer bonding. Each PMUT is directly bonded to a dedicated CMOS receive amplifier, minimizing electrical parasitics and eliminating the need for through-silicon vias. The array frequency response and vibration mode-shape were characterized using laser Doppler vibrometry and verified via finite element method simulation. The array's acoustic output was measured using a hydrophone to be ˜14 kPa with a 28 V input, in reasonable agreement with predication from analytical calculation. Pulse-echo imaging of a 1D steel grating is demonstrated using electronic scanning of a 20 × 8 sub-array, resulting in 300 mV maximum received amplitude and 5:1 contrast ratio. Because the small size of this array limits the maximum image size, mechanical scanning was used to image a 2D polydimethylsiloxane fingerprint phantom (10 mm × 8 mm) at a 1.2 mm distance from the array.

  20. Evaluation and optimization of mass transport of redox species in silicon microwire-array photoelectrodes

    PubMed Central

    Xiang, Chengxiang; Meng, Andrew C.; Lewis, Nathan S.

    2012-01-01

    Physical integration of a Ag electrical contact internally into a metal/substrate/microstructured Si wire array/oxide/Ag/electrolyte photoelectrochemical solar cell has produced structures that display relatively low ohmic resistance losses, as well as highly efficient mass transport of redox species in the absence of forced convection. Even with front-side illumination, such wire-array based photoelectrochemical solar cells do not require a transparent conducting oxide top contact. In contact with a test electrolyte that contained 50 mM/5.0 mM of the cobaltocenium+/0 redox species in CH3CN–1.0 M LiClO4, when the counterelectrode was placed in the solution and separated from the photoelectrode, mass transport restrictions of redox species in the internal volume of the Si wire array photoelectrode produced low fill factors and limited the obtainable current densities to 17.6 mA cm-2 even under high illumination. In contrast, when the physically integrated internal Ag film served as the counter electrode, the redox couple species were regenerated inside the internal volume of the photoelectrode, especially in regions where depletion of the redox species due to mass transport limitations would have otherwise occurred. This behavior allowed the integrated assembly to operate as a two-terminal, stand-alone, photoelectrochemical solar cell. The current density vs. voltage behavior of the integrated photoelectrochemical solar cell produced short-circuit current densities in excess of 80 mA cm-2 at high light intensities, and resulted in relatively low losses due to concentration overpotentials at 1 Sun illumination. The integrated wire array-based device architecture also provides design guidance for tandem photoelectrochemical cells for solar-driven water splitting. PMID:22904185

  1. Comparison of photoemission characteristics between square and circular wire array GaAs photocathodes.

    PubMed

    Deng, Wenjuan; Peng, Xincun; Zou, Jijun; Wang, Weilu; Liu, Yun; Zhang, Tao; Zhang, Yijun; Zhang, Daoli

    2017-11-10

    Two types of negative electron affinity gallium arsenide (GaAs) wire array photocathodes were fabricated by reactive ion etching and inductively coupled plasma etching of bulk GaAs material. High density GaAs wire arrays with high periodicity and good morphology were verified using scanning electron microscopy, and photoluminescence spectra confirmed the wire arrays had good crystalline quality. Reflection spectra showed that circular GaAs wire arrays had superior light trapping compared with square ones. However, after Cs/O activation, the square GaAs wire array photocathodes showed enhanced spectral response. The integral sensitivity of the square wire array photocathodes was approximately 2.8 times that of the circular arrays.

  2. Two-dimensional photonic crystal arrays for polymer:fullerene solar cells.

    PubMed

    Nam, Sungho; Han, Jiyoung; Do, Young Rag; Kim, Hwajeong; Yim, Sanggyu; Kim, Youngkyoo

    2011-11-18

    We report the application of two-dimensional (2D) photonic crystal (PC) array substrates for polymer:fullerene solar cells of which the active layer is made with blended films of poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM). The 2D PC array substrates were fabricated by employing a nanosphere lithography technique. Two different hole depths (200 and 300 nm) were introduced for the 2D PC arrays to examine the hole depth effect on the light harvesting (trapping). The optical effect by the 2D PC arrays was investigated by the measurement of optical transmittance either in the direction normal to the substrate (direct transmittance) or in all directions (integrated transmittance). The results showed that the integrated transmittance was higher for the 2D PC array substrates than the conventional planar substrate at the wavelengths of ca. 400 nm, even though the direct transmittance of 2D PC array substrates was much lower over the entire visible light range. The short circuit current density (J(SC)) was higher for the device with the 2D PC array (200 nm hole depth) than the reference device. However, the device with the 2D PC array (300 nm hole depth) showed a slightly lower J(SC) value at a high light intensity in spite of its light harvesting effect proven at a lower light intensity.

  3. Phased array-fed antenna configuration study: Technology assessment

    NASA Technical Reports Server (NTRS)

    Croswell, W. F.; Ball, D. E.; Taylor, R. C.

    1983-01-01

    Spacecraft array fed reflector antenna systems were assessed for particular application to a multiple fixed spot beam/multiple scanning spot beam system. Reflector optics systems are reviewed in addition to an investigation of the feasibility of the use of monolithic microwave integrated circuit power amplifiers and phase shifters in each element of the array feed.

  4. Wafer-scale growth of large arrays of perovskite microplate crystals for functional electronics and optoelectronics.

    PubMed

    Wang, Gongming; Li, Dehui; Cheng, Hung-Chieh; Li, Yongjia; Chen, Chih-Yen; Yin, Anxiang; Zhao, Zipeng; Lin, Zhaoyang; Wu, Hao; He, Qiyuan; Ding, Mengning; Liu, Yuan; Huang, Yu; Duan, Xiangfeng

    2015-10-01

    Methylammonium lead iodide perovskite has attracted intensive interest for its diverse optoelectronic applications. However, most studies to date have been limited to bulk thin films that are difficult to implement for integrated device arrays because of their incompatibility with typical lithography processes. We report the first patterned growth of regular arrays of perovskite microplate crystals for functional electronics and optoelectronics. We show that large arrays of lead iodide microplates can be grown from an aqueous solution through a seeded growth process and can be further intercalated with methylammonium iodide to produce perovskite crystals. Structural and optical characterizations demonstrate that the resulting materials display excellent crystalline quality and optical properties. We further show that perovskite crystals can be selectively grown on prepatterned electrode arrays to create independently addressable photodetector arrays and functional field effect transistors. The ability to grow perovskite microplates and to precisely place them at specific locations offers a new material platform for the fundamental investigation of the electronic and optical properties of perovskite materials and opens a pathway for integrated electronic and optoelectronic systems.

  5. Wafer-scale growth of large arrays of perovskite microplate crystals for functional electronics and optoelectronics

    PubMed Central

    Wang, Gongming; Li, Dehui; Cheng, Hung-Chieh; Li, Yongjia; Chen, Chih-Yen; Yin, Anxiang; Zhao, Zipeng; Lin, Zhaoyang; Wu, Hao; He, Qiyuan; Ding, Mengning; Liu, Yuan; Huang, Yu; Duan, Xiangfeng

    2015-01-01

    Methylammonium lead iodide perovskite has attracted intensive interest for its diverse optoelectronic applications. However, most studies to date have been limited to bulk thin films that are difficult to implement for integrated device arrays because of their incompatibility with typical lithography processes. We report the first patterned growth of regular arrays of perovskite microplate crystals for functional electronics and optoelectronics. We show that large arrays of lead iodide microplates can be grown from an aqueous solution through a seeded growth process and can be further intercalated with methylammonium iodide to produce perovskite crystals. Structural and optical characterizations demonstrate that the resulting materials display excellent crystalline quality and optical properties. We further show that perovskite crystals can be selectively grown on prepatterned electrode arrays to create independently addressable photodetector arrays and functional field effect transistors. The ability to grow perovskite microplates and to precisely place them at specific locations offers a new material platform for the fundamental investigation of the electronic and optical properties of perovskite materials and opens a pathway for integrated electronic and optoelectronic systems. PMID:26601297

  6. Wafer-scale growth of large arrays of perovskite microplate crystals for functional electronics and optoelectronics

    DOE PAGES

    Wang, Gongming; Li, Dehui; Cheng, Hung -Chieh; ...

    2015-10-02

    Methylammonium lead iodide perovskite has attracted intensive interest for its diverse optoelectronic applications. However, most studies to date have been limited to bulk thin films that are difficult to implement for integrated device arrays because of their incompatibility with typical lithography processes. We report the first patterned growth of regular arrays of perovskite microplate crystals for functional electronics and optoelectronics. We show that large arrays of lead iodide microplates can be grown from an aqueous solution through a seeded growth process and can be further intercalated with methylammonium iodide to produce perovskite crystals. Structural and optical characterizations demonstrate that themore » resulting materials display excellent crystalline quality and optical properties. We further show that perovskite crystals can be selectively grown on prepatterned electrode arrays to create independently addressable photodetector arrays and functional field effect transistors. Furthermore, the ability to grow perovskite microplates and to precisely place them at specific locations offers a new material platform for the fundamental investigation of the electronic and optical properties of perovskite materials and opens a pathway for integrated electronic and optoelectronic systems.« less

  7. Label-free silicon photonic biosensor system with integrated detector array.

    PubMed

    Yan, Rongjin; Mestas, Santano P; Yuan, Guangwei; Safaisini, Rashid; Dandy, David S; Lear, Kevin L

    2009-08-07

    An integrated, inexpensive, label-free photonic waveguide biosensor system with multi-analyte capability has been implemented on a silicon photonics integrated circuit from a commercial CMOS line and tested with nanofilms. The local evanescent array coupled (LEAC) biosensor is based on a new physical phenomenon that is fundamentally different from the mechanisms of other evanescent field sensors. Increased local refractive index at the waveguide's upper surface due to the formation of a biological nanofilm causes local modulation of the evanescent field coupled into an array of photodetectors buried under the waveguide. The planar optical waveguide biosensor system exhibits sensitivity of 20%/nm photocurrent modulation in response to adsorbed bovine serum albumin (BSA) layers less than 3 nm thick. In addition to response to BSA, an experiment with patterned photoresist as well as beam propagation method simulations support the evanescent field shift principle. The sensing mechanism enables the integration of all optical and electronic components for a multi-analyte biosensor system on a chip.

  8. Label-free silicon photonic biosensor system with integrated detector array

    PubMed Central

    Yan, Rongjin; Mestas, Santano P.; Yuan, Guangwei; Safaisini, Rashid; Dandy, David S.

    2010-01-01

    An integrated, inexpensive, label-free photonic waveguide biosensor system with multi-analyte capability has been implemented on a silicon photonics integrated circuit from a commercial CMOS line and tested with nanofilms. The local evanescent array coupled (LEAC) biosensor is based on a new physical phenomenon that is fundamentally different from the mechanisms of other evanescent field sensors. Increased local refractive index at the waveguide’s upper surface due to the formation of a biological nanofilm causes local modulation of the evanescent field coupled into an array of photodetectors buried under the waveguide. The planar optical waveguide biosensor system exhibits sensitivity of 20%/nm photocurrent modulation in response to adsorbed bovine serum albumin (BSA) layers less than 3 nm thick. In addition to response to BSA, an experiment with patterned photoresist as well as beam propagation method simulations support the evanescent field shift principle. The sensing mechanism enables the integration of all optical and electronic components for a multi-analyte biosensor system on a chip. PMID:19606292

  9. An integrated bioinformatics infrastructure essential for advancing pharmacogenomics and personalized medicine in the context of the FDA's Critical Path Initiative.

    PubMed

    Tong, Weida; Harris, Stephen C; Fang, Hong; Shi, Leming; Perkins, Roger; Goodsaid, Federico; Frueh, Felix W

    2007-01-01

    Pharmacogenomics (PGx) is identified in the FDA Critical Path document as a major opportunity for advancing medical product development and personalized medicine. An integrated bioinformatics infrastructure for use in FDA data review is crucial to realize the benefits of PGx for public health. We have developed an integrated bioinformatics tool, called ArrayTrack, for managing, analyzing and interpreting genomic and other biomarker data (e.g. proteomic and metabolomic data). ArrayTrack is a highly flexible and robust software platform, which allows evolving with technological advances and changing user needs. ArrayTrack is used in the routine review of genomic data submitted to the FDA; here, three hypothetical examples of its use in the Voluntary eXploratory Data Submission (VXDS) program are illustrated.: © Published by Elsevier Ltd.

  10. Telecom-Wavelength Bottom-up Nanobeam Lasers on Silicon-on-Insulator.

    PubMed

    Kim, Hyunseok; Lee, Wook-Jae; Farrell, Alan C; Balgarkashi, Akshay; Huffaker, Diana L

    2017-09-13

    Semiconductor nanowire lasers are considered promising ultracompact and energy-efficient light sources in the field of nanophotonics. Although the integration of nanowire lasers onto silicon photonic platforms is an innovative path toward chip-scale optical communications and photonic integrated circuits, operating nanowire lasers at telecom-wavelengths remains challenging. Here, we report on InGaAs nanowire array lasers on a silicon-on-insulator platform operating up to 1440 nm at room temperature. Bottom-up photonic crystal nanobeam cavities are formed by growing nanowires as ordered arrays using selective-area epitaxy, and single-mode lasing by optical pumping is demonstrated. We also show that arrays of nanobeam lasers with individually tunable wavelengths can be integrated on a single chip by the simple adjustment of the lithographically defined growth pattern. These results exemplify a practical approach toward nanowire lasers for silicon photonics.

  11. Lightweight Integrated Solar Array and Transceiver. [Improving Electrical Power and Communication Capabilities in Small Spacecraft

    NASA Technical Reports Server (NTRS)

    Carr, John; Martinez, Andres; Petro, Andrew

    2015-01-01

    The Lightweight Integrated Solar Array and Transceiver (LISA-T) project will leverage several existing and on-going efforts at Marshall Space Flight Center (MSFC) for the design, development, fabrication, and test of a launch stowed, orbit deployed structure on which thin-film photovoltaics for power generation and antenna elements for communication, are embedded. Photovoltaics is a method for converting solar energy into electricity using semiconductor materials. The system will provide higher power generation with a lower mass, smaller stowage volume, and lower cost than the state of the art solar arrays, while simultaneously enabling deployable antenna concepts.

  12. Performance Evaluation of CMUT-Based Ultrasonic Transformers for Galvanic Isolation.

    PubMed

    Heller, Jacques; Boulme, Audren; Alquier, Daniel; Ngo, Sophie; Certon, Dominique

    2018-04-01

    This paper presents the development of a novel acoustic transformer with high galvanic isolation dedicated to power switch triggering. The transformer is based on two capacitive micromachined ultrasonic transducers layered on each side of a silicon substrate; one is the primary circuit, and the other is the secondary circuit. The thickness mode resonance of the substrate is leveraged to transmit the triggering signal. The fabrication and characterization of an initial prototype is presented in this paper. All experimental results are discussed, from the electrical impedance measurements to the power efficiency measurements, for different electrical load conditions. A comparison with a specifically developed finite-element method model is done. Simulations are finally used to identify the optimization rules of this initial prototype. It is shown that the power efficiency can be increased from 35% to 60%, and the transmitted power can be increased from 1.6 to 45 mW/Volt.

  13. Single-cell recording and stimulation with a 16k micro-nail electrode array integrated on a 0.18 μm CMOS chip.

    PubMed

    Huys, Roeland; Braeken, Dries; Jans, Danny; Stassen, Andim; Collaert, Nadine; Wouters, Jan; Loo, Josine; Severi, Simone; Vleugels, Frank; Callewaert, Geert; Verstreken, Kris; Bartic, Carmen; Eberle, Wolfgang

    2012-04-07

    To cope with the growing needs in research towards the understanding of cellular function and network dynamics, advanced micro-electrode arrays (MEAs) based on integrated complementary metal oxide semiconductor (CMOS) circuits have been increasingly reported. Although such arrays contain a large number of sensors for recording and/or stimulation, the size of the electrodes on these chips are often larger than a typical mammalian cell. Therefore, true single-cell recording and stimulation remains challenging. Single-cell resolution can be obtained by decreasing the size of the electrodes, which inherently increases the characteristic impedance and noise. Here, we present an array of 16,384 active sensors monolithically integrated on chip, realized in 0.18 μm CMOS technology for recording and stimulation of individual cells. Successful recording of electrical activity of cardiac cells with the chip, validated with intracellular whole-cell patch clamp recordings are presented, illustrating single-cell readout capability. Further, by applying a single-electrode stimulation protocol, we could pace individual cardiac cells, demonstrating single-cell addressability. This novel electrode array could help pave the way towards solving complex interactions of mammalian cellular networks. This journal is © The Royal Society of Chemistry 2012

  14. In vivo optical modulation of neural signals using monolithically integrated two-dimensional neural probe arrays

    PubMed Central

    Son, Yoojin; Jenny Lee, Hyunjoo; Kim, Jeongyeon; Shin, Hyogeun; Choi, Nakwon; Justin Lee, C.; Yoon, Eui-Sung; Yoon, Euisik; Wise, Kensall D.; Geun Kim, Tae; Cho, Il-Joo

    2015-01-01

    Integration of stimulation modalities (e.g. electrical, optical, and chemical) on a large array of neural probes can enable an investigation of important underlying mechanisms of brain disorders that is not possible through neural recordings alone. Furthermore, it is important to achieve this integration of multiple functionalities in a compact structure to utilize a large number of the mouse models. Here we present a successful optical modulation of in vivo neural signals of a transgenic mouse through our compact 2D MEMS neural array (optrodes). Using a novel fabrication method that embeds a lower cladding layer in a silicon substrate, we achieved a thin silicon 2D optrode array that is capable of delivering light to multiple sites using SU-8 as a waveguide core. Without additional modification to the microelectrodes, the measured impedance of the multiple microelectrodes was below 1 MΩ at 1 kHz. In addition, with a low background noise level (±25 μV), neural spikes from different individual neurons were recorded on each microelectrode. Lastly, we successfully used our optrodes to modulate the neural activity of a transgenic mouse through optical stimulation. These results demonstrate the functionality of the 2D optrode array and its potential as a next-generation tool for optogenetic applications. PMID:26494437

  15. NeuroSeek dual-color image processing infrared focal plane array

    NASA Astrophysics Data System (ADS)

    McCarley, Paul L.; Massie, Mark A.; Baxter, Christopher R.; Huynh, Buu L.

    1998-09-01

    Several technologies have been developed in recent years to advance the state of the art of IR sensor systems including dual color affordable focal planes, on-focal plane array biologically inspired image and signal processing techniques and spectral sensing techniques. Pacific Advanced Technology (PAT) and the Air Force Research Lab Munitions Directorate have developed a system which incorporates the best of these capabilities into a single device. The 'NeuroSeek' device integrates these technologies into an IR focal plane array (FPA) which combines multicolor Midwave IR/Longwave IR radiometric response with on-focal plane 'smart' neuromorphic analog image processing. The readout and processing integrated circuit very large scale integration chip which was developed under this effort will be hybridized to a dual color detector array to produce the NeuroSeek FPA, which will have the capability to fuse multiple pixel-based sensor inputs directly on the focal plane. Great advantages are afforded by application of massively parallel processing algorithms to image data in the analog domain; the high speed and low power consumption of this device mimic operations performed in the human retina.

  16. Integrated chemiresistor array for small sensor platforms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    HUGHES,ROBERT C.; CASALNUOVO,STEPHEN A.; WESSENDORF,KURT O.

    2000-04-13

    Chemiresistors are fabricated from materials that change their electrical resistance when exposed to certain chemical species. Composites of soluble polymers with metallic particles have shown remarkable sensitivity to many volatile organic chemicals, depending on the ability of the analyte molecules to swell the polymer matrix. These sensors can be made extremely small (< 100 square microns), operate at ambient temperatures, and require almost no power to read-out. However, the chemiresistor itself is only a part of a more complex sensor system that delivers chemical information to a user who can act on the information. The authors present the design, fabricationmore » and performance of a chemiresistor array chip with four different chemiresistor materials, heaters and a temperature sensor. They also show the design and fabrication of an integrated chemiresistor array, where the electronics to read-out the chemiresistors is on the same chip with the electrodes for the chemiresistors. The circuit was designed to perform several functions to make the sensor data more useful. This low-power, integrated chemiresistor array is small enough to be deployed on a Sandia-developed microrobot platform.« less

  17. Integrated dynamic analysis simulation of space stations with controllable solar array

    NASA Technical Reports Server (NTRS)

    Heinrichs, J. A.; Fee, J. J.

    1972-01-01

    A methodology is formulated and presented for the integrated structural dynamic analysis of space stations with controllable solar arrays and non-controllable appendages. The structural system flexibility characteristics are considered in the dynamic analysis by a synthesis technique whereby free-free space station modal coordinates and cantilever appendage coordinates are inertially coupled. A digital simulation of this analysis method is described and verified by comparison of interaction load solutions with other methods of solution. Motion equations are simulated for both the zero gravity and artificial gravity (spinning) orbital conditions. Closed loop controlling dynamics for both orientation control of the arrays and attitude control of the space station are provided in the simulation by various generic types of controlling systems. The capability of the simulation as a design tool is demonstrated by utilizing typical space station and solar array structural representations and a specific structural perturbing force. Response and interaction load solutions are presented for this structural configuration and indicate the importance of using an integrated type analysis for the predictions of structural interactions.

  18. ECL gate array with integrated PLL-based clock recovery and synthesis for high-speed data and telecom applications

    NASA Astrophysics Data System (ADS)

    Rosky, David S.; Coy, Bruce H.; Friedmann, Marc D.

    1992-03-01

    A 2500 gate mixed signal gate array has been developed that integrates custom PLL-based clock recovery and clock synthesis functions with 2500 gates of configurable logic cells to provide a single chip solution for 200 - 1244 MHz fiber based digital interface applications. By customizing the digital logic cells, any of the popular telecom and datacom standards may be implemented.

  19. Electrochemical Separation, Pumping, and Storage of Hydrogen or Oxygen into Nanocapillaries Via High Pressure MEA Seals

    DTIC Science & Technology

    2015-10-13

    Fabrication (3) Integrate Membrane & (4) Fill with Hydrogen Shaped Al Aluminum Oxide Nanocapillary Array CNT Coated Pore Wall Complete Gas Storage...nanocapillary arrays are produced through aluminum anodization . The nanocapillary arrays are capped with either a PEM or an alkaline (anion) exchange...24,600 psi)  Circumferential Stress  Proportional to  Pore radius  Wall thickness Aluminum AAO AAO /CNT Nanocapillary Array (Not to scale

  20. A 4×8-Gbps VCSEL array driver ASIC and integration with a custom array transmitter module for the LHC front-end transmission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Di; Liu, Chonghan; Chen, Jinghong

    This paper describes the design, fabrication and experiment results of a 4×8-Gbps Vertical-Cavity Surface-Emitting Laser (VCSEL) array driver ASIC with the adjustable active-shunt peaking technique and the novel balanced output structure under the Silicon-on-Sapphire (SOS) process, and a custom array optical transmitter module, featuring a compact size of 10 mm×15 mm×5.3 mm. Both the array driver ASIC and the module have been fully tested after integration as a complete parallel transmitter. Optical eye diagram of each channel passes the eye mask at 8 Gbps/ch with adjacent channel working simultaneously with a power consumption of 150 mW/ch. As a result, themore » optical transmission of Bit-Error Rate (BER) less than 10E-12 is achieved at an aggregated data rate of 4×8-Gbps.« less

  1. A 4×8-Gbps VCSEL array driver ASIC and integration with a custom array transmitter module for the LHC front-end transmission

    DOE PAGES

    Guo, Di; Liu, Chonghan; Chen, Jinghong; ...

    2016-03-21

    This paper describes the design, fabrication and experiment results of a 4×8-Gbps Vertical-Cavity Surface-Emitting Laser (VCSEL) array driver ASIC with the adjustable active-shunt peaking technique and the novel balanced output structure under the Silicon-on-Sapphire (SOS) process, and a custom array optical transmitter module, featuring a compact size of 10 mm×15 mm×5.3 mm. Both the array driver ASIC and the module have been fully tested after integration as a complete parallel transmitter. Optical eye diagram of each channel passes the eye mask at 8 Gbps/ch with adjacent channel working simultaneously with a power consumption of 150 mW/ch. As a result, themore » optical transmission of Bit-Error Rate (BER) less than 10E-12 is achieved at an aggregated data rate of 4×8-Gbps.« less

  2. KSC00pp1721

    NASA Image and Video Library

    2000-10-27

    KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, STS-97 Mission Specialist Carlos Noriega checks out the mission payload, the P6 integrated truss segment, while Mission Specialist Joe Tanner looks on. Mission STS-97 is the sixth construction flight to the International Space Station. The P6 comprises Solar Array Wing-3 and the Integrated Electronic Assembly, to be installed on the International Space Station. The Station’s electrical power system will use eight photovoltaic solar arrays, each 112 feet long by 39 feet wide, to convert sunlight to electricity. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station. The mission includes two spacewalks by Noriega and Tanner to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at about 10:06 p.m. EST

  3. KSC-00pp1780

    NASA Image and Video Library

    2000-11-30

    STS-97 Mission Specialist Marc Garneau, who is with the Canadian Space Agency, waves after donning his launch and entry suit. This is his third Shuttle flight.; Mission STS-97 is the sixth construction flight to the International Space Station. It is transporting the P6 Integrated Truss Structure that comprises Solar Array Wing-3 and the Integrated Electronic Assembly, to be installed on the Space Station. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. The 11-day mission includes two spacewalks to complete the solar array connections. The Station’s electrical power system will use eight photovoltaic solar arrays, each 112 feet long by 39 feet wide, to convert sunlight to electricity.. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station. Launch is scheduled for Nov. 30 at 10:06 p.m. EST

  4. KSC-00pp1781

    NASA Image and Video Library

    2000-11-30

    With the help of a suit technician, STS-97 Commander Brent Jett dons his launch and entry suit. This is his third Shuttle flight.; Mission STS-97 is the sixth construction flight to the International Space Station. It is transporting the P6 Integrated Truss Structure that comprises Solar Array Wing-3 and the Integrated Electronic Assembly, to be installed on the Space Station. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. The 11-day mission includes two spacewalks to complete the solar array connections. The Station’s electrical power system will use eight photovoltaic solar arrays, each 112 feet long by 39 feet wide, to convert sunlight to electricity. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station. Launch is scheduled for Nov. 30 at 10:06 p.m. EST

  5. KSC00pp1720

    NASA Image and Video Library

    2000-10-27

    KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, STS-97 Mission Specialists Carlos Noriega (far left) and Joe Tanner (right) check out the mission payload, the P6 integrated truss segment. Mission STS-97 is the sixth construction flight to the International Space Station. The P6 comprises Solar Array Wing-3 and the Integrated Electronic Assembly, to be installed on the International Space Station. The Station’s electrical power system will use eight photovoltaic solar arrays, each 112 feet long by 39 feet wide, to convert sunlight to electricity. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station. The mission includes two spacewalks by Noriega and Tanner to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at about 10:06 p.m. EST

  6. KSC-00pp1783

    NASA Image and Video Library

    2000-11-30

    STS-97 Mission Specialist Carlos Noriega appears relaxed as he dons his launch and entry suit. This is his second Shuttle flight. Mission STS-97 is the sixth construction flight to the International Space Station. It is transporting the P6 Integrated Truss Structure that comprises Solar Array Wing-3 and the Integrated Electronic Assembly, to be installed on the Space Station. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. The 11-day mission includes two spacewalks to complete the solar array connections. The Station’s electrical power system will use eight photovoltaic solar arrays, each 112 feet long by 39 feet wide, to convert sunlight to electricity. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station. Launch is scheduled for Nov. 30 at 10:06 p.m. EST

  7. KSC-00pp1721

    NASA Image and Video Library

    2000-10-27

    KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, STS-97 Mission Specialist Carlos Noriega checks out the mission payload, the P6 integrated truss segment, while Mission Specialist Joe Tanner looks on. Mission STS-97 is the sixth construction flight to the International Space Station. The P6 comprises Solar Array Wing-3 and the Integrated Electronic Assembly, to be installed on the International Space Station. The Station’s electrical power system will use eight photovoltaic solar arrays, each 112 feet long by 39 feet wide, to convert sunlight to electricity. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station. The mission includes two spacewalks by Noriega and Tanner to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at about 10:06 p.m. EST

  8. KSC-00pp1723

    NASA Image and Video Library

    2000-10-27

    In the Space Station Processing Facility, STS-97 Mission Specialists Carlos Noriega (left) and Joe Tanner check out the mission payload, the P6 integrated truss segment. Mission STS-97 is the sixth construction flight to the International Space Station. The P6 comprises Solar Array Wing-3 and the Integrated Electronic Assembly, to be installed on the International Space Station. The Station’s electrical power system will use eight photovoltaic solar arrays, each 112 feet long by 39 feet wide, to convert sunlight to electricity. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station. The mission includes two spacewalks by Noriega and Tanner to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at about 10:06 p.m. EST

  9. KSC-00pp1720

    NASA Image and Video Library

    2000-10-27

    KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, STS-97 Mission Specialists Carlos Noriega (far left) and Joe Tanner (right) check out the mission payload, the P6 integrated truss segment. Mission STS-97 is the sixth construction flight to the International Space Station. The P6 comprises Solar Array Wing-3 and the Integrated Electronic Assembly, to be installed on the International Space Station. The Station’s electrical power system will use eight photovoltaic solar arrays, each 112 feet long by 39 feet wide, to convert sunlight to electricity. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station. The mission includes two spacewalks by Noriega and Tanner to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at about 10:06 p.m. EST

  10. KSC-00pp1779

    NASA Image and Video Library

    2000-11-30

    STS-97 Mission Specialist Joseph Tanner signals thumbs up for launch as he dons his launch and entry suit. this is his third Shuttle flight.; Mission STS-97 is the sixth construction flight to the International Space Station. It is transporting the P6 Integrated Truss Structure that comprises Solar Array Wing-3 and the Integrated Electronic Assembly, to be installed on the Space Station. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. The 11-day mission includes two spacewalks to complete the solar array connections. The Station’s electrical power system will use eight photovoltaic solar arrays, each 112 feet long by 39 feet wide, to convert sunlight to electricity.. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station. Launch is scheduled for Nov. 30 at 10:06 p.m. EST

  11. KSC-00pp1722

    NASA Image and Video Library

    2000-10-27

    KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, STS-97 Mission Specialists Carlos Noriega (left) and Joe Tanner check out the mission payload, the P6 integrated truss segment. Mission STS-97 is the sixth construction flight to the International Space Station. The P6 comprises Solar Array Wing-3 and the Integrated Electronic Assembly, to be installed on the International Space Station. The Station’s electrical power system will use eight photovoltaic solar arrays, each 112 feet long by 39 feet wide, to convert sunlight to electricity. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station. The mission includes two spacewalks by Noriega and Tanner to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at about 10:06 p.m. EST

  12. KSC-00pp1782

    NASA Image and Video Library

    2000-11-30

    STS-97 Pilot Michael Bloomfield signals thumbs up for launch after donning his launch and entry suit. This is his second Shuttle flight. Mission STS-97 is the sixth construction flight to the International Space Station. It is transporting the P6 Integrated Truss Structure that comprises Solar Array Wing-3 and the Integrated Electronic Assembly, to be installed on the Space Station. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. The 11-day mission includes two spacewalks to complete the solar array connections. The Station’s electrical power system will use eight photovoltaic solar arrays, each 112 feet long by 39 feet wide, to convert sunlight to electricity. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station. Launch is scheduled for Nov. 30 at 10:06 p.m. EST

  13. KSC00pp1722

    NASA Image and Video Library

    2000-10-27

    KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, STS-97 Mission Specialists Carlos Noriega (left) and Joe Tanner check out the mission payload, the P6 integrated truss segment. Mission STS-97 is the sixth construction flight to the International Space Station. The P6 comprises Solar Array Wing-3 and the Integrated Electronic Assembly, to be installed on the International Space Station. The Station’s electrical power system will use eight photovoltaic solar arrays, each 112 feet long by 39 feet wide, to convert sunlight to electricity. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station. The mission includes two spacewalks by Noriega and Tanner to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at about 10:06 p.m. EST

  14. Dual-mode photosensitive arrays based on the integration of liquid crystal microlenses and CMOS sensors for obtaining the intensity images and wavefronts of objects.

    PubMed

    Tong, Qing; Lei, Yu; Xin, Zhaowei; Zhang, Xinyu; Sang, Hongshi; Xie, Changsheng

    2016-02-08

    In this paper, we present a kind of dual-mode photosensitive arrays (DMPAs) constructed by hybrid integration a liquid crystal microlens array (LCMLA) driven electrically and a CMOS sensor array, which can be used to measure both the conventional intensity images and corresponding wavefronts of objects. We utilize liquid crystal materials to shape the microlens array with the electrically tunable focal length. Through switching the voltage signal on and off, the wavefronts and the intensity images can be acquired through the DMPAs, sequentially. We use white light to obtain the object's wavefronts for avoiding losing important wavefront information. We separate the white light wavefronts with a large number of spectral components and then experimentally compare them with single spectral wavefronts of typical red, green and blue lasers, respectively. Then we mix the red, green and blue wavefronts to a composite wavefront containing more optical information of the object.

  15. Optical techniques to feed and control GaAs MMIC modules for phased array antenna applications

    NASA Astrophysics Data System (ADS)

    Bhasin, K. B.; Anzic, G.; Kunath, R. R.; Connolly, D. J.

    A complex signal distribution system is required to feed and control GaAs monolithic microwave integrated circuits (MMICs) for phased array antenna applications above 20 GHz. Each MMIC module will require one or more RF lines, one or more bias voltage lines, and digital lines to provide a minimum of 10 bits of combined phase and gain control information. In a closely spaced array, the routing of these multiple lines presents difficult topology problems as well as a high probability of signal interference. To overcome GaAs MMIC phased array signal distribution problems optical fibers interconnected to monolithically integrated optical components with GaAs MMIC array elements are proposed as a solution. System architecture considerations using optical fibers are described. The analog and digital optical links to respectively feed and control MMIC elements are analyzed. It is concluded that a fiber optic network will reduce weight and complexity, and increase reliability and performance, but higher power will be required.

  16. Optical techniques to feed and control GaAs MMIC modules for phased array antenna applications

    NASA Technical Reports Server (NTRS)

    Bhasin, K. B.; Anzic, G.; Kunath, R. R.; Connolly, D. J.

    1986-01-01

    A complex signal distribution system is required to feed and control GaAs monolithic microwave integrated circuits (MMICs) for phased array antenna applications above 20 GHz. Each MMIC module will require one or more RF lines, one or more bias voltage lines, and digital lines to provide a minimum of 10 bits of combined phase and gain control information. In a closely spaced array, the routing of these multiple lines presents difficult topology problems as well as a high probability of signal interference. To overcome GaAs MMIC phased array signal distribution problems optical fibers interconnected to monolithically integrated optical components with GaAs MMIC array elements are proposed as a solution. System architecture considerations using optical fibers are described. The analog and digital optical links to respectively feed and control MMIC elements are analyzed. It is concluded that a fiber optic network will reduce weight and complexity, and increase reliability and performance, but higher power will be required.

  17. Portable standoff spectrometer for hazard identification using integrated quantum cascade laser arrays from 6.5 to 11 µm.

    PubMed

    Witinski, Mark F; Blanchard, Romain; Pfluegl, Christian; Diehl, Laurent; Li, Biao; Krishnamurthy, Kalyani; Pein, Brandt C; Azimi, Masud; Chen, Peili; Ulu, Gokhan; Vander Rhodes, Greg; Howle, Chris R; Lee, Linda; Clewes, Rhea J; Williams, Barry; Vakhshoori, Daryoosh

    2018-04-30

    This article presents new spectroscopic results in standoff chemical detection that are enabled by monolithic arrays of Distributed Feedback (DFB) Quantum Cascade Lasers (QCLs), with each array element at a slightly different wavelength than its neighbor. The standoff analysis of analyte/substrate pairs requires a laser source with characteristics offered uniquely by a QCL Array. This is particularly true for time-evolving liquid chemical warfare agent (CWA) analysis. In addition to describing the QCL array source developed for long wave infrared coverage, a description of an integrated prototype standoff detection system is provided. Experimental standoff detection results using the man-portable system for droplet examination from 1.3 meters are presented using the CWAs VX and T-mustard as test cases. Finally, we consider three significant challenges to working with droplets and liquid films in standoff spectroscopy: substrate uptake of the analyte, time-dependent droplet spread of the analyte, and variable substrate contributions to retrieved signals.

  18. Flexible and twistable non-volatile memory cell array with all-organic one diode-one resistor architecture.

    PubMed

    Ji, Yongsung; Zeigler, David F; Lee, Dong Su; Choi, Hyejung; Jen, Alex K-Y; Ko, Heung Cho; Kim, Tae-Wook

    2013-01-01

    Flexible organic memory devices are one of the integral components for future flexible organic electronics. However, high-density all-organic memory cell arrays on malleable substrates without cross-talk have not been demonstrated because of difficulties in their fabrication and relatively poor performances to date. Here we demonstrate the first flexible all-organic 64-bit memory cell array possessing one diode-one resistor architectures. Our all-organic one diode-one resistor cell exhibits excellent rewritable switching characteristics, even during and after harsh physical stresses. The write-read-erase-read output sequence of the cells perfectly correspond to the external pulse signal regardless of substrate deformation. The one diode-one resistor cell array is clearly addressed at the specified cells and encoded letters based on the standard ASCII character code. Our study on integrated organic memory cell arrays suggests that the all-organic one diode-one resistor cell architecture is suitable for high-density flexible organic memory applications in the future.

  19. KSC-00pp1737

    NASA Image and Video Library

    2000-11-14

    Workers in the payload changeout room stand by as the doors open on the payload transport canister. Inside is the P6 integrated truss segment, which will fly on mission STS-97. The P6 comprises Solar Array Wing-3 and the Integrated Electronic Assembly, to be installed on the International Space Station. The Station’s electrical power system will use eight photovoltaic solar arrays, each 112 feet long by 39 feet wide, to convert sunlight to electricity. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station. Launch of STS-97 is scheduled for Nov. 30 at 10:06 p.m. EST

  20. Direct write of microlens array using digital projection photopolymerization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu Yi; Chen Shaochen

    Microlens array is a key element in the field of information processing, optoelectronics, and integrated optics. Many existing fabrication processes remain expensive and complicated even though relatively low-cost replication processes have been developed. Here, we demonstrate the fabrication of microlens arrays through projection photopolymerization using a digital micromirror device (DMD) as a dynamic photomask. The DMD projects grayscale images, which are designed in a computer, onto a photocurable resin. The resin is then solidified with its thickness determined by a grayscale ultraviolet light and exposure time. Therefore, various geometries can be formed in a single-step, massively parallel fashion. We presentmore » microlens arrays made of acrylate-based polymer precursor. The physical and optical characteristics of the resulting lenses suggest that this fabrication technique is potentially suitable for applications in integrated optics.« less

  1. Integrated Avalanche Photodiode arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harmon, Eric S.

    2017-04-18

    The present disclosure includes devices for detecting photons, including avalanche photon detectors, arrays of such detectors, and circuits including such arrays. In some aspects, the detectors and arrays include a virtual beveled edge mesa structure surrounded by resistive material damaged by ion implantation and having side wall profiles that taper inwardly towards the top of the mesa structures, or towards the direction from which the ion implantation occurred. Other aspects are directed to masking and multiple implantation and/or annealing steps. Furthermore, methods for fabricating and using such devices, circuits and arrays are disclosed.

  2. Integrated avalanche photodiode arrays

    DOEpatents

    Harmon, Eric S.

    2015-07-07

    The present disclosure includes devices for detecting photons, including avalanche photon detectors, arrays of such detectors, and circuits including such arrays. In some aspects, the detectors and arrays include a virtual beveled edge mesa structure surrounded by resistive material damaged by ion implantation and having side wall profiles that taper inwardly towards the top of the mesa structures, or towards the direction from which the ion implantation occurred. Other aspects are directed to masking and multiple implantation and/or annealing steps. Furthermore, methods for fabricating and using such devices, circuits and arrays are disclosed.

  3. Reverse bias protected solar array with integrated bypass battery

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A (Inventor)

    2012-01-01

    A method for protecting the photovoltaic cells in a photovoltaic (PV) array from reverse bias damage by utilizing a rechargeable battery for bypassing current from a shaded photovoltaic cell or group of cells, avoiding the need for a bypass diode. Further, the method mitigates the voltage degradation of a PV array caused by shaded cells.

  4. Analysis of the moments of the sensitivity function for resistivity over a homogeneous half-space: Rules of thumb for pseudoposition, offline sensitivity and resolution

    NASA Astrophysics Data System (ADS)

    Butler, S. L.

    2017-08-01

    It is instructive to consider the sensitivity function for a homogeneous half space for resistivity since it has a simple mathematical formula and it does not require a priori knowledge of the resistivity of the ground. Past analyses of this function have allowed visualization of the regions that contribute most to apparent resistivity measurements with given array configurations. The horizontally integrated form of this equation gives the sensitivity function for an infinitesimally thick horizontal slab with a small resistivity contrast and analysis of this function has admitted estimates of the depth of investigation for a given electrode array. Recently, it has been shown that the average of the vertical coordinate over this function yields a simple formula that can be used to estimate the depth of investigation. The sensitivity function for a vertical inline slab has also been previously calculated. In this contribution, I show that the sensitivity function for a homogeneous half-space can also be integrated so as to give sensitivity functions to semi-infinite vertical slabs that are perpendicular to the array axis. These horizontal sensitivity functions can, in turn, be integrated over the spatial coordinates to give the mean horizontal positions of the sensitivity functions. The mean horizontal positions give estimates for the centres of the regions that affect apparent resistivity measurements for arbitrary array configuration and can be used as horizontal positions when plotting pseudosections even for non-collinear arrays. The mean of the horizontal coordinate that is perpendicular to a collinear array also gives a simple formula for estimating the distance over which offline resistivity anomalies will have a significant effect. The root mean square (rms) widths of the sensitivity functions are also calculated in each of the coordinate directions as an estimate of the inverse of the resolution of a given array. For depth and in the direction perpendicular to the array, the rms thickness is shown to be very similar to the mean distance. For the direction parallel to the array, the rms thickness is shown to be proportional to the array length and similar to the array length divided by 2 for many arrays. I expect that these formulas will provide useful rules of thumb for estimating the centres and extents of regions influencing apparent resistivity measurements for survey planning and for education.

  5. Broadband image sensor array based on graphene-CMOS integration

    NASA Astrophysics Data System (ADS)

    Goossens, Stijn; Navickaite, Gabriele; Monasterio, Carles; Gupta, Shuchi; Piqueras, Juan José; Pérez, Raúl; Burwell, Gregory; Nikitskiy, Ivan; Lasanta, Tania; Galán, Teresa; Puma, Eric; Centeno, Alba; Pesquera, Amaia; Zurutuza, Amaia; Konstantatos, Gerasimos; Koppens, Frank

    2017-06-01

    Integrated circuits based on complementary metal-oxide-semiconductors (CMOS) are at the heart of the technological revolution of the past 40 years, enabling compact and low-cost microelectronic circuits and imaging systems. However, the diversification of this platform into applications other than microcircuits and visible-light cameras has been impeded by the difficulty to combine semiconductors other than silicon with CMOS. Here, we report the monolithic integration of a CMOS integrated circuit with graphene, operating as a high-mobility phototransistor. We demonstrate a high-resolution, broadband image sensor and operate it as a digital camera that is sensitive to ultraviolet, visible and infrared light (300-2,000 nm). The demonstrated graphene-CMOS integration is pivotal for incorporating 2D materials into the next-generation microelectronics, sensor arrays, low-power integrated photonics and CMOS imaging systems covering visible, infrared and terahertz frequencies.

  6. Electrical Power Subsystem Integration and Test for the NPS Solar Cell Array Tester CubeSat

    DTIC Science & Technology

    2010-12-01

    Earth’s Gravitational Constant MCU Microcontroller Unit MPPT Maximum Power Point Tracker NiCr Nickel Chromium NPS Naval Postgraduate School P...new testing platform was designed, built, and used to conduct integrated testing on CubeSat Kit (CSK) compatible devices. The power budgets and...acceptance test results obtained from the testing platform were used with a solar array power generation simulation, and a battery state of charge

  7. Integrated strain array for cellular mechanobiology studies

    NASA Astrophysics Data System (ADS)

    Simmons, C. S.; Sim, J. Y.; Baechtold, P.; Gonzalez, A.; Chung, C.; Borghi, N.; Pruitt, B. L.

    2011-05-01

    We have developed an integrated strain array for cell culture enabling high-throughput mechano-transduction studies. Biocompatible cell culture chambers were integrated with an acrylic pneumatic compartment and microprocessor-based control system. Each element of the array consists of a deformable membrane supported by a cylindrical pillar within a well. For user-prescribed waveforms, the annular region of the deformable membrane is pulled into the well around the pillar under vacuum, causing the pillar-supported region with cultured cells to be stretched biaxially. The optically clear device and pillar-based mechanism of operation enables imaging on standard laboratory microscopes. Straightforward fabrication utilizes off-the-shelf components, soft lithography techniques in polydimethylsiloxane and laser ablation of acrylic sheets. Proof of compatibility with basic biological assays and standard imaging equipment were accomplished by straining C2C12 skeletal myoblasts on the device for 6 h. At higher strains, cells and actin stress fibers realign with a circumferential preference.

  8. Monolithic microwave integrated circuits for sensors, radar, and communications systems; Proceedings of the Meeting, Orlando, FL, Apr. 2-4, 1991

    NASA Technical Reports Server (NTRS)

    Leonard, Regis F. (Editor); Bhasin, Kul B. (Editor)

    1991-01-01

    Consideration is given to MMICs for airborne phased arrays, monolithic GaAs integrated circuit millimeter wave imaging sensors, accurate design of multiport low-noise MMICs up to 20 GHz, an ultralinear low-noise amplifier technology for space communications, variable-gain MMIC module for space applications, a high-efficiency dual-band power amplifier for radar applications, a high-density circuit approach for low-cost MMIC circuits, coplanar SIMMWIC circuits, recent advances in monolithic phased arrays, and system-level integrated circuit development for phased-array antenna applications. Consideration is also given to performance enhancement in future communications satellites with MMIC technology insertion, application of Ka-band MMIC technology for an Orbiter/ACTS communications experiment, a space-based millimeter wave debris tracking radar, low-noise high-yield octave-band feedback amplifiers to 20 GHz, quasi-optical MESFET VCOs, and a high-dynamic-range mixer using novel balun structure.

  9. Phase-locked array of quantum cascade lasers with an integrated Talbot cavity.

    PubMed

    Wang, Lei; Zhang, Jinchuan; Jia, Zhiwei; Zhao, Yue; Liu, Chuanwei; Liu, Yinghui; Zhai, Shenqiang; Ning, Zhuo; Xu, Xiangang; Liu, Fengqi

    2016-12-26

    We show a phase-locked array of three quantum cascade lasers with an integrated Talbot cavity at one side of the laser array. The coupling scheme is called diffraction coupling. By controlling the length of Talbot to be a quarter of Talbot distance (Zt/4), in-phase mode operation can be selected. The in-phase operation shows great modal stability under different injection currents, from the threshold current to the full power current. The far-field radiation pattern of the in-phase operation contains three lobes, one central maximum lobe and two side lobes. The interval between adjacent lobes is about 10.5°. The output power is about 1.5 times that of a single-ridge laser. Further studies should be taken to achieve better beam performance and reduce optical losses brought by the integrated Talbot cavity.

  10. Development, Qualification and Integration of the Optical Fiber Array Assemblies for the Lunar Reconnaissance Orbiter

    NASA Technical Reports Server (NTRS)

    Ott, Melanie N.; Switzer, Robert; Chuska, Richard; LaRocca, Frank; Thomas, William Joe; Macmurphy, Shawn

    2008-01-01

    The NASA Goddard Fiber Optics Team in the Electrical Engineering Division of the Applied Engineering and Technology Directorate, designed, developed and integrated the space flight optical fiber array hardware for the Lunar Reconnaissance Orbiter (LRO). The two new assemblies that were designed and manufacturing at GSFC for the LRO exist in configurations that are unique in the world for the application of ranging and LIDAR. Described here is an account of the journey and the lessons learned from design to integration for the Lunar Orbiter Laser Altimeter and the Laser Ranging Application on the LRO.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riot, Vincent J.

    The present disclosure provides a system and a method for measuring fluorescence of a sample. The sample may be a polymerase-chain-reaction (PCR) array, a loop-mediated-isothermal amplification array, etc. LEDs are used to excite the sample, and a photodiode is used to collect the sample's fluorescence. An electronic offset signal is used to reduce the effects of background fluorescence and the noises from the measurement system. An integrator integrates the difference between the output of the photodiode and the electronic offset signal over a given period of time. The resulting integral is then converted into digital domain for further processing andmore » storage.« less

  12. Irradiance tailoring by fractional Fourier transform of a radial Gaussian beam array

    NASA Astrophysics Data System (ADS)

    Zhou, Pu; Wang, Xiaolin; Ma, Yanxing; Ma, Haotong; Liu, Zejin

    2011-03-01

    The fractional Fourier transform (FRFT) is applied to a radial Gaussian beam array. Analytical formula is derived for the irradiance distribution of coherent and incoherent radial Gaussian beam array in FRFT domain using Collins integral formula. It is revealed that the irradiance pattern can be tailored to be controllable dark-hollow, flat-topped and Gaussian beam pattern by changing of the fractional order of FRFT and the coherent state of the laser array.

  13. Irradiance tailoring by fractional Fourier transform of a radial Gaussian beam array

    NASA Astrophysics Data System (ADS)

    Zhou, Pu; Wang, Xiaolin; Ma, Yanxing; Ma, Haotong; Liu, Zejin

    2010-07-01

    The fractional Fourier transform (FRFT) is applied to a radial Gaussian beam array. Analytical formula is derived for the irradiance distribution of coherent and incoherent radial Gaussian beam array in FRFT domain using Collins integral formula. It is revealed that the irradiance pattern can be tailored to be controllable dark-hollow, flat-topped and Gaussian beam pattern by changing of the fractional order of FRFT and the coherent state of the laser array.

  14. Navy Collaborative Integrated Information Technology Initiative (NAVCIITI)

    DTIC Science & Technology

    2004-09-01

    We investigated a new type of antenna array consisting of sub- elements that are excited together to form the primary element. All of the sub...elements of the array are excited for the highest operating band. Only the primary elements are excited for the low frequency band. This fractal geometry has...fully active array. The fully active input impedance is the input impedance of an element in an array when all elements are excited . It is a function

  15. Immobilizing enzymes onto electrode arrays by hydrogel photolithography to fabricate multi-analyte electrochemical biosensors.

    PubMed

    Yan, Jun; Pedrosa, Valber A; Simonian, Aleksandr L; Revzin, Alexander

    2010-03-01

    This paper describes a biomaterial microfabrication approach for interfacing functional biomolecules (enzymes) with electrode arrays. Poly (ethylene glycol) (PEG) hydrogel photopatterning was employed to integrate gold electrode arrays with the enzymes glucose oxidase (GOX) and lactate oxidase (LOX). In this process, PEG diacrylate (DA)-based prepolymer containing enzyme molecules as well as redox species (vinylferrocene) was spin-coated, registered, and UV cross-linked on top of an array of gold electrodes. As a result, enzyme-carrying circular hydrogel structures (600 microm diameter) were fabricated on top of 300 microm diameter gold electrodes. Importantly, when used with multiple masks, hydrogel photolithography allowed us to immobilize GOX and LOX molecules on adjacent electrodes within the same electrode array. Cyclic voltammetry and amperometry were used to characterize biosensor electrode arrays. The response of the biosensor array was linear for up to 20 mM glucose with sensitivity of 0.9 microA cm(-2) mM(-1) and 10 mM lactate with sensitivity of 1.1 microA cm(-2) mM(-1). Importantly, simultaneous detection of glucose and lactate from the same electrode array was demonstrated. A novel strategy for integrating biological and electrical components of a biosensor described in this paper provides the flexibility to spatially resolve and register different biorecognition elements with individual members of a miniature electrode array. Of particular interest to us are future applications of these miniature electrodes for real-time monitoring of metabolite fluxes in the vicinity of living cells.

  16. Ultrasonic fingerprint sensor using a piezoelectric micromachined ultrasonic transducer array integrated with complementary metal oxide semiconductor electronics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Y.; Fung, S.; Wang, Q.

    2015-06-29

    This paper presents an ultrasonic fingerprint sensor based on a 24 × 8 array of 22 MHz piezoelectric micromachined ultrasonic transducers (PMUTs) with 100 μm pitch, fully integrated with 180 nm complementary metal oxide semiconductor (CMOS) circuitry through eutectic wafer bonding. Each PMUT is directly bonded to a dedicated CMOS receive amplifier, minimizing electrical parasitics and eliminating the need for through-silicon vias. The array frequency response and vibration mode-shape were characterized using laser Doppler vibrometry and verified via finite element method simulation. The array's acoustic output was measured using a hydrophone to be ∼14 kPa with a 28 V input, in reasonable agreement with predication from analyticalmore » calculation. Pulse-echo imaging of a 1D steel grating is demonstrated using electronic scanning of a 20 × 8 sub-array, resulting in 300 mV maximum received amplitude and 5:1 contrast ratio. Because the small size of this array limits the maximum image size, mechanical scanning was used to image a 2D polydimethylsiloxane fingerprint phantom (10 mm × 8 mm) at a 1.2 mm distance from the array.« less

  17. Security enhancement of optical encryption based on biometric array keys

    NASA Astrophysics Data System (ADS)

    Yan, Aimin; Wei, Yang; Zhang, Jingtao

    2018-07-01

    A novel optical image encryption method is proposed by using Dammann grating and biometric array keys. Dammann grating is utilized to create a 2D finite uniform-intensity spot array. In encryption, a fingerprint array is used as private encryption keys. An original image can be encrypted by a scanning Fresnel zone plate array. Encrypted signals are processed by an optical coherent heterodyne detection system. Biometric array keys and optical scanning cryptography are integrated with each other to enhance information security greatly. Numerical simulations are performed to demonstrate the feasibility and validity of this method. Analyses on key sensitivity and the resistance against to possible attacks are provided.

  18. Synthesis of monolithic graphene – graphite integrated electronics

    PubMed Central

    Park, Jang-Ung; Nam, SungWoo; Lee, Mi-Sun; Lieber, Charles M.

    2013-01-01

    Encoding electronic functionality into nanoscale elements during chemical synthesis has been extensively explored over the past decade as the key to developing integrated nanosystems1 with functions defined by synthesis2-6. Graphene7-12 has been recently explored as a two-dimensional nanoscale material, and has demonstrated simple device functions based on conventional top-down fabrication13-20. However, the synthetic approach to encoding electronic functionality and thus enabling an entire integrated graphene electronics in a chemical synthesis had not previously been demonstrated. Here we report an unconventional approach for the synthesis of monolithically-integrated electronic devices based on graphene and graphite. Spatial patterning of heterogeneous catalyst metals permits the selective growth of graphene and graphite, with controlled number of graphene layers. Graphene transistor arrays with graphitic electrodes and interconnects were formed from synthesis. These functional, all-carbon structures were transferrable onto a variety of substrates. The integrated transistor arrays were used to demonstrate real-time, multiplexed chemical sensing, and more significantly, multiple carbon layers of the graphene-graphite device components were vertically assembled to form a three-dimensional flexible structure which served as a top-gate transistor array. These results represent a substantial progress towards encoding electronic functionality via chemical synthesis and suggest future promise for one-step integration of graphene-graphite based electronics. PMID:22101813

  19. Synthesis of monolithic graphene-graphite integrated electronics.

    PubMed

    Park, Jang-Ung; Nam, SungWoo; Lee, Mi-Sun; Lieber, Charles M

    2011-11-20

    Encoding electronic functionality into nanoscale elements during chemical synthesis has been extensively explored over the past decade as the key to developing integrated nanosystems with functions defined by synthesis. Graphene has been recently explored as a two-dimensional nanoscale material, and has demonstrated simple device functions based on conventional top-down fabrication. However, the synthetic approach to encoding electronic functionality and thus enabling an entire integrated graphene electronics in a chemical synthesis had not previously been demonstrated. Here we report an unconventional approach for the synthesis of monolithically integrated electronic devices based on graphene and graphite. Spatial patterning of heterogeneous metal catalysts permits the selective growth of graphene and graphite, with a controlled number of graphene layers. Graphene transistor arrays with graphitic electrodes and interconnects were formed from the synthesis. These functional, all-carbon structures were transferable onto a variety of substrates. The integrated transistor arrays were used to demonstrate real-time, multiplexed chemical sensing and more significantly, multiple carbon layers of the graphene-graphite device components were vertically assembled to form a three-dimensional flexible structure which served as a top-gate transistor array. These results represent substantial progress towards encoding electronic functionality through chemical synthesis and suggest the future promise of one-step integration of graphene-graphite based electronics.

  20. Experimental and Numerical Investigations in Shallow Cut Grinding by Workpiece Integrated Infrared Thermopile Array.

    PubMed

    Reimers, Marcel; Lang, Walter; Dumstorff, Gerrit

    2017-09-30

    The purpose of our study is to investigate the heat distribution and the occurring temperatures during grinding. Therefore, we did both experimental and numerical investigations. In the first part, we present the integration of an infrared thermopile array in a steel workpiece. Experiments are done by acquiring data from the thermopile array during grinding of a groove in a workpiece made of steel. In the second part, we present numerical investigations in the grinding process to further understand the thermal characteristic during grinding. Finally, we conclude our work. Increasing the feed speed leads to two things: higher heat flux densities in the workpiece and higher temperature gradients in the material.

  1. Nitride micro-LEDs and beyond--a decade progress review.

    PubMed

    Jiang, H X; Lin, J Y

    2013-05-06

    Since their inception, micro-size light emitting diode (µLED) arrays based on III-nitride semiconductors have emerged as a promising technology for a range of applications. This paper provides an overview on a decade progresses on realizing III-nitride µLED based high voltage single-chip AC/DC-LEDs without power converters to address the key compatibility issue between LEDs and AC power grid infrastructure; and high-resolution solid-state self-emissive microdisplays operating in an active driving scheme to address the need of high brightness, efficiency and robustness of microdisplays. These devices utilize the photonic integration approach by integrating µLED arrays on-chip. Other applications of nitride µLED arrays are also discussed.

  2. A planar chiral meta-surface for optical vortex generation and focusing

    PubMed Central

    Ma, Xiaoliang; Pu, Mingbo; Li, Xiong; Huang, Cheng; Wang, Yanqin; Pan, Wenbo; Zhao, Bo; Cui, Jianhua; Wang, Changtao; Zhao, ZeYu; Luo, Xiangang

    2015-01-01

    Data capacity is rapidly reaching its limit in modern optical communications. Optical vortex has been explored to enhance the data capacity for its extra degree of freedom of angular momentum. In traditional means, optical vortices are generated using space light modulators or spiral phase plates, which would sharply decrease the integration of optical communication systems. Here we experimentally demonstrate a planar chiral antenna array to produce optical vortex from a circularly polarized light. Furthermore, the antenna array has the ability to focus the incident light into point, which greatly increases the power intensity of the generated optical vortex. This chiral antenna array may have potential application in highly integrated optical communication systems. PMID:25988213

  3. Crosstalk-free operation of multielement superconducting nanowire single-photon detector array integrated with single-flux-quantum circuit in a 0.1 W Gifford-McMahon cryocooler.

    PubMed

    Yamashita, Taro; Miki, Shigehito; Terai, Hirotaka; Makise, Kazumasa; Wang, Zhen

    2012-07-15

    We demonstrate the successful operation of a multielement superconducting nanowire single-photon detector (SSPD) array integrated with a single-flux-quantum (SFQ) readout circuit in a compact 0.1 W Gifford-McMahon cryocooler. A time-resolved readout technique, where output signals from each element enter the SFQ readout circuit with finite time intervals, revealed crosstalk-free operation of the four-element SSPD array connected with the SFQ readout circuit. The timing jitter and the system detection efficiency were measured to be 50 ps and 11.4%, respectively, which were comparable to the performance of practical single-pixel SSPD systems.

  4. Experimental and Numerical Investigations in Shallow Cut Grinding by Workpiece Integrated Infrared Thermopile Array

    PubMed Central

    Reimers, Marcel; Lang, Walter; Dumstorff, Gerrit

    2017-01-01

    The purpose of our study is to investigate the heat distribution and the occurring temperatures during grinding. Therefore, we did both experimental and numerical investigations. In the first part, we present the integration of an infrared thermopile array in a steel workpiece. Experiments are done by acquiring data from the thermopile array during grinding of a groove in a workpiece made of steel. In the second part, we present numerical investigations in the grinding process to further understand the thermal characteristic during grinding. Finally, we conclude our work. Increasing the feed speed leads to two things: higher heat flux densities in the workpiece and higher temperature gradients in the material. PMID:28973978

  5. Monolithically integrated two-dimensional arrays of optoelectronic threshold devices for neural network applications

    NASA Technical Reports Server (NTRS)

    Kim, J. H.; Katz, J.; Lin, S. H.; Psaltis, D.

    1989-01-01

    A monolithic 10 x 10 two-dimensional array of 'optical neuron' optoelectronic threshold elements for neural network applications has been designed, fabricated, and tested. Overall array dimensions are 5 x 5 mm, while the individual neurons, composed of an LED that is driven by a double-heterojunction bipolar transistor, are 250 x 250 microns. The overall integrated structure exhibited semiconductor-controlled rectifier characteristics, with a breakover voltage of 75 V and a reverse-breakdown voltage of 60 V; this is attributable to the parasitic p-n-p transistor which exists as a result of the sharing of the same n-AlGaAs collector between the transistors and the LED.

  6. Fully integrated micro-separator with soft-magnetic micro-pillar arrays for filtrating lymphocytes.

    PubMed

    Dong, Tao; Su, Qianhua; Yang, Zhaochu; Karlsen, Frank; Jakobsen, Henrik; Egeland, Eirik Bentzen; Hjelseth, Snorre

    2010-01-01

    A fully integrated micro-separator with soft-magnetic micro-pillar arrays has been developed, which merely employs one independent Lab-On-Chip to realize the lymphocytes isolation from the human whole blood. The simulation, fabrication and experiment are executed to realize this novel microseparator. The simulation results show that, the soft-magnetic micro-pillars array can amplify and redistribute the electromagnetic field generated by the microcoils. The tests certify desirable separation efficiency can be realized using this new separator at low current. No extra cooling system is required for such a micro-separator. This micro-separator can also be used to separate other target cells or particles with the same principle.

  7. Design and Fabrication of an Implantable Cortical Semiconductor Integrated Circuit Electrode Array

    DTIC Science & Technology

    1990-12-01

    25 Array Pads....................25 Polyimide ....................26 III. METHODOLOGY.........................27 Brain Chip Electronics...38 Ionic Permeation. .................. 38 Polyimide . ................... 38 Implantation. .................... 39 Wire Bonding...53 Pad Sensitivity ................. 53 Ionic Permeat:.on. .................. 54 Polyimide . ................... 54 Implantation

  8. Integrating Residential Photovoltaics With Power Lines

    NASA Technical Reports Server (NTRS)

    Borden, C. S.

    1985-01-01

    Report finds rooftop solar-cell arrays feed excess power to electric-utility grid for fee are potentially attractive large-scale application of photovoltaic technology. Presents assessment of breakeven costs of these arrays under variety of technological and economic assumptions.

  9. Phased Arrays 1985 Symposium - Proceedings

    DTIC Science & Technology

    1985-08-01

    have served the logic industry well, and appropriate versions can do the same for micruwdve drid millimeter * wave technology, An aspect of phased...continuing revolutions of the logic industry and the microwave monolithic integrated circuit community are bringing relevant technology closer to the array...monolithic phased array antennas, and discuss their relative advantages and disadvantages . Considerations such as bandwidth, maxianiru scan range, feed

  10. Flexible Organic Electronics for Use in Neural Sensing

    PubMed Central

    Bink, Hank; Lai, Yuming; Saudari, Sangameshwar R.; Helfer, Brian; Viventi, Jonathan; Van der Spiegel, Jan; Litt, Brian; Kagan, Cherie

    2016-01-01

    Recent research in brain-machine interfaces and devices to treat neurological disease indicate that important network activity exists at temporal and spatial scales beyond the resolution of existing implantable devices. High density, active electrode arrays hold great promise in enabling high-resolution interface with the brain to access and influence this network activity. Integrating flexible electronic devices directly at the neural interface can enable thousands of multiplexed electrodes to be connected using many fewer wires. Active electrode arrays have been demonstrated using flexible, inorganic silicon transistors. However, these approaches may be limited in their ability to be cost-effectively scaled to large array sizes (8×8 cm). Here we show amplifiers built using flexible organic transistors with sufficient performance for neural signal recording. We also demonstrate a pathway for a fully integrated, amplified and multiplexed electrode array built from these devices. PMID:22255558

  11. KSC-00pp1682

    NASA Image and Video Library

    2000-11-10

    In the Space Station Processing Facility, an overhead crane lifts the P6 integrated truss segment from a workstand to place it in the payload transport canister for transfer to Launch Pad 39B. There it will be placed in Endeavour’s payload bay for launch on mission STS-97. The P6 comprises Solar Array Wing-3 and the Integrated Electronic Assembly, to be installed on the International Space Station. The Station’s electrical power system will use eight photovoltaic solar arrays, each 112 feet long by 39 feet wide, to convert sunlight to electricity. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station. Launch is scheduled Nov. 30 at 10:06 p.m. EST

  12. KSC-00pp1683

    NASA Image and Video Library

    2000-11-10

    In the Space Station Processing Facility, an overhead crane moves the P6 integrated truss segment to a payload transport canister for transfer to Launch Pad 39B. There it will be placed in Endeavour’s payload bay for launch on mission STS-97. The P6 comprises Solar Array Wing-3 and the Integrated Electronic Assembly, to be installed on the International Space Station. The Station’s electrical power system will use eight photovoltaic solar arrays, each 112 feet long by 39 feet wide, to convert sunlight to electricity. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station. Launch is scheduled Nov. 30 at 10:06 p.m. EST

  13. KSC-00pp1738

    NASA Image and Video Library

    2000-11-14

    The doors of the payload transport canister are open wide in the payload changeout room on Launch Pad 39B. Revealed is the P6 integrated truss segment, which will fly on mission STS-97. The P6 comprises Solar Array Wing-3 and the Integrated Electronic Assembly, to be installed on the International Space Station. The Station’s electrical power system will use eight photovoltaic solar arrays, each 112 feet long by 39 feet wide, to convert sunlight to electricity. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station. Launch of STS-97 is scheduled for Nov. 30 at 10:06 p.m. EST

  14. Unidirectional waveguide grating antennas with uniform emission for optical phased arrays.

    PubMed

    Raval, Manan; Poulton, Christopher V; Watts, Michael R

    2017-07-01

    We demonstrate millimeter-scale optical waveguide grating antennas with unidirectional emission for integrated optical phased arrays. Unidirectional emission eliminates the fundamental problem of blind spots in the element factor of a phased array caused by reflections of antenna radiation within the substrate. Over 90% directionality is demonstrated using a design consisting of two silicon nitride layers. Furthermore, the perturbation strength along the antenna is apodized to achieve uniform emission for the first time, to the best of our knowledge, on a millimeter scale. This allows for a high effective aperture and receiving efficiency. The emission profile of the measured 3 mm long antenna has a standard deviation of 8.65% of the mean. These antennas are state of the art and will allow for integrated optical phased arrays with blind-spot-free high transmission output power and high receiving efficiency for LIDAR and free-space communication systems.

  15. Plasmonic nanopatch array for optical integrated circuit applications.

    PubMed

    Qu, Shi-Wei; Nie, Zai-Ping

    2013-11-08

    Future plasmonic integrated circuits with the capability of extremely high-speed data processing at optical frequencies will be dominated by the efficient optical emission (excitation) from (of) plasmonic waveguides. Towards this goal, plasmonic nanoantennas, currently a hot topic in the field of plasmonics, have potential to bridge the mismatch between the wave vector of free-space photonics and that of the guided plasmonics. To manipulate light at will, plasmonic nanoantenna arrays will definitely be more efficient than isolated nanoantennas. In this article, the concepts of microwave antenna arrays are applied to efficiently convert plasmonic waves in the plasmonic waveguides into free-space optical waves or vice versa. The proposed plasmonic nanoantenna array, with nanopatch antennas and a coupled wedge plasmon waveguide, can also act as an efficient spectrometer to project different wavelengths into different directions, or as a spatial filter to absorb a specific wavelength at a specified incident angle.

  16. Multi-Channel Capacitive Sensor Arrays

    PubMed Central

    Wang, Bingnan; Long, Jiang; Teo, Koon Hoo

    2016-01-01

    In this paper, multi-channel capacitive sensor arrays based on microstrip band-stop filters are studied. The sensor arrays can be used to detect the proximity of objects at different positions and directions. Each capacitive sensing structure in the array is connected to an inductive element to form resonance at different frequencies. The resonances are designed to be isolated in the frequency spectrum, such that the change in one channel does not affect resonances at other channels. The inductive element associated with each capacitive sensor can be surface-mounted inductors, integrated microstrip inductors or metamaterial-inspired structures. We show that by using metamaterial split-ring structures coupled to a microstrip line, the quality factor of each resonance can be greatly improved compared to conventional surface-mounted or microstrip meander inductors. With such a microstrip-coupled split-ring design, more sensing elements can be integrated in the same frequency spectrum, and the sensitivity can be greatly improved. PMID:26821023

  17. Phase sensitive distributed vibration sensing based on ultraweak fiber Bragg grating array using double-pulse

    NASA Astrophysics Data System (ADS)

    Liu, Tao; Wang, Feng; Zhang, Xuping; Zhang, Lin; Yuan, Quan; Liu, Yu; Yan, Zhijun

    2017-08-01

    A distributed vibration sensing technique using double-optical-pulse based on phase-sensitive optical time-domain reflectometry (ϕ-OTDR) and an ultraweak fiber Bragg grating (UWFBG) array is proposed for the first time. The single-mode sensing fiber is integrated with the UWFBG array that has uniform spatial interval and ultraweak reflectivity. The relatively high reflectivity of the UWFBG, compared with the Rayleigh scattering, gains a high signal-to-noise ratio for the signal, which can make the system achieve the maximum detectable frequency limited by the round-trip time of the probe pulse in fiber. A corresponding experimental ϕ-OTDR system with a 4.5 km sensing fiber integrated with the UWFBG array was setup for the evaluation of the system performance. Distributed vibration sensing is successfully realized with spatial resolution of 50 m. The sensing range of the vibration frequency can cover from 3 Hz to 9 kHz.

  18. Status and Integrated Focal Plane Characterization of Simons Array - Cosmic Microwave Background Polarimetry Experiment

    NASA Astrophysics Data System (ADS)

    Roberts, Hayley; POLARBEAR

    2018-06-01

    Simons Array is a cosmic microwave background (CMB) polarization experiment located at 5,200 meter altitude site in the Atacama desert in Chile. The science goals of the Simons Array are to characterize the CMB B-mode signal from gravitational lensing, and search for B-mode polarization generated from inflationary gravitational waves.In 2012, POLARBEAR-1 (PB-1) began observations and the POLARBEAR team has published the first measurements of non-zero polarization B-mode polarization angular power spectrum where gravitational lensing of CMB is the dominant signal.POLARBEAR-2A (PB-2A), the first of three receivers of Simons Array, will have 7,588 polarization sensitive Transition Edge Sensor (TES) bolometers with frequencies 90 GHz and 150 GHz. This represents a factor of 6 increase in detector count compared to PB-1. Once Simons Array is fully deployed, the focal plane array will consist 22,764 TES bolometers across 90 GHz, 150 GHz, 220 GHz, and 270 GHz with a projected instantaneous sensitivity of 2.5 µK√s. Here we present the status of PB-2A and characterization of the integrated focal plane to be deployed summer of 2018.

  19. The Focal Plane Assembly for the Athena X-Ray Integral Field Unit Instrument

    NASA Technical Reports Server (NTRS)

    Jackson, B. D.; Van Weers, H.; van der Kuur, J.; den Hartog, R.; Akamatsu, H.; Argan, A.; Bandler, S. R.; Barbera, M.; Barret, D.; Bruijn, M. P.; hide

    2016-01-01

    This paper summarizes a preliminary design concept for the focal plane assembly of the X-ray Integral Field Unit on the Athena spacecraft, an imaging microcalorimeter that will enable high spectral resolution imaging and point-source spectroscopy. The instrument's sensor array will be a 3840-pixel transition edge sensor (TES) microcalorimeter array, with a frequency domain multiplexed SQUID readout system allowing this large-format sensor array to be operated within the thermal constraints of the instrument's cryogenic system. A second TES detector will be operated in close proximity to the sensor array to detect cosmic rays and secondary particles passing through the sensor array for off-line coincidence detection to identify and reject events caused by the in-orbit high-energy particle background. The detectors, operating at 55 mK, or less, will be thermally isolated from the instrument cryostat's 2 K stage, while shielding and filtering within the FPA will allow the instrument's sensitive sensor array to be operated in the expected environment during both on-ground testing and in-flight operation, including stray light from the cryostat environment, low-energy photons entering through the X-ray aperture, low-frequency magnetic fields, and high-frequency electric fields.

  20. 32 x 16 CMOS smart pixel array for optical interconnects

    NASA Astrophysics Data System (ADS)

    Kim, Jongwoo; Guilfoyle, Peter S.; Stone, Richard V.; Hessenbruch, John M.; Choquette, Kent D.; Kiamilev, Fouad E.

    2000-05-01

    Free space optical interconnects can increase throughput capacities and eliminate much of the energy consumption required for `all electronic' systems. High speed optical interconnects can be achieved by integrating optoelectronic devices with conventional electronics. Smart pixel arrays have been developed which use optical interconnects. An individual smart pixel cell is composed of a vertical cavity surface emitting laser (VCSEL), a photodetector, an optical receiver, a laser driver, and digital logic circuitry. Oxide-confined VCSELs are being developed to operate at 850 nm with a threshold current of approximately 1 mA. Multiple quantum well photodetectors are being fabricated from AlGaAs for use with the 850 nm VCSELs. The VCSELs and photodetectors are being integrated with complementary metal oxide semiconductor (CMOS) circuitry using flip-chip bonding. CMOS circuitry is being integrated with a 32 X 16 smart pixel array. The 512 smart pixels are serially linked. Thus, an entire data stream may be clocked through the chip and output electrically by the last pixel. Electrical testing is being performed on the CMOS smart pixel array. Using an on-chip pseudo random number generator, a digital data sequence was cycled through the chip verifying operation of the digital circuitry. Although, the prototype chip was fabricated in 1.2 micrometers technology, simulations have demonstrated that the array can operate at 1 Gb/s per pixel using 0.5 micrometers technology.

  1. Integrated Solar Array and Reflectarray Antenna for High Bandwidth Cubesats

    NASA Technical Reports Server (NTRS)

    Lewis, Dorothy; Agasid, Elwood Floyd; Ardila, David R.; Hunter, Roger C.; Baker, Christopher E.

    2017-01-01

    The Integrated Solar Array and Reflectarray Antenna (ISARA) mission will demonstrate a reflectarray antenna that increases downlink data rates for CubeSats from the existing baseline rate of 9.6 kilobits per second (kbps) to more than100 megabits per second (Mbps). A secondary payload called the CubeSat Multispectral Observation System (CUMULOS), is an experimental remote sensing payload also being demonstrated on this mission. A launch date for the ISARA spacecraft is currently pending.

  2. Real-time, multiplexed electrochemical DNA detection using an active complementary metal-oxide-semiconductor biosensor array with integrated sensor electronics.

    PubMed

    Levine, Peter M; Gong, Ping; Levicky, Rastislav; Shepard, Kenneth L

    2009-03-15

    Optical biosensing based on fluorescence detection has arguably become the standard technique for quantifying extents of hybridization between surface-immobilized probes and fluorophore-labeled analyte targets in DNA microarrays. However, electrochemical detection techniques are emerging which could eliminate the need for physically bulky optical instrumentation, enabling the design of portable devices for point-of-care applications. Unlike fluorescence detection, which can function well using a passive substrate (one without integrated electronics), multiplexed electrochemical detection requires an electronically active substrate to analyze each array site and benefits from the addition of integrated electronic instrumentation to further reduce platform size and eliminate the electromagnetic interference that can result from bringing non-amplified signals off chip. We report on an active electrochemical biosensor array, constructed with a standard complementary metal-oxide-semiconductor (CMOS) technology, to perform quantitative DNA hybridization detection on chip using targets conjugated with ferrocene redox labels. A 4 x 4 array of gold working electrodes and integrated potentiostat electronics, consisting of control amplifiers and current-input analog-to-digital converters, on a custom-designed 5 mm x 3 mm CMOS chip drive redox reactions using cyclic voltammetry, sense DNA binding, and transmit digital data off chip for analysis. We demonstrate multiplexed and specific detection of DNA targets as well as real-time monitoring of hybridization, a task that is difficult, if not impossible, with traditional fluorescence-based microarrays.

  3. A Thermally Powered ISFET Array for On-Body pH Measurement.

    PubMed

    Douthwaite, Matthew; Koutsos, Ermis; Yates, David C; Mitcheson, Paul D; Georgiou, Pantelis

    2017-12-01

    Recent advances in electronics and electrochemical sensors have led to an emerging class of next generation wearables, detecting analytes in biofluids such as perspiration. Most of these devices utilize ion-selective electrodes (ISEs) as a detection method; however, ion-sensitive field-effect transistors (ISFETs) offer a solution with improved integration and a low power consumption. This work presents a wearable, thermoelectrically powered system composed of an application-specific integrated circuit (ASIC), two commercial power management integrated circuits and a network of commercial thermoelectric generators (TEGs). The ASIC is fabricated in 0.35 m CMOS and contains an ISFET array designed to read pH as a current, a processing module which averages the signal to reduce noise and encodes it into a frequency, and a transmitter. The output frequency has a measured sensitivity of 6 to 8 kHz/pH for a pH range of 7-5. It is shown that the sensing array and processing module has a power consumption 6 W and, therefore, can be entirely powered by body heat using a TEG. Array averaging is shown to reduce noise at these low power levels to 104 V (input referred integrated noise), reducing the minimum detectable limit of the ASIC to 0.008 pH units. The work forms the foundation and proves the feasibility of battery-less, on-body electrochemical for perspiration analysis in sports science and healthcare applications.

  4. Flat-plate photovoltaic array design optimization

    NASA Technical Reports Server (NTRS)

    Ross, R. G., Jr.

    1980-01-01

    An analysis is presented which integrates the results of specific studies in the areas of photovoltaic structural design optimization, optimization of array series/parallel circuit design, thermal design optimization, and optimization of environmental protection features. The analysis is based on minimizing the total photovoltaic system life-cycle energy cost including repair and replacement of failed cells and modules. This approach is shown to be a useful technique for array optimization, particularly when time-dependent parameters such as array degradation and maintenance are involved.

  5. Preliminary space station solar array structural design study

    NASA Technical Reports Server (NTRS)

    Dorsey, J. T.; Bush, H. G.; Mikulas, M. M., Jr.

    1984-01-01

    Structurally efficient ways to support the large solar arrays (3,716 square meters which are currently considered for space station use) are examined. An erectable truss concept is presented for the on orbit construction of winged solar arrays. The means for future growth, maintenance, and repair are integrally designed into this concept. Results from parametric studies, which highlight the physical and structural differences between various configuration options are presented. Consideration is given to both solar blanket and hard panel arrays.

  6. Geiger-Mode Avalanche Photodiode Arrays Integrated to All-Digital CMOS Circuits

    DTIC Science & Technology

    2016-01-20

    Figure 7 4×4 GMAPD array wire bonded to CMOS timing circuits Figure 8 Low‐fill‐factor APD design used in lidar sensors The APD doping...epitaxial growth and the pixels are isolated by mesa etch. 128×32 lidar image sensors were built by bump bonding the APD arrays to a CMOS timing...passive image sensor with this large a format based on hybridization of a GMAPD array to a CMOS readout. Fig. 14 shows one of the first images taken

  7. Preliminary space station solar array structural design study

    NASA Astrophysics Data System (ADS)

    Dorsey, J. T.; Bush, H. G.; Mikulas, M. M., Jr.

    Structurally efficient ways to support the large solar arrays (3,716 square meters which are currently considered for space station use) are examined. An erectable truss concept is presented for the on orbit construction of winged solar arrays. The means for future growth, maintenance, and repair are integrally designed into this concept. Results from parametric studies, which highlight the physical and structural differences between various configuration options are presented. Consideration is given to both solar blanket and hard panel arrays.

  8. Arrayed waveguide Sagnac interferometer.

    PubMed

    Capmany, José; Muñoz, Pascual; Sales, Salvador; Pastor, Daniel; Ortega, Beatriz; Martinez, Alfonso

    2003-02-01

    We present a novel device, an arrayed waveguide Sagnac interferometer, that combines the flexibility of arrayed waveguides and the wide application range of fiber or integrated optics Sagnac loops. We form the device by closing an array of wavelength-selective light paths provided by two arrayed waveguides with a single 2 x 2 coupler in a Sagnac configuration. The equations that describe the device's operation in general conditions are derived. A preliminary experimental demonstration is provided of a fiber prototype in passive operation that shows good agreement with the expected theoretical performance. Potential applications of the device in nonlinear operation are outlined and discussed.

  9. Coherent Detector Arrays for Continuum and Spectral Line Applications

    NASA Technical Reports Server (NTRS)

    Gaier, Todd C.

    2006-01-01

    This viewgraph presentation reviews the requirements for improved coherent detector arrays for use in continuum and spectral line applications. With detectors approaching fundamental limits, large arrays offer the only path to sensitivity improvement. Monolithic Microwave Integrated Circuit (MMIC) technology offers a straightforward path to massive focal plane millimeter wave arrays: The technology will readily support continuum imagers, polarimeters and spectral line receivers from 30-110 GHz. Science programs, particularly large field blind surveys will benefit from simultaneous observations of hundreds or thousands of pixels 1000 element array is competitive with a cost less than $2M.

  10. Impact: a low cost, reconfigurable, digital beamforming common module building block for next generation phased arrays

    NASA Astrophysics Data System (ADS)

    Paulsen, Lee; Hoffmann, Ted; Fulton, Caleb; Yeary, Mark; Saunders, Austin; Thompson, Dan; Chen, Bill; Guo, Alex; Murmann, Boris

    2015-05-01

    Phased array systems offer numerous advantages to the modern warfighter in multiple application spaces, including Radar, Electronic Warfare, Signals Intelligence, and Communications. However, a lack of commonality in the underlying technology base for DoD Phased Arrays has led to static systems with long development cycles, slow technology refreshes in response to emerging threats, and expensive, application-specific sub-components. The IMPACT module (Integrated Multi-use Phased Array Common Tile) is a multi-channel, reconfigurable, cost-effective beamformer that provides a common building block for multiple, disparate array applications.

  11. Fiber IFU unit for the second generation VLT spectrograph KMOS

    NASA Astrophysics Data System (ADS)

    Tomono, Daigo; Weisz, Harald; Hofmann, Reiner

    2003-03-01

    KMOS is a cryogenic multi-object near-infrared spectrograph for the VLT. It will be equipped with about 20 deployable integral field units (IFUs) which can be positioned anywhere in the 7.2 arcmin diameter field o the VLT Nasmyth focus by a cryogenic robot. We describe IFUs using micro lens arrays and optical fibers to arrange the two-dimensional fields from the IFUs on the spectrograph entrance slit. Each micro-lens array is mounted in a spider arm which also houses the pre-optics with a cold stop. The spider arms are positioned by a cryogenic robot which is built around the image plane. For the IFUs, two solutions are considered: monolithic mirco-lens arrays with fibers attached to the back where the entrance pupil is imaged, and tapered fibers with integrated lenses which are bundled together to form a lens array. The flexibility of optical fibers relaxes boundary conditions for integration of the instrument components. On the other hand, FRD and geometric characteristics of optical fibers leads to higher AΩ accepted by the spectrograph. Conceptual design of the instrument is presented as well as advantages and disadvantages of the fiber IFUs.

  12. Titanium dioxide nanowire sensor array integration on CMOS platform using deterministic assembly.

    PubMed

    Gall, Oren Z; Zhong, Xiahua; Schulman, Daniel S; Kang, Myungkoo; Razavieh, Ali; Mayer, Theresa S

    2017-06-30

    Nanosensor arrays have recently received significant attention due to their utility in a wide range of applications, including gas sensing, fuel cells, internet of things, and portable health monitoring systems. Less attention has been given to the production of sensor platforms in the μW range for ultra-low power applications. Here, we discuss how to scale the nanosensor energy demand by developing a process for integration of nanowire sensing arrays on a monolithic CMOS chip. This work demonstrates an off-chip nanowire fabrication method; subsequently nanowires link to a fused SiO 2 substrate using electric-field assisted directed assembly. The nanowire resistances shown in this work have the highest resistance uniformity reported to date of 18%, which enables a practical roadmap towards the coupling of nanosensors to CMOS circuits and signal processing systems. The article also presents the utility of optimizing annealing conditions of the off-chip metal-oxides prior to CMOS integration to avoid limitations of thermal budget and process incompatibility. In the context of the platform demonstrated here, directed assembly is a powerful tool that can realize highly uniform, cross-reactive arrays of different types of metal-oxide nanosensors suited for gas discrimination and signal processing systems.

  13. Titanium dioxide nanowire sensor array integration on CMOS platform using deterministic assembly

    NASA Astrophysics Data System (ADS)

    Gall, Oren Z.; Zhong, Xiahua; Schulman, Daniel S.; Kang, Myungkoo; Razavieh, Ali; Mayer, Theresa S.

    2017-06-01

    Nanosensor arrays have recently received significant attention due to their utility in a wide range of applications, including gas sensing, fuel cells, internet of things, and portable health monitoring systems. Less attention has been given to the production of sensor platforms in the μW range for ultra-low power applications. Here, we discuss how to scale the nanosensor energy demand by developing a process for integration of nanowire sensing arrays on a monolithic CMOS chip. This work demonstrates an off-chip nanowire fabrication method; subsequently nanowires link to a fused SiO2 substrate using electric-field assisted directed assembly. The nanowire resistances shown in this work have the highest resistance uniformity reported to date of 18%, which enables a practical roadmap towards the coupling of nanosensors to CMOS circuits and signal processing systems. The article also presents the utility of optimizing annealing conditions of the off-chip metal-oxides prior to CMOS integration to avoid limitations of thermal budget and process incompatibility. In the context of the platform demonstrated here, directed assembly is a powerful tool that can realize highly uniform, cross-reactive arrays of different types of metal-oxide nanosensors suited for gas discrimination and signal processing systems.

  14. A Location Method Using Sensor Arrays for Continuous Gas Leakage in Integrally Stiffened Plates Based on the Acoustic Characteristics of the Stiffener

    PubMed Central

    Bian, Xu; Li, Yibo; Feng, Hao; Wang, Jiaqiang; Qi, Lei; Jin, Shijiu

    2015-01-01

    This paper proposes a continuous leakage location method based on the ultrasonic array sensor, which is specific to continuous gas leakage in a pressure container with an integral stiffener. This method collects the ultrasonic signals generated from the leakage hole through the piezoelectric ultrasonic sensor array, and analyzes the space-time correlation of every collected signal in the array. Meanwhile, it combines with the method of frequency compensation and superposition in time domain (SITD), based on the acoustic characteristics of the stiffener, to obtain a high-accuracy location result on the stiffener wall. According to the experimental results, the method successfully solves the orientation problem concerning continuous ultrasonic signals generated from leakage sources, and acquires high accuracy location information on the leakage source using a combination of multiple sets of orienting results. The mean value of location absolute error is 13.51 mm on the one-square-meter plate with an integral stiffener (4 mm width; 20 mm height; 197 mm spacing), and the maximum location absolute error is generally within a ±25 mm interval. PMID:26404316

  15. Design and realization of 144 x 7 TDI ROIC with hybrid integrated test structure

    NASA Astrophysics Data System (ADS)

    Ceylan, Omer; Kayahan, Huseyin; Yazici, Melik; Baran, Muhammet Burak; Gurbuz, Yasar

    2012-06-01

    Design and realization of a 144x7 silicon readout integrated circuit (ROIC) based on switched capacitor TDI for MCT LWIR scanning type focal plane arrays (FPAs) and its corresponding hybrid integrated test circuits are presented. TDI operation with 7 detectors improves the SNR of the system by a factor of √7, while oversampling rate of 3 improves the spatial resolution of the system. ROIC supports bidirectional scan, 5 adjustable gain settings, bypass operation, automatic gain adjustment in case of mulfunctioning pixels and pixel select/deselect properties. Integration time of the system can be determined by the help of an external clock. Programming of ROIC can be done in parallel or serial mode according to the needs of the system. All properties except pixel select/deselect property can be performed in parallel mode, while pixel select/deselect property can be performed only in serial mode. ROIC can handle up to 3.75V dynamic range with a load of 25pF and output settling time of 80ns. Input referred noise of the ROIC is less than 750 rms electrons, while the power consumption is less than 100mW. To test ROIC in absence of detector array, a process and temperature compensated current reference array, which supplies uniform input current in range of 1-50nA to ROIC, is designed and measured both in room and cryogenic (77ºK) temperatures. Standard deviations of current reference arrays are measured 3.26% for 1nA and 0.99% for 50nA. ROIC and current reference array are fabricated seperately, and then flip-chip bonded for the test of the system. Flip-chip bonded system including ROIC and current reference test array is successfully measured both in room and cryogenic temperatures, and measurement results are presented. The manufacturing technology is 0.35μm, double poly-Si, four metal, 5V CMOS process.

  16. Optical detectors for GaAs MMIC integration: Technology assessment

    NASA Technical Reports Server (NTRS)

    Claspy, P. C.; Bhasin, K. B.

    1989-01-01

    Fiber optic links are being considered to transmit digital and analog signals in phased array antenna feed networks in space communications systems. The radiating elements in these arrays will be GaAs monolithic microwave integrated circuits (MMIC's) in numbers ranging from a few hundred to several thousand. If such optical interconnects are to be practical it appears essential that the associated components, including detectors, be monolithically integrated on the same chip as the microwave circuitry. The general issue of monolithic integration of microwave and optoelectronic components is addressed from the point of view of fabrication technology and compatibility. Particular attention is given to the fabrication technology of various types of GaAs optical detectors that are designed to operate at a wavelength of 830 nm.

  17. 802GHz integrated horn antennas imaging array

    NASA Technical Reports Server (NTRS)

    Ali-Ahmad, Walid Y.; Rebeiz, Gabriel M.; Dave, Hemant; Chin, Gordon

    1991-01-01

    Pattern measurements at 802GHz of a single element in 256-element integrated horn imaging array are presented. The integrated-horn antenna consists of a dipole-antenna suspended on a 1-micron dielectric membrane inside a pyramidal cavity etched in silicon. The theoretical far-field patterns, calculated using reciprocity and Floquet-modes representation of the free-space field, agree well with the measured far-field patterns at 802GHz. The associated directivity for a 1.40 lambda horn aperture, calculated from the measured E and H-plane patterns is 12.3dB + or - 0.2dB. This work demonstrates that high-efficiency integrated-horn antennas are easily scalable to terahertz frequencies and could be used for radio-astronomical and plasma-diagnostic applications.

  18. System-Level Integrated Circuit (SLIC) development for phased array antenna applications

    NASA Technical Reports Server (NTRS)

    Shalkhauser, K. A.; Raquet, C. A.

    1991-01-01

    A microwave/millimeter wave system-level integrated circuit (SLIC) being developed for use in phased array antenna applications is described. The program goal is to design, fabricate, test, and deliver an advanced integrated circuit that merges radio frequency (RF) monolithic microwave integrated circuit (MMIC) technologies with digital, photonic, and analog circuitry that provide control, support, and interface functions. As a whole, the SLIC will offer improvements in RF device performance, uniformity, and stability while enabling accurate, rapid, repeatable control of the RF signal. Furthermore, the SLIC program addresses issues relating to insertion of solid state devices into antenna systems, such as the reduction in number of bias, control, and signal lines. Program goals, approach, and status are discussed.

  19. System-level integrated circuit (SLIC) development for phased array antenna applications

    NASA Technical Reports Server (NTRS)

    Shalkhauser, K. A.; Raquet, C. A.

    1991-01-01

    A microwave/millimeter wave system-level integrated circuit (SLIC) being developed for use in phased array antenna applications is described. The program goal is to design, fabricate, test, and deliver an advanced integrated circuit that merges radio frequency (RF) monolithic microwave integrated circuit (MMIC) technologies with digital, photonic, and analog circuitry that provide control, support, and interface functions. As a whole, the SLIC will offer improvements in RF device performance, uniformity, and stability while enabling accurate, rapid, repeatable control of the RF signal. Furthermore, the SLIC program addresses issues relating to insertion of solid state devices into antenna systems, such as the reduction in number of bias, control, and signal lines. Program goals, approach, and status are discussed.

  20. KSC-00pp1785

    NASA Image and Video Library

    2000-11-30

    Leaving the Operations and Checkout Building, the STS-97 crew hurries toward the waiting Astrovan that will take them to Launch Pad 39B. Starting at left, they are Mission Specialists Carlos Noriega, Joseph Tanner and Marc Garneau; Pilot Michael Bloomfield; and Commander Brent Jett. Garneau is with the Canadian Space Agency. Mission STS-97 is the sixth construction flight to the International Space Station. It is transporting the P6 Integrated Truss Structure that comprises Solar Array Wing-3 and the Integrated Electronic Assembly, to be installed on the Space Station. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. The 11-day mission includes two spacewalks to complete the solar array connections. The Station’s electrical power system will use eight photovoltaic solar arrays, each 112 feet long by 39 feet wide, to convert sunlight to electricity. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station. Launch is scheduled for Nov. 30 at 10:06 p.m. EST

  1. An Integrated Approach to Modeling Solar Electric Propulsion Vehicles During Long Duration, Near-Earth Orbit Transfers

    NASA Technical Reports Server (NTRS)

    Smith, David A.; Hojnicki, Jeffrey S.; Sjauw, Waldy K.

    2014-01-01

    Recent NASA interest in utilizing solar electronic propulsion (SEP) technology to transfer payloads, e.g. from low-Earth orbit (LEO) to higher energy geostationary-Earth orbit (GEO) or to Earth escape, has necessitated the development of high fidelity SEP vehicle models and simulations. These models and simulations need to be capable of capturing vehicle dynamics and sub-system interactions experienced during the transfer trajectories which are typically accomplished with continuous-burn (potentially interrupted by solar eclipse), long duration "spiral out" maneuvers taking several months or more to complete. This paper presents details of an integrated simulation approach achieved by combining a high fidelity vehicle simulation code with a detailed solar array model. The combined simulation tool gives researchers the functionality to study the integrated effects of various vehicle sub-systems (e.g. vehicle guidance, navigation and control (GN&C), electric propulsion system (EP)) with time varying power production. Results from a simulation model of a vehicle with a 50 kW class SEP system using the integrated tool are presented and compared to the results from another simulation model employing a 50 kW end-of-life (EOL) fixed power level assumption. These models simulate a vehicle under three degree of freedom dynamics (i.e. translational dynamics only) and include the effects of a targeting guidance algorithm (providing a "near optimal" transfer) during a LEO to near Earth escape (C (sub 3) = -2.0 km (sup 2) / sec (sup -2) spiral trajectory. The presented results include the impact of the fully integrated, time-varying solar array model (e.g. cumulative array degradation from traversing the Van Allen belts, impact of solar eclipses on the vehicle and the related temperature responses in the solar arrays due to operating in the Earth's thermal environment, high fidelity array power module, etc.); these are used to assess the impact on vehicle performance (i.e. propellant consumption) and transit times.

  2. Highly integrated optical phased arrays: photonic integrated circuits for optical beam shaping and beam steering

    NASA Astrophysics Data System (ADS)

    Heck, Martijn J. R.

    2017-01-01

    Technologies for efficient generation and fast scanning of narrow free-space laser beams find major applications in three-dimensional (3D) imaging and mapping, like Lidar for remote sensing and navigation, and secure free-space optical communications. The ultimate goal for such a system is to reduce its size, weight, and power consumption, so that it can be mounted on, e.g. drones and autonomous cars. Moreover, beam scanning should ideally be done at video frame rates, something that is beyond the capabilities of current opto-mechanical systems. Photonic integrated circuit (PIC) technology holds the promise of achieving low-cost, compact, robust and energy-efficient complex optical systems. PICs integrate, for example, lasers, modulators, detectors, and filters on a single piece of semiconductor, typically silicon or indium phosphide, much like electronic integrated circuits. This technology is maturing fast, driven by high-bandwidth communications applications, and mature fabrication facilities. State-of-the-art commercial PICs integrate hundreds of elements, and the integration of thousands of elements has been shown in the laboratory. Over the last few years, there has been a considerable research effort to integrate beam steering systems on a PIC, and various beam steering demonstrators based on optical phased arrays have been realized. Arrays of up to thousands of coherent emitters, including their phase and amplitude control, have been integrated, and various applications have been explored. In this review paper, I will present an overview of the state of the art of this technology and its opportunities, illustrated by recent breakthroughs.

  3. Integrated Microcalorimeters Using Ir TES And Sn Mushroom Absorbers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, C.; Bogorin, D.; Galeazzi, M.

    2006-09-07

    Cryogenic microcalorimeters have the potential to meet the requirements of future x-ray missions. The University of Miami has recently started a program to fabricate fully integrated microcalorimeter arrays. We deposit high purity iridium thin film as Transition Edge Sensors (TES). We chose iridium because it has a bulk transition temperature of 112 mK and we expect single layer TES to have good reproducibility and long term stability. Also we use integrated tin film in a mushroom geometry as the absorbers to get high filling factor, low heat capacity and easy array manufacturing process. We present here our preliminary results inmore » both areas.« less

  4. System and method for measuring fluorescence of a sample

    DOEpatents

    Riot, Vincent J

    2015-03-24

    The present disclosure provides a system and a method for measuring fluorescence of a sample. The sample may be a polymerase-chain-reaction (PCR) array, a loop-mediated-isothermal amplification array, etc. LEDs are used to excite the sample, and a photodiode is used to collect the sample's fluorescence. An electronic offset signal is used to reduce the effects of background fluorescence and the noises from the measurement system. An integrator integrates the difference between the output of the photodiode and the electronic offset signal over a given period of time. The resulting integral is then converted into digital domain for further processing and storage.

  5. Innovative Magnetic-Field Array Probe for TRUST Integrated Circuits

    DTIC Science & Technology

    2017-03-01

    real-time an IC device. This non-invasive solution is cost effective, with a small form factor. Keywords: Electromagnetic radiation; Near-Field...solicitation was to design, develop and fabricate a low cost electromagnetic probe array for ICs counterfeit. The probe array should operate in the near...Our overall effort was focus on modeling, designing, fabricating, and utilizing novel electromagnetic probes for the analysis, characterization

  6. Vertical integration of array-type miniature interferometers at wafer level by using multistack anodic bonding

    NASA Astrophysics Data System (ADS)

    Wang, Wei-Shan; Wiemer, Maik; Froemel, Joerg; Enderlein, Tom; Gessner, Thomas; Lullin, Justine; Bargiel, Sylwester; Passilly, Nicolas; Albero, Jorge; Gorecki, Christophe

    2016-04-01

    In this work, vertical integration of miniaturized array-type Mirau interferometers at wafer level by using multi-stack anodic bonding is presented. Mirau interferometer is suitable for MEMS metrology and for medical imaging according to its vertical-, lateral- resolutions and working distances. Miniaturized Mirau interferometer can be a promising candidate as a key component of an optical coherence tomography (OCT) system. The miniaturized array-type interferometer consists of a microlens doublet, a Si-based MEMS Z scanner, a spacer for focus-adjustment and a beam splitter. Therefore, bonding technologies which are suitable for heterogeneous substrates are of high interest and necessary for the integration of MEMS/MOEMS devices. Multi-stack anodic bonding, which meets the optical and mechanical requirements of the MOEMS device, is adopted to integrate the array-type interferometers. First, the spacer and the beam splitter are bonded, followed by bonding of the MEMS Z scanner. In the meanwhile, two microlenses, which are composed of Si and glass wafers, are anodically bonded to form a microlens doublet. Then, the microlens doublet is aligned and bonded with the scanner/spacer/beam splitter stack. The bonded array-type interferometer is a 7- wafer stack and the thickness is approximately 5mm. To separate such a thick wafer stack with various substrates, 2-step laser cutting is used to dice the bonded stack into Mirau chips. To simplify fabrication process of each component, electrical connections are created at the last step by mounting a Mirau chip onto a flip chip PCB instead of through wafer vias. Stability of Au/Ti films on the MEMS Z scanner after anodic bonding, laser cutting and flip chip bonding are discussed as well.

  7. In-situ Testing of the EHT High Gain and Frequency Ultra-Stable Integrators

    NASA Astrophysics Data System (ADS)

    Miller, Kenneth; Ziemba, Timothy; Prager, James; Slobodov, Ilia; Lotz, Dan

    2014-10-01

    Eagle Harbor Technologies (EHT) has developed a long-pulse integrator that exceeds the ITER specification for integration error and pulse duration. During the Phase I program, EHT improved the RPPL short-pulse integrators, added a fast digital reset, and demonstrated that the new integrators exceed the ITER integration error and pulse duration requirements. In Phase II, EHT developed Field Programmable Gate Array (FPGA) software that allows for integrator control and real-time signal digitization and processing. In the second year of Phase II, the EHT integrator will be tested at a validation platform experiment (HIT-SI) and tokamak (DIII-D). In the Phase IIB program, EHT will continue development of the EHT integrator to reduce overall cost per channel. EHT will test lower cost components, move to surface mount components, and add an onboard Field Programmable Gate Array and data acquisition to produce a stand-alone system with lower cost per channel and increased the channel density. EHT will test the Phase IIB integrator at a validation platform experiment (HIT-SI) and tokamak (DIII-D). Work supported by the DOE under Contract Number (DE-SC0006281).

  8. Transparent anodic TiO2 nanotube arrays on plastic substrates for disposable biosensors and flexible electronics.

    PubMed

    Farsinezhad, Samira; Mohammadpour, Arash; Dalrymple, Ashley N; Geisinger, Jared; Kar, Piyush; Brett, Michael J; Shankar, Karthik

    2013-04-01

    Exploitation of anodically formed self-organized TiO2 nanotube arrays in mass-manufactured, disposable biosensors, rollable electrochromic displays and flexible large-area solar cells would greatly benefit from integration with transparent and flexible polymeric substrates. Such integration requires the vacuum deposition of a thin film of titanium on the desired substrate, which is then anodized in suitable media to generate TiO2 nanotube arrays. However the challenges associated with control of Ti film morphology, nanotube array synthesis conditions, and film adhesion and transparency, have necessitated the use of substrate heating during deposition to temperatures of at least 300 degrees C and as high as 500 degrees C to generate highly ordered open-pore nanotube arrays, thus preventing the use of polymeric substrates. We report on a film growth technique that exploits atomic peening to achieve high quality transparent TiO2 nanotube arrays with lengths up to 5.1 microm at room temperature on polyimide substrates without the need for substrate heating or substrate biasing or a Kauffman ion source. The superior optical quality and uniformity of the nanotube arrays was evidenced by the high specular reflectivity and the smooth pattern of periodic interferometric fringes in the transmission spectra of the nanotube arrays, from which the wavelength-dependent effective refractive index was extracted for the air-TiO2 composite medium. A fluorescent immunoassay biosensor constructed using 5.1 microm-long transparent titania nanotube arrays (TTNAs) grown on Kapton substrates detected human cardiac troponin I at a concentration of 0.1 microg ml(-1).

  9. Realizing topological edge states in a silicon nitride microring-based photonic integrated circuit.

    PubMed

    Yin, Chenxuan; Chen, Yujie; Jiang, Xiaohui; Zhang, Yanfeng; Shao, Zengkai; Xu, Pengfei; Yu, Siyuan

    2016-10-15

    Topological edge states in a photonic integrated circuit based on the platform of silicon nitride are demonstrated with a two-dimensional coupled resonator optical waveguide array involving the synthetic magnetic field for photons at near-infrared wavelengths. Measurements indicate that the topological edge states can be observed at certain wavelengths, with light travelling around the boundary of the array. Combined with the induced disorders in fabrication near the edge, the system shows the defect immunity under the topological protection of edge states.

  10. Recent developments using TowerJazz SiGe BiCMOS platform for mmWave and THz applications

    NASA Astrophysics Data System (ADS)

    Kar-Roy, Arjun; Howard, David; Preisler, Edward J.; Racanelli, Marco

    2013-05-01

    In this paper, we report on the highest speed 240GHz/340GHz FT/FMAX NPN which is now available for product designs in the SBC18H4 process variant of TowerJazz's mature 0.18μm SBC18 silicon germanium (SiGe) BiCMOS technology platform. NFMIN of ~2dB at 50GHz has been obtained with these NPNs. We also describe the integration of earlier generation NPNs with FT/FMAX of 240GHz/280GHz into SBC13H3, a 0.13μm SiGe BiCMOS technology platform. Next, we detail the integration of the deep silicon via (DSV), through silicon via (TSV), high-resistivity substrate, sub-field stitching and hybrid-stitching capability into the 0.18μm SBC18 technology platform to enable higher performance and highly integrated product designs. The integration of SBC18H3 into a thick-film SOI substrate, with essentially unchanged FT and FMAX, is also described. We also report on recent circuit demonstrations using the SBC18H3 platform: (1) a 4-element phased-array 70-100GHz broadband transmit and receive chip with flat saturated power greater than 5dBm and conversion gain of 33dB; (2) a fully integrated W-band 9-element phase-controllable array with responsivity of 800MV/W and receiver NETD is 0.45K with 20ms integration time; (3) a 16-element 4x4 phased-array transmitter with scanning in both the E- and H-planes with maximum EIRP of 23-25 dBm at 100-110GHz; (4) a power efficient 200GHz VCO with -7.25dBm output power and tuning range of 3.5%; and (5) a 320GHz 16-element imaging receiver array with responsivity of 18KV/W at 315GHz, a 3dB bandwidth of 25GHz and a low NEP of 34pW/Hz1/2. Wafer-scale large-die implementation of the phased-arrays and mmWave imagers using stitching in TowerJazz SBC18 process are also discussed.

  11. Depth extraction method with high accuracy in integral imaging based on moving array lenslet technique

    NASA Astrophysics Data System (ADS)

    Wang, Yao-yao; Zhang, Juan; Zhao, Xue-wei; Song, Li-pei; Zhang, Bo; Zhao, Xing

    2018-03-01

    In order to improve depth extraction accuracy, a method using moving array lenslet technique (MALT) in pickup stage is proposed, which can decrease the depth interval caused by pixelation. In this method, the lenslet array is moved along the horizontal and vertical directions simultaneously for N times in a pitch to get N sets of elemental images. Computational integral imaging reconstruction method for MALT is taken to obtain the slice images of the 3D scene, and the sum modulus (SMD) blur metric is taken on these slice images to achieve the depth information of the 3D scene. Simulation and optical experiments are carried out to verify the feasibility of this method.

  12. The use of integrated focal plane array technologies in laser microsatellite networks

    NASA Astrophysics Data System (ADS)

    Arnon, Shlomi

    2004-10-01

    Clustering micro satellites in cooperative fly formation constellations leads to high-performance space systems. The only way to achieve high-speed communication between the satellites is by a laser beam with a narrow divergence angle. In order to make the communication successful three types of focal plane detector arrays are required in the communication terminal: acquisition, tracking and communication detector arrays. The acquisition detector array is used to acquire the neighbor satellite using a wide field-of-view telescope. The tracking detector provides fast, real time and accurate direction location of the neighbor satellite. Based on the information from the acquisition and tracking detectors the receiver and transmitter maintain line of sight. The development of large, fast and very sensitive focal plane detector arrays makes it possible to implement the acquisition, tracking and communication with only one focal plane detector array. By doing so it is possible to reduce dramatically the size, weight, and cost of the optics and electronics which leads to lightweight communication terminals. As a result, the satellites are smaller and lighter, which reduces the space mission cost and increases the booster efficiency. In this paper we will present an overview of the concept of integrated focal plane arrays for laser satellite communication. We also present simulation results based on real system parameters and compare different implementation options.

  13. Spectral ageing in the era of big data: integrated versus resolved models

    NASA Astrophysics Data System (ADS)

    Harwood, Jeremy J.

    2017-04-01

    Continuous injection models of spectral ageing have long been used to determine the age of radio galaxies from their integrated spectrum; however, many questions about their reliability remain unanswered. With various large area surveys imminent (e.g. LOw Frequency ARray, MeerKAT, Murchison Widefield Array) and planning for the next generation of radio interferometers are well underway (e.g. next generation VLA, Square Kilometre Array), investigations of radio galaxy physics are set to shift away from studies of individual sources to the population as a whole. Determining if and how integrated models of spectral ageing can be applied in the era of big data is therefore crucial. In this paper, I compare classical integrated models of spectral ageing to recent well-resolved studies that use modern analysis techniques on small spatial scales to determine their robustness and validity as a source selection method. I find that integrated models are unable to recover key parameters and, even when known a priori, provide a poor, frequency-dependent description of a source's spectrum. I show a disparity of up to a factor of 6 in age between the integrated and resolved methods but suggest, even with these inconsistencies, such models still provide a potential method of candidate selection in the search for remnant radio galaxies and in providing a cleaner selection of high redshift radio galaxies in z - α selected samples.

  14. KSC-00pp1219

    NASA Image and Video Library

    2000-08-30

    A solar array is nearly in place on the Integrated Equipment Assembly, next to Solar Array Wing-3, which is already installed. Components of the International Space Station, the arrays are scheduled to be launched on mission STS-97 in late November along with the P6 truss. The Station’s electrical power system (EPS) will use eight photovoltaic solar arrays to convert sunlight to electricity. Each of the eight solar arrays will be 112 feet long by 39 feet wide. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station

  15. Integrative Genomics Viewer (IGV) | Informatics Technology for Cancer Research (ITCR)

    Cancer.gov

    The Integrative Genomics Viewer (IGV) is a high-performance visualization tool for interactive exploration of large, integrated genomic datasets. It supports a wide variety of data types, including array-based and next-generation sequence data, and genomic annotations.

  16. Real-time label-free biosensing with integrated planar waveguide ring resonators

    NASA Astrophysics Data System (ADS)

    Sohlström, Hans; Gylfason, Kristinn B.; Hill, Daniel

    2010-05-01

    We review the use of planar integrated optical waveguide ring resonators for label free bio-sensing and present recent results from two European biosensor collaborations: SABIO and InTopSens. Planar waveguide ring resonators are attractive for label-free biosensing due to their small footprint, high Q-factors, and compatibility with on-chip optics and microfluidics. This enables integrated sensor arrays for compact labs-on-chip. One application of label-free sensor arrays is for point-of-care medical diagnostics. Bringing such powerful tools to the single medical practitioner is an important step towards personalized medicine, but requires addressing a number of issues: improving limit of detection, managing the influence of temperature, parallelization of the measurement for higher throughput and on-chip referencing, efficient light-coupling strategies to simplify alignment, and packaging of the optical chip and integration with microfluidics. From the SABIO project we report refractive index measurement and label-free biosensing in an 8-channel slotwaveguide ring resonator sensor array, within a compact cartridge with integrated microfluidics. The sensors show a volume sensing detection limit of 5 x 10-6 RIU and a surface sensing detection limit of 0.9 pg/mm2. From the InTopSens project we report early results on silicon-on-insulator racetrack resonators.

  17. Spontaneous CRISPR loci generation in vivo by non-canonical spacer integration

    PubMed Central

    Nivala, Jeff; Shipman, Seth L.; Church, George M.

    2018-01-01

    The adaptation phase of CRISPR-Cas immunity depends on the precise integration of short segments of foreign DNA (spacers) into a specific genomic location within the CRISPR locus by the Cas1-Cas2 integration complex. Although off-target spacer integration outside of canonical CRISPR arrays has been described in vitro, no evidence of non-specific integration activity has been found in vivo. Here, we show that non-canonical off-target integrations can occur within bacterial chromosomes at locations that resemble the native CRISPR locus by characterizing hundreds of off-target integration locations within Escherichia coli. Considering whether such promiscuous Cas1-Cas2 activity could have an evolutionary role through the genesis of neo-CRISPR loci, we combed existing CRISPR databases and available genomes for evidence of off-target integration activity. This search uncovered several putative instances of naturally occurring off-target spacer integration events within the genomes of Yersinia pestis and Sulfolobus islandicus. These results are important in understanding alternative routes to CRISPR array genesis and evolution, as well as in the use of spacer acquisition in technological applications. PMID:29379209

  18. Performance enhancement of uncooled infrared focal plane array by integrating metamaterial absorber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Wei; Wen, Yongzheng; Yu, Xiaomei, E-mail: yuxm@pku.edu.cn

    2015-03-16

    This letter presents an infrared (IR) focal plane array (FPA) with metamaterial absorber (MMA) integrated to enhance its performance. A glass substrate, on which arrays of bimaterial cantilevers are fabricated as the thermal-sensitive pixels by a polyimide surface sacrificial process, is employed to allow the optical readout from the back side of the substrate. Whereas the IR wave radiates onto the FPA from the front side, which consequently avoids the energy loss caused by the silicon substrate compared with the previous works. This structure also facilitates the integration of MMA by introducing a layer of periodic square resonators atop themore » SiN{sub x} structural layer to form a metal/dielectric/metal stack with the gold mirror functioning as the ground plane. A comparative experiment was carried out on the FPAs that use MMA and ordinary SiN{sub x} as the absorbers, respectively. The performance improvement was verified by the evaluation of the absorbers as well as the imaging results of both FPAs.« less

  19. A doubly curved reflector X-band antenna with integrated IFF array

    NASA Astrophysics Data System (ADS)

    Alia, F.; Barbati, S.

    Primary radar antennas and Identification Friend or Foe (IFF) antennas must rotate with the same speed and synchronism, so that the target echo and IFF transponder mark will appear to the operator at the same time and at the same angular direction. A doubly-curved reflector antenna with a six-element microstrip array integrated in the reflector surface is presented to meet this requirement. The main antenna operates at X-band for low angle search radar, while the secondary antenna operates at L-band for IFF functions. The new configuration minimizes masking of the X-band radiated energy as a result of the IFF L-band elements. In fact, the only effect of the microstrip array on the X-band radiation pattern is the presence of several sidelobes in the + or - 90 deg angular region. The proposed new solution is compared to three other L-band/X-band integrated antenna configurations, and is found to be more advantageous with respect to masking, mechanical aspects, and production costs.

  20. An implantable integrated low-power amplifier-microelectrode array for Brain-Machine Interfaces.

    PubMed

    Patrick, Erin; Sankar, Viswanath; Rowe, William; Sanchez, Justin C; Nishida, Toshikazu

    2010-01-01

    One of the important challenges in designing Brain-Machine Interfaces (BMI) is to build implantable systems that have the ability to reliably process the activity of large ensembles of cortical neurons. In this paper, we report the design, fabrication, and testing of a polyimide-based microelectrode array integrated with a low-power amplifier as part of the Florida Wireless Integrated Recording Electrode (FWIRE) project at the University of Florida developing a fully implantable neural recording system for BMI applications. The electrode array was fabricated using planar micromachining MEMS processes and hybrid packaged with the amplifier die using a flip-chip bonding technique. The system was tested both on bench and in-vivo. Acute and chronic neural recordings were obtained from a rodent for a period of 42 days. The electrode-amplifier performance was analyzed over the chronic recording period with the observation of a noise floor of 4.5 microVrms, and an average signal-to-noise ratio of 3.8.

  1. Integrated Antenna/Solar Array Cell (IA/SAC) System for Flexible Access Communications

    NASA Technical Reports Server (NTRS)

    Lee, Ricard Q.; Clark, Eric B.; Pal, Anna Maria T.; Wilt, David M.; Mueller, Carl H.

    2004-01-01

    Present satellite communications systems normally use separate solar cells and antennas. Since solar cells generally account for the largest surface area of the spacecraft, co-locating the antenna and solar cells on the same substrate opens the possibility for a number of data-rate-enhancing communications link architecture that would have minimal impact on spacecraft weight and size. The idea of integrating printed planar antenna and solar array cells on the same surface has been reported in the literature. The early work merely attempted to demonstrate the feasibility by placing commercial solar cells besides a patch antenna. Recently, Integrating multiple antenna elements and solar cell arrays on the same surface was reported for both space and terrestrial applications. The application of photovoltaic solar cell in a planar antenna structure where the radiating patch antenna is replaced by a Si solar cell has been demonstrated in wireless communication systems (C. Bendel, J. Kirchhof and N. Henze, 3rd Would Photovotaic Congress, Osaka, Japan, May 2003). Based on a hybrid approach, a 6x1 slot array with circularly polarized crossdipole elements co-located on the same surface of the solar cells array has been demonstrated (S. Vaccaro, J. R. Mosig and P. de Maagt, IEEE Trans. Ant. and Propag., Vol. 5 1, No. 8, Aug. 2003). Amorphous silicon solar cells with about 5-10% efficiency were used in these demonstrations. This paper describes recent effort to integrate advanced solar cells with printed planar antennas. Compared to prior art, the proposed WSAC concept is unique in the following ways: 1) Active antenna element will be used to achieve dynamic beam steering; 2) High efficiency (30%) GaAs multi-junction solar cells will be used instead of Si, which has an efficiency of about 15%; 3) Antenna and solar cells are integrated on a common GaAs substrate; and 4) Higher data rate capability. The IA/SAC is designed to operate at X-band (8-12 GH) and higher frequencies Higher operating frequencies enable greater bandwidth and thus higher data transfer rates. The first phase of the effort involves the development of GaAs solar cell MIMs (Monolithically Integrated Module) with a single patch antenna on the opposite side of the substrate. Subsequent work will involve the integration of MIMs and antennas on the same side of the substrate. Results from the phase one efforts will be presented.

  2. Towards Integrated Marmara Strong Motion Network

    NASA Astrophysics Data System (ADS)

    Durukal, E.; Erdik, M.; Safak, E.; Ansal, A.; Ozel, O.; Alcik, H.; Mert, A.; Kafadar, N.; Korkmaz, A.; Kurtulus, A.

    2009-04-01

    Istanbul has a 65% chance of having a magnitude 7 or above earthquake within the next 30 years. As part of the preparations for the future earthquake, strong motion networks have been installed in and around Istanbul. The Marmara Strong Motion Network, operated by the Department of Earthquake Engineering of Kandilli Observatory and Earthquake Research Institute, encompasses permanent systems outlined below. It is envisaged that the networks will be run by a single entity responsible for technical management and maintanence, as well as for data management, archiving and dissemination through dedicated web-based interfaces. • Istanbul Earthquake Rapid Response and Early Warning System - IERREWS (one hundred 18-bit accelerometers for rapid response; ten 24-bit accelerometers for early warning) • IGDAŞ Gas Shutoff Network (100 accelerometers to be installed in 2010 and integrated with IERREWS) • Structural Monitoring Arrays - Fatih Sultan Mehmet Suspension Bridge (1200m-long suspension bridge across the Bosphorus, five 3-component accelerometers + GPS sensors) - Hagia Sophia Array (1500-year-old historical edifice, 9 accelerometers) - Süleymaniye Mosque Array (450-year-old historical edifice,9 accelerometers) - Fatih Mosque Array (237-year-old historical edifice, 9 accelerometers) - Kanyon Building Array (high-rise office building, 5 accelerometers) - Isbank Tower Array (high-rise office building, 5 accelerometers) - ENRON Array (power generation facility, 4 acelerometers) - Mihrimah Sultan Mosque Array (450-year-old historical edifice,9 accelerometers + tiltmeters, to be installed in 2009) - Sultanahmet Mosque Array, (390-year-old historical edifice, 9 accelerometers + tiltmeters, to be installed in 2009) • Special Arrays - Atakoy Vertical Array (four 3-component accelerometers at 25, 50, 75, and 150 m depths) - Marmara Tube Tunnel (1400 m long submerged tunnel, 128 ch. accelerometric data, 24 ch. strain data, to be installed in 2010) - Air-Force Academy Array (72 ch. dense accelerometric array to be installed in 2010) - Gemlik Array (a dense basin array of 8 stations, to be installed in 2010) The objectives of these systems and networks are: (1) to produce rapid earthquake intensity, damage and loss assessment information after an earthquake (in the case of IERREWS), (2) to monitor conditions of structural systems, (3) to develop real-time data processing, analysis, and damage detection and location tools (in the case of structural networks) after an extreme event, (4) to assess spatial properties of strong ground motion and ground strain, and to characterise basin response (in the case of special arrays), (5) to investigate site response and wave propagation (in the case of vertical array). Ground motion data obtained from these strong motion networks have and are being used for investigations of attenuation, spatial variation (coherence), simulation benchmarking, source modeling, site response, seismic microzonation, system identification and structural model verification and structural health control. In addition to the systems and networks outlined above there are two temporary networks: KIMNET - a dense urban noise and microtremor network consisting of 50 broadband stations expected to be operational in mid 2009, and SOSEWIN - a 20-station, self-organizing structural integrated array at Ataköy in Istanbul.

  3. Nanoelectrode array for electrochemical analysis

    DOEpatents

    Yelton, William G [Sandia Park, NM; Siegal, Michael P [Albuquerque, NM

    2009-12-01

    A nanoelectrode array comprises a plurality of nanoelectrodes wherein the geometric dimensions of the electrode controls the electrochemical response, and the current density is independent of time. By combining a massive array of nanoelectrodes in parallel, the current signal can be amplified while still retaining the beneficial geometric advantages of nanoelectrodes. Such nanoelectrode arrays can be used in a sensor system for rapid, non-contaminating field analysis. For example, an array of suitably functionalized nanoelectrodes can be incorporated into a small, integrated sensor system that can identify many species rapidly and simultaneously under field conditions in high-resistivity water, without the need for chemical addition to increase conductivity.

  4. Development of an Ultraflex-Based Thin Film Solar Array for Space Applications

    NASA Technical Reports Server (NTRS)

    White, Steve; Douglas, Mark; Spence, Brian; Jones, P. Alan; Piszczor, Michael F.

    2003-01-01

    As flexible thin film photovoltaic (FTFPV) cell technology is developed for space applications, integration into a viable solar array structure that optimizes the attributes of this cell technology is critical. An advanced version of ABLE'sS UltraFlex solar array platform represents a near-term, low-risk approach to demonstrating outstanding array performance with the implementation of FTFPV technology. Recent studies indicate that an advanced UltraFlex solar array populated with 15% efficient thin film cells can achieve over 200 W/kg EOL. An overview on the status of hardware development and the future potential of this technology is presented.

  5. Faraday Cup Array Integrated with a Readout IC and Method for Manufacture Thereof

    NASA Technical Reports Server (NTRS)

    Temple, Dorota (Inventor); Bower, Christopher A. (Inventor); Hedgepath Gilchrist, Kristin (Inventor); Stoner, Brian R. (Inventor)

    2014-01-01

    A detector array and method for making the detector array. The array includes a substrate including a plurality of trenches formed therein, and includes a plurality of collectors electrically isolated from each other, formed on the walls of the trenches, and configured to collect charge particles incident on respective ones of the collectors and to output from said collectors signals indicative of charged particle collection. The array includes a plurality of readout circuits disposed on a side of the substrate opposite openings to the collectors. The readout circuits are configured to read charge collection signals from respective ones of the plurality of collectors.

  6. Vertically aligned carbon nanotubes for microelectrode arrays applications.

    PubMed

    Castro Smirnov, J R; Jover, Eric; Amade, Roger; Gabriel, Gemma; Villa, Rosa; Bertran, Enric

    2012-09-01

    In this work a methodology to fabricate carbon nanotube based electrodes using plasma enhanced chemical vapour deposition has been explored and defined. The final integrated microelectrode based devices should present specific properties that make them suitable for microelectrode arrays applications. The methodology studied has been focused on the preparation of highly regular and dense vertically aligned carbon nanotube (VACNT) mat compatible with the standard lithography used for microelectrode arrays technology.

  7. Meteorological Sensor Array (MSA)-Phase I. Volume 3 (Pre-Field Campaign Sensor Calibration)

    DTIC Science & Technology

    2015-07-01

    turbulence impact of the WSMR solar array. 4) Designing , developing, testing , and evaluating integrated Data Acquisition System (DAS) hardware and...ARL-TR-7362 ● JULY 2015 US Army Research Laboratory Meteorological Sensor Array (MSA)–Phase I, Volume 3 (Pre-Field Campaign...NOTICES Disclaimers The findings in this report are not to be construed as an official Department of the Army position unless so designated by

  8. Direct Fabrication of a-Si:H Thin Film Transistor Arrays on Plastic and Metal Foils for Flexible Displays

    DTIC Science & Technology

    2008-12-01

    TFTs ) arrays for high information content active matrix flexible displays for Army applications. For all flexible substrates a manufacturable...impermeable flexible substrate systems “display-ready” materials and handling protocols, (ii) high performance TFT devices and circuits fabricated...processes for integration with the flexible TFT arrays. Approaches and solution to address each of these major challenges are described in the

  9. Investigation of optical/infrared sensor techniques for application satellites

    NASA Technical Reports Server (NTRS)

    Kaufman, I.

    1972-01-01

    A method of scanning an optical sensor array by acoustic surface waves is discussed. Data cover detailed computer based analysis of the operation of a multielement acoustic surface-wave-scanned optical sensor, the development of design and operation techniques that were used to show the feasibility of an integrated array to design several such arrays, and experimental verification of a number of the calculations with discrete sensor devices.

  10. Infrared sensors for Earth observation missions

    NASA Astrophysics Data System (ADS)

    Ashcroft, P.; Thorne, P.; Weller, H.; Baker, I.

    2007-10-01

    SELEX S&AS is developing a family of infrared sensors for earth observation missions. The spectral bands cover shortwave infrared (SWIR) channels from around 1μm to long-wave infrared (LWIR) channels up to 15μm. Our mercury cadmium telluride (MCT) technology has enabled a sensor array design that can satisfy the requirements of all of the SWIR and medium-wave infrared (MWIR) bands with near-identical arrays. This is made possible by the combination of a set of existing technologies that together enable a high degree of flexibility in the pixel geometry, sensitivity, and photocurrent integration capacity. The solution employs a photodiode array under the control of a readout integrated circuit (ROIC). The ROIC allows flexible geometries and in-pixel redundancy to maximise operability and reliability, by combining the photocurrent from a number of photodiodes into a single pixel. Defective or inoperable diodes (or "sub-pixels") can be deselected with tolerable impact on the overall pixel performance. The arrays will be fabricated using the "loophole" process in MCT grown by liquid-phase epitaxy (LPE). These arrays are inherently robust, offer high quantum efficiencies and have been used in previous space programs. The use of loophole arrays also offers access to SELEX's avalanche photodiode (APD) technology, allowing low-noise, highly uniform gain at the pixel level where photon flux is very low.

  11. Wide-Bandgap CIAS Thin-film Photovoltaics with Transparent Back Contacts for Next-Generation Single and Multijunction Devices

    NASA Technical Reports Server (NTRS)

    Woods, Lawrence M.; Kalla, Ajay; Gonzalez, Damian; Ribelin, Rosine

    2005-01-01

    Future spacecraft and high-altitude airship (HAA) technologies will require high array specific power (W/kg), which can be met using thin-film photovoltaics (PV) on lightweight and flexible substrates. It has been calculated that the thin-film array technology, including the array support structure, begins to exceed the specific power of crystalline multi-junction arrays when the thin-film device efficiencies begin to exceed 12%. Thin-film PV devices have other advantages in that they are more easily integrated into HAA s, and are projected to be much less costly than their crystalline PV counterparts. Furthermore, it is likely that only thin-film array technology will be able to meet device specific power requirements exceeding 1 kW/kg (photovoltaic and integrated substrate/blanket mass only). Of the various thin-film technologies, single junction and radiation resistant CuInSe2 (CIS) and associated alloys with gallium, aluminum and sulfur have achieved the highest levels of thin-film device performance, with the best efficiency, reaching 19.2% under AM1.5 illumination conditions and on thick glass substrates.(3) Thus, it is anticipated that single- and tandem-junction devices with flexible substrates and based on CIS and related alloys could achieve the highest levels of thin-film space and HAA solar array performance.

  12. Flexible Integration of Both High Imaging Resolution and High Power Arrays for Ultrasound-Induced Thermal Strain Imaging (US-TSI)

    PubMed Central

    Stephens, Douglas N.; Mahmoud, Ahmed M.; Ding, Xuan; Lucero, Steven; Dutta, Debaditya; Yu, Francois T.H.; Chen, Xucai

    2013-01-01

    Ultrasound-induced thermal strain imaging (US-TSI) for carotid artery plaque detection requires both high imaging resolution (<100 μm) and sufficient US induced heating to elevate the tissue temperature (~1-3°C within 1-3 cardiac cycles) in order to produce a noticeable change in sound speed in the targeted tissues. Since the optimization of both imaging and heating in a monolithic array design is particularly expensive and inflexible, a new integrated approach is presented that utilizes independent ultrasound arrays to meet the requirements for this particular application. This work demonstrates a new approach in dual-array construction. A 3D printed manifold was built to support both a high resolution 20 MHz commercial imaging array and 6 custom heating elements operating in the 3.5-4 MHz range. For the application of US-TSI on carotid plaque characterization, the tissue target site is 20 to 30 mm deep, with a typical target volume of 2 mm (elevation) × 8 mm (azimuthal) × 5 mm (depth). The custom heating array performance was fully characterized for two design variants (flat and spherical apertures), and can easily deliver 30 W of total acoustic power to produce intensities greater than 15 W/cm2 in tissue target region. PMID:24297029

  13. Graded nanowell arrays: a fine plasmonic "library" with an adjustable spectral range.

    PubMed

    Xue, Peihong; Ye, Shunsheng; Su, Hongyang; Wang, Shuli; Nan, Jingjie; Chen, Xingchi; Ruan, Weidong; Zhang, Junhu; Cui, Zhanchen; Yang, Bai

    2017-05-25

    We present an effective approach for fabricating graded plasmonic arrays based on ordered micro-/nanostructures with a geometric gradient. Ag nanowell arrays with graded geometric parameters were fabricated and systematically investigated. The order of the graded plasmonic arrays is generated by colloidal lithography, while the geometric gradient is the result of inclined reactive ion etching. The surface plasmon resonance (SPR) peaks were measured at different positions, which move gradually along the Ag nanowell arrays with a geometric gradient. Such micro-/nanostructure arrays with graded and integrated SPR peaks can work as a fine plasmonic "library" (FPL), and the spectral range can be controlled using a "coarse adjustment knob" (lattice constant) and a "fine adjustment knob" (pore diameter). Additionally, the spectral resolution of the FPL is high, which benefits from the high value of the full height/full width at half-maximum and the small step size of the wavelength shift (0.5 nm). Meanwhile, the FPL could be effectively applied as a well-defined model to verify the plasmonic enhancement in surface enhanced Raman scattering. As the FPL is an integrated optical material with graded individual SPR peaks, it can not only be a theoretical model for fundamental research, but also has great potential in high-throughput screening of optical materials, multiplex sensors, etc.

  14. Metallic Nanowire Interconnections for Integrated Circuit Fabrication

    NASA Technical Reports Server (NTRS)

    Ng, Hou Tee (Inventor); Li, Jun (Inventor); Meyyappan, Meyya (Inventor)

    2007-01-01

    A method for fabricating an electrical interconnect between two or more electrical components. A conductive layer is provided on a substarte and a thin, patterned catalyst array is deposited on an exposed surface of the conductive layer. A gas or vapor of a metallic precursor of a metal nanowire (MeNW) is provided around the catalyst array, and MeNWs grow between the conductive layer and the catalyst array. The catalyst array and a portion of each of the MeNWs are removed to provide exposed ends of the MeNWs.

  15. Integrally regulated solar array demonstration using an Intel 8080 microprocessor

    NASA Technical Reports Server (NTRS)

    Petrik, E. J.

    1977-01-01

    A concept for regulating the voltage of a solar array by using a microprocessor to effect discrete voltage changes was demonstrated. Eight shorting switches were employed to regulate a simulated array at set-point voltages between 10,000 and 15,000 volts. The demonstration showed that the microprocessor easily regulated the solar array output voltage independently of whether or not the switched cell groups were binary sized in voltage. In addition, the microprocessor provided logic memory capability to perform additional tasks such as locating and insolating a faulty switch.

  16. Time and space integrating acousto-optic folded spectrum processing for SETI

    NASA Technical Reports Server (NTRS)

    Wagner, K.; Psaltis, D.

    1986-01-01

    Time and space integrating folded spectrum techniques utilizing acousto-optic devices (AOD) as 1-D input transducers are investigated for a potential application as wideband, high resolution, large processing gain spectrum analyzers in the search for extra-terrestrial intelligence (SETI) program. The space integrating Fourier transform performed by a lens channels the coarse spectral components diffracted from an AOD onto an array of time integrating narrowband fine resolution spectrum analyzers. The pulsing action of a laser diode samples the interferometrically detected output, aliasing the fine resolution components to baseband, as required for the subsequent charge coupled devices (CCD) processing. The raster scan mechanism incorporated into the readout of the CCD detector array is used to unfold the 2-D transform, reproducing the desired high resolution Fourier transform of the input signal.

  17. Short-range/Long-range Integrated Target (SLIT) for Video Guidance Sensor Rendezvous and Docking

    NASA Technical Reports Server (NTRS)

    Roe, Fred D. (Inventor); Bryan, Thomas C. (Inventor)

    2009-01-01

    A laser target reflector assembly for mounting upon spacecraft having a long-range reflector array formed from a plurality of unfiltered light reflectors embedded in an array pattern upon a hemispherical reflector disposed upon a mounting plate. The reflector assembly also includes a short-range reflector array positioned upon the mounting body proximate to the long-range reflector array. The short-range reflector array includes three filtered light reflectors positioned upon extensions from the mounting body. The three filtered light reflectors retro-reflect substantially all incident light rays that are transmissive by their monochromatic filters and received by the three filtered light reflectors. In one embodiment the short-range reflector array is embedded within the hemispherical reflector,

  18. Optical beam forming techniques for phased array antennas

    NASA Technical Reports Server (NTRS)

    Wu, Te-Kao; Chandler, C.

    1993-01-01

    Conventional phased array antennas using waveguide or coax for signal distribution are impractical for large scale implementation on satellites or spacecraft because they exhibit prohibitively large system size, heavy weight, high attenuation loss, limited bandwidth, sensitivity to electromagnetic interference (EMI) temperature drifts and phase instability. However, optical beam forming systems are smaller, lighter, and more flexible. Three optical beam forming techniques are identified as applicable to large spaceborne phased array antennas. They are (1) the optical fiber replacement of conventional RF phased array distribution and control components, (2) spatial beam forming, and (3) optical beam splitting with integrated quasi-optical components. The optical fiber replacement and the spatial beam forming approaches were pursued by many organizations. Two new optical beam forming architectures are presented. Both architectures involve monolithic integration of the antenna radiating elements with quasi-optical grid detector arrays. The advantages of the grid detector array in the optical process are the higher power handling capability and the dynamic range. One architecture involves a modified version of the original spatial beam forming approach. The basic difference is the spatial light modulator (SLM) device for controlling the aperture field distribution. The original liquid crystal light valve SLM is replaced by an optical shuffling SLM, which was demonstrated for the 'smart pixel' technology. The advantages are the capability of generating the agile beams of a phased array antenna and to provide simultaneous transmit and receive functions. The second architecture considered is the optical beam splitting approach. This architecture involves an alternative amplitude control for each antenna element with an optical beam power divider comprised of mirrors and beam splitters. It also implements the quasi-optical grid phase shifter for phase control and grid amplifier for RF power. The advantages are no SLM is required for this approach, and the complete antenna system is capable of full monolithic integration.

  19. Integrated Miniature Arrays of Optical Biomolecule Detectors

    NASA Technical Reports Server (NTRS)

    Iltchenko, Vladimir; Maleki, Lute; Lin, Ying; Le, Thanh

    2009-01-01

    Integrated miniature planar arrays of optical sensors for detecting specific biochemicals in extremely small quantities have been proposed. An array of this type would have an area of about 1 cm2. Each element of the array would include an optical microresonator that would have a high value of the resonance quality factor (Q . 107). The surface of each microresonator would be derivatized to make it bind molecules of a species of interest, and such binding would introduce a measurable change in the optical properties of the microresonator. Because each microresonator could be derivatized for detection of a specific biochemical different from those of the other microresonators, it would be possible to detect multiple specific biochemicals by simultaneous or sequential interrogation of all the elements in the array. Moreover, the derivatization would make it unnecessary to prepare samples by chemical tagging. Such interrogation would be effected by means of a grid of row and column polymer-based optical waveguides that would be integral parts of a chip on which the array would be fabricated. The row and column polymer-based optical waveguides would intersect at the elements of the array (see figure). At each intersection, the row and column waveguides would be optically coupled to one of the microresonators. The polymer-based waveguides would be connected via optical fibers to external light sources and photodetectors. One set of waveguides and fibers (e.g., the row waveguides and fibers) would couple light from the sources to the resonators; the other set of waveguides and fibers (e.g., the column waveguides and fibers) would couple light from the microresonators to the photodetectors. Each microresonator could be addressed individually by row and column for measurement of its optical transmission. Optionally, the chip could be fabricated so that each microresonator would lie inside a microwell, into which a microscopic liquid sample could be dispensed.

  20. A discrete component low-noise preamplifier readout for a linear (1×16) SiC photodiode array

    NASA Astrophysics Data System (ADS)

    Kahle, Duncan; Aslam, Shahid; Herrero, Federico A.; Waczynski, Augustyn

    2016-09-01

    A compact, low-noise and inexpensive preamplifier circuit has been designed and fabricated to optimally readout a common cathode (1×16) channel 4H-SiC Schottky photodiode array for use in ultraviolet experiments. The readout uses an operational amplifier with 10 pF capacitor in the feedback loop in parallel with a low leakage switch for each of the channels. This circuit configuration allows for reiterative sample, integrate and reset. A sampling technique is given to remove Johnson noise, enabling a femtoampere level readout noise performance. Commercial-off-the-shelf acquisition electronics are used to digitize the preamplifier analog signals. The data logging acquisition electronics has a different integration circuit, which allows the bandwidth and gain to be independently adjusted. Using this readout, photoresponse measurements across the array between spectral wavelengths 200 nm and 370 nm are made to establish the array pixels external quantum efficiency, current responsivity and noise equivalent power.

  1. KSC00pp1688

    NASA Image and Video Library

    2000-11-10

    KENNEDY SPACE CENTER, FLA. -- The payload transport canister (right) and workers wait for the arrival of the P6 integrated truss segment (left) carried by the overhead crane. After being placed in the canister, the truss will be transported to Launch Pad 39B and the payload changeout room. Then it will be moved into Space Shuttle Endeavour’s payload bay for mission STS-97. The P6 comprises Solar Array Wing-3 and the Integrated Electronic Assembly, to be installed on the Space Station. The Station’s electrical power system will use eight photovoltaic solar arrays, each 112 feet long by 39 feet wide, to convert sunlight to electricity. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station. The STS-97 launch is scheduled Nov. 30 at 10:06 p.m. EST

  2. KSC-00pp1681

    NASA Image and Video Library

    2000-11-10

    In the Space Station Processing Facility, workers attach an overhead crane to lift the P6 integrated truss segment from a workstand and move it to the payload transport canister for transfer to Launch Pad 39B. There it will be placed in Endeavour’s payload bay for launch on mission STS-97. The P6 comprises Solar Array Wing-3 and the Integrated Electronic Assembly, to be installed on the International Space Station. The Station’s electrical power system will use eight photovoltaic solar arrays, each 112 feet long by 39 feet wide, to convert sunlight to electricity. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station. Launch is scheduled for Nov. 30 at 10:06 p.m. EST

  3. KSC-00pp1691

    NASA Image and Video Library

    2000-11-10

    KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, the P6 integrated truss segment is placed in the payload transport canister while workers watch its progress. After being secured in the canister, the truss will be transported to Launch Pad 39B and the payload changeout room. Then it will be moved into Space Shuttle Endeavour’s payload bay for mission STS-97. The P6 comprises Solar Array Wing-3 and the Integrated Electronic Assembly, to be installed on the Space Station. The Station’s electrical power system will use eight photovoltaic solar arrays, each 112 feet long by 39 feet wide, to convert sunlight to electricity. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station. The STS-97 launch is scheduled Nov. 30 at 10:06 p.m. EST

  4. KSC-00pp1685

    NASA Image and Video Library

    2000-11-10

    As it travels across the Space Station Processing Facility, the P6 integrated truss segment passes over the two Italian-built Multi-Purpose Logistics Modules, Leonardo (right) and Raffaello (behind Leonardo). The P6 is being moved to a payload transport canister for transfer to Launch Pad 39B. There it will be placed in Endeavour’s payload bay for launch on mission STS-97. The P6 comprises Solar Array Wing-3 and the Integrated Electronic Assembly, to be installed on the Space Station. The Station’s electrical power system will use eight photovoltaic solar arrays, each 112 feet long by 39 feet wide, to convert sunlight to electricity. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station. Launch is scheduled Nov. 30 at 10:06 p.m. EST

  5. KSC00pp1691

    NASA Image and Video Library

    2000-11-10

    KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, the P6 integrated truss segment is placed in the payload transport canister while workers watch its progress. After being secured in the canister, the truss will be transported to Launch Pad 39B and the payload changeout room. Then it will be moved into Space Shuttle Endeavour’s payload bay for mission STS-97. The P6 comprises Solar Array Wing-3 and the Integrated Electronic Assembly, to be installed on the Space Station. The Station’s electrical power system will use eight photovoltaic solar arrays, each 112 feet long by 39 feet wide, to convert sunlight to electricity. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station. The STS-97 launch is scheduled Nov. 30 at 10:06 p.m. EST

  6. KSC-00pp1684

    NASA Image and Video Library

    2000-11-10

    In the Space Station Processing Facility, the P6 integrated truss segment travels across the building to a payload transport canister for transfer to Launch Pad 39B. There it will be placed in Endeavour’s payload bay for launch on mission STS-97. At left is the airlock module, another component of the International Space Station. The P6 comprises Solar Array Wing-3 and the Integrated Electronic Assembly, to be installed on the Space Station. The Station’s electrical power system will use eight photovoltaic solar arrays, each 112 feet long by 39 feet wide, to convert sunlight to electricity. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station. Launch is scheduled Nov. 30 at 10:06 p.m. EST

  7. KSC-00pp1688

    NASA Image and Video Library

    2000-11-10

    KENNEDY SPACE CENTER, FLA. -- The payload transport canister (right) and workers wait for the arrival of the P6 integrated truss segment (left) carried by the overhead crane. After being placed in the canister, the truss will be transported to Launch Pad 39B and the payload changeout room. Then it will be moved into Space Shuttle Endeavour’s payload bay for mission STS-97. The P6 comprises Solar Array Wing-3 and the Integrated Electronic Assembly, to be installed on the Space Station. The Station’s electrical power system will use eight photovoltaic solar arrays, each 112 feet long by 39 feet wide, to convert sunlight to electricity. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station. The STS-97 launch is scheduled Nov. 30 at 10:06 p.m. EST

  8. KSC-00pp1686

    NASA Image and Video Library

    2000-11-10

    Carried by an overhead crane, the P6 integrated truss segment travels the length of the Space Station Processing Facility toward a payload transport canister that will transfer it to Launch Pad 39B. At the pad, the Space Station element will be placed in Endeavour’s payload bay for launch on mission STS-97. The P6 comprises Solar Array Wing-3 and the Integrated Electronic Assembly, to be installed on the Space Station. The Station’s electrical power system will use eight photovoltaic solar arrays, each 112 feet long by 39 feet wide, to convert sunlight to electricity. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station. The STS-97 launch is scheduled Nov. 30 at 10:06 p.m. EST

  9. KSC-00pp1687

    NASA Image and Video Library

    2000-11-10

    The P6 integrated truss segment hangs suspended from an overhead crane that is moving it the length of the Space Station Processing Facility toward a payload transport canister for transfer to Launch Pad 39B. At the pad, the Space Station element will be placed in Endeavour’s payload bay for launch on mission STS-97. The P6 comprises Solar Array Wing-3 and the Integrated Electronic Assembly, to be installed on the Space Station. The Station’s electrical power system will use eight photovoltaic solar arrays, each 112 feet long by 39 feet wide, to convert sunlight to electricity. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station. The STS-97 launch is scheduled Nov. 30 at 10:06 p.m. EST

  10. Miniaturized high throughput detection system for capillary array electrophoresis on chip with integrated light emitting diode array as addressed ring-shaped light source.

    PubMed

    Ren, Kangning; Liang, Qionglin; Mu, Xuan; Luo, Guoan; Wang, Yiming

    2009-03-07

    A novel miniaturized, portable fluorescence detection system for capillary array electrophoresis (CAE) on a microfluidic chip was developed, consisting of a scanning light-emitting diode (LED) light source and a single point photoelectric sensor. Without charge coupled detector (CCD), lens, fibers and moving parts, the system was extremely simplified. Pulsed driving of the LED significantly increased the sensitivity, and greatly reduced the power consumption and photobleaching effect. The highly integrated system was robust and easy to use. All the advantages realized the concept of a portable micro-total analysis system (micro-TAS), which could work on a single universal serial bus (USB) port. Compared with traditional CAE detecting systems, the current system could scan the radial capillary array with high scanning rate. An 8-channel CAE of fluorescein isothiocyanate (FITC) labeled arginine (Arg) on chip was demonstrated with this system, resulting in a limit of detection (LOD) of 640 amol.

  11. A Discrete Component Low-Noise Preamplifier Readout for a Linear (1x16) SiC Photodiode Array

    NASA Technical Reports Server (NTRS)

    Kahle, Duncan; Aslam, Shahid; Herrero, Frederico A.; Waczynski, Augustyn

    2016-01-01

    A compact, low-noise and inexpensive preamplifier circuit has been designed and fabricated to optimally readout a common cathode (1x16) channel 4H-SiC Schottky photodiode array for use in ultraviolet experiments. The readout uses an operational amplifier with 10 pF capacitor in the feedback loop in parallel with a low leakage switch for each of the channels. This circuit configuration allows for reiterative sample, integrate and reset. A sampling technique is given to remove Johnson noise, enabling a femtoampere level readout noise performance. Commercial-off-the-shelf acquisition electronics are used to digitize the preamplifier analogue signals. The data logging acquisition electronics has a different integration circuit, which allows the bandwidth and gain to be independently adjusted. Using this readout, photoresponse measurements across the array between spectral wavelengths 200 nm and 370 nm are made to establish the array pixels external quantum efficiency, current responsivity and noise equivalent power.

  12. Super non-linear RRAM with ultra-low power for 3D vertical nano-crossbar arrays.

    PubMed

    Luo, Qing; Xu, Xiaoxin; Liu, Hongtao; Lv, Hangbing; Gong, Tiancheng; Long, Shibing; Liu, Qi; Sun, Haitao; Banerjee, Writam; Li, Ling; Gao, Jianfeng; Lu, Nianduan; Liu, Ming

    2016-08-25

    Vertical crossbar arrays provide a cost-effective approach for high density three-dimensional (3D) integration of resistive random access memory. However, an individual selector device is not allowed to be integrated with the memory cell separately. The development of V-RRAM has impeded the lack of satisfactory self-selective cells. In this study, we have developed a high performance bilayer self-selective device using HfO2 as the memory switching layer and a mixed ionic and electron conductor as the selective layer. The device exhibits high non-linearity (>10(3)) and ultra-low half-select leakage (<0.1 pA). A four layer vertical crossbar array was successfully demonstrated based on the developed self-selective device. High uniformity, ultra-low leakage, sub-nA operation, self-compliance, and excellent read/write disturbance immunity were achieved. The robust array level performance shows attractive potential for low power and high density 3D data storage applications.

  13. KSC-00pp1212

    NASA Image and Video Library

    2000-08-30

    Workers rise to the occasion on accordion lifts as they oversee the movement of solar array in front of them. The solar array will be installed onto the Integrated Equipment Assembly (IEA). A component of the International Space Station, the solar array is the second one being installed on the IEA. The arrays are scheduled to be launched on mission STS-97 in late November along with the P6 truss. The Station’s electrical power system (EPS) will use eight photovoltaic solar arrays to convert sunlight to electricity. Each of the eight solar arrays will be 112 feet long by 39 feet wide. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station

  14. KSC-00pp1213

    NASA Image and Video Library

    2000-08-30

    An overhead crane in the Space Station Processing Facility lifts a solar array as workers stand by to help guide it. The solar array will be installed onto the Integrated Equipment Assembly (IEA). A component of the International Space Station, the solar array is the second one being installed on the IEA. The arrays are scheduled to be launched on mission STS-97 in late November along with the P6 truss. The Station’s electrical power system (EPS) will use eight photovoltaic solar arrays to convert sunlight to electricity. Each of the eight solar arrays will be 112 feet long by 39 feet wide. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station

  15. KSC-00pp1214

    NASA Image and Video Library

    2000-08-30

    The overhead crane carrying a solar array turns on its axis to move the array to the Integrated Equipment Assembly (IEA) for installation. A component of the International Space Station, the solar array is the second one being installed on the IEA. The arrays are scheduled to be launched on mission STS-97 in late November along with the P6 truss. The Station’s electrical power system (EPS) will use eight photovoltaic solar arrays to convert sunlight to electricity. Each of the eight solar arrays will be 112 feet long by 39 feet wide. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station

  16. Breadboard linear array scan imager using LSI solid-state technology

    NASA Technical Reports Server (NTRS)

    Tracy, R. A.; Brennan, J. A.; Frankel, D. G.; Noll, R. E.

    1976-01-01

    The performance of large scale integration photodiode arrays in a linear array scan (pushbroom) breadboard was evaluated for application to multispectral remote sensing of the earth's resources. The technical approach, implementation, and test results of the program are described. Several self scanned linear array visible photodetector focal plane arrays were fabricated and evaluated in an optical bench configuration. A 1728-detector array operating in four bands (0.5 - 1.1 micrometer) was evaluated for noise, spectral response, dynamic range, crosstalk, MTF, noise equivalent irradiance, linearity, and image quality. Other results include image artifact data, temporal characteristics, radiometric accuracy, calibration experience, chip alignment, and array fabrication experience. Special studies and experimentation were included in long array fabrication and real-time image processing for low-cost ground stations, including the use of computer image processing. High quality images were produced and all objectives of the program were attained.

  17. CMOS imager for pointing and tracking applications

    NASA Technical Reports Server (NTRS)

    Sun, Chao (Inventor); Pain, Bedabrata (Inventor); Yang, Guang (Inventor); Heynssens, Julie B. (Inventor)

    2006-01-01

    Systems and techniques to realize pointing and tracking applications with CMOS imaging devices. In general, in one implementation, the technique includes: sampling multiple rows and multiple columns of an active pixel sensor array into a memory array (e.g., an on-chip memory array), and reading out the multiple rows and multiple columns sampled in the memory array to provide image data with reduced motion artifact. Various operation modes may be provided, including TDS, CDS, CQS, a tracking mode to read out multiple windows, and/or a mode employing a sample-first-read-later readout scheme. The tracking mode can take advantage of a diagonal switch array. The diagonal switch array, the active pixel sensor array and the memory array can be integrated onto a single imager chip with a controller. This imager device can be part of a larger imaging system for both space-based applications and terrestrial applications.

  18. Integrating Scientific Array Processing into Standard SQL

    NASA Astrophysics Data System (ADS)

    Misev, Dimitar; Bachhuber, Johannes; Baumann, Peter

    2014-05-01

    We live in a time that is dominated by data. Data storage is cheap and more applications than ever accrue vast amounts of data. Storing the emerging multidimensional data sets efficiently, however, and allowing them to be queried by their inherent structure, is a challenge many databases have to face today. Despite the fact that multidimensional array data is almost always linked to additional, non-array information, array databases have mostly developed separately from relational systems, resulting in a disparity between the two database categories. The current SQL standard and SQL DBMS supports arrays - and in an extension also multidimensional arrays - but does so in a very rudimentary and inefficient way. This poster demonstrates the practicality of an SQL extension for array processing, implemented in a proof-of-concept multi-faceted system that manages a federation of array and relational database systems, providing transparent, efficient and scalable access to the heterogeneous data in them.

  19. Design and integration of a generic disposable array-compatible sensor housing into an integrated disposable indirect microfluidic flow injection analysis system.

    PubMed

    Rapp, Bastian E; Schickling, Benjamin; Prokop, Jürgen; Piotter, Volker; Rapp, Michael; Länge, Kerstin

    2011-10-01

    We describe an integration strategy for arbitrary sensors intended to be used as biosensors in biomedical or bioanalytical applications. For such devices ease of handling (by a potential end user) as well as strict disposable usage are of importance. Firstly we describe a generic array compatible polymer sensor housing with an effective sample volume of 1.55 μl. This housing leaves the sensitive surface of the sensor accessible for the application of biosensing layers even after the embedding. In a second step we show how this sensor housing can be used in combination with a passive disposable microfluidic chip to set up arbitrary 8-fold sensor arrays and how such a system can be complemented with an indirect microfluidic flow injection analysis (FIA) system. This system is designed in a way that it strictly separates between disposable and reusable components- by introducing tetradecane as an intermediate liquid. This results in a sensor system compatible with the demands of most biomedical applications. Comparative measurements between a classical macroscopic FIA system and this integrated indirect microfluidic system are presented. We use a surface acoustic wave (SAW) sensor as an exemplary detector in this work.

  20. Patterning two-dimensional chalcogenide crystals of Bi2Se3 and In2Se3 and efficient photodetectors

    PubMed Central

    Zheng, Wenshan; Xie, Tian; Zhou, Yu; Chen, Y.L.; Jiang, Wei; Zhao, Shuli; Wu, Jinxiong; Jing, Yumei; Wu, Yue; Chen, Guanchu; Guo, Yunfan; Yin, Jianbo; Huang, Shaoyun; Xu, H.Q.; Liu, Zhongfan; Peng, Hailin

    2015-01-01

    Patterning of high-quality two-dimensional chalcogenide crystals with unique planar structures and various fascinating electronic properties offers great potential for batch fabrication and integration of electronic and optoelectronic devices. However, it remains a challenge that requires accurate control of the crystallization, thickness, position, orientation and layout. Here we develop a method that combines microintaglio printing with van der Waals epitaxy to efficiently pattern various single-crystal two-dimensional chalcogenides onto transparent insulating mica substrates. Using this approach, we have patterned large-area arrays of two-dimensional single-crystal Bi2Se3 topological insulator with a record high Hall mobility of ∼1,750 cm2 V−1 s−1 at room temperature. Furthermore, our patterned two-dimensional In2Se3 crystal arrays have been integrated and packaged to flexible photodetectors, yielding an ultrahigh external photoresponsivity of ∼1,650 A W−1 at 633 nm. The facile patterning, integration and packaging of high-quality two-dimensional chalcogenide crystals hold promise for innovations of next-generation photodetector arrays, wearable electronics and integrated optoelectronic circuits. PMID:25898022

  1. Wavelength selective switch array employing silica-based waveguide frontend with integrated polarization diversity optics.

    PubMed

    Sakamaki, Yohei; Shikama, Kota; Ikuma, Yuichiro; Suzuki, Kenya

    2017-08-21

    We propose a waveguide frontend with integrated polarization diversity optics for a wavelength selective switch (WSS) array with a liquid crystal on silicon switching engine to simplify the free space optics configuration and the alignment process in optical modules. The polarization diversity function is realized by the integration of a waveguide-type polarization beam splitter and a polarization rotating half-wave plate in a beam launcher using silica-based planar lightwave circuit technology. We confirmed experimentally the feasibility of using our proposed waveguide frontend in a two-in-one 1 × 20 WSS. The experimental results show that the fabricated waveguide frontend provides a polarization diversity function without any degradation in optical performance.

  2. Microchamber arrays with an integrated long luminescence lifetime pH sensor.

    PubMed

    Poehler, Elisabeth; Pfeiffer, Simon A; Herm, Marc; Gaebler, Michael; Busse, Benedikt; Nagl, Stefan

    2016-04-01

    A pH probe with a microsecond luminescence lifetime was obtained via covalent coupling of 6-carboxynaphthofluorescein (CNF) moieties to ruthenium-tris-(1,10-phenanthroline)(2+). The probe was covalently attached to amino-modified poly-(2-hydroxyethyl)methacrylate (pHEMA) and showed a pH-dependent FRET with luminescence lifetimes of 681 to 1260 ns and a working range from ca. pH 6.5 to 9.0 with a pKa of 7.79 ± 0.14. The pH sensor matrix was integrated via spin coating as ca. 1- to 2-μm-thick layer into "CytoCapture" cell culture dishes of 6 mm in diameter. These contained a microcavity array of square-shaped regions of 40 μm length and width and 15 μm depth that was homogeneously coated with the pH sensor matrix. The sensor layer showed fast response times in both directions. A microscopic setup was developed that enabled imaging of the pH inside the microchamber arrays over many hours. As a proof of principle, we monitored the pH of Escherichia coli cell cultures grown in the microchamber arrays. The integrated sensor matrix allowed pH monitoring spatially resolved in every microchamber, and the differences in cell growth between individual chambers could be resolved and quantified.

  3. New Planar Wire Array Experiments on the LTD Generator at U Michigan

    NASA Astrophysics Data System (ADS)

    Weller, M. E.; Safronova, A. S.; Kantsyrev, V. L.; Shrestha, I.; Shlyaptseva, V. V.; Cooper, M. C.; Lorance, M. Y.; Stafford, A.; Petkov, E. E.; Jordan, N. M.; Patel, S. G.; Steiner, A. M.; Yager-Elorriaga, D. A.; Gilgenbach, R. M.

    2014-10-01

    Experiments on planar wire array z-pinches have been carried out on the MAIZE Linear Transformer Driver (LTD) generator at the University of Michigan (UM) for the first time. Specifically, Al (Al 5056, 95% Al, 5% Mg) double planar wire arrays (DPWAs) comprising six wires in each plane with interplanar gaps of 3.0 mm and 6.0 mm and interwire gaps of 0.7 mm and 1.0 mm were imploded with x-ray time-integrated spectra indicating electron temperatures of over 450 eV for K-shell Al and Mg, while producing mostly optically thin lines. In addition to x-ray time-integrated spectra, the diagnostics included x-ray time-integrated pinhole cameras, two silicon diodes, and shadowgraphy, which are analyzed and compared. The MAIZE LTD is capable of supplying up 1.0 MA, 100 kV pulses with 100 ns rise time into a matched load. However, for these experiments the LTD was charged to +-70 kV resulting in up to 0.5 MA with a current rise time of approximately 150 ns. Future experiments and the importance of studying planar wire arrays on LTD devices are discussed. This work supported by NNSA under DOE Cooperative Agreement DE-NA0001984. S. Patel & A. Steiner supported by Sandia. D. Yager-Elorriaga supported by NSF GF.

  4. System-Level Integrated Circuit (SLIC) Technology Development for Phased Array Antenna Applications

    NASA Technical Reports Server (NTRS)

    Windyka, John A.; Zablocki, Ed G.

    1997-01-01

    This report documents the efforts and progress in developing a 'system-level' integrated circuit, or SLIC, for application in advanced phased array antenna systems. The SLIC combines radio-frequency (RF) microelectronics, digital and analog support circuitry, and photonic interfaces into a single micro-hybrid assembly. Together, these technologies provide not only the amplitude and phase control necessary for electronic beam steering in the phased array, but also add thermally-compensated automatic gain control, health and status feedback, bias regulation, and reduced interconnect complexity. All circuitry is integrated into a compact, multilayer structure configured for use as a two-by-four element phased array module, operating at 20 Gigahertz, using a Microwave High-Density Interconnect (MHDI) process. The resultant hardware is constructed without conventional wirebonds, maintains tight inter-element spacing, and leads toward low-cost mass production. The measured performances and development issues associated with both the two-by-four element module and the constituent elements are presented. Additionally, a section of the report describes alternative architectures and applications supported by the SLIC electronics. Test results show excellent yield and performance of RF circuitry and full automatic gain control for multiple, independent channels. Digital control function, while suffering from lower manufacturing yield, also proved successful.

  5. Ka-Band MMIC Subarray Technology Program (Ka-Mist)

    NASA Technical Reports Server (NTRS)

    Pottinger, W.

    1995-01-01

    Ka-band monolithic microwave integrated circuit (MMIC) arrays have been considered as having high potential for increasing the capability of space, aircraft, and land mobile communication systems in terms of scan performance, data rate, link margin, and flexibility while offering a significant reduction in size, weight, and power consumption. Insertion of MMIC technology into antenna systems, particularly at millimeter wave frequencies using low power and low noise amplifiers in closed proximity to the radiating elements, offers a significant improvement in the array transmit efficiency, receive system noise figure, and overall array reliability. Application of active array technology also leads to the use of advanced beamforming techniques that can improve beam agility, diversity, and adaptivity to complex signal environments. The objective of this program was to demonstrate the technical feasibility of the 'tile' array packaging architecture at EHF via the insertion of 1990 MMIC technology into a functional tile array or subarray module. The means test of this objective was to demonstrate and deliver to NASA a minimum of two 4 x 4 (16 radiating element) subarray modules operating in a transmit mode at 29.6 GHz. Available (1990) MMIC technology was chosen to focus the program effort on the novel interconnect schemes and packaging requirements rather than focusing on MMIC development. Major technical achievements of this program include the successful integration of two 4 x 4 subarray modules into a single antenna array. This 32 element array demonstrates a transmit EIRP of over 300 watts yielding an effective directive power gain in excess of 55 dB at 29.63 GHz. The array has been actively used as the transmit link in airborne/terrestrial mobile communication experiments accomplished via the ACTS satellite launched in August 1993.

  6. Development of a 2K x 2K GaAs QWIP Focal Plane Array

    NASA Technical Reports Server (NTRS)

    Jhabvala, M.; Choi, K.; Jhabvala, C.; Kelly, D.; Hess, L.; Ewin, A.; La, A.; Wacynski, A.; Sun, J.; Adachi, T.; hide

    2013-01-01

    We are developing the next generation of GaAs Quantum Well Infrared Photodetector (QWIP) focal plane arrays (FPAs) in preparation for future NASA space-borne Earth observing missions. It is anticipated that these missions will require both wider ground spatial coverage as well as higher ground imaging resolution. In order to demonstrate our capability in meeting these future goals we have taken a two-tiered approach in the next stage of advanced QWIP focal plane array development. We will describe our progress in the development of a 512 x 3,200 (512 x 3K) array format for this next generation thermal imaging array for the NASA Landsat project. However, there currently is no existing readout integrated circuit (ROIC) for this format array.so to demonstrate the ability to scale-up an existing ROIC we developed a 1,920 x 2,048 (2K x 2K) array and it hybridized to a Raytheon SB419 CTIA readout integrated circuit that was scaled up from their existing 512 x 640 SB339 ROIC. Two versions of the 512 x 3K QWIP array were fabricated to accommodate a future design scale-up of both the Indigo 9803 ROIC based on a 25 micron pixel dimension and a scale up of the Indigo 9705 ROIC based on a 30 micron pixel dimension. Neither readout for the 512 x 3K has yet to be developed but we have fabricated both versions of the array. We describe the design, development and test results of this effort as well as the specific applications these FPAs are intended to address.

  7. Low-cost solar array project and Proceedings of the 14th Project Integration Meeting

    NASA Technical Reports Server (NTRS)

    Mcdonald, R. R.

    1980-01-01

    Activities are reported on the following areas: project analysis and integration; technology development in silicon material, large area sheet silicon, and encapsulation; production process and equipment development; and engineering and operations, and the steps taken to integrate these efforts. Visual materials presented at the project Integration Meeting are included.

  8. Integrated Solutions for a Complex Energy World - Continuum Magazine |

    Science.gov Websites

    NREL Integrated Solutions for a Complex Energy World Integrated Solutions for a Complex Energy World Energy systems integration optimizes electrical, thermal, fuel, and data technologies design and performance. An array of clean energy technologies, including wind, solar, and electric vehicle batteries, is

  9. Discrete tuning concept for fiber-integrated lasers based on tailored FBG arrays and a theta cavity layout.

    PubMed

    Tiess, Tobias; Becker, Martin; Rothhardt, Manfred; Bartelt, Hartmut; Jäger, Matthias

    2017-03-15

    We demonstrate a novel tuning concept for pulsed fiber-integrated lasers with a fiber Bragg grating (FBG) array as a discrete and tailored spectral filter, as well as a modified laser design. Based on a theta cavity layout, the structural delay lines originating from the FBG array are balanced, enabling a constant repetition rate and stable pulse properties over the full tuning range. The emission wavelength is electrically tuned with respect to the filter properties based on an adapted temporal gating scheme using an acousto-optic modulator. This concept has been investigated with an Yb-doped fiber laser, demonstrating excellent emission properties with high signal contrast (>35  dB) and narrow linewidth (<150  pm) over a tuning range of 25 nm.

  10. Lightweight Integrated Solar Array (LISA): Providing Higher Power to Small Spacecraft

    NASA Technical Reports Server (NTRS)

    Johnson, Les; Carr, John; Fabisinski, Leo; Lockett, Tiffany Russell

    2015-01-01

    Affordable and convenient access to electrical power is essential for all spacecraft and is a critical design driver for the next generation of smallsats, including CubeSats, which are currently extremely power limited. The Lightweight Integrated Solar Array (LISA), a concept designed, prototyped, and tested at the NASA Marshall Space Flight Center (MSFC) in Huntsville, Alabama provides an affordable, lightweight, scalable, and easily manufactured approach for power generation in space. This flexible technology has many wide-ranging applications from serving small satellites to providing abundant power to large spacecraft in GEO and beyond. By using very thin, ultraflexible solar arrays adhered to an inflatable or deployable structure, a large area (and thus large amount of power) can be folded and packaged into a relatively small volume.

  11. A 72 × 60 Angle-Sensitive SPAD Imaging Array for Lens-less FLIM.

    PubMed

    Lee, Changhyuk; Johnson, Ben; Jung, TaeSung; Molnar, Alyosha

    2016-09-02

    We present a 72 × 60, angle-sensitive single photon avalanche diode (A-SPAD) array for lens-less 3D fluorescence lifetime imaging. An A-SPAD pixel consists of (1) a SPAD to provide precise photon arrival time where a time-resolved operation is utilized to avoid stimulus-induced saturation, and (2) integrated diffraction gratings on top of the SPAD to extract incident angles of the incoming light. The combination enables mapping of fluorescent sources with different lifetimes in 3D space down to micrometer scale. Futhermore, the chip presented herein integrates pixel-level counters to reduce output data-rate and to enable a precise timing control. The array is implemented in standard 180 nm complementary metal-oxide-semiconductor (CMOS) technology and characterized without any post-processing.

  12. Optimized design of Yb3+/Er3+-codoped cross-coupled integrated microring resonator arrays

    NASA Astrophysics Data System (ADS)

    Gǎlǎtus, Ramona; Vallés, Juan A.

    2014-09-01

    In this work the analytical model of the scattering response of a highly Yb3+/Er3+-codoped phosphate glass microring resonator array is developed. The microscopic statistical formalism is used to simulate its performance as a wavelengthselective amplifier. The performance of the integrated add-drop filter was investigated based on the signal transfer functions for Through and Drop ports, correlated the with gain coefficient and its dependence on pump power, signal power and Yb3+/Er3+- dopants concentration. In consequence, microring arrays with gain operating in the near infrared spectral range and, in particular, in the 1.5-mm wavelength band (emission band of Er-doped fiber amplifiers and lasers, already used in several bio/chemical sensing tasks) are highly attractive.

  13. Closed Loop solar array-ion thruster system with power control circuitry

    NASA Technical Reports Server (NTRS)

    Gruber, R. P. (Inventor)

    1979-01-01

    A power control circuit connected between a solar array and an ion thruster receives voltage and current signals from the solar array. The control circuit multiplies the voltage and current signals together to produce a power signal which is differentiated with respect to time. The differentiator output is detected by a zero crossing detector and, after suitable shaping, the detector output is phase compared with a clock in a phase demodulator. An integrator receives no output from the phase demodulator when the operating point is at the maximum power but is driven toward the maximum power point for non-optimum operation. A ramp generator provides minor variations in the beam current reference signal produced by the integrator in order to obtain the first derivative of power.

  14. A 72 × 60 Angle-Sensitive SPAD Imaging Array for Lens-less FLIM

    PubMed Central

    Lee, Changhyuk; Johnson, Ben; Jung, TaeSung; Molnar, Alyosha

    2016-01-01

    We present a 72 × 60, angle-sensitive single photon avalanche diode (A-SPAD) array for lens-less 3D fluorescence lifetime imaging. An A-SPAD pixel consists of (1) a SPAD to provide precise photon arrival time where a time-resolved operation is utilized to avoid stimulus-induced saturation, and (2) integrated diffraction gratings on top of the SPAD to extract incident angles of the incoming light. The combination enables mapping of fluorescent sources with different lifetimes in 3D space down to micrometer scale. Futhermore, the chip presented herein integrates pixel-level counters to reduce output data-rate and to enable a precise timing control. The array is implemented in standard 180 nm complementary metal-oxide-semiconductor (CMOS) technology and characterized without any post-processing. PMID:27598170

  15. Goddard Space Flight Center solar array missions, requirements and directions

    NASA Technical Reports Server (NTRS)

    Gaddy, Edward; Day, John

    1994-01-01

    The Goddard Space Flight Center (GSFC) develops and operates a wide variety of spacecraft for conducting NASA's communications, space science, and earth science missions. Some are 'in house' spacecraft for which the GSFC builds the spacecraft and performs all solar array design, analysis, integration, and test. Others are 'out of house' spacecraft for which an aerospace contractor builds the spacecraft and develops the solar array under direction from GSFC. The experience of developing flight solar arrays for numerous GSFC 'in house' and 'out of house' spacecraft has resulted in an understanding of solar array requirements for many different applications. This presentation will review those solar array requirements that are common to most GSFC spacecraft. Solar array technologies will be discussed that are currently under development and that could be useful to future GSFC spacecraft.

  16. Propagation of a radial phased-locked Lorentz beam array in turbulent atmosphere.

    PubMed

    Zhou, Guoquan

    2011-11-21

    A radial phased-locked (PL) Lorentz beam array provides an appropriate theoretical model to describe a coherent diode laser array, which is an efficient radiation source for high-power beaming use. The propagation of a radial PL Lorentz beam array in turbulent atmosphere is investigated. Based on the extended Huygens-Fresnel integral and some mathematical techniques, analytical formulae for the average intensity and the effective beam size of a radial PL Lorentz beam array are derived in turbulent atmosphere. The average intensity distribution and the spreading properties of a radial PL Lorentz beam array in turbulent atmosphere are numerically calculated. The influences of the beam parameters and the structure constant of the atmospheric turbulence on the propagation of a radial PL Lorentz beam array in turbulent atmosphere are discussed in detail. © 2011 Optical Society of America

  17. KSC-00pp1217

    NASA Image and Video Library

    2000-08-30

    In the Space Station Processing Facility, workers help guide a solar array into position for installation on the Integrated Equipment Assembly. Solar Array Wing-3 is already in place. Components of the International Space Station, the arrays are scheduled to be launched on mission STS-97 in late November along with the P6 truss. The Station’s electrical power system (EPS) will use eight photovoltaic solar arrays to convert sunlight to electricity. Each of the eight solar arrays will be 112 feet long by 39 feet wide. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station

  18. KSC-00pp1215

    NASA Image and Video Library

    2000-08-30

    In the Space Station Processing Facility, the overhead crane carrying a solar array arrives at the Integrated Equipment Assembly (IEA) on which it will be installed. Solar Array Wing-3 is already in place. Components of the International Space Station, the arrays are scheduled to be launched on mission STS-97 in late November along with the P6 truss. The Station’s electrical power system (EPS) will use eight photovoltaic solar arrays to convert sunlight to electricity. Each of the eight solar arrays will be 112 feet long by 39 feet wide. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station

  19. KSC-00pp1218

    NASA Image and Video Library

    2000-08-30

    Workers in the Space Station Processing Facility give close attention to the placement of a solar array on the Integrated Equipment Assembly. Solar Array Wing-3 is already in place. Components of the International Space Station, the arrays are scheduled to be launched on mission STS-97 in late November along with the P6 truss. The Station’s electrical power system (EPS) will use eight photovoltaic solar arrays to convert sunlight to electricity. Each of the eight solar arrays will be 112 feet long by 39 feet wide. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station

  20. Advanced photovoltaic solar array development

    NASA Technical Reports Server (NTRS)

    Kurland, Richard M.; Stella, Paul

    1989-01-01

    Phase 2 of the Advanced Photovoltaic Solar Array (APSA) program, started in mid-1987, is currently in progress to fabricate prototype wing hardware that will lead to wing integration and testing in 1989. The design configuration and key details are reviewed. A status of prototype hardware fabricated to date is provided. Results from key component-level tests are discussed. Revised estimates of array-level performance as a function of solar cell device technology for geosynchronous missions are given.

  1. Read-In Integrated Circuits for Large-Format Multi-Chip Emitter Arrays

    DTIC Science & Technology

    2015-03-31

    chip has been designed and fabricated using ONSEMI C5N process to verify our approach. Keywords: Large scale arrays; Tiling; Mosaic; Abutment ...required. X and y addressing is not a sustainable and easily expanded addressing architecture nor will it work well with abutted RIICs. Abutment Method... Abutting RIICs into an array is challenging because of the precise positioning required to achieve a uniform image. This problem is a new design

  2. KSC-00pp1778

    NASA Image and Video Library

    2000-11-30

    The STS-97 crew are ready to enjoy a snack in the crew quarters, Operations and Checkout Building, before beginning to suit up for launch. Seated from left are Mission Specialists Marc Garneau and Carlos Noriega, Commander Brent Jett, Mission Specialist Joseph Tanner and Pilot Michael Bloomfield. Garneau is with the Canadian Space Agency. Mission STS-97 is the sixth construction flight to the International Space Station. It is transporting the P6 Integrated Truss Structure that comprises Solar Array Wing-3 and the Integrated Electronic Assembly, to be installed on the Space Station. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. The 11-day mission includes two spacewalks to complete the solar array connections. The Station’s electrical power system will use eight photovoltaic solar arrays, each 112 feet long by 39 feet wide, to convert sunlight to electricity.. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station. Launch is scheduled for Nov. 30 at 10:06 p.m. EST

  3. KSC-00pp1784

    NASA Image and Video Library

    2000-11-30

    Eager to speed into space, the STS-97 crew hurries out of the Operations and Checkout Building for the ride to Launch Pad 39B. Leading the way are Pilot Michael Bloomfield (left) and Commander Brent Jett (right). In the middle is Mission Specialist Marc Garneau (waving), who is with the Canadian Space Agency. Behind are Mission Specialists Carlos Noriega (left, waving) and Joseph Tanner. Mission STS-97 is the sixth construction flight to the International Space Station. It is transporting the P6 Integrated Truss Structure that comprises Solar Array Wing-3 and the Integrated Electronic Assembly, to be installed on the Space Station. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. The 11-day mission includes two spacewalks to complete the solar array connections. The Station’s electrical power system will use eight photovoltaic solar arrays, each 112 feet long by 39 feet wide, to convert sunlight to electricity. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station. Launch is scheduled for Nov. 30 at 10:06 p.m. EST

  4. Laser direct-write and crystallization of FeSi II micro-dot array for NIR light-emitting device application

    NASA Astrophysics Data System (ADS)

    Narazaki, Aiko; Kurosaki, Ryozo; Sato, Tadatake; Kawaguchi, Yoshizo; Niino, Hiroyuki

    2007-02-01

    We printed FeSi II micro-dot array on various kinds of substrates utilizing laser-induced forward transfer (LIFT). An amorphous FeSi II was deposited by sputtering on a transparent plate as a source film. A single KrF excimer laser pulse through a mask-projection system was imaged with a small micrometer-sized grid pattern onto a film/plate interface, resulting in the deposition of FeSi II micro-dot array on a facing substrate with a high number density of 10 4 mm -2. FeSi II in the β crystalline phase is a promising eco-friendly semiconductor because of NIR electroluminescence used for optical networking as well as abundant components reserve on the earth and non-toxicity. However, the β-FeSi II film fabrication generally required high-temperature multi-processes which hamper its integration and performance reproducibility. Using the LIFT of micro-dot array, we succeeded in room-temperature preparation of β-FeSi II. Micro-Raman spectroscopy confirmed the β crystalline phase in the micro-dots deposited on an unheated silica glass substrate. Thus, the LIFT is useful for integrating functional micro-dot array accompanied by the crystallization at lower temperatures.

  5. STS-97 crew gathers for a snack before suiting up for launch

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The STS-97 crew are ready to enjoy a snack in the crew quarters, Operations and Checkout Building, before beginning to suit up for launch. Seated from left are Mission Specialists Marc Garneau and Carlos Noriega, Commander Brent Jett, Mission Specialist Joseph Tanner and Pilot Michael Bloomfield. Garneau is with the Canadian Space Agency. Mission STS-97 is the sixth construction flight to the International Space Station. It is transporting the P6 Integrated Truss Structure that comprises Solar Array Wing-3 and the Integrated Electronic Assembly, to be installed on the Space Station. The solar arrays are mounted on a '''blanket''' that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. The 11-day mission includes two spacewalks to complete the solar array connections. The Station'''s electrical power system will use eight photovoltaic solar arrays, each 112 feet long by 39 feet wide, to convert sunlight to electricity.. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station. Launch is scheduled for Nov. 30 at 10:06 p.m. EST.

  6. Lessons from Cotton: Research Projects Following Development of a Community-based Genotyping Array

    USDA-ARS?s Scientific Manuscript database

    High-throughput, cost-effective genotyping arrays provide a standardized resource for plant breeding communities that can be used for a wide range of applications at a suitable pace for integrating pertinent information into breeding programs. Traditionally, crop research communities will target dev...

  7. Novel topotactically transformed carbon-CoO-NiO-NiCo₂O₄ nanosheet hybrid hetero-structured arrays as ultrahigh performance supercapacitors.

    PubMed

    Wang, Hai; Guo, Junling; Qing, Chen; Sun, Daming; Wang, Bixiao; Tang, Yiwen

    2014-08-14

    A novel carbon-CoO-NiO-NiCo2O4 integrated electrode has been designed by reducing the hetero-structured NiCo2O4 nanosheet array with C2H2 on the nickel foam at a low temperature of 350 °C. The topotactical transformation from NiCo2O4 to the integrated electrode has been first conceived and investigated. Such unique nanoarchitectures exhibit excellent electrochemical performance with ultrahigh capacitance and desirable cycle life at high rates.

  8. A 65 nm CMOS LNA for Bolometer Application

    NASA Astrophysics Data System (ADS)

    Huang, Tom Nan; Boon, Chirn Chye; Zhu, Forest Xi; Yi, Xiang; He, Xiaofeng; Feng, Guangyin; Lim, Wei Meng; Liu, Bei

    2016-04-01

    Modern bolometers generally consist of large-scale arrays of detectors. Implemented in conventional technologies, such bolometer arrays suffer from integrability and productivity issues. Recently, the development of CMOS technologies has presented an opportunity for the massive production of high-performance and highly integrated bolometers. This paper presents a 65-nm CMOS LNA designed for a millimeter-wave bolometer's pre-amplification stage. By properly applying some positive feedback, the noise figure of the proposed LNA is minimized at under 6 dB and the bandwidth is extended to 30 GHz.

  9. InSb arrays with CCD readout for 1.0- to 5.5-microns infrared applications

    NASA Technical Reports Server (NTRS)

    Phillips, J. D.; Scorso, J. B.; Thom, R. D.

    1976-01-01

    There were two approaches for fabricating indium antimonide (InSb) arrays with CCD readout discussed. The hybrid approach integrated InSb detectors and silicon CCDs in a modular assembly via an advanced interconnection technology. In the monolithic approach, the InSb infrared detectors and the CCD readout were integrated on the same InSb chip. Both approaches utilized intrinsic (band-to-band) photodetection with the attendant advantages over extrinsic detectors. The status of each of these detector readout concepts, with pertinent performance characteristics, was presented.

  10. InP-based compact transversal filter for monolithically integrated light source array.

    PubMed

    Ueda, Yuta; Fujisawa, Takeshi; Takahata, Kiyoto; Kohtoku, Masaki; Ishii, Hiroyuki

    2014-04-07

    We developed an InP-based 4x1 transversal filter (TF) with multi-mode interference couplers (MMIs) as a compact wavelength multiplexer (MUX) 1700 μm x 400 μm in size. Furthermore, we converted the MMI-based TF to a reflection type to obtain an ultra-compact MUX of only 900 μm x 50 μm. These MUXs are made with a simple fabrication process and show a satisfactory wavelength filtering operation as MUXs of monolithically integrated light source arrays, for example, for 100G bit Ethernet.

  11. Power generation in random diode arrays

    NASA Astrophysics Data System (ADS)

    Shvydka, Diana; Karpov, V. G.

    2005-03-01

    We discuss nonlinear disordered systems, random diode arrays (RDAs), which can represent such objects as large-area photovoltaics and ion channels of biological membranes. Our numerical modeling has revealed several interesting properties of RDAs. In particular, the geometrical distribution of nonuniformities across a RDA has only a minor effect on its integral characteristics determined by RDA parameter statistics. In the meantime, the dispersion of integral characteristics vs system size exhibits a nontrivial scaling dependence. Our theoretical interpretation here remains limited and is based on the picture of eddy currents flowing through weak diodes in the RDA.

  12. Performance and characterization of new micromachined high-frequency linear arrays.

    PubMed

    Lukacs, Marc; Yin, Jianhua; Pang, Guofeng; Garcia, Richard C; Cherin, Emmanuel; Williams, Ross; Mehi, Jim; Foster, F Stuart

    2006-10-01

    A new approach for fabricating high frequency (> 20 MHz) linear array transducers, based on laser micromachining, has been developed. A 30 MHz, 64-element, 74-microm pitch, linear array design is presented. The performance of the device is demonstrated by comparing electrical and acoustic measurements with analytical, equivalent circuit, and finite-element analysis (FEA) simulations. All FEA results for array performance have been generated using one global set of material parameters. Each fabricated array has been integrated onto a flex circuit for ease of handling, and the flex has been integrated onto a custom printed circuit board test card for ease of testing. For a fully assembled array, with an acoustic lens, the center frequency was 28.7 MHz with a one-way -3 dB and -6 dB bandwidth of 59% and 83%, respectively, and a -20 dB pulse width of -99 ns. The per-element peak acoustic power, for a +/- 30 V single cycle pulse, measured at the 10 mm focal length of the lens was 590 kPa with a -6 dB directivity span of about 30 degrees. The worst-case total cross talk of the combined array and flex assembly is for nearest neighboring elements and was measured to have an average level -40 dB across the -6 dB bandwidth of the device. Any significant deviation from simulation can be explained through limitations in apparatus calibration and in device packaging.

  13. Nanoindentation study of the mechanical behavior of TiO2 nanotube arrays

    NASA Astrophysics Data System (ADS)

    Xu, Y. N.; Liu, M. N.; Wang, M. C.; Oloyede, A.; Bell, J. M.; Yan, C.

    2015-10-01

    Titanium dioxide (TiO2) nanotube arrays are attracting increasing attention for use in solar cells, lithium-ion batteries, and biomedical implants. To take full advantage of their unique physical properties, such arrays need to maintain adequate mechanical integrity in applications. However, the mechanical performance of TiO2 nanotube arrays is not well understood. In this work, we investigate the deformation and failure of TiO2 nanotube arrays using the nanoindentation technique. We found that the load-displacement response of the arrays strongly depends on the indentation depth and indenter shape. Substrate-independent elastic modulus and hardness can be obtained when the indentation depth is less than 2.5% of the array height. The deformation mechanisms of TiO2 nanotube arrays by Berkovich and conical indenters are closely associated with the densification of TiO2 nanotubes under compression. A theoretical model for deformation of the arrays under a large-radius conical indenter is also proposed.

  14. The Solar Anomalous and Magnetospheric Particle Explorer (SAMPEX) yo-yo despin and solar array deployment mechanism

    NASA Technical Reports Server (NTRS)

    Kellogg, James W.

    1993-01-01

    The SAMPEX spacecraft, successfully launched in July 1992, carried a yo-yo despin system and deployable solar arrays. The despin and solar array mechanisms formed an integral system as the yo-yo cables held the solar array release mechanism in place. The SAMPEX design philosophy was to minimize size and weight through the use of a predominantly single string system. The design challenge was to build a system in a limited space, which was reliable with minimal redundancy. This paper covers the design and development of the SAMPEX yo-yo despin and solar array deployment mechanisms. The problems encountered during development and testing will also be discussed.

  15. KSC-00pp1194

    NASA Image and Video Library

    2000-08-18

    In the Space Station Processing Facility, Solar Array Wing-3, an element of the International Space Station, is lifted from a work stand to move it to the Integrated Electronic Assembly for testing. The solar array is scheduled to be launched on STS-97 in late November along with the P6 truss. The Station’s electrical power system (EPS) will use eight photovoltaic solar arrays to convert sunlight to electricity. Each of the eight solar arrays will be 112 feet long by 39 feet wide. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station

  16. KSC-00pp1199

    NASA Image and Video Library

    2000-08-18

    In the Space Station Processing Facility, Solar Array Wing-3, a component of the International Space Station, is installed in the Integrated Electronic Assembly where it will be tested. The solar array is scheduled to be launched on STS-97 in late November along with the P6 truss. The Station’s electrical power system (EPS) will use eight photovoltaic solar arrays to convert sunlight to electricity. Each of the eight solar arrays will be 112 feet long by 39 feet wide. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station

  17. KSC-00pp1193

    NASA Image and Video Library

    2000-08-18

    Workers in the Space Station Processing Facility get ready to move Solar Array Wing-3, a component of the International Space Station, for installation onto the Integrated Electronic Assembly. The solar array is scheduled to be launched on STS-97 in late November along with the P6 truss. The Station’s electrical power system (EPS) will use eight photovoltaic solar arrays to convert sunlight to electricity. Each of the eight solar arrays will be 112 feet long by 39 feet wide. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station

  18. KSC-00pp1198

    NASA Image and Video Library

    2000-08-18

    In the Space Station Processing Facility, Solar Array Wing-3, a component of the International Space Station, is installed in the Integrated Electronic Assembly where it will be tested. The solar array is scheduled to be launched on STS-97 in late November along with the P6 truss. The Station’s electrical power system (EPS) will use eight photovoltaic solar arrays to convert sunlight to electricity. Each of the eight solar arrays will be 112 feet long by 39 feet wide. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station

  19. KSC-00pp1195

    NASA Image and Video Library

    2000-08-18

    In the Space Station Processing Facility, Solar Array Wing-3 (at top), a component of the International Space Station, hovers above the Integrated Electronic Assembly where it will be installed for testing. The solar array is scheduled to be launched on STS-97 in late November along with the P6 truss. The Station’s electrical power system (EPS) will use eight photovoltaic solar arrays to convert sunlight to electricity. Each of the eight solar arrays will be 112 feet long by 39 feet wide. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station

  20. Conjugate field approaches for active array compensation

    NASA Technical Reports Server (NTRS)

    Acosta, R. J.

    1989-01-01

    Two approaches for calculating the compensating feed array complex excitations are namely, the indirect conjugate field matching (ICFM) and the direct conjugate field matching (DCFM) approach. In the ICFM approach the compensating feed array excitations are determined by considering the transmitting mode and the reciprocity principle. The DCF, in contrast calculates the array excitations by integrating directly the induced surface currents on the reflector under a receiving mode. DCFM allows the reflector to be illuminated by an incident plane wave with a tapered amplitude. The level of taper can effectively control the sidelobe level of the compensated antenna pattern. Both approaches are examined briefly.

  1. Second set of solar arrays on the ISS during Expedition 13 / STS-115 Joint Operations

    NASA Image and Video Library

    2006-09-14

    S115-E-06052 (14 Sept. 2006) --- Space Shuttle Atlantis astronauts spread a second set of wings for the International Space Station today. The new solar arrays were fully extended at 7:44 a.m. (CDT). The new arrays span a total of 240 feet and have a width of 38 feet. They are attached to the station's newest component, the P3/P4 integrated truss segment. The installation of the P3/P4, which occurred Tuesday, and the deployment of the arrays set the stage for future expansion of the station.

  2. Low-cost Solar Array (LSA) project

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Progress made by the Low-Cost Silicon Solar Array Project during the period January through March 1978 is reported. It includes task reports on silicon material processing, large-area silicon sheet development, encapsulation materials testing and development, project engineering and operations, and manufacturing techniques, plus the steps taken to integrate these efforts.

  3. Polarimetric Imaging System for Automatic Target Detection and Recognition

    DTIC Science & Technology

    2000-03-01

    technique shown in Figure 4(b) can also be used to integrate polarizer arrays with other types of imaging sensors, such as LWIR cameras and uncooled...vertical stripe pattern in this φ image is caused by nonuniformities in the particular polarizer array used. 2. CIRCULAR POLARIZATION IMAGING USING

  4. Effects of Organophosphorus Flame Retardants on Spontaneous Activity in Neuronal Networks Grown on Microelectrode Arrays

    EPA Science Inventory

    EFFECTS OF ORGANOPHOSPHORUS FLAME RETARDANTS ON SPONTANEOUS ACTIVITY IN NEURONAL NETWORKS GROWN ON MICROELECTRODE ARRAYS TJ Shafer1, K Wallace1, WR Mundy1, M Behl2,. 1Integrated Systems Toxicology Division, NHEERL, USEPA, RTP, NC, USA, 2National Toxicology Program, NIEHS, RTP, NC...

  5. High event rate ROICs (HEROICs) for astronomical UV photon counting detectors

    NASA Astrophysics Data System (ADS)

    Harwit, Alex; France, Kevin; Argabright, Vic; Franka, Steve; Freymiller, Ed; Ebbets, Dennis

    2014-07-01

    The next generation of astronomical photocathode / microchannel plate based UV photon counting detectors will overcome existing count rate limitations by replacing the anode arrays and external cabled electronics with anode arrays integrated into imaging Read Out Integrated Circuits (ROICs). We have fabricated a High Event Rate ROIC (HEROIC) consisting of a 32 by 32 array of 55 μm square pixels on a 60 μm pitch. The pixel sensitivity (threshold) has been designed to be globally programmable between 1 × 103 and 1 × 106 electrons. To achieve the sensitivity of 1 × 103 electrons, parasitic capacitances had to be minimized and this was achieved by fabricating the ROIC in a 65 nm CMOS process. The ROIC has been designed to support pixel counts up to 4096 events per integration period at rates up to 1 MHz per pixel. Integration time periods can be controlled via an external signal with a time resolution of less than 1 microsecond enabling temporally resolved imaging and spectroscopy of astronomical sources. An electrical injection port is provided to verify functionality and performance of each ROIC prior to vacuum integration with a photocathode and microchannel plate amplifier. Test results on the first ROICs using the electrical injection port demonstrate sensitivities between 3 × 103 and 4 × 105 electrons are achieved. A number of fixes are identified for a re-spin of this ROIC.

  6. The sonic window: second generation results

    NASA Astrophysics Data System (ADS)

    Walker, William F.; Fuller, Michael I.; Brush, Edward V.; Eames, Matthew D. C.; Owen, Kevin; Ranganathan, Karthik; Blalock, Travis N.; Hossack, John A.

    2006-03-01

    Medical Ultrasound Imaging is widely used clinically because of its relatively low cost, portability, lack of ionizing radiation, and real-time nature. However, even with these advantages ultrasound has failed to permeate the broad array of clinical applications where its use could be of value. A prime example of this untapped potential is the routine use of ultrasound to guide intravenous access. In this particular application existing systems lack the required portability, low cost, and ease-of-use required for widespread acceptance. Our team has been working for a number of years to develop an extremely low-cost, pocket-sized, and intuitive ultrasound imaging system that we refer to as the "Sonic Window." We have previously described the first generation Sonic Window prototype that was a bench-top device using a 1024 element, fully populated array operating at a center frequency of 3.3 MHz. Through a high degree of custom front-end integration combined with multiplexing down to a 2 channel PC based digitizer this system acquired a full set of RF data over a course of 512 transmit events. While initial results were encouraging, this system exhibited limitations resulting from low SNR, relatively coarse array sampling, and relatively slow data acquisition. We have recently begun assembling a second-generation Sonic Window system. This system uses a 3600 element fully sampled array operating at 5.0 MHz with a 300 micron element pitch. This system extends the integration of the first generation system to include front-end protection, pre-amplification, a programmable bandpass filter, four sample and holds, and four A/D converters for all 3600 channels in a set of custom integrated circuits with a combined area smaller than the 1.8 x 1.8 cm footprint of the transducer array. We present initial results from this front-end and present benchmark results from a software beamformer implemented on the Analog Devices BF-561 DSP. We discuss our immediate plans for further integration and testing. This second prototype represents a major reduction in size and forms the foundation of a fully functional, fully integrated, pocket sized prototype.

  7. STS/DBS power subsystem end-to-end stability margin

    NASA Astrophysics Data System (ADS)

    Devaux, R. N.; Vattimo, R. J.; Peck, S. R.; Baker, W. E.

    Attention is given to a full-up end-to-end subsystem stability test which was performed with a flight solar array providing power to a fully operational spacecraft. The solar array simulator is described, and a comparison is made between test results obtained with the simulator and those obtained with the actual array. It is concluded that stability testing with a fully integrated spacecraft is necessary to ensure that all elements have been adequately modeled.

  8. Coherent optical monolithic phased-array antenna steering system

    DOEpatents

    Hietala, Vincent M.; Kravitz, Stanley H.; Vawter, Gregory A.

    1994-01-01

    An optical-based RF beam steering system for phased-array antennas comprising a photonic integrated circuit (PIC). The system is based on optical heterodyning employed to produce microwave phase shifting by a monolithic PIC constructed entirely of passive components. Microwave power and control signal distribution to the antenna is accomplished by optical fiber, permitting physical separation of the PIC and its control functions from the antenna. The system reduces size, weight, complexity, and cost of phased-array antenna systems.

  9. Integrated Parallel Reception, Excitation, and Shimming (iPRES)

    PubMed Central

    Han, Hui; Song, Allen W.; Truong, Trong-Kha

    2013-01-01

    Purpose To develop a new concept for a hardware platform that enables integrated parallel reception, excitation, and shimming (iPRES). Theory This concept uses a single coil array rather than separate arrays for parallel excitation/reception and B0 shimming. It relies on a novel design that allows a radiofrequency current (for excitation/reception) and a direct current (for B0 shimming) to coexist independently in the same coil. Methods Proof-of-concept B0 shimming experiments were performed with a two-coil array in a phantom, whereas B0 shimming simulations were performed with a 48-coil array in the human brain. Results Our experiments show that individually optimized direct currents applied in each coil can reduce the B0 root-mean-square error by 62–81% and minimize distortions in echo-planar images. The simulations show that dynamic shimming with the 48-coil iPRES array can reduce the B0 root-mean-square error in the prefrontal and temporal regions by 66–79% as compared to static 2nd-order spherical harmonic shimming and by 12–23% as compared to dynamic shimming with a 48-coil conventional shim array. Conclusion Our results demonstrate the feasibility of the iPRES concept to perform parallel excitation/reception and B0 shimming with a unified coil system as well as its promise for in vivo applications. PMID:23629974

  10. Leak Detection in Spacecraft Using a 64-Element Multiplexed Passive Array to Monitor Structure-Borne Noise

    NASA Astrophysics Data System (ADS)

    Holland, Stephen D.; Song, Jun-Ho; Chimenti, D. E.; Roberts, Ron

    2006-03-01

    We demonstrate an array sensor method intended to locate leaks in manned spacecraft using leak-generated, structure-borne ultrasonic noise. We have developed and tested a method for sensing and processing leak noise to reveal the leak location involving the use of a 64-element phased-array. Cross-correlations of ultrasonic noise waveforms from a leak into vacuum have been used with a phased-array analysis to find the direction from the sensor to the leak. This method measures the propagation of guided ultrasonic Lamb waves passing under the PZT array sensor in the spacecraft skin structure. This paper will describe the custom-designed array with integrated electronics, as well as the performance of the array in prototype applications. We show that this method can be used to successfully locate leaks to within a few millimeters on a 0.6-m square aluminum plate.

  11. KSC-00pp1210

    NASA Image and Video Library

    2000-08-30

    Workers in the Space Station Processing Facility help guide an overhead crane toward a workstand containing a solar array in order to move it for installation onto the Integrated Equipment Assembly (IEA). A component of the International Space Station, the solar array is the second one being installed on the IEA. The arrays are scheduled to be launched on mission STS-97 in late November along with the P6 truss. The Station’s electrical power system (EPS) will use eight photovoltaic solar arrays to convert sunlight to electricity. Each of the eight solar arrays will be 112 feet long by 39 feet wide. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station

  12. KSC-00pp1216

    NASA Image and Video Library

    2000-08-30

    In the Space Station Processing Facility, the overhead crane carrying a solar array maneuvers its cargo into position on the Integrated Equipment Assembly on which it will be installed. Solar Array Wing-3 is already in place. Components of the International Space Station, the arrays are scheduled to be launched on mission STS-97 in late November along with the P6 truss. The Station’s electrical power system (EPS) will use eight photovoltaic solar arrays to convert sunlight to electricity. Each of the eight solar arrays will be 112 feet long by 39 feet wide. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station

  13. Two-Dimensional Planar Lightwave Circuit Integrated Spatial Filter Array and Method of Use Thereof

    NASA Technical Reports Server (NTRS)

    Dimov, Fedor (Inventor); Ai, Jun (Inventor)

    2015-01-01

    A large coherent two-dimensional (2D) spatial filter array (SFA), 30 by 30 or larger, is produced by coupling a 2D planar lightwave circuit (PLC) array with a pair of lenslet arrays at the input and output side. The 2D PLC array is produced by stacking a plurality of chips, each chip with a plural number of straight PLC waveguides. A pupil array is coated onto the focal plane of the lenslet array. The PLC waveguides are produced by deposition of a plural number of silica layers on the silicon wafer, followed by photolithography and reactive ion etching (RIE) processes. A plural number of mode filters are included in the silica-on-silicon waveguide such that the PLC waveguide is transparent to the fundamental mode but higher order modes are attenuated by 40 dB or more.

  14. Integrated propulsion for near-Earth space missions. Volume 2: Technical

    NASA Technical Reports Server (NTRS)

    Dailey, C. L.; Meissinger, H. F.; Lovberg, R. H.; Zafran, S.

    1981-01-01

    The calculation approach is described for parametric analysis of candidate electric propulsion systems employed in LEO to GEO missions. Occultation relations, atmospheric density effects, and natural radiation effects are presented. A solar cell cover glass tradeoff is performed to determine optimum glass thickness. Solar array and spacecraft pointing strategies are described for low altitude flight and for optimum array illumination during ascent. Mass ratio tradeoffs versus transfer time provide direction for thruster technology improvements. Integrated electric propulsion analysis is performed for orbit boosting, inclination change, attitude control, stationkeeping, repositioning, and disposal functions as well as power sharing with payload on orbit. Comparison with chemical auxiliary propulsion is made to quantify the advantages of integrated propulsion in terms of weight savings and concomittant launch cost savings.

  15. Microbatteries for Combinatorial Studies of Conventional Lithium-Ion Batteries

    NASA Technical Reports Server (NTRS)

    West, William; Whitacre, Jay; Bugga, Ratnakumar

    2003-01-01

    Integrated arrays of microscopic solid-state batteries have been demonstrated in a continuing effort to develop microscopic sources of power and of voltage reference circuits to be incorporated into low-power integrated circuits. Perhaps even more importantly, arrays of microscopic batteries can be fabricated and tested in combinatorial experiments directed toward optimization and discovery of battery materials. The value of the combinatorial approach to optimization and discovery has been proven in the optoelectronic, pharmaceutical, and bioengineering industries. Depending on the specific application, the combinatorial approach can involve the investigation of hundreds or even thousands of different combinations; hence, it is time-consuming and expensive to attempt to implement the combinatorial approach by building and testing full-size, discrete cells and batteries. The conception of microbattery arrays makes it practical to bring the advantages of the combinatorial approach to the development of batteries.

  16. IXO/XMS Detector Trade-Off Study

    NASA Technical Reports Server (NTRS)

    Kilbourne, Caroline Anne; deKorte, P.; Smith, S.; Hoevers, H.; vdKuur, J.; Ezoe, Y.; Ullom, J.

    2010-01-01

    This document presents the outcome of the detector trade-off for the XMS instrument on IXO. This trade-off is part of the Cryogenic instrument Phase-A study as proposed to ESA in the Declaration of Interest SRONXMS-PL-2009-003 dated June 6, 2009. The detector consists of two components: a core array for the highest spectral resolution and an outer array to increase the field of view substantially with modest increase in the number of read-out channels. Degraded resolution of the outer array in comparison with the core array is accepted in order to make this scheme possible. The two detector components may be a single unit or separate units. These arrays comprise pixels and the components that allow them to be arrayed. Each pixel comprises a thermometer, an absorber, and the thermal links between them and to the rest of the array. These links may be interfaces or distinct components. The array infrastructure comprises the mechanical structure of the array, the arrangement of the leads, and features added to improve the integrated thermal properties of the array in the focal-plane assembly.

  17. Integrated analysis of copy number alteration and RNA expression profiles of cancer using a high-resolution whole-genome oligonucleotide array.

    PubMed

    Jung, Seung-Hyun; Shin, Seung-Hun; Yim, Seon-Hee; Choi, Hye-Sun; Lee, Sug-Hyung; Chung, Yeun-Jun

    2009-07-31

    Recently, microarray-based comparative genomic hybridization (array-CGH) has emerged as a very efficient technology with higher resolution for the genome-wide identification of copy number alterations (CNA). Although CNAs are thought to affect gene expression, there is no platform currently available for the integrated CNA-expression analysis. To achieve high-resolution copy number analysis integrated with expression profiles, we established human 30k oligoarray-based genome-wide copy number analysis system and explored the applicability of this system for integrated genome and transcriptome analysis using MDA-MB-231 cell line. We compared the CNAs detected by the oligoarray with those detected by the 3k BAC array for validation. The oligoarray identified the single copy difference more accurately and sensitively than the BAC array. Seventeen CNAs detected by both platforms in MDA-MB-231 such as gains of 5p15.33-13.1, 8q11.22-8q21.13, 17p11.2, and losses of 1p32.3, 8p23.3-8p11.21, and 9p21 were consistently identified in previous studies on breast cancer. There were 122 other small CNAs (mean size 1.79 mb) that were detected by oligoarray only, not by BAC-array. We performed genomic qPCR targeting 7 CNA regions, detected by oligoarray only, and one non-CNA region to validate the oligoarray CNA detection. All qPCR results were consistent with the oligoarray-CGH results. When we explored the possibility of combined interpretation of both DNA copy number and RNA expression profiles, mean DNA copy number and RNA expression levels showed a significant correlation. In conclusion, this 30k oligoarray-CGH system can be a reasonable choice for analyzing whole genome CNAs and RNA expression profiles at a lower cost.

  18. Colorful solar selective absorber integrated with different colored units.

    PubMed

    Chen, Feiliang; Wang, Shao-Wei; Liu, Xingxing; Ji, Ruonan; Li, Zhifeng; Chen, Xiaoshuang; Chen, Yuwei; Lu, Wei

    2016-01-25

    Solar selective absorbers are the core part for solar thermal technologies such as solar water heaters, concentrated solar power, solar thermoelectric generators and solar thermophotovoltaics. Colorful solar selective absorber can provide new freedom and flexibility beyond energy performance, which will lead to wider utilization of solar technologies. In this work, we present a monolithic integration of colored solar absorber array with different colors on a single substrate based on a multilayered structure of Cu/TiN(x)O(y)/TiO(2)/Si(3)N(4)/SiO(2). A colored solar absorber array with 16 color units is demonstrated experimentally by using combinatorial deposition technique via changing the thickness of SiO(2) layer. The solar absorptivity and thermal emissivity of all the color units is higher than 92% and lower than 5.5%, respectively. The colored solar selective absorber array can have colorful appearance and designable patterns while keeping high energy performance at the same time. It is a new candidate for a number of solar applications, especially for architecture integration and military camouflage.

  19. Active C4 Electrodes for Local Field Potential Recording Applications

    PubMed Central

    Wang, Lu; Freedman, David; Sahin, Mesut; Ünlü, M. Selim; Knepper, Ronald

    2016-01-01

    Extracellular neural recording, with multi-electrode arrays (MEAs), is a powerful method used to study neural function at the network level. However, in a high density array, it can be costly and time consuming to integrate the active circuit with the expensive electrodes. In this paper, we present a 4 mm × 4 mm neural recording integrated circuit (IC) chip, utilizing IBM C4 bumps as recording electrodes, which enable a seamless active chip and electrode integration. The IC chip was designed and fabricated in a 0.13 μm BiCMOS process for both in vitro and in vivo applications. It has an input-referred noise of 4.6 μVrms for the bandwidth of 10 Hz to 10 kHz and a power dissipation of 11.25 mW at 2.5 V, or 43.9 μW per input channel. This prototype is scalable for implementing larger number and higher density electrode arrays. To validate the functionality of the chip, electrical testing results and acute in vivo recordings from a rat barrel cortex are presented. PMID:26861324

  20. Tandem concentrator photovoltaic array applied to Space Station Freedom evolutionary power requirements

    NASA Technical Reports Server (NTRS)

    Fisher, Edward M., Jr.

    1991-01-01

    Additional power is required to support Space Station Freedom (SSF) evolution. Boeing Defense and Space Group, LeRC, and Entech Corporation have participated in the development of efficiency gallium arsenide and gallium antimonide solar cells make up the solar array tandem cell stacks. Entech's Mini-Dome Fresnel Lens Concentrators focus solar energy onto the active area of the solar cells at 50 times one solar energy flux. Development testing for a flight array, to be launched in Nov. 1992 is under way with support from LeRC. The tandem cells, interconnect wiring, concentrator lenses, and structure were integrated into arrays subjected to environmental testing. A tandem concentrator array can provide high mass and area specific power and can provide equal power with significantly less array area and weight than the baseline array design. Alternatively, for SSF growth, an array of twice the baseline power can be designed which still has a smaller drag area than the baseline.

  1. A 25μm pitch LWIR focal plane array with pixel-level 15-bit ADC providing high well capacity and targeting 2mK NETD

    NASA Astrophysics Data System (ADS)

    Guellec, Fabrice; Peizerat, Arnaud; Tchagaspanian, Michael; de Borniol, Eric; Bisotto, Sylvette; Mollard, Laurent; Castelein, Pierre; Zanatta, Jean-Paul; Maillart, Patrick; Zecri, Michel; Peyrard, Jean-Christophe

    2010-04-01

    CEA Leti has recently developed a new readout IC (ROIC) with pixel-level ADC for cooled infrared focal plane arrays (FPAs). It operates at 50Hz frame rate in a snapshot Integrate-While-Read (IWR) mode. It targets applications that provide a large amount of integrated charge thanks to a long integration time. The pixel-level analog-to-digital conversion is based on charge packets counting. This technique offers a large well capacity that paves the way for a breakthrough in NETD performances. The 15 bits ADC resolution preserves the excellent detector SNR at full well (3Ge-). These characteristics are essential for LWIR FPAs as broad intra-scene dynamic range imaging requires high sensitivity. The ROIC, featuring a 320x256 array with 25μm pixel pitch, has been designed in a standard 0.18μm CMOS technology. The main design challenges for this digital pixel array (SNR, power consumption and layout density) are discussed. The IC has been hybridized to a LWIR detector fabricated using our in-house HgCdTe process. The first electro-optical test results of the detector dewar assembly are presented. They validate both the pixel-level ADC concept and its circuit implementation. Finally, the benefit of this LWIR FPA in terms of NETD performance is demonstrated.

  2. Multifunctional Catheters Combining Intracardiac Ultrasound Imaging and Electrophysiology Sensing

    PubMed Central

    Stephens, Douglas N.; Cannata, Jonathan; Liu, Ruibin; Zhao, Jian Zhong; Shung, K. Kirk; Nguyen, Hien; Chia, Raymond; Dentinger, Aaron; Wildes, Douglas; Thomenius, Kai E.; Mahajan, Aman; Shivkumar, Kalyanam; Kim, Kang; O’Donnell, Matthew; Nikoozadeh, Amin; Oralkan, Omer; Khuri-Yakub, Pierre T.; Sahn, David J.

    2015-01-01

    A family of 3 multifunctional intracardiac imaging and electrophysiology (EP) mapping catheters has been in development to help guide diagnostic and therapeutic intracardiac EP procedures. The catheter tip on the first device includes a 7.5 MHz, 64-element, side-looking phased array for high resolution sector scanning. The second device is a forward-looking catheter with a 24-element 14 MHz phased array. Both of these catheters operate on a commercial imaging system with standard software. Multiple EP mapping sensors were mounted as ring electrodes near the arrays for electrocardiographic synchronization of ultrasound images and used for unique integration with EP mapping technologies. To help establish the catheters’ ability for integration with EP interventional procedures, tests were performed in vivo in a porcine animal model to demonstrate both useful intracardiac echocardiographic (ICE) visualization and simultaneous 3-D positional information using integrated electroanatomical mapping techniques. The catheters also performed well in high frame rate imaging, color flow imaging, and strain rate imaging of atrial and ventricular structures. The companion paper of this work discusses the catheter design of the side-looking catheter with special attention to acoustic lens design. The third device in development is a 10 MHz forward-looking ring array that is to be mounted at the distal tip of a 9F catheter to permit use of the available catheter lumen for adjunctive therapy tools. PMID:18986948

  3. Multifunctional catheters combining intracardiac ultrasound imaging and electrophysiology sensing.

    PubMed

    Stephens, D N; Cannata, J; Liu, Ruibin; Zhao, Jian Zhong; Shung, K K; Nguyen, Hien; Chia, R; Dentinger, A; Wildes, D; Thomenius, K E; Mahajan, A; Shivkumar, K; Kim, Kang; O'Donnell, M; Nikoozadeh, A; Oralkan, O; Khuri-Yakub, P T; Sahn, D J

    2008-07-01

    A family of 3 multifunctional intracardiac imaging and electrophysiology (EP) mapping catheters has been in development to help guide diagnostic and therapeutic intracardiac EP procedures. The catheter tip on the first device includes a 7.5 MHz, 64-element, side-looking phased array for high resolution sector scanning. The second device is a forward-looking catheter with a 24-element 14 MHz phased array. Both of these catheters operate on a commercial imaging system with standard software. Multiple EP mapping sensors were mounted as ring electrodes near the arrays for electrocardiographic synchronization of ultrasound images and used for unique integration with EP mapping technologies. To help establish the catheters' ability for integration with EP interventional procedures, tests were performed in vivo in a porcine animal model to demonstrate both useful intracardiac echocardiographic (ICE) visualization and simultaneous 3-D positional information using integrated electroanatomical mapping techniques. The catheters also performed well in high frame rate imaging, color flow imaging, and strain rate imaging of atrial and ventricular structures. The companion paper of this work discusses the catheter design of the side-looking catheter with special attention to acoustic lens design. The third device in development is a 10 MHz forward-looking ring array that is to be mounted at the distal tip of a 9F catheter to permit use of the available catheter lumen for adjunctive therapy tools.

  4. A 2D/3D hybrid integral imaging display by using fast switchable hexagonal liquid crystal lens array

    NASA Astrophysics Data System (ADS)

    Lee, Hsin-Hsueh; Huang, Ping-Ju; Wu, Jui-Yi; Hsieh, Po-Yuan; Huang, Yi-Pai

    2017-05-01

    The paper proposes a new display which could switch 2D and 3D images on a monitor, and we call it as Hybrid Display. In 3D display technologies, the reduction of image resolution is still an important issue. The more angle information offer to the observer, the less spatial resolution would offer to image resolution because of the fixed panel resolution. Take it for example, in the integral photography system, the part of image without depth, like background, will reduce its resolution by transform from 2D to 3D image. Therefore, we proposed a method by using liquid crystal component to quickly switch the 2D image and 3D image. Meanwhile, the 2D image is set as a background to compensate the resolution.. In the experiment, hexagonal liquid crystal lens array would be used to take the place of fixed lens array. Moreover, in order to increase lens power of the hexagonal LC lens array, we applied high resistance (Hi-R) layer structure on the electrode. Hi-R layer would make the gradient electric field and affect the lens profile. Also, we use panel with 801 PPI to display the integral image in our system. Hence, the consequence of full resolution 2D background with the 3D depth object forms the Hybrid Display.

  5. Integration of launch/impact discrimination algorithm with the UTAMS platform

    NASA Astrophysics Data System (ADS)

    Desai, Sachi; Morcos, Amir; Tenney, Stephen; Mays, Brian

    2008-04-01

    An acoustic array, integrated with an algorithm to discriminate potential Launch (LA) or Impact (IM) events, was augmented by employing the Launch Impact Discrimination (LID) algorithm for mortar events. We develop an added situational awareness capability to determine whether the localized event is a mortar launch or mortar impact at safe standoff distances. The algorithm utilizes a discrete wavelet transform to exploit higher harmonic components of various sub bands of the acoustic signature. Additional features are extracted via the frequency domain exploiting harmonic components generated by the nature of event, i.e. supersonic shrapnel components at impact. The further extrapolations of these features are employed with a neural network to provide a high level of confidence for discrimination and classification. The ability to discriminate between these events is of great interest on the battlefield. Providing more information and developing a common picture of situational awareness. Algorithms exploit the acoustic sensor array to provide detection and identification of IM/LA events at extended ranges. The integration of this algorithm with the acoustic sensor array for mortar detection provides an early warning detection system giving greater battlefield information for field commanders. This paper will describe the integration of the algorithm with a candidate sensor and resulting field tests.

  6. ArrayBridge: Interweaving declarative array processing with high-performance computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xing, Haoyuan; Floratos, Sofoklis; Blanas, Spyros

    Scientists are increasingly turning to datacenter-scale computers to produce and analyze massive arrays. Despite decades of database research that extols the virtues of declarative query processing, scientists still write, debug and parallelize imperative HPC kernels even for the most mundane queries. This impedance mismatch has been partly attributed to the cumbersome data loading process; in response, the database community has proposed in situ mechanisms to access data in scientific file formats. Scientists, however, desire more than a passive access method that reads arrays from files. This paper describes ArrayBridge, a bi-directional array view mechanism for scientific file formats, that aimsmore » to make declarative array manipulations interoperable with imperative file-centric analyses. Our prototype implementation of ArrayBridge uses HDF5 as the underlying array storage library and seamlessly integrates into the SciDB open-source array database system. In addition to fast querying over external array objects, ArrayBridge produces arrays in the HDF5 file format just as easily as it can read from it. ArrayBridge also supports time travel queries from imperative kernels through the unmodified HDF5 API, and automatically deduplicates between array versions for space efficiency. Our extensive performance evaluation in NERSC, a large-scale scientific computing facility, shows that ArrayBridge exhibits statistically indistinguishable performance and I/O scalability to the native SciDB storage engine.« less

  7. Experimental demonstration of a multi-wavelength distributed feedback semiconductor laser array with an equivalent chirped grating profile based on the equivalent chirp technology.

    PubMed

    Li, Wangzhe; Zhang, Xia; Yao, Jianping

    2013-08-26

    We report, to the best of our knowledge, the first realization of a multi-wavelength distributed feedback (DFB) semiconductor laser array with an equivalent chirped grating profile based on equivalent chirp technology. All the lasers in the laser array have an identical grating period with an equivalent chirped grating structure, which are realized by nonuniform sampling of the gratings. Different wavelengths are achieved by changing the sampling functions. A multi-wavelength DFB semiconductor laser array is fabricated and the lasing performance is evaluated. The results show that the equivalent chirp technology is an effective solution for monolithic integration of a multi-wavelength laser array with potential for large volume fabrication.

  8. Nanophotonic production, modulation and switching of ions by silicon microcolumn arrays

    DOEpatents

    Vertes, Akos; Walker, Bennett N.

    2013-09-10

    The production and use of silicon microcolumn arrays that harvest light from a laser pulse to produce ions are described. The systems of the present invention seem to behave like a quasi-periodic antenna array with ion yields that show profound dependence on the plane of laser light polarization and the angle of incidence. By providing photonic ion sources, this enables enhanced control of ion production on a micro/nano scale and direct integration with miniaturized analytical devices.

  9. High performance thermal imaging for the 21st century

    NASA Astrophysics Data System (ADS)

    Clarke, David J.; Knowles, Peter

    2003-01-01

    In recent years IR detector technology has developed from early short linear arrays. Such devices require high performance signal processing electronics to meet today's thermal imaging requirements for military and para-military applications. This paper describes BAE SYSTEMS Avionics Group's Sensor Integrated Modular Architecture thermal imager which has been developed alongside the group's Eagle 640×512 arrays to provide high performance imaging capability. The electronics architecture also supprots High Definition TV format 2D arrays for future growth capability.

  10. Nanophotonic production, modulation and switching of ions by silicon microcolumn arrays

    DOEpatents

    Vertes, Akos; Walker, Bennett N

    2015-04-07

    The production and use of silicon microcolumn arrays that harvest light from a laser pulse to produce ions are described. The systems of the present invention seem to behave like a quasi-periodic antenna array with ion yields that show profound dependence on the plane of laser light polarization and the angle of incidence. By providing photonic ion sources, this enables enhanced control of ion production on a micro/nano scale and direct integration with miniaturized analytical devices.

  11. Sparsely-Bonded CMOS Hybrid Imager

    NASA Technical Reports Server (NTRS)

    Sun, Chao (Inventor); Jones, Todd J. (Inventor); Nikzad, Shouleh (Inventor); Newton, Kenneth W. (Inventor); Cunningham, Thomas J. (Inventor); Hancock, Bruce R. (Inventor); Dickie, Matthew R. (Inventor); Hoenk, Michael E. (Inventor); Wrigley, Christopher J. (Inventor); Pain, Bedabrata (Inventor)

    2015-01-01

    A method and device for imaging or detecting electromagnetic radiation is provided. A device structure includes a first chip interconnected with a second chip. The first chip includes a detector array, wherein the detector array comprises a plurality of light sensors and one or more transistors. The second chip includes a Read Out Integrated Circuit (ROIC) that reads out, via the transistors, a signal produced by the light sensors. A number of interconnects between the ROIC and the detector array can be less than one per light sensor or pixel.

  12. Tests Of Array Of Flush Pressure Sensors

    NASA Technical Reports Server (NTRS)

    Larson, Larry J.; Moes, Timothy R.; Siemers, Paul M., III

    1992-01-01

    Report describes tests of array of pressure sensors connected to small orifices flush with surface of 1/7-scale model of F-14 airplane in wind tunnel. Part of effort to determine whether pressure parameters consisting of various sums, differences, and ratios of measured pressures used to compute accurately free-stream values of stagnation pressure, static pressure, angle of attack, angle of sideslip, and mach number. Such arrays of sensors and associated processing circuitry integrated into advanced aircraft as parts of flight-monitoring and -controlling systems.

  13. Nonvolatile programmable neural network synaptic array

    NASA Technical Reports Server (NTRS)

    Tawel, Raoul (Inventor)

    1994-01-01

    A floating-gate metal oxide semiconductor (MOS) transistor is implemented for use as a nonvolatile analog storage element of a synaptic cell used to implement an array of processing synaptic cells. These cells are based on a four-quadrant analog multiplier requiring both X and Y differential inputs, where one Y input is UV programmable. These nonvolatile synaptic cells are disclosed fully connected in a 32 x 32 synaptic cell array using standard very large scale integration (VLSI) complementary MOS (CMOS) technology.

  14. Proceedings of the 16th Project Integration Meeting

    NASA Technical Reports Server (NTRS)

    Mcdonald, R. R.

    1980-01-01

    The principal achievement of the Low Cost Solar Array Project in 1980 was the attainment of $2.80/Wp Technical Readiness, and that processes and equipment now commercially available can make possible a deliverable product in 1982. A prototype array for intermediate load applications was demonstrated using frameless modules. It was proof tested to 40 lb/sq ft loading, and priced at $24/sq m, including array fabrication, module installation, shipping to the site and site installation for quantities of 20 MW.

  15. Enhancement of concentration range of chromatographically detectable components with array detector mass spectrometry

    DOEpatents

    Enke, Christie

    2013-02-19

    Methods and instruments for high dynamic range analysis of sample components are described. A sample is subjected to time-dependent separation, ionized, and the ions dispersed with a constant integration time across an array of detectors according to the ions m/z values. Each of the detectors in the array has a dynamically adjustable gain or a logarithmic response function, producing an instrument capable of detecting a ratio of responses or 4 or more orders of magnitude.

  16. Nanophotonic production, modulation and switching of ions by silicon microcolumn arrays

    DOEpatents

    Vertes, Akos [Reston, VA; Walker, Bennett N [Washington, DC

    2012-02-07

    The production and use of silicon microcolumn arrays that harvest light from a laser pulse to produce ions are described. The systems of the present invention seem to behave like a quasi-periodic antenna array with ion yields that show profound dependence on the plane of laser light polarization and the angle of incidence. By providing photonic ion sources, this enables enhanced control of ion production on a micro/nano scale and direct integration with miniaturized analytical devices.

  17. Flexible Multiplexed Surface Temperature Sensor

    NASA Technical Reports Server (NTRS)

    Daryabeigi, Kamran; Dillon-Townes, L. A.; Johnson, Preston B.; Ash, Robert L.

    1995-01-01

    Unitary array of sensors measures temperatures at points distributed over designated area on surface. Useful in measuring surface temperatures of aerodynamic models and thermally controlled objects. Made of combination of integrated-circuit microchips and film circuitry. Temperature-sensing chips scanned at speeds approaching 10 kHz. Operating range minus 40 degrees C to 120 degrees C. Flexibility of array conforms to curved surfaces. Multiplexer eliminates numerous monitoring cables. Control of acquisition and recording of data effected by connecting array to microcomputers via suitable interface circuitry.

  18. Developing and Exploiting a Unique Seismic Data Set from South African Gold Mines for Source Characterization and Wave Propagation

    DTIC Science & Technology

    2007-09-01

    The data are recorded at depth (1–5 km) by arrays of three-component geophones operated by AngloGold Ashanti, Ltd. and Integrated Seismic Systems...case-based event identification using regional arrays , Bull. Seism. Soc. Am. 80: 1874–1892. Bennett, T. J. and J. R. Murphy, Analysis of seismic ... seismic event classification at the NORESS array : seismological measurements and the use of trained neural networks, Bull. Seism. Soc. Am. 80: 1910

  19. Method for Fabricating and Packaging an M.Times.N Phased-Array Antenna

    NASA Technical Reports Server (NTRS)

    Xu, Xiaochuan (Inventor); Chen, Yihong (Inventor); Chen, Ray T. (Inventor); Subbaraman, Harish (Inventor)

    2017-01-01

    A method for fabricating an M.times.N, P-bit phased-array antenna on a flexible substrate is disclosed. The method comprising ink jet printing and hardening alignment marks, antenna elements, transmission lines, switches, an RF coupler, and multilayer interconnections onto the flexible substrate. The substrate of the M.times.N, P-bit phased-array antenna may comprise an integrated control circuit of printed electronic components such as, photovoltaic cells, batteries, resistors, capacitors, etc. Other embodiments are described and claimed.

  20. KSC-00pp1196

    NASA Image and Video Library

    2000-08-18

    Workers in the Space Station Processing Facility watch closely as Solar Array Wing-3, a component of the International Space Station, is lowered toward the Integrated Electronic Assembly where it will be installed for testing. The solar array is scheduled to be launched on STS-97 in late November along with the P6 truss. The Station’s electrical power system (EPS) will use eight photovoltaic solar arrays to convert sunlight to electricity. Each of the eight solar arrays will be 112 feet long by 39 feet wide. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station

Top