Science.gov

Sample records for cnhm par collision

  1. Collision tectonics

    SciTech Connect

    Coward, M.P.; Ries, A.C.

    1985-01-01

    The motions of lithospheric plates have produced most existing mountain ranges, but structures produced as a result of, and following the collision of continental plates need to be distinguished from those produced before by subduction. If subduction is normally only stopped when collision occurs, then most geologically ancient fold belts must be collisional, so it is essential to recognize and understand the effects of the collision process. This book consists of papers that review collision tectonics, covering tectonics, structure, geochemistry, paleomagnetism, metamorphism, and magmatism.

  2. THE MEASURES PAR PROJECT

    NASA Astrophysics Data System (ADS)

    Frouin, R. J.; Franz, B.

    2009-12-01

    The solar energy available for photosynthesis, known as PAR, controls the growth of phytoplankton and, therefore, regulates the composition and evolution of marine ecosystems. Knowing the spatial and temporal distribution of PAR over the oceans is critical to understanding biogeochemical cycles of carbon, nutrients, and oxygen, and to address important climate and global change issues such as the fate of anthropogenic atmospheric carbon dioxide. In view of this, a 12-year time series of PAR at the ocean surface, starting in September 1997, is being produced by the NASA Ocean Biology Processing Group from SeaWiFS, MODIS-Terra, and MODIS-Aqua data. The product covers the global oceans, with a spatial resolution of about 9.3x9.3 km (equal area grid) and a temporal resolution of one day. PAR is computed as the difference between the 400-700 nm solar flux incident on the top of the atmosphere (known) and reflected back to space by the atmosphere and surface (derived from satellite radiance), taking into account atmospheric absorption (modeled). Knowledge of pixel composition is not required, eliminating the need for cloud screening and arbitrary assumptions about sub-pixel cloudiness. Combining data from satellite sensors with different equatorial crossing times accounts for the diurnal variability of clouds and, therefore, increases accuracy on a daily time scale. The processing system, including routine check of accuracy and control of quality, is designed to operate during the entire lifetime of SeaWiFS and MODIS, and to accommodate future sensors with ocean-color capabilities. Maps of daily, weekly, and monthly PAR obtained from individual sensors are presented, as well as merged products. Accuracy is quantified in comparisons with other satellite estimates, the National Centers for Environmental Prediction reanalysis product, and in-situ measurements from fixed buoys and platforms. The good statistical performance makes the satellite PAR product suitable for large

  3. La pelade par plaques

    PubMed Central

    Spano, Frank; Donovan, Jeff C.

    2015-01-01

    Résumé Objectif Présenter aux médecins de famille des renseignements de base pour faire comprendre l’épidémiologie, la pathogenèse, l’histologie et l’approche clinique au diagnostic de la pelade par plaques. Sources des données Une recension a été effectuée dans PubMed pour trouver des articles pertinents concernant la pathogenèse, le diagnostic et le pronostic de la pelade par plaques. Message principal La pelade par plaques est une forme de perte pileuse auto-immune dont la prévalence durant une vie est d’environ 2 %. Des antécédents personnels ou familiaux de troubles auto-immuns concomitants, comme le vitiligo ou une maladie de la thyroïde, peuvent être observés dans un petit sous-groupe de patients. Le diagnostic peut souvent être posé de manière clinique en se fondant sur la perte de cheveux non cicatricielle et circulaire caractéristique, accompagnée de cheveux en « point d’exclamation » en périphérie chez ceux dont le problème en est aux premiers stades. Le diagnostic des cas plus complexes ou des présentations inhabituelles peut être facilité par une biopsie et un examen histologique. Le pronostic varie largement et de mauvais résultats sont associés à une apparition à un âge précoce, une perte importante, la variante ophiasis, des changements aux ongles, des antécédents familiaux ou des troubles auto-immuns concomitants. Conclusion La pelade par plaques est une forme auto-immune de perte de cheveux périodiquement observée en soins primaires. Les médecins de famille sont bien placés pour identifier la pelade par plaques, déterminer la gravité de la maladie et poser le diagnostic différentiel approprié. De plus, ils sont en mesure de renseigner leurs patients à propos de l’évolution clinique de la maladie ainsi que du pronostic général selon le sous-type de patients.

  4. La pelade par plaques

    PubMed Central

    Spano, Frank; Donovan, Jeff C.

    2015-01-01

    Résumé Objectif Présenter aux médecins de famille des renseignements de base pour faire comprendre les schémas thérapeutiques et les résultats des traitements pour la pelade par plaques, de même que les aider à identifier les patients pour qui une demande de consultation en dermatologie pourrait s’imposer. Sources des données Une recension a été effectuée dans PubMed pour trouver des articles pertinents concernant le traitement de la pelade par plaques. Message principal La pelade par plaques est une forme auto-immune de perte pileuse qui touche à la fois les enfants et les adultes. Même s’il n’y a pas de mortalité associée à la maladie, la morbidité découlant des effets psychologiques de la perte des cheveux peut être dévastatrice. Lorsque la pelade par plaques et le sous-type de la maladie sont identifiés, un schéma thérapeutique approprié peut être amorcé pour aider à arrêter la chute des cheveux et possiblement faire commencer la repousse. Les traitements de première intention sont la triamcinolone intralésionnelle avec des corticostéroïdes topiques ou du minoxidil ou les 2. Les médecins de famille peuvent prescrire ces traitements en toute sécurité et amorcer ces thérapies. Les cas plus avancés ou réfractaires pourraient avoir besoin de diphénylcyclopropénone topique ou d’anthraline topique. On peut traiter la perte de cils avec des analogues de la prostaglandine. Les personnes ayant subi une perte de cheveux abondante peuvent recourir à des options de camouflage ou à des prothèses capillaires. Il est important de surveiller les troubles psychiatriques en raison des effets psychologiques profonds de la perte de cheveux. Conclusion Les médecins de famille verront de nombreux patients qui perdent leurs cheveux. La reconnaissance de la pelade par plaques et la compréhension du processus pathologique sous-jacent permettent d’amorcer un schéma thérapeutique approprié. Les cas plus graves ou r

  5. Galaxy collisions.

    NASA Astrophysics Data System (ADS)

    Struck, C.

    Theories of how galaxies, the fundamental constituents of large-scale structure, form and evolve have undergone a dramatic paradigm shift in the last few decades. Earlier views were of rapid, early collapse and formation of basic structures, followed by slow evolution of the stellar populations and steady buildup of the chemical elements. Current theories emphasize hierarchical buildup via recurrent collisions and mergers, separated by long periods of relaxation and secular restructuring. Thus, collisions between galaxies are now seen as a primary process in their evolution. This article begins with a brief history of how this once peripheral subject found its way to center stage. The author then tours parts of the vast array of collisional forms that have been discovered to date. Many examples are provided to illustrate how detailed numerical models and multiwaveband observations have allowed the general chronological sequence of collisional morphologies to be deciphered, and how these forms are produced by the processes of tidal kinematics, hypersonic gas dynamics, collective dynamical friction and violent relaxation. Galaxy collisions may trigger the formation of a large fraction of all the stars ever formed, and play a key role in fueling active galactic nuclei. Current understanding of the processes involved is reviewed. The last decade has seen exciting new discoveries about how collisions are orchestrated by their environment, how collisional processes depend on environment, and how these environments depend on redshift or cosmological time. These discoveries and prospects for the future are summarized in the final sections.

  6. Brulures par Diluant

    PubMed Central

    Benbrahim, A.; Jerrah, H.; Diouri, M.; Bahechar, N.; Boukind, E.H.

    2009-01-01

    Summary La flamme de diluant est une cause non rare de brûlure dans le contexte marocain. Nous avons jugé intéressant de faire une étude épidémiologique sur la brûlure par flamme de diluant (BFD) au centre national des brûlés (CNB) du CHU Ibn-Rochd de Casablanca. Ce travail a été réalisé sur une période de 10 mois (septembre 2007/juin 2008). Le but du travail est de montrer les caractéristiques de ce type de brûlures pour les prévenir et ce par l'information sur le diluant, produit causant ces brûlures, et ses différents dangers, la brûlure notamment. Durant cette période, nous avons colligé 17 cas de BFD sur un total de 356 patients admis au CNB pour brûlures aiguës toute étiologie confondue. La moyenne d'age des patients concernés est de 32 ans. Ils sont presque tous de sexe masculin (16 hommes/1 femme) et ont des antécédents de toxicomanie et/ou de délinquance. Tous nos patients sont de bas niveau socio-économique et habitent dans des bidonvilles pour la plupart. La brûlure est souvent secondaire à une agression dans la rue (92% des cas). Concernant les caractéristiques de la brûlure, la surface cutanée brûlée moyenne est de 23%; elle est souvent profonde et siège surtout au niveau des membres supérieurs et du tronc. PMID:21991179

  7. Puck collisions

    NASA Astrophysics Data System (ADS)

    Hauge, E. H.

    2012-09-01

    Collisions between two ice hockey pucks sliding on frictionless ice are studied, with both inelasticity and frictional contact between the colliding surfaces of the two pucks taken into account. The latter couples translational and rotational motion. The full solution depends on the sign and magnitude of the initial mismatch between the surface velocities at the point of contact. The initial state defines two physically distinct regimes for the friction coefficient. To illustrate the complexities, we discuss at length the typical situation (well known from curling) when puck number 1 is initially at rest, and is hit by puck number 2 with an arbitrary impact parameter, velocity and angular velocity. We find that the total outgoing angle between the pucks exceeds \\frac{1}{2}\\pi if and only if the collision leads to a net increase in the translational part of the kinetic energy. The conditions for this to happen are scrutinized, and the results are presented both analytically and numerically by a set of representative curves. This paper is written with an ambitious undergraduate, and her teacher, in mind.

  8. Par3 controls neural crest migration by promoting microtubule catastrophe during contact inhibition of locomotion

    PubMed Central

    Moore, Rachel; Theveneau, Eric; Pozzi, Sara; Alexandre, Paula; Richardson, Joanna; Merks, Anne; Parsons, Maddy; Kashef, Jubin; Linker, Claudia; Mayor, Roberto

    2013-01-01

    There is growing evidence that contact inhibition of locomotion (CIL) is essential for morphogenesis and its failure is thought to be responsible for cancer invasion; however, the molecular bases of this phenomenon are poorly understood. Here we investigate the role of the polarity protein Par3 in CIL during migration of the neural crest, a highly migratory mesenchymal cell type. In epithelial cells, Par3 is localised to the cell-cell adhesion complex and is important in the definition of apicobasal polarity, but the localisation and function of Par3 in mesenchymal cells are not well characterised. We show in Xenopus and zebrafish that Par3 is localised to the cell-cell contact in neural crest cells and is essential for CIL. We demonstrate that the dynamics of microtubules are different in different parts of the cell, with an increase in microtubule catastrophe at the collision site during CIL. Par3 loss-of-function affects neural crest migration by reducing microtubule catastrophe at the site of cell-cell contact and abrogating CIL. Furthermore, Par3 promotes microtubule catastrophe by inhibiting the Rac-GEF Trio, as double inhibition of Par3 and Trio restores microtubule catastrophe at the cell contact and rescues CIL and neural crest migration. Our results demonstrate a novel role of Par3 during neural crest migration, which is likely to be conserved in other processes that involve CIL such as cancer invasion or cell dispersion. PMID:24173803

  9. Par3 controls neural crest migration by promoting microtubule catastrophe during contact inhibition of locomotion.

    PubMed

    Moore, Rachel; Theveneau, Eric; Pozzi, Sara; Alexandre, Paula; Richardson, Joanna; Merks, Anne; Parsons, Maddy; Kashef, Jubin; Linker, Claudia; Mayor, Roberto

    2013-12-01

    There is growing evidence that contact inhibition of locomotion (CIL) is essential for morphogenesis and its failure is thought to be responsible for cancer invasion; however, the molecular bases of this phenomenon are poorly understood. Here we investigate the role of the polarity protein Par3 in CIL during migration of the neural crest, a highly migratory mesenchymal cell type. In epithelial cells, Par3 is localised to the cell-cell adhesion complex and is important in the definition of apicobasal polarity, but the localisation and function of Par3 in mesenchymal cells are not well characterised. We show in Xenopus and zebrafish that Par3 is localised to the cell-cell contact in neural crest cells and is essential for CIL. We demonstrate that the dynamics of microtubules are different in different parts of the cell, with an increase in microtubule catastrophe at the collision site during CIL. Par3 loss-of-function affects neural crest migration by reducing microtubule catastrophe at the site of cell-cell contact and abrogating CIL. Furthermore, Par3 promotes microtubule catastrophe by inhibiting the Rac-GEF Trio, as double inhibition of Par3 and Trio restores microtubule catastrophe at the cell contact and rescues CIL and neural crest migration. Our results demonstrate a novel role of Par3 during neural crest migration, which is likely to be conserved in other processes that involve CIL such as cancer invasion or cell dispersion.

  10. Par Pond vegetation status 1996

    SciTech Connect

    Mackey, H.E. Jr.; Riley, R.S.

    1996-12-01

    The water level of Par Pond was lowered approximately 20 feet in mid-1991 in order to protect downstream residents from possible dam failure suggested by subsidence on the downstream slope of the dam and to repair the dam. This lowering exposed both emergent and nonemergent macrophyte beds to drying conditions resulting in extensive losses. A survey of the newly emergent, shoreline aquatic plant communities of Par Pond began in June 1995, three months after the refilling of Par Pond to approximately 200 feet above mean sea level. These surveys continued in July, September, and late October, 1995, and into the early spring and late summer of 1996. Communities similar to the pre-drawdown, Par Pond aquatic plant communities continue to become re-established. Emergent beds of maidencane, lotus, waterlily, watershield, and Pontederia are extensive and well developed. Measures of percent cover, width of beds, and estimates of area of coverage with satellite data indicate regrowth within two years of from 40 to 60% of levels prior to the draw down. Cattail occurrence continued to increase during the summer of 1996, especially in the former warm arm of Par Pond, but large beds common to Par Pond prior to the draw down still have not formed. Lotus has invaded and occupies many of the areas formerly dominated by cattail beds. To track the continued development of macrophytes in Par Pond, future surveys through the summer and early fall of 1997, along with the evaluation of satellite data to map the extent of the macrophyte beds of Par Pond, are planned.

  11. Exploration of locomotion in the ParA/ParB system

    NASA Astrophysics Data System (ADS)

    Jindal, Lavisha; Emberly, Eldon

    2015-03-01

    In many bacteria the ParA/ParB system is responsible for actively segregating DNA during replication. ParB precessively moves by hydrolyzing DNA bound ParA-ATP forming a depleted ParA region in its wake. Recent in-vitro experiments have shown that a ParB covered bead can traverse a ParA bound DNA substrate. It has been suggested that the formation of a gradient in ParA leads to diffusion-ratchet like motion of the ParB bead but its origin and potential consequences requires investigation. We have developed a deterministic model for the in-vitro ParA/ParB system and show that any amount of spatial noise in ParA can lead to the spontaneous formation of its gradient. The velocity of the bead is independent of this noise but depends on the scale over which ParA exerts a force on the bead and the scale over which ParB hydrolyzes ParA from the substrate. There is a particular ratio of these scales at which the velocity is a maximum. We also explore the effects of cooperative vs independent rebinding of ParA to the substrate. Our model shows how the driving force for ParB originates and highlights necessary conditions for directed motion in the in-vitro system that may provide insight into the in-vivo behaviour of the ParA/ParB system.

  12. Collision Repair Campaign

    EPA Pesticide Factsheets

    The Collision Repair Campaign targets meaningful risk reduction in the Collision Repair source category to reduce air toxic emissions in their communities. The Campaign also helps shops to work towards early compliance with the Auto Body Rule.

  13. Par Pond Fish, Water, and Sediment Chemistry

    SciTech Connect

    Paller, M.H.; Wike, L.D.

    1996-06-01

    The objectives of this report are to describe the Par Pond fish community and the impact of the drawdown and refill on the community, describe contaminant levels in Par Pond fish, sediments, and water and indicate how contaminant concentrations and distributions were affected by the drawdown and refill, and predict possible effects of future water level fluctuations in Par Pond.

  14. Directed and persistent movement arises from mechanochemistry of the ParA/ParB system

    NASA Astrophysics Data System (ADS)

    Hu, Longhua; Vecchiarelli, Anthony G.; Mizuuchi, Kiyoshi; Neuman, Keir C.; Liu, Jian

    The segregation of DNA prior to cell division is essential for faithful genetic inheritance. In many bacteria, segregation of the low-copy-number plasmids involves an active partition system composed of ParA ATPase and its stimulator protein ParB. Recent experiments suggest that ParA/ParB system motility is driven by a diffusion-ratchet mechanism in which ParB-coated plasmid both creates and follows a ParA gradient on the nucleoid surface. However, the detailed mechanism of ParA/ParB-mediated directed and persistent movement remains unknown. We develop a theoretical model describing ParA/ParB-mediated motility. We show that the ParA/ParB system can work as a Brownian ratchet, which effectively couples the ATPase-dependent cycling of ParA-nucleoid affinity to the motion of the ParB bound cargo. Paradoxically, the resulting processive motion relies on quenching diffusive plasmid motion through a large number of transient ParA/ParB-mediated tethers to the nucleoid surface. Our work sheds light on a new emergent phenomenon in which non-motor proteins work collectively via mechanochemical coupling to propel cargos -- an ingenious solution shaped by evolution to cope with the lack of processive motor proteins in bacteria.

  15. Probability of satellite collision

    NASA Technical Reports Server (NTRS)

    Mccarter, J. W.

    1972-01-01

    A method is presented for computing the probability of a collision between a particular artificial earth satellite and any one of the total population of earth satellites. The collision hazard incurred by the proposed modular Space Station is assessed using the technique presented. The results of a parametric study to determine what type of satellite orbits produce the greatest contribution to the total collision probability are presented. Collision probability for the Space Station is given as a function of Space Station altitude and inclination. Collision probability was also parameterized over miss distance and mission duration.

  16. Parallel Climate Analysis Toolkit (ParCAT)

    SciTech Connect

    Smith, Brian Edward

    2013-06-30

    The parallel analysis toolkit (ParCAT) provides parallel statistical processing of large climate model simulation datasets. ParCAT provides parallel point-wise average calculations, frequency distributions, sum/differences of two datasets, and difference-of-average and average-of-difference for two datasets for arbitrary subsets of simulation time. ParCAT is a command-line utility that can be easily integrated in scripts or embedded in other application. ParCAT supports CMIP5 post-processed datasets as well as non-CMIP5 post-processed datasets. ParCAT reads and writes standard netCDF files.

  17. Overproduction and localization of Mycobacterium tuberculosis ParA and ParB proteins

    PubMed Central

    Maloney, Erin; Madiraju, Murty; Rajagopalan, Malini

    2011-01-01

    SUMMARY The ParA and ParB family proteins are required for accurate partitioning of replicated chromosomes. The Mycobacterium tuberculosis genome contains parB, parA and two parA homologs, Rv1708 and Rv3213c. It is unknown if parA and its homologs are functionally related. To understand the roles of ParA and ParB proteins in M. tuberculosis cell cycle, we have evaluated the consequences of their overproduction and visualized their localization patterns in M. smegmatis. We show that cells overproducing of ParA, Rv1708 and Rv3213c and ParB are filamentous and multinucleoidal indicating defects in cell cycle progression. Visualization of green-fluorescent protein fusions of ParA and its homologues showed similar localization patterns with foci at poles, quarter-cell, midcell positions and spiral-like structures indicating that they are functionally related. On the other hand, the ParBGFP fusion protein localized only to the cell poles. The cyan and yellow fluorescent fusion proteins of ParA and ParB, respectively, colocalized at the cell poles indicating that these proteins interact and possibly associate with the chromosomal origin of replication. Collectively our results suggest that the M. tuberculosis Par proteins play important roles in cell cycle progression. PMID:20006309

  18. suPAR: The Molecular Crystal Ball

    PubMed Central

    Thunø, Maria; Macho, Betina; Eugen-Olsen, Jesper

    2009-01-01

    soluble urokinase Plasminogen Activator Receptor (suPAR) levels reflect inflammation and elevated suPAR levels are found in several infectious diseases and cancer. suPAR exists in three forms; suPARI-III, suPARII-III and suPARI which show different properties due to structural differences. Studies suggest that full-length suPAR is a regulator of uPAR/uPA by acting as uPA-scavenger, whereas the cleaved suPARII-III act as a chemotactic agent promoting the immune response via the SRSRY sequence in the linker-region. This review focus on the various suPAR fragments and their involvement in inflammation and pathogenic processes. We focus on the molecular mechanisms of the suPAR fragments and the link to the inflammatory process, as this could lead to medical applications in infectious and pathological conditions. PMID:19893210

  19. Directed and persistent movement arises from mechanochemistry of the ParA/ParB system

    PubMed Central

    Hu, Longhua; Vecchiarelli, Anthony G.; Mizuuchi, Kiyoshi; Neuman, Keir C.; Liu, Jian

    2015-01-01

    The segregation of DNA before cell division is essential for faithful genetic inheritance. In many bacteria, segregation of low-copy number plasmids involves an active partition system composed of a nonspecific DNA-binding ATPase, ParA, and its stimulator protein ParB. The ParA/ParB system drives directed and persistent movement of DNA cargo both in vivo and in vitro. Filament-based models akin to actin/microtubule-driven motility were proposed for plasmid segregation mediated by ParA. Recent experiments challenge this view and suggest that ParA/ParB system motility is driven by a diffusion ratchet mechanism in which ParB-coated plasmid both creates and follows a ParA gradient on the nucleoid surface. However, the detailed mechanism of ParA/ParB-mediated directed and persistent movement remains unknown. Here, we develop a theoretical model describing ParA/ParB-mediated motility. We show that the ParA/ParB system can work as a Brownian ratchet, which effectively couples the ATPase-dependent cycling of ParA–nucleoid affinity to the motion of the ParB-bound cargo. Paradoxically, this resulting processive motion relies on quenching diffusive plasmid motion through a large number of transient ParA/ParB-mediated tethers to the nucleoid surface. Our work thus sheds light on an emergent phenomenon in which nonmotor proteins work collectively via mechanochemical coupling to propel cargos—an ingenious solution shaped by evolution to cope with the lack of processive motor proteins in bacteria. PMID:26647183

  20. [Ambroise Paré, landlord].

    PubMed

    Pion-Graff, Joëlle; Bonnichon, Philippe

    2010-01-01

    Paré is well-known through many papers. His incomes allowed him to have a middle-class Parisian living. It is impossible to have an accurate knowledge of his fortune before his death but we have a good idea of his landed property. In fact as a Parishioner of Saint-Andre-des-Arts Church he probably was a landlord only in Paris and its vicinity with a building (rue de l'Hirondelle), two houses (rue Garancière), Meudon, Cormeille-en-Parisis and La-Ville-Du-Bois which the authors describe the present state of.

  1. Elastic and Inelastic Collisions

    ERIC Educational Resources Information Center

    Gluck, Paul

    2010-01-01

    There have been two articles in this journal that described a pair of collision carts used to demonstrate vividly the difference between elastic and inelastic collisions. One cart had a series of washers that were mounted rigidly on a rigid wooden framework, the other had washers mounted on rubber bands stretched across a framework. The rigidly…

  2. Ball Collision Experiments

    ERIC Educational Resources Information Center

    Cross, R.

    2015-01-01

    Experiments are described on collisions between two billiard balls and between a bat and a ball. The experiments are designed to extend a student's understanding of collision events and could be used either as a classroom demonstration or for a student project.

  3. Elastic and Inelastic Collisions

    ERIC Educational Resources Information Center

    Gluck, Paul

    2010-01-01

    There have been two articles in this journal that described a pair of collision carts used to demonstrate vividly the difference between elastic and inelastic collisions. One cart had a series of washers that were mounted rigidly on a rigid wooden framework, the other had washers mounted on rubber bands stretched across a framework. The rigidly…

  4. Ball Collision Experiments

    ERIC Educational Resources Information Center

    Cross, R.

    2015-01-01

    Experiments are described on collisions between two billiard balls and between a bat and a ball. The experiments are designed to extend a student's understanding of collision events and could be used either as a classroom demonstration or for a student project.

  5. Bubble collision with gravitation

    SciTech Connect

    Hwang, Dong-il; Lee, Bum-Hoon; Lee, Wonwoo; Yeom, Dong-han E-mail: bhl@sogang.ac.kr E-mail: innocent.yeom@gmail.com

    2012-07-01

    In this paper, we study vacuum bubble collisions with various potentials including gravitation, assuming spherical, planar, and hyperbolic symmetry. We use numerical calculations from double-null formalism. Spherical symmetry can mimic the formation of a black hole via multiple bubble collisions. Planar and especially hyperbolic symmetry describes two bubble collisions. We study both cases, when two true vacuum regions have the same field value or different field values, by varying tensions. For the latter case, we also test symmetric and asymmetric bubble collisions, and see details of causal structures. If the colliding energy is sufficient, then the vacuum can be destabilized, and it is also demonstrated. This double-null formalism can be a complementary approach in the context of bubble collisions.

  6. PAR for the Course: A Congruent Pedagogical Approach for a PAR Methods Class

    ERIC Educational Resources Information Center

    Hammond, Joyce D.; Hicks, Maria; Kalman, Rowenn; Miller, Jason

    2005-01-01

    In the past two years, three graduate students and a senior faculty member have co-taught a participatory action research (PAR) course to undergraduate and graduate students. In this article the co-teachers advocate a set of pedagogical principles and practices in a PAR-oriented classroom that establishes congruency with community PAR projects in…

  7. Par Pond vegetation status Summer 1995 -- Summary

    SciTech Connect

    Mackey, H.E. Jr.; Riley, R.S.

    1996-01-01

    The water level of Par Pond was lowered approximately 20 feet in mid-1991 in order to protect downstream residents from possible dam failure suggested by subsidence on the downstream slope of the dam and to repair the dam. This lowering exposed both emergent and nonemergent macrophyte beds to drying conditions resulting in extensive losses. A survey of the newly emergent, shoreline aquatic plant communities of Par Pond began in June 1995, three months after the refilling of Par Pond to approximately 200 feet above mean sea level. These surveys continued in July, September, and late October, 1995. Communities similar to the pre-drawdown, Par Pond aquatic plant communities are becoming re-established. Emergent beds of maidencane, lotus, waterlily, and watershield are extensive and well developed. Cattail occurrence continued to increase during the summer, but large beds common to Par Pond prior to the drawdown have not formed. Estimates from SPOT HRV, remote sensing satellite data indicated that as much as 120 hectares of emergent wetlands vegetation may have been present along the Par Pond shoreline by early October, 1995. To track the continued development of macrophytes in Par Pond, future surveys throughout 1996 and 1997, along with the continued evaluation of satellite data to map the areal extent of the macrophyte beds of Par Pond, are planned.

  8. Asteroidal collision probabilities

    NASA Astrophysics Data System (ADS)

    Bottke, W. F.; Greenberg, R.

    1993-05-01

    Several past calculations of collision probabilities between pairs of bodies on independent orbits have yielded inconsistent results. We review the methodologies and identify their various problems. Greenberg's (1982) collision probability formalism (now with a corrected symmetry assumption) is equivalent to Wetherill's (1967) approach, except that it includes a way to avoid singularities near apsides. That method shows that the procedure by Namiki and Binzel (1991) was accurate for those cases where singularities did not arise.

  9. Photon-photon collisions

    SciTech Connect

    Burke, D.L.

    1982-10-01

    Studies of photon-photon collisions are reviewed with particular emphasis on new results reported to this conference. These include results on light meson spectroscopy and deep inelastic e..gamma.. scattering. Considerable work has now been accumulated on resonance production by ..gamma gamma.. collisions. Preliminary high statistics studies of the photon structure function F/sub 2//sup ..gamma../(x,Q/sup 2/) are given and comments are made on the problems that remain to be solved.

  10. Launch Collision Probability

    NASA Technical Reports Server (NTRS)

    Bollenbacher, Gary; Guptill, James D.

    1999-01-01

    This report analyzes the probability of a launch vehicle colliding with one of the nearly 10,000 tracked objects orbiting the Earth, given that an object on a near-collision course with the launch vehicle has been identified. Knowledge of the probability of collision throughout the launch window can be used to avoid launching at times when the probability of collision is unacceptably high. The analysis in this report assumes that the positions of the orbiting objects and the launch vehicle can be predicted as a function of time and therefore that any tracked object which comes close to the launch vehicle can be identified. The analysis further assumes that the position uncertainty of the launch vehicle and the approaching space object can be described with position covariance matrices. With these and some additional simplifying assumptions, a closed-form solution is developed using two approaches. The solution shows that the probability of collision is a function of position uncertainties, the size of the two potentially colliding objects, and the nominal separation distance at the point of closest approach. ne impact of the simplifying assumptions on the accuracy of the final result is assessed and the application of the results to the Cassini mission, launched in October 1997, is described. Other factors that affect the probability of collision are also discussed. Finally, the report offers alternative approaches that can be used to evaluate the probability of collision.

  11. Visually guided collision avoidance and collision achievement.

    PubMed

    Regan; Gray

    2000-03-01

    To survive on today's highways, a driver must have highly developed skills in visually guided collision avoidance. To play such games as cricket, tennis or baseball demands accurate, precise and reliable collision achievement. This review discusses evidence that some of these tasks are performed by predicting where an object will be at some sharply defined instant, several hundred milliseconds in the future, while other tasks are performed by utilizing the fact that some of our motor actions change what we see in ways that obey lawful relationships, and can therefore be learned. Several monocular and binocular visual correlates of the direction of an object's motion relative to the observer's head have been derived theoretically, along with visual correlates of the time to collision with an approaching object. Although laboratory psychophysics can identify putative neural mechanisms by showing which of the known correlates are processed by the human visual system independently of other visual information, it is only field research on, for example, driving, aviation and sport that can show which visual cues are actually used in these activities. This article reviews this research and describes a general psychophysically based rational approach to the design of such field studies.

  12. Comparative cactus architecture and par interception

    SciTech Connect

    Geller, G.N.; Nobel, P.S. )

    1987-07-01

    Because CO{sup 2} uptake by cacti can be limited by low levels of photosynthetically active radiation (PAR) and because plant form affects PAR interception, various cactus forms were studied using a computer model, field measurements, and laboratory phototropic studies. Model predictions indicated that CO{sub 2} uptake by individual stems at an equinox was greatest when the stem were vertical, but at the summer and the winter solstice CO{sub 2} uptake was greatest for stems titled 30{degree} away from the equator. Stem tilting depended on form and taxonomic group. Not only can the shape of cacti be affected by PAR, but also shape influences PAR interception and hence CO{sub 2} uptake.

  13. Analyzing cosmic bubble collisions

    SciTech Connect

    Gobbetti, Roberto; Kleban, Matthew E-mail: mk161@nyu.edu

    2012-05-01

    We develop a set of controlled, analytic approximations to study the effects of bubble collisions on cosmology. We expand the initial perturbation to the inflaton field caused by the collision in a general power series, and determine its time evolution during inflation in terms of the coefficients in the expansion. In models where the observer's bubble undergoes sufficient slow-roll inflation to solve the flatness problem, in the thin wall limit only one coefficient in the expansion is relevant to observational cosmology, allowing nearly model-independent predictions. We discuss two approaches to determining the initial perturbation to the inflaton and the implications for the sign of the effect (a hot or cold spot on the Cosmic Microwave Background temperature map). Lastly, we analyze the effects of collisions with thick-wall bubbles, i.e. away from the thin-wall limit.

  14. Microscope collision protection apparatus

    DOEpatents

    DeNure, Charles R.

    2001-10-23

    A microscope collision protection apparatus for a remote control microscope which protects the optical and associated components from damage in the event of an uncontrolled collision with a specimen, regardless of the specimen size or shape. In a preferred embodiment, the apparatus includes a counterbalanced slide for mounting the microscope's optical components. This slide replaces the rigid mounts on conventional upright microscopes with a precision ball bearing slide. As the specimen contacts an optical component, the contacting force will move the slide and the optical components mounted thereon. This movement will protect the optical and associated components from damage as the movement causes a limit switch to be actuated, thereby stopping all motors responsible for the collision.

  15. Collision of cosmic superstrings

    SciTech Connect

    Copeland, E. J.; Firouzjahi, H.; Kibble, T. W. B.; Steer, D. A.

    2008-03-15

    We study the formation of three-string junctions between (p,q)-cosmic superstrings, and collisions between such strings and show that kinematic constraints analogous to those found previously for collisions of Nambu-Goto strings apply here too, with suitable modifications to take account of the additional requirements of flux conservation. We examine in detail several examples involving collisions between strings with low values of p and q, and also examine the rates of growth or shrinkage of strings at a junction. Finally, we briefly discuss the formation of junctions for strings in a warped space, specifically with a Klebanov-Strassler throat, and show that similar constraints still apply with changes to the parameters taking account of the warping and the background flux.

  16. Techniques for measuring intercepted and absorbed PAR in corn canopies

    NASA Technical Reports Server (NTRS)

    Gallo, K. P.; Daughtry, C. S. T.

    1984-01-01

    The quantity of radiation potentially available for photosynthesis that is captured by the crop is best described as absorbed photosynthetically active radiation (PAR). Absorbed PAR (APAR) is the difference between descending and ascending fluxes. The four components of APAR were measured above and within two planting densities of corn (Zea mays L.) and several methods of measuring and estimating APAR were examined. A line quantum sensor that spatially averages the photosynthetic photon flux density provided a rapid and portable method of measuring APAR. PAR reflectance from the soil (Typic Argiaquoll) surface decreased from 10% to less than 1% of the incoming PAR as the canopy cover increased. PAR reflectance from the canopy decreased to less than 3% at maximum vegetative cover. Intercepted PAR (1 - transmitted PAR) generally overestimated absorbed PAR by less than 4% throughout most of the growing season. Thus intercepted PAR appears to be a reasonable estimate of absorbed PAR.

  17. About the Collision Repair Campaign

    EPA Pesticide Factsheets

    EPA developed the Collision Repair Campaign to focus on meaningful risk reduction in the Collision Repair source sector to complement ongoing community air toxics work and attain reductions at a faster rate.

  18. Atomic cluster collisions

    NASA Astrophysics Data System (ADS)

    Korol, Andrey V.; Solov'yov, Andrey

    2013-01-01

    Atomic cluster collisions are a field of rapidly emerging research interest by both experimentalists and theorists. The international symposium on atomic cluster collisions (ISSAC) is the premier forum to present cutting-edge research in this field. It was established in 2003 and the most recent conference was held in Berlin, Germany in July of 2011. This Topical Issue presents original research results from some of the participants, who attended this conference. This issues specifically focuses on two research areas, namely Clusters and Fullerenes in External Fields and Nanoscale Insights in Radiation Biodamage.

  19. Ice particle collisions

    NASA Astrophysics Data System (ADS)

    Sampara, Naresh; Turnbull, Barbara; Hill, Richard; Swift, Michael

    2017-04-01

    Granular interactions of ice occur in a range of geophysical, astrophysical and industrial applications. For example, Saturn's Rings are composed of icy particles from micrometers to kilometres in size - inertial and yet too small to interact gravitationally. In clouds, ice crystals are smashed to pieces before they re-aggregate to for snow floccules in a process that is very much open to interpretation. In a granular flow of ice particles, the energy spent in collisions can lead to localized surface changes and wetting, which in turn can promote aggregation. To understand the induced wetting and its effects, we present two novel experimental methods which provide snippets of insight into the collisional behaviour of macroscopic ice particles. Experiment 1: Microgravity experiments provide minute details of the contact between the ice particles during the collision. A diamagnetic levitation technique, as alternative to the parabolic flight or falling tower experiments, was used to understand the collisional behaviour of individual macroscopic icy bodies. A refrigerated cylinder, that can control ambient conditions, was inserted into the bore of an 18 Tesla superconducting magnet and cooled to -10°C. Initial binary collisions were created, where one 4 mm ice particle was levitated in the magnet bore whilst another particle was dropped vertically from the top of the bore. The trajectories of both particles were captured by high speed video to provide the three-dimensional particle velocities and track the collision outcome. Introducing complexity, multiple particles were levitated in the bore and an azimuthal turbulent air flow introduced, allowing the particles to collide with other particles within a coherent fluid structure (mimicking Saturn's rings, or an eddy in a cloud). In these experiments, a sequence of collisions occur, each one different to the previous one due to the changes in surface characteristics created by the collisions themselves. Aggregation

  20. Protease-activated receptor (PAR) 1 and PAR4 differentially regulate factor V expression from human platelets.

    PubMed

    Duvernay, Matthew; Young, Summer; Gailani, David; Schoenecker, Jonathan; Hamm, Heidi E; Hamm, Heidi

    2013-04-01

    With the recent interest of protease-activated receptors (PAR) 1 and PAR4 as possible targets for the treatment of thrombotic disorders, we compared the efficacy of protease-activated receptor (PAR)1 and PAR4 in the generation of procoagulant phenotypes on platelet membranes. PAR4-activating peptide (AP)-stimulated platelets promoted thrombin generation in plasma up to 5 minutes earlier than PAR1-AP-stimulated platelets. PAR4-AP-mediated factor V (FV) association with the platelet surface was 1.6-fold greater than for PAR1-AP. Moreover, PAR4 stimulation resulted in a 3-fold greater release of microparticles, compared with PAR1 stimulation. More robust FV secretion and microparticle generation with PAR4-AP was attributable to stronger and more sustained phosphorylation of myosin light chain at serine 19 and threonine 18. Inhibition of Rho-kinase reduced PAR4-AP-mediated FV secretion and microparticle generation to PAR1-AP-mediated levels. Thrombin generation assays measuring prothrombinase complex activity demonstrated 1.5-fold higher peak thrombin levels on PAR4-AP-stimulated platelets, compared with PAR1-AP-stimulated platelets. Rho-kinase inhibition reduced PAR4-AP-mediated peak thrombin generation by 25% but had no significant effect on PAR1-AP-mediated thrombin generation. In conclusion, stimulation of PAR4 on platelets leads to faster and more robust thrombin generation, compared with PAR1 stimulation. The greater procoagulant potential is related to more efficient FV release from intracellular stores and microparticle production driven by stronger and more sustained myosin light chain phosphorylation. These data have implications about the role of PAR4 during hemostasis and are clinically relevant in light of recent efforts to develop PAR antagonists to treat thrombotic disorders.

  1. Spacecraft Collision Avoidance

    NASA Astrophysics Data System (ADS)

    Bussy-Virat, Charles

    The rapid increase of the number of objects in orbit around the Earth poses a serious threat to operational spacecraft and astronauts. In order to effectively avoid collisions, mission operators need to assess the risk of collision between the satellite and any other object whose orbit is likely to approach its trajectory. Several algorithms predict the probability of collision but have limitations that impair the accuracy of the prediction. An important limitation is that uncertainties in the atmospheric density are usually not taken into account in the propagation of the covariance matrix from current epoch to closest approach time. The Spacecraft Orbital Characterization Kit (SpOCK) was developed to accurately predict the positions and velocities of spacecraft. The central capability of SpOCK is a high accuracy numerical propagator of spacecraft orbits and computations of ancillary parameters. The numerical integration uses a comprehensive modeling of the dynamics of spacecraft in orbit that includes all the perturbing forces that a spacecraft is subject to in orbit. In particular, the atmospheric density is modeled by thermospheric models to allow for an accurate representation of the atmospheric drag. SpOCK predicts the probability of collision between two orbiting objects taking into account the uncertainties in the atmospheric density. Monte Carlo procedures are used to perturb the initial position and velocity of the primary and secondary spacecraft from their covariance matrices. Developed in C, SpOCK supports parallelism to quickly assess the risk of collision so it can be used operationally in real time. The upper atmosphere of the Earth is strongly driven by the solar activity. In particular, abrupt transitions from slow to fast solar wind cause important disturbances of the atmospheric density, hence of the drag acceleration that spacecraft are subject to. The Probability Distribution Function (PDF) model was developed to predict the solar wind speed

  2. ParCAT: Parallel Climate Analysis Toolkit

    SciTech Connect

    Smith, Brian E.; Steed, Chad A.; Shipman, Galen M.; Ricciuto, Daniel M.; Thornton, Peter E.; Wehner, Michael; Williams, Dean N.

    2013-01-01

    Climate science is employing increasingly complex models and simulations to analyze the past and predict the future of Earth s climate. This growth in complexity is creating a widening gap between the data being produced and the ability to analyze the datasets. Parallel computing tools are necessary to analyze, compare, and interpret the simulation data. The Parallel Climate Analysis Toolkit (ParCAT) provides basic tools to efficiently use parallel computing techniques to make analysis of these datasets manageable. The toolkit provides the ability to compute spatio-temporal means, differences between runs or differences between averages of runs, and histograms of the values in a data set. ParCAT is implemented as a command-line utility written in C. This allows for easy integration in other tools and allows for use in scripts. This also makes it possible to run ParCAT on many platforms from laptops to supercomputers. ParCAT outputs NetCDF files so it is compatible with existing utilities such as Panoply and UV-CDAT. This paper describes ParCAT and presents results from some example runs on the Titan system at ORNL.

  3. PAR2 regulates regeneration, transdifferentiation, and death

    PubMed Central

    Piran, Ron; Lee, Seung-Hee; Kuss, Pia; Hao, Ergeng; Newlin, Robbin; Millán, José Luis; Levine, Fred

    2016-01-01

    Understanding the mechanisms by which cells sense and respond to injury is central to developing therapies to enhance tissue regeneration. Previously, we showed that pancreatic injury consisting of acinar cell damage+β-cell ablation led to islet cell transdifferentiation. Here, we report that the molecular mechanism for this requires activating protease-activated receptor-2 (PAR2), a G-protein-coupled receptor. PAR2 modulation was sufficient to induce islet cell transdifferentiation in the absence of β-cells. Its expression was modulated in an islet cell type-specific manner in murine and human type 1 diabetes (T1D). In addition to transdifferentiation, PAR2 regulated β-cell apoptosis in pancreatitis. PAR2's role in regeneration is broad, as mice lacking PAR2 had marked phenotypes in response to injury in the liver and in digit regeneration following amputation. These studies provide a pharmacologically relevant target to induce tissue regeneration in a number of diseases, including T1D. PMID:27809303

  4. ATP-regulated interactions between P1 ParA, ParB and non-specific DNA that are stabilized by the plasmid partition site, parS

    PubMed Central

    Havey, James C.; Vecchiarelli, Anthony G.; Funnell, Barbara E.

    2012-01-01

    Localization of the P1 plasmid requires two proteins, ParA and ParB, which act on the plasmid partition site, parS. ParB is a site-specific DNA-binding protein and ParA is a Walker-type ATPase with non-specific DNA-binding activity. In vivo ParA binds the bacterial nucleoid and forms dynamic patterns that are governed by the ParB–parS partition complex on the plasmid. How these interactions drive plasmid movement and localization is not well understood. Here we have identified a large protein–DNA complex in vitro that requires ParA, ParB and ATP, and have characterized its assembly by sucrose gradient sedimentation and light scattering assays. ATP binding and hydrolysis mediated the assembly and disassembly of this complex, while ADP antagonized complex formation. The complex was not dependent on, but was stabilized by, parS. The properties indicate that ParA and ParB are binding and bridging multiple DNA molecules to create a large meshwork of protein–DNA molecules that involves both specific and non-specific DNA. We propose that this complex represents a dynamic adaptor complex between the plasmid and nucleoid, and further, that this interaction drives the redistribution of partition proteins and the plasmid over the nucleoid during partition. PMID:21965538

  5. Multiplicity distributions in nuclear collisions

    SciTech Connect

    Capella, A.; Casado, J.A.; Pajares, C.; Ramallo, A.V.; Tran Tranh Van, J.

    1987-05-01

    Multiplicity distributions in nuclear collisions are calculated in the framework of the dual parton model. A comparison with experimental data is performed. The multiplicity distributions for /sup 16/O-/sup 207/Pb collisions at 200 Gev/c per nucleon is predicted. The fluctuations of the energy density in the central rapidity region for such collisions are estimated.

  6. Heavy-ion peripheral collisions in the Fermi energy domain : Fragmentation processes or dissipative collisions ?

    NASA Astrophysics Data System (ADS)

    Borderie, B.; Rivet, M. F.; Tassan-Got, L.

    For several years a new field in nuclear physics has been opened by the opportunity to accelerate heavy ions through an energy domain including the Fermi energy of nucleons. The new domain has to be seen as a link between dissipative processes observed at low energies, dominated by mean field considerations, and high energy collisions for which nucleon-nucleon collisions play an important role. This paper reviews our present knowledge on peripheral collisions. A reminder of contiguous energy domains is done as well as their extension in the new field. Specific calculations are also presented. Finally a wide comparison between experiments and calculations is performed. A fast dissipative stage proves to be responsible for the dominant mechanisms involved, at least when the incident energy is lower than 50 MeV/nucleon. Un nouveau champ d'études de la physique nucléaire s'est ouvert depuis quelques années avec la possibilité de réaliser des collisions noyau-noyau dans un domaine en énergie franchissant l'énergie de Fermi des nucléons. Ce nouveau domaine constitue le lien entre les processus dissipatifs observés à basse énergie, dominés par le concept de champ moyen, et les réactions à grande énergie pour lesquelles les collisions nucléon-nucléon jouent un rôle important. Cet article sur les collisions périphériques fait le point sur l'état actuel de nos connaissances. Après un rappel des domaines en énergie connexes, de leurs eventuelles extensions dans le domaine considéré, des calculs spécifiques au domaine sont décrits. Enfin une importante comparaison calculs théoriques-expériences est présentée. Une dissipation en énergie très rapide est responsable des processus dominants observés jusqu'à des énergies incidentes d'environ 50 MeV/nucléon.

  7. Antithrombotic effects of PAR1 and PAR4 antagonists evaluated under flow and static conditions.

    PubMed

    Hosokawa, Kazuya; Ohnishi, Tomoko; Miura, Naoki; Sameshima, Hisayo; Koide, Takehiko; Tanaka, Kenichi A; Maruyama, Ikuro

    2014-01-01

    Thrombin-mediated activation of human platelets involves the G-protein-coupled protease-activated receptors PAR1 and PAR4. Inhibition of PAR1 and/or PAR4 is thought to modulate platelet activation and subsequent procoagulant reactions. However, the antithrombotic effects of PAR1 and PAR4 antagonism have not been fully elucidated, particularly under flow conditions. A microchip-based flow chamber system was used to evaluate the influence of SCH79797 (PAR1 antagonist) and YD-3 (PAR4 antagonist) on thrombus formation mediated by collagen and tissue thromboplastin at shear rates simulating those experienced in small- to medium-sized arteries (600s(-1)) and large arteries and small veins (240s(-1)). At a shear rate of 600s(-1), SCH79797 (10μM) efficiently reduced fibrin-rich platelet thrombi and significantly delayed occlusion of the flow chamber capillary (1.44 fold of control; P<0.001). The inhibitory activity of SCH79797 was diminished at 240s(-1). YD-3 (20μM) had no significant effect at either shear rate. The antithrombotic effects of SCH79797 were significantly augmented when combined with aspirin and AR-C66096 (P2Y12 antagonist), but not with YD-3. In contrast, no significant inhibition of tissue factor-induced clot formation under static conditions was observed in blood treated with SCH79797 and YD-3, although thrombin generation in platelet-rich plasma was weakly delayed by these antagonists. Our results suggest that the antithrombotic activities of PAR1 and/or PAR4 antagonism is influenced by shear conditions as well as by combined platelet inhibition with aspirin and a P2Y12-antagonist. © 2013.

  8. Photon-photon collisions

    SciTech Connect

    Brodsky, S.J.

    1988-07-01

    Highlights of the VIIIth International Workshop on Photon-Photon Collisions are reviewed. New experimental and theoretical results were reported in virtually every area of ..gamma gamma.. physics, particularly in exotic resonance production and tests of quantum chromodynamics where asymptotic freedom and factorization theorems provide predictions for both inclusive and exclusive ..gamma gamma.. reactions at high momentum transfer. 73 refs., 12 figs.

  9. Space collision threat mitigation

    NASA Astrophysics Data System (ADS)

    Zatezalo, Aleksandar; Stipanović, Dušan; Mehra, Raman K.; Pham, Khanh

    2014-06-01

    Mitigation of possible collision threats to current and future operations in space environments is an important an challenging task considering high nonlinearity of orbital dynamics and discrete measurement updates. Such discrete observations are relatively scarce with respect to space dynamics including possible unintentional or intentional rocket propulsion based maneuvers even in scenarios when measurement collections are focused to a one single target of interest. In our paper, this problem is addressed in terms of multihypothesis and multimodel estimation in conjunction with multi-agent multigoal game theoretic guaranteed evasion strategies. Collision threat estimation is formulated using conditional probabilities of time dependent hypotheses and spacecraft controls which are computed using Liapunov-like approach. Based on this formulation, time dependent functional forms of multi-objective utility functions are derived given threat collision risk levels. For demonstrating developed concepts, numerical methods are developed using nonlinear filtering methodology for updating hypothesis sets and corresponding conditional probabilities. Space platform associated sensor resources are managed using previously developed and demonstrated information-theoretic objective functions and optimization methods. Consequently, estimation and numerical methods are evaluated and demonstrated on a realistic Low Earth Orbit collision encounter.

  10. Neutrino-atom collisions

    NASA Astrophysics Data System (ADS)

    Kouzakov, Konstantin A.; Studenikin, Alexander I.

    2016-05-01

    Neutrino-atom scattering provides a sensitive tool for probing nonstandard interactions of massive neutrinos in laboratory measurements. The ionization channel of this collision process plays an important role in experiments searching for neutrino magnetic moments. We discuss some theoretical aspects of atomic ionization by massive neutrinos. We also outline possible manifestations of neutrino electromagnetic properties in coherent elastic neutrino-nucleus scattering.

  11. Collision avoidance in space

    NASA Technical Reports Server (NTRS)

    Kessler, D. J.; Cour-Palais, B. G.; Taylor, R. E.; Landry, P. M.

    1980-01-01

    Collisions in earth orbital space between operational payloads and various forms of space debris (nonoperational payloads, nonfunctional mission-related objects and fragments resulting from collisions and explosions) are discussed and possible means of avoiding them are considered. From 10,000 to 15,000 objects are estimated to be in earth orbital space, most of which represent spacecraft fragments and debris too small to be detected and tracked by earth-based sensors, and it is considered likely that some of them will be or have already been involved in direct collisions with the ever increasing number of operational satellites and space stations. Means of protecting proposed large space structures and smaller spacecraft from significant damage by larger space objects, particularly in the 400-4000 km altitude range where most debris occurs, include structural redundancy and the double shielding of sensitive components. Other means of collision avoidance are the collection or relocation of satellites, rocket bodies and other objects by the Space Shuttle, the prevention of explosions and the disposal of spent rocket parts by reentry. Finally, a management structure would be required to administer guidelines for the prevention and elimination of space debris.

  12. Atomic collisions, inelastic indeed

    NASA Astrophysics Data System (ADS)

    Bercegol, Herve; Ferrando, Gwenael; Lehoucq, Roland

    At the turn of the twentieth century, a hot controversy raged about the ability of Boltzmann's framework to take care of irreversibility. The so-called Loschmidt's paradox progressively faded with time during the last hundred years, due to the predictive efficiency of statistical mechanics. However, one detail at the origin of the controversy - the elasticity of atomic collisions - was not completely challenged. A semi-classical treatment of two atoms interacting with the vacuum zero-point field permits to predict a friction force acting against the rotation of the pair of atoms. By its form and its level, the calculated torque is a candidate as a physical cause for diffusion of energy and angular momentum, and consequently for entropy growth. It opens the way to a revision of the standard vision of irreversibility. This presentation will focus on two points. First we will discuss the recent result in a broader context of electromagnetic interactions during microscopic collisions. The predicted friction phenomenon can be compared to and distinguished from Collision-Induced Emission and other types of inelastic collisions. Second we will investigate the consequences of the friction torque on calculated trajectories of colliding atoms, quantifying the generation of dimers linked by dispersion forces.

  13. Ablation de ZnO par laser UV (193 nm) : nano-agrégats en phase gazeuse

    NASA Astrophysics Data System (ADS)

    Ozerov, I.; Bulgakov, A.; Nelson, D.; Castell, R.; Sentis, M.; Marine, W.

    2003-06-01

    La condensation de nano-agrégats d'oxyde de zinc en phase gazeuse est mise en évidence lors de l'ablation de ZnO massif par laser ArF pulsé. Nous comparons l'évolution spatio-temporelle de la forme du panache d'ablation (plume) de ZnO sous vide et sous atmosphère de gaz de couverture (oxygène et/ou hélium) à partir des images CCD et des résultats issus d'analyses spectroscopiques. L'expansion du plasma et la croissance des nano-clusters sont influencées par l'effet du confinement de la plume dû aux collisions entre les particules ablatées et les molécules de gaz ambiant ainsi que par les réactions chimiques dans le cas de l'oxygène. Le spectre de rayonnement du plasma est constitué principalement par l'émission d'atomes excités de Zn neutre. Nous avons observé la photoluminescence des nano-agrégats en suspension dans le gaz ainsi que leur décomposition par laser ArF.

  14. Humanizing the Protease-Activated Receptor (PAR) Expression Profile in Mouse Platelets by Knocking PAR1 into the Par3 Locus Reveals PAR1 Expression Is Not Tolerated in Mouse Platelets

    PubMed Central

    French, Shauna L.; Paramitha, Antonia C.; Moon, Mitchell J.; Dickins, Ross A.; Hamilton, Justin R.

    2016-01-01

    Anti-platelet drugs are the mainstay of pharmacotherapy for heart attack and stroke prevention, yet improvements are continually sought. Thrombin is the most potent activator of platelets and targeting platelet thrombin receptors (protease-activated receptors; PARs) is an emerging anti-thrombotic approach. Humans express two PARs on their platelets–PAR1 and PAR4. The first PAR1 antagonist was recently approved for clinical use and PAR4 antagonists are in early clinical development. However, pre-clinical studies examining platelet PAR function are challenging because the platelets of non-primates do not accurately reflect the PAR expression profile of human platelets. Mice, for example, express Par3 and Par4. To address this limitation, we aimed to develop a genetically modified mouse that would express the same repertoire of platelet PARs as humans. Here, human PAR1 preceded by a lox-stop-lox was knocked into the mouse Par3 locus, and then expressed in a platelet-specific manner (hPAR1-KI mice). Despite correct targeting and the predicted loss of Par3 expression and function in platelets from hPAR1-KI mice, no PAR1 expression or function was detected. Specifically, PAR1 was not detected on the platelet surface nor internally by flow cytometry nor in whole cell lysates by Western blot, while a PAR1-activating peptide failed to induce platelet activation assessed by either aggregation or surface P-selectin expression. Platelets from hPAR1-KI mice did display significantly diminished responsiveness to thrombin stimulation in both assays, consistent with a Par3-/- phenotype. In contrast to the observations in hPAR1-KI mouse platelets, the PAR1 construct used here was successfully expressed in HEK293T cells. Together, these data suggest ectopic PAR1 expression is not tolerated in mouse platelets and indicate a different approach is required to develop a small animal model for the purpose of any future preclinical testing of PAR antagonists as anti-platelet drugs. PMID

  15. Reactive Collision Avoidance Algorithm

    NASA Technical Reports Server (NTRS)

    Scharf, Daniel; Acikmese, Behcet; Ploen, Scott; Hadaegh, Fred

    2010-01-01

    The reactive collision avoidance (RCA) algorithm allows a spacecraft to find a fuel-optimal trajectory for avoiding an arbitrary number of colliding spacecraft in real time while accounting for acceleration limits. In addition to spacecraft, the technology can be used for vehicles that can accelerate in any direction, such as helicopters and submersibles. In contrast to existing, passive algorithms that simultaneously design trajectories for a cluster of vehicles working to achieve a common goal, RCA is implemented onboard spacecraft only when an imminent collision is detected, and then plans a collision avoidance maneuver for only that host vehicle, thus preventing a collision in an off-nominal situation for which passive algorithms cannot. An example scenario for such a situation might be when a spacecraft in the cluster is approaching another one, but enters safe mode and begins to drift. Functionally, the RCA detects colliding spacecraft, plans an evasion trajectory by solving the Evasion Trajectory Problem (ETP), and then recovers after the collision is avoided. A direct optimization approach was used to develop the algorithm so it can run in real time. In this innovation, a parameterized class of avoidance trajectories is specified, and then the optimal trajectory is found by searching over the parameters. The class of trajectories is selected as bang-off-bang as motivated by optimal control theory. That is, an avoiding spacecraft first applies full acceleration in a constant direction, then coasts, and finally applies full acceleration to stop. The parameter optimization problem can be solved offline and stored as a look-up table of values. Using a look-up table allows the algorithm to run in real time. Given a colliding spacecraft, the properties of the collision geometry serve as indices of the look-up table that gives the optimal trajectory. For multiple colliding spacecraft, the set of trajectories that avoid all spacecraft is rapidly searched on

  16. ParA and ParB coordinate chromosome segregation with cell elongation and division during Streptomyces sporulation.

    PubMed

    Donczew, Magdalena; Mackiewicz, Paweł; Wróbel, Agnieszka; Flärdh, Klas; Zakrzewska-Czerwińska, Jolanta; Jakimowicz, Dagmara

    2016-04-01

    In unicellular bacteria, the ParA and ParB proteins segregate chromosomes and coordinate this process with cell division and chromosome replication. During sporulation of mycelial Streptomyces, ParA and ParB uniformly distribute multiple chromosomes along the filamentous sporogenic hyphal compartment, which then differentiates into a chain of unigenomic spores. However, chromosome segregation must be coordinated with cell elongation and multiple divisions. Here, we addressed the question of whether ParA and ParB are involved in the synchronization of cell-cycle processes during sporulation in Streptomyces To answer this question, we used time-lapse microscopy, which allows the monitoring of growth and division of single sporogenic hyphae. We showed that sporogenic hyphae stop extending at the time of ParA accumulation and Z-ring formation. We demonstrated that both ParA and ParB affect the rate of hyphal extension. Additionally, we showed that ParA promotes the formation of massive nucleoprotein complexes by ParB. We also showed that FtsZ ring assembly is affected by the ParB protein and/or unsegregated DNA. Our results indicate the existence of a checkpoint between the extension and septation of sporogenic hyphae that involves the ParA and ParB proteins.

  17. ParA and ParB coordinate chromosome segregation with cell elongation and division during Streptomyces sporulation

    PubMed Central

    Donczew, Magdalena; Mackiewicz, Paweł; Wróbel, Agnieszka; Flärdh, Klas; Zakrzewska-Czerwińska, Jolanta

    2016-01-01

    In unicellular bacteria, the ParA and ParB proteins segregate chromosomes and coordinate this process with cell division and chromosome replication. During sporulation of mycelial Streptomyces, ParA and ParB uniformly distribute multiple chromosomes along the filamentous sporogenic hyphal compartment, which then differentiates into a chain of unigenomic spores. However, chromosome segregation must be coordinated with cell elongation and multiple divisions. Here, we addressed the question of whether ParA and ParB are involved in the synchronization of cell-cycle processes during sporulation in Streptomyces. To answer this question, we used time-lapse microscopy, which allows the monitoring of growth and division of single sporogenic hyphae. We showed that sporogenic hyphae stop extending at the time of ParA accumulation and Z-ring formation. We demonstrated that both ParA and ParB affect the rate of hyphal extension. Additionally, we showed that ParA promotes the formation of massive nucleoprotein complexes by ParB. We also showed that FtsZ ring assembly is affected by the ParB protein and/or unsegregated DNA. Our results indicate the existence of a checkpoint between the extension and septation of sporogenic hyphae that involves the ParA and ParB proteins. PMID:27248800

  18. suPAR and Team Nephrology

    PubMed Central

    2014-01-01

    Primary focal segmental glomerulosclerosis (FSGS) accounts for nearly 10 % of patients who require renal replacement therapy. Elevated circulating levels of soluble urokinase receptor (suPAR) have been identified as a biomarker to discriminate primary FSGS from other glomerulopathies. Subsequent reports have questioned the diagnostic utility of this test. In a study in BMC Medicine, Huang et al. demonstrate that urinary soluble urokinase receptor (suPAR) excretion assists in distinguishing primary FSGS from other glomerular diseases, and that high plasma suPAR concentrations are not directly linked to a decline in glomerular filtration rate (GFR). This observation suggests that further investigation of suPAR is warranted in patients with FSGS. It should be interpreted in light of a recent report that B7-1 is expressed in the podocytes of a subset of patients with FSGS, and that blocking this molecule may represent the first successful targeted intervention for this disease. These advances highlight the rapid pace of scientific progress in the field of nephrology. Nephrologists should work together, share resources, and expedite the design of protocols to evaluate these novel biomarkers in a comprehensive and scientifically valid manner. Please see related article http://www.biomedcentral.com/1741-7015/12/81. PMID:24885021

  19. Collision Avoidance System

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Ames Research Center teamed with the Federal Aviation Administration (FAA) to study human performance factors associated with the use of the Traffic Alert and Collision Avoidance system (TCAS II) in an operational environment. TCAS is designed to alert pilots of the presence of other aircraft in their vicinity, to identify and track those who could be a threat, and to recommend action to avoid a collision. Ames conducted three laboratory experiments. The first showed that pilots were able to use the TCAS II correctly in the allowable time. The second tested pilots' response to changes in the avoidance advisories, and the third examined pilots' reactions to alternative displays. After a 1989 congressional mandate, the FAA ruled that TCAS would be required on all passenger carrying aircraft (to be phased in completely by 1995).

  20. Micro UAV collision avoidance

    NASA Astrophysics Data System (ADS)

    Merchant, John; Pope, Frank

    2007-04-01

    A range image for micro UAV (unmanned air vehicle) collision avoidance is derived by processing a sequence of conventional images from a single camera on board the UAV. The range image will warn of looming collisions immediately ahead and also provide the 3-D situational awareness over a wide field of view needed for semi-autonomous or autonomous operation of the UAV. This single-camera technique is potentially applicable for other robotic vehicles that may not be large enough for two-camera stereo. The range image is generated by tracking the motion of scene detail along optic flow lines. Performance is estimated in terms of the minimum and maximum ranges of scene detail that can be sensed as a function of its position within the field of view.

  1. Operational Collision Avoidance

    NASA Technical Reports Server (NTRS)

    Guit, Bill

    2015-01-01

    This presentation will describe the early days of the EOS Aqua and Aura operational collision avoidance process. It will highlight EOS debris avoidance maneuvers, EOS high interest event statistic and A-Train systematic conjunctions and conclude with future challenges. This is related to earlier e-DAA (tracking number 21692) that an abstract was submitted to a different conference. Eric Moyer, ESMO Deputy Project Manager has reviewed and approved this presentation on May 6, 2015

  2. Collision Dynamics of Decimeter Bodies

    NASA Astrophysics Data System (ADS)

    Deckers, Johannes; Teiser, J.

    2013-10-01

    The collision dynamics of decimeter bodies are important for the early phase of planet formation. Planets form by accretion of km-sized objects, the so called planetesimals. These planetesimals evolve from small grains, but their formation process is not yet understood entirely. Two groups of models try to explain the formation process. Decimeter bodies and their collision behavior play a vital role in both groups. The threshold between bouncing and fragmentation is especially interesting for coagulation models, as decimeter bodies are the direct precursors to meter sized bodies. But the collision dynamics are also relevant for the models, which describe planetesimal formation by gravitational collapse in dense regions of the protoplanetary disk. We will present preliminary results of our collision experiments. Previous experiments on mutual collisions of decimeter dust agglomerates showed that the threshold between bouncing and fragmentation lies at a collision velocity of 16.2 cm/s, which corresponds to a specific kinetic energy of 5 mJ/kg. We expand these experiments to investigate the conditions for “catastrophic disruption” of decimeter dust bodies. Here, “catastrophic disruption” means that the largest fragment of a collision partner has only half the mass of the original body. Furthermore, we extend the parameter range to ice aggregates. We will present first experimental results of collisions of ice aggregates in the decimeter range. In these first experiments we will analyze the threshold conditions for solid ice. We will investigate the collision dynamics for both central and non-central collisions.

  3. PAR Corneal Topography System (PAR CTS): the clinical application of close-range photogrammetry.

    PubMed

    Belin, M W; Cambier, J L; Nabors, J R; Ratliff, C D

    1995-11-01

    The PAR Corneal Topography System (CTS) is a computer-driven corneal imaging system which uses close-range photogrammetry (rasterphotogrammetry) to measure and produce a topographic map of the corneal surface. The PAR CTS makes direct point-by-point measurements of surface elevation using a stereo-triangulation technique. The CTS uses a grid pattern composed of horizontal and vertical lines spaced about 0.2 mm (200 microns) apart. Each grid intersection comprises a surface feature which can be located in multiple images and used to generate an (x,y,z) coordinate. Unlike placido disc-based videokeratoscopes, the PAR CTS requires neither a smooth reflective surface nor precise spatial alignment for accurate imaging. In addition to surface elevation, the PAR CTS computes axial and tangential curvatures and refractive power. Difference maps are available in all curvatures, refractive power, and in absolute elevation.

  4. View from west to east of PAR site resident engineer's ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View from west to east of PAR site resident engineer's office building (REOB) - Stanley R. Mickelsen Safeguard Complex, Resident Engineers Office Building, Southeast of intersection of PAR Access Road & Fourth Avenue, Nekoma, Cavalier County, ND

  5. Élaboration de films de molécules organiques par ablation par laser UV

    NASA Astrophysics Data System (ADS)

    Hernandez-Perez, M. A.; Garapon, C.; Champeaux, C.; Coleman, A. W.

    2006-12-01

    Les potentialités des méthodes de dépôt par ablation laser (PLD) pour la préparation de films minces de matériaux organiques sont illustrées par un bref rappel bibliographique et par des résultats expérimentaux concernant des molécules d'intérêt biologique (acides aminés, calix-arènes, protéines). Les films sont préparés par PLD avec un laser KrF sans dégradation de la structure chimique des molécules dans une gamme de fluences de quelques dizaines à quelques centaines de mJ/cm2. Les propriétés structurales et optiques des films sont étudiées en fonction de la fluence du laser et mettent en évidence des arrangements moléculaires particuliers induits par cette méthode de dépôt. Le guidage optique a été obtenu pour des films de toutes ces molécules.

  6. A Combined Global and Local Approach to Elucidate Spatial Organization of the Mycobacterial ParB-parS Partition Assembly

    SciTech Connect

    B Chaudhuri; S Gupta; V Urban; M Chance; R DMello; L Smith; K Lyons; J Gee

    2011-12-31

    Combining diverse sets of data at global (size, shape) and local (residue) scales is an emerging trend for elucidating the organization and function of the cellular assemblies. We used such a strategy, combining data from X-ray and neutron scattering with H/D-contrast variation and X-ray footprinting with mass spectrometry, to elucidate the spatial organization of the ParB-parS assembly from Mycobacterium tuberculosis. The ParB-parS participates in plasmid and chromosome segregation and condensation in predivisional bacterial cells. ParB polymerizes around the parS centromere(s) to form a higher-order assembly that serves to recruit cyto-skeletal ParA ATPases and SMC proteins for chromosome segregation. A hybrid model of the ParB-parS was built by combining and correlating computational models with experiment-derived information about size, shape, position of the symmetry axis within the shape, internal topology, DNA-protein interface, exposed surface patches, and prior knowledge. This first view of the ParB-parS leads us to propose how ParB spread on the chromosome to form a larger assembly.

  7. Kallikrein 6 Signals through PAR1 and PAR2 to Promote Neuron Injury and Exacerbate Glutamate Neurotoxicity

    PubMed Central

    Yoon, Hyesook; Radulovic, Maja; Wu, Jianmin; Blaber, Sachiko I.; Blaber, Michael; Fehlings, Michael G.; Scarisbrick, Isobel A.

    2014-01-01

    CNS trauma generates a proteolytic imbalance contributing to secondary injury, including axonopathy and neuron degeneration. Kallikrein 6 (Klk6) is a serine protease implicated in neurodegeneration and here we investigate the role of protease activated receptors 1 (PAR1) and PAR2 in mediating these effects. First we demonstrate Klk6 and the prototypical activator of PAR1, thrombin, as well as PAR1 and PAR2, are each elevated in murine experimental traumatic spinal cord injury (SCI) at acute or subacute time points. Recombinant Klk6 triggered ERK1/2 signaling in cerebellar granule neurons and in the NSC34 spinal cord motoneuron cell line, in a PI3K and MEK-dependent fashion. Importantly, lipopeptide inhibitors of PAR1 or PAR2, and PAR1 genetic deletion, each reduced Klk6-ERK1/2 activation. In addition, Klk6 and thrombin promoted degeneration of cerebellar neurons and exacerbated glutamate neurotoxicity. Moreover, genetic deletion of PAR1 blocked thrombin-mediated cerebellar neurotoxicity and reduced the neurotoxic effects of Klk6. Klk6 also increased glutamate-mediated Bim signaling, PARP cleavage and lactate dehydrogenase (LDH) release in NSC34 motoneurons and these effects were blocked by PAR1 and PAR2 lipopeptide inhibitors. Taken together these data point to a novel Klk6-signaling axis in CNS neurons that is mediated by PAR1 and PAR2 and is positioned to contribute to neurodegeneration. PMID:23647384

  8. A Combined Global and Local Approach to Elucidate Spatial Organization of the Mycobacterial ParB-parS Partition

    SciTech Connect

    Chaudhuri, Barnali; Gupta, Sayan; Urban, Volker S; Chance, Mark; D'Mello, Rhijuta; Smith, Lauren; Lyons, Kelly; Gee, Jessica

    2010-01-01

    Combining diverse sets of data at global (size, shape) and local (residue) scales is an emerging trend for elucidating the organization and function of the cellular assemblies. We used such a strategy, combining data from X-ray and neutron scattering with H/D-contrast variation and X-ray footprinting with mass spectrometry, to elucidate the spatial organization of the ParB-parS assembly from Mycobacterium tuberculosis. The ParB-parS participates in plasmid and chromosome segregation and condensation in predivisional bacterial cells. ParB polymerizes around the parS centromere(s) to form a higher-order assembly that serves to recruit cyto-skeletal ParA ATPases and SMC proteins for chromosome segregation. A hybrid model of the ParB-parS was built by combining and correlating computational models with experiment-derived information about size, shape, position of the symmetry axis within the shape, internal topology, DNA-protein interface, exposed surface patches, and prior knowledge. This first view of the ParB-parS leads us to propose how ParB spread on the chromosome to form a larger assembly.

  9. Host response biomarker in sepsis: suPAR detection.

    PubMed

    Giamarellos-Bourboulis, Evangelos J; Georgitsi, Marianna

    2015-01-01

    Recent studies of our group have shown that suPAR may complement APACHE II score for risk assessment in sepsis. suPAR may be measured in serum of patients by an enzyme immunosorbent assay developed by Virogates (suPARnostic™). Production of suPAR from circulating neutrophils and monocytes may be assessed after isolation of neutrophils and monocytes and ex vivo culture. This is followed by measurement of suPAR in culture supernatants.

  10. Catching Collisions in the LHC

    SciTech Connect

    Fruguiele, Claudia; Hirschauer, Jim

    2015-06-16

    Now that the Large Hadron Collider has officially turned back on for its second run, within every proton collision could emerge the next new discovery in particle physics. Learn how the detectors on the Compact Muon Solenoid, or CMS, experiment capture and track particles as they are expelled from a collision. Talking us through these collisions are Claudia Fruguiele and Jim Hirschauer of Fermi National Accelerator Laboratory, the largest U.S. institution collaborating on the LHC.

  11. Catching Collisions in the LHC

    ScienceCinema

    Fruguiele, Claudia; Hirschauer, Jim

    2016-07-12

    Now that the Large Hadron Collider has officially turned back on for its second run, within every proton collision could emerge the next new discovery in particle physics. Learn how the detectors on the Compact Muon Solenoid, or CMS, experiment capture and track particles as they are expelled from a collision. Talking us through these collisions are Claudia Fruguiele and Jim Hirschauer of Fermi National Accelerator Laboratory, the largest U.S. institution collaborating on the LHC.

  12. Bubble collisions in general relativity

    NASA Astrophysics Data System (ADS)

    Sikos, S. T. C.; Wu, Z. C.

    The collision of two bubbles of true vacuum in a background of false vacuum is considered in the context of General Relativity. It is found that in the thin wall approximation, the problem can be solved exactly. The region to the future of the collision is described by the pseudo-Schwarzschild de Sitter metric. The parameters in this metric are found by solving the junction conditions at each collision.

  13. Drosophila 14-3-3/PAR-5 is an essential mediator of PAR-1 function in axis formation.

    PubMed

    Benton, Richard; Palacios, Isabel M; St Johnston, Daniel

    2002-11-01

    PAR-1 kinases are required to determine the anterior-posterior (A-P) axis in C. elegans and Drosophila, but little is known about their molecular function. We identified 14-3-3 proteins as Drosophila PAR-1 interactors and show that PAR-1 binds a domain of 14-3-3 distinct from the phosphoserine binding pocket. PAR-1 kinases phosphorylate proteins to generate 14-3-3 binding sites and may therefore directly deliver 14-3-3 to these targets. 14-3-3 mutants display identical phenotypes to par-1 mutants in oocyte determination and the polarization of the A-P axis. Together, these results indicate that PAR-1's function is mediated by the binding of 14-3-3 to its substrates. The C. elegans 14-3-3 protein, PAR-5, is also required for A-P polarization, suggesting that this is a conserved mechanism by which PAR-1 establishes cellular asymmetries.

  14. The collision hazard in space

    NASA Astrophysics Data System (ADS)

    Chobotov, V. A.

    1981-08-01

    The continuous use of space since 1957 has resulted in the buildup of a large number of space objects which represent an ever increasing collision hazard for current and future satellite systems. This study reviews the origin and distribution of the tracked and cataloged population of objects and examines the associated collision hazard at low altitudes and in the geosynchronous corridor. The effects of position uncertainty on the probability of collision between two objects at close encounter are evaluated. Representative design and operational policies which can reduce the collision hazard are discussed.

  15. Road rage and collision involvement.

    PubMed

    Mann, Robert E; Zhao, Jinhui; Stoduto, Gina; Adlaf, Edward M; Smart, Reginald G; Donovan, John E

    2007-01-01

    To assess the contribution of road rage victimization and perpetration to collision involvement. The relationship between self-reported collision involvement and road rage victimization and perpetration was examined, based on telephone interviews with a representative sample of 4897 Ontario adult drivers interviewed between 2002 and 2004. Perpetrators and victims of both any road rage and serious road rage had a significantly higher risk of collision involvement than did those without road rage experience. This study provides epidemiological evidence that both victims and perpetrators of road rage experience increased collision risk. More detailed studies of the contribution of road rage to traffic crashes are needed.

  16. [Ambroise Paré in French literature].

    PubMed

    Dumaitre, P

    1995-01-01

    The 16th century by its passionate side has been the favourite one of authors of historical novels in which among the heroes of "cloak and dagger stories" appears sometime Ambroise Paré. Alexandre Dumas (the father) has shown him at the court of Charles IX in La Reine Margot (1845) where he does not however play a great role. On the contrary, Balzac in Le Martyr calviniste (1842) has given him a capital part close to the dying François II, whom he intended to trepanize but had to give up this idea as a consequence of the opposition of the queen-mother Catherine de Médicis. In the present century, Robert Merle in Paris ma bonne ville (Fortune de France, 3, 1980) shows Paré at the time of the Saint Barthélemy.

  17. [Ambroise Paré and Latin].

    PubMed

    Drouin, Emmanuel

    2010-06-01

    We report a study of a medical book written by Antoine Mizaud (Memorabilium utilium, in ac iucundorum aphorismos Arcanorum omnis generis locupletes, perpulchre digestae), which was written in Latin, but has been extensively annotated in French.The book is from the personal collection of one of the physicians of Napoleon III. There is an oral tradition within his family that one of the works in the book had been annotated by Ambroise Paré. We know very little, apart from a few receipts and his signature, about the writing of the master of French surgery. Did he understand the language of Galen? There are many annotated passages in the works of Pare which are in the book. We examine whether these annotations were actually made by Ambroise Paré or whether they were done for him.

  18. Les Brulures Chimiques Par Le Laurier Rose

    PubMed Central

    Bakkali, H.; Ababou, M.; Nassim Sabah, T.; Moussaoui, A.; Ennouhi, A.; Fouadi, F.Z.; Siah, S.; Ihrai, H.

    2010-01-01

    Summary Le laurier rose ou Nerium oleander est un arbuste qui pousse naturellement dans les régions méditerranéennes. Au Maroc on le trouve dans les lieux humides. Il est réputé par ses risques de toxicité systémique en cas d'empoisonnement à cause de la présence de deux alcaloïdes, surtout l'oléandrine. La littérature illustre des cas d'utilisation locale des feuilles de cette plante contre la gale, les hémorroïdes et les furoncles. Nous rapportons deux cas de brûlures chimiques par le laurier rose de gravité différente. Cela doit aboutir à une information élargie de la population, ainsi qu'une réglementation stricte de sa commercialisation. PMID:21991211

  19. Combined DSEK and Transconjunctival Pars Plana Vitrectomy

    PubMed Central

    Sane, Mona; Shaikh, Naazli

    2016-01-01

    We report here three patients who underwent combined Descemet's stripping with endothelial keratoplasty and transconjunctival pars plana vitrectomy for bullous keratopathy and posterior segment pathology. A surgical technique and case histories are described. Anatomic and visual outcomes of combined Descemet's stripping with endothelial keratoplasty and vitrectomy were excellent. Our experience provides technical guidelines and limitations. The combined minimally invasive techniques allow for rapid anatomical recovery and return of function and visual acuity in a single sitting. PMID:27413563

  20. Par Pond refill water quality sampling

    SciTech Connect

    Koch, J.W. II; Martin, F.D.; Westbury, H.M.

    1996-08-01

    This study was designed to document anoxia and its cause in the event that the anoxia caused a fish kill. However, no fish kill was observed during this study, and dissolved oxygen and nutrient concentrations generally remained within the range expected for southeastern reservoirs. Par Pond water quality monitoring will continue during the second summer after refill as the aquatic macrophytes become reestablished and nutrients in the sediments are released to the water column.

  1. Geochemical Interpretation of Collision Volcanism

    NASA Astrophysics Data System (ADS)

    Pearce, Julian

    2014-05-01

    Collision volcanism can be defined as volcanism that takes place during an orogeny from the moment that continental subduction starts to the end of orogenic collapse. Its importance in the Geological Record is greatly underestimated as collision volcanics are easily misinterpreted as being of volcanic arc, extensional or mantle plume origin. There are many types of collision volcanic province: continent-island arc collision (e.g. Banda arc); continent-active margin collision (e.g. Tibet, Turkey-Iran); continent-rear-arc collision (e.g. Bolivia); continent-continent collision (e.g. Tuscany); and island arc-island arc collision (e.g. Taiwan). Superimposed on this variability is the fact that every orogeny is different in detail. Nonetheless, there is a general theme of cyclicity on different time scales. This starts with syn-collision volcanism resulting from the subduction of an ocean-continent transition and continental lithosphere, and continues through post-collision volcanism. The latter can be subdivided into orogenic volcanism, which is related to thickened crust, and post-orogenic, which is related to orogenic collapse. Typically, but not always, collision volcanism is preceded by normal arc volcanism and followed by normal intraplate volcanism. Identification and interpretation of collision volcanism in the Geologic Record is greatly facilitated if a dated stratigraphic sequence is present so that the petrogenic evolution can be traced. In any case, the basis of fingerprinting collision terranes is to use geochemical proxies for mantle and subduction fluxes, slab temperatures, and depths and degrees of melting. For example, syn-collision volcanism is characterized by a high subduction flux relative to mantle flux because of the high input flux of fusible sediment and crust coupled with limited mantle flow, and because of high slab temperatures resulting from the decrease in subduction rate. The resulting geochemical patterns are similar regardless of

  2. Electron Collisions with Hydrogen Fluoride

    NASA Astrophysics Data System (ADS)

    Itikawa, Yukikazu

    2017-03-01

    Cross section data are reviewed for electron collisions with hydrogen fluoride. Collision processes considered are total scattering, elastic scattering, excitations of rotational, vibrational, and electronic states, ionization, and dissociative electron attachment. After a survey of the literature, recommended values of the cross sections are determined, as far as possible.

  3. Spin Changing Collisions of Hydrogen

    NASA Technical Reports Server (NTRS)

    Zygelman, Bernard

    2006-01-01

    We discuss spin changing collisions of hydrogen atoms. Employing a fully quantal theory we calculate and present new collision data. We discuss the respective roles of spin exchange and long range magnetic interactions in collisonal redistribution of sub-level populations. The calculated atomic data is needed for accurate modeling of 21 cm line emission/absorption by primordial hydrogen in the early universe.

  4. Ultracold collisions in metastable helium

    NASA Astrophysics Data System (ADS)

    Peach, G.; Cocks, D. G.; Whittingham, I. B.

    2017-02-01

    Photoassociation processes are studied in ultracold collisions between different isotopes of metastable He(23S) and He(23P) atoms; Penning and associative ionization rates for collisions between two He(23S) atoms are also obtained. Comparisons are made with data from existing experiments.

  5. Collision in space

    NASA Technical Reports Server (NTRS)

    Ellis, S. R.

    2000-01-01

    On June 25, 1997, the Russian supply spacecraft Progress 234 collided with the Mir space station, rupturing Mir's pressure hull, throwing it into an uncontrolled attitude drift, and nearly forcing evacuation of the station. Like many high-profile accidents, this collision was the consequence of a chain of events leading to the final piloting errors that were its immediate cause. The discussion in this article does not resolve the relative contributions of the actions and decisions in this chain. Neither does it suggest corrective measures, many of which are straightforward and have already been implemented by the National Aeronautics and Space Administration (NASA) and the Russian Space Agency. Rather, its purpose is to identify the human factors that played a pervasive role in the incident. Workplace stress, fatigue, and sleep deprivation were identified by NASA as contributory factors in the Mir-Progress collision (Culbertson, 1997; NASA, forthcoming), but other contributing factors, such as requiring crew to perform difficult tasks for which their training is not current, could potentially become important factors in future situations.

  6. Collision in space.

    PubMed

    Ellis, S R

    2000-01-01

    On June 25, 1997, the Russian supply spacecraft Progress 234 collided with the Mir space station, rupturing Mir's pressure hull, throwing it into an uncontrolled attitude drift, and nearly forcing evacuation of the station. Like many high-profile accidents, this collision was the consequence of a chain of events leading to the final piloting errors that were its immediate cause. The discussion in this article does not resolve the relative contributions of the actions and decisions in this chain. Neither does it suggest corrective measures, many of which are straightforward and have already been implemented by the National Aeronautics and Space Administration (NASA) and the Russian Space Agency. Rather, its purpose is to identify the human factors that played a pervasive role in the incident. Workplace stress, fatigue, and sleep deprivation were identified by NASA as contributory factors in the Mir-Progress collision (Culbertson, 1997; NASA, forthcoming), but other contributing factors, such as requiring crew to perform difficult tasks for which their training is not current, could potentially become important factors in future situations.

  7. Collision in space

    NASA Technical Reports Server (NTRS)

    Ellis, S. R.

    2000-01-01

    On June 25, 1997, the Russian supply spacecraft Progress 234 collided with the Mir space station, rupturing Mir's pressure hull, throwing it into an uncontrolled attitude drift, and nearly forcing evacuation of the station. Like many high-profile accidents, this collision was the consequence of a chain of events leading to the final piloting errors that were its immediate cause. The discussion in this article does not resolve the relative contributions of the actions and decisions in this chain. Neither does it suggest corrective measures, many of which are straightforward and have already been implemented by the National Aeronautics and Space Administration (NASA) and the Russian Space Agency. Rather, its purpose is to identify the human factors that played a pervasive role in the incident. Workplace stress, fatigue, and sleep deprivation were identified by NASA as contributory factors in the Mir-Progress collision (Culbertson, 1997; NASA, forthcoming), but other contributing factors, such as requiring crew to perform difficult tasks for which their training is not current, could potentially become important factors in future situations.

  8. Critical Role for PAR1 in Kallikrein 6-Mediated Oligodendrogliopathy

    PubMed Central

    Burda, Joshua E.; Radulovic, Maja; Yoon, Hyesook; Scarisbrick, Isobel A.

    2014-01-01

    Kallikrein 6 (Klk6) is a secreted serine protease preferentially expressed by oligodendroglia in CNS white matter. Elevated levels of Klk6 occur in actively demyelinating multiple sclerosis (MS) lesions and in cases of spinal cord injury (SCI), stroke and glioblastoma. Taken with recent evidence establishing Klk6 as a CNS-endogenous activator of protease-activated receptors (PARs), we hypothesized that Klk6 activates a subset of PARs to regulate oligodendrocyte physiology and potentially pathophysiology. Here, primary oligodendrocyte cultures derived from wild type or PAR1-deficient mice and the murine oligodendrocyte cell line, Oli-neu, were used to demonstrate that Klk6 mediates loss of oligodendrocyte processes and impedes morphological differentiation of oligodendrocyte progenitor cells (OPCs) in a PAR1-dependent fashion. Comparable gliopathy was also elicited by the canonical PAR1 agonist, thrombin, as well as PAR1-activating peptides (PAR1-APs). Klk6 also exacerbated ATP-mediated oligodendrogliopathy in vitro, pointing to a potential role in augmenting excitotoxicity. In addition, Klk6 suppressed the expression of proteolipid protein (PLP) RNA in cultured oligodendrocytes by a mechanism involving PAR1-mediated Erk1/2 signaling. Microinjection of PAR1 agonists, including Klk6 or PAR1-APs, into the dorsal column white matter of PAR+/+ but not PAR−/− mice promoted vacuolating myelopathy and a loss of immunoreactivity for myelin basic protein (MBP) and CC-1+ oligodendrocytes. These results demonstrate a functional role for Klk6-PAR1 signaling in oligodendroglial pathophysiology and suggest that PAR1 or PAR1-agonists may represent new targets to moderate demyelination and to promote myelin regeneration in cases of CNS white matter injury or disease. PMID:23832758

  9. Recognition of movement object collision

    NASA Astrophysics Data System (ADS)

    Chang, Hsiao Tsu; Sun, Geng-tian; Zhang, Yan

    1991-03-01

    The paper explores the collision recognition of two objects in both crisscross and revolution motions A mathematical model has been established based on the continuation theory. The objects of any shape may be regarded as being built of many 3siniplexes or their convex hulls. Therefore the collision problem of two object in motion can be reduced to the collision of two corresponding 3siinplexes on two respective objects accordingly. Thus an optimized algorithm is developed for collision avoidance which is suitable for computer control and eliminating the need for vision aid. With this algorithm computation time has been reduced significantly. This algorithm is applicable to the path planning of mobile robots And also is applicable to collision avoidance of the anthropomorphic arms grasping two complicated shaped objects. The algorithm is realized using LISP language on a VAX8350 minicomputer.

  10. Reversible simulations of elastic collisions

    SciTech Connect

    Perumalla, Kalyan S.; Protopopescu, Vladimir A.

    2013-05-01

    Consider a system of N identical hard spherical particles moving in a d-dimensional box and undergoing elastic, possibly multi-particle, collisions. We develop a new algorithm that recovers the pre-collision state from the post-collision state of the system, across a series of consecutive collisions, \\textit{with essentially no memory overhead}. The challenge in achieving reversibility for an n-particle collision (where, in general, n<< N) arises from the presence of nd-d-1 degrees of freedom (arbitrary angles) during each collision, as well as from the complex geometrical constraints placed on the colliding particles. To reverse the collisions in a traditional simulation setting, all of the particular realizations of these degrees of freedom (angles) during the forward simulation must be tracked. This requires memory proportional to the number of collisions, which grows very fast with N and d, thereby severely limiting the \\textit{de facto} applicability of the scheme. This limitation is addressed here by first performing a pseudo-randomization of angles, which ensures determinism in the reverse path for any values of n and d. To address the more difficult problem of geometrical and dynamic constraints, a new approach is developed which correctly samples the constrained phase space. Upon combining the pseudo-randomization with correct phase space sampling, perfect reversibility of collisions is achieved, as illustrated for n<=3, d=2, and n=2, d=3. This result enables, for the first time, reversible simulations of elastic collisions with essentially zero memory accumulation. In principle, the approach presented here could be generalized to larger values of n, which would be of definite interest for molecular dynamics simulations at high densities.

  11. The novel PAR2 ligand C391 blocks multiple PAR2 signalling pathways in vitro and in vivo

    PubMed Central

    Boitano, Scott; Hoffman, Justin; Flynn, Andrea N; Asiedu, Marina N; Tillu, Dipti V; Zhang, Zhenyu; Sherwood, Cara L; Rivas, Candy M; DeFea, Kathryn A; Vagner, Josef; Price, Theodore J

    2015-01-01

    Background and Purpose Proteinase-activated receptor-2 (PAR2) is a GPCR linked to diverse pathologies, including acute and chronic pain. PAR2 is one of the four PARs that are activated by proteolytic cleavage of the extracellular amino terminus, resulting in an exposed, tethered peptide agonist. Several peptide and peptidomimetic agonists, with high potency and efficacy, have been developed to probe the functions of PAR2, in vitro and in vivo. However, few similarly potent and effective antagonists have been described. Experimental Approach We modified the peptidomimetic PAR2 agonist, 2-furoyl-LIGRLO-NH2, to create a novel PAR2 peptidomimetic ligand, C391. C391 was evaluated for PAR2 agonist/antagonist activity to PAR2 across Gq signalling pathways using the naturally expressing PAR2 cell line 16HBE14o-. For antagonist studies, a highly potent and specific peptidomimetic agonist (2-aminothiazo-4-yl-LIGRL-NH2) and proteinase agonist (trypsin) were used to activate PAR2. C391 was also evaluated in vivo for reduction of thermal hyperalgesia, mediated by mast cell degranulation, in mice. Key Results C391 is a potent and specific peptidomimetic antagonist, blocking multiple signalling pathways (Gq-dependent Ca2+, MAPK) induced following peptidomimetic or proteinase activation of human PAR2. In a PAR2-dependent behavioural assay in mice, C391 dose-dependently (75 μg maximum effect) blocked the thermal hyperalgesia, mediated by mast cell degranulation. Conclusions and Implications C391 is the first low MW antagonist to block both PAR2 Ca2+ and MAPK signalling pathways activated by peptidomimetics and/or proteinase activation. C391 represents a new molecular structure for PAR2 antagonism and can serve as a basis for further development for this important therapeutic target. PMID:26140338

  12. Sixteenth International Conference on the physics of electronic and atomic collisions

    SciTech Connect

    Dalgarno, A.; Freund, R.S.; Lubell, M.S.; Lucatorto, T.B.

    1989-01-01

    This report contains abstracts of papers on the following topics: photons, electron-atom collisions; electron-molecule collisions; electron-ion collisions; collisions involving exotic species; ion- atom collisions, ion-molecule or atom-molecule collisions; atom-atom collisions; ion-ion collisions; collisions involving rydberg atoms; field assisted collisions; collisions involving clusters and collisions involving condensed matter.

  13. Review of PAR parameterizations in ocean ecosystem models

    NASA Astrophysics Data System (ADS)

    Byun, Do-Seong; Wang, Xiao Hua; Hart, Deirdre E.; Zavatarelli, Marco

    2014-12-01

    Commonly-used empirical equations for calculating downward 'photosynthetically available radiation' or PAR were reviewed in order to identify a more theoretically-sound parameterization for application to ocean biogeochemical models. Three different forms of broadband PAR parameterization are currently employed in biogeochemical models, each of them originating from the downward irradiance formulations normally applied to ocean circulation models, which produce poor attenuation estimates for PAR. Two of the PAR formulations, a single-exponential function and a double-exponential function, are parameterized by multiplying surface irradiance by a coefficient determining the portion of underwater PAR. The third formulation uses the second term of the double-exponential function. After elucidating the theoretical problems of modeling PAR using these parameterizations, we suggest an improved, R-modified double-exponential PAR formulation, including Paulson and Simpson's (1977) parameter values. We also newly estimate PAR penetration via least-squares fitting of values digitized from Jerlov's (1976) observations in different oceanic water types, and compare this PAR-observation derived parameterization with our new, theoretical, R-modified parameterization. Finally, we discuss a universal limitation inherent in current theoretical approaches to PAR parameterization.

  14. Modelisation par elements finis du muscle strie

    NASA Astrophysics Data System (ADS)

    Leonard, Mathieu

    Ce present projet de recherche a permis. de creer un modele par elements finis du muscle strie humain dans le but d'etudier les mecanismes engendrant les lesions musculaires traumatiques. Ce modele constitue une plate-forme numerique capable de discerner l'influence des proprietes mecaniques des fascias et de la cellule musculaire sur le comportement dynamique du muscle lors d'une contraction excentrique, notamment le module de Young et le module de cisaillement de la couche de tissu conjonctif, l'orientation des fibres de collagene de cette membrane et le coefficient de poisson du muscle. La caracterisation experimentale in vitro de ces parametres pour des vitesses de deformation elevees a partir de muscles stries humains actifs est essentielle pour l'etude de lesions musculaires traumatiques. Le modele numerique developpe est capable de modeliser la contraction musculaire comme une transition de phase de la cellule musculaire par un changement de raideur et de volume a l'aide des lois de comportement de materiau predefinies dans le logiciel LS-DYNA (v971, Livermore Software Technology Corporation, Livermore, CA, USA). Le present projet de recherche introduit donc un phenomene physiologique qui pourrait expliquer des blessures musculaires courantes (crampes, courbatures, claquages, etc.), mais aussi des maladies ou desordres touchant le tissu conjonctif comme les collagenoses et la dystrophie musculaire. La predominance de blessures musculaires lors de contractions excentriques est egalement exposee. Le modele developpe dans ce projet de recherche met ainsi a l'avant-scene le concept de transition de phase ouvrant la porte au developpement de nouvelles technologies pour l'activation musculaire chez les personnes atteintes de paraplegie ou de muscles artificiels compacts pour l'elaboration de protheses ou d'exosquelettes. Mots-cles Muscle strie, lesion musculaire, fascia, contraction excentrique, modele par elements finis, transition de phase

  15. Geosynchronous satellite collision avoidance

    NASA Technical Reports Server (NTRS)

    Fraser, W.

    1985-01-01

    The increases in the number of satellite systems, the growing dependency on these systems, and the potentially hazardous conjunctions in space, dictates careful management of satellite positions. The potential for satellite collision increases as more objects are placed in orbit. At geosynchronous altitudes active satellites maintain fixed longitudinal station-keeping control while inactive satellites and debris generally drift around the globe or oscillate about two geopotential stable points. Portions of the total objects in geosynchronous orbit are tracked by ground stations while a significant number of additional pieces of space debris regularly pass through geosynchronous orbit altitudes. The probability of an operational satellite colliding with another satellite or a piece of space debris will increase in the number of space objects, their sizes, and on-orbit lifetimes.

  16. Collision avoidance sensor skin

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The objective was to totally eliminate the possibility of a robot (or any mechanism for that matter) inducing a collision in space operations. We were particularly concerned that human beings were safe under all circumstances. This was apparently accomplished, and it is shown that GSFC has a system that is ready for space qualification and flight. However, it soon became apparent that much more could be accomplished with this technology. Payloads could be made invulnerable to collision avoidance and the blind spots behind them eliminated. This could be accomplished by a simple, non-imaging set of 'Capaciflector' sensors on each payload. It also is evident that this system could be used to align and dock the system with a wide margin of safety. Throughout, lighting problems could be ignored, and unexpected events and modeling errors taken in stride. At the same time, computational requirements would be reduced. This can be done in a simple, rugged, reliable manner that will not disturb the form factor of space systems. It will be practical for space applications. The lab experiments indicate we are well on the way to accomplishing this. Still, the research trail goes deeper. It now appears that the sensors can be extended to end effectors to provide precontact information and make robot docking (or any docking connection) very smooth, with minimal loads impacted back into the mating structures. This type of ability would be a major step forward in basic control techniques in space. There are, however, baseline and restructuring issues to be tackled. The payloads must get power and signals to them from the robot or from the astronaut servicing tool. This requires a standard electromechanical interface. Any of several could be used. The GSFC prototype shown in this presentation is a good one. Sensors with their attendant electronics must be added to the payloads, end effectors, and robot arms and integrated into the system.

  17. Collisions in the Oort Cloud

    SciTech Connect

    Stern, S.A.

    1988-03-01

    The present assessment of the consequentiality of physical collisions between Oort Cloud objects by a first-generation model indicates that natural power-law population structures produce significant numbers of collisions between each comet and smaller objects over the age of the solar system. These collisions are held to constitute a feedback mechanism for small debris production. The impacts yield extensive comet surface evolution in the cloud, in conditions where the number of small orbiting objects conforms to the standard power-law populations. 16 references.

  18. A Conserved Mode of Protein Recognition and Binding in a ParD−ParE Toxin−Antitoxin Complex

    SciTech Connect

    Dalton, Kevin M.; Crosson, Sean

    2010-05-06

    Toxin-antitoxin (TA) systems form a ubiquitous class of prokaryotic proteins with functional roles in plasmid inheritance, environmental stress response, and cell development. ParDE family TA systems are broadly conserved on plasmids and bacterial chromosomes and have been well characterized as genetic elements that promote stable plasmid inheritance. We present a crystal structure of a chromosomally encoded ParD-ParE complex from Caulobacter crescentus at 2.6 {angstrom} resolution. This TA system forms an {alpha}{sub 2}{beta}{sub 2} heterotetramer in the crystal and in solution. The toxin-antitoxin binding interface reveals extensive polar and hydrophobic contacts of ParD antitoxin helices with a conserved recognition and binding groove on the ParE toxin. A cross-species comparison of this complex structure with related toxin structures identified an antitoxin recognition and binding subdomain that is conserved between distantly related members of the RelE/ParE toxin superfamily despite a low level of overall primary sequence identity. We further demonstrate that ParD antitoxin is dimeric, stably folded, and largely helical when not bound to ParE toxin. Thus, the paradigmatic model in which antitoxin undergoes a disorder-to-order transition upon toxin binding does not apply to this chromosomal ParD-ParE TA system.

  19. A new model for estimating boreal forest fPAR

    NASA Astrophysics Data System (ADS)

    Majasalmi, Titta; Rautiainen, Miina; Stenberg, Pauline

    2014-05-01

    Life on Earth is continuously sustained by the extraterrestrial flux of photosynthetically active radiation (PAR, 400-700 nm) from the sun. This flux is converted to biomass by chloroplasts in green vegetation. Thus, the fraction of absorbed PAR (fPAR) is a key parameter used in carbon balance studies, and is listed as one of the Essential Climate Variables (ECV). Temporal courses of fPAR for boreal forests are difficult to measure, because of the complex 3D structures. Thus, they are most often estimated based on models which quantify the dependency of absorbed radiation on canopy structure. In this study, we adapted a physically-based canopy radiation model into a fPAR model, and compared modeled and measured fPAR in structurally different boreal forest stands. The model is based on the spectral invariants theory, and uses leaf area index (LAI), canopy gap fractions and spectra of foliage and understory as input data. The model differs from previously developed more detailed fPAR models in that the complex 3D structure of coniferous forests is described using an aggregated canopy parameter - photon recollision probability p. The strength of the model is that all model inputs are measurable or available through other simple models. First, the model was validated with measurements of instantaneous fPAR obtained with the TRAC instrument in nine Scots pine, Norway spruce and Silver birch stands in a boreal forest in southern Finland. Good agreement was found between modeled and measured fPAR. Next, we applied the model to predict temporal courses of fPAR using data on incoming radiation from a nearby flux tower and sky irradiance models. Application of the model to simulate diurnal and seasonal values of fPAR indicated that the ratio of direct-to-total incident radiation and leaf area index are the key factors behind the magnitude and variation of stand-level fPAR values.

  20. 2. HI PAR (ACQUISITION RADAR) TOWER AND ENLISTED MEN (EM) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. HI PAR (ACQUISITION RADAR) TOWER AND ENLISTED MEN (EM) BARRACKS WITH RADAR ATTACHED. - Nike Hercules Missile Battery Summit Site, Battery Control Administration & Barracks Building, Anchorage, Anchorage, AK

  1. Theoretical studies of molecular collisions

    NASA Technical Reports Server (NTRS)

    Kouri, Donald J.

    1991-01-01

    The following subject areas are covered: (1) total integral reactive cross sections and vibrationally resolved reaction probabilities for F + H2 = HF + H; (2) a theoretical study of inelastic O + N2 collisions; (3) body frame close coupling wave packet approach to gas phase atom-rigit rotor inelastic collisions; (4) wave packet study of gas phase atom-rigit motor scattering; (5) the application of optical potentials for reactive scattering; (6) time dependent, three dimensional body frame quantal wave packet treatment of the H + H2 exchange reaction; (7) a time dependent wave packet approach to atom-diatom reactive collision probabilities; (8) time dependent wave packet for the complete determination of s-matrix elements for reactive molecular collisions in three dimensions; (9) a comparison of three time dependent wave packet methods for calculating electron-atom elastic scattering cross sections; and (10) a numerically exact full wave packet approach to molecule-surface scattering.

  2. Continental collisions and seismic signature

    NASA Astrophysics Data System (ADS)

    Meissner, R.; Wever, Th.; Sadowiak, P.

    1991-04-01

    Reflection seismics in compressional belts has revealed the structure of crustal shortening and thickening processes, showing complex patterns of indentation and interfingering of colliding crusts and subcrustal lithospheres. Generally, in the upper crust large zones of detachments develop, often showing duplexes and 'crocodile' structures. The lower crust from zones of active collision (e.g. Alps, Pyrenees) is characterized by strongly dipping reflections. The base of the crust with the Moho must be continuously equilibrating after orogenic collapse as areas of former continental collision exhibit flat Mohos and subhorizontal reflections. The depth to the Moho increases during collision and decreases after the onset of post-orogenic extension, until finally the crustal root disappears completely together with the erosion of the mountains. Processes, active during continental collisions and orogenic collapse, create distinct structures which are imaged by reflection seismic profiling. Examples are shown and discussed.

  3. Collisions of Vortex Filament Pairs

    NASA Astrophysics Data System (ADS)

    Banica, Valeria; Faou, Erwan; Miot, Evelyne

    2014-12-01

    We consider the problem of collisions of vortex filaments for a model introduced by Klein et al. (J Fluid Mech 288:201-248, 1995) and Zakharov (Sov Phys Usp 31(7):672-674, 1988, Lect. Notes Phys 536:369-385, 1999) to describe the interaction of almost parallel vortex filaments in three-dimensional fluids. Since the results of Crow (AIAA J 8:2172-2179, 1970) examples of collisions are searched as perturbations of antiparallel translating pairs of filaments, with initial perturbations related to the unstable mode of the linearized problem; most results are numerical calculations. In this article, we first consider a related model for the evolution of pairs of filaments, and we display another type of initial perturbation leading to collision in finite time. Moreover, we give numerical evidence that it also leads to collision through the initial model. We finally study the self-similar solutions of the model.

  4. Robot Avoids Collisions With Obstacles

    NASA Technical Reports Server (NTRS)

    Cheung, Edward; Rosinski, Doug; Wegerif, Dan

    1993-01-01

    Developmental robot equipped with infrared sensors and control system acting in concert to enable manipulator arm to move around obstacles. Robot avoids collisions with other objects, even when moving in unpredictable ways. Control system requires no prior knowledge of environment.

  5. Milky Way's Head On Collision

    NASA Image and Video Library

    This animation depicts the collision between our Milky Way galaxy and the Andromeda galaxy. Hubble Space Telescope observations indicate that the two galaxies, pulled together by their mutual gravi...

  6. Do speed cameras reduce collisions?

    PubMed

    Skubic, Jeffrey; Johnson, Steven B; Salvino, Chris; Vanhoy, Steven; Hu, Chengcheng

    2013-01-01

    We investigated the effects of speed cameras along a 26 mile segment in metropolitan Phoenix, Arizona. Motor vehicle collisions were retrospectively identified according to three time periods - before cameras were placed, while cameras were in place and after cameras were removed. A 14 mile segment in the same area without cameras was used for control purposes. Five cofounding variables were eliminated. In this study, the placement or removal of interstate highway speed cameras did not independently affect the incidence of motor vehicle collisions.

  7. Taare Zameen Par and dyslexic savants

    PubMed Central

    Chakravarty, Ambar

    2009-01-01

    The film Taare Zameen Par (Stars upon the Ground) portrays the tormented life at school and at home of a child with dyslexia and his eventual success after his artistic talents are discovered by his art teacher at the boarding school. The film hints at a curious neurocognitive phenomenon of creativity in the midst of language disability, as exemplified in the lives of people like Leonardo da Vinci and Albert Einstein, both of whom demonstrated extraordinary creativity even though they were probably affected with developmental learning disorders. It has been hypothesized that a developmental delay in the dominant hemisphere most likely ‘disinhibits’ the nondominant parietal lobe, unmasking talents—artistic or otherwise—in some such individuals. It has been suggested that, in remedial training, children with learning disorders be encouraged to develop such hidden talents to full capacity, rather than be subjected to the usual overemphasis on the correction of the disturbed coded symbol operations. PMID:20142854

  8. Refroidissement par évaporation d'un jet atomique guidé magnétiquement

    NASA Astrophysics Data System (ADS)

    Lahaye, T.

    2006-01-01

    This work deals with the experimental realization of an ultracold, magnetically guided atomic beam in the collisional regime. After a detailed description of the experimental setup developed for this purpose, a method to measure the beam temperature with radio-frequency spectroscopy is proposed theoretically and demonstrated experimentally. The variations in temperature, phase-space density and elastic collision rate of the beam during a cycle evaporation-rethermalization are calculated. Two-antenna radio-frequency evaporation experiments are then described. They allow one to demonstrate the occurrence of elastic collisions within the atomic beam. Two Hamiltonian methods allowing one to increase the elastic collision rate are then studied theoretically and investigated experimentally. The gain in the elastic collision rate obtained this way is then used in order to cool the beam by means of ten evaporation zones, thus increasing the beam's phase-space density by one order of magnitude. Finally, a detailed theoretical study of the evaporation kinetics shows that a ten-fold increase of the collision rate obtained so far should be sufficient to achieve quantum degeneracy. Cet ouvrage traite de la réalisation expérimentale d'un jet atomique ultrafroid guidé magnétiquement, dans le régime collisionnel. Après une description détaillée du dispositif expérimental développé à cette fin, une méthode de thermométrie par spectroscopie radio-fréquence est proposée et démontrée expérimentalement. Les variations de température, densité dans l'espace des phases et taux de collisions élastiques du jet au cours d'un cycle évaporation-rethermalisation sont calculées. Des expériences d'évaporation radio-fréquence à deux antennes sont ensuite présentées, qui permettent de prouver l'existence de collisions au sein du jet. Deux méthodes permettant d'augmenter le taux de collisions sont ensuite étudiées théoriquement, puis mises en œuvre. Le gain en taux

  9. Transcriptome profiling reveals links between ParS/ParR, MexEF-OprN, and quorum sensing in the regulation of adaptation and virulence in Pseudomonas aeruginosa

    PubMed Central

    2013-01-01

    Background The ParS/ParR two component regulatory system plays critical roles for multidrug resistance in Pseudomonas aeruginosa. It was demonstrated that in the presence of antimicrobials, ParR enhances bacterial survival by distinct mechanisms including activation of the mexXY efflux genes, enhancement of lipopolysaccharide modification through the arn operon, and reduction of the expression of oprD porin. Results In this study, we report on transcriptomic analyses of P. aeruginosa PAO1 wild type and parS and parR mutants growing in a defined minimal medium. Our transcriptomic analysis provides the first estimates of transcript abundance for the 5570 coding genes in P. aeruginosa PAO1. Comparative transcriptomics of P. aeruginosa PAO1 and par mutants identified a total of 464 genes regulated by ParS and ParR. Results also showed that mutations in the parS/parR system abolished expression of the mexEF-oprN operon by down-regulating the regulatory gene mexS. In addition to the known effects on drug resistance genes, transcript abundances of the quorum sensing genes (rhlIR and pqsABCDE-phnAB) were higher in both parS and parR mutants. In accordance with these results, a significant portion of the ParS/ParR regulated genes belonged to the MexEF-OprN and quorum sensing regulons. Deletion of the par genes also led to increased phenazine production and swarming motility, consistent with the up-regulation of the phenazine and rhamnolipid biosynthetic genes, respectively. Conclusion Our results link the ParS/ParR two component signal transduction system to MexEF-OprN and quorum sensing systems in P. aeruginosa. These results expand our understanding of the roles of the ParS/ParR system in the regulation of gene expression in P. aeruginosa, especially in the absence of antimicrobials. PMID:24034668

  10. TMS suppression of right pars triangularis, but not pars opercularis, improves naming in aphasia

    PubMed Central

    Naeser, Margaret A.; Martin, Paula I.; Theoret, Hugo; Kobayashi, Masahito; Fregni, Felipe; Nicholas, Marjorie; Tormos, Jose M.; Steven, Megan S.; Baker, Errol H.; Pascual-Leone, Alvaro

    2011-01-01

    This study sought to discover if an optimum 1 cm2 area in the non-damaged right hemisphere (RH) was present, which could temporarily improve naming in chronic, nonfluent aphasia patients when suppressed with repetitive transcranial magnetic stimulation (rTMS). Ten minutes of slow, 1 Hz rTMS was applied to suppress different RH ROIs in eight aphasia cases. Picture naming and response time (RT) were examined before, and immediately after rTMS. In aphasia patients, suppression of right pars triangularis (PTr) led to significant increase in pictures named, and significant decrease in RT. Suppression of right pars opercularis (POp), however, led to significant increase in RT, but no change in number of pictures named. Eight normals named all pictures correctly; similar to aphasia patients, RT significantly decreased following rTMS to suppress right PTr, versus right POp. Differential effects following suppression of right PTr versus right POp suggest different functional roles for these regions. PMID:21864891

  11. Tumour-suppression activity of the proapoptotic regulator Par4.

    PubMed

    García-Cao, Isabel; Duran, Angeles; Collado, Manuel; Carrascosa, Maria J; Martín-Caballero, Juan; Flores, Juana M; Diaz-Meco, Maria T; Moscat, Jorge; Serrano, Manuel

    2005-06-01

    The proapoptotic protein encoded by Par4 (prostate apoptosis response 4) has been implicated in tumour suppression, particularly in the prostate. We report here that Par4-null mice are prone to develop tumours, both spontaneously and on carcinogenic treatment. The endometrium and prostate of Par4-null mice were particularly sensitive to the development of proliferative lesions. Most (80%) Par4-null females presented endometrial hyperplasia by 9 months of age, and a significant proportion (36%) developed endometrial adenocarcinomas after 1 year of age. Similarly, Par4-null males showed a high incidence of prostate hyperplasia and prostatic intraepithelial neoplasias, and were extraordinarily sensitive to testosterone-induced prostate hyperplasia. Finally, the uterus and prostate of young Par4-null mice have increased levels of the apoptosis inhibitor XIAP (X-chromosome-linked inhibitor of apoptosis), supporting the previously proposed function of Par4 as an inhibitor of the (zeta)PKC (atypical protein kinase)-NF-(kappa)B (nuclear factor-(kappa)B)-XIAP pathway. These data show that Par4 has an important role in tumour suppression, with a particular relevance in the endometrium and prostate.

  12. Tumour-suppression activity of the proapoptotic regulator Par4

    PubMed Central

    García-Cao, Isabel; Duran, Angeles; Collado, Manuel; Carrascosa, Maria J.; Martín-Caballero, Juan; Flores, Juana M.; Diaz-Meco, Maria T.; Moscat, Jorge; Serrano, Manuel

    2005-01-01

    The proapoptotic protein encoded by Par4 (prostate apoptosis response 4) has been implicated in tumour suppression, particularly in the prostate. We report here that Par4-null mice are prone to develop tumours, both spontaneously and on carcinogenic treatment. The endometrium and prostate of Par4-null mice were particularly sensitive to the development of proliferative lesions. Most (80%) Par4-null females presented endometrial hyperplasia by 9 months of age, and a significant proportion (36%) developed endometrial adenocarcinomas after 1 year of age. Similarly, Par4-null males showed a high incidence of prostate hyperplasia and prostatic intraepithelial neoplasias, and were extraordinarily sensitive to testosterone-induced prostate hyperplasia. Finally, the uterus and prostate of young Par4-null mice have increased levels of the apoptosis inhibitor XIAP (X-chromosome-linked inhibitor of apoptosis), supporting the previously proposed function of Par4 as an inhibitor of the ζPKC (atypical protein kinase)–NF-κB (nuclear factor-κB)–XIAP pathway. These data show that Par4 has an important role in tumour suppression, with a particular relevance in the endometrium and prostate. PMID:15877079

  13. [Around Ambroise Paré: his pupils and friends].

    PubMed

    Dumaître, P

    1996-01-01

    The most important pupil of Paré was Jacques Guillemeau (1550-1613), a famous surgeon from Montpellier. He lived at Paré's during eight years and wrote there his first work "Traité des maladies des yeux" (1585) and was really his "spiritual son". The barber-surgeon Martin Boursier, husband of the famous midwife Louise Bourgeois stayed twenty years with Paré and she learned her practice in his works. Attracted by Paré's fame, Melchior Sebiz (1539-1625) who shall become a famous professor of medicine in Strasbourg attended Paré's lessons and "was with him in great friendship". Among his friends, Thierry de Héry (ca. 1505-ca. 1560), companion of his youth as a barber-surgeon and author of the first French book on syphilis seems to have been the dearest and the nearest to his heart.

  14. Structures of partition protein ParA with nonspecific DNA and ParB effector reveal molecular insights into principles governing Walker-box DNA segregation.

    PubMed

    Zhang, Hengshan; Schumacher, Maria A

    2017-03-01

    Walker-box partition systems are ubiquitous in nature and mediate the segregation of bacterial and archaeal DNA. Well-studied plasmid Walker-box partition modules require ParA, centromere-DNA, and a centromere-binding protein, ParB. In these systems, ParA-ATP binds nucleoid DNA and uses it as a substratum to deliver ParB-attached cargo DNA, and ParB drives ParA dynamics, allowing ParA progression along the nucleoid. How ParA-ATP binds nonspecific DNA and is regulated by ParB is unclear. Also under debate is whether ParA polymerizes on DNA to mediate segregation. Here we describe structures of key ParA segregation complexes. The ParA-β,γ-imidoadenosine 5'-triphosphate (AMPPNP)-DNA structure revealed no polymers. Instead, ParA-AMPPNP dimerization creates a multifaceted DNA-binding surface, allowing it to preferentially bind high-density DNA regions (HDRs). DNA-bound ParA-AMPPNP adopts a dimer conformation distinct from the ATP sandwich dimer, optimized for DNA association. Our ParA-AMPPNP-ParB structure reveals that ParB binds at the ParA dimer interface, stabilizing the ATPase-competent ATP sandwich dimer, ultimately driving ParA DNA dissociation. Thus, the data indicate how harnessing a conformationally adaptive dimer can drive large-scale cargo movement without the requirement for polymers and suggest a segregation mechanism by which ParA-ATP dimers equilibrate to HDRs shown to be localized near cell poles of dividing chromosomes, thus mediating equipartition of attached ParB-DNA substrates. © 2017 Zhang and Schumacher; Published by Cold Spring Harbor Laboratory Press.

  15. Recombination in the Human Pseudoautosomal Region PAR1

    PubMed Central

    Hinch, Anjali G.; Altemose, Nicolas; Noor, Nudrat; Donnelly, Peter; Myers, Simon R.

    2014-01-01

    The pseudoautosomal region (PAR) is a short region of homology between the mammalian X and Y chromosomes, which has undergone rapid evolution. A crossover in the PAR is essential for the proper disjunction of X and Y chromosomes in male meiosis, and PAR deletion results in male sterility. This leads the human PAR with the obligatory crossover, PAR1, to having an exceptionally high male crossover rate, which is 17-fold higher than the genome-wide average. However, the mechanism by which this obligatory crossover occurs remains unknown, as does the fine-scale positioning of crossovers across this region. Recent research in mice has suggested that crossovers in PAR may be mediated independently of the protein PRDM9, which localises virtually all crossovers in the autosomes. To investigate recombination in this region, we construct the most fine-scale genetic map containing directly observed crossovers to date using African-American pedigrees. We leverage recombination rates inferred from the breakdown of linkage disequilibrium in human populations and investigate the signatures of DNA evolution due to recombination. Further, we identify direct PRDM9 binding sites using ChIP-seq in human cells. Using these independent lines of evidence, we show that, in contrast with mouse, PRDM9 does localise peaks of recombination in the human PAR1. We find that recombination is a far more rapid and intense driver of sequence evolution in PAR1 than it is on the autosomes. We also show that PAR1 hotspot activities differ significantly among human populations. Finally, we find evidence that PAR1 hotspot positions have changed between human and chimpanzee, with no evidence of sharing among the hottest hotspots. We anticipate that the genetic maps built and validated in this work will aid research on this vital and fascinating region of the genome. PMID:25033397

  16. Recombination in the human Pseudoautosomal region PAR1.

    PubMed

    Hinch, Anjali G; Altemose, Nicolas; Noor, Nudrat; Donnelly, Peter; Myers, Simon R

    2014-07-01

    The pseudoautosomal region (PAR) is a short region of homology between the mammalian X and Y chromosomes, which has undergone rapid evolution. A crossover in the PAR is essential for the proper disjunction of X and Y chromosomes in male meiosis, and PAR deletion results in male sterility. This leads the human PAR with the obligatory crossover, PAR1, to having an exceptionally high male crossover rate, which is 17-fold higher than the genome-wide average. However, the mechanism by which this obligatory crossover occurs remains unknown, as does the fine-scale positioning of crossovers across this region. Recent research in mice has suggested that crossovers in PAR may be mediated independently of the protein PRDM9, which localises virtually all crossovers in the autosomes. To investigate recombination in this region, we construct the most fine-scale genetic map containing directly observed crossovers to date using African-American pedigrees. We leverage recombination rates inferred from the breakdown of linkage disequilibrium in human populations and investigate the signatures of DNA evolution due to recombination. Further, we identify direct PRDM9 binding sites using ChIP-seq in human cells. Using these independent lines of evidence, we show that, in contrast with mouse, PRDM9 does localise peaks of recombination in the human PAR1. We find that recombination is a far more rapid and intense driver of sequence evolution in PAR1 than it is on the autosomes. We also show that PAR1 hotspot activities differ significantly among human populations. Finally, we find evidence that PAR1 hotspot positions have changed between human and chimpanzee, with no evidence of sharing among the hottest hotspots. We anticipate that the genetic maps built and validated in this work will aid research on this vital and fascinating region of the genome.

  17. Automatic Collision Avoidance Technology (ACAT)

    NASA Technical Reports Server (NTRS)

    Swihart, Donald E.; Skoog, Mark A.

    2007-01-01

    This document represents two views of the Automatic Collision Avoidance Technology (ACAT). One viewgraph presentation reviews the development and system design of Automatic Collision Avoidance Technology (ACAT). Two types of ACAT exist: Automatic Ground Collision Avoidance (AGCAS) and Automatic Air Collision Avoidance (AACAS). The AGCAS Uses Digital Terrain Elevation Data (DTED) for mapping functions, and uses Navigation data to place aircraft on map. It then scans DTED in front of and around aircraft and uses future aircraft trajectory (5g) to provide automatic flyup maneuver when required. The AACAS uses data link to determine position and closing rate. It contains several canned maneuvers to avoid collision. Automatic maneuvers can occur at last instant and both aircraft maneuver when using data link. The system can use sensor in place of data link. The second viewgraph presentation reviews the development of a flight test and an evaluation of the test. A review of the operation and comparison of the AGCAS and a pilot's performance are given. The same review is given for the AACAS is given.

  18. Megestrol acetate NCD oral suspension -- Par Pharmaceutical: megestrol acetate nanocrystal dispersion oral suspension, PAR 100.2, PAR-100.2.

    PubMed

    2007-01-01

    Par Pharmaceutical has developed megestrol acetate (Megace ES) oral suspension for the treatment of anorexia, cachexia and a significant weight loss associated with AIDS. Par Pharmaceutical used Elan Corporation's NanoCrystal Dispersion (NCD) technology to develop an advanced, concentrated formulation of megestrol acetate with improved bioavailability, more rapid onset of action, more convenient dosing and a lower dosing regimen compared with the original marketed formulation of megestrol acetate oral suspension. Patients are administered a teaspoon (5mL) of the new NCD formulation once daily, compared with a daily 20mL dosage cup of the original formulation. The new megestrol acetate NCD formulation represents a line-extension of Par's megestrol acetate oral suspension (800mg/20mL, Megace O/S) that has been marketed for anorexia, cachexia and AIDS-related weight loss since July 2001. Par's megestrol acetate is the generic version of Bristol-Myers Squibb's Megace Oral Suspension. NanoCrystal Dispersion (NCD) is a trademark of Elan Corporation. Par Pharmaceutical will market megestol acetate NCD oral suspension under the Megace brand name. The company licensed the Megace name from Bristol-Myers Squib in August 2003. The US FDA approved megestrol acetate oral suspension (625 mg/mL) in July 2005 for the treatment of anorexia, cachexia or a significant, unexplained weight loss in patients with AIDS. The NDA for the product was accepted for review by the agency in September 2004, following its submission in June of that year.Par Pharmaceutical commenced the first of two phase III clinical trials of megestrol acetate oral suspension (PAR 100.2) in cancer-induced anorexia in the first quarter of 2006. However, this trial was discontinued in September 2006 because of slow patient enrolment. The company intends to discuss future development options in this indication with the FDA.New formulations or dosage forms of megestrol acetate concentrated suspension are also in

  19. Megestrol acetate NCD oral suspension--Par Pharmaceutical: megestrol acetate nanocrystal dispersion oral suspension, PAR 100.2, PAR-100.2.

    PubMed

    2007-01-01

    Par Pharmaceutical has developed megestrol acetate (Megace ES) oral suspension for the treatment of anorexia, cachexia and a significant weight loss associated with AIDS. Par Pharmaceutical used Elan Corporation's NanoCrystal Dispersion (NCD) technology to develop an advanced, concentrated formulation of megestrol acetate with improved bioavailability, more rapid onset of action, more convenient dosing and a lower dosing regimen compared with the original marketed formulation of megestrol acetate oral suspension. Patients are administered a teaspoon (5mL) of the new NCD formulation once daily, compared with a daily 20mL dosage cup of the original formulation. The new megestrol acetate NCD formulation represents a line-extension of Par's megestrol acetate oral suspension (800mg/20mL, Megace O/S) that has been marketed for anorexia, cachexia and AIDS-related weight loss since July 2001. Par's megestrol acetate is the generic version of Bristol-Myers Squibb's Megace Oral Suspension. NanoCrystal Dispersion (NCD) is a trademark of Elan Corporation. Par Pharmaceutical will market megestol acetate NCD oral suspension under the Megace brand name. The company licensed the Megace name from Bristol-Myers Squib in August 2003. The US FDA approved megestrol acetate oral suspension (625 mg/mL) in July 2005 for the treatment of anorexia, cachexia or a significant, unexplained weight loss in patients with AIDS. The NDA for the product was accepted for review by the agency in September 2004, following its submission in June of that year.Par Pharmaceutical commenced the first of two phase III clinical trials of megestrol acetate oral suspension (PAR 100.2) in cancer-induced anorexia in the first quarter of 2006. However, this trial was discontinued in September 2006 because of slow patient enrolment. The company intends to discuss future development options in this indication with the FDA.New formulations or dosage forms of megestrol acetate concentrated suspension are also in

  20. Condensation and localization of the partitioning protein ParB on the bacterial chromosome.

    PubMed

    Broedersz, Chase P; Wang, Xindan; Meir, Yigal; Loparo, Joseph J; Rudner, David Z; Wingreen, Ned S

    2014-06-17

    The ParABS system mediates chromosome segregation and plasmid partitioning in many bacteria. As part of the partitioning mechanism, ParB proteins form a nucleoprotein complex at parS sites. The biophysical basis underlying ParB-DNA complex formation and localization remains elusive. Specifically, it is unclear whether ParB spreads in 1D along DNA or assembles into a 3D protein-DNA complex. We show that a combination of 1D spreading bonds and a single 3D bridging bond between ParB proteins constitutes a minimal model for a condensed ParB-DNA complex. This model implies a scaling behavior for ParB-mediated silencing of parS-flanking genes, which we confirm to be satisfied by experimental data from P1 plasmids. Furthermore, this model is consistent with experiments on the effects of DNA roadblocks on ParB localization. Finally, we show experimentally that a single parS site is necessary and sufficient for ParB-DNA complex formation in vivo. Together with our model, this suggests that ParB binding to parS triggers a conformational switch in ParB that overcomes a nucleation barrier. Conceptually, the combination of spreading and bridging bonds in our model provides a surface tension ensuring the condensation of the ParB-DNA complex, with analogies to liquid-like compartments such as nucleoli in eukaryotes.

  1. Condensation and localization of the partitioning protein ParB on the bacterial chromosome

    PubMed Central

    Broedersz, Chase P.; Wang, Xindan; Meir, Yigal; Loparo, Joseph J.; Rudner, David Z.; Wingreen, Ned S.

    2014-01-01

    The ParABS system mediates chromosome segregation and plasmid partitioning in many bacteria. As part of the partitioning mechanism, ParB proteins form a nucleoprotein complex at parS sites. The biophysical basis underlying ParB–DNA complex formation and localization remains elusive. Specifically, it is unclear whether ParB spreads in 1D along DNA or assembles into a 3D protein–DNA complex. We show that a combination of 1D spreading bonds and a single 3D bridging bond between ParB proteins constitutes a minimal model for a condensed ParB–DNA complex. This model implies a scaling behavior for ParB-mediated silencing of parS-flanking genes, which we confirm to be satisfied by experimental data from P1 plasmids. Furthermore, this model is consistent with experiments on the effects of DNA roadblocks on ParB localization. Finally, we show experimentally that a single parS site is necessary and sufficient for ParB–DNA complex formation in vivo. Together with our model, this suggests that ParB binding to parS triggers a conformational switch in ParB that overcomes a nucleation barrier. Conceptually, the combination of spreading and bridging bonds in our model provides a surface tension ensuring the condensation of the ParB–DNA complex, with analogies to liquid-like compartments such as nucleoli in eukaryotes. PMID:24927534

  2. POLARIZED PROTON COLLISIONS AT RHIC.

    SciTech Connect

    BAI, M.; AHRENS, L.; ALEKSEEV, I.G.; ALESSI, J.; ET AL.

    2005-05-16

    The Relativistic Heavy Ion Collider provides not only collisions of ions but also collisions of polarized protons. In a circular accelerator, the polarization of polarized proton beam can be partially or fully lost when a spin depolarizing resonance is encountered. To preserve the beam polarization during acceleration, two full Siberian snakes were employed in RHIC. In 2002, polarized proton beams were first accelerated to 100 GeV and collided in RHIC. Beams were brought into collisions with longitudinal polarization at the experiments STAR and PHENIX by using spin rotators. Optimizing polarization transmission efficiency and improving luminosity performance are significant challenges. Currently, the luminosity lifetime in RHIC is limited by the beam-beam effect. The current state of RHIC polarized proton program, including its dedicated physics run in 2005 and efforts to optimize luminosity production in beam-beam limited conditions are reported.

  3. Semiholography for heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Ayan; Preis, Florian

    2017-03-01

    The formation of QGP in heavy ion collisions gives us a great opportunity for learning about nonperturbative dynamics of QCD. Semiholography provides a new consistent framework to combine perturbative and non-perturbative effects in a coherent way and can be applied to obtain an effective description for heavy ion collisions. In particular, it allows us to include nonperturbative effects in existing glasma effective theory and QCD kinetic theory for the weakly coupled saturated degrees of freedom liberated by the collisions in the initial stages in a consistent manner. We argue why the full framework should be able to confront experiments with only a few phenomenological parameters and present feasibility tests for the necessary numerical computations. Furthermore, we discuss that semiholography leads to a new description of collective flow in the form of a generalised non-Newtonian fluid. We discuss some open questions which we hope to answer in the near future.

  4. A problem of collision avoidance

    NASA Technical Reports Server (NTRS)

    Vincent, T. L.; Cliff, E. M.; Grantham, W. J.; Peng, W. Y.

    1972-01-01

    Collision avoidance between two vehicles of constant speed with limited turning radii, moving in a horizontal plane is investigated. Collision avoidance is viewed as a game by assuming that the operator of one vehicle has perfect knowledge of the state of the other, whereas the operator of the second vehicle is unaware of any impending danger. The situation envisioned is that of an encounter between a commercial aircraft and a small light aircraft. This worse case situation is examined to determine the conditions under which the commercial aircraft should execute a collision avoidance maneuver. Three different zones of vulnerability are defined and the boundaries, or barriers, between these zones are determined for a typical aircraft encounter. A discussion of the methods used to obtain the results as well as some of the salient features associated with the resultant barriers is included.

  5. Control of cleavage spindle orientation in Caenorhabditis elegans: The role of the genes par-2 and par-3

    SciTech Connect

    Cheng, N.N.; Kirby, C.M.; Kemphues, K.J.

    1995-02-01

    Polarized asymmetric divisions play important roles in the development of plants and animals. The first two embryonic cleavages of Caenorhabditis elegans provide an opportunity to study the mechanisms controlling polarized asymmetric divisions. The first cleavage is unequal, producing daughters with different sizes and fates. The daughter blastomeres divide with different orientations at the second cleavage; the anterior blastomere divides equally across the long axis of the egg, whereas the posterior blastomere divides unequally along the long axis. We report here the results of our analysis of the genes par-2 and par-3 with respect to their contribution to the polarity of these divisions. Strong loss-of-function mutations in both genes lead to an equal first cleavage and an altered second cleavage. Interestingly, the mutations exhibit striking gene-specific differences at the second cleavage. The par-2 mutations lead to transverse spindle orientations in both blastomeres, whereas par-3 mutations lead to longitudinal spindle orientations in both blastomeres. The spindle orientation defects correlate with defects in centrosome movements during both the first and the second cell cycle. Temperature shift experiments with par-2 (it5ts) indicate that the par-2(+) activity is not required after the two-cell stage. Analysis of double mutants shows that par-3 is epistatic to par-2. We propose a model wherein par-2(+) and par-3(+) act in concert during the first cell cycle to affect asymmetric modification of the cytoskeleton. This polar modification leads to different behaviors of centrosomes in the anterior and posterior and leads ultimately to blastomere-specific spindle orientations at the second cleavage. 44 refs., 5 figs., 5 tabs.

  6. Outreach Materials for the Collision Repair Campaign

    EPA Pesticide Factsheets

    The Collision Repair Campaign offers outreach materials to help collision repair shops reduce toxic air exposure. Materials include a DVD, poster, training video, and materials in Spanish (materiales del outreach en español).

  7. ACAT Ground Collision Avoidance Flight Tests Over

    NASA Image and Video Library

    NASA's Dryden Flight Research Center has concluded flight tests of an Automatic Ground Collision Avoidance System (Auto GCAS) under the joint U.S. Air Force/NASA F-16D Automatic Collision Avoidance...

  8. Atomic Collisions and Plasma Physics.

    DTIC Science & Technology

    1984-01-31

    AD-R141 320 ATOMIC COLLISIONS AND PLASMA PHYSICS(U) PITTSBURGH UNIV i/il PR DEPT OF PHYSICS AND ASTRONOMY M R BIONDI 3i JAN 84 RFGL-TR-94-044 Fi9628...OF STANDARDS t963 A % : C~44 h ’ I ATOMIC COLLISIONS AND PLASMA PHYSICS Manfred A. Biondi Department of Physics and Astronomy University of Pittsburgh... PLASMA PHYSICS Final - 11/1/80 - 12/31/83 6 PI kF%oMINC. OR. REPORT NUMA4I R 7. AUTHO R(j iS CONTRACTOR GRANT NUM8ER(. * Manfred A. Biondi Fl9628-81

  9. Multidimensional intermittency in hadronic collisions

    NASA Astrophysics Data System (ADS)

    Pan, Jicai; Hwa, Rudolph C.

    1992-12-01

    The study of intermittency in high-energy hadronic collisions by the Monte Carlo code ecco is extended to three-dimensional phase space. Strong intermittency is found in agreement with the data. Fluctuation in the impact parameter is responsible for the intermittency in lnpT, and the transverse-momentum conservation leads to negative intermittency slopes in the azimuthal angle φ. The Ochs-Wosiek plots are linear in all dimensions having universal slopes. An exponent ν=1.448 emerges to characterize multiparticle production in pp collisions. The properties of G moments are also examined, and the fractal dimensions determined.

  10. Multidimensional intermittency in hadronic collisions

    NASA Astrophysics Data System (ADS)

    Pan, J.; Hwa, R. C.

    1992-06-01

    The study of intermittency in high-energy hadronic collisions by the Monte Carlo code ECCO is extended to 3-dimensional phase space. Strong intermittency is found in agreement with the data. Fluctuation in the impact parameter is responsible for the intermittency in 1np(sub T), and the transverse-momentum conservation leads to negative intermittency slopes in the azimuthal angle (phi). The Ochs-Wosiek plots are linear in all dimensions having universal slopes. An exponent nu = 1.448 emerges to characterize multiparticle production in pp collisions. The properties of G moments are also examined, and the fractal dimensions determined.

  11. Do Speed Cameras Reduce Collisions?

    PubMed Central

    Skubic, Jeffrey; Johnson, Steven B.; Salvino, Chris; Vanhoy, Steven; Hu, Chengcheng

    2013-01-01

    We investigated the effects of speed cameras along a 26 mile segment in metropolitan Phoenix, Arizona. Motor vehicle collisions were retrospectively identified according to three time periods – before cameras were placed, while cameras were in place and after cameras were removed. A 14 mile segment in the same area without cameras was used for control purposes. Five cofounding variables were eliminated. In this study, the placement or removal of interstate highway speed cameras did not independently affect the incidence of motor vehicle collisions. PMID:24406979

  12. Signature of anisotropic bubble collisions

    SciTech Connect

    Salem, Michael P.

    2010-09-15

    Our universe may have formed via bubble nucleation in an eternally inflating background. Furthermore, the background may have a compact dimension--the modulus of which tunnels out of a metastable minimum during bubble nucleation--which subsequently grows to become one of our three large spatial dimensions. When in this scenario our bubble universe collides with other ones like it, the collision geometry is constrained by the reduced symmetry of the tunneling instanton. While the regions affected by such bubble collisions still appear (to leading order) as disks in an observer's sky, the centers of these disks all lie on a single great circle, providing a distinct signature of anisotropic bubble nucleation.

  13. Dissipative heavy-ion collisions

    SciTech Connect

    Feldmeier, H.T.

    1985-01-01

    This report is a compilation of lecture notes of a series of lectures held at Argonne National Laboratory in October and November 1984. The lectures are a discussion of dissipative phenomena as observed in collisions of atomic nuclei. The model is based on a system which has initially zero temperature and the initial energy is kinetic and binding energy. Collisions excite the nuclei, and outgoing fragments or the compound system deexcite before they are detected. Brownian motion is used to introduce the concept of dissipation. The master equation and the Fokker-Planck equation are derived. 73 refs., 59 figs. (WRF)

  14. Scleral Buckling for Rhegmatogenous Retinal Detachment Associated with Pars Planitis

    PubMed Central

    Ahn, Jae Kyoun

    2016-01-01

    Purpose. To evaluate the surgical outcome of scleral buckling (SB) in rhegmatogenous retinal detachment (RRD) patients associated with pars planitis. Methods. Retrospective review of RRD patients (32 eyes of pars planitis RRD and 180 eyes of primary RRD) who underwent SB. We compared primary and final anatomical success rates and visual outcomes between two groups. Results. Primary and final anatomical success were achieved in 25 (78.1%) and 31 (96.8%) eyes in the pars planitis RRD group and in 167 eyes (92.7%) and 176 eyes (97.7%) in primary RRD group, respectively. Both groups showed significant visual improvement (p < 0.001) and there were no significant differences in final visual acuity. Pars planitis RRD group was associated with higher rate of postoperative proliferative vitreoretinopathy (PVR) development (12.5% versus 2.8%, p = 0.031). Pars planitis and high myopia were significant preoperative risk factors and pseudophakia was borderline risk for primary anatomical failure after adjusting for various clinical factors. Conclusions. Pars planitis associated RRD showed inferior primary anatomical outcome after SB due to postoperative PVR development. However, final anatomical and visual outcomes were favorable. RRD cases associated with pars planitis, high myopia, and pseudophakia might benefit from different surgical approaches, such as combined vitrectomy and SB. PMID:27688907

  15. The Pars Triangularis in Dyslexia and ADHD

    PubMed Central

    Kibby, Michelle Y.; Kroese, Judith M.; Krebbs, Hillery; Hill, Crystal E.; Hynd, George W.

    2009-01-01

    Limited research has been conducted on the structure of the pars triangularis (PT) in dyslexia despite functional neuroimaging research finding it may play a role in phonological processing. Furthermore, research to date has not examined PT size in ADHD even though the right inferior frontal region has been implicated in the disorder. Hence, one of the purposes of this study was to examine the structure of the PT in dyslexia and ADHD. The other purposes included examining the PT in relation to overall expressive language ability and in relation to several specific linguistic functions given language functioning often is affected in both dyslexia and ADHD. Participants included 50 children: 10 with dyslexia, 15 with comorbid dyslexia/ADHD, 15 with ADHD, and 10 controls. Using a 2 (dyslexia or not) X 2 (ADHD or not) MANCOVA, findings revealed PT length and shape were comparable between those with and without dyslexia. However, children with ADHD had smaller right PT lengths than those without ADHD, and right anterior ascending ramus length was related to attention problems in the total sample. In terms of linguistic functioning, presence of an extra sulcus in the left PT was related to poor expressive language ability. In those with adequate expressive language functioning, left PT length was related to phonological awareness, phonological short-term memory and rapid automatic naming (RAN). Right PT length was related to RAN and semantic processing. Further work on PT morphology in relation to ADHD and linguistic functioning is warranted. PMID:19356794

  16. Dynamics of Droplet Collision and Flamefront Motion

    DTIC Science & Technology

    2005-12-01

    effecting droplet bouncing versus absorption. (4) The dynamics of flame motion when it is subjected to the combined hydrodynamic and body-force instabilities...and freestream vortical motion. 15. SUBJECT TERMS Droplet collision; droplet-film collision; van der Waals force; droplet bouncing ; droplet...collision of two droplets. For example, they can either merge to form a larger droplet, or bounce away from each other. Furthermore, the collision event has

  17. Multi-scale photoacoustic remote sensing (PARS) (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Haji Reza, Parsin; Bell, Kevan; Shi, W.; Zemp, Roger J.

    2016-03-01

    We introduce a novel multi-scale photoacoustic remote sensing (PARS) imaging system. Our system can provide optical resolution details for superficial structures as well as acoustic resolution for deep-tissue imaging down to 5 cm, in a non-contact setting. PARS system does not require any contact with the sample or ultrasound coupling medium. The optical resolution PARS (OR-OARS) system uses optically focused pulsed excitation with optical detection of photoacoustic signatures using a long-coherence interrogation beam co-focused and co-scanned with the excitation spot. In the OR-PARS initial pressures are sampled right at their subsurface origin where acoustic pressures are largest. The Acoustic resolution PARS (AR-PARS) picks up the surface oscillation of the tissue caused by generated photoacoustic signal using a modified version of Michelson interferometry. By taking advantage of 4-meters polarization maintaining single-mode fiber and a green fiber laser we have generated a multi-wavelength source using stimulated Raman scattering. Remote functional imaging using this multi-wavelength excitation source and PARS detection mechanism has been demonstrated. The oxygen saturation estimations are shown for both phantom and in vivo studies. Images of blood vessel structures for an In vivo chicken embryo model is demonstrated. The Phantom studies indicates ~3µm and ~300µm lateral resolution for OR-PARS and AR-PARS respectively. To the best of our knowledge this is the first dual modality non-contact optical and acoustic resolution system used for in vivo imaging.

  18. Predicted PAR1 inhibitors from multiple computational methods

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Liu, Jinfeng; Zhu, Tong; Zhang, Lujia; He, Xiao; Zhang, John Z. H.

    2016-08-01

    Multiple computational approaches are employed in order to find potentially strong binders of PAR1 from the two molecular databases: the Specs database containing more than 200,000 commercially available molecules and the traditional Chinese medicine (TCM) database. By combining the use of popular docking scoring functions together with detailed molecular dynamics simulation and protein-ligand free energy calculations, a total of fourteen molecules are found to be potentially strong binders of PAR1. The atomic details in protein-ligand interactions of these molecules with PAR1 are analyzed to help understand the binding mechanism which should be very useful in design of new drugs.

  19. Limnological database for Par Pond: 1959 to 1980

    SciTech Connect

    Tilly, L.J.

    1981-03-01

    A limnological database for Par Pond, a cooling reservoir for hot reactor effluent water at the Savannah River Plant, is described. The data are derived from a combination of research and monitoring efforts on Par Pond since 1959. The approximately 24,000-byte database provides water quality, primary productivity, and flow data from a number of different stations, depths, and times during the 22-year history of the Par Pond impoundment. The data have been organized to permit an interpretation of the effects of twenty years of cooling system operations on the structure and function of an aquatic ecosystem.

  20. 49 CFR 238.211 - Collision posts.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... structural protection described in paragraph (a) of this section, either: (1) Two forward collision posts... structural protection described in paragraphs (a) and (b) of this section, two forward collision posts... body structure. (3) Prior to or during structural deformation, each collision post acting together with...

  1. 49 CFR 238.211 - Collision posts.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... structural protection described in paragraph (a) of this section, either: (1) Two forward collision posts... structural protection described in paragraphs (a) and (b) of this section, two forward collision posts... body structure. (3) Prior to or during structural deformation, each collision post acting together with...

  2. 49 CFR 238.211 - Collision posts.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... structural protection described in paragraph (a) of this section, either: (1) Two forward collision posts... structural protection described in paragraphs (a) and (b) of this section, two forward collision posts... body structure. (3) Prior to or during structural deformation, each collision post acting together with...

  3. Probing GPDs in ultraperipheral collisions

    SciTech Connect

    Ivanov, D.Yu.; Pire, B.; Szymanowski, L.; Wagner, J.

    2015-04-10

    Ultraperipheral collisions in hadron colliders give new opportunities to investigate the hadron structure through exclusive photoproduction processes. We describe the possibility of measuring the Generalized Parton Distributions in the Timelike Compton Scattering process and in the production of heavy vector meson.

  4. Quarkonium production in hadronic collisions

    SciTech Connect

    Gavai, R.; Schuler, G.A.; Sridhar, K.

    1995-07-01

    We summarize the theoretical description of charmonium and bottonium production in hadronic collisions and compare it to the available data from hadron-nucleon interactions. With the parameters of the theory established by these data, we obtain predictions for quarkonium production at RHIC and LHC energies.

  5. Duration of an Elastic Collision

    ERIC Educational Resources Information Center

    de Izarra, Charles

    2012-01-01

    With a pedagogical goal, this paper deals with a study of the duration of an elastic collision of an inflatable spherical ball on a planar surface suitable for undergraduate studies. First, the force generated by the deformed spherical ball is obtained under assumptions that are discussed. The study of the motion of the spherical ball colliding…

  6. Collision Between Two Spiral Galaxies

    NASA Image and Video Library

    2008-04-24

    NGC 6050/IC 1179 Arp 272 is a remarkable collision between two spiral galaxies, NGC 6050 and IC 1179, and is part of the Hercules Galaxy Cluster, located in the constellation of Hercules. This image is from NASA Hubble Space Telescope.

  7. Duration of an Elastic Collision

    ERIC Educational Resources Information Center

    de Izarra, Charles

    2012-01-01

    With a pedagogical goal, this paper deals with a study of the duration of an elastic collision of an inflatable spherical ball on a planar surface suitable for undergraduate studies. First, the force generated by the deformed spherical ball is obtained under assumptions that are discussed. The study of the motion of the spherical ball colliding…

  8. High velocity collisions of nanoparticles

    NASA Astrophysics Data System (ADS)

    Johnson, Donald F.; Mattson, William D.

    2017-01-01

    Nanoparticles (NPs) are a unique class of material with highly functionalizable surfaces and exciting applications. With a large surface-to-volume ratio and potentially high surface tension, shocked nanoparticles might display unique materials behavior. Using density functional theory, we have simulated high-velocity NP collisions under a variety of conditions. NPs composed of diamond-C, cubic-BN, and diamond-Si were considered with particle sizes up to 3.5 nm diameter. Additional simulations involved NPs that were destabilized by incorporating internal strain. The initial spherical NP structures were carved out of bulk crystals while the NPs with internal strain were constructed as a dense core (compressive strain) encompassed by a thin shell (tensile strain). Both on-axis and off-axis collisions were simulated at 10 km/s relative velocity. The amount of internal strain was artificially increased by creating a dense inner core with bond lengths compressed up to 8%. Collision dynamics, shock propagation, and fragmentation will be analyzed, but the simulation are ongoing and results are not finalized. The effect of material properties, internal strain, and collision velocity will be discussed.

  9. Sequential binary collision ionization mechanisms

    NASA Astrophysics Data System (ADS)

    van Boeyen, R. W.; Watanabe, N.; Doering, J. P.; Moore, J. H.; Coplan, M. A.; Cooper, J. W.

    2004-03-01

    Fully differential cross sections for the electron-impact ionization of the magnesium 3s orbital have been measured in a high-momentum-transfer regime wherein the ionization mechanisms can be accurately described by simple binary collision models. Measurements where performed at incident-electron energies from 400 to 3000 eV, ejected-electron energies of 62 eV, scattering angle of 20 °, and momentum transfers of 2 to 5 a.u. In the out-of-plane geometry of the experiment the cross section is observed far off the Bethe ridge. Both first- and second-order processes can be clearly distinguished as previously observed by Murray et al [Ref. 1] and Schulz et al [Ref. 2]. Owing to the relatively large momentum of the ejected electron, the second order processes can be modeled as sequential binary collisions involving a binary elastic collision between the incident electron and ionic core and a binary knock-out collision between the incident electron and target electron. At low incident-electron energies the cross section for both first and second order processes are comparable, while at high incident energies second-order processes dominate. *Supported by NSF under grant PHY-99-87870. [1] A. J. Murray, M. B. J. Woolf, and F. H. Read J. Phys. B 25, 3021 (1992). [2] M. Schulz, R. Moshammer, D. Fischer, H. Kollmus, D. H. Madison. S. Jones and J. Ullrich, Nature 422, 48 (2003).

  10. Positron Accumulator Ring (PAR) power supply

    SciTech Connect

    Fathizadeh, M.

    1995-08-01

    The Positron Accumulator Ring (PAR) consists of 8 dipole magnets connected in series. These magnets are energized via one 12-pulse dc power supply. The power supply consists of four phase controlled half-wave wye group converters. Each of the two half-wave converters are connected through an interphase transformer to obtain a full-wave converter with 120{degrees} conduction. The input voltage for these two half-wave converters are 180{degrees} apart. The two full-wave converters are connected in parallel through a third interphase transformer. This type of connection of the converters not only provides the required output current, it also improves the input power factor of the power supply. The output of the wye group converters is filtered through a passive L-R-C filter to reduce the ripple content of the output current. At low current values of the power supply the current ripple is high, thus a large filter is needed, which adds to the cost of the power supply, however at high output current levels, the current ripple is less severe. The large size of the filter can be reduced by adding an anti-parallel rectifier diode(D1) to the output of the power supply. A freewheeling diode(D2) is connected before the choke to circulate the current once the power supply is turned off. In order to measure the current in the magnet a high precision, low drift, zero flux current transductor is used. This transductor senses the magnet current which provides a feedback signal to control the gating of the converter`s thyristors. A true 14 bit Digital to Analog Converter (DAC) is programmed by the control computer for the required current value, providing a reference for the current regulator. Fast correction of the line transients is provided by a relatively fast voltage loop controlled by a high gain slow response current loop.

  11. PARS: Programs for Analysis and Resizing of Structures, user manual

    NASA Technical Reports Server (NTRS)

    Haftka, R. T.; Prasad, B.; Tsach, U.

    1979-01-01

    PARS processors and their use, flutter analysis, sensitivity analysis for stresses, and resizing are presented. Design variable definition and interface with finite element model, static constraints and their derivatives, flutter derivatives, and optimization are discussed.

  12. View from southwest to northeast of PAR site fresh water ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View from southwest to northeast of PAR site fresh water pump house - Stanley R. Mickelsen Safeguard Complex, Fresh Water Pump House, In Limited Access Area, on Patrol Road next to Open Storage Reservoir No. 736, Nekoma, Cavalier County, ND

  13. The use of statistical techniques in par-level management.

    PubMed

    Klee, W B

    1994-02-01

    The total quality management movement has allowed the reintroduction of statistics in the materials management workplace. Statistical methods can be applied to the par level management process with significant results.

  14. View from northeast to southwest of PAR site sentry station; ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View from northeast to southwest of PAR site sentry station; formerly the bachelor's enlisted men's quarter (BEQ) - Stanley R. Mickelsen Safeguard Complex, Sentry Station, North of Second Avenue & West of Electrical Switch Station No. 2, Nekoma, Cavalier County, ND

  15. Croissance epitaxiale de GaAs sur substrats de Ge par epitaxie par faisceaux chimiques

    NASA Astrophysics Data System (ADS)

    Belanger, Simon

    La situation energetique et les enjeux environnementaux auxquels la societe est confrontee entrainent un interet grandissant pour la production d'electricite a partir de l'energie solaire. Parmi les technologies actuellement disponibles, la filiere du photovoltaique a concentrateur solaire (CPV pour concentrator photovoltaics) possede un rendement superieur et mi potentiel interessant a condition que ses couts de production soient competitifs. La methode d'epitaxie par faisceaux chimiques (CBE pour chemical beam epitaxy) possede plusieurs caracteristiques qui la rendent interessante pour la production a grande echelle de cellules photovoltaiques a jonctions multiples a base de semi-conducteurs III-V. Ce type de cellule possede la meilleure efficacite atteinte a ce jour et est utilise sur les satellites et les systemes photovoltaiques a concentrateur solaire (CPV) les plus efficaces. Une des principales forces de la technique CBE se trouve dans son potentiel d'efficacite d'utilisation des materiaux source qui est superieur a celui de la technique d'epitaxie qui est couramment utilisee pour la production a grande echelle de ces cellules. Ce memoire de maitrise presente les travaux effectues dans le but d'evaluer le potentiel de la technique CBE pour realiser la croissance de couches de GaAs sur des substrats de Ge. Cette croissance constitue la premiere etape de fabrication de nombreux modeles de cellules solaires a haute performance decrites plus haut. La realisation de ce projet a necessite le developpement d'un procede de preparation de surface pour les substrats de germanium, la realisation de nombreuses sceances de croissance epitaxiale et la caracterisation des materiaux obtenus par microscopie optique, microscopie a force atomique (AFM), diffraction des rayons-X a haute resolution (HRXRD), microscopie electronique a transmission (TEM), photoluminescence a basse temperature (LTPL) et spectrometrie de masse des ions secondaires (SIMS). Les experiences ont permis

  16. Molecular Mechanisms of Par-4-Induced Apoptosis in Prostate Cancer

    DTIC Science & Technology

    2007-05-01

    Sambrook J, Fritsch EF, Maniatis T. (1989). Molecular Cloning : A Laboratory Manual (Cold Spring Harbor, New York: Cold Spring Harbor Laboratory...AD_________________ Award Number: W81XWH-05-1-0622 TITLE: Molecular Mechanisms of Par-4-Induced...SUBTITLE 5a. CONTRACT NUMBER Molecular Mechanisms of Par-4-Induced Apoptosis in Prostate Cancer 5b. GRANT NUMBER W81XWH-05-1-0622 5c. PROGRAM

  17. StePar: an automatic code for stellar parameter determination

    NASA Astrophysics Data System (ADS)

    Tabernero, H. M.; González Hernández, J. I.; Montes, D.

    2013-05-01

    We introduce a new automatic code (StePar) for determinig stellar atmospheric parameters (T_{eff}, log{g}, ξ and [Fe/H]) in an automated way. StePar employs the 2002 version of the MOOG code (Sneden 1973) and a grid of Kurucz ATLAS9 plane-paralell model atmospheres (Kurucz 1993). The atmospheric parameters are obtained from the EWs of 263 Fe I and 36 Fe II lines (obtained from Sousa et al. 2008, A&A, 487, 373) iterating until the excitation and ionization equilibrium are fullfilled. StePar uses a Downhill Simplex method that minimizes a quadratic form composed by the excitation and ionization equilibrium conditions. Atmospheric parameters determined by StePar are independent of the stellar parameters initial-guess for the problem star, therefore we employ the canonical solar values as initial input. StePar can only deal with FGK stars from F6 to K4, also it can not work with fast rotators, veiled spectra, very metal poor stars or Signal to noise ratio below 30. Optionally StePar can operate with MARCS models (Gustafson et al. 2008, A&A, 486, 951) instead of Kurucz ATLAS9 models, additionally Turbospectrum (Alvarez & Plez 1998, A&A, 330, 1109) can replace the MOOG code and play its role during the parameter determination. StePar has been used to determine stellar parameters for some studies (Tabernero et al. 2012, A&A, 547, A13; Wisniewski et al. 2012, AJ, 143, 107). In addition StePar is being used to obtain parameters for FGK stars from the GAIA-ESO Survey.

  18. Photonic, Electronic and Atomic Collisions

    NASA Astrophysics Data System (ADS)

    Fainstein, Pablo D.; Lima, Marco Aurelio P.; Miraglia, Jorge E.; Montenegro, Eduardo C.; Rivarola, Roberto D.

    2006-11-01

    Plenary. Electron collisions - past, present and future / J. W. McConkey. Collisions of slow highly charged ions with surfaces / J. Burgdörfer ... [et al.]. Atomic collisions studied with "reaction-microscopes" / R. Moshammer ... [et al.]. Rydberg atoms: a microscale laboratory for studying electron-molecule tnteractions / F. B. Dunning -- Collisions involvintg photons. Quantum control of photochemical reaction dynamics and molecular functions / M. Yamaki ... [et al.]. Manipulating and viewing Rydberg wavepackets / R. R. Jones. Angle-resolved photoelectrons as a probe of strong-field interactions / M. Vrakking. Ultracold Rydberg atoms in a structured environment / I. C. H. Liu and J. M. Rost. Synchrotron-radiation-based recoil ion momentum spectroscopy of laser cooled and trapped cesium atoms / L. H. Coutinho. Reconstruction of attosecond pulse trains / Y. Mairesse ... [et al.]. Selective excitation of metastable atomic states by Femto- and attosecond laser pulses / A. D. Kondorskiy. Accurate calculations of triple differential cross sections for double photoionization of the hygrogen molecule / W. Vanroose ... [et al.]. Double and triple photoionization of Li and Be / J. Colgan, M. S. Pindzola and F. Robicheaux. Few/many body dynamics in strong laser fields / J. Zanghellini and T. Brabec. Rescattering-induced effects in electron-atom scattering in the presence of a circularly polarized laser field / A. V. Flegel ... [et al.]. Multidimensional photoelectron spectroscopy / P. Lablanquie ... [et al.]. Few photon and strongly driven transitions in the XUV and beyond / P. Lambropoulos, L. A. A. Nikolopoulos and S. I. Themelis. Ionization dynamics of atomic clusters in intense laser pulses / U. Saalmann and J. M. Rost. On the second order autocorrelation of an XUV attosecond pulse train / E. P. Benis ... [et al.]. Evidence for rescattering in molecular dissociation / I. D. Williams ... [et al.]. Photoionizing ions using synchrotron radiation / R. Phaneuf. Photo double

  19. The signaling adaptor GAB1 regulates cell polarity by acting as a PAR protein scaffold.

    PubMed

    Yang, Ziqiang; Xue, Bin; Umitsu, Masataka; Ikura, Mitsuhiko; Muthuswamy, Senthil K; Neel, Benjamin G

    2012-08-10

    Cell polarity plays a key role in development and is disrupted in tumors, yet the molecules and mechanisms that regulate polarity remain poorly defined. We found that the scaffolding adaptor GAB1 interacts with two polarity proteins, PAR1 and PAR3. GAB1 binds PAR1 and enhances its kinase activity. GAB1 brings PAR1 and PAR3 into a transient complex, stimulating PAR3 phosphorylation by PAR1. GAB1 and PAR6 bind the PAR3 PDZ1 domain and thereby compete for PAR3 binding. Consequently, GAB1 depletion causes PAR3 hypophosphorylation and increases PAR3/PAR6 complex formation, resulting in accelerated and enhanced tight junction formation, increased transepithelial resistance, and lateral domain shortening. Conversely, GAB1 overexpression, in a PAR1/PAR3-dependent manner, disrupts epithelial apical-basal polarity, promotes multilumen cyst formation, and enhances growth factor-induced epithelial cell scattering. Our results identify GAB1 as a negative regulator of epithelial cell polarity that functions as a scaffold for modulating PAR protein complexes on the lateral membrane. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. COLLIDE: Collisions into Dust Experiment

    NASA Technical Reports Server (NTRS)

    Colwell, Joshua E.

    1999-01-01

    The Collisions Into Dust Experiment (COLLIDE) was completed and flew on STS-90 in April and May of 1998. After the experiment was returned to Earth, the data and experiment were analyzed. Some anomalies occurred during the flight which prevented a complete set of data from being obtained. However, the experiment did meet its criteria for scientific success and returned surprising results on the outcomes of very low energy collisions into powder. The attached publication, "Low Velocity Microgravity Impact Experiments into Simulated Regolith," describes in detail the scientific background, engineering, and scientific results of COLLIDE. Our scientific conclusions, along with a summary of the anomalies which occurred during flight, are contained in that publication. We offer it as our final report on this grant.

  1. Practical Collisions for SHAMATA-256

    NASA Astrophysics Data System (ADS)

    Indesteege, Sebastiaan; Mendel, Florian; Preneel, Bart; Schläffer, Martin

    In this paper, we present a collision attack on the SHA-3 submission SHAMATA. SHAMATA is a stream cipher-like hash function design with components of the AES, and it is one of the fastest submitted hash functions. In our attack, we show weaknesses in the message injection and state update of SHAMATA. It is possible to find certain message differences that do not get changed by the message expansion and non-linear part of the state update function. This allows us to find a differential path with a complexity of about 296 for SHAMATA-256 and about 2110 for SHAMATA-512, using a linear low-weight codeword search. Using an efficient guess-and-determine technique we can significantly improve the complexity of this differential path for SHAMATA-256. With a complexity of about 240 we are even able to construct practical collisions for the full hash function SHAMATA-256.

  2. Simulated Ten Pin Bowling Collisions

    NASA Astrophysics Data System (ADS)

    Bills, Jacob; Howald, Craig

    2011-04-01

    This work investigates the results of the dynamics in the collisions that occur in ten pin bowling. A finite element modeling system (LS-Dyna) was used to construct simplified but approximately physically realistic models and simulate collisions involving the twelve body system composed of a ball, ten pins, and a floor. The investigation focuses on the qualitative features of the map of final pin configuration as a function of the initial conditions. To appropriately limit the breadth of the initial configuration space investigated, the only variables adjusted were the position of the ball upon entering the pins and the initial angle of velocity relative to the long axis of the lane. Results concerning the size and shape of the sets of initial conditions that lead to similar final configurations, in particular those leading to none of the pins remaining standing (aka "strikes"), are shown.

  3. Newton's cradle versus nonbinary collisions.

    PubMed

    Sekimoto, Ken

    2010-03-26

    Newton's cradle is a classical example of a one-dimensional impact problem. In the early 1980s the naive perception of its behavior was corrected: For example, the impact of a particle does not exactly cause the release of the farthest particle of the target particle train, if the target particles have been just in contact with their own neighbors. It is also known that the naive picture would be correct if the whole process consisted of purely binary collisions. Our systematic study of particle systems with truncated power-law repulsive force shows that the quasibinary collision is recovered in the limit of hard core repulsion, or a very large exponent. In contrast, a discontinuous steplike repulsive force mimicking a hard contact, or a very small exponent, leads to a completely different process: the impacting cluster and the targeted cluster act, respectively, as if they were nondeformable blocks.

  4. Central collisions of heavy ions

    SciTech Connect

    Fung, Sun-yiu.

    1992-10-01

    This report describes the activities of the Heavy Ion Physics Group at the University of California, Riverside from October 1, 1991 to September 30, 1992. During this period, the program focused on particle production at AGS energies, and correlation studies at the Bevalac in nucleus-nucleus central collisions. As part of the PHENIX collaboration, contributions were made to the Preliminary Conceptual Design Report (pCDR), and work on a RHIC silicon microstrip detector R D project was performed.

  5. Par Pond vegetation status Summer 1995 -- June survey descriptive summary

    SciTech Connect

    Mackey, H.E. Jr.; Riley, R.S.

    1995-06-01

    The water level of Par Pond was lowered approximately 20 feet in mid-1991 in order to protect downstream residents from possible dam failure suggested by subsidence on the downstream slope of the dam and to repair the dam. This lowering exposed both emergent and nonemergent macrophyte beds to drying conditions resulting in extensive losses. A survey of the shoreline aquatic plant communities in June 1995, three months after the refilling of Par Pond to approximately 200 feet above mean sea level, indicated that much of the original plant communities and the intermediate shoreline communities present on the exposed sediments have been lost. The extensive old-field and emergent marsh communities that were present on the exposed shoreline during the drawdown have been flooded and much of the pre-drawdown Par Pond aquatic plant communities have not had sufficient time for re-establishment. The shoreline does, however, have extensive beds of maidencane which extend from the shoreline margin to areas as deep as 2 and perhaps 3 meters. Scattered individual plants of lotus and watershield are common and may indicate likely directions of future wetland development in Par Pond. In addition, within isolated coves, which apparently received ground water seepage and/or stream surface flows during the period of the Par Pond draw down, extensive beds of waterlilies and spike rush are common. Invasion of willow and red maple occurred along the lake shoreline as well. Although not absent from this survey, evidence of the extensive redevelopment of the large cattail and eel grass beds was not observed in this first survey of Par Pond. Future surveys during the growing seasons of 1995, 1996, and 1997 along with the evaluation of satellite date to map the areal extent of the macrophyte beds of Par Pond are planned.

  6. Pars Planitis: Epidemiology, Clinical Characteristics, Management and Visual Prognosis

    PubMed Central

    Ozdal, Pinar Cakar; Berker, Nilufer; Tugal-Tutkun, Ilknur

    2015-01-01

    Pars planitis is an idiopathic chronic intermediate uveitis which predominantly affects children and adolescents, and accounts for 5-26.7% of pediatric uveitis. Although an autoimmune process with a genetic predisposition has been suggested, its etiology still remains unknown. The most common presenting symptoms are floaters and blurred vision. Diffuse vitreous cells, haze, snowballs and snowbanks are typical findings of pars planitis. Peripheral retinal vasculitis, optic disc edema and anterior segment inflammation are other well-known findings. Although pars planitis is known to be a benign form of uveitis in most cases, it may become a potentially blinding disease due to complications including cataract, cystoid macular edema, vitreous opacities and optic disc edema. Cystoid macular edema is the most common cause of visual morbidity. Band keratopathy, epiretinal membrane formation, vitreous condensation, neovascularizations, vitreous hemorrhage, retinal detachment, cyclitic membranes, glaucoma and amblyopia may develop as a consequence of the chronic course of the disease. Exclusion of infectious and non-infectious causes which may present with intermediate uveitis is of utmost importance before starting treatment. Treatment of pars planitis has been a controversial issue. There is no consensus specifically for treatment of cases with minimal inflammation and relatively good visual acuity. However, current experience shows that pars planitis may cause severe inflammation and needs an aggressive treatment. A stepladder approach including corticosteroids, immunosupressive agents, anti-tumor necrosis factor-alpha and pars plana vitrectomy and/or laser photocoagulation is the most commonly used method for treatment of pars planitis. Adequate control of inflammation and prompt detection of associated complications are crucial in order to improve the overall prognosis of the disease. PMID:27051493

  7. QCD studies in ep collisions

    SciTech Connect

    Smith, W.H.

    1997-06-01

    These lectures describe QCD physics studies over the period 1992--1996 from data taken with collisions of 27 GeV electrons and positrons with 820 GeV protons at the HERA collider at DESY by the two general-purpose detectors H1 and ZEUS. The focus of these lectures is on structure functions and jet production in deep inelastic scattering, photoproduction, and diffraction. The topics covered start with a general introduction to HERA and ep scattering. Structure functions are discussed. This includes the parton model, scaling violation, and the extraction of F{sub 2}, which is used to determine the gluon momentum distribution. Both low and high Q{sup 2} regimes are discussed. The low Q{sup 2} transition from perturbative QCD to soft hadronic physics is examined. Jet production in deep inelastic scattering to measure {alpha}{sub s}, and in photoproduction to study resolved and direct photoproduction, is also presented. This is followed by a discussion of diffraction that begins with a general introduction to diffraction in hadronic collisions and its relation to ep collisions, and moves on to deep inelastic scattering, where the structure of diffractive exchange is studied, and in photoproduction, where dijet production provides insights into the structure of the Pomeron. 95 refs., 39 figs.

  8. Electron capture in ion-molecule collisions at intermediate energy

    SciTech Connect

    Kumura, M.

    1986-01-01

    Recent progress of theoretical charge transfer study in ion-molecule collisions at the intermediate energy is reviewed. Concept of close and distant collisions obtained from extensive ion-atom collision studies is identified so that it can be utilized to model two distinct collision processes. For a close collision, explicit representation of the whole collision complex is necessary to describe collision dynamics correctly, while a model potential approach for molecule is appropriate for a distant collision. It is shown that these two distinct models are indeed capable of reproducing experimental charge transfer cross sections. Some remarks for further theoretical study of ion-molecule collisions are also given. 21 refs., 8 figs.

  9. Par Pond vegetation status Summer 1995 -- October survey descriptive summary

    SciTech Connect

    Mackey, H.E. Jr.; Riley, R.S.

    1995-11-01

    The water level of Par Pond was lowered approximately 20 feet in mid-1991 in order to protect downstream residents from possible dam failure suggested by subsidence on the downstream slope of the dam and to repair the dam. This lowering exposed both emergent and nonemergent macrophyte beds to drying conditions resulting in extensive losses. A survey of the emergent shoreline aquatic plant communities began in June 1995, three months after the refilling of Par Pond to approximately 200 feet above mean sea level and continued with this late October survey. Communities similar to the pre-drawdown Par Pond aquatic plant communities are becoming re-established; especially, beds of maiden cane, lotus, waterlily, and watershield are now extensive and well established. Cattail occurrence continues to increase, but large beds common to Par Pond prior to the drawdown have not formed. Future surveys throughout 1996 and 1997, along with the continued evaluation of satellite data to map the areal extent of the macrophyte beds of Par Pond, are planned.

  10. Par Pond vegetation status Summer 1995 -- September survey descriptive summary

    SciTech Connect

    Mackey, H.E. Jr.; Riley, R.S.

    1995-09-01

    The water level of Par Pond was lowered approximately 20 feet in mid-1991 in order to protect downstream residents from possible dam failure suggested by subsidence on the downstream slope of the dam and to repair the dam. This lowering exposed both emergent and nonemergent macrophyte beds to drying conditions resulting in extensive losses. A survey of the emergent shoreline aquatic plant communities began in June 1995, three months after the refilling of Par Pond to approximately 200 feet above mean sea level and continued with this mid-September survey. Communities similar to the pre-drawdown Par Pond aquatic plant communities are becoming re-established; especially, beds of maidencane, lotus, waterlily, and watershield are now extensive and well established. Cattail occurrence continues to increase, but large beds common to Par Pond prior to the drawdown have not formed. Future surveys during the late growing seasons of 1995, and throughout 1996 and 1997, along with the evaluation of satellite data to map the areal extent of the macrophyte beds of Par Pond, are planned.

  11. Collisions Between Rods: A Visual Analysis

    NASA Astrophysics Data System (ADS)

    Roura, Pere

    2003-01-01

    One of the key subjects in introductory physics is the problem of collisions. It provides a nice example where conservation laws of energy and momentum are essential. Two extreme cases are usually solved: elastic and perfectly inelastic collisions. In the very simple one-dimensional case, velocities before and after collision are readily related through the masses of the colliding bodies. Similar solutions can be found for partially inelastic collisions, provided that the degree of energy loss is known. Otherwise, the energy balance equation cannot be written down. Usually, one can reasonably assess whether the collision is perfectly inelastic (for instance, a bullet impinging onto a piece of wood). However, it is a matter of faith to consider a priori a collision as elastic or as being in any intermediate situation. We hope this statement will become clearer to the reader by the end of this paper.

  12. Analyzing Collisions in Terms of Newton's Laws

    NASA Astrophysics Data System (ADS)

    Roeder, John L.

    2003-02-01

    Although the principle of momentum conservation is a consequence of Newton's second and third laws of motion, as recognized by Newton himself, this principle is typically applied in analyzing collisions as if it is a separate concept of its own. This year I sought to integrate my treatment of collisions with my coverage of Newton's laws by asking students to calculate the effect on the motion of two particles due to the forces they exerted for a specified time interval on each other. For example, "A 50-kg crate slides across the ice at 3 m/s and collides with a 25-kg crate at rest. During the collision process the 50-kg crate exerts a 500 N time-averaged force on the 25 kg for 0.1 s. What are the accelerations of the crates during the collision, and what are their velocities after the collision? What are the momenta of the crates before and after collision?"

  13. A Collective Collision Operator for DSMC

    SciTech Connect

    GALLIS,MICHAIL A.; TORCZYNSKI,JOHN R.

    2000-06-21

    A new scheme to simulate elastic collisions in particle simulation codes is presented. The new scheme aims at simulating the collisions in the highly collisional regime, in which particle simulation techniques typically become computationally expensive.The new scheme is based on the concept of a grid-based collision field. According to this scheme, the particles perform a single collision with the background grid during a time step. The properties of the background field are calculated from the moments of the distribution function accumulated on the grid. The collision operator is based on the Langevin equation. Based on comparisons with other methods, it is found that the Langevin method overestimates the collision frequency for dilute gases.

  14. Reactive collision terms for fluid transport theory

    NASA Technical Reports Server (NTRS)

    Eccles, J. V.; Raitt, W. J.

    1992-01-01

    A modified Bhatnagar-Gross-Krook (BGK) collision method is used for the derivation of reactive collision terms to allow for complete higher-moment approximations in fluid transport theory. The general reactive collision terms for the 8-, 10- and 13-moment approximation for binary reactions are derived. Then, reactive collision terms for specific chemistry are derived with the assumptions: (1) all reactants and products have 13-moment distribution functions; (2) simple, classical assumptions provide sufficient models for reaction dynamics; and (3) the reaction rate is energy-independent. The derived specific formulas reflect two extremes in reactive collision dynamics: direct and indirect reaction mechanisms. Finally, considerations for correct use of the reactive collision terms are discussed in the context of space plasma environments.

  15. Fraction of space debris collisions that are catastrophic

    SciTech Connect

    Canavan, G.H.

    1996-08-01

    Analytic calculations estimate the fraction of catalog collisions that are catastrophic by a modification of collision rates. Most catalog collisions are catastrophic. Impactors of 60 kg or larger participate in about half of the catastrophic collisions. Analytic estimates give accurate values for catastrophic collisions, which are complicated numerically.

  16. Conservative Bin-to-Bin Fractional Collisions

    DTIC Science & Technology

    2016-06-28

    UNLIMITED; PA #16326 6 / 18 SWPM COLLISIONS Stochastic Weighted Particle Method: Developed by Rjasanow & Wagner Attempted Collisions/Cell: ν = f (2w̄...Developed by Rjasanow & Wagner Adapted as Modified NTC/MCF Attempted Collisions/Cell: ν = f (2w̄−wmin)Np(Np − 1) 〈σv〉 max dt Select Pair (i,j) if: Rand...DISTRIBUTION UNLIMITED; PA #16326 7 / 18 SWPM COLLISIONS Stochastic Weighted Particle Method: Developed by Rjasanow & Wagner Adapted as Modified NTC

  17. Telerobotics with whole arm collision avoidance

    SciTech Connect

    Wilhelmsen, K.; Strenn, S.

    1993-09-01

    The complexity of teleorbotic operations in a cluttered environment is exacerbated by the need to present collision information to the operator in an understandable fashion. In addition to preventing movements which will cause collisions, a system providing some form of virtual force reflection (VFR) is desirable. With this goal in mind, Lawrence Livermore National Laboratory (LLNL) has installed a kinematically master/slave system and developed a whole arm collision avoidance system which interacts directly with the telerobotic controller. LLNL has also provided a structure to allow for automated upgrades of workcell models and provide collision avoidance even in a dynamically changing workcell.

  18. Origin of collision-induced molecular orientation.

    PubMed

    Brouard, M; Hornung, B; Aoiz, F J

    2013-11-01

    Collision-induced rotational angular momentum orientation is a fundamental property of molecular scattering, which is sensitive to the balance between attractive and repulsive forces at play during collision. Here, we quantify a new mechanism leading to orientation, which is purely quantum mechanical in origin. Although the new mechanism is quite general, and will operate more widely in atomic and molecular scattering, it is observed here for impulsive hard shell collisions, for which the orientation vanishes classically. The quantum mechanism can thus be studied in isolation from other processes. The orientation is proposed to originate from the nonlocal nature of the quantum mechanical collision encounter.

  19. Integrated Collision Avoidance System for Air Vehicle

    NASA Technical Reports Server (NTRS)

    Lin, Ching-Fang (Inventor)

    2013-01-01

    Collision with ground/water/terrain and midair obstacles is one of the common causes of severe aircraft accidents. The various data from the coremicro AHRS/INS/GPS Integration Unit, terrain data base, and object detection sensors are processed to produce collision warning audio/visual messages and collision detection and avoidance of terrain and obstacles through generation of guidance commands in a closed-loop system. The vision sensors provide more information for the Integrated System, such as, terrain recognition and ranging of terrain and obstacles, which plays an important role to the improvement of the Integrated Collision Avoidance System.

  20. Flight Tests Validate Collision-Avoidance System

    NASA Image and Video Library

    Flights tests of a smartphone-assisted automatic ground collision avoidance system at NASA's Dryden Flight Research Center consistently commanded evasive maneuvers when it sensed that the unmanned ...

  1. The pars interarticularis stress reaction, spondylolysis, and spondylolisthesis progression.

    PubMed

    Motley, G; Nyland, J; Jacobs, J; Caborn, D N

    1998-10-01

    To review the classification, etiology, clinical and radiologic evaluation, and management of the pars interarticularis stress reaction, spondylolysis, and spondylolisthesis progression. Grateful Med was searched from 1980 to 1998 using the terms "spondylolysis," "spondylolisthesis," "female athlete" "spondylogenic," and "pars interarticularis." The progression from pars interarticularis stress reaction through spondylolysis to spondylolisthesis is common in adolescent athletes, and, because of hormonal influences and cheerleading and gymnastic maneuvers, females are particularly at risk. Proper diagnosis and management include a thorough evaluation, radiographs (possibly with technetium bone scan or single-photon emission computed tomography), activity modification, dietary counseling, a therapeutic exercise program focusing on proper trunk and hip muscle strength and extensibility balances, and education regarding proper back postures, positioning, lifting mechanics, and jump landings. The athletic trainer plays an integral part in managing this injury progression, particularly with identifying at-risk individuals and intervening appropriately.

  2. Protease-activated receptor-2 (PAR2) in cardiovascular system.

    PubMed

    Bucci, Mariarosaria; Roviezzo, Fiorentina; Cirino, Giuseppe

    2005-10-01

    Vascular system is constituted by a complex and articulate network, e.g. arteries, arterioles, venules and veins, that requires a high degree of coordination between different elemental cell types. Proteinase-activated receptors (PARs) constitute a recent described family of 7-transmembrane G protein-coupled receptors that are activated by proteolysis. In recent years several evidence have been accumulated for an involvement of this receptor in the response to endothelial injury in vitro and in vivo experimental settings suggesting a role for PAR2 in the pathophysiology of cardiovascular system. This review will deal with the role of PAR2 receptor in the cardiovascular system analyzing both in vivo and in vitro published data. In particular this review will deal with the role of this receptor in vascular reactivity, ischemia/reperfusion injury, coronary atherosclerotic lesions and angiogenesis.

  3. Couches Minces de Titanate de Baryum Par Depot Organometallique

    NASA Astrophysics Data System (ADS)

    Ousi Benomar, Wahib

    1993-01-01

    Nous avons demontre la possibilite de realiser des couches minces de titanate de baryum par depot organometallique. Les films sont obtenus apres dissolution d'organometalliques choisis dans un solvant et une cuisson a une temperature determinee par thermogravimetrie. Apres un second traitement thermique a des temperatures plus elevees, les echantillons presentent une structure polycristalline tetragonale; les cristallites sont observes par microscopie electronique a balayage. La mesure de la constante dielectrique a permis de mettre en evidence une transition de phase de la structure tetragonale a la structure cubique a une temperature d'environ 125^circC. Les mesures d'indice ont ete effectuees. On note une augmentation de l'indice de refraction des films avec la temperature indiquant une meilleure densification des films. Nous avons aussi montre qu'il etait possible d'utiliser ce materiau en tant que guide d'onde optique pour pouvoir exploiter ses proprietes electrooptiques dans l'avenir.

  4. Collinear Collision Chemistry: 1. A Simple Model for Inelastic and Reactive Collision Dynamics

    ERIC Educational Resources Information Center

    Mahan, Bruce H.

    1974-01-01

    Discusses a model for the collinear collision of an atom with a diatomic molecule on a simple potential surface. Indicates that the model can provide a framework for thinking about molecular collisions and reveal many factors which affect the dynamics of reactive and inelastic collisions. (CC)

  5. Keratometric alterations following the 25-gauge transconjunctival sutureless pars plana vitrectomy versus the conventional pars plana vitrectomy.

    PubMed

    Citirik, Mehmet; Batman, Cosar; Bicer, Tolga; Zilelioglu, Orhan

    2009-09-01

    To assess the alterations in keratometric astigmatism following the 25-gauge transconjunctival sutureless pars plana vitrectomy versus the conventional pars plana vitrectomy. Sixteen consecutive patients were enrolled into the study. Conventional vitrectomy was applied to eight of the cases and 25-gauge transconjunctival sutureless vitrectomy was performed in eight patients. Keratometry was performed before and after the surgery. In the 25-gauge transconjunctival sutureless pars plana vitrectomy group, statistically significant changes were not observed in the corneal curvature in any post-operative follow-up measurement (p > 0.05); whereas in the conventional pars plana vitrectomy group, statistically significant changes were observed in the first postoperative day (p = 0.01) and first postoperative month (p = 0.03). We noted that these changes returned to baseline in three months (p = 0.26). Both 25-gauge transconjunctival sutureless and conventional pars plana vitrectomy are effective surgical modalities for selected diseases of the posterior segment. Surgical procedures are critical for the visual rehabilitation of the patients. The post-operative corneal astigmatism of the vitrectomised eyes can be accurately determined at least two months post-operatively.

  6. Both PHYTOCHROME RAPIDLY REGULATED1 (PAR1) and PAR2 Promote Seedling Photomorphogenesis in Multiple Light Signaling Pathways1[C][W][OPEN

    PubMed Central

    Zhou, Peng; Song, Meifang; Yang, Qinghua; Su, Liang; Hou, Pei; Guo, Lin; Zheng, Xu; Xi, Yulin; Meng, Fanhua; Xiao, Yang; Yang, Li; Yang, Jianping

    2014-01-01

    Arabidopsis (Arabidopsis thaliana) seedlings undergo photomorphogenesis in the light and etiolation in the dark. Light-activated photoreceptors transduce the light signals through a series of photomorphogenesis promoting or repressing factors to modulate many developmental processes in plants, such as photomorphogenesis and shade avoidance. CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1) is a conserved RING finger E3 ubiquitin ligase, which mediates degradation of several photomorphogenesis promoting factors, including ELONGATED HYPOCOTYL5 (HY5) and LONG HYPOCOTYL IN FAR-RED1 (HFR1), through a 26S proteasome-dependent pathway. PHYTOCHROME RAPIDLY REGULATED1 (PAR1) was first detected as an early repressed gene in both phytochrome A (phyA)-mediated far-red and phyB-mediated red signaling pathways, and subsequent studies showed that both PAR1 and PAR2 are negative factors of shade avoidance in Arabidopsis. However, the role of PAR1 and PAR2 in seedling deetiolation, and their relationships with other photomorphogenesis promoting and repressing factors are largely unknown. Here, we confirmed that both PAR1 and PAR2 redundantly enhance seedling deetiolation in multiple photoreceptor signaling pathways. Their transcript abundances are repressed by phyA, phyB, and cryptochrome1 under far-red, red, and blue light conditions, respectively. Both PAR1 and PAR2 act downstream of COP1, and COP1 mediates the degradation of PAR1 and PAR2 through the 26S proteasome pathway. Both PAR1 and PAR2 act in a separate pathway from HY5 and HFR1 under different light conditions, except for sharing in the same pathway with HFR1 under far-red light. Together, our results substantiate that PAR1 and PAR2 are positive factors functioning in multiple photoreceptor signaling pathways during seedling deetiolation. PMID:24335334

  7. Traumatisme de la main par injection a haute pression

    PubMed Central

    Mabchoure, K.; Diouri, M.; Bahechar, N.; Chlihi, A.

    2016-01-01

    Summary Les traumatismes de la main par injection à haute pression sont des accidents relativement rares et souvent mal connus par le praticien. Les lésions qui dépendent du produit injecté et du site d’injection sont pourvoyeuses de séquelles esthétiques et fonctionnelles lourdes. Le traitement repose sur la chirurgie, l’antibiothérapie et la rééducation précoce et spécifique. Nous rapportons notre expérience ainsi qu’une revue de la littérature. PMID:27857654

  8. An introductory analysis of satellite collision probabilities

    NASA Astrophysics Data System (ADS)

    Carlton-Wippern, Kitt C.

    This paper addresses a probailistic approach in assessing the probabilities of a satellite collision occurring due to relative trajectory analyses and probability density functions representing the satellites' position/momentum vectors. The paper is divided into 2 parts: Static and Dynamic Collision Probabilities. In the Static Collision Probability section, the basic phenomenon under study is: given the mean positions and associated position probability density functions for the two objects, calculate the probability that the two objects collide (defined as being within some distance of each other). The paper presents the classic Laplace problem of the probability of arrival, using standard uniform distribution functions. This problem is then extrapolated to show how 'arrival' can be classified as 'collision', how the arrival space geometries map to collision space geometries and how arbitrary position density functions can then be included and integrated into the analysis. In the Dynamic Collision Probability section, the nature of collisions based upon both trajectory and energy considerations is discussed, and that energy states alone cannot be used to completely describe whether or not a collision occurs. This fact invalidates some earlier work on the subject and demonstrates why Liouville's theorem cannot be used in general to describe the constant density of the position/momentum space in which a collision may occur. Future position probability density functions are then shown to be the convolution of the current position and momentum density functions (linear analysis), and the paper further demonstrates the dependency of the future position density functions on time. Strategies for assessing the collision probabilities for two point masses with uncertainties in position and momentum at some given time, and thes integrated with some arbitrary impact volume schema, are then discussed. This presentation concludes with the formulation of a high level design

  9. PAR-3 oligomerization may provide an actin-independent mechanism to maintain distinct par protein domains in the early Caenorhabditis elegans embryo.

    PubMed

    Dawes, Adriana T; Munro, Edwin M

    2011-09-21

    Par proteins establish discrete intracellular spatial domains to polarize many different cell types. In the single-cell embryo of the nematode worm Caenorhabditis elegans, the segregation of Par proteins is crucial for proper division and cell fate specification. Actomyosin-based cortical flows drive the initial formation of anterior and posterior Par domains, but cortical actin is not required for the maintenance of these domains. Here we develop a model of interactions between the Par proteins that includes both mutual inhibition and PAR-3 oligomerization. We show that this model gives rise to a bistable switch mechanism, allowing the Par proteins to occupy distinct anterior and posterior domains seen in the early C. elegans embryo, independent of dynamics or asymmetries in the actin cortex. The model predicts a sharp loss of cortical Par protein asymmetries during gradual depletion of the Par protein PAR-6, and we confirm this prediction experimentally. Together, these results suggest both mutual inhibition and PAR-3 oligomerization are sufficient to maintain distinct Par protein domains in the early C. elegans embryo.

  10. Positron collisions with alkali-metal atoms

    NASA Technical Reports Server (NTRS)

    Gien, T. T.

    1990-01-01

    The total cross sections for positron and electron collisions with potassium, sodium, lithium and rubidium are calculated, employing the modified Glauber approximation. The Modified Glauber cross sections for positron collision with potassium and sodium at low intermediate energies are found to agree reasonably well with existing experimental data.

  11. Oblique and Head-On Elastic Collisions

    ERIC Educational Resources Information Center

    Ng, Chiu-king

    2008-01-01

    When a moving ball collides elastically with an identical, initially stationary ball, the incident ball will either come to rest (head-on collision; see Fig. 1) or will acquire a velocity that is perpendicular to that acquired by the target ball (oblique collision; see Fig. 2). These two possible outcomes are related in an interesting way, which…

  12. Charge exchange in H^+ + He^+ collision

    NASA Astrophysics Data System (ADS)

    Guevara Leon, Nicolais; Sabin, John R.; Deumens, Erik; Ohrn, Yngve

    2008-05-01

    Charge exchange in H^+ + He^+ collision are investigated theoretically at projectile energies below the ionization threshold at about 100 keV/amu. The electron nuclear dynamics (END) method is used to analyze the collision processes. Total charge exchange cross sections were calculated and compared with other theoretical and experimental data.

  13. 46 CFR 171.085 - Collision bulkhead.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... the collision bulkhead must be at least— (1) 5 percent of the LBP from the forward perpendicular in a motor vessel; and (2) 5 feet (1.52 meters) from the forward perpendicular in a steam vessel. (d) The collision bulkhead must be no more than 10 feet (3 meters) plus 5 percent of the LBP from the forward...

  14. 46 CFR 171.085 - Collision bulkhead.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... the collision bulkhead must be at least— (1) 5 percent of the LBP from the forward perpendicular in a motor vessel; and (2) 5 feet (1.52 meters) from the forward perpendicular in a steam vessel. (d) The collision bulkhead must be no more than 10 feet (3 meters) plus 5 percent of the LBP from the forward...

  15. 46 CFR 171.085 - Collision bulkhead.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... the collision bulkhead must be at least— (1) 5 percent of the LBP from the forward perpendicular in a motor vessel; and (2) 5 feet (1.52 meters) from the forward perpendicular in a steam vessel. (d) The collision bulkhead must be no more than 10 feet (3 meters) plus 5 percent of the LBP from the forward...

  16. Mechanical Energy Changes in Perfectly Inelastic Collisions

    ERIC Educational Resources Information Center

    Mungan, Carl E.

    2013-01-01

    Suppose a block of mass "m"[subscript 1] traveling at speed "v"[subscript 1] makes a one-dimensional perfectly inelastic collision with another block of mass "m"[subscript 2]. What else does one need to know to calculate the fraction of the mechanical energy that is dissipated in the collision? (Contains 1 figure.)

  17. Oblique and Head-On Elastic Collisions

    ERIC Educational Resources Information Center

    Ng, Chiu-king

    2008-01-01

    When a moving ball collides elastically with an identical, initially stationary ball, the incident ball will either come to rest (head-on collision; see Fig. 1) or will acquire a velocity that is perpendicular to that acquired by the target ball (oblique collision; see Fig. 2). These two possible outcomes are related in an interesting way, which…

  18. Cultural Collisions in L2 Academic Writing.

    ERIC Educational Resources Information Center

    Steinman, Linda

    2003-01-01

    Reviews research on writing and culture, focusing on the collisions of cultures when discourse practices second language writers are expected to reproduce clash with what they know, believe, and value in their first language writing. Describes collisions of culture in writing regarding voice, organization, reader/writer responsibility, topic, and…

  19. Collision risk management in geosynchronous orbit

    NASA Astrophysics Data System (ADS)

    Jenkin, A. B.; Peterson, G. E.

    2004-01-01

    A systematic method has been developed for managing long-term collision risk posed to operational satellites in geosynchronous orbit. Long-term collision risk reduction is achieved by proper selection of local collision probability thresholds that trigger actions to reduce risk. Such actions can be requests for more accurate orbital data, special sensor tasking, or collision avoidance maneuvers. The cost of collision risk reduction is measured by the frequency of actions taken to reduce the collision risk. This action frequency is dependent on the accuracy of the orbital data and the frequency of close approaches. A case study was performed for a set of satellites. The analysis used position error models for two-line element sets. A conjunction simulation was used to process approximately three years of archived orbital data, including publicly available two-line element sets, in order to generate conjunction statistics. From these results, a graphical representation called a χ-plot was generated. This plot permits the selection of thresholds as a function of total risk reduction and tolerable action frequency. Results of the study indicate that collision risk management in geosynchronous orbit can be very costly using data of insufficiently high accuracy, because data errors induce high action frequency for even modest amounts of collision risk reduction.

  20. Mechanical Energy Changes in Perfectly Inelastic Collisions

    ERIC Educational Resources Information Center

    Mungan, Carl E.

    2013-01-01

    Suppose a block of mass "m"[subscript 1] traveling at speed "v"[subscript 1] makes a one-dimensional perfectly inelastic collision with another block of mass "m"[subscript 2]. What else does one need to know to calculate the fraction of the mechanical energy that is dissipated in the collision? (Contains 1 figure.)

  1. Fixed Target Collisions at STAR

    NASA Astrophysics Data System (ADS)

    Meehan, Kathryn C.

    2016-12-01

    The RHIC Beam Energy Scan (BES) program was proposed to look for the turn-off of signatures of the quark gluon plasma (QGP), search for a possible QCD critical point, and study the nature of the phase transition between hadronic and partonic matter. Previous results have been used to claim that the onset of deconfinement occurs at a center-of-mass energy of 7 GeV. Data from lower energies are needed to test if this onset occurs. The goal of the STAR Fixed-Target Program is to extend the collision energy range in BES II to energies that are likely below the onset of deconfinement. Currently, STAR has inserted a gold target into the beam pipe and conducted test runs at center-of-mass energies of 3.9 and 4.5 GeV. Tests have been done with both Au and Al beams. First physics results from a Coulomb potential analysis of Au + Au fixed-target collisions are presented and are found to be consistent with results from previous experiments. Furthermore, the Coulomb potential, which is sensitive to the Z of the projectile and degree of baryonic stopping, will be compared to published results from the AGS.

  2. Energy coupling in catastrophic collisions

    NASA Technical Reports Server (NTRS)

    Holsapple, K. A.; Choe, K. Y.

    1991-01-01

    The prediction of events leading to the catastrophic collisions and disruption of solar system bodies is fraught with the same difficulties as are other theories of impact events; since one simply cannot perform experiments in the regime of interest. In the catastrophic collisions of asteroids that regime involves bodies of a few tons to hundred of kilometers in diameter, and velocities of several kilometers pre second. For hundred kilometer bodies, gravitational stresses dominate material fracture strengths, but those gravitational stresses are essentially absent for laboratory experiments. Only numerical simulations using hydrocodes can in principle analyze the true problems, but they have their own major uncertainties about the correctness of the physical models and properties. The question of the measure of the impactor and its energy coupling is investigated using numerical code calculations. The material model was that of a generic silicate rock, including high pressure melt and vapor phases, and includes material nonlinearity and dissipation via a Mie-Gruniesen model. A series of calculations with various size ratios and impact velocities are reported.

  3. Simulating Collisions for Hydrokinetic Turbines

    SciTech Connect

    Richmond, Marshall C.; Romero Gomez, Pedro DJ; Rakowski, Cynthia L.

    2013-10-01

    Evaluations of blade-strike on an axial-flow Marine Hydrokinetic turbine were conducted using a conventional methodology as well as an alternative modeling approach proposed in the present document. The proposed methodology integrates the following components into a Computa- tional Fluid Dynamics (CFD) model: (i) advanced eddy-resolving flow simulations, (ii) ambient turbulence based on field data, (iii) moving turbine blades in highly transient flows, and (iv) Lagrangian particles to mimic the potential fish pathways. The sensitivity of blade-strike prob- ability to the following conditions was also evaluated: (i) to the turbulent environment, (ii) to fish size and (iii) to mean stream flow velocity. The proposed methodology provided fraction of collisions and offered the capability of analyzing the causal relationships between the flow envi- ronment and resulting strikes on rotating blades. Overall, the conventional methodology largely overestimates the probability of strike, and lacks the ability to produce potential fish and aquatic biota trajectories as they interact with the rotating turbine. By using a set of experimental corre- lations of exposure-response of living fish colliding on moving blades, the occurrence, frequency and intensity of the particle collisions was next used to calculate the survival rate of fish crossing the MHK turbine. This step indicated survival rates always greater than 98%. Although the proposed CFD framework is computationally more expensive, it provides the advantage of evaluating multiple mechanisms of stress and injury of hydrokinetic turbine devices on fish.

  4. Ground Collision Avoidance System (Igcas)

    NASA Technical Reports Server (NTRS)

    Skoog, Mark A (Inventor); Prosser, Kevin (Inventor); Hook, Loyd (Inventor)

    2017-01-01

    The present invention is a system and method for aircraft ground collision avoidance (iGCAS) comprising a modular array of software, including a sense own state module configured to gather data to compute trajectory, a sense terrain module including a digital terrain map (DTM) and map manger routine to store and retrieve terrain elevations, a predict collision threat module configured to generate an elevation profile corresponding to the terrain under the trajectory computed by said sense own state module, a predict avoidance trajectory module configured to simulate avoidance maneuvers ahead of the aircraft, a determine need to avoid module configured to determine which avoidance maneuver should be used, when it should be initiated, and when it should be terminated, a notify Module configured to display each maneuver's viability to the pilot by a colored GUI, a pilot controls module configured to turn the system on and off, and an avoid module configured to define how an aircraft will perform avoidance maneuvers through 3-dimensional space.

  5. Molecular collisions coming into focus.

    PubMed

    Onvlee, Jolijn; Vogels, Sjoerd N; von Zastrow, Alexander; Parker, David H; van de Meerakker, Sebastiaan Y T

    2014-08-14

    The Stark deceleration method exploits the concepts of charged particle accelerator physics to produce beams of neutral polar molecules with an almost perfect quantum state purity, a tunable velocity and a narrow velocity distribution. These monochromatic molecular beams offer interesting perspectives for precise studies of molecular scattering processes, in particular when used in conjunction with state-of-the-art laser-based detection techniques such as velocity map imaging. Here, we describe crossed beam scattering experiments in which the Stark deceleration method is combined with the velocity map imaging technique. The narrow velocity spread of Stark-decelerated molecular beams results in scattering images with unprecedented velocity and angular resolution. We demonstrate this by resolving quantum diffraction oscillations in state-to-state inelastic differential scattering cross sections for collisions between NO radicals and rare gas atoms. We describe the future prospects of this "best-of-two-worlds" combination, ranging from scattering studies at low collision energies to bimolecular scattering using two decelerators, and discuss the challenges that lie ahead to achieve these goals.

  6. Are You Up to PAR? (Program Administrative Review).

    ERIC Educational Resources Information Center

    Southwest Regional Resource Center, Salt Lake City, UT.

    The document focuses on the workings of PAR (Program Administrative Review), a method by which local education agencies (LEAs) and state operated programs (SOPs) in Utah can conduct ongoing self-evaluation and identify areas where additional efforts are needed to improve the quality of programs and services for handicapped children. It is…

  7. Par Pond vegetation status summer 1995 - July survey descriptive summary

    SciTech Connect

    Mackey, H.E. Jr.; Riley, R.S.

    1995-07-01

    A survey of the emergent shoreline aquatic plant, communities began in June 1995, three months after the refilling of Par Pond to approximately 200 feet (61 meters) above mean sea level, and continued with this July survey. Aquatic plant communities, similar to the pre-drawdown Par Pond communities, are becoming reestablished. Beds of maidencane (Panicum hemitomon), lotus (Nelumbo lutea), water lily (Nymphaea odorata), and watershield (Brasenia schreberi) are now extensive and well established. In addition, within isolated coves, extensive beds of water lilies and spike-rush (Eleocharis sp.) are common. Cattail occurrence has increased since refill, but large beds common to Par Pond prior to the drawdown have not formed. Invasion of willow (Salix sp.) and red maple (Acer rubrum) occurred along the lake shoreline during drawdown. The red maples along the present shoreline are beginning to show evidence of stress and mortality from flooding over the past four months. Some of the willows appear to be stressed as well. The loblolly pines (Pinus taeda), which were flooded in all but the shallow shoreline areas, are now dead. Future surveys are planned for the growing seasons of 1995, 1996, and 1997, along with the evaluation of satellite data for mapping the areal extent of the macrophyte beds of Par Pond.

  8. BOREAS RSS-10 TOMS Circumpolar One-Degree PAR Images

    NASA Technical Reports Server (NTRS)

    Dye, Dennis G.; Holben, Brent; Nickeson, Jaime (Editor); Hall, Forrest G. (Editor); Smith, David E. (Technical Monitor)

    2000-01-01

    The Boreal Ecosystem-Atmosphere Study (BOREAS) Remote Sensing Science (RSS)-10 team investigated the magnitude of daily, seasonal, and yearly variations of Photosynthetically Active Radiation (PAR) from ground and satellite observations. This data set contains satellite estimates of surface-incident PAR (400-700 nm, MJ/sq m) at one-degree spatial resolution. The spatial coverage is circumpolar from latitudes of 41 to 66 degrees north. The temporal coverage is from May through September for years 1979 through 1989. Eleven-year statistics are also provided: (1) mean, (2) standard deviation, and (3) coefficient of variation for 1979-89. The PAR estimates were derived from the global gridded ultraviolet reflectivity data product (average of 360, 380 nm) from the Nimbus-7 Total Ozone Mapping Spectrometer (TOMS). Image mask data are provided for identifying the boreal forest zone, and ocean/land and snow/ice-covered areas. The data are available as binary image format data files. The PAR data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files are available on a CD-ROM (see document number 20010000884).

  9. Radiological impact of Par Pond drawdown from liquid effluent pathways

    SciTech Connect

    Carlton, W.H.; Hamby, D.M.

    1991-10-25

    The water level of Par Pond has been lowered over the past several months to reduce the effects in the event of catastrophic dam failure while assessing the condition of the dam and determining if repairs are necessary. In lowering the level of Par Pond, 60 billion liters of water containing low levels of tritium and cesium-137 were discharged to several onsite streams. SRS surface streams flow to the Savannah River. An assessment made to determine the total amount of tritium and Cs-137 discharged and to estimate the consequences to downstream Savannah River users. It is estimated that a total of 160 curies of tritium were displaced from Par Pond to the Savannah River between June 28, 1991 and September 19, 1991. This release could hypothetically result in a maximum individual dose of 3. 2{times}10{sup {minus}4} mrem and a total (80-km and drinking water populations) population dose of 1.4{times}10{sup {minus}2} person-rem. Likewise, a maximum individual dose of 5.0{times}10{sup {minus}2} mrem and a total population dose of 1.7{times}10{sup {minus}1} person- rem are predicted as a result of an estimated 0.21 curies of Cs-137 being discharged from Par Pond to the Savannah River.

  10. PAR-5 is a PARty hub in the germline

    PubMed Central

    Aristizábal-Corrales, David; Schwartz Jr, Simo; Cerón, Julián

    2013-01-01

    As our understanding of how molecular machineries work expands, an increasing number of proteins that appear as regulators of different processes have been identified. These proteins are hubs within and among functional networks. The 14-3-3 protein family is involved in multiple cellular pathways and, therefore, influences signaling in several disease processes, from neurobiological disorders to cancer. As a consequence, 14-3-3 proteins are currently being investigated as therapeutic targets. Moreover, 14-3-3 protein levels have been associated with resistance to chemotherapies. There are seven 14-3-3 genes in humans, while Caenorhabditis elegans only possesses two, namely par-5 and ftt-2. Among the C. elegans scientific community, par-5 is mainly recognized as one of the par genes that is essential for the asymmetric first cell division in the embryo. However, a recent study from our laboratory describes roles of par-5 in germ cell proliferation and in the cellular response to DNA damage induced by genotoxic agents. In this review, we explore the broad functionality of 14-3-3 proteins in C. elegans and comment on the potential use of worms for launching a drugs/modifiers discovery platform for the therapeutic regulation of 14-3-3 function in cancer. PMID:24058859

  11. Promiscuous stimulation of ParF protein polymerization by heterogeneous centromere binding factors.

    PubMed

    Machón, Cristina; Fothergill, Timothy J G; Barillà, Daniela; Hayes, Finbarr

    2007-11-16

    The segrosome is the nucleoprotein complex that mediates accurate segregation of bacterial plasmids. The segrosome of plasmid TP228 comprises ParF and ParG proteins that assemble on the parH centromere. ParF, which exemplifies one clade of the ubiquitous ParA superfamily of segregation proteins, polymerizes extensively in response to ATP binding. Polymerization is modulated by the ParG centromere binding factor (CBF). The segrosomes of plasmids pTAR, pVT745 and pB171 include ParA homologues of the ParF subgroup, as well as diverse homodimeric CBFs with no primary sequence similarity to ParG, or each other. Centromere binding by these analogues is largely specific. Here, we establish that the ParF homologues of pTAR and pB171 filament modestly with ATP, and that nucleotide hydrolysis is not required for this polymerization, which is more prodigious when the cognate CBF is also present. By contrast, the ParF homologue of plasmid pVT745 did not respond appreciably to ATP alone, but polymerized extensively in the presence of both its cognate CBF and ATP. The co-factors also stimulated nucleotide-independent polymerization of cognate ParF proteins. Moreover, apart from the CBF of pTAR, the disparate ParG analogues promoted polymerization of non-cognate ParF proteins suggesting that filamentation of the ParF proteins is enhanced by a common mechanism. Like ParG, the co-factors may be modular, possessing a centromere-specific interaction domain linked to a flexible region containing determinants that promiscuously stimulate ParF polymerization. The CBFs appear to function as bacterial analogues of formins, microtubule-associated proteins or related ancillary factors that regulate eucaryotic cytoskeletal dynamics.

  12. Re-Signifying Participatory Action Research (PAR) in Higher Education: What Does "P" Stand for in PAR?

    ERIC Educational Resources Information Center

    Santos, Doris

    2016-01-01

    While carrying out a study aimed at understanding the contribution of participatory action research (PAR) to the political realm in contemporary higher education, a problematic situation was found when doing a literature review in the field of action research. This problem concerns the intermittent appearance of the "participatory"…

  13. Re-Signifying Participatory Action Research (PAR) in Higher Education: What Does "P" Stand for in PAR?

    ERIC Educational Resources Information Center

    Santos, Doris

    2016-01-01

    While carrying out a study aimed at understanding the contribution of participatory action research (PAR) to the political realm in contemporary higher education, a problematic situation was found when doing a literature review in the field of action research. This problem concerns the intermittent appearance of the "participatory"…

  14. Basins in ARC-continental collisions

    USGS Publications Warehouse

    Draut, Amy E.; Clift, Peter D.; Busby, Cathy; Azor, Antonio

    2012-01-01

    Arc-continent collisions occur commonly in the plate-tectonic cycle and result in rapidly formed and rapidly collapsing orogens, often spanning just 5-15 My. Growth of continental masses through arc-continent collision is widely thought to be a major process governing the structural and geochemical evolution of the continental crust over geologic time. Collisions of intra-oceanic arcs with passive continental margins (a situation in which the arc, on the upper plate, faces the continent) involve a substantially different geometry than collisions of intra-oceanic arcs with active continental margins (a situation requiring more than one convergence zone and in which the arc, on the lower plate, backs into the continent), with variable preservation potential for basins in each case. Substantial differences also occur between trench and forearc evolution in tectonically erosive versus tectonically accreting margins, both before and after collision. We examine the evolution of trenches, trench-slope basins, forearc basins, intra-arc basins, and backarc basins during arc-continent collision. The preservation potential of trench-slope basins is low; in collision they are rapidly uplifted and eroded, and at erosive margins they are progressively destroyed by subduction erosion. Post-collisional preservation of trench sediment and trench-slope basins is biased toward margins that were tectonically accreting for a substantial length of time before collision. Forearc basins in erosive margins are usually floored by strong lithosphere and may survive collision with a passive margin, sometimes continuing sedimentation throughout collision and orogeny. The low flexural rigidity of intra-arc basins makes them deep and, if preserved, potentially long records of arc and collisional tectonism. Backarc basins, in contrast, are typically subducted and their sediment either lost or preserved only as fragments in melange sequences. A substantial proportion of the sediment derived from

  15. Targeting a Proteinase-Activated Receptor 4 (PAR4) Carboxyl Terminal Motif to Regulate Platelet Function.

    PubMed

    Ramachandran, Rithwik; Mihara, Koichiro; Thibeault, Pierre; Vanderboor, Christina M; Petri, Björn; Saifeddine, Mahmoud; Bouvier, Michel; Hollenberg, Morley D

    2017-04-01

    Thrombin initiates human platelet aggregation by coordinately activating proteinase-activated receptors (PARs) 1 and 4. However, targeting PAR1 with an orthosteric-tethered ligand binding-site antagonist results in bleeding, possibly owing to the important role of PAR1 activation on cells other than platelets. Because of its more restricted tissue expression profile, we have therefore turned to PAR4 as an antiplatelet target. We have identified an intracellular PAR4 C-terminal motif that regulates calcium signaling and β-arrestin interactions. By disrupting this PAR4 calcium/β-arrestin signaling process with a novel cell-penetrating peptide, we were able to inhibit both thrombin-triggered platelet aggregation in vitro and clot consolidation in vivo. We suggest that targeting PAR4 represents an attractive alternative to blocking PAR1 for antiplatelet therapy in humans.

  16. Urokinase Plasminogen Activator Receptor (uPAR) Targeted Nuclear Imaging and Radionuclide Therapy

    PubMed Central

    Li, Dan; Liu, Shuanglong; Shan, Hong; Conti, Peter; Li, Zibo

    2013-01-01

    Urokinase-type plasminogen activator receptor (uPAR) is a glycosylphosphatidylinositol (GPI)-anchored protein. Besides regulating proteolysis, uPAR could also activate many intracellular signaling pathways that promote cell motility, invasion, proliferation, and survival through cooperating with transmembrane receptors. uPAR is overexpressed across a variety of tumors and is associated with cancer invasion and metastasis. In order to meet the demand for a rapid development and potential clinical application of anti-cancer therapy based on uPA/uPAR system, it is desirable to develop non-invasive imaging methods to visualize and quantify uPAR expression in vivo. In this review, we will discuss recent advances in the development of uPAR-targeted nuclear imaging and radionuclide therapy agents. The successful development of molecular imaging probes to visualize uPAR expression in vivo would not only assist preclinical researches on uPAR function, but also eventually impact patient management. PMID:23843898

  17. Par-4 downregulation promotes breast cancer recurrence by preventing multinucleation following targeted therapy.

    PubMed

    Alvarez, James V; Pan, Tien-Chi; Ruth, Jason; Feng, Yi; Zhou, Alice; Pant, Dhruv; Grimley, Joshua S; Wandless, Thomas J; Demichele, Angela; Chodosh, Lewis A

    2013-07-08

    Most deaths from breast cancer result from tumor recurrence, but mechanisms underlying tumor relapse are largely unknown. We now report that Par-4 is downregulated during tumor recurrence and that Par-4 downregulation is necessary and sufficient to promote recurrence. Tumor cells with low Par-4 expression survive therapy by evading a program of Par-4-dependent multinucleation and apoptosis that is otherwise engaged following treatment. Low Par-4 expression is associated with poor response to neoadjuvant chemotherapy and an increased risk of relapse in patients with breast cancer, and Par-4 is downregulated in residual tumor cells that survive neoadjuvant chemotherapy. Our findings identify Par-4-induced multinucleation as a mechanism of cell death in oncogene-addicted cells and establish Par-4 as a negative regulator of breast cancer recurrence. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Restricted Collision List method for faster Direct Simulation Monte-Carlo (DSMC) collisions

    NASA Astrophysics Data System (ADS)

    Macrossan, Michael N.

    2016-08-01

    The 'Restricted Collision List' (RCL) method for speeding up the calculation of DSMC Variable Soft Sphere collisions, with Borgnakke-Larsen (BL) energy exchange, is presented. The method cuts down considerably on the number of random collision parameters which must be calculated (deflection and azimuthal angles, and the BL energy exchange factors). A relatively short list of these parameters is generated and the parameters required in any cell are selected from this list. The list is regenerated at intervals approximately equal to the smallest mean collision time in the flow, and the chance of any particle re-using the same collision parameters in two successive collisions is negligible. The results using this method are indistinguishable from those obtained with standard DSMC. The CPU time saving depends on how much of a DSMC calculation is devoted to collisions and how much is devoted to other tasks, such as moving particles and calculating particle interactions with flow boundaries. For 1-dimensional calculations of flow in a tube, the new method saves 20% of the CPU time per collision for VSS scattering with no energy exchange. With RCL applied to rotational energy exchange, the CPU saving can be greater; for small values of the rotational collision number, for which most collisions involve some rotational energy exchange, the CPU may be reduced by 50% or more.

  19. A method of inferring collision ratio based on maneuverability of own ship under critical collision conditions

    NASA Astrophysics Data System (ADS)

    You, Youngjun; Rhee, Key-Pyo; Ahn, Kyoungsoo

    2013-06-01

    In constructing a collision avoidance system, it is important to determine the time for starting collision avoidance maneuver. Many researchers have attempted to formulate various indices by applying a range of techniques. Among these indices, collision risk obtained by combining Distance to the Closest Point of Approach (DCPA) and Time to the Closest Point of Approach (TCPA) information with fuzzy theory is mostly used. However, the collision risk has a limit, in that membership functions of DCPA and TCPA are empirically determined. In addition, the collision risk is not able to consider several critical collision conditions where the target ship fails to take appropriate actions. It is therefore necessary to design a new concept based on logical approaches. In this paper, a collision ratio is proposed, which is the expected ratio of unavoidable paths to total paths under suitably characterized operation conditions. Total paths are determined by considering categories such as action space and methodology of avoidance. The International Regulations for Preventing Collisions at Sea (1972) and collision avoidance rules (2001) are considered to solve the slower ship's dilemma. Different methods which are based on a constant speed model and simulated speed model are used to calculate the relative positions between own ship and target ship. In the simulated speed model, fuzzy control is applied to determination of command rudder angle. At various encounter situations, the time histories of the collision ratio based on the simulated speed model are compared with those based on the constant speed model.

  20. Restricted Collision List method for faster Direct Simulation Monte-Carlo (DSMC) collisions

    SciTech Connect

    Macrossan, Michael N.

    2016-08-15

    The ‘Restricted Collision List’ (RCL) method for speeding up the calculation of DSMC Variable Soft Sphere collisions, with Borgnakke–Larsen (BL) energy exchange, is presented. The method cuts down considerably on the number of random collision parameters which must be calculated (deflection and azimuthal angles, and the BL energy exchange factors). A relatively short list of these parameters is generated and the parameters required in any cell are selected from this list. The list is regenerated at intervals approximately equal to the smallest mean collision time in the flow, and the chance of any particle re-using the same collision parameters in two successive collisions is negligible. The results using this method are indistinguishable from those obtained with standard DSMC. The CPU time saving depends on how much of a DSMC calculation is devoted to collisions and how much is devoted to other tasks, such as moving particles and calculating particle interactions with flow boundaries. For 1-dimensional calculations of flow in a tube, the new method saves 20% of the CPU time per collision for VSS scattering with no energy exchange. With RCL applied to rotational energy exchange, the CPU saving can be greater; for small values of the rotational collision number, for which most collisions involve some rotational energy exchange, the CPU may be reduced by 50% or more.

  1. Maxillofacial injuries in moose-motor vehicle collisions versus other high-speed motor vehicle collisions

    PubMed Central

    Kim, Sharon; Harrop, A Robertson

    2005-01-01

    BACKGROUND: Anecdotal experience has suggested that there is a higher frequency of maxillofacial injuries among motor vehicle collisions involving moose. OBJECTIVES: A retrospective cohort study design was used to investigate the incidence of various injuries resulting from moose-motor vehicle collisions versus other high-speed motor vehicle collisions. METHODS: A chart review was conducted among patients presenting to a Canadian regional trauma centre during the five-year period from 1996 to 2000. RESULTS: Fifty-seven moose-motor vehicle collisions were identified; 121 high-speed collisions were randomly selected as a control group. Demographic, collision and injury data were collected from these charts and statistically analyzed. The general demographic features of the two groups were similar. Moose collisions were typically frontal impact resulting in windshield damage. The overall injury severity was similar in both groups. Likewise, the frequency of intracranial, spinal, thoracic and extremity injuries was similar for both groups. The group involved in collisions with moose, however, was 1.8 times more likely then controls to sustain a maxillofacial injury (P=0.004) and four times more likely to sustain a maxillofacial fracture (P=0.006). CONCLUSIONS: Occupants of motor vehicles colliding with moose are more likely to sustain maxillofacial injuries than those involved in other types of motor vehicle collisions. It is speculated that this distribution of injuries relates to the mechanism of collision with these large mammals with a high centre of gravity. PMID:24227930

  2. Continuum modeling of catastrophic collisions

    NASA Technical Reports Server (NTRS)

    Ryan, Eileen V.; Aspaug, Erik; Melosh, H. J.

    1991-01-01

    A two dimensional hydrocode based on 2-D SALE was modified to include strength effects and fragmentation equations for fracture resulting from tensile stress in one dimension. Output from this code includes a complete fragmentation summary for each cell of the modeled object: fragment size (mass) distribution, vector velocities of particles, peak values of pressure and tensile stress, and peak strain rates associated with fragmentation. Contour plots showing pressure and temperature at given times within the object are also produced. By invoking axial symmetry, three dimensional events can be modeled such as zero impact parameter collisions between asteroids. The code was tested against the one dimensional model and the analytical solution for a linearly increasing tensile stress under constant strain rate.

  3. Heavy ion collisions and cosmology

    NASA Astrophysics Data System (ADS)

    Floerchinger, Stefan

    2016-12-01

    There are interesting parallels between the physics of heavy ion collisions and cosmology. Both systems are out-of-equilibrium and relativistic fluid dynamics plays an important role for their theoretical description. From a comparison one can draw interesting conclusions for both sides. For heavy ion physics it could be rewarding to attempt a theoretical description of fluid perturbations similar to cosmological perturbation theory. In the context of late time cosmology, it could be interesting to study dissipative properties such as shear and bulk viscosity and corresponding relaxation times in more detail. Knowledge and experience from heavy ion physics could help to constrain the microscopic properties of dark matter from observational knowledge of the cosmological fluid properties.

  4. CHARACTERIZATION OF WILD PIG VEHICLE COLLISIONS

    SciTech Connect

    Mayer, J; Paul E. Johns, P

    2007-05-23

    Wild pig (Sus scrofa) collisions with vehicles are known to occur in the United States, but only minimal information describing these accidents has been reported. In an effort to better characterize these accidents, data were collected from 179 wild pig-vehicle collisions from a location in west central South Carolina. Data included accident parameters pertaining to the animals involved, time, location, and human impacts. The age structure of the animals involved was significantly older than that found in the population. Most collisions involved single animals; however, up to seven animals were involved in individual accidents. As the number of animals per collision increased, the age and body mass of the individuals involved decreased. The percentage of males was significantly higher in the single-animal accidents. Annual attrition due to vehicle collisions averaged 0.8 percent of the population. Wild pig-vehicle collisions occurred year-round and throughout the 24-hour daily time period. Most accidents were at night. The presence of lateral barriers was significantly more frequent at the collision locations. Human injuries were infrequent but potentially serious. The mean vehicle damage estimate was $1,173.

  5. Uranus' Unstable Moons: Collision Outcomes and Implications

    NASA Astrophysics Data System (ADS)

    Cave, Rosemary; Agnor, Craig B.

    2017-06-01

    Orbital integrations of the Uranian satellite system demonstrate that the closest groups of satellites (Cressida-Desdemona and Cupid-Belinda-Perdita) will evolve to crossing orbits on timescales of 103 - 107 years (Duncan and Lissauer 1997, French and Showalter 2012). Thus, collisions between neighbouring Uranian satellites appear to be an inevitable aspect of the system's evolution.For low-velocity collisions in free space, simple mergers are a plausible outcome. However, when impacts occur near a primary's Roche zone, strong tidal forces complicate the outcomes. Previous analytic work, examining collisions of two solid spheres in a strong tidal field, demonstrates that accretion may be constrained by the mass ratio and bulk density of the impacting bodies (Ohtsuki 1993, Canup and Esposito 1995). Further, direct modelling of collisions between gravitational aggregates near Saturn's F-ring shows complex non-merging outcomes (Karjalainen 2007, Hyodo and Ohtsuki 2014).We are examining the outcomes of collisions between Uranus' unstable satellites. We are using the Rebound N-body code to conduct direct simulations of collisions in the tidal field of Uranus, treating satellites as gravitationally bound rubble piles. These models include a range of satellite densities, impact velocities and orientations appropriate to the most unstable satellites. At the meeting we shall present our model results, and discuss how collision outcomes constrain the bulk composition and interior structure of these satellites, and how these outcomes may inform the past and future evolution of the system.

  6. Attic cholesteatoma with tiny retraction of pars flaccida.

    PubMed

    Lee, Jun Ho; Hong, Seok Min; Kim, Chang Woo; Park, Yeo Hoon; Baek, So-Hye

    2015-04-01

    This clinical study was performed to analyze the characteristics of attic cholesteatoma occurring behind a tiny retraction of the pars flaccida, which was classified as Tos type I or II and had an intact pars tensa of the tympanic membrane. The clinical records of patients who underwent tympanomastoidectomy for attic cholesteatoma at a tertiary care referral center (Kangdong Sacred Heart Hospital of Seoul, Korea) between March 2004 and December 2012 were retrospectively reviewed. Eleven patients (five men and six women) who underwent tympanomastoidectomy between March 2004 and December 2012 for attic cholesteatoma occurring behind a tiny attic retraction were included. The mean age of patients was 41.1 years (range 20-58 years) and the mean duration of follow-up was 29.5 months (range 13-52 months). Every patient had a unilateral cholesteatoma, and the opposite side was normal except in one patient. Hearing loss was the most common symptom, followed by earfullness and otalgia. Five patients had type I attic retraction, and six patients had type II attic retraction. No patient had definite scutum erosion. Interestingly, during regular postoperative checkup, one patient was found incidentally for the opposite ear. Six patients had a cholesteatoma sac that was separated from the pars flaccida, whereas in five patients it was in contact with the pars flaccida but was easily separated. Six patients had a limited cholesteatoma within the epitympanum, and five patients had extension beyond the epitympanum. The average air-bone gap was 24.3±10.1dB before the operation and 14.2±6.6dB after the operation. Every patient had an intact tympanic membrane without retraction pocket postoperatively. There was no recurrence of cholesteatoma during follow-up. The rate of attic cholesteatomas occurring behind a tiny retraction of the pars flaccida was 7.7% (11 of 142 patients with attic cholesteatoma). Attic retractions must be followed closely using endoscopy, microscopy, and

  7. ParCAT: A Parallel Climate Analysis Toolkit

    NASA Astrophysics Data System (ADS)

    Haugen, B.; Smith, B.; Steed, C.; Ricciuto, D. M.; Thornton, P. E.; Shipman, G.

    2012-12-01

    Climate science has employed increasingly complex models and simulations to analyze the past and predict the future of our climate. The size and dimensionality of climate simulation data has been growing with the complexity of the models. This growth in data is creating a widening gap between the data being produced and the tools necessary to analyze large, high dimensional data sets. With single run data sets increasing into 10's, 100's and even 1000's of gigabytes, parallel computing tools are becoming a necessity in order to analyze and compare climate simulation data. The Parallel Climate Analysis Toolkit (ParCAT) provides basic tools that efficiently use parallel computing techniques to narrow the gap between data set size and analysis tools. ParCAT was created as a collaborative effort between climate scientists and computer scientists in order to provide efficient parallel implementations of the computing tools that are of use to climate scientists. Some of the basic functionalities included in the toolkit are the ability to compute spatio-temporal means and variances, differences between two runs and histograms of the values in a data set. ParCAT is designed to facilitate the "heavy lifting" that is required for large, multidimensional data sets. The toolkit does not focus on performing the final visualizations and presentation of results but rather, reducing large data sets to smaller, more manageable summaries. The output from ParCAT is provided in commonly used file formats (NetCDF, CSV, ASCII) to allow for simple integration with other tools. The toolkit is currently implemented as a command line utility, but will likely also provide a C library for developers interested in tighter software integration. Elements of the toolkit are already being incorporated into projects such as UV-CDAT and CMDX. There is also an effort underway to implement portions of the CCSM Land Model Diagnostics package using ParCAT in conjunction with Python and gnuplot. Par

  8. Antiproton production in heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Jacak, B. V.

    In high energy p-p and alpha-alpha collisions, baryons are observed predominantly at rapidities near those of target and projectile; the mean rapidity shift of projectile and target nucleons is approximately one unit. In the central rapidity region, the number of baryons is quite small. In fact, the number of baryons and antibaryons is rather similar, indicating that most of these baryons are CREATED particles rather than projectile and target fragments. Antibaryon production is of interest in heavy ion collisions as enhanced antiquark production has been predicted as a potential signature of quark-gluon plasma formation. Antibaryons also provide a sensitive probe of the hadronic environment, via annihilation and/or mean field effects upon their final distributions. However, the collision dynamics also affect the baryon and antibaryon distributions. Baryons are more shifted toward midrapidity in nucleus-nucleus and p-p nucleus collisions than in p-p collisions, increasing the probability of annihilating the antibaryons. The interpretation of antibaryon yields is further complicated by collective processes which may take place in the dense hadronic medium formed in nucleus-nucleus collisions. Jahns and coworkers have shown that multistep processes can increase antibaryon production near threshold. Antiproton production is clearly very interesting, but is sensitive to a combination of processes taking place in the collision. The final number of observed antiprotons depends on the balance between mechanisms for extra antiproton production beyond those from the individual nucleon-nucleon collisions and annihilation with surrounding baryons. We can hope to sort out these things by systematic studies, varying the system size and beam energy. I will review what is known about antiproton production at both the AGS and SPS, and look at trends going from p-p to p-nucleus to nucleus-nucleus collisions.

  9. Is There an "F" in Your PAR? Understanding, Teaching and Doing Action Research

    ERIC Educational Resources Information Center

    Lorenzetti, Liza; Walsh, Christine Ann

    2014-01-01

    Participatory Action Research (PAR) is increasingly recognized within academic research and pedagogy. What are the benefits of including feminism within participatory action research and teaching? In responding to this question, we discuss the similarities and salient differences between PAR and feminist informed PAR (FPAR). There are eight themes…

  10. Vorticity in heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Deng, Wei-Tian; Huang, Xu-Guang

    2016-06-01

    We study the event-by-event generation of flow vorticity in the BNL Relativistic Heavy Ion Collider Au +Au collisions and CERN Large Hadron Collider Pb +Pb collisions by using the hijing model. Different definitions of the vorticity field and velocity field are considered. A variety of properties of the vorticity are explored, including the impact parameter dependence, the collision energy dependence, the spatial distribution, the event-by-event fluctuation of the magnitude and azimuthal direction, and the time evolution. In addition, the spatial distribution of the flow helicity is also studied.

  11. Holographic heavy ion collisions with baryon charge

    SciTech Connect

    Casalderrey-Solana, Jorge; Mateos, David; van der Schee, Wilke; Triana, Miquel

    2016-09-19

    We numerically simulate collisions of charged shockwaves in Einstein-Maxwell theory in anti-de Sitter space as a toy model of heavy ion collisions with non-zero baryon charge. The stress tensor and the baryon current become well described by charged hydrodynamics at roughly the same time. The effect of the charge density on generic observables is typically no larger than 15%. Finally, we find significant stopping of the baryon charge and compare our results with those in heavy ion collision experiments.

  12. Reactive collisions of atoms with diatomic molecules

    NASA Astrophysics Data System (ADS)

    Wolniewicz, L.; Hinze, Juergen; Alijah, Alexander

    1993-08-01

    The theory of the reactive collision of an atom with a diatomic molecule is formulated in 'democratic' hyperspherical coordinates. An adiabatic ansatz is used to separate the distance coordinate from the angular coordinates. The angular eigenvalue problem is solved, using the hyperspherical harmonics as basis functions, while the R-matrix propagation method is used to integrate the resulting coupled equations along the distance coordinate. As an example, reactive collision probabilities for H + H2 are computed, using the Porter-Karplus surface. The symmetry requirements, when dealing with three identical Fermions in the collision, are considered explicitly.

  13. Antioscillons from bubble collisions at finite temperature

    NASA Astrophysics Data System (ADS)

    Mersini-Houghton, Laura

    2014-04-01

    We study the role of the topology of bubbles at finite temperatures plays on collisions and the existence of new field configurations. We show that in the case of false vacuum decay at finite temperature, the cylindrical symmetry of bubbles admits a new exotic field with negative energies, the antiperiodic "twisted" field. New field configurations arise generically, not only at finite temperatures but whenever a cluster of bubbles resulting from collisions form nontrivial topologies. The interaction of both configurations induces instabilites on the bubble. Collisions of bubbles occupied by the new fields can lead to the emergence of new structures, named antioscillons.

  14. Collisions between quasi-parallel shocks

    NASA Technical Reports Server (NTRS)

    Cargill, Peter J.

    1991-01-01

    The collision between pairs of quasi-parallel shocks is examined using hybrid numerical simulations. In the interaction, the two shocks are transmitted through each other leaving behind a hot plasma with a population of particles with energies in excess of 40 E0, where E0 is the kinetic energy of particles in the shock frame prior to the collision. The energization is more efficient for quasi-parallel shocks than parallel shocks. Collisions between shocks of equal strengths are more efficient than those that are unequal. The results are of importance for phenomena during the impulsive phase of solar flares, in the distant solar wind and at planetary bow shocks.

  15. Low Energy Inelastic Atomic and Molecular Collisions.

    DTIC Science & Technology

    1981-04-15

    oemey A 17 mca mem ewa) atomic collisions deuterium molecular Collisions hydrogen argon .. excitation C argon Ions Ion beams LU & AinVIACt~ re- o sed a...1981). The intent of this work., described in our proposal, was toI obtain sufficient resolution of phosphorus, sulfur and argon L-x rays under single...collision, there are other intense VUV lines as well: the dominant ones observed in the 500-1100 A range were emission from the 2p excitation of neutral He

  16. A collision avoidance system for workpiece protection

    SciTech Connect

    Schmitt, D.J.; Weber, T.M.; Novak, J.L.; Maslakowski, J.E.

    1995-04-01

    This paper describes an application of Sandia`s non-contact capacitive sensing technology for collision avoidance during the manufacturing of rocket engine thrust chambers. The collision avoidance system consists of an octagon shaped collar with a capacitive proximity sensor mounted on each face. The sensors produced electric fields which extend several inches from the face of the collar and detect potential collisions between the robot and the workpiece. A signal conditioning system processes the sensor output and provides varying voltage signals to the robot controller for stopping the robot.

  17. Injuries in Near-Side Collisions

    PubMed Central

    Augenstein, J.; Perdeck, E.; Bowen, J.; Stratton, J.; Singer, M.; Horton, T.; Rao, A.; Digges, K.; Malliaris, A.; Steps, J.

    1999-01-01

    This paper examines crash characteristics and the resulting injuries to occupants whose seat position is on the side of impact in a vehicle exposed to a side collision. The databases of the 1988–96 NASS/CDS and the 1995–98 William Lehman Injury Research Center (WLIRC) are examined in this study. The subset of cases analyzed is those in which there is a vehicle-to-vehicle near-side collision, occupant compartment damage and no subsequent collision or rollover. The WLIRC data contains highly detailed occupant injury data not available in NASS.

  18. Holographic heavy ion collisions with baryon charge

    NASA Astrophysics Data System (ADS)

    Casalderrey-Solana, Jorge; Mateos, David; van der Schee, Wilke; Triana, Miquel

    2016-09-01

    We numerically simulate collisions of charged shockwaves in Einstein-Maxwell theory in anti-de Sitter space as a toy model of heavy ion collisions with non-zero baryon charge. The stress tensor and the baryon current become well described by charged hydrodynamics at roughly the same time. The effect of the charge density on generic observables is typically no larger than 15%. We find significant stopping of the baryon charge and compare our results with those in heavy ion collision experiments.

  19. Endophthalmitis following 27-Gauge Pars Plana Vitrectomy for Vitreous Floaters

    PubMed Central

    Lin, Zhong; Wu, Rong Han; Moonasar, Nived

    2016-01-01

    Purpose To report a case of Staphylococcus epidermidis endophthalmitis following 27-gauge pars plana vitrectomy for symptomatic vitreous floaters. Methods The clinical course and imaging findings, including fundus optomap, and spectral domain optical coherence tomography of a 24-year-old male patient were documented. Results The patient, with a preoperative best-corrected visual acuity (BCVA) of 1.0, developed endophthalmitis following 27-gauge pars plana vitrectomy for symptomatic vitreous floaters. After a series of treatments, including emergent vitreous tap and silicone oil injection, antibiotic treatment, and silicone oil removal, the patient regained a BCVA of 0.6. Conclusion Although rare, the potential risk of endophthalmitis should be explicitly discussed with patients considering surgical intervention for vitreous floaters. PMID:28101041

  20. Intraoperative raster photogrammetry--the PAR Corneal Topography System.

    PubMed

    Belin, M W

    1993-01-01

    The PAR Corneal Topography System (CTS) is a computer-driven corneal imaging system that uses close-range raster photogrammetry to measure and produce a topographic map of the corneal surface. The CTS determines distortion in a projected two-dimensional grid. Unlike Placido-disc-based videokeratoscopes, the PAR CTS produces a true topographic map (elevation map) and requires neither a smooth reflective surface nor precise spatial alignment for accurate imaging. Because the system uses two noncoaxial optical paths, it can be integrated into other optical devices. A modified CTS was integrated into an experimental erbium: YAG photoablative laser. The CTS successfully imaged corneas before, after, and during laser photoablation. Its ability to image nonreflective surfaces and to be integrated into other optical systems may make it suitable for intraoperative refractive monitoring.

  1. Exploration of a new series of PAR1 antagonists.

    PubMed

    Planty, Bruno; Pujol, Chantal; Lamothe, Marie; Maraval, Catherine; Horn, Clemens; Le Grand, Bruno; Perez, Michel

    2010-03-01

    Two series of new PAR1 antagonists have been identified. The first incorporates a cinnamoylpiperidine motif and the second a cinnamoylpyridine pattern. The synthesis, biological activity and structure-activity relationship of these compounds are presented. In each series, one analog showed potent in vivo antithrombotic activity in a rat AV shunt model, with up to 53% inhibition at 1.25mpk iv for compound 30.

  2. The Pars Interarticularis Stress Reaction, Spondylolysis, and Spondylolisthesis Progression

    PubMed Central

    Motley, Gina; Nyland, John; Jacobs, Jake; Caborn, David N. M.

    1998-01-01

    Objective: To review the classification, etiology, clinical and radiologic evaluation, and management of the pars interarticularis stress reaction, spondylolysis, and spondylolisthesis progression. Data Sources: Grateful Med was searched from 1980 to 1998 using the terms “spondylolysis,” “spondylolisthesis,” “female athlete” “spondylogenic,” and “pars interarticularis.” Data Synthesis: The progression from pars interarticularis stress reaction through spondylolysis to spondylolisthesis is common in adolescent athletes, and, because of hormonal influences and cheerleading and gymnastic maneuvers, females are particularly at risk. Proper diagnosis and management include a thorough evaluation, radiographs (possibly with technetium bone scan or single-photon emission computed tomography), activity modification, dietary counseling, a therapeutic exercise program focusing on proper trunk and hip muscle strength and extensibility balances, and education regarding proper back postures, positioning, lifting mechanics, and jump landings. Conclusions/Recommendations: The athletic trainer plays an integral part in managing this injury progression, particularly with identifying at-risk individuals and intervening appropriately. ImagesFigure 4. PMID:16558534

  3. La modélisation par Reverse Monte Carlo (RMC)

    NASA Astrophysics Data System (ADS)

    McGreevy, R. L.

    2003-09-01

    La technique de modélisation par Reverse Monte Carlo (RMC) est une méthode générale de modélisation structurale à partir d'un ensemble de données expérimentales. Cette méthode étant très souple, elle peut s'appliquer à de nombreux types de données. Jusqu'à présent ces applications comprennent : la diffraction des neutrons (y compris la substitution isotopique), la diffraction des rayons X (y compris la diffusion anomale), la diffraction des électrons, la RMN (les techniques d'angle magique et de 2ème moment) et l'EXAFS. Les systèmes étudiés sont également d'une grande variété : liquides, verres, polymères, cristaux et matériaux magnétiques, par exemple. Ce cours présente les bases de la méthode RMC en signalant certaines des idées fausses répandues. L'accent sera mis sur le fait que les modèles structuraux obtenus par RMC ne sont ni'uniques' ni 'exacts' ; cependant ils sont souvent utiles à la compréhension soit de la structure du système, soit des relations entre structure et autres propriétés physiques.

  4. Accuracy of the PAR corneal topography system with spatial misalignment.

    PubMed

    Belin, M W; Zloty, P

    1993-01-01

    The PAR Corneal Topography System is a computerized corneal imaging system which uses close-range raster photogrammetry to measure and produce a topographic map of the corneal surface. Raster photogrammetry is a standard method of extracting object information by projecting a known pattern onto an object and recording the distortion when viewed from an oblique angle. Unlike placido disc based videokeratoscopes, the PAR system requires neither a smooth reflective surface nor precise spatial alignment for accurate imaging. We studied both the accuracy of the system with purposeful misalignment (defocusing) of the test object and determined the ability to image freshly deepithelialized, keratectomized, and photoablated corneas. The PAR system was both accurate and reproducible in imaging calibrated spheres within a defined zone in space. Whole cadaver eyes were imaged both before and immediately after removal of the epithelium, lamellar keratectomy, and laser photoablation. The system demonstrated the ability to image irregular, deepithelialized, and keratectomized corneas. The ability to maintain accuracy without precise alignment and the facility to image freshly deepithelialized and keratectomized corneas may make the system suitable for intraoperative refractive monitoring.

  5. Two cases of malignant glaucoma unresolved by pars plana vitrectomy

    PubMed Central

    Hosoda, Yoshikatsu; Akagi, Tadamichi; Yoshimura, Nagahisa

    2014-01-01

    Malignant glaucoma, which is characterized by a shallow or flat anterior chamber with high intraocular pressure, can usually be resolved by pars plana vitrectomy with anterior hyaloidectomy. We describe two cases in which malignant glaucoma was refractory to conventional treatment and complete vitrectomy. Case one an 88-year-old woman with pseudoexfoliation glaucoma underwent trabeculotomy and subsequently developed malignant glaucoma. Four months after transient recovery by pars plana vitrectomy, the malignant glaucoma recurred. She underwent peripheral iridectomy and local zonulectomy with successful control of her intraocular pressure. In case two, an 85-year-old man had a history of pseudoexfoliation glaucoma. Seven months after phacoemulsification and intraocular lens implantation, he developed malignant glaucoma that was refractory to pars plana vitrectomy. He underwent peripheral iridectomy, goniosynechialysis and trabectome surgery resulting in the successful control of his intraocular pressure. In rare cases of malignant glaucoma refractive to vitrectomy, peripheral iridectomy with or without local zonulectomy is a reasonable and minimally invasive surgical procedure. PMID:24729683

  6. Droplet Collision in Liquid Propellant Combustion.

    DTIC Science & Technology

    1995-10-25

    aims to gain fundamental understanding on the mechanisms governing the observed phenomena of permanent coalescence, bouncing , and separation upon...slight deformation, (II) bouncing , (III) coalescence with substantial deformation, (IV) coalescence followed by separation for near head-on collisions

  7. Mean field and collisions in hot nuclei

    SciTech Connect

    K /umlt o/hler, H.S.

    1989-06-01

    Collisions between heavy nuclei produce nuclear matter of high density and excitation. Brueckner methods are used to calculate the momentum and temperature dependent mean field for nucleons propagating through nuclear matter during these collisions. The mean field is complex and the imaginary part is related to the ''two-body'' collision, while the real part relates to ''one-body'' collisions. A potential model for the N-N interactions is avoided by calculating the Reaction matrix directly from the T-matrix (i.e., N-N phase shifts) using a version of Brueckner theory previously published by the author. Results are presented for nuclear matter at normal and twice normal density and for temperatures up to 50 MeV. 23 refs., 7 figs.

  8. Efficient DSMC collision-partner selection schemes.

    SciTech Connect

    Gallis, Michail A.; Torczynski, John Robert

    2010-05-01

    The effect of collision-partner selection schemes on the accuracy and the efficiency of the Direct Simulation Monte Carlo (DSMC) method of Bird is investigated. Several schemes to reduce the total discretization error as a function of the mean collision separation and the mean collision time are examined. These include the historically first sub-cell scheme, the more recent nearest-neighbor scheme, and various near-neighbor schemes, which are evaluated for their effect on the thermal conductivity for Fourier flow. Their convergence characteristics as a function of spatial and temporal discretization and the number of simulators per cell are compared to the convergence characteristics of the sophisticated and standard DSMC algorithms. Improved performance is obtained if the population from which possible collision partners are selected is an appropriate fraction of the population of the cell.

  9. Efficient DSMC collision-partner selection schemes.

    SciTech Connect

    Gallis, Michail A.; Torczynski, John Robert

    2010-07-01

    The effect of collision-partner selection schemes on the accuracy and the efficiency of the Direct Simulation Monte Carlo (DSMC) method of Bird is investigated. Several schemes to reduce the total discretization error as a function of the mean collision separation and the mean collision time are examined. These include the historically first sub-cell scheme, the more recent nearest-neighbor scheme, and various near-neighbor schemes, which are evaluated for their effect on the thermal conductivity for Fourier flow. Their convergence characteristics as a function of spatial and temporal discretization and the number of simulators per cell are compared to the convergence characteristics of the sophisticated and standard DSMC algorithms. Improved performance is obtained if the population from which possible collision partners are selected is an appropriate fraction of the population of the cell.

  10. Resonance formation in photon-photon collisions

    SciTech Connect

    Gidal, G.

    1988-08-01

    Recent experimental progress on resonance formation in photon-photon collisions is reviewed with particular emphasis on the pseudoscalar and tensor nonents and on the ..gamma gamma..* production of spin-one resonances. 37 refs., 17 figs., 5 tabs.

  11. Central collisions-The general case

    NASA Astrophysics Data System (ADS)

    Lyublinskaya, Irina E.

    1998-01-01

    The central elastic and inelastic collisions have been analyzed in general vector form. The proposed analysis results in equations, which have simple physical interpretation and can be easily applied to different special cases. The mathematical basis needed for the analysis includes only vector addition and dot-product of vectors. It allows teachers to introduce proposed approach to collisions already in trigonometry-based physic courses.

  12. Atomic and Molecular Depolarizing Collision Rates

    NASA Astrophysics Data System (ADS)

    Bommier, V.

    2009-06-01

    This paper is divided in three parts: after having recalled the different types of collisions with the different types of perturbers and having provided rough orders of magnitude of the collision rates, three cases are discussed. Although the most frequent type of depolarizing collision is the one of the collisions with the surrounding Hydrogen atoms, we discuss in the first part a particular case where the depolarizing collision effect is due to collisions with electrons and protons. This is the case of the Hydrogen lines observed in solar prominences. We recall how the interpretation of polarization observations in two lines has led to the joint determination of the magnetic field vector and the electron and proton density, and we show that this density determination gives results in agreement with the densities determined by interpretation of the Stark effect, provided that this last effect be evaluated in the impact approximation scheme which is indeed more valid than the quasistatic approach at these densities. In the second part, we describe a method that has been recently developed for the computation of the depolarizing rates in the case of collisions with the neutral Hydrogen atom. The case of molecular lines is less favourable, because, even if depolarizing collision rates computation may be soon expected and begin to be done inside the ground level of the molecule, calculations inside the excited states are far from the present ability. In the third part, we present an example where the excited state depolarizing rates were evaluated together with the magnetic field through the differential Hanle effect interpretation, based on the fact that the molecule provides a series of lines of different sensitivities that can be compared. This led to an experimental/observational determination of these rates, waiting for future theoretical computations for comparison.

  13. Molecular vibrational states during a collision

    NASA Technical Reports Server (NTRS)

    Recamier, Jose A.; Jauregui, Rocio

    1995-01-01

    Alternative algebraic techniques to approximate a given Hamiltonian by a harmonic oscillator are described both for time-independent and time-dependent systems. We apply them to the description of a one dimensional atom-diatom collision. From the resulting evolution operator, we evaluate vibrational transition probabilities as well as other time-dependent properties. As expected, the ground vibrational state becomes a squeezed state during the collision.

  14. Collision avoidance in computer optimized treatment planning.

    PubMed

    Humm, J L

    1994-07-01

    Of major concern in fully automated computerized treatment delivery is the possibility of gantry/couch or gantry/patient collisions. In this work, software has been developed to detect collisions between gantry and couch or patient for both transaxial and noncoplanar treatment fields during the treatment planning process. The code uses the gantry angles, turntable angles, and position of the couch surface relative to the isocenter supplied by the planner for the prescribed radiation fields. In addition, the maximum patient anterior-posterior and lateral separations are entered in order to model the patient outline by a conservative cylindrical ellipse. By accessing a database containing the precise mechanical dimensions of the therapy equipment, 3D analytical geometry is used to test for collisions between gantry/patient and gantry/couch for each treatment field. When collisions are detected, the software inspects the use of an extended distance treatment, by recalculating and testing for collisions, with the couch at a greater distance from the collimator along the direction of the central axis. If a collision is avoided at extended distance, the lateral, longitudinal, and vertical motions of the couch are recorded for entry into the treatment plan, or else a warning message is printed, together with the nearest permissible collision-free gantry angle. Upon inspection, the planner can either elect to use the calculated closest permissible gantry angle or reject the plan. The software verifies that each proposed treatment field is safe, but also that the transition between fields is collision-free. This requires that the sequence of the treatment fields be ordered, preferably into a sequence which minimizes the delivery time compatible with patient safety.(ABSTRACT TRUNCATED AT 250 WORDS)

  15. Low Noise Fractional NTC Collisions for DSMC

    DTIC Science & Technology

    2012-05-01

    post-collision number of macro particles. Figure 3 shows the effect of varying the number of particles on the RMS error. The variance in temperature...Consideration of effective -Coulomb collisions is considered later. Figure 4 shows that the variable soft sphere (VSS) thermalization of the oscillating beams...particles in every timestep, the merging algorithm effectively maintains the target number of computational particles preventing runaway growth. Figure 5

  16. Collision integrals for isotopic hydrogen molecules.

    NASA Technical Reports Server (NTRS)

    Brown, N. J.; Munn, R. J.

    1972-01-01

    The study was undertaken to determine the effects of reduced mass and differences in asymmetry on the collision integrals and thermal diffusion factors of isotopic hydrogen systems. Each system selected for study consisted of two diatoms, one in the j = 0 rotation state and the other in the j = 1 state. The molecules interacted with a Lennard-Jones type potential modified to include angular terms. A set of cross sections and collision integrals were obtained for each system.

  17. Coulomb collision effects on linear Landau damping

    SciTech Connect

    Callen, J. D.

    2014-05-15

    Coulomb collisions at rate ν produce slightly probabilistic rather than fully deterministic charged particle trajectories in weakly collisional plasmas. Their diffusive velocity scattering effects on the response to a wave yield an effective collision rate ν{sub eff} ≫ ν and a narrow dissipative boundary layer for particles with velocities near the wave phase velocity. These dissipative effects produce temporal irreversibility for times t ≳ 1/ν{sub eff} during Landau damping of a small amplitude Langmuir wave.

  18. Jets in relativistic heavy ion collisions

    SciTech Connect

    Wang, Xin-Nian; Gyulassy, M.

    1990-09-01

    Several aspects of hard and semihard QCD jets in relativistic heavy ion collisions are discussed, including multiproduction of minijets and the interaction of a jet with dense nuclear matter. The reduction of jet quenching effect in deconfined phase of nuclear matter is speculated to provide a signature of the formation of quark gluon plasma. HIJING Monte Carlo program which can simulate events of jets production and quenching in heavy ion collisions is briefly described. 35 refs., 13 figs.

  19. Nuclear collisions at the Future Circular Collider

    NASA Astrophysics Data System (ADS)

    Armesto, N.; Dainese, A.; d'Enterria, D.; Masciocchi, S.; Roland, C.; Salgado, C. A.; van Leeuwen, M.; Wiedemann, U. A.

    2016-12-01

    The Future Circular Collider is a new proposed collider at CERN with centre-of-mass energies around 100 TeV in the pp mode. Ongoing studies aim at assessing its physics potential and technical feasibility. Here we focus on updates in physics opportunities accessible in pA and AA collisions not covered in previous Quark Matter contributions, including Quark-Gluon Plasma and gluon saturation studies, novel hard probes of QCD matter, and photon-induced collisions.

  20. Collision integrals for isotopic hydrogen molecules.

    NASA Technical Reports Server (NTRS)

    Brown, N. J.; Munn, R. J.

    1972-01-01

    The study was undertaken to determine the effects of reduced mass and differences in asymmetry on the collision integrals and thermal diffusion factors of isotopic hydrogen systems. Each system selected for study consisted of two diatoms, one in the j = 0 rotation state and the other in the j = 1 state. The molecules interacted with a Lennard-Jones type potential modified to include angular terms. A set of cross sections and collision integrals were obtained for each system.

  1. Global Λ hyperon polarization in nuclear collisions

    NASA Astrophysics Data System (ADS)

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Ajitanand, N. N.; Alekseev, I.; Anderson, D. M.; Aoyama, R.; Aparin, A.; Arkhipkin, D.; Aschenauer, E. C.; Ashraf, M. U.; Attri, A.; Averichev, G. S.; Bai, X.; Bairathi, V.; Behera, A.; Bellwied, R.; Bhasin, A.; Bhati, A. K.; Bhattarai, P.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Bouchet, J.; Brandenburg, J. D.; Brandin, A. V.; Brown, D.; Bunzarov, I.; Butterworth, J.; Caines, H.; de La Barca Sánchez, M. Calderón; Campbell, J. M.; Cebra, D.; Chakaberia, I.; Chaloupka, P.; Chang, Z.; Chankova-Bunzarova, N.; Chatterjee, A.; Chattopadhyay, S.; Chen, X.; Chen, J. H.; Chen, X.; Cheng, J.; Cherney, M.; Christie, W.; Contin, G.; Crawford, H. J.; Das, S.; de Silva, L. C.; Debbe, R. R.; Dedovich, T. G.; Deng, J.; Derevschikov, A. A.; Didenko, L.; Dilks, C.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Dunkelberger, L. E.; Dunlop, J. C.; Efimov, L. G.; Elsey, N.; Engelage, J.; Eppley, G.; Esha, R.; Esumi, S.; Evdokimov, O.; Ewigleben, J.; Eyser, O.; Fatemi, R.; Fazio, S.; Federic, P.; Federicova, P.; Fedorisin, J.; Feng, Z.; Filip, P.; Finch, E.; Fisyak, Y.; Flores, C. E.; Fulek, L.; Gagliardi, C. A.; Garand, D.; Geurts, F.; Gibson, A.; Girard, M.; Grosnick, D.; Gunarathne, D. S.; Guo, Y.; Gupta, A.; Gupta, S.; Guryn, W.; Hamad, A. I.; Hamed, A.; Harlenderova, A.; Harris, J. W.; He, L.; Heppelmann, S.; Heppelmann, S.; Hirsch, A.; Hoffmann, G. W.; Horvat, S.; Huang, T.; Huang, B.; Huang, X.; Huang, H. Z.; Humanic, T. J.; Huo, P.; Igo, G.; Jacobs, W. W.; Jentsch, A.; Jia, J.; Jiang, K.; Jowzaee, S.; Judd, E. G.; Kabana, S.; Kalinkin, D.; Kang, K.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Khan, Z.; Kikoła, D. P.; Kisel, I.; Kisiel, A.; Kochenda, L.; Kocmanek, M.; Kollegger, T.; Kosarzewski, L. K.; Kraishan, A. F.; Kravtsov, P.; Krueger, K.; Kulathunga, N.; Kumar, L.; Kvapil, J.; Kwasizur, J. H.; Lacey, R.; Landgraf, J. M.; Landry, K. D.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; Li, X.; Li, C.; Li, W.; Li, Y.; Lidrych, J.; Lin, T.; Lisa, M. A.; Liu, H.; Liu, P.; Liu, Y.; Liu, F.; Ljubicic, T.; Llope, W. J.; Lomnitz, M.; Longacre, R. S.; Luo, S.; Luo, X.; Ma, G. L.; Ma, L.; Ma, Y. G.; Ma, R.; Magdy, N.; Majka, R.; Mallick, D.; Margetis, S.; Markert, C.; Matis, H. S.; Meehan, K.; Mei, J. C.; Miller, Z. W.; Minaev, N. G.; Mioduszewski, S.; Mishra, D.; Mizuno, S.; Mohanty, B.; Mondal, M. M.; Morozov, D. A.; Mustafa, M. K.; Nasim, Md.; Nayak, T. K.; Nelson, J. M.; Nie, M.; Nigmatkulov, G.; Niida, T.; Nogach, L. V.; Nonaka, T.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Oh, K.; Okorokov, V. A.; Olvitt, D.; Page, B. S.; Pak, R.; Pandit, Y.; Panebratsev, Y.; Pawlik, B.; Pei, H.; Perkins, C.; Pile, P.; Pluta, J.; Poniatowska, K.; Porter, J.; Posik, M.; Poskanzer, A. M.; Pruthi, N. K.; Przybycien, M.; Putschke, J.; Qiu, H.; Quintero, A.; Ramachandran, S.; Ray, R. L.; Reed, R.; Rehbein, M. J.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Roth, J. D.; Ruan, L.; Rusnak, J.; Rusnakova, O.; Sahoo, N. R.; Sahu, P. K.; Salur, S.; Sandweiss, J.; Saur, M.; Schambach, J.; Schmah, A. M.; Schmidke, W. B.; Schmitz, N.; Schweid, B. R.; Seger, J.; Sergeeva, M.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shanmuganathan, P. V.; Shao, M.; Sharma, A.; Sharma, M. K.; Shen, W. Q.; Shi, Z.; Shi, S. S.; Shou, Q. Y.; Sichtermann, E. P.; Sikora, R.; Simko, M.; Singha, S.; Skoby, M. J.; Smirnov, N.; Smirnov, D.; Solyst, W.; Song, L.; Sorensen, P.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Strikhanov, M.; Stringfellow, B.; Sugiura, T.; Sumbera, M.; Summa, B.; Sun, Y.; Sun, X. M.; Sun, X.; Surrow, B.; Svirida, D. N.; Tang, A. H.; Tang, Z.; Taranenko, A.; Tarnowsky, T.; Tawfik, A.; Thäder, J.; Thomas, J. H.; Timmins, A. R.; Tlusty, D.; Todoroki, T.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Tripathy, S. K.; Trzeciak, B. A.; Tsai, O. D.; Ullrich, T.; Underwood, D. G.; Upsal, I.; van Buren, G.; van Nieuwenhuizen, G.; Vasiliev, A. N.; Videbæk, F.; Vokal, S.; Voloshin, S. A.; Vossen, A.; Wang, G.; Wang, Y.; Wang, F.; Wang, Y.; Webb, J. C.; Webb, G.; Wen, L.; Westfall, G. D.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y.; Xiao, Z. G.; Xie, W.; Xie, G.; Xu, J.; Xu, N.; Xu, Q. H.; Xu, Y. F.; Xu, Z.; Yang, Y.; Yang, Q.; Yang, C.; Yang, S.; Ye, Z.; Ye, Z.; Yi, L.; Yip, K.; Yoo, I.-K.; Yu, N.; Zbroszczyk, H.; Zha, W.; Zhang, Z.; Zhang, X. P.; Zhang, J. B.; Zhang, S.; Zhang, J.; Zhang, Y.; Zhang, J.; Zhang, S.; Zhao, J.; Zhong, C.; Zhou, L.; Zhou, C.; Zhu, X.; Zhu, Z.; Zyzak, M.

    2017-08-01

    The extreme energy densities generated by ultra-relativistic collisions between heavy atomic nuclei produce a state of matter that behaves surprisingly like a fluid, with exceptionally high temperature and low viscosity. Non-central collisions have angular momenta of the order of 1,000ћ, and the resulting fluid may have a strong vortical structure that must be understood to describe the fluid properly. The vortical structure is also of particular interest because the restoration of fundamental symmetries of quantum chromodynamics is expected to produce novel physical effects in the presence of strong vorticity. However, no experimental indications of fluid vorticity in heavy ion collisions have yet been found. Since vorticity represents a local rotational structure of the fluid, spin-orbit coupling can lead to preferential orientation of particle spins along the direction of rotation. Here we present measurements of an alignment between the global angular momentum of a non-central collision and the spin of emitted particles (in this case the collision occurs between gold nuclei and produces Λ baryons), revealing that the fluid produced in heavy ion collisions is the most vortical system so far observed. (At high energies, this fluid is a quark-gluon plasma.) We find that Λ and hyperons show a positive polarization of the order of a few per cent, consistent with some hydrodynamic predictions. (A hyperon is a particle composed of three quarks, at least one of which is a strange quark; the remainder are up and down quarks, found in protons and neutrons.) A previous measurement that reported a null result, that is, zero polarization, at higher collision energies is seen to be consistent with the trend of our observations, though with larger statistical uncertainties. These data provide experimental access to the vortical structure of the nearly ideal liquid created in a heavy ion collision and should prove valuable in the development of hydrodynamic models that

  2. Collisions with passenger cars and moose, Sweden.

    PubMed Central

    Björnstig, U; Eriksson, A; Thorson, J; Bylund, P O

    1986-01-01

    The number of collisions between motor vehicles and moose is increasing in many countries. Collisions with large, high animals such as moose cause typical rear- and downward deformation of the windshield pillars and front roof, most pronounced for small passenger cars; the injury risk increases with the deformation of the car. A strengthening of the windshield pillars and front roof and the use of antilacerative windshields would reduce the injury risk to car occupants. PMID:3953927

  3. Theoretical Studies of Rydberg Atom Collisions.

    DTIC Science & Technology

    1984-11-28

    capture cross section shoved considerable enhancement if the Rydberg electron was oriented in a plane parallel to the direction of the incident...Astronomy Rice Univesity Theoretical approaches to low-energy collisions of Rydberg atoms with atoms and Ions A. P. HICKMAN, R. E. OLSON, AND J. PASCALE... parallel to the direction of the incident projectile. Laser-assisted charge-transfer collisions: K~ + Na T. P. an. K. Kimura ad 1. E. Olson Dept. of

  4. The Role of Neurosecretory Neurons in the Pars Intercerebralis and Pars Lateralis in Reproductive Diapause of the Blowfly, Protophormia terraenovae

    NASA Astrophysics Data System (ADS)

    Shiga, S.; Numata, H.

    Microlesions of the brain were made to examine the role of neurosecretory neurons in the pars intercerebralis (PI) and pars lateralis (PL) in the induction of reproductive diapause of the female blowfly Protophormia terraenovae. Under both diapause-inducing (LD 12 : 12, 20° C) and diapause-averting conditions (LD 18 : 6, 25° C), the ovaries invariably failed to develop when the PI was removed. When the PL was removed bilaterally, the ovaries developed in most of the females, irrespective of the rearing conditions. Removal of the PL prevented females from entering reproductive diapause. These results show that certain neurosecretory neurons in the PI are necessary for vitellogenesis, and that the PL contains inhibitory neurons which suppress vitellogenesis during reproductive diapause.

  5. Icy Collisions - Planet Building beyond the snowline

    NASA Astrophysics Data System (ADS)

    Gaertner, Sabrina; Hill, Catherine; Heisselmann, Daniel; Blum, Juergen; Fraser, Helen

    2015-11-01

    Collisions of small icy and dust particles beyond the “snow-line” are a key step in planet formation. Whilst the physical forces that underpin the aggregation of the smallest grains (van der Waals) and the largest planetessimals (gravity) are well understood, the processes involving mm - cm sized particles remain a mystery.In a unique set of experiments, we investigated low velocity collisions of dust and icy particles in this size range under microgravity conditions - utilizing parabolic flight (e.g. Salter 2009, Hill 2015 (a) & (b)). Experiments were performed at cryogenic temperatures (below 140 K) for icy aggregates and ambient as well as cryogenic temperatures (80 - 220 K) for dust aggregates.The kinetic analysis of the observed collisions of different aggregate types in different shapes and sizes revealed astonishing results - as the collisional properties of all investigated particles differ strongly from the usual assumptions in models of planet formation.Here, we present a summary of the results on the collisions of icy particles as well as first results on the collisions of dust aggregates. Focus will be on the coefficient of restitution, which measures the loss of translational energy in bouncing collisions and is a key parameter in models of planet formation.

  6. Planetesimal Collisions as a Chondrule Forming Event

    NASA Astrophysics Data System (ADS)

    Wakita, Shigeru; Matsumoto, Yuji; Oshino, Shoichi; Hasegawa, Yasuhiro

    2017-01-01

    Chondritic meteorites contain unique spherical materials named chondrules: sub-mm sized silicate grains once melted in a high temperature condition in the solar nebula. We numerically explore one of the chondrule forming processes—planetesimal collisions. Previous studies have found that impact jetting via protoplanet–planetesimal collisions can make chondrules with 1% of the impactors’ mass, when the impact velocity exceeds 2.5 km s‑1. Based on the mineralogical data of chondrules, undifferentiated planetesimals would be more suitable for chondrule-forming collisions than potentially differentiated protoplanets. We examine planetesimal–planetesimal collisions using a shock physics code and find two things: one is that planetesimal–planetesimal collisions produce nearly the same amount of chondrules as protoplanet–planetesimal collisions (∼1%). The other is that the amount of produced chondrules becomes larger as the impact velocity increases when two planetesimals collide with each other. We also find that progenitors of chondrules can originate from deeper regions of large targets (planetesimals or protoplanets) than small impactors (planetesimals). The composition of targets is therefore important, to fully account for the mineralogical data of currently sampled chondrules.

  7. The Underlying Physics in Wetted Particle Collisions

    NASA Astrophysics Data System (ADS)

    Donahue, Carly; Hrenya, Christine; Davis, Robert

    2008-11-01

    Wetted granular particles are relevant in many industries including the pharmaceutical and chemical industries and has applications to granulation, filtration, coagulation, spray coating, drying and pneumatic transport. In our current focus, we investigate the dynamics of a three-body normal wetted particle collision. In order to conduct collisions we use an apparatus called a ``Stokes Cradle,'' similar to the Newton's Cradle (desktop toy) except that the target particles are covered with oil. Here, we are able to vary the oil thickness, oil viscosity, and material properties. With a three particle collision there are four possible outcomes: fully agglomerated (FA); Newton's Cradle (NC), the striker and the first target ball are agglomerated and the last target ball is separated; Reverse Newton's Cradle (RNC), the striker is separated and the two targets are agglomerated; and fully separated (FS). Varying the properties of the collisions, we have observed all four outcomes. We use elastohydrodynamics as a theoretical basis for modeling the system. We also have considered the glass transition of the oil as the pressure increases upon impact and the cavitation of the oil as the pressure drops below the vapor pressure upon rebound. A toy model has been developed where the collision is modeled as a series of two-body collisions. A qualitative agreement between the toy model and experiments gives insight into the underlying physics.

  8. Current transients in single nanoparticle collision events.

    PubMed

    Xiao, Xiaoyin; Fan, Fu-Ren F; Zhou, Jiping; Bard, Allen J

    2008-12-10

    Electrochemical hydrazine oxidation and proton reduction occur at a significantly higher rate at Pt than at Au or C electrodes. Thus, the collision and adhesion of a Pt particle on a less active Au or C electrode leads to a large current amplification by electrocatalysis at single nanoparticles (NPs). At low particle concentrations, the collision of Pt NPs was characterized by current transients composed of individual current profiles that rapidly attained a steady state, signaling single NP collisions. The characteristic steady-state current was used to estimate the particle size. The fluctuation in collision frequency with time indicates that the collision of NPs at the detector electrodes occurs in a statistically random manner, with the average frequency a function of particle concentration and diffusion coefficient. A longer term current decay in single current transients, as opposed to the expected steady-state behavior, was more pronounced for proton reduction than for hydrazine oxidation, revealing microscopic details of the nature of the particle interaction with the detector electrode and the kinetics of electrocatalysis at single NPs. The study of single NP collisions allows one to screen particle size distributions and estimate NP concentrations and diffusion coefficients.

  9. Collision induced migration of adsorbates on surfaces

    NASA Astrophysics Data System (ADS)

    Romm, L.; Asscher, M.; Zeiri, Y.

    1999-06-01

    Collision induced migration (CIM) has been identified as a new surface phenomenon and has been studied for the first time using molecular dynamics simulations. The CIM process was represented by an energetic gas phase argon atom, striking an adsorbed nitrogen molecule on Ru(001). The efficiency of CIM was investigated as a function of the collider initial kinetic energy and angle of incidence. It was found that at low coverages an adsorbed molecule can migrate more than 150 Å following collisions at high energies and grazing angles of incidence. As coverage increases, inter-adsorbate collisions result in significant reduction of migration distances. At high energies, the competing process of collision induced desorption becomes dominant, leaving behind molecules which migrate shorter distances. These competing channels lead to a collision energy for which CIM is maximized. For the N2/Ru system, the CIM process is most effective near collider energy of 2.0 eV. This new surface phenomenon of CIM has to be considered for better understanding the full range of surface processes which govern industrial high pressure catalysis. At the tail of the thermal kinetic energy distribution, energetic colliders from the gas phase lead to CIM and generate high energy inter-adsorbate collisions, sometimes discussed in terms of "hot-particle" chemistry.

  10. Estimating collision efficiencies from contact freezing experiments

    NASA Astrophysics Data System (ADS)

    Nagare, B.; Marcolli, C.; Stetzer, O.; Lohmann, U.

    2015-04-01

    Interactions of atmospheric aerosols with clouds influence cloud properties and modify the aerosol life cycle. Aerosol particles act as cloud condensation nuclei and ice nucleating particles or become incorporated into cloud droplets by scavenging. For an accurate description of aerosol scavenging and ice nucleation in contact mode, collision efficiency between droplets and aerosol particles needs to be known. This study derives the collision rate from experimental contact freezing data obtained with the ETH Collision Ice Nucleation Chamber CLINCH. Freely falling 80 μm water droplets are exposed to an aerosol consisting of 200 nm diameter silver iodide particles of concentrations from 500-5000 cm-3, which act as ice nucleating particles in contact mode. The chamber is kept at ice saturation in the temperature range from 236-261 K leading to slow evaporation of water droplets giving rise to thermophoresis and diffusiophoresis. Droplets and particles bear charges inducing electrophoresis. The experimentally derived collision efficiency of 0.13 is around one order of magnitude higher than theoretical formulations which include Brownian diffusion, impaction, interception, thermophoretic, diffusiophoretic and electric forces. This discrepancy is most probably due to uncertainties and inaccuracies in the description of thermophoretic and diffusiophoretic processes acting together. This is to the authors knowledge the first dataset of collision efficiencies acquired below 273 K. More such experiments with different droplet and particle diameters are needed to improve our understanding of collision processes acting together.

  11. Dynamic Filament Formation by a Divergent Bacterial Actin-Like ParM Protein

    PubMed Central

    Brzoska, Anthony J.; Jensen, Slade O.; Barton, Deborah A.; Davies, Danielle S.; Overall, Robyn L.; Skurray, Ronald A.; Firth, Neville

    2016-01-01

    Actin-like proteins (Alps) are a diverse family of proteins whose genes are abundant in the chromosomes and mobile genetic elements of many bacteria. The low-copy-number staphylococcal multiresistance plasmid pSK41 encodes ParM, an Alp involved in efficient plasmid partitioning. pSK41 ParM has previously been shown to form filaments in vitro that are structurally dissimilar to those formed by other bacterial Alps. The mechanistic implications of these differences are not known. In order to gain insights into the properties and behavior of the pSK41 ParM Alp in vivo, we reconstituted the parMRC system in the ectopic rod-shaped host, E. coli, which is larger and more genetically amenable than the native host, Staphylococcus aureus. Fluorescence microscopy showed a functional fusion protein, ParM-YFP, formed straight filaments in vivo when expressed in isolation. Strikingly, however, in the presence of ParR and parC, ParM-YFP adopted a dramatically different structure, instead forming axial curved filaments. Time-lapse imaging and selective photobleaching experiments revealed that, in the presence of all components of the parMRC system, ParM-YFP filaments were dynamic in nature. Finally, molecular dissection of the parMRC operon revealed that all components of the system are essential for the generation of dynamic filaments. PMID:27310470

  12. ParB Partition Proteins: Complex Formation and Spreading at Bacterial and Plasmid Centromeres

    PubMed Central

    Funnell, Barbara E.

    2016-01-01

    In bacteria, active partition systems contribute to the faithful segregation of both chromosomes and low-copy-number plasmids. Each system depends on a site-specific DNA binding protein to recognize and assemble a partition complex at a centromere-like site, commonly called parS. Many plasmid, and all chromosomal centromere-binding proteins are dimeric helix-turn-helix DNA binding proteins, which are commonly named ParB. Although the overall sequence conservation among ParBs is not high, the proteins share similar domain and functional organization, and they assemble into similar higher-order complexes. In vivo, ParBs “spread,” that is, DNA binding extends away from the parS site into the surrounding non-specific DNA, a feature that reflects higher-order complex assembly. ParBs bridge and pair DNA at parS and non-specific DNA sites. ParB dimers interact with each other via flexible conformations of an N-terminal region. This review will focus on the properties of the HTH centromere-binding protein, in light of recent experimental evidence and models that are adding to our understanding of how these proteins assemble into large and dynamic partition complexes at and around their specific DNA sites. PMID:27622187

  13. Specific and non-specific interactions of ParB with DNA: implications for chromosome segregation

    PubMed Central

    Taylor, James A.; Pastrana, Cesar L.; Butterer, Annika; Pernstich, Christian; Gwynn, Emma J.; Sobott, Frank; Moreno-Herrero, Fernando; Dillingham, Mark S.

    2015-01-01

    The segregation of many bacterial chromosomes is dependent on the interactions of ParB proteins with centromere-like DNA sequences called parS that are located close to the origin of replication. In this work, we have investigated the binding of Bacillus subtilis ParB to DNA in vitro using a variety of biochemical and biophysical techniques. We observe tight and specific binding of a ParB homodimer to the parS sequence. Binding of ParB to non-specific DNA is more complex and displays apparent positive co-operativity that is associated with the formation of larger, poorly defined, nucleoprotein complexes. Experiments with magnetic tweezers demonstrate that non-specific binding leads to DNA condensation that is reversible by protein unbinding or force. The condensed DNA structure is not well ordered and we infer that it is formed by many looping interactions between neighbouring DNA segments. Consistent with this view, ParB is also able to stabilize writhe in single supercoiled DNA molecules and to bridge segments from two different DNA molecules in trans. The experiments provide no evidence for the promotion of non-specific DNA binding and/or condensation events by the presence of parS sequences. The implications of these observations for chromosome segregation are discussed. PMID:25572315

  14. Symmetry breaking and polarization of the C. elegans zygote by the polarity protein PAR-2

    PubMed Central

    Zonies, Seth; Motegi, Fumio; Hao, Yingsong; Seydoux, Geraldine

    2010-01-01

    Polarization of the C. elegans zygote is initiated by ECT-2-dependent cortical flows, which mobilize the anterior PAR proteins (PAR-3, PAR-6 and PKC-3) away from the future posterior end of the embryo marked by the sperm centrosome. Here, we demonstrate the existence of a second, parallel and redundant pathway that can polarize the zygote in the absence of ECT-2-dependent cortical flows. This second pathway depends on the polarity protein PAR-2. We show that PAR-2 localizes to the cortex nearest the sperm centrosome even in the absence of cortical flows. Once on the cortex, PAR-2 antagonizes PAR-3-dependent recruitment of myosin, creating myosin flows that transport the anterior PAR complex away from PAR-2 in a positive-feedback loop. We propose that polarity in the C. elegans zygote is initiated by redundant ECT-2- and PAR-2-dependent mechanisms that lower PAR-3 levels locally, triggering a positive-feedback loop that polarizes the entire cortex. PMID:20392744

  15. Symmetry breaking and polarization of the C. elegans zygote by the polarity protein PAR-2.

    PubMed

    Zonies, Seth; Motegi, Fumio; Hao, Yingsong; Seydoux, Geraldine

    2010-05-01

    Polarization of the C. elegans zygote is initiated by ECT-2-dependent cortical flows, which mobilize the anterior PAR proteins (PAR-3, PAR-6 and PKC-3) away from the future posterior end of the embryo marked by the sperm centrosome. Here, we demonstrate the existence of a second, parallel and redundant pathway that can polarize the zygote in the absence of ECT-2-dependent cortical flows. This second pathway depends on the polarity protein PAR-2. We show that PAR-2 localizes to the cortex nearest the sperm centrosome even in the absence of cortical flows. Once on the cortex, PAR-2 antagonizes PAR-3-dependent recruitment of myosin, creating myosin flows that transport the anterior PAR complex away from PAR-2 in a positive-feedback loop. We propose that polarity in the C. elegans zygote is initiated by redundant ECT-2- and PAR-2-dependent mechanisms that lower PAR-3 levels locally, triggering a positive-feedback loop that polarizes the entire cortex.

  16. Characterization of a Par j 1/Par j 2 mutant hybrid with reduced allergenicity for immunotherapy of Parietaria allergy.

    PubMed

    Bonura, A; Passantino, R; Costa, M A; Montana, G; Melis, M; Bondì, M Luisa; Butteroni, C; Barletta, B; Corinti, S; Di Felice, G; Colombo, P

    2012-03-01

    Parietaria pollen is one of the major cause of pollinosis in the southern Europe. Specific immunotherapy is the only treatment able to modify the natural outcome of the disease restoring a normal immunity against allergens. We designed a recombinant molecule (PjEDloop1) comprised of genetic-engineered variants of the major allergens of the Parietaria pollen (Par j 2/Par j 1). Purity and chemical-physical properties of the derivative were analysed by RP-HPLC chromatography and Photon Correlation Spectroscopy. Immunological activity was evaluated by means of Western blotting, ELISA inhibition and PBMC proliferation assay in 10 Parietaria allergic patients. Basophil activation was studied in six subjects. The immunogenicity of the hybrid was studied looking at the immune responses induced in a mouse model of sensitization. The PjEDloop1 hybrid was produced as a purified recombinant protein with high stability in solution. Western blot, ELISA inhibition and basophil activation test showed that the PjEDloop1 displays a remarkable reduced IgE binding and anaphylactic activity. CD3 reactivity was conserved in all patients. Mice immunization with the rPjEDloop1 induced antibodies and T cell responses comparable to that obtained by the wild type allergens. Such antibodies shared the specificities to rPar j 1 and rPar j 2 with human IgE antibodies. Our results demonstrated that a mutant hybrid expressing genetically engineered forms of the major P. judaica allergens displayed reduced allergenicity and retained T cell reactivity for the induction of protective antibodies in vaccination approaches for the treatment of Parietaria pollinosis. © 2011 Blackwell Publishing Ltd.

  17. Developmental Control of a parAB Promoter Leads to Formation of Sporulation-Associated ParB Complexes in Streptomyces coelicolor

    PubMed Central

    Jakimowicz, Dagmara; Mouz, Sebastien; Zakrzewska-Czerwińska, Jolanta; Chater, Keith F.

    2006-01-01

    The Streptomyces coelicolor partitioning protein ParB binds to numerous parS sites in the oriC-proximal part of the linear chromosome. ParB binding results in the formation of large complexes, which behave differentially during the complex life cycle (D. Jakimowicz, B. Gust, J. Zakrzewska-Czerwinska, and K. F. Chater, J. Bacteriol. 187:3572-3580, 2005). Here we have analyzed the transcriptional regulation that underpins this developmentally specific behavior. Analysis of promoter mutations showed that the irregularly spaced complexes present in vegetative hyphae are dependent on the constitutive parABp1 promoter, while sporulation-specific induction of the promoter parABp2 is required for the assembly of arrays of ParB complexes in aerial hyphae and thus is necessary for efficient chromosome segregation. Expression from parABp2 depended absolutely on two sporulation regulatory genes, whiA and whiB, and partially on two others, whiH and whiI, all four of which are needed for sporulation septation. Because of this pattern of dependence, we investigated the transcription of these four whi genes in whiA and whiB mutants, revealing significant regulatory interplay between whiA and whiB. A strain in which sporulation septation (but not vegetative septation) was blocked by mutation of a sporulation-specific promoter of ftsZ showed close to wild-type induction of parABp2 and formed fairly regular ParB-enhanced green fluorescent protein foci in aerial hyphae, ruling out strong morphological coupling or checkpoint regulation between septation and DNA partitioning during sporulation. A model for developmental regulation of parABp2 expression is presented. PMID:16484182

  18. Time ordering in atomic collisions

    NASA Astrophysics Data System (ADS)

    McGuire, J. H.; Godunov, A. L.; Shakov, Kh Kh; Kaplan, L.; Burin, A.; Uskov, D.

    2007-06-01

    Time ordering constrains interactions to occur in increasing (or decreasing) order. This places a constraint on the time evolution of the system and can lead to correlations in time of different particles in a few/many body system. Unlike overall time reversal, time ordering is not a conserved symmetry of the atomic system. A number of examples of observable effects of time ordering are presented. A convenient way to describe time ordering is to define the limit of no time ordering by replacing the instantaneous interaction by its time average. This is similar to the way in which spatial correlation is defined. Like spatial correlation, time ordering is usually formulated in the interaction representation. The effects of time ordering can differ in different representations. In energy space, conjugate to time space, time ordering is imposed as the i ɛ term in the Greens' function that corresponds to an initial condition (usually incoming plane waves and outgoing scattered waves). This permits off-energy-shell (energy non- conserving) fluctuations during the collision consistent with the Uncertainty Principle.

  19. Impulsive model for reactive collisions

    NASA Technical Reports Server (NTRS)

    Marron, M. T.; Bernstein, R. B.

    1972-01-01

    A simple classical mechanical model of the reactive scattering of a structureless atom A and a quasi-diatomic BC is developed which takes full advantage of energy, linear and angular momentum conservation relations but introduces a minimum of further assumptions. These are as follows: (1) the vibrational degree of freedom of the reactant (BC) and product (AB) molecules is suppressed, so the change in vibrational energy is simply a parameter; (2) straight-line trajectories are assumed outside of a reaction shell; (3) within this zone, momentum transfer occurs impulsively (essentially instantaneously) following mass transfer; (4) the impulse, which may be either positive or negative, is directed along the BC axis, which may, however, assume all orientations with respect to the incident relative velocity. The model yields differential and total cross sections and product rotational energy distributions for a given collision exoergicity Q, or for any known distribution over Q. Numerical results are presented for several prototype reactions whose dynamics have been well-studied.

  20. GALAXY COLLISIONS IN DISTANT CLUSTER

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The group of galaxies -- or 'galaxy cluster' -- catalogued as MS1054-03 is 8 billion light-years away, one of the most distant known so far. Although hundreds of galaxies appear in the NASA/ESA Hubble Space Telescope image, a European-led team of astronomers has studied in detail 81 galaxies that certainly belong to the cluster, 13 of which are remnants of recent collisions or pairs of colliding galaxies. This is by far the largest number of colliding galaxies ever found in a cluster. The picture is actually a 'mosaic' of images, so that astronomers can have a much wider view of the distant cluster. This is why the colliding galaxies, mostly located in clumps in the outskirts of the cluster, had not been discovered so far. In the image, streams of stars can be seen being pulled out of the galaxies, a consequence of the huge tidal forces in action. The red color of most of the merger remnants means that the stars are old and not much star formation has 'recently' taken place. The observations with the Hubble were made in May 1998. The 10-meter Keck telescope in Hawaii was used to confirm that the colliding galaxies were part of the cluster. Photo Credits: Pieter van Dokkum, Marijn Franx (University of Groningen/Leiden), ESA and NASA

  1. RELATIVISTIC HEAVY ION COLLISIONS: EXPERIMENT

    SciTech Connect

    Friedlander, Erwin M.; Heckman, Harry H.

    1982-04-01

    Relativistic heavy ion physics began as a 'no man's land' between particle and nuclear physics, with both sides frowning upon it as 'unclean', because on one hand, hadronic interactions and particle production cloud nuclear structure effects, while on the other, the baryonic environment complicates the interpretation of production experiments. They have attempted to review here the experimental evidence on RHI collisions from the point of view that it represents a new endeavor in the understanding of strong interaction physics. Such an approach appears increasingly justified; first, by the accumulation of data and observations of new features of hadronic interactions that could not have been detected outside a baryonic environment; second, by the maturation of the field owing to the advances made over the past several years in experimental inquiries on particle production by RHI, including pions, kaons, hyperons, and searches for antiprotons; and third, by the steady and progressive increase in the energy and mass ranges of light nuclear beams that have become available to the experiment; indeed the energy range has widened from the {approx} 0.2 to 2 AGeV at the Bevalac to {approx}4 AGeV at Dubna and recently, to the quantum jump in energies to {approx} 1000 equivalent AGeV at the CERN PS-ISR. Accompanying these expansions in the energy frontier are the immediate prospects for very heavy ion beams at the Bevalac up to, and including, 1 AGeV {sup 238}U, thereby extending the 'mass frontier' to its ultimate extent.

  2. Collision prediction software for radiotherapy treatments.

    PubMed

    Padilla, Laura; Pearson, Erik A; Pelizzari, Charles A

    2015-11-01

    This work presents a method of collision predictions for external beam radiotherapy using surface imaging. The present methodology focuses on collision prediction during treatment simulation to evaluate the clearance of a patient's treatment position and allow for its modification if necessary. A Kinect camera (Microsoft, Redmond, WA) is used to scan the patient and immobilization devices in the treatment position at the simulator. The surface is reconstructed using the skanect software (Occipital, Inc., San Francisco, CA). The treatment isocenter is marked using simulated orthogonal lasers projected on the surface scan. The point cloud of this surface is then shifted to isocenter and converted from Cartesian to cylindrical coordinates. A slab models the treatment couch. A cylinder with a radius equal to the normal distance from isocenter to the collimator plate, and a height defined by the collimator diameter is used to estimate collisions. Points within the cylinder clear through a full gantry rotation with the treatment couch at 0°, while points outside of it collide. The angles of collision are reported. This methodology was experimentally verified using a mannequin positioned in an alpha cradle with both arms up. A planning CT scan of the mannequin was performed, two isocenters were marked in pinnacle, and this information was exported to AlignRT (VisionRT, London, UK)--a surface imaging system for patient positioning. This was used to ensure accurate positioning of the mannequin in the treatment room, when available. Collision calculations were performed for the two treatment isocenters and the results compared to the collisions detected the room. The accuracy of the Kinect-Skanect surface was evaluated by comparing it to the external surface of the planning CT scan. Experimental verification results showed that the predicted angles of collision matched those recorded in the room within 0.5°, in most cases (largest deviation -1.2°). The accuracy study for

  3. A numerical investigation of continental collision styles

    NASA Astrophysics Data System (ADS)

    Ghazian, Reza Khabbaz; Buiter, Susanne J. H.

    2013-06-01

    Continental collision after closure of an ocean can lead to different deformation styles: subduction of continental crust and lithosphere, lithospheric thickening, folding of the unsubducted continents, Rayleigh-Taylor (RT) instabilities and/or slab break-off. We use 2-D thermomechanical models of oceanic subduction followed by continental collision to investigate the sensitivity of these collision styles to driving velocity, crustal and lithospheric temperature, continental rheology and the initial density difference between the oceanic lithosphere and the asthenosphere. We find that these parameters influence the collision system, but that driving velocity, rheology and lithospheric (rather than Moho and mantle) temperature can be classified as important controls, whereas reasonable variations in the initial density contrast between oceanic lithosphere and asthenosphere are not necessarily important. Stable continental subduction occurs over a relatively large range of values of driving velocity and lithospheric temperature. Fast and cold systems are more likely to show folding, whereas slow and warm systems can experience RT-type dripping. Our results show that a continent with a strong upper crust can experience subduction of the entire crust and is more likely to fold. Accretion of the upper crust at the trench is feasible when the upper crust has a moderate to weak strength, whereas the entire crust can be scraped-off in the case of a weak lower crust. We also illustrate that weakening of the lithospheric mantle promotes RT-type of dripping in a collision system. We use a dynamic collision model, in which collision is driven by slab pull only, to illustrate that adjacent plates can play an important role in continental collision systems. In dynamic collision models, exhumation of subducted continental material and sediments is triggered by slab retreat and opening of a subduction channel, which allows upward flow of buoyant materials. Exhumation continues

  4. Collision prediction software for radiotherapy treatments

    SciTech Connect

    Padilla, Laura; Pearson, Erik A.; Pelizzari, Charles A.

    2015-11-15

    Purpose: This work presents a method of collision predictions for external beam radiotherapy using surface imaging. The present methodology focuses on collision prediction during treatment simulation to evaluate the clearance of a patient’s treatment position and allow for its modification if necessary. Methods: A Kinect camera (Microsoft, Redmond, WA) is used to scan the patient and immobilization devices in the treatment position at the simulator. The surface is reconstructed using the SKANECT software (Occipital, Inc., San Francisco, CA). The treatment isocenter is marked using simulated orthogonal lasers projected on the surface scan. The point cloud of this surface is then shifted to isocenter and converted from Cartesian to cylindrical coordinates. A slab models the treatment couch. A cylinder with a radius equal to the normal distance from isocenter to the collimator plate, and a height defined by the collimator diameter is used to estimate collisions. Points within the cylinder clear through a full gantry rotation with the treatment couch at 0° , while points outside of it collide. The angles of collision are reported. This methodology was experimentally verified using a mannequin positioned in an alpha cradle with both arms up. A planning CT scan of the mannequin was performed, two isocenters were marked in PINNACLE, and this information was exported to AlignRT (VisionRT, London, UK)—a surface imaging system for patient positioning. This was used to ensure accurate positioning of the mannequin in the treatment room, when available. Collision calculations were performed for the two treatment isocenters and the results compared to the collisions detected the room. The accuracy of the Kinect-Skanect surface was evaluated by comparing it to the external surface of the planning CT scan. Results: Experimental verification results showed that the predicted angles of collision matched those recorded in the room within 0.5°, in most cases (largest deviation

  5. Collective cell migration requires suppression of actomyosin at cell-cell contacts mediated by DDR1 and the cell polarity regulators Par3 and Par6.

    PubMed

    Hidalgo-Carcedo, Cristina; Hooper, Steven; Chaudhry, Shahid I; Williamson, Peter; Harrington, Kevin; Leitinger, Birgit; Sahai, Erik

    2011-01-01

    Collective cell migration occurs in a range of contexts: cancer cells frequently invade in cohorts while retaining cell-cell junctions. Here we show that collective invasion by cancer cells depends on decreasing actomyosin contractility at sites of cell-cell contact. When actomyosin is not downregulated at cell-cell contacts, migrating cells lose cohesion. We provide a molecular mechanism for this downregulation. Depletion of discoidin domain receptor 1 (DDR1) blocks collective cancer-cell invasion in a range of two-dimensional, three-dimensional and 'organotypic' models. DDR1 coordinates the Par3/Par6 cell-polarity complex through its carboxy terminus, binding PDZ domains in Par3 and Par6. The DDR1-Par3/Par6 complex controls the localization of RhoE to cell-cell contacts, where it antagonizes ROCK-driven actomyosin contractility. Depletion of DDR1, Par3, Par6 or RhoE leads to increased actomyosin contactility at cell-cell contacts, a loss of cell-cell cohesion and defective collective cell invasion.

  6. Caracterisation et transformation par hydroviscoreduction du brut lourd de Doba/Tchad: Strategie de pompage par pipeline

    NASA Astrophysics Data System (ADS)

    Dehkissia, Soumaine

    Le projet de la these est defini par rapport a la recente exploitation commerciale du brut lourd de Doba, une region du Tchad, pays enclave d'ou le brut ainsi produit doit etre achemine par pipeline. Le but dans ce travail est de caracteriser ce brut et de determiner une strategie thermique de transformation en vue de reduire de la facon la plus economique, la viscosite du brut pour permettre son transport par pipeline. Concernant la partie caracterisation, nous avons utilise entre autres, un rheometre rotatif et des analyseurs (LECO CHN-2000 & LECO S-144DR Elemental Analyzers) pour evaluer respectivement la viscosite et les elements tels que C, H, N, O, S. Sur la base des methodes de transformation disponibles, nous avons determine une strategie simple de transformation thermique par hydroviscoreduction , strategie dans laquelle, la fraction legere du brut comme le naphta (80--180°C), pourrait constituer la source d'hydrogene a utiliser. Le brut de Doba, a une faible teneur en soufre (0.14%) et sa densite specifique de 0.940 a 15.6°C, soit 18.8° API, le classe parmi les bruts lourds. Outre le point initial se situant a 85°C, la distillation du brut a revele que la fraction distillant avant 250°C ne represente que 10% (v/v) et que le craquage thermique du substrat debute a 300°C. Par ailleurs, outre son caractere Newtonien, les densites specifiques de la fraction lourde de l'essence (100--200°C) et de la fraction distillant au-dessus 350°C, etant respectivement de 0.813 (0.813 > 0.800) et de 0.951 (0.930 < 0.951 < 0.975), le brut de Doba est donc de type aromatique. Les viscosites du brut et du brut desasphalte, sont respectivement de 184.4 cSt et 152.4 cSt a 50°C, suggerant que le desasphaltage ne constitue pas une methode efficace pouvant aider au pompage du brut par pipeline, d'ou la necessite de transformation. Les resultats des travaux en autoclave montrent que, si le brut doit etre traite entierement, la viscosite de 25cSt 50°C, recommandee pour le

  7. ParABS Systems of the Four Replicons of Burkholderia cenocepacia: New Chromosome Centromeres Confer Partition Specificity†

    PubMed Central

    Dubarry, Nelly; Pasta, Franck; Lane, David

    2006-01-01

    Most bacterial chromosomes carry an analogue of the parABS systems that govern plasmid partition, but their role in chromosome partition is ambiguous. parABS systems might be particularly important for orderly segregation of multipartite genomes, where their role may thus be easier to evaluate. We have characterized parABS systems in Burkholderia cenocepacia, whose genome comprises three chromosomes and one low-copy-number plasmid. A single parAB locus and a set of ParB-binding (parS) centromere sites are located near the origin of each replicon. ParA and ParB of the longest chromosome are phylogenetically similar to analogues in other multichromosome and monochromosome bacteria but are distinct from those of smaller chromosomes. The latter form subgroups that correspond to the taxa of their hosts, indicating evolution from plasmids. The parS sites on the smaller chromosomes and the plasmid are similar to the “universal” parS of the main chromosome but with a sequence specific to their replicon. In an Escherichia coli plasmid stabilization test, each parAB exhibits partition activity only with the parS of its own replicon. Hence, parABS function is based on the independent partition of individual chromosomes rather than on a single communal system or network of interacting systems. Stabilization by the smaller chromosome and plasmid systems was enhanced by mutation of parS sites and a promoter internal to their parAB operons, suggesting autoregulatory mechanisms. The small chromosome ParBs were found to silence transcription, a property relevant to autoregulation. PMID:16452432

  8. Is PAR a Good Investment? Understanding the Costs and Benefits of Teacher Peer Assistance and Review Programs

    ERIC Educational Resources Information Center

    Papay, John P.; Johnson, Susan Moore

    2012-01-01

    Peer Assistance and Review (PAR) is a local labor-management initiative designed to improve teacher quality. In PAR, expert "consulting teachers" mentor, support, and evaluate novice and underperforming veteran teachers. Evaluations under PAR can lead to dismissals. The authors examine the costs and benefits of PAR, both financial and…

  9. Anterior PAR Proteins Function During Cytokinesis and Maintain DYN-1 at the Cleavage Furrow in Caenorhabditis elegans

    PubMed Central

    Pittman, Kelly J.; Skop, Ahna R.

    2013-01-01

    PAR proteins are key regulators of cellular polarity and have links to the endocytic machinery and the actin cytoskeleton. Our data suggest a unique role for PAR proteins in cytokinesis. We have found that at the onset of cytokinesis, anterior PAR-6 and posterior PAR-2 proteins are redistributed to the furrow membrane in a temporal and spatial manner. PAR-6 and PAR-2 localize to the furrow membrane during ingression but PAR-2-GFP is distinct in that it is excluded from the extreme tip of the furrow. Once the midbody has formed, PAR-2-GFP becomes restricted to the midbody region (the midbody plus the membrane flanking it). Depletion of both anterior PAR proteins, PAR-3 and PAR-6, led to an increase in multinucleate embryos, suggesting that the anterior PAR proteins are necessary during cytokinesis and that PAR-3 and PAR-6 function in cytokinesis may be partially redundant. Lastly, anterior PAR proteins play a role in the maintenance of DYN-1 in the cleavage furrow. Our data indicate that the PAR proteins are involved in the events that occur during cytokinesis and may play a role in promoting the membrane trafficking and remodeling events that occur during this time. PMID:22887994

  10. Anterior PAR proteins function during cytokinesis and maintain DYN-1 at the cleavage furrow in Caenorhabditis elegans.

    PubMed

    Pittman, Kelly J; Skop, Ahna R

    2012-10-01

    PAR proteins are key regulators of cellular polarity and have links to the endocytic machinery and the actin cytoskeleton. Our data suggest a unique role for PAR proteins in cytokinesis. We have found that at the onset of cytokinesis, anterior PAR-6 and posterior PAR-2 proteins are redistributed to the furrow membrane in a temporal and spatial manner. PAR-6 and PAR-2 localize to the furrow membrane during ingression but PAR-2-GFP is distinct in that it is excluded from the extreme tip of the furrow. Once the midbody has formed, PAR-2-GFP becomes restricted to the midbody region (the midbody plus the membrane flanking it). Depletion of both anterior PAR proteins, PAR-3 and PAR-6, led to an increase in multinucleate embryos, suggesting that the anterior PAR proteins are necessary during cytokinesis and that PAR-3 and PAR-6 function in cytokinesis may be partially redundant. Lastly, anterior PAR proteins play a role in the maintenance of DYN-1 in the cleavage furrow. Our data indicate that the PAR proteins are involved in the events that occur during cytokinesis and may play a role in promoting the membrane trafficking and remodeling events that occur during this time. Copyright © 2012 Wiley Periodicals, Inc.

  11. A model for the condensation of the bacterial chromosome by the partitioning protein ParB

    NASA Astrophysics Data System (ADS)

    Broedersz, Chase; Wingreen, Ned

    2013-03-01

    The molecular machinery responsible for faithful segregation of the chromosome in bacteria such as Caulobacter crescentus and Bacillus subtilis includes the ParABS a.k.a. Spo0J/Soj partitioning system. In Caulobacter, prior to division, hundreds of ParB proteins bind to the DNA near the origin of replication, and localize to one pole of the cell. Subsequently, the ParB-DNA complex is translocated to the far pole by the binding and retraction of the ParA spindle-like apparatus. Remarkably, the localization of ParB proteins to specific regions of the chromosome appears to be controlled by only a few centromeric parS binding sites. Although lateral interactions between DNA-bound ParB are likely to be important for their localization, the long-range order of ParB domains on the chromosome appears to be inconsistent with a picture in which protein-protein interactions are limited to neighboring DNA-bound proteins. We developed a coarse-grained Brownian dynamics model that allows for lateral and 3D protein-protein interactions among bound ParB proteins. Our model shows how such interactions can condense and organize the DNA spatially, and can control the localization and the long-range order of the DNA-bound proteins.

  12. A three-dimensional ParF meshwork assembles through the nucleoid to mediate plasmid segregation

    PubMed Central

    McLeod, Brett N.; Allison-Gamble, Gina E.; Barge, Madhuri T.; Tonthat, Nam K.; Schumacher, Maria A.; Hayes, Finbarr

    2017-01-01

    Abstract Genome segregation is a fundamental step in the life cycle of every cell. Most bacteria rely on dedicated DNA partition proteins to actively segregate chromosomes and low copy-number plasmids. Here, by employing super resolution microscopy, we establish that the ParF DNA partition protein of the ParA family assembles into a three-dimensional meshwork that uses the nucleoid as a scaffold and periodically shuttles between its poles. Whereas ParF specifies the territory for plasmid trafficking, the ParG partner protein dictates the tempo of ParF assembly cycles and plasmid segregation events by stimulating ParF adenosine triphosphate hydrolysis. Mutants in which this ParG temporal regulation is ablated show partition deficient phenotypes as a result of either altered ParF structure or dynamics and indicate that ParF nucleoid localization and dynamic relocation, although necessary, are not sufficient per se to ensure plasmid segregation. We propose a Venus flytrap model that merges the concepts of ParA polymerization and gradient formation and speculate that a transient, dynamic network of intersecting polymers that branches into the nucleoid interior is a widespread mechanism to distribute sizeable cargos within prokaryotic cells. PMID:28034957

  13. PAR-2 expression in the gingival crevicular fluid reflects chronic periodontitis severity.

    PubMed

    Fukushima, Henrique; Alves, Vanessa Tubero Euzebio; Carvalho, Verônica Franco de; Ambrósio, Lucas Macedo Batitucci; Eichler, Rosangela Aparecida Dos Santos; Carvalho, Maria Helena Catelli de; Saraiva, Luciana; Holzhausen, Marinella

    2017-01-26

    Recent studies investigating protease-activated receptor type 2 (PAR-2) suggest an association between the receptor and periodontal inflammation. It is known that gingipain, a bacterial protease secreted by the important periodontopathogen Porphyromonas gingivalis can activate PAR-2. Previous studies by our group found that PAR-2 is overexpressed in the gingival crevicular fluid (GCF) of patients with moderate chronic periodontitis (MP). The present study aimed at evaluating whether PAR-2 expression is associated with chronic periodontitis severity. GCF samples and clinical parameters, including plaque and bleeding on probing indices, probing pocket depth and clinical attachment level, were collected from the control group (n = 19) at baseline, and from MP patients (n = 19) and severe chronic periodontitis (SP) (n = 19) patients before and 6 weeks after periodontal non-surgical treatment. PAR-2 and gingipain messenger RNA (mRNA) in the GCF of 4 periodontal sites per patient were evaluated by Reverse Transcription Polymerase Chain Reaction (RT-qPCR). PAR-2 and gingipain expressions were greater in periodontitis patients than in control group patients. In addition, the SP group presented increased PAR-2 and gingipain mRNA levels, compared with the MP group. Furthermore, periodontal treatment significantly reduced (p <0.05) PAR-2 expression in patients with periodontitis. In conclusion, PAR-2 is associated with chronic periodontitis severity and with gingipain levels in the periodontal pocket, thus suggesting that PAR-2 expression in the GCF reflects the severity of destruction during periodontal infection.

  14. Par3 regulates invasion of pancreatic cancer cells via interaction with Tiam1.

    PubMed

    Guo, Xingjun; Wang, Min; Zhao, Yan; Wang, Xin; Shen, Ming; Zhu, Feng; Shi, Chengjian; Xu, Meng; Li, Xu; Peng, Feng; Zhang, Hang; Feng, Yechen; Xie, Yu; Xu, Xiaodong; Jia, Wei; He, Ruizhi; Jiang, Jianxin; Hu, Jun; Tian, Rui; Qin, Renyi

    2016-08-01

    The conserved polarity complex, which comprises partitioning-defective proteins Par3, Par6, and the atypical protein kinase C, affects various cell-polarization events, including assembly of tight junctions. Control of tight junction assembly is closely related to invasion and migration potential. However, as the importance of conserved polarity complexes in regulating pancreatic cancer invasion and metastasis is unclear, we investigated their role and mechanism in pancreatic cancers. We first detect that the key protein of the conserved polarity complex finds that only Par3 is down-regulated in pancreatic cancer tissues while Par6 and aPKC show no difference. What is more, Par3 tissues level was significantly and positively associated with patient overall survival. Knocking-down Par3 promotes pancreatic cancer cells invasion and migration. And Par3 requires interaction with Tiam1 to affect tight junction assembly, and then affect invasion and migration of pancreatic cancer cells. Then, we find that tight junction marker protein ZO-1 and claudin-1 are down-regulated in pancreatic cancer tissues. And the relationship of the expression of Par3 and ZO-1 in pancreatic cancer tissue is linear correlation. We establish liver metastasis model of human pancreatic cancer cells in Balb/c nude mice and find that knocking down Par3 promotes invasion and metastasis and disturbs tight junction assembly in vivo. Taken together, these results suggest that the Par3 regulates invasion and metastasis in pancreatic cancers by controlling tight junction assembly.

  15. MAP kinase signaling antagonizes PAR-1 function during polarization of the early Caenorhabditis elegans embryo.

    PubMed

    Spilker, Annina C; Rabilotta, Alexia; Zbinden, Caroline; Labbé, Jean-Claude; Gotta, Monica

    2009-11-01

    PAR proteins (partitioning defective) are major regulators of cell polarity and asymmetric cell division. One of the par genes, par-1, encodes a Ser/Thr kinase that is conserved from yeast to mammals. In Caenorhabditis elegans, par-1 governs asymmetric cell division by ensuring the polar distribution of cell fate determinants. However the precise mechanisms by which PAR-1 regulates asymmetric cell division in C. elegans remain to be elucidated. We performed a genomewide RNAi screen and identified six genes that specifically suppress the embryonic lethal phenotype associated with mutations in par-1. One of these suppressors is mpk-1, the C. elegans homolog of the conserved mitogen activated protein (MAP) kinase ERK. Loss of function of mpk-1 restored embryonic viability, asynchronous cell divisions, the asymmetric distribution of cell fate specification markers, and the distribution of PAR-1 protein in par-1 mutant embryos, indicating that this genetic interaction is functionally relevant for embryonic development. Furthermore, disrupting the function of other components of the MAPK signaling pathway resulted in suppression of par-1 embryonic lethality. Our data therefore indicates that MAP kinase signaling antagonizes PAR-1 signaling during early C. elegans embryonic polarization.

  16. Function, expression, specificity, diversity and incompatibility of actinobacteriophage parABS systems.

    PubMed

    Dedrick, Rebekah M; Mavrich, Travis N; Ng, Wei L; Cervantes Reyes, Juan C; Olm, Matthew R; Rush, Rachael E; Jacobs-Sera, Deborah; Russell, Daniel A; Hatfull, Graham F

    2016-08-01

    More than 180 individual phages infecting hosts in the phylum Actinobacteria have been sequenced and grouped into Cluster A because of their similar overall nucleotide sequences and genome architectures. These Cluster A phages are either temperate or derivatives of temperate parents, and most have an integration cassette near the centre of the genome containing an integrase gene and attP. However, about 20% of the phages lack an integration cassette, which is replaced by a 1.4 kbp segment with predicted partitioning functions, including plasmid-like parA and parB genes. Phage RedRock forms stable lysogens in Mycobacterium smegmatis in which the prophage replicates at 2.4 copies/chromosome and the partitioning system confers prophage maintenance. The parAB genes are expressed upon RedRock infection of M. smegmatis, but are downregulated once lysogeny is established by binding of RedRock ParB to parS-L, one of two centromere-like sites flanking the parAB genes. The RedRock parS-L and parS-R sites are composed of eight directly repeated copies of an 8 bp motif that is recognized by ParB. The actinobacteriophage parABS cassettes span considerable sequence diversity and specificity, providing a suite of tools for use in mycobacterial genetics. © 2016 John Wiley & Sons Ltd.

  17. Structures of actin-like ParM filaments show architecture of plasmid-segregating spindles.

    PubMed

    Bharat, Tanmay A M; Murshudov, Garib N; Sachse, Carsten; Löwe, Jan

    2015-07-02

    Active segregation of Escherichia coli low-copy-number plasmid R1 involves formation of a bipolar spindle made of left-handed double-helical actin-like ParM filaments. ParR links the filaments with centromeric parC plasmid DNA, while facilitating the addition of subunits to ParM filaments. Growing ParMRC spindles push sister plasmids to the cell poles. Here, using modern electron cryomicroscopy methods, we investigate the structures and arrangements of ParM filaments in vitro and in cells, revealing at near-atomic resolution how subunits and filaments come together to produce the simplest known mitotic machinery. To understand the mechanism of dynamic instability, we determine structures of ParM filaments in different nucleotide states. The structure of filaments bound to the ATP analogue AMPPNP is determined at 4.3 Å resolution and refined. The ParM filament structure shows strong longitudinal interfaces and weaker lateral interactions. Also using electron cryomicroscopy, we reconstruct ParM doublets forming antiparallel spindles. Finally, with whole-cell electron cryotomography, we show that doublets are abundant in bacterial cells containing low-copy-number plasmids with the ParMRC locus, leading to an asynchronous model of R1 plasmid segregation.

  18. Urokinase type plasminogen activator receptor (uPAR) as a new therapeutic target in cancer

    PubMed Central

    Montuori, Nunzia; Pesapane, Ada; Rossi, Francesca W; Giudice, Valentina; De Paulis, Amato; Selleri, Carmine; Ragno, Pia

    2016-01-01

    The urokinase (uPA)-type plasminogen activator receptor (uPAR) is a GPI-anchored receptor that focuses urokinase (uPA) proteolytic activity on the cell surface. uPAR also regulates cell adhesion, migration and proliferation, protects from apoptosis and contributes to epithelial mesenchymal transition (EMT), independently of uPA enzymatic activity. Indeed, uPAR interacts with beta1, beta2 and beta3 integrins, thus regulating their activities. uPAR cross-talks with receptor tyrosine kinases through integrins and regulates cancer cell dormancy, proliferation and angiogenesis. Moreover, uPAR mediates uPA-dependent cell migration and chemotaxis induced by fMet-Leu-Phe (fMLF), through its association with fMLF-receptors (fMLF-Rs). Further, uPAR is an adhesion receptor because it binds vitronectin (VN), a component of provisional extracellular matrix. High uPAR expression predicts for more aggressive disease in several cancer types for its ability to increase invasion and metastasis. In fact, uPAR has been hypothesized to be the link between tumor cell dormancy and proliferation that usually precedes the onset of metastasis. Thus, inhibiting uPAR could be a feasible approach to affect tumor growth and metastasis. Here, we review the more recent advances in the development of uPAR-targeted anti-cancer therapeutic agents suitable for further optimization or ready for the evaluation in early clinical trials. PMID:27896223

  19. PAR-1 contributes to the innate immune response during viral infection

    PubMed Central

    Antoniak, Silvio; Owens, A. Phillip; Baunacke, Martin; Williams, Julie C.; Lee, Rebecca D.; Weithäuser, Alice; Sheridan, Patricia A.; Malz, Ronny; Luyendyk, James P.; Esserman, Denise A.; Trejo, JoAnn; Kirchhofer, Daniel; Blaxall, Burns C.; Pawlinski, Rafal; Beck, Melinda A.; Rauch, Ursula; Mackman, Nigel

    2013-01-01

    Coagulation is a host defense system that limits the spread of pathogens. Coagulation proteases, such as thrombin, also activate cells by cleaving PARs. In this study, we analyzed the role of PAR-1 in coxsackievirus B3–induced (CVB3-induced) myocarditis and influenza A infection. CVB3-infected Par1–/– mice expressed reduced levels of IFN-β and CXCL10 during the early phase of infection compared with Par1+/+ mice that resulted in higher viral loads and cardiac injury at day 8 after infection. Inhibition of either tissue factor or thrombin in WT mice also significantly increased CVB3 levels in the heart and cardiac injury compared with controls. BM transplantation experiments demonstrated that PAR-1 in nonhematopoietic cells protected mice from CVB3 infection. Transgenic mice overexpressing PAR-1 in cardiomyocytes had reduced CVB3-induced myocarditis. We found that cooperative signaling between PAR-1 and TLR3 in mouse cardiac fibroblasts enhanced activation of p38 and induction of IFN-β and CXCL10 expression. Par1–/– mice also had decreased CXCL10 expression and increased viral levels in the lung after influenza A infection compared with Par1+/+ mice. Our results indicate that the tissue factor/thrombin/PAR-1 pathway enhances IFN-β expression and contributes to the innate immune response during single-stranded RNA viral infection. PMID:23391721

  20. Microscopie en champ proche par réflexion

    NASA Astrophysics Data System (ADS)

    Spajer, M.; Courjon, D.; Sarayeddine, K.; Jalocha, A.; Vigoureux, J.-M.

    1991-01-01

    This communication presents two techniques for high resolution surface analysis. In the first one, the illumination beam is totally reflected under the object surface, which must be transparent. The evanescent wave confined on the surface is frustrated locally by a dielectric probe of nanometric dimension which scans the objetc. A horizontal resolution of 10 nm and a vertical one of 1 nm have been obtained. In the second one, more adapted to metallic objects, the surface is illuminated by the near-field of the stylus, in which the reflected beam is Partially launched. First results dealing with the characterization of the dielectric stylus are presented. Cette communication présente deux techniques permettant l'analyse de surface haute résolution. Dans la première, le faisceau d'éclairage est réfléchi totalement sous la surface de l'objet, nécessairement transparent. L'onde évanescente qui l'accompagne est frustrée localement par une pointe diélectrique de dimension nanométrique balayant la surface. Une résolution de 10 nm horizontalement et de 1nm verticalement a été obtenue. Dans la seconde, qui permet d'étudier un objet opaque, celui-ci est éclairé par le champ proche émis par la pointe, dans laquelle le faisceau réfléchi est partiellement réinjecté. Les premiers résultats concernant la caractérisation de la pointe sont présentés.

  1. Expression of Par3 polarity protein correlates with poor prognosis in ovarian cancer.

    PubMed

    Nakamura, Hiroe; Nagasaka, Kazunori; Kawana, Kei; Taguchi, Ayumi; Uehara, Yuriko; Yoshida, Mitsuyo; Sato, Masakazu; Nishida, Haruka; Fujimoto, Asaha; Inoue, Tomoko; Adachi, Katsuyuki; Nagamatsu, Takeshi; Arimoto, Takahide; Oda, Katsutoshi; Osuga, Yutaka; Fujii, Tomoyuki

    2016-11-17

    Previous studies have shown that the cell polarity protein partitioning defective 3 (Par3) plays an essential role in the formation of tight junctions and definition of apical-basal polarity. Aberrant function of this protein has been reported to be involved in epithelial-mesenchymal transition (EMT) and cancer invasion. The aim of this study was to examine the functional mechanism of Par3 in ovarian cancer. First, we investigated the association between Par3 expression level and survival of 50 ovarian cancer patients. Next, we conducted an in vitro analysis of ovarian cancer cell lines, focusing on the cell line JHOC5, to investigate Par3 function. To investigate the function of Par3 in invasion, the IL-6/STAT3 pathway was analyzed upon Par3 knockdown with siRNA. The effect of siRNA treatment was assessed by qPCR, ELISA, and western blotting. Invasiveness and cell proliferation following treatment with siRNA against Par3 were investigated using Matrigel chamber, wound healing, and cell proliferation assays. Expression array data for ovarian cancer patient samples revealed low Par3 expression was significantly associated with good prognosis. Univariate analysis of clinicopathological factors revealed significant association between high Par3 levels and peritoneal dissemination at the time of diagnosis. Knockdown of Par3 in JHOC5 cells suppressed cell invasiveness, migration, and cell proliferation with deregulation of IL-6/STAT3 activity. Taken together, these results suggest that Par3 expression is likely involved in ovarian cancer progression, especially in peritoneal metastasis. The underlying mechanism may be that Par3 modulates IL-6 /STAT3 signaling. Here, we propose that the expression of Par3 in ovarian cancer may control disease outcome.

  2. PAR1 is selectively over expressed in high grade breast cancer patients: a cohort study

    PubMed Central

    Hernández, Norma A; Correa, Elma; Avila, Esther P; Vela, Teresa A; Pérez, Víctor M

    2009-01-01

    Background The protease-activated receptor (PAR1) expression is correlated with the degree of invasiveness in cell lines. Nevertheless it has never been directed involved in breast cancer patients progression. The aim of this study was to determine whether PAR1 expression could be used as predictor of metastases and mortality. Methods In a cohort of patients with infiltrating ductal carcinoma studied longitudinally since 1996 and until 2007, PAR1 over-expression was assessed by immunoblotting, immunohistochemistry, and flow citometry. Chi-square and log rank tests were used to determine whether there was a statistical association between PAR1 overexpression and metastases, mortality, and survival. Multivariate analysis was performed including HER1, stage, ER and nodes status to evaluate PAR1 as an independent prognostic factor. Results Follow up was 95 months (range: 2–130 months). We assayed PAR1 in a cohort of patients composed of 136 patients; we found PAR1 expression assayed by immunoblotting was selectively associated with high grade patients (50 cases of the study cohort; P = 0.001). Twenty-nine of 50 (58%) patients overexpressed PAR1, and 23 of these (46%) developed metastases. HER1, stage, ER and PAR1 overexpression were robustly correlated (Cox regression, P = 0.002, P = 0.024 and P = 0.002 respectively). Twenty-one of the 50 patients (42%) expressed both receptors (PAR1 and HER1 P = 0.0004). We also found a statistically significant correlation between PAR1 overexpression and increased mortality (P = 0.0001) and development of metastases (P = 0.0009). Conclusion Our data suggest PAR1 overexpression may be involved in the development of metastases in breast cancer patient and is associated with undifferentiated cellular progression of the tumor. Further studies are needed to understand PAR1 mechanism of action and in a near future assay its potential use as risk factor for metastasis development in high grade breast cancer patients. PMID:19538737

  3. uPAR regulates bronchial epithelial repair in vitro and is elevated in asthmatic epithelium

    PubMed Central

    Nijmeh, Hala S; Brightling, Christopher E; Sayers, Ian

    2011-01-01

    Background The asthma-associated gene urokinase plasminogen activator receptor (uPAR) may be involved in epithelial repair and airway remodelling. These processes are not adequately targeted by existing asthma therapies. A fuller understanding of the pathways involved in remodelling may lead to development of new therapeutic opportunities. uPAR expression in the lung epithelium of normal subjects and patients with asthma was investigated and the contribution of uPAR to epithelial wound repair in vitro was studied using primary bronchial epithelial cells (NHBECs). Methods Bronchial biopsy sections from normal subjects and patients with asthma were immunostained for uPAR. NHBECs were used in a scratch wound model to investigate the contribution of the plasminogen pathway to repair. The pathway was targeted via blocking of the interaction between urokinase plasminogen activator (uPA) and uPAR and overexpression of uPAR. The rate of wound closure and activation of intracellular signalling pathways and matrix metalloproteinases (MMPs) were measured. Results uPAR expression was significantly increased in the bronchial epithelium of patients with asthma compared with controls. uPAR expression was increased during wound repair in monolayer and air-liquid interface-differentiated NHBEC models. Blocking the uPA–uPAR interaction led to attenuated wound repair via changes in Erk1/2, Akt and p38MAPK signalling. Cells engineered to have raised levels of uPAR showed attenuated repair via sequestration of uPA by soluble uPAR. Conclusions The uPAR pathway is required for efficient epithelial wound repair. Increased uPAR expression, as seen in the bronchial epithelium of patients with asthma, leads to attenuated wound repair which may contribute to the development and progression of airway remodelling in asthma. This pathway may therefore represent a potential novel therapeutic target for the treatment of asthma. PMID:22139533

  4. [Relationships of rice canopy PAR interception and light use efficiency to grain yield].

    PubMed

    Tang, Liang; Zhu, Xiang-Cheng; Cao, Meng-Ying; Cao, Wei-Xing; Zhu, Yan

    2012-05-01

    Taking two rice cultivars (Liangyoupeijiu and Wuxiangjing 14) with different plant types as test materials, a 2-year field experiment was conducted to study the relationships of rice canopy photosynthetically active radiation (PAR) interception and light use efficiency to grain yield under three planting densities and five nitrogen (N) application rates. From tillering to maturing stage, the average PAR reflectance in all treatments was 3.45%. The ratio of reflected PAR to the total loss of PAR from tillering to heading stage was 10.90%, which was significantly lower than that (22.06%) from heading to maturiting stage. The PAR conversion efficiency from tillering to maturing stage decreased with increasing planting density but increased with increasing nitrogen rate, and the conversion efficiency was significantly higher from tillering to heading than from heading to maturing stage. The PAR use efficiency from tillering to maturing stage increased with the increase of planting density and nitrogen application rate, and the average PAR use efficiency of Liangyoupeijiu (1.83 g x MJ(-1)) was significantly higher than that of Wuxiangjing 14 (1.42 g x MJ(-1)). Due to the longer growth period of Wuxiangjing 14, its incident PAR and intercepted PAR under midium and high planting densities were higher, as compared with Liangyoupeijiu. The grain yield was significantly positively correlated with the canopy PAR interceptance and use efficiency at different growth stages, but less correlated with the PAR conversion efficiency. To increase the canopy PAR use efficiency and conversion efficiency on the basis of maintaining higher PAR interception rate could be an effective way to increase rice yield.

  5. Par-4-mediated recruitment of Amida to the actin cytoskeleton leads to the induction of apoptosis

    SciTech Connect

    Boosen, Meike; Vetterkind, Susanne; Koplin, Ansgar; Illenberger, Susanne; Preuss, Ute . E-mail: u.preuss@uni-bonn.de

    2005-12-10

    Par-4 (prostate apoptosis response-4) sensitizes cells to apoptotic stimuli, but the exact mechanisms are still poorly understood. Using Par-4 as bait in a yeast two-hybrid screen, we identified Amida as a novel interaction partner, a ubiquitously expressed protein which has been suggested to be involved in apoptotic processes. Complex formation of Par-4 and Amida occurs in vitro and in vivo and is mediated via the C-termini of both proteins, involving the leucine zipper of Par-4. Amida resides mainly in the nucleus but displays nucleo-cytoplasmic shuttling in heterokaryons. Upon coexpression with Par-4 in REF52.2 cells, Amida translocates to the cytoplasm and is recruited to actin filaments by Par-4, resulting in enhanced induction of apoptosis. The synergistic effect of Amida/Par-4 complexes on the induction of apoptosis is abrogated when either Amida/Par-4 complex formation or association of these complexes with the actin cytoskeleton is impaired, indicating that the Par-4-mediated relocation of Amida to the actin cytoskeleton is crucial for the pro-apoptotic function of Par-4/Amida complexes in REF52.2 cells. The latter results in enhanced phosphorylation of the regulatory light chain of myosin II (MLC) as has previously been shown for Par-4-mediated recruitment of DAP-like kinase (Dlk), suggesting that the recruitment of nuclear proteins involved in the regulation of apoptotic processes to the actin filament system by Par-4 represents a potent mechanism how Par-4 can trigger apoptosis.

  6. A systematic computation scheme of PAR-WIG cruising performance

    NASA Astrophysics Data System (ADS)

    Ando, Shigenori

    1993-08-01

    A systematic computation scheme is presented for PAR-WIG cruising performance, on a FORTRAN program. It is suitable for implementation on PCs. Effects of many parameters on the transportation efficiency are explored. Two concepts are presented in three views and artist impressions. One is a smallest single-crewman vehicle for experiment, sports, or pleasure. The other is a large vehicle for civil transportation. Both have twin hulls, which are quite suitable for installing a 'SMALL-TAIL-WIG' or 'WIG-let' to establish longitudinal attitude stability.

  7. BOREAS TE-12 Incoming PAR Through the Forest Canopy Data

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Papagno, Andrea (Editor); Walter-Shea, Elizabeth A.; Mesarch, Mark A.

    2000-01-01

    The Boreal Ecosystem-Atmospheric Study (BOREAS) TE-12 (Terrestrial Ecology) team collected photosynthetically active radiation (PAR) data sets in support of its efforts to characterize and interpret information on shoot geometry, leaf optical properties, leaf water potential, and leaf gas exchange. The data were collected at the Southern Study Area-Old Black Spruce (SSA-OBS) site from 04-Jul-1996 to 25-Jul-1996. The data are stored in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  8. Recalculation of shielding for the addition of a PAR

    SciTech Connect

    Moe, H.J.

    1988-08-01

    The shielding estimates for the Electron and Positron Linacs and the Booster Synchrotron, contained in the 1987 Conceptual Design Report (CDR) of the APS (ANL-87-15), have been reviewed and recalculated, along with newly initiated calculations of the required shielding for the addition of a Positron Accumulator Ring (PAR). Several new assumptions with respect to beam intensity, projected losses in the system, and assumed operational time have been incorporated into the calculations. Details of the previous calculations, which describe the methodology used, may be found in APS Light Source Note LS-90.

  9. David Kasner, MD, and the Road to Pars Plana Vitrectomy

    PubMed Central

    Blodi, Christopher F.

    2016-01-01

    David Kasner, MD (1927–2001), used his extensive dissections of eye bank eyes and experiences in teaching cataract surgery to resident physicians to realize that excision of vitreous when present in the anterior chamber of eyes undergoing cataract surgery was preferable to prior intraoperative procedures. Noting that eyes tolerated his maneuvers, he then performed planned subtotal open-sky vitrectomies; first on a traumatized eye in 1961, then on two eyes of patients with amyloidosis (1966–1967). The success of these operations was noted by others, most particularly Robert Machemer, MD. Kasner’s work directly led to further surgical developments, including closed pars plana vitrectomy. PMID:27660504

  10. Modelling of a collision between two smartphones

    NASA Astrophysics Data System (ADS)

    de Jesus, V. L. B.; Sasaki, D. G. G.

    2016-09-01

    In the predominant approach in physics textbooks, the collision between particles is treated as a black box, where no physical quantity can be measured. This approach becomes even more evident in experimental classes where collisions are the simplest and most common way of applying the theorem of conservation of linear momentum in the asymptotic behavior. In this paper we develop and analyse an experiment on collisions using only two smartphones. The experimental setup is amazingly simple; the two devices are aligned on a horizontal table of lacquered wood, in order to slide more easily. At the edge of one of them a piece of common sponge is glued using double-sided tape. By using a free smartphone application, the values generated by the accelerometer of the two devices in full motion are measured and tabulated. Through numerical iteration, the speed graphs of the smartphones before, during, and after the collision are obtained. The main conclusions were: (i) the demonstration of the feasibility of using smartphones as an alternative to air tracks and electronic sensors employed in a teaching lab, (ii) the possibility of investigating the collision itself, its characteristics and effects; this is the great advantage of the use of smartphones over traditional experiments, (iii) the compatibility of the results with the impulse-momentum theorem, within the margin of uncertainty.

  11. Underactuated spacecraft formation reconfiguration with collision avoidance

    NASA Astrophysics Data System (ADS)

    Huang, Xu; Yan, Ye; Zhou, Yang

    2017-02-01

    Underactuated collision-free controllers are proposed in this paper for multiple spacecraft formation reconfiguration in circular orbits with the loss of either the radial or in-track thrust. A nonlinear dynamical model of underactuated formation flying is introduced, which is then linearized about circular orbits for controllability and feasibility analyses on underactuated formation reconfiguration. By using the inherent dynamics coupling of system states, reduced-order sliding mode controllers are then designed for either case to indirectly stabilize the system trajectories to the desired formations. In consideration of the collision-avoidance requirement, the artificial potential function method is then employed to design novel underactuated collision-avoidance maneuvers. Rigorous proof substantiates the capabilities of such maneuvers in preventing collisions even in the absence of radial or in-track thrust. Furthermore, a Lyapunov-based analysis ensures the asymptotic stability of the overall closed-loop system. Numerical simulations are performed in a J2-perturbed environment to verify the validity of the proposed underactuated control schemes for collision-free reconfiguration.

  12. Characteristics of Unequal Size Drop Collisions

    NASA Astrophysics Data System (ADS)

    Kim, Jungyong; Longmire, Ellen; Kim, Man Sik

    2009-11-01

    Pairs of water/glycerin drops were injected into silicone oil and traveled on downward trajectories before colliding. Unequal size drop collisions with drop size ratios (Ds/DL) of 0.7 and 0.5 were investigated. Simultaneous dual-field PIV measurements were obtained to characterize coalescence and rebounding behavior. The initial injection angle and tube height were adjusted to access appropriate impact parameters. In the current study, the collision angle of the large drop was, in general, shallower than that of the small drop, and a range of velocity ratios and impact parameters was examined. Coalescence occurs above We* = 11 similar to collision outcomes for equal size drops. As drop size ratio decreases, the intervening film deforms more. If the velocity ratio uL/us < 1, the interface remains deformed at coalescence, but if uL/us > 1, the interface flattens before coalescence. The rupture location varies due to the asymmetry of the drops. As collision offset increases (B > 0), the film rupture time is shortened and mixing of the fluid within the drops is enhanced after coalescence. These results will be compared with the behavior observed previously for equal size drop collisions.

  13. Collisions of solid ice in planetesimal formation

    NASA Astrophysics Data System (ADS)

    Deckers, J.; Teiser, J.

    2016-03-01

    We present collision experiments of centimetre projectiles on to decimetre targets, both made up of solid ice, at velocities of 15-45 m s-1 at an average temperature of {T_{avg}}=255.8 ± 0.7 K. In these collisions, the centimetre body gets disrupted and part of it sticks to the target. This behaviour can be observed up to an upper threshold, that depends on the projectile size, beyond which there is no mass transfer. In collisions of small particles, as produced by the disruption of the centimetre projectiles, we also find mass transfer to the target. In this way, the larger body can gain mass, although the efficiency of the initial mass transfer is rather low. These collision results can be applied to planetesimal formation near the snowline, where evaporation and condensation is expected to produce solid ice. In free fall collisions at velocities up to about 7 m s-1, we investigated the threshold to fragmentation and coefficient of restitution of centimetre ice spheres.

  14. Variational collision integrator for polymer chains

    NASA Astrophysics Data System (ADS)

    Leyendecker, Sigrid; Hartmann, Carsten; Koch, Michael

    2012-05-01

    The numerical simulation of many-particle systems (e.g. in molecular dynamics) often involves constraints of various forms. We present a symplectic integrator for mechanical systems with holonomic (bilateral) and unilateral contact constraints, the latter being in the form of a non-penetration condition. The scheme is based on a discrete variant of Hamilton's principle in which both the discrete trajectory and the unknown collision time are varied (cf. [R. Fetecau, J. Marsden, M. Ortiz, M. West, Nonsmooth Lagrangian mechanics and variational collision integrators, SIAM J. Appl. Dyn. Syst. 2 (2003) 381-416]). As a consequence, the collision event enters the discrete equations of motion as an unknown that has to be computed on-the-fly whenever a collision is imminent. The additional bilateral constraints are efficiently dealt with employing a discrete null space reduction (including a projection and a local reparametrisation step) which considerably reduces the number of unknowns and improves the condition number during each time-step as compared to a standard treatment with Lagrange multipliers. We illustrate the numerical scheme with a simple example from polymer dynamics, a linear chain of beads, and test it against other standard numerical schemes for collision problems.

  15. High energy hadron-hadron collisions

    NASA Astrophysics Data System (ADS)

    Chou, T. T.

    Results of a study on high energy collisions with the geometrical model are summarized in three parts: (1) the elastic hadron-hadron collision, (2) the inelastic hadron-hadron collision, and (3) e(sup +)e(sup (minus)) annihilation. For elastic scattering, a modified form for the hadronic matter form factor of the proton was proposed which is still dipole in form but contains an energy-dependent range parameter. This new expression of the opacity function fits the elastic (bar p)p scattering very well from the ISR to S(bar p)pS energies. Extrapolation of this theory also yielded results in good agreement with the (bar p)p differential cross section measured at the Tevatron. For inelastic hadron-hadron collisions, we have made a systematic investigation of the single-particle momentum spectra in the entire S(bar p)pS energy region. Results are useful for the extrapolation of angular distribution to the higher SSC energies. In e(sup +)e(sup (minus)) annihilation, a detailed analysis of all available experimental multiplicity data from PETRA to LEP energies has been performed. The cluster size of emitted hadrons increases gradually with energy. Aside from high-energy collisions, the giant fullerene molecules were studied and precise algebraic eigenvalue expressions of the Hueckel problem for carbon-240 were obtained.

  16. High energy hadron-hadron collisions

    SciTech Connect

    Chou, T.T.

    1990-11-01

    Results of a study on high energy collision with the geometrical model are summarized in three parts: (i) the elastic hadron-hadron collision, (ii) the inelastic hadron-hadron collision, and (iii) the e{sup +}e{sup {minus}} annihilation. For elastic collisions, a simple expression for the proton matter distribution is proposed which fits well the elastic {bar p}p scattering from ISR to S{bar p}pS energies within the geometrical model. The proton form factor is of the dipole form with an energy-dependent range parameter. The {bar p}p elastic differential cross section at Tevatron energies obtained by extrapolation is in good agreement with experiments. For multiparticle emission processes a unified physical picture for hadron-hadron and e{sup +}e{sup {minus}} collisions was proposed. A number of predictions were made, including the one that KNO-scaling does not obtain for e{sup +}e{sup {minus}} two-jet events. An extension of the considerations within the geometrical model led to a theory of the momentum distributions of the outgoing particles which are found in good agreement with current experimental data. Extrapolations of results to higher energies have been made. The cluster size of hadrons produced in e{sup +}e{sup {minus}} annihilation is found to increase slowly with energy.

  17. Measurements of Correlation-Enhanced Collision Rates

    NASA Astrophysics Data System (ADS)

    Anderegg, F.; Dubin, D. H. E.; O'Neil, T. M.; Driscoll, C. F.

    2008-11-01

    We measure the perp-to-parallel collision rate ν| in laser-cooled Magnesium ion plasmas in the strongly-magnetized and correlated regime; and obtain close agreement with the ``Salpeter correlation enhancement'' first studied for fusion in dense plasmas such as stars. The cyclotron energy, like nuclear energy, is released only through rare close-range collisions. These close collisions are suppressed by strong magnetization, because collisional impact distances are rarely as small as a cyclotron radius rc. However, theory predicts that particle correlations reduce this suppression of collisionality, enhancing the rare close collisions by e^γ, where γ≡e^2 / aT is the correlation parameter. We control the plasma temperature over the range 4 0-6 < T < 1eV, giving correlation parameters up to γ 0, with measured collision rates 2 < ν| 2 10^4 sec-1. At low temperatures, the measured ν| are enhanced by up to 10^9 compared to uncorrelated theory, consistent with the predicted correlation enhancement. When the plasma density is reduced from 2 to 0.12 x10^7cm-3, the correlations are eliminated and the measured ν| agree with uncorrelated theory. E.E. Salpeter and H.M. Van Horn, Astrophys. J. 155, 183 (1969). D.H.E. Dubin, Phys. Rev. Lett. 94, 025002 (2005).

  18. Mutations in the gyrB, parC, and parE genes of quinolone-resistant isolates and mutants of Edwardsiella tarda.

    PubMed

    Kim, Myoung Sug; Jun, Lyu Jin; Shin, Soon Bum; Park, Myoung Ae; Jung, Sung Hee; Kim, Kwangil; Moon, Kyung Ho; Jeong, Hyun Do

    2010-12-01

    The full length genes gyrB (2,415 bp), parC (2,277 bp), and parE (1,896 bp) in Edwardsiella tarda were cloned by PCR with degenerate primers based on the sequence of the respective quinolone resistance-determining region (QRDR), followed by elongation of 5' and 3' ends using cassette ligation-mediated PCR (CLMP). Analysis of the cloned genes revealed open reading frames (ORFs) encoding proteins of 804 (GyrB), 758 (ParC), and 631 (ParE) amino acids with conserved gyrase/topoisomerase features and motifs important for enzymatic function. The ORFs were preceded by putative promoters, ribosome binding sites, and inverted repeats with the potential to form cruciform structures for binding of DNA-binding proteins. When comparing the deduced amino acid sequences of E. tarda GyrB, ParC, and ParE with those of the corresponding proteins in other bacteria, they were found to be most closely related to Escherichia coli GyrB (87.6% identity), Klebsiella pneumoniae ParC (78.8% identity) and Salmonella typhimurium ParE (89.5% identity), respectively. The two topoisomerase genes, parC and parE, were found to be contiguous on the E. tarda chromosome. All 18 quinoloneresistant isolates obtained from Korea thus far did not contain subunit alternations apart from a substitution in GyrA (Ser83→Arg). However, an alteration in the QRDR of ParC (Ser84→Ile) following an amino acid substitution in GyrA (Asp87→Gly) was detected in E. tarda mutants selected in vitro at 8 microng/ml ciprofloxacin (CIP). A mutant with a GyrB (Ser464→Leu) and GyrA (Asp87→Gly) substitution did not show a significant increase in the minimum inhibitory concentration (MIC) of CIP. None of the in vitro mutants exhibited mutations in parE. Thus, gyrA and parC should be considered to be the primary and secondary targets, respectively, of quinolones in E. tarda.

  19. The Par3 polarity protein is an exocyst receptor essential for mammary cell survival

    PubMed Central

    Ahmed, Syed Mukhtar; Macara, Ian G.

    2017-01-01

    The exocyst is an essential component of the secretory pathway required for delivery of basolateral proteins to the plasma membranes of epithelial cells. Delivery occurs adjacent to tight junctions (TJ), suggesting that it recognizes a receptor at this location. However, no such receptor has been identified. The Par3 polarity protein associates with TJs but has no known function in membrane traffic. We now show that, unexpectedly, Par3 is essential for mammary cell survival. Par3 silencing causes apoptosis, triggered by phosphoinositide trisphosphate depletion and decreased Akt phosphorylation, resulting from failure of the exocyst to deliver basolateral proteins to the cortex. A small region of PAR3 binds directly to Exo70 and is sufficient for exocyst docking, membrane-protein delivery and cell survival. PAR3 lacking this domain can associate with the cortex but cannot support exocyst function. We conclude that Par3 is the long-sought exocyst receptor required for targeted membrane-protein delivery. PMID:28358000

  20. The Scribble and Par complexes in polarity and migration: friends or foes?

    PubMed

    Humbert, Patrick O; Dow, Lukas E; Russell, Sarah M

    2006-12-01

    The Par complex [consisting of Bazooka (also called Par3), Par6 and aPKC] is a well-described regulator of cell polarity whose role in many aspects of cell morphogenesis is under intense investigation. Recently, another set of proteins known as the Scribble complex (consisting of Scribble, Discs large and Lethal giant larvae) has also been shown to be important in polarity regulation in several settings. Here, we describe the current status of Scribble in polarity and review evidence from various model systems that indicates an essential but context-dependent role for the Scribble and Par complexes in directed cell migration. Based on the known interactions of Scribble and Par complexes with each other and with other signalling pathways, we propose models by which Par and Scribble might interact to regulate cell migration.

  1. Estimating Photosynthetically Available Radiation (PAR) at the Earth's surface from satellite observations

    NASA Technical Reports Server (NTRS)

    Frouin, Robert

    1993-01-01

    Current satellite algorithms to estimate photosynthetically available radiation (PAR) at the earth' s surface are reviewed. PAR is deduced either from an insolation estimate or obtained directly from top-of-atmosphere solar radiances. The characteristics of both approaches are contrasted and typical results are presented. The inaccuracies reported, about 10 percent and 6 percent on daily and monthly time scales, respectively, are useful to model oceanic and terrestrial primary productivity. At those time scales variability due to clouds in the ratio of PAR and insolation is reduced, making it possible to deduce PAR directly from insolation climatologies (satellite or other) that are currently available or being produced. Improvements, however, are needed in conditions of broken cloudiness and over ice/snow. If not addressed properly, calibration/validation issues may prevent quantitative use of the PAR estimates in studies of climatic change. The prospects are good for an accurate, long-term climatology of PAR over the globe.

  2. Neutrino quantum kinetic equations: The collision term

    DOE PAGES

    Blaschke, Daniel N.; Cirigliano, Vincenzo

    2016-08-01

    We derive the collision term relevant for neutrino quantum kinetic equations in the early universe and compact astrophysical objects, displaying its full matrix structure in both flavor and spin degrees of freedom. We include in our analysis neutrino-neutrino processes, scattering and annihilation with electrons and positrons, and neutrino scattering off nucleons (the latter in the low-density limit). After presenting the general structure of the collision terms, we take two instructive limiting cases. The one-flavor limit highlights the structure in helicity space and allows for a straightforward interpretation of the off-diagonal entries in terms of the product of scattering amplitudes ofmore » the two helicity states. As a result, the isotropic limit is relevant for studies of the early universe: in this case the terms involving spin coherence vanish and the collision term can be expressed in terms of two-dimensional integrals, suitable for computational implementation.« less

  3. Chiral Magnetic Effect in Heavy Ion Collisions

    SciTech Connect

    Liao, Jinfeng

    2016-12-01

    The Chiral Magnetic Effect (CME) is a remarkable phenomenon that stems from highly nontrivial interplay of QCD chiral symmetry, axial anomaly, and gluonic topology. We show it is of fundamental importance to search for the CME in experiments. The heavy ion collisions provide a unique environment where a hot chiral-symmetric quark-gluon plasma is created, gluonic topological fluctuations generate chirality imbalance, and very strong magnetic fields |Β|~m2π are present during the early stage of such collisions. Significant efforts have been made to look for CME signals in heavy ion collision experiments. Lastly, in this contribution we give a brief overview on the status of such efforts.

  4. Chiral Magnetic Effect in Heavy Ion Collisions

    DOE PAGES

    Liao, Jinfeng

    2016-12-01

    The Chiral Magnetic Effect (CME) is a remarkable phenomenon that stems from highly nontrivial interplay of QCD chiral symmetry, axial anomaly, and gluonic topology. We show it is of fundamental importance to search for the CME in experiments. The heavy ion collisions provide a unique environment where a hot chiral-symmetric quark-gluon plasma is created, gluonic topological fluctuations generate chirality imbalance, and very strong magnetic fields |Β→|~m2π are present during the early stage of such collisions. Significant efforts have been made to look for CME signals in heavy ion collision experiments. Lastly, in this contribution we give a brief overview onmore » the status of such efforts.« less

  5. Collision-spike sputtering of Au nanoparticles

    SciTech Connect

    Sandoval, Luis; Urbassek, Herbert M.

    2015-08-06

    Ion irradiation of nanoparticles leads to enhanced sputter yields if the nanoparticle size is of the order of the ion penetration depth. While this feature is reasonably well understood for collision-cascade sputtering, we explore it in the regime of collision-spike sputtering using molecular-dynamics simulation. For the particular case of 200-keV Xe bombardment of Au particles, we show that collision spikes lead to abundant sputtering with an average yield of 397 ± 121 atoms compared to only 116 ± 48 atoms for a bulk Au target. Only around 31 % of the impact energy remains in the nanoparticles after impact; the remainder is transported away by the transmitted projectile and the ejecta. As a result, the sputter yield of supported nanoparticles is estimated to be around 80 % of that of free nanoparticles due to the suppression of forward sputtering.

  6. Collision-spike sputtering of Au nanoparticles

    DOE PAGES

    Sandoval, Luis; Urbassek, Herbert M.

    2015-08-06

    Ion irradiation of nanoparticles leads to enhanced sputter yields if the nanoparticle size is of the order of the ion penetration depth. While this feature is reasonably well understood for collision-cascade sputtering, we explore it in the regime of collision-spike sputtering using molecular-dynamics simulation. For the particular case of 200-keV Xe bombardment of Au particles, we show that collision spikes lead to abundant sputtering with an average yield of 397 ± 121 atoms compared to only 116 ± 48 atoms for a bulk Au target. Only around 31 % of the impact energy remains in the nanoparticles after impact; themore » remainder is transported away by the transmitted projectile and the ejecta. As a result, the sputter yield of supported nanoparticles is estimated to be around 80 % of that of free nanoparticles due to the suppression of forward sputtering.« less

  7. Electromagnetically induced absorption via incoherent collisions

    SciTech Connect

    Yang Xihua; Sheng Jiteng; Xiao Min

    2011-10-15

    We conduct theoretical studies on electromagnetically induced absorption via incoherent collisions in an inhomogeneously broadened ladder-type three-level system with the density-matrix approach. The effects of the collision-induced coherence decay rates as well as the probe laser field intensity on the probe field absorption are examined. It is shown that with the increase of the collisional decay rates in a moderate range, a narrow dip due to electromagnetically induced transparency superimposed on the Doppler-broadened absorption background can be turned into a narrow peak under the conditions that the probe field intensity is not very weak as compared to the pump field, which results from the enhancement of constructive interference and suppression of destructive interference between one-photon and multiphoton transition pathways. The physical origin of the collision-assisted electromagnetically induced absorption is analyzed with a power-series solution of the density-matrix equations.

  8. Computations of Drop Collision and Coalescence

    NASA Technical Reports Server (NTRS)

    Tryggvason, Gretar; Juric, Damir; Nas, Selman; Mortazavi, Saeed

    1996-01-01

    Computations of drops collisions, coalescence, and other problems involving drops are presented. The computations are made possible by a finite difference/front tracking technique that allows direct solutions of the Navier-Stokes equations for a multi-fluid system with complex, unsteady internal boundaries. This method has been used to examine the various collision modes for binary collisions of drops of equal size, mixing of two drops of unequal size, behavior of a suspension of drops in linear and parabolic shear flows, and the thermal migration of several drops. The key results from these simulations are reviewed. Extensions of the method to phase change problems and preliminary results for boiling are also shown.

  9. Neutrino quantum kinetic equations: The collision term

    SciTech Connect

    Blaschke, Daniel N.; Cirigliano, Vincenzo

    2016-08-01

    We derive the collision term relevant for neutrino quantum kinetic equations in the early universe and compact astrophysical objects, displaying its full matrix structure in both flavor and spin degrees of freedom. We include in our analysis neutrino-neutrino processes, scattering and annihilation with electrons and positrons, and neutrino scattering off nucleons (the latter in the low-density limit). After presenting the general structure of the collision terms, we take two instructive limiting cases. The one-flavor limit highlights the structure in helicity space and allows for a straightforward interpretation of the off-diagonal entries in terms of the product of scattering amplitudes of the two helicity states. As a result, the isotropic limit is relevant for studies of the early universe: in this case the terms involving spin coherence vanish and the collision term can be expressed in terms of two-dimensional integrals, suitable for computational implementation.

  10. Hit-and-run planetary collisions.

    PubMed

    Asphaug, Erik; Agnor, Craig B; Williams, Quentin

    2006-01-12

    Terrestrial planet formation is believed to have concluded in our Solar System with about 10 million to 100 million years of giant impacts, where hundreds of Moon- to Mars-sized planetary embryos acquired random velocities through gravitational encounters and resonances with one another and with Jupiter. This led to planet-crossing orbits and collisions that produced the four terrestrial planets, the Moon and asteroids. But here we show that colliding planets do not simply merge, as is commonly assumed. In many cases, the smaller planet escapes from the collision highly deformed, spun up, depressurized from equilibrium, stripped of its outer layers, and sometimes pulled apart into a chain of diverse objects. Remnants of these 'hit-and-run' collisions are predicted to be common among remnant planet-forming populations, and thus to be relevant to asteroid formation and meteorite petrogenesis.

  11. Simulating Coulomb collisions in a magnetized plasma

    SciTech Connect

    Hinton, Fred L.

    2008-04-15

    The problem of simulating ion-ion Coulomb collisions in a plasma in a strong magnetic field is considered. No assumption is made about the ion distribution function except that it is independent of the gyrophase angle, consistent with the assumption that the ion gyrofrequency is much larger than the ion-ion collision frequency. A Langevin method is presented which time-advances the components of a particle's velocity parallel and perpendicular to the magnetic field, without following the rapidly changing gyrophase. Although the standard Monte Carlo procedure, which uses random sampling, can be used, it is also possible to use a deterministic sampling procedure, where the samples are determined by the points which would be used in a numerical quadrature formula for moments of the Fokker-Planck Green's function. This should reduce the sampling noise compared with the Monte Carlo collision method.

  12. Coefficient of restitution for a superelastic collision

    NASA Astrophysics Data System (ADS)

    Cross, Rod

    2017-03-01

    A simple experiment is described where the tip of a metal ruler is used to strike a 50 g mass. Since the ruler is very flexible, the impact duration is much longer than usual, giving the impression that the ruler simply pushes the mass forward at low speed over a long distance. The tip of the ruler remains in contact with the mass throughout the impact. However, the impact is best described as a long duration collision with a coefficient of restitution (COR) greater than zero, despite the fact that the relative speed during and at the end of the collision is zero. If the mass rests on a table and if the ruler strikes the table before striking the mass, then the ruler bends and stores elastic energy. The result is a superelastic collision where the COR is greater than unity.

  13. Active Collision Avoidance for Planetary Landers

    NASA Technical Reports Server (NTRS)

    Rickman, Doug; Hannan, Mike; Srinivasan, Karthik

    2014-01-01

    Present day robotic missions to other planets require precise, a priori knowledge of the terrain to pre-determine a landing spot that is safe. Landing sites can be miles from the mission objective, or, mission objectives may be tailored to suit landing sites. Future robotic exploration missions should be capable of autonomously identifying a safe landing target within a specified target area selected by mission requirements. Such autonomous landing sites must (1) 'see' the surface, (2) identify a target, and (3) land the vehicle. Recent advances in radar technology have resulted in small, lightweight, low power radars that are used for collision avoidance and cruise control systems in automobiles. Such radar systems can be adapted for use as active hazard avoidance systems for planetary landers. The focus of this CIF proposal is to leverage earlier work on collision avoidance systems for MSFC's Mighty Eagle lander and evaluate the use of automotive radar systems for collision avoidance in planetary landers.

  14. Rapidity dependence in holographic heavy ion collisions

    DOE PAGES

    Wilke van der Schee; Schenke, Bjorn

    2015-12-11

    We present an attempt to closely mimic the initial stage of heavy ion collisions within holography, assuming a decoupling of longitudinal and transverse dynamics in the very early stage. We subsequently evolve the obtained initial state using state-of-the-art hydrodynamic simulations and compare results with experimental data. We present results for charged hadron pseudorapidity spectra and directed and elliptic flow as functions of pseudorapidity for √sNN = 200GeV Au-Au and 2.76TeV Pb-Pb collisions. As a result, the directed flow interestingly turns out to be quite sensitive to the viscosity. The results can explain qualitative features of the collisions, but the rapiditymore » spectra in our current model is narrower than the experimental data.« less

  15. Rapidity dependence in holographic heavy ion collisions

    SciTech Connect

    Wilke van der Schee; Schenke, Bjorn

    2015-12-11

    We present an attempt to closely mimic the initial stage of heavy ion collisions within holography, assuming a decoupling of longitudinal and transverse dynamics in the very early stage. We subsequently evolve the obtained initial state using state-of-the-art hydrodynamic simulations and compare results with experimental data. We present results for charged hadron pseudorapidity spectra and directed and elliptic flow as functions of pseudorapidity for √sNN = 200GeV Au-Au and 2.76TeV Pb-Pb collisions. As a result, the directed flow interestingly turns out to be quite sensitive to the viscosity. The results can explain qualitative features of the collisions, but the rapidity spectra in our current model is narrower than the experimental data.

  16. Neutrino quantum kinetic equations: The collision term

    SciTech Connect

    Blaschke, Daniel N.; Cirigliano, Vincenzo

    2016-08-01

    We derive the collision term relevant for neutrino quantum kinetic equations in the early universe and compact astrophysical objects, displaying its full matrix structure in both flavor and spin degrees of freedom. We include in our analysis neutrino-neutrino processes, scattering and annihilation with electrons and positrons, and neutrino scattering off nucleons (the latter in the low-density limit). After presenting the general structure of the collision terms, we take two instructive limiting cases. The one-flavor limit highlights the structure in helicity space and allows for a straightforward interpretation of the off-diagonal entries in terms of the product of scattering amplitudes of the two helicity states. As a result, the isotropic limit is relevant for studies of the early universe: in this case the terms involving spin coherence vanish and the collision term can be expressed in terms of two-dimensional integrals, suitable for computational implementation.

  17. Collision-spike Sputtering of Au Nanoparticles.

    PubMed

    Sandoval, Luis; Urbassek, Herbert M

    2015-12-01

    Ion irradiation of nanoparticles leads to enhanced sputter yields if the nanoparticle size is of the order of the ion penetration depth. While this feature is reasonably well understood for collision-cascade sputtering, we explore it in the regime of collision-spike sputtering using molecular-dynamics simulation. For the particular case of 200-keV Xe bombardment of Au particles, we show that collision spikes lead to abundant sputtering with an average yield of 397 ± 121 atoms compared to only 116 ± 48 atoms for a bulk Au target. Only around 31 % of the impact energy remains in the nanoparticles after impact; the remainder is transported away by the transmitted projectile and the ejecta. The sputter yield of supported nanoparticles is estimated to be around 80 % of that of free nanoparticles due to the suppression of forward sputtering.

  18. Tilting Uranus without a Collision

    NASA Astrophysics Data System (ADS)

    Rogoszinski, Zeeve; Hamilton, Douglas P.

    2016-10-01

    The most accepted hypothesis for the origin of Uranus' 98° obliquity is a giant collision during the late stages of planetary accretion. This model requires a single Earth mass object striking Uranus at high latitudes; such events occur with a probability of about 10%. Alternatively, Uranus' obliquity may have arisen from a sequence of smaller impactors which lead to a uniform distribution of obliquities. Here we explore a third model for tilting Uranus using secular spin-orbit resonance theory. We investigate early Solar System configurations in which a secular resonance between Uranus' axial precession frequency and another planet's orbital node precession frequency might occur.Thommes et al. (1999) hypothesized that Uranus and Neptune initially formed between Jupiter and Saturn, and were then kicked outward. In our scenario, Neptune leaves first while Uranus remains behind. As an exterior Neptune slowly migrates outward, it picks up both Uranus and Saturn in spin-orbit resonances (Ward and Hamilton 2004; Hamilton and Ward 2004). Only a distant Neptune has a nodal frequency slow enough to resonate with Uranus' axial precession.This scenario, with diverging orbits, results in resonance capture. As Neptune migrates outward its nodal precession slows. While in resonance, Uranus and Saturn each tilt a bit further, slowing their axial precession rates to continually match Neptune's nodal precession rate. Tilting Uranus to high obliquities takes a few 100 Myrs. This timescale may be too long to hold Uranus captive between Jupiter and Saturn, and we are investigating how to reduce it. We also find that resonance capture is rare if Uranus' initial obliquity is greater than about 10°, as the probability of capture decreases as the planet's initial obliquity increases. We will refine this estimate by quantifying capture statistics, and running accretion simulations to test the likelihood of a low early obliquity. Our preliminary findings show that most assumptions about

  19. Brulure par Foudre. A Propos d’une Observation

    PubMed Central

    Mradmi, W.; Fassi-Fihri, J.; Mehaji, G.; Ezzoubi, M.; Diouri, M.; Bahechar, N.; Boukind, E.H.

    2005-01-01

    Summary Aussi loin que l’on remonte dans la littérature, on retrouve des récits relatant des accidents consécutifs à la fulguration chez l’homme. La foudre était alors associée à la colère des dieux ou à la notion de châtiment. La fulguration correspond à un transfert d’énergie entre un cumulonimbus de charge négative et un objet de charge positive se trouvant au niveau du sol. Les lésions déterminées sont à la fois thermiques et électrothermiques. Bien que l’arrêt cardiorespiratoire soit une cause bien documentée de décès, la plupart des cas rapportés dans la littérature décrivent un éventail très disparate des séquelles qui surviennent suite à cet accident. Les Auteurs rapportent le cas d’un patient atteint par la foudre en insistant particulièrement sur les complications neurologiques qui sont survenues en cours d’évolution. Se basant sur cette observation et sur une revue de la littérature, les Auteurs soulignent que le pronostic des patients atteints par la foudre est plus favorable que généralement rapporté. PMID:21990993

  20. Fluoroquinolone Resistance Mutations in the parC, parE, and gyrA Genes of Clinical Isolates of Viridans Group Streptococci

    PubMed Central

    González, Irene; Georgiou, Marios; Alcaide, Fernando; Balas, Delia; Liñares, Josefina; de la Campa, Adela G.

    1998-01-01

    The nucleotide sequences of the quinolone resistance-determining regions (QRDRs) of the parC and gyrA genes from seven ciprofloxacin-resistant (Cpr) isolates of viridans group streptococci (two high-level Cpr Streptococcus oralis and five low-level Cpr Streptococcus mitis isolates) were determined and compared with those obtained from susceptible isolates. The nucleotide sequences of the QRDRs of the parE and gyrB genes from the five low-level Cpr S. mitis isolates and from the NCTC 12261 type strain were also analyzed. Four of these low-level Cpr isolates had changes affecting the subunits of DNA topoisomerase IV: three in Ser-79 (to Phe or Ile) of ParC and one in ParE at a position not previously described to be involved in quinolone resistance (Pro-424). One isolate did not show any mutation. The two high-level Cpr S. oralis isolates showed mutations affecting equivalent residue positions of ParC and GyrA, namely, Ser-79 to Phe and Ser-81 to Phe or Tyr, respectively. The parC mutations were able to transform Streptococcus pneumoniae to ciprofloxacin resistance, while the gyrA mutations transformed S. pneumoniae only when mutations in parC were present. These results suggest that DNA topoisomerase IV is a primary target of ciprofloxacin in viridans group streptococci, DNA gyrase being a secondary target. PMID:9797205

  1. Fluoroquinolone resistance mutations in the parC, parE, and gyrA genes of clinical isolates of viridans group streptococci.

    PubMed

    González, I; Georgiou, M; Alcaide, F; Balas, D; Liñares, J; de la Campa, A G

    1998-11-01

    The nucleotide sequences of the quinolone resistance-determining regions (QRDRs) of the parC and gyrA genes from seven ciprofloxacin-resistant (Cpr) isolates of viridans group streptococci (two high-level Cpr Streptococcus oralis and five low-level Cpr Streptococcus mitis isolates) were determined and compared with those obtained from susceptible isolates. The nucleotide sequences of the QRDRs of the parE and gyrB genes from the five low-level Cpr S. mitis isolates and from the NCTC 12261 type strain were also analyzed. Four of these low-level Cpr isolates had changes affecting the subunits of DNA topoisomerase IV: three in Ser-79 (to Phe or Ile) of ParC and one in ParE at a position not previously described to be involved in quinolone resistance (Pro-424). One isolate did not show any mutation. The two high-level Cpr S. oralis isolates showed mutations affecting equivalent residue positions of ParC and GyrA, namely, Ser-79 to Phe and Ser-81 to Phe or Tyr, respectively. The parC mutations were able to transform Streptococcus pneumoniae to ciprofloxacin resistance, while the gyrA mutations transformed S. pneumoniae only when mutations in parC were present. These results suggest that DNA topoisomerase IV is a primary target of ciprofloxacin in viridans group streptococci, DNA gyrase being a secondary target.

  2. Coincidence studies of ion-molecule collisions

    NASA Astrophysics Data System (ADS)

    Ben-Itzhak, Itzik

    1998-05-01

    Two of the simplest collision systems one can imagine are H^+ + H(1s) and H^+ + D(1s). Electron transfer is resonant in the first and nearly resonant in the latter because of the 3.7 meV gap between the H(1s) and D(1s). Once the collision velocity becomes small enough quantum effects become more pronounced and the electron transfer rate as a function of collision energy exhibits many resonances(G. Hunter and M. Kuriyan, Proc. Roy. Soc. Lond. A 358), 321 (1977).^,(J.P. Davis and W.R. Thorson, Can. J. Phys. 56), 996 (1978).. However, most of the interesting features appear at very low energies, of a few meV, and these collision systems which are the ``theorist's dream'' become a nightmare to experimentalists. Nevertheless, we are undertaking the challenging measurement of near resonant electron transfer in the H^+ + D(1s) collision system. When a HD molecule is ionized quickly, such that the transition to the HD^+ molecular ion is vertical, about 1% of the HD^+(1sσ) is in the vibrational continuum. The transition probability falls off approximately exponentially above threshold and its width is about 200 meV. During the dissociation, the electron initially centered on the D core can make a transition to the H core when the 2pσ and 1sσ potential energy curves associated with the two dissociation limits get close to each other. It is important to note that during molecular dissociation the ``avoided crossing'' is crossed only once in contrast to twice during a full collision. Using a localized cold HD target and 3D imaging of the low energy H^+ and D^+ dissociation fragments one can experimentally determine the transition probability between these two states as a function of the dissociation energy. Clearly, a recoil energy resolution of the order of a meV is necessary, which is the primary experimental challenge.

  3. Early hydrodynamic evolution of a stellar collision

    SciTech Connect

    Kushnir, Doron; Katz, Boaz

    2014-04-20

    The early phase of the hydrodynamic evolution following the collision of two stars is analyzed. Two strong shocks propagate from the contact surface and move toward the center of each star at a velocity that is a small fraction of the velocity of the approaching stars. The shocked region near the contact surface has a planar symmetry and a uniform pressure. The density vanishes at the (Lagrangian) surface of contact, and the speed of sound diverges there. The temperature, however, reaches a finite value, since as the density vanishes, the finite pressure is radiation dominated. For carbon-oxygen white dwarf (CO WD) collisions, this temperature is too low for any appreciable nuclear burning shortly after the collision, which allows for a significant fraction of the mass to be highly compressed to the density required for efficient {sup 56}Ni production in the detonation wave that follows. This property is crucial for the viability of collisions of typical CO WD as progenitors of type Ia supernovae, since otherwise only massive (>0.9 M {sub ☉}) CO WDs would have led to such explosions (as required by all other progenitor models). The divergence of the speed of sound limits numerical studies of stellar collisions, as it makes convergence tests exceedingly expensive unless dedicated schemes are used. We provide a new one-dimensional Lagrangian numerical scheme to achieve this. A self-similar planar solution is derived for zero-impact parameter collisions between two identical stars, under some simplifying assumptions (including a power-law density profile), which is the planar version of previous piston problems that were studied in cylindrical and spherical symmetries.

  4. Collision statistics in sheared inelastic hard spheres.

    PubMed

    Bannerman, Marcus N; Green, Thomas E; Grassia, Paul; Lue, Leo

    2009-04-01

    The dynamics of sheared inelastic-hard-sphere systems is studied using nonequilibrium molecular-dynamics simulations and direct simulation Monte Carlo. In the molecular-dynamics simulations Lees-Edwards boundary conditions are used to impose the shear. The dimensions of the simulation box are chosen to ensure that the systems are homogeneous and that the shear is applied uniformly. Various system properties are monitored, including the one-particle velocity distribution, granular temperature, stress tensor, collision rates, and time between collisions. The one-particle velocity distribution is found to agree reasonably well with an anisotropic Gaussian distribution, with only a slight overpopulation of the high-velocity tails. The velocity distribution is strongly anisotropic, especially at lower densities and lower values of the coefficient of restitution, with the largest variance in the direction of shear. The density dependence of the compressibility factor of the sheared inelastic-hard-sphere system is quite similar to that of elastic-hard-sphere fluids. As the systems become more inelastic, the glancing collisions begin to dominate over more direct, head-on collisions. Examination of the distribution of the times between collisions indicates that the collisions experienced by the particles are strongly correlated in the highly inelastic systems. A comparison of the simulation data is made with direct Monte Carlo simulation of the Enskog equation. Results of the kinetic model of Montanero [J. Fluid Mech. 389, 391 (1999)] based on the Enskog equation are also included. In general, good agreement is found for high-density, weakly inelastic systems.

  5. Affordable MMW aircraft collision avoidance system

    NASA Astrophysics Data System (ADS)

    Almsted, Larry D.; Becker, Robert C.; Zelenka, Richard E.

    1997-06-01

    Collision avoidance is of concern to all aircraft, requiring the detection and identification of hazardous terrain or obstacles in sufficient time for clearance maneuvers. The collision avoidance requirement is even more demanding for helicopters, as their unique capabilities result in extensive operations at low-altitude, near to terrain and other hazardous obstacles. TO augment the pilot's visual collision avoidance abilities, some aircraft are equipped with 'enhanced-vision' systems or terrain collision warning systems. Enhanced-vision systems are typically very large and costly systems that are not very covert and are also difficult to install in a helicopter. The display is typically raw images from infrared or radar sensors, and can require a high degree of pilot interpretation and attention. Terrain collision warning system that rely on stored terrain maps are often of low resolution and accuracy and do not represent hazards to the aircraft placed after map sampling. Such hazards could include aircraft parked on runway, man- made towers or buildings and hills. In this paper, a low cost dual-function scanning pencil-beam, millimeter-wave radar forward sensor is used to determine whether an aircraft's flight path is clear of obstructions. Due to the limited space and weight budget in helicopters, the system is a dual function system that is substituted in place of the existing radar altimeter. The system combines a 35 GHz forward looking obstacle avoidance radar and a 4.3 GHz radar altimeter. The forward looking 35 GHz 3D radar's returns are used to construct a terrain and obstruction database surrounding an aircraft, which is presented to the pilot as a synthetic perspective display. The 35 GHz forward looking radar and the associated display was evaluated in a joint NASA Honeywell flight test program in 1996. The tests were conducted on a NASA/Army test helicopter. The test program clearly demonstrated the systems potential usefulness for collision avoidance.

  6. Newton's cradle undone: Experiments and collision models for the normal collision of three solid spheres

    NASA Astrophysics Data System (ADS)

    Donahue, C. M.; Hrenya, C. M.; Zelinskaya, A. P.; Nakagawa, K. J.

    2008-11-01

    Using an apparatus inspired by Newton's cradle, the simultaneous, normal collision between three solid spheres is examined. Namely, an initially touching, motionless pair of "target" particles (doublet) is impacted on one end by a third "striker" particle. Measurements of postcollisional velocities and collision durations are obtained via high-speed photography and an electrical circuit, respectively. Contrary to intuition, the expected Newton's cradle outcome of a motionless, touching particle pair at the bottom of the pendulum arc is not observed in either case. Instead, the striker particle reverses its direction and separates from the middle particle after collision. This reversal is not observed, however, if the target particles are separated by a small distance (not in contact) initially, although a separation still occurs between the striker and middle particle after the collision, with both particles traveling in the same direction. For the case of initially touching target particles, contact duration measurements indicate that the striker separates from the three particles before the two target particles separate. However, when the targets are slightly separated, a three-particle collision is never observed, and the collision is, in fact, a series of two-body collisions. A subsequent implementation of a variety of hard-sphere and soft-sphere collision models indicates that a three-body (soft-sphere) treatment is essential for predicting the velocity reversal, consistent with the experimental findings. Finally, a direct comparison between model predictions and measurements of postcollisional velocities and contact durations provides a gauge of the relative merits of existing collision models for three-body interactions.

  7. Cathepsin S Causes Inflammatory Pain via Biased Agonism of PAR2 and TRPV4*

    PubMed Central

    Zhao, Peishen; Lieu, TinaMarie; Barlow, Nicholas; Metcalf, Matthew; Veldhuis, Nicholas A.; Jensen, Dane D.; Kocan, Martina; Sostegni, Silvia; Haerteis, Silke; Baraznenok, Vera; Henderson, Ian; Lindström, Erik; Guerrero-Alba, Raquel; Valdez-Morales, Eduardo E.; Liedtke, Wolfgang; McIntyre, Peter; Vanner, Stephen J.; Korbmacher, Christoph; Bunnett, Nigel W.

    2014-01-01

    Serine proteases such as trypsin and mast cell tryptase cleave protease-activated receptor-2 (PAR2) at R36↓S37 and reveal a tethered ligand that excites nociceptors, causing neurogenic inflammation and pain. Whether proteases that cleave PAR2 at distinct sites are biased agonists that also induce inflammation and pain is unexplored. Cathepsin S (Cat-S) is a lysosomal cysteine protease of antigen-presenting cells that is secreted during inflammation and which retains activity at extracellular pH. We observed that Cat-S cleaved PAR2 at E56↓T57, which removed the canonical tethered ligand and prevented trypsin activation. In HEK and KNRK cell lines and in nociceptive neurons of mouse dorsal root ganglia, Cat-S and a decapeptide mimicking the Cat-S-revealed tethered ligand-stimulated PAR2 coupling to Gαs and formation of cAMP. In contrast to trypsin, Cat-S did not mobilize intracellular Ca2+, activate ERK1/2, recruit β-arrestins, or induce PAR2 endocytosis. Cat-S caused PAR2-dependent activation of transient receptor potential vanilloid 4 (TRPV4) in Xenopus laevis oocytes, HEK cells and nociceptive neurons, and stimulated neuronal hyperexcitability by adenylyl cyclase and protein kinase A-dependent mechanisms. Intraplantar injection of Cat-S caused inflammation and hyperalgesia in mice that was attenuated by PAR2 or TRPV4 deletion and adenylyl cyclase inhibition. Cat-S and PAR2 antagonists suppressed formalin-induced inflammation and pain, which implicates endogenous Cat-S and PAR2 in inflammatory pain. Our results identify Cat-S as a biased agonist of PAR2 that causes PAR2- and TRPV4-dependent inflammation and pain. They expand the role of PAR2 as a mediator of protease-driven inflammatory pain. PMID:25118282

  8. Cathepsin S causes inflammatory pain via biased agonism of PAR2 and TRPV4.

    PubMed

    Zhao, Peishen; Lieu, TinaMarie; Barlow, Nicholas; Metcalf, Matthew; Veldhuis, Nicholas A; Jensen, Dane D; Kocan, Martina; Sostegni, Silvia; Haerteis, Silke; Baraznenok, Vera; Henderson, Ian; Lindström, Erik; Guerrero-Alba, Raquel; Valdez-Morales, Eduardo E; Liedtke, Wolfgang; McIntyre, Peter; Vanner, Stephen J; Korbmacher, Christoph; Bunnett, Nigel W

    2014-09-26

    Serine proteases such as trypsin and mast cell tryptase cleave protease-activated receptor-2 (PAR2) at R(36)↓S(37) and reveal a tethered ligand that excites nociceptors, causing neurogenic inflammation and pain. Whether proteases that cleave PAR2 at distinct sites are biased agonists that also induce inflammation and pain is unexplored. Cathepsin S (Cat-S) is a lysosomal cysteine protease of antigen-presenting cells that is secreted during inflammation and which retains activity at extracellular pH. We observed that Cat-S cleaved PAR2 at E(56)↓T(57), which removed the canonical tethered ligand and prevented trypsin activation. In HEK and KNRK cell lines and in nociceptive neurons of mouse dorsal root ganglia, Cat-S and a decapeptide mimicking the Cat-S-revealed tethered ligand-stimulated PAR2 coupling to Gαs and formation of cAMP. In contrast to trypsin, Cat-S did not mobilize intracellular Ca(2+), activate ERK1/2, recruit β-arrestins, or induce PAR2 endocytosis. Cat-S caused PAR2-dependent activation of transient receptor potential vanilloid 4 (TRPV4) in Xenopus laevis oocytes, HEK cells and nociceptive neurons, and stimulated neuronal hyperexcitability by adenylyl cyclase and protein kinase A-dependent mechanisms. Intraplantar injection of Cat-S caused inflammation and hyperalgesia in mice that was attenuated by PAR2 or TRPV4 deletion and adenylyl cyclase inhibition. Cat-S and PAR2 antagonists suppressed formalin-induced inflammation and pain, which implicates endogenous Cat-S and PAR2 in inflammatory pain. Our results identify Cat-S as a biased agonist of PAR2 that causes PAR2- and TRPV4-dependent inflammation and pain. They expand the role of PAR2 as a mediator of protease-driven inflammatory pain. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. The PARA-suite: PAR-CLIP specific sequence read simulation and processing

    PubMed Central

    Kloetgen, Andreas; Borkhardt, Arndt; Hoell, Jessica I.

    2016-01-01

    Background Next-generation sequencing technologies have profoundly impacted biology over recent years. Experimental protocols, such as photoactivatable ribonucleoside-enhanced cross-linking and immunoprecipitation (PAR-CLIP), which identifies protein–RNA interactions on a genome-wide scale, commonly employ deep sequencing. With PAR-CLIP, the incorporation of photoactivatable nucleosides into nascent transcripts leads to high rates of specific nucleotide conversions during reverse transcription. So far, the specific properties of PAR-CLIP-derived sequencing reads have not been assessed in depth. Methods We here compared PAR-CLIP sequencing reads to regular transcriptome sequencing reads (RNA-Seq) to identify distinctive properties that are relevant for reference-based read alignment of PAR-CLIP datasets. We developed a set of freely available tools for PAR-CLIP data analysis, called the PAR-CLIP analyzer suite (PARA-suite). The PARA-suite includes error model inference, PAR-CLIP read simulation based on PAR-CLIP specific properties, a full read alignment pipeline with a modified Burrows–Wheeler Aligner algorithm and CLIP read clustering for binding site detection. Results We show that differences in the error profiles of PAR-CLIP reads relative to regular transcriptome sequencing reads (RNA-Seq) make a distinct processing advantageous. We examine the alignment accuracy of commonly applied read aligners on 10 simulated PAR-CLIP datasets using different parameter settings and identified the most accurate setup among those read aligners. We demonstrate the performance of the PARA-suite in conjunction with different binding site detection algorithms on several real PAR-CLIP and HITS-CLIP datasets. Our processing pipeline allowed the improvement of both alignment and binding site detection accuracy. Availability The PARA-suite toolkit and the PARA-suite aligner are available at https://github.com/akloetgen/PARA-suite and https

  10. Participation of the urokinase-type plasminogen activator receptor (uPAR) in neutrophil transendothelial migration.

    PubMed

    Pliyev, Boris K; Antonova, Olga A; Menshikov, Mikhail

    2011-05-01

    The mechanisms underlying migration of neutrophils across endothelium are not completely understood. The urokinase-type plasminogen activator receptor (uPAR) plays a key role in neutrophil adhesion and migration. In the present study, we addressed whether uPAR regulates neutrophil transendothelial migration. We first showed that siRNA-mediated knockdown of uPAR in human umbilical vein endothelial cells (HUVECs) did not affect neutrophil migration across HUVEC monolayers indicating that endothelial uPAR does not regulate neutrophil transmigration. In contrast, the transmigration was significantly inhibited by Fab' fragment of anti-uPAR monoclonal antibody and proteolytically inactive urokinase (uPA), whereas inhibition of proteolytical activity of endogenous uPA (with amiloride or plasminogen activator inhibitor-1) did not affect the transmigration. Both the anti-uPAR Fab' fragment and proteolytically inactive uPA did not exert significant effects upon the transmigration conducted in the presence of F(ab')(2) fragment of blocking antibody to integrin Mac-1 indicating that uPAR regulates Mac-1-dependent transmigration. Mac-1-dependent, but not Mac-1-independent, transmigration was significantly reduced in the presence of N-acetyl-d-glucosamine and d-mannose, the saccharides that disrupt uPAR/Mac-1 association, but was unaffected in the presence of control saccharides (d-sorbitol and sucrose). We conclude that physical association of uPAR with Mac-1 mediates the regulatory effect of uPAR over the transmigration. Finally, we provide evidence that the functional cooperation between uPAR and Mac-1 is essential at both adhesion and diapedesis steps of neutrophil migration across endothelium. Thus, uPAR expressed on neutrophil plasma membrane regulates transendothelial migration independently of uPA proteolytical activity and acting as a cofactor for integrin Mac-1.

  11. The two Cis-acting sites, parS1 and oriC1, contribute to the longitudinal organisation of Vibrio cholerae chromosome I.

    PubMed

    David, Ariane; Demarre, Gaëlle; Muresan, Leila; Paly, Evelyne; Barre, François-Xavier; Possoz, Christophe

    2014-07-01

    The segregation of bacterial chromosomes follows a precise choreography of spatial organisation. It is initiated by the bipolar migration of the sister copies of the replication origin (ori). Most bacterial chromosomes contain a partition system (Par) with parS sites in close proximity to ori that contribute to the active mobilisation of the ori region towards the old pole. This is thought to result in a longitudinal chromosomal arrangement within the cell. In this study, we followed the duplication frequency and the cellular position of 19 Vibrio cholerae genome loci as a function of cell length. The genome of V. cholerae is divided between two chromosomes, chromosome I and II, which both contain a Par system. The ori region of chromosome I (oriI) is tethered to the old pole, whereas the ori region of chromosome II is found at midcell. Nevertheless, we found that both chromosomes adopted a longitudinal organisation. Chromosome I extended over the entire cell while chromosome II extended over the younger cell half. We further demonstrate that displacing parS sites away from the oriI region rotates the bulk of chromosome I. The only exception was the region where replication terminates, which still localised to the septum. However, the longitudinal arrangement of chromosome I persisted in Par mutants and, as was reported earlier, the ori region still localised towards the old pole. Finally, we show that the Par-independent longitudinal organisation and oriI polarity were perturbed by the introduction of a second origin. Taken together, these results suggest that the Par system is the major contributor to the longitudinal organisation of chromosome I but that the replication program also influences the arrangement of bacterial chromosomes.

  12. Collision detection and untangling for surgical robotic manipulators.

    PubMed

    Morvan, Tangui; Martinsen, Magnar; Reimers, Martin; Samset, Eigil; Elle, Ole Jakob

    2009-09-01

    Robotic-assisted minimally invasive surgery provides several advantages over traditional surgery; however, it also has several drawbacks, such as possible collisions between the robotic arms and a limited field of view. A generic method for tracking the configuration of a surgical manipulator in real time is presented. It is coupled with a collision detection and dynamic simulation algorithm, allowing the operator to detect collisions between robotic arms before they happen and presenting the best possible untangling direction to get out of collisions. Our algorithm successfully tracks the configuration of the Zeus surgical system and accurately detects possible collisions in real time. A pilot study on our system proved its efficiency in reducing the duration and severity of collisions, at the price of longer completion times. Our system helps alleviate the collision problem by reducing the time in collision.

  13. GEO Collision Avoidance using a Service Vehicle

    NASA Astrophysics Data System (ADS)

    Duncan, M.; Concha, M.

    2013-09-01

    Space Situational Awareness (SSA) is defined as the knowledge and characterization of all aspects of space. SSA is now a fundamental and critical component of space operations. The increased dependence on our space assets has in turn lead to a greater need for accurate, near real-time knowledge of all space activities. Key areas of SSA include improved tracking of small objects, determining the intent of maneuvering spacecraft, identifying all potential high risk conjunction events, and leveraging non-traditional sensors in support of the SSA mission. As the size of the space object population grows, the number of collision avoidance maneuvers grows. Moreover, as the SSA mission evolves to near real-time assessment and analysis, the need for new, more sophisticated collision avoidance methods are required. This paper demonstrates the utility of using a service vehicle to perform collision avoidance maneuver for GEO satellites. We present the planning and execution details required to successfully execute a maneuver; given the traditional conjunction analysis timelines. Various operational constraints and scenarios are considered as part of the demonstration. Development of the collision avoidance strategy is created using SpaceNav's collision risk management tool suite. This study aims to determine the agility required of any proposed servicing capability to provide collision avoidance within traditional conjunction analysis and collision avoidance operations timelines. Key trades and analysis items are given to be: 1. How do we fuse the spacecraft state data with the tracking data collected from the proximity sensor that resides on the servicing spacecraft? 2. How do we deal with the possibility that the collision threat for the event may change as the time to close approach is reduced? 3. Perform trade space of maneuver/thrust time versus achievable change in the spacecraft's orbit. 4. Perform trade space of proximity of service vehicle to spacecraft versus time

  14. Intelligent Sensor Tasking for Space Collision Mitigation

    SciTech Connect

    Olivier, S S; Pertica, A J; Henderson, J R

    2010-04-01

    Orbital collisions pose a hazard to space operations. Using a high performance computer modeling and simulation environment for space situational awareness, we explore a new paradigm for improving satellite conjunction analysis by obtaining more precise orbital information only for those objects that pose a collision risk greater than a defined threshold to a specific set of satellites during a specified time interval. In particular, we assess the improvement in the quality of the conjunction analysis that can be achieved using a distributed network of ground-based telescopes.

  15. High energy particle collisions near black holes

    NASA Astrophysics Data System (ADS)

    Zaslavskii, O. B.

    2016-10-01

    If two geodesic particles collide near a rotating black hole, their energy in the centre of mass frame Ec.m. can become unbound under certain conditions (the so-called BSW effect). The special role is played here by so-called critical geodesics when one of particles has fine-tuned energy and angular momentum. The nature of geodesics reveals itself also in fate of the debris after collisions. One of particles moving to a remote observer is necessarily near-critical. We discuss, when such a collision can give rise not only unboud Ec.m. but also unbound Killing energy E (so-called super-Penrose process).

  16. Angular spectrum analysis in heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Llanes-Estrada, Felipe J.; Muñoz Martínez, Jose L.

    2017-01-01

    Heavy Ion Collisions serve to study some features of early-universe cosmology. In this contribution we adapt data analysis frequently used to understand the Cosmic Microwave Background anisotropies (such as the Mollweide projection and the angular power spectrum) to heavy ion collisions at the LHC. We examine a few publicly available events of the ALICE collaboration under this light. Because the ALICE time projection chamber has limited coverage in rapidity and some blind angles in the transverse plane, the angular spectrum seems very influenced by the detector's acceptance.

  17. Collision avoidance for CTV: Requirements and capabilities

    NASA Technical Reports Server (NTRS)

    Nosek, Thomas; Rourke, Kenneth

    1991-01-01

    Collision avoidance must be ensured during Cargo Transfer Vehicle (CTV) operations near the space station. The design of the Collision Avoidance Maneuver (CAM) will involve analysis of CTV failure modes during rendezvous and proximity operations as well as analysis of possible problems external to the CTV, but that would require CTV to execute a CAM. In considering the requirements and design of the CAM for the CTV, the CAM design for the Orbital Maneuvering Vehicle (OMV) is a useful reference point from which some lessons can be learned and many CTV design options can be set forth.

  18. Collision avoidance for CTV: Requirements and capabilities

    NASA Astrophysics Data System (ADS)

    Nosek, Thomas; Rourke, Kenneth

    Collision avoidance must be ensured during Cargo Transfer Vehicle (CTV) operations near the space station. The design of the Collision Avoidance Maneuver (CAM) will involve analysis of CTV failure modes during rendezvous and proximity operations as well as analysis of possible problems external to the CTV, but that would require CTV to execute a CAM. In considering the requirements and design of the CAM for the CTV, the CAM design for the Orbital Maneuvering Vehicle (OMV) is a useful reference point from which some lessons can be learned and many CTV design options can be set forth.

  19. Automobile Collisions, Kinematics and Related Injury Patterns

    PubMed Central

    Siegel, A. W.

    1972-01-01

    It has been determined clinically that fatalities and injury severity resulting from automobile collisions have decreased during the last five years for low impact speeds. This reduction is a direct result of the application of biomechanics and occupant kinematics, as well as changes in automobile design. The paper defines terminology used in the field of mechanics and develops examples and illustrations of the physical concepts of acceleration, force strength, magnitude duration, rate of onset and others, as they apply to collision phenomena and injury. The mechanism of injury pattern reduction through the use of restraint systems is illustrated. PMID:5059661

  20. A numerical 4D Collision Risk Model

    NASA Astrophysics Data System (ADS)

    Schmitt, Pal; Culloch, Ross; Lieber, Lilian; Kregting, Louise

    2017-04-01

    With the growing number of marine renewable energy (MRE) devices being installed across the world, some concern has been raised about the possibility of harming mobile, marine fauna by collision. Although physical contact between a MRE device and an organism has not been reported to date, these novel sub-sea structures pose a challenge for accurately estimating collision risks as part of environmental impact assessments. Even if the animal motion is simplified to linear translation, ignoring likely evasive behaviour, the mathematical problem of establishing an impact probability is not trivial. We present a numerical algorithm to obtain such probability distributions using transient, four-dimensional simulations of a novel marine renewable device concept, Deep Green, Minesto's power plant and hereafter referred to as the 'kite' that flies in a figure-of-eight configuration. Simulations were carried out altering several configurations including kite depth, kite speed and kite trajectory while keeping the speed of the moving object constant. Since the kite assembly is defined as two parts in the model, a tether (attached to the seabed) and the kite, collision risk of each part is reported independently. By comparing the number of collisions with the number of collision-free simulations, a probability of impact for each simulated position in the cross- section of the area is considered. Results suggest that close to the bottom, where the tether amplitude is small, the path is always blocked and the impact probability is 100% as expected. However, higher up in the water column, the collision probability is twice as high in the mid line, where the tether passes twice per period than at the extremes of its trajectory. The collision probability distribution is much more complex in the upper end of the water column, where the kite and tether can simultaneously collide with the object. Results demonstrate the viability of such models, which can also incorporate empirical

  1. Nonrelativistic theory of heavy-ion collisions

    SciTech Connect

    Bertsch, G.

    1984-07-17

    A wide range of phenomena is observed in heavy-ion collisions, calling for a comprehensive theory based on fundamental principles of many-particle quantum mechanics. At low energies, the nuclear dynamics is controlled by the mean field, as we know from spectroscopic nuclear physics. We therefore expect the comprehensive theory of collisions to contain mean-field theory at low energies. The mean-field theory is the subject of the first lectures in this chapter. This theory can be studied quantum mechanically, in which form it is called TDHF (time-dependent Hartree-Fock), or classically, where the equation is called the Vlasov equation. 25 references, 14 figures.

  2. Simplest piston problem. II. Inelastic collisions.

    PubMed

    Hurtado, Pablo I; Redner, S

    2006-01-01

    We study the dynamics of three particles in a finite interval, in which two light particles are separated by a heavy "piston," with elastic collisions between particles but inelastic collisions between the light particles and the interval ends. A symmetry breaking occurs in which the piston migrates near one end of the interval and performs small-amplitude periodic oscillations on a logarithmic time scale. The properties of this dissipative limit cycle can be understood simply in terms of a effective restitution coefficient picture. Many dynamical features of the three-particle system closely resemble those of the many-body inelastic piston problem.

  3. Holographic collisions in non-conformal theories

    NASA Astrophysics Data System (ADS)

    Attems, Maximilian; Casalderrey-Solana, Jorge; Mateos, David; Santos-Oliván, Daniel; Sopuerta, Carlos F.; Triana, Miquel; Zilhão, Miguel

    2017-01-01

    We numerically simulate gravitational shock wave collisions in a holographic model dual to a non-conformal four-dimensional gauge theory. We find two novel effects associated to the non-zero bulk viscosity of the resulting plasma. First, the hydrodynamization time increases. Second, if the bulk viscosity is large enough then the plasma becomes well described by hydrodynamics before the energy density and the average pressure begin to obey the equilibrium equation of state. We discuss implications for the quark-gluon plasma created in heavy ion collision experiments.

  4. Isotope effect in ion-atom collisions

    SciTech Connect

    Barragan, P.; Errea, L. F.; Mendez, L.; Rabadan, I.

    2010-09-15

    We explain the origin of the unusual large isotopic dependence found in charge-transfer cross sections for H(D,T){sup +}+Be collisions. We show that this large effect appears in a semiclassical treatment as a consequence of the mass dependence of the charge-transfer transition probabilities, which is due to the variation of the radial velocity in the region where the nonadiabatic transitions take place. The possibility of finding such a large isotope effect in other collision systems is discussed.

  5. The polarity protein Par3 regulates APP trafficking and processing through the endocytic adaptor protein Numb.

    PubMed

    Sun, Miao; Asghar, Suwaiba Z; Zhang, Huaye

    2016-09-01

    The processing of amyloid precursor protein (APP) into β-amyloid peptide (Aβ) is a key step in the pathogenesis of Alzheimer's disease (AD), and trafficking dysregulations of APP and its secretases contribute significantly to altered APP processing. Here we show that the cell polarity protein Par3 plays an important role in APP processing and trafficking. We found that the expression of full length Par3 is significantly decreased in AD patients. Overexpression of Par3 promotes non-amyloidogenic APP processing, while depletion of Par3 induces intracellular accumulation of Aβ. We further show that Par3 functions by regulating APP trafficking. Loss of Par3 decreases surface expression of APP by targeting APP to the late endosome/lysosome pathway. Finally, we show that the effects of Par3 are mediated through the endocytic adaptor protein Numb, and Par3 functions by interfering with the interaction between Numb and APP. Together, our studies show a novel role for Par3 in regulating APP processing and trafficking. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. The polarity protein Par3 regulates APP trafficking and processing through the endocytic adaptor protein Numb

    PubMed Central

    Sun, Miao; Asghar, Suwaiba Z.; Zhang, Huaye

    2016-01-01

    The processing of amyloid precursor protein (APP) into β-amyloid peptide (Aβ) is a key step in the pathogenesis of Alzheimer’s disease (AD), and trafficking dysregulations of APP and its secretases contribute significantly to altered APP processing. Here we show that the cell polarity protein Par3 plays an important role in APP processing and trafficking. We found that the expression of full length Par3 is significantly decreased in AD patients. Overexpression of Par3 promotes non-amyloidogenic APP processing while depletion of Par3 induces intracellular accumulation of Aβ. We further show that Par3 functions by regulating APP trafficking. Loss of Par3 decreases surface expression of APP by targeting APP to the late endosome/lysosome pathway. Finally, we show that the effects of Par3 are mediated through the endocytic adaptor protein Numb, and Par3 functions by interfering with the interaction between Numb and APP. Together, our studies show a novel role for Par3 in regulating APP processing and trafficking. PMID:27072891

  7. A Desired PAR-Achieving Precoder Design for Multiuser MIMO OFDM Based on Concentration of Measure

    NASA Astrophysics Data System (ADS)

    Cha, Hyun-Su; Kim, Dong Ku

    2017-03-01

    For multi-user multiple-input and multiple-output (MIMO) wireless communications in orthogonal frequency di- vision multiplexing systems, we propose a MIMO precoding scheme providing a desired peak-to-average power ratio (PAR) at the minimum cost that is defined as received SNR degradation. By taking advantage of the concentration of measure, we formulate a convex problem with constraint on the desired PAR. Consequently, the proposed scheme almost exactly achieves the desired PAR on average, and asymptotically attains the desired PAR at the 0.001 point of its complementary cumulative distribution function, as the number of subcarriers increases.

  8. Tryptase-PAR2 axis in experimental autoimmune prostatitis, a model for chronic pelvic pain syndrome.

    PubMed

    Roman, Kenny; Done, Joseph D; Schaeffer, Anthony J; Murphy, Stephen F; Thumbikat, Praveen

    2014-07-01

    Chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) affects up to 15% of the male population and is characterized by pelvic pain. Mast cells are implicated in the murine experimental autoimmune prostatitis (EAP) model as key to chronic pelvic pain development. The mast cell mediator tryptase-β and its cognate receptor protease-activated receptor 2 (PAR2) are involved in mediating pain in other visceral disease models. Prostatic secretions and urines from CP/CPPS patients were examined for the presence of mast cell degranulation products. Tryptase-β and PAR2 expression were examined in murine EAP. Pelvic pain and inflammation were assessed in the presence or absence of PAR2 expression and upon PAR2 neutralization. Tryptase-β and carboxypeptidase A3 were elevated in CP/CPPS compared to healthy volunteers. Tryptase-β was capable of inducing pelvic pain and was increased in EAP along with its receptor PAR2. PAR2 was required for the development of chronic pelvic pain in EAP. PAR2 signaling in dorsal root ganglia led to extracellular signal-regulated kinase (ERK)1/2 phosphorylation and calcium influx. PAR2 neutralization using antibodies attenuated chronic pelvic pain in EAP. The tryptase-PAR2 axis is an important mediator of pelvic pain in EAP and may play a role in the pathogenesis of CP/CPPS.

  9. Cancer-Selective Apoptotic Effects of Extracellular and Intracellular Par-4

    PubMed Central

    Bhattarai, Tripti Shrestha; Rangnekar, Vivek M.

    2010-01-01

    Selectivity toward cancer cells is the most desirable element in cancer therapeutics. Par-4 is a cancer cell-selective pro-apoptotic protein that functions intracellularly in the cytoplasmic and nuclear compartments, as a tumor suppressor. Moreover, recent findings indicate that the Par-4 protein is secreted by cells, and extracellular Par-4 induces cancer cell-specific apoptosis by interaction with the cell-surface receptor GRP78. This review describes the mechanisms underlying the apoptotic effects of both extracellular and intracellular Par-4 acting via its effector domain SAC. PMID:20440265

  10. TRIM21 is a novel regulator of Par-4 in colon and pancreatic cancer cells

    PubMed Central

    Nguyen, Jeffrey Q.; Irby, Rosalyn B.

    2017-01-01

    ABSTRACT The prostate apoptosis response protein 4 (Par-4) is a tumor-suppressor that has been shown to induce cancer-cell selective apoptosis in a variety of cancers. The regulation of Par-4 expression and activity is a relatively understudied area, and identifying novel regulators of Par-4 may serve as novel therapeutic targets. To identify novel regulators of Par-4, a co-immunoprecipitation was performed in colon cancer cells, and co-precipitated proteins were identified by mass-spectometry. TRIM21 was identified as a novel interacting partner of Par-4, and further shown to interact with Par-4 endogenously and through its PRY-SPRY domain. Additional studies show that TRIM21 downregulates Par-4 levels in response to cisplatin, and that TRIM21 can increase the resistance of colon cancer cells to cisplatin. Furthermore, forced Par-4 expression can sensitize pancreatic cancer cells to cisplatin. Finally, we demonstrate that TRIM21 expression predicts survival in pancreatic cancer patients. Our work highlights a novel mechanism of Par-4 regulation, and identifies a novel prognostic marker and potential therapeutic target for pancreatic cancer. PMID:27830973

  11. Tryptase - PAR2 axis in Experimental Autoimmune Prostatitis, a model for Chronic Pelvic Pain Syndrome

    PubMed Central

    Roman, Kenny; Done, Joseph D.; Schaeffer, Anthony J.; Murphy, Stephen F.; Thumbikat, Praveen

    2014-01-01

    Chronic prostatitis/Chronic pelvic pain syndrome (CP/CPPS) affects up to 15% of the male population and is characterized by pelvic pain. Mast cells are implicated in the murine experimental autoimmune prostatitis (EAP) model as key to chronic pelvic pain development. The mast cell mediator tryptase-β and its cognate receptor protease-activated receptor 2 (PAR2) are involved in mediating pain in other visceral disease models. Prostatic secretions and urines from CP/CPPS patients were examined for the presence of mast cell degranulation products. Tryptase-β and PAR2 expression were examined in murine experimental autoimmune prostatitis (EAP). Pelvic pain and inflammation were assessed in the presence or absence of PAR2 expression and upon PAR2 neutralization. Tryptase-β and carboxypeptidase A3 were elevated in CP/CPPS compared to healthy volunteers. Tryptase-β was capable of inducing pelvic pain and was increased in EAP along with its receptor PAR2. PAR2 was required for the development of chronic pelvic pain in EAP. PAR2 signaling in dorsal root ganglia lead to ERK1/2 phosphorylation and calcium influx. PAR2 neutralization using antibodies attenuated chronic pelvic pain in EAP. The tryptase-PAR2 axis is an important mediator of pelvic pain in EAP and may play a role in the pathogenesis of CP/CPPS. PMID:24726923

  12. Octree Bin-to-Bin Fractional-NTC Collisions

    DTIC Science & Technology

    2015-09-17

    Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. 239.18 OCTREE BIN-TO-BIN FRACTIONAL-NTC COLLISIONS Robert Martin ERC INC., SPACECRAFT PROPULSION ...Important Collisions in Spacecraft Propulsion : Discharge and Breakdown in FRC Collisional Radiative Cooling/Ionization Combustion Chemistry Common Features...PUBLIC RELEASE 3 / 15 IMPORTANCE OF COLLISION PHYSICS Important Collisions in Spacecraft Propulsion : Discharge and Breakdown in FRC Collisional

  13. Analysing Collisions Using Minkowski Diagrams in Momentum Space

    ERIC Educational Resources Information Center

    Bokor, Nandor

    2011-01-01

    Momentum space and Minkowski diagrams are powerful tools for interpreting and analysing relativistic collisions in one or two spatial dimensions. All relevant quantities that characterize a collision, including the mass, velocity, momentum and energy of the interacting particles, both before and after collision, can be directly seen from a single…

  14. 14 CFR 121.356 - Collision avoidance system.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Collision avoidance system. 121.356 Section... Collision avoidance system. Effective January 1, 2005, any airplane you operate under this part must be equipped and operated according to the following table: Collision Avoidance Systems If you operate...

  15. 14 CFR 125.224 - Collision avoidance system.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Collision avoidance system. 125.224 Section... Requirements § 125.224 Collision avoidance system. Effective January 1, 2005, any airplane you operate under this part 125 must be equipped and operated according to the following table: Collision...

  16. 14 CFR 417.231 - Collision avoidance analysis.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Collision avoidance analysis. 417.231..., DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH SAFETY Flight Safety Analysis § 417.231 Collision avoidance analysis. (a) General. A flight safety analysis must include a collision avoidance analysis...

  17. 14 CFR 437.65 - Collision avoidance analysis.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Collision avoidance analysis. 437.65..., DEPARTMENT OF TRANSPORTATION LICENSING EXPERIMENTAL PERMITS Safety Requirements § 437.65 Collision avoidance... permittee must obtain a collision avoidance analysis from United States Strategic Command. (b) The...

  18. Meson multiplicity versus energy in relativistic nucleus-nucleus collisions

    NASA Technical Reports Server (NTRS)

    Atwater, T. W.; Freier, P. S.

    1986-01-01

    A systematic study of meson multiplicity as a function of energy at energies up to 100 GeV/u in nucleus-nucleus collisions has been made, using cosmic-ray data in nuclear emulsion. The data are consistent with simple nucleon-nucleon superposition models. Multiplicity per interacting nucleon in AA collisions does not appear to differ significantly from pp collisions.

  19. Analysing Collisions Using Minkowski Diagrams in Momentum Space

    ERIC Educational Resources Information Center

    Bokor, Nandor

    2011-01-01

    Momentum space and Minkowski diagrams are powerful tools for interpreting and analysing relativistic collisions in one or two spatial dimensions. All relevant quantities that characterize a collision, including the mass, velocity, momentum and energy of the interacting particles, both before and after collision, can be directly seen from a single…

  20. Common variants in the human platelet PAR4 thrombin receptor alter platelet function and differ by race

    PubMed Central

    Edelstein, Leonard C.; Simon, Lukas M.; Lindsay, Cory R.; Kong, Xianguo; Teruel-Montoya, Raúl; Tourdot, Benjamin E.; Chen, Edward S.; Ma, Lin; Coughlin, Shaun; Nieman, Marvin; Holinstat, Michael; Shaw, Chad A.

    2014-01-01

    Human platelets express 2 thrombin receptors: protease-activated receptor (PAR)-1 and PAR4. Recently, we reported 3.7-fold increased PAR4-mediated aggregation kinetics in platelets from black subjects compared with white subjects. We now show that platelets from blacks (n = 70) express 14% more PAR4 protein than those from whites (n = 84), but this difference is not associated with platelet PAR4 function. Quantitative trait locus analysis identified 3 common single nucleotide polymorphisms in the PAR4 gene (F2RL3) associated with PAR4-induced platelet aggregation. Among these single nucleotide polymorphisms, rs773902 determines whether residue 120 in transmembrane domain 2 is an alanine (Ala) or threonine (Thr). Compared with the Ala120 variant, Thr120 was more common in black subjects than in white subjects (63% vs 19%), was associated with higher PAR4-induced human platelet aggregation and Ca2+ flux, and generated greater inositol 1,4,5-triphosphate in transfected cells. A second, less frequent F2RL3 variant, Phe296Val, was only observed in blacks and abolished the enhanced PAR4-induced platelet aggregation and 1,4,5-triphosphate generation associated with PAR4-Thr120. PAR4 genotype did not affect vorapaxar inhibition of platelet PAR1 function, but a strong pharmacogenetic effect was observed with the PAR4-specific antagonist YD-3 [1-benzyl-3(ethoxycarbonylphenyl)-indazole]. These findings may have an important pharmacogenetic effect on the development of new PAR antagonists. PMID:25293779

  1. High energy nucleus-nucleus collisions

    NASA Technical Reports Server (NTRS)

    Wosiek, B.

    1986-01-01

    Experimental results on high energy nucleus-nucleus interactions are presented. The data are discussed within the framework of standard super-position models and from the point-of-view of the possible formation of new states of matter in heavy ion collisions.

  2. High energy photon-photon collisions

    SciTech Connect

    Brodsky, S.J.; Zerwas, P.M.

    1994-07-01

    The collisions of high energy photons produced at a electron-positron collider provide a comprehensive laboratory for testing QCD, electroweak interactions and extensions of the standard model. The luminosity and energy of the colliding photons produced by back-scattering laser beams is expected to be comparable to that of the primary e{sup +}e{sup {minus}} collisions. In this overview, we shall focus on tests of electroweak theory in photon-photon annihilation, particularly {gamma}{gamma} {yields} W{sup +}W{sup {minus}}, {gamma}{gamma} {yields} Higgs bosons, and higher-order loop processes, such as {gamma}{gamma} {yields} {gamma}{gamma}, Z{gamma} and ZZ. Since each photon can be resolved into a W{sup +}W{sup minus} pair, high energy photon-photon collisions can also provide a remarkably background-free laboratory for studying WW collisions and annihilation. We also review high energy {gamma}{gamma} tests of quantum chromodynamics, such as the scaling of the photon structure function, t{bar t} production, mini-jet processes, and diffractive reactions.

  3. Super high energy heavy ion collisions

    SciTech Connect

    Geist, W.M.

    1987-12-01

    Basic theoretical ideas on a phase transition to a plasma of free quarks and gluons in heavy ion collisions are outlined. First results from experiments with oxygen beams at 14.5 GeV/c/N (BNL), 60 and 200 GeV/c/N (CERN) are discussed. 30 refs., 9 figs.

  4. Sudden Hadronization in Relativistic Nuclear Collisions

    SciTech Connect

    Rafelski, Johann; Letessier, Jean

    2000-11-27

    We formulate and study a mechanical instability criterion for sudden hadronization of dense matter fireballs formed in 158A GeV Pb-Pb collisions. Considering properties of quark-gluon matter and hadron gas we obtain the phase boundary between these two phases and demonstrate that the required deep quark-gluon-plasma supercooling prior to sudden hadronization has occurred.

  5. Heavy quark production in pp collisions

    SciTech Connect

    McGaughey, P.L.; Quack, E.; Ruuskanen, P.V. |

    1995-07-01

    A systematic study of the inclusive single heavy quark and heavy-quark pair production cross sections in pp collisions is presented for RHIC and LHC energies. We compare with existing data when possible. The dependence of the rates on the renormalization and factorization scales is discussed. Predictions of the cross sections are given for two different sets of parton distribution functions.

  6. High-Velocity Collisions of Nanoparticles

    NASA Astrophysics Data System (ADS)

    Johnson, Donald; Mattson, William

    Nanoparticles (NPs) are interesting materials with exciting applications due to their large surface-to-volume ratio and functionalizable surfaces. The large surface area and potentially high surface tension might result in unique materials behavior when subject to shock loading. Using density functional theory, we have simulated high-velocity NP collisions producing high-pressure, high-temperature, and extreme shock conditions. NPs composed of diamond-C, cubic-BN, and diamond-Si were considered with particle sizes up to 3.5 nm diameter. Some simulations involved NPs that were destabilized by incorporating internal strain. Normal, spherical NPs were carved out of bulk crystals and structurally optimized while the NPs with internal strain were constructed as a dense core (compressive strain) encompassed by a thin shell (tensile strain). Both on-axis and off-axis collisions were simulated at various speeds. Collision dynamics, shock propagation, and fragmentation will be presented and analyzed. The effect of material properties, internal strain, and collision velocity on the final temperature of the fragments will be discussed.

  7. Computations of drop collision and coalescence

    NASA Technical Reports Server (NTRS)

    Tryggvason, Gretar; Juric, Damir; Nobari, Mohammed H. R.; Nas, Selman

    1994-01-01

    Computations of drops collision and coalescence are presented. The computations are made possible by a recently developed finite difference/front tracking technique that allows direct solutions of the Navier-Stokes equations for a multi-fluid system with complex, unsteady internal boundaries. This method has been used to examine the boundaries between the various collision modes for drops of equal size and two examples, one of a 'reflective' collision and another of a 'grazing' collision is shown. From drops of unequal size, coalescence can result in considerable mixing between the fluid from the small and the large drop. This problem is discussed and one example showed. In many cases it is necessary to account also for heat transfer along with the fluid mechanics. We show two preliminary results where we are using extensions of the method to simulate such a problem. One example shows pattern formation among many drops moving due to thermal migration, the other shows unstable evolution of a solidification front.

  8. Highway Collision Investigation Training Program. Final Report.

    ERIC Educational Resources Information Center

    Garrett, John W.

    The report was prepared for the National Highway Traffic Safety Administration (NHTSA) of the U.S. Department of Transportation. The report briefly reviews the appropriate literature, then describes the one-year program which involved planning and organization of a Highway Collision Investigation Training Program, preparing a course syllabus, and…

  9. Fan Affinity Laws from a Collision Model

    ERIC Educational Resources Information Center

    Bhattacharjee, Shayak

    2012-01-01

    The performance of a fan is usually estimated using hydrodynamical considerations. The calculations are long and involved and the results are expressed in terms of three affinity laws. In this paper we use kinetic theory to attack this problem. A hard sphere collision model is used, and subsequently a correction to account for the flow behaviour…

  10. Cell Biology: Microtubule Collisions to the Rescue.

    PubMed

    Gardner, Melissa K

    2016-12-19

    The proper regulation of microtubule lengths is fundamental to their cellular function. New work now reports that the collision of a growing microtubule end with another object, such as a microtubule, can contribute to the regulation of microtubule lengths by leaving behind damage that ultimately acts to stabilize the microtubule network.

  11. Electron-Atom Collisions in Gases

    ERIC Educational Resources Information Center

    Kraftmakher, Yaakov

    2013-01-01

    Electron-atom collisions in gases are an aspect of atomic physics. Three experiments in this field employing a thyratron are described: (i) the Ramsauer-Townsend effect, (ii) the excitation and ionization potentials of xenon and (iii) the ion-electron recombination after interrupting the electric discharge.

  12. Relativistic Hydrodynamics for Heavy-Ion Collisions

    ERIC Educational Resources Information Center

    Ollitrault, Jean-Yves

    2008-01-01

    Relativistic hydrodynamics is essential to our current understanding of nucleus-nucleus collisions at ultrarelativistic energies (current experiments at the Relativistic Heavy Ion Collider, forthcoming experiments at the CERN Large Hadron Collider). This is an introduction to relativistic hydrodynamics for graduate students. It includes a detailed…

  13. Collision avoidance for CTV: Requirements and capabilities

    NASA Technical Reports Server (NTRS)

    Nosek, Thomas P.

    1991-01-01

    Cargo transfer vehicle (CTV) operations near Space Station Freedom will require positive collision avoidance maneuver (CAM) capability to preclude any change of collision, even in the event of CTV failures. The requirements for CAM are discussed, and the CAM design approach and design of the Orbiting Maneuvering Vehicle (OMV) are reviewed; this design met requirements for OMV operation near the Space Station, provided a redundant collision avoidance maneuver capability. Significant portions of the OMV CAM design should be applicable to CTV. The key features of the OMV design are summarized and related to the CTV mission design to that of OMV's. CAM is a defined sequence of events executed by the CTV to place the vehicle in a safe position relative to a target such as the Space Station. CAM can be performed through software commands to the propulsion system, or through commands pre-stored in hardware. Various techniques for triggering CAM are considered, and the risks associated with CAM enable and execution in phases are considered. OMV CAM design features both hardware and software CAM capability, with analyses conducted to assess the ability to meet the collision-free requirement during all phases of the mission.

  14. Collision avoidance for CTV: Requirements and capabilities

    NASA Astrophysics Data System (ADS)

    Nosek, Thomas P.

    Cargo transfer vehicle (CTV) operations near Space Station Freedom will require positive collision avoidance maneuver (CAM) capability to preclude any change of collision, even in the event of CTV failures. The requirements for CAM are discussed, and the CAM design approach and design of the Orbiting Maneuvering Vehicle (OMV) are reviewed; this design met requirements for OMV operation near the Space Station, provided a redundant collision avoidance maneuver capability. Significant portions of the OMV CAM design should be applicable to CTV. The key features of the OMV design are summarized and related to the CTV mission design to that of OMV's. CAM is a defined sequence of events executed by the CTV to place the vehicle in a safe position relative to a target such as the Space Station. CAM can be performed through software commands to the propulsion system, or through commands pre-stored in hardware. Various techniques for triggering CAM are considered, and the risks associated with CAM enable and execution in phases are considered. OMV CAM design features both hardware and software CAM capability, with analyses conducted to assess the ability to meet the collision-free requirement during all phases of the mission.

  15. Conservative discretization of the Landau collision integral

    DOE PAGES

    Hirvijoki, E.; Adams, M. F.

    2017-03-28

    Here we describe a density, momentum-, and energy-conserving discretization of the nonlinear Landau collision integral. The method is suitable for both the finite-element and discontinuous Galerkin methods and does not require structured meshes. The conservation laws for the discretization are proven algebraically and demonstrated numerically for an axially symmetric nonlinear relaxation problem using a finite-element implementation.

  16. The bouncing threshold in silica nanograin collisions.

    PubMed

    Nietiadi, Maureen L; Umstätter, Philipp; Tjong, Tiffany; Rosandi, Yudi; Millán, Emmanuel N; Bringa, Eduardo M; Urbassek, Herbert M

    2017-06-28

    Using molecular dynamics simulations, we study collisions between amorphous silica nanoparticles. Our silica model contains uncontaminated surfaces, that is, the effect of surface hydroxylation or of adsorbed water layers is excluded. For central collisions, we characterize the boundary between sticking and bouncing collisions as a function of impact velocity and particle size and quantify the coefficient of restitution. We show that the traditional Johnson-Kendall-Roberts (JKR) model provides a valid description of the ingoing trajectory of two grains up to the moment of maximum compression. The distance of closest approach is slightly underestimated by the JKR model, due to the appearance of plasticity in the grains, which shows up in the form of localized shear transformation zones. The JKR model strongly underestimates the contact radius and the collision duration during the outgoing trajectory, evidencing that the breaking of covalent bonds during grain separation is not well described by this model. The adhesive neck formed between the two grains finally collapses while creating narrow filaments joining the grains, which eventually tear.

  17. Fan Affinity Laws from a Collision Model

    ERIC Educational Resources Information Center

    Bhattacharjee, Shayak

    2012-01-01

    The performance of a fan is usually estimated using hydrodynamical considerations. The calculations are long and involved and the results are expressed in terms of three affinity laws. In this paper we use kinetic theory to attack this problem. A hard sphere collision model is used, and subsequently a correction to account for the flow behaviour…

  18. Chemical activation through super energy transfer collisions.

    PubMed

    Smith, Jonathan M; Nikow, Matthew; Ma, Jianqiang; Wilhelm, Michael J; Han, Yong-Chang; Sharma, Amit R; Bowman, Joel M; Dai, Hai-Lung

    2014-02-05

    Can a molecule be efficiently activated with a large amount of energy in a single collision with a fast atom? If so, this type of collision will greatly affect molecular reactivity and equilibrium in systems where abundant hot atoms exist. Conventional expectation of molecular energy transfer (ET) is that the probability decreases exponentially with the amount of energy transferred, hence the probability of what we label "super energy transfer" is negligible. We show, however, that in collisions between an atom and a molecule for which chemical reactions may occur, such as those between a translationally hot H atom and an ambient acetylene (HCCH) or sulfur dioxide, ET of chemically significant amounts of energy commences with surprisingly high efficiency through chemical complex formation. Time-resolved infrared emission observations are supported by quasi-classical trajectory calculations on a global ab initio potential energy surface. Results show that ∼10% of collisions between H atoms moving with ∼60 kcal/mol energy and HCCH result in transfer of up to 70% of this energy to activate internal degrees of freedom.

  19. Origin of the moon - The collision hypothesis

    NASA Astrophysics Data System (ADS)

    Stevenson, D. J.

    By the impact or collision hypothesis, the author means any theory that seeks to derive the Moon-forming material from the outcome of one or more collisions between the Earth and other Sun-orbiting bodies. The impacting body or bodies must be large - larger than the Moon and perhaps even larger than Mars. This definition does not assume that the formation of the Moon was necessarily a singular event. Among proponents of the collision hypothesis, there are those who think that a single event overwhelmingly dominated and those who think that a few (or even many) impact events were needed. There are even versions of the collision hypothesis that are not very different from extreme versions of one of the alternative origin scenarios of capture, fission, and binary accretion! This review proceeds by advancing 10 propositions that the author believes embody the most important issues confronting the theory. These propositions may or may not be true, but they form a framework for asking the right questions.

  20. AN AIRBORNE COLLISION-WARNING DEVICE,

    DTIC Science & Technology

    A simplified airborne collision- warning device is suggested in which each aircraft transmits its barometric altitude by radio. The likelihood of...signals into ’near’ and ’far’ categories would have to be determined by flight tests, it is felt that the low cost and early availability of the system justifies its consideration. (Author)

  1. Rapidity Correlation Structure in Nuclear Collisions

    NASA Astrophysics Data System (ADS)

    Zin, Christopher; Gavin, Sean; Moschelli, George

    2016-09-01

    The forces that drive the nuclear collision system towards local thermal equilibrium leave few observable traces. Heavy ion experiments report a range of features widely attributed to the hydrodynamic flow of a near-equilibrium quark gluon plasma. In particular, measurements of azimuthal anisotropy provide the most comprehensive support for the hydrodynamic description of these systems. In search of the source of this flow, we turned to smaller proton-proton, proton-nucleus and deuterium-nucleus collisions, expecting to find this effect absent. Instead, these collisions show an azimuthal anisotropy that is comparable to the larger ion-ion systems. How can we learn about the mechanisms that give rise to hydrodynamics if every available collision system exhibits flow? We show that measurements of the rapidity dependence of transverse momentum correlations can be used to determine the characteristic time τπ that dictates the rate of isotropization of the stress energy tensor, as well as the shear viscosity ν = η / sT . We formulate methods for computing these correlations using second order dissipative hydrodynamics with noise. Current data are consistent with τπ / ν 10 but targeted measurements can improve this precision. NSF PHY-1207687.

  2. Electron-Atom Collisions in Gases

    ERIC Educational Resources Information Center

    Kraftmakher, Yaakov

    2013-01-01

    Electron-atom collisions in gases are an aspect of atomic physics. Three experiments in this field employing a thyratron are described: (i) the Ramsauer-Townsend effect, (ii) the excitation and ionization potentials of xenon and (iii) the ion-electron recombination after interrupting the electric discharge.

  3. Relativistic Hydrodynamics for Heavy-Ion Collisions

    ERIC Educational Resources Information Center

    Ollitrault, Jean-Yves

    2008-01-01

    Relativistic hydrodynamics is essential to our current understanding of nucleus-nucleus collisions at ultrarelativistic energies (current experiments at the Relativistic Heavy Ion Collider, forthcoming experiments at the CERN Large Hadron Collider). This is an introduction to relativistic hydrodynamics for graduate students. It includes a detailed…

  4. Collision-based mechanics of bipedal hopping.

    PubMed

    Gutmann, Anne K; Lee, David V; McGowan, Craig P

    2013-08-23

    The muscle work required to sustain steady-speed locomotion depends largely upon the mechanical energy needed to redirect the centre of mass and the degree to which this energy can be stored and returned elastically. Previous studies have found that large bipedal hoppers can elastically store and return a large fraction of the energy required to hop, whereas small bipedal hoppers can only elastically store and return a relatively small fraction. Here, we consider the extent to which large and small bipedal hoppers (tammar wallabies, approx. 7 kg, and desert kangaroo rats, approx. 0.1 kg) reduce the mechanical energy needed to redirect the centre of mass by reducing collisions. We hypothesize that kangaroo rats will reduce collisions to a greater extent than wallabies since kangaroo rats cannot elastically store and return as high a fraction of the mechanical energy of hopping as wallabies. We find that kangaroo rats use a significantly smaller collision angle than wallabies by employing ground reaction force vectors that are more vertical and center of mass velocity vectors that are more horizontal and thereby reduce their mechanical cost of transport. A collision-based approach paired with tendon morphometry may reveal this effect more generally among bipedal runners and quadrupedal trotters.

  5. Collision-based mechanics of bipedal hopping

    PubMed Central

    Gutmann, Anne K.; Lee, David V.; McGowan, Craig P.

    2013-01-01

    The muscle work required to sustain steady-speed locomotion depends largely upon the mechanical energy needed to redirect the centre of mass and the degree to which this energy can be stored and returned elastically. Previous studies have found that large bipedal hoppers can elastically store and return a large fraction of the energy required to hop, whereas small bipedal hoppers can only elastically store and return a relatively small fraction. Here, we consider the extent to which large and small bipedal hoppers (tammar wallabies, approx. 7 kg, and desert kangaroo rats, approx. 0.1 kg) reduce the mechanical energy needed to redirect the centre of mass by reducing collisions. We hypothesize that kangaroo rats will reduce collisions to a greater extent than wallabies since kangaroo rats cannot elastically store and return as high a fraction of the mechanical energy of hopping as wallabies. We find that kangaroo rats use a significantly smaller collision angle than wallabies by employing ground reaction force vectors that are more vertical and center of mass velocity vectors that are more horizontal and thereby reduce their mechanical cost of transport. A collision-based approach paired with tendon morphometry may reveal this effect more generally among bipedal runners and quadrupedal trotters. PMID:23843217

  6. (Atomic collisions in solid and plasma physics)

    SciTech Connect

    Robinson, M.T.

    1989-09-05

    The author visited the Max-Planck-Institut for Plasma Physics, Garching, FRG, to continue collaborative research activities in the area of sputtering and plasma-wall interactions. He then attended the Thirteenth International Conference on Atomic Collisions in Solids, where he presented a paper on recent research at ORNL. A few remarks about cold fusion'' are appended.

  7. Networks based on collisions among mobile agents

    NASA Astrophysics Data System (ADS)

    González, Marta C.; Lind, Pedro G.; Herrmann, Hans J.

    2006-12-01

    We investigate in detail a recent model of colliding mobile agents [M.C. González, P.G. Lind, H.J. Herrmann, Phys. Rev. Lett. 96 (2006) 088702. cond-mat/0602091], used as an alternative approach for constructing evolving networks of interactions formed by collisions governed by suitable dynamical rules. The system of mobile agents evolves towards a quasi-stationary state which is, apart from small fluctuations, well characterized by the density of the system and the residence time of the agents. The residence time defines a collision rate, and by varying this collision rate, the system percolates at a critical value, with the emergence of a giant cluster whose critical exponents are the ones of two-dimensional percolation. Further, the degree and clustering coefficient distributions, and the average path length, show that the network associated with such a system presents non-trivial features which, depending on the collision rules, enables one not only to recover the main properties of standard networks, such as exponential, random and scale-free networks, but also to obtain other topological structures. To illustrate, we show a specific example where the obtained structure has topological features which characterize the structure and evolution of social networks accurately in different contexts, ranging from networks of acquaintances to networks of sexual contacts.

  8. Primordial Particles; Collisions of Inelastic Particles

    NASA Astrophysics Data System (ADS)

    Sagi, George

    2011-03-01

    Three-dimensional matter is not defined by Euclidian or Cartesian geometries. Newton's and Einstein's laws are related to the motions of elastic masses. The study of collisions of inelastic particles opens up new vistas in physics. The present article reveals how such particles create clusters composed of various numbers of particles. The Probability of each formation, duplets, triplets, etc. can be calculated. The particles are held together by a binding force, and depending upon the angles of collisions they may also rotate around their center of geometry. Because of these unique properties such inelastic particles are referred to as primordial particles, Pp. When a given density of Pp per cubic space is given, then random collisions create a field. The calculation of the properties of such primordial field is very complex and beyond the present study. However, the angles of collisions are infinite in principle, but the probabilities of various cluster sizes are quantum dependent. Consequently, field calculations will require new complex mathematical methods to be discovered yet.

  9. On wounded constituents in nuclear collisions

    NASA Astrophysics Data System (ADS)

    Bożek, Piotr; Broniowski, Wojciech; Rybczyński, Maciej

    2017-04-01

    In this talk we summarize the main results of our recent paper [1], where we explore predictions of the wounded quark model for particle production and the properties of the initial state formed in ultra-relativistic collisions of atomic nuclei. Presented by M. Rybczyński

  10. QCD in hadron-hadron collisions

    SciTech Connect

    Albrow, M.

    1997-03-01

    Quantum Chromodynamics provides a good description of many aspects of high energy hadron-hadron collisions, and this will be described, along with some aspects that are not yet understood in QCD. Topics include high E{sub T} jet production, direct photon, W, Z and heavy flavor production, rapidity gaps and hard diffraction.

  11. Strangeness production in AA and pp collisions

    NASA Astrophysics Data System (ADS)

    Castorina, Paolo; Satz, Helmut

    2016-07-01

    Boost-invariant hadron production in high-energy collisions occurs in causally disconnected regions of finite space-time size. As a result, globally conserved quantum numbers (charge, strangeness, baryon number) are conserved locally in spatially restricted correlation clusters. Their size is determined by two time scales: the equilibration time specifying the formation of a quark-gluon plasma, and the hadronization time, specifying the onset of confinement. The expected values for these scales provide the theoretical basis for the suppression observed for strangeness production in elementary interactions ( pp , e^+e^- below LHC energies. In contrast, the space-time superposition of individual collisions in high-energy heavy-ion interactions leads to higher energy densities, resulting in much later hadronization and hence much larger hadronization volumes. This largely removes the causality constraints and results in an ideal hadronic resonance gas in full chemical equilibrium. In the present paper, we determine the collision energies needed for that; we also estimate when pp collisions reach comparable hadronization volumes and thus determine when strangeness suppression should disappear there as well.

  12. Collision of Bose Condensate Dark Matter structures

    SciTech Connect

    Guzman, F. S.

    2008-12-04

    The status of the scalar field or Bose condensate dark matter model is presented. Results about the solitonic behavior in collision of structures is presented as a possible explanation to the recent-possibly-solitonic behavior in the bullet cluster merger. Some estimates about the possibility to simulate the bullet cluster under the Bose Condensate dark matter model are indicated.

  13. Mapping transmembrane residues of proteinase activated receptor 2 (PAR2) that influence ligand-modulated calcium signaling.

    PubMed

    Suen, J Y; Adams, M N; Lim, J; Madala, P K; Xu, W; Cotterell, A J; He, Y; Yau, M K; Hooper, J D; Fairlie, D P

    2017-03-01

    Proteinase-activated receptor 2 (PAR2) is a G protein-coupled receptor involved in metabolism, inflammation, and cancers. It is activated by proteolysis, which exposes a nascent N-terminal sequence that becomes a tethered agonist. Short synthetic peptides corresponding to this sequence also activate PAR2, while small organic molecules show promising PAR2 antagonism. Developing PAR2 ligands into pharmaceuticals is hindered by a lack of knowledge of how synthetic ligands interact with and differentially modulate PAR2. Guided by PAR2 homology modeling and ligand docking based on bovine rhodopsin, followed by cross-checking with newer PAR2 models based on ORL-1 and PAR1, site-directed mutagenesis of PAR2 was used to investigate the pharmacology of three agonists (two synthetic agonists and trypsin-exposed tethered ligand) and one antagonist for modulation of PAR2 signaling. Effects of 28 PAR2 mutations were examined for PAR2-mediated calcium mobilization and key mutants were selected for measuring ligand binding. Nineteen of twenty-eight PAR2 mutations reduced the potency of at least one ligand by >10-fold. Key residues mapped predominantly to a cluster in the transmembrane (TM) domains of PAR2, differentially influence intracellular Ca(2+) induced by synthetic agonists versus a native agonist, and highlight subtly different TM residues involved in receptor activation. This is the first evidence highlighting the importance of the PAR2 TM regions for receptor activation by synthetic PAR2 agonists and antagonists. The trypsin-cleaved N-terminus that activates PAR2 was unaffected by residues that affected synthetic peptides, challenging the widespread practice of substituting peptides for proteases to characterize PAR2 physiology.

  14. Modeling collisions in circumstellar debris disks

    NASA Astrophysics Data System (ADS)

    Nesvold, Erika

    2015-10-01

    Observations of resolved debris disks show a spectacular variety of features and asymmetries, including inner cavities and gaps, inclined secondary disks or warps, and eccentric, sharp-edged rings. Embedded exoplanets could create many of these features via gravitational perturbations, which sculpt the disk directly and by generating planetesimal collisions. In this thesis, I present the Superparticle Model/Algorithm for Collisions in Kuiper belts and debris disks (SMACK), a new method for simultaneously modeling, in 3-D, the collisional and dynamical evolution of planetesimals in a debris disk with planets. SMACK can simulate azimuthal asymmetries and how these asymmetries evolve over time. I show that SMACK is stable to numerical viscosity and numerical heating over 107 yr, and that it can reproduce analytic models of disk evolution. As an example of the algorithm's capabilities, I use SMACK to model the evolution of a debris ring containing a planet on an eccentric orbit and demonstrate that differential precession creates a spiral structure as the ring evolves, but collisions subsequently break up the spiral, leaving a narrower eccentric ring. To demonstrate SMACK's utility in studying debris disk physics, I apply SMACK to simulate a planet on a circular orbit near a ring of planetesimals that are experiencing destructive collisions. Previous simulations of a planet opening a gap in a collisionless debris disk have found that the width of the gap scales as the planet mass to the 2/7th power (alpha = 2/7). I find that gap sizes in a collisional disk still obey a power law scaling with planet mass, but that the index alpha of the power law depends on the age of the system t relative to the collisional timescale t coll of the disk by alpha = 0.32(t/ tcoll)-0.04, with inferred planet masses up to five times smaller than those predicted by the classical gap law. The increased gap sizes likely stem from the interaction between collisions and the mean motion

  15. On the quantum Landau collision operator and electron collisions in dense plasmas

    SciTech Connect

    Daligault, Jérôme

    2016-03-15

    The quantum Landau collision operator, which extends the widely used Landau/Fokker-Planck collision operator to include quantum statistical effects, is discussed. The quantum extension can serve as a reference model for including electron collisions in non-equilibrium dense plasmas, in which the quantum nature of electrons cannot be neglected. In this paper, the properties of the Landau collision operator that have been useful in traditional plasma kinetic theory and plasma transport theory are extended to the quantum case. We outline basic properties in connection with the conservation laws, the H-theorem, and the global and local equilibrium distributions. We discuss the Fokker-Planck form of the operator in terms of three potentials that extend the usual two Rosenbluth potentials. We establish practical closed-form expressions for these potentials under local thermal equilibrium conditions in terms of Fermi-Dirac and Bose-Einstein integrals. We study the properties of linearized quantum Landau operator, and extend two popular approximations used in plasma physics to include collisions in kinetic simulations. We apply the quantum Landau operator to the classic test-particle problem to illustrate the physical effects embodied in the quantum extension. We present useful closed-form expressions for the electron-ion momentum and energy transfer rates. Throughout the paper, similarities and differences between the quantum and classical Landau collision operators are emphasized.

  16. Viscosity of a classical gas: The rare-collision versus the frequent-collision regime

    NASA Astrophysics Data System (ADS)

    Magner, A. G.; Gorenstein, M. I.; Grygoriev, U. V.

    2017-05-01

    The shear viscosity η for a dilute classical gas of hard-sphere particles is calculated by solving the Boltzmann kinetic equation in terms of the weakly absorbed plane waves. For the rare-collision regime, the viscosity η as a function of the equilibrium gas parameters—temperature T , particle number density n , particle mass m , and hard-core particle diameter d —is quite different from that of the frequent-collision regime, e.g., from the well-known result of Chapman and Enskog. An important property of the rare-collision regime is the dependence of η on the external ("nonequilibrium") parameter ω , frequency of the sound plane wave, that is absent in the frequent-collision regime at leading order of the corresponding perturbation expansion. A transition from the frequent to the rare-collision regime takes place when the dimensionless parameter n d2(T/m ) 1 /2ω-1 goes to zero. The scaled absorption coefficient for sound waves calculated in the rare and frequent-collision regimes is found to be in qualitative agreement with the experimental data.

  17. Atom trap loss, elastic collisions, and technology

    NASA Astrophysics Data System (ADS)

    Booth, James

    2012-10-01

    The study of collisions and scattering has been one of the most productive approaches for modern physics, illuminating the fundamental structure of crystals, surfaces, atoms, and sub-atomic particles. In the field of cold atoms, this is no less true: studies of cold atom collisions were essential to the production of quantum degenerate matter, the formation of cold molecules, and so on. Over the past few years it has been my delight to investigate elastic collisions between cold atoms trapped in either a magneto-optical trap (MOT) or a magnetic trap with hot, background gas in the vacuum environment through the measurement of the loss of atoms from the trap. Motivated by the goal of creating cold atom-based technology, we are deciphering what the trapped atoms are communicating about their environment through the observed loss rate. These measurements have the advantages of being straightforward to implement and they provide information about the underlying, fundamental inter-atomic processes. In this talk I will present some of our recent work, including the observation of the trap depth dependence on loss rate for argon-rubidium collisions. The data follow the computed loss rate curve based on the long-range Van der Waals interaction between the two species. The implications of these findings are exciting: trap depths can be determined from the trap loss measurement under controlled background density conditions; observation of trap loss rate in comparison to models for elastic, inelastic, and chemical processes can lead to improved understanding and characterization of these fundamental interactions; finally the marriage of cold atoms with collision modeling offers the promise of creating a novel pressure sensor and pressure standard for the high and ultra-high vacuum regime.

  18. Molecular Dissociation Induced by Electron Collisions

    NASA Astrophysics Data System (ADS)

    Wolf, Andreas

    2009-05-01

    Free electrons can efficiently break molecules or molecular ions in low-energy collisions by the processes of dissociative recombination or attachment. These processes make slow electrons efficient chemical agents in many environments. For dissociative recombination, in particular, studies of the underlying reaction paths and mechanisms have become possible on a uniquely elementary level in recent years both for theory and experiment. On the experimental side, collisions can be prepared at resolved collision energies down to the meV (10 Kelvin) level, increasingly gaining control also over the initial molecular quantum level, and individual events are detected and kinematically analyzed by fast-beam coincidence fragment imaging. Experiments are reported from the ion cooler ring TSR in Heidelberg. Stored beams of molecular ions cooled in their external and internal degrees of freedom are collinearly merged with intense and cold electron beams from cryogenic GaAs photocathodes, recently shown to yield fast cooling of the center-of-mass motion also for heavy and correspondingly slow molecular ion beams. To reconstruct the molecular fragmentation events multiparticle imaging can now be used systematically with collision energies set a wide range, especially aiming at specific electron capture resonances. Thus, for CF^+ it is found that the electronic state of the C fragment (^3P or ^1D) switches resonantly when the collision energy is changed by only a small fraction. As a new powerful tool, an energy-sensitive multi-strip surface-barrier detector (EMU) has been set up to measure with near-unity efficiency the masses of all fragments together with their hit positions in high-multiplicity events. Among many uses, this device allows internal molecular excitations to be derived for individual chemical channels in polyatomic fragmentation. New results will be presented in particular on the breakup of the hydronium ion (D3O^+).

  19. Collision Tumor Composed of Meningioma and Cavernoma

    PubMed Central

    Weigel, Jens; Neher, Markus; Schrey, Michael; Wünsch, Peter H.; Steiner, Hans-Herbert

    2017-01-01

    A true collision tumor is a rare entity composed of two histologically distinct neoplasms coinciding in the same organ. This paper reports a unique case of cerebral collision tumor consisting of two benign components. On the first hand, meningioma which is usually a benign lesion arising from the meningothelial cell in the arachnoidal membrane. On the other, cerebral cavernoma which is a well-circumscribed, benign vascular hamartoma within the brain. To our knowledge, there is no previously documented case of cerebral collision tumor consisting of two benign components. A 56-year-old Caucasian male suffered in 2002 from an atypical meningioma WHO II° located in the left lateral ventricle. Three years after the tumor extirpation, the patient suffered from a hematoma in the fourth ventricle due to a recurrently haemorrhaged cavernoma. In 2008, a recurrence of the tumor in the left lateral ventricle was discovered. Additionally, another tumor located in the quadrigeminal lamina was detected. After surgical resection of the tumor in the left lateral ventricle, the pathological examination confirmed the diagnosis of a collision tumor consisting of components of a meningioma WHO II° and a cavernoma. Postoperatively, no adjuvant treatment was needed and no tumor recurrence is discovered up to the present. A possible explanation for the collision of those two different tumors may be migration of tumor cells mediated by the cerebrospinal fluid. After 5-years of follow-up, there is no sign of any tumor recurrence; therefore, surgical tumor removal without adjuvant therapy seems to be the treatment of choice. PMID:28061500

  20. Simulations of collision of ice particles

    NASA Astrophysics Data System (ADS)

    Zamankhan, Piroz

    2010-06-01

    The objective of this paper is to develop a realistic model for ice-structure interaction. To this end, the experiments made by Bridges et al. [Bridges FG, Hatzes A, Liu DNC. Structure, stability and evolution of Saturn's rings. Nature 1984;309:333-5] in order to measure the coefficient of restitution for ice particles are thoroughly analyzed. One particularly troublesome aspect of the aforementioned experiments is fracture of the ice particles during a collision. In the present effort, the collisional properties of the ice particles are investigated using a Finite Element approach. It is found that a major challenge in modeling collision of the ice balls is the prediction of the onset of fracture and crack propagation in them. In simulations of a block of ice collision to a structure, it is crucial that fracture is determined correctly, as it will influence the collisional properties of the ice particles. The results of the simulation, considering fracture criterion implemented into the Finite Element Model [Zamankhan P, Bordbar M-H. Complex flow dynamics in dense granular flows. Part I: experimentation. J Appl Mech (T-ASME) 2006;73:648-57; Zamankhan P, Huang J. Complex flow dynamics in dense granular flows. Part II: simulations. J Appl Mech (T-ASME) 2007;74:691-702] together with a material model for the ice, imply that most of the kinetic energy dissipation occurs as a result of fracturing at the contact surface of the ice particles. The results obtained in the present study suggest that constitutive models such as those proposed by Brilliantov et al. [Brilliantov NV, Spahn F, Hertzsch JM, Poschel T. Model for collisions in granular gases. Phys Rev E;1996;53:5382-92] for collisions of ice particles are highly questionable.

  1. Collision tumors: pancreatic adenocarcinoma and mantle cell lymphoma.

    PubMed

    Dasanu, Constantin A; Shimanovsky, Alexei; Rotundo, Edyta K; Posteraro, Anthony F; Cooper, Dennis L; Atienza, Jonessa A

    2013-07-10

    Collision tumors are very rare entities composed of two or more distinct tumor components, each separated by normal tissue. Perhaps due to technical advances in the last decade, the incidence of collision tumors has been on the rise. To the best of our knowledge, collision tumors featuring mantle cell lymphoma and pancreatic adenocarcinoma have not been previously described in the scientific literature. For the first time, we describe herein the clinical course of a collision tumor between pancreatic adenocarcinoma and mantle cell lymphoma. We hypothesize several aspects in the pathogenesis of a such event and review the existing literature on collision tumors.

  2. Total Probability of Collision as a Metric for Finite Conjunction Assessment and Collision Risk Management

    NASA Astrophysics Data System (ADS)

    Frigm, R.; Johnson, L.

    The Probability of Collision (Pc) has become a universal metric and statement of on-orbit collision risk. Although several flavors of the computation exist and are well-documented in the literature, the basic calculation requires the same input: estimates for the position, position uncertainty, and sizes of the two objects involved. The Pc is used operationally to make decisions on whether a given conjunction poses significant collision risk to the primary object (or space asset of concern). It is also used to determine necessity and degree of mitigative action (typically in the form of an orbital maneuver) to be performed. The predicted post-maneuver Pc also informs the maneuver planning process into regarding the timing, direction, and magnitude of the maneuver needed to mitigate the collision risk. Although the data sources, techniques, decision calculus, and workflows vary for different agencies and organizations, they all have a common thread. The standard conjunction assessment and collision risk concept of operations (CONOPS) predicts conjunctions, assesses the collision risk (typically, via the Pc), and plans and executes avoidance activities for conjunctions as a discrete events. As the space debris environment continues to increase and improvements are made to remote sensing capabilities and sensitivities to detect, track, and predict smaller debris objects, the number of conjunctions will in turn continue to increase. The expected order-of-magnitude increase in the number of predicted conjunctions will challenge the paradigm of treating each conjunction as a discrete event. The challenge will not be limited to workload issues, such as manpower and computing performance, but also the ability for satellite owner/operators to successfully execute their mission while also managing on-orbit collision risk. Executing a propulsive maneuver occasionally can easily be absorbed into the mission planning and operations tempo; whereas, continuously planning evasive

  3. How Tiny Collisions Shape Mercury

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-07-01

    If space rocks are unpleasant to encounter, space dust isnt much better. Mercurys cratered surface tells of billions of years of meteoroid impacts but its thin atmosphere is what reveals its collisional history with smaller impactors. Now new research is providing a better understanding of what were seeing.Micrometeoroids Ho!The inner solar system is bombarded by micrometeoroids, tiny particles of dust (on the scale of a tenth of a millimeter) emitted by asteroids and comets as they make their closest approach to the Sun. This dust doesnt penetrateEarths layers of atmosphere, but the innermost planet of our solar system, Mercury, doesnt have this convenient cushioning.Just as Mercury is affected by the impacts of large meteoroids, its also shaped by the many smaller-scale impacts it experiences. These tiny collisions are thought to vaporize atoms and molecules from the planets surface, which quickly dissociate. This process adds metals to Mercurys exosphere, the planets extremely tenuous atmosphere.Modeling PopulationsDistribution of the directions from which meteoroids originate before impacting Mercurys surface, as averaged over its entire orbit. Local time of 12 hr corresponds to the Sun-facing side. A significant asymmetry is seen between the dawn (6 hrs) and dusk (18 hrs) rates. [Pokorn et al. 2017]The metal distribution in the exosphere provides a way for us to measure the effect of micrometeoroid impacts on Mercury but this only works if we have accurate models of the process. A team of scientists led by Petr Pokorn (The Catholic University of America and NASA Goddard SFC) has now worked to improve our picture of micrometeoroid impact vaporization on Mercury.Pokorn and collaborators argue that two meteoroid populations Jupiter-family comets (short-period) and Halley-type comets (long-period) contribute the dust for the majority of micrometeoroid impacts on Mercury. The authors model the dynamics and evolution of these two populations, reproducing the

  4. Regulation of long-term repopulating hematopoietic stem cells by EPCR/PAR1 signaling

    PubMed Central

    Gur-Cohen, Shiri; Kollet, Orit; Graf, Claudine; Esmon, Charles T.; Ruf, Wolfram; Lapidot, Tsvee

    2016-01-01

    The common developmental origin of endothelial and hematopoietic cells is manifested by coexpression of several cell surface receptors. Adult murine bone marrow (BM) long-term repopulating hematopoietic stem cells (LT-HSCs), endowed with the highest repopulation and self-renewal potential, express endothelial protein C receptor (EPCR), which is used as a marker to isolate them. EPCR/PAR1 signaling in endothelial cells has anticoagulant and anti-inflammatory roles, while thrombin/PAR1 signaling induces coagulation and inflammation. Recent studies define two new PAR1-mediated signaling cascades that regulate EPCR+ LT-HSC BM retention and egress. EPCR/PAR1 signaling facilitates LT-HSC BM repopulation, retention, survival, and chemotherapy resistance by restricting nitric oxide (NO) production, maintaining NOlow LT-HSC BM retention with increased VLA4 expression, affinity, and adhesion. Conversely, acute stress and clinical mobilization upregulate thrombin generation and activate different PAR1 signaling which overcomes BM EPCR+ LT-HSC retention, inducing their recruitment to the bloodstream. Thrombin/PAR1 signaling induces NO generation, TACE-mediated EPCR shedding, and upregulation of CXCR4 and PAR1, leading to CXCL12-mediated stem and progenitor cell mobilization. This review discusses new roles for factors traditionally viewed as coagulation related, which independently act in the BM to regulate PAR1 signaling in bone- and blood-forming progenitor cells, navigating their fate by controlling NO production. PMID:26928241

  5. Bacterial DNA segregation dynamics mediated by the polymerizing protein ParF

    PubMed Central

    Barillà, Daniela; Rosenberg, Mark F; Nobbmann, Ulf; Hayes, Finbarr

    2005-01-01

    Prokaryotic DNA segregation most commonly involves members of the Walker-type ParA superfamily. Here we show that the ParF partition protein specified by the TP228 plasmid is a ParA ATPase that assembles into extensive filaments in vitro. Polymerization is potentiated by ATP binding and does not require nucleotide hydrolysis. Analysis of mutations in conserved residues of the Walker A motif established a functional coupling between filament dynamics and DNA partitioning. The partner partition protein ParG plays two separable roles in the ParF polymerization process. ParF is unrelated to prokaryotic polymerizing proteins of the actin or tubulin families, but is a homologue of the MinD cell division protein, which also assembles into filaments. The ultrastructures of the ParF and MinD polymers are remarkably similar. This points to an evolutionary parallel between DNA segregation and cytokinesis in prokaryotic cells, and reveals a potential molecular mechanism for plasmid and chromosome segregation mediated by the ubiquitous ParA-type proteins. PMID:15775965

  6. Inactivation of the candidate tumor suppressor par-4 in endometrial cancer.

    PubMed

    Moreno-Bueno, Gema; Fernandez-Marcos, Pablo J; Collado, Manuel; Tendero, Mercedes J; Rodriguez-Pinilla, Socorro M; Garcia-Cao, Isabel; Hardisson, David; Diaz-Meco, Maria T; Moscat, Jorge; Serrano, Manuel; Palacios, Jose

    2007-03-01

    Recently, it has been shown that mice deficient in the proapoptotic protein prostate apoptosis response 4 (Par-4) are specifically prone to develop endometrial carcinomas. Based on this, we have examined here the possible role of Par-4 as a tumor suppressor gene in human endometrial cancer. Using cDNA arrays, quantitative reverse transcription-PCR, and immunohistochemistry, we detected Par-4 down-regulation in approximately 40% of endometrial carcinomas. This alteration was not associated with phosphatase and tensin homologue (PTEN), K-RAS, or beta-catenin mutations, but was more frequent among tumors showing microsatellite instability (MSI) or among tumors that were estrogen receptor positive. Mutational analysis of the complete coding sequence of Par-4 in endometrial cancer cell lines (n = 6) and carcinomas (n = 69) detected a mutation in a single carcinoma, which was localized in exon 3 [Arg (CGA) 189 (TGA) Stop]. Interestingly, Par-4 promoter hypermethylation was detected in 32% of the tumors in association with low levels of Par-4 protein and was more common in MSI-positive carcinomas. Par-4 promoter hypermethylation and silencing was also detected in endometrial cancer cell lines SKUT1B and AN3CA, and reexpression was achieved by treatment with the demethylating agent 5'-aza-2'-deoxycytidine. Together, these data show that Par-4 is a relevant tumor suppressor gene in human endometrial carcinogenesis.

  7. Participatory Action Research (PAR) cum Action Research (AR) in Teacher Professional Development: A Literature Review

    ERIC Educational Resources Information Center

    Morales, Marie Paz E.

    2016-01-01

    This paper reviews Participatory Action Research as an approach to teacher professional development. It maps the origins of Participatory Action Research (PAR) and discusses the benefits and challenges that have been identified by other researchers in utilizing PAR approaches in conducting research. It draws ideas of combining the features of…

  8. Questioning Our Questions: Assessing Question Asking Practices to Evaluate a yPAR Program

    ERIC Educational Resources Information Center

    Grace, Sarah; Langhout, Regina Day

    2014-01-01

    The purpose of this research was to examine question asking practices in a youth participatory action research (yPAR) after school program housed at an elementary school. The research question was: In which ways did the adult question asking practices in a yPAR setting challenge and/or reproduce conventional models of power in educational…

  9. Loss of Par3 promotes lung adenocarcinoma metastasis through 14-3-3ζ protein

    PubMed Central

    Tong, Song; Xia, Tian; Fan, Kai; Jiang, Ke; Zhai, Wei; Li, Jing-Song; Wang, Si-Hua; Wang, Jian-Jun

    2016-01-01

    Partitioning defective protein 3 (Par3) can activate the Tiam1/Rac pathway to inhibit invasion and metastasis in many cancers; however, the role of Par3 in lung adenocarcinoma remains unknown. Here we show that Par3 is downregulated in lung adenocarcinoma tissues and is associated with higher rates of lymph node metastasis and recurrence. Our functional study demonstrated that knock-down of Par3 promoted lung adenocarcinoma cell growth, cell migration, tumor formation, and metastasis, all of which were effectively inhibited when 14-3-3ζ was silenced. We found that Par3 binded with 14-3-3ζ protein and also showed that Par3 abrogated the binding of 14-3-3ζ to Tiam1, which was responsible for Rac1 activation. Knock-down of 14-3-3ζ inhibited Tiam1/Rac-GTP activation and blocked the invasive behavior of cells lacking Par3. These data suggest that loss of Par3 promotes metastatic behavior in lung adenocarcinoma cells through 14-3-3ζ protein. PMID:27588399

  10. Human bronchial epithelial cells express PAR-2 with different sensitivity to thermolysin.

    PubMed

    Ubl, Joachim J; Grishina, Zoryana V; Sukhomlin, Tatiana K; Welte, Tobias; Sedehizade, Fariba; Reiser, Georg

    2002-06-01

    Protease-activated receptor-2 (PAR-2) plays a role in inflammatory reactions in airway physiology. Proteases cleaving the extracellular NH(2) terminus of receptors activate or inactivate PAR, thus possessing a therapeutic potential. Using RT-PCR and immunocytochemistry, we show PAR-2 in human airway epithelial cell lines human bronchial epithelial (HBE) and A549. Functional expression of PAR-2 was confirmed by Ca(2+) imaging studies using the receptor agonist protease trypsin. The effect was abolished by soybean trypsin inhibitor and mimicked by the specific PAR-2 peptide agonist SLIGKV. Amplitude and duration of PAR-2-elicited Ca(2+) response in HBE and A549 cells depend on concentration and time of agonist superfusion. The response is partially pertussis toxin (PTX) insensitive, abolished by the phospholipase C inhibitor U-73122, and diminished by the inositol 1,4,5-trisphosphate receptor antagonist 2-aminoethoxydiphenyl borate. Cathepsin G altered neither the resting Ca(2+) level nor PAR-2-elicited Ca(2+) response. Thermolysin, a prototypic bacterial metalloprotease, induced a dose-dependent Ca(2+) response in HBE, but not A549, cells. In both cell lines, thermolysin abolished the response to a subsequent trypsin challenge but not to SLIGKV. Thus different epithelial cell types express different PAR-2 with identical responses to physiological stimuli (trypsin, SLIGKV) but different sensitivity to modifying proteases, such as thermolysin.

  11. 12 CFR 925.19 - Par value and price of stock.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 7 2010-01-01 2010-01-01 false Par value and price of stock. 925.19 Section 925.19 Banks and Banking FEDERAL HOUSING FINANCE BOARD FEDERAL HOME LOAN BANK MEMBERS AND HOUSING ASSOCIATES MEMBERS OF THE BANKS Stock Requirements § 925.19 Par value and price of stock. The capital...

  12. Slmb antagonises the aPKC/Par-6 complex to control oocyte and epithelial polarity.

    PubMed

    Morais-de-Sá, Eurico; Mukherjee, Avik; Lowe, Nick; St Johnston, Daniel

    2014-08-01

    The Drosophila anterior-posterior axis is specified when the posterior follicle cells signal to polarise the oocyte, leading to the anterior/lateral localisation of the Par-6/aPKC complex and the posterior recruitment of Par-1, which induces a microtubule reorganisation that localises bicoid and oskar mRNAs. Here we show that oocyte polarity requires Slmb, the substrate specificity subunit of the SCF E3 ubiquitin ligase that targets proteins for degradation. The Par-6/aPKC complex is ectopically localised to the posterior of slmb mutant oocytes, and Par-1 and oskar mRNA are mislocalised. Slmb appears to play a related role in epithelial follicle cells, as large slmb mutant clones disrupt epithelial organisation, whereas small clones show an expansion of the apical domain, with increased accumulation of apical polarity factors at the apical cortex. The levels of aPKC and Par-6 are significantly increased in slmb mutants, whereas Baz is slightly reduced. Thus, Slmb may induce the polarisation of the anterior-posterior axis of the oocyte by targeting the Par-6/aPKC complex for degradation at the oocyte posterior. Consistent with this, overexpression of the aPKC antagonist Lgl strongly rescues the polarity defects of slmb mutant germline clones. The role of Slmb in oocyte polarity raises an intriguing parallel with C. elegans axis formation, in which PAR-2 excludes the anterior PAR complex from the posterior cortex to induce polarity, but its function can be substituted by overexpressing Lgl.

  13. Bacterial actin homolog ParM: arguments for an apolar, antiparallel double helix.

    PubMed

    Erickson, Harold P

    2012-09-28

    The bacterial actin homolog ParM has always been modeled as a polar filament, comprising two parallel helical strands, like actin itself. I present arguments here that ParM may be an apolar filament, in which the two helical strands are antiparallel. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Questioning Our Questions: Assessing Question Asking Practices to Evaluate a yPAR Program

    ERIC Educational Resources Information Center

    Grace, Sarah; Langhout, Regina Day

    2014-01-01

    The purpose of this research was to examine question asking practices in a youth participatory action research (yPAR) after school program housed at an elementary school. The research question was: In which ways did the adult question asking practices in a yPAR setting challenge and/or reproduce conventional models of power in educational…

  15. The parA resolvase performs site-specific genomic excision in Arabidopsis

    USDA-ARS?s Scientific Manuscript database

    We have designed a site-specific excision detection system in Arabidopsis to study the in planta activity of the small serine recombinase ParA. Using a transient expression assay as well as stable transgenic plant lines, we show that the ParA recombinase is catalytically active and capable of perfo...

  16. Loss of Par3 promotes lung adenocarcinoma metastasis through 14-3-3ζ protein.

    PubMed

    Song, Tong; Tian, Xia; Kai, Fan; Ke, Jiang; Wei, Zhai; Jing-Song, Li; Si-Hua, Wang; Jian-Jun, Wang

    2016-09-27

    Partitioning defective protein 3 (Par3) can activate the Tiam1/Rac pathway to inhibit invasion and metastasis in many cancers; however, the role of Par3 in lung adenocarcinoma remains unknown. Here we show that Par3 is downregulated in lung adenocarcinoma tissues and is associated with higher rates of lymph node metastasis and recurrence. Our functional study demonstrated that knock-down of Par3 promoted lung adenocarcinoma cell growth, cell migration, tumor formation, and metastasis, all of which were effectively inhibited when 14-3-3ζ was silenced. We found that Par3 binded with 14-3-3ζ protein and also showed that Par3 abrogated the binding of 14-3-3ζ to Tiam1, which was responsible for Rac1 activation. Knock-down of 14-3-3ζ inhibited Tiam1/Rac-GTP activation and blocked the invasive behavior of cells lacking Par3. These data suggest that loss of Par3 promotes metastatic behavior in lung adenocarcinoma cells through 14-3-3ζ protein.

  17. Solar PAR and UVR modify the community composition and photosynthetic activity of sea ice algae.

    PubMed

    Enberg, Sara; Piiparinen, Jonna; Majaneva, Markus; Vähätalo, Anssi V; Autio, Riitta; Rintala, Janne-Markus

    2015-10-01

    The effects of increased photosynthetically active radiation (PAR) and ultraviolet radiation (UVR) on species diversity, biomass and photosynthetic activity were studied in fast ice algal communities. The experimental set-up consisted of nine 1.44 m(2) squares with three treatments: untreated with natural snow cover (UNT), snow-free (PAR + UVR) and snow-free ice covered with a UV screen (PAR). The total algal biomass, dominated by diatoms and dinoflagellates, increased in all treatments during the experiment. However, the smaller biomass growth in the top 10-cm layer of the PAR + UVR treatment compared with the PAR treatment indicated the negative effect of UVR. Scrippsiella complex (mainly Scrippsiella hangoei, Biecheleria baltica and Gymnodinium corollarium) showed UV sensitivity in the top 5-cm layer, whereas Heterocapsa arctica ssp. frigida and green algae showed sensitivity to both PAR and UVR. The photosynthetic activity was highest in the top 5-cm layer of the PAR treatment, where the biomass of the pennate diatom Nitzschia frigida increased, indicating the UV sensitivity of this species. This study shows that UVR is one of the controlling factors of algal communities in Baltic Sea ice, and that increased availability of PAR together with UVR exclusion can cause changes in algal biomass, photosynthetic activity and community composition. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Design and synthesis of peptides from bacterial ParE toxin as inhibitors of topoisomerases.

    PubMed

    Barbosa, Luiz Carlos Bertucci; Garrido, Saulo Santesso; Garcia, Anderson; Delfino, Davi Barbosa; Santos, Laura do Nascimento; Marchetto, Reinaldo

    2012-08-01

    Toxin-antitoxin (TA) proteic systems encode a toxin and an antitoxin that regulate the growth and death of bacterial cells under various stress conditions. The ParE protein is a toxin that inhibits DNA gyrase activity and thereby blocks DNA replication. Based on the Escherichia coli ParE structure, a series of linear peptides were designed and synthesized by solid-phase methodology. The ability of the peptides to inhibit the activity of bacterial topoisomerases was investigated. Four peptides (ParELC3, ParELC8, ParELC10 and ParELC12), showed complete inhibition of DNA gyrase supercoiling activity with an IC(100) between 20 and 40 μmol L(-1). In contrast to wild-type ParE, the peptide analogues were able to inhibit the DNA relaxation of topoisomerase IV, another type IIA bacterial topoisomerase, with lower IC(100) values. Interestingly only ParELC12 displayed inhibition of the relaxation activity of human topoisomerase II. Our findings reveal new inhibitors of bacterial topoisomerases and are a good starting point for the development of a new class of antibacterial agents that targets the DNA topoisomerases.

  19. Geometrical methods in heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Taliotis, Anastasios

    Currently there exists no known way to construct the Stress-Energy tensor (Tmunu) of the medium produced in heavy ion collisions at strong coupling from purely theoretical grounds. In this work, some steps are taken in that direction. In particular, the evolution of Tmunu at strong coupling and at high energies is being studied for early proper times (tau). This is achieved in the context of the AdS/CFT duality by constructing the evolution of the dual geometry in an AdS5 background. We consider high energy collisions of two shock waves in AdS5 as a model of ultra-relativistic nucleus-nucleus collisions in the boundary theory. We first calculate the graviton field produced in the collisions in the LO, NLO and NNLO approximations, corresponding to two, three and four-graviton exchanges with the shock waves. We use this model to study Tmunu and in particular the energy density of the strongly-coupled matter created immediately after the collision because as we argue, the expansion of the energy density (epsilon) in the powers of proper time tau squared corresponds on the gravity side to a perturbative expansion of the metric in graviton exchanges. We point out that shock waves corresponding to physical energy-momentum tensors of the nuclei is likely to completely stop after the collision; on the field theory side, this corresponds to complete nuclear stopping due to strong coupling effects, likely leading to Landau hydrodynamics. This motivates a more detailed investigation. For this reason we consider the asymmetric limit where the energy density in one shock wave is much higher than in the other one. In the boundary theory this setup corresponds to proton-nucleus collisions. Employing the eikonal approximation we find the exact high energy analytic solution for the metric in AdS5 for the asymmetric collision of two delta-function shock waves. The solution resums all-order graviton exchanges with the nucleus-shock wave and a single-graviton exchange with the proton

  20. Par-4 inhibits Akt and suppresses Ras-induced lung tumorigenesis

    PubMed Central

    Joshi, Jayashree; Fernandez-Marcos, Pablo J; Galvez, Anita; Amanchy, Ramars; Linares, Juan F; Duran, Angeles; Pathrose, Peterson; Leitges, Michael; Cañamero, Marta; Collado, Manuel; Salas, Clara; Serrano, Manuel; Moscat, Jorge; Diaz-Meco, Maria T

    2008-01-01

    The atypical PKC-interacting protein, Par-4, inhibits cell survival and tumorigenesis in vitro, and its genetic inactivation in mice leads to reduced lifespan, enhanced benign tumour development and low-frequency carcinogenesis. Here, we demonstrate that Par-4 is highly expressed in normal lung but reduced in human lung cancer samples. We show, in a mouse model of lung tumours, that the lack of Par-4 dramatically enhances Ras-induced lung carcinoma formation in vivo, acting as a negative regulator of Akt activation. We also demonstrate in cell culture, in vivo, and in biochemical experiments that Akt regulation by Par-4 is mediated by PKCζ, establishing a new paradigm for Akt regulation and, likely, for Ras-induced lung carcinogenesis, wherein Par-4 is a novel tumour suppressor. PMID:18650932

  1. ParA-like protein uses nonspecific chromosomal DNA binding to partition protein complexes.

    PubMed

    Roberts, Mark A J; Wadhams, George H; Hadfield, Katie A; Tickner, Susan; Armitage, Judith P

    2012-04-24

    Recent data have shown that plasmid partitioning Par-like systems are used by some bacterial cells to control localization of protein complexes. Here we demonstrate that one of these homologs, PpfA, uses nonspecific chromosome binding to separate cytoplasmic clusters of chemotaxis proteins upon division. Using fluorescent microscopy and point mutations, we show dynamic chromosome binding and Walker-type ATPase activity are essential for cluster segregation. The N-terminal domain of a cytoplasmic chemoreceptor encoded next to ppfA is also required for segregation, probably functioning as a ParB analog to control PpfA ATPase activity. An orphan ParA involved in segregating protein clusters therefore uses a similar mechanism to plasmid-segregating ParA/B systems and requires a partner protein for function. Given the large number of genomes that encode orphan ParAs, this may be a common mechanism regulating segregation of proteins and protein complexes.

  2. Loss of the Par3 polarity protein promotes breast tumorigenesis and metastasis.

    PubMed

    McCaffrey, Luke Martin; Montalbano, JoAnne; Mihai, Constantina; Macara, Ian G

    2012-11-13

    Loss of epithelial organization is a hallmark of carcinomas, but whether polarity regulates tumor growth and metastasis is poorly understood. To address this issue, we depleted the Par3 polarity gene by RNAi in combination with oncogenic Notch or Ras(61L) expression in the murine mammary gland. Par3 silencing dramatically reduced tumor latency in both models and produced invasive and metastatic tumors that retained epithelial marker expression. Par3 depletion was associated with induction of MMP9, destruction of the extracellular matrix, and invasion, all mediated by atypical PKC-dependant JAK/Stat3 activation. Importantly, Par3 expression is significantly reduced in human breast cancers, which correlates with active aPKC and Stat3. These data identify Par3 as a regulator of signaling pathways relevant to invasive breast cancer.

  3. Compression Myelopathy due to Proliferative Changes around C2 Pars Defects without Instability

    PubMed Central

    Kimura, Tetsuya; Tezuka, Fumitake; Abe, Mitsunobu; Yamashita, Kazuta; Takata, Yoichiro; Higashino, Kosaku; Sairyo, Koichi

    2016-01-01

    We report a case with compression myelopathy due to proliferative changes around the C2 pars defects without instability. A 69-year-old man presented with progressive clumsy hands and spastic gait. Plain radiographs showed bilateral spondylolysis (pars defects) at C2 and fusion between C2 and C3 spinous processes. Dynamic views revealed mobility through the pars defects, but there was no apparent instability. Computed tomography showed proliferative changes at the pars defects, which protruded into spinal canal. On magnetic resonance imaging, the spinal cord was compressed and intramedullary high signal change was found. A diagnosis of compression myelopathy due to proliferative changes around the C2 pars defects was made. We performed posterior decompression. Postoperatively, symptoms have been alleviated and images revealed sufficient decompression and no apparent instability. In patients with the cervical spondylolysis, myelopathy caused by instability or slippage have been periodically reported. The present case involving C2 spondylolysis is extremely rare. PMID:27340539

  4. Inhibition of uPAR-TGFβ crosstalk blocks MSC-dependent EMT in melanoma cells.

    PubMed

    Laurenzana, Anna; Biagioni, Alessio; Bianchini, Francesca; Peppicelli, Silvia; Chillà, Anastasia; Margheri, Francesca; Luciani, Cristina; Pimpinelli, Nicola; Del Rosso, Mario; Calorini, Lido; Fibbi, Gabriella

    2015-07-01

    The capacity of cancer cells to undergo epithelial-to-mesenchymal transition (EMT) is now considered a hallmark of tumor progression, and it is known that interactions between cancer cells and mesenchymal stem cells (MSCs) of tumor microenvironment may promote this program. Herein, we demonstrate that MSC-conditioned medium (MSC-CM) is a potent inducer of EMT in melanoma cells. The EMT profile acquired by MSC-CM-exposed melanoma cells is characterized by an enhanced level of mesenchymal markers, including TGFβ/TGFβ-receptors system upregulation, by increased invasiveness and uPAR expression, and in vivo tumor growth. Silencing TGFβ in MSC is found to abrogate ability of MSC to promote EMT characteristics in melanoma cells, together with uPAR expression, and this finding is strengthened using an antagonist peptide of TGFβRIII, the so-called P17. Finally, we demonstrate that the uPAR antisense oligonucleotide (uPAR aODN) may inhibit EMT of melanoma cells either stimulated by exogenous TGFβ or MSC-CM. Thus, uPAR upregulation in melanoma cells exposed to MSC-medium drives TGFβ-mediated EMT. On the whole, TGFβ/uPAR dangerous liaison in cancer cell/MSC interactions may disclose a new strategy to abrogate melanoma progression. Mesenchymal stem cell (MSC)-conditioned medium induces EMT-like profile in melanoma. MSC-derived TGFβ promotes uPAR and TGFβ/TGFβ-receptor upregulation in melanoma. TGFβ gene silencing in MSCs downregulates uPAR expression and EMT in melanoma. uPAR downregulation prevents MSC-induced EMT-like profile in melanoma cells. Inhibition of the dangerous TGFβ/uPAR relationship might abrogate melanoma progression.

  5. PAR Interception and Utilization in Different Maize and Soybean Intercropping Patterns

    PubMed Central

    Liu, Xin; Rahman, Tanzeelur; Yang, Feng; Song, Chun; Yong, Taiwen; Liu, Jiang; Zhang, Cuiying; Yang, Wenyu

    2017-01-01

    The crop intercepted photosynthetically active radiation (PAR) and radiation use efficiency (RUE) vary markedly in different intercropping systems. The HHLA (horizontally homogeneous leaf area) and ERCRT (extended row crop radiation transmission) models have been established to calculate the intercepted PAR for intercrops. However, there is still a lack of study on the intercepted PAR and RUE under different intercropping configurations using different models. To evaluate the intercepted PAR and RUE in maize and soybean under different intercropping systems, we tested different strip intercropping configurations (SI1, SI2, and SI3 based on ERCRT model) and a row intercropping configurations (RI based on HHLA model) in comparison to monoculture. Our results showed that the intercepted PAR and RUE of intercropping systems were all higher than those of monoculture. The soybean intercepted PAR in strip intercropping was 1.35 times greater than that in row intercropping. In row intercropping (RI), the lack of soybean intercepted PAR resulted in a significant reduction of soybean dry matter. Therefore, it is not the recommended configuration for soybean. In strip intercropping patterns, with the distance between maize strip increased by 0.2 m, the intercepted PAR of soybean increased by 20%. The SI2 (maize row spacing at 0.4 m and the distance between maize strip at 1.6 m) was the recommended configuration to achieve the highest value of intercepted PAR and RUE among tested strip intercropping configurations. The method of dry matter estimation using intercepted PAR and RUE is useful in simulated experiments. The simulated value was verified in comparison with experimental data, which confirmed the credibility of the simulation model. Moreover, it also provides help in the development of functional-structural plant model (FSPM). PMID:28056056

  6. Circulating suPAR as a biomarker of disease severity in children with proteinuric glomerulonephritis.

    PubMed

    Soltysiak, Jolanta; Zachwieja, Jacek; Benedyk, Anna; Lewandowska-Stachowiak, Maria; Nowicki, Michal; Ostalska-Nowicka, Danuta

    2016-04-12

    The increase of circulating urokinase plasminogen activator receptor (suPAR) was demonstrated in various diseases showing its prognostic value as well as the link to the inflammatory reaction. In glomerular diseases suPAR was consider to be a causative factor of proteinuria. In present study we aimed to evaluate serum concentration of suPAR in children with primary and secondary glomerulonephritis (GN) and its association with disease severity. The study involved 22 children with minimal change disease (MCD), 9 with primary focal segmental glomerulosclerosis (FSGS), 7 with Henoch-Schönlein nephritis (HSN), 7 with lupus nephritis (LN) and 16 controls. Serum suPAR was significantly higher in children with FSGS and LN than controls (respectively: 4.47±1.39 ng/mL vs. 3.23±0.76 ng/mL; p=0.011 and 6.17±1.12 ng/mL vs. 3.23±0.76 ng/mL; p<0.0001). Further, suPAR was increased in LN when compared to FSGS (p=0.031). In the total group suPAR showed negative correlation with eGFR, serum complement C3 and positive with left ventricular mass index. In children with MCD and FSGS the inverse association of suPAR with eGFR was also shown. In children with primary and secondary glomerulonphritis suPAR levels is not associated with proteinuria. In primary GN elevated suPAR levels may result from reduced eGFR reflecting renal damage. In LN, circulating suPAR can be increased further indicating both multi-organ involvement and systemic inflammation reflecting disease severity.

  7. uPAR and cathepsin B inhibition enhanced radiation-induced apoptosis in gliomainitiating cells

    PubMed Central

    Malla, Rama Rao; Gopinath, Sreelatha; Alapati, Kiranmai; Gorantla, Bharathi; Gondi, Christopher S.; Rao, Jasti S.

    2012-01-01

    Glioblastomas present as diffuse tumors with invasion into normal brain tissue and frequently recur or progress after radiation as focal masses because of glioma-initiating cells. The role of the urokinase-type plasminogen activator receptor (uPAR) and cathepsin B in stem-like phenotype has been extensively studied in several solid tumors. In the present study, we demonstrated that selection of glioma-initiating cells using CD133 expression leads to a specific enrichment of CD133+ cells in both U87 and 4910 cells. In addition, CD133+ cells exhibited a considerable amount of other stem cell markers, such as Nestin and Sox-2. Radiation treatment significantly enhanced uPAR and cathepsin B levels in glioma-initiating cells. To downregulate radiation-induced uPAR and cathepsin B expression, we used a bicistronic shRNA construct that simultaneously targets both uPAR and cathepsin B (pCU). Downregulation of uPAR and cathepsin B using pCU decreased radiation-enhanced uPAR and cathepsin B levels and caused DNA damage-induced apoptosis in glioma cell lines and glioma-initiating cells. The most striking finding of this study is that knockdown of uPAR and cathepsin B inhibited ongoing transcription by suppressing BrUTP incorporation at γH2AX foci. In addition, uPAR and cathepsin B gene silencing inversely regulated survivin and H2AX expression in both glioma cells and glioma-initiating cells. Pretreatment with pCU reduced radiation-enhanced expression of uPAR, cathepsin B, and survivin and enhanced DNA damage in pre-established glioma in nude mice. Taken together, our in vitro and in vivo findings suggest that uPAR and cathepsin B inhibition might serve as an adjunct to radiation therapy to target glioma-initiating cells and, therefore, for the treatment of glioma. PMID:22573309

  8. Exotic hadrons from heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Cho, Sungtae; Hyodo, Tetsuo; Jido, Daisuke; Ko, Che Ming; Lee, Su Houng; Maeda, Saori; Miyahara, Kenta; Morita, Kenji; Nielsen, Marina; Ohnishi, Akira; Sekihara, Takayasu; Song, Taesoo; Yasui, Shigehiro; Yazaki, Koichi

    2017-07-01

    High energy heavy ion collisions are excellent ways for producing heavy hadrons and composite particles, including the light (anti)nuclei. With upgraded detectors at the Relativistic Heavy Ion Collider (RHIC) and the Large Hadron Collider (LHC), it has become possible to measure hadrons beyond their ground states. Therefore, heavy ion collisions provide a new method for studying exotic hadrons that are either molecular states made of various hadrons or compact system consisting of multiquarks. Because their structures are related to the fundamental properties of Quantum Chromodynamics (QCD), studying exotic hadrons is currently one of the most active areas of research in hadron physics. Experiments carried out at various accelerator facilities have indicated that some exotic hadrons may have already been produced. The present review is a summary of the current understanding of a selected set of exotic particle candidates that can be potentially measured in heavy ion collisions. It also includes discussions on the production of resonances, exotics and hadronic molecular states in these collisions based on the coalescence model and the statistical model. A more detailed discussion is given on the results from these models, leading to the conclusion that the yield of a hadron that is a compact multiquark state is typically an order of magnitude smaller than if it is an excited hadronic state with normal quark numbers or a loosely bound hadronic molecule. Attention is also given to some of the proposed heavy exotic hadrons that could be produced with sufficient abundance in heavy ion collisions because of the significant numbers of charm and bottom quarks that are produced at RHIC and even larger numbers at LHC, making it possible to study them in these experiments. Further included in the discussion are the general formalism for the coalescence model that involves resonance particles and its implication on the present estimated yield for resonance production. Finally

  9. Measurements of Correlation-Enhanced Collision Rates

    NASA Astrophysics Data System (ADS)

    Driscoll, C. Fred

    2009-11-01

    This talk presents the first detailed experimental measurements of the Salpeter collisional enhancement factor g ( γ) in strongly correlated plasmas. This factor is predicted to enhance the nuclear reaction rate in dense strongly-correlated plasmas, such as in giant planet interiors, brown dwarfs and degenerate stars;footnotetextE.E. Salpeter and H.M. Van Horn, Astrophys. J. 155, 183 (1969). and recent theory establishes that it also applies to the perpendicular-to-parallel collisions in magnetized plasmas described here.footnotetextD.H.E. Dubin, Phys. Rev. Lett. 94, 025002 (2005). The enhancement is caused by plasma screening of the repulsive Coulomb potential between charges, allowing closer collisions for a given particle energy. The enhancement factor is predicted to be large when the plasma correlation parameter γ≡e^2 /aT is larger than unity, scaling as g ( γ) ˜e^γ. The perp-to-parallel collision rate is then ν|= n v b^2 ,( κ ) ,( γ), where I ( κ ) decreases precipitously below ( 8 √π / 15 ) λ in the highly magnetized regime of κ ≡√2 ,/ rc1. Our measurementsfootnotetextF. Anderegg et al., Phys. Rev. Lett. 102, 185001 (2009); F. Anderegg et al., Phys. Plasmas 16, 055705 (2009). of ν| in Mg^+ pure ion plasmas are consistent with the predicted Salpeter correlation enhancement, with the comparison limited mainly by systematic spatial variations in the plasma temperature. The plasma temperatures are controlled over the range 4 x10-6 < T < 1eV, with the outer radii being up to 2x hotter. Bulk-averaged collision rates of 1 < ν|< 2 x10^4 sec-1 are measured by 2 techniques: for slow collisions, T| is heated or cooled, and the subsequent relaxation is directly observed; for rapid collisions, sinusoidal modulation of the plasma length at frequency fmod gives maximal heating when fmod = ν|/ 2 πc (γ), where c ( γ) is the specific heat. Two densities are used, 2.0 and 0.12 x10^7 cm-3; the lower density has ˜2.5 x less correlation at any

  10. Collision lifetimes of polyatomic molecules at low temperatures: Benzene–benzene vs benzene–rare gas atom collisions

    SciTech Connect

    Cui, Jie; Krems, Roman V.; Li, Zhiying

    2014-10-28

    We use classical trajectory calculations to study the effects of the interaction strength and the geometry of rigid polyatomic molecules on the formation of long-lived collision complexes at low collision energies. We first compare the results of the calculations for collisions of benzene molecules with rare gas atoms He, Ne, Ar, Kr, and Xe. The comparison illustrates that the mean lifetimes of the collision complexes increase monotonically with the strength of the atom–molecule interaction. We then compare the results of the atom–benzene calculations with those for benzene–benzene collisions. The comparison illustrates that the mean lifetimes of the benzene–benzene collision complexes are significantly reduced due to non-ergodic effects prohibiting the molecules from sampling the entire configuration space. We find that the thermally averaged lifetimes of the benzene–benzene collisions are much shorter than those for Xe with benzene and similar to those for Ne with benzene.

  11. Collision lifetimes of polyatomic molecules at low temperatures: Benzene-benzene vs benzene-rare gas atom collisions

    NASA Astrophysics Data System (ADS)

    Cui, Jie; Li, Zhiying; Krems, Roman V.

    2014-10-01

    We use classical trajectory calculations to study the effects of the interaction strength and the geometry of rigid polyatomic molecules on the formation of long-lived collision complexes at low collision energies. We first compare the results of the calculations for collisions of benzene molecules with rare gas atoms He, Ne, Ar, Kr, and Xe. The comparison illustrates that the mean lifetimes of the collision complexes increase monotonically with the strength of the atom-molecule interaction. We then compare the results of the atom-benzene calculations with those for benzene-benzene collisions. The comparison illustrates that the mean lifetimes of the benzene-benzene collision complexes are significantly reduced due to non-ergodic effects prohibiting the molecules from sampling the entire configuration space. We find that the thermally averaged lifetimes of the benzene-benzene collisions are much shorter than those for Xe with benzene and similar to those for Ne with benzene.

  12. Collision lifetimes of polyatomic molecules at low temperatures: benzene-benzene vs benzene-rare gas atom collisions.

    PubMed

    Cui, Jie; Li, Zhiying; Krems, Roman V

    2014-10-28

    We use classical trajectory calculations to study the effects of the interaction strength and the geometry of rigid polyatomic molecules on the formation of long-lived collision complexes at low collision energies. We first compare the results of the calculations for collisions of benzene molecules with rare gas atoms He, Ne, Ar, Kr, and Xe. The comparison illustrates that the mean lifetimes of the collision complexes increase monotonically with the strength of the atom-molecule interaction. We then compare the results of the atom-benzene calculations with those for benzene-benzene collisions. The comparison illustrates that the mean lifetimes of the benzene-benzene collision complexes are significantly reduced due to non-ergodic effects prohibiting the molecules from sampling the entire configuration space. We find that the thermally averaged lifetimes of the benzene-benzene collisions are much shorter than those for Xe with benzene and similar to those for Ne with benzene.

  13. Facteurs de risque de mortalité par tuberculose pulmonaire

    PubMed Central

    Janah, Hicham; Souhi, Hicham; Kouismi, Hatim; Mark, Karima; Zahraoui, Rachida; Benamor, Jouda; Soualhi, Mona; Bourkadi, Jamal Eddine

    2014-01-01

    La tuberculose est une maladie infectieuse transmissible provoquée par myco-bacterium tuberculosis (bacille de Koch ou BK). Elle représente, selon les estimations del'Organisation Mondiale de la Santé (OMS), l'une des pathologies infectieuses causant le plus de décès au niveau mondial avec plus de 1 million de décès par an. Pour déterminer les facteurs de risque de mortalité au cours de la tuberculose pulmonaire à microscopie positive nous avons mené une étude rétrospective portant sur tous les cas de tuberculose pulmonaire à microscopie positive et qui étaient décédés au cours de leur hospitalisation. Cette étude a colligé 1803 cas de tuberculose sur une période de 2 ans et demi dont 46 sont décédés. La prévalence de décès est de 2,55%. La population se répartit en 32 hommes et 14 femmes. L’âge moyen était de 53ans ± 17 ans. Le tabagisme était retrouvé chez la moitié des cas. Une comorbidité était retrouvée dans 43%, avec 17% de diabète. Le délai de diagnostic avait une médiane de 60 jours avec percentile (30j; 105j). La symptomatologie clinique était dominée par la toux, la dyspnée et les expectorations soit respectivement: 97,8%, 69,6% et 67,4% des cas. Sur le plan radiologique les lésions étaient diffuses et bilatérales dans 76,1% des cas. Tous les patients étaient mis sous SRHZ. 11% avaient présenté une toxicité aux antibacillaires (de type hépatiques dans 3 cas et neurologiques dans 2 cas). Le délai médian de décès était de 8,5 jours (5j; 17j). Les causes de décès retrouvées étaient: Une hépatite fulminante (3 cas), une décompensation acido-cétosique (3 cas), un SDRA (2 cas), des hémoptysies foudroyantes (2 cas), et respectivement un cas secondaire à une décompensation de BPCO, une décompensation cardiaque, une hypoglycémie et un tableau d'anasarque. Cette étude suggère que le terrain, le retard diagnostique et les effets secondaires du traitement sont les principaux facteurs de risque de

  14. Coulomb-influenced collisions in aerosols and dusty plasmas

    NASA Astrophysics Data System (ADS)

    Gopalakrishnan, Ranganathan; Hogan, Christopher J., Jr.

    2012-02-01

    In aerosol and dusty plasma systems, the behavior of suspended particles (grains) is often strongly influenced by collisions occurring between ions and particles, as well as between particles themselves. In determining the collision kernel or collision rate coefficient for such charged entities, complications arise in that the collision process can be completely described neither by continuum transport mechanics nor by free molecular (ballistic) mechanics; that is, collisions are transition regime processes. Further, both the thermal energy and the potential energy between colliding entities can strongly influence the collision rate and must be considered. Flux-matching theory, originally developed by Fuchs, is frequently applied for calculation of collision rate coefficients under these circumstances. However, recent work suggests that crucial assumptions in flux-matching theory are not appropriate to describe transition regime collisions in the presence of potential interactions. Here, we combine dimensional analysis and mean first passage time calculations to infer the collision kernel between dilute charged entities suspended in a light background gas at thermal equilibrium. The motion of colliding entities is described by a Langevin equation, and Coulombic interactions are considered. It is found that the dimensionless collision kernel for these conditions, H, is a function of the diffusive Knudsen number, KnD (in contrast to the traditional Knudsen number), and the potential energy to thermal energy ratio, ΨE. For small and large KnD, it is found that the dimensionless collision kernels inferred from mean first passage time calculations collapse to the appropriate continuum and free molecular limiting forms, respectively. Further, for repulsive collisions (ΨE negative) or attractive collisions with ΨE<0.5, calculated results are in excellent agreement with flux-matching theory predictions, and the dimensionless collision kernel can be determined

  15. Fluid dynamical description of relativistic nuclear collisions

    NASA Technical Reports Server (NTRS)

    Nix, J. R.; Strottman, D.

    1982-01-01

    On the basis of both a conventional relativistic nuclear fluid dynamic model and a two fluid generalization that takes into account the interpenetration of the target and projectile upon contact, collisions between heavy nuclei moving at relativistic speeds are calculated. This is done by solving the relevant equations of motion numerically in three spatial dimensions by use of particle in cell finite difference computing techniques. The effect of incorporating a density isomer, or quasistable state, in the nuclear equation of state at three times normal nuclear density, and the effect of doubling the nuclear compressibility coefficient are studied. For the reaction 20Ne + 238U at a laboratory bombarding energy per nucleon of 393 MeV, the calculated distributions in energy and angle of outgoing charged particles are compared with recent experimental data both integrated over all impact parameters and for nearly central collisions.

  16. US Coast Guard collision at sea.

    PubMed

    McCaughey, B G

    1985-01-01

    The collision between the USCGC Cuyahoga and the motor vessel Santa Cruz II resulted in psychological distress among the Coast Guard crewmen. The US Navy Special Psychiatric Rapid Intervention Team (SPRINT) was activated to provide mental health services to the Coast Guard survivors and others who had been affected by the disaster. The psychiatric records of the 18 survivors were examined and summarized, and combined with anecdotal comments made by SPRINT members. The most prominent psychological reactions among the survivors were shock, anger, sadness, and guilt. Spouses of the survivors dealt with bereavement and strove to understand their husbands' reactions. Variables identified by the SPRINT as being important to their success were communication with and support from the training center command, assurances of confidentiality to the survivors, and commencement of their work almost immediately following the collision.

  17. Collision of two rotating Hayward black holes

    NASA Astrophysics Data System (ADS)

    Gwak, Bogeun

    2017-07-01

    We investigate the spin interaction and the gravitational radiation thermally allowed in a head-on collision of two rotating Hayward black holes. The Hayward black hole is a regular black hole in a modified Einstein equation, and hence it can be an appropriate model to describe the extent to which the regularity effect in the near-horizon region affects the interaction and the radiation. If one black hole is assumed to be considerably smaller than the other, the potential of the spin interaction can be analytically obtained and is dependent on the alignment of angular momenta of the black holes. For the collision of massive black holes, the gravitational radiation is numerically obtained as the upper bound by using the laws of thermodynamics. The effect of the Hayward black hole tends to increase the radiation energy, but we can limit the effect by comparing the radiation energy with the gravitational waves GW150914 and GW151226.

  18. Munroe effect based on detonation wave collision

    NASA Astrophysics Data System (ADS)

    Miao, Yusong; Li, Xiaojie; Wang, Xiaohong; Yan, Honghao; Chen, Xiang

    2017-05-01

    Munroe effect has been more and more used in blasting engineering and most assembling energy technologies use a shaped charge device. In this paper, a new method is used to achieve detonation wave collision by detonating cord initiation system. A numerical simulation using LS-DYNA on detonation wave propagation and collision process caused by different initiation forms is implemented. Numerical results show that peak pressure by this new method can reach 2.42 times than the traditional method, and the growth of specific impulse at the explosive bottom is 49% compared to early results. Based on this numerical simulation, an experiment of explosive-determination of power be implemented, the experiment result can verify the simulation result well.

  19. Long-range consequences of interplanetary collisions

    NASA Technical Reports Server (NTRS)

    Sagan, Carl; Ostro, Steven J.

    1994-01-01

    As Comet Shoemaker-Levy 9 races toward its mid-July collision with the planet Jupiter, considerable public attention is focused on catastrophic impacts with the Earth -- in the past and in the future. In recent years calls have been made to develop technologies that could deflect any asteroid or comet on a collision course. Careful consideration must be given to the nature and time scale of the risk and to the cost-effectiveness and possible problems in the suggested solutions. Risk assessment, threat removal, and resources misuse are examined. The greatest concern is to have a poorly informed public -- exerting pressure for means to mitigate even non-existent threats. The only foreseeable solution is a combination of accurate orbit estimation, realistic threat assessment, and effective public education.

  20. Theory of Electron-Ion Collisions

    SciTech Connect

    Griffin, Donald C

    2009-10-02

    Collisions of electrons with atoms and ions play a crucial role in the modeling and diagnostics of fusion plasmas. In the edge and divertor regions of magnetically confined plasmas, data for the collisions of electrons with neutral atoms and low charge-state ions are of particular importance, while in the inner region, data on highly ionized species are needed. Since experimental measurements for these collisional processes remain very limited, data for such processes depend primarily on the results of theoretical calculations. Over the period of the present grant (January 2006 - August 2009), we have made additional improvements in our parallel scattering programs, generated data of direct fusion interest and made these data available on The Controlled Fusion Atomic Data Center Web site at Oak Ridge National Laboratory. In addition, we have employed these data to do collsional-radiative modeling studies in support of a variety of experiments with magnetically confined fusion plasmas.

  1. Path Integral Approach to Atomic Collisions

    NASA Astrophysics Data System (ADS)

    Harris, Allison

    2016-09-01

    The Path Integral technique is an alternative formulation of quantum mechanics that is based on a Lagrangian approach. In its exact form, it is completely equivalent to the Hamiltonian-based Schrödinger equation approach. Developed by Feynman in the 1940's, following inspiration from Dirac, the path integral approach has been widely used in high energy physics, quantum field theory, and statistical mechanics. However, only in limited cases has the path integral approach been applied to quantum mechanical few-body scattering. We present a theoretical and computational development of the path integral method for use in the study of atomic collisions. Preliminary results are presented for some simple systems. Ultimately, this approach will be applied to few-body ion-atom collisions. Work supported by NSF grant PHY-1505217.

  2. Active Collision Avoidance for Planetary Landers

    NASA Technical Reports Server (NTRS)

    Rickman, Doug; Hannan, Mike; Srinivasan, Karthik

    2015-01-01

    The use of automotive radar systems are being evaluated for collision avoidance in planetary landers. Our focus is to develop a low-cost, light-weight collision avoidance system that overcomes the drawbacks identified with optical-based systems. We also seek to complement the Autonomous Landing and Hazard Avoidance Technology system by providing mission planners an alternative system that can be used on low-cost, small robotic missions and in close approach. Our approach takes advantage of how electromagnetic radiation interacts with solids. As the wavelength increases, the sensitivity of the radiation to isolated solids of a specific particle size decreases. Thus, rocket exhaust-blown dust particles, which have major significance in visible wavelengths, have much less significance at radar wavelengths.

  3. Anomalons, honey, and glue in nuclear collisions

    SciTech Connect

    Gyulassy, M.

    1982-12-01

    In these lectures, selected topics in nuclear collisions in the energy range 10/sup -1/ to 10/sup 3/ GeV per nucleon are discussed. The evidence for anomalous projectile fragments with short mean free paths is presented. Theoretical speculations on novel topological nuclear excitation and on quark-nuclear complexes in connection with anomalons are discussed. Recent tests for pion field instabilities are presented. Then evidence for collective nuclear flow phenomena are reviewed. Global event analysis and cascade simulations are presented. We address the question of whether nuclear flow is like viscous honey. Finally, the criteria for the production of a quark-gluon plasma are discussed. Nuclear stopping power and longitudinal growth at high energies are considered. Results from cosmic ray data show that nuclear collision at TeV per nucleon energies are likely to product a plasma.

  4. Threat detection system for intersection collision avoidance

    NASA Astrophysics Data System (ADS)

    Jocoy, Edward H.; Pierowicz, John A.

    1998-01-01

    Calspan SRL Corporation is currently developing an on- vehicle threat detection system for intersection collision avoidance (ICA) as part of its ICA program with the National Highway Transportation Safety Administration. Crash scenarios were previously defined and an on-board radar sensor was designed. This paper describes recent efforts that include the development of a simulation of a multitarget tracker and collision avoidance algorithm used to predict system performance in a variety of target configurations in the various ICA crash scenarios. In addition, a current headway radar was mounted on the Calspan Instrumented Vehicle and in-traffic data were recorded for two limited crash scenarios. Warning functions were developed through the simulation and applied to the recorded data.

  5. A simple collision model for small bubbles

    NASA Astrophysics Data System (ADS)

    Heitkam, Sascha; Sommer, Anna-Elisabeth; Drenckhan, Wiebke; Fröhlich, Jochen

    2017-03-01

    In this work, a model for the interaction force between a small bubble and a wall or another bubble is presented. The formulation is especially designed for Lagrangian calculations of bubble or soft sphere trajectories, with or without resolution of the continuous fluid. The force only relies on position and velocity of the bubble. The model does not include any empirical parameter that would have to be calibrated. Therefore, this force model is easy to implement. The formulation of the force is explicit, which means low computational effort. The collision of a small bubble with an inclined top wall is investigated numerically and experimentally. The computational results achieved with the new collision model show good agreement with the experiment.

  6. Kinetic simulation of a plasma collision experiment

    NASA Astrophysics Data System (ADS)

    Larroche, Olivier

    1993-08-01

    The ionic Fokker-Planck code which was written for describing plasma shock wave fronts [M. Casanova et al. Phys. Rev. Lett. 67, 2143 (1991)] is applied to model the collision of two plasmas in plane geometry. Improvements brought to the code for that purpose are described. The initial phase of the experiment during which the plasmas interpenetrate is accounted for by a simple fluid model, which yields qualitative insight into the phenomena at play as well as an initial condition to start the kinetic simulation. The kinetic results obtained in the stagnation and thermalization phases are discussed with respect to a specific laser-produced plasma collision experiment, as well as to existing fluid and kinetic (``particle-in-cell'') simulations.

  7. Collision zone magmatism aids continental crustal growth

    NASA Astrophysics Data System (ADS)

    Savov, Ivan; Meliksetian, Khachatur; Ralf, Halama; Gevorg, Navasardian; Chuck, Connor; Massimo, D'Antonio; Samuele, Agostini; Osamu, Ishizuka; Sergei, Karapetian; Arkadi, Karakhanian

    2014-05-01

    The continental crust has a broadly andesitic bulk composition and is predominantly generated at convergent margins. However, estimates of the bulk composition of oceanic arcs indicate a bulk composition closer to basalt than to andesite. Hence, reworking processes that transform basaltic island arc crust into andesitic continental crust are essential[1] and explaining growth of andesitic continental crust via accretion of arc crustal fragments remains problematic. Recent studies of magmatism in the Great Tibetan Plateau[2], as site of multiple and still active continent-continent collisions, have proposed that andesitic CC is generated via amalgamation of large volumes of collision-related felsic magmas generated by melting of hydrated oceanic crust with mantle geochemical signatures. We aim to test this hypothesis by evaluating geochemical data from the volcanically and tectonically active Lesser Caucasus region (Armenia, Azerbaijan, Georgia and E. Turkey), as the only other region where active continent-continent collision takes place. We will benefit from the newly compiled volcano-tectonic database of collision-related volcanic and plutonic rocks of Armenia that is comparable in quality and detail to the one available on Tibet. Our dataset combines several detailed studies from the large Aragats shield volcano[3] and associated monogenetic volcanic fields (near the capital city of Yerevan), as well as > 500 Quaternary to Holocene volcanoes from Gegham, Vardenis and Syunik volcanic highlands (toward Armenia-Nagorno-Karabakh-Azerbaijan-Iran border). The Armenian collision-related magmatism is diverse in volume, composition, eruption style and volatile contents. Interestingly, the majority of exposed volcanics are andesitic in composition. Nearly all collision-related volcanic rocks, even the highly differentiated dacite and rhyolite ignimbrites, have elevated Sr concentrations and 87Sr/86Sr and 143Nd/144Nd ratios varying only little (average ~ 0.7043 and ~ 0

  8. Benchmark Calculations of Atomic Collision Processes

    NASA Astrophysics Data System (ADS)

    Bartschat, Klaus

    2012-02-01

    The rapid development of computational resources has resulted in enormous improvements in the accuracy of numerical calculations of atomic collision processes. This talk will concentrate on recent advances in the computational treatment of charged-particle and intense short-pulse laser interactions with atoms, ions, and small molecules. Examples include electron collisions with heavy complex targets that are of significant importance in many modelling applications in plasma and astrophysics, fundamental studies of highly correlated 4-body Coulomb processes such as simultaneous ionization with excitation, and the accurate solution of the time-dependent Schr"odinger equation in the presence of intense femto/attosecond laser fields, which paves the way for quantum dynamic imaging and coherent control.

  9. Long-range consequences of interplanetary collisions

    NASA Technical Reports Server (NTRS)

    Sagan, Carl; Ostro, Steven J.

    1994-01-01

    As Comet Shoemaker-Levy 9 races toward its mid-July collision with the planet Jupiter, considerable public attention is focused on catastrophic impacts with the Earth -- in the past and in the future. In recent years calls have been made to develop technologies that could deflect any asteroid or comet on a collision course. Careful consideration must be given to the nature and time scale of the risk and to the cost-effectiveness and possible problems in the suggested solutions. Risk assessment, threat removal, and resources misuse are examined. The greatest concern is to have a poorly informed public -- exerting pressure for means to mitigate even non-existent threats. The only foreseeable solution is a combination of accurate orbit estimation, realistic threat assessment, and effective public education.

  10. Dirac R-matrix collision strengths and effective collision strengths for transitions of Ni xvii

    NASA Astrophysics Data System (ADS)

    Hudson, C. E.; Norrington, P. H.; Ramsbottom, C. A.; Scott, M. P.

    2012-01-01

    Context. Electron impact excitation collision strengths are required for the analysis and interpretation of stellar observations. Aims: This calculation aims to provide fine structure effective collision strengths for the Ni xvii ion using a method which includes contributions from resonances. Methods: A fully relativistic R-matrix calculation has been performed using the DARC code. In the structure part of our calculation 141 fine-structure levels are employed and 37 of these are used in the scattering calculation. Results: Collision strengths have been determined for 666 fine-structure transitions arising from the 37 lowest j-levels involving configurations 3s2, 3p2, 3d2, 3s3p, 3s3d, 3p3d and 3s4s. The effective collision strengths for these transitions have been calculated for electron temperatures (Te) in the range log 10Te(K) = 4.5 - 8.0. Effective collision strengths are tabulated for transitions between the first ten fine structure levels, arising from the 3s2, 3s3p and 3p2 configurations. The remaining transitions are available at the CDS as well as via the author's website. Tables 2 and 5 are available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/537/A12

  11. Three-body collision contributions to recombination and collision-induced dissociation. 1: Cross sections

    SciTech Connect

    Pack, R.T.; Walker, R.B.; Kendrick, B.K.

    1998-04-10

    Atomic and molecular recombination and collision-induced dissociation (CID) reactions comprise two of the most fundamental types of chemical reactions. They are important in all gas phase chemistry; for example, about half of the 196 reactions identified as important in combustion chemistry are recombination or CID reactions. Many of the current chemical kinetics textbooks and kinetics papers treat atomic and molecular recombination and CID as occurring only via sequences of two-body collisions. Actually, there is considerable evidence from experiment and classical trajectory calculations for contributions by true three-body collisions to the recombination of atomic and diatomic radicals, and that evidence is reviewed. Then, an approximate quantum method treating both two-body and three-body collisions simultaneously and on equal footing is used to calculate cross sections for the reaction Ne{sub 2} + H {rightleftharpoons} Ne + Ne + H. The results provide clear quantum evidence that direct three-body collisions do contribute significantly to recombination and CID.

  12. Collision of BEC dark matter structures and comparison with the collision of ideal gas structures

    SciTech Connect

    Guzman, F. S.; Gonzalez, J. A.

    2010-12-07

    In this work we present an important feature of the Bose Einstein Condensate (BEC) dark matter model, that is, the head-on collision of BEC dark matter virialized structures. This model of dark matter is assumed to be ruled by the Schroedinger-Poisson system of equations, which is interpreted as the Gross-Pitaevskii equation with a gravitational potential sourced by the density of probability. It has been shown recently that during the collision of two structures a pattern formation in the density of probability appears. We explore the pattern formation for various initial dynamical conditions during the collision. In order to know whether or not the pattern formation is a particular property of the BEC dark matter, we compare with the collision of two structures of virialized ideal gas under similar dynamical initial conditions, which is a model more consistent with usual models of dark matter. In order to do so, we also solve Euler's equations using a smoothed particle hydrodynamics approach. We found that the collision of the ideal gas structures does not show interference patterns, which in turn implies that the pattern formation is a property of the BEC dark matter.

  13. Collisions of Planetesimals and Formation of Planets

    NASA Astrophysics Data System (ADS)

    Dvorak, Rudolf; Maindl, Thomas I.; Süli, Áron; Schäfer, Christoph M.; Speith, Roland; Burger, Christoph

    2016-01-01

    We present preliminary results of models of terrestrial planet formation using on the one hand classical numerical integration of hundreds of small bodies on CPUs and on the other hand-for comparison-the results of our GPU code with thousands of small bodies which then merge to larger ones. To be able to determine the outcome of collision events we use our smooth particle hydrodynamics (SPH) code which tracks how water is lost during such events.

  14. Cross Sections for Electron Collisions with Acetylene

    NASA Astrophysics Data System (ADS)

    Song, Mi-Young; Yoon, Jung-Sik; Cho, Hyuck; Karwasz, Grzegorz P.; Kokoouline, Viatcheslav; Nakamura, Yoshiharu; Tennyson, Jonathan

    2017-03-01

    Cross section data are compiled from the literature for electron collisions with the acetylene (HCCH) molecule. Cross sections are collected and reviewed for total scattering, elastic scattering, momentum transfer, excitations of rotational and vibrational states, dissociation, ionization, and dissociative attachment. The data derived from swarm experiments are also considered. For each of these processes, the recommended values of the cross sections are presented. The literature has been surveyed through early 2016.

  15. Hadron thermodynamics in relativistic nuclear collisions

    NASA Technical Reports Server (NTRS)

    Ammiraju, P.

    1985-01-01

    Various phenomenological models based on statistical thermodynamical considerations were used to fit the experimental data at high P sub T to a two temperature distribution. Whether this implies that the two temperatures belong to two different reaction mechanisms, or consequences of Lorentz-contraction factor, or related in a fundamental way to the intrinsic thermodynamics of Space-Time can only be revealed by further theoretical and experimental investigations of high P sub T phenomena in extremely energetic hadron-hadron collisions.

  16. Cross Sections for Electron Collisions with Methane

    SciTech Connect

    Song, Mi-Young Yoon, Jung-Sik; Cho, Hyuck; Itikawa, Yukikazu; Karwasz, Grzegorz P.; Kokoouline, Viatcheslav; Nakamura, Yoshiharu; Tennyson, Jonathan

    2015-06-15

    Cross section data are compiled from the literature for electron collisions with methane (CH{sub 4}) molecules. Cross sections are collected and reviewed for total scattering, elastic scattering, momentum transfer, excitations of rotational and vibrational states, dissociation, ionization, and dissociative attachment. The data derived from swarm experiments are also considered. For each of these processes, the recommended values of the cross sections are presented. The literature has been surveyed through early 2014.

  17. Recommended Screening Practices for Launch Collision Aviodance

    NASA Technical Reports Server (NTRS)

    Beaver, Brian A.; Hametz, Mark E.; Ollivierre, Jarmaine C.; Newman, Lauri K.; Hejduk, Matthew D.

    2015-01-01

    The objective of this document is to assess the value of launch collision avoidance (COLA) practices and provide recommendations regarding its implementation for NASA robotic missions. The scope of this effort is limited to launch COLA screens against catalog objects that are either spacecraft or debris. No modifications to manned safety COLA practices are considered in this effort. An assessment of the value of launch COLA can be broken down into two fundamental questions: 1) Does collision during launch represent a significant risk to either the payload being launched or the space environment? 2) Can launch collision mitigation be performed in a manner that provides meaningful risk reduction at an acceptable level of operational impact? While it has been possible to piece together partial answers to these questions for some time, the first attempt to comprehensively address them is documented in reference (a), Launch COLA Operations: an Examination of Data Products, Procedures, and Thresholds, Revision A. This report is the product of an extensive study that addressed fundamental technical questions surrounding launch collision avoidance analysis and practice. The results provided in reference (a) will be cited throughout this document as these two questions are addressed. The premise of this assessment is that in order to conclude that launch COLA is a value-added activity, the answer to both of these questions must be affirmative. A "no" answer to either of these questions points toward the conclusion that launch COLA provides little or no risk mitigation benefit. The remainder of this assessment will focus on addressing these two questions.

  18. Accessory deep peroneal neuropathy: collision technique diagnosis.

    PubMed

    Sander, H W; Quinto, C; Chokroverty, S

    1998-01-01

    Accessory deep peroneal nerve (ADPN), a common anatomic variant, is traditionally suspected when common peroneal nerve stimulation evokes a greater amplitude extensor digitorum brevis compound muscle action potential than deep peroneal nerve (DPN) stimulation. Posterolateral ankle stimulation over the ADPN is confirmatory. We report a rare patient with ADPN neuropathy in whom the collision technique was necessary to confirm the presence of an ADPN and to distinguish between neuropathy of the ADPN and the DPN.

  19. Catalytic reactions in heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Kolomeitsev, E. E.; Tomášik, B.

    2012-06-01

    We discuss a new type of reactions of a ϕ-meson production on hyperons, πY → ϕY and antikaons -KN → ϕY. These reactions are not suppressed according to Okubo-Zweig-Iizuka rule and can be a new efficient source of ϕ mesons in a nucleus-nucleus collision. We discuss how these reactions can affect the centrality dependence and the rapidity distributions of the ϕ yield.

  20. Femtoscopy in Relativistic Heavy Ion Collisions

    SciTech Connect

    Lisa, M; Pratt, S; Soltz, R A; Wiedemann, U

    2005-07-29

    Analyses of two-particle correlations have provided the chief means for determining spatio-temporal characteristics of relativistic heavy ion collisions. We discuss the theoretical formalism behind these studies and the experimental methods used in carrying them out. Recent results from RHIC are put into context in a systematic review of correlation measurements performed over the past two decades. The current understanding of these results are discussed in terms of model comparisons and overall trends.

  1. Backward charmonium production in π N collisions

    NASA Astrophysics Data System (ADS)

    Pire, B.; Semenov-Tian-Shansky, K.; Szymanowski, L.

    2017-02-01

    The QCD collinear factorization framework allows one to describe exclusive backward production of a J /ψ meson in pion-nucleon collisions in terms of pion-to-nucleon transition distribution amplitudes. We calculate the scattering amplitude at the leading order in the strong coupling constant and estimate the cross section of this reaction in the backward kinematical region for a medium energy pion beam available at the J-Parc experimental facility.

  2. Gravity waves from cosmic bubble collisions

    SciTech Connect

    Salem, Michael P.; Saraswat, Prashant; Shaghoulian, Edgar E-mail: ps88@stanford.edu

    2013-02-01

    Our local Hubble volume might be contained within a bubble that nucleated in a false vacuum with only two large spatial dimensions. We study bubble collisions in this scenario and find that they generate gravity waves, which are made possible in this context by the reduced symmetry of the global geometry. These gravity waves would produce B-mode polarization in the cosmic microwave background, which could in principle dominate over the inflationary background.

  3. Collision-induced dissociation of aflatoxins.

    PubMed

    Tóth, Katalin; Nagy, Lajos; Mándi, Attila; Kuki, Ákos; Mézes, Miklós; Zsuga, Miklós; Kéki, Sándor

    2013-02-28

    The aflatoxin mycotoxins are particularly hazardous to health when present in food. Therefore, from an analytical point of view, knowledge of their mass spectrometric properties is essential. The aim of the present study was to describe the collision-induced dissociation behavior of the four most common aflatoxins: B1, B2, G1 and G2. Protonated aflatoxins were produced using atmospheric pressure chemical ionization (APCI) mass spectrometry (MS) combined with high-performance liquid chromatography (HPLC). For the tandem mass spectrometry (MS/MS) experiments nitrogen was used as the collision gas and the collision energies were varied in the range of 9-44 eV (in the laboratory frame). The major APCI-MS/MS fragmentations of protonated aflatoxins occurred at 30 eV collision energy. The main fragmentation channels were found to be the losses of a series of carbon monoxide molecules and loss of a methyl radical, leading to the formation of radical-type product ions. In addition, if the aflatoxin molecule contained an ether- or lactone-oxygen atom linked to a saturated carbon atom, loss of a water molecule was observed from the [M + H](+) ion, especially in the case of aflatoxins G1 and G2. A relatively small modification in the structure of aflatoxins dramatically altered the fragmentation pathways and this was particularly true for aflatoxins B1 and B2. Due to the presence of a C = C double bond connected to the ether group in aflatoxin B1 no elimination of water was observed but, instead, formation of radical-type product ions occurred. Fragmentation of protonated aflatoxin B1 yielded the most abundant radical-type cations. Copyright © 2013 John Wiley & Sons, Ltd.

  4. Optically controlled collisions of biological objects

    NASA Astrophysics Data System (ADS)

    Davies, Benjamin J.; Kishore, Rani; Mammen, Mathai; Helmerson, Kristian; Choi, Seok-Ki; Phillips, William D.; Whitesides, George M.

    1998-04-01

    We have developed a new assay in which two mesoscale particles are caused to collide using two independently controlled optical tweezers. This assay involves the measurement of the adhesion probability following a collision. Since the relative orientation, impact parameter (i.e., distance of closest approach), and collision velocity of the particles, as well as the components of the solution, are all under the user's control, this assay can mimic a wide range of biologically relevant collisions. We illustrate the utility of our assay by evaluating the adhesion probability of a single erythrocyte (red blood cell) to an influenza virus-coated microsphere, in the presence of sialic acid-bearing inhibitors of adhesion. This probability as a function of inhibitor concentration yields a measure of the effectiveness of the inhibitor for blocking viral adhesion. Most of the inhibition constants obtained using the tweezers agree well with those obtained from other techniques, although the inhibition constants for the best of the inhibitors were beyond the limited resolution of conventional assays. They were readily evaluated using our tweezers-based assay, however, and prove to be the most potent inhibitors of adhesion between influenza virus and erythrocytes ever measured. Further studies are underway to investigate the effect of collision velocity on the adhesion probability, with the eventual goal of understanding the various mechanisms of inhibition (direct competition for viral binding sites versus steric stabilization). Analysis of these data also provide evidence that the density of binding sites may be a crucial parameter in the application of this assay and polymeric inhibition in general.

  5. Meson interferometry in relativistic heavy ion collisions

    SciTech Connect

    Not Available

    1993-05-01

    This report contains discussions on the following topics: Recent HBT results form CERN experiment NA44; interferometry results from E802/E859/E866; recent results on two particle correlations from E814; source sizes from CERN data; intermittency and interferometry; Bose-Einstein correlations in 200A GeV S+Au collisions; HBT correlations at STAR; HBT interferometry with PHENIX; HBT calculations from ARC; three pion correlations; and pion correlations in proton-induced reactions.

  6. Novel QCD effects in nuclear collisions

    SciTech Connect

    Brodsky, S.J.

    1991-12-01

    Heavy ion collisions can provide a novel environment for testing fundamental dynamical processes in QCD, including minijet formation and interactions, formation zone phenomena, color filtering, coherent co-mover interactions, and new higher twist mechanisms which could account for the observed excess production and anomalous nuclear target dependence of heavy flavor production. The possibility of using light-cone thermodynamics and a corresponding covariant temperature to describe the QCD phases of the nuclear fragmentation region is also briefly discussed.

  7. Hyperons polarization in heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Baznat, Mircea; Gudima, Konstantin; Sorin, Alexander; Teryaev, Oleg

    2017-03-01

    We study the structure of vorticity and hydrodynamic helicity fields in peripheral heavy-ion collisions using the kinetic Quark-Gluon Strings Model. The angular momentum which is a source of P-odd observables is preserved within this model with a good accuracy. We observe the formation of specific toroidal structures of vorticity field. Their existence is mirrored in the polarization of hyperons of the percent order. The observed qualitative energy dependence of polarization was predicted earlier and is quantified now.

  8. Heavy-ion collisions at the LHC

    NASA Astrophysics Data System (ADS)

    Roland, G.; Šafařík, K.; Steinberg, P.

    2014-07-01

    A new era in the study of high-energy nuclear collisions began when the CERN Large Hadron Collider (LHC) provided the first collisions of lead nuclei in late 2010. In the first three years of operation the ALICE, ATLAS and CMS experiments each collected Pb-Pb data samples of more than 50 μb at √{sNN}=2.76 TeV, exceeding the previously studied collision energies by more than an order of magnitude. These data have provided new insights into the properties of QCD matter under extreme conditions, with extensive measurements of soft particle production and newly accessible hard probes of the hot and dense medium. In this review, we provide a comprehensive overview of the results obtained in heavy-ion collisions at the LHC so far, with particular emphasis on the complementary nature of the observations by the three experiments. In particular, the combination of ALICE’s strengths at hadron identification, the strengths of ATLAS and CMS to make precise measurements of high pT probes, and the resourceful measurements of collective flow by all of the experiments have provided a rich and diverse dataset in only a few years. While the basic paradigm established at RHIC - that of a hot, dense medium that flows with a viscosity to shear-entropy ratio near the predicted lower bound, and which degrades the energy of probes, such as jets, heavy-flavours and J/ψ - is confirmed at the LHC, the new data suggest many new avenues for extracting its properties in detail.

  9. Oscillating collision of the granular chain on static wall

    NASA Astrophysics Data System (ADS)

    Ma, Liang; Huang, Decai; Chen, Weizhong; Jiao, Tengfei; Sun, Min; Hu, Fenglan; Su, Jiaye

    2017-02-01

    Collision of the granular chain on static wall is investigated by discrete element method. Collision time and traveling time are proposed on the basis of the characteristics of the collision of a single grain with a wall and the propagation of interaction force wave in a granular chain to explain the collision process. Simulation results show that an oscillating collision force is generated when the force waves successively arrive at the wall. For the collision of a mono-dispersed chain, the simulation data are in good agreement with the predicted relationship between the maximum chain length of nmax and the first maximum collision force FA. Rigid wall and soft wall are defined as nmax = 1 and nmax ≥ 2, respectively. Two similar processes of oscillating collisions occur when a light or a heavy impure grain is introduced. In these processes, two maximum collision forces, namely, FA and FB, are observed, respectively. The simulation results about the influence of the mass and position of light impure grain on the collision force FB further confirm our theoretical predictions.

  10. First in situ observations of binary raindrop collisions

    NASA Astrophysics Data System (ADS)

    Testik, F. Y.; Rahman, M. K.

    2017-01-01

    In this article, we present the first-time observations of binary raindrop collisions in rainfall events. These observations constitute a critical step in concluding a long-standing debate on the controlling physical process, binary raindrop collision versus spontaneous raindrop breakup, for the raindrop size distribution (DSD) evolution from cloud to ground level. Our raindrop collision observations were made possible by a new instrument called the High-speed Optical Disdrometer (HOD) that we recently developed for precipitation microphysics investigations. Our approximately 1 year long field campaign that covered 33 rainfall events provided 11 observations of binary raindrop collisions and outcomes but no spontaneous breakup observation. The field-observed collision rate (i.e., number of raindrop collisions within the measurement volume of the HOD per unit time) showed an increasing trend with increasing rain rate as expected from the theoretical collision rate predictions. Furthermore, the field-observed collision rates were (i) comparable (for rain rates less than approximately 50 mm/h) and (ii) significantly larger (for larger rain rates) than the theoretically predicted rates that have been used in various numerical investigations that suggest the controlling role of raindrop collisions in DSD evolution. Our observations, yet to be supplemented with observations from comprehensive field campaigns at different geographic locations and rainfall events for a definitive conclusion, support the collision-driven DSD evolution hypothesis.

  11. Proteinase-Activated Receptor-1 and Immunomodulatory Effects of a PAR1-Activating Peptide in a Mouse Model of Prostatitis

    PubMed Central

    Stanton, M. Mark; Nelson, Lisa K.; Benediktsson, Hallgrimur; Hollenberg, Morley D.; Buret, Andre G.; Ceri, Howard

    2013-01-01

    Background. Nonbacterial prostatitis has no established etiology. We hypothesized that proteinase-activated receptor-1 (PAR1) can play a role in prostatitis. We therefore investigated the effects of PAR1 stimulation in the context of a new model of murine nonbacterial prostatitis. Methods. Using a hapten (ethanol-dinitrobenzene sulfonic acid- (DNBS-)) induced prostatitis model with both wild-type and PAR1-null mice, we examined (1) the location of PAR1 in the mouse prostate and (2) the impact of a PAR1-activating peptide (TFLLR-NH2: PAR1-TF) on ethanol-DNBS-induced inflammation. Results. Ethanol-DNBS-induced inflammation was maximal at 2 days. In the tissue, PAR1 was expressed predominantly along the apical acini of prostatic epithelium. Although PAR1-TF on its own did not cause inflammation, its coadministration with ethanol-DNBS reduced all indices of acute prostatitis. Further, PAR1-TF administration doubled the prostatic production of interleukin-10 (IL-10) compared with ethanol-DNBS treatment alone. This enhanced IL-10 was not observed in PAR1-null mice and was not caused by the reverse-sequence receptor-inactive peptide, RLLFT-NH2. Surprisingly, PAR1-TF, also diminished ethanol-DNBS-induced inflammation in PAR1-null mice. Conclusions. PAR1 is expressed in the mouse prostate and its activation by PAR1-TF elicits immunomodulatory effects during ethanol-DNBS-induced prostatitis. However, PAR1-TF also diminishes ethanol-DNBS-induced inflammation via a non-PAR1 mechanism by activating an as-yet unknown receptor. PMID:24459330

  12. Proteinase-activated receptor-1 and immunomodulatory effects of a PAR1-activating peptide in a mouse model of prostatitis.

    PubMed

    Stanton, M Mark; Nelson, Lisa K; Benediktsson, Hallgrimur; Hollenberg, Morley D; Buret, Andre G; Ceri, Howard

    2013-01-01

    Nonbacterial prostatitis has no established etiology. We hypothesized that proteinase-activated receptor-1 (PAR1) can play a role in prostatitis. We therefore investigated the effects of PAR1 stimulation in the context of a new model of murine nonbacterial prostatitis. Using a hapten (ethanol-dinitrobenzene sulfonic acid- (DNBS-)) induced prostatitis model with both wild-type and PAR1-null mice, we examined (1) the location of PAR1 in the mouse prostate and (2) the impact of a PAR1-activating peptide (TFLLR-NH2: PAR1-TF) on ethanol-DNBS-induced inflammation. Ethanol-DNBS-induced inflammation was maximal at 2 days. In the tissue, PAR1 was expressed predominantly along the apical acini of prostatic epithelium. Although PAR1-TF on its own did not cause inflammation, its coadministration with ethanol-DNBS reduced all indices of acute prostatitis. Further, PAR1-TF administration doubled the prostatic production of interleukin-10 (IL-10) compared with ethanol-DNBS treatment alone. This enhanced IL-10 was not observed in PAR1-null mice and was not caused by the reverse-sequence receptor-inactive peptide, RLLFT-NH2. Surprisingly, PAR1-TF, also diminished ethanol-DNBS-induced inflammation in PAR1-null mice. PAR1 is expressed in the mouse prostate and its activation by PAR1-TF elicits immunomodulatory effects during ethanol-DNBS-induced prostatitis. However, PAR1-TF also diminishes ethanol-DNBS-induced inflammation via a non-PAR1 mechanism by activating an as-yet unknown receptor.

  13. SPH simulations of high-speed collisions

    NASA Astrophysics Data System (ADS)

    Rozehnal, Jakub; Broz, Miroslav

    2016-10-01

    Our work is devoted to a comparison of: i) asteroid-asteroid collisions occurring at lower velocities (about 5 km/s in the Main Belt), and ii) mutual collisions of asteroids and cometary nuclei usually occurring at significantly higher relative velocities (> 10 km/s).We focus on differences in the propagation of the shock wave, ejection of the fragments and possible differences in the resultingsize-frequency distributions of synthetic asteroid families. We also discuss scaling with respect to the "nominal" target diameter D = 100 km, projectile velocity 3-7 km/s, for which a number of simulations were done so far (Durda et al. 2007, Benavidez et al. 2012).In the latter case of asteroid-comet collisions, we simulate the impacts of brittle or pre-damaged impactors onto solid monolithic targets at high velocities, ranging from 10 to 15 km/s. The purpose of this numerical experiment is to better understand impact processes shaping the early Solar System, namely the primordial asteroid belt during during the (late) heavy bombardment (as a continuation of Broz et al. 2013).For all hydrodynamical simulations we use a smoothed-particle hydrodynamics method (SPH), namely the lagrangian SPH3D code (Benz & Asphaug 1994, 1995). The gravitational interactions between fragments (re-accumulation) is simulated with the Pkdgrav tree-code (Richardson et al. 2000).

  14. Dynamics of the baseball-bat collision

    NASA Astrophysics Data System (ADS)

    Nathan, Alan M.

    2000-11-01

    A model is developed for the collision between the baseball and bat, taking into account the transverse bending vibrations of the bat. By coupling the flexible bat to the ball via a parametrized force that each mutually exerts on the other, a complete description of the collision process is obtained, including the exit speed of the ball vf. It is shown that vibrations play an important role in determining vf. The model is in excellent agreement with experimental data at low impact velocities. At the higher velocities more appropriate to the game of baseball, vf is shown to coincide with the rigid-body value only over a very small region in the barrel of the bat and to drop off sharply for impacts removed from that region. Some interesting insights into the collision process are obtained, including the observation that for impacts in the barrel of the bat, the momentum transferred to the ball is essentially complete by the time the elastic wave first arrives at the handle and that any clamping action of the hands will affect the bat at the impact point only after the ball and bat have separated. This suggests that vf is independent of the size, shape, and method of support of the bat at distances far from the impact location.

  15. Progress in Computational Electron-Molecule Collisions

    NASA Astrophysics Data System (ADS)

    Rescigno, Tn

    1997-10-01

    The past few years have witnessed tremendous progress in the development of sophisticated ab initio methods for treating collisions of slow electrons with isolated small molecules. Researchers in this area have benefited greatly from advances in computer technology; indeed, the advent of parallel computers has made it possible to carry out calculations at a level of sophistication inconceivable a decade ago. But bigger and faster computers are only part of the picture. Even with today's computers, the practical need to study electron collisions with the kinds of complex molecules and fragments encountered in real-world plasma processing environments is taxing present methods beyond their current capabilities. Since extrapolation of existing methods to handle increasingly larger targets will ultimately fail as it would require computational resources beyond any imagined, continued progress must also be linked to new theoretical developments. Some of the techniques recently introduced to address these problems will be discussed and illustrated with examples of electron-molecule collision calculations we have carried out on some fairly complex target gases encountered in processing plasmas. Electron-molecule scattering continues to pose many formidable theoretical and computational challenges. I will touch on some of the outstanding open questions.

  16. About morphological findings in fatal railway collisions.

    PubMed

    Driever, Frank; Schmidt, Peter; Madea, Burkhard

    2002-04-18

    The autopsy findings in fatal cases of railway collisions of the Bonn Institute of Legal Medicine in 1992-1999 were investigated and compared to the statements in the investigation files of the public prosecutor with regard to classification as accident or suicide as well as with regard to type and speed of collision. Of the 38 deaths, 10 were hit in an upright position, 11 fatal collisions affected persons lying outside the track and 13 were hit and overrun lying inside the track. According to the investigation classification 21 persons committed suicide (56%), while 10 died in an accident (26%). Our survey confirmed the leading role of being over-rolled in a lying position as an indication for suicides, while in accidents the upright hit was most important. With exception of the persons primarily affected between the rails in upright position and over-rolled consecutively an unequivocal assignment of injury patterns to the hit categories was possible. In cases of persons being primarily over-rolled in a lying position especially the criteria (i) opening of body cavities, (ii) organ injuries and (iii) loss of parts of the body allowed for careful conclusion on hit, respectively, overrunning speed.

  17. Multilevel Monte Carlo simulation of Coulomb collisions

    DOE PAGES

    Rosin, M. S.; Ricketson, L. F.; Dimits, A. M.; ...

    2014-05-29

    We present a new, for plasma physics, highly efficient multilevel Monte Carlo numerical method for simulating Coulomb collisions. The method separates and optimally minimizes the finite-timestep and finite-sampling errors inherent in the Langevin representation of the Landau–Fokker–Planck equation. It does so by combining multiple solutions to the underlying equations with varying numbers of timesteps. For a desired level of accuracy ε , the computational cost of the method is O(ε–2) or (ε–2(lnε)2), depending on the underlying discretization, Milstein or Euler–Maruyama respectively. This is to be contrasted with a cost of O(ε–3) for direct simulation Monte Carlo or binary collision methods.more » We successfully demonstrate the method with a classic beam diffusion test case in 2D, making use of the Lévy area approximation for the correlated Milstein cross terms, and generating a computational saving of a factor of 100 for ε=10–5. Lastly, we discuss the importance of the method for problems in which collisions constitute the computational rate limiting step, and its limitations.« less

  18. Multilevel Monte Carlo simulation of Coulomb collisions

    SciTech Connect

    Rosin, M. S.; Ricketson, L. F.; Dimits, A. M.; Caflisch, R. E.; Cohen, B. I.

    2014-05-29

    We present a new, for plasma physics, highly efficient multilevel Monte Carlo numerical method for simulating Coulomb collisions. The method separates and optimally minimizes the finite-timestep and finite-sampling errors inherent in the Langevin representation of the Landau–Fokker–Planck equation. It does so by combining multiple solutions to the underlying equations with varying numbers of timesteps. For a desired level of accuracy ε , the computational cost of the method is O(ε–2) or (ε–2(lnε)2), depending on the underlying discretization, Milstein or Euler–Maruyama respectively. This is to be contrasted with a cost of O(ε–3) for direct simulation Monte Carlo or binary collision methods. We successfully demonstrate the method with a classic beam diffusion test case in 2D, making use of the Lévy area approximation for the correlated Milstein cross terms, and generating a computational saving of a factor of 100 for ε=10–5. Lastly, we discuss the importance of the method for problems in which collisions constitute the computational rate limiting step, and its limitations.

  19. Initial data for black hole collisions

    NASA Astrophysics Data System (ADS)

    Rauber, J. D.

    A problem of considerable interest in relativistic astrophysics is to determine the gravitational radiation produced by collisions of compact objects, such as black holes. Such collisions may occur, for example, in the nuclei of galaxies. This problem requires that one solve the Einstein equation without limiting approximations, for example, as a Cauchy problem. Therefore, one must first construct the initial data. The extrinsic curvature on an initial spacelike hypersurface of two black holes with asisymmetric parallel spins is derived in terms of an analytic infinite series. Other two body configurations are also considered. The extrinsic curvature is constructed so that the resulting spacetime will have the topology of two Einstein-Rosen bridges; a physical equivalence of the top and bottom sheets of the initial hypersurface is also built in. It is shown that one may a priori specify the spins of the two black holes. The extrinsic curvature, so constructed, is not derivable from a potential. An appropriate numerical problem for the conformal factor is posed and examined in the above configurations. Efforts at using multi-grid differencing schemes for solving the differential equations are discussed. In order to time evolve ablack hole interaction or collision, the extrinsic curvature and conformal factor must be completely specified on an initial slice of spacetime.

  20. Initial Data for Black Hole Collisions

    NASA Astrophysics Data System (ADS)

    Rauber, Joel David

    A problem of considerable interest in relativistic astrophysics is to determine the gravitational radiation produced by collisions of compact objects, such as black holes. Such collisions may occur, for example, in the nuclei of galaxies. This problem requires that one solve the Einstein equation without limiting approximations, for example, as a Cauchy problem. Therefore, one must first construct the initial data. The extrinsic curvature on an initial spacelike hypersurface of two black holes with axisymmetric parallel spins is derived in terms of an analytic infinite series. Other two body configurations are also considered. The extrinsic curvature is constructed so that the resulting spacetime will have the topology of two Einstein-Rosen bridges; a physical equivalence of the top and bottom sheets of the initial hypersurface is also built in. It is shown that one may a priori specify the spins of the two black holes. The extrinsic curvature, so constructed, is not derivable from a potential. An appropriate numerical problem for the conformal factor is posed and examined in the above configurations. Efforts at using multi-grid differencing schemes for solving the differential equations are discussed. In order to time evolve a black hole interaction or collision, the extrinsic curvature and conformal factor must be completely specified on an initial slice of spacetime.