Science.gov

Sample records for co-cultivated damp building

  1. Co-cultivated damp building related microbes Streptomyces californicus and Stachybotrys chartarum induce immunotoxic and genotoxic responses via oxidative stress.

    PubMed

    Markkanen Penttinen, Piia; Pelkonen, Jukka; Tapanainen, Maija; Mäki-Paakkanen, Jorma; Jalava, Pasi I; Hirvonen, Maija-Riitta

    2009-08-01

    Oxidative stress has been proposed to be one mechanism behind the adverse health outcomes associated with living in a damp indoor environment. In the present study, the capability of damp building-related microbes Streptomyces californicus and Stachybotrys chartarum to induce oxidative stress was evaluated in vitro. In addition, the role of oxidative stress in provoking the detected cytotoxic, genotoxic, and inflammatory responses was studied by inhibiting the production of reactive oxygen species (ROS) using N-acetyl-l-cysteine (NAC). RAW264.7 macrophages were exposed in a dose- and time-dependent manner to the spores of co-cultivated S. californicus and S. chartarum, to their separately cultivated spore-mixture, or to the spores of these microbes alone. The intracellular peroxide production and cytotoxicity were measured by flow cytometric analysis, nitric oxide production was analyzed by the Griess method, DNA damage was determined by the comet assay, and cytokine production was measured by an immunochemical ELISA (enzyme-linked immunosorbent assay). All the studied microbial exposures triggered oxidative stress and subsequent cellular damage in RAW264.7 macrophages. The ROS scavenger, NAC, prevented growth arrest, apoptosis, DNA damage, and cytokine production induced by the co-culture since it reduced the intracellular level of ROS within macrophages. In contrast, the DNA damage and cell cycle arrest induced by the spores of S. californicus alone could not be prevented by NAC. Bioaerosol-induced oxidative stress in macrophages may be an important mechanism behind the frequent respiratory symptoms and diseases suffered by residents of moisture damaged buildings. Furthermore, microbial interactions during co-cultivation stimulate the production of highly toxic compound(s) which may significantly increase oxidative damage. PMID:19459771

  2. Secondary metabolites from Penicillium corylophilum isolated from damp buildings.

    PubMed

    McMullin, David R; Nsiama, Tienabe K; Miller, J David

    2014-01-01

    Indoor exposure to the spores and mycelial fragments of fungi that grow on damp building materials can result in increased non-atopic asthma and upper respiratory disease. The mechanism appears to involve exposure to low doses of fungal metabolites. Penicillium corylophilum is surprisingly common in damp buildings in USA, Canada and western Europe. We examined isolates of P. corylophilum geographically distributed across Canada in the first comprehensive study of secondary metabolites of this fungus. The sesquiterpene phomenone, the meroterpenoids citreohybridonol and andrastin A, koninginin A, E and G, three new alpha pyrones and four new isochromans were identified from extracts of culture filtrates. This is the first report of koninginins, meroterpenoids and alpha pyrones from P. corylophilum. These secondary metabolite data support the removal of P. corylophilum from Penicillium section Citrina and suggest that further taxonomic studies are required on this species.

  3. Methods for elimination of dampness in Building walls

    NASA Astrophysics Data System (ADS)

    Campian, Cristina; Pop, Maria

    2016-06-01

    Dampness elimination in building walls is a very sensitive problem, with high costs. Many methods are used, as: chemical method, electro osmotic method or physical method. The RECON method is a representative and a sustainable method in Romania. Italy has the most radical method from all methods. The technology consists in cutting the brick walls, insertion of a special plastic sheeting and injection of a pre-mixed anti-shrinking mortar.

  4. Dampness in buildings and health. Nordic interdisciplinary review of the scientific evidence on associations between exposure to "dampness" in buildings and health effects (NORDDAMP).

    PubMed

    Bornehag, C G; Blomquist, G; Gyntelberg, F; Järvholm, B; Malmberg, P; Nordvall, L; Nielsen, A; Pershagen, G; Sundell, J

    2001-06-01

    Several epidemiological investigations concerning indoor environments have indicated that "dampness" in buildings is associated to health effects such as respiratory symptoms, asthma and allergy. The aim of the present interdisciplinary review is to evaluate this association as shown in the epidemiological literature. A literature search identified 590 peer-reviewed articles of which 61 have been the foundation for this review. The review shows that "dampness" in buildings appears to increase the risk for health effects in the airways, such as cough, wheeze and asthma. Relative risks are in the range of OR 1.4-2.2. There also seems to be an association between "dampness" and other symptoms such as tiredness, headache and airways infections. It is concluded that the evidence for a causal association between "dampness" and health effects is strong. However, the mechanisms are unknown. Several definitions of dampness have been used in the studies, but all seems to be associated with health problems. Sensitisation to mites may be one but obviously not the only mechanism. Even if the mechanisms are unknown, there is sufficient evidence to take preventive measures against dampness in buildings. PMID:11394014

  5. Comparison of damping in buildings under low-amplitude and strong motions

    USGS Publications Warehouse

    Celebi, M.

    1996-01-01

    This paper presents a comprehensive assessment of damping values and other dynamic characteristics of five buildings using strong-motion and low-amplitude (ambient vibration) data. The strong-motion dynamic characteristics of five buildings within the San Francisco Bay area are extracted from recordings of the 17 October 1989 Loma Prieta earthquake (LPE). Ambient vibration response characteristics for the same five buildings were inferred using data collected in 1990 following LPE. Additional earthquake data other than LPE for one building and ambient vibration data collected before LPE for two other buildings provide additional confirmation of the results obtained. For each building, the percentages of critical damping and the corresponding fundamental periods determined from low-amplitude test data are appreciably lower than those determined from strong-motion recordings. These differences are attributed mainly to soil-structure interaction and other non-linear behavior affecting the structures during strong shaking. Significant contribution of radiation damping to the effective damping of a specific building is discussed in detail.

  6. Effect of damping and yielding on the seismic response of 3D steel buildings with PMRF.

    PubMed

    Reyes-Salazar, Alfredo; Haldar, Achintya; Rodelo-López, Ramon Eduardo; Bojórquez, Eden

    2014-01-01

    The effect of viscous damping and yielding, on the reduction of the seismic responses of steel buildings modeled as three-dimensional (3D) complex multidegree of freedom (MDOF) systems, is studied. The reduction produced by damping may be larger or smaller than that of yielding. This reduction can significantly vary from one structural idealization to another and is smaller for global than for local response parameters, which in turn depends on the particular local response parameter. The uncertainty in the estimation is significantly larger for local response parameter and decreases as damping increases. The results show the limitations of the commonly used static equivalent lateral force procedure where local and global response parameters are reduced in the same proportion. It is concluded that estimating the effect of damping and yielding on the seismic response of steel buildings by using simplified models may be a very crude approximation. Moreover, the effect of yielding should be explicitly calculated by using complex 3D MDOF models instead of estimating it in terms of equivalent viscous damping. The findings of this paper are for the particular models used in the study. Much more research is needed to reach more general conclusions.

  7. Effect of Damping and Yielding on the Seismic Response of 3D Steel Buildings with PMRF

    PubMed Central

    Haldar, Achintya; Rodelo-López, Ramon Eduardo; Bojórquez, Eden

    2014-01-01

    The effect of viscous damping and yielding, on the reduction of the seismic responses of steel buildings modeled as three-dimensional (3D) complex multidegree of freedom (MDOF) systems, is studied. The reduction produced by damping may be larger or smaller than that of yielding. This reduction can significantly vary from one structural idealization to another and is smaller for global than for local response parameters, which in turn depends on the particular local response parameter. The uncertainty in the estimation is significantly larger for local response parameter and decreases as damping increases. The results show the limitations of the commonly used static equivalent lateral force procedure where local and global response parameters are reduced in the same proportion. It is concluded that estimating the effect of damping and yielding on the seismic response of steel buildings by using simplified models may be a very crude approximation. Moreover, the effect of yielding should be explicitly calculated by using complex 3D MDOF models instead of estimating it in terms of equivalent viscous damping. The findings of this paper are for the particular models used in the study. Much more research is needed to reach more general conclusions. PMID:25097892

  8. Effect of damping and yielding on the seismic response of 3D steel buildings with PMRF.

    PubMed

    Reyes-Salazar, Alfredo; Haldar, Achintya; Rodelo-López, Ramon Eduardo; Bojórquez, Eden

    2014-01-01

    The effect of viscous damping and yielding, on the reduction of the seismic responses of steel buildings modeled as three-dimensional (3D) complex multidegree of freedom (MDOF) systems, is studied. The reduction produced by damping may be larger or smaller than that of yielding. This reduction can significantly vary from one structural idealization to another and is smaller for global than for local response parameters, which in turn depends on the particular local response parameter. The uncertainty in the estimation is significantly larger for local response parameter and decreases as damping increases. The results show the limitations of the commonly used static equivalent lateral force procedure where local and global response parameters are reduced in the same proportion. It is concluded that estimating the effect of damping and yielding on the seismic response of steel buildings by using simplified models may be a very crude approximation. Moreover, the effect of yielding should be explicitly calculated by using complex 3D MDOF models instead of estimating it in terms of equivalent viscous damping. The findings of this paper are for the particular models used in the study. Much more research is needed to reach more general conclusions. PMID:25097892

  9. STACHYBOTRYS CHARTARU Trichothecene Mycotoxins and Damp Building-Related Illness: New Insights into a Public Health Enigma

    EPA Science Inventory

    Damp building-related illnesses (DBRI) include a myriad of respiratory, immunologic, and neurologic symptoms that are sometimes etiologically linked to aberrant indoor growth of the toxic black mold, Stachybotrys chartarum. Although supportive evidence for such linkages is limite...

  10. Microfungal contamination of damp buildings--examples of risk constructions and risk materials.

    PubMed Central

    Gravesen, S; Nielsen, P A; Iversen, R; Nielsen, K F

    1999-01-01

    To elucidate problems with microfungal infestation in indoor environments, a multidisciplinary collaborative pilot study, supported by a grant from the Danish Ministry of Housing and Urban Affairs, was performed on 72 mold-infected building materials from 23 buildings. Water leakage through roofs, rising damp, and defective plumbing installations were the main reasons for water damage with subsequent infestation of molds. From a score system assessing the bioavailability of the building materials, products most vulnerable to mold attacks were water damaged, aged organic materials containing cellulose, such as wooden materials, jute, wallpaper, and cardboard. The microfungal genera most frequently encountered were Penicillium (68%), Aspergillus (56%), Chaetomium (22%), Ulocladium, (21%), Stachybotrys (19%) and Cladosporium (15%). Penicillium chrysogenum, Aspergillus versicolor, and Stachybotrys chartarum were the most frequently occurring species. Under field conditions, several trichothecenes were detected in each of three commonly used building materials, heavily contaminated with S. chartarum. Under experimental conditions, four out of five isolates of S. chartarum produced satratoxin H and G when growing on new and old, very humid gypsum boards. A. versicolor produced the carcinogenic mycotoxin sterigmatocystin and 5-methoxysterigmatocystin under the same conditions. PMID:10347000

  11. Co-cultivation of Streptomyces californicus and Stachybotrys chartarum stimulates the production of cytostatic compound(s) with immunotoxic properties

    SciTech Connect

    Penttinen, Piia . E-mail: Piia.Penttinen@ktl.fi; Pelkonen, Jukka; Huttunen, Kati; Hirvonen, Maija-Riitta

    2006-12-15

    We have recently shown that the actinobacterium Streptomyces californicus and the fungus Stachybotrys chartarum originating from moisture damaged buildings possess both immunotoxic and immunostimulatory characteristics, which are synergistically potentiated by microbial interaction. In the search for the causative agent(s) behind the immunotoxicity, the cytostatic effects of the co-cultivated spores of S. californicus and S. chartarum were compared to those caused by widely used cytostatic agents produced by streptomycetes. The RAW264.7 macrophages were exposed to four doses of doxorubicin (DOX), actinomycin D (AMD), mitomycin C (MMC) or phleomycin (PHLEO) for 24 h. Kinetics of the spores of the co-cultivated and the separately cultivated microbes (1 x 10{sup 6} spores/ml) was compared to DOX (0.15 {mu}M). Apoptotic responses were analyzed by measuring DNA content and mitochondria membrane depolarization with flow cytometer, and by the fluorometric caspase-3 assay. The present data indicate that interactions during co-cultivation of S. californicus and S. chartarum stimulate the production of an unidentified cytostatic compound(s) capable of inducing mitochondria mediated apoptosis and cell cycle arrest at S-G{sub 2}/M. The spores of co-cultivated microbes caused a 4-fold collapse of mitochondrial membrane potential and an almost 6-fold caspase-3 activation and DNA fragmentation when compared to control. Similar responses were induced by DNA cleaving compounds, especially DOX and AMD, at the relatively low concentrations, but not the spores of the same microbes when they were grown separately. These data suggest that when growing in the same habitat, interactions between S. californicus and S. chartarum stimulates the production of an unknown cytostatic compound(s) which evoke immunotoxic effects similar to those by chemotherapeutic drugs.

  12. Isolation and Damping of Shocks, Vibrations and Seismic Movements at Buildings: Equipment and Pipe Networks by SERB-SITON Method

    SciTech Connect

    Panait, A.; Serban, V.

    2006-07-01

    The paper presents SERB -- SITON method to control, limit and damp the shocks, vibration, impact load and seismic movements with applications in buildings, equipment and pipe networks (herein called: 'components'). The elimination or reduction of shocks, vibration, impact load and seismic movements is a difficult problem, still improperly handled theoretically and practically because many times the phenomena are random in character and the behavior of components is non-linear with variations of the properties in time, variations that lead to the increase or decrease of the energy and impulse transfer from the dynamic excitation to the components. Moreover, the existing supports and dampers applied today, are not efficient enough in the reduction of the dynamic movement for all the frequency ranges met with in the technical application field. The stiffness and damping of classic supports do not allow a good isolation of components against shocks and vibrations so to eliminate their propagation to the environment and neither do they provide a satisfactory protection of the components sensitive to shocks and vibrations and seismic movements coming from the environment. In order to reduce the effects of shocks, vibrations impact and seismic movements on the components, this paper presents the results obtained by SITON on the concept, design, construction, experimental testing and application of new types of supports, devices and thin lattice structure, called 'SERB', capable to overtake large static loads, to allow displacements from impact, thermal expansions or yielding of supports and which, in any work position, can elastically overtake large dynamic loads or impact loads which they damp. The new supports and devices and thin lattice structure allow their adjustment without the occurrence of over-stressing in the components due to their non -- linear geometric behavior, and the contact pressure among the elements is limited to pre-set values to avoid blocking

  13. Damped Ly alpha absorbers at high redshift: Large disks or galactic building blocks?

    NASA Technical Reports Server (NTRS)

    Haehnelt, Martin G.; Steinmetz, Matthias; Rauch, Michael

    1997-01-01

    The nature of the physical structures giving rise to damped Lyman alpha absorption systems (DLAS) at high redshifts is investigated. The proposal that rapidly rotating large disks are the only viable explanation for the observed asymmetric profiles of low ionization absorption lines is examined. Using hydrodynamic simulations of galaxy formation, it is demonstated that irregular protogalactic clumps can reproduce the observed velocity width distribution and asymmetries of the absorption profiles equally well. The velocity broadening in the simulated clumps is due to a mixture of rotation, random motions, infall and merging. The observed velocity width correlates with the virial velocity for the dark matter halo of the forming protogalactic clump. The typical virial velocity of the halos required to lead to the DLAS population is approximately 100 km/s. It is concluded that the evidence that DLAS at high redshift are related to large, rapidly rotating disks, is not compelling.

  14. Stachybotrys chartarum, trichothecene mycotoxins, and damp building-related illness: new insights into a public health enigma.

    PubMed

    Pestka, James J; Yike, Iwona; Dearborn, Dorr G; Ward, Marsha D W; Harkema, Jack R

    2008-07-01

    Damp building-related illnesses (DBRI) include a myriad of respiratory, immunologic, and neurologic symptoms that are sometimes etiologically linked to aberrant indoor growth of the toxic black mold, Stachybotrys chartarum. Although supportive evidence for such linkages is limited, there are exciting new findings about this enigmatic organism relative to its environmental dissemination, novel bioactive components, unique cellular targets, and molecular mechanisms of action which provide insight into the S. chartarum's potential to evoke allergic sensitization, inflammation, and cytotoxicity in the upper and lower respiratory tracts. Macrocyclic trichothecene mycotoxins, produced by one chemotype of this fungus, are potent translational inhibitors and stress kinase activators that appear to be a critical underlying cause for a number of adverse effects. Notably, these toxins form covalent protein adducts in vitro and in vivo and, furthermore, cause neurotoxicity and inflammation in the nose and brain of the mouse. A second S. chartarum chemotype has recently been shown to produce atranones-mycotoxins that can induce pulmonary inflammation. Other biologically active products of this fungus that might contribute to pathophysiologic effects include proteinases, hemolysins, beta-glucan, and spirocyclic drimanes. Solving the enigma of whether Stachybotrys inhalation indeed contributes to DBRI will require studies of the pathophysiologic effects of low dose chronic exposure to well-characterized, standardized preparations of S. chartarum spores and mycelial fragments, and, coexposures with other environmental cofactors. Such studies must be linked to improved assessments of human exposure to this fungus and its bioactive constituents in indoor air using both state-of-the-art sampling/analytical methods and relevant biomarkers.

  15. Determining the optimal number and position of damping viscose (MR) in seismic vibration control of buildings to use genetic algorithms (fuzzy engineering application)

    NASA Astrophysics Data System (ADS)

    Hatami, Farzad; Karimi, Esmail

    2012-01-01

    In this paper, study optimization performance of damping semi-active viscose MR in order to reduce the seismic vibrations of a building with 12 floors. For this purpose, we used genetic algorithms to obtain optimal number and optimal situation in 15 major earthquakes with different frequency content through which final status damping are determined. Investigating the influence of this type of damper on the construct dynamic response, the construct equation has been written regarding dampers .Then, the aforesaid equation has been transmitted to the situational setting ,the optimum quantity of each damper in the form of time function has been computed using optimization algorithm genetic and, the construct response has been determined. The results show that different positions of optimal in the structure height can have different effects on different responses. In a way that aligned damping in the upper parts of structures although much reduced Roof floor shift but are less than the rate of decline in shear force base. It also aligned damping in the bottom parts of structures are less than the rate of decline in base shear force roof and floor shift. Therefore, by determining optimized position of optimal by genetic algorithms that can simultaneously optimize the rate of reduction in the structure response.

  16. Quadratic Damping

    ERIC Educational Resources Information Center

    Fay, Temple H.

    2012-01-01

    Quadratic friction involves a discontinuous damping term in equations of motion in order that the frictional force always opposes the direction of the motion. Perhaps for this reason this topic is usually omitted from beginning texts in differential equations and physics. However, quadratic damping is more realistic than viscous damping in many…

  17. Frequency and damping ratio assessment of high-rise buildings using an Automatic Model-Based Approach applied to real-world ambient vibration recordings

    NASA Astrophysics Data System (ADS)

    Nasser, Fatima; Li, Zhongyang; Gueguen, Philippe; Martin, Nadine

    2016-06-01

    This paper deals with the application of the Automatic Model-Based Approach (AMBA) over actual buildings subjected to real-world ambient vibrations. In a previous paper, AMBA was developed with the aim of automating the estimation process of the modal parameters and minimizing the estimation error, especially that of the damping ratio. It is applicable over a single-channel record, has no parameters to be set, and no manual initialization phase. The results presented in this paper should be regarded as further documentation of the approach over real-world ambient vibration signals.

  18. Functional characterization of a Penicillium chrysogenum mutanase gene induced upon co-cultivation with Bacillus subtilis

    PubMed Central

    2014-01-01

    Background Microbial gene expression is strongly influenced by environmental growth conditions. Comparison of gene expression under different conditions is frequently used for functional analysis and to unravel regulatory networks, however, gene expression responses to co-cultivation with other microorganisms, a common occurrence in nature, is rarely studied under laboratory conditions. To explore cellular responses of the antibiotic-producing fungus Penicillium chrysogenum to prokaryotes, the present study investigates its transcriptional responses during co-cultivation with Bacillus subtilis. Results Steady-state glucose-limited chemostats of P. chrysogenum grown under penillicin-non-producing conditions were inoculated with B. subtilis. Physiological and transcriptional responses of P. chrysogenum in the resulting mixed culture were monitored over 72 h. Under these conditions, B. subtilis outcompeted P. chrysogenum, as reflected by a three-fold increase of the B. subtilis population size and a two-fold reduction of the P. chrysogenum biomass concentration. Genes involved in the penicillin pathway and in synthesis of the penicillin precursors and side-chain were unresponsive to the presence of B. subtilis. Moreover, Penicillium polyketide synthase and nonribosomal peptide synthase genes were either not expressed or down-regulated. Among the highly responsive genes, two putative α-1,3 endoglucanase (mutanase) genes viz Pc12g07500 and Pc12g13330 were upregulated by more than 15-fold and 8-fold, respectively. Measurement of enzyme activity in the supernatant of mixed culture confirmed that the co-cultivation with B. subtilis induced mutanase production. Mutanase activity was neither observed in pure cultures of P. chrysogenum or B. subtilis, nor during exposure of P. chrysogenum to B. subtilis culture supernatants or heat-inactivated B. subtilis cells. However, mutanase production was observed in cultures of P. chrysogenum exposed to filter-sterilized supernatants

  19. Evaluation of individual-based and group-based exposure estimation of microbial agents in health effects associated with a damp building.

    PubMed

    Cho, Sook Ja; Cox-Ganser, Jean M; Kreiss, Kathleen; Park, Ju-Hyeong

    2013-07-01

    We evaluated attenuation in linear associations between microbial exposure and respiratory symptoms occurring when individual measurements of microbial agents were used for estimating employees' exposure compared with group means. Symptoms, which improved when away from the building (building-related, BR), and measurements of culturable fungi, ergosterol, and endotoxin in floor dust were obtained between 2001 and 2007 from four cross-sectional studies on occupants of a water-damaged building. We compared odds ratios from longitudinal health effect models using individual measurements at employees' workstations with those using floor (group) means. Estimated odds for BR respiratory symptoms in group-based analyses increased by 2 to 5 times compared with those from individual-based analyses for culturable fungi and ergosterol, although they were less precise. For endotoxin, we found substantially increased and significant odds in group-based analyses, while we found no associations in individual-based analyses for various symptoms. Our study suggested that the building floor was useful in constructing exposure groups for microbial agents in this water-damaged building for epidemiologic analysis. Our study showed that group-average exposure estimation provides less attenuated associations between exposures to microbial agents and health in damp indoor environments where measurement error and intrinsic temporal variability are often large.

  20. Coulomb Damping

    ERIC Educational Resources Information Center

    Fay, Temple H.

    2012-01-01

    Viscous damping is commonly discussed in beginning differential equations and physics texts but dry friction or Coulomb friction is not despite dry friction being encountered in many physical applications. One reason for avoiding this topic is that the equations involve a jump discontinuity in the damping term. In this article, we adopt an energy…

  1. Co-cultivation of microalgae and nitrifiers for higher biomass production and better carbon capture.

    PubMed

    Bilanovic, Dragoljub; Holland, Mark; Starosvetsky, Jeanna; Armon, Robert

    2016-11-01

    The aim of this work was to study co-cultivation of nitrifiers with microalgae as a non-intrusive technique for selective removal of oxygen generated by microalgae. Biomass concentration was, at least, 23% higher in mixed-cultures where nitrifiers kept the dissolved oxygen concentration below 9.0μLL(-1) than in control Chlorella vulgaris axenic-cultures where the concentration of dissolved oxygen was higher than 10.0μLL(-1). This approach to eliminating oxygen inhibition of microalgal growth could become the basis for the development of advanced microalgae reactors for removal of CO2 from the atmosphere, and concentrated CO2 streams. CO2 sequestration would become a chemically and geologically safer and environmentally more sound technology provided it uses microalgal, or other biomass, instead of CO2, for carbon storage. PMID:27584904

  2. Co-cultivation of microalgae and nitrifiers for higher biomass production and better carbon capture.

    PubMed

    Bilanovic, Dragoljub; Holland, Mark; Starosvetsky, Jeanna; Armon, Robert

    2016-11-01

    The aim of this work was to study co-cultivation of nitrifiers with microalgae as a non-intrusive technique for selective removal of oxygen generated by microalgae. Biomass concentration was, at least, 23% higher in mixed-cultures where nitrifiers kept the dissolved oxygen concentration below 9.0μLL(-1) than in control Chlorella vulgaris axenic-cultures where the concentration of dissolved oxygen was higher than 10.0μLL(-1). This approach to eliminating oxygen inhibition of microalgal growth could become the basis for the development of advanced microalgae reactors for removal of CO2 from the atmosphere, and concentrated CO2 streams. CO2 sequestration would become a chemically and geologically safer and environmentally more sound technology provided it uses microalgal, or other biomass, instead of CO2, for carbon storage.

  3. Can the co-cultivation of rice and fish help sustain rice production?

    PubMed

    Hu, Liangliang; Zhang, Jian; Ren, Weizheng; Guo, Liang; Cheng, Yongxu; Li, Jiayao; Li, Kexin; Zhu, Zewen; Zhang, Jiaen; Luo, Shiming; Cheng, Lei; Tang, Jianjun; Chen, Xin

    2016-01-01

    Because rice feeds half of the world's population, a secure global food supply depends on sustainable rice production. Here we test whether the co-cultivation of rice and fish into one "rice-fish system" (RFS; fish refers to aquatic animals in this article) could help sustain rice production. We examined intensive and traditional RFSs that have been widely practiced in China. We found that rice yields did not decrease when fish yield was below a threshold value in each intensive RFS. Below the thresholds, moreover, fish yields in intensive RFSs can be substantially higher than those in traditional RFS without reducing rice yield. Relative to rice monoculture, the use of fertilizer-nitrogen and pesticides decreased, and the farmers' net income increased in RFSs. The results suggest that RFSs can help sustain rice production, and suggest that development of co-culture technologies (i.e. proper field configuration for fish and rice) is necessary to achieve the sustainability. PMID:27349875

  4. Significance of stiffening of high damping rubber bearings on the response of base-isolated buildings under near-fault earthquakes

    NASA Astrophysics Data System (ADS)

    Alhan, Cenk; Gazi, Hatice; Kurtuluş, Hakan

    2016-10-01

    High Damping Rubber Bearings (HDRBs) are among various types of laterally flexible isolation system elements that effectively protect structures from detrimental effects of earthquakes by lengthening their fundamental periods. However, large isolator displacements resulting in strains larger than 100% may come into scene in case of near-fault ground motions containing long-period and large-amplitude velocity and/or displacement pulses. This is particularly important when HDRBs are used since the post-yield stiffness of an HDRB increases due to inherent strain hardening characteristics when a threshold isolator displacement limit is exceeded. Therefore, it may be critical to consider the stiffening of HDRBs in modeling of these elements for accurate seismic response evaluation of the buildings equipped with HDRBs that are located in near-fault regions. In this study, the significance of stiffening of HDRBs on the response of base-isolated buildings is investigated by conducting nonlinear time history analyses of benchmark six-story base-isolated buildings which employ HDRBs that are represented by non-stiffening or stiffening models under both historical and synthetic near-fault ground motions of various magnitudes and fault distances. The structural response parameters included in the comparisons are base displacements, story drifts, and floor accelerations. It is found that, the significance of stiffening of HDRBs on the response of base-isolated buildings under near-fault earthquakes becomes more prominent as the earthquake magnitude increases and the fault distance decreases and thus suggestions for modifications to seismic code regulations are made accordingly.

  5. Can the co-cultivation of rice and fish help sustain rice production?

    PubMed Central

    Hu, Liangliang; Zhang, Jian; Ren, Weizheng; Guo, Liang; Cheng, Yongxu; Li, Jiayao; Li, Kexin; Zhu, Zewen; Zhang, Jiaen; Luo, Shiming; Cheng, Lei; Tang, Jianjun; Chen, Xin

    2016-01-01

    Because rice feeds half of the world’s population, a secure global food supply depends on sustainable rice production. Here we test whether the co-cultivation of rice and fish into one “rice-fish system” (RFS; fish refers to aquatic animals in this article) could help sustain rice production. We examined intensive and traditional RFSs that have been widely practiced in China. We found that rice yields did not decrease when fish yield was below a threshold value in each intensive RFS. Below the thresholds, moreover, fish yields in intensive RFSs can be substantially higher than those in traditional RFS without reducing rice yield. Relative to rice monoculture, the use of fertilizer-nitrogen and pesticides decreased, and the farmers’ net income increased in RFSs. The results suggest that RFSs can help sustain rice production, and suggest that development of co-culture technologies (i.e. proper field configuration for fish and rice) is necessary to achieve the sustainability. PMID:27349875

  6. [Intracellular immunoglobulins in Namalwa and U266 cells co-cultivated with mesenchymal stromal cells].

    PubMed

    Aĭzenshtadt, A A; Ivanova, N A; Bagaeva, V V; Smolianinov, A B; Pinevich, A A; Samoĭlovich, M P; Klimovich, V B

    2014-01-01

    There are contradictory data concerning the influence of mesenchymal stromal cells (MSC) on immunoglobulin (Ig) production. Most of them were obtained using MSC from bone marrow. Properties of MSC from other tissues are elusive. In the present work MSC cultures were derived from umbilical cord, adipose tissue, and bone marrow of healthy donors, as well as from bone marrow of patients with autoimmune diseases. MSC from all these sources had similar surface markers phenotype. The influence of co-cultivation with MSC at exponential or stationary phase on IgM and IgE content in Namalva and U266 cells was evaluated. MSC from bone marrow of healthy donors had no effect on IgM and IgE production. Proliferating MSC obtained from patients with Crohn's disease and multiple sclerosis stimulated Ig production. Exponentially growing MSC derived from umbilical cord and adipose tissue also stimulated Ig synthesis. MSC at stationary cultures amplified IgM production in Namalva cells and suppressed IgE synthesis in U266. Thus, MSC with similar phenotype but derived from different sources differ in their capacity to modulate Ig production in B-lymphoid cells. The effect of MSC depends on their growth stage and may differ for lymphoblastoid and myeloma cells. PMID:25509151

  7. Exposure of human nasal epithelial cells to formaldehyde does not lead to DNA damage in lymphocytes after co-cultivation.

    PubMed

    Neuss, Simone; Moepps, Barbara; Speit, Günter

    2010-07-01

    We performed in vitro co-cultivation experiments with primary human nasal epithelial cells (HNEC) and isolated lymphocytes to investigate whether reactive formaldehyde (FA) can be passed on from nasal epithelial cells (site of first contact) to lymphocytes located in close proximity and induce DNA damage in these cells. A modified comet assay was used as a sensitive method for the detection of FA-induced DNA-protein cross links (DPX) because DPX are the most relevant type of FA-induced DNA damage. Our results clearly indicate that co-cultivation of lymphocytes with HNEC exposed to FA for 1 h causes a concentration-related induction of DPX in lymphocytes when co-cultivation takes place in the exposure medium. However, when the exposure medium is changed after FA treatment of HNEC and before lymphocytes are added, no induction of DPX is measured in lymphocytes even after exposure of HNEC to high FA concentrations (300 microM) and extended co-cultivation (4 h). Direct measurement of FA in the cell culture medium by a sensitive fluorescent detection kit indicated that FA is actually not released even from highly exposed cells into the cell culture medium. These results suggest that FA that has entered nasal epithelial cells is not released and does not damage other cells in close proximity to the epithelial cells. If these results also apply to the in vivo situation, FA would only be genotoxic towards directly exposed cells (site of first contact) and there should be no significant delivery of inhaled FA to other cells and distant sites. Our results do not support a recently proposed hypothetic mechanism for FA-induced leukaemia by damaging circulating haematopoietic stem cells or haematopoietic progenitor cells in nasal passages, which then travel to the bone marrow and become initiated leukaemic stem cells.

  8. Co-cultivation of Aspergillus nidulans Recombinant Strains Produces an Enzymatic Cocktail as Alternative to Alkaline Sugarcane Bagasse Pretreatment.

    PubMed

    Lima, Matheus S; Damasio, André R de L; Crnkovic, Paula M; Pinto, Marcelo R; da Silva, Ana M; da Silva, Jean C R; Segato, Fernando; de Lucas, Rosymar C; Jorge, João A; Polizeli, Maria de L T de M

    2016-01-01

    Plant materials represent a strategic energy source because they can give rise to sustainable biofuels through the fermentation of their carbohydrates. A clear example of a plant-derived biofuel resource is the sugar cane bagasse exhibiting 60-80% of fermentable sugars in its composition. However, the current methods of plant bioconversion employ severe and harmful chemical/physical pretreatments raising biofuel cost production and environmental degradation. Replacing these methods with co-cultivated enzymatic cocktails is an alternative. Here we propose a pretreatment for sugarcane bagasse using a multi-enzymatic cocktail from the co-cultivation of four Aspergillus nidulans recombinant strains. The co-cultivation resulted in the simultaneous production of GH51 arabinofuranosidase (AbfA), GH11 endo-1,4-xylanase (XlnA), GH43 endo-1,5-arabinanase (AbnA) and GH12 xyloglucan specific endo-β-1,4-glucanase (XegA). This core set of recombinant enzymes was more efficient than the alternative alkaline method in maintaining the cellulose integrity and exposing this cellulose to the following saccharification process. Thermogravimetric and differential thermal analysis revealed residual byproducts on the alkali pretreated biomass, which were not found in the enzymatic pretreatment. Therefore, the enzymatic pretreatment was residue-free and seemed to be more efficient than the applied alkaline method, which makes it suitable for bioethanol production.

  9. Co-cultivation of Aspergillus nidulans Recombinant Strains Produces an Enzymatic Cocktail as Alternative to Alkaline Sugarcane Bagasse Pretreatment.

    PubMed

    Lima, Matheus S; Damasio, André R de L; Crnkovic, Paula M; Pinto, Marcelo R; da Silva, Ana M; da Silva, Jean C R; Segato, Fernando; de Lucas, Rosymar C; Jorge, João A; Polizeli, Maria de L T de M

    2016-01-01

    Plant materials represent a strategic energy source because they can give rise to sustainable biofuels through the fermentation of their carbohydrates. A clear example of a plant-derived biofuel resource is the sugar cane bagasse exhibiting 60-80% of fermentable sugars in its composition. However, the current methods of plant bioconversion employ severe and harmful chemical/physical pretreatments raising biofuel cost production and environmental degradation. Replacing these methods with co-cultivated enzymatic cocktails is an alternative. Here we propose a pretreatment for sugarcane bagasse using a multi-enzymatic cocktail from the co-cultivation of four Aspergillus nidulans recombinant strains. The co-cultivation resulted in the simultaneous production of GH51 arabinofuranosidase (AbfA), GH11 endo-1,4-xylanase (XlnA), GH43 endo-1,5-arabinanase (AbnA) and GH12 xyloglucan specific endo-β-1,4-glucanase (XegA). This core set of recombinant enzymes was more efficient than the alternative alkaline method in maintaining the cellulose integrity and exposing this cellulose to the following saccharification process. Thermogravimetric and differential thermal analysis revealed residual byproducts on the alkali pretreated biomass, which were not found in the enzymatic pretreatment. Therefore, the enzymatic pretreatment was residue-free and seemed to be more efficient than the applied alkaline method, which makes it suitable for bioethanol production. PMID:27199917

  10. Co-cultivation of Aspergillus nidulans Recombinant Strains Produces an Enzymatic Cocktail as Alternative to Alkaline Sugarcane Bagasse Pretreatment

    PubMed Central

    Lima, Matheus S.; Damasio, André R. de L.; Crnkovic, Paula M.; Pinto, Marcelo R.; da Silva, Ana M.; da Silva, Jean C. R.; Segato, Fernando; de Lucas, Rosymar C.; Jorge, João A.; Polizeli, Maria de L. T. de M.

    2016-01-01

    Plant materials represent a strategic energy source because they can give rise to sustainable biofuels through the fermentation of their carbohydrates. A clear example of a plant-derived biofuel resource is the sugar cane bagasse exhibiting 60–80% of fermentable sugars in its composition. However, the current methods of plant bioconversion employ severe and harmful chemical/physical pretreatments raising biofuel cost production and environmental degradation. Replacing these methods with co-cultivated enzymatic cocktails is an alternative. Here we propose a pretreatment for sugarcane bagasse using a multi-enzymatic cocktail from the co-cultivation of four Aspergillus nidulans recombinant strains. The co-cultivation resulted in the simultaneous production of GH51 arabinofuranosidase (AbfA), GH11 endo-1,4-xylanase (XlnA), GH43 endo-1,5-arabinanase (AbnA) and GH12 xyloglucan specific endo-β-1,4-glucanase (XegA). This core set of recombinant enzymes was more efficient than the alternative alkaline method in maintaining the cellulose integrity and exposing this cellulose to the following saccharification process. Thermogravimetric and differential thermal analysis revealed residual byproducts on the alkali pretreated biomass, which were not found in the enzymatic pretreatment. Therefore, the enzymatic pretreatment was residue-free and seemed to be more efficient than the applied alkaline method, which makes it suitable for bioethanol production. PMID:27199917

  11. A dual-species co-cultivation system to study the interactions between Roseobacters and dinoflagellates.

    PubMed

    Wang, Hui; Tomasch, Jürgen; Jarek, Michael; Wagner-Döbler, Irene

    2014-01-01

    Some microalgae in nature live in symbiosis with microorganisms that can enhance or inhibit growth, thus influencing the dynamics of phytoplankton blooms. In spite of the great ecological importance of these interactions, very few defined laboratory systems are available to study them in detail. Here we present a co-cultivation system consisting of the toxic phototrophic dinoflagellate Prorocentrum minimum and the photoheterotrophic alphaproteobacterium Dinoroseobacter shibae. In a mineral medium lacking a carbon source, vitamins for the bacterium and the essential vitamin B12 for the dinoflagellate, growth dynamics reproducibly went from a mutualistic phase, where both algae and bacteria grow, to a pathogenic phase, where the algae are killed by the bacteria. The data show a "Jekyll and Hyde" lifestyle that had been proposed but not previously demonstrated. We used RNAseq and microarray analysis to determine which genes of D. shibae are transcribed and differentially expressed in a light dependent way at an early time-point of the co-culture when the bacterium grows very slowly. Enrichment of bacterial mRNA for transcriptome analysis was optimized, but none of the available methods proved capable of removing dinoflagellate ribosomal RNA completely. RNAseq showed that a phasin encoding gene (phaP1 ) which is part of the polyhydroxyalkanoate (PHA) metabolism operon represented approximately 10% of all transcripts. Five genes for aerobic anoxygenic photosynthesis were down-regulated in the light, indicating that the photosynthesis apparatus was functional. A betaine-choline-carnitine-transporter (BCCT) that may be used for dimethylsulfoniopropionate (DMSP) uptake was the highest up-regulated gene in the light. The data suggest that at this early mutualistic phase of the symbiosis, PHA degradation might be the main carbon and energy source of D. shibae, supplemented in the light by degradation of DMSP and aerobic anoxygenic photosynthesis. PMID:25009539

  12. Non-destructive mapping of dampness and salts in degraded wall paintings in hypogeous buildings: the case of St. Clement at mass fresco in St. Clement Basilica, Rome.

    PubMed

    Di Tullio, Valeria; Proietti, Noemi; Gobbino, Marco; Capitani, Donatella; Olmi, Roberto; Priori, Saverio; Riminesi, Cristiano; Giani, Elisabetta

    2010-03-01

    As is well known, the deterioration of wall paintings due to the capillary rise of water through the walls is a very widespread problem. In this paper, a study of microclimate monitoring, unilateral nuclear magnetic resonance (NMR), and evanescent-field dielectrometry (EFD) was applied to map non-destructively, in situ, and in a quantitative way the distribution of the moisture in an ancient deteriorated wall painting of the eleventh century. Both unilateral NMR and EFD are quite new, fully portable, and non-destructive techniques, and their combination is absolutely new. The approach reported here is proposed as a new analytical protocol to afford the problem of mapping, non-destructively, the moisture in a deteriorated wall painting in a hypogeous building such as that of the second level of St. Clement Basilica, Rome (Italy), where the use of IR thermography is impaired due to the environmental conditions, and the gravimetric tests are forbidden due to the preciousness of the artifact. The moisture distribution was mapped at different depths, from the very first layers of the painted film to a depth of 2 cm. It has also been shown how the map obtained in the first layers of the artwork is affected by the environmental conditions typical of a hypogeous building, whereas the maps obtained at higher depths are representative of the moisture due to the capillary rise of water from the ground. The quantitative analysis of the moisture was performed by calibrating NMR and EFD signals with purposely prepared specimens. This study may be applied before and after performing any intervention aimed at restoring and improving the state of conservation of this type of artwork and reducing the dampness or extracting salts (driven by the variation of moisture content) and monitoring the effectiveness of the performed interventions during the time. This protocol is applicable to any type of porous material.

  13. Reduction in seismic response with heavily-damped vibration absorbers

    SciTech Connect

    Villaverde, R.

    1985-01-01

    It is shown that two of the damping ratios of certain systems composed of a building and a small attachment in resonance are given by the average of the damping ratios of the two independent components. Based on this fact and the fact that the seismic response of a building can always be reduced by increasing its damping, it is demonstrated that the attachment of a small heavily-damped system in resonance can increase the damping of a building and reduce thus it response to earthquake excitations. Numerical solutions are presented to confirm the demonstration, and recommendations are given to calculate the parameters of such systems.

  14. Sesquiterpene emissions from Alternaria alternata and Fusarium oxysporum: Effects of age, nutrient availability, and co-cultivation

    PubMed Central

    Weikl, Fabian; Ghirardo, Andrea; Schnitzler, Jörg-Peter; Pritsch, Karin

    2016-01-01

    Alternaria alternata is one of the most studied fungi to date because of its impact on human life – from plant pathogenicity to allergenicity. However, its sesquiterpene emissions have not been systematically explored. Alternaria regularly co-occurs with Fusarium fungi, which are common plant pathogens, on withering plants. We analyzed the diversity and determined the absolute quantities of volatile organic compounds (VOCs) in the headspace above mycelial cultures of A. alternata and Fusarium oxysporum under different conditions (nutrient rich and poor, single cultures and co-cultivation) and at different mycelial ages. Using stir bar sorptive extraction and gas chromatography–mass spectrometry, we observed A. alternata to strongly emit sesquiterpenes, particularly during the early growth stages, while emissions from F. oxysporum consistently remained comparatively low. The emission profile characterizing A. alternata comprised over 20 sesquiterpenes with few effects from nutrient quality and age on the overall emission profile. Co-cultivation with F. oxysporum resulted in reduced amounts of VOCs emitted from A. alternata although its profile remained similar. Both fungi showed distinct emission profiles, rendering them suitable biomarkers for growth-detection of their phylotype in ambient air. The study highlights the importance of thorough and quantitative evaluations of fungal emissions of volatile infochemicals such as sesquiterpenes. PMID:26915756

  15. Solution Accounts for Structural Damping

    NASA Technical Reports Server (NTRS)

    Roussos, L. A.; Hyer, M. W.; Thornton, E. A.

    1982-01-01

    New analytical technique determines dynamic response of damped structures dominated by internal structural damping mechanisms. Though structural damping is often negligible compared with damping due to air friction and friction in joints, structural damping can be of major importance in structures having heavy damping treatments or in outer-space structures. Finite-element model includes nonlinear, nonviscous internal damping.

  16. [Characteristics of migration of adipose tissue derived mesenchymal stromal cells after co-cultivation with activated monocytes in vitro].

    PubMed

    Grigor'eva, O A; Korovina, I V; Gogia, B Sh; Sysoeva, V Iu

    2014-01-01

    Mesenchymal stromal cells (MSC) are considered to be promising tool of regenerative medicine. Migration of MSC toward damaged inflammatory site is essential for physiological tissue reparation. Therefore we studied modifications of migratory features of adipose tissue derived MSC (AT-MSC) after co-cultivation with activated monocytes derived from THP-1 cell line. As a result, we have observed an increased migration rate of AT-MSC in vitro in the absence of chemoattractant gradient as well as toward the gradient of PDGF BB (platelet-derived growth factor BB), which is well known chemoattractant for the cells of mesenchymal origin. Furthermore, the rate of directional AT-MSC migration through fibronectin was also increased. We have established that signaling from PDGFRβ which is activated through binding of integrin receptors with extracellular matrix may be possible way to stimulate cellular migration under simulated inflammatory conditions.

  17. Magnetic Damping For Maglev

    DOE PAGES

    Zhu, S.; Cai, Y.; Rote, D. M.; Chen, S. S.

    1998-01-01

    Magnetic damping is one of the important parameters that control the response and stability of maglev systems. An experimental study to measure magnetic damping directly is presented. A plate attached to a permanent magnet levitated on a rotating drum was tested to investigate the effect of various parameters, such as conductivity, gap, excitation frequency, and oscillation amplitude, on magnetic damping. The experimental technique is capable of measuring all of the magnetic damping coefficients, some of which cannot be measured indirectly.

  18. Damped leaf flexure hinge

    NASA Astrophysics Data System (ADS)

    Chen, Zhong; Chen, Guisheng; Zhang, Xianmin

    2015-05-01

    Flexure-based mechanism like compliant actuation system embeds complex dynamics that will reduce the control bandwidth and limits their dynamic positioning precision. This paper presents a theoretical model of a leaf flexure hinge with damping layers using strain energy method and Kelvin damping model. The modified loss factor of the damped leaf flexure hinge is derived, and the equivalent viscous damping coefficient of the damped leaf hinge is obtained, which could be used to improve the pseudo-rigid-model. The free vibration signals of the hinge in three different damping configurations are measured. The experimental modal analysis also is performed on the three kinds of damped leaf flexure hinges in order to evaluate their 1st order bending natural frequency and vibration-suppressing effects. The evaluation of modified loss factor model also is performed. The experimental results indicate that the constrained layer damping can enhance the structure damping of the hinge even if only single damping layer each side, the modified loss factor model can get good predicts of a damped leaf flexure hinge in the frequency range below 1st order natural frequency, and it is necessary that the dimensional parameters of the damping layers and basic layer of the hinge should be optimized for simplification at the mechanism's design stage.

  19. Damped leaf flexure hinge.

    PubMed

    Chen, Zhong; Chen, Guisheng; Zhang, Xianmin

    2015-05-01

    Flexure-based mechanism like compliant actuation system embeds complex dynamics that will reduce the control bandwidth and limits their dynamic positioning precision. This paper presents a theoretical model of a leaf flexure hinge with damping layers using strain energy method and Kelvin damping model. The modified loss factor of the damped leaf flexure hinge is derived, and the equivalent viscous damping coefficient of the damped leaf hinge is obtained, which could be used to improve the pseudo-rigid-model. The free vibration signals of the hinge in three different damping configurations are measured. The experimental modal analysis also is performed on the three kinds of damped leaf flexure hinges in order to evaluate their 1st order bending natural frequency and vibration-suppressing effects. The evaluation of modified loss factor model also is performed. The experimental results indicate that the constrained layer damping can enhance the structure damping of the hinge even if only single damping layer each side, the modified loss factor model can get good predicts of a damped leaf flexure hinge in the frequency range below 1st order natural frequency, and it is necessary that the dimensional parameters of the damping layers and basic layer of the hinge should be optimized for simplification at the mechanism's design stage. PMID:26026549

  20. Passive damping technology demonstration

    NASA Astrophysics Data System (ADS)

    Holman, Robert E.; Spencer, Susan M.; Austin, Eric M.; Johnson, Conor D.

    1995-05-01

    A Hughes Space Company study was undertaken to (1) acquire the analytical capability to design effective passive damping treatments and to predict the damped dynamic performance with reasonable accuracy; (2) demonstrate reasonable test and analysis agreement for both baseline and damped baseline hardware; and (3) achieve a 75% reduction in peak transmissibility and 50% reduction in rms random vibration response. Hughes Space Company teamed with CSA Engineering to learn how to apply passive damping technology to their products successfully in a cost-effective manner. Existing hardware was selected for the demonstration because (1) previous designs were lightly damped and had difficulty in vibration test; (2) multiple damping concepts could be investigated; (3) the finite element model, hardware, and test fixture would be available; and (4) damping devices could be easily implemented. Bracket, strut, and sandwich panel damping treatments that met the performance goals were developed by analysis. The baseline, baseline with damped bracket, and baseline with damped strut designs were built and tested. The test results were in reasonable agreement with the analytical predictions and demonstrated that the desired reduction in dynamic response could be achieved. Having successfully demonstrated this approach, it can now be used with confidence for future designs as a means for reducing weight and enhancing reliability.

  1. RMS active damping augmentation

    NASA Technical Reports Server (NTRS)

    Gilbert, Michael G.; Scott, Michael A.; Demeo, Martha E.

    1992-01-01

    The topics are presented in viewgraph form and include: RMS active damping augmentation; potential space station assembly benefits to CSI; LaRC/JSC bridge program; control law design process; draper RMS simulator; MIMO acceleration control laws improve damping; potential load reduction benefit; DRS modified to model distributed accelerations; accelerometer location; Space Shuttle aft cockpit simulator; simulated shuttle video displays; SES test goals and objectives; and SES modifications to support RMS active damping augmentation.

  2. Magnetic damping for maglev

    SciTech Connect

    Chen, S.S.; Zhu, S.; Cai, Y.; Rote, D.M.

    1994-12-31

    Magnetic damping is one of the important parameters to control the response and stability of maglev systems. An experimental study is presented to measure the magnetic damping using a direct method. A plate attached to a permanent magnet levitated on a rotating drum was tested to investigate the effect of various parameters on magnetic damping such as conductivity, gap, excitation frequency, and oscillation amplitude. The experimental technique is capable of measuring all magnetic damping coefficients, some of which can not be measured by an indirect method.

  3. Decoherence and Landau-Damping

    SciTech Connect

    Ng, K.Y.; /Fermilab

    2005-12-01

    The terminologies, decoherence and Landau damping, are often used concerning the damping of a collective instability. This article revisits the difference and relation between decoherence and Landau damping. A model is given to demonstrate how Landau damping affects the rate of damping coming from decoherence.

  4. Co-Cultivation of Fungal and Microalgal Cells as an Efficient System for Harvesting Microalgal Cells, Lipid Production and Wastewater Treatment

    PubMed Central

    Wrede, Digby; Taha, Mohamed; Miranda, Ana F.; Kadali, Krishna; Stevenson, Trevor; Ball, Andrew S.; Mouradov, Aidyn

    2014-01-01

    The challenges which the large scale microalgal industry is facing are associated with the high cost of key operations such as harvesting, nutrient supply and oil extraction. The high-energy input for harvesting makes current commercial microalgal biodiesel production economically unfeasible and can account for up to 50% of the total cost of biofuel production. Co-cultivation of fungal and microalgal cells is getting increasing attention because of high efficiency of bio-flocculation of microalgal cells with no requirement for added chemicals and low energy inputs. Moreover, some fungal and microalgal strains are well known for their exceptional ability to purify wastewater, generating biomass that represents a renewable and sustainable feedstock for biofuel production. We have screened the flocculation efficiency of the filamentous fungus A. fumigatus against 11 microalgae representing freshwater, marine, small (5 µm), large (over 300 µm), heterotrophic, photoautotrophic, motile and non-motile strains. Some of the strains are commercially used for biofuel production. Lipid production and composition were analysed in fungal-algal pellets grown on media containing alternative carbon, nitrogen and phosphorus sources contained in wheat straw and swine wastewater, respectively. Co-cultivation of algae and A. fumigatus cells showed additive and synergistic effects on biomass production, lipid yield and wastewater bioremediation efficiency. Analysis of fungal-algal pellet's fatty acids composition suggested that it can be tailored and optimised through co-cultivating different algae and fungi without the need for genetic modification. PMID:25419574

  5. Co-cultivation of fungal and microalgal cells as an efficient system for harvesting microalgal cells, lipid production and wastewater treatment.

    PubMed

    Wrede, Digby; Taha, Mohamed; Miranda, Ana F; Kadali, Krishna; Stevenson, Trevor; Ball, Andrew S; Mouradov, Aidyn

    2014-01-01

    The challenges which the large scale microalgal industry is facing are associated with the high cost of key operations such as harvesting, nutrient supply and oil extraction. The high-energy input for harvesting makes current commercial microalgal biodiesel production economically unfeasible and can account for up to 50% of the total cost of biofuel production. Co-cultivation of fungal and microalgal cells is getting increasing attention because of high efficiency of bio-flocculation of microalgal cells with no requirement for added chemicals and low energy inputs. Moreover, some fungal and microalgal strains are well known for their exceptional ability to purify wastewater, generating biomass that represents a renewable and sustainable feedstock for biofuel production. We have screened the flocculation efficiency of the filamentous fungus A. fumigatus against 11 microalgae representing freshwater, marine, small (5 µm), large (over 300 µm), heterotrophic, photoautotrophic, motile and non-motile strains. Some of the strains are commercially used for biofuel production. Lipid production and composition were analysed in fungal-algal pellets grown on media containing alternative carbon, nitrogen and phosphorus sources contained in wheat straw and swine wastewater, respectively. Co-cultivation of algae and A. fumigatus cells showed additive and synergistic effects on biomass production, lipid yield and wastewater bioremediation efficiency. Analysis of fungal-algal pellet's fatty acids composition suggested that it can be tailored and optimised through co-cultivating different algae and fungi without the need for genetic modification. PMID:25419574

  6. Co-cultivation of fungal and microalgal cells as an efficient system for harvesting microalgal cells, lipid production and wastewater treatment.

    PubMed

    Wrede, Digby; Taha, Mohamed; Miranda, Ana F; Kadali, Krishna; Stevenson, Trevor; Ball, Andrew S; Mouradov, Aidyn

    2014-01-01

    The challenges which the large scale microalgal industry is facing are associated with the high cost of key operations such as harvesting, nutrient supply and oil extraction. The high-energy input for harvesting makes current commercial microalgal biodiesel production economically unfeasible and can account for up to 50% of the total cost of biofuel production. Co-cultivation of fungal and microalgal cells is getting increasing attention because of high efficiency of bio-flocculation of microalgal cells with no requirement for added chemicals and low energy inputs. Moreover, some fungal and microalgal strains are well known for their exceptional ability to purify wastewater, generating biomass that represents a renewable and sustainable feedstock for biofuel production. We have screened the flocculation efficiency of the filamentous fungus A. fumigatus against 11 microalgae representing freshwater, marine, small (5 µm), large (over 300 µm), heterotrophic, photoautotrophic, motile and non-motile strains. Some of the strains are commercially used for biofuel production. Lipid production and composition were analysed in fungal-algal pellets grown on media containing alternative carbon, nitrogen and phosphorus sources contained in wheat straw and swine wastewater, respectively. Co-cultivation of algae and A. fumigatus cells showed additive and synergistic effects on biomass production, lipid yield and wastewater bioremediation efficiency. Analysis of fungal-algal pellet's fatty acids composition suggested that it can be tailored and optimised through co-cultivating different algae and fungi without the need for genetic modification.

  7. Turbine blade damping study

    NASA Technical Reports Server (NTRS)

    Dominic, R. J.

    1984-01-01

    Research results and progress on the performance of bladed systems is reported the different topics discussed include: the study of turbine blade damping; forced vibrations of friction damped beam moistures in two dimensions; and a users manual for a computer program for dynamic analysis of bladed systems.

  8. Damped acceleration cavities

    SciTech Connect

    Palmer, R.B.

    1988-07-01

    Structures with slots to strongly damp higher order longitudinal and transverse modes should allow the use, in linear colliders, of multiple bunches, and thus attain luminosities of over 10/sup 34/cm/sup /minus/2/sec/sup /minus/1/. Preliminary measurements on model structures suggest that such damping can be achieved. 10 refs., 9 figs.

  9. Turbojet engine blade damping

    NASA Technical Reports Server (NTRS)

    Srinivasan, A. V.; Cutts, D. G.; Sridhar, S.

    1981-01-01

    The potentials of various sources of nonaerodynamic damping in engine blading are evaluated through a combination of advanced analysis and testing. The sources studied include material hysteresis, dry friction at shroud and root disk interfaces as well as at platform type external dampers. A limited seris of tests was conducted to evaluate damping capacities of composite materials (B/AL, B/AL/Ti) and thermal barrier coatings. Further, basic experiments were performed on titanium specimens to establish the characteristics of sliding friction and to determine material damping constants J and n. All the tests were conducted on single blades. Mathematical models were develthe several mechanisms of damping. Procedures to apply this data to predict damping levels in an assembly of blades are developed and discussed.

  10. Landau Damping Revisited

    SciTech Connect

    Rees, John; Chao, Alexander; /SLAC

    2008-12-01

    Landau damping, as the term is used in accelerator science, is a physical process in which an ensemble of harmonic oscillators--an accelerator beam, for example--that would otherwise be unstable is stabilized by a spread in the natural frequencies of the oscillators. This is a study of the most basic aspects of that process. It has two main goals: to gain a deeper insight into the mechanism of Landau damping and to find the coherent motion of the ensemble and thus the dependence of the total damping rate on the frequency spread.

  11. Nonlinear damping in structures

    NASA Technical Reports Server (NTRS)

    Chang, C. S.

    1970-01-01

    Experimental results prove the feasibility of substructure testing to measure local damping properties directly. Dynamic responses of a structure can be predicted quantitatively, and specimens are less costly and more easily tested with better controlled tests and environments.

  12. Control System Damps Vibrations

    NASA Technical Reports Server (NTRS)

    Kopf, E. H., Jr.; Brown, T. K.; Marsh, E. L.

    1983-01-01

    New control system damps vibrations in rotating equipment with help of phase-locked-loop techniques. Vibrational modes are controlled by applying suitable currents to drive motor. Control signals are derived from sensors mounted on equipment.

  13. Damping of nanomechanical resonators.

    PubMed

    Unterreithmeier, Quirin P; Faust, Thomas; Kotthaus, Jörg P

    2010-07-01

    We study the transverse oscillatory modes of nanomechanical silicon nitride strings under high tensile stress as a function of geometry and mode index m≤9. Reproducing all observed resonance frequencies with classical elastic theory we extract the relevant elastic constants. Based on the oscillatory local strain we successfully predict the observed mode-dependent damping with a single frequency-independent fit parameter. Our model clarifies the role of tensile stress on damping and hints at the underlying microscopic mechanisms. PMID:20867737

  14. Damp housing conditions and respiratory symptoms in primary school children.

    PubMed

    Yang, C Y; Chiu, J F; Chiu, H F; Kao, W Y

    1997-08-01

    There is evidence that indoor air pollution contributes to the development of respiratory symptoms. This study examined the relationships between dampness in houses and respiratory symptoms in 4,164 primary school children in the subtropical rural areas of the Kaohsiung region, Taiwan. Dampness in homes was assessed by questionnaires that reported 1) general dampness, 2) mold or mildew inside the home, or 3) flooding (appearance of standing water within the home, water damage, or leaks of water into the building). Evidence for upper and lower respiratory symptoms were also collected by questionnaires. Recorded symptoms included cough, wheezing, pneumonia, bronchitis, and asthma. Degrees of dampness were reported as 12.2%, 30.1%, and 43.4%, respectively by the parents or guardians of the study population. The prevalence of respiratory symptoms was consistently higher in homes with indications of dampness than in non-damp homes. After adjustments for potential confounders, selected respiratory symptoms among the childhood population were significantly higher in damp than non-damp homes, with the exception of pneumonia. We conclude that dampness in the home is a strong predictor of and risk factor for respiratory symptoms and constitutes a significant public health problem in subtropical area.

  15. Cu-Al-Ni-SMA-Based High-Damping Composites

    NASA Astrophysics Data System (ADS)

    López, Gabriel A.; Barrado, Mariano; San Juan, Jose; Nó, María Luisa

    2009-08-01

    Recently, absorption of vibration energy by mechanical damping has attracted much attention in several fields such as vibration reduction in aircraft and automotive industries, nanoscale vibration isolations in high-precision electronics, building protection in civil engineering, etc. Typically, the most used high-damping materials are based on polymers due to their viscoelastic behavior. However, polymeric materials usually show a low elastic modulus and are not stable at relatively low temperatures (≈323 K). Therefore, alternative materials for damping applications are needed. In particular, shape memory alloys (SMAs), which intrinsically present high-damping capacity thanks to the dissipative hysteretic movement of interfaces under external stresses, are very good candidates for high-damping applications. A completely new approach was applied to produce high-damping composites with relatively high stiffness. Cu-Al-Ni shape memory alloy powders were embedded with metallic matrices of pure In, a In-10wt.%Sn alloy and In-Sn eutectic alloy. The production methodology is described. The composite microstructures and damping properties were characterized. A good particle distribution of the Cu-Al-Ni particles in the matrices was observed. The composites exhibit very high damping capacities in relatively wide temperature ranges. The methodology introduced provides versatility to control the temperature of maximum damping by adjusting the shape memory alloy composition.

  16. DAMPs and neurodegeneration.

    PubMed

    Thundyil, John; Lim, Kah-Leong

    2015-11-01

    The concept of neuroinflammation has come a full circle; from being initially regarded as a controversial viewpoint to its present day acceptance as an integral component of neurodegenerative processes. A closer look at the etiopathogenesis of many neurodegenerative conditions will reveal a patho-symbiotic relationship between neuroinflammation and neurodegeneration, where the two liaise with each other to form a self-sustaining vicious cycle that facilitates neuronal demise. Here, we focus on damage associated molecular patterns or DAMPs as a potentially important nexus in the context of this lethal neuroinflammation-neurodegeneration alliance. Since their nomenclature as "DAMPs" about a decade ago, these endogenous moieties have consistently been reported as novel players in sterile (non-infective) inflammation. However, their roles in inflammatory responses in the central nervous system (CNS), especially during chronic neurodegenerative disorders are still being actively researched. The aim of this review is to first provide a general overview of the neuroimmune response in the CNS within the purview of DAMPs, its receptors and downstream signaling. This is then followed by discussions on some of the DAMP-mediated neuroinflammatory responses involved in chronic neurodegenerative diseases. Along the way, we also highlighted some important gaps in our existing knowledge regarding the role of DAMPs in neurodegeneration, the clarification of which we believe would aid in the prospects of developing treatment or screening strategies directed at these molecules.

  17. Pipe damping studies

    SciTech Connect

    Ware, A.G.

    1986-01-01

    The Idaho National Engineering Laboratory (INEL) is conducting a research program to assist the United States Nuclear Regulatory Commission (USNRC) in determining best-estimate damping values for use in the dynamic analysis of nuclear power plant piping systems. This paper describes four tasks in the program that were undertaken in FY-86. In the first task, tests were conducted on a 5-in. INEL laboratory piping system and data were analyzed from a 6-in. laboratory system at the ANCO Engineers facility to investigate the parameters influencing damping in the seismic frequency range. Further tests were conducted on 3- and 5-in. INEL laboratory piping systems as the second task to determine damping values representative of vibrations in the 33 to 100 Hz range, typical of hydrodynamic transients. In the third task a statistical evaluation of the available damping data was conduted to determine probability distributions suitable for use in probabilistic risk assessments (PRAs), and the final task evaluated damping data at high strain levels.

  18. Public health and economic impact of dampness and mold

    SciTech Connect

    Mudarri, David; Fisk, William J.

    2007-06-01

    The public health risk and economic impact of dampness and mold exposures was assessed using current asthma as a health endpoint. Individual risk of current asthma from exposure to dampness and mold in homes from Fisk et al. (2007), and asthma risks calculated from additional studies that reported the prevalence of dampness and mold in homes were used to estimate the proportion of U.S. current asthma cases that are attributable to dampness and mold exposure at 21% (95% confidence internal 12-29%). An examination of the literature covering dampness and mold in schools, offices, and institutional buildings, which is summarized in the appendix, suggests that risks from exposure in these buildings are similar to risks from exposures in homes. Of the 21.8 million people reported to have asthma in the U.S., approximately 4.6 (2.7-6.3) million cases are estimated to be attributable to dampness and mold exposure in the home. Estimates of the national cost of asthma from two prior studies were updated to 2004 and used to estimate the economic impact of dampness and mold exposures. By applying the attributable fraction to the updated national annual cost of asthma, the national annual cost of asthma that is attributable to dampness and mold exposure in the home is estimated to be $3.5 billion ($2.1-4.8 billion). Analysis indicates that exposure to dampness and mold in buildings poses significant public health and economic risks in the U.S. These findings are compatible with public policies and programs that help control moisture and mold in buildings.

  19. Damped flexible seal

    DOEpatents

    DuBois, Neil J.; Amaral, Antonio M.

    1992-10-27

    A damped flexible seal assembly for a torpedo isolates the tailcone thereof rom vibrational energy present in the drive shaft assembly. A pair of outside flanges, each of which include an inwardly facing groove and an O-ring constrained therein, provide a watertight seal against the outer non-rotating surface of the drive shaft assembly. An inside flange includes an outwardly-facing groove and an O-ring constrained therein, and provides a watertight seal against the inner surface of the tail cone. Two cast-in-place elastomeric seals provide a watertight seal between the flanges and further provide a damping barrier between the outside flanges and the inside flanges for damping vibrational energy present in the drive shaft assembly before the energy can reach the tailcone through the seal assembly.

  20. Note: Tesla transformer damping

    NASA Astrophysics Data System (ADS)

    Reed, J. L.

    2012-07-01

    Unexpected heavy damping in the two winding Tesla pulse transformer is shown to be due to small primary inductances. A small primary inductance is a necessary condition of operability, but is also a refractory inefficiency. A 30% performance loss is demonstrated using a typical "spiral strip" transformer. The loss is investigated by examining damping terms added to the transformer's governing equations. A significant alteration of the transformer's architecture is suggested to mitigate these losses. Experimental and simulated data comparing the 2 and 3 winding transformers are cited to support the suggestion.

  1. Damping in Yb nuclei

    SciTech Connect

    Stephens, F.S.; Deleplanque, M.A.; Lee, I.Y.; Ward, D.; Fallon, P.; Cromaz, M.; Macchiavelli, A.O.; Clark, R.M.; Diamond, R.M.; Gorgen, A.

    2002-07-01

    In a mixture of three Yb nuclei, we find the rotational damping widths vary from 180 keV at 1.1 MeV {gamma}-ray energy to 290 keV at 1.5 MeV, and the average compound damping widths (or spreading widths) vary from 40 keV at 1.1 MeV {gamma}-ray energy to 60 keV at 1.3 MeV. The simulations also suggest extensive motional narrowing.

  2. The DAMPE Neutron Detector

    NASA Astrophysics Data System (ADS)

    Yan, Zhang; Tao, Ma; Yongyi, Huang

    2016-07-01

    The first Chinese space observatory DAMPE (DArk Matter Particle Explorer) was successfully launched on Dec. 17th, 2015. One major scientific object of DAMPE is to measure electrons between 5GeV to 10TeV with excellent energy resolution (1.5% at 800GeV) to search for possible dark matter signatures. The detector consists of four subsystems: a plastic scintillator detector (PSD), a silicon-tungsten tracker (STK), a BGO calorimeter (BGO), and a neutron detector (NUD). The NUD on board DAMPE is designed to detect moderated neutrons via the boron capture of thermal neutrons in boron-doped plastics. Given the fact that hadron showers initiated in the BGO calorimeter by incident nuclei tend to be followed by significantly more neutron activities comparing to electromagnetic cascades triggered by electrons, the NUD provides an additional order of magnitude hadron rejection capability to improve the overall e/p discrimination of DAMPE up to 10 ^{5}. Preliminary analysis of the in-orbit data is given, together with comparisons to the results obtained by a detailed GEANT4 simulation of the NUD instrument.

  3. Nutational Damping Revisited

    NASA Astrophysics Data System (ADS)

    Burns, J. A.; Sharma, I.

    2000-10-01

    Motivated by the recent detection of complex rotational states for several asteroids and comets, as well as by the ongoing and planned spacecraft missions to such bodies, which should allow their rotational states to be accurately determined, we revisit the problem of the nutational damping of small solar system bodies. The nutational damping of asteroids has been approximately analyzed by Prendergast (1958), Burns and Safronov (1973), and Efroimsky and Lazarian (2000). Many other similar dynamical studies concern planetary wobble decay (e.g., Peale 1973; Yoder and Ward 1979), interstellar dust grain alignment (e.g., Purcell 1979; Lazarian and Efroimsky 1999) and damping of Earth's Chandler wobble (Lambeck 1980). Recall that rotational energy loss for an isolated body aligns the body's angular momentum vector with its axis of maximum inertia. Assuming anelastic dissipation, simple dimensional analysis determines a functional form of the damping timescale, on which all the above authors agree. However, the numerical coefficients of published results are claimed to differ by orders of magnitude. Differences have been ascribed to absent physics, to solutions that fail to satisfy boundary conditions perfectly, and to unphysical choices for the Q parameter. The true reasons for the discrepancy are unclear since, despite contrary claims, the full 3D problem (nutational damping of an anelastic ellipsoid) is analytically intractable so far. To move the debate forward, we compare the solution of a related 2D problem to the expressions found previously, and we present results from a finite element model. On this basis, we feel that previous rates for the decay of asteroidal tumbling (Harris 1994), derived from Burns and Safronov (1973), are likely to be accurate, at least to a factor of a few. Funded by NASA.

  4. Damping formulas and experimental values of damping in flutter models

    NASA Technical Reports Server (NTRS)

    Coleman, Robert P

    1940-01-01

    The problem of determining values of structural damping for use in flutter calculations is discussed. The concept of equivalent viscous damping is reviewed and its relation to the structural damping coefficient g introduced in NACA Technical Report No. 685 is shown. The theory of normal modes is reviewed and a number of methods are described for separating the motions associated with different modes. Equations are developed for use in evaluating the damping parameters from experimental data. Experimental results of measurements of damping in several flutter models are presented.

  5. The synergistic effects for the co-cultivation of oleaginous yeast-Rhodotorula glutinis and microalgae-Scenedesmus obliquus on the biomass and total lipids accumulation.

    PubMed

    Yen, Hong-Wei; Chen, Pin-Wen; Chen, Li-Juan

    2015-05-01

    In this co-culture of oleaginous yeast-Rhodotorula glutinis and microalgae-Scenedesmus obliquus, microalgae potentially acts as an oxygen generator for the growth of aerobic yeast while the yeast mutually provides CO2 to the microalgae as both carry out the production of lipids. To explore the synergistic effects of co-cultivation on the cells growth and total lipids accumulation, several co-culture process parameters including the carbon source concentration, temperature and dissolved oxygen level would be firstly investigated in the flask trials. The results of co-culture in a 5L photobioreactor revealed that about 40-50% of biomass increased and 60-70% of total lipid increased was observed as compared to the single culture batches. Besides the synergistic effects of gas utilization, the providing of trace elements to each other after the natural cells lysis was believed to be another benefit to the growth of the overall co-culture system.

  6. Torsion damping assembly

    SciTech Connect

    Bopp, W.G.; Janson, D.A.

    1987-09-01

    An assembly is described disposed for driving connection between rotatably mounted input and output driven of a driveline. The assembly includes resilient means for transmitting driveline torque between the drives and an expandable chamber mechanism for to and for hydraulic damping of driveline torsionals. The mechanism includes first and second relatively moveable members, the first member and the resilient means disposed for serial driving connection between the drives, and the second member disposed for direct driving connection to one of the drives and in parallel driving connection with the resilient means; the members defining at least two chambers varying inversely in volume in response to flexing of the resilient means and containing an incompressible fluid for damping driveline torsionals in response to the volumes varying.

  7. Vibrational damping of composite materials

    NASA Astrophysics Data System (ADS)

    Biggerstaff, Janet M.

    The purpose of this research was to develop new methods of vibrational damping in polymeric composite materials along with expanding the knowledge of currently used vibrational damping methods. A new barrier layer technique that dramatically increased damping in viscoelastic damping materials that interacted with the composite resin was created. A method for testing the shear strength of damping materials cocured in composites was developed. Directional damping materials, where the loss factor and modulus could be tailored by changing the angle, were produced and investigated. The addition of particles between composite prepreg layers to increase damping was studied. Electroviscoelastic materials that drastically changed properties such as loss factor and modulus with an applied voltage were manufactured and tested.

  8. Damping seals for turbomachinery

    NASA Technical Reports Server (NTRS)

    Vonpragenau, G. L.

    1982-01-01

    A rotor seal is proposed that restricts leakage like a labyrinth seal, but extends the stabilizing speed range beyond twice the first critical speed. The dynamic parameters were derived from bulk flow equations without requiring a dominant axial flow. The flow is considered incompressible and turbulent. Damping seals are shown to be feasible for extending the speed range of high performance turbomachinery beyond the limit imposed by conventional seals.

  9. Design, analysis, and testing of high frequency passively damped struts

    NASA Technical Reports Server (NTRS)

    Yiu, Y. C.; Davis, L. Porter; Napolitano, Kevin; Ninneman, R. Rory

    1993-01-01

    Objectives of the research are: (1) to develop design requirements for damped struts to stabilize control system in the high frequency cross-over and spill-over range; (2) to design, fabricate and test viscously damped strut and viscoelastically damped strut; (3) to verify accuracy of design and analysis methodology of damped struts; and (4) to design and build test apparatus, and develop data reduction algorithm to measure strut complex stiffness. In order to meet the stringent performance requirements of the SPICE experiment, the active control system is used to suppress the dynamic responses of the low order structural modes. However, the control system also inadvertently drives some of the higher order modes unstable in the cross-over and spill-over frequency range. Passive damping is a reliable and effective way to provide damping to stabilize the control system. It also improves the robustness of the control system. Damping is designed into the SPICE testbed as an integral part of the control-structure technology.

  10. Damping measurements in flowing water

    NASA Astrophysics Data System (ADS)

    Coutu, A.; Seeley, C.; Monette, C.; Nennemann, B.; Marmont, H.

    2012-11-01

    Fluid-structure interaction (FSI), in the form of mass loading and damping, governs the dynamic response of water turbines, such as Francis turbines. Water added mass and damping are both critical quantities in evaluating the dynamic response of the turbine component. Although the effect of fluid added mass is well documented, fluid damping, a critical quantity to limit vibration amplitudes during service, and therefore to help avoiding possible failure of the turbines, has received much less attention in the literature. This paper presents an experimental investigation of damping due to FSI. The experimental setup, designed to create dynamic characteristics similar to the ones of Francis turbine blades is discussed, together with the experimental protocol and examples of measurements obtained. The paper concludes with the calculated damping values and a discussion on the impact of the observed damping behaviour on the response of hydraulic turbine blades to FSI.

  11. On damping mechanisms in beams

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Inman, D. J.

    1989-01-01

    A partial differential equation model of a cantilevered beam with a tip mass at its free end is used to study damping in a composite. Four separate damping mechanisms consisting of air damping, strain rate damping, spatial hysteresis and time hysteresis are considered experimentally. Dynamic tests were performed to produce time histories. The time history data is then used along with an approximate model to form a sequence of least squares problems. The solution of the least squares problem yields the estimated damping coefficients. The resulting experimentally determined analytical model is compared with the time histories via numerical simulation of the dynamic response. The procedure suggested here is compared with a standard modal damping ratio model commonly used in experimental modal analysis.

  12. Magnetically Damped Furnace (MDF)

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The Magnetically Damped Furnace (MDF) breadboard is being developed in response to NASA's mission and goals to advance the scientific knowledge of microgravity research, materials science, and related technologies. The objective of the MDF is to dampen the fluid flows due to density gradients and surface tension gradients in conductive melts by introducing a magnetic field during the sample processing. The MDF breadboard will serve as a proof of concept that the MDF performance requirements can be attained within the International Space Station resource constraints.

  13. The Joint Damping Experiment (JDX)

    NASA Technical Reports Server (NTRS)

    Folkman, Steven L.; Bingham, Jeff G.; Crookston, Jess R.; Dutson, Joseph D.; Ferney, Brook D.; Ferney, Greg D.; Rowsell, Edwin A.

    1997-01-01

    The Joint Damping Experiment (JDX), flown on the Shuttle STS-69 Mission, is designed to measure the influence of gravity on the structural damping of a high precision three bay truss. Principal objectives are: (1) Measure vibration damping of a small-scale, pinjointed truss to determine how pin gaps give rise to gravity-dependent damping rates; (2) Evaluate the applicability of ground and low-g aircraft tests for predicting on-orbit behavior; and (3) Evaluate the ability of current nonlinear finite element codes to model the dynamic behavior of the truss. Damping of the truss was inferred from 'Twang' tests that involve plucking the truss structure and recording the decay of the oscillations. Results are summarized as follows. (1) Damping, rates can change by a factor of 3 to 8 through changing the truss orientation; (2) The addition of a few pinned joints to a truss structure can increase the damping by a factor as high as 30; (3) Damping is amplitude dependent; (4) As gravity induced preloads become large (truss long axis perpendicular to gravity vector) the damping is similar to non-pinjointed truss; (5) Impacting in joints drives higher modes in structure; (6) The torsion mode disappears if gravity induced preloads are low.

  14. The DAMPE mission

    NASA Astrophysics Data System (ADS)

    Wu, Jian; Guo, Jianhua; Chang, Jin; Cai, Mingsheng

    2016-07-01

    The DArk Matter Particle Explorer (DAMPE) was launched into space on Dec.17, 2015 to a 500km dawn-to-dusk sun-synchronous orbit aiming at detecting high energy electron(gamma) as well as cosmic heavy ions up to 10TeV and 1PeV respectively to try to understand the mechanisms of particle acceleration in celestial sources and the propagation of cosmic rays in the Galaxy, to probe the nature of dark matter, a form of matter necessary to account for gravitational effects observed in very large scale structures such as anomalies in the rotation of galaxies and the gravitational lensing of light by galaxy clusters that cannot be accounted for by the quantity of observed matter , and to study the high-energy behavior of gamma-ray bursts, pulsars, Active Galaxy Nuclei and other transients,etc. After months' commissioning, DAMPE has been in the observational mode. This paper reports the status of its detectors and latest results collected so far.

  15. Surge-damping vacuum valve

    DOEpatents

    Bullock, Jack C.; Kelly, Benjamin E.

    1980-01-01

    A valve having a mechanism for damping out flow surges in a vacuum system which utilizes a slotted spring-loaded disk positioned adjacent the valve's vacuum port. Under flow surge conditions, the differential pressure forces the disk into sealing engagement with the vacuum port, thereby restricting the flow path to the slots in the disk damping out the flow surge.

  16. The Latest Results from DAMPE

    NASA Astrophysics Data System (ADS)

    Chang, Jin

    2016-07-01

    DArk Matter Particle Explorer (DAMPE) successfully launched on Dec.17, 2015 is the first Chinese astronomical satellite that can measure 2 GeV-10 TeV electrons and gamma-rays with unprecedented energy resolution. In this talk I will introduce the design, the beam-test, the on-orbit calibration and some preliminary results of DAMPE.

  17. Differential gene expression in Xylella fastidiosa 9a5c during co-cultivation with the endophytic bacterium Methylobacterium mesophilicum SR1.6/6.

    PubMed

    Dourado, Manuella Nóbrega; Santos, Daiene Souza; Nunes, Luiz Roberto; Costa de Oliveira, Regina Lúcia Batista da; de Oliveira, Marcus Vinicius; Araújo, Welington Luiz

    2015-12-01

    Xylella fastidiosa, the causal agent of citrus variegated chlorosis (CVC), colonizes plant xylem, reducing sap flow, and inducing internerval chlorosis, leaf size reduction, necrosis, and harder and smaller fruits. This bacterium may be transmitted from plant to plant by sharpshooter insects, including Bucephalogonia xanthopis. The citrus endophytic bacterium Methylobacterium mesophilicum SR1.6/6 colonizes citrus xylem and previous studies showed that this strain is also transferred from plant to plant by B. xanthopis (Insecta), suggesting that this endophytic bacterium may interact with X. fastidiosa in planta and inside the insect vector during co-transmission by the same insect vector. To better understand the X. fastidiosa behavior in the presence of M. mesophilicum, we evaluated the X. fastidiosa transcriptional profile during in vitro interaction with M. mesophilicum SR1.6/6. The results showed that during co-cultivation, X. fastidiosa down-regulated genes related to growth and up-regulated genes related to energy production, stress, transport, and motility, suggesting the existence of a specific adaptive response to the presence of M. mesophilicum in the culture medium.

  18. Enhanced methane production in an anaerobic digestion and microbial electrolysis cell coupled system with co-cultivation of Geobacter and Methanosarcina.

    PubMed

    Yin, Qi; Zhu, Xiaoyu; Zhan, Guoqiang; Bo, Tao; Yang, Yanfei; Tao, Yong; He, Xiaohong; Li, Daping; Yan, Zhiying

    2016-04-01

    The anaerobic digestion (AD) and microbial electrolysis cell (MEC) coupled system has been proved to be a promising process for biomethane production. In this paper, it was found that by co-cultivating Geobacter with Methanosarcina in an AD-MEC coupled system, methane yield was further increased by 24.1%, achieving to 360.2 mL/g-COD, which was comparable to the theoretical methane yield of an anaerobic digester. With the presence of Geobacter, the maximum chemical oxygen demand (COD) removal rate (216.8 mg COD/(L·hr)) and current density (304.3A/m(3)) were both increased by 1.3 and 1.8 fold compared to the previous study without Geobacter, resulting in overall energy efficiency reaching up to 74.6%. Community analysis demonstrated that Geobacter and Methanosarcina could coexist together in the biofilm, and the electrochemical activities of both were confirmed by cyclic voltammetry. Our study observed that the carbon dioxide content in total gas generated from the AD reactor with Geobacter was only half of that generated from the same reactor without Geobacter, suggesting that Methanosarcina may obtain the electron transferred from Geobacter for the reduction of carbon dioxide to methane. Taken together, Geobacter not only can improve the performance of the MEC system, but also can enhance methane production. PMID:27090713

  19. Differential gene expression in Xylella fastidiosa 9a5c during co-cultivation with the endophytic bacterium Methylobacterium mesophilicum SR1.6/6.

    PubMed

    Dourado, Manuella Nóbrega; Santos, Daiene Souza; Nunes, Luiz Roberto; Costa de Oliveira, Regina Lúcia Batista da; de Oliveira, Marcus Vinicius; Araújo, Welington Luiz

    2015-12-01

    Xylella fastidiosa, the causal agent of citrus variegated chlorosis (CVC), colonizes plant xylem, reducing sap flow, and inducing internerval chlorosis, leaf size reduction, necrosis, and harder and smaller fruits. This bacterium may be transmitted from plant to plant by sharpshooter insects, including Bucephalogonia xanthopis. The citrus endophytic bacterium Methylobacterium mesophilicum SR1.6/6 colonizes citrus xylem and previous studies showed that this strain is also transferred from plant to plant by B. xanthopis (Insecta), suggesting that this endophytic bacterium may interact with X. fastidiosa in planta and inside the insect vector during co-transmission by the same insect vector. To better understand the X. fastidiosa behavior in the presence of M. mesophilicum, we evaluated the X. fastidiosa transcriptional profile during in vitro interaction with M. mesophilicum SR1.6/6. The results showed that during co-cultivation, X. fastidiosa down-regulated genes related to growth and up-regulated genes related to energy production, stress, transport, and motility, suggesting the existence of a specific adaptive response to the presence of M. mesophilicum in the culture medium. PMID:26218710

  20. Enhanced methane production in an anaerobic digestion and microbial electrolysis cell coupled system with co-cultivation of Geobacter and Methanosarcina.

    PubMed

    Yin, Qi; Zhu, Xiaoyu; Zhan, Guoqiang; Bo, Tao; Yang, Yanfei; Tao, Yong; He, Xiaohong; Li, Daping; Yan, Zhiying

    2016-04-01

    The anaerobic digestion (AD) and microbial electrolysis cell (MEC) coupled system has been proved to be a promising process for biomethane production. In this paper, it was found that by co-cultivating Geobacter with Methanosarcina in an AD-MEC coupled system, methane yield was further increased by 24.1%, achieving to 360.2 mL/g-COD, which was comparable to the theoretical methane yield of an anaerobic digester. With the presence of Geobacter, the maximum chemical oxygen demand (COD) removal rate (216.8 mg COD/(L·hr)) and current density (304.3A/m(3)) were both increased by 1.3 and 1.8 fold compared to the previous study without Geobacter, resulting in overall energy efficiency reaching up to 74.6%. Community analysis demonstrated that Geobacter and Methanosarcina could coexist together in the biofilm, and the electrochemical activities of both were confirmed by cyclic voltammetry. Our study observed that the carbon dioxide content in total gas generated from the AD reactor with Geobacter was only half of that generated from the same reactor without Geobacter, suggesting that Methanosarcina may obtain the electron transferred from Geobacter for the reduction of carbon dioxide to methane. Taken together, Geobacter not only can improve the performance of the MEC system, but also can enhance methane production.

  1. Damping measurements using operational data

    SciTech Connect

    James, G.H.; Carne, T.G.; Veers, P.S.

    1996-08-01

    The authors have measured modal damping using strain-gauge data from an operating wind turbine. This new technique for measuring modal damping is easier and less expensive than previously used methods. Auto-correlation and cross-correlation functions of the strain-gauge data have been shown to consist of decaying sinusoids which correspond to the modal frequencies and damping ratios of the wind turbine. The authors have verified the method by extracting damping values from an analytically generated data set. Actual operating response data from the DOE/Sandia 34-m Test Bed has been used to calculate modal damping ratios as a function of rotor rotation rate. This capability will allow more accurate fatigue life prediction and control.

  2. Damping Bearings In High-Speed Turbomachines

    NASA Technical Reports Server (NTRS)

    Von Pragenau, George L.

    1994-01-01

    Paper presents comparison of damping bearings with traditional ball, roller, and hydrostatic bearings in high-speed cryogenic turbopumps. Concept of damping bearings described in "Damping Seals and Bearings for a Turbomachine" (MFS-28345).

  3. Self-Damping Sprung Wheel

    NASA Technical Reports Server (NTRS)

    Weddendorf, Bruce

    1993-01-01

    Self-damping sprung wheel provides shock-absorbing suspension for wheelchair, reducing user's discomfort when traversing rough terrain or obstacles. Pair of self-damping sprung wheels installed in place of conventional large rear wheels of standard wheelchair, which user operates in conventional manner. Rim deflects in vicinity of contact with ground or floor. Includes inner and outer hoops bending when obstacle encountered. Shear deformation of elastomeric hoop between them absorbs energy. Thus, three hoops act together as damping spring. Alternative version of wheel designed for bicycle.

  4. Sustained co-cultivation with human placenta-derived MSCs enhances ALK5/Smad3 signaling in human breast epithelial cells, leading to EMT and differentiation.

    PubMed

    Yoo, Young A; Kang, Myoung Hee; Kim, Byung Soo; Kim, Jun Suk; Seo, Jae Hong

    2009-06-01

    The interaction between mammary epithelial cells and their surrounding microenvironment are important in the development of the mammary gland. Thus, mesenchymal stem cells (MSCs), which retain pluripotency for various mesenchymal lineages, may provide a permissive environment for the morphologic alteration and differentiation of mammary epithelial cells. To this end, we investigated whether the interactions between mammary epithelial cells and human placenta-derived MSCs (hPMSC) affect the morphology, proliferation, and differentiation of epithelial cells in a co-culture system. We show that after co-culture with hPMSCs, human mammary epithelial cell lines (MCF-10F and HEMC) underwent significant morphologic alterations and a dramatic increase in ductal-alveolar branching, which was accompanied by a decrease or loss of the epithelial marker E-cadherin and a gain of the mesenchymal markers, alpha-SMA and vimentin. MCF-10F and HEMC proliferation was also inhibited in the presence of hPMSCs, and this retardation in growth was due to cell cycle arrest. Furthermore, in MCF-10F and HMEC cells, hPMSCs induced the production of lipid droplets, milk fat globule protein, and milk protein lactoferrin, which are markers of functional mammary differentiation. We also noticed an elevation in ALK5 and phosphorylated Smad3 protein levels upon hPMSC co-culture. Strikingly, the changes in morphology, proliferation, and differentiation were reversed by treatment with ALK5 or Smad3 knockdown in MCF-10F/hPMSC co-cultures. Collectively, our findings suggest that co-cultivation with hPMSCs leads to epithelial to mesenchymal transition (EMT) and differentiation of human breast epithelial cells through the ALK5/Smad3 signaling pathway. PMID:19375841

  5. Damping measurements using operational data

    SciTech Connect

    James, G.H.; Carne, T.G.; Veers, P.S.

    1991-01-01

    We have measured modal damping using strain-gauge data from an operating wind turbine. Previously, such measurements were difficult and expensive. Auto-correlation and cross-correlation functions of the strain-gauge data have been shown to consist of decaying sinusoids which correspond to the modal frequencies and damping ratios of the wind turbine. We have verified the method by extracting damping values from an analytically generated data set. Actual operating response data from the DOE/Sandia 34-meter Test Bed has been used to calculate modal damping ratios as a function of rotor rotation rate. This capability will allow more accurate fatigue life prediction and control. 16 refs., 3 figs., 2 tabs.

  6. Vibration damping method and apparatus

    DOEpatents

    Redmond, J.M.; Barney, P.S.; Parker, G.G.; Smith, D.A.

    1999-06-22

    The present invention provides vibration damping method and apparatus that can damp vibration in more than one direction without requiring disassembly, that can accommodate varying tool dimensions without requiring re-tuning, and that does not interfere with tool tip operations and cooling. The present invention provides active dampening by generating bending moments internal to a structure such as a boring bar to dampen vibration thereof. 38 figs.

  7. Vibration damping method and apparatus

    DOEpatents

    Redmond, James M.; Barney, Patrick S.; Parker, Gordon G.; Smith, David A.

    1999-01-01

    The present invention provides vibration damping method and apparatus that can damp vibration in more than one direction without requiring disassembly, that can accommodate varying tool dimensions without requiring re-tuning, and that does not interfere with tool tip operations and cooling. The present invention provides active dampening by generating bending moments internal to a structure such as a boring bar to dampen vibration thereof.

  8. Damping characterization in large structures

    NASA Technical Reports Server (NTRS)

    Eke, Fidelis O.; Eke, Estelle M.

    1991-01-01

    This research project has as its main goal the development of methods for selecting the damping characteristics of components of a large structure or multibody system, in such a way as to produce some desired system damping characteristics. The main need for such an analytical device is in the simulation of the dynamics of multibody systems consisting, at least partially, of flexible components. The reason for this need is that all existing simulation codes for multibody systems require component-by-component characterization of complex systems, whereas requirements (including damping) often appear at the overall system level. The main goal was met in large part by the development of a method that will in fact synthesize component damping matrices from a given system damping matrix. The restrictions to the method are that the desired system damping matrix must be diagonal (which is almost always the case) and that interbody connections must be by simple hinges. In addition to the technical outcome, this project contributed positively to the educational and research infrastructure of Tuskegee University - a Historically Black Institution.

  9. Damping Ring R&D at CESR-TA

    SciTech Connect

    Rubin, David

    2015-01-23

    Accelerators that collide high energy beams of matter and anti-matter are essential tools for the investigation of the fundamental constituents of matter, and the search for new forms of matter and energy. A “Linear Collider” is a machine that would bring high energy and very compact bunches of electrons and positrons (anti-electrons) into head-on collision. Such a machine would produce (among many other things) the newly discovered Higgs particle, enabling a detailed study of its properties. Among the most critical and challenging components of a linear collider are the damping rings that produce the very compact and intense beams of electrons and positrons that are to be accelerated into collision. Hot dilute particle beams are injected into the damping rings, where they are compressed and cooled. The size of the positron beam must be reduced more than a thousand fold in the damping ring, and this compression must be accomplished in a fraction of a second. The cold compact beams are then extracted from the damping ring and accelerated into collision at high energy. The proposed International Linear Collider (ILC), would require damping rings that routinely produce such cold, compact and intense beams. The goal of the Cornell study was a credible design for the damping rings for the ILC. Among the technical challenges of the damping rings; the development of instrumentation that can measure the properties of the very small beams in a very narrow window of time, and mitigation of the forces that can destabilize the beams and prevent adequate cooling, or worse lead to beam loss. One of the most pernicious destabilizing forces is due to the formation of clouds of electrons in the beam pipe. The electron cloud effect is a phenomenon in particle accelerators in which a high density of low energy electrons, build up inside the vacuum chamber. At the outset of the study, it was anticipated that electron cloud effects would limit the intensity of the positron ring

  10. Damping mechanisms of a pendulum

    NASA Astrophysics Data System (ADS)

    Dolfo, Gilles; Castex, Daniel; Vigué, Jacques

    2016-11-01

    In this paper, we study the damping mechanisms of a pendulum. The originality of our setup is the use of a metal strip suspension and the development of extremely sensitive electric measurements of the pendulum velocity and position. Their sensitivity is absolutely necessary for a reliable measurement of the pendulum damping time constant because this measurement is possible only for very low oscillation amplitudes, when air friction forces quadratic in velocity have a negligible contribution to the observed damping. We have thus carefully studied damping by air friction forces, which is the dominant mechanism for large values of the Reynolds number Re but which is negligible in the Stokes regime, {Re} ∼ 1. In this last case, we have found that the dominant damping is due to internal friction in the metal strip, a universal effect called anelasticity, and, for certain frequencies, to resonant coupling to the support of the pendulum. All our measurements are well explained by theory. We believe this paper would be of interest to students in an undergraduate classical mechanics course.

  11. Timoshenko systems with indefinite damping

    NASA Astrophysics Data System (ADS)

    Muñoz Rivera, Jaime E.; Racke, Reinhard

    2008-05-01

    We consider the Timoshenko system in a bounded domain . The system has an indefinite damping mechanism, i.e. with a damping function a=a(x) possibly changing sign, present only in the equation for the rotation angle. We shall prove that the system is still exponentially stable under the same conditions as in the positive constant damping case, and provided and , for [epsilon] small enough. The decay rate will be described explicitly. In the arguments, we shall also give a new proof of exponential stability for the constant case . Moreover, we give a precise description of the decay rate and demonstrate that the system has the spectrum determined growth (SDG) property, i.e. the type of the induced semigroup coincides with the spectral bound for its generator.

  12. Increased damping in irregular resonators

    NASA Astrophysics Data System (ADS)

    Sapoval, Bernard; Asch, Mark; Felix, Simon; Filoche, Marcel

    2005-04-01

    The relation between shape and damping of shallow acoustical cavities has been studied numerically in the case where the dissipation occurs only on the cavity walls. It is first found that whatever the type of geometrical irregularity, many, but not all the modes are localized. It is shown that the localization mechanism is what is called weak localization. The more irregular, the smaller the quality factors are found. However this effect is very different for the non-localized and the localized modes. For non-localized modes the damping increases roughly proportionally to the cavity surface. The localized modes are even more damped. These results generalize the results already obtained both numerically and experimentally on prefractal acoustical cavities. [B. Sapoval, O. Haeberle, and S. Russ, J. Acoust. Soc. Am. 102, 2014-2019 (1997); B. Hebert, B. Sapoval, and S. Russ, ibid. 105, 1567-1576 (1999)].

  13. Landau damping of auroral hiss

    NASA Technical Reports Server (NTRS)

    Morgan, D. D.; Gurnett, D. A.; Menietti, J. D.; Winningham, J. D.; Burch, J. L.

    1994-01-01

    Auroral hiss is observed to propagate over distances comparable to an Earth radius from its source in the auroral oval. The role of Landau damping is investigated for upward propagating auroral hiss. By using a ray tracing code and a simplified model of the distribution function, the effect of Landau damping is calculated for auroral hiss propagation through the environment around the auroral oval. Landau damping is found to be the likely mechanism for explaining some of the one-sided auroral hiss funnels observed by Dynamics Explorer 1. It is also found that Landau damping puts a lower limit on the wavelength of auroral hiss. Poleward of the auroral oval, Landau damping is found in a typical case to limit omega/k(sub parallel) to values of 3.4 x 10(exp 4) km/s or greater, corresponding to resonance energies of 3.2 keV or greater and wavelengths of 2 km or greater. For equatorward propagation, omega/k(sub parallel) is limited to values greater than 6.8 x 10(exp 4) km/s, corresponding to resonance energies greater than 13 keV and wavelengths greater than 3 km. Independent estimates based on measured ratios of the magnetic to electric field intensity also show that omega/k(sub parallel) corresponds to resonance energies greater than 1 keV and wavelengths greater than 1 km. These results lead to the difficulty that upgoing electron beams sufficiently energetic to directly generate auroral hiss of the inferred wavelength are not usually observed. A partial transmission mechanism utilizing density discontinuities oblique to the magnetic field is proposed for converting auroral hiss to wavelengths long enough to avoid damping of the wave over long distances. Numerous reflections of the wave in an upwardly flared density cavity could convert waves to significantly increased wavelengths and resonance velocities.

  14. Structural damping studies at cryogenic temperatures

    NASA Technical Reports Server (NTRS)

    Young, Clarence P., Jr.; Buehrle, Ralph D.

    1994-01-01

    Results of an engineering study to measure changes in structural damping properties of two cryogenic wind tunnel model systems and two metallic test specimens at cryogenic temperatures are presented. Data are presented which indicate overall, a trend toward reduced structural damping at cryogenic temperatures (-250 degrees F) when compared with room temperature damping properties. The study was focused on structures and materials used for model systems tested in the National Transonic Facility (NTF). The study suggests that the significant reductions in damping at extremely cold temperatures are most likely associated with changes in mechanical joint compliance damping rather than changes in material (solid) damping.

  15. Damped vacuum states of light

    NASA Astrophysics Data System (ADS)

    Philbin, T. G.

    2016-09-01

    We consider one-dimensional propagation of quantum light in the presence of a block of material, with a full account of dispersion and absorption. The electromagnetic zero-point energy for some frequencies is damped (suppressed) by the block below the free-space value, while for other frequencies it is increased. We also calculate the regularized (Casimir) zero-point energy at each frequency and find that it too is damped below the free-space value (zero) for some frequencies. The total Casimir energy is positive.

  16. Electronic damping of mechanical vibrations

    NASA Technical Reports Server (NTRS)

    Vasilyev, P.; Navitskas, A.

    1973-01-01

    The conditions required for measuring and recording the patterns of vibration of a process are discussed. It is stated that the frequency of the process being investigated must be an order of magnitude lower than the natural frequency of the sensitive receiving element for sufficient accuracy. The elastic element must damp so the frequency range of the vibrational patterns being investigated can be expanded. This is especially true of the tensile stresses of a moving signal carrier. A method is proposed for damping mechanical vibrations of elastic sensitive elements with semiconductor strain gages, based on electronic compensation of the natural vibrations. A schematic diagram is provided to show the conditions.

  17. Active vibration damping using smart material

    NASA Technical Reports Server (NTRS)

    Baras, John S.; Yan, Zhuang

    1994-01-01

    We consider the modeling and active damping of an elastic beam using distributed actuators and sensors. The piezoelectric ceramic material (PZT) is used to build the actuator. The sensor is made of the piezoelectric polymer polyvinylidene fluoride (PVDF). These materials are glued on both sides of the beam. For the simple clamped beam, the closed loop controller has been shown to be able to extract energy from the beam. The shape of the actuator and its influence on the closed loop system performance are discussed. It is shown that it is possible to suppress the selected mode by choosing the appropriate actuator layout. It is also shown that by properly installing the sensor and determining the sensor shape we can further extract and manipulate the sensor signal for our control need.

  18. State protection under collective damping and diffusion

    SciTech Connect

    Ponte, M. A. de; Mizrahi, S. S.; Moussa, M. H. Y.

    2011-07-15

    In this paper we provide a recipe for state protection in a network of oscillators under collective damping and diffusion. Our strategy is to manipulate the network topology, i.e., the way the oscillators are coupled together, the strength of their couplings, and their natural frequencies, in order to create a relaxation-diffusion-free channel. This protected channel defines a decoherence-free subspace (DFS) for nonzero-temperature reservoirs. Our development also furnishes an alternative approach to build up DFSs that offers two advantages over the conventional method: it enables the derivation of all the network-protected states at once, and also reveals, through the network normal modes, the mechanism behind the emergence of these protected domains.

  19. Dealing with damping-off

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Damping-off is a common disease that rots and kills both seeds and recently germinated seedlings. The disease is caused by number of different soilborne pathogens, including true fungi (Botrytis, Fusarium, and Rhizoctonia species) and oomycetes (Phytophthora and Pythium species). The seedlings of mo...

  20. Squeezed states of damped oscillator chain

    NASA Technical Reports Server (NTRS)

    Manko, O. V.

    1993-01-01

    The Caldirola-Kanai model of one-dimensional damped oscillator is extended to the chain of coupled parametric oscillators with damping. The correlated and squeezed states for the chain of coupled parametric oscillators with damping are constructed. Based on the concept of the integrals of motion, it is demonstrated how squeezing phenomenon arises due to parametric excitation.

  1. DAMPs, Ageing, and Cancer: The ‘DAMP Hypothesis’

    PubMed Central

    Huang, Jin; Xie, Yangchun; Sun, Xiaofang; Zeh, Herbert J.; Kang, Rui; Lotze, Michael T.; Tang, Daolin

    2014-01-01

    Ageing is a complex and multifactorial process characterized by the accumulation of many forms of damage at the molecular, cellular, and tissue level with advancing age. Ageing increases the risk of the onset of chronic inflammation-associated diseases such as cancer, diabetes, stroke, and neurodegenerative disease. In particular, ageing and cancer share some common origins and hallmarks such as genomic instability, epigenetic alteration, aberrant telomeres, inflammation and immune injury, reprogrammed metabolism, and degradation system impairment (including within the ubiquitin-proteasome system and the autophagic machinery). Recent advances indicate that damage-associated molecular pattern molecules (DAMPs) such as high mobility group box 1, histones, S100, and heat shock proteins play location-dependent roles inside and outside the cell. These provide interaction platforms at molecular levels linked to common hallmarks of ageing and cancer. They can act as inducers, sensors, and mediators of stress through individual plasma membrane receptors, intracellular recognition receptors (e.g., advanced glycosylation end product-specific receptors, AIM2-like receptors, RIG-I-like receptors, and NOD1-like receptors, and toll-like receptors), or following endocytic uptake. Thus, the DAMP Hypothesis is novel and complements other theories that explain the features of ageing. DAMPs represent ideal biomarkers of ageing and provide an attractive target for interventions in ageing and age-associated diseases. PMID:25446804

  2. Recommendation for the Feasibility of more Compact LC Damping Rings

    SciTech Connect

    Pivi, M.T.F.; Wang, L.; Demma, T.; Guiducci, S.; Suetsugu, Y.; Shibata, K.; Ohmi, K.; Dugan, G.; Palmer, M.; Crittenden, J.A.; Harkay, K.; Boon, L.; Furman, M.A.; Venturini, M.; Celata, C.; Malyshev, O.B.; Papaphilippou, I.; /CERN

    2010-06-15

    As part of the international Linear Collider (ILC) collaboration, we have compared the electron cloud (EC) effect for different Damping Ring (DR) designs respectively with 6.4 km and 3.2 km circumference and investigated the feasibility of the shorter damping ring with respect to the electron cloud build-up and related beam instabilities. The studies for a 3.2 km ring were carried out with beam parameters of the ILC Low Power option. A reduced damping ring circumference has been proposed for the new ILC baseline design SB2009 [1] and would allow considerable reduction of the number of components, wiggler magnets and costs. We discuss the impact of the proposed operation of the ILC at high repetition rate 10 Hz and address the necessary modifications for the DRs. We also briefly discuss the plans for future studies including the luminosity upgrade option with shorter bunch spacing, the evaluation of mitigation techniques and the integration of the CesrTA results into the Damping Ring design.

  3. Recommendation for the Feasibility of more Compact LC Damping Rings

    SciTech Connect

    Pivi, M. T. F.; Wang, L.; Demma, T.; Guiducci, S.; Suetsugu, Y.; Fukuma, H.; Shibata, K.; Dugan, K.,G.; Palmer, M.; Crittenden, J.; Harkay, K.; Boon, L.; Furman, M. A.; Venturini, M.; Celata, C.; Malyshev, O.; Papaphilippou, I.

    2010-05-23

    As part of the international Linear Collider (ILC) collaboration, we have compared the electron cloud (EC) effect for different Damping Ring (DR) designs respectively with 6.4 km and 3.2 km circumference and investigated the feasibility of a shorter damping ring with respect to the electron cloud build-up and related beam instability. The studies for a 3.2 km ring were carried out with beam parameters of the ILC Low Power option. A reduced damping ring circumference has been proposed for the new ILC baseline design SB2009 [1] and would allow to considerably reduce the number of components, wiggler magnets and costs. We discuss the impact of the proposed operation of the ILC at high repetition rate 10 Hz and address the necessary modifications for the DRs. We also briefly discuss the plans for future studies including the luminosity upgrade option with shorter bunch spacing, the evaluation of mitigations and the integration of the CesrTA results into the Damping Ring design.

  4. Optimum Damping in a Non-Linear Base Isolation System

    NASA Astrophysics Data System (ADS)

    Jangid, R. S.

    1996-02-01

    Optimum isolation damping for minimum acceleration of a base-isolated structure subjected to earthquake ground excitation is investigated. The stochastic model of the El-Centro1940 earthquake, which preserves the non-stationary evolution of amplitude and frequency content of ground motion, is used as an earthquake excitation. The base isolated structure consists of a linear flexible shear type multi-storey building supported on a base isolation system. The resilient-friction base isolator (R-FBI) is considered as an isolation system. The non-stationary stochastic response of the system is obtained by the time dependent equivalent linearization technique as the force-deformation of the R-FBI system is non-linear. The optimum damping of the R-FBI system is obtained under important parametric variations; i.e., the coefficient of friction of the R-FBI system, the period and damping of the superstructure; the effective period of base isolation. The criterion selected for optimality is the minimization of the top floor root mean square (r.m.s.) acceleration. It is shown that the above parameters have significant effects on optimum isolation damping.

  5. Clipped viscous damping with negative stiffness for semi-active cable damping

    NASA Astrophysics Data System (ADS)

    Weber, F.; Boston, C.

    2011-04-01

    This paper investigates numerically and experimentally clipped viscous damping with negative stiffness for semi-active cable damping. From simulations it is concluded that unclipped and clipped viscous damping with negative stiffness is equivalent to unclipped and clipped LQR. It is shown that optimized unclipped viscous damping with negative stiffness generates critical cable damping by an anti-node at the actuator position. The resulting curvature at the actuator position is larger than the curvature close to the anchors due to the disturbance forces which may lead to premature cable fatigue at the actuator position. Optimized clipped viscous damping with negative stiffness does not show this drawback, can be implemented using a semi-active damper and produces twice as much cable damping as optimal viscous damping. Close to the optimal tuning, it leads to approximately the same control force as optimal semi-active friction damping with negative stiffness, which explains the superior cable damping. The superior damping results from the negative stiffness that increases the damper motion. Clipped viscous damping with negative stiffness is validated on a strand cable with a magneto-rheological damper. The measured cable damping is twice that achieved by emulated viscous damping, which confirms the numerical results. A tuning rule for clipped viscous damping with negative stiffness of real cables with flexural rigidity is given.

  6. Route Flap Damping Made Usable

    NASA Astrophysics Data System (ADS)

    Pelsser, Cristel; Maennel, Olaf; Mohapatra, Pradosh; Bush, Randy; Patel, Keyur

    The Border Gateway Protocol (BGP), the de facto inter-domain routing protocol of the Internet, is known to be noisy. The protocol has two main mechanisms to ameliorate this, MinRouteAdvertisementInterval (MRAI), and Route Flap Damping (RFD). MRAI deals with very short bursts on the order of a few to 30 seconds. RFD deals with longer bursts, minutes to hours. Unfortunately, RFD was found to severely penalize sites for being well-connected because topological richness amplifies the number of update messages exchanged. So most operators have disabled it. Through measurement, this paper explores the avenue of absolutely minimal change to code, and shows that a few RFD algorithmic constants and limits can be trivially modified, with the result being damping a non-trivial amount of long term churn without penalizing well-behaved prefixes' normal convergence process.

  7. Relaxation damping in oscillating contacts.

    PubMed

    Popov, M; Popov, V L; Pohrt, R

    2015-01-01

    If a contact of two purely elastic bodies with no sliding (infinite coefficient of friction) is subjected to superimposed oscillations in the normal and tangential directions, then a specific damping appears, that is not dependent on friction or dissipation in the material. We call this effect "relaxation damping". The rate of energy dissipation due to relaxation damping is calculated in a closed analytic form for arbitrary axially-symmetric contacts. In the case of equal frequency of normal and tangential oscillations, the dissipated energy per cycle is proportional to the square of the amplitude of tangential oscillation and to the absolute value of the amplitude of normal oscillation, and is dependent on the phase shift between both oscillations. In the case of low frequency tangential oscillations with superimposed high frequency normal oscillations, the dissipation is proportional to the ratio of the frequencies. Generalization of the results for macroscopically planar, randomly rough surfaces as well as for the case of finite friction is discussed. PMID:26549011

  8. Building with Sand

    ERIC Educational Resources Information Center

    Ashbrook, Peggy

    2010-01-01

    Children playing in damp sand invariably try to make a tower or a tunnel. By providing experiences with a variety of materials, alone and together, teachers set up the conditions for children to learn through their senses and ensure that a class approaches a topic with a common set of experiences to build on. Learning about the properties of…

  9. Introduction to DAMPE event reconstruction (On behalf of DAMPE collaboration)

    NASA Astrophysics Data System (ADS)

    Zang, Jingjing

    2016-07-01

    The Dark Matter Particle Explorer (DAMPE) is a high energy particle physics experiment satellite, launched on 17 Dec 2015. To measure basic attributes of cosmic ray particles, DAMPE is equipped with four sub-detectors, BGO calorimeter (BGO), plastic scintillator detector (PSD), silicon tungsten tracker (STK) and neutron detector (NUD). On orbit, the high energy particle data are acquired and recorded by well-designed Data Acquisition system. After that, a series of elaborate event reconstruction algorithms are implemented to determine the energy, direction and particle ID of each event. The energy reconstruction algorithm firstly treats the sum of the BGO crystal energy as the overall energy estimator and various corrections are performed to calculate energy leakage from side and back of the calorimeter. The track reconstruction starts with cluster finding in STK, then shower axis of BGO and barycentre of clusters are used to extract seed of tracks. These seeds will be projected on the next layer by Kalman Filter method which will finally give location and direction of particle tracks. Based on shower development in BGO and tracks reconstructed by STK, we also combine data from PSD and NUD and developed a series of algorithms to evaluate particle's charge and identification. In this talk, we will describe technical strategies of event reconstruction and provide their basic performance.

  10. ICAN/DAMP-integrated composite analyzer with damping analysis capabilities: User's manual

    NASA Technical Reports Server (NTRS)

    Saravanos, Dimitrious A.; Sanfeliz, Jose G.

    1992-01-01

    This manual describes the use of the computer code ICAN/DAMP (Integrated Composite Analyzer with Damping Analysis Capabilities) for the prediction of damping in polymer-matrix composites. The code is written in FORTRAN 77 and is a version of the ICAN (Integrated Composite ANalyzer) computer program. The code incorporates a new module for synthesizing the material damping from micromechanics to laminate level. Explicit micromechanics equations based on hysteretic damping are programmed relating the on-axis damping capacities to the fiber and matrix properties and fiber volume ratio. The damping capacities of unidirectional composites subjected to off-axis loading are synthesized from on-axis damping values. The hygrothermal effect on the damping performance of unidirectional composites caused by temperature and moisture variation is modeled along with the damping contributions from interfacial friction between broken fibers and matrix. The temperature rise is continuously vibrating composite plies and composite laminates is also estimated. The ICAN/DAMP user's manual provides descriptions of the damping analysis module's functions, structure, input requirements, output interpretation, and execution requirements. It only addresses the changes required to conduct the damping analysis and is used in conjunction with the 'Second Generation Integrated Composite Analyzer (ICAN) Computer Code' user's manual (NASA TP-3290).

  11. Damped transverse oscillations of interacting coronal loops

    NASA Astrophysics Data System (ADS)

    Soler, Roberto; Luna, Manuel

    2015-10-01

    Damped transverse oscillations of magnetic loops are routinely observed in the solar corona. This phenomenon is interpreted as standing kink magnetohydrodynamic waves, which are damped by resonant absorption owing to plasma inhomogeneity across the magnetic field. The periods and damping times of these oscillations can be used to probe the physical conditions of the coronal medium. Some observations suggest that interaction between neighboring oscillating loops in an active region may be important and can modify the properties of the oscillations. Here we theoretically investigate resonantly damped transverse oscillations of interacting nonuniform coronal loops. We provide a semi-analytic method, based on the T-matrix theory of scattering, to compute the frequencies and damping rates of collective oscillations of an arbitrary configuration of parallel cylindrical loops. The effect of resonant damping is included in the T-matrix scheme in the thin boundary approximation. Analytic and numerical results in the specific case of two interacting loops are given as an application.

  12. CHARACTERIZATION OF DAMPING IN BOLTED LAP JOINTS

    SciTech Connect

    C. MALONEY; D. PEAIRS; ET AL

    2000-08-01

    The dynamic response of a jointed beam was measured in laboratory experiments. The data were analyzed and the system was mathematically modeled to establish plausible representations of joint damping behavior. Damping is examined in an approximate, local linear framework using log decrement and half power bandwidth approaches. in addition, damping is modeled in a nonlinear framework using a hybrid surface irregularities model that employs a bristles-construct. Experimental and analytical results are presented.

  13. Constrained layer damping of a tennis racket

    NASA Astrophysics Data System (ADS)

    Harms, Michael R.; Gopal, H. S.; Lai, Ming-Lai; Cheng, Po-Jen

    1996-05-01

    When a tennis ball strikes a racket the impact causes vibrations which are distracting and undesirable to the player. In this work a passive damping system used to reduce vibration is described. The damping system uses a viscoelastic material along with a stiff composite constraining layer which is molded on the inner surface of the tennis racket frame. When a ball strikes a racket with this damping system the vibration causes shearing strain in the viscoelastic material. This strain energy is partially dissipated by the viscoelastic material, thereby increasing the racket damping. An analysis of the design was performed by creating a solid CAD model of the racket using Pro/Engineer. A finite element mesh was created and the mesh was then exported to ANSYS for the finite element modal analysis. The technique used to determine the damping ratio is the modal strain energy method. Experimental testing using accelerometers was conducted to determine the natural frequency and the damping ratio of rackets with and without the damping system. The natural frequency of the finite element model was benchmarked to the experimental data and damping ratios were compared. The modal strain energy method was found to be a very effective means of determining the damping ratio, and the frequencies and damping ratios correlated well with the experimental data. Using this analysis method, the effectiveness of the damping ratio to the change in key variables can be studied, minimizing the need for prototypes. This method can be used to determine an optimum design by maximizing the damping ratio with minimal weight addition.

  14. Viscous damped space structure for reduced jitter

    NASA Technical Reports Server (NTRS)

    Wilson, James F.; Davis, L. Porter

    1987-01-01

    A technique to provide modal vibration damping in high performance space structures was developed which uses less than one once of incompressible fluid. Up to 50 percent damping can be achieved which can reduce the settling times of the lowest structural mode by as much as 50 to 1. This concept allows the designers to reduce the weight of the structure while improving its dynamic performance. Damping by this technique is purely viscous and has been shown by test to be linear over 5 orders of input magnitude. Amplitudes as low as 0.2 microinch were demonstrated. Damping in the system is independent of stiffness and relatively insensitive to temperature.

  15. Understanding the damped SHM without ODEs

    NASA Astrophysics Data System (ADS)

    Ng, Chiu-king

    2016-03-01

    Instead of solving ordinary differential equations (ODEs), the damped simple harmonic motion (SHM) is surveyed qualitatively from basic mechanics and quantitatively by the instrumentality of a graph of velocity against displacement. In this way, the condition b≥slant \\sqrt{4mk}~ for the occurrence of the non-oscillating critical damping and heavy-damping is derived. Besides, we prove in the under-damping, the oscillation is isochronous and the diminishing amplitude satisfies a rule of ‘constant ratio’. All are done on a non-ODE basis.

  16. Damping constant estimation in magnetoresistive readers

    SciTech Connect

    Stankiewicz, Andrzej Hernandez, Stephanie

    2015-05-07

    The damping constant is a key design parameter in magnetic reader design. Its value can be derived from bulk or sheet film ferromagnetic resonance (FMR) line width. However, dynamics of nanodevices is usually defined by presence of non-uniform modes. It triggers new damping mechanisms and produces stronger damping than expected from traditional FMR. This work proposes a device-level technique for damping evaluation, based on time-domain analysis of thermally excited stochastic oscillations. The signal is collected using a high bandwidth oscilloscope, by direct probing of a biased reader. Recorded waveforms may contain different noise signals, but free layer FMR is usually a dominating one. The autocorrelation function is a reflection of the damped oscillation curve, averaging out stochastic contributions. The damped oscillator formula is fitted to autocorrelation data, producing resonance frequency and damping constant values. Restricting lag range allows for mitigation of the impact of other phenomena (e.g., reader instability) on the damping constant. For a micromagnetically modeled reader, the technique proves to be much more accurate than the stochastic FMR line width approach. Application to actual reader waveforms yields a damping constant of ∼0.03.

  17. Superconductive material and magnetic field for damping and levitation support and damping of cryogenic instruments

    NASA Technical Reports Server (NTRS)

    Dolgin, Benjamin P. (Inventor)

    1994-01-01

    A superconductive load bearing support without a mechanical contact and vibration damping for cryogenic instruments in space is presented. The levitation support and vibration damping is accomplished by the use of superconducting magnets and the 'Meissner' effect. The assembly allows for transfer of vibration energy away from the cryogenic instrument which then can be damped by the use of either an electronic circuit or conventional vibration damping mean.

  18. Dynamic stall and aerodynamic damping

    SciTech Connect

    Rasmussen, F.; Petersen, J.T.; Madsen, H.A.

    1999-08-01

    A dynamic stall model is used to analyze and reproduce open air blade section measurements as well as wind tunnel measurements. The dynamic stall model takes variations in both angle of attack and flow velocity into account. The paper gives a brief description of the dynamic stall model and presents results from analyses of dynamic stall measurements for a variety of experiments with different airfoils in wind tunnel and on operating rotors. The wind tunnel experiments comprises pitching as well as plunging motion of the airfoils. The dynamic stall model is applied for derivation of aerodynamic damping characteristics for cyclic motion of the airfoils in flapwise and edgewise direction combined with pitching. The investigation reveals that the airfoil dynamic stall characteristics depend on the airfoil shape, and the type of motion (pitch, plunge). The aerodynamic damping characteristics, and thus the sensitivity to stall induced vibrations, depend highly on the relative motion of the airfoil in flapwise and edgewise direction, and on a possibly coupled pitch variation, which is determined by the structural characteristics of the blade.

  19. Acoustic transducer with damping means

    DOEpatents

    Smith, Richard W.; Adamson, Gerald E.

    1976-11-02

    An ultrasonic transducer specifically suited to high temperature sodium applications is described. A piezoelectric active element is joined to the transducer faceplate by coating the faceplate and juxtaposed active element face with wetting agents specifically compatible with the bonding procedure employed to achieve the joint. The opposite face of the active element is fitted with a backing member designed to assure continued electrical continuity during adverse operating conditions which can result in the fracturing of the active element. The fit is achieved employing a spring-loaded electrode operably arranged to electrically couple the internal transducer components, enclosed in a hermetically sealed housing, to accessory components normally employed in transducer applications. Two alternative backing members are taught for assuring electrical continuity. The first employs a resilient, discrete multipoint contact electrode in electrical communication with the active element face. The second employs a resilient, elastomeric, electrically conductive, damped member in electrical communication with the active element face in a manner to effect ring-down of the transducer. Each embodiment provides continued electrical continuity within the transducer in the event the active element fractures, while the second provides the added benefit of damping.

  20. Relaxation damping in oscillating contacts

    PubMed Central

    Popov, M.; Popov, V.L.; Pohrt, R.

    2015-01-01

    If a contact of two purely elastic bodies with no sliding (infinite coefficient of friction) is subjected to superimposed oscillations in the normal and tangential directions, then a specific damping appears, that is not dependent on friction or dissipation in the material. We call this effect “relaxation damping”. The rate of energy dissipation due to relaxation damping is calculated in a closed analytic form for arbitrary axially-symmetric contacts. In the case of equal frequency of normal and tangential oscillations, the dissipated energy per cycle is proportional to the square of the amplitude of tangential oscillation and to the absolute value of the amplitude of normal oscillation, and is dependent on the phase shift between both oscillations. In the case of low frequency tangential oscillations with superimposed high frequency normal oscillations, the dissipation is proportional to the ratio of the frequencies. Generalization of the results for macroscopically planar, randomly rough surfaces as well as for the case of finite friction is discussed. PMID:26549011

  1. Tuned vibration absorbers with nonlinear viscous damping for damped structures under random load

    NASA Astrophysics Data System (ADS)

    Shum, K. M.

    2015-06-01

    The classical problem for the application of a tuned vibration absorber is to minimize the response of a structural system, such as displacement, velocity, acceleration or to maximize the energy dissipated by tuned vibration absorber. The development of explicit optimal absorber parameters is challenging for a damped structural system since the fixed points no longer exist in the frequency response curve. This paper aims at deriving a set of simple design formula of tuned vibration absorber with nonlinear viscous damping based on the frequency tuning for harmonic load for a damped structural system under white noise excitation. The vibration absorbers being considered include tuned mass damper (TMD) and liquid column vibration absorber (LCVA). Simple approximate expression for the standard deviation velocity response of tuned vibration absorber for damped primary structure is also derived in this study to facilitate the estimation of the damping coefficient of TMD with nonlinear viscous damping and the head loss coefficient of LCVA. The derived results indicate that the higher the structural inherent damping the smaller the supplementary damping provided by a tuned vibration absorber. Furthermore, the optimal damping of tuned vibration absorber is shown to be independent of structural damping when it is tuned using the frequency tuning for harmonic load. Finally, the derived closed-form expressions are demonstrated to be capable of predicting the optimal parameters of tuned vibration absorbers with sufficient accuracy for preliminary design of tuned vibration absorbers with nonlinear viscous damping for a damped primary structure.

  2. Status report of RMS active damping augmentation

    NASA Technical Reports Server (NTRS)

    Gilbert, Mike; Demeo, Martha E.

    1993-01-01

    A status report of Remote Manipulator System (RMS) active damping augmentation is presented. Topics covered include: active damping augmentation; benefits of RMS ADA; simulated payload definition; sensor and actuator definition; ADA control law design; Shuttle Engineering Simulator (SES) real-time simulation; and astronaut evaluation.

  3. Passive damping in EDS maglev systems.

    SciTech Connect

    Rote, D. M.

    2002-05-03

    There continues to be strong interest in the subjects of damping and drag forces associated with electrodynamic suspension (EDS) systems. While electromagnetic drag forces resist the forward motion of a vehicle and therefore consume energy, damping forces control, at least in part, the response of the vehicle to disturbances. Ideally, one would like to reduce the drag forces as much as possible while retaining adequate damping forces to insure dynamic stability and satisfactory ride quality. These two goals turn out to be difficult to achieve in practice. It is well known that maglev systems tend to be intrinsically under damped. Consequently it is often necessary in a practical system design to enhance the damping passively or actively. For reasons of cost and simplicity, it is desirable to rely as much as possible on passive damping mechanisms. In this paper, rough estimates are made of the passive damping and drag forces caused by various mechanisms in EDS systems. No attention will be given to active control systems or secondary suspension systems which are obvious ways to augment passive damping mechanisms if the latter prove to be inadequate.

  4. Damping device for a stationary labyrinth seal

    NASA Technical Reports Server (NTRS)

    El-Aini, Yehia M. (Inventor); Mitchell, William S. (Inventor); Roberts, Lawrence P. (Inventor); Montgomery, Stuart K. (Inventor); Davis, Gary A. (Inventor)

    2010-01-01

    A stationary labyrinth seal system includes a seal housing having an annular cavity, a plurality of damping devices, and a retaining ring. The damping devices are positioned within the annular cavity and are maintained within the annular cavity by the retaining ring.

  5. Understanding the Damped SHM without ODEs

    ERIC Educational Resources Information Center

    Ng, Chiu-king

    2016-01-01

    Instead of solving ordinary differential equations (ODEs), the damped simple harmonic motion (SHM) is surveyed qualitatively from basic mechanics and quantitatively by the instrumentality of a graph of velocity against displacement. In this way, the condition b ? [square root]4mk for the occurrence of the non-oscillating critical damping and…

  6. DAMPs from Cell Death to New Life

    PubMed Central

    Vénéreau, Emilie; Ceriotti, Chiara; Bianchi, Marco Emilio

    2015-01-01

    Our body handles tissue damage by activating the immune system in response to intracellular molecules released by injured tissues [damage-associated molecular patterns (DAMPs)], in a similar way as it detects molecular motifs conserved in pathogens (pathogen-associated molecular patterns). DAMPs are molecules that have a physiological role inside the cell, but acquire additional functions when they are exposed to the extracellular environment: they alert the body about danger, stimulate an inflammatory response, and finally promote the regeneration process. Beside their passive release by dead cells, some DAMPs can be secreted or exposed by living cells undergoing a life-threatening stress. DAMPs have been linked to inflammation and related disorders: hence, inhibition of DAMP-mediated inflammatory responses is a promising strategy to improve the clinical management of infection- and injury-elicited inflammatory diseases. However, it is important to consider that DAMPs are not only danger signals but also central players in tissue repair. Indeed, some DAMPs have been studied for their role in tissue healing after sterile or infection-associated inflammation. This review is focused on two exemplary DAMPs, HMGB1 and adenosine triphosphate, and their contribution to both inflammation and tissue repair. PMID:26347745

  7. Fluid damping reduces bellows seal fatigue failures

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Service life of a bellows-type seal in the presence of mechanical vibration is increased by a system of interconnected bellows with intervening cavities filled with a fluid which damps the amplitude of periodic deflection of the sealing bellows. Different damping fluids are used according to environmental conditions.

  8. Large space structure damping design

    NASA Technical Reports Server (NTRS)

    Pilkey, W. D.; Haviland, J. K.

    1983-01-01

    Several FORTRAN subroutines and programs were developed which compute complex eigenvalues of a damped system using different approaches, and which rescale mode shapes to unit generalized mass and make rigid bodies orthogonal to each other. An analytical proof of a Minimum Constrained Frequency Criterion (MCFC) for a single damper is presented. A method to minimize the effect of control spill-over for large space structures is proposed. The characteristic equation of an undamped system with a generalized control law is derived using reanalysis theory. This equation can be implemented in computer programs for efficient eigenvalue analysis or control quasi synthesis. Methods to control vibrations in large space structure are reviewed and analyzed. The resulting prototype, using electromagnetic actuator, is described.

  9. VIBRATION DAMPING AND SHOCK MOUNT

    DOEpatents

    Stevens, D.J.; Forman, G.W.

    1963-12-10

    A shock absorbing mount in which vibrations are damped by an interference fit between relatively movable parts of the mount is described. A pair of generally cup-shaped parts or members have skirt portions disposed in an oppositely facing nesting relationship with the skirt of one member frictionally engaging the skirt of the other. The outermost skirt may be slotted to provide spring-like segments which embrace the inner skirt for effecting the interference fit. Belleville washers between the members provide yieldable support for a load carried by the mount. When a resonant frequency of vibration forces acting upon the moumt attains a certain level the kinetic energy of these forces is absorbed by sliding friction between the parts. (AEC)

  10. Landau damping in a turbulent setting

    SciTech Connect

    Plunk, G. G.

    2013-03-15

    To address the problem of Landau damping in kinetic turbulence, we consider the forcing of the linearized Vlasov equation by a stationary random source. It is found that the time-asymptotic density response is dominated by resonant particle interactions that are synchronized with the source. The energy consumption of this response is calculated, implying an effective damping rate, which is the main result of this paper. Evaluating several cases, it is found that the effective damping rate can differ from the Landau damping rate in magnitude and also, remarkably, in sign. A limit is demonstrated in which the density and current become phase-locked, which causes the effective damping to be negligible; this result offers a fresh perspective from which to reconsider recent observations of kinetic turbulence satisfying critical balance.

  11. A finite element model with nonviscous damping

    NASA Technical Reports Server (NTRS)

    Roussos, L. A.; Hyer, M. W.; Thornton, E. A.

    1981-01-01

    A constitutive law by which structural damping is modeled as a relationship between stress, strain, and strain rate in a material is used in conjunction with the finite element method to develop general integral expressions for viscous and nonviscous damping matrices. To solve the set of nonlinear equations resulting from the presence of nonviscous damping, a solution technique is developed by modifying the Newmark method to accommodate an iterative solution and treat the nonviscous damping as a pseudo-force. The technique is then checked for accuracy and convergence in single- and multi-degree-of-freedom problems, and is found to be accurate and efficient for initial-condition problems with small nonviscous damping.

  12. Magnetic damping of rotation. [in satellites

    NASA Technical Reports Server (NTRS)

    Opik, E. J.

    1977-01-01

    Based on Wilson's (1977) article on the magnetic effects on space vehicles and other celestial bodies, the magnetic damping of rotation is considered. The inadequacy of the interstellar magnetic field in overcoming solar wind shielding and thus influencing the rotation of bodies is described. The ionospheric shielding of the interstellar field is discussed along with the permeability and magnetic damping by the solar or stellar wind. Star formation and angular momentum is discussed and attention is given to the magnetic damping of unshielded small bodies. Calculations of the rate for damping through random particle impact are made. Theories concerning the rotation of asteroids and the origin of meteorites are reviewed. The shielding process of ionospheric plasmas is outlined and the damping effect of the geomagnetic field on the rotation of artificial satellites is evaluated.

  13. Cell Death and DAMPs in Acute Pancreatitis

    PubMed Central

    Kang, Rui; Lotze, Michael T; Zeh, Herbert J; Billiar, Timothy R; Tang, Daolin

    2014-01-01

    Cell death and inflammation are key pathologic responses of acute pancreatitis (AP), the leading cause of hospital admissions for gastrointestinal disorders. It is becoming increasingly clear that damage-associated molecular pattern molecules (DAMPs) play an important role in the pathogenesis of AP by linking local tissue damage to systemic inflammation syndrome. Endogenous DAMPs released from dead, dying or injured cells initiate and extend sterile inflammation via specific pattern recognition receptors. Inhibition of the release and activity of DAMPs (for example, high mobility group box 1, DNA, histones and adenosine triphosphate) provides significant protection against experimental AP. Moreover, increased serum levels of DAMPs in patients with AP correlate with disease severity. These findings provide novel insight into the mechanism, diagnosis and management of AP. DAMPs might be an attractive therapeutic target in AP. PMID:25105302

  14. Landau damping in a turbulent setting

    NASA Astrophysics Data System (ADS)

    Plunk, G. G.

    2013-03-01

    To address the problem of Landau damping in kinetic turbulence, we consider the forcing of the linearized Vlasov equation by a stationary random source. It is found that the time-asymptotic density response is dominated by resonant particle interactions that are synchronized with the source. The energy consumption of this response is calculated, implying an effective damping rate, which is the main result of this paper. Evaluating several cases, it is found that the effective damping rate can differ from the Landau damping rate in magnitude and also, remarkably, in sign. A limit is demonstrated in which the density and current become phase-locked, which causes the effective damping to be negligible; this result offers a fresh perspective from which to reconsider recent observations of kinetic turbulence satisfying critical balance.

  15. Overview on methods for formulating explicit damping matrices for non-classically damped structures

    SciTech Connect

    Xu, J.

    1998-04-01

    In computing the dynamic response of a connected system with multiple components having dissimilar damping characteristics, which is often referred to as nonclassically damped system such as nuclear power plant piping systems supported by stiff structures, one needs to define the system-level damping based upon the damping information of components. This is frequently done in practice using approximate methods expressed as composite modal damping with weighting functions. However, when the difference in damping among components is substantial, the composite modal damping may become inappropriate in the characterization of the damping behavior of such systems. In recent years, several new methods have emerged with the expectation that they could produce more exact system-level damping for a group of nonclassically damped structures which are comprised of components that possess classical modal damping. In this paper, an overview is presented to examine these methods in the light of their theoretical basis, the technical merits, and practical applications. To this end, a synthesis method is described, which was shown to reduce to the other methods in the literature.

  16. Experimental Investigation of the Damping Behavior of the Particle Damping in the Transient Vibrations

    NASA Astrophysics Data System (ADS)

    Chavan, Shrirang Pandurang; Kale, Arvind Kamalakar; Mulla, Faiz Abdulkadar

    2016-01-01

    Particle damping is a non linear type of damping in which energy of the vibratory system is dissipated by the impact and the frictional losses made by the particles used for the damping purposes. The particle damping technique is useful over other types of damping as it is temperature independent. So it is reliable over wide temperature range and hence is essentially used in the cryogenic and the gas turbine related applications. For experimentation, cantilever beam with particle enclosure attached to its free end has been extensively used and the effect of the particle material, particle size, mass ratio and enclosure height on the damping performance has been studied [1]. For a small weight penalty, rather large amounts of damping can be achieved [2].

  17. Identification of Mold and Dampness-Associated Respiratory Morbidity in 2 Schools: Comparison of Questionnaire Survey Responses to National Data

    ERIC Educational Resources Information Center

    Sahakian, Nancy M.; White, Sandra K.; Park, Ju-Hyeong; Cox-Ganser, Jean M.; Kreiss, Kathleen

    2008-01-01

    Background: Dampness and mold problems are frequently encountered in schools. Approximately one third of US public schools require extensive repairs or need at least 1 building replaced. This study illustrates how national data can be used to identify building-related health risks in school employees and students. Methods: School employees (n =…

  18. Damping identification with the Morlet-wave

    NASA Astrophysics Data System (ADS)

    Slavič, Janko; Boltežar, Miha

    2011-07-01

    In the past decade damping-identification methods based on the continuous wavelet transform (CWT) have been shown to be some of the best methods for analyzing the damping of multi-degree-of-freedom systems. The CWT methods have proven themselves to be resistant to noise and able to identify damping at closely spaced natural frequencies. However, with the CWT-based techniques, the CWT needs to be obtained on a two-dimensional, time-frequency grid, and they are, therefore, computationally demanding. Furthermore, the CWT is susceptible to the edge effect, which causes a non-valid identification at the start and the end of the time-series. This study introduces a new method, called the Morlet-wave method, where a finite integral similar to the CWT is used for the identification of the viscous damping. Instead of obtaining the CWT on a two-dimensional grid, the finite integral needs to be calculated at one time-frequency point, only. Then using two different integration parameters, the damping ratio can be identified. A complete mathematical background of the new, Morlet-wave, damping-identification method is given and this results in a root-finding or a closed-form solution. The presented numerical experiments show that the new method has a similar performance to the CWT-based damping-identification methods, while the method is numerically, significantly less demanding, completely avoids the edge effect, and the procedure is straightforward to use.

  19. Building Mathematical Models of Simple Harmonic and Damped Motion.

    ERIC Educational Resources Information Center

    Edwards, Thomas

    1995-01-01

    By developing a sequence of mathematical models of harmonic motion, shows that mathematical models are not right or wrong, but instead are better or poorer representations of the problem situation. (MKR)

  20. Active damping with a reaction mass actuator

    NASA Technical Reports Server (NTRS)

    Spanos, John; O'Brien, John

    1992-01-01

    This paper presents analytical and experimental results in actively damping flexible structures with reaction mass actuators. A two degree of freedom spring-mass model of a flexible structure is analyzed and the key parameters of actuator mass participation and pole-zero separation are related to the maximum damping achievable from rate feedback control. The main conclusion of the paper is that the larger the pole-zero separation the larger the amount of damping that can be imparted to a structural mode. Laboratory experiments conducted on an 8-foot truss structure support the analytical predictions.

  1. Oscillation damped movement of suspended objects

    SciTech Connect

    Jones, J.F.; Petterson, B.J.

    1988-01-01

    Transportation of objects using overhead cranes or manipulators can induce pendulum motion of the object. Residual oscillation from transportation typically must be damped or allowed to decay before the next process can take place. By properly programming the acceleration of the transporting device (e.g., crane) an oscillation damped transport and swing free stop is obtainable. This paper reviews the theory associated with oscillation damped trajectories for simply suspended objects and describes a particular implementation using a CIMCORP XR 6100 gantry robot. 8 refs., 7 figs., 1 tab.

  2. A Resonant Damping Study Using Piezoelectric Materials

    NASA Technical Reports Server (NTRS)

    Min, J. B.; Duffy, K. P.; Choi, B. B.; Morrison, C. R.; Jansen, R. H.; Provenza, A. J.

    2008-01-01

    Excessive vibration of turbomachinery blades causes high cycle fatigue (HCF) problems requiring damping treatments to mitigate vibration levels. Based on the technical challenges and requirements learned from previous turbomachinery blade research, a feasibility study of resonant damping control using shunted piezoelectric patches with passive and active control techniques has been conducted on cantilever beam specimens. Test results for the passive damping circuit show that the optimum resistive shunt circuit reduces the third bending resonant vibration by almost 50%, and the optimum inductive circuit reduces the vibration by 90%. In a separate test, active control reduced vibration by approximately 98%.

  3. Damped harmonics and polynomial phase signals

    NASA Astrophysics Data System (ADS)

    Zhou, Guotong; Giannakis, Georgios B.

    1994-10-01

    The concern here is of retrieving damped harmonics and polynomial phase signals in the presence of additive noise. The damping function is not limited to the exponential model, and in certain cases, the additive noise does not have to be white. Three classes of algorithms are presented, namely DFT based, Kumaresan-Tufts type extensions, and subspace variants including the MUSIC algorithm. Preference should be based on the available data length and frequency separations. In addition, retrieval of self coupled damped harmonics, which may be present when nonlinearities exist in physical systems, is investigated. Simulation examples illustrate main points of the paper.

  4. Damping parameter study of a perforated plate with bias flow

    NASA Astrophysics Data System (ADS)

    Mazdeh, Alireza

    One of the main impediments to successful operation of combustion systems in industrial and aerospace applications including gas turbines, ramjets, rocket motors, afterburners (augmenters) and even large heaters/boilers is the dynamic instability also known as thermo-acoustic instability. Concerns with this ongoing problem have grown with the introduction of Lean Premixed Combustion (LPC) systems developed to address the environmental concerns associated with the conventional combustion systems. The most common way to mitigate thermo-acoustic instability is adding acoustic damping to the combustor using acoustic liners. Recently damping properties of bias flow initially introduced to liners only for cooling purposes have been recognized and proven to be an asset in enhancing the damping effectiveness of liners. Acoustic liners are currently being designed using empirical design rules followed by build-test-improve steps; basically by trial and error. There is growing concerns on the lack of reliability associated with the experimental evaluation of the acoustic liners with small size apertures. The development of physics-based tools in assisting the design of such liners has become of great interest to practitioners recently. This dissertation focuses primarily on how Large-Eddy Simulations (LES) or similar techniques such as Scaled Adaptive Simulation (SAS) can be used to characterize damping properties of bias flow. The dissertation also reviews assumptions made in the existing analytical, semi-empirical, and numerical models, provides a criteria to rank order the existing models, and identifies the best existing theoretical model. Flow field calculations by LES provide good insight into the mechanisms that led to acoustic damping. Comparison of simulation results with empirical and analytical studies shows that LES simulation is a viable alternative to the empirical and analytical methods and can accurately predict the damping behavior of liners. Currently the

  5. Turbine blade friction damping study

    NASA Technical Reports Server (NTRS)

    Dominic, R. J.

    1985-01-01

    A lumped parameter method, implemented on a VAX 11/780 computer shows that the primary parameters affecting the performance of the friction damper of the first stage turbine of the SSME high pressure fuel pump are: the damper-blade coefficient of friction; the normal force applied to the friction interface; the amplitude of the periodic forcing function; the relative phase angle of the forcing functions for adjacent blades bridged by a damper (effectively, the engine order of the forcing function); and the amount of hysteretic damping that acts to limit the vibration amplitude of the blade in its resonance modes. The low order flexural resonance vibration modes of HPFTP blades without dampers, with production dampers, and with two types of lightweight experimental dampers were evaluated in high speed spin pit tests. Results agree with those of the analytical study in that blades fitted with production friction dampers experienced the airfoil-alone flexural resonance mode, while those without dampers or with lighter weight dampers did not. No blades fitted with dampers experienced the whole blade flexural resonance mode during high speed tests, while those without dampers did.

  6. Eigensolutions of non-proportionally damped systems based on continuous damping sensitivity

    NASA Astrophysics Data System (ADS)

    Lázaro, Mario

    2016-02-01

    The viscous damping model has been widely used to represent dissipative forces in structures under mechanical vibrations. In multiple degree of freedom systems, such behavior is mathematically modeled by a damping matrix, which in general presents non-proportionality, that is, it does not become diagonal in the modal space of the undamped problem. Eigensolutions of non-proportional systems are usually estimated assuming that the modal damping matrix is diagonally dominant (neglecting the off-diagonal terms) or, in the general case, using the state-space approach. In this paper, a new closed-form expression for the complex eigenvalues of non-proportionally damped system is proposed. The approach is derived assuming small damping and involves not only the diagonal terms of the modal damping matrix, but also the off-diagonal terms, which appear under higher order. The validity of the proposed approach is illustrated through a numerical example.

  7. Oscillation damping means for magnetically levitated systems

    DOEpatents

    Post, Richard F.

    2009-01-20

    The present invention presents a novel system and method of damping rolling, pitching, or yawing motions, or longitudinal oscillations superposed on their normal forward or backward velocity of a moving levitated system.

  8. Collisional damping of the geodesic acoustic mode

    SciTech Connect

    Gao Zhe

    2013-03-15

    The frequency and damping rate of the geodesic acoustic mode (GAM) is revisited by using a gyrokinetic model with a number-conserving Krook collision operator. It is found that the damping rate of the GAM is non-monotonic as the collision rate increases. At low ion collision rate, the damping rate increases linearly with the collision rate; while as the ion collision rate is higher than v{sub ti}/R, where v{sub ti} and R are the ion thermal velocity and major radius, the damping rate decays with an increasing collision rate. At the same time, as the collision rate increases, the GAM frequency decreases from the (7/4+{tau})v{sub ti}/R to (1+{tau})v{sub ti}/R, where {tau} is the ratio of electron temperature to ion temperature.

  9. Electron beam depolarization in a damping ring

    SciTech Connect

    Minty, M.

    1993-04-01

    Depolarization of a polarized electron beam injected into a damping ring is analyzed by extending calculations conventionally applied to proton synchrotrons. Synchrotron radiation in an electron ring gives rise to both polarizing and depolarizing effects. In a damping ring, the beam is stored for a time much less than the time for self polarization. Spin flip radiation may therefore be neglected. Synchrotron radiation without spin flips, however, must be considered as the resonance strength depends on the vertical betatron oscillation amplitude which changes as the electron beam is radiation damped. An expression for the beam polarization at extraction is derived which takes into account radiation damping. The results are applied to the electron ring at the Stanford Linear Collider and are compared with numerical matrix formalisms.

  10. Damping Wiggler Study at KEK-ATF

    SciTech Connect

    Naito, T.; Hayano, H.; Honda, Y.; Kubo, K.; Kuriki, M.; Kuroda, S.; Muto, T.; Terunuma, N.; Urakawa, J.; Sakai, H.; Nakamura, N.; Korostelev, M.; Zimmermann, F.; Ross, Marc; /SLAC

    2006-02-07

    The effects of damping wiggler magnets have been studied at KEK-ATF damping ring, which is a 1.3 GeV storage ring capable of producing ultra-low emittance electron beams. The fast beam damping is a significant issue for the damping ring. The tuning method with 4 sets of wiggler magnets was investigated for the ultra-low emittance beam. The effect on the beam quality, which is related to the transverse (x and y) and the longitudinal (z and {Delta}p/p), has been measured by the wire scanner, SR monitor, the laser wire, streak camera and the energy spread monitor. We report on the operational condition and the measurement results.

  11. Simplified Model of Nonlinear Landau Damping

    SciTech Connect

    N. A. Yampolsky and N. J. Fisch

    2009-07-16

    The nonlinear interaction of a plasma wave with resonant electrons results in a plateau in the electron distribution function close to the phase velocity of the plasma wave. As a result, Landau damping of the plasma wave vanishes and the resonant frequency of the plasma wave downshifts. However, this simple picture is invalid when the external driving force changes the plasma wave fast enough so that the plateau cannot be fully developed. A new model to describe amplification of the plasma wave including the saturation of Landau damping and the nonlinear frequency shift is proposed. The proposed model takes into account the change of the plasma wave amplitude and describes saturation of the Landau damping rate in terms of a single fluid equation, which simplifies the description of the inherently kinetic nature of Landau damping. A proposed fluid model, incorporating these simplifications, is verified numerically using a kinetic Vlasov code.

  12. Active damping and compensation of satellite appendages

    NASA Astrophysics Data System (ADS)

    Charon, W.; Baier, H.

    1993-10-01

    Future space missions will employ large and, for lightweight reasons, extremely flexible structures with very high performance requirements such as high pointing accuracy and stability, and high shape precision. This requires actively damping out vibrations induced by spacecraft maneuvers. The damping of the solar array vibrations is a characteristic task for such active interface devices. The example of an active interface for damping the bending vibrations of large conventional solar arrays is addressed. Other typical active components are active tube sections for damping the vibrations of large booms, and interfaces between satellite and vibrating large masts carrying high precision reflectors or measurement systems. The mechanical properties of the interfaces and the technological requirements related to their development are determined. New 'smart' materials are prominent among current concerns. Piezoelectric polymer foils bonded to structural shell surfaces, embedded thin piezoceramics plates, and embedded fiber optics sensors, as well as the implementation of materials such as memory alloys, are here addressed.

  13. Random vibrations of quadratic damping systems. [optimum damping analysis for automobile suspension system

    NASA Technical Reports Server (NTRS)

    Sireteanu, T.

    1974-01-01

    An oscillating system with quadratic damping subjected to white noise excitation is replaced by a nonlinear, statistically equivalent system for which the associated Fokker-Planck equation can be exactly solved. The mean square responses are calculated and the optimum damping coefficient is determined with respect to the minimum mean square acceleration criteria. An application of these results to the optimization of automobile suspension damping is given.

  14. Turbine blade with tuned damping structure

    SciTech Connect

    Campbell, Christian X.; Messmann, Stephen J.

    2015-09-01

    A turbine blade is provided comprising: a root; an airfoil comprising an external wall extending radially from the root and having a radially outermost portion; and a damping structure. The external wall may comprise first and second side walls joined together to define an inner cavity of the airfoil. The damping structure may be positioned within the airfoil inner cavity and coupled to the airfoil so as to define a tuned mass damper.

  15. Memory in a Nonlocally Damped Oscillator

    NASA Astrophysics Data System (ADS)

    Chruściński, D.; Jurkowski, J.

    2010-01-01

    We analyze the new equation of motion for the damped oscillator. It differs from the standard one by a damping term which is nonlocal in time and hence it gives rise to a system with memory. Both classical and quantum analysis is performed. The characteristic feature of this nonlocal system is that it breaks local composition low for the classical Hamiltonian dynamics and the corresponding quantum propagator.

  16. Microscale damping using thin film active materials

    NASA Astrophysics Data System (ADS)

    Kerrigan, Catherine A.; Ho, Ken K.; Mohanchandra, K. P.; Carman, Gregory P.

    2007-04-01

    This paper focuses on understanding and developing a new approach to dampen MEMS structures using both experiments and analytical techniques. Thin film Nitinol and thin film Terfenol-D are evaluated as a damping solution to the micro scale damping problem. Stress induced twin boundary motion in Nitinol is used to passively dampen potentially damaging vibrations. Magnetic domain wall motion is used to passively dampen vibration in Terfenol-D. The thin films of Nitinol, Nitinol/Silicon laminates and Nitinol/Terfenol-D/Nickel laminates have been produced using a sputter deposition process and damping properties have been evaluated. Dynamic testing shows substantial damping (tan δ) measurable in each case. Nitinol film samples were tested in the Differential Scanning Calorimetry (DSC) to determine phase transformation temperatures. The twin boundary mechanism by which energy absorption occurs is present at all points below the Austenite start temperature (approximately 69°C in our film) and therefore allows damping at cold temperatures where traditional materials fail. Thin film in the NiTi/Si laminate was found to produce substantially higher damping (tan δ = 0.28) due to the change in loading condition. The NiTi/Si laminate sample was tested in bending allowing the twin boundaries to be reset by cyclic tensile and compressive loads. The thin film Terfenol-D in the Nitinol/Terfenol-D/Nickel laminate was shown to produce large damping (tan δ = 0.2). In addition to fabricating and testing, an analytical model of a heterogeneous layered thin film damping material was developed and compared to experimental work.

  17. Quantum damped oscillator I: Dissipation and resonances

    SciTech Connect

    Chruscinski, Dariusz

    2006-04-15

    Quantization of a damped harmonic oscillator leads to so called Bateman's dual system. The corresponding Bateman's Hamiltonian, being a self-adjoint operator, displays the discrete family of complex eigenvalues. We show that they correspond to the poles of energy eigenvectors and the corresponding resolvent operator when continued to the complex energy plane. Therefore, the corresponding generalized eigenvectors may be interpreted as resonant states which are responsible for the irreversible quantum dynamics of a damped harmonic oscillator.

  18. The next linear collider damping ring complex

    SciTech Connect

    Corlett,J.; Atkinson,D.; De Santis,S.; Hartman, N.; Kennedy, K.; Li, D.; Marks, S.; Minamihara, Y.; Nishimura, H.; Pivi, M.; Reavill, D.; Rimmer, R.; Schlueter, R.; Wolski, A.; Anderson,S.; McKee,B.; Raubenheimer, T.; Ross, M.; Sheppard, J.C.

    2001-06-12

    We report progress on the design of the Next Linear Collider (NLC) Damping Rings complexes. The purpose of the damping rings is to provide low emittance electron and positron bunch trains to the NLC linacs, at a rate of 120 Hz. As an option to operate at the higher rate of 180 Hz, two 1.98 GeV main damping rings per beam are proposed, and one positron pre-damping ring. The main damping rings store up to 0.8 amp in 3 trains of 190 bunches each and have normalized extracted beam emittances {gamma}{var_epsilon}x = 3 mm-mrad and {gamma}{var_epsilon}y = 0.02 mm-mrad. The optical designs, based on a theoretical minimum emittance lattice (TME), are described, with an analysis of dynamic aperture and non-linear effects. Key subsystems and components are described, including the wiggler, the vacuum systems and photon stop design, and the higher-order-mode damped RF cavities. Impedance and instabilities are discussed.

  19. Landau damping in relativistic plasmas

    NASA Astrophysics Data System (ADS)

    Young, Brent

    2016-02-01

    We examine the phenomenon of Landau damping in relativistic plasmas via a study of the relativistic Vlasov-Poisson (rVP) system on the torus for initial data sufficiently close to a spatially uniform steady state. We find that if the steady state is regular enough (essentially in a Gevrey class of degree in a specified range) and if the deviation of the initial data from this steady state is small enough in a certain norm, the evolution of the system is such that its spatial density approaches a uniform constant value quasi-exponentially fast (i.e., like exp ( - C |" separators=" t | ν ¯ ) for ν ¯ ∈ ( 0 , 1 ) ). We take as a priori assumptions that solutions launched by such initial data exist for all times (by no means guaranteed with rVP, but a reasonable assumption since we are close to a spatially uniform state) and that the various norms in question are continuous in time (which should be a consequence of an abstract version of the Cauchy-Kovalevskaya theorem). In addition, we must assume a kind of "reverse Poincaré inequality" on the Fourier transform of the solution. In spirit, this assumption amounts to the requirement that there exists 0 < ϰ < 1 so that the mass in the annulus ϰ ≤ |" separators=" v | < 1 for the solution launched by the initial data is uniformly small for all t. Typical velocity bounds for solutions to rVP launched by small initial data (at least on ℝ6) imply this bound. We note that none of our results require spherical symmetry (a crucial assumption for many current results on rVP).

  20. Damping dependence on bolt torque for a simple frame structure.

    SciTech Connect

    Hunter, N. F.; Paez, Thomas L.,

    2003-01-01

    Damping quantifies the energy dissipation properties of a material or system under cyclic stress. Damping is also one of the most difficult properties of a mechanical structure to model using first principles (Ewins, 2002) . Damping in uniform metal structures is often low. In built up structures dissipation occurs at mechanical joints or through introduction of viscoelastic materials ( Ungar, 1973, Goodman, 1996) . Energy dissipation at joints, associated with microslip, macroslip and hystersis increases the total damping of a structure so built up structures virtually always have greater damping than structures composed of a single part . Since damping is sensitive to interface properties, damping is a good feature for quantifying interface condition.

  1. Hybrid Damping System for an Electronic Equipment Mounting Shelf

    NASA Technical Reports Server (NTRS)

    Voracek, David; Kolkailah, Faysal A.; Cavalli, J. R.; Elghandour, Eltahry

    1997-01-01

    The objective of this study was to design and construct a vibration control system for an electronic equipment shelf to be evaluated in the NASA Dryden FTF-11. The vibration control system was a hybrid system which included passive and active damping techniques. Passive damping was fabricated into the equipment shelf using ScothDamp(trademark) damping film and aluminum constraining layers. Active damping was achieved using a two channel active control circuit employing QuickPack(trademark) sensors and actuators. Preliminary Chirp test results indicated passive damping smoothed the frequency response while active damping reduced amplitudes of the frequency response for most frequencies below 500Hz.

  2. Hybrid Damping System for an Electronic Equipment Mounting Shelf

    NASA Technical Reports Server (NTRS)

    Voracek, David; Kolkailah, Faysal A.; Cavalli, J. R.; Elghandour, Eltahry

    1997-01-01

    The objective of this study was to design and construct a vibration control system for an electronic equipment shelf to be evaluated in the NASA Dryden FTF-II. The vibration control system was a hybrid system which included passive and active damping techniques. Passive damping was fabricated into the equipment shelf using ScothDamp(trademark) damping film and aluminum constraining layers. Active damping was achieved using a two channel active control circuit employing QuickPack(trademark) sensors and actuators. Preliminary Chirp test results indicated passive damping smoothed the frequency response while active damping reduced amplitudes of the frequency response for most frequencies below 500Hz.

  3. The Frequency and Damping of Soil-Structure Systems with Embedded Foundation

    SciTech Connect

    Ghannad, M. Ali; Rahmani, Mohammad T.; Jahankhah, Hossein

    2008-07-08

    The effect of foundation embedment on fundamental period and damping of buildings has been the title of several researches in three past decades. A review of the literature reveals some discrepancies between proposed formulations for dynamic characteristics of soil-embedded foundation-structure systems that raise the necessity of more investigation on this issue. Here, first a set of approximate polynomial equations for soil impedances, based on numerical data calculated from well known cone models, are presented. Then a simplified approach is suggested to calculate period and damping of the whole system considering soil medium as a viscoelastic half space. The procedure includes both material and radiation damping while frequency dependency of soil impedance functions is not ignored. Results show that soil-structure interaction can highly affect dynamic properties of system. Finally the results are compared with one of the commonly referred researches.

  4. Necessary and sufficient conditions for the entanglement sudden death under amplitude damping and phase damping

    SciTech Connect

    Huang Jiehui; Zhu Shiyao

    2007-12-15

    By using principal minor method, which is developed from the Peres-Horodecki criterion for the separability of a quantum state, we derive the necessary and sufficient conditions for the entanglement sudden death of a two-qubit state under amplitude damping and phase damping.

  5. Introduction to the scientific application system of DAMPE (On behalf of DAMPE collaboration)

    NASA Astrophysics Data System (ADS)

    Zang, Jingjing

    2016-07-01

    The Dark Matter Particle Explorer (DAMPE) is a high energy particle physics experiment satellite, launched on 17 Dec 2015. The science data processing and payload operation maintenance for DAMPE will be provided by the DAMPE Scientific Application System (SAS) at the Purple Mountain Observatory (PMO) of Chinese Academy of Sciences. SAS is consisted of three subsystems - scientific operation subsystem, science data and user management subsystem and science data processing subsystem. In cooperation with the Ground Support System (Beijing), the scientific operation subsystem is responsible for proposing observation plans, monitoring the health of satellite, generating payload control commands and participating in all activities related to payload operation. Several databases developed by the science data and user management subsystem of DAMPE methodically manage all collected and reconstructed science data, down linked housekeeping data, payload configuration and calibration data. Under the leadership of DAMPE Scientific Committee, this subsystem is also responsible for publication of high level science data and supporting all science activities of the DAMPE collaboration. The science data processing subsystem of DAMPE has already developed a series of physics analysis software to reconstruct basic information about detected cosmic ray particle. This subsystem also maintains the high performance computing system of SAS to processing all down linked science data and automatically monitors the qualities of all produced data. In this talk, we will describe all functionalities of whole DAMPE SAS system and show you main performances of data processing ability.

  6. Collisional damping of the geodesic acoustic mode with toroidal rotation. I. Viscous damping

    NASA Astrophysics Data System (ADS)

    Gong, Xueyu; Xie, Baoyi; Guo, Wenfeng; Chen, You; Yu, Jiangmei; Yu, Jun

    2016-03-01

    With the dispersion relation derived for the geodesic acoustic mode in toroidally rotating tokamak plasmas using the fluid model, the effect of the toroidal rotation on the collisional viscous damping of the geodesic acoustic mode is investigated. It is found that the collisional viscous damping of the geodesic acoustic mode has weak increase with respect to the toroidal Mach number.

  7. Experimental and analytical estimation of damping in beams and plates with damping treatments

    NASA Astrophysics Data System (ADS)

    Liu, Wanbo

    The research presented in this dissertation is devoted to the problem of damping estimation in engineering structures, especially beams and plates with passive damping treatments. In structural design and/or optimization, knowledge about damping is essential. However, due to the complexity of the dynamic interaction of system components, the determination of damping, by either analysis or experiments, has never been straightforward. In this research, currently-used methods are reviewed and gaps are identified first. Then both analytical and experimental studies on the damping estimation are conducted and possibilities of improvement are explored. Various passive damping treatments using ViscoElastic Materials (VEMs) are designed, manufactured and then added to aluminum and composite beams and plates. Experiments on these damped structures are conducted. Currently used experimental methods, namely, the free-decay method, the modal curve-fitting method and the Power Input Method (PIM), are used to process the experimental data and investigate the damping characteristics. Especially, (1) experimental procedures of the power input method are carefully identified and investigated; (2) the power input method is applied to non-uniformly damped structures; (3) the power input method is applied in an extended frequency range (from 0 to 5000 Hz) to meet emerging needs of the transportation industries. A new analytical power input method is proposed for evaluating the loss factor of builtup structures, based on the finite element model with assigned properties of the constituents. Finite Element (FE) models of beams and plates with various damping configurations are developed so a frequency response solution suffices to provide mobility and energy results needed by the new analytical power input method. The analytical power input method is evaluated by comparison with the commonly used Modal Strain Energy (MSE) method. Instead of making an approximate correction of the

  8. Gilbert damping in magnetic layered systems

    NASA Astrophysics Data System (ADS)

    Barati, E.; Cinal, M.; Edwards, D. M.; Umerski, A.

    2014-07-01

    The Gilbert damping constant present in the phenomenological Landau-Lifshitz-Gilbert equation describing the dynamics of magnetization is calculated for ferromagnetic metallic films as well as Co/nonmagnet (NM) bilayers. The calculations are done within a realistic nine-orbital tight-binding model including spin-orbit coupling. The convergence of the damping constant expressed as a sum over the Brillouin zone is remarkably improved by introducing finite temperature into the electronic occupation factors and subsequent summation over the Matsubara frequencies. We investigate how the Gilbert damping constant depends on the ferromagnetic film thickness as well as on the thickness of the nonmagnetic cap in Co/NM bilayers (NM=Cu, Pd, Ag, Pt, and Au). The obtained theoretical dependence of the damping constant on the electron-scattering rate, describing the average lifetime of electronic states, varies substantially with the ferromagnetic film thickness and it differs significantly from the dependence for bulk ferromagnetic metals. The presence of nonmagnetic caps is found to largely enhance the magnetic damping in Co/NM bilayers in accordance with experimental data. Unlike Cu, Ag, and Au a particularly strong enhancement is obtained for Pd and Pt caps. This is attributed to the combined effect of the large spin-orbit couplings of Pd and Pt and the simultaneous presence of d states at the Fermi level in these two metals. The calculated Gilbert damping constant also shows an oscillatory dependence on the thicknesses of both ferromagnetic and nonmagnetic parts of the investigated systems which is attributed to quantum-well states. Finally, the expression for contributions to the damping constant from individual atomic layers is derived. The obtained distribution of layer contributions in Co/Pt and Co/Pd bilayers proves that the enhanced damping which affects the dynamics of the magnetization in the Co film originates mainly from a region within the nonmagnetic part of the

  9. Damped Windows for Aircraft Interior Noise Control

    NASA Technical Reports Server (NTRS)

    Buehrle, Ralph D.; Klos, Jacob; Gibbs, Gary P.

    2004-01-01

    Windows are a significant path for structure-borne and air-borne noise transmission into aircraft. To improve the acoustical performance, damped windows were fabricated using two or three layers of plexiglas with transparent viscoelastic damping material sandwiched between the layers. In this paper, numerical and experimental results are used to evaluate the acoustic benefits of damped windows. Tests were performed in the Structural Acoustic Loads and Transmission Facility at NASA Langley Research Center to measure the transmission loss for diffuse acoustic excitation and radiated sound power for point force excitation. Comparisons between uniform and damped plexiglas windows showed increased transmission loss of 6 dB at the first natural frequency, 6 dB at coincidence, and 4.5 dB over a 50 to 4k Hz range. Radiated sound power was reduced up to 7 dB at the lower natural frequencies and 3.7 dB over a 1000 Hz bandwidth. Numerical models are presented for the prediction of radiated sound power for point force excitation and transmission loss for diffuse acoustic excitation. Radiated sound power and transmission loss predictions are in good agreement with experimental data. A parametric study is presented that evaluates the optimum configuration of the damped plexiglas windows for reducing the radiated sound power.

  10. Noise Transmission Characteristics of Damped Plexiglas Windows

    NASA Technical Reports Server (NTRS)

    Gibbs, Gary P.; Buehrle, Ralph D.; Klos, Jacob; Brown, Sherilyn A.

    2002-01-01

    Most general aviation aircraft utilize single layer plexiglas material for the windshield and side windows. Adding noise control treatments to transparent panels is a challenging problem. In this paper, damped plexiglas windows are evaluated for replacement of conventional windows in general aviation aircraft to reduce the structure-borne and airborne noise transmitted into the interior. In contrast to conventional solid windows, the damped plexiglas window panels are fabricated using two or three layers of plexiglas with transparent viscoelastic damping material sandwiched between the layers. Results from acoustic tests conducted in the NASA Langley Structural Acoustic Loads and Transmission (SALT) facility are used to compare different designs of the damped plexiglas panels with solid windows of the same nominal thickness. Comparisons of the solid and damped plexiglas panels show reductions in the radiated sound power of up to 8 dB at low frequency resonances and as large as 4.5 dB over a 4000 Hz bandwidth. The weight of the viscoelastic treatment was approximately 1% of the panel mass. Preliminary FEM/BEM modeling shows good agreement with experimental results for radiated sound power.

  11. Passive damping concepts for slender columns in space structures

    NASA Technical Reports Server (NTRS)

    Razzaq, Z.; Ekhelikar, R. K.

    1985-01-01

    An experimental and theoretical study of three different passive damping concepts is conducted for a slender member with partial rotational end restraints. Over a hundred full-scale natural vibration experiments were conducted to evaluate the effectiveness of mass-string, polyethylene tubing, and chain damping concepts. The damping properties obtained from the experiments were used in the approximate analyses based on the partial differential equation of motion for the problem. The comparison of the experimental and the theoretical deflection-time relations shows that the velocity-dependent damping model used in the theory is adequate. From the experimental results, the effect of end connection friction and induced axial forces on damping is identified. The definition of an efficiency index is proposed based on the damping ratio and the mass of a given passive damping device. Using this definition, the efficiencies of the three damping devices are compared. The polyethylene tubing concept resulted into a low damping efficiency.

  12. Prevalence of Residential Dampness and Mold Exposure in a University Student Population.

    PubMed

    Lanthier-Veilleux, Mathieu; Généreux, Mélissa; Baron, Geneviève

    2016-02-05

    The impact of residential dampness or mold on respiratory health is well established but few studies have focused on university students. This study aims to: (a) describe the prevalence of exposure to residential dampness or mold in university students according to socio-geographic factors and (b) identify associated housing characteristics. A web survey was conducted in 2014 among the 26,676 students registered at the Université de Sherbrooke (QC, Canada). Residential dampness and mold being closely intertwined, they were considered as a single exposure and assessed using a validated questionnaire. Exposure was compared according to socio-geographic and housing characteristics using chi-square tests and logistic regressions. Among the 2097 participants included in the study (response rate: 8.1%), over 80% were tenants. Residential exposure to dampness or mold was frequent (36.0%, 95% CI: 33.9-38.1). Marked differences for this exposure were noted according to home ownership (39.7% vs. 25.5% among tenants and owners respectively; OR = 1.92%, 95% CI: 1.54-2.38). Campus affiliation, household composition and the number of residents per building were associated with exposure to dampness or mold (p < 0.01), while sex and age were not. Exposure was also associated with older buildings, and buildings in need of renovations and lacking proper ventilation (p < 0.001). This study highlights the potential risk of university students suffering from mold-related health effects given their frequent exposure to this agent. Further research is needed to fully evaluate the mold-related health impact in this at risk group.

  13. Prevalence of Residential Dampness and Mold Exposure in a University Student Population

    PubMed Central

    Lanthier-Veilleux, Mathieu; Généreux, Mélissa; Baron, Geneviève

    2016-01-01

    The impact of residential dampness or mold on respiratory health is well established but few studies have focused on university students. This study aims to: (a) describe the prevalence of exposure to residential dampness or mold in university students according to socio-geographic factors and (b) identify associated housing characteristics. A web survey was conducted in 2014 among the 26,676 students registered at the Université de Sherbrooke (QC, Canada). Residential dampness and mold being closely intertwined, they were considered as a single exposure and assessed using a validated questionnaire. Exposure was compared according to socio-geographic and housing characteristics using chi-square tests and logistic regressions. Among the 2097 participants included in the study (response rate: 8.1%), over 80% were tenants. Residential exposure to dampness or mold was frequent (36.0%, 95% CI: 33.9–38.1). Marked differences for this exposure were noted according to home ownership (39.7% vs. 25.5% among tenants and owners respectively; OR = 1.92%, 95% CI: 1.54–2.38). Campus affiliation, household composition and the number of residents per building were associated with exposure to dampness or mold (p < 0.01), while sex and age were not. Exposure was also associated with older buildings, and buildings in need of renovations and lacking proper ventilation (p < 0.001). This study highlights the potential risk of university students suffering from mold-related health effects given their frequent exposure to this agent. Further research is needed to fully evaluate the mold-related health impact in this at risk group. PMID:26861364

  14. Accelerated Radiation-Damping for Increased Spin Equilibrium (ARISE)

    PubMed Central

    Huang, Susie Y.; Witzel, Thomas; Wald, Lawrence L.

    2008-01-01

    Control of the longitudinal magnetization in fast gradient echo sequences is an important factor enabling the high efficiency of balanced Steady State Free Precession (bSSFP) sequences. We introduce a new method for accelerating the return of the longitudinal magnetization to the +z-axis that is independent of externally applied RF pulses and shows improved off-resonance performance. The Accelerated Radiation damping for Increased Spin Equilibrium (ARISE) method uses an external feedback circuit to strengthen the Radiation Damping (RD) field. The enhanced RD field rotates the magnetization back to the +z-axis at a rate faster than T1 relaxation. The method is characterized in gradient echo phantom imaging at 3T as a function of feedback gain, phase, and duration and compared with results from numerical simulations of the Bloch equations incorporating RD. A short period of feedback (10ms) during a refocused interval of a crushed gradient echo sequence allowed greater than 99% recovery of the longitudinal magnetization when very little T2 relaxation has time to occur. Appropriate applications might include improving navigated sequences. Unlike conventional flip-back schemes, the ARISE “flip-back” is generated by the spins themselves, thereby offering a potentially useful building block for enhancing gradient echo sequences. PMID:18956463

  15. Smart earthquake-resistant materials: using time-released adhesives for damping, stiffening, and deflection control

    NASA Astrophysics Data System (ADS)

    Dry, Carolyn M.

    1996-04-01

    Preventing buildings and bridges from damage from severe dynamic loading events is a primary goal of civil infrastructure. Present designs attempt to control structural response by making the structures more massive, by increasing lateral stiffness through bracing, and by damping technology such as mass damping and base-isolation. These attempts affect portions of the governing equation: for an idealized building frame or bridge, the free vibrational behavior is described by Mu + cu + ku equals -mug(t) where m equals mass, c equals damping coefficient, k equals lateral stiffness, u equals deflection, and ug(t) equals ground acceleration. The use of adhesive released internally in a material based way of addressing the problem. The time release of low modulus adhesive chemicals would assist the damping characteristics of the structure, use of a stiffer adhesive would allow the damaged structure to regain some lateral stiffness (k) and adjustment of the set times of the adhesives would act to control the deflection. These can be thought of as potential new method of controlling vibration of behavior in case of a dynamic loading event. In past experiments, self-healing concrete matrices were shown to increase post-yield deflection and load carrying capability by the release and setting of adhesives. The results were promising in resisting damage of dynamic loads applied to frames. This indicates that self-healing concrete would be extremely valuable in civil engineering structures that were subjected to failure-inducing loads such as earthquakes.

  16. Turbine blade damping device with controlled loading

    DOEpatents

    Marra, John J.

    2015-09-29

    A damping structure for a turbomachine rotor. The damping structure including an elongated snubber element including a first snubber end rigidly attached to a first blade and extending toward an adjacent second blade, and an opposite second snubber end positioned adjacent to a cooperating surface associated with the second blade. The snubber element has a centerline extending radially inwardly in a direction from the first blade toward the second blade along at least a portion of the snubber element between the first and second snubber ends. Rotational movement of the rotor effects relative movement between the second snubber end and the cooperating surface to position the second snubber end in frictional engagement with the cooperating surface with a predetermined damping force determined by a centrifugal force on the snubber element.

  17. Resolving photons from cosmic ray in DAMPE

    NASA Astrophysics Data System (ADS)

    Xu, Zunlei; Chang, Jin; Li, Xiang; Dong, TieKuang; Zang, Jingjing

    2016-07-01

    The Dark Matter Particle Explorer(DAMPE), which took to the skies on 17 December, is designed for high energy cosmic ray ion detection. The proportion of photons in the cosmic ray is very small, so it's difficult to distinguish between photons and 'background', but necessary for any DAMPE gamma-ray science goals.The paper present a algorithm to identify photons from 'background' mainly by the tracker/converter, which promote pair conversion and measure the directions of incident particles, and an anticoincidence detector,featuring an array of plastic scintillator to detect the charged particles.The method has been studied by simulating using the GEANT4 Monte Carlo simulation code and adjusted by the BeamTest at CERN in December,2014.In addition,DAMPE photon detection capabilities can be checked using the flight data.

  18. Biomimetic Gradient Polymers with Enhanced Damping Capacities.

    PubMed

    Wang, Dong; Zhang, Huan; Guo, Jing; Cheng, Beichen; Cao, Yuan; Lu, Shengjun; Zhao, Ning; Xu, Jian

    2016-04-01

    Designing gradient structures, mimicking biological materials, such as pummelo peels and tendon, is a promising strategy for developing advanced materials with superior energy damping capacities. Here a facile and effective approach for fabricating polymers with composition gradients at millimeter length scale is presented. The gradient thiol-ene polymers (TEPs) are created by the use of density difference of ternary thiol-ene-ene precursors and the subsequent photo-crosslinking via thiol-ene reaction. The compositional gradients are analyzed via differential scanning calorimeter (DSC), compressive modulus testing, atomic force microscopy (AFM) indentation, and swelling measurements. In contrast to homogeneous TEPs networks, the resultant gradient polymer shows a broader effective damping temperature range combining with good mechanical properties. The present result provides an effective route toward high damping materials by the fabrication of gradient structures. PMID:26776353

  19. Highly damped kinematic coupling for precision instruments

    DOEpatents

    Hale, Layton C.; Jensen, Steven A.

    2001-01-01

    A highly damped kinematic coupling for precision instruments. The kinematic coupling provides support while causing essentially no influence to its nature shape, with such influences coming, for example, from manufacturing tolerances, temperature changes, or ground motion. The coupling uses three ball-cone constraints, each combined with a released flexural degree of freedom. This arrangement enables a gain of higher load capacity and stiffness, but can also significantly reduce the friction level in proportion to the ball radius divided by the distance between the ball and the hinge axis. The blade flexures reduces somewhat the stiffness of the coupling and provides an ideal location to apply constrained-layer damping which is accomplished by attaching a viscoelastic layer and a constraining layer on opposite sides of each of the blade flexures. The three identical ball-cone flexures provide a damped coupling mechanism to kinematically support the projection optics system of the extreme ultraviolet lithography (EUVL) system, or other load-sensitive apparatus.

  20. Onset of rotational damping in superdeformed nuclei

    NASA Astrophysics Data System (ADS)

    Yoshida, K.; Matsuo, M.

    1997-02-01

    We discuss damping of the collective rotational motion in A ˜ 150 superdeformed nuclei by means of a shell-model combining the cranked Nilsson mean field and the surface and volume delta two-body residual forces. It is shown that, because of the shell structure associated with the superdeformed mean field, onset energy of the rotational damping becomes Ex ˜ 1.5-3 MeV above the yrast line, with significant variation for different neutron and proton numbers. The mechanism of the shell structure effect is investigated through detailed analysis of level densities in superdeformed nuclei. The variation in onset of damping is associated with variation in the single-particle structure at the Fermi surface.

  1. Passively damped vibration welding system and method

    SciTech Connect

    Tan, Chin-An; Kang, Bongsu; Cai, Wayne W.; Wu, Tao

    2013-04-02

    A vibration welding system includes a controller, welding horn, an anvil, and a passive damping mechanism (PDM). The controller generates an input signal having a calibrated frequency. The horn vibrates in a desirable first direction at the calibrated frequency in response to the input signal to form a weld in a work piece. The PDM is positioned with respect to the system, and substantially damps or attenuates vibration in an undesirable second direction. A method includes connecting the PDM having calibrated properties and a natural frequency to an anvil of an ultrasonic welding system. Then, an input signal is generated using a weld controller. The method includes vibrating a welding horn in a desirable direction in response to the input signal, and passively damping vibration in an undesirable direction using the PDM.

  2. Fluid damping of cylindrical liquid storage tanks.

    PubMed

    Habenberger, Joerg

    2015-01-01

    A method is proposed in order to calculate the damping effects of viscous fluids in liquid storage tanks subjected to earthquakes. The potential equation of an ideal fluid can satisfy only the boundary conditions normal to the surface of the liquid. To satisfy also the tangential interaction conditions between liquid and tank wall and tank bottom, the potential flow is superimposed by a one-dimensional shear flow. The shear flow in this boundary layer yields to a decrease of the mechanical energy of the shell-liquid-system. A damping factor is derived from the mean value of the energy dissipation in time. Depending on shell geometry and fluid viscosity, modal damping ratios are calculated for the convective component.

  3. Identification of civil structures with nonproportional damping

    NASA Astrophysics Data System (ADS)

    Yang, Jann N.; Lei, Ying

    2000-04-01

    Recently, the method of Hilbert transform has been used successfully by the authors to identify parameters of linear structures with real eigenvalues and eigenvectors, e.g., structures with proportional damping. Frequently, linear structures may not have proportional damping so that normal modes do not exist. In this case, all the eigenvalues, eigenvectors and modeshapes are complex. In this paper, the Hilbert transform and the method of Empirical Mode Decomposition are used to identify the parameters of structures with nonproportional damping using the impulse response data. Measured impulse response signals are first decomposed into Intrinsic Mode Functions using the method of Empirical Mode Decomposition with intermittency criteria. An Intrinsic Mode Function (IMF) contains only one characteristic time scale (frequency), which may involve the contribution of a complex conjugate pair of modes with a unique frequency and a damping ratio, referred to as the modal response. It is shown that all the modal responses can be obtained from IMFs. Then, each modal response is decomposed in the frequency-time domain to yield instantaneous phase angle and amplitude as functions of time using the Hilbert transform. Based on only a single measurement of the impulse response time history at one location, the complex eigenvalues of the linear structure can be identified using a simple analysis procedure. When the response time histories are measured at all locations, the proposed methodology is capable of identifying the complex modeshapes as well as the mass, damping and stiffness matrices of the structure. The effectiveness and accuracy of the methodology presented are demonstrated through numerical simulations. It is shown that complete dynamic characteristics of linear structures with nonproportional damping can be identified effectively using the Hilbert transform and the Empirical Mode Decomposition method.

  4. Assessing Equivalent Viscous Damping Using Piping System test Results

    SciTech Connect

    Nie, J.; Morante, R.

    2010-07-18

    The specification of damping for nuclear piping systems subject to seismic-induced motions has been the subject of many studies and much controversy. Damping estimation based on test data can be influenced by numerous factors, consequently leading to considerable scatter in damping estimates in the literature. At present, nuclear industry recommendations and nuclear regulatory guidance are not consistent on the treatment of damping for analysis of nuclear piping systems. Therefore, there is still a need to develop a more complete and consistent technical basis for specification of appropriate damping values for use in design and analysis. This paper summarizes the results of recent damping studies conducted at Brookhaven National Laboratory.

  5. Landau damping and inhomogeneous reference states

    NASA Astrophysics Data System (ADS)

    Barré, Julien; Olivetti, Alain; Yamaguchi, Yoshiyuki Y.

    2015-10-01

    Landau damping is a fundamental phenomenon in plasma physics, which also plays an important role in astrophysics, and sometimes under different names, in fluid dynamics, and other fields. Its theoretical discussion in the framework of the Vlasov equation often assumes that the reference stationary state is homogeneous in space. However, Landau damping around an inhomogeneous reference stationary state, a natural setting in astrophysics for instance, induces new mathematical difficulties and physical phenomena. The goal of this article is to provide an introduction to these problems and the questions they raise. xml:lang="fr"

  6. Quantum discord protection from amplitude damping decoherence.

    PubMed

    Yune, Jiwon; Hong, Kang-Hee; Lim, Hyang-Tag; Lee, Jong-Chan; Kwon, Osung; Han, Sang-Wook; Kim, Yong-Su; Moon, Sung; Kim, Yoon-Ho

    2015-10-01

    Entanglement is known to be an essential resource for many quantum information processes. However, it is now known that some quantum features may be acheived with quantum discord, a generalized measure of quantum correlation. In this paper, we study how quantum discord, or more specifically, the measures of entropic discord and geometric discord are affected by the influence of amplitude damping decoherence. We also show that a protocol deploying weak measurement and quantum measurement reversal can effectively protect quantum discord from amplitude damping decoherence, enabling to distribute quantum correlation between two remote parties in a noisy environment. PMID:26480116

  7. Negative resistance instability due to nonlinear damping

    SciTech Connect

    Caussyn, D.D.; Ball, M.; Brabson, B.; Budnick, J.; Derenchuk, V.; East, G.; Ellison, M.; Friesel, D.; Hamilton, B.; Hedblom, K.; Jones, W.P.; Lee, S.Y.; Li, D.; Liu, J.Y.; Lofnes, T.; Ng, K.Y.; Riabko, A.; Sloan, T.; Wang, Y. Uppsala University, The Svedberg Laboratory, Box 533, S-75121, Uppsala Fermilab, P.O. Box 500, Batavia, Illinois 60510 )

    1994-11-14

    The longitudinal dynamics of a stored proton beam bunch, acted upon by a nonlinear damping force, was studied experimentally at the Indiana University Cyclotron Facility Cooler Ring. The effect of the nonlinear damping force on synchrotron motion was explored by varying the relative velocity between the cooling electron and the stored proton beams. Maintained longitudinal oscillations were observed, whose amplitude grew rapidly once a critical threshold in the relative velocity between the proton and electron beams was exceeded. We attribute this phenomenon to a negative resistance instability occurring after a Hopf bifurcation.

  8. Inertia-Wheel Vibration-Damping System

    NASA Technical Reports Server (NTRS)

    Fedor, Joseph V.

    1990-01-01

    Proposed electromechanical system would damp vibrations in large, flexible structure. In active vibration-damping system motors and reaction wheels at tips of appendages apply reaction torques in response to signals from accelerometers. Velocity signal for vibrations about one axis processes into control signal to oppose each of n vibrational modes. Various modes suppressed one at a time. Intended primarily for use in spacecraft that has large, flexible solar panels and science-instrument truss assembly, embodies principle of control interesting in its own right and adaptable to terrestrial structures, vehicles, and instrument platforms.

  9. Particle systems and nonlinear Landau damping

    SciTech Connect

    Villani, Cédric

    2014-03-15

    Some works dealing with the long-time behavior of interacting particle systems are reviewed and put into perspective, with focus on the classical Kolmogorov–Arnold–Moser theory and recent results of Landau damping in the nonlinear perturbative regime, obtained in collaboration with Clément Mouhot. Analogies are discussed, as well as new qualitative insights in the theory. Finally, the connection with a more recent work on the inviscid Landau damping near the Couette shear flow, by Bedrossian and Masmoudi, is briefly discussed.

  10. Damping Goes the Distance in Golf

    NASA Technical Reports Server (NTRS)

    2004-01-01

    In the late 1980s, Dr. Benjamin Dolgin of NASA s Jet Propulsion Laboratory developed a concept for a high-damping graphite/viscoelastic material for the Strategic Defense Initiative (popularly referred to as "Star Wars"), as part of a space-based laser anti-missile program called "Asterix." Dolgin drummed up this concept with the intention of stabilizing weapons launch platforms in space, where there is no solid ground to firmly support these structures. Without the inclusion of high-damping material, the orbital platforms were said to vibrate for 20 minutes after force was applied - a rate deemed "unacceptable" by leaders of the Strategic Defense Initiative.

  11. Vibration control using nonlinear damped coupling

    NASA Astrophysics Data System (ADS)

    Ghandchi Tehrani, Maryam; Gattulli, Vincenzo

    2016-09-01

    In this paper, a dynamical system, which consists of two linear mechanical oscillators, coupled with a nonlinear damping device is considered. First, the dynamic equations are derived, then, an analytical method such as harmonic balance method, is applied to obtain the response to a harmonic base excitation. The response of the system depends on the excitation characteristics. A parametric study is carried out based on different base excitation amplitudes, frequencies, and different nonlinear damping values and the response of the system is fully described. For validation, time domain simulations are carried out to obtain the nonlinear response of the coupled system.

  12. Delay of Transition Using Forced Damping

    NASA Technical Reports Server (NTRS)

    Exton, Reginald J.

    2014-01-01

    Several experiments which have reported a delay of transition are analyzed in terms of the frequencies of the induced disturbances generated by different flow control elements. Two of the experiments employed passive stabilizers in the boundary layer, one leading-edge bluntness, and one employed an active spark discharge in the boundary layer. It is found that the frequencies generated by the various elements lie in the damping region of the associated stability curve. It is concluded that the creation of strong disturbances in the damping region stabilizes the boundary-layer and delays the transition from laminar to turbulent flow.

  13. Vibration damping for the Segmented Mirror Telescope

    NASA Astrophysics Data System (ADS)

    Maly, Joseph R.; Yingling, Adam J.; Griffin, Steven F.; Agrawal, Brij N.; Cobb, Richard G.; Chambers, Trevor S.

    2012-09-01

    The Segmented Mirror Telescope (SMT) at the Naval Postgraduate School (NPS) in Monterey is a next-generation deployable telescope, featuring a 3-meter 6-segment primary mirror and advanced wavefront sensing and correction capabilities. In its stowed configuration, the SMT primary mirror segments collapse into a small volume; once on location, these segments open to the full 3-meter diameter. The segments must be very accurately aligned after deployment and the segment surfaces are actively controlled using numerous small, embedded actuators. The SMT employs a passive damping system to complement the actuators and mitigate the effects of low-frequency (<40 Hz) vibration modes of the primary mirror segments. Each of the six segments has three or more modes in this bandwidth, and resonant vibration excited by acoustics or small disturbances on the structure can result in phase mismatches between adjacent segments thereby degrading image quality. The damping system consists of two tuned mass dampers (TMDs) for each of the mirror segments. An adjustable TMD with passive magnetic damping was selected to minimize sensitivity to changes in temperature; both frequency and damping characteristics can be tuned for optimal vibration mitigation. Modal testing was performed with a laser vibrometry system to characterize the SMT segments with and without the TMDs. Objectives of this test were to determine operating deflection shapes of the mirror and to quantify segment edge displacements; relative alignment of λ/4 or better was desired. The TMDs attenuated the vibration amplitudes by 80% and reduced adjacent segment phase mismatches to acceptable levels.

  14. Active Damping Using Distributed Anisotropic Actuators

    NASA Technical Reports Server (NTRS)

    Schiller, Noah H.; Cabell, Randolph H.; Quinones, Juan D.; Wier, Nathan C.

    2010-01-01

    A helicopter structure experiences substantial high-frequency mechanical excitation from powertrain components such as gearboxes and drive shafts. The resulting structure-borne vibration excites the windows which then radiate sound into the passenger cabin. In many cases the radiated sound power can be reduced by adding damping. This can be accomplished using passive or active approaches. Passive treatments such as constrained layer damping tend to reduce window transparency. Therefore this paper focuses on an active approach utilizing compact decentralized control units distributed around the perimeter of the window. Each control unit consists of a triangularly shaped piezoelectric actuator, a miniature accelerometer, and analog electronics. Earlier work has shown that this type of system can increase damping up to approximately 1 kHz. However at higher frequencies the mismatch between the distributed actuator and the point sensor caused control spillover. This paper describes new anisotropic actuators that can be used to improve the bandwidth of the control system. The anisotropic actuators are composed of piezoelectric material sandwiched between interdigitated electrodes, which enables the application of the electric field in a preferred in-plane direction. When shaped correctly the anisotropic actuators outperform traditional isotropic actuators by reducing the mismatch between the distributed actuator and point sensor at high frequencies. Testing performed on a Plexiglas panel, representative of a helicopter window, shows that the control units can increase damping at low frequencies. However high frequency performance was still limited due to the flexible boundary conditions present on the test structure.

  15. Sulfur dioxide detection using plasmon damping

    NASA Astrophysics Data System (ADS)

    Tilahun, Eli Kasa

    The distinct optical properties of noble metal nanoparticles that stem from localized surface plasmon resonance (LSPR) have fascinated scientists for centuries. In recent years, frequency-shift LSPR sensors have been receiving intense attention for chemical/biological sensing. In this work, an SO2 nanosensor based on a unique sensing mechanism, called hybrid plasmon damping, is developed. The active component of the sensor is a self-assembled monolayer of silver nanoparticles immobilized on a Si film. Nanoparticle synthesis is simple and low-cost, involving immersion of a Si thin film in a AgNO3 solution. In addition, the sensor response is monitored in real-time by a hand-held UV-vis spectrometer. The optical extinction spectrum of the nanoparticles reports increase in the LSPR bandwidth that is primarily due to chemical interface damping, caused by adsorption of SO2. This adsorbate-induced increase in damping (Δ\\Gcy) is demonstrated to be linearly proportional to the number of SO2 molecules attached to the nanoparticle surface. Therefore, the increase in damping (i.e., LSPR bandwidth) is exploited to quantify the SO2 concentration. The sensor detects 1 ppm SO2 in less than a second and at an accuracy of 94.3 %. The present work also elucidates the chemisorption configurations of SO2 to the Ag nanoparticles by surface-enhanced Raman spectroscopy.

  16. Nonlinear Landau damping and Alfven wave dissipation

    NASA Technical Reports Server (NTRS)

    Vinas, Adolfo F.; Miller, James A.

    1995-01-01

    Nonlinear Landau damping has been often suggested to be the cause of the dissipation of Alfven waves in the solar wind as well as the mechanism for ion heating and selective preacceleration in solar flares. We discuss the viability of these processes in light of our theoretical and numerical results. We present one-dimensional hybrid plasma simulations of the nonlinear Landau damping of parallel Alfven waves. In this scenario, two Alfven waves nonresonantly combine to create second-order magnetic field pressure gradients, which then drive density fluctuations, which in turn drive a second-order longitudinal electric field. Under certain conditions, this electric field strongly interacts with the ambient ions via the Landau resonance which leads to a rapid dissipation of the Alfven wave energy. While there is a net flux of energy from the waves to the ions, one of the Alfven waves will grow if both have the same polarization. We compare damping and growth rates from plasma simulations with those predicted by Lee and Volk (1973), and also discuss the evolution of the ambient ion distribution. We then consider this nonlinear interaction in the presence of a spectrum of Alfven waves, and discuss the spectrum's influence on the growth or damping of a single wave. We also discuss the implications for wave dissipation and ion heating in the solar wind.

  17. The DAMPE silicon-tungsten tracker

    NASA Astrophysics Data System (ADS)

    Azzarello, P.; Ambrosi, G.; Asfandiyarov, R.; Bernardini, P.; Bertucci, B.; Bolognini, A.; Cadoux, F.; Caprai, M.; De Mitri, I.; Domenjoz, M.; Dong, Y.; Duranti, M.; Fan, R.; Fusco, P.; Gallo, V.; Gargano, F.; Gong, K.; Guo, D.; Husi, C.; Ionica, M.; La Marra, D.; Loparco, F.; Marsella, G.; Mazziotta, M. N.; Mesa, J.; Nardinocchi, A.; Nicola, L.; Pelleriti, G.; Peng, W.; Pohl, M.; Postolache, V.; Qiao, R.; Surdo, A.; Tykhonov, A.; Vitillo, S.; Wang, H.; Weber, M.; Wu, D.; Wu, X.; Zhang, F.

    2016-09-01

    The DArk Matter Particle Explorer (DAMPE) is a spaceborne astroparticle physics experiment, launched on 17 December 2015. DAMPE will identify possible dark matter signatures by detecting electrons and photons in the 5 GeV-10 TeV energy range. It will also measure the flux of nuclei up to 100 TeV, for the study of the high energy cosmic ray origin and propagation mechanisms. DAMPE is composed of four sub-detectors: a plastic strip scintillator, a silicon-tungsten tracker-converter (STK), a BGO imaging calorimeter and a neutron detector. The STK is composed of six tracking planes of 2 orthogonal layers of single-sided micro-strip detectors, for a total detector surface of ca. 7 m2. The STK has been extensively tested for space qualification. Also, numerous beam tests at CERN have been done to study particle detection at silicon module level, and at full detector level. After description of the DAMPE payload and its scientific mission, we will describe the STK characteristics and assembly. We will then focus on some results of single ladder performance tests done with particle beams at CERN.

  18. Chiral damping of magnetic domain walls

    NASA Astrophysics Data System (ADS)

    Jué, Emilie; Safeer, C. K.; Drouard, Marc; Lopez, Alexandre; Balint, Paul; Buda-Prejbeanu, Liliana; Boulle, Olivier; Auffret, Stephane; Schuhl, Alain; Manchon, Aurelien; Miron, Ioan Mihai; Gaudin, Gilles

    2016-03-01

    Structural symmetry breaking in magnetic materials is responsible for the existence of multiferroics, current-induced spin-orbit torques and some topological magnetic structures. In this Letter we report that the structural inversion asymmetry (SIA) gives rise to a chiral damping mechanism, which is evidenced by measuring the field-driven domain-wall (DW) motion in perpendicularly magnetized asymmetric Pt/Co/Pt trilayers. The DW dynamics associated with the chiral damping and those with Dzyaloshinskii-Moriya interaction (DMI) exhibit identical spatial symmetry. However, both scenarios are differentiated by their time reversal properties: whereas DMI is a conservative effect that can be modelled by an effective field, the chiral damping is purely dissipative and has no influence on the equilibrium magnetic texture. When the DW motion is modulated by an in-plane magnetic field, it reveals the structure of the internal fields experienced by the DWs, allowing one to distinguish the physical mechanism. The chiral damping enriches the spectrum of physical phenomena engendered by the SIA, and is essential for conceiving DW and skyrmion devices owing to its coexistence with DMI (ref. ).

  19. Active damping of spacecraft structural appendage vibrations

    NASA Technical Reports Server (NTRS)

    Fedor, Joseph V. (Inventor)

    1990-01-01

    An active vibration damper system, for bending in two orthogonal directions and torsion, in each of three mutually perpendicular axes is located at the extremities of the flexible appendages of a space platform. The system components for each axis includes: an accelerometer, filtering and signal processing apparatus, and a DC motor-inertia wheel torquer. The motor torquer, when driven by a voltage proportional to the relative vibration tip velocity, produces a reaction torque for opposing and therefore damping a specific modal velocity of vibration. The relative tip velocity is obtained by integrating the difference between the signal output from the accelerometer located at the end of the appendage with the output of a usually carried accelerometer located on a relatively rigid body portion of the space platform. A selector switch, with sequential stepping logic or highest modal vibration energy logic, steps to another modal tip velocity channel and receives a signal voltage to damp another vibration mode. In this manner, several vibration modes can be damped with a single sensor/actuator pair. When a three axis damper is located on each of the major appendages of the platform, then all of the system vibration modes can be effectively damped.

  20. DAMP signaling in fungal infections and diseases

    PubMed Central

    Cunha, Cristina; Carvalho, Agostinho; Esposito, Antonella; Bistoni, Francesco; Romani, Luigina

    2012-01-01

    Fungal infections and diseases predominantly affect patients with deregulated immunity. Compelling experimental and clinical evidence indicate that severe fungal diseases belong to the spectrum of fungus-related inflammatory diseases. Some degree of inflammation is required for protection during the transitional response occurring temporally between the rapid innate and slower adaptive response. However, progressive inflammation worsens disease and ultimately prevents pathogen eradication. The challenge now is to elucidate cellular and molecular pathways distinguishing protective vs. pathogenic inflammation to fungi. In addition to fungal ligands of pattern recognition receptors (pathogen-associated molecular patterns, PAMPs), several host-encoded proteins, the damage-associated molecular patterns (DAMPs), are released during tissue injury and activate innate recognition receptors. DAMPs have been shown to regulate inflammation in fungal diseases. The DAMP/receptor for advanced glycation end-products axis integrated with the PAMP/Toll-like receptors axis in the generation of the inflammatory response in experimental and clinical fungal pneumonia. These emerging themes better accommodate fungal pathogenesis in the face of high-level inflammation seen in several clinical settings and point to DAMP targeting as a novel immunomodulatory strategy in fungal diseases. PMID:22973279

  1. Model updating of damped structures using FRF data

    NASA Astrophysics Data System (ADS)

    Lin, R. M.; Zhu, J.

    2006-11-01

    Due to the important contribution of damping on structural vibration, model updating of damped structures becomes significant and remains an issue in most model updating methods developed to date. In this paper, the frequency response function(FRF) method, which is one of the most frequently referenced model updating methods, has been further developed to identify damping matrices of structural systems, as well as mass and stiffness matrices. In order to overcome the problem of complexity of measured FRF and modal data, complex updating formulations using FRF data to identify damping coefficients have been established for the cases of proportional damping and general non-proportional damping. To demonstrate the effectiveness of the proposed complex FRF updating method, numerical simulations based on the GARTEUR structure with structural damping have been presented. The updated results have shown that the complex FRF updating method can be used to derive accurate updated mass and stiffness modelling errors and system damping matrices.

  2. Apparatus and method of preloading vibration-damping bellows

    DOEpatents

    Cutburth, Ronald W.

    1988-01-01

    An improved vibration damping bellows mount or interconnection is disclosed. In one aspect, the bellows is compressively prestressed along its length to offset vacuum-generated tensile loads and thereby improve vibration damping characteristics.

  3. Propagation and damping of broadband upstream whistlers

    NASA Technical Reports Server (NTRS)

    Orlowski, D. S.; Russell, C. T.; Krauss-Varban, D.; Omidi, N.; Thomsen, M. F.

    1995-01-01

    Previous studies indicated that damping rates of upstream whistlers strongly depend on the details of the electron distribution function. Moreover, detailed analysis of Doppler-shift and whistler dispersion relation indicated that upstream whistlers propagate obliquely in a broad band. In this paper we present results of a kinetic calculation of damping lengths of wide-band whistlers using the sum of 7-drifting bi-Maxwellian electron distributions as a best fit to the International Sun Earth Explorer (ISEE) 1 electron data. For 2 cases, when upstream whistlers are observed, convective damping lengths derived from ISEE magnetic field and ephemeris data are compared with theoretical results. We find that the calculated convective damping lengths are consistent with the data and that upstream whistlers remain marginally stable. We also show that the slope of plasma frame spectra of upstream whistlers, obtained by direct fitting of the observed spectra is between 5 and 7 with a sharp lower frequency cutoff corresponding to a wavelength of about one ion inertial length. When the solar wind velocity is directed largely along the wave normal of the upstream whistlers the polariztion of the right hand waves becomes reversed and low frequencies are switched to high resulting in a peaked spectrum with a strong high frequency cutoff. The overall spectral, wave and particle characteristics, proximity to the shock as well as propagation and damping properties indicate that these waves cannot be generated locally. Instead the observed upstream whistlers arise in the shock ramp most likely by a variety of cross-field drift and/or anisotropy driven instabilities.

  4. The structural damping of composite beams with tapered boundaries

    NASA Astrophysics Data System (ADS)

    Coni, M.; Benchekchou, B.; White, R. G.

    1994-11-01

    Most metallic and composite structures of conventional construction are lightly damped. It is obviously advantageous, in terms of response to in-service dynamic loading, if damping can be increased with minimal weight addition. This report describes finite element analyses and complementary experiments carried out on composite, carbon fiber reinforced plastic, beams with tapered boundaries composed of layers of highly damped composite material. It is shown that modal damping of the structure may be significantly increased by this method.

  5. Damped and zero-damped quasinormal modes of charged, nearly extremal black holes

    NASA Astrophysics Data System (ADS)

    Zimmerman, Aaron; Mark, Zachary

    2016-02-01

    Despite recent progress, the complete understanding of the perturbations of charged, rotating black holes as described by the Kerr-Newman metric remains an open and fundamental problem in relativity. In this study, we explore the existence of families of quasinormal modes of Kerr-Newman black holes whose decay rates limit to zero at extremality, called zero-damped modes in past studies. We review the nearly extremal and WKB approximation methods for spin-weighted scalar fields (governed by the Dudley-Finley equation) and give an accounting of the regimes where scalar zero-damped and damped modes exist. Using Leaver's continued fraction method, we verify that these approximations give accurate predictions for the frequencies in their regimes of validity. In the nonrotating limit, we argue that gravito-electromagnetic perturbations of nearly extremal Reissner-Nordström black holes have zero-damped modes in addition to the well-known spectrum of damped modes. We provide an analytic formula for the frequencies of these modes, verify their existence using a numerical search, and demonstrate the accuracy of our formula. These results, along with recent numerical studies, point to the existence of a simple universal equation for the frequencies of zero-damped gravito-electromagnetic modes of Kerr-Newman black holes, whose precise form remains an open question.

  6. Identification and evaluation of linear damping models in beam vibrations

    NASA Technical Reports Server (NTRS)

    Boers, B. L.; Rosenberg, G. S.; Wambsganss, M. W., Jr.

    1969-01-01

    Sensitive method, identifying effective damping mechanisms, involves comparing experimentally determined ratio of first to second mode magnification factors related to common point on beam. Cluster size has little effect on frequencies of elements, magnification factor decreases with cluster size, and viscous and stress damping are dominant damping mechanisms.

  7. Building characteristics associated with moisture related problems in 8,918 Swedish dwellings.

    PubMed

    Hägerhed-Engman, Linda; Bornehag, Carl-Gustaf; Sundell, Jan

    2009-08-01

    Moisture problems in buildings have in a number of studies been shown to increase the risk for respiratory symptoms. The study Dampness in Buildings and Health (DBH) was initiated with the aim to identify health relevant exposures related to dampness in buildings. A questionnaire study about home environment with a focus on dampness problems and health was conducted in one county of Sweden (8,918 homes, response rate 79%). Building characteristics that were associated with one or more of the dampness indicators were for single-family houses, older houses, flat-roofed houses built in the 1960s and 1970s, houses with a concrete slab on the ground that were built before 1983. Moreover, tenancy and earlier renovation due to mould or moisture problems was strongly associated with dampness. A perception of dry air was associated with window-pane condensation, e.g. humid indoor air. PMID:19557598

  8. Comparison of external damping models in a large deformation problem

    NASA Astrophysics Data System (ADS)

    Lee, Jae Wook; Kim, Hyun Woo; Ku, Hi Chun; Yoo, Wan Suk

    2009-09-01

    In many applications of flexible multibody dynamics, the magnitudes of damping forces are very small in comparison with the elastic and inertial forces. However, these small forces may have a very significant influence on responses near resonant frequencies. The role of damping is to remove the energy of a system by dissipation, and dissipative forces in structures can be the result of either internal or external damping. External damping includes aerodynamic and hydrodynamic drag and dissipation in the supports of structures, and internal damping is usually related to energy dissipation in materials. In large deformation problems, because of the flexibility of very thin structures, external damping is more important. Two types of damping models, proportional damping and quadratic damping, have been widely applied to flexible multibody dynamics. The advantages and weaknesses of the two damping models are considered in this study. To make up for the common drawbacks in these two models, a frequency-dependent generic damping model based on experimental modal analysis is proposed. The proposed damping model leads to a accurate correlation with experimental results because it directly uses the modal parameters of each mode obtained by experiment, and can represent exact high frequency behaviors simultaneously. To define and formulate a large deformation problem, the absolute nodal coordinate formulation (ANCF) was used, and computer simulations with the ANCF were compared to experimental results. Using the proposed experimental method, modal parameters and damping behaviors are extracted until 5th mode, which has a frequency of 89 Hz. It is shown that the common drawbacks of proportional and quadratic damping are complemented by the proposed generic damping model.

  9. Effects of radiation damping for biomolecular NMR experiments in solution: a hemisphere concept for water suppression

    PubMed Central

    Ishima, Rieko

    2016-01-01

    Abundant solvent nuclear spins, such as water protons in aqueous solution, cause radiation damping in NMR experiments. It is important to know how the effect of radiation damping appears in high-resolution protein NMR because macromolecular studies always require very high magnetic field strengths with a highly sensitive NMR probe that can easily cause radiation damping. Here, we show the behavior of water magnetization after a pulsed-field gradient (PFG) using nutation experiments at 900 MHz with a cryogenic probe: when water magnetization is located in the upper hemisphere (having +Z component, parallel to the external magnetic field), dephasing of the magnetization by a PFG effectively suppresses residual water magnetization in the transverse plane. In contrast, when magnetization is located in the lower hemisphere (having −Z component), the small residual transverse component remaining after a PFG is still sufficient to induce radiation damping. Based on this observation, we designed 1H-15N HSQC experiments in which water magnetization is maintained in the upper hemisphere, but not necessarily along Z, and compared them with the conventional experiments, in which water magnetization is inverted during the t1 period. The result demonstrates moderate gain of signal-to-noise ratio, 0–28%. Designing the experiments such that water magnetization is maintained in the upper hemisphere allows shorter pulses to be used compared to the complete water flip-back and, thereby, is useful as a building block of protein NMR pulse programs in solution. PMID:27524944

  10. Effects of damping on mode shapes, volume 1

    NASA Technical Reports Server (NTRS)

    Gates, R. M.

    1977-01-01

    Displacement, velocity, and acceleration admittances were calculated for a realistic NASTRAN structural model of space shuttle for three conditions: liftoff, maximum dynamic pressure and end of solid rocket booster burn. The realistic model of the orbiter, external tank, and solid rocket motors included the representation of structural joint transmissibilities by finite stiffness and damping elements. Methods developed to incorporate structural joints and their damping characteristics into a finite element model of the space shuttle, to determine the point damping parameters required to produce realistic damping in the primary modes, and to calculate the effect of distributed damping on structural resonances through the calculation of admittances.

  11. Giant quantum oscillations of magnetic Landau damping in aluminum

    NASA Astrophysics Data System (ADS)

    Skobov, V. G.; Chernov, A. S.

    2015-07-01

    The effect of quantization of the electron energy in a magnetic field on the collisionless damping of radio-frequency modes in aluminum has been investigated theoretically. In the geometry where a propagation vector k and a constant magnetic field H are directed along the C 4 axis in aluminum there is a magnetic Landau damping caused by electrons whose orbits are inclined to the transverse plane. Despite a relatively low concentration of electrons, this damping can significantly affect the damping of a helicon and a doppleron. It has been shown that the quantization of the electron energy leads to giant oscillations of the damping of these modes.

  12. Movers and shakers: granular damping in microgravity.

    PubMed

    Bannerman, M N; Kollmer, J E; Sack, A; Heckel, M; Mueller, P; Pöschel, T

    2011-07-01

    The response of an oscillating granular damper to an initial perturbation is studied using experiments performed in microgravity and granular dynamics simulations. High-speed video and image processing techniques are used to extract experimental data. An inelastic hard sphere model is developed to perform simulations and the results are in excellent agreement with the experiments. In line with previous work, a linear decay of the amplitude is observed. Although this behavior is typical for a friction-damped oscillator, through simulation it is shown that this effect is still present even when friction forces are absent. A simple expression is developed which predicts the optimal damping conditions for a given amplitude and is independent of the oscillation frequency and particle inelasticities. PMID:21867158

  13. Development of Transverse Modes Damped DLA Structure

    SciTech Connect

    Jing, C.; Kanareykin, A.; Schoessow, P.; Gai, W.; Konecny, R.; Power, J. G.; Conde, M.

    2009-01-22

    As the dimensions of accelerating structures become smaller and beam intensities higher, the transverse wakefields driven by the beam become quite large with even a slight misalignment of the beam from the geometric axis. These deflection modes can cause inter-bunch beam breakup and intra-bunch head-tail instabilities along the beam path, and thus BBU control becomes a critical issue. All new metal based accelerating structures, like the accelerating structures developed at SLAC or power extractors at CLIC, have designs in which the transverse modes are heavily damped. Similarly, minimizing the transverse wakefield modes (here the HEMmn hybrid modes in Dielectric-Loaded Accelerating (DLA) structures) is also very critical for developing dielectric based high energy accelerators. In this paper, we present the design of a 7.8 GHz transverse mode damped DLA structure currently under construction, along with plans for the experimental program.

  14. Enthalpy damping for the steady Euler equations

    NASA Technical Reports Server (NTRS)

    Jespersen, D. C.

    1985-01-01

    For inviscid steady flow problems where the enthalpy is constant at steady state, it was previously proposed to use the difference between the local enthalpy and the steady state enthalpy as a driving term to accelerate convergence of iterative schemes. This idea is analyzed, both on the level of the partial differential equation and on the level of a particular finite difference scheme. It is shown that for the two-dimensional unsteady Euler equations, a hyperbolic system with eigenvalues on the imaginary axis, there is no enthalpy damping strategy which moves all the eigenvalues into the open left half plane. For the numerical scheme, however, the analysis shows and examples verify that enthalpy damping is potentially effective in accelerating convergence to steady state.

  15. Enthalpy damping for the steady Euler equations

    NASA Technical Reports Server (NTRS)

    Jespersen, D. C.

    1984-01-01

    For inviscid steady flow problems where the enthalpy is constant at steady state, it was previously proposed to use the difference between the local enthalpy and the steady state enthalpy as a driving term to accelerate convergence of iterative schemes. This idea is analyzed, both on the level of the partial differential equation and on the level of a particular finite difference scheme. It is shown that for the two-dimensional unsteady Euler equations, a hyperbolic system with eigenvalues on the imaginary axis, there is no enthalpy damping strategy which moves all the eigenvalues into the open left half plane. For the numerical scheme, however, the analysis shows and examples verify that enthalpy damping is potentially effective in accelerating convergence to steady state.

  16. Classical acoustic waves in damped media.

    PubMed

    Albuquerque, E L; Mauriz, P W

    2003-05-01

    A Green function technique is employed to investigate the propagation of classical damped acoustic waves in complex media. The calculations are based on the linear response function approach, which is very convenient to deal with this kind of problem. Both the displacement and the gradient displacement Green functions are determined. All deformations in the media are supposed to be negligible, so the motions considered here are purely acoustic waves. The damping term gamma is included in a phenomenological way into the wave vector expression. By using the fluctuation-dissipation theorem, the power spectrum of the acoustic waves is also derived and has interesting properties, the most important of them being a possible relation with the analysis of seismic reflection data.

  17. Active Vibration Damping of Solar Arrays

    NASA Astrophysics Data System (ADS)

    Reinicke, Gunar; Baier, Horst; Grillebeck, Anton; Scharfeld, Frank; Hunger, Joseph; Abou-El-Ela, A.; Lohberg, Andreas

    2012-07-01

    Current generations of large solar array panels are lightweight and flexible constructions to reduce net masses. They undergo strong vibrations during launch. The active vibration damping is one convenient option to reduce vibration responses and limit stresses in facesheets. In this study, two actuator concepts are used for vibration damping. A stack interface actuator replaces a panel hold down and is decoupled from bending moments and shear forces. Piezoelectric patch actuators are used as an alternative, where the number, position and size of actuators are mainly driven by controllability analyses. Linear Quadratic Gaussian control is used to attenuate vibrations of selected mode shapes with both actuators. Simulations as well as modal and acoustic tests show the feasibility of selected actuator concepts.

  18. Transverse damping systems in modern synchrotrons

    NASA Astrophysics Data System (ADS)

    Zhabitsky, V. M.

    2006-12-01

    Transverse feedback systems for suppression of transverse coherent beam oscillations are used in modern synchrotrons for preventing the development of transverse instabilities and damping residual beam oscillations after injection. Information on damper systems for the Large Hadron Collider (LHC; CERN, Geneva) and the accelerator complex FAIR (GSI, Darmstadt) is presented. The project for the LHC is being performed at the Laboratory of Particle Physics of the Joint Institute for Nuclear Research in collaboration with CERN. The information concerning the state of the project and the plans of its completion at the LHC is given. The results of the first design activity on transverse damping systems at the SIS100 and SIS300 synchrotrons, to be created in the framework of the new international project FAIR, are presented.

  19. On the damping capacity of cast irons

    NASA Astrophysics Data System (ADS)

    Golovin, S. A.

    2012-07-01

    The treatment of experimental data on the amplitude-dependent internal friction (ADIF) in terms of various theoretical models has revealed a staged character and the main mechanisms of the processes of energy dissipation in graphite with increasing amplitude of vibrations upon cyclic loading. It is shown that the level of the damping capacity of lamellar cast iron depends on the relationship between the elastic and strength characteristics of graphite and the matrix phase. In cast irons with a rigid matrix structure (pearlite, martensite), the energy dissipation is determined by the volume fraction and morphology of the initial graphite phase. In cast irons with a softer metallic phase (ferrite), the contact interaction of graphite inclusions with the matrix and the properties of the matrix introduce additional sources of high damping.

  20. Wakefield Damping for the CLIC Crab Cavity

    SciTech Connect

    Ambattu, P.K.; Burt, G.; Dexter, A.C.; Carter, R.G.; Khan, V.; Jones, R.M.; Dolgashev, V.; /SLAC

    2011-12-01

    A crab cavity is required in the CLIC to allow effective head-on collision of bunches at the IP. A high operating frequency is preferred as the deflection voltage required for a given rotation angle and the RF phase tolerance for a crab cavity are inversely proportional to the operating frequency. The short bunch spacing of the CLIC scheme and the high sensitivity of the crab cavity to dipole kicks demand very high damping of the inter-bunch wakes, the major contributor to the luminosity loss of colliding bunches. This paper investigates the nature of the wakefields in the CLIC crab cavity and the possibility of using various damping schemes to suppress them effectively.

  1. Accelerator physics measurements at the damping ring

    NASA Astrophysics Data System (ADS)

    Rivkin, L.; Delahaye, J. P.; Wille, K.; Allen, M. A.; Bane, K.; Fieguth, T.; Hofmann, A.; Button, A.; Lee, M.; Linebarger, W.

    1985-05-01

    Besides the optics measurements described elsewhere, machine experiments were done at the Stanford Linear Collider (SLC) damping ring to determine some of its parameters. The synchrotron radiation energy loss which gives the damping rates was measured by observing the RF-voltage dependence of the synchronous phase angle. The emittance was obtained from the synchrotron light monitor, scraper measurements and by extracting the beam through a doublet and measuring its size for different quadrupole settings. Current dependent effects such as parasitic mode losses, head tail instabilities, synchrotron and betatron frequency shifts were measured to estimate the impedance. RF-cavity beam loading and its compensation were also studied and ion collection was investigated. All results agree reasonably well with expectations and indicate no limitations to the design performance.

  2. Relativity damps OPEP in nuclear matter

    SciTech Connect

    Banerjee, M.K.

    1998-06-01

    Using a relativistic Dirac-Brueckner analysis the OPEP contribution to the ground state energy of nuclear matter is studied. In the study the pion is derivative-coupled. The author finds that the role of the tensor force in the saturation mechanism is substantially reduced compared to its dominant role in a usual nonrelativistic treatment. He shows that the damping of derivative-coupled OPEP is actually due to the decrease of M{sup *}/M with increasing density. He points out that if derivative-coupled OPEP is the preferred form of nuclear effective lagrangian nonrelativistic treatment of nuclear matter is in trouble. Lacking the notion of M{sup *} it cannot replicate the damping. He suggests an examination of the feasibility of using pseudoscalar coupled {pi}N interaction before reaching a final conclusion about nonrelativistic treatment of nuclear matter.

  3. Damping control of 'smart' piezoelectric shell structures

    NASA Astrophysics Data System (ADS)

    Tzou, H. S.

    Advanced 'smart' structures with self-sensation and control capabilities have attracted much attention in recent years. 'Smart' piezoelectric structures (conventional structures integrated with piezoelectric sensor and actuator elements) possessing self-monitoring and adaptive static and/or dynamic characteristics are very promising in many applications. This paper presents a study on 'smart' piezoelectric shell structures. A generic piezoelastic vibration theory for a thin piezoelectric shell continuum made of a hexagonal piezoelectric material is first derived. Piezoelastic system equation and electrostatic charge equation are formulated using Hamilton's principle and Kirchhoff-Love thin shell assumptions. Dynamic adaptivity, damping control, of a simply supported cylindrical shell structure is demonstrated in a case study. It shows that the system damping increases with the increase of feedback voltage for odd modes. The control scheme is ineffective for all even modes because of the symmetrical boundary conditions.

  4. The impact damped harmonic oscillator in free decay

    NASA Technical Reports Server (NTRS)

    Brown, G. V.; North, C. M.

    1987-01-01

    The impact-damped oscillator in free decay is studied by using time history solutions. A large range of oscillator amplitude is covered. The amount of damping is correlated with the behavior of the impacting mass. There are three behavior regimes: (1) a low amplitude range with less than one impact per cycle and very low damping, (2) a useful middle amplitude range with a finite number of impacts per cycle, and (3) a high amplitude range with an infinite number of impacts per cycle and progressively decreasing damping. For light damping the impact damping in the middle range is: (1) proportional to impactor mass, (2) additive to proportional damping, (3) a unique function of vibration amplitude, (4) proportional to 1-epsilon, where epsilon is the coefficient of restitution, and (5) very roughly inversely proportional to amplitude. The system exhibits jump phenomena and period doublings. An impactor with 2 percent of the oscillator's mass can produce a loss factor near 0.1.

  5. Collisional damping rates for plasma waves

    NASA Astrophysics Data System (ADS)

    Tigik, S. F.; Ziebell, L. F.; Yoon, P. H.

    2016-06-01

    The distinction between the plasma dynamics dominated by collisional transport versus collective processes has never been rigorously addressed until recently. A recent paper [P. H. Yoon et al., Phys. Rev. E 93, 033203 (2016)] formulates for the first time, a unified kinetic theory in which collective processes and collisional dynamics are systematically incorporated from first principles. One of the outcomes of such a formalism is the rigorous derivation of collisional damping rates for Langmuir and ion-acoustic waves, which can be contrasted to the heuristic customary approach. However, the results are given only in formal mathematical expressions. The present brief communication numerically evaluates the rigorous collisional damping rates by considering the case of plasma particles with Maxwellian velocity distribution function so as to assess the consequence of the rigorous formalism in a quantitative manner. Comparison with the heuristic ("Spitzer") formula shows that the accurate damping rates are much lower in magnitude than the conventional expression, which implies that the traditional approach over-estimates the importance of attenuation of plasma waves by collisional relaxation process. Such a finding may have a wide applicability ranging from laboratory to space and astrophysical plasmas.

  6. Random Response of Linear Hysteretic Damping

    SciTech Connect

    Floris, Claudio

    2008-07-08

    The probabilistic characterization of the response of a single-degree-of-freedom (SDOF) oscillator with linear hysteretic damping excited by ground motion described by zero mean stationary Gaussian processes is achieved by profiting from a steady-state solution of the motion equation, valid when the excitation is given by the superposition of harmonics. The model of linear hysteretic damping has been introduced to fit damping mechanisms in which the dissipation rate is independent of frequency, and mathematically it is described by the Hilbert transform of the response. Though this model is debated since it violates the principle of causality, its intrinsic simplicity makes it preferable to other models. The steady-state solution of the motion equation proposed in this paper allows a closed form evaluation of the respone mean square value. However, the numerical examples show that this quantity is affected by the mechanism of energy dissipation only when this is large. On the contrary, for a low capacity of dissipation the response mean square value is rather insensitive to the dissipation mechanism.

  7. Compound And Rotational Damping In Warm Nuclei

    SciTech Connect

    Leoni, S.; Bracco, A.; Benzoni, G.; Blasi, N.; Camera, F.; Grassi, C.; Million, B.; Paleni, A.; Pignanelli, M.; Vigezzi, E.; Wieland, O.; Matsuo, M.; Doessing, T.; Herskind, B.; Hagemann, G.B.; Wilson, J.; Maj, A.; Kmiecik, M.; LoBianco, G.; Petrache, C.M.

    2005-04-05

    The {gamma}-decay from excited nuclei is used to study the interplay between rotational motion and compound nucleus formation in deformed nuclei. A new analysis technique is presented which allows for the first time to directly measure the rotational and compound damping widths {gamma}rot and {gamma}{mu} from {gamma}-coincidence spectra. The method is first tested on simulated spectra and then applied to high-statistics EUROBALL data on the nucleus 163Er. Experimental values of {approx_equal}200 and 20 keV are obtained for {gamma}rot and {gamma}{mu}, respectively, in the spin region I {approx_equal} 30-40 ({Dirac_h}/2{pi}), in good agreement with microscopic cranked shell model calculations for the specific nucleus. A dependence of rotational damping on the K-quantum number of the nuclear states is also observed, both in experiment and theory, resulting in a {approx_equal}30% reduction of {gamma}rot for high-K states. This points to a delayed onset of rotational damping in high-K configurations.

  8. Tunneling of a heavily damped macroscopic variable

    SciTech Connect

    Schwartz, D.B.

    1987-01-01

    The author studied the effect of damping upon fluxoid transitions in simple microfabricated circuits consisting of an inductor and small-area Josephson tunnel junctions. In order to provide an easily characterized source of damping, the tunnel junctions were fabricated with low-inductance resistive shunts across them. To keep tunneling from being suppressed to unreachably low temperatures, the samples were designed to exhibit tunneling at high temperatures in the absence of damping. This was achieved by having junction areas of approximately 0.1 ..mu../sup 2/, which pushes the characteristic time scales to over 10/sup 12/ s/sup -1/. Tunneling was unambiguously observed at 2K in the unshunted samples. The temperature where thermal activation won over tunneling in determining the escape rate was suppressed by an order of magnitude in the shunted samples, in good agreement with theoretical predictions. The predicted T/sup 2/ dependence of the exponent of the tunneling rate upon temperature was also clearly observed in the data. At temperatures where thermal activation dominates the escape-rate quantum corrections to the escape rate are predicted. Analysis of these effects upon the data is complicated by the high frequencies involved. Although the data does not constitute a clear test of these corrections, it seems clear that simple thermal activation without quantum corrections does not suffice to explain it.

  9. Metallic materials for mechanical damping capacity applications

    NASA Astrophysics Data System (ADS)

    Crăciun, R. C.; Stanciu, S.; Cimpoeșu, R.; (Dragoș Ursanu, A. I.; Manole, V.; Paraschiv, P.; Chicet, D. L.

    2016-08-01

    Some metallic materials exhibit good damping capacity of mechanical energy into thermal energy. This property along with the others metallic characteristics make this materials interesting for a big number of applications. These materials can be used as bumpers in different applications including automotive field. Beside grey cast iron and shape memory alloys few new metallic materials are presented for the supposition of high damping capacity. We analyze the causes that increase the internal friction of some metallic materials and possibilities to enhance this property through different mechanical, physical or chemical methods. Shape memory alloys, especially those based on copper, present a different damping capacity on martensite, austenite or transition state. In the transformation range M ↔A, which in case of copper base shape memory alloys is quite large, the metallic intelligent materials present a high internal friction, almost comparable with natural rubber behavior that can transform mechanical energy into thermal energy till a certain value of the external solicitation. These materials can be used as noise or small vibrations bumpers or even as shock absorbers in automotive industry.

  10. Viscoelastic damping in crystalline composites and alloys

    NASA Astrophysics Data System (ADS)

    Ranganathan, Raghavan; Ozisik, Rahmi; Keblinski, Pawel

    We use molecular dynamics simulations to study viscoelastic behavior of model Lennard-Jones (LJ) crystalline composites subject to an oscillatory shear deformation. The two crystals, namely a soft and a stiff phase, individually show highly elastic behavior and a very small loss modulus. On the other hand, when the stiff phase is included within the soft matrix as a sphere, the composite exhibits significant viscoelastic damping and a large phase shift between stress and strain. In fact, the maximum loss modulus in these model composites was found to be about 20 times greater than that given by the theoretical Hashin-Shtrikman upper bound. We attribute this behavior to the fact that in composites shear strain is highly inhomogeneous and mostly accommodated by the soft phase, corroborated by frequency-dependent Grüneisen parameter analysis. Interestingly, the frequency at which the damping is greatest scales with the microstructural length scale of the composite. Finally, a critical comparison between damping properties of these composites with ordered and disordered alloys and superlattice structures is made.

  11. Radiative damping in plasma-based accelerators

    NASA Astrophysics Data System (ADS)

    Kostyukov, I. Yu.; Nerush, E. N.; Litvak, A. G.

    2012-11-01

    The electrons accelerated in a plasma-based accelerator undergo betatron oscillations and emit synchrotron radiation. The energy loss to synchrotron radiation may seriously affect electron acceleration. The electron dynamics under combined influence of the constant accelerating force and the classical radiation reaction force is studied. It is shown that electron acceleration cannot be limited by radiation reaction. If initially the accelerating force was stronger than the radiation reaction force, then the electron acceleration is unlimited. Otherwise the electron is decelerated by radiative damping up to a certain instant of time and then accelerated without limits. It is shown that regardless of the initial conditions the infinite-time asymptotic behavior of an electron is governed by a self-similar solution providing that the radiative damping becomes exactly equal to 2/3 of the accelerating force. The relative energy spread induced by the radiative damping decreases with time in the infinite-time limit. The multistage schemes operating in the asymptotic acceleration regime when electron dynamics is determined by the radiation reaction are discussed.

  12. Nonstandard conserved Hamiltonian structures in dissipative/damped systems: Nonlinear generalizations of damped harmonic oscillator

    SciTech Connect

    Pradeep, R. Gladwin; Chandrasekar, V. K.; Senthilvelan, M.; Lakshmanan, M.

    2009-05-15

    In this paper we point out the existence of a remarkable nonlocal transformation between the damped harmonic oscillator and a modified Emden-type nonlinear oscillator equation with linear forcing, xe+{alpha}xx+{beta}x{sup 3}+{gamma}x=0, which preserves the form of the time independent integral, conservative Hamiltonian, and the equation of motion. Generalizing this transformation we prove the existence of nonstandard conservative Hamiltonian structure for a general class of damped nonlinear oscillators including Lienard-type systems. Further, using the above Hamiltonian structure for a specific example, namely, the generalized modified Emden equation xe+{alpha}x{sup q}x+{beta}x{sup 2q+1}=0, where {alpha}, {beta}, and q are arbitrary parameters, the general solution is obtained through appropriate canonical transformations. We also present the conservative Hamiltonian structure of the damped Mathews-Lakshmanan oscillator equation. The associated Lagrangian description for all the above systems is also briefly discussed.

  13. Non-Linear Slosh Damping Model Development and Validation

    NASA Technical Reports Server (NTRS)

    Yang, H. Q.; West, Jeff

    2015-01-01

    Propellant tank slosh dynamics are typically represented by a mechanical model of spring mass damper. This mechanical model is then included in the equation of motion of the entire vehicle for Guidance, Navigation and Control (GN&C) analysis. For a partially-filled smooth wall propellant tank, the critical damping based on classical empirical correlation is as low as 0.05%. Due to this low value of damping, propellant slosh is potential sources of disturbance critical to the stability of launch and space vehicles. It is postulated that the commonly quoted slosh damping is valid only under the linear regime where the slosh amplitude is small. With the increase of slosh amplitude, the critical damping value should also increase. If this nonlinearity can be verified and validated, the slosh stability margin can be significantly improved, and the level of conservatism maintained in the GN&C analysis can be lessened. The purpose of this study is to explore and to quantify the dependence of slosh damping with slosh amplitude. Accurately predicting the extremely low damping value of a smooth wall tank is very challenging for any Computational Fluid Dynamics (CFD) tool. One must resolve thin boundary layers near the wall and limit numerical damping to minimum. This computational study demonstrates that with proper grid resolution, CFD can indeed accurately predict the low damping physics from smooth walls under the linear regime. Comparisons of extracted damping values with experimental data for different tank sizes show very good agreements. Numerical simulations confirm that slosh damping is indeed a function of slosh amplitude. When slosh amplitude is low, the damping ratio is essentially constant, which is consistent with the empirical correlation. Once the amplitude reaches a critical value, the damping ratio becomes a linearly increasing function of the slosh amplitude. A follow-on experiment validated the developed nonlinear damping relationship. This discovery can

  14. A method for damping matrix identification using frequency response data

    NASA Astrophysics Data System (ADS)

    Pradhan, S.; Modak, S. V.

    2012-11-01

    Accurate modeling of damping in structures is of great importance for vibration response analysis and control. This paper addresses the issue of identification of damping matrix of a structure by posing it as a finite element damping matrix updating problem. Many of the current updating approaches, dealing with updating of damping matrix, perform simultaneous updating of mass, stiffness and damping matrices. However, such a strategy is faced with numerical problems in practical implementation, since the magnitude of stiffness and mass matrix elements is generally much more than that of the damping matrix elements causing difficulties in accurate identification of the damping matrix. Some other approaches divide the process of updating of the mass and stiffness matrix and the damping matrix into two stages, but their application is restricted to structures with low levels of damping. This paper addresses these issues by developing an updating formulation that seeks to separate updating of the damping matrix from that of updating of the stiffness and the mass matrix. The proposed damping matrix updating method utilizes the concept of normal frequency response functions (FRFs) available in the literature. The method is formulated so as to reduce the difference between the complex FRFs, which can be measured in practice, and the normal FRFs, whose estimates can be obtained from the measured complex FRFs. The effectiveness of the proposed method is demonstrated through a numerical study on a simple but representative beam structure. The issue of coordinate incompleteness and robustness of the method under presence of noise is investigated. It is found that the proposed method is effective in the accurate identification of the damping matrix in cases of complete, incomplete and noisy data and is not limited by the level of damping in the structure.

  15. Recommendations for damping and treatment of modeling uncertainty in seismic analysis of CANDU nuclear power plant

    SciTech Connect

    Usmani, S.A.; Baughman, P.D.

    1996-12-01

    The seismic analysis of the CANDU nuclear power plant is governed by Canadian Standard series N289. However, the dynamic analysis of some equipment and system such as the CANDU reactor and fueling machine must treat unique components not directly covered by the broad recommendations of these standards. This paper looks at the damping values and treatment of modeling uncertainty recommended by CSA N289.3, the current state of knowledge and expert opinion as reflected in several current standards, testing results, and the unique aspects of the CANDU system. Damping values are recommended for the component parts of the CANDU reactor and fueling machine system: reactor building, calandria vault, calandria, fuel channel, pressure tube, fueling machine and support structure. Recommendations for treatment of modeling and other uncertainties are also presented.

  16. Meta-Analyses of the Associations of Respiratory Health Effectswith Dampness and Mold in Homes

    SciTech Connect

    Fisk, William J.; Lei-Gomez, Quanhong; Mendell, Mark J.

    2006-01-01

    The Institute of Medicine (IOM) of the National Academy of Sciences recently completed a critical review of the scientific literature pertaining to the association of indoor dampness and mold contamination with adverse health effects. In this paper, we report the results of quantitative meta-analysis of the studies reviewed in the IOM report. We developed point estimates and confidence intervals (CIs) to summarize the association of several respiratory and asthma-related health outcomes with the presence of dampness and mold in homes. The odds ratios and confidence intervals from the original studies were transformed to the log scale and random effect models were applied to the log odds ratios and their variance. Models were constructed both accounting for the correlation between multiple results within the studies analyzed and ignoring such potential correlation. Central estimates of ORs for the health outcomes ranged from 1.32 to 2.10, with most central estimates between 1.3 and 1.8. Confidence intervals (95%) excluded unity except in two of 28 instances, and in most cases the lower bound of the CI exceeded 1.2. In general, the two meta-analysis methods produced similar estimates for ORs and CIs. Based on the results of the meta-analyses, building dampness and mold are associated with approximately 30% to 80% increases in a variety of respiratory and asthma-related health outcomes. The results of these meta-analyses reinforce the IOM's recommendation that actions be taken to prevent and reduce building dampness problems.

  17. Researches on Track Reconstruction for DAMPE

    NASA Astrophysics Data System (ADS)

    Lu, T. S.; Lei, S. J.; Zang, J. J.; Chang, J.; Wu, J.

    2016-05-01

    The Dark Matter Particle Explorer (DAMPE) is aimed to study the existence and distribution of dark matter via observation of high energy particles in space with unprecedented large energy bandwidth, high energy resolution, and high space resolution. The track reconstruction is to restore the positions and angles of the incident particles using the multiple observations of different channels at different positions, and its accuracy determines the angular resolution of the detector. The track reconstruction is mainly based on the observations of two sub-detectors, namely, the Silicon Tracker (STK) detector and the BGO (Bi_4Ge_3O12) calorimeter. In accordance with the design and structure of the two sub-detectors and using the data collected during the beam tests and ground tests, we provide a detailed introduction of the track reconstruction of DAMPE data, including three basic steps, the selection of track hits, the fitting of track hits, and the judgement of the best track among (most probably) many of them. Since a high energy particle most probably leaves more than one hit in each level of the STK and BGO, we first provide a method to constrain the STK clusters for the track reconstruction using the rough result of the BGO reconstruction. We apply two different algorithms, the Kalman filter and the least square linear fitting, to fit the track hits. The consistency of the results obtained independently via the two algorithms confirms the validity of our track reconstruction results, and we discuss the advantages/disadvantages of each method. Several criteria combining the BGO and STK detection are discussed for picking out the most possible track among all the tracks found in the track reconstruction. Using the track reconstruction methods mentioned in this article and the beam test data, we confirm that the angular resolution of DAMPE satisfies the requirement in design.

  18. Nutation damping in viscoelastic tumbling rotators

    NASA Astrophysics Data System (ADS)

    Frouard, Julien; Efroimsky, Michael

    2015-11-01

    Presently, 138 asteroids show signs of being in non-principal spin states (Warner et al. 2009, updated September 2015). Such spin is often called `tumble' or `wobble'. The instantaneous rotation axis of a wobbling body performs nutation about the direction of the (conserved) angular-momentum vector. Incited by collisions and YORP, wobble is mitigated by internal dissipation due to the nutation-caused alternating stresses inside the asteroid.The knowledge of the timescale related to the damping of the nutation angle is complementary to the knowledge of the timescales associated with collisions and YORP. Previous evaluations of the nutation relaxation rate were based on an inherently inconsistent approach that may be called "Q-model". First, the elastic energy in a periodically deforming rotator was calculated in assumption of the deformation being elastic. Therefrom, the energy dissipation rate was determined by introducing an ad hoc quality factor Q. This ignored the fact that friction (and the ensuing existence of Q) is due to deviation from elasticity.We use the viscoelastic Maxwell model which naturally implies dissipation (as any other viscoelastic model would). In this approach, we compute the power and damping time for an oblate ellipsoid and a prism. Now, the viscosity assumes the role of the product μQ in the empirical Q-model, with μ being the rigidity. Contrarily to the Q-model, our model naturally gives a null dissipation for a shape tending to a sphere. We also explore when the constant part of the stress can be ignored in the derivation of the damping time. The neglect of prestressing turns out to be legitimate for the mean viscosity exceeding a certain threshold value.

  19. Whistler damping at oblique propagation - Laminar shock precursors

    NASA Technical Reports Server (NTRS)

    Gary, S. P.; Mellott, M. M.

    1985-01-01

    This paper addresses the collisionless damping of whistlers observed as precursors standing upstream of oblique, low-Mach number terrestrial bow shocks. The linear theory of electromagnetic waves in a homogeneous Vlasov plasma with Maxwellian distribution functions and a magnetic field is considered. Numerical solutions of the full dispersion equation are presented for whistlers propagating at an arbitrary angle with respect to the magnetic field. It is demonstrated that electron Landau damping attenuates oblique whistlers and that the parameter which determines this damping is beta-e. In a well-defined range of parameters, this theory provides damping lengths which are the same order of magnitude as those observed. Thus electron Landau damping is a plausible process in the dissipation of upstream whistlers. Nonlinear plasma processes which may contribute to precursor damping are also discussed, and criteria for distinguishing among these are described.

  20. Damping in high-temperature superconducting levitation systems

    DOEpatents

    Hull, John R.

    2009-12-15

    Methods and apparatuses for improved damping in high-temperature superconducting levitation systems are disclosed. A superconducting element (e.g., a stator) generating a magnetic field and a magnet (e.g. a rotor) supported by the magnetic field are provided such that the superconducting element is supported relative to a ground state with damped motion substantially perpendicular to the support of the magnetic field on the magnet. Applying this, a cryostat housing the superconducting bearing may be coupled to the ground state with high damping but low radial stiffness, such that its resonant frequency is less than that of the superconducting bearing. The damping of the cryostat may be substantially transferred to the levitated magnetic rotor, thus, providing damping without affecting the rotational loss, as can be derived applying coupled harmonic oscillator theory in rotor dynamics. Thus, damping can be provided to a levitated object, without substantially affecting the rotational loss.

  1. Higher order mode damping in an ALS test cavity

    SciTech Connect

    Jacob, A.F.; Lamberston, G.R. ); Barry, W. )

    1990-06-01

    The higher order mode attenuation scheme proposed for the Advanced Light Source accelerating cavities consists of two broad-band dampers placed 90{degrees} apart on the outer edge. In order to assess the damping efficiency a test assembly was built. The HOM damping was obtained by comparing the peak values of the transmission through the cavity for both the damped and the undamped case. Because of the high number of modes and frequency shifts due to the damping gear, the damping was assessed statistically, by averaging over several modes. In the frequency range from 1.5 to 5.5 GHz, average damping greater than 100 was obtained. 1 ref., 6 figs.

  2. Air damping effect on the air-based CMUT operation

    NASA Astrophysics Data System (ADS)

    Cha, Bu-Sang; Kanashima, Takeshi; Lee, Seung-Mok; Okuyama, Masanori

    2015-08-01

    The vibration amplitude, damping ratio and viscous damping force in capacitive micromachinedultrasonic transducers (CMUTs) with a perforated membrane have been calculated theoretically and compared with the experimental data on its vibration behavior. The electrical bias of the DC and the AC voltages and the operation frequency conditions influence the damping effect because leads to variations in the gap height and the vibration velocity of the membrane. We propose a new estimation method to determine the damping ratio by the decay rate of the vibration amplitudes of the perforated membrane plate are measured using a laser vibrometer at each frequency, and the damping ratios were calculated from those results. The influences of the vibration frequency and the electrostatic force on the damping effect under the various operation conditions have been studied.

  3. System for damping vibrations in a turbine

    SciTech Connect

    Roberts, III, Herbert Chidsey; Johnson, Curtis Alan; Taxacher, Glenn Curtis

    2015-11-24

    A system for damping vibrations in a turbine includes a first rotating blade having a first ceramic airfoil, a first ceramic platform connected to the first ceramic airfoil, and a first root connected to the first ceramic platform. A second rotating blade adjacent to the first rotating blade includes a second ceramic airfoil, a second ceramic platform connected to the second ceramic airfoil, and a second root connected to the second ceramic platform. A non-metallic platform damper has a first position in simultaneous contact with the first and second ceramic platforms.

  4. Spin damping correction to electrostatic modes in kinetic plasma theory

    NASA Astrophysics Data System (ADS)

    Asenjo, Felipe A.

    2009-12-01

    The effect of spin of particles is studied using a semi-classical kinetic theory for a magnetized plasma. No other quantum effects are included. We focus in the simple damping effects for the electrostatic wave modes. Besides Landau damping, we show that spin produces two new different effects of damping or instability which are proportional to ℏ. These corrections depend on the electromagnetic part of the wave that is coupled with the spin vector.

  5. Active damping control for electrodynamic suspension systems without mechanical transducers

    SciTech Connect

    Brunelli, B.; Casadei, D.; Serra, G.; Tani, A.

    1996-09-01

    In this paper an electrodynamic suspension system for maglev vehicles is analyzed, in which the active damping of the vertical oscillations is obtained without position, velocity and acceleration transducers. The damping effect is accomplished controlling the supply voltage of the damping coil to respond to current changes due to vertical oscillations. The stability of the suspension system is investigated by a linearized analysis of the model equations, emphasizing the influence of the voltage regulator parameters. The performance of the damping system, in terms of step response and ride quality, is also discussed.

  6. Significance of modeling internal damping in the control of structures

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Inman, D. J.

    1992-01-01

    Several simple systems are examined to illustrate the importance of the estimation of damping parameters in closed-loop system performance and stability. The negative effects of unmodeled damping are particularly pronounced in systems that do not use collocated sensors and actuators. An example is considered for which even the actuators (a tip jet nozzle and flexible hose) for a simple beam produce significant damping which, if ignored, results in a model that cannot yield a reasonable time response using physically meaningful parameter values. It is concluded that correct damping modeling is essential in structure control.

  7. Dependence of Kambersky damping on Fermi level and spin orientation

    SciTech Connect

    Qu, T.; Victora, R. H.

    2014-05-07

    Kambersky damping represents the loss of magnetic energy from the electrons to the lattice through the spin orbit interaction. It is demonstrated that, for bcc Fe-based transition metal alloys, the logarithm of the energy loss is proportional to the density of states at the Fermi level. Both inter and intraband damping are calculated for spins at arbitrary angle to the previously examined [001] direction. Although the easy axis 〈100〉 shows isotropic relaxation and achieves the minimum damping value of 0.002, other directions, such as 〈110〉, show substantial anisotropic damping.

  8. Damping element for reducing the vibration of an airfoil

    SciTech Connect

    Campbell, Christian X; Marra, John J

    2013-11-12

    An airfoil (10) is provided with a tip (12) having an opening (14) to a center channel (24). A damping element (16) is inserted within the opening of the center channel, to reduce an induced vibration of the airfoil. The mass of the damping element, a spring constant of the damping element within the center channel, and/or a mounting location (58) of the damping element within the center channel may be adjustably varied, to shift a resonance frequency of the airfoil outside a natural operating frequency of the airfoil.

  9. Dynamic apeerture in damping rings with realistic wigglers

    SciTech Connect

    Cai, Yunhai; /SLAC

    2005-05-04

    The International Linear Collider based on superconducting RF cavities requires the damping rings to have extremely small equilibrium emittance, huge circumference, fast damping time, and large acceptance. To achieve all of these requirements is a very challenging task. In this paper, we will present a systematic approach to designing the damping rings using simple cells and non-interlaced sextupoles. The designs of the damping rings with various circumferences and shapes, including dogbone, are presented. To model realistic wigglers, we have developed a new hybrid symplectic integrator for faster and accurate evaluation of dynamic aperture of the lattices.

  10. Design of passive piezoelectric damping for space structures

    NASA Astrophysics Data System (ADS)

    Hagood, Nesbitt W., IV; Aldrich, Jack B.; Vonflotow, Andreas H.

    1994-09-01

    Passive damping of structural dynamics using piezoceramic electromechanical energy conversion and passive electrical networks is a relatively recent concept with little implementation experience base. This report describes an implementation case study, starting from conceptual design and technique selection, through detailed component design and testing to simulation on the structure to be damped. About 0.5kg. of piezoelectric material was employed to damp the ASTREX testbed, a 500kg structure. Emphasis was placed upon designing the damping to enable high bandwidth robust feedback control. Resistive piezoelectric shunting provided the necessary broadband damping. The piezoelectric element was incorporated into a mechanically-tuned vibration absorber in order to concentrate damping into the 30 to 40 Hz frequency modes at the rolloff region of the proposed compensator. A prototype of a steel flex-tensional motion amplification device was built and tested. The effective stiffness and damping of the flex-tensional device was experimentally verified. When six of these effective springs are placed in an orthogonal configuration, strain energy is absorbed from all six degrees of freedom of a 90kg. mass. A NASTRAN finite element model of the testbed was modified to include the six-spring damping system. An analytical model was developed for the spring in order to see how the flex-tensional device and piezoelectric dimensions effect the critical stress and strain energy distribution throughout the component. Simulation of the testbed demonstrated the damping levels achievable in the completed system.

  11. Damping of long-wavelength kinetic alfven fluctuations: linear theory

    SciTech Connect

    Gary, S Peter; Borovsky, Joseph E

    2008-01-01

    The full electromagnetic linear dispersion equation for kinetic Alfven fluctuations in a homogeneous, isotropic, Maxwellian electron-proton plasma is solved numerically in the long wavelength limit. The solutions are summarized by an analytic expression for the damping rate of such modes at propagation sufficiently oblique to the background magnetic field B{sub o} which scales as k{sub {perpendicular}}{sup 2} k{sub {parallel}} where the subscripts denote directions relative to B{sub o}. This damping progressively (although not monotonically) increases with increasing electron {beta}, corresponding to four distinct damping regimes: nonresonant, electron Landau, proton Landau, and proton transit-time damping.

  12. Coulomb-damped resonant generators using piezoelectric transduction

    NASA Astrophysics Data System (ADS)

    Miller, L. M.; Mitcheson, P. D.; Halvorsen, E.; Wright, P. K.

    2012-06-01

    Switching interface circuits employed with piezoelectric energy harvesters can increase the electrical damping considerably over that achievable with passive rectifiers. We show that a piezoelectric harvester coupled to certain types of switching circuits becomes a Coulomb-damped resonant generator. This allows analysis of such harvester systems within a well-known framework and, subject to practical constraints, allows the optimal electrical damping to be achieved. In the piezoelectric pre-biasing technique, the Coulomb damping is set by a pre-bias voltage whose optimal value is derived as a function of piezoelectric harvester parameters.

  13. Damping factor estimation using spin wave attenuation in permalloy film

    SciTech Connect

    Manago, Takashi; Yamanoi, Kazuto; Kasai, Shinya; Mitani, Seiji

    2015-05-07

    Damping factor of a Permalloy (Py) thin film is estimated by using the magnetostatic spin wave propagation. The attenuation lengths are obtained by the dependence of the transmission intensity on the antenna distance, and decrease with increasing magnetic fields. The relationship between the attenuation length, damping factor, and external magnetic field is derived theoretically, and the damping factor was determined to be 0.0063 by fitting the magnetic field dependence of the attenuation length, using the derived equation. The obtained value is in good agreement with the general value of Py. Thus, this estimation method of the damping factor using spin waves attenuation can be useful tool for ferromagnetic thin films.

  14. 18. Interior detail, windows, original Library, addition, Engine Stores Building, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. Interior detail, windows, original Library, addition, Engine Stores Building, Southern Pacific Railroad Carlin Shops, view to north-northwest (90mm lens). Note the milled tongue-and-groove ceiling, and deterioration of bricks near floor level due to rising damp. - Southern Pacific Railroad, Carlin Shops, Engine Stores Building, Foot of Sixth Street, Carlin, Elko County, NV

  15. Intrinsic Josephson Junctions with Intermediate Damping

    NASA Astrophysics Data System (ADS)

    Warburton, Paul A.; Saleem, Sajid; Fenton, Jon C.; Speller, Susie; Grovenor, Chris R. M.

    2011-03-01

    In cuprate superconductors, adjacent cuprate double-planes are intrinsically Josephson-coupled. For bias currents perpendicular to the planes, the current-voltage characteristics correspond to those of an array of underdamped Josephson junctions. We will discuss our experiments on sub-micron Tl-2212 intrinsic Josephson junctions (IJJs). The dynamics of the IJJs at the plasma frequency are moderately damped (Q ~ 8). This results in a number of counter-intuitive observations, including both a suppression of the effect of thermal fluctuations and a shift of the skewness of the switching current distributions from negative to positive as the temperature is increased. Simulations confirm that these phenomena result from repeated phase slips as the IJJ switches from the zero-voltage to the running state. We further show that increased dissipation counter-intuitively increases the maximum supercurrent in the intermediate damping regime (PRL vol. 103, art. no. 217002). We discuss the role of environmental dissipation on the dynamics and describe experiments with on-chip lumped-element passive components in order control the environment seen by the IJJs. Work supported by EPSRC.

  16. Nonlinear Landau damping in nonextensive statistics

    SciTech Connect

    Valentini, Francesco

    2005-07-15

    The evolution of electrostatic waves, in unmagnetized collisionless plasmas, is numerically investigated by using a semi-Lagrangian Vlasov-Poisson code, in the fully nonlinear regime and in the context of the nonextensive statistics proposed by Tsallis [C. Tsallis, J. Stat. Phys. 52, 479 (1988)]. The effect of the Landau damping saturation, due to the nonlinear wave-particle interaction, is analyzed as a function of different values of the nonextensive parameter q, which quantifies the degree of nonextensivity of the system. A preliminary linear study is performed in order to compare the analytical results for the frequency and the damping rate of the electric oscillations, with the quantities obtained from the numerical simulations. In the nonlinear regime, the time evolution of the electric field amplitude shows how the non-Maxwellian shape of the equilibrium distribution function drastically modifies the energy exchange between wave and resonant particles and determines the saturation level of the electric field amplitude, in the long-time oscillating regime. A broad spectrum for the electrostatic oscillations is obtained in the case of the initial distribution functions with q<1, while in the case q>1 just a monochromatic component is visible.

  17. Chiral damping in magnetic domain walls dynamics

    NASA Astrophysics Data System (ADS)

    Jué, Emilie

    Domain wall (DW) motion in materials with structural inversion asymmetry (SIA) and high spin-orbit coupling has attracted much interest in the recent years due to the discovery of unexpected physical mechanisms. Especially, it has been shown that the DW dynamics in such materials can be explained by chiral DWs with (partly or fully) Néel structure, whose stability derives from an interfacial Dzyaloshinskii-Moriya interaction (DMI). In this work, we show that DMI is not the only effect inducing chiral dynamics and demonstrate the existence of a chiral damping. This result is supported by the study of the asymmetry induced by an in-plane magnetic field on field induced domain wall motion in perpendicularly magnetized asymmetric Pt/Co/Pt trilayers. Using time reversal properties, we show that this asymmetry cannot be attributed to an effective field but originates from a purely dissipative mechanism. The observation of chiral damping, not only enriches the spectrum of physical phenomena engendered by the SIA, but since it can coexist with DMI it is essential for conceiving DW and skyrmion devices

  18. Active damping application to the shuttle RMS

    NASA Technical Reports Server (NTRS)

    Gilbert, Michael G.; Scott, Michael A.; Kenny, Sean P.

    1991-01-01

    Control Structure Interaction (CSI) is a relatively new technology developed over the last 10 to 15 years for application to large flexible space vehicles. The central issue is recognition that high performance control systems necessary for good spacecraft performance may adversely interact with the dynamics of the spacecraft structures, a problem increasingly aggravated by the large size and reduced stiffness of modern spacecraft structural designs. The CSI analysis and design methods were developed to avoid interactions while maintaining spacecraft performance without exceeding structural capabilities, but they remain largely unvalidated by hardware experiments or demonstrations, particularly in-space flight demonstrations. One recent proposal for a low cost flight validation of CSI technology is to demonstrate active damping augmentation of the Space Shuttle Remote Manipulator System (RMS). An analytical effort to define the potential for such an active damping augmentation demonstration to improve the structural dynamic response of the RMS following payload maneuvers is described. It is hoped that this study will lead to an actual inflight CSI test with the RMS using existing shuttle hardware to the maximum extent possible. By using the existing hardware, the flight demonstration results may eventually be of direct benefit to actual Space Shuttle RMS operations, especially during the construction of the Space Station Freedom.

  19. Vibrational resonance in Duffing systems with fractional-order damping.

    PubMed

    Yang, J H; Zhu, H

    2012-03-01

    The phenomenon of vibrational resonance (VR) is investigated in over- and under-damped Duffing systems with fractional-order damping. It is found that the factional-order damping can induce change in the number of the steady stable states and then lead to single- or double-resonance behavior. Compared with vibrational resonance in the ordinary systems, the following new results are found in the fractional-order systems. (1) In the overdamped system with double-well potential and ordinary damping, there is only one kind of single-resonance, whereas there are double-resonance and two kinds of single-resonance for the case of fractional-order damping. The necessary condition for these new resonance behaviors is the value of the fractional-order satisfies α > 1. (2) In the overdamped system with single-well potential and ordinary damping, there is no resonance, whereas there is a single-resonance for the case of fractional-order damping. The necessary condition for the new result is α > 1. (3) In the underdamped system with double-well potential and ordinary damping, there are double-resonance and one kind of single-resonance, whereas there are double-resonance and two kinds of single-resonance for the case of fractional-order damping. The necessary condition for the new single-resonance is α < 1. (4) In the underdamped system with single-well potential, there is at most a single-resonance existing for both the cases of ordinary and fractional-order damping. In the underdamped systems, varying the value of the fractional-order is equivalent to change the damping parameter for some cases. PMID:22462988

  20. Bounce-harmonic Landau Damping of Plasma Waves

    NASA Astrophysics Data System (ADS)

    Anderegg, Francois

    2015-11-01

    We present measurement of plasma wave damping, spanning the temperature regimes of direct Landau damping, bounce-harmonic Landau damping, inter-species drag damping, and viscous damping. Direct Landau damping is dominant at high temperatures, but becomes negligible as v damping, controlled by an applied ``squeeze'' potential, which generates harmonics in the wave potential and in the particle dynamics. A particle moving in z experiences a non-sinusoidal mode potential caused by the squeeze, producing high spatial harmonics with lower phase velocity. These harmonics are Landau damped even when the mode phase velocity vph is large compared to the thermal velocity v , since the nth harmonic is resonant with a particle bouncing at velocity vb =vph / n . Here we increase the bounce harmonics through applied squeeze potential; but some harmonics are always present in finite length systems. For our centered squeeze geometry, theory shows that only odd harmonics are generated, and predicts the Landau damping rate from vph / n . Experimentally, the squeeze potential increases the wave damping and reduces its frequency. The frequency shift occurs because the squeeze potential reduces the number of particle where the mode velocity is the largest, therefore reducing the mode frequency. We observe an increase in the damping proportional to Vs2,and a frequency reduction proportional to Vs , in quantitative agreement with theory. Wave-coherent laser induced fluorescence allows direct observation of bounce resonances on the particle distribution, here predominantly at vph / 3 . A clear increase of the bounce harmonics is visible on the particle distribution when the squeeze potential is applied. Supported by NSF Grant PHY-1414570, and DOE Grants DE-SC0002451 and DE-SC0008693.

  1. Simulations of the Electron Cloud Builld Up and Instabilities for Various ILC Damping Ring Configurations

    SciTech Connect

    Pivi, Mauro; Raubenheimer, Tor O.; Wang, Lanfa; Ohmi, Kazuhito; Wanzenberg, Rainer; Wolski, Andrzej; /Liverpool U. /Cockcroft Inst. Accel. Sci. Tech.

    2007-03-12

    In the beam pipe of the positron damping ring of the International Linear Collider (ILC), an electron cloud may be first produced by photoelectrons and ionization of residual gases and then increased by the secondary emission process. This paper reports the assessment of electron cloud effects in a number of configuration options for the ILC baseline configuration. Careful estimates were made of the secondary electron yield (sometimes in the literature also referred as secondary emission yield SEY or {delta}, with a peak value {delta}{sub max}) threshold for electron cloud build-up, and the related single- and coupled-bunch instabilities, as a function of beam current and surface properties for a variety of optics designs. When the configuration for the ILC damping rings was chosen at the end of 2005, the results from these studies were important considerations. On the basis of the joint theoretical and experimental work, the baseline configuration currently specifies a pair of 6 km damping rings for the positron beam, to mitigate the effects of the electron cloud that could present difficulties in a single 6 km ring. However, since mitigation techniques are now estimated to be sufficiently mature, a reduced single 6-km circumference is presently under consideration so as to reduce costs.

  2. Flux-driven algebraic damping of m = 1 diocotron mode

    NASA Astrophysics Data System (ADS)

    Chim, Chi Yung; O'Neil, Thomas

    2015-11-01

    Recent experiments with pure electron plasmas in a Malmberg-Penning trap have observed the algebraic damping of m = 1 diocotron modes. Transport due to small field asymmetries produce a low density halo of electrons moving radially outward from the plasma core, and the mode damping begins when the halo reaches the resonant radius rres, where f = mfE × B (rres) . The damping rate is proportional to the flux of halo particles through the resonant layer. The damping is related to, but distinct from spatial Landau damping, in which a linear wave-particle resonance produces exponential damping. This poster explains with analytic theory and simulations the new algebraic damping due to both mobility and diffusive fluxes. As electrons are swept around the ``cat's eye'' orbits of resonant wave-particle interaction, they form a dipole (m = 1) density distribution, and the electric field from this distribution produces an E × B drift of the core back to the axis, i.e. damps the m = 1 mode. Supported by National Science Foundation Grant PHY-1414570.

  3. A damped pendulum forced with a constant torque

    NASA Astrophysics Data System (ADS)

    Coullet, P.; Gilli, J. M.; Monticelli, M.; Vandenberghe, N.

    2005-12-01

    The dynamics of a damped pendulum driven by a constant torque is studied experimentally and theoretically. We use this simple device to demonstrate some generic dynamical behavior including the loss of equilibrium or saddle node bifurcation with or without hysteresis and the homoclinic bifurcation. A qualitative analysis is developed to emphasize the role of two dimensionless parameters corresponding to damping and forcing.

  4. Thermoelastic damping in optical waveguide resonators with the bolometric effect.

    PubMed

    Zhong, Zuo-Yang; Zhang, Wen-Ming; Meng, Guang; Wang, Ming-Yang

    2014-06-01

    Incorporating the bolometric effect, the thermoelastic damping in a nanowaveguide resonator driven by an optical gradient force is investigated in this paper. Based on the Euler-Bernoulli beam theory, the governing equation of the optowaveguide resonator is derived by considering the complex distribution of injected optical power, which has significant influence on the thermoelastic damping. By solving the heat diffusion equation, the theoretical model of the thermoelastic damping is presented. In this model, the effects of injected optical power, representative temperatures, waveguide material, and geometries on the thermoelastic damping are studied and discussed respectively. The results show that the peak value of thermoelastic damping increases as the injected optical power is increasing within a low range. Hardly any changes exist for the intrinsic energy dissipation of different materials at higher injected optical power. When the environmental temperature falls in the range of 293-500 K, the thermoelastic damping increases slowly, and then drops down quickly as a function of the dimensionless frequency. However, the thermoelastic damping monotonically decreases when the representative temperature drops to lower than 293 K. In addition, the thermoelastic damping is found to be scale dependent, particularly with the effect of injected optical power.

  5. Thermoelastic damping in optical waveguide resonators with the bolometric effect.

    PubMed

    Zhong, Zuo-Yang; Zhang, Wen-Ming; Meng, Guang; Wang, Ming-Yang

    2014-06-01

    Incorporating the bolometric effect, the thermoelastic damping in a nanowaveguide resonator driven by an optical gradient force is investigated in this paper. Based on the Euler-Bernoulli beam theory, the governing equation of the optowaveguide resonator is derived by considering the complex distribution of injected optical power, which has significant influence on the thermoelastic damping. By solving the heat diffusion equation, the theoretical model of the thermoelastic damping is presented. In this model, the effects of injected optical power, representative temperatures, waveguide material, and geometries on the thermoelastic damping are studied and discussed respectively. The results show that the peak value of thermoelastic damping increases as the injected optical power is increasing within a low range. Hardly any changes exist for the intrinsic energy dissipation of different materials at higher injected optical power. When the environmental temperature falls in the range of 293-500 K, the thermoelastic damping increases slowly, and then drops down quickly as a function of the dimensionless frequency. However, the thermoelastic damping monotonically decreases when the representative temperature drops to lower than 293 K. In addition, the thermoelastic damping is found to be scale dependent, particularly with the effect of injected optical power. PMID:25019905

  6. Flux-driven algebraic damping of m = 1 diocotron mode

    NASA Astrophysics Data System (ADS)

    Chim, Chi Yung; O'Neil, Thomas M.

    2016-07-01

    Recent experiments with pure electron plasmas in a Malmberg-Penning trap have observed the algebraic damping of m = 1 diocotron modes. Transport due to small field asymmetries produces a low density halo of electrons moving radially outward from the plasma core, and the mode damping begins when the halo reaches the resonant radius r = Rw at the wall of the trap. The damping rate is proportional to the flux of halo particles through the resonant layer. The damping is related to, but distinct from, spatial Landau damping, in which a linear wave-particle resonance produces exponential damping. This paper explains with analytic theory the new algebraic damping due to particle transport by both mobility and diffusion. As electrons are swept around the "cat's eye" orbits of the resonant wave-particle interaction, they form a dipole (m = 1) density distribution. From this distribution, the electric field component perpendicular to the core displacement produces E × B-drift of the core back to the axis, that is, damps the m = 1 mode. The parallel component produces drift in the azimuthal direction, that is, causes a shift in the mode frequency.

  7. Component modes damping assignment methodology for articulated, multiflexible body structures

    NASA Technical Reports Server (NTRS)

    Lee, Allan Y.

    1993-01-01

    To simulate the dynamical motion of articulated, multiflexible body structures, one can use multibody simulation packages such as DISCOS. To this end, one must supply appropriate reduced-order models for all of the flexible components involved. The component modes projection and assembly model reduction (COMPARE) methodology is one way to construct these reduced-order component models, which when reassembled capture important system input-to-output mapping of the full-order model at multiple system configurations of interest. In conjunction, we must also supply component damping matrices which when reassembled generate a system damping matrix that has certain desirable properties. The problem of determining the damping factors of components' modes to achieve a given system damping matrix is addressed here. To this end, we must establish from first principles a matrix-algebraic relation between the system's modal damping matrix and the components' modal damping matrices. An unconstrained/constrained optimization problem can then be formulated to determine the component modes' damping factors that best satisfy that matrix-algebraic relation. The effectiveness of the developed methodology, called ModeDamp, has been successfully demonstrated on a high-order, finite element model of the Galileo spacecraft.

  8. Process Damping and Cutting Tool Geometry in Machining

    NASA Astrophysics Data System (ADS)

    Taylor, C. M.; Sims, N. D.; Turner, S.

    2011-12-01

    Regenerative vibration, or chatter, limits the performance of machining processes. Consequences of chatter include tool wear and poor machined surface finish. Process damping by tool-workpiece contact can reduce chatter effects and improve productivity. Process damping occurs when the flank (also known as the relief face) of the cutting tool makes contact with waves on the workpiece surface, created by chatter motion. Tool edge features can act to increase the damping effect. This paper examines how a tool's edge condition combines with the relief angle to affect process damping. An analytical model of cutting with chatter leads to a two-section curve describing how process damped vibration amplitude changes with surface speed for radiussed tools. The tool edge dominates the process damping effect at the lowest surface speeds, with the flank dominating at higher speeds. A similar curve is then proposed regarding tools with worn edges. Experimental data supports the notion of the two-section curve. A rule of thumb is proposed which could be useful to machine operators, regarding tool wear and process damping. The question is addressed, should a tool of a given geometry, used for a given application, be considered as sharp, radiussed or worn regarding process damping.

  9. Dependence of kink oscillation damping on the amplitude

    NASA Astrophysics Data System (ADS)

    Goddard, C. R.; Nakariakov, V. M.

    2016-05-01

    Context. Kink oscillations of coronal loops are one of the most intensively studied oscillatory phenomena in the solar corona. In the large-amplitude rapidly damped regime, these oscillations are observed to have a low quality factor with only a few cycles of oscillation detected before they are damped. The specific mechanism responsible for rapid damping is commonly accepted to be associated with the linear coupling between collective kink oscillations and localised torsional oscillations, the phenomenon of resonant absorption of the kink mode. The role of finite amplitude effects, however, is still not clear. Aims: We investigated the empirical dependence of the kink oscillation damping time and its quality factor, which is defined as the ratio of damping time to oscillation period, on the oscillation amplitude. Methods: We analysed decaying kink oscillation events detected previously with TRACE, SDO/AIA and and STEREO/EUVI in the extreme ultraviolet (EUV) 171 Å band. Results: We found that the ratio of the kink oscillation damping time to the oscillation period systematically decreases with the oscillation amplitude. We approximated the quality factor dependence on the oscillation displacement amplitude via the power-law dependence with the exponent of -1/2, however we stress that this is a by-eye estimate, and a more rigorous estimation of the scaling law requires more accurate measurements and increased statistics. We conclude that damping of kink oscillations of coronal loops depends on the oscillation amplitude, indicating the possible role of non-linear mechanisms for damping.

  10. The Study of Damped Harmonic Oscillations Using an Electronic Counter

    ERIC Educational Resources Information Center

    Wadhwa, Ajay

    2009-01-01

    We study damped harmonic oscillations in mechanical systems like the loaded spring and simple pendulum with the help of an oscillation measuring electronic counter. The experimental data are used in a software program that solves the differential equation for damped vibrations of any system and determines its position, velocity and acceleration as…

  11. Ultra-low magnetic damping of a metallic ferromagnet

    NASA Astrophysics Data System (ADS)

    Schoen, Martin A. W.; Thonig, Danny; Schneider, Michael L.; Silva, T. J.; Nembach, Hans T.; Eriksson, Olle; Karis, Olof; Shaw, Justin M.

    2016-09-01

    Magnetic damping is of critical importance for devices that seek to exploit the electronic spin degree of freedom, as damping strongly affects the energy required and speed at which a device can operate. However, theory has struggled to quantitatively predict the damping, even in common ferromagnetic materials. This presents a challenge for a broad range of applications in spintronics and spin-orbitronics that depend on materials and structures with ultra-low damping. It is believed that achieving ultra-low damping in metallic ferromagnets is limited by the scattering of magnons by the conduction electrons. However, we report on a binary alloy of cobalt and iron that overcomes this obstacle and exhibits a damping parameter approaching 10-4, which is comparable to values reported only for ferrimagnetic insulators. We explain this phenomenon by a unique feature of the band structure in this system: the density of states exhibits a sharp minimum at the Fermi level at the same alloy concentration at which the minimum in the magnetic damping is found. This discovery provides both a significant fundamental understanding of damping mechanisms and a test of the theoretical predictions proposed by Mankovsky and colleagues.

  12. Experimental Spin Testing of Integrally Damped Composite Plates

    NASA Technical Reports Server (NTRS)

    Kosmatka, John

    1998-01-01

    The experimental behavior of spinning laminated composite pretwisted plates (turbo-fan blade-like) with small (less than 10% by volume) integral viscoelastic damping patches was investigated at NASA-Lewis Research Center. Ten different plate sets were experimentally spin tested and the resulting data was analyzed. The first-four plate sets investigated tailoring patch locations and definitions to damp specific modes on spinning flat graphite/epoxy plates as a function of rotational speed. The remaining six plate sets investigated damping patch size and location on specific modes of pretwisted (30 degrees) graphite/epoxy plates. The results reveal that: (1) significant amount of damping can be added using a small amount of damping material, (2) the damped plates experienced no failures up to the tested 28,000 g's and 750,000 cycles, (3) centrifugal loads caused an increase in bending frequencies and corresponding reductions in bending damping levels that are proportional to the bending stiffness increase, and (4) the centrifugal loads caused a decrease in torsion natural frequency and increase in damping levels of pretwisted composite plates.

  13. The Dynamics of a Parametrically Driven Damped Pendulum

    NASA Astrophysics Data System (ADS)

    Das, A.; Kumar, K.

    2015-05-01

    Ordered and chaotic states of a parametrically driven planar pendulum with viscous damping are numerically investigated. The damping makes the number of chaotic windows fewer but with larger width. Stroboscopic maps of the chaotic motion of the pendulum, driven either subharmonically or harmonically, show strange attractors with inversion symmetry in the phase plane.

  14. Transient growth of damped baroclinic waves

    NASA Technical Reports Server (NTRS)

    Farrell, B.

    1985-01-01

    A solution of the linear initial value problem for the model of Eady with the inclusion of Ekman damping is presented. This model exhibits large transient growth of perturbations for synoptic cyclone spatial scales and a realistic value of the vertical turbulent viscosity coefficient despite the fact that all normal modes are exponentially decaying. Similar results are found for the model of Charney, implying that exponential instability cannot, in general, serve to explain the occurrence of cyclone scale disturbances in midlatiudes. Rather these are seen to arise additionally and perhaps predominantly from the release of mean flow potential energy by favorably configured initial perturbations. The Petterssen criterion for midlatitude cyclogenesis results naturally from this development as does its extension to the formation of subtropical monsoon depressions. Implications for the maintenance of midlatitude temperature gradients are discussed.

  15. Vibration damping with active carbon fiber structures

    NASA Astrophysics Data System (ADS)

    Neugebauer, Reimund; Kunze, Holger; Riedel, Mathias; Roscher, Hans-Jürgen

    2007-04-01

    This paper presents a mechatronic strategy for active reduction of vibrations on machine tool struts or car shafts. The active structure is built from a carbon fiber composite with embedded piezofiber actuators that are composed of piezopatches based on the Macro Fiber Composite (MFC) technology, licensed by NASA and produced by Smart Material GmbH in Dresden, Germany. The structure of these actuators allows separate or selectively combined bending and torsion, meaning that both bending and torsion vibrations can be actively absorbed. Initial simulation work was done with a finite element model (ANSYS). This paper describes how state space models are generated out of a structure based on the finite element model and how controller codes are integrated into finite element models for transient analysis and the model-based control design. Finally, it showcases initial experimental findings and provides an outlook for damping multi-mode resonances with a parallel combination of resonant controllers.

  16. OBSERVED DAMPING OF THE SLOW MAGNETOACOUSTIC MODE

    SciTech Connect

    Marsh, M. S.; Walsh, R. W.; De Moortel, I. E-mail: mmarsh@uclan.ac.uk

    2011-06-20

    Spectroscopic and stereoscopic imaging observations of slow magnetoacoustic wave propagation within a coronal loop are investigated to determine the decay length scale of the slow magnetoacoustic mode in three dimensions and the density profile within the loop system. The slow wave is found to have an e-folding decay length scale of 20,000{sup +4000}{sub -3000} km with a uniform density profile along the loop base. These observations place quantitative constraints on the modeling of wave propagation within coronal loops. Theoretical forward modeling suggests that magnetic field line divergence is the dominant damping factor and thermal conduction is insufficient, given the observed parameters of the coronal loop temperature, density, and wave mode period.

  17. Electromagnetic damping of neutron star oscillations

    NASA Technical Reports Server (NTRS)

    Mcdermott, P. N.; Savedoff, M. P.; Van Horn, H. M.; Zweibel, E. G.; Hansen, C. J.

    1984-01-01

    A simple model of magnetic field perturbations driven by neutron star oscillations is used to estimate the electromagnetic power radiated by g-modes and torsional oscillations. The calculation assumes that the neutron star has a frozen-in magnetic field which is perturbed by the oscillatory motions of the surface. The disturbances propagate into the vacuum as outgoing electromagnetic waves. The relative effectiveness of Joule heating of the neutron star crust by pulsation-induced electric currents is estimated. It is concluded that electromagnetic damping is the dominant energy dissipation mechanism for quadrupole g-mode oscillations of neutron stars. For dipole spheroidal modes, both electromagnetic radiation and Joule heating are important, and there is no gravitational radiation emitted by these modes.

  18. Eddy-current-damped microelectromechanical switch

    DOEpatents

    Christenson, Todd R.; Polosky, Marc A.

    2009-12-15

    A microelectromechanical (MEM) device is disclosed that includes a shuttle suspended for movement above a substrate. A plurality of permanent magnets in the shuttle of the MEM device interact with a metal plate which forms the substrate or a metal portion thereof to provide an eddy-current damping of the shuttle, thereby making the shuttle responsive to changes in acceleration or velocity of the MEM device. Alternately, the permanent magnets can be located in the substrate, and the metal portion can form the shuttle. An electrical switch closure in the MEM device can occur in response to a predetermined acceleration-time event. The MEM device, which can be fabricated either by micromachining or LIGA, can be used for sensing an acceleration or deceleration event (e.g. in automotive applications such as airbag deployment or seat belt retraction).

  19. Eddy-current-damped microelectromechanical switch

    DOEpatents

    Christenson, Todd R.; Polosky, Marc A.

    2007-10-30

    A microelectromechanical (MEM) device is disclosed that includes a shuttle suspended for movement above a substrate. A plurality of permanent magnets in the shuttle of the MEM device interact with a metal plate which forms the substrate or a metal portion thereof to provide an eddy-current damping of the shuttle, thereby making the shuttle responsive to changes in acceleration or velocity of the MEM device. Alternately, the permanent magnets can be located in the substrate, and the metal portion can form the shuttle. An electrical switch closure in the MEM device can occur in response to a predetermined acceleration-time event. The MEM device, which can be fabricated either by micromachining or LIGA, can be used for sensing an acceleration or deceleration event (e.g. in automotive applications such as airbag deployment or seat belt retraction).

  20. A damped simple pendulum of constant amplitude

    NASA Astrophysics Data System (ADS)

    Abdelkader, Mostafa A.

    1984-03-01

    A simple pendulum acted on by gravity and subjected to a resistance proportional to the velocity of the bob is considered. If the length of the string and the mass of the bob are held constant, the amplitude of the bob decreases gradually because of the damping. We want to keep the maximum swing of the bob constant for all time; this we achieve by varying the length of the string, the mass of the bob or both. The key to the solution of our problem is a second-order nonlinear differential equation having arbitrary nonlinearity and an arbitrary coefficient function, for which we give the exact integral. We also give an application of this differential equation to a boundary-value problem for a nonlinear generalization of a hypergeometric equation.

  1. Impact of Damping Uncertainty on SEA Model Response Variance

    NASA Technical Reports Server (NTRS)

    Schiller, Noah; Cabell, Randolph; Grosveld, Ferdinand

    2010-01-01

    Statistical Energy Analysis (SEA) is commonly used to predict high-frequency vibroacoustic levels. This statistical approach provides the mean response over an ensemble of random subsystems that share the same gross system properties such as density, size, and damping. Recently, techniques have been developed to predict the ensemble variance as well as the mean response. However these techniques do not account for uncertainties in the system properties. In the present paper uncertainty in the damping loss factor is propagated through SEA to obtain more realistic prediction bounds that account for both ensemble and damping variance. The analysis is performed on a floor-equipped cylindrical test article that resembles an aircraft fuselage. Realistic bounds on the damping loss factor are determined from measurements acquired on the sidewall of the test article. The analysis demonstrates that uncertainties in damping have the potential to significantly impact the mean and variance of the predicted response.

  2. Magnetic Damping: Domain Wall Dynamics versus Local Ferromagnetic Resonance

    NASA Astrophysics Data System (ADS)

    Weindler, T.; Bauer, H. G.; Islinger, R.; Boehm, B.; Chauleau, J.-Y.; Back, C. H.

    2014-12-01

    Magnetic relaxation is one of the dominating features of magnetization dynamics. Depending on the magnetic structure and the experimental approach, different magnitudes of the damping parameter are reported even for a given material. In this study, we experimentally address this issue by accessing the damping parameter in the same magnetic nanotracks using different approaches: local ferromagnetic resonance (α =0.0072 ) and field-driven domain wall dynamics (α =0.023 ). The experimental results cannot fully be accounted for by modeling only roughness in micromagnetic simulations. Consequently, we have included nonlocal texture induced damping to the micromagnetic code. We find excellent agreement with the observed increased damping in the vortex structures for the same input Gilbert alpha when texture-induced nonlocal damping is included.

  3. Damping of thermal acoustic oscillations in hydrogen systems

    NASA Technical Reports Server (NTRS)

    Gu, Youfan; Timmerhaus, Klaus D.

    1991-01-01

    Acoustic waves initiated by a large temperature gradient along a tube are defined as thermal acoustic oscillations (TAOs). These oscillations have been damped by introducing such sound absorbing techniques as acoustic filters, resonators, etc.. These devices serve as an acoustic sink that is used to absorb or dissipate the acoustic energy thereby eliminating or damping such oscillations. Several empirical damping techniques, such as attaching a resonator as a side branch or inserting a wire in the tube, have been developed in the past and have provided reasonable success. However, the effect of connecting tube radius, length, and resonator volume on the damping of thermal acoustic oscillations has not been evaluated quantitatively. Further, these methods have not been effective when the oscillating tube radius was relatively large. Detailed theoretical analyses of these techniques including a newly developed method for damping oscillations in a tube of relatively large radius are provided in this presentation.

  4. Vibrational modes and damping in the cochlear partition

    NASA Astrophysics Data System (ADS)

    O'Maoiléidigh, Dáibhid; Hudspeth, A. J.

    2015-12-01

    It has been assumed in models of cochlear mechanics that the primary role of the cochlear active process is to counteract the damping of the basilar membrane, the vibration of which is much larger in a living animal than post mortem. Recent measurements of the relative motion between the reticular lamina and basilar membrane imply that this assumption is incorrect. We propose that damping is distributed throughout the cochlear partition rather than being concentrated in the basilar membrane. In the absence of significant damping, the cochlear partition possesses three modes of vibration, each associated with its own locus of Hopf bifurcations. Hair-cell activity can amplify any of these modes if the system's operating point lies near the corresponding bifurcation. The distribution of damping determines which mode of vibration predominates. For physiological levels of damping, only one mode produces a vibration pattern consistent with experimental measurements of relative motion and basilar-membrane motion.

  5. Prevalence of dampness and mold in European housing stock.

    PubMed

    Haverinen-Shaughnessy, Ulla

    2012-09-01

    An assessment of the prevalence of dampness and mold in European housing stock was carried out. It is based on general indicators of dampness and mold in dwellings reported in the literature. The assessment relies on recent studies, taking into account regional and climatic differences, as well as differences in study design, methodology, and definitions. Data were available from 31 European countries. Weighted prevalence estimates are 12.1% for damp, 10.3% for mold, 10.0% for water damage, and 16.5% for a combination of any one or more indicators. Significant (up to 18%) differences were observed for dampness and mold prevalence estimates depending on survey factors, region, and climate. In conclusion, dampness and/or mold problems could be expected to occur in one of every six of the dwellings in Europe. Prevalence and occurrence of different types of problems may vary across geographical areas, which can be partly explained by differences in climate.

  6. Nonlinear damping model for flexible structures. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Zang, Weijian

    1990-01-01

    The study of nonlinear damping problem of flexible structures is addressed. Both passive and active damping, both finite dimensional and infinite dimensional models are studied. In the first part, the spectral density and the correlation function of a single DOF nonlinear damping model is investigated. A formula for the spectral density is established with O(Gamma(sub 2)) accuracy based upon Fokker-Planck technique and perturbation. The spectral density depends upon certain first order statistics which could be obtained if the stationary density is known. A method is proposed to find the approximate stationary density explicitly. In the second part, the spectral density of a multi-DOF nonlinear damping model is investigated. In the third part, energy type nonlinear damping model in an infinite dimensional setting is studied.

  7. Damping strapdown inertial navigation system based on a Kalman filter

    NASA Astrophysics Data System (ADS)

    Zhao, Lin; Li, Jiushun; Cheng, Jianhua; Hao, Yong

    2016-11-01

    A damping strapdown inertial navigation system (DSINS) can effectively suppress oscillation errors of strapdown inertial navigation systems (SINSs) and improve the navigation accuracy of SINSs. Aiming at overcoming the disadvantages of traditional damping methods, a DSINS, based on a Kalman filter (KF), is proposed in this paper. Using the measurement data of accelerometers and calculated navigation parameters during the navigation process, the expression of the observation equation is derived. The calculation process of the observation in both the internal damping state and the external damping state is presented. Finally, system oscillation errors are compensated by a KF. Simulation and test results show that, compared with traditional damping methods, the proposed method can reduce system overshoot errors and shorten the convergence time of oscillation errors effectively.

  8. Passively Damped Laminated Piezoelectric Shell Structures with Integrated Electric Networks

    NASA Technical Reports Server (NTRS)

    Saravanos, Dimitris A.

    1999-01-01

    Multi-field mechanics are presented for curvilinear piezoelectric laminates interfaced with distributed passive electric components. The equations of motion for laminated piezoelectric shell structures with embedded passive electric networks are directly formulated and solved using a finite element methodology. The modal damping and frequencies of the piezoelectric shell are calculated from the poles of the system. Experimental and numerical results are presented for the modal damping and frequency of composite beams with a resistively shunted piezoceramic patch. The modal damping and frequency of plates, cylindrical shells and cylindrical composite blades with piezoelectric-resistor layers are predicted. Both analytical and experimental studies illustrate a unique dependence of modal damping and frequencies on the shunting resistance and show the effect of structural shape and curvature on piezoelectric damping.

  9. Passively Shunted Piezoelectric Damping of Centrifugally-Loaded Plates

    NASA Technical Reports Server (NTRS)

    Duffy, Kirsten P.; Provenza, Andrew J.; Trudell, Jeffrey J.; Min, James B.

    2009-01-01

    Researchers at NASA Glenn Research Center have been investigating shunted piezoelectric circuits as potential damping treatments for turbomachinery rotor blades. This effort seeks to determine the effects of centrifugal loading on passively-shunted piezoelectric - damped plates. Passive shunt circuit parameters are optimized for the plate's third bending mode. Tests are performed both non-spinning and in the Dynamic Spin Facility to verify the analysis, and to determine the effectiveness of the damping under centrifugal loading. Results show that a resistive shunt circuit will reduce resonant vibration for this configuration. However, a tuned shunt circuit will be required to achieve the desired damping level. The analysis and testing address several issues with passive shunt circuit implementation in a rotating system, including piezoelectric material integrity under centrifugal loading, shunt circuit implementation, and tip mode damping.

  10. Damping subsynchronous resonance using superconducting magnetic energy storage unit

    SciTech Connect

    Wang, L.; Lee, S.M.; Huang, C.L. . Dept. of Electrical Engineering)

    1994-12-01

    A novel damping scheme using superconducting magnetic energy storage (SMES) unit is proposed in this paper to damp subsynchronous resonance (SSR) of the IEEE Second Benchmark Model, system-1 which is a widely employed standard model for computer simulation of SSR. The studied system contains a turbine-generator set connected to an infinite bus through two parallel transmission lines, one of which is series-capacitor compensated. In order to stabilize all SSR modes, simultaneous active and reactive power modulation and a proportional-integral-derivative (PID) damping controller designed by modal control theory are proposed for the SMES unit. Frequency-domain approach based on eigenvalue analysis and time-domain approach based on nonlinear-model simulations are performed to validate the effectiveness of the damping method. It can be concluded from the simulation results that the proposed damping scheme can effectively suppress SSR of the studied system.

  11. Flow damping due to stochastization of the magnetic field

    PubMed Central

    Ida, K.; Yoshinuma, M.; Tsuchiya, H.; Kobayashi, T.; Suzuki, C.; Yokoyama, M.; Shimizu, A.; Nagaoka, K.; Inagaki, S.; Itoh, K.; Akiyama, T.; Emoto, M.; Evans, T.; Dinklage, A.; Du, X.; Fujii, K.; Goto, M.; Goto, T.; Hasuo, M.; Hidalgo, C.; Ichiguchi, K.; Ishizawa, A.; Jakubowski, M.; Kamiya, K.; Kasahara, H.; Kawamura, G.; Kato, D.; Kobayashi, M.; Morita, S.; Mukai, K.; Murakami, I.; Murakami, S.; Narushima, Y.; Nunami, M.; Ohdach, S.; Ohno, N.; Osakabe, M.; Pablant, N.; Sakakibara, S.; Seki, T.; Shimozuma, T.; Shoji, M.; Sudo, S.; Tanaka, K.; Tokuzawa, T.; Todo, Y.; Wang, H.; Yamada, H.; Takeiri, Y.; Mutoh, T.; Imagawa, S.; Mito, T.; Nagayama, Y.; Watanabe, K. Y.; Ashikawa, N.; Chikaraishi, H.; Ejiri, A.; Furukawa, M.; Fujita, T.; Hamaguchi, S.; Igami, H.; Isobe, M.; Masuzaki, S.; Morisaki, T.; Motojima, G.; Nagasaki, K.; Nakano, H.; Oya, Y.; Suzuki, Y.; Sakamoto, R.; Sakamoto, M.; Sanpei, A.; Takahashi, H.; Tokitani, M.; Ueda, Y.; Yoshimura, Y.; Yamamoto, S.; Nishimura, K.; Sugama, H.; Yamamoto, T.; Idei, H.; Isayama, A.; Kitajima, S.; Masamune, S.; Shinohara, K.; Bawankar, P. S.; Bernard, E.; von Berkel, M.; Funaba, H.; Huang, X. L.; Ii, T.; Ido, T.; Ikeda, K.; Kamio, S.; Kumazawa, R.; Moon, C.; Muto, S.; Miyazawa, J.; Ming, T.; Nakamura, Y.; Nishimura, S.; Ogawa, K.; Ozaki, T.; Oishi, T.; Ohno, M.; Pandya, S.; Seki, R.; Sano, R.; Saito, K.; Sakaue, H.; Takemura, Y.; Tsumori, K.; Tamura, N.; Tanaka, H.; Toi, K.; Wieland, B.; Yamada, I.; Yasuhara, R.; Zhang, H.; Kaneko, O.; Komori, A.

    2015-01-01

    The driving and damping mechanism of plasma flow is an important issue because flow shear has a significant impact on turbulence in a plasma, which determines the transport in the magnetized plasma. Here we report clear evidence of the flow damping due to stochastization of the magnetic field. Abrupt damping of the toroidal flow associated with a transition from a nested magnetic flux surface to a stochastic magnetic field is observed when the magnetic shear at the rational surface decreases to 0.5 in the large helical device. This flow damping and resulting profile flattening are much stronger than expected from the Rechester–Rosenbluth model. The toroidal flow shear shows a linear decay, while the ion temperature gradient shows an exponential decay. This observation suggests that the flow damping is due to the change in the non-diffusive term of momentum transport. PMID:25569268

  12. Damping of thermal acoustic oscillations in hydrogen systems

    NASA Astrophysics Data System (ADS)

    Gu, Youfan; Timmerhaus, Klaus D.

    Acoustic waves initiated by a large temperature gradient along a tube are defined as thermal acoustic oscillations (TAOs). These oscillations have been damped by introducing such sound absorbing techniques as acoustic filters, resonators, etc.. These devices serve as an acoustic sink that is used to absorb or dissipate the acoustic energy thereby eliminating or damping such oscillations. Several empirical damping techniques, such as attaching a resonator as a side branch or inserting a wire in the tube, have been developed in the past and have provided reasonable success. However, the effect of connecting tube radius, length, and resonator volume on the damping of thermal acoustic oscillations has not been evaluated quantitatively. Further, these methods have not been effective when the oscillating tube radius was relatively large. Detailed theoretical analyses of these techniques including a newly developed method for damping oscillations in a tube of relatively large radius are provided in this presentation.

  13. Magnetic Damping of Solid Solution Semiconductor Alloys

    NASA Technical Reports Server (NTRS)

    Szofran, Frank R.; Benz, K. W.; Croell, Arne; Dold, Peter; Cobb, Sharon D.; Volz, Martin P.; Motakef, Shariar

    1999-01-01

    The objective of this study is to: (1) experimentally test the validity of the modeling predictions applicable to the magnetic damping of convective flows in electrically conductive melts as this applies to the bulk growth of solid solution semiconducting materials; and (2) assess the effectiveness of steady magnetic fields in reducing the fluid flows occurring in these materials during processing. To achieve the objectives of this investigation, we are carrying out a comprehensive program in the Bridgman and floating-zone configurations using the solid solution alloy system Ge-Si. This alloy system has been studied extensively in environments that have not simultaneously included both low gravity and an applied magnetic field. Also, all compositions have a high electrical conductivity, and the materials parameters permit reasonable growth rates. An important supporting investigation is determining the role, if any, that thermoelectromagnetic convection (TEMC) plays during growth of these materials in a magnetic field. TEMC has significant implications for the deployment of a Magnetic Damping Furnace in space. This effect will be especially important in solid solutions where the growth interface is, in general, neither isothermal nor isoconcentrational. It could be important in single melting point materials, also, if faceting takes place producing a non-isothermal interface. In conclusion, magnetic fields up to 5 Tesla are sufficient to eliminate time-dependent convection in silicon floating zones and possibly Bridgman growth of Ge-Si alloys. In both cases, steady convection appears to be more significant for mass transport than diffusion, even at 5 Tesla in the geometries used here. These results are corroborated in both growth configurations by calculations.

  14. Magnetic Damping of Solid Solution Semiconductor Alloys

    NASA Technical Reports Server (NTRS)

    Szofran, Frank R.; Benz, K. W.; Corell, Arne; Dold, Peter; Cobb, Sharon D.; Volz, Martin P.; Motakef, Shariar

    1998-01-01

    The objective of this study is to conduct the Earth-based research sufficient to successfully propose a flight experiment (1) to experimentally test the validity of the modeling predictions applicable to the magnetic damping of convective flows in conductive melts as this applies to the bulk growth of solid solution semiconducting materials in the reduced gravitational levels available in low Earth orbit and (2) to assess the effectiveness of steady magnetic fields in reducing the fluid flows occurring in these materials during space processing. To achieve the objectives of this investigation, we are carrying out a comprehensive program in the Bridgman and floating-zone configurations using the solid solution alloy system Ge-Si. This alloy system was chosen because it has been studied extensively in environments that have not simultaneously included both low gravity and an applied magnetic field. Also, all compositions have a high electrical conductivity, and the materials parameters permit high growth rates compared to many other commonly studied alloy semiconductors. An important supporting investigation is determining the role, if any, that thermoelectromagnetic convection (TEMC) plays during growth of these materials in a magnetic field. Some compositional anomalies observed by us in magnetic grown crystals can only be explained by TEMC; this has significant implications for the deployment of a Magnetic Damping Furnace in space. This effect will be especially important in solid solutions where the growth interface is, in general, neither isothermal nor isoconcentrational. It could be important in single melting point materials, also, if faceting takes place producing a non-isothermal interface.

  15. Damp housing and asthma: a case-control study

    PubMed Central

    Williamson, I. J.; Martin, C. J.; McGill, G.; Monie, R. D.; Fennerty, A. G.

    1997-01-01

    BACKGROUND: Several epidemiological studies have reported a higher prevalence of respiratory symptoms in subjects living in damp housing, but links with specific respiratory diseases such as asthma have not been satisfactorily established. METHODS: One hundred and two subjects with physician diagnosed asthma and 196 age and sex matched controls were interviewed; 222 (75%) then agreed to have their dwelling surveyed for dampness. The prevalence of both self-reported and observed dampness in the homes of the asthmatic subjects and controls were compared. Both asthma and the severity of the dampness were quantified so that the possibility of a dose-response relationship could be investigated. RESULTS: Asthmatic subjects reported dampness in their current (odds ratio (OR) 1.92, 95% confidence interval (CI) 1.18 to 3.12) and previous (OR 2.11, 95% CI 1.29 to 3.47) dwellings more frequently than control subjects. The surveyor confirmed dampness in 58 of 90 (64%) dwellings of asthmatic subjects compared with 54 of 132 (41%) dwellings of control subjects (OR 2.62, 95% CI 1.50 to 4.55). This association persisted after controlling for socioeconomic and other confounding variables (adjusted OR 3.03, 95% CI 1.65 to 5.57). The severity of asthma was found to correlate statistically with measures of total dampness (r = 0.30, p = 0.006) and mould growth (r = 0.23, p = 0.035) in the dwelling. Patients living in homes with confirmed areas of dampness had greater evidence of airflow obstruction than those living in dry homes (mean difference in forced expiratory volume in one second (FEV1) 10.6%, 95% CI 1.0 to 20.3). CONCLUSIONS: Asthma is associated with living in damp housing and there appears to be a dose-response relationship. Action to improve damp housing conditions may therefore favourably influence asthma morbidity. 


 PMID:9093337

  16. Experimental Observations on Material Damping at Cryogenic Temperatures

    NASA Technical Reports Server (NTRS)

    Peng, Chia-Yen; Levine, Marie; Shido, Lillian; Leland, Robert

    2004-01-01

    This paper describes a unique experimental facility designed to measure damping of materials at cryogenic temperatures for the Terrestrial Planet Finder (TPF) mission at the Jet Propulsion Laboratory. The test facility removes other sources of damping in the measurement by avoiding frictional interfaces, decoupling the test specimen from the support system, and by using a non-contacting measurement device. Damping data reported herein are obtained for materials (Aluminum, Aluminum/Terbium/Dysprosium, Titanium, Composites) vibrating in free-free bending modes with low strain levels (< 10(exp -6) ppm). The fundamental frequencies of material samples are ranged from 14 to 202 Hz. To provide the most beneficial data relevant to TPF-like precision optical space missions, the damping data are collected from room temperatures (around 293 K) to cryogenic temperatures (below 40 K) at unevenly-spaced intervals. More data points are collected over any region of interest. The test data shows a significant decrease in viscous damping at cryogenic temperatures. The cryogenic damping can be as low as 10(exp -4) %, but the amount of the damping decrease is a function of frequency and material. However, Titanium 15-3-3-3 shows a remarkable increase in damping at cryogenic temperatures. It demonstrates over one order of magnitude increase in damping in comparison to Aluminum 6061-T6. Given its other properties (e.g., good stiffness and low conductivity) this may prove itself to be a good candidate for the application on TPF. At room temperatures, the test data are correlated well with the damping predicted by the Zener theory. However, large discrepancies at cryogenic temperatures between the Zener theory and the test data are observed.

  17. Prognostic and Predictive Value of DAMPs and DAMP-Associated Processes in Cancer

    PubMed Central

    Fucikova, Jitka; Moserova, Irena; Urbanova, Linda; Bezu, Lucillia; Kepp, Oliver; Cremer, Isabelle; Salek, Cyril; Strnad, Pavel; Kroemer, Guido; Galluzzi, Lorenzo; Spisek, Radek

    2015-01-01

    It is now clear that human neoplasms form, progress, and respond to therapy in the context of an intimate crosstalk with the host immune system. In particular, accumulating evidence demonstrates that the efficacy of most, if not all, chemo- and radiotherapeutic agents commonly employed in the clinic critically depends on the (re)activation of tumor-targeting immune responses. One of the mechanisms whereby conventional chemotherapeutics, targeted anticancer agents, and radiotherapy can provoke a therapeutically relevant, adaptive immune response against malignant cells is commonly known as “immunogenic cell death.” Importantly, dying cancer cells are perceived as immunogenic only when they emit a set of immunostimulatory signals upon the activation of intracellular stress response pathways. The emission of these signals, which are generally referred to as “damage-associated molecular patterns” (DAMPs), may therefore predict whether patients will respond to chemotherapy or not, at least in some settings. Here, we review clinical data indicating that DAMPs and DAMP-associated stress responses might have prognostic or predictive value for cancer patients. PMID:26300886

  18. Damped Modes in Plasma Microturbulence: Saturation, Regulation, and Energy Partition

    NASA Astrophysics Data System (ADS)

    Makwana, Kiritkumar D.

    Plasma microturbulence at the scale of the ion gyroradius and smaller is considered to be the primary cause of heat loss in tokamaks. Damped modes are stable roots of the plasma dispersion relation and form an inseparable part of the microturbulent spectrum. We study several microturbulence models that describe vastly different fusion plasmas. All of them show saturation by damped modes that dissipate energy at almost the same rate as the energy injection rate of the unstable modes. Dissipation by damped modes peaks at low wavenumbers where the instability also peaks, distinguishing it from the traditional viscous dissipation mechanism at large wavenumbers. Damped modes are typically found to be important in saturation when their damping rate is not much larger than the instability growth rate. Until now, the regulation of ion temperature gradient driven (ITG) turbulence by zonal flows has been explained using the zonal flow-drift wave shearing paradigm: zonal flow shearing enhances energy transfer from large scale drift waves to smaller, dissipative scales. However, we show, in both fluid and gyrokinetic simulations, that the zonal flows help transfer a majority of the energy injected by the unstable modes to the damped modes, leading to saturation. Although the transfer to damped modes simultaneously excites smaller scales, a significant fraction of the injected energy is dissipated by damped modes in the large-scale, unstable region. This transfer occurs via three-wave interactions that include a zonal flow, an unstable mode and a damped mode. Such interactions dominate due to their coupling coefficients, the strong zonal flow amplitude and their minimum frequency sum that leads to the largest correlation time and enhanced energy transfer. The slew of damped modes in gyrokinetic simulations is analyzed using proper orthogonal decomposition (POD) modes and linear eigenmodes. Spectra of energy and amplitude attenuation rates of damped modes are calculated, showing

  19. The effects of interply damping layers on the dynamic response of composite structures

    NASA Technical Reports Server (NTRS)

    Saravanos, D. A.; Chamis, C. C.

    1991-01-01

    Integrated damping mechanics for composite laminates with constrained interlaminar layers of polymer damping materials are developed. Discrete layer damping mechanics are presented for composite materials with damping layers, in connection with a semi-analytical method for predicting the modal damping in simply-supported specialty composite plates. Several application cases are used to demonstrate the advantages of the method. Damping predictions for graphite-epoxy composite plates of various laminations demonstrate the potential for higher damping than geometrically equivalent aluminum plates. The effects of aspect ratio, damping layer thickness, and fiber volume ratio on static and dynamic characteristics of the composite plate are also investigated.

  20. Flux-driven algebraic damping of diocotron modes

    NASA Astrophysics Data System (ADS)

    Chim, Chi Yung; O'Neil, Thomas M.

    2015-06-01

    Recent experiments with pure electron plasmas in a Malmberg-Penning trap have observed the algebraic damping of m = 1 and m = 2 diocotron modes. Transport due to small field asymmetries produces a low density halo of electrons moving radially outward from the plasma core, and the mode damping begins when the halo reaches the resonant radius Rm, where there is a matching of ωm = mωE (Rm) for the mode frequency ωm and E × B-drift rotation frequency ωE. The damping rate is proportional to the flux of halo particles through the resonant layer. The damping is related to, but distinct from, spatial Landau damping, in which a linear wave-particle resonance produces exponential damping. This new mechanism of damping is due to transfer of canonical angular momentum from the mode to halo particles, as they are swept around the "cat's eye" orbits of the resonant wave-particle interaction. This paper provides a simple derivation of the time dependence of the mode amplitudes.

  1. Beliaev damping in quasi-two-dimensional dipolar condensates

    NASA Astrophysics Data System (ADS)

    Wilson, Ryan M.; Natu, Stefan

    2016-05-01

    We study the effects of quasiparticle interactions in a quasi-two-dimensional (quasi-2D), zero-temperature Bose-Einstein condensate of dipolar atoms, which can exhibit a roton-maxon feature in its quasiparticle spectrum. Our focus is the Beliaev damping process, in which a quasiparticle collides with the condensate and resonantly decays into a pair of quasiparticles. Remarkably, the rate for this process exhibits a highly nontrivial dependence on the quasiparticle momentum and the dipolar interaction strength. For weak interactions, low-energy phonons experience no damping, and higher-energy quasiparticles undergo anomalously weak damping. In contrast, the Beliaev damping rates become anomalously large for stronger dipolar interactions, as rotons become energetically accessible as final states. When the dipoles are tilted off the axis of symmetry, the damping rates acquire an anisotropic character. Surprisingly, this anisotropy does not simply track the anisotropy of the dipolar interactions, rather, the mechanisms for damping are qualitatively modified in the anisotropic case. Our study reveals the unconventional nature of Beliaev damping in dipolar condensates, and has important implications for ongoing studies of equilibrium and nonequilibrium dynamics in these systems. Further, our results are relevant for other 2D superfluids with roton excitations, including spin-orbit-coupled Bose gases, magnon condensates, and 4He films.

  2. Flux-driven algebraic damping of diocotron modes

    SciTech Connect

    Chim, Chi Yung; O’Neil, Thomas M.

    2015-06-29

    Recent experiments with pure electron plasmas in a Malmberg-Penning trap have observed the algebraic damping of m = 1 and m = 2 diocotron modes. Transport due to small field asymmetries produces a low density halo of electrons moving radially outward from the plasma core, and the mode damping begins when the halo reaches the resonant radius R{sub m}, where there is a matching of ω{sub m} = mω{sub E} (R{sub m}) for the mode frequency ω{sub m} and E × B-drift rotation frequency ω{sub E}. The damping rate is proportional to the flux of halo particles through the resonant layer. The damping is related to, but distinct from, spatial Landau damping, in which a linear wave-particle resonance produces exponential damping. This new mechanism of damping is due to transfer of canonical angular momentum from the mode to halo particles, as they are swept around the “cat’s eye” orbits of the resonant wave-particle interaction. This paper provides a simple derivation of the time dependence of the mode amplitudes.

  3. Perceptual studies of violin body damping and vibrato.

    PubMed

    Fritz, Claudia; Woodhouse, Jim; Cheng, Felicia P-H; Cross, Ian; Blackwell, Alan F; Moore, Brian C J

    2010-01-01

    This work explored how the perception of violin notes is influenced by the magnitude of the applied vibrato and by the level of damping of the violin resonance modes. Damping influences the "peakiness" of the frequency response, and vibrato interacts with this peakiness by producing fluctuations in spectral content as well as in frequency and amplitude. Initially, it was shown that thresholds for detecting a change in vibrato amplitude were independent of body damping, and thresholds for detecting a change in body damping were independent of vibrato amplitude. A study of perceptual similarity using triadic comparison showed that vibrato amplitude and damping were largely perceived as independent dimensions. A series of listening tests was conducted employing synthesized, recorded, or live performance to probe perceptual responses in terms of "liveliness" and preference. The results do not support the conclusion that liveliness results from the combination of the use of vibrato and a "peaky" violin response. Judgments based on listening to single notes showed inconsistent patterns for liveliness, while preferences were highest for damping that was slightly less than for a reference (real) violin. In contrast, judgments by players based on many notes showed preference for damping close to the reference value.

  4. Cellular Magnesium Matrix Foam Composites for Mechanical Damping Applications

    NASA Astrophysics Data System (ADS)

    Shunmugasamy, Vasanth Chakravarthy; Mansoor, Bilal; Gupta, Nikhil

    2016-01-01

    The damping characteristics of metal alloys and metal matrix composites are relevant to the automotive, aerospace, and marine structures. Use of lightweight materials can help in increasing payload capacity and in decreasing fuel consumption. Lightweight composite materials possessing high damping capabilities that can be designed as structural members can greatly benefit in addressing these needs. In this context, the damping properties of lightweight metals such as aluminum and magnesium and their respective composites have been studied in the existing literature. This review focuses on analyzing the damping properties of aluminum and magnesium alloys and their cellular composites. The damping properties of various lightweight alloys and composites are compared on the basis of their density to understand the potential for weight saving in structural applications. Magnesium alloys are observed to possess better damping properties in comparison to aluminum. However, aluminum matrix syntactic foams reinforced with silicon carbide hollow particles possess a damping capacity and density comparable to magnesium alloy. By using the data presented in the study, composites with specific compositions and properties can be selected for a given application. In addition, the comparison of the results helps in identifying the areas where attention needs to be focused to address the future needs.

  5. Structural dynamics and vibrations of damped, aircraft-type structures

    NASA Technical Reports Server (NTRS)

    Young, Maurice I.

    1992-01-01

    Engineering preliminary design methods for approximating and predicting the effects of viscous or equivalent viscous-type damping treatments on the free and forced vibration of lightly damped aircraft-type structures are developed. Similar developments are presented for dynamic hysteresis viscoelastic-type damping treatments. It is shown by both engineering analysis and numerical illustrations that the intermodal coupling of the undamped modes arising from the introduction of damping may be neglected in applying these preliminary design methods, except when dissimilar modes of these lightly damped, complex aircraft-type structures have identical or nearly identical natural frequencies. In such cases, it is shown that a relatively simple, additional interaction calculation between pairs of modes exhibiting this 'modal response' phenomenon suffices in the prediction of interacting modal damping fractions. The accuracy of the methods is shown to be very good to excellent, depending on the normal natural frequency separation of the system modes, thereby permitting a relatively simple preliminary design approach. This approach is shown to be a natural precursor to elaborate finite element, digital computer design computations in evaluating the type, quantity, and location of damping treatment.

  6. A current type PWM rectifier with active damping function

    SciTech Connect

    Sato, Yukihiko; Kataoka, Teruo

    1995-12-31

    A new control method for current type PWM rectifiers which can provide active damping function is presented. This damping function is effective only on the harmonic components of ac input current selectively. Thus steady state waveform distortion and transient oscillation of the input current are reduced by the active damping effects. The active damping function can be realized by feed-back control of an LC filter connected to the ac side of the rectifier, and it does not require any additional components in the main circuits, permitting a simple circuit configuration. The control system of the proposed PWM rectifier is analyzed by using a simple block diagram developed in the present paper. From the analytical results, the influence of the circuit parameters and control delay on the active damping effects and the stability of the operation is clarified to establish the design method. To confirm the effectiveness of the active damping function, some results of basic experiments are included. As an example of application of the active damping function, the proposed rectifier is applied to reduce the harmonic currents generated by conventional rectifiers operating in parallel with the proposed rectifier. Some experimental results in this application are also included.

  7. A current-type PWM rectifier with active damping function

    SciTech Connect

    Sato, Yukihiko; Kataoka, Teruo

    1996-05-01

    A new control method for current-type pulse-width modulation (PWM) rectifiers which can provide active damping function is presented. This damping function is effective only on the harmonic components of ac input current selectively. Thus steady-state waveform distortion and transient oscillation of the input current are reduced by the active damping effects. The active damping function can be realized by feedback control of an LC filter connected to the ac side of the rectifier, and it does not require any additional components in the main circuits, permitting a simple circuit configuration. The control system of the proposed PWM rectifier is analyzed by using a simple block diagram developed in the present paper. From the analytical results, the influence of the circuit parameters and control delay on the active damping effects and the stability of the operation are clarified to establish the design method. To confirm the effectiveness of the active damping function, some results of basic experiments are included. As an example of application of the active damping function, the proposed rectifier is applied to reduce the harmonic currents generated by conventional rectifiers operating in parallel with the proposed rectifier. Some experimental results in this application are also included.

  8. Perceptual studies of violin body damping and vibrato.

    PubMed

    Fritz, Claudia; Woodhouse, Jim; Cheng, Felicia P-H; Cross, Ian; Blackwell, Alan F; Moore, Brian C J

    2010-01-01

    This work explored how the perception of violin notes is influenced by the magnitude of the applied vibrato and by the level of damping of the violin resonance modes. Damping influences the "peakiness" of the frequency response, and vibrato interacts with this peakiness by producing fluctuations in spectral content as well as in frequency and amplitude. Initially, it was shown that thresholds for detecting a change in vibrato amplitude were independent of body damping, and thresholds for detecting a change in body damping were independent of vibrato amplitude. A study of perceptual similarity using triadic comparison showed that vibrato amplitude and damping were largely perceived as independent dimensions. A series of listening tests was conducted employing synthesized, recorded, or live performance to probe perceptual responses in terms of "liveliness" and preference. The results do not support the conclusion that liveliness results from the combination of the use of vibrato and a "peaky" violin response. Judgments based on listening to single notes showed inconsistent patterns for liveliness, while preferences were highest for damping that was slightly less than for a reference (real) violin. In contrast, judgments by players based on many notes showed preference for damping close to the reference value. PMID:20058996

  9. Direct structural damping identification method using complex FRFs

    NASA Astrophysics Data System (ADS)

    Arora, Vikas

    2015-03-01

    Most of the identification methods are based only on the viscous damping model and uses modal data. In this paper, a new FRF-based direct structural damping identification method is proposed. The proposed method is a direct method and identifies structural damping matrix explicitly. As the new method is a FRF-based method, it overcomes the problem of closely spaced modes for damping identification. The accuracy of identified structural damping matrix depends upon the accuracy of finite element model. In this paper, FRF-based model updating method is used to obtain accurate mass and stiffness matrices. Thus, the procedure to obtain accurate structural damping matrix is a two-step procedure. In the first step, mass and stiffness matrices are updated and in the second step, structural damping matrix is identified using updated mass and stiffness matrices, which are obtained in the previous step. The effectiveness of the new method is demonstrated by three numerical examples and one experimental example. The numerical studies of lumped mass system, fixed-fixed beam and L-shaped frame structure are carried out. The effects of coordinate incompleteness, ill-conditioning and robustness of method under presence of noise are investigated. The proposed method is able to predict FRFs accurately for the frequency range covering the modes considered. However, beyond the considered modes, the predicted FRFs do not match the experimental FRFs. It is suggested in this work that ill-conditioning problem should be dealt by considering all the modes in the frequency range of interest. The performance of the proposed method is investigated for cases of light, medium and heavily damped structures. The numerical studies are followed by experimental case study of cantilever beam structure. The effectiveness of the proposed method is evaluated by comparing the predicted and the experimental FRFs. The results have shown that the proposed method is able to predict accurately the

  10. Damping induced by ferrofluid seals in ironless loudspeaker

    NASA Astrophysics Data System (ADS)

    Pinho, M.; Génevaux, J. M.; Dauchez, N.; Brouard, B.; Collas, P.; Mézière, H.

    2014-04-01

    Damping induced by ferrofluid seals in ironless loudspeakers is investigated in this paper. The magnetic field is steady but not spatially constant. A model to determine the viscous damping coefficient induced by the ferrofluid seal is derived. It is a function of geometrical parameters and local viscosity of the ferrofluid in which dependence from magnetic field, shear rate and frequency is accounted for. Comparison with experimental results shows a good agreement for the thinner seals. An overestimation of the damping is observed for higher volumes. This discrepancy comes from geometric irregularities of the magnet assembly made out of several tiles.

  11. Electroresponsive aqueous silk protein as "smart" mechanical damping fluid.

    PubMed

    Jose, Rod R; Elia, Roberto; Tien, Lee W; Kaplan, David L

    2014-05-14

    Here we demonstrate the effectiveness of an electroresponsive aqueous silk protein polymer as a smart mechanical damping fluid. The aqueous polymer solution is liquid under ambient conditions, but is reversibly converted into a gel once subjected to an electric current, thereby increasing or decreasing in viscosity. This nontoxic, biodegradable, reversible, edible fluid also bonds to device surfaces and is demonstrated to reduce friction and provide striking wear protection. The friction and mechanical damping coefficients are shown to modulate with electric field exposure time and/or intensity. Damping coefficient can be modulated electrically, and then preserved without continued power for longer time scales than conventional "smart" fluid dampers. PMID:24750065

  12. Damping phenomena in a wire rope vibration isolation system

    NASA Technical Reports Server (NTRS)

    Tinker, M. L.; Cutchins, M. A.

    1992-01-01

    A study is presented of the dynamic characteristics of a wire rope vibration isolation system constructed with helical isolators, with emphasis placed on the analytical modeling of damping mechanisms in the system. An experimental investigation is described in which the static stiffness curve, hysteresis curves, phase plane trajectories, and frequency response curves are obtained. A semiempirical model having nonlinear stiffness, nth-power velocity damping, and variable Coulomb friction damping is developed, and the results are compared to experimental data. Several observations and conclusions are made about the dynamic phenomena in a typical wire rope vibration isolation system based on the experimental and semiempirical results.

  13. Friction damping of flutter in gas turbine engine airfoils

    NASA Technical Reports Server (NTRS)

    Sinha, A.; Griffin, J. H.

    1983-01-01

    This paper investigates the feasibility of using blade-to-ground friction dampers to stabilize flutter in blades. The response of an equivalent one mode model in which the aerodynamic force is represented as negative viscous damping is examined to investigate the following issues: the range of amplitudes over which friction damping can stabilize the response, the maximum negative aerodynamic damping that can be stabilized in such a manner, the effect of simultaneous resonant excitation on these stability limits, and the determination of those damper parameters which will be the best for flutter control.

  14. Damping capacity in shape memory alloy honeycomb structures

    NASA Astrophysics Data System (ADS)

    Boucher, M.-A.; Smith, C. W.; Scarpa, F.; Miller, W.; Hassan, M. R.

    2010-04-01

    SMA honeycombs have been recently developed by several Authors [1, 2] as innovative cellular structures with selfhealing capability following mechanical indentation, unusual deformation (negative Poisson's ratio [3]), and possible enhanced damping capacity due to the natural vibration dissipation characteristics of SMAs under pseudoelastic and superelastic regime. In this work we describe the nonlinear damping effects of novel shape memory alloy honeycomb assemblies subjected to combine mechanical sinusoidal and thermal loading. The SMA honeycomb structures made with Ni48Ti46Cu6 are designed with single and two-phase polymeric components (epoxy), to enhance the damping characteristics of the base SMA for broadband frequency vibration.

  15. Backup nutation damping strategy for the Galileo spacecraft

    NASA Technical Reports Server (NTRS)

    Eke, Fidelis O.; Eke, Estelle M.

    1989-01-01

    A discussion is presented of the design and testing of remedial measures that can be taken to achieve reasonable nutation damping of the Galileo spacecraft in the event of failure of its boom damper in flight. One scheme exploits the effects of payload motion on the nutational stability of a spinning spacecraft. However, the spacecraft-motion-compensation algorithm can only be used if the scan platform bore sight is pointed in a direction chosen to produce rapid damping of spacecraft nutation. A second method suggested for nutation damping is a thruster-based open-loop control algorithm, utilizing a pair of thrusters as actuators.

  16. Damping and support in high-temperature superconducting levitation systems

    DOEpatents

    Hull, John R.; McIver, Carl R.; Mittleider, John A.

    2009-12-15

    Methods and apparatuses to provide improved auxiliary damping for superconducting bearings in superconducting levitation systems are disclosed. In a superconducting bearing, a cryostat housing the superconductors is connected to a ground state with a combination of a damping strip of material, a set of linkage arms to provide vertical support, and spring washers to provide stiffness. Alternately, the superconducting bearing may be supported by a cryostat connected to a ground state by posts constructed from a mesh of fibers, with the damping and stiffness controlled by the fiber composition, size, and mesh geometry.

  17. Investigation of empirical damping laws for the space shuttle

    NASA Technical Reports Server (NTRS)

    Bernstein, E. L.

    1973-01-01

    An analysis of dynamic test data from vibration testing of a number of aerospace vehicles was made to develop an empirical structural damping law. A systematic attempt was made to fit dissipated energy/cycle to combinations of all dynamic variables. The best-fit laws for bending, torsion, and longitudinal motion are given, with error bounds. A discussion and estimate are made of error sources. Programs are developed for predicting equivalent linear structural damping coefficients and finding the response of nonlinearly damped structures.

  18. Dissipationless Damping of Compressive MHD Modes in Twisted Flux Tubes

    NASA Astrophysics Data System (ADS)

    Giagkiozis, I.; Fedun, V.; Verth, G.; Goossens, M. L.; Van Doorsselaere, T.

    2015-12-01

    Axisymmetric modes in straight magentic flux tubes exhibit a cutoff in the long wavelength limit and no damping is predicted. However, as soon as weak magnetic twist is introduced inside as well as outside the magnetic flux tube the cutoff recedes. Furthermore, when density variations are also incomporated within the modelresonant absorption appears. In this work we explore analytically the expected damping times for waves within the Alfven continuum for different solar atmospheric conditions. Based on the results in this work we offer insight on recent observations of sausage wave damping in the chromosphere.

  19. Analytical collisionless damping rate of geodesic acoustic mode

    NASA Astrophysics Data System (ADS)

    Ren, H.; Xu, X. Q.

    2016-10-01

    Collisionless damping of geodesic acoustic mode (GAM) is analytically investigated by considering the finite-orbit-width (FOW) resonance effect to the 3rd order in the gyro-kinetic equations. A concise and transparent expression for the damping rate is presented for the first time. Good agreement is found between the analytical damping rate and the previous TEMPEST simulation result (Xu 2008 et al Phys. Rev. Lett. 100 215001) for systematic q scans. Our result also shows that it is of sufficient accuracy and has to take into account the FOW effect to the 3rd order.

  20. Effects of damping on mode shapes, volume 2

    NASA Technical Reports Server (NTRS)

    Gates, R. M.; Merchant, D. H.; Arnquist, J. L.

    1977-01-01

    Displacement, velocity, and acceleration admittances were calculated for a realistic NASTRAN structural model of space shuttle for three conditions: liftoff, maximum dynamic pressure and end of solid rocket booster burn. The realistic model of the orbiter, external tank, and solid rocket motors included the representation of structural joint transmissibilities by finite stiffness and damping elements. Data values for the finite damping elements were assigned to duplicate overall low-frequency modal damping values taken from tests of similar vehicles. For comparison with the calculated admittances, position and rate gains were computed for a conventional shuttle model for the liftoff condition. Dynamic characteristics and admittances for the space shuttle model are presented.

  1. The Plastic Scintillator Detector of the DAMPE space experiment

    NASA Astrophysics Data System (ADS)

    Sun, Zhiyu

    2016-07-01

    The DArk Matter Explorer (DAMPE) is a satellite based experiment aiming for dark matter search and many other topics astronomy interested. The Plastic Scintillator Detector (PSD) gives DAMPE the ability to measure charge of the crossing particles and separate gamma from electrons, which are necessary for achieving the goals of the experiment. The PSD is composed by 82 scintillator counters and read at both ends by a total of 162 photomultiplier tubes. In this paper, we describe the final design of DAMPE-PSD, the expected performances, and shows some results of the beam test carried on at CERN.

  2. Approach for Selection of Rayleigh Damping Parameters Used for Time History Analysis

    SciTech Connect

    R. E. Spears; S. R. Jensen

    2009-07-01

    Nonlinearities, whether geometric or material, need to be addressed in seismic analysis. One good analysis method that can address these nonlinearities is direct time integration with Rayleigh damping. Modal damping is the damping typically specified in seismic analysis Codes and Standards. Modal damping is constant for all frequencies where Rayleigh damping varies with frequency. An approach is proposed here for selection of Rayleigh damping coefficients to be used in seismic analyses that are consistent with given Modal damping. The approach uses the difference between the modal damping response and the Rayleigh damping response along with effective mass properties of the model being evaluated to match overall system response levels. This paper provides a simple example problem to demonstrate the approach. It also provides results for a finite element model representing an existing piping system. Displacement, acceleration, and stress results are compared from model runs using modal damping and model runs using Rayleigh damping with coefficients selected using the proposed method.

  3. Gravitational wave damping of neutron star wobble

    NASA Astrophysics Data System (ADS)

    Cutler, Curt; Jones, David Ian

    2001-01-01

    We calculate the effect of gravitational wave (GW) back reaction on realistic neutron stars (NS's) undergoing torque-free precession. By ``realistic'' we mean that the NS is treated as a mostly fluid body with an elastic crust, as opposed to a rigid body. We find that GW's damp NS wobble on a time scale τθ~2×105 yr [10- 7/(ΔId/I0)]2(kHz/ νs)4, where νs is the spin frequency and ΔId is the piece of the NS's inertia tensor that ``follows'' the crust's principal axis (as opposed to its spin axis). We give two different derivations of this result: one based solely on energy and angular momentum balance, and another obtained by adding the Burke-Thorne radiation reaction force to the Newtonian equations of motion. This problem was treated long ago by Bertotti and Anile, but their claimed result is wrong. When we convert from their notation to ours, we find that their τθ is too short by a factor of ~105 for the typical cases of interest and even has the wrong sign for ΔId negative. We show where their calculation went astray.

  4. Investigation of damping liquids for aircraft instruments

    NASA Technical Reports Server (NTRS)

    Keulegan, G H

    1929-01-01

    This report covers the results of an investigation carried on at the Bureau of Standards under a research authorization from, and with the financial assistance of, the National Advisory Committee for Aeronautics. The choice of a damping liquid for aircraft instruments is difficult owing to the range of temperature at which aircraft operate. Temperature changes affect the viscosity tremendously. The investigation was undertaken with the object of finding liquids of various viscosities otherwise suitable which had a minimum change in viscosity with temperature. The new data relate largely to solutions. The effect of temperature on the kinematic viscosity of the following liquids and solutions was determined in the temperature interval -18 degrees to +30 degrees C. (1) solutions of animal and vegetable oils in xylene. These were poppy-seed oil, two samples of neat's-foot oils, castor oil, and linseed oil. (2) solutions of mineral oil in xylene. These were Squibb's petrolatum of naphthene base and transformer oil. (3) glycerine solutions in ethyl alcohol and in mixture of 50-50 ethyl alcohol and water. (4) mixtures of normal butyl alcohol with methyl alcohol. (5) individual liquids, kerosene, mineral spirits, xylene, recoil oil. The apparatus consisted of four capillary-tube viscometers, which were immersed in a liquid bath in order to secure temperature control. The method of calibration and the related experimental data are presented.

  5. Emittance and lifetime measurement with damping wigglers

    NASA Astrophysics Data System (ADS)

    Wang, G. M.; Shaftan, T.; Cheng, W. X.; Guo, W.; Ilinsky, P.; Li, Y.; Podobedov, B.; Willeke, F.

    2016-03-01

    National Synchrotron Light Source II (NSLS-II) is a new third-generation storage ring light source at Brookhaven National Laboratory. The storage ring design calls for small horizontal emittance (<1 nm-rad) and diffraction-limited vertical emittance at 12 keV (8 pm-rad). Achieving low value of the beam size will enable novel user experiments with nm-range spatial and meV-energy resolution. The high-brightness NSLS-II lattice has been realized by implementing 30-cell double bend achromatic cells producing the horizontal emittance of 2 nm rad and then halving it further by using several Damping Wigglers (DWs). This paper is focused on characterization of the DW effects in the storage ring performance, namely, on reduction of the beam emittance, and corresponding changes in the energy spread and beam lifetime. The relevant beam parameters have been measured by the X-ray pinhole camera, beam position monitors, beam filling pattern monitor, and current transformers. In this paper, we compare the measured results of the beam performance with analytic estimates for the complement of the 3 DWs installed at the NSLS-II.

  6. Thermostatistics of a damped bimodal particle

    NASA Astrophysics Data System (ADS)

    Medeiros, João R.; Duarte Queirós, Sílvio M.

    2015-12-01

    We study the thermostatistics of a damped bimodal particle, i.e., a particle of mass m subject to a work reservoir that is analytically represented by the telegraph noise. Because of the colored nature of the noise, it does not fit the Lévy-Itô class of stochastic processes, making this system an instance of a nonequilibrium system in contact with a non-Gaussian external reservoir. We obtain the statistical description of the position and velocity, namely in the stationary state, as well as the (time-dependent) statistics of the energy fluxes in the system considering no constraints on the telegraph noise features. With that result we are able to give an account of the statistical properties of the large deviations of the injected and dissipated power that can change from sub-Gaussianity to super-Gaussianity depending on the color of the noise. By properly defining an effective temperature for this system, T , we are capable of obtaining an equivalent entropy production-exchange rate equal to the ratio between the dissipation of the medium, γ , and the mass of the particle, m , a relation that concurs with the case of a standard thermal reservoir at temperature, T =T .

  7. An adaptive selective frequency damping method

    NASA Astrophysics Data System (ADS)

    Jordi, Bastien; Cotter, Colin; Sherwin, Spencer

    2015-03-01

    The selective frequency damping (SFD) method is used to obtain unstable steady-state solutions of dynamical systems. The stability of this method is governed by two parameters that are the control coefficient and the filter width. Convergence is not guaranteed for arbitrary choice of these parameters. Even when the method does converge, the time necessary to reach a steady-state solution may be very long. We present an adaptive SFD method. We show that by modifying the control coefficient and the filter width all along the solver execution, we can reach an optimum convergence rate. This method is based on successive approximations of the dominant eigenvalue of the flow studied. We design a one-dimensional model to select SFD parameters that enable us to control the evolution of the least stable eigenvalue of the system. These parameters are then used for the application of the SFD method to the multi-dimensional flow problem. We apply this adaptive method to a set of classical test cases of computational fluid dynamics and show that the steady-state solutions obtained are similar to what can be found in the literature. Then we apply it to a specific vortex dominated flow (of interest for the automotive industry) whose stability had never been studied before. Seventh Framework Programme of the European Commission - ANADE project under Grant Contract PITN-GA-289428.

  8. Loss of Landau Damping for Bunch Oscillations

    SciTech Connect

    Burov, A.; /Fermilab

    2011-04-11

    Conditions for the existence, uniqueness and stability of self-consistent bunch steady states are considered. For the existence and uniqueness problems, simple algebraic criteria are derived for both the action and Hamiltonian domain distributions. For the stability problem, van Kampen theory is used. The onset of a discrete van Kampen mode means the emergence of a coherent mode without any Landau damping; thus, even a tiny couple-bunch or multi-turn wake is sufficient to drive the instability. The method presented here assumes an arbitrary impedance, RF shape, and beam distribution function. Available areas on the intensity-emittance plane are shown for resistive wall wake and single harmonic, bunch shortening and bunch lengthening RF configurations. Thresholds calculated for the Tevatron parameters and impedance model are in agreement with the observations. These thresholds are found to be extremely sensitive to the small-argument behaviour of the bunch distribution function. Accordingly, a method to increase the LLD threshold is suggested. This article summarizes and extends recent author's publications.

  9. Thermostatistics of a damped bimodal particle.

    PubMed

    Medeiros, João R; Duarte Queirós, Sílvio M

    2015-12-01

    We study the thermostatistics of a damped bimodal particle, i.e., a particle of mass m subject to a work reservoir that is analytically represented by the telegraph noise. Because of the colored nature of the noise, it does not fit the Lévy-Itô class of stochastic processes, making this system an instance of a nonequilibrium system in contact with a non-Gaussian external reservoir. We obtain the statistical description of the position and velocity, namely in the stationary state, as well as the (time-dependent) statistics of the energy fluxes in the system considering no constraints on the telegraph noise features. With that result we are able to give an account of the statistical properties of the large deviations of the injected and dissipated power that can change from sub-Gaussianity to super-Gaussianity depending on the color of the noise. By properly defining an effective temperature for this system, T, we are capable of obtaining an equivalent entropy production-exchange rate equal to the ratio between the dissipation of the medium, γ, and the mass of the particle, m, a relation that concurs with the case of a standard thermal reservoir at temperature, T=T. PMID:26764670

  10. Landau damping of Langmuir twisted waves with kappa distributed electrons

    SciTech Connect

    Arshad, Kashif Aman-ur-Rehman; Mahmood, Shahzad

    2015-11-15

    The kinetic theory of Landau damping of Langmuir twisted modes is investigated in the presence of orbital angular momentum of the helical (twisted) electric field in plasmas with kappa distributed electrons. The perturbed distribution function and helical electric field are considered to be decomposed by Laguerre-Gaussian mode function defined in cylindrical geometry. The Vlasov-Poisson equation is obtained and solved analytically to obtain the weak damping rates of the Langmuir twisted waves in a nonthermal plasma. The strong damping effects of the Langmuir twisted waves at wavelengths approaching Debye length are also obtained by using an exact numerical method and are illustrated graphically. The damping rates of the planar Langmuir waves are found to be larger than the twisted Langmuir waves in plasmas which shows opposite behavior as depicted in Fig. 3 by J. T. Mendoça [Phys. Plasmas 19, 112113 (2012)].

  11. Magnified Damping Under Rashba Spin-Orbit Coupling

    NASA Astrophysics Data System (ADS)

    Tan, Seng Ghee; Jalil, Mansoor B. A.

    2016-03-01

    The spin-orbit coupling spin torque consists of the field-like [S. G. Tan et al., arXiv:0705.3502 (2007).] and the damping-like terms [H. Kurebayashi et al., Nat. Nanotechnol. 9, 211 (2014).] that have been widely studied for applications in magnetic memory. We focus, in this paper, not on the spin-orbit effect producing the above spin torques, but on its magnifying the damping constant of all field-like spin torques. As first-order precession leads to second-order damping, the Rashba constant is naturally co-opted, producing a magnified field-like damping effect. The Landau-Liftshitz-Gilbert equations are written separately for the local magnetization and the itinerant spin, allowing the progression of magnetization to be self-consistently locked to the spin.

  12. Estimation of full modal damping matrices from complex test modes

    NASA Technical Reports Server (NTRS)

    Hasselman, T. K.; Chrostowski, J. D.; Pappa, Richard

    1993-01-01

    This paper describes the refinements of a previously published method for estimating a full modal damping matrix from complex test modes. It also documents application of the refined method to a structure where complex test modes were derived by the ERA method from multi-input random vibration test data. A numerical example based on simulated test data is presented to demonstrate the validity of the method. The application using real data was not successful, presumably because of noise in the small phase angles of the measured complex modes. Alternative test and data reduction procedures are suggested as possible remedies to the problem. A careful analysis of measurement and data processing errors should be made to examine basic feasibility before implementing the alternative procedures. The ability to estimate a full modal damping matrix is considered important for the preflight estimation of on-orbit damping, and for the synthesis of structural damping from substructure tests.

  13. Oil-damped mercury pool makes precise optical alignment tool

    NASA Technical Reports Server (NTRS)

    Thekaekara, M. P.

    1965-01-01

    Mercury pool with a cover layer of high viscosity oil provides a reference reflector for precise alignment of optical instruments. The cover layer effectively damps any ripples in the mercury from support structure vibrations.

  14. Gilbert damping of ferromagnetic metals incorporating inhomogeneous spin dynamics

    SciTech Connect

    Umetsu, Nobuyuki Miura, Daisuke; Sakuma, Akimasa

    2015-05-07

    The effects of inhomogeneous spin dynamics on magnetic damping in ferromagnetic metals are studied. On the basis of linear response theory, we derive the microscopic expression for the Gilbert damping term in a two-dimensional electron gas interacting with the magnetization via exchange coupling in the presence of Rashba spin-orbit coupling (SOC). In the spin wave propagating with the wave vector, q, the behavior of q-dependent damping can be explained in terms of both inter- and intra-band spin excitations. The spatially dependent damping torques originating from Rashba SOC that cancel out in a uniform precession system distort the circular orbit of a magnetization-precession trajectory in the presence of inhomogeneous spin dynamics.

  15. Analysis of coils of wire rope arranged for passive damping

    NASA Technical Reports Server (NTRS)

    Cutchins, M. A.; Cochran, J. E., Jr.; Kumar, K.; Fitz-Coy, N. G.; Tinker, M. L.

    1988-01-01

    Vibration dampers constructed with multiple loops of wire rope are studied. The literature on such devices is reviewed briefly, and dynamic and static models of them are examined. Fundamental and advanced NASTRAN models for wire rope damping are considered.

  16. Influence of damping on quantum interference - An exactly soluble model

    NASA Technical Reports Server (NTRS)

    Caldeira, A. O.; Leggett, A. J.

    1985-01-01

    This paper reports the result of a calculation which shows the effect of damping on the quantum interference of two Gaussian wave packets in a harmonic potential. The influence-functional method, which seems to be the most appropriate one for this kind of calculation, is used. It is shown that quantum-interference effects are severely diminished by the presence of damping even when its influence on the system is only light. The corrections to the undamped formulas are always expressible in terms of the phenomenological damping constant, the temperature (in the high-temperature limit), the cutoff frequency of the reservoir oscillators, and the mean number of quanta of energy intially present in the system. Both weakly and strongly damped systems are analyzed in the regime of low and high temperatures.

  17. Comparison of methods for numerical calculation of continuum damping

    SciTech Connect

    Bowden, G. W.; Hole, M. J.; Dennis, G. R.; Könies, A.; Gorelenkov, N. N.

    2014-05-15

    Continuum resonance damping is an important factor in determining the stability of certain global modes in fusion plasmas. A number of analytic and numerical approaches have been developed to compute this damping, particularly, in the case of the toroidicity-induced shear Alfvén eigenmode. This paper compares results obtained using an analytical perturbative approach with those found using resistive and complex contour numerical approaches. It is found that the perturbative method does not provide accurate agreement with reliable numerical methods for the range of parameters examined. This discrepancy exists even in the limit where damping approaches zero. When the perturbative technique is implemented using a standard finite element method, the damping estimate fails to converge with radial grid resolution. The finite elements used cannot accurately represent the eigenmode in the region of the continuum resonance, regardless of the number of radial grid points used.

  18. Current Driven Magnetic Damping in Dipolar-Coupled Spin System

    NASA Astrophysics Data System (ADS)

    Lee, Sung Chul; Pi, Ung Hwan; Kim, Keewon; Kim, Kwang Seok; Shin, Jaikwang; -in Chung, U.

    2012-07-01

    Magnetic damping of the spin, the decay rate from the initial spin state to the final state, can be controlled by the spin transfer torque. Such an active control of damping has given birth to novel phenomena like the current-driven magnetization reversal and the steady spin precession. The spintronic devices based on such phenomena generally consist of two separate spin layers, i.e., free and pinned layers. Here we report that the dipolar coupling between the two layers, which has been considered to give only marginal effects on the current driven spin dynamics, actually has a serious impact on it. The damping of the coupled spin system was greatly enhanced at a specific field, which could not be understood if the spin dynamics in each layer was considered separately. Our results give a way to control the magnetic damping of the dipolar coupled spin system through the external magnetic field.

  19. Measurements of Aerodynamic Damping in the MIT Transonic Rotor

    NASA Technical Reports Server (NTRS)

    Crawley, E. F.

    1981-01-01

    A method was developed and demonstrated for the direct measurement of aerodynamic forcing and aerodynamic damping of a transonic compressor. The method is based on the inverse solution of the structural dynamic equations of motion of the blade disk system in order to determine the forces acting on the system. The disturbing and damping forces acting on a given blade are determined if the equations of motion are expressed in individual blade coordinates. If the structural dynamic equations are transformed to multiblade coordinates, the damping can be measured for blade disk modes, and related to a reduced frequency and interblade phase angle. In order to measure the aerodynamic damping in this way, the free response to a known excitation is studied.

  20. Mooring Line Damping Estimation for a Floating Wind Turbine

    PubMed Central

    Qiao, Dongsheng; Ou, Jinping

    2014-01-01

    The dynamic responses of mooring line serve important functions in the station keeping of a floating wind turbine (FWT). Mooring line damping significantly influences the global motions of a FWT. This study investigates the estimation of mooring line damping on the basis of the National Renewable Energy Laboratory 5 MW offshore wind turbine model that is mounted on the ITI Energy barge. A numerical estimation method is derived from the energy absorption of a mooring line resulting from FWT motion. The method is validated by performing a 1/80 scale model test. Different parameter changes are analyzed for mooring line damping induced by horizontal and vertical motions. These parameters include excitation amplitude, excitation period, and drag coefficient. Results suggest that mooring line damping must be carefully considered in the FWT design. PMID:25243231

  1. Resummation and the gluon damping rate in hot QCD

    SciTech Connect

    Pisarski, R.D.

    1990-08-01

    At high temperature a consistent perturbative expansion requires the resummation of an infinite subset of loop corrections into an effective expansion. This effective exansion is used to compute the gluon damping rate at leading order. 25 refs.

  2. An Active Damping at Blade Resonances Using Piezoelectric Transducers

    NASA Technical Reports Server (NTRS)

    Choi, Benjamin; Morrison, Carlos; Duffy, Kirsten

    2008-01-01

    The NASA Glenn Research Center (GRC) is developing an active damping at blade resonances using piezoelectric structure to reduce excessive vibratory stresses that lead to high cycle fatigue (HCF) failures in aircraft engine turbomachinery. Conventional passive damping work was shown first on a nonrotating beam made by Ti-6A1-4V with a pair of identical piezoelectric patches, and then active feedback control law was derived in terms of inductor, resister, and capacitor to control resonant frequency only. Passive electronic circuit components and adaptive feature could be easily programmable into control algorithm. Experimental active damping was demonstrated on two test specimens achieving significant damping on tip displacement and patch location. Also a multimode control technique was shown to control several modes.

  3. A damping ring design for the SLAC Next Linear Collider

    SciTech Connect

    Raubenheimer, T.O.; Byrd, J.; Corlett, J.

    1995-05-01

    In this paper, we describe the design of the main damping rings and the positron pre-damping ring for the SLAC Next Linear Collider, a future linear collider with a center-of-mass energy of 0.5 to 1.5 TeV. The rings will operate at an energy of 2 GeV with a maximum repetition rate of 180 Hz. The normalized extracted beam emittances are {gamma}{epsilon}{sub x} = 3 mm-mrad and {gamma}{epsilon}{sub y} = 0.03 mm-mrad. To provide the necessary damping, the rings must damp multiple trains of bunches. Thus, the beam current is large, roughly 1 A. We will present the optical layout, magnet designs, and RF systems, along with the dynamic aperture and required alignment tolerances; collective effects will be discussed in another paper.

  4. A study of material damping in large space structures

    NASA Technical Reports Server (NTRS)

    Highsmith, A. L.; Allen, D. H.

    1989-01-01

    A constitutive model was developed for predicting damping as a function of damage in continuous fiber reinforced laminated composites. The damage model is a continuum formulation, and uses internal state variables to quantify damage and its subsequent effect on material response. The model is sensitive to the stacking sequence of the laminate. Given appropriate baseline data from unidirectional material, and damping as a function of damage in one crossply laminate, damage can be predicted as a function of damage in other crossply laminates. Agreement between theory and experiment was quite good. A micromechanics model was also developed for examining the influence of damage on damping. This model explicitly includes crack surfaces. The model provides reasonable predictions of bending stiffness as a function of damage. Damping predictions are not in agreement with the experiment. This is thought to be a result of dissipation mechanisms such as friction, which are not presently included in the analysis.

  5. Mooring line damping estimation for a floating wind turbine.

    PubMed

    Qiao, Dongsheng; Ou, Jinping

    2014-01-01

    The dynamic responses of mooring line serve important functions in the station keeping of a floating wind turbine (FWT). Mooring line damping significantly influences the global motions of a FWT. This study investigates the estimation of mooring line damping on the basis of the National Renewable Energy Laboratory 5 MW offshore wind turbine model that is mounted on the ITI Energy barge. A numerical estimation method is derived from the energy absorption of a mooring line resulting from FWT motion. The method is validated by performing a 1/80 scale model test. Different parameter changes are analyzed for mooring line damping induced by horizontal and vertical motions. These parameters include excitation amplitude, excitation period, and drag coefficient. Results suggest that mooring line damping must be carefully considered in the FWT design. PMID:25243231

  6. Mooring line damping estimation for a floating wind turbine.

    PubMed

    Qiao, Dongsheng; Ou, Jinping

    2014-01-01

    The dynamic responses of mooring line serve important functions in the station keeping of a floating wind turbine (FWT). Mooring line damping significantly influences the global motions of a FWT. This study investigates the estimation of mooring line damping on the basis of the National Renewable Energy Laboratory 5 MW offshore wind turbine model that is mounted on the ITI Energy barge. A numerical estimation method is derived from the energy absorption of a mooring line resulting from FWT motion. The method is validated by performing a 1/80 scale model test. Different parameter changes are analyzed for mooring line damping induced by horizontal and vertical motions. These parameters include excitation amplitude, excitation period, and drag coefficient. Results suggest that mooring line damping must be carefully considered in the FWT design.

  7. Airborne Cladosporium and other fungi in damp versus reference residences

    NASA Astrophysics Data System (ADS)

    Pasanen, A.-L.; Niininen, M.; Kalliokoski, P.; Nevalainen, A.; Jantunen, M. J.

    Our previous study (Nevalainen et al., 1991, Envir. Int.17, 299-302) showed that airborne counts of total viable fungal spores in damp residences did not remarkably differ from those in reference residences. The results of the present study confirmed this finding. Indoor air spore counts varied considerably from residence to residence and even within the same residence. Thus, the counts were only occasionally high in the damp residences. Counts of airborne Cladosporium spp. spores and yeast cells were significantly higher in the damp residences than in the reference ones. The difference of yeast cell counts between the residence groups was explained by the difference in outdoor air, whereas Cladosporium spp. spores were mainly derived from indoors. Prevalence of Aspergillus spp. spores was also slightly higher in the damp residences than in the reference ones.

  8. Damping Rotor Nutation Oscillations in a Gyroscope with Magnetic Suspension

    NASA Technical Reports Server (NTRS)

    Komarov, Valentine N.

    1996-01-01

    A possibility of an effective damping of rotor nutations by modulating the field of the moment transducers in synchronism with the nutation frequency is considered. The algorithms for forming the control moments are proposed and their application is discussed.

  9. Indirect evidence for Levy walks in squeeze film damping

    SciTech Connect

    Schlamminger, S.; Hagedorn, C. A.; Gundlach, J. H.

    2010-06-15

    Molecular flow gas damping of mechanical motion in confined geometries, and its associated noise, is important in a variety of fields, including precision measurement, gravitational wave detection, and microelectromechanical systems devices. We used two torsion balance instruments to measure the strength and distance-dependence of 'squeeze film' damping. Measured quality factors derived from free decay of oscillation are consistent with gas particle superdiffusion in Levy walks and inconsistent with those expected from traditional Gaussian random walk particle motion. The distance-dependence of squeeze film damping observed in our experiments is in agreement with a parameter-free Monte Carlo simulation. The squeeze film damping of the motion of a plate suspended a distance d away from a parallel surface scales with a fractional power between d{sup -1} and d{sup -2}.

  10. The moment problem and vibrations damping of beams and plates

    NASA Astrophysics Data System (ADS)

    Atamuratov, Andrey G.; Mikhailov, Igor E.; Muravey, Leonid A.

    2016-06-01

    Beams and plates are the elements of different complex mechanical structures, for example, pipelines and aerospace platforms. That is why the problem of damping of their vibrations caused by unwanted perturbations is actual task.

  11. Association of residential dampness and mold with respiratory tract infections and bronchitis: a meta-analysis

    SciTech Connect

    Fisk, William J.; Eliseeva, Ekaterina A.; Mendell, Mark J.

    2010-11-15

    bias was evident. Estimated attributable risk proportions ranged from 8% to 20%. Residential dampness and mold are associated with substantial and statistically significant increases in both respiratory infections and bronchitis. If these associations were confirmed as causal, effective control of dampness and mold in buildings would prevent a substantial proportion of respiratory infections.

  12. Photon and electron Landau damping in quantum plasmas

    NASA Astrophysics Data System (ADS)

    Mendonça, J. T.; Serbeto, A.

    2016-09-01

    Using a quantum kinetic description, we establish a general expression for the dispersion relation of electron plasma waves in the presence of an arbitrary spectrum of electromagnetic waves. This includes both electron and photon Landau damping. The quantum kinetic description allows us to compare directly these two distinct processes, and to show that they are indeed quite similar. The present work also extends previous results on photon Landau damping onto the quantum domain.

  13. Damping a gyro horizon compass by means of newtonmeters

    NASA Astrophysics Data System (ADS)

    Degtiarev, V. G.; Ratafeva, L. S.; Tvaradze, S. V.

    1986-07-01

    An analysis is made of the problem of finding various damping moments that can be generated along axes rigidly coupled with the sensitive elements of a gyro horizon compass. This is done by means of newtonmeters situated on these axes. Expressions are obtained for the moments that should be imposed about the axes of the gyroframe in order to damp the small motions of the compass.

  14. Inverse design of nonlinearity in energy harvesters for optimum damping

    NASA Astrophysics Data System (ADS)

    Ghandchi Tehrani, Maryam; Elliott, S. J.

    2016-09-01

    This paper presents the inverse design method for the nonlinearity in an energy harvester in order to achieve an optimum damping. A single degree-of-freedom electromechanical oscillator is considered as an energy harvester, which is subjected to a harmonic base excitation. The harvester has a limited throw due to the physical constraint of the device, which means that the amplitude of the relative displacement between the mass of the harvester and the base cannot exceed a threshold when the device is driven at resonance and beyond a particular amplitude. This physical constraint requires the damping of the harvester to be adjusted for different excitation amplitudes, such that the relative displacement is controlled and maintained below the limit. For example, the damping can be increased to reduce the amplitude of the relative displacement. For high excitation amplitudes, the optimum damping is, therefore, dependent on the amplitude of the base excitation, and can be synthesised by a nonlinear function. In this paper, a nonlinear function in the form of a bilinear is considered to represent the damping model of the device. A numerical optimisation using Matlab is carried out to fit a curve to the amplitude-dependent damping in order to determine the optimum bilinear model. The nonlinear damping is then used in the time-domain simulations and the relative displacement and the average harvested power are obtained. It is demonstrated that the proposed nonlinear damping can maintain the relative displacement of the harvester at its maximum level for a wide range of excitation, therefore providing the optimum condition for power harvesting.

  15. Landau damping of geodesic acoustic mode in toroidally rotating tokamaks

    SciTech Connect

    Ren, Haijun; Cao, Jintao

    2015-06-15

    Geodesic acoustic mode (GAM) is analyzed by using modified gyro-kinetic (MGK) equation applicable to low-frequency microinstabilities in a rotating axisymmetric plasma. Dispersion relation of GAM in the presence of arbitrary toroidal Mach number is analytically derived. The effects of toroidal rotation on the GAM frequency and damping rate do not depend on the orientation of equilibrium flow. It is shown that the toroidal Mach number M increases the GAM frequency and dramatically decreases the Landau damping rate.

  16. Composite slip table of dissimilar materials for damping longitudinal modes

    DOEpatents

    Gregory, Danny L.; Priddy, Tommy G.; Smallwood, David O.; Woodall, Tommy D.

    1991-01-01

    A vibration slip table for use in a vibration testing apparatus. The table s comprised of at least three composite layers of material; a first metal layer, a second damping layer, and a third layer having a high acoustic velocity relative to the first layer. The different acoustic velocities between the first and third layers cause relative shear displacements between the layers with the second layer damping the displacements between the first and third layers to reduce the table longitudinal vibration modes.

  17. Viscous damping of toroidal angular momentum in tokamaks

    SciTech Connect

    Stacey, W. M.

    2014-09-15

    The Braginskii viscous stress tensor formalism was generalized to accommodate non-axisymmetric 3D magnetic fields in general toroidal flux surface geometry in order to provide a representation for the viscous damping of toroidal rotation in tokamaks arising from various “neoclassical toroidal viscosity” mechanisms. In the process, it was verified that the parallel viscosity contribution to damping toroidal angular momentum still vanishes even in the presence of toroidal asymmetries, unless there are 3D radial magnetic fields.

  18. Measurement Point Selection and Damping Identification of Blisks

    NASA Astrophysics Data System (ADS)

    Holland, Darren E.

    Capturing the motion of an integrally bladed disk or blisk can be very difficult and typically involves finite element models with a large number of degrees of freedom (DOFs). These models employ parameters which are often not well known, for example the damping. Thus, identification techniques are needed to determine the actual damping. Due to wear or manufacturing, nominally cyclically symmetric blisks have slight variations in the mass or stiffness of their components known as mistuning. As a result, the cyclic symmetry is destroyed and vibration energy can be localized around certain regions of the system leading to a larger than expected forced response as compared to the response of the analog cyclically symmetric (or tuned) structure. As a result, the mistuned structure is more susceptible to high cycle fatigue and earlier failure than the tuned structure. Damping plays an important role in investigating the effects of localization, because damping affects the forced response of a mistuned system (in particular, it affects the maximum response amplitude). Current damping identification methods often have difficulty for regions of high modal density. Also, they typically require knowledge of complex eigenvalues and eigenvectors, the actual applied forcing, or energy measurements. Current methods assume that accurate measurement data has been measured, but they do not provide information on how this assumption is realized. This work introduces a measurement point selection method which results in an accurate system identification with minimal experimental and computational cost. In addition, this work proposes new damping identification methods for structural, viscous modal, and component damping models. Addressing existing challenges of current damping identification methods, the proposed methods apply to systems with low or high modal density (such as mistuned blisks), only require knowledge of the forced response, the relative forcing, the mistuning, and a

  19. Damping characteristics of a reentry vehicle at hypersonic velocities

    NASA Astrophysics Data System (ADS)

    Adamov, N. P.; Puzyrev, L. N.; Kharitonov, A. M.; Chasovnikov, E. A.; Dyad'kin, A. A.; Krylov, A. N.

    2014-09-01

    The experimental equipment, model, test conditions, and methods used for determining the streamwise damping on a setup with free oscillations on rolling bearings are described. Characteristics of aerodynamic damping of the model with two positions of the rotation axis and Mach numbers M∞ = 2, 4, and 6 are measured. Irregular oscillations of the model with a greater displacement of the rotation axis with respect to the longitudinal axis are found to arise at M∞ = 2.

  20. Slow-drift motion: Practical estimation of mooring line damping

    SciTech Connect

    Bompais, X.; Boulluec, M. Le; Dekindt, F.; Marin, S.; Molin, B.

    1994-12-31

    A simple method is presented, that permits to calculate the slow-drift damping induced by mooring lines. It is based on a linearization of the catenary line equations. Comparisons are made with experimental results, and with values obtained with a fully non linear code, with a good agreement. An application case is then presented for a storage barge in the Gulf of Guinea, where it is found that mooring lines bring the dominant contribution to the low-frequency damping.

  1. Modeling and Validation of Damped Plexiglas Windows for Noise Control

    NASA Technical Reports Server (NTRS)

    Buehrle, Ralph D.; Gibbs, Gary P.; Klos, Jacob; Mazur, Marina

    2003-01-01

    Windows are a significant path for structure-borne and air-borne noise transmission in general aviation aircraft. In this paper, numerical and experimental results are used to evaluate damped plexiglas windows for the reduction of structure-borne and air-borne noise transmitted into the interior of an aircraft. In contrast to conventional homogeneous windows, the damped plexiglas windows were fabricated using two or three layers of plexiglas with transparent viscoelastic damping material sandwiched between the layers. Transmission loss and radiated sound power measurements were used to compare different layups of the damped plexiglas windows with uniform windows of the same nominal thickness. This vibro-acoustic test data was also used for the verification and validation of finite element and boundary element models of the damped plexiglas windows. Numerical models are presented for the prediction of radiated sound power for a point force excitation and transmission loss for diffuse acoustic excitation. Radiated sound power and transmission loss predictions are in good agreement with experimental data. Once validated, the numerical models were used to perform a parametric study to determine the optimum configuration of the damped plexiglas windows for reducing the radiated sound power for a point force excitation.

  2. Improving capacitance/damping ratio in a capacitive MEMS transducer

    NASA Astrophysics Data System (ADS)

    Dias, Rosana A.; Rocha, Luis A.

    2014-01-01

    Damping forces play an important role in capacitive MEMS (microelectromechanical systems) behavior, and typical damper design (parallel-plates) cannot address the design conflict between increase in electrical capacitance and damping reduction. Squeeze-film damping in in-plane parallel-plate MEMS is discussed here and a novel damper geometry for gap-varying parallel-plates is introduced and used to increase the capacitance/damping ratio. The new geometry is compared with a typical parallel-plate design for an silicon-on-insulator process (25 µm thick) and experimental data shows an approximate 25% to 50% reduction for the damping coefficient in structures with 500 µm long dampers (for a gap variation between 0.75 and 3.75 µm), in agreement with computational fluid dynamics simulations, without significantly affecting the capacitance value (∼4% reduction). Preliminary simulations to study the role of the different geometric parameters involved in the improved geometry are also performed and reveal that the channel width is the most critical value for effective damping reduction.

  3. Passive damping and velocity sensing using magnetostrictive transduction

    NASA Astrophysics Data System (ADS)

    Fenn, Ralph C.; Gerver, Michael J.

    1994-05-01

    Magnetostrictive Terfenol-D transducers are an attractive alternative to viscoelastic dampers, and electrodynamic and piezoelectric actuators for damping and self-sensing. These advantages include high stiffness and primary load carrying capability, high power density, low voltages, and low temperature sensitivity. Terfenol-D converts 50 percent of the transducer strain energy into magnetic field energy. Because the Terfenol-D transducer is a primary load carrying member, large amounts of structural energy are converted into magnetic field energy. This magnetic field energy is converted into electric energy by a surrounding coil and dissipated in a resistor to provide damping. The voltage developed in the surrounding coil is proportional to the strain rate of the magnetostrictive material, thus producing a velocity signal. This velocity signal can be used for colocated active damping by controlling coil current based on coil voltage induced by transducer velocity. Experiments using a Terfenol-D actuator capable of 65 microns motion and 1,000 N force showed modal loss factors to 0.22 (relative damping to 0.11) and velocity sensing scale factors to 183 volts/(meter/sec). Room temperature tests of a transducer designed for 77 degree(s)K use showed only 20 percent reductions in damping and velocity signals. Magnetic modeling supports the damping and sensing observations.

  4. Damping capacity of TiNi-based shape memory alloys

    NASA Astrophysics Data System (ADS)

    Rong, L. J.; Jiang, H. C.; Liu, S. W.; Zhao, X. Q.

    2007-07-01

    Damping capacity is another primary characteristic of shape memory alloys (SMA) besides shape memory effect and superelasticity. Damping behavior of Ti-riched TiNi SMA, porous TiNi SMA and a novel TiNi/AlSi composite have been investigated using dynamic mechanical analyzer (DMA) in this investigation. All these alloys are in martensitic state at room temperature and thus possess the high potential application value. Ti 50.2Ni 49.8 SMA has better damping capacity in pure martensitic state and phase transformation region due to the motion of martensite twin interface. As a kind of promising material for effective dampers and shock absorbing devices, porous TiNi SMA can exhibit higher damping capacity than the dense one due to the existence of the three-dimensioned connecting pore structure. It is found that the internal friction of porous TiNi SMA mainly originates from microplastic deformation and mobility of martensite interface and increases with the increase of the porosity. A novel TiNi/AlSi composite has been developed successfully by infiltrating AlSi alloy into the open pores of porous TiNi alloy with 60% porosity through compression casting. It shows the same phase transformation characteristics as the porous TiNi alloy. The damping capacity of the composite has been increased and the compressive strength has been also promoted remarkably. Suggestions for developing higher damping alloys based on TiNi shape memory alloy are proposed in this paper.

  5. Design and responses of Butterworth and critically damped digital filters.

    PubMed

    Robertson, D Gordon E; Dowling, James J

    2003-12-01

    For many years the Butterworth lowpass filter has been used to smooth many kinds of biomechanical data, despite the fact that it is underdamped and therefore overshoots and/or undershoots data during rapid transitions. A comparison of the conventional Butterworth filter with a critically damped filter shows that the critically damped filter not only removes the undershooting and overshooting, but has a superior rise time during rapid transitions. While analog filters always create phase distortion, both the critically damped and Butterworth filters can be modified to become zero-lag filters when the data are processed in both the forward and reverse directions. In such cases little improvement is realized by applying multiple passes. The Butterworth filter has superior 'roll-off' (attenuation of noise above the cutoff frequency) than the critically damped filter, but by increasing the number of passes of the critically damped filter the same 'roll-off' can be achieved. In summary, the critically damped filter was shown to have superior performance in the time domain than the Butterworth filter, but for data that need to be double differentiated (e.g. displacement data) the Butterworth filter may still be the better choice.

  6. On eigenproblem solution of damped vibrations associated with gyroscopic moments

    NASA Astrophysics Data System (ADS)

    ElBeheiry, E. M.

    2009-02-01

    A new efficient approach is presented for solving the quadratic eigenvalue problem of weakly, nonproportionally damped vibration systems. In the analysis of these systems, gyroscopic moments and external damping are both considered. Traditional restriction of symmetry of inertia, damping and stiffness matrices is slightly relaxed. A second-order perturbation theory is developed such that the perturbed solution is based on the eigensolution of an unperturbed subproblem. This subproblem considers the unperturbed system in two different forms: (i) a conservative, gyroscopic part of an original problem, or (ii) a nonconservative, gyroscopic part of an original problem that is proportionally damped. To cope with asymmetry of the system matrices, a Duncan's like state formulation is used to bring these matrices into a suitable form for perturbations. Two numerical examples are introduced for explaining the detailed implementation of the presented approach. Additionally, a practical problem of rotor supported by two tilting pad-bearings is investigated. The eigensolutions obtained by the current approach match, to a great extent, other solutions obtained by time-consuming exact methods. The investigation procedure given here gives a framework to handle vibration problems of weakly nonproportional damping and/or weakly asymmetric inertia, damping and stiffness matrices.

  7. Vibration and damping characteristics of cylindrical shells with active constrained layer damping treatments

    NASA Astrophysics Data System (ADS)

    Zheng, Ling; Zhang, Dongdong; Wang, Yi

    2011-02-01

    In this paper, the application of active constrained layer damping (ACLD) treatments is extended to the vibration control of cylindrical shells. The governing equation of motion of cylindrical shells partially treated with ACLD treatments is derived on the basis of the constitutive equations of elastic, piezoelectric and visco-elastic materials and an energy approach. The damping of a visco-elastic layer is modeled by the complex modulus formula. A finite element model is developed to describe and predict the vibration characteristics of cylindrical shells partially treated with ACLD treatments. A closed-loop control system based on proportional and derivative feedback of the sensor voltage generated by the piezo-sensor of the ACLD patches is established. The dynamic behaviors of cylindrical shells with ACLD treatments such as natural frequencies, loss factors and responses in the frequency domain are further investigated. The effects of several key parameters such as control gains, location and coverage of ACLD treatments on vibration suppression of cylindrical shells are also discussed. The numerical results indicate the validity of the finite element model and the control strategy approach. The potential of ACLD treatments in controlling vibration and sound radiation of cylindrical shells used as major critical structures such as cabins of aircraft, hulls of submarines and bodies of rockets and missiles is thus demonstrated.

  8. A study of damping in fiber-reinforced composites

    NASA Astrophysics Data System (ADS)

    Chandra, Rakesh; Singh, S. P.; Gupta, K.

    2003-05-01

    Damping contributions from the viscoelastic matrix, interphase and the dissipation resulting from damage sites are considered to evaluate composite material damping coefficients in various loading modes. The paper presents the results of the FEM/Strain energy investigations carried out to predict anisotropic-damping matrix comprising of loss factors η11, η22, η12 and η23 considering the dissipation of energy due to fiber and matrix (two phase) and correlate the same with various micromechanical theories. Damping in three phase (i.e., fiber-interphase-matrix) composite is also calculated as an attempt to understand the effect of interphase. The contribution of energy dissipation due to sliding at the fiber-matrix interface is incorporated to evaluate its effect on η11, η22, η12 and η23 in fiber-reinforced composite having damage in the form of hairline debonding. Comparative studies of the various micromechanical theories/models with FEM/Strain energy method for the prediction of damping coefficients have shown consistency when both the effect of variable nature of stress and the fiber interaction is considered. Parametric damping studies for three phase composite have shown that the change in properties of fiber, matrix and interphase leads to a change in the magnitude of effectiveness of interphase, but the manner in which the interphase would affect the various loss factors depends predominately upon whether the hard or soft interphase is chosen. Analysis of the effect of damage on composite damping indicates that it is sensitive to its orientation and type of loading.

  9. New semi-active damping concept using eddy currents

    NASA Astrophysics Data System (ADS)

    Sodano, Henry A.; Inman, Daniel J.; Belvin, W. K.

    2005-05-01

    A damping effect can be induced on a conductive structure that is vibrating in a magnetic field. This damping effect is caused by the eddy currents that are induced in the material due to a time varying magnetic field. The density of these currents is directly related to the velocity of the conductor in the magnetic field. However, once the currents are formed the internal resistance of the conductive material causes them to dissipate into heat, resulting in a removal of energy from the system and a damping effect. In a previous study, a permanent magnetic was fixed in a location such that the poling axis was perpendicular to the beam's motion and the radial magnetic flux was used to passively suppress the beam"s vibration. Using this passive damping concept and the idea that the damping force is directly related to the velocity of the conductor, a new semi-active damping mechanism will be created. This new damper will function by allowing the position of the magnet to change relative to the beam and thus allowing the net velocity between the two to be maximized and the damping force significantly increased. Using this concept, a model of both the passive and active portion of the system will be developed, allowing the beams response to be simulated. To verify the accuracy of this model, experiments will be performed that demonstrate both the accuracy of the model and the effectiveness of this semi-active control system for use in suppressing the transverse vibration of a structure.

  10. Frequency and damping rate of fast sausage waves

    SciTech Connect

    Farahani, S. Vasheghani; Van Doorsselaere, T.; Goossens, M.; Hornsey, C.

    2014-02-01

    We investigate the frequency and damping rate of fast axisymmetric waves that are subject to wave leakage for a one-dimensional magnetic cylindrical structure in the solar corona. We consider the ideal magnetohydrodynamic (MHD) dispersion relation for axisymmetric MHD waves superimposed on a straight magnetic cylinder in the zero β limit, similar to a jet or loop in the solar corona. An analytic study accompanied by numerical calculations has been carried out to model the frequency, damping rate, and phase speed of the sausage wave around the cut-off frequency and in the long wavelength limit. Analytic expressions have been obtained based on equations around the points of interest. They are linear approximations of the dependence of the sausage frequency on the wave number around the cut-off wavelength for both leaky and non-leaky regimes and in the long wavelength limit. Moreover, an expression for the damping rate of the leaky sausage wave has been obtained both around the cut-off frequency and in the long wavelength limit. These analytic results are compared with numerical computations. The expressions show that the complex frequencies are mainly dominated by the density ratio. In addition, it is shown that the damping eventually becomes independent of the wave number in the long wavelength limit. We conclude that the sausage mode damping directly depends on the density ratios of the internal and external media where the damping declines in higher density contrasts. Even in the long wavelength limit, the sausage mode is weakly damped for high-density contrasts. As such, sausage modes could be observed for a significant number of periods in high-density contrast loops or jets.

  11. Landau damping of magnetospherically reflected whistlers

    NASA Technical Reports Server (NTRS)

    Thorne, Richard M.; Horne, Richard B.

    1994-01-01

    Unducted VLF signals produced by lightning activity can form a population of magnetospherically reflected (MR) whistlers in the inner magnetosphere. It has been suggested recently that in the absence of significant attenuation such waves could merge into a broadband continuum with sufficient intensity to account for plasmaspheric hiss. To test this conjecture we have evaluated the path-integrated attenuation of MR whistlers along representative ray paths using the HOTRAY code. Using a realistic plasma distribution modeled on in-situ data, we find that the majority of MR waves experience significant damping after a few transits across the equator. This is primarily due to Landau resonance with suprathermal (0.1-1 keV) electrons. The attenuation is most pronounced for waves that propagate through the outer plasmasphere; this can readily account for the infrequent occurrence of multiple-hop MR waves for L greater than or equal to 3.5. Selected waves that originate at intermediate latitudes (15 deg is less than or equal to lambda is less than or equal to 35 deg) and whose ray paths are confined to the inner plasma- sphere may experience up to 10 magnetospheric reflections before substantial attentuation occurs. These waves should form the population of observed MR waves. Wave attenuation becomes more pronounced at higher frequencies; this can account for the absence of multiple-hop waves above 5 kHz. Weakly attenuated MR waves tend to migrate outward to the L shell, where their frequency is comparable to the equatorial lower hybrid frequency. The enhanced concentration of waves due to a merging of ray paths would produce a spectral feature that rises in frequency at lower L. This is quite distinct from the reported properties of plasmaspheric hiss, which maintains a constant frequency band throughout the entire plasmasphere. Furthermore, in the absence of mode conversion, waves below 500 Hz, which often form an important if not dominant part of the spectral properties

  12. Characterization of NiTi Shape Memory Damping Elements designed for Automotive Safety Systems

    NASA Astrophysics Data System (ADS)

    Strittmatter, Joachim; Clipa, Victor; Gheorghita, Viorel; Gümpel, Paul

    2014-07-01

    Actuator elements made of NiTi shape memory material are more and more known in industry because of their unique properties. Due to the martensitic phase change, they can revert to their original shape by heating when subjected to an appropriate treatment. This thermal shape memory effect (SME) can show a significant shape change combined with a considerable force. Therefore such elements can be used to solve many technical tasks in the field of actuating elements and mechatronics and will play an increasing role in the next years, especially within the automotive technology, energy management, power, and mechanical engineering as well as medical technology. Beside this thermal SME, these materials also show a mechanical SME, characterized by a superelastic plateau with reversible elongations in the range of 8%. This behavior is based on the building of stress-induced martensite of loaded austenite material at constant temperature and facilitates a lot of applications especially in the medical field. Both SMEs are attended by energy dissipation during the martensitic phase change. This paper describes the first results obtained on different actuator and superelastic NiTi wires concerning their use as damping elements in automotive safety systems. In a first step, the damping behavior of small NiTi wires up to 0.5 mm diameter was examined at testing speeds varying between 0.1 and 50 mm/s upon an adapted tensile testing machine. In order to realize higher testing speeds, a drop impact testing machine was designed, which allows testing speeds up to 4000 mm/s. After introducing this new type of testing machine, the first results of vertical-shock tests of superelastic and electrically activated actuator wires are presented. The characterization of these high dynamic phase change parameters represents the basis for new applications for shape memory damping elements, especially in automotive safety systems.

  13. Hydro-dynamic damping theory in flowing water

    NASA Astrophysics Data System (ADS)

    Monette, C.; Nennemann, B.; Seeley, C.; Coutu, A.; Marmont, H.

    2014-03-01

    Fluid-structure interaction (FSI) has a major impact on the dynamic response of the structural components of hydroelectric turbines. On mid-head to high-head Francis runners, the rotor-stator interaction (RSI) phenomenon always has to be considered carefully during the design phase to avoid operational issues later on. The RSI dynamic response amplitudes are driven by three main factors: (1) pressure forcing amplitudes, (2) excitation frequencies in relation to natural frequencies and (3) damping. The prediction of the two first factors has been largely documented in the literature. However, the prediction of fluid damping has received less attention in spite of being critical when the runner is close to resonance. Experimental damping measurements in flowing water on hydrofoils were presented previously. Those results showed that the hydro-dynamic damping increased linearly with the flow. This paper presents development and validation of a mathematical model, based on momentum exchange, to predict damping due to fluid structure interaction in flowing water. The model is implemented as an analytical procedure for simple structures, such as cantilever beams, but is also implemented in more general ways using three different approaches for more complex structures such as runner blades: a finite element procedure, a CFD modal work based approach and a CFD 1DOF approach. The mathematical model and all three implementation approaches are shown to agree well with experimental results.

  14. Analysis of event-related potentials (ERP) by damped sinusoids.

    PubMed

    Demiralp, T; Ademoglu, A; Istefanopulos, Y; Gülçür, H O

    1998-06-01

    Several researchers propose that event-related potentials (ERPs) can be explained by a superposition of transient oscillations at certain frequency bands in response to external or internal events. The transient nature of the ERP is more suitable to be modelled as a sum of damped sinusoids. These damped sinusoids can be completely characterized by four sets of parameters, namely the amplitude, the damping coefficient, the phase and the frequency. The Prony method is used to estimate these parameters. In this study, the long-latency auditory-evoked potentials (AEP) and the auditory oddball responses (P300) of 10 healthy subjects are analysed by this method. It is shown that the original waveforms can be reconstructed by summing a small number of damped sinusoids. This allows for a parsimonious representation of the ERPs. Furthermore, the method shows that the oddball target responses contain higher amplitude, slower delta and slower damped theta components than those of the AEPs. With this technique, we show that the differentiation of sensory and cognitive potentials are not inherent in their overall frequency content but in their frequency components at certain bands.

  15. Wave-Number-Dependent Gilbert Damping in Metallic Ferromagnets.

    PubMed

    Li, Y; Bailey, W E

    2016-03-18

    A wave-number-dependent dissipative term to magnetization dynamics, mirroring the conservative term associated with exchange, has been proposed recently for ferromagnetic metals. We present measurements of wave-number-(k-)dependent Gilbert damping in three metallic ferromagnets, NiFe, Co, and CoFeB, using perpendicular spin wave resonance up to 26 GHz. In the thinnest films accessible, where classical eddy-current damping is negligible, size effects of Gilbert damping for the lowest and first excited modes support the existence of a k^{2} term. The new term is clearly separable from interfacial damping typically attributed to spin pumping. Higher-order modes in thicker films do not show evidence of enhanced damping, attributed to a complicating role of conductivity and inhomogeneous broadening. Our extracted magnitude of the k^{2} term, Δα_{kE}^{*}=Δα_{0}^{*}+A_{k}^{*}k^{2}, where A_{k}^{*}=0.08-0.1  nm^{2} in the three materials, is an order of magnitude lower than that identified in prior experiments on patterned elements.

  16. Preliminary on-orbit results of trigger system for DAMPE

    NASA Astrophysics Data System (ADS)

    Zhang, Yongqiang; Chang, Jin; Guo, Jian hua; Dong, TieKuang; Liu, Yang

    2016-07-01

    The Dark Matter Particle Explorer (DAMPE), Chinese first high energy cosmic ray explorer in space, has been successfully launched at Jiuquan Satellite Launch Center, with the mission of searching dark matter particle. Large energy range for electron/gamma, good energy resolution, and excellent PID ability, make DAMPE to be the most promising detector so far to find the signal of dark matter. DAMPE consists of four sub-detectors: Plastic Scintillation detector, Silicon-Tungsten tracker, BGO calorimeter and Neutron detector. The hit signals generated by the BGO calorimeter and the trigger board (in DAQ) constitute the trigger system of DAMPE, which will generate trigger signals for the four sub-detectors to start data acquisition. The trigger system reduces the trigger rates on orbit from about 1kHz to 70~100Hz, that releases the stress of DAQ transmitting data to ground. In this paper, we will introduce the trigger system of DAMPE, and present some preliminary on-orbit results e.g. trigger efficiency, together with the beam test results at CERN and the simulation results as comparison.

  17. Wave-Number-Dependent Gilbert Damping in Metallic Ferromagnets

    NASA Astrophysics Data System (ADS)

    Li, Y.; Bailey, W. E.

    2016-03-01

    A wave-number-dependent dissipative term to magnetization dynamics, mirroring the conservative term associated with exchange, has been proposed recently for ferromagnetic metals. We present measurements of wave-number-(k -)dependent Gilbert damping in three metallic ferromagnets, NiFe, Co, and CoFeB, using perpendicular spin wave resonance up to 26 GHz. In the thinnest films accessible, where classical eddy-current damping is negligible, size effects of Gilbert damping for the lowest and first excited modes support the existence of a k2 term. The new term is clearly separable from interfacial damping typically attributed to spin pumping. Higher-order modes in thicker films do not show evidence of enhanced damping, attributed to a complicating role of conductivity and inhomogeneous broadening. Our extracted magnitude of the k2 term, Δ αkE *=Δ α0*+Ak*k2, where Ak*=0.08 - 0.1 nm2 in the three materials, is an order of magnitude lower than that identified in prior experiments on patterned elements.

  18. Damping of High-temperature Shape Memory Alloys

    NASA Technical Reports Server (NTRS)

    Duffy, Kirsten P.; Padula, Santo A., II; Scheiman, Daniel A.

    2008-01-01

    Researchers at NASA Glenn Research Center have been investigating high temperature shape memory alloys as potential damping materials for turbomachinery rotor blades. Analysis shows that a thin layer of SMA with a loss factor of 0.04 or more would be effective at reducing the resonant response of a titanium alloy beam. Two NiTiHf shape memory alloy compositions were tested to determine their loss factors at frequencies from 0.1 to 100 Hz, at temperatures from room temperature to 300 C, and at alternating strain levels of 34-35x10(exp -6). Elevated damping was demonstrated between the M(sub s) and M(sub f) phase transformation temperatures and between the A(sub s) and A(sub f) temperatures. The highest damping occurred at the lowest frequencies, with a loss factor of 0.2-0.26 at 0.1 Hz. However, the peak damping decreased with increasing frequency, and showed significant temperature hysteresis in heating and cooling. Keywords: High-temperature, shape memory alloy, damping, aircraft engine blades, NiTiHf

  19. Eddy damping effect of additional conductors in superconducting levitation systems

    NASA Astrophysics Data System (ADS)

    Jiang, Zhao-Fei; Gou, Xiao-Fan

    2015-12-01

    Passive superconducting levitation systems consisting of a high temperature superconductor (HTSC) and a permanent magnet (PM) have demonstrated several fascinating applications such as the maglev system, flywheel energy storage. Generally, for the HTSC-PM levitation system, the HTSC with higher critical current density Jc can obtain larger magnetic force to make the PM levitate over the HTSC (or suspended below the HTSC), however, the process of the vibration of the levitated PM, provides very limited inherent damping (essentially hysteresis). To improve the dynamic stability of the levitated PM, eddy damping of additional conductors can be considered as the most simple and effective approach. In this article, for the HTSC-PM levitation system with an additional copper damper attached to the HTSC, we numerically and comprehensively investigated the damping coefficient c, damping ratio, Joule heating of the copper damper, and the vibration frequency of the PM as well. Furthermore, we comparatively studied four different arrangements of the copper damper, on the comprehensive analyzed the damping effect, efficiency (defined by c/VCu, in which VCu is the volume of the damper) and Joule heating, and finally presented the most advisable arrangement.

  20. Fermion damping in a fermion-scalar plasma

    SciTech Connect

    Boyanovsky, D.; Wang, S.; de Vega, H.J.; Lee, D.; Ng, Y.J.

    1999-05-01

    In this article we study the dynamics of fermions in a fermion-scalar plasma. We begin by obtaining the effective in-medium Dirac equation in real time which is fully renormalized and causal and leads to the initial value problem. For a heavy scalar we find the novel result that the {ital decay} of the scalar into fermion pairs in the medium leads to damping of the fermionic excitations and their in-medium propagation as quasiparticles. That is, the fermions acquire a width due to the decay of the heavier scalar in the medium. We find the damping rate to lowest order in the Yukawa coupling for arbitrary values of scalar and fermion masses, temperature and fermion momentum. An all-order expression for the damping rate in terms of the exact quasiparticle wave functions is established. A kinetic Boltzmann approach to the relaxation of the fermionic distribution function confirms the damping of fermionic excitations as a consequence of the induced decay of heavy scalars in the medium. A linearization of the Boltzmann equation near equilibrium clearly displays the relationship between the damping rate of fermionic mean fields and the fermion interaction rate to lowest order in the Yukawa coupling directly in real time. {copyright} {ital 1999} {ital The American Physical Society}

  1. The frictionless damping of a piston in thermodynamics

    NASA Astrophysics Data System (ADS)

    Bringuier, E.

    2015-09-01

    The paper revisits Rüchardt’s experiment and the two-chamber variant of Clark and Katz, where the oscillating motion of a freely sliding piston involves the adiabatic exponent of the gas enclosed in a thermally isolated chamber. While the common theoretical account of the experiment correctly predicts the frequency of the oscillation, the damping is usually ascribed to a linear frictional force of an undetermined mechanical nature. In this paper, we argue that the irreversibility of the damped motion calls for a thermodynamical treatment involving dissipation (entropy production). The theory of Rüchardt’s experiment is reworked at the undergraduate level by allowing entropy to change owing to heat transfer into or out of the chamber. It is calculated that a linear heat transfer can explain the observed damping without assuming any mechanical friction. The calculation is quantitatively supported by an experiment. It is also calculated that the mechanical and thermal equilibrations occur at the same rate. Besides possibly improving Rüchardt and Clark-and-Katz apparatuses by shedding light on the damping, the paper helps to better grasp thermodynamics, and how to use entropy, by constrasting the mechanical and thermodynamical reasonings on the example of the damped motion of a piston.

  2. Experimental Investigation of Temperature-Dependent Gilbert Damping in Permalloy Thin Films

    NASA Astrophysics Data System (ADS)

    Zhao, Yuelei; Song, Qi; Yang, See-Hun; Su, Tang; Yuan, Wei; Parkin, Stuart S. P.; Shi, Jing; Han, Wei

    2016-03-01

    The Gilbert damping of ferromagnetic materials is arguably the most important but least understood phenomenological parameter that dictates real-time magnetization dynamics. Understanding the physical origin of the Gilbert damping is highly relevant to developing future fast switching spintronics devices such as magnetic sensors and magnetic random access memory. Here, we report an experimental study of temperature-dependent Gilbert damping in permalloy (Py) thin films of varying thicknesses by ferromagnetic resonance. From the thickness dependence, two independent contributions to the Gilbert damping are identified, namely bulk damping and surface damping. Of particular interest, bulk damping decreases monotonically as the temperature decreases, while surface damping shows an enhancement peak at the temperature of ~50 K. These results provide an important insight to the physical origin of the Gilbert damping in ultrathin magnetic films.

  3. Study of modal coupling procedures for the shuttle: A matrix method for damping synthesis

    NASA Technical Reports Server (NTRS)

    Hasselman, T. K.

    1972-01-01

    The damping method was applied successfully to real structures as well as analytical models. It depends on the ability to determine an appropriate modal damping matrix for each substructure. In the past, modal damping matrices were assumed diagonal for lack of being able to determine the coupling terms which are significant in the general case of nonproportional damping. This problem was overcome by formulating the damped equations of motion as a linear perturbation of the undamped equations for light structural damping. Damped modes are defined as complex vectors derived from the complex frequency response vectors of each substructure and are obtained directly from sinusoidal vibration tests. The damped modes are used to compute first order approximations to the modal damping matrices. The perturbation approach avoids ever having to solve a complex eigenvalue problem.

  4. Spatial damping identification in the frequency domain-A theoretical and experimental comparison

    NASA Astrophysics Data System (ADS)

    Brumat, Matija; Slavič, Janko; Boltežar, Miha

    2016-08-01

    This paper deals with spatial damping identification methods. In contrast to the commonly used damping methods (modal, proportional) the spatial damping information improves structural models with a known location of the damping sources. The Lee-Kim, Chen-Ju-Tsuei, Fritzen IV and local equation of motion methods were theoretically and experimentally compared. Experimentally, the spatial damping identification was tested against: modal and spatial incompleteness, differences in viscous and hysteretic damping models, the performance of identification methods and the effect of damping treatments. It was found that for a structure with a known equation of motion (beam, plate) the local equation of motion method is more efficient and gives a more precise location of the damping. Full frequency response function (FRF) matrix methods can also identify the spatial damping, but are more demanding because the numerical and measurement effort increases with n2, where n is the number of measurement points and, consequently, the size of the FRF matrix.

  5. Experimental Investigation of Temperature-Dependent Gilbert Damping in Permalloy Thin Films

    PubMed Central

    Zhao, Yuelei; Song, Qi; Yang, See-Hun; Su, Tang; Yuan, Wei; Parkin, Stuart S. P.; Shi, Jing; Han, Wei

    2016-01-01

    The Gilbert damping of ferromagnetic materials is arguably the most important but least understood phenomenological parameter that dictates real-time magnetization dynamics. Understanding the physical origin of the Gilbert damping is highly relevant to developing future fast switching spintronics devices such as magnetic sensors and magnetic random access memory. Here, we report an experimental study of temperature-dependent Gilbert damping in permalloy (Py) thin films of varying thicknesses by ferromagnetic resonance. From the thickness dependence, two independent contributions to the Gilbert damping are identified, namely bulk damping and surface damping. Of particular interest, bulk damping decreases monotonically as the temperature decreases, while surface damping shows an enhancement peak at the temperature of ~50 K. These results provide an important insight to the physical origin of the Gilbert damping in ultrathin magnetic films. PMID:26961411

  6. Building America

    SciTech Connect

    Brad Oberg

    2010-12-31

    IBACOS researched the constructability and viability issues of using high performance windows as one component of a larger approach to building houses that achieve the Building America 70% energy savings target.

  7. Active damping performance of the KAGRA seismic attenuation system prototype

    NASA Astrophysics Data System (ADS)

    Fujii, Yoshinori; Sekiguchi, Takanori; Takahashi, Ryutaro; Aso, Yoichi; Barton, Mark; Erasmo Peña Arellano, Fabián; Shoda, Ayaka; Akutsu, Tomotada; Miyakawa, Osamu; Kamiizumi, Masahiro; Ishizaki, Hideharu; Tatsumi, Daisuke; Hirata, Naoatsu; Hayama, Kazuhiro; Okutomi, Koki; Miyamoto, Takahiro; Ishizuka, Hideki; DeSalvo, Riccardo; Flaminio, Raffaele

    2016-05-01

    The Large-scale Cryogenic Gravitational wave Telescope (formerly LCGT now KAGRA) is presently under construction in Japan. This May we assembled a prototype of the seismic attenuation system (SAS) for the beam splitter and the signal recycling mirrors of KAGRA, which we call Type-B SAS, and evaluated its performance at NAOJ (Mitaka, Toyko). We investigated its frequency response, active damping performance, vibration isolation performance and long-term stability both in and out of vacuum. From the frequency response test and the active damping performance test, we confirmed that the SAS worked as we designed and that all mechanical resonances which could disturb lock acquisition and observation are damped within 1 minute, which is required for KAGRA, by the active controls.

  8. Quantum mechanism of nonlocal Gilbert damping in magnetic trilayers

    NASA Astrophysics Data System (ADS)

    Barati, Ehsan; Cinal, Marek

    2015-06-01

    A fully quantum-mechanical calculation of the Gilbert damping constant α in magnetic trilayers is done by employing the torque-correlation formula within a realistic tight-binding model. A remarkable enhancement of α in Co/NM1/NM2 trilayers is obtained due to adding the caps NM2=Pd, Pt, and it decays with the thickness of the spacers NM1=Cu, Ag, Au in agreement with experiment. Nonlocal origin of the Gilbert damping is visualized with its atomic layer contributions. It is shown that magnetization in Co is damped remotely by strong spin-orbit coupling in NM2 via quantum states with large amplitude in both Co and NM2.

  9. Aerodynamic pitching damping of vehicle-inspired bluff bodies

    NASA Astrophysics Data System (ADS)

    Tsubokura, Makoto; Cheng, Seeyuan; Nakashima, Takuji; Nouzawa, Takahide; Okada, Yoshihiro

    2010-11-01

    Aerodynamic damping mechanism of road vehicles subjected to pitching oscillation was investigated by using large-eddy simulation technique. The study was based on two kinds of simplified vehicle models, which represent real sedan-type vehicles with different pitching stability in the on-road test. The simplified vehicle modes were developed so as to reproduce the characteristic flow structures above the trunk deck of the real vehicles measured in a wind-tunnel at the static case without oscillation. The forced sinusoidal pitching oscillation was imposed on the models and their pitching damping factors were evaluated through the phase-averaged pitching moment. Then flow structures in the wake of the models were extracted and its contribution to the damping mechanism was discussed. It was found that slight difference of the front and rear pillars' shape drastically affects the flow structures in the wake of the models, which enhance or restrain the vehicles' pitching instability.

  10. Damping augmentation of helicopter rotors using magnetorheological dampers

    NASA Astrophysics Data System (ADS)

    Zhao, Yongsheng

    This dissertation describes an investigation exploring the use of magnetorheological (MR) dampers to augment the stability of helicopter rotors. Helicopters with advanced soft in-plane rotors are susceptible to ground resonance instabilities due to the coupling of the lightly damped rotor lag modes and fuselage modes. Traditional passive lag dampers, such as hydraulic or elastomeric dampers, can be used to alleviate these instabilities. However, these passive dampers suffer from the disadvantages that they produce large damper loads in forward flight conditions. These damper forces increase fatigue loads and reduce component life. Thus, it is desirable to have lag dampers controllable or adaptable, so that the damper can apply loads only when needed. MR fluid based dampers have recently been considered for helicopter lag damping augmentation because the forces generated by these dampers can be controlled by an applied magnetic field. In this dissertation, control schemes to integrate MR dampers with helicopters are developed and the influences of the MR dampers on rotorcraft ground resonance are studied. Specifically, the MR dampers are incorporated into the ground resonance model in two ways: using a linear equivalent viscous damping and using a nonlinear damper model. The feasibility of using MR dampers to stabilize ground resonance is studied. The open loop on-off control is utilized where MR dampers are turned on over RPM where ground resonance occurs, and turned off otherwise. To further explore the damping control ability of MR dampers, the nonlinear semi-active closed loop feedback control strategies are developed: feedback linearization control and sliding mode control. The performance of the two control strategies is evaluated using two examples: to stabilize an unstable rotor and to augment the stability of a marginally stable rotor. In addition, the robustness of the closed loop control strategies is studied using two cases: damper degradation and

  11. Nanoscale shape-memory alloys for ultrahigh mechanical damping.

    PubMed

    San Juan, Jose; Nó, Maria L; Schuh, Christopher A

    2009-07-01

    Shape memory alloys undergo reversible transformations between two distinct phases in response to changes in temperature or applied stress. The creation and motion of the internal interfaces between these phases during such transformations dissipates energy, making these alloys effective mechanical damping materials. Although it has been shown that reversible phase transformations can occur in nanoscale volumes, it is not known whether these transformations have a sample size dependence. Here, we demonstrate that the two phases responsible for shape memory in Cu-Al-Ni alloys are more stable in nanoscale pillars than they are in the bulk. As a result, the pillars show a damping figure of merit that is substantially higher than any previously reported value for a bulk material, making them attractive for damping applications in nanoscale and microscale devices. PMID:19581892

  12. Stability, vibration and passive damping of partially restrained imperfect columns

    NASA Technical Reports Server (NTRS)

    Razzaq, Z.; Voland, R. T.; Bush, H. G.; Mikulas, M. M., Jr.

    1983-01-01

    A theoretical and experimental study of slender tubular columns for possible use in space structures is conducted in the presence of partial rotational end restraints. Explicit formulas are derived for computing the buckling load and the lowest natural frequency of perfectly straight uniform elastic members with rotational end restraints possessing linear moment-rotation characteristics. An exact solution in the form of a transcendental equation, and a numerical solution using second-order finite-differences are also presented. The presence of an initial imperfection is also incorporated into the numerical procedure. Vibration tests are conducted on an imperfect tubular steel member in the absence of an axial load. A damping concept consisting of a string-mass assembly is explored. Three passive damping configurations involving combinations of three lead shots were investigated. The three lead shot configurations provided considerably greater damping than the single lead shot.

  13. New contributions to transit-time damping in multidimensional systems

    NASA Technical Reports Server (NTRS)

    Robinson, P. A.

    1989-01-01

    The existence of two previously unrecognized contributions to transit-time damping in systems of more than one dimension is demonstrated and discussed. It is shown that these contributions cannot be treated by one-dimensional analyses unless it is assumed that the gradient of the field perpendicular to itself always vanishes. Such an assumption is unjustified in general and the new contributions can dominate damping by fast particles in more general situations. Analytic expressions obtained using a Born approximation are found to be in excellent agreement with numerical test-particle calculations of transit-time damping for a variety of field configurations. These configurations include those of a resonance layer and of a spherical wave packet, which approximates a collapsing wave packet in a strongly turbulent plasma. It is found that the fractional power absorption can be strongly enhanced in non-slablike field configurations.

  14. Thermal and damping behaviour of magnetic shape memory alloy composites

    NASA Astrophysics Data System (ADS)

    Glock, Susanne; Michaud, Véronique

    2015-06-01

    Single crystals of ferromagnetic shape memory alloys (MSMA) exhibit magnetic field and stress induced strains via energy dissipating twinning. Embedding single crystalline MSMA particles into a polymer matrix could thus produce composites with enhanced energy dissipation, suitable for damping applications. Composites of ferromagnetic, martensitic or austenitic Ni-Mn-Ga powders embedded in a standard epoxy matrix were produced by casting. The martensitic powder composites showed a crystal structure dependent damping behaviour that was more dissipative than that of austenitic powder or Cu-Ni reference powder composites and than that of the pure matrix. The loss ratio also increased with increasing strain amplitude and decreasing frequency, respectively. Furthermore, Ni-Mn-Ga powder composites exhibited an increased damping behaviour at the martensite/austenite transformation temperature of the Ni-Mn-Ga particles in addition to that at the glass transition temperature of the epoxy matrix, creating possible synergetic effects.

  15. Damping of prominence longitudinal oscillations due to mass accretion

    NASA Astrophysics Data System (ADS)

    Ruderman, Michael S.; Luna, Manuel

    2016-06-01

    We study the damping of longitudinal oscillations of a prominence thread caused by the mass accretion. We suggested a simple model describing this phenomenon. In this model we considered a thin curved magnetic tube filled with the plasma. The prominence thread is in the central part of the tube and it consists of dense cold plasma. The parts of the tube at the two sides of the thread are filled with hot rarefied plasma. We assume that there are flows of rarefied plasma toward the thread caused by the plasma evaporation at the magnetic tube footpoints. Our main assumption is that the hot plasma is instantaneously accommodated by the thread when it arrives at the thread, and its temperature and density become equal to those of the thread. Then we derive the system of ordinary differential equations describing the thread dynamics. We solve this system of ordinary differential equations in two particular cases. In the first case we assume that the magnetic tube is composed of an arc of a circle with two straight lines attached to its ends such that the whole curve is smooth. A very important property of this model is that the equations describing the thread oscillations are linear for any oscillation amplitude. We obtain the analytical solution of the governing equations. Then we obtain the analytical expressions for the oscillation damping time and periods. We find that the damping time is inversely proportional to the accretion rate. The oscillation periods increase with time. We conclude that the oscillations can damp in a few periods if the inclination angle is sufficiently small, not larger that 10°, and the flow speed is sufficiently large, not less that 30 km s-1. In the second model we consider the tube with the shape of an arc of a circle. The thread oscillates with the pendulum frequency dependent exclusively on the radius of curvature of the arc. The damping depends on the mass accretion rate and the initial mass of the threads, that is the mass of the

  16. Vibration Damping Via Acoustic Treatment Attached To Vehicle Body Panels

    NASA Astrophysics Data System (ADS)

    Gambino, Carlo

    Currently, in the automotive industry, the control of noise and vibration is the subject of much research, oriented towards the creation of innovative solutions to improve the comfort of the vehicle and to reduce its cost and weight. This thesis fits into this particular framework, as it aims to investigate the possibility of integrating the functions of sound absorptioninsulation and vibration damping in a unique component. At present the bituminous viscoelastic treatments, which are bonded to the car body panels, take charge of the vibration damping, while the sound absorption and insulation is obtained by means of the poroacoustic treatments. The solution proposed here consists of employing porous materials to perform both these functions, thus allowing the partial or complete removal of the viscoelastic damping treatments from the car body. This should decrease the weight of the vehicle, reducing fuel consumption and emissions, and it might also benefit production costs.

  17. Healthy Buildings?

    ERIC Educational Resources Information Center

    Grubb, Deborah

    Health problems related to school buildings can be categorized in five major areas: sick-building syndrome; health-threatening building materials; environmental hazards such as radon gas and asbestos; lead poisoning; and poor indoor air quality due to smoke, chemicals, and other pollutants. This paper provides an overview of these areas,…

  18. Damping of Resonantly Forced Density Waves in Dense Planetary Rings

    NASA Astrophysics Data System (ADS)

    Lehmann, Marius; Schmidt, Jürgen; Salo, Heikki

    2016-10-01

    We address the stability of resonantly forced density waves in dense planetary rings.Already by Goldreich and Tremaine (1978) it has been argued that density waves might be unstable, depending on the relationship between the ring's viscosity and the surface mass density. In the recent paper (Schmidt et al. 2016) we have pointed out that when - within a fluid description of the ring dynamics - the criterion for viscous overstability is satisfied, forced spiral density waves become unstable as well. In this case, linear theory fails to describe the damping.We apply the multiple scale formalism to derive a weakly nonlinear damping relation from a hydrodynamical model.This relation describes the resonant excitation and nonlinear viscous damping of spiral density waves in a vertically integrated fluid disk with density dependent transport coefficients. The model consistently predicts linear instability of density waves in a ring region where the conditions for viscous overstability are met. In this case, sufficiently far away from the Lindblad resonance, the surface mass density perturbation is predicted to saturate to a constant value due to nonlinear viscous damping. In general the model wave damping lengths depend on a set of input parameters, such as the distance to the threshold for viscous overstability and the ground state surface mass density.Our new model compares reasonably well with the streamline model for nonlinear density waves of Borderies et al. 1986.Deviations become substantial in the highly nonlinear regime, corresponding to strong satellite forcing.Nevertheless, we generally observe good or at least qualitative agreement between the wave amplitude profiles of both models. The streamline approach is superior at matching the total wave profile of waves observed in Saturn's rings, while our new damping relation is a comparably handy tool to gain insight in the evolution of the wave amplitude with distance from resonance, and the different regimes of

  19. Weakly damped modes in star clusters and galaxies

    NASA Technical Reports Server (NTRS)

    Weinberg, Martin D.

    1994-01-01

    A perturber may excite a coherent mode in a star cluster or galaxy. If the stellar system is stable, it is commonly assumed that such a mode will be strongly damped and therefore of little practical consequence other than redistributing momentum and energy deposited by the perturber. This paper demonstrates that this assumption is false; weakly damped modes exist and may persist long enough to have observable consequences. To do this, a method for investigating the dispersion relation for spherical stellar systems and for locating weakly damped modes in particular is developed and applied to King models of varying concentration. This leads to a following remarkable result: King models exhibit very weakly damped m = 1 modes over a wide range of concentration (0.67 less than or equal to c less than or equal to 1.5 have been examined). The predicted damping time is tens of hundreds of crossing times. This mode causes the peak density to shift from and slowly revolve about the initial center. The existence of the mode is supported by n-body simulation. Higher order modes and possible astronomical consequences are discussed. Weakly damped modes, for example, may provide a neutral explanation for observed discrepancies between density and kinematic centers in galaxies, off-center nuclei, the location of velocity cusps due to massive black holes, and both m = 1 and barlike disturbances of disks enbedded in massive halos or spheroids. Gravitational shocking may excite the m = 1 mode in globular clusters, which could modify their subsequent evolution and displace the positions of exotic remnants.

  20. Magnetically Damped Furnace Bitter Magnet Coil 1

    NASA Technical Reports Server (NTRS)

    Bird, M. D.

    1997-01-01

    A magnet has been built by the National High Magnetic Field Laboratory for NASA on a cost reimbursement contract. The magnet is intended to demonstrate the technology and feasibility of building a magnet for space based crystal growth. A Bitter magnet (named after Francis Bitter, its inventor) was built consisting of four split coils electrically in series and hydraulically in parallel. The coils are housed in a steel vessel to reduce the fringe field and provide some on-axis field enhancement. The steel was nickel plated and Teflon coated to minimize interaction with the water cooling system. The magnet provides 0.14 T in a 184 mm bore with 3 kW of power.

  1. Magnetization damping in noncollinear spin valves with antiferromagnetic interlayer couplings

    NASA Astrophysics Data System (ADS)

    Chiba, Takahiro; Bauer, Gerrit E. W.; Takahashi, Saburo

    2015-08-01

    We study the magnetic damping in the simplest of synthetic antiferromagnets, i.e., antiferromagnetically exchange-coupled spin valves, in the presence of applied magnetic fields that enforce noncolliear magnetic configurations. We formulate the dynamic exchange of spin currents in a noncollinear texture based on the spin-diffusion theory with quantum mechanical boundary conditions at the ferrromagnet/normal-metal interfaces and derive the Landau-Lifshitz-Gilbert equations coupled by the interlayer static and dynamic exchange interactions. We predict noncollinearity-induced additional damping that is modulated by an applied magnetic field. We compare theoretical results with published experiments.

  2. Enthalpy damping for high Mach number Euler solutions

    NASA Technical Reports Server (NTRS)

    Moitra, Anutosh

    1990-01-01

    An improvement on the enthalpy damping procedure currently in use in solving supersonic flow fields is described. A correction based on entropy values is shown to produce a very efficient scheme for simulation of high Mach number three-dimensional flows. Substantial improvements in convergence rates have been achieved by incorporating this enthalpy damping scheme in a finite-volume Runge-Kutta method for solving the Euler equations. Results obtained for blended wing-body geometries at very high Mach numbers are presented.

  3. Evaluation of flexible ring baffles for damping liquid oscillations

    NASA Technical Reports Server (NTRS)

    Bugg, F.

    1973-01-01

    An experimental study was undertaken of damping produced by single flexible-ring baffles in a 396-cm diameter tank of liquid nitrogen. Two 24.8-cm wide baffles were tested. One baffle was 0.00635 cm thick type 301 stainless steel and the other 0.0254 cm thick Teflon FEP. Each baffle produced damping of liquid oscillations equal to or greater than that expected from rigid baffles of the same size. The equations used to determine the baffle thickness required were found to be adequate baffle design equations.

  4. Composite slip table of dissimilar materials for damping longitudinal modes

    DOEpatents

    Gregory, D.L.; Priddy, T.G.; Smallwood, D.O.; Woodall, T.D.

    1991-06-18

    A vibration slip table for use in a vibration testing apparatus is disclosed. The tables comprised of at least three composite layers of material; a first metal layer, a second damping layer, and a third layer having a high acoustic velocity relative to the first layer. The different acoustic velocities between the first and third layers cause relative shear displacements between the layers with the second layer damping the displacements between the first and third layers to reduce the table longitudinal vibration modes. 6 figures.

  5. Poloidal flow damping with potato orbits in tokamaks

    SciTech Connect

    Shaing, K.C.

    2005-10-01

    The poloidal flow damping rate in the vicinity of the magnetic axis in tokamaks is calculated using the time-dependent plasma viscosity. It is found that the damping rate is of the order of {nu}{sub ii}/f{sub t}{sup 2}, where {nu}{sub ii} is the ion-ion collision frequency, and f{sub t} is the fraction of the trapped potatoes. The corresponding neoclassical polarization or inertia enhancement factor is [1+({sigma}{sub p}q{sup 2}/f{sub t})], where {sigma}{sub p} is a numerical number of the order of unity, and q is the safety factor.

  6. Electron Cloud in the Wigglers of the Positron Damping Ring of the International Linear Collider

    SciTech Connect

    Wang, L.; /SLAC

    2007-07-06

    The ILC positron damping ring comprises hundreds of meters of wiggler sections, where many more photons than in the arcs are emitted, and with the smallest beampipe aperture of the ring. A significant electron-cloud density can therefore be accumulated via photo-emission and via beam-induced multipacting. In field-free regions the electron-cloud build up may be suppressed by adding weak solenoid fields, but the electron cloud remaining in the wigglers as well as in the arc dipole magnets can still drive single-bunch and multi-bunch beam instabilities. This paper studies the electron-cloud formation in an ILC wiggler section for various scenarios, as well as its character, and possible mitigation schemes.

  7. Damped interconnection-based mitigation of seismic pounding between a R/C tower and a masonry church

    NASA Astrophysics Data System (ADS)

    Pratesi, F.; Sorace, S.; Terenzi, G.

    2013-10-01

    Damped interconnection represents an advanced strategy to mitigate the effects of seismic pounding between adjacent structures built at poor mutual distance. The effects of pounding can be particularly severe in slender R/C structures, including civic or bell towers. An emblematic case study falling in this class of structures, i.e. a monumental R/C bell tower constructed in the early 1960s in Florence, is analyzed in this paper. In order to assess the effects of pounding, a non-linear dynamic finite element enquiry was carried out by simulating collisions between the tower and the adjacent masonry church with a multi-spring-damper viscoelastic contact model, originally implemented in this study. The survey results show that pounding affects the seismic response of the two buildings as early as an input seismic action scaled at the amplitude of the normative basic design earthquake level. A damped interconnection-based retrofit hypothesis to prevent pounding is then proposed, which consists in linking the two structures by means of a pair of fluidviscous dissipaters. Thanks to the added damping produced by these devices, the impacts are totally annulled, bringing the structural members of the tower to safe levels.

  8. Damping SOFIA: passive and active damping for the Stratospheric Observatory for Infrared Astronomy

    NASA Astrophysics Data System (ADS)

    Maly, Joseph R.; Keas, Paul J.; Glaese, Roger M.

    2001-07-01

    The Stratospheric Observatory For Infrared Astronomy, SOFIA is being developed by NASA and the German space agency, Deutschen Zentrum fur Luft- und Raumfahrt (DLR), with an international contractor team. The 2.5-meter reflecting telescope of SOFIA will be the world's largest airborne telescope. Flying in an open cavity on a modified 747 aircraft, SOFIA will perform infrared astronomy while cruising at 41,000 feet and while being buffeted by a 550- mile-per-hour slipstream. A primary system requirement of SOFIA is tracking stability of 0.2 arc-seconds, and a 3-axis pointing control model has been used to evaluate the feasibility of achieving this kind of stability. The pointing control model shows that increased levels of damping in certain elastic modes of the telescope assembly will help achieve the tracking stability goal and also expand the bandwidth of the attitude controller. This paper describes the preliminary work that has been done to approximate the reduction in image motion yielded by various structure configurations that use reaction masses to attenuate the flexible motions of the telescope structure. Three approaches are considered: passive tuned-mass dampers, active-mass dampers, and attitude control with reaction-mass actuators. Expected performance improvements for each approach, and practical advantages and disadvantages associated with each are presented.

  9. External Coulomb-Friction Damping For Hydrostatic Bearings

    NASA Technical Reports Server (NTRS)

    Buckmann, Paul S.

    1992-01-01

    External friction device damps vibrations of shaft and hydrostatic ring bearing in which it turns. Does not rely on wear-prone facing surfaces. Hydrostatic bearing ring clamped in radially flexing support by side plates clamped against radial surfaces by spring-loaded bolts. Plates provide friction against radial motions of shaft.

  10. Rubber-coated bellows improves vibration damping in vacuum lines

    NASA Technical Reports Server (NTRS)

    Hegland, D. E.; Smith, R. J.

    1966-01-01

    Compact-vibration damping systems, consisting of rubber-coated metal bellows with a sliding O-ring connector, are used in vacuum lines. The device presents a metallic surface to the vacuum system and combines flexibility with the necessary stiffness. It protects against physical damage, reduces fatigue failure, and provides easy mating of nonparallel lines.

  11. A Look at Damped Harmonic Oscillators through the Phase Plane

    ERIC Educational Resources Information Center

    Daneshbod, Yousef; Latulippe, Joe

    2011-01-01

    Damped harmonic oscillations appear naturally in many applications involving mechanical and electrical systems as well as in biological systems. Most students are introduced to harmonic motion in an elementary ordinary differential equation (ODE) course. Solutions to ODEs that describe simple harmonic motion are usually found by investigating the…

  12. Cancer immunogenicity, danger signals, and DAMPs: what, when, and how?

    PubMed

    Garg, Abhishek D; Dudek, Aleksandra M; Agostinis, Patrizia

    2013-01-01

    Cancer immunosurvelliance usually leads to formation of cancer cells that have been "immunoedited" to resist anti-tumor immunity. One of the consequences of immunoediting that is, reduced immunogenicity, is an important roadblock in revival of stable and long-lasting anti-tumor immune responses. Research done during the last decade has shown that emission by the dying cancer cells of immunomodulatory factors or damage-associated molecular patterns (DAMPs), which can act as danger signals, is a critical event in accentuating the immunogenicity of cancer cells, in response to a subset of anticancer treatments. Recent evidence has defined that an apoptotic cell death subroutine and its underlying biochemistry, which has been termed as "immunogenic cell death (ICD)" or "immunogenic apoptosis," is required for the efficient emission of DAMPs and inciting anti-tumor immunity. Here, we review the basic concepts of ICD, like cancer immunogenicity, danger signals, and DAMPs. Moreover, we discuss the emerging molecular links between endoplasmic reticulum (ER) stress, induction of a viral response-like gene expression, danger signals, and anti-tumor immunity. We envisage that along with ER stress-based trafficking of DAMPs (which is a "short-range communicator" of danger), the accompanying induction of a viral response-like gene expression and the secretion of anti-tumorigenic cytokines may become a crucial signature of ICD induction by anticancer therapy.

  13. Six degree of freedom active vibration damping for space application

    NASA Technical Reports Server (NTRS)

    Haynes, Leonard S.

    1993-01-01

    Work performed during the period 1 Jan. - 31 Mar. 1993 on six degree of freedom active vibration damping for space application is presented. A performance and cost report is included. Topics covered include: actuator testing; mechanical amplifier design; and neural network control system development and experimental evaluation.

  14. Effects of Collisional Zonal Flow Damping on Turbulent Transport

    SciTech Connect

    P.H. Diamond; T.S. Hahm; W.M. Tang; W.W. Lee; Z. Lin

    1999-10-01

    Results from 3D global gyrokinetic particle simulations of ion temperature gradient driven microturbulence in a toroidal plasma show that the ion thermal transport level in the interior region exhibits significant dependence on the ion-ion collision frequency even in regimes where the instabilities are collisionless. This is identified as arising from the Coulomb collisional damping of turbulence-generated zonal flows.

  15. The One-Dimensional Damped Forced Harmonic Oscillator Revisited

    ERIC Educational Resources Information Center

    Flores-Hidalgo, G.; Barone, F. A.

    2011-01-01

    In this paper we give a general solution to the problem of the damped harmonic oscillator under the influence of an arbitrary time-dependent external force. We employ simple methods accessible for beginners and useful for undergraduate students and professors in an introductory course of mechanics.

  16. Rhizoctonia seedling damping-off in sugar beet in Michigan

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rhizoctonia solani is an important seedling pathogen of sugar beet, causing damping-off following seedling emergence. Anastomosis group (AG)-4 has been the primary seedling pathogen reported on sugar beet, however, recent screening has found high incidence of infection by AG-2-2. Isolations of R. so...

  17. Simultaneously high stiffness and damping in nanoengineered microtruss composites.

    PubMed

    Meaud, Julien; Sain, Trisha; Yeom, Bongjun; Park, Sei Jin; Shoultz, Anna Brieland; Hulbert, Gregory; Ma, Zheng-Dong; Kotov, Nicholas A; Hart, A John; Arruda, Ellen M; Waas, Anthony M

    2014-04-22

    Materials combining high stiffness and mechanical energy dissipation are needed in automotive, aviation, construction, and other technologies where structural elements are exposed to dynamic loads. In this paper we demonstrate that a judicious combination of carbon nanotube engineered trusses held in a dissipative polymer can lead to a composite material that simultaneously exhibits both high stiffness and damping. Indeed, the combination of stiffness and damping that is reported is quite high in any single monolithic material. Carbon nanotube (CNT) microstructures grown in a novel 3D truss topology form the backbone of these nanocomposites. The CNT trusses are coated by ceramics and by a nanostructured polymer film assembled using the layer-by-layer technique. The crevices of the trusses are then filled with soft polyurethane. Each constituent of the composite is accurately modeled, and these models are used to guide the manufacturing process, in particular the choice of the backbone topology and the optimization of the mechanical properties of the constituent materials. The resulting composite exhibits much higher stiffness (80 times) and similar damping (specific damping capacity of 0.8) compared to the polymer. Our work is a step forward in implementing the concept of materials by design across multiple length scales. PMID:24620996

  18. Active versus passive damping in large flexible structures

    NASA Technical Reports Server (NTRS)

    Slater, Gary L.; Mclaren, Mark D.

    1991-01-01

    Optimal passive and active damping control can be considered in the context of a general control/structure optimization problem. Using a mean square output response approach, it is shown that the weight sensitivity of the active and passive controllers can be used to determine an optimal mix of active and passive elements in a flexible structure.

  19. Boundary damping of flexural vibrations in beams and plates

    NASA Astrophysics Data System (ADS)

    Garrelick, Joel

    2003-04-01

    The damping of resonantly enhanced flexurally vibrating beams and plates is typically accomplished with surface treatments, viz. constrained or unconstrained damping layers. Alternatively, damping may be achieved at boundaries. In some sense this is a more fundamental approach in that for homogeneous plates, it is the boundaries that are solely responsible for resonant behavior. The theoretical performance of boundary treatments is unbounded, provided the treatment is full, that is continuous along the extent of the boundary. This is not the case however with partial coverage, where a portion of the boundary is left bare. The bounds for such treatments are explored in this paper. The treatment itself is defined in terms of a single bounce reflection coefficient (RC). It is found that for boundary damping in one dimension, viz., beams, the effective loss factor for individual modes is frequently invariant with either one or both ends treated, assuming RC constant. This is in contrast to the two-dimensional case, viz., thin plates, where analogous loss factor values are frequency dependent. Illustrative examples are presented and analyzed. [Work partially performed at CAA/Anteon Corp. and supported by NSWCCD and NSSC, Code 93R.

  20. Continuum Damping of Free-boundary TAE with AEGIS

    NASA Astrophysics Data System (ADS)

    Chen, Eugene; Berk, Herb; Breizman, Boris; Zheng, Linjin

    2010-11-01

    An extension has been added to the ideal MHD code AEGIS (Adaptive EiGenfunction Independent Solutions) to estimate continuum damping of an Alfvenic mode. In our scheme we analyze the determinant arising from attempting to match solutions at the surface of the plasma vacuum interface. A zero of the determinant corresponds to an eigenvalue of the system. When continuum damping exists in a stable system, the eigenmode cannot be calculated by an integration along the real axis (in principle integration in deformed regions of the complex plane is required). The approach we take here is to scan the value of the determinant as a function of complex frequency where the imaginary part of the frequency is positive. The analytic continuation of the determinant gives an estimate of the root in the lower half plane, from which the damping rate is extracted. A complicating factor in our procedure is that the positions of a pole and zero of a determinant is frequently comparable to the damping rate. Hence, the search procedure must account for both the zero and pole structure of the determinant. It is interesting to note that the root of the pole corresponds to the eigenvalue of the problem where an ideal conducting wall is placed on the plasma vacuum interface. We are attempting to apply our new subroutine to realistic equilibria, such as C-Mod.

  1. High-Speed Video Analysis of Damped Harmonic Motion

    ERIC Educational Resources Information Center

    Poonyawatpornkul, J.; Wattanakasiwich, P.

    2013-01-01

    In this paper, we acquire and analyse high-speed videos of a spring-mass system oscillating in glycerin at different temperatures. Three cases of damped harmonic oscillation are investigated and analysed by using high-speed video at a rate of 120 frames s[superscript -1] and Tracker Video Analysis (Tracker) software. We present empirical data for…

  2. Spatial damping of propagating sausage waves in coronal cylinders

    NASA Astrophysics Data System (ADS)

    Guo, Ming-Zhe; Chen, Shao-Xia; Li, Bo; Xia, Li-Dong; Yu, Hui

    2015-09-01

    Context. Sausage modes are important in coronal seismology. Spatially damped propagating sausage waves were recently observed in the solar atmosphere. Aims: We examine how wave leakage influences the spatial damping of sausage waves propagating along coronal structures modeled by a cylindrical density enhancement embedded in a uniform magnetic field. Methods: Working in the framework of cold magnetohydrodynamics, we solve the dispersion relation (DR) governing sausage waves for complex-valued, longitudinal wavenumber k at given real angular frequencies ω. For validation purposes, we also provide analytical approximations to the DR in the low-frequency limit and in the vicinity of ωc, the critical angular frequency separating trapped from leaky waves. Results: In contrast to the standing case, propagating sausage waves are allowed for ω much lower than ωc. However, while able to direct their energy upward, these low-frequency waves are subject to substantial spatial attenuation. The spatial damping length shows little dependence on the density contrast between the cylinder and its surroundings, and depends only weakly on frequency. This spatial damping length is of the order of the cylinder radius for ω ≲ 1.5vAi/a, where a and vAi are the cylinder radius and the Alfvén speed in the cylinder, respectively. Conclusions: If a coronal cylinder is perturbed by symmetric boundary drivers (e.g., granular motions) with a broadband spectrum, wave leakage efficiently filters out the low-frequency components.

  3. Variable stiffness and damping suspension system for train

    NASA Astrophysics Data System (ADS)

    Sun, Shuaishuai; Deng, Huaxia; Li, Weihua

    2014-03-01

    As the vibration of high speed train becomes fierce when the train runs at high speed, it is crucial to develop a novel suspension system to negotiate train's vibration. This paper presents a novel suspension based on Magnetorheological fluid (MRF) damper and MRF based smart air spring. The MRF damper is used to generate variable damping while the smart air spring is used to generate field-dependent stiffness. In this paper, the two kind smart devices, MRF dampers and smart air spring, are developed firstly. Then the dynamic performances of these two devices are tested by MTS. Based on the testing results, the two devices are equipped to a high speed train which is built in ADAMS. The skyhook control algorithm is employed to control the novel suspension. In order to compare the vibration suppression capability of the novel suspension with other kind suspensions, three other different suspension systems are also considered and simulated in this paper. The other three kind suspensions are variable damping with fixed stiffness suspension, variable stiffness with fixed damping suspension and passive suspension. The simulation results indicate that the variable damping and stiffness suspension suppresses the vibration of high speed train better than the other three suspension systems.

  4. Quantum corrections to nonlinear ion acoustic wave with Landau damping

    SciTech Connect

    Mukherjee, Abhik; Janaki, M. S.; Bose, Anirban

    2014-07-15

    Quantum corrections to nonlinear ion acoustic wave with Landau damping have been computed using Wigner equation approach. The dynamical equation governing the time development of nonlinear ion acoustic wave with semiclassical quantum corrections is shown to have the form of higher KdV equation which has higher order nonlinear terms coming from quantum corrections, with the usual classical and quantum corrected Landau damping integral terms. The conservation of total number of ions is shown from the evolution equation. The decay rate of KdV solitary wave amplitude due to the presence of Landau damping terms has been calculated assuming the Landau damping parameter α{sub 1}=√(m{sub e}/m{sub i}) to be of the same order of the quantum parameter Q=ℏ{sup 2}/(24m{sup 2}c{sub s}{sup 2}L{sup 2}). The amplitude is shown to decay very slowly with time as determined by the quantum factor Q.

  5. Parametric resonance induced chaos in magnetic damped driven pendulum

    NASA Astrophysics Data System (ADS)

    Khomeriki, Giorgi

    2016-07-01

    A damped driven pendulum with a magnetic driving force, appearing from a solenoid, where ac current flows is considered. The solenoid acts on the magnet, which is located at a free end of the pendulum. In this system the existence and interrelation of chaos and parametric resonance is theoretically examined. Derived analytical results are supported by numerical simulations and conducted experiments.

  6. Damped Mechanical Oscillator: Experiment and Detailed Energy Analysis

    ERIC Educational Resources Information Center

    Corridoni, Tommaso; D'Anna, Michele; Fuchs, Hans

    2014-01-01

    The damped oscillator is discussed in every high school textbook or introductory physics course, and a large number of papers are devoted to it in physics didactics journals. Papers typically focus on kinematic and dynamic aspects and less often on energy. Among the latter, some are devoted to the peculiar decreasing behavior of energy…

  7. Variable structure controller design for spacecraft nutation damping

    NASA Technical Reports Server (NTRS)

    Sira-Ramirez, Hebertt; Dwyer, Thomas A. W., III

    1987-01-01

    Variable structure systems theory is used to design an automatic controller for active nutation damping in momentum biased stabilized spacecraft. Robust feedback stabilization of roll and yaw angular dynamics is achieved with prescribed qualitative characteristics which are totally independent of the spacecraft defining parameters.

  8. Injection and Extraction Lines for the ILC Damping Rings

    SciTech Connect

    Reichel, Ina

    2007-06-20

    The current design for the injection and extraction linesintoand out of the ILC Damping Rings is presented as well as the designfor the abort line. Due to changes of the geometric boundary conditionsby other subsystems of the ILC, a modular approach has been used to beable to respond to recurring layout changes whilereusing previouslydesigned parts.

  9. Nonlinear damping in mechanical resonators made from carbon nanotubes and graphene

    NASA Astrophysics Data System (ADS)

    Eichler, A.; Moser, J.; Chaste, J.; Zdrojek, M.; Wilson-Rae, I.; Bachtold, A.

    2011-06-01

    The theory of damping is discussed in Newton's Principia and has been tested in objects as diverse as the Foucault pendulum, the mirrors in gravitational-wave detectors and submicrometre mechanical resonators. In general, the damping observed in these systems can be described by a linear damping force. Advances in nanofabrication mean that it is now possible to explore damping in systems with one or more atomic-scale dimensions. Here we study the damping of mechanical resonators based on carbon nanotubes and graphene sheets. The damping is found to strongly depend on the amplitude of motion, and can be described by a nonlinear rather than a linear damping force. We exploit the nonlinear nature of damping in these systems to improve the figures of merit for both nanotube and graphene resonators. For instance, we achieve a quality factor of 100,000 for a graphene resonator.

  10. Bending vibration of axially loaded Timoshenko beams with locally distributed Kelvin-Voigt damping

    NASA Astrophysics Data System (ADS)

    Chen, Wei-Ren

    2011-06-01

    Utilizing the Timoshenko beam theory and applying Hamilton's principle, the bending vibration equations of an axially loaded beam with locally distributed internal damping of the Kelvin-Voigt type are established. The partial differential equations of motion are then discretized into linear second-order ordinary differential equations based on a finite element method. A quadratic eigenvalue problem of a damped system is formed to determine the eigenfrequencies of the damped beams. The effects of the internal damping, sizes and locations of damped segment, axial load and restraint types on the damping and oscillating parts of the damped natural frequency are investigated. It is believed that the present study is valuable for better understanding the influence of various parameters of the damped beam on its vibration characteristics.

  11. Damping Behavior of Alumina Epoxy Nano-Composites

    NASA Astrophysics Data System (ADS)

    Katiyar, Priyanka; Kumar, Anand

    2016-05-01

    Polymer nano composites, consisting of a polymer matrix with nanoparticle filler, have been predicted to be one of the most beneficial applications of nanotechnology. Addition of nano particulates to a polymer matrix enhances its performance by capitalizing on the nature and properties of the nano-scale fillers. The damping behavior of composites with nano structured phases is significantly different from that of micro structured materials. Viscoelastic homopolymer exhibit a high material damping response over a relatively narrow range of temperature and frequencies. In many practical situations, a polymeric structure is required to possess better strength and stiffness properties together with a reasonable damping behavior. Viscoelastic polymers show higher loss factor beyond the glassy region which comes with a significant drop in the specific modulus. Addition of nano alumina particles to epoxy leads to improved strength and stiffness properties with an increase in glass transition temperature while retaining its damping capability. Experimental investigations are carried out on composite beam specimen fabricated with different compositions of alumina nano particles in epoxy to evaluate loss factor, tan δ. Impact damping method is used for time response analysis. A single point Laser is used to record the transverse displacement of a point on the composite beam specimen. The experimental results are compared with theoretical estimation of loss factor using Voigt estimation. The effect of inter phase is included in theoretical estimation of loss factor. The result reveals that the study of interface properties is very important in deriving the overall loss factor of the composite since interface occupies a significant volume fraction in the composite.

  12. Compressibility and cyclotron damping in the oblique Alfven wave

    SciTech Connect

    Harmon, J.K. )

    1989-11-01

    Compressibility, magnetic compressibility, and damping rate are calculated for the obliquely propagating Alfven shear wave in high- and low-beta Vlasov plasmas. There is an overall increase in compressibility as beta is reduced from {beta} = 1 to {beta}{much lt}1. For high obliquity {theta} and low frequency ({omega} {much lt} {Omega}{sub p}) the compressibility C follows a k{sup 2} wave number dependence; for high {theta} and low {beta} the approximation C(k) {approx} k{sub n}{sup 2} {identical to} (kV{sub A}/{Omega}{sub p}){sup 2} holds for wave numbers up to the proton cyclotron resonance, where {Omega}{sub p} is the proton cyclotron frequency and V{sub A} is the Alfven velocity. Strong proton cyclotron damping sets in at k{sub n} of the order of unity; the precise k{sub n} position of the damping cutoff increases with decreasing {beta} and increasing {theta}. Hence compressibility can exceed unity near the damping cutoff for high-{theta} waves in a low-{beta} plasma. The magnetic compressibility of the oblique Alfven wave also has a k{sup 2} dependence and can reach a maximum value of the order of 10% at high wave number. It is shown that Alfven compressibility could be the dominant contributor to the near-Sun solar wind density fluctuation spectrum for k>10{sup {minus}2} km{sup {minus}1} and hence might cause some of the flattening at high wave number seen in radio scintillation measurements. This would also be consistent with the notion that the observed density spectrum inner scale is a signature of cyclotron damping.

  13. Analytical Solution and Physics of a Propellant Damping Device

    NASA Technical Reports Server (NTRS)

    Yang, H. Q.; Peugeot, John

    2011-01-01

    NASA design teams have been investigating options for "detuning" Ares I to prevent oscillations originating in the vehicle solid-rocket main stage from synching up with the natural resonance of the rest of the vehicle. An experimental work started at NASA MSFC center in 2008 using a damping device showed great promise in damping the vibration level of an 8 resonant tank. However, the mechanisms of the vibration damping were not well understood and there were many unknowns such as the physics, scalability, technology readiness level (TRL), and applicability for the Ares I vehicle. The objectives of this study are to understand the physics of intriguing slosh damping observed in the experiments, to further validate a Computational Fluid Dynamics (CFD) software in propellant sloshing against experiments with water, and to study the applicability and efficiency of the slosh damper to a full scale propellant tank and to cryogenic fluids. First a 2D fluid-structure interaction model is built to model the system resonance of liquid sloshing and structure vibration. A damper is then added into the above model to simulate experimentally observed system damping phenomena. Qualitative agreement is found. An analytical solution is then derived from the Newtonian dynamics for the thrust oscillation damper frequency, and a slave mass concept is introduced in deriving the damper and tank interaction dynamics. The paper will elucidate the fundamental physics behind the LOX damper success from the derivation of the above analytical equation of the lumped Newtonian dynamics. Discussion of simulation results using high fidelity multi-phase, multi-physics, fully coupled CFD structure interaction model will show why the LOX damper is unique and superior compared to other proposed mitigation techniques.

  14. Satellite Dynamic Damping via Active Force Control Augmentation

    NASA Astrophysics Data System (ADS)

    Varatharajoo, Renuganth

    2012-07-01

    An approach that incorporates the Active Force Control (AFC) technique into a conventional Proportional-Derivative (PD) controller is proposed for a satellite active dynamic damping towards a full attitude control. The AFC method has been established to facilitate a robust motion control of dynamical systems in the presence of disturbances, parametric uncertainties and changes that are commonly prevalent in the real-world environment. The usefulness of the method can be extended by introducing intelligent mechanisms to approximate the mass or inertia matrix of the dynamic system to trigger the compensation effect of the controller. AFC is a technique that relies on the appropriate estimation of the inertial or mass parameters of the dynamic system and the measurements of the acceleration and force signals induced by the system if practical implementation is ever considered. In AFC, it is shown that the system subjected to a number of disturbances remains stable and robust via the compensating action of the control strategy. We demonstrate that it is possible to design a spacecraft attitude feedback controller that will ensure the system dynamics set point remains unchanged even in the presence of the disturbances provided that the actual disturbances can be modeled effectively. In order to further facilitate this analysis, a combined energy and attitude control system (CEACS) is proposed as a model satellite attitude control actuator. All the governing equations are established and the proposed satellite attitude control architecture is made amenable to numerical treatments. The results show that the PD-AFC attitude damping performances are superiorly better than that of the solely PD type. It is also shown that the tunings of the AFC system gains are crucial to ensure a better attitude damping performance and this process is mandatory for AFC systems. Finally, the results demonstrate an important satellite dynamic damping enhancement capability using the AFC

  15. Compensating the unequal bunch spacing in the NLC damping rings

    SciTech Connect

    Bane, K.L.F.; Wilson, P.B.; Kubo, K.

    1996-06-01

    The damping rings of the Next Linear Collider (NLC), at any given time, will contain four trains of 90 bunches each. Within each train the bunches populate adjacent buckets and between trains there is a gap that extends over 43 buckets. A consequence of an uneven filling scheme is that within each train the synchronous phase will vary from bunch to bunch. In the NLC after extraction the beam enters the bunch compressor and then the X-band linac. The phase variation in the ring, if uncompensated, will lead to a phase variation in the X-band linac which, in turn, will result in an unacceptable spread in the final energy of the individual bunches of a train. The synchronous phase variation, however, can be compensated, either in the damping ring itself or in the bunch compressor that follows. The subject of this paper is compensation in the damping ring. In this report we begin by finding the synchronous phase variation in damping rings with bunch trains and gaps of arbitrary length. These results are then applied to the parameters of the NLC damping rings. Finally, we study two methods of compensating this phase variation: in the first method two passive subharmonic cavities are employed, and in the second the klystron output is varied as a function of time. We find that, for the NLC, a nominal phase variation of 6 degrees within a train can be reduced by almost an order of magnitude by either method of compensation, with the cost of the second method being an extra 10% in output power capability of the klystron.

  16. Shunted Piezoelectric Vibration Damping Analysis Including Centrifugal Loading Effects

    NASA Technical Reports Server (NTRS)

    Min, James B.; Duffy, Kirsten P.; Provenza, Andrew J.

    2011-01-01

    Excessive vibration of turbomachinery blades causes high cycle fatigue problems which require damping treatments to mitigate vibration levels. One method is the use of piezoelectric materials as passive or active dampers. Based on the technical challenges and requirements learned from previous turbomachinery rotor blades research, an effort has been made to investigate the effectiveness of a shunted piezoelectric for the turbomachinery rotor blades vibration control, specifically for a condition with centrifugal rotation. While ample research has been performed on the use of a piezoelectric material with electric circuits to attempt to control the structural vibration damping, very little study has been done regarding rotational effects. The present study attempts to fill this void. Specifically, the objectives of this study are: (a) to create and analyze finite element models for harmonic forced response vibration analysis coupled with shunted piezoelectric circuits for engine blade operational conditions, (b) to validate the experimental test approaches with numerical results and vice versa, and (c) to establish a numerical modeling capability for vibration control using shunted piezoelectric circuits under rotation. Study has focused on a resonant damping control using shunted piezoelectric patches on plate specimens. Tests and analyses were performed for both non-spinning and spinning conditions. The finite element (FE) shunted piezoelectric circuit damping simulations were performed using the ANSYS Multiphysics code for the resistive and inductive circuit piezoelectric simulations of both conditions. The FE results showed a good correlation with experimental test results. Tests and analyses of shunted piezoelectric damping control, demonstrating with plate specimens, show a great potential to reduce blade vibrations under centrifugal loading.

  17. Damping Effects of Drogue Parachutes on Orion Crew Module Dynamics

    NASA Technical Reports Server (NTRS)

    Aubuchon, Vanessa V.; Owens, D. Bruce

    2016-01-01

    Because simulations of the Orion Crew Module (CM) dynamics with drogue parachutes deployed were under-predicting the amount of damping seen in free-flight tests, an attach-point damping model was applied to the Orion system. A key hypothesis in this model is that the drogue parachutes' net load vector aligns with the CM drogue attachment point velocity vector. This assumption seems reasonable and has historically produced good results, but has never been experimentally verified. The wake of the CM influences the drogue parachutes, which makes performance predictions of the parachutes difficult. Many of these effects are not currently modeled in the simulations. A forced oscillation test of the CM with parachutes was conducted in the NASA LaRC 20-Ft Vertical Spin Tunnel (VST) to gather additional data to validate and refine the attach-point damping model. A second loads balance was added to the original Orion VST model to measure the drogue parachute loads independently of the CM. The objective of the test was to identify the contribution of the drogues to CM damping and provide additional information to quantify wake effects and the interactions between the CM and parachutes. The drogue parachute force vector was shown to be highly dependent on the CM wake characteristics. Based on these wind tunnel test data, the attach-point damping model was determined to be a sufficient approximation of the parachute dynamics in relationship to the CM dynamics for preliminary entry vehicle system design. More wake effects should be included to better model the system.

  18. Damping performance of bean bag dampers in zero gravity environments

    NASA Astrophysics Data System (ADS)

    Zhang, Chao; Chen, Tianning; Wang, Xiaopeng

    2016-06-01

    Bean bag dampers (BBDs), developed from impact damping technology, have been widely applied in engineering field to attenuate the vibration of a structural system. The damping effect of a BBD on vibration control in ground gravity environments is good, but its performance in zero gravity environments is not clear, and there are few studies on it. Therefore, the damping effect of BBDs in zero gravity environments was investigated based on the discrete element method (DEM) in this paper. Firstly, a three-dimensional DEM model of a BBD was established, and the damping effects of the single degree of freedom (SDOF) systems with BBDs and non-obstructive particle dampers (NOPDs) in zero gravity environments were compared. Moreover, the influences of the diameter of the inner ball, the tightness of BBD, the vibration frequency of SDOF system and the gap between BBD and cavity on the vibration reduction effect of BBD in zero gravity environments were also studied, and the results were compared with the system with BBD in ground gravity environments. There are optimum ranges of the diameter of the inner ball, tightness and gap for BBD, and the effects of these parameters on the damping performances of BBD in gravity and zero gravity environments are similar in evolving trends, and the values are without big differences in the optimum ranges. Thereby the parameter selection in BBD design in zero gravity environments is similar to that in gravity environments. However, the diameter of BBD should be a slightly larger than the size of the cavity when the structures with BBD work in zero gravity environments. The BBD is supposed to be picked tightly when the vibration frequency is high, and the BBD has better to be picked more tightly in zero gravity environments. These results can be used as a guide in the design of BBDs in zero gravity environments.

  19. Optimization of SMA layers in composite structures to enhance damping

    NASA Astrophysics Data System (ADS)

    Haghdoust, P.; Cinquemani, S.; Lecis, N.; Bassani, P.

    2016-04-01

    The performance of lightweight structures can be severely affected by vibration. New design concepts leading to lightweight, slender structural components can increase the vulnerability of the components to failure due to excessive vibration. The intelligent approach to address the problem would be the use of materials which are more capable in dissipating the energy due to their high value of loss factor. Among the different materials available to achieve damping, much attention has been attached to the use of shape memory alloys (SMAs) because of their unique microstructure, leading to good damping capacity. This work describes the design and optimization of a hybrid layered composite structure for the passive suppression of flexural vibrations in slender and light structures. Embedding the SMA layers in composite structure allows to combine different properties: the lightness of the base composite (e.g. fiber glass), the mechanical strength of the insert of metallic material and the relevant damping properties of SMA, in the martensitic phase. In particular, we put our attention on embedding the CuZnAl in the form of thin sheet in a layered composite made by glass fiber reinforced epoxy. By appropriately positioning of the SMA sheets so that they are subjected to the maximum curvature, the damping of the hybrid system can be considerably enhanced. Accordingly analytical method for evaluating the energy dissipation of the thin sheets with different shapes and patterns is developed and is followed by a shape optimization based on genetic algorithm. Eventually different configurations of the hybrid beam structure with different patterns of SMA layer are proposed and compared in the term of damping capacity.

  20. Characteristics and computer model simulation of magnetic damping forces in maglev systems

    SciTech Connect

    He, J.L.; Rote, D.M.; Chen, S.S.

    1994-05-01

    This report discusses the magnetic damping force in electrodynamic suspension (EDS) maglev systems. The computer model simulations, which combine electrical system equations with mechanical motion equations on the basis of dynamic circuit theory, were conducted for a loop-shaped coil guideway. The intrinsic damping characteristics of the EDS-type guideway are investigated, and the negative damping phenomenon is confirmed by the computer simulations. The report also presents a simple circuit model to aid in understanding damping-force characteristics.

  1. Torsional and axial damping properties of the AZ31B-F magnesium alloy

    NASA Astrophysics Data System (ADS)

    Anes, V.; Lage, Y. E.; Vieira, M.; Maia, N. M. M.; Freitas, M.; Reis, L.

    2016-10-01

    Damping properties for the AZ31B-F magnesium alloy were evaluated for pure axial and pure shear loading conditions at room temperature. Hysteretic damping results were measured through stress-strain controlled tests. Moreover, the magnesium alloy viscous damping was measured with frequency response functions and free vibration decay, both results were obtained by experiments. The axial and shear damping ratio (ASDR) has been identified and described, specifically for free vibration conditions.

  2. Dynamic analysis to evaluate viscoelastic passive damping augmentation for the Space Shuttle Remote Manipulator System

    NASA Technical Reports Server (NTRS)

    Alberts, Thomas E.; Xia, Houchun; Chen, Yung

    1992-01-01

    The effectiveness of constrained viscoelastic layer damping treatment designs is evaluated separately as passive control measures for low frequency joint dominated modes and higher frequency boom flexure dominated modes using a NASTRAN finite element analysis. Passive damping augmentation is proposed which is based on a constrained viscoelastic layer damping treatment applied to the surface of the manipulators's flexible booms. It is pointed out that even the joint compliance dominated modes can be damped to some degree through appropriate design of the treatment.

  3. Laboratory Building.

    SciTech Connect

    Herrera, Joshua M.

    2015-03-01

    This report is an analysis of the means of egress and life safety requirements for the laboratory building. The building is located at Sandia National Laboratories (SNL) in Albuquerque, NM. The report includes a prescriptive-based analysis as well as a performance-based analysis. Following the analysis are appendices which contain maps of the laboratory building used throughout the analysis. The top of all the maps is assumed to be north.

  4. Rheology behavior and optimal damping effect of granular particles in a non-obstructive particle damper

    NASA Astrophysics Data System (ADS)

    Zhang, Kai; Chen, Tianning; Wang, Xiaopeng; Fang, Jianglong

    2016-03-01

    To explore the optimal damping mechanism of non-obstructive particle dampers (NOPDs), research on the relationship between the damping performance of NOPDs and the motion mode of damping particles in NOPDs was carried out based on the rheological properties of vibrated granular particles. Firstly, the damping performance of NOPDs under different excitation intensity and gap clearance was investigated via cantilever system experiments, and an approximate evaluation of the effective mass and effective damping of NOPDs was performed by fitting the experimental data to an equivalent single-degree-of-freedom (SDOF) system with no damping particles. Then the phase diagrams which could show the motion mode of damping particles under different excitation intensity and gap clearance were obtained via a series of vibration table tests. Moreover, the dissipation characteristic of damping particles was explored by the discrete element method (DEM). The study results indicate that when NOPDs play the optimal damping effect the granular Leidenfrost effect whereby the entire particle bed in NOPDs is levitated above the vibrating base by a layer of highly energetic particles is observed. Finally, the damping characteristics of NOPDs was explained by collisions and frictions between particle-particle and particle-wall based on the rheology behavior of damping particles and a new dissipation mechanism was first proposed for the optimal damping performance of NOPDs.

  5. Investigation of Buildings Strength Using Microtremor Method: A case from the North of Izmir Bay (Turkey)

    NASA Astrophysics Data System (ADS)

    Timur, Emre

    2016-04-01

    Seismic risk investigations has great importance in City of İzmir which exists within the first degree earthquake hazardous zone and also surrounded by active tectonic systems. Microtremor measurements have been used to determine building's period and strength characteristics, as a non-destructive way of exploring bearing frame structure of the buildings. It is possible to measure dominant periods and amplifications at each floor, and also to calculate vulnerability indexes and floor spectral ratios (FSR) using these two parameters. In this study, microtremor data were collected at each floor of 5 buildings in Karşıyaka, in the North of İzmir Bay. The buildings were selected along the shoreline and the construction ages as well as the heights were chosen to be similar, in order to make a consistent comparison between the results. The data were recorded at each floor of the buildings and outside the buildings simultaneously for 40 minutes and HVSR curves were obtained by using GEOPSY software. The validation of periods were determined using FSR in order to calculate damping ratios accurately. The variation range and tendency between damping ratio and period of each floor with damping ratios and vulnerability indices, along with the preliminary influence factor, were presented and discussed. In addition, a fitting curve was plotted indicating the relation between the damping ratio and dominant natural frequencies of the floors of each building. Furthermore, evaluation of strength, damping ratio, natural dominant period and vulnerability index of the buildings were estimated by interpreting microtremor data. As a result, it was determined that 3 of the 5 buildings were seismically risky.

  6. Reactor building

    SciTech Connect

    Hista, J. C.

    1984-09-18

    Reactor building comprising a vessel shaft anchored in a slab which is peripherally locked. This reactor building comprises a confinement enclosure within which are positioned internal structures constituted by an internal structure floor, a vessel shaft, a slab being positioned between the general floor and the internal structure floor, the vesse

  7. Experimental study of aerodynamic damping in arrays of vibrating cantilevers

    NASA Astrophysics Data System (ADS)

    Kimber, M.; Lonergan, R.; Garimella, S. V.

    2009-11-01

    Cantilever structures vibrating in a fluid are encountered in numerous engineering applications. The aerodynamic loading from a fluid can have a large effect on both the resonance frequency and damping, and has been the subject of numerous studies. The aerodynamic loading on a single beam is altered when multiple beams are configured in an array. In such situations, neighboring beams interact through the fluid and their dynamic behavior is modified. In this work, aerodynamic interactions between neighboring cantilever beams operating near their first resonance mode and vibrating at amplitudes comparable to their widths are experimentally explored. The degree to which two beams become coupled through the fluid is found to be sensitive to vibration amplitude and proximity of neighboring components in the array. The cantilever beams considered are slender piezoelectric fans (approximately 6 cm in length), and are caused to vibrate in-phase and out-of-phase at frequencies near their fundamental resonance values. Aerodynamic damping is expressed in terms of the quality factor for two different array configurations and estimated for both in-phase and out-of-phase conditions. The two array configurations considered are for neighboring fans placed face-to-face and edge-to-edge. It is found that the damping is greatly influenced by proximity of neighboring fans and phase difference. For the face-to-face configuration, a reduction in damping is observed for in-phase vibration, while it is greatly increased for out-of-phase vibration; the opposite effect is seen for the edge-to-edge configuration. The resonance frequencies also show a dependence on the phase difference, but these changes are small compared to those observed for damping. Correlations are developed based on the experimental data which can be used to predict the aerodynamic damping in arrays of vibrating cantilevers. The distance at which the beams no longer interact is quantified for both array configurations

  8. Damping Effects of Drogue Parachutes on Orion Crew Module Dynamics

    NASA Technical Reports Server (NTRS)

    Aubuchon, Vanessa V.

    2013-01-01

    Currently, simulation predictions of the Orion Crew Module (CM) dynamics with drogue parachutes deployed are under-predicting the amount of damping as seen in free-flight tests. The Apollo Legacy Chute Damping model has been resurrected and applied to the Orion system. The legacy model has been applied to predict CM damping under drogue parachutes for both Vertical Spin Tunnel free flights and the Pad Abort-1 flight test. Comparisons between the legacy Apollo prediction method and test data are favorable. A key hypothesis in the Apollo legacy drogue damping analysis is that the drogue parachutes' net load vector aligns with the CM drogue attachment point velocity vector. This assumption seems reasonable and produces good results, but has never been quantitatively proven. The wake of the CM influences the drogue parachutes, which makes performance predictions of the parachutes difficult. Many of these effects are not currently modeled in the simulations. A forced oscillation test of the CM with parachutes was conducted in the NASA LaRC 20-Ft Vertical Spin Tunnel (VST) to gather additional data to validate and refine the Apollo legacy drogue model. A second loads balance was added to the original Orion VST model to measure the drogue parachute loads independently of the CM. The objective of the test was to identify the contribution of the drogues to CM damping and provide additional information to quantify wake effects and the interactions between the CM and parachutes. The drogue parachute force vector was shown to be highly dependent on the CM wake characteristics. Based on these wind tunnel test data, the Apollo Legacy Chute Damping model was determined to be a sufficient approximation of the parachute dynamics in relationship to the CM dynamics for preliminary entry vehicle system design. More wake effects should be included to better model the system. These results are being used to improve simulation model fidelity of CM flight with drogues deployed, which has

  9. Gilbert-like damping caused by time retardation in atomistic magnetization dynamics

    NASA Astrophysics Data System (ADS)

    Thonig, Danny; Henk, Jürgen; Eriksson, Olle

    2015-09-01

    Gilbert-like damping in magnetization dynamics is commonly attributed to the interplay of the spin, the electron, and the phonon reservoirs. Spatial correlations within the spin reservoir itself, for example magnons, mediate damping as well. We show theoretically that temporal correlations within the spin reservoir cause a similar effect. We investigate the role of time retardation in the atomistic Landau-Lifshitz-Gilbert equation using two different retardation kernels. Although viscous damping is explicitly excluded, we find both analytically and numerically that damping and higher-order effects emerge due to time retardation. Thus, our results establish a mechanism for damping and inertia in magnetic systems.

  10. Mechanics of damping for fiber composite laminates including hygro-thermal effects

    NASA Technical Reports Server (NTRS)

    Saravanos, D. A.; Chamis, Christos C.

    1989-01-01

    An integrated mechanics theory was developed for the modeling of composite damping from the micromechanics to the laminate level. Simplified, design oriented equations based on hysteretic damping are presented for on-axis plies, off-axis plies, and laminates including the effect of temperature, moisture, and interply hysteretic damping. The temperature rise within vibrating composite laminates resulting from strain energy dissipation is also modeled, and their coupled hygro-thermo-mechanical response is predicted. The method correlates well with reported damping measurements. Application examples illustrate the effect of various ply, laminate, and hygro-thermal parameters on the overall damping performance of composite laminates.

  11. Mechanics of damping for fiber composite laminates including hygro-thermal effects

    NASA Technical Reports Server (NTRS)

    Saravanos, D. A.; Chamis, C. C.

    1989-01-01

    An integrated mechanics theory has been developed for the modeling of composite damping from the micromechanics to the laminate level. Simplified, design oriented equations based on hysteretic damping are presented for on-axis plies, off-axis plies, and laminates including the effect of temperature, moisture, and interply hysteretic damping. The temperature rise within vibrating composite laminates resulting from strain energy dissipation is also modeled, and their coupled hygro-thermo-mechanical response is predicted. The method correlates well with reported damping measurements. Application examples illustrate the effect of various ply, laminate, and hygro-thermal parameters on the overall damping performance of composite laminates.

  12. Concerning the damping coefficients of exterior building elements for aerial noise

    NASA Technical Reports Server (NTRS)

    Pocsa, V.; Poppel, M.; Veres, A.; Biborosch, L.

    1974-01-01

    The values employed to define the sound reduction coefficient of exterior walls for aerial noise do not take into account the continuous increase in the outside noise level nor its energy variation as a function of time. These aspects are analyzed by estimating the outside and inside noise levels on the basis of calculating an equivalent noise (L sub ech), a level with a maximum duration and the values of L sub 10, L sub 50 and L sub 90. The values obtained permit determination of the wall's sound reduction coefficients that are compared with those obtained by the customary method. It is shown that the sound reduction values of the wall coincide for the case of sound levels with a maximum duration and the values of L sub 90.

  13. The physical mechanisms of the perception of dampness in fabrics.

    PubMed

    Li, Y; Plante, A M; Holcombe, B V

    1992-11-01

    The detection of dampness in hygroscopic materials has been investigated both by subjective tests and by the application of a model of the physical mechanisms involved. Subjects were asked to rate the degree of dampness of a range of materials of different moisture contents after a short period of contact with the inner forearm. Skin and fabric inner surface temperatures were recorded. It was found that highly hygroscopic wool fabrics were perceived as being dryer and maintained a higher temperature at the skin surface than polyester, a less hygroscopic fabric, during fabric-skin contact. A physical model of the sorption/desorption process in hygroscopic materials has been developed from knowledge of fibre sorption kinetics and used to study the physical processes which take place at the skin-fabric interface during transient contact. These predictions agree well with the subjective responses and the measured temperatures.

  14. Resistive Wall Instability in the NLC Main Damping Rings

    SciTech Connect

    Wolski, Andrzej

    2004-07-01

    We study transverse coupled-bunch instabilities driven by the resistive-wall impedance in the NLC Main Damping Rings. We compare the growth rates of the different modes predicted by a simple theory using a simplified lattice model with the results of a detailed simulation that includes variation of the beta functions and the actual fill structure of the machine. We find that the results of the analytical calculations are in reasonable agreement with the simulations. We include a simple model of a bunch-by-bunch feedback system in the simulation to show that the instabilities can be damped by a feedback system having parameters that are realistic, and possibly conservative. The noise level on the feedback system pick-up must be low, to avoid driving random bunch-to-bunch jitter above the specified limit of 10 percent of the vertical beam size.

  15. Near-wall damping in model predictions of separated flows

    NASA Astrophysics Data System (ADS)

    Skote, Martin; Wallin, Stefan

    2016-03-01

    Different near-wall scalings are reviewed by the use of data from direct numerical simulations (DNS) of attached and separated adverse pressure gradient turbulent boundary layers. The turbulent boundary layer equation is analysed in order to extend the validity of existing wall damping functions to turbulent boundary layers under severe adverse pressure gradients. A proposed near-wall scaling is based on local quantities and the wall distance, which makes it applicable for general computational fluid dynamics (CFD) methods. It was found to have a similar behaviour as the pressure-gradient corrected analytical y* scaling and avoids the inconsistencies present in the y+ scaling. The performance of the model is illustrated by model computations using explicit algebraic Reynolds stress models with near-wall damping based on different scalings.

  16. Calibration of BGO Calorimeter of the DAMPE in Space

    NASA Astrophysics Data System (ADS)

    Wang, Chi

    2016-07-01

    The Dark Matter Particle Explore (DAMPE) is a satellite based experiment which launched on December 2015 and aims at indirect searching for dark matter by measuring the spectra of high energy e±, γ from 5GeV up to 10TeV originating from deep space. The 3D imaging BGO calorimeter of DAMPE was designed to precisely measurement the primary energy of the electromagnetic particle and provides a highly efficient rejection of the hadronic background by reconstruct the longitudinal and lateral profiles of showers. To achieve the expected accuracy on the energy measurement, each signal channel has to be calibrated. The energy equalization is performed using the signal that Minimum Ionizing Particles (MIP) leave in each BGO bar, the MIPs measurement method with orbit data and, data quality, time stability using MIPs data will be presented, too.

  17. Configuration Studies and Recommendations for the ILC DampingRings

    SciTech Connect

    Wolski, Andrzej; Gao, Jie; Guiducci, Susanna

    2006-02-04

    We describe the results of studies comparing differentoptions for the baseline configuration of the ILC damping rings. Theprincipal configuration decisions apply to the circumference, beamenergy, lattice type, and technology options for key components,including the injection/extraction kickers and the damping wigglers. Toarrive at our recommended configuration, we performed detailed studies ofa range of lattices representing a variety of different configurationoptions; these lattices are described in Chapter 2. The results of thevarious studies are reported in chapters covering issues of beamdynamics, technical subsystems, costs, and commissioning, reliability andupgradeability. Our detailed recommendations for the baselineconfiguration are given in Chapter 7, where we also outline furtherresearch and development that is needed before a machine using ourrecommended configuration can be built and operated successfully. In thesame chapter, we suggest possible alternatives to the baselineconfiguration.

  18. Configuration Studies and Recommendations for the ILC DampingRings

    SciTech Connect

    Wolski, Andrzej; Gao, Jie; Guiducci, Susanna

    2006-02-04

    We describe the results of studies comparing different options for the baseline configuration of the ILC damping rings. The principal configuration decisions apply to the circumference, beam energy, lattice type, and technology options for key components, including the injection/extraction kickers and the damping wigglers. To arrive at our recommended configuration, we performed detailed studies of a range of lattices representing a variety of different configuration options; these lattices are described in Chapter 2. The results of the various studies are reported in chapters covering issues of beam dynamics, technical subsystems, costs, and commissioning, reliability and upgrade ability. Our detailed recommendations for the baseline configuration are given in Chapter 7, where we also outline further research and development that is needed before a machine using our recommended configuration can be built and operated successfully. In the same chapter, we suggest possible alternatives to the baseline configuration.

  19. Note on the Poisson structure of the damped oscillator

    SciTech Connect

    Hone, A. N. W.; Senthilvelan, M.

    2009-10-15

    The damped harmonic oscillator is one of the most studied systems with respect to the problem of quantizing dissipative systems. Recently Chandrasekar et al. [J. Math. Phys. 48, 032701 (2007)] applied the Prelle-Singer method to construct conserved quantities and an explicit time-independent Lagrangian and Hamiltonian structure for the damped oscillator. Here we describe the associated Poisson bracket which generates the continuous flow, pointing out that there is a subtle problem of definition on the whole phase space. The action-angle variables for the system are also presented, and we further explain how to extend these considerations to the discrete setting. Some implications for the quantum case are briefly mentioned.

  20. Viscous cavity damping of a microlever in a simple fluid.

    PubMed

    Siria, A; Drezet, A; Marchi, F; Comin, F; Huant, S; Chevrier, J

    2009-06-26

    We consider the problem of oscillation damping in air of a thermally actuated microlever as it gradually approaches an infinite wall in parallel geometry. As the gap is decreased from 20 microm down to 400 nm, we observe the increasing damping of the lever Brownian motion in the fluid laminar regime. This manifests itself as a linear decrease in the lever quality factor accompanied by a dramatic softening of its resonance, and eventually leads to the freezing of the CL oscillation. We are able to quantitatively explain this behavior by analytically solving the Navier-Stokes equation with perfect slip boundary conditions. Our findings may have implications for microfluidics and micro- and nanoelectromechanical applications.

  1. [DAMPs (damage-associated molecular patterns) and inflammation].

    PubMed

    Ooboshi, Hiroaki; Shichita, Takashi

    2016-04-01

    Post-ischemic inflammation is re-appraised as an important player in the progression of ischemic stroke. Activation of inflammatory cells via Toll-like receptor 2 (TLR2) and TLR4 is caused by several damage-associated molecular patterns (DAMPs), including high mobility group box-1 (HMGB-1) and heat shock proteins. We have recently found that peroxiredoxin (Prx) is one of the strong DAMPs and activates infiltrating macrophages in brain ischemia. We have also found that interleukin-23 (IL-23) from the activated macrophages stimulates γδT cells which release IL-17, thereby causing the delayed expansion of infarct lesions. Further investigation of the innate immune response would lead to development of novel stroke treatment with a broad therapeutic time window. PMID:27333742

  2. Comments on Landau damping due to synchrotron frequency spread

    SciTech Connect

    Ng, K.Y.; /Fermilab

    2005-01-01

    An inductive/space-charge impedance shifts the synchrotron frequency downwards above/below transition, but it is often said that the coherent synchrotron frequency of the bunch is not shifted in the rigid-dipole mode. On the other hand, the incoherent synchrotron frequency due to the sinusoidal rf always spreads in the downward direction. This spread will therefore not be able to cover the coherent synchrotron frequency, implying that there will not be any Landau damping no matter how large the frequency spread is. By studying the dispersion relation, it is shown that the above argument is incorrect, and there will be Landau damping if there is sufficient frequency spread. The main reason is that the coherent frequency of the rigid-dipole mode will no longer remain unshifted in the presence of a synchrotron frequency spread.

  3. DAMPE silicon tracker on-board data compression algorithm

    NASA Astrophysics Data System (ADS)

    Dong, Yi-Fan; Zhang, Fei; Qiao, Rui; Peng, Wen-Xi; Fan, Rui-Rui; Gong, Ke; Wu, Di; Wang, Huan-Yu

    2015-11-01

    The Dark Matter Particle Explorer (DAMPE) is an upcoming scientific satellite mission for high energy gamma-ray, electron and cosmic ray detection. The silicon tracker (STK) is a subdetector of the DAMPE payload. It has excellent position resolution (readout pitch of 242 μm), and measures the incident direction of particles as well as charge. The STK consists of 12 layers of Silicon Micro-strip Detector (SMD), equivalent to a total silicon area of 6.5 m2. The total number of readout channels of the STK is 73728, which leads to a huge amount of raw data to be processed. In this paper, we focus on the on-board data compression algorithm and procedure in the STK, and show the results of initial verification by cosmic-ray measurements. Supported by Strategic Priority Research Program on Space Science of Chinese Academy of Sciences (XDA040402) and National Natural Science Foundation of China (1111403027)

  4. Sound transmission loss of integrally damped, curved panels

    NASA Technical Reports Server (NTRS)

    Grosveld, Ferdinand W.; Reed, Samuel A.

    1989-01-01

    Results are reported from acoustic transmission-loss measurements on 13 curved Al and composite aircraft-type panels (height 0.81 m, arc length 1.32 m, and curvature radius 2.29 m) without and with integral damping of various types. The fabrication of the panels and the test procedures are described and illustrated with photographs, and the results are presented in graphs. It is found that the loss of a curved panel exceeds the mass-law-predicted loss for a flat panel of the same material and thickness at frequencies below the ring frequency. At higher frequencies, the curved-panel loss is lower than the mass-law loss, being proportional to 20 time the log of thickness. Integral damping is found to be effective both below and above the ring frequency, but different mechanisms are responsible in each case.

  5. Investigation of magnetic damping on an air track

    NASA Astrophysics Data System (ADS)

    Xie, Xiao; Wang, Zhu-ying; Gu, Pingping; Jian, Zhi-jian; Chen, Xiao-lin; Xie, Zhong

    2006-11-01

    A more effective experimental method is used to analyze the effect of magnetic damping on a nonferromagnetic air track. Due to the continuous interaction between the horizontal air track and the moving magnets fixed on the air-track glider, the experiment can be easily done with low-cost photoelectric detecting techniques. A simple model is proposed based on Faraday's law, the Lorentz force law, and Ampere's law. Analytic expressions for the position, the velocity, and the magnetic damping force of the moving magnets as a function of time are obtained. Systematic measurements were performed and the results are in good agreement with the model. The method provides a simple teaching platform for introductory physics demonstrations and undergraduate courses in experimental physics.

  6. Quantum correlations in pumped and damped Bose-Hubbard dimers

    NASA Astrophysics Data System (ADS)

    Olsen, M. K.; Chianca, C. V.; Dechoum, K.

    2016-10-01

    We propose and analyze two-well Bose-Hubbard models with pumping and losses, finding that these models, with damping and loss able to be added independently to each well, offer a flexibility not found in optical coupled cavity systems. With one well pumped, we find that both the mean-field dynamics and the quantum statistics show a quantitative dependence on the choice of damped well. Both the systems we analyze remain far from equilibrium, preserving good coherence between the wells in the steady state. We find a degree of quadrature squeezing and mode entanglement in these systems. Due to recent experimental advances, it should be possible to demonstrate the effects we investigate and predict.

  7. Numerical solution of fractionally damped beam by homotopy perturbation method

    NASA Astrophysics Data System (ADS)

    Behera, Diptiranjan; Chakraverty, Snehashish

    2013-06-01

    This paper investigates the numerical solution of a viscoelastic continuous beam whose damping behaviours are defined in term of fractional derivatives of arbitrary order. The Homotopy Perturbation Method (HPM) is used to obtain the dynamic response. Unit step function response is considered for the analysis. The obtained results are depicted in various plots. From the results obtained it is interesting to note that by increasing the order of the fractional derivative the beam suffers less oscillation. Similar observations have also been made by keeping the order of the fractional derivative constant and varying the damping ratios. Comparisons are made with the analytic solutions obtained by Zu-feng and Xiao-yan [Appl. Math. Mech. 28, 219 (2007)] to show the effectiveness and validation of this method.

  8. A stochastic analysis approach for the calculation of hydrodynamic dampings

    SciTech Connect

    Karadeniz, H.

    1995-12-31

    This paper introduces an alternative linearization algorithm for nonlinear loading terms occurring in the spectral analysis of offshore structures. The algorithm makes use of member consistent forces for the linearization unlike the traditional linearization method. Different linearization criteria are used for different components of the member consistent forces. An equivalent second moment criterion is used to linearize the force component due to wave velocities while the components due to current and structural velocities are kept being stochastic. Calculation of their mean values is presented for the analysis. A deterministic added mass matrix and a stochastic hydrodynamic damping matrix are derived from the force component due to structural deformations. It is demonstrated that the mean value hydrodynamic damping ratios which are calculated in the paper are more realistic than those resulted from the linearization of the Morison`s equation.

  9. Chatter Stability in Turning and Milling with in Process Identified Process Damping

    NASA Astrophysics Data System (ADS)

    Kurata, Yusuke; Merdol, S. Doruk; Altintas, Yusuf; Suzuki, Norikazu; Shamoto, Eiji

    Process damping in metal cutting is caused by the contact between the flank face of the cutting tool and the wavy surface finish, which is known to damp chatter vibrations. An analytical model with process damping has already been developed and verified in earlier research, in which the damping coefficient is considered to be proportional to the ratio of vibration and cutting velocities. This paper presents in process identification of the process damping force coefficient derived from cutting tests. Plunge turning is used to create a continuous reduction in cutting speed as the tool reduces the diameter of a cylindrical workpiece. When chatter stops at a critical cutting speed, the process damping coefficient is estimated by inverse solution of the stability law. It is shown that the stability lobes constructed by the identified process damping coefficient agrees with experiments conducted in both turning and milling.

  10. Fast damping of ultralow frequency waves excited by interplanetary shocks in the magnetosphere

    NASA Astrophysics Data System (ADS)

    Wang, Chengrui; Rankin, Robert; Zong, Qiugang

    2015-04-01

    Analysis of Cluster spacecraft data shows that intense ultralow frequency (ULF) waves in the inner magnetosphere can be excited by the impact of interplanetary shocks and solar wind dynamic pressure variations. The observations reveal that such waves can be damped away rapidly in a few tens of minutes. Here we examine mechanisms of ULF wave damping for two interplanetary shocks observed by Cluster on 7 November 2004 and 30 August 2001. The mechanisms considered are ionospheric joule heating, Landau damping, and waveguide energy propagation. It is shown that Landau damping provides the dominant ULF wave damping for the shock events of interest. It is further demonstrated that damping is caused by drift-bounce resonance with ions in the energy range of a few keV. Landau damping is shown to be more effective in the plasmasphere boundary layer due to the higher proportion of Landau resonant ions that exist in that region.

  11. Application of Interline Power Flow Controller (IPFC) to Power Oscillation Damping

    NASA Astrophysics Data System (ADS)

    Zhang, Jun; Yokoyama, Akihiko; Ide, Toshiro

    This paper presents a study of the effect of the Interline Power Flow Controller (IPFC) on power oscillation damping and the design process of its damping controller. The power injection model of IPFC suitable for this study is developed in this paper. The damping effect of the PI controller, which is originally for constant power flow control, is evaluated first, and modal analysis of the power system is carried out. Then the pole shifting technique is adopted to stabilize the oscillatory mode having insufficient damping ratio by use of a PSS-type supplementary damping controller. The design process of the supplementary damping controller and the selection of input signal according to the mode observability are presented. Simulation results demonstrate that the IPFC with the above control system is an effective tool to damp power oscillations.

  12. Damping of magnetohydrodynamic waves by resonant absorption in the solar atmosphere.

    PubMed

    Goossens, M; Andries, J; Arregui, I

    2006-02-15

    In the last decade we have been overwhelmed by an avalanche of discoveries of magnetohydrodynamic (MHD) waves by the Solar and Heliospheric Observatory and Transition Region and Coronal Explorer observatories. Both standing and propagating versions of fast magnetoacoustic and slow magnetoacoustic MHD waves have been detected. Information on the damping times and damping distances of these waves is less detailed and less accurate than that on periods and amplitudes. Nevertheless, observations show the damping times and damping lengths are often short. Also, different types of MHD waves in different types of magnetic structures likely require different damping mechanisms. The phenomenon of fast damping is well documented for the standing fast magnetosonic kink waves in coronal loops. This paper concentrates on standing fast magnetosonic waves. It reports on results on periods and damping times due to resonant absorption in one-dimensional and two-dimensional models of coronal loops. Special attention is given to multiple modes. PMID:16414889

  13. The mixed level damping of the single-axial rotation of INS

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Zhu, Hai; Li, Gang; Gao, Dayuan

    2011-12-01

    In order to improve the accuracy of the Single-axial Rotation of INS (SRINS), the idea of the level damping of the platform INS is introduced to the system, and the principle of the damping is offered. On the basic of analyzing on both of inner level damping and outer level damping, the mixed level damping is put forward. The results show that by introducing the damping network to the system, both of the Schuler oscillation and the Foucault oscillation are eliminated, and the precision of the SRINS is greatly enhanced; At the same time, by used of the mixed level damping, which can not only reduce the effect of the vehicle power-driven to the precision of the system, but also avoid the limit of the accurate reference velocity.

  14. Damping profile of standing kink oscillations observed by SDO/AIA

    NASA Astrophysics Data System (ADS)

    Pascoe, D. J.; Goddard, C. R.; Nisticò, G.; Anfinogentov, S.; Nakariakov, V. M.

    2016-01-01

    Aims: Strongly damped standing and propagating kink oscillations are observed in the solar corona. This can be understood in terms of mode coupling, which causes the wave energy to be converted from the bulk transverse oscillation to localised, unresolved azimuthal motions. The damping rate can provide information about the loop structure, and theory predicts two possible damping profiles. Methods: We used the recently compiled catalogue of decaying standing kink oscillations of coronal loops to search for examples with high spatial and temporal resolution and sufficient signal quality to allow the damping profile to be examined. The location of the loop axis was tracked, detrended, and fitted with sinusoidal oscillations with Gaussian and exponential damping profiles. Results: Using the highest quality data currently available, we find that for the majority of our cases a Gaussian profile describes the damping behaviour at least as well as an exponential profile, which is consistent with the recently developed theory for the damping profile due to mode coupling.

  15. Development of a novel variable stiffness and damping magnetorheological fluid damper

    NASA Astrophysics Data System (ADS)

    Sun, Shuaishuai; Yang, Jian; Li, Weihua; Deng, Huaxia; Du, Haiping; Alici, Gursel

    2015-08-01

    This paper reports a novel magnetorheological fluid (MRF)-based damper, which synergizes the attributes of variable stiffness and damping through the compact assembly of two MRF damping units and a spring. The magnetic field densities of the two damping units were analyzed. After the prototype of the new MRF damper, a hydraulically actuated MTS machine was used to test the damper’s performance, including stiffness variability and damping variability, amplitude-dependent responses and frequency-dependent responses. A new mathematical model was developed to describe the variable stiffness and damping MRF damper. The successful development, experimental testing and modeling of this innovative variable stiffness and damping MRF damper make the true design and implementation of the concept of variable stiffness and damping feasible.

  16. Analytical Modeling of Squeeze Film Damping in Dual Axis Torsion Microactuators

    NASA Astrophysics Data System (ADS)

    Moeenfard, Hamid

    2015-10-01

    In this paper, problem of squeeze film damping in dual axis torsion microactuators is modeled and closed form expressions are provided for damping torques around tilting axes of the actuator. The Reynolds equation which governs the pressure distribution underneath the actuator is linearized. The resulting equation is then solved analytically. The obtained pressure distribution is used to calculate the normalized damping torques around tilting axes of the actuator. Dependence of the damping torques on the design parameters of the dual axis torsion actuator is studied. It is observed that with proper selection of the actuator's aspect ratio, damping torque along one of the tilting directions can be eliminated. It is shown that when the tilting angles of the actuator are small, squeeze film damping would act like a linear viscous damping. The results of this paper can be used for accurate dynamical modeling and control of torsion dual axis microactuators.

  17. Theoretical study of interfacial damping in perpendicular anisotropy superlattices along multiple crystal orientations

    NASA Astrophysics Data System (ADS)

    Qu, T.; Victora, R. H.

    2016-06-01

    Damping, representing the loss of magnetic energy from the electrons to the lattice through the spin-orbit interaction, is calculated for Co/Pt and Co/Pd superlattices grown along the (001), (111), and (011) orientations. The damping consists of two contributions: interfacial and, usually, bulk. The interfacial damping shows dependence on the superlattice orientation. The origin of the interfacial damping is due to both the distorted electronic states at the interface and the spin-orbit interaction in the weakly polarized nonmagnetic Pt/Pd layers deposited on Co layers. The density of states around the Fermi level provides the spin-flip channels and closely correlates with the damping value. The damping shows asymmetry in the two transverse directions of the spin for spins at most angles. The damping for out-of-plane magnetization can be as much as 1.7 times larger than that of in-plane magnetization.

  18. Effect of Base Shape on Damping of Rocking of Rigid Body

    NASA Astrophysics Data System (ADS)

    Imanishi, Nozomu; Inoue, Yoshio; Shibata, Kyoko; Sato, Kazutomo; Yamasaki, Yoshihiko

    Effect of base shape on damping characteristics of rocking of rigid body is presented. We pay attention to the fact that free vibration amplitude of rigid body decreases rapidly without dampers or damping materials. We consider rocking of rigid body is very attractive as a low cost dynamic vibration absorber. At first, damping characteristics of rocking of typical rigid body with flat base shape is discussed theoretically. Next, we propose new type rigid body which base shape is polygon in order to design damping characteristics of rigid body in wide range. Theoretical method to calculate damping characteristics of rigid body is derived. Experiment of free vibration of the rigid body is carried out and the calculated results of the proposed method agree well with the experimental results. By calculating damping ratio of proposed rigid body using derived equations, it can be seen polygon base shape is very useful to design damping characteristics of rigid body.

  19. Transient beam loading in the SLC Damping Rings

    SciTech Connect

    Minty, M.G.; Siemann, R.H.

    1995-05-01

    Effects arising from heavy beam loading in the Stanford Linear Collider (SLC) Damping Rings are described. The stability of the rf system and particle beam is studied using a numerical model of the beam cavity interaction with multiple feedback loops. Nonlinearities of the power source are also considered. The effects of beam-induced transients and intensity jitter on the rf system are analyzed and used to determine stability tolerances for both high current and low current pulses.

  20. a Global Model for Long-Range Interaction `DAMPING Functions'

    NASA Astrophysics Data System (ADS)

    Myatt, Philip Thomas; McCourt, Frederick R. W.; Le Roy, Robert J.

    2016-06-01

    In recent years, `damping functions', which characterize the weakening of inverse-power-sum long-range interatomic interaction energies with increasing electron overlap, have become an increasing important component of models for diatomic molecule interaction potentials. However, a key feature of models for damping functions, their portability, has received little scrutiny. The present work set out to examine all available ab initio induction and dispersion damping function data and to attempt to devise a `global' scheme for diatomic molecule damping functions. It appears that while neutral (H, He, Li, and Ne, homonuclear and mixed) and anion (H^- with H, He and Li) species obey (approximately) one common rule, proton plus neutral (H^+ with H, He and Li) and non-proton-cation plus neutral systems (He^+ and Li^+ with H, He and Li), must each be treated separately. However, for all three cases, a version of the Douketis-Scoles-Thakkar (ionization potential)power factor is a key scaling parameter. R.J. Le Roy, C. C. Haugen, J. Tao and Hui Li, Mol. Phys. 109,435 (2011). P.J. Knowles and W.J. Meath,J. Mol. Phys. 60, 1143 (1987); R.J. Wheatley and W.J. Meath,J. Mol. Phys. 80, 25 (1993); R.J. Wheatley and W.J. Meath J. Chem. Phys. 179, 341 (1994); R.J. Wheatley and W.J. Meath,J. Chem. Phys. 203, 209 (1996). C. Douketis,G. Scoles, S. Marchetti, M. Zen and A. J. Thakkar, J. Chem. Phys. 76, 3057 (1982).

  1. Landau damping of space-charge dominated Fermilab Booster beam

    SciTech Connect

    Ng, K.Y.; /Fermilab

    2008-09-01

    The stable region of the Fermilab Booster beam in the complex coherent-tune-shift plane appears to have been shifted far away from the origin by its intense space-charge making Landau damping impossible. However, it is shown that the bunching structure of the beam reduces the mean space-charge tune shift. As a result, the beam can be stabilized by suitable octupole-driven tune spread.

  2. Conservation laws of inviscid Burgers equation with nonlinear damping

    NASA Astrophysics Data System (ADS)

    Abdulwahhab, Muhammad Alim

    2014-06-01

    In this paper, the new conservation theorem presented in Ibragimov (2007) [14] is used to find conservation laws of the inviscid Burgers equation with nonlinear damping ut+g(u)ux+λh(u)=0. We show that this equation is both quasi self-adjoint and self-adjoint, and use these concepts to simplify conserved quantities for various choices of g(u) and h(u).

  3. Microstructure and damping in soft magnetic thin films

    NASA Astrophysics Data System (ADS)

    Rantschler, James Owen

    This dissertation examines the role of microstructure and dissipation in FeTiN thin films and describes several magnetodynamic experiments in detail. Phenomenological descriptions of magnetic dissipation current in the literature are studied theoretically by use of the generalized equations of Callen and used to make concrete predictions about the resonance condition and linewidth. It is also shown that these predictions lead to differences that allow researchers to discriminate between theories. It is found that the FMR linewidth is a better candidate than the permeability for comparisons of damping with other measurable materials parameters because the form of the FMR linewidth is composed of separable elements, one related to spatial variations in magnetic parameters over a sample, and the other quantifying energy loss from the magnetic subsystem. This study shows that the Landau-Lifshitz and Landau-Lifshitz-Gilbert equations are the phenomenological formulations of dissipation that best describe damping in FeTiN. The linewidth broadening of FeTiN is shown to be heavily dependent upon the grain size of the material. As the mean grain diameter is reduced to the exchange length the linewidth broadening reduces dramatically. The damping of FeTiN films is shown to depend on the role of defects, and it is also shown that 2-magnon scattering, magnon-phonon scattering, and 3-magnon splitting are not major dissipation channels in FeTiN films. Stress and magnetostriction are tested for correlations with damping and broadening and give no positive results to within the sensitivity of the instrumentation at the MINT center. The role surface of defects is estimated to cause less than 10% of the observed dissipation.

  4. Imperfect Geometric Control and Overdamping for The Damped Wave Equation

    NASA Astrophysics Data System (ADS)

    Burq, Nicolas; Christianson, Hans

    2015-05-01

    We consider the damped wave equation on a manifold with imperfect geometric control. We show the sub-exponential energy decay estimate in (Christianson, J Funct Anal 258(3):1060-1065, 2010) is optimal in the case of one hyperbolic periodic geodesic. We show if the equation is overdamped, then the energy decays exponentially. Finally we show if the equation is overdamped but geometric control fails for one hyperbolic periodic geodesic, then nevertheless the energy decays exponentially.

  5. Finite element analysis of vibration and damping of laminated composites

    NASA Astrophysics Data System (ADS)

    Rikards, Rolands

    Simple finite elements are used to form a special laminated beam and plate superelements excluding all degrees of freedom in the nodes of the middle layer, and the finite element analysis of this structure is performed. To estimate damping of structures, modal loss factors are calculated, using two methods: the 'exact' method of complex eigenvalues and the approximate energy method. It was found that both methods give satisfactory results. However, the energy method needs less computer time than the exact method.

  6. Estimation on nonlinear damping in second order distributed parameter systems

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Reich, Simeon; Rosen, I. G.

    1989-01-01

    An approximation and convergence theory for the identification of nonlinear damping in abstract wave equations is developed. It is assumed that the unknown dissipation mechanism to be identified can be described by a maximal monotone operator acting on the generalized velocity. The stiffness is assumed to be linear and symmetric. Functional analytic techniques are used to establish that solutions to a sequence of finite dimensional (Galerkin) approximating identification problems in some sense approximate a solution to the original infinite dimensional inverse problem.

  7. Damped sinusoidal function to model acute irradiation in radiotherapy patients.

    PubMed

    Tukiendorf, Andrzej; Miszczyk, Leszek; Bojarski, Jacek

    2013-09-01

    In the paper, we suggest a damped sinusoidal function be used to model a regenerative response of mucosa in time after the radiotherapy treatment. The medical history of 389 RT patients irradiated within the years 1994-2000 at the Radiotherapy Department, Cancer Center, Maria Skłodowska-Curie Memorial Institute of Oncology, Gliwice, Poland, was taken into account. In the analyzed group of patients, the number of observations of a single patient ranged from 2 to 25 (mean = 8.3, median = 8) with severity determined by use of Dische's scores from 0 to 24 (mean = 7.4, median = 7). Statistical modeling of radiation-induced mucositis was performed for five groups of patients irradiated within the following radiotherapy schedules: CAIR, CB, Manchester, CHA-CHA, and Conventional. All of the regression parameters of the assumed model, i.e. amplitude, damping coefficient, angular frequency, phase of component, and offset, estimated in the analysis were statistically significant (p-value < 0.05) for the radiotherapy schedules. The model was validated using a non-oscillatory function. Following goodness-of-fit statistics, the damped sinusoidal function fits the data better than the non-oscillatory damped function. Model curves for harmonic characteristics with confidence intervals were plotted separately for each of the RT schedules and together in a combined design. The suggested model might be helpful in the numeric evaluation of the RT toxicity in the groups of patients under analysis as it allows for practical comparisons and treatment optimization. A statistical approach is also briefly described in the paper.

  8. Backscattering and Nonparaxiality Arrest Collapse of Damped Nonlinear Waves

    NASA Technical Reports Server (NTRS)

    Fibich, G.; Ilan, B.; Tsynkov, S.

    2002-01-01

    The critical nonlinear Schrodinger equation (NLS) models the propagation of intense laser light in Kerr media. This equation is derived from the more comprehensive nonlinear Helmholtz equation (NLH) by employing the paraxial approximation and neglecting the backscattered waves. It is known that if the input power of the laser beam (i.e., L(sub 2) norm of the initial solution) is sufficiently high, then the NLS model predicts that the beam will self-focus to a point (i.e.. collapse) at a finite propagation distance. Mathematically, this behavior corresponds to the formation of a singularity in the solution of the NLS. A key question which has been open for many years is whether the solution to the NLH, i.e., the 'parent' equation, may nonetheless exist and remain regular everywhere, in particular for those initial conditions (input powers) that lead to blowup in the NLS. In the current study, we address this question by introducing linear damping into both models and subsequently comparing the numerical solutions of the damped NLH (boundary-value problem) with the corresponding solutions of the damped NLS (initial-value problem). Linear damping is introduced in much the same way as done when analyzing the classical constant-coefficient Helmholtz equation using the limiting absorption principle. Numerically, we have found that it provides a very efficient tool for controlling the solutions of both the NLH and NHS. In particular, we have been able to identify initial conditions for which the NLS solution does become singular. whereas the NLH solution still remains regular everywhere. We believe that our finding of a larger domain of existence for the NLH than that for the NLS is accounted for by precisely those mechanisms, that have been neglected when deriving the NLS from the NLH, i.e., nonparaxiality and backscattering.

  9. Intelligent Buildings

    SciTech Connect

    Brambley, Michael R.; Armstrong, Peter R.; Kintner-Meyer, Michael CW; Pratt, Robert G.; Katipamula, Srinivas

    2001-01-01

    The topic of "intelligent buildings" (IBs) emerged in the early 1980s. Since, the term has been used to represent a variety of related, yet differing topics, each with a slightly different focus and purpose. Wiring and networking-infrastructure companies emphasize the cabling requirements for communication in intelligent buildings and the need to accommodate future needs for higher-speed broadband. Lucent (Lucent 2000) for example, defines an IB as "...one with a completely integrated wiring architecture. A single cabling system that handles all information traffic - voice, data, video, even the big building management systems."

  10. Damping effects in doped graphene: The relaxation-time approximation

    NASA Astrophysics Data System (ADS)

    Kupčić, I.

    2014-11-01

    The dynamical conductivity of interacting multiband electronic systems derived by Kupčić et al. [J. Phys.: Condens. Matter 90, 145602 (2013), 10.1088/0953-8984/25/14/145602] is shown to be consistent with the general form of the Ward identity. Using the semiphenomenological form of this conductivity formula, we have demonstrated that the relaxation-time approximation can be used to describe the damping effects in weakly interacting multiband systems only if local charge conservation in the system and gauge invariance of the response theory are properly treated. Such a gauge-invariant response theory is illustrated on the common tight-binding model for conduction electrons in doped graphene. The model predicts two distinctly resolved maxima in the energy-loss-function spectra. The first one corresponds to the intraband plasmons (usually called the Dirac plasmons). On the other hand, the second maximum (π plasmon structure) is simply a consequence of the Van Hove singularity in the single-electron density of states. The dc resistivity and the real part of the dynamical conductivity are found to be well described by the relaxation-time approximation, but only in the parametric space in which the damping is dominated by the direct scattering processes. The ballistic transport and the damping of Dirac plasmons are thus the problems that require abandoning the relaxation-time approximation.

  11. Damping effects of magnetic fluids of various saturation magnetization (abstract)

    NASA Astrophysics Data System (ADS)

    Chagnon, Mark

    1990-05-01

    Magnetic fluids have been widely accepted for use in loudspeaker voice coil gaps as viscous dampers and liquid coolants. When applied properly to a voice coil in manufacturing of the loudspeaker, dramatic improvement in frequency response and power handling is observed. Over the past decade, a great deal of study has been given to the effects of damping as a function of fluid viscosity. It is known that the apparent viscosity of a magnetic fluid increases as a function of applied magnetic field, and that the viscosity versus field relationship approximate that of the magnetization versus applied field. At applied magnetic field strength sufficient to cause magnetic saturation of the fluid, no further increase in viscosity with increased magnetic field is observed. In order to provide a better understanding of the second order magnetoviscous damping effects in magnetic fluids used in voice coils and to provide a better loudspeaker design criterion using magnetic fluids, we have studied the effect on damping of several magnetic fluids of the same O field viscosity and of varying saturation magnetization. Magnetic fluids with saturation magnetization ranging from 50 to 450 G and 100 cps viscosity at O applied field were injected into the voice coil gap of a standard midrange loudspeaker. The frequency response over the entire dynamic range of the speaker was measured. The changes in frequency response versus fluid magnetization are reported.

  12. Damping of Quasi-stationary Waves Between Two Miscible Liquids

    NASA Technical Reports Server (NTRS)

    Duval, Walter M. B.

    2002-01-01

    Two viscous miscible liquids with an initially sharp interface oriented vertically inside a cavity become unstable against oscillatory external forcing due to Kelvin-Helmholtz instability. The instability causes growth of quasi-stationary (q-s) waves at the interface between the two liquids. We examine computationally the dynamics of a four-mode q-s wave, for a fixed energy input, when one of the components of the external forcing is suddenly ceased. The external forcing consists of a steady and oscillatory component as realizable in a microgravity environment. Results show that when there is a jump discontinuity in the oscillatory excitation that produced the four-mode q-s wave, the interface does not return to its equilibrium position, the structure of the q-s wave remains imbedded between the two fluids over a long time scale. The damping characteristics of the q-s wave from the time history of the velocity field show overdamped and critically damped response; there is no underdamped oscillation as the flow field approaches steady state. Viscous effects serve as a dissipative mechanism to effectively damp the system. The stability of the four-mode q-s wave is dependent on both a geometric length scale as well as the level of background steady acceleration.

  13. Complex Eigensolutions of Rectangular Plates with Damping Patches

    NASA Astrophysics Data System (ADS)

    Kung, S.-W.; Singh, R.

    1998-09-01

    A new analytical, energy based approach that predicts the vibration characteristics of a rectangular plate with multiple viscoelastic patches is presented. This paper extends the method presented earlier by the authors that was applied to the determination of the eigensolutions of viscoelacstically damped beams. The method first relates all motion variables of a sandwich plate in terms of the flexural displacement of the base structure. Then the flexural shape function sets are incorporated in the Rayleigh-Ritz minimization scheme to obtain a complex eigenvalue problem. This method allows for the visualization of complex models of all deformations of the viscoelastic core that are the major contributors to the overall energy dissipation. Comparison with the work of three prior investigators on a simply supported plate validates the model for the limiting case of full coverage. Benchmark experimental measurements are made on a plate with free edges, and five damping cases are considered. Analytical predictions of natural frequencies, modal loss factors and complex modes for all cases are in excellent agreement with modal measurements. A normalization scheme for complex mode shapes has also been developed. Finally, simplified loss factor estimation procedures are presented to illustrate the additive effect of damping patches.

  14. CESR Conversion Damping Ring Studies of Electron Cloud Instabilities (CESR-TA)

    SciTech Connect

    Rubin, David L.; Palmer, Mark A.

    2011-08-02

    In the International Linear Collider, two linear accelerators will accelerate bunches of positrons and electrons to over a hundred billion electron volts and collide them in a central detector. In order to obtain useful collision rates, the bunches, each containing twenty billion particles, must be compressed to a cross section of a few nanometers by a few hundred nanometers. In order to prepare these ultra high density bunches, damping rings (DRs) are employed before the linear accelerators. The DRs take the high emittance bunches that are provided by the electron and positron sources and, through the process of radiation damping, squeeze them into ultra low emittance beams that are ready for the main linear accelerators. In the damping rings, a number of effects can prevent the successful preparation of the beams. In the electron ring, an effect known as the fast ion instability can lead to beam growth and, in the positron ring, the build-up of an electron cloud (EC), which interacts with the circulating bunches, can produce the same effect. EC build-up and the subsequent interaction of the cloud with the positron beam in the DR have been identified as major risks for the successful construction of a linear collider. The CESRTA research program at the Cornell Electron Storage Ring (CESR) was developed in order to study the build-up of the EC, the details of its impact on ultra low emittance beams, as well as methods to mitigate the impact of the cloud. In the DR, the EC forms when synchrotron photons radiated from the circulating beam strike the walls of the vacuum chamber, resulting in the emission of photoelectrons. These low energy electrons can be accelerated across the vacuum chamber by the electric field of the beam, and strike the walls, causing the emission of secondary electrons. The secondary electrons are subsequently accelerated into the walls yet again via the same mechanism. The result is that the EC can rapidly begin to fill the vacuum chamber. In

  15. Building Portfolio

    ERIC Educational Resources Information Center

    College Management, 1974

    1974-01-01

    The combination of a prefabricated building system and a clustered terrace design has resulted in economical and aesthetically pleasing housing for students at Vassar College in Poughkeepsie, New York. (Author)

  16. Analytical modeling of squeeze air film damping of biomimetic MEMS directional microphone

    NASA Astrophysics Data System (ADS)

    Ishfaque, Asif; Kim, Byungki

    2016-08-01

    Squeeze air film damping is introduced in microelectromechanical systems due to the motion of the fluid between two closely spaced oscillating micro-structures. The literature is abundant with different analytical models to address the squeeze air film damping effects, however, there is a lack of work in modeling the practical sensors like directional microphones. Here, we derive an analytical model of squeeze air film damping of first two fundamental vibration modes, namely, rocking and bending modes, of a directional microphone inspired from the fly Ormia ochracea's ear anatomy. A modified Reynolds equation that includes compressibility and rarefaction effects is used in the analysis. Pressure distribution under the vibrating diaphragm is derived by using Green's function. From mathematical modeling of the fly's inspired mechanical model, we infer that bringing the damping ratios of both modes in the critical damping range enhance the directional sensitivity cues. The microphone parameters are varied in derived damping formulas to bring the damping ratios in the vicinity of critical damping, and to show the usefulness of the analytical model in tuning the damping ratios of both modes. The accuracy of analytical damping results are also verified by finite element method (FEM) using ANSYS. The FEM results are in full compliance with the analytical results.

  17. Dynamics of structural systems with various frequency-dependent damping models

    NASA Astrophysics Data System (ADS)

    Li, Li; Hu, Yujin; Deng, Weiming; Lü, Lei; Ding, Zhe

    2015-03-01

    The aim of this paper is to present the dynamic analyses of the system involving various damping models. The assumed frequency-dependent damping forces depend on the past history of motion via convolution integrals over some damping kernel functions. By choosing suitable damping kernel functions of frequency-dependent damping model, it may be derived from the familiar viscoelastic materials. A brief review of literature on the choice of available damping models is presented. Both the mode superposition method and Fourier transform method are developed for calculating the dynamic response of the structural systems with various damping models. It is shown that in the case of non-deficient systems with various damping models, the modal analysis with repeated eigenvalues are very similar to the traditional modal analysis used in undamped or viscously damped systems. Also, based on the pseudo-force approach, we transform the original equations of motion with nonzero initial conditions into an equivalent one with zero initial conditions and therefore present a Fourier transform method for the dynamics of structural systems with various damping models. Finally, some case studies are used to show the application and effectiveness of the derived formulas.

  18. A comparative experimental study on structural and interface damping approaches for vibration suppression purposes

    NASA Astrophysics Data System (ADS)

    Liu, Yi; Sanchez, Alberto; Zogg, Markus; Ermanni, Paolo

    2010-04-01

    Dynamic loadings in automotive structures may lead to reduction of driving comfort and even to failure of the components. Damping treatments are applied in order to attenuate the vibrations and improve the long term fatigue behavior of the structures. This experimental study is targeting applications in floor panels that are mounted to the loadcarrying primary structure of the vehicle. The objective is to reach outstanding damping performance considering the stringent weight and cost requirement in the automotive industry. An experimental setup has been developed and validated for the determination of the damping properties of structural specimens also considering interface damping effects. This contribution is structured in three main parts: test rig design, experimental results and discussion. Reliable and easy-to-use devices for the characterization of the damping properties of specimens between 200×40 mm2 and 400×400 mm2 are not available "on the shelf". In this context, we present a flexible experimental set-up which has been realized to (1) support the development of novel damping solutions for multi-functional composite structures; (2) characterize the loss-factor of the different damping concepts, including boundary effects. A variety of novel passive and active damping treatments have been investigated including viscoelastic, coulomb, magnetorheological (MR), particle, magnetic and eddy current damping. The particle, interface as well as active damping systems show promising performance in comparison to the classical viscoelastic treatments.

  19. Vibration damping characteristics of graphite/epoxy composites for large space structures

    NASA Technical Reports Server (NTRS)

    Gibson, R. F.

    1982-01-01

    Limited data on extensional and flexural damping of small specimens of graphite/epoxy and unreinforced epoxy resin were obtained. Flexural damping was measured using a forced vibration technique based on resonant flexural vibration of shaker excited double cantilever specimens. Extensional damping was measured by subjecting similar specimens to low frequency sinusoidal oscillation in a servohydraulic tensile testing machine while plotting load versus extensional strain. Damping was found to vary slowly and continuously over the frequency range 0.01 - 1000 Hz, and no drastic transitions were observed. Composite damping was found to be less than neat resin damping. Comparison of small specimen damping values with assembled column damping values seems to indicate that, for those materials, material damping is more important than joint damping. The data reported was limited not by the test apparatus, but by signal conditioning and data acquisition. It is believed that filtering of the strain gage signals and the use of digital storage with slow playback will make it possible to extend the frequency and amplitude ranges significantly.

  20. Hydrodynamic heave damping estimation and scaling for tension leg platforms

    SciTech Connect

    Thiagarajan, K.P.; Troesch, A.W. )

    1994-05-01

    Resonant heave excitation of tension leg platform (TLP) tendons is typically of high-frequency and small amplitude. The response of the tendons to this excitation is non-negligible due to a very small drag coefficient of the structure in this mode of oscillation. Small values of the drag force complicate experimental estimation in a laboratory due to the dominating inertial force. Model tests conducted at the University of Michigan investigating the damping experienced by a cylinder of 0.457 m (1.5 ft) diameter and 1.219 m (4.0 ft) draft are described here. The cylinder is vertical and surface-piercing, and oscillates parallel to its axis. The amplitude of the forcing is varied to give a Keulegan-Carpenter (KC) number range of 0.1--1.0. The frequency parameter [beta] is 89236, corresponding to an oscillation frequency of 0.41 Hz. From these experiments, a definite nonlinear trend is observed between the drag force and velocity conflicting with some of the results reported by Huse (1990) and Chakrabarti and Hanna (1991). The heave damping coefficients of individual structural components of a TLP follow different scaling laws. Rules are presented for scaling friction and form drag components from model to full scale. Results from experiments are used to obtain a scaling law for vertical columns of a TLP. Previously published results are used for horizontal pontoons. An example TLP calculation shows that the heave damping ratio of horizontal cylinders is approximately 0.049--0.078 percent, depending upon cylinder shape, and that for vertical cylinders is in the range 0.025--0.171 percent, depending upon KC.