Science.gov

Sample records for co-mn-al mixed oxide

  1. Mixed oxide solid solutions

    DOEpatents

    Magno, Scott; Wang, Ruiping; Derouane, Eric

    2003-01-01

    The present invention is a mixed oxide solid solution containing a tetravalent and a pentavalent cation that can be used as a support for a metal combustion catalyst. The invention is furthermore a combustion catalyst containing the mixed oxide solid solution and a method of making the mixed oxide solid solution. The tetravalent cation is zirconium(+4), hafnium(+4) or thorium(+4). In one embodiment, the pentavalent cation is tantalum(+5), niobium(+5) or bismuth(+5). Mixed oxide solid solutions of the present invention exhibit enhanced thermal stability, maintaining relatively high surface areas at high temperatures in the presence of water vapor.

  2. Mixed oxide fuel development

    SciTech Connect

    Leggett, R.D.; Omberg, R.P.

    1987-05-08

    This paper describes the success of the ongoing mixed-oxide fuel development program in the United States aimed at qualifying an economical fuel system for liquid metal cooled reactors. This development has been the cornerstone of the US program for the past 20 years and has proceeded in a deliberate and highly disciplined fashion with high emphasis on fuel reliability and operational safety as major features of an economical fuel system. The program progresses from feature testing in EBR-II to qualifying full size components in FFTF under fully prototypic conditions to establish a basis for extending allowable lifetimes. The development program started with the one year (300 EFPD) core, which is the FFTF driver fuel, continued with the demonstration of a two year (600 EFPD) core and is presently evaluating a three year (900 EFPD) fuel system. All three of these systems, consistent with other LMR fuel programs around the world, use fuel pellets gas bonded to a cladding tube that is assembled into a bundle and fitted into a wrapper tube or duct for ease of insertion into a core. The materials of construction progressed from austenitic CW 316 SS to lower swelling austenitic D9 to non swelling ferritic/martensitic HT9. 6 figs., 2 tabs.

  3. Mixed oxide nanoparticles and method of making

    DOEpatents

    Lauf, Robert J.; Phelps, Tommy J.; Zhang, Chuanlun; Roh, Yul

    2002-09-03

    Methods and apparatus for producing mixed oxide nanoparticulates are disclosed. Selected thermophilic bacteria cultured with suitable reducible metals in the presence of an electron donor may be cultured under conditions that reduce at least one metal to form a doped crystal or mixed oxide composition. The bacteria will form nanoparticles outside the cell, allowing easy recovery. Selection of metals depends on the redox potentials of the reducing agents added to the culture. Typically hydrogen or glucose are used as electron donors.

  4. Processing of Mixed Oxide Superconductors

    DTIC Science & Technology

    1990-07-01

    UROUP SUB-GROUP High Temperature Superconductivity , critical current -- 7-- 0superconductor, ceramic, magnetism 20 ’ I 19. ABSTRACT (Continue on...large intragrain currents and small intergrain currents . Magnetic separation works well for YBCO in liquid nitrogen. The technique can certainly be...between the intergrain and intragrain currents and that the short coherence length of oxide superconductors is not the main problem. The closest

  5. Nondestructive assay confirmatory assessment experiments: mixed oxide

    SciTech Connect

    Lemming, J.F.

    1980-04-30

    The confirmatory assessment experiments demonstrate traceable nondestructive assay (NDA) measurements of plutonium in mixed oxide powder using commercially available spontaneous-fission assay systems. The experiments illustrate two major concepts: the production of calibration materials using calorimetric assay, and the use of paired measurements for measurement assurance. Two batches of well-characterized mixed oxide powder were used to establish the random and systematic error components. The major components of an NDA measurement assurance technique to establish and maintain traceability are identified and their functions are demonstrated. 20 refs., 10 figs., 10 tabs.

  6. Process for etching mixed metal oxides

    DOEpatents

    Ashby, C.I.H.; Ginley, D.S.

    1994-10-18

    An etching process is described using dicarboxylic and tricarboxylic acids as chelating etchants for mixed metal oxide films such as high temperature superconductors and ferroelectric materials. Undesirable differential etching rates between different metal oxides are avoided by selection of the proper acid or combination of acids. Feature sizes below one micron, excellent quality vertical edges, and film thicknesses in the 100 Angstrom range may be achieved by this method. 1 fig.

  7. Process for etching mixed metal oxides

    DOEpatents

    Ashby, Carol I. H.; Ginley, David S.

    1994-01-01

    An etching process using dicarboxylic and tricarboxylic acids as chelating etchants for mixed metal oxide films such as high temperature superconductors and ferroelectric materials. Undesirable differential etching rates between different metal oxides are avoided by selection of the proper acid or combination of acids. Feature sizes below one micron, excellent quality vertical edges, and film thicknesses in the 100 Angstom range may be achieved by this method.

  8. Mixing of oxidized and bilayer phospholipids.

    PubMed

    Singh, Jasmeet; Ranganathan, Radha

    2015-07-01

    Composition and phase dependence of the mixing of 1,2-Dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), and 1,2-Dioleoyl-sn-glycero-3-phosphocholine (DOPC), with the oxidized phospholipid, 1-palmitoyl-2-glutaryl-sn-glycero-3-phosphocholine (PGPC) were investigated by characterizing the aggregation states of DPPC/PGPC and DOPC/PGPC using a fluorescence quenching assay, dynamic light scattering, and time-resolved fluorescence quenching in the temperature range 5-60°C. PGPC forms 3.5nm radii micelles of aggregation number 33. In the gel phase, DPPC and PGPC fuse to form mixed vesicles for PGPC molar fraction, XPGPC≤0.3 and coexisting vesicles and micelles at higher XPGPC. Data suggest that liquid phase DPPC at 50°C forms mixed vesicles with segregated or hemi fused DPPC and PGPC for XPGPC≤0.3. At 60°C, DPPC and PGPC do not mix, but form coexisting vesicles and micelles. DOPC and PGPC do not mix in any proportion in the liquid phase. Two dissimilar aggregates of the sizes of vesicles and PGPC micelles were observed for all XPGPC for T≥22°C. DOPC-PGPC and DPPC-PGPC mixing is non-ideal for XPGPC>0.3 in both gel and fluid phases resulting in exclusion of PGPC from the bilayer. Formation of mixed vesicles is favored in the gel phase but not in the liquid phase for XPGPC≤0.3. For XPGPC≤0.3, aggregation states change progressively from mixed vesicles in the gel phase to component segregated mixed vesicles in the liquid phase close to the chain melting transition temperature to separated coexisting vesicles and micelles at higher temperatures. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Alternative oxidation technologies for organic mixed waste

    SciTech Connect

    Borduin, L.C.; Fewell, T.

    1998-07-01

    The Mixed Waste Focus Area (MWFA) is currently supporting the development and demonstration of several alternative oxidation technology (AOT) processes for treatment of combustible mixed low-level wastes. AOTs have been defined as technologies that destroy organic material without using open-flame reactions. AOTs include both thermal and nonthermal processes that oxidize organic wastes but operate under significantly different physical and chemical conditions than incinerators. Nonthermal processes currently being studied include Delphi DETOX and acid digestion at the Savannah River Site (SRS), and direct chemical oxidation at Lawrence Livermore National Laboratory (LLNL). All three technologies are at advanced stages of development or are entering the demonstration phase. Nonflame thermal processes include catalytic chemical oxidation, which is being developed and deployed at Lawrence Berkeley National Laboratory (LBNL), and steam reforming, a commercial process being supported by the Department of Energy (DOE). Although testing is complete on some AOT technologies, most require additional support to complete some or all of the identified development objectives. Brief descriptions, status, and planned paths forward for each of the technologies are presented.

  10. 40 CFR 721.4610 - Mixed metal oxides (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Mixed metal oxides (generic). 721.4610... Substances § 721.4610 Mixed metal oxides (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as mixed metal oxides (PMN...

  11. 40 CFR 721.10500 - Acrylated mixed metal oxides (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Acrylated mixed metal oxides (generic... Specific Chemical Substances § 721.10500 Acrylated mixed metal oxides (generic). (a) Chemical substance and... mixed metal oxides (PMN P-06-341) is subject to reporting under this section for the significant...

  12. 40 CFR 721.10006 - Mixed metal oxide (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Mixed metal oxide (generic). 721.10006... Substances § 721.10006 Mixed metal oxide (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as mixed metal oxide (PMN...

  13. 40 CFR 721.10006 - Mixed metal oxide (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Mixed metal oxide (generic). 721.10006... Substances § 721.10006 Mixed metal oxide (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as mixed metal oxide (PMN...

  14. 40 CFR 721.5548 - Mixed metal oxide (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Mixed metal oxide (generic). 721.5548... Substances § 721.5548 Mixed metal oxide (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a mixed metal oxide (PMN P-97-956)...

  15. 40 CFR 721.4610 - Mixed metal oxides (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Mixed metal oxides (generic). 721.4610... Substances § 721.4610 Mixed metal oxides (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as mixed metal oxides (PMN...

  16. 40 CFR 721.5548 - Mixed metal oxide (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Mixed metal oxide (generic). 721.5548... Substances § 721.5548 Mixed metal oxide (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a mixed metal oxide (PMN P-97-956)...

  17. 40 CFR 721.5548 - Mixed metal oxide (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Mixed metal oxide (generic). 721.5548... Substances § 721.5548 Mixed metal oxide (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a mixed metal oxide (PMN P-97-956)...

  18. 40 CFR 721.5548 - Mixed metal oxide (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Mixed metal oxide (generic). 721.5548... Substances § 721.5548 Mixed metal oxide (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a mixed metal oxide (PMN P-97-956)...

  19. 40 CFR 721.4610 - Mixed metal oxides (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Mixed metal oxides (generic). 721.4610... Substances § 721.4610 Mixed metal oxides (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as mixed metal oxides (PMN...

  20. 40 CFR 721.10006 - Mixed metal oxide (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Mixed metal oxide (generic). 721.10006... Substances § 721.10006 Mixed metal oxide (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as mixed metal oxide (PMN...

  1. 40 CFR 721.10006 - Mixed metal oxide (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Mixed metal oxide (generic). 721.10006... Substances § 721.10006 Mixed metal oxide (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as mixed metal oxide (PMN...

  2. 40 CFR 721.10500 - Acrylated mixed metal oxides (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Acrylated mixed metal oxides (generic... Specific Chemical Substances § 721.10500 Acrylated mixed metal oxides (generic). (a) Chemical substance and... mixed metal oxides (PMN P-06-341) is subject to reporting under this section for the significant...

  3. 40 CFR 721.5548 - Mixed metal oxide (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Mixed metal oxide (generic). 721.5548... Substances § 721.5548 Mixed metal oxide (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a mixed metal oxide (PMN P-97-956)...

  4. 40 CFR 721.4610 - Mixed metal oxides (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Mixed metal oxides (generic). 721.4610... Substances § 721.4610 Mixed metal oxides (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as mixed metal oxides (PMN...

  5. 40 CFR 721.4610 - Mixed metal oxides (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Mixed metal oxides (generic). 721.4610... Substances § 721.4610 Mixed metal oxides (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as mixed metal oxides (PMN...

  6. 40 CFR 721.10006 - Mixed metal oxide (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Mixed metal oxide (generic). 721.10006... Substances § 721.10006 Mixed metal oxide (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as mixed metal oxide (PMN...

  7. Critical experiments with mixed oxide fuel

    SciTech Connect

    Harris, D.R.

    1997-06-01

    This paper very briefly outlines technical considerations in performing critical experiments on weapons-grade plutonium mixed oxide fuel assemblies. The experiments proposed would use weapons-grade plutonium and Er{sub 2}O{sub 3} at various dissolved boron levels, and for specific fuel assemblies such as the ABBCE fuel assembly with five large water holes. Technical considerations described include the core, the measurements, safety, security, radiological matters, and licensing. It is concluded that the experiments are feasible at the Rensselaer Polytechnic Institute Reactor Critical Facility. 9 refs.

  8. Investigation of Mixed Oxide Catalysts for NO Oxidation

    SciTech Connect

    Szanyi, Janos; Karim, Ayman M.; Pederson, Larry R.; Kwak, Ja Hun; Mei, Donghai; Tran, Diana N.; Herling, Darrell R.; Muntean, George G.; Peden, Charles HF; Howden, Ken; Qi, Gongshin; Li, Wei

    2014-12-09

    The oxidation of engine-generated NO to NO2 is an important step in the reduction of NOx in lean engine exhaust because NO2 is required for the performance of the LNT technology [2], and it enhances the activities of ammonia selective catalytic reduction (SCR) catalysts [1]. In particular, for SCR catalysts an NO:NO2 ratio of 1:1 is most effective for NOx reduction, whereas for LNT catalysts, NO must be oxidized to NO2 before adsorption on the storage components. However, NO2 typically constitutes less than 10% of NOx in lean exhaust, so catalytic oxidation of NO is essential. Platinum has been found to be especially active for NO oxidation, and is widely used in DOC and LNT catalysts. However, because of the high cost and poor thermal durability of Pt-based catalysts, there is substantial interest in the development of alternatives. The objective of this project, in collaboration with partner General Motors, is to develop mixed metal oxide catalysts for NO oxidation, enabling lower precious metal usage in emission control systems. [1] M. Koebel, G. Madia, and M. Elsener, Catalysis Today 73, 239 (2002). [2] C. H. Kim, G. S. Qi, K. Dahlberg, and W. Li, Science 327, 1624 (2010).

  9. Analytical chemistry methods for mixed oxide fuel, March 1985

    SciTech Connect

    Not Available

    1985-03-01

    This standard provides analytical chemistry methods for the analysis of materials used to produce mixed oxide fuel. These materials are ceramic fuel and insulator pellets and the plutonium and uranium oxides and nitrates used to fabricate these pellets.

  10. Mediated electrochemical oxidation of mixed wastes

    SciTech Connect

    Chiba, Z.

    1993-04-01

    The Mediated Electrochemical Oxidation (MEO) process was studied for destroying low-level combustible mixed wastes at Rocky Flats Plant. Tests were performed with non-radioactive surrogate materials: Trimsol for contaminated cutting oils, and reagent-grade cellulose for contaminated cellulosic wastes. Extensive testing was carried out on Trimsol in both small laboratory-scale apparatus and on a large-scale system incorporating an industrial-size electrochemical cell. Preliminary tests were also carried out in the small-scale system with cellulose. Operating and system parameters that were studied were: use of a silver-nitric acid versus a cobalt-sulfuric acid system, effect of electrolyte temperature, effect of acid concentration, and effect of current density. Destruction and coulombic efficiencies were calculated using data obtained from continuous carbon dioxide monitors and total organic carbon (TOC) analysis of electrolyte samples. For Trimsol, the best performance was achieved with the silver-nitrate system at high acid concentrations, temperatures, and current densities. Destruction efficiencies of 99% or greater, and coulombic efficiencies up to 70% were obtained. For the cellulose, high destruction efficiencies and reasonable coulombic efficiencies were obtained for both silver-nitrate and cobalt-sulfate systems.

  11. Enhanced disinfection efficiency of mechanically mixed oxidants with free chlorine.

    PubMed

    Son, Hyunju; Cho, Min; Kim, Jaeeun; Oh, Byungtaek; Chung, Hyenmi; Yoon, Jeyong

    2005-02-01

    To the best of our knowledge, this study is the first investigation to be performed into the potential benefits of mechanically mixed disinfectants in controlling bacterial inactivation. The purpose of this study was to evaluate the disinfection efficiency of mechanically mixed oxidants with identical oxidant concentrations, which were made by adding small amounts of subsidiary oxidants, namely ozone (O3), chlorine dioxide (ClO2), hydrogen peroxide (H2O2) and chlorite (ClO2(-)), to free available chlorine (Cl2), using Bacillus subtilis spores as the indicator microorganisms. The mechanically mixed oxidants containing Cl2/O3, Cl2/ClO2 and Cl2/ClO2(-) showed enhanced efficiencies (of up to 52%) in comparison with Cl2 alone, whereas no significant difference was observed between the mixed oxidant, Cl2/H2O2, and Cl2 alone. This enhanced disinfection efficiency can be explained by the synergistic effect of the mixed oxidant itself and the effect of intermediates such as ClO2(-)/ClO2, which are generated from the reaction between an excess of Cl2 and a small amount of O3/ClO2(-). Overall, this study suggests that mechanically mixed oxidants incorporating excess chlorine can constitute a new and moderately efficient method of disinfection.

  12. Optical and electrical studies of cerium mixed oxides

    SciTech Connect

    Sherly, T. R.; Raveendran, R.

    2014-10-15

    The fast development in nanotechnology makes enthusiastic interest in developing nanomaterials having tailor made properties. Cerium mixed oxide materials have received great attention due to their UV absorption property, high reactivity, stability at high temperature, good electrical property etc and these materials find wide applications in solid oxide fuel cells, solar control films, cosmetics, display units, gas sensors etc. In this study cerium mixed oxide compounds were prepared by co-precipitation method. All the samples were doped with Zn (II) and Fe (II). Preliminary characterizations such as XRD, SEM / EDS, TEM were done. UV - Vis, Diffuse reflectance, PL, FT-IR, Raman and ac conductivity studies of the samples were performed.

  13. Optical and electrical studies of cerium mixed oxides

    NASA Astrophysics Data System (ADS)

    Sherly, T. R.; Raveendran, R.

    2014-10-01

    The fast development in nanotechnology makes enthusiastic interest in developing nanomaterials having tailor made properties. Cerium mixed oxide materials have received great attention due to their UV absorption property, high reactivity, stability at high temperature, good electrical property etc and these materials find wide applications in solid oxide fuel cells, solar control films, cosmetics, display units, gas sensors etc. In this study cerium mixed oxide compounds were prepared by co-precipitation method. All the samples were doped with Zn (II) and Fe (II). Preliminary characterizations such as XRD, SEM / EDS, TEM were done. UV - Vis, Diffuse reflectance, PL, FT-IR, Raman and ac conductivity studies of the samples were performed.

  14. Mixed Oxides of Uranium and Related Phases

    NASA Astrophysics Data System (ADS)

    Ball, Richard G. J.

    Available from UMI in association with The British Library. Requires signed TDF. The aim of this thesis is to investigate the behaviour of atoms or ions within uranium oxide lattices, using computer simulation techniques. Particular aspects that are addressed include the fundamental defect chemistry of the binary oxides, the behaviour of volatile fission products within the lattice and the intercalation of alkali and alkaline -earth metals. Since the uranium-oxygen system is dominated by the fluorite UO_2 structure and the orthorhombic U_3O_8 structure, both of these oxides are considered in detail. Building on existing models for the lattice, the behaviour of the noble gases and the fission product elements I, Br, Te, Cs and Rb in UO_{2+/- x} is studied. The factors which influence the choice of equilibrium solution site for each species and the mechanisms and activation energies for migration are discussed. A model is developed for alpha -U_3O_8 which is then used to calculate the energies of basic defect formation. From such calculations, the intrinsic modes of disorder and the defects that give rise to nonstoichiometry are elucidated. This is followed by a study of the intercalation of the alkali metals, Li and Na, and the alkaline-earth metals, Mg and Ca, into the U_3O _8 lattice. The sites occupied by the guest ions and their migration behaviour are considered. The end-member MU_3O_8 phases (M = Li, Na) are also studied. The behaviour of the noble gases within U_3O _8 is considered in detail. Together with the results for UO_2, the calculations of the solution sites and migration mechanisms in U _3O_8 enable the consequences of the oxidation of fuel to be assessed in relation to the behaviour of the noble gases. Finally, a model for delta -UO_3 is developed. This is followed by a consideration of the fundamental defect chemistry of this oxide and the intercalation of alkali and alkaline -earth metals into the lattice. Further models are developed to study the

  15. Tuning Ferritin's Band Gap through Mixed Metal Oxide Nanoparticle Formation.

    PubMed

    Olsen, Cameron; Embley, Jacob; Hansen, Kameron; Henrichsen, Andrew; Peterson, J; Colton, John S; Watt, Richard

    2017-03-23

    This study uses the formation of a mixed metal oxide inside ferritin to tune the band gap energy of the ferritin mineral. The mixed metal oxide is composed of both Co and Mn, and is formed by reacting aqueous Co2+ with MnO4- in the presence of apoferritin. Altering the ratio between the two reactants allowed for controlled tuning of the band gap energies. All minerals formed were indirect band gap materials, with indirect band gap energies ranging from 0.52 to 1.30 eV. The direct transitions were also measured, with energy values ranging from 2.71 to 3.11 eV. Tuning the band gap energies of these samples changes the wavelengths absorbed by each mineral, increasing ferritin's potential in solar-energy harvesting. Additionally, the success of using MnO4- in ferritin mineral formation opens the possibility for new mixed metal oxide cores inside ferritin.

  16. Composite mixed oxide ionic and electronic conductors for hydrogen separation

    DOEpatents

    Gopalan, Srikanth; Pal, Uday B.; Karthikeyan, Annamalai; Hengdong, Cui

    2009-09-15

    A mixed ionic and electronic conducting membrane includes a two-phase solid state ceramic composite, wherein the first phase comprises an oxygen ion conductor and the second phase comprises an n-type electronically conductive oxide, wherein the electronically conductive oxide is stable at an oxygen partial pressure as low as 10.sup.-20 atm and has an electronic conductivity of at least 1 S/cm. A hydrogen separation system and related methods using the mixed ionic and electronic conducting membrane are described.

  17. Microstructure and thermophysical characterization of mixed oxide fuels

    SciTech Connect

    Freibert, Franz J; Salich, Tarik A; Schwartz, Daniel S; Hampel, Fred G; Mitchell, Jeremy N; Davis, Charles C; Neuman, Angelique D; Willson, Steve P; Dunwoody, John T

    2009-01-01

    Pre-irradiated thermodynamic and microstructural properties of nuclear fuels form the necessary set of data against which to gauge fuel performance and irradiation damage evolution. This paper summarizes recent efforts in mixed-oxide and minor actinide-bearing mixed-oxide ceramic fuels fabrication and characterization at Los Alamos National Laboratory. Ceramic fuels (U{sub 1-x-y-z}u{sub x}Am{sub y}Np{sub z})O{sub 2} fabricated in the compositional ranges of 0.19 {le} x {le} 0.3 Pu, 0 {le} y {le} 0.05 Am, and O {le} z {le} O.03 Np exhibited a uniform crystalline face-centered cubic phase with an average grain size of 14{micro}m; however, electron microprobe analysis revealed segregation of NpO{sub 2} in minor actinide-bearing fuels. Immersion density and porosity analysis demonstrated an average density of 92.4% theoretical for mixed-oxide fuels and an average density of 89.5 % theoretical density for minor actinide-bearing mixed-oxide fuels. Examined fuels exhibited mean thermal expansion value of 12.56 x 10{sup -6} C{sup -1} for temperature range (100 C < T < 1500 C) and ambient temperature Young's modulus and Poisson's ratio of 169 GPa and of 0.327, respectively. Internal dissipation as determined from mechanical resonances of these ceramic fuels has shown promise as a tool to gauge microstructural integrity and to interrogate fundamental properties.

  18. Mixed lanthanide oxide nanoparticles as dual imaging agent in biomedicine

    PubMed Central

    Xu, Wenlong; Bony, Badrul Alam; Kim, Cho Rong; Baeck, Jong Su; Chang, Yongmin; Bae, Ji Eun; Chae, Kwon Seok; Kim, Tae Jeong; Lee, Gang Ho

    2013-01-01

    There is no doubt that the molecular imaging is an extremely important technique in diagnosing diseases. Dual imaging is emerging as a step forward in molecular imaging technique because it can provide us with more information useful for diagnosing diseases than single imaging. Therefore, diverse dual imaging modalities should be developed. Molecular imaging generally relies on imaging agents. Mixed lanthanide oxide nanoparticles could be valuable materials for dual magnetic resonance imaging (MRI)-fluorescent imaging (FI) because they have both excellent and diverse magnetic and fluorescent properties useful for dual MRI-FI, depending on lanthanide ions used. Since they are mixed nanoparticles, they are compact, robust, and stable, which is extremely useful for biomedical applications. They can be also easily synthesized with facile composition control. In this study, we explored three systems of ultrasmall mixed lanthanide (Dy/Eu, Ho/Eu, and Ho/Tb) oxide nanoparticles to demonstrate their usefulness as dual T2 MRI–FI agents. PMID:24220641

  19. Mixed lanthanide oxide nanoparticles as dual imaging agent in biomedicine

    NASA Astrophysics Data System (ADS)

    Xu, Wenlong; Bony, Badrul Alam; Kim, Cho Rong; Baeck, Jong Su; Chang, Yongmin; Bae, Ji Eun; Chae, Kwon Seok; Kim, Tae Jeong; Lee, Gang Ho

    2013-11-01

    There is no doubt that the molecular imaging is an extremely important technique in diagnosing diseases. Dual imaging is emerging as a step forward in molecular imaging technique because it can provide us with more information useful for diagnosing diseases than single imaging. Therefore, diverse dual imaging modalities should be developed. Molecular imaging generally relies on imaging agents. Mixed lanthanide oxide nanoparticles could be valuable materials for dual magnetic resonance imaging (MRI)-fluorescent imaging (FI) because they have both excellent and diverse magnetic and fluorescent properties useful for dual MRI-FI, depending on lanthanide ions used. Since they are mixed nanoparticles, they are compact, robust, and stable, which is extremely useful for biomedical applications. They can be also easily synthesized with facile composition control. In this study, we explored three systems of ultrasmall mixed lanthanide (Dy/Eu, Ho/Eu, and Ho/Tb) oxide nanoparticles to demonstrate their usefulness as dual T2 MRI-FI agents.

  20. Mixed alumina and cobalt containing plasma electrolytic oxide coatings

    NASA Astrophysics Data System (ADS)

    Yar-Mukhamedova, G. Sh; Ved', M. V.; Karakurkchi, A. V.; Sakhnenko, N. D.

    2017-06-01

    Principles of plasma electrolytic oxidation of the AL25 aluminum alloy in diphosphate alkali solutions containing cobalt(2+) cations are discussed. It has been established that a variation in the concentration of the electrolyte components provides the formation of mixed-oxide coatings consisting of the basic matrix materials and the cobalt oxides of different content. An increase in the cobalt oxide content in the coating is achieved by the variation in electrolysis current density as well as the treatment time due to both the electrochemical and thermo-chemical reactions at substrate surface and in spark region. Current density intervals that provide micro-globular surface formation and uniform cobalt distribution in the coating are determined. The composition and morphology of the surface causes high catalytic properties of synthesized materials, which confirmed the results of testing in model reaction CO and benzene oxidation as well as fuel combustion for various modes of engine operation.

  1. Photochemical oxidation: A solution for the mixed waste dilemma

    SciTech Connect

    Prellberg, J.W.; Thornton, L.M.; Cheuvront, D.A.

    1995-12-31

    Numerous technologies are available to remove organic contamination from water or wastewater. A variety of techniques also exist that are used to neutralize radioactive waste. However, few technologies can satisfactorily address the treatment of mixed organic/radioactive waste without creating unacceptable secondary waste products or resulting in extremely high treatment costs. An innovative solution to the mixed waste problem is on-site photochemical oxidation. Liquid-phase photochemical oxidation has a long- standing history of successful application to the destruction of organic compounds. By using photochemical oxidation, the organic contaminants are destroyed on-site leaving the water, with radionuclides, that can be reused or disposed of as appropriate. This technology offers advantages that include zero air emissions, no solid or liquid waste formation, and relatively low treatment cost. Discussion of the photochemical process will be described, and several case histories from recent design testing, including cost analyses for the resulting full-scale installations, will be presented as examples.

  2. Catalytic properties of iron-based mixed oxides in the oxidation of methanol and olefins

    NASA Astrophysics Data System (ADS)

    Trifirò, F.; Carbucicchio, M.; Villa, P. L.

    1998-12-01

    The selective oxidation of alcohols and olefins is carried out commercially on complex systems based on Fe and Mo or Sb mixed oxides. The role of active phases and of the dopant in the catalysts has been elucidated using several characterization techniques and catalytic data.

  3. Enhanced arsenic removal using mixed metal oxide impregnated chitosan beads.

    PubMed

    Yamani, Jamila S; Miller, Sarah M; Spaulding, Matthew L; Zimmerman, Julie B

    2012-09-15

    Mixed metal oxide impregnated chitosan beads (MICB) containing nanocrystalline Al₂O₃ and nanocrystalline TiO₂ were successfully developed. This adsorbent exploits the high capacity of Al₂O₃ for arsenate and the photocatalytic activity of TiO₂ to oxidize arsenite to arsenate, resulting in a removal capacity higher than that of either metal oxide alone. The composition of the beads was optimized for maximum arsenite removal in the presence of UV light. The mechanism of removal was investigated and a mode of action was proposed wherein TiO₂ oxidizes arsenite to arsenate which is then removed from solution by Al₂O₃. Pseudo-second order kinetics were used to validate the proposed mechanism. MICB is a more efficient and effective adsorbent for arsenic than TiO₂-impregnated chitosan beads (TICB), previously reported on, yet maintains a desirable life cycle, free of complex synthesis processes, toxic materials, and energy inputs.

  4. Design and synthesis of mixed oxides nanoparticles for biofuel applications

    SciTech Connect

    Chen, Senniang

    2010-05-15

    The work in this dissertation presents the synthesis of two mixed metal oxides for biofuel applications and NMR characterization of silica materials. In the chapter 2, high catalytic efficiency of calcium silicate is synthesized for transesterfication of soybean oil to biodisels. Chapter 3 describes the synthesis of a new Rh based catalyst on mesoporous manganese oxides. The new catalyst is found to have higher activity and selectivity towards ethanol. Chapter 4 demonstrates the applications of solid-state Si NMR in the silica materials.

  5. Correlations in infrared spectra of nanostructures based on mixed oxides

    NASA Astrophysics Data System (ADS)

    Averin, I. A.; Karmanov, A. A.; Moshnikov, V. A.; Pronin, I. A.; Igoshina, S. E.; Sigaev, A. P.; Terukov, E. I.

    2015-12-01

    This paper has presented experimental data on the infrared spectroscopic investigation of nanostructures based on mixed oxides. Nanostructures in the form of porous thin films deposited on oxidized single- crystal silicon substrates have been synthesized by the sol-gel method. The qualitative composition of film-forming sols and the related nanostructures has been examined. Correlations relating the coefficient of transmission of infrared radiation through the materials under investigation and their quantitative composition have been established. The processes occurring during the annealing of the nanostructures in the temperature range from 100 to 600°C have been analyzed.

  6. Structure Characterization of Semiconducting Tin and Tungsten Mixed Oxides

    NASA Astrophysics Data System (ADS)

    Solis, J. L.; Frantti, J.; Lantto, V.; Häggström, L.; Wikner, M.

    Mixed-oxide powders of tin and tungsten were made by heating various mixtures of SnO and WO3 powders, corresponding to the nominal formula SnxWO3+x with x between 0.5 and 2.0, in an argon atmosphere at 600°C for 15 hours. The α-SnWO4 phase was the result of heating of an equi-molar mixture of SnO and WO3 powders. In addition to 119Sn Mössbauer experiments, X-ray diffraction and Raman spectroscopy were used to study the phase structures of the mixed-oxide powders. Mössbauer spectra from all samples show a small peak at ∽0mm/s from phase(s) like rutile SnO2, and a larger peak doublet centred at ∽3.4mm/s from the α-SnWO4 phase, where tin is in the form Sn4+ and Sn2+, respectively. Another peak doublet centred at ∽3.0mm/s was needed to obtain reasonable fits for samples with x≥1.3. This doublet originates from an undocumented phase where tin is also in the divalent form Sn2+. 119Sn Mössbauer spectroscopy made it possible to reveal the relative amounts of the two valence states of tin in the mixed-oxide structures. Raman spectroscopy as the other probe for ``local'' structures was insensitive to reveal the changes in the phase structures between different mixed-oxide samples up to x=1.72, but an extra peak at ∽890cm-1 in the Raman spectrum from the sample with x=2.0 indicates also the presence of the undocumented phase.

  7. Inhibitory effects of nitrogen oxides on a mixed methanogenic culture.

    PubMed

    Tugtas, A Evren; Pavlostathis, Spyros G

    2007-02-15

    The effect of nitrate, nitrite, nitric oxide (NO), and nitrous oxide on a mixed, mesophilic (35 degrees C) methanogenic culture was investigated. Short-term inhibition assays were conducted at a concentration range of 10-350 mg N/L nitrate, 17-500 mg N/L nitrite, 0.02-0.8 mg N/L aqueous NO, and 19-191 mg N/L aqueous nitrous oxide. Simultaneous methane production and N-oxide reduction was observed in 10 and 30 mg N/L nitrate and 0.02 mg N/L aqueous NO-amended cultures. However, addition of N-oxide resulted in immediate cessation of methanogenesis in all other cultures. Methanogenesis completely recovered subsequent to the complete reduction of N-oxides to nitrogen gas in all N-oxide-amended cultures, with the exception of the 500 mg N/L nitrite- and 0.8 mg N/L aqueous NO-amended cultures. Partial recovery of methanogenesis was observed in the 500 mg N/L nitrite-amended culture in contrast to complete inhibition of methanogenesis in the 0.8 mg N/L aqueous NO-amended culture. Accumulation of volatile fatty acids was observed in both cultures at the end of the incubation period. Among all N-oxides, NO exerted the most and nitrate exerted the least inhibitory effect on the fermentative/methanogenic consortia. The effect of multiple additions of nitrate (300 mg N/L) on the same methanogenic culture was also investigated. Long-term exposure of the methanogenic culture to nitrate resulted in an increase of N-oxide reduction rates and decrease of methane production rates, which was attributed to changes in the microbial community structure due to nitrate addition.

  8. 40 CFR 721.10147 - Acrylate derivative of alkoxysilylalkane ester and mixed metal oxides (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... alkoxysilylalkane ester and mixed metal oxides (generic). 721.10147 Section 721.10147 Protection of Environment... alkoxysilylalkane ester and mixed metal oxides (generic). (a) Chemical substance and significant new uses subject to... ester and mixed metal oxides (PMN P-07-198) is subject to reporting under this section for the...

  9. 40 CFR 721.10574 - Alkylcarboxy polyester acrylate reaction products with mixed metal oxides (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... reaction products with mixed metal oxides (generic). 721.10574 Section 721.10574 Protection of Environment... reaction products with mixed metal oxides (generic). (a) Chemical substance and significant new uses... reaction products with mixed metal oxides (PMN P-09-48) is subject to reporting under this section for...

  10. 40 CFR 721.10574 - Alkylcarboxy polyester acrylate reaction products with mixed metal oxides (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... reaction products with mixed metal oxides (generic). 721.10574 Section 721.10574 Protection of Environment... reaction products with mixed metal oxides (generic). (a) Chemical substance and significant new uses... reaction products with mixed metal oxides (PMN P-09-48) is subject to reporting under this section for...

  11. 40 CFR 721.10147 - Acrylate derivative of alkoxysilylalkane ester and mixed metal oxides (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... alkoxysilylalkane ester and mixed metal oxides (generic). 721.10147 Section 721.10147 Protection of Environment... alkoxysilylalkane ester and mixed metal oxides (generic). (a) Chemical substance and significant new uses subject to... ester and mixed metal oxides (PMN P-07-198) is subject to reporting under this section for...

  12. 40 CFR 721.10147 - Acrylate derivative of alkoxysilylalkane ester and mixed metal oxides (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... alkoxysilylalkane ester and mixed metal oxides (generic). 721.10147 Section 721.10147 Protection of Environment... alkoxysilylalkane ester and mixed metal oxides (generic). (a) Chemical substance and significant new uses subject to... ester and mixed metal oxides (PMN P-07-198) is subject to reporting under this section for...

  13. 40 CFR 721.5315 - Nickel, cobalt mixed metal oxide (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Nickel, cobalt mixed metal oxide... Specific Chemical Substances § 721.5315 Nickel, cobalt mixed metal oxide (generic). (a) Chemical substance... nickel, cobalt mixed metal oxide. (PMN P-02-90) is subject to reporting under this section for...

  14. 40 CFR 721.5315 - Nickel, cobalt mixed metal oxide (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Nickel, cobalt mixed metal oxide... Specific Chemical Substances § 721.5315 Nickel, cobalt mixed metal oxide (generic). (a) Chemical substance... nickel, cobalt mixed metal oxide. (PMN P-02-90) is subject to reporting under this section for...

  15. 40 CFR 721.5315 - Nickel, cobalt mixed metal oxide (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Nickel, cobalt mixed metal oxide... Specific Chemical Substances § 721.5315 Nickel, cobalt mixed metal oxide (generic). (a) Chemical substance... nickel, cobalt mixed metal oxide. (PMN P-02-90) is subject to reporting under this section for...

  16. 40 CFR 721.5315 - Nickel, cobalt mixed metal oxide (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Nickel, cobalt mixed metal oxide... Specific Chemical Substances § 721.5315 Nickel, cobalt mixed metal oxide (generic). (a) Chemical substance... nickel, cobalt mixed metal oxide. (PMN P-02-90) is subject to reporting under this section for...

  17. 40 CFR 721.10147 - Acrylate derivative of alkoxysilylalkane ester and mixed metal oxides (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... alkoxysilylalkane ester and mixed metal oxides (generic). 721.10147 Section 721.10147 Protection of Environment... alkoxysilylalkane ester and mixed metal oxides (generic). (a) Chemical substance and significant new uses subject to... ester and mixed metal oxides (PMN P-07-198) is subject to reporting under this section for...

  18. 40 CFR 721.5315 - Nickel, cobalt mixed metal oxide (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Nickel, cobalt mixed metal oxide... Specific Chemical Substances § 721.5315 Nickel, cobalt mixed metal oxide (generic). (a) Chemical substance... nickel, cobalt mixed metal oxide. (PMN P-02-90) is subject to reporting under this section for...

  19. 40 CFR 721.10147 - Acrylate derivative of alkoxysilylalkane ester and mixed metal oxides (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... alkoxysilylalkane ester and mixed metal oxides (generic). 721.10147 Section 721.10147 Protection of Environment... alkoxysilylalkane ester and mixed metal oxides (generic). (a) Chemical substance and significant new uses subject to... ester and mixed metal oxides (PMN P-07-198) is subject to reporting under this section for...

  20. Flexible Electronics Powered by Mixed Metal Oxide Thin Film Transistors

    NASA Astrophysics Data System (ADS)

    Marrs, Michael

    A low temperature amorphous oxide thin film transistor (TFT) and amorphous silicon PIN diode backplane technology for large area flexible digital x-ray detectors has been developed to create 7.9-in. diagonal backplanes. The critical steps in the evolution of the backplane process include the qualification and optimization of the low temperature (200 °C) metal oxide TFT and a-Si PIN photodiode process, the stability of the devices under forward and reverse bias stress, the transfer of the process to flexible plastic substrates, and the fabrication and assembly of the flexible detectors. Mixed oxide semiconductor TFTs on flexible plastic substrates suffer from performance and stability issues related to the maximum processing temperature limitation of the polymer. A novel device architecture based upon a dual active layer improves both the performance and stability. Devices are directly fabricated below 200 ºC on a polyethylene naphthalate (PEN) substrate using mixed metal oxides of either zinc indium oxide (ZIO) or indium gallium zinc oxide (IGZO) as the active semiconductor. The dual active layer architecture allows for adjustment to the saturation mobility and threshold voltage stability without the requirement of high temperature annealing, which is not compatible with flexible plastic substrates like PEN. The device performance and stability is strongly dependent upon the composition of the mixed metal oxide; this dependency provides a simple route to improving the threshold voltage stability and drive performance. By switching from a single to a dual active layer, the saturation mobility increases from 1.2 cm2/V-s to 18.0 cm2/V-s, while the rate of the threshold voltage shift decreases by an order of magnitude. This approach could assist in enabling the production of devices on flexible substrates using amorphous oxide semiconductors. Low temperature (200°C) processed amorphous silicon photodiodes were developed successfully by balancing the tradeoffs

  1. Direct chemical oxidation of mixed or toxic wastes

    SciTech Connect

    Balazs, G B; Cooper, J F; Farmer, J C; Lewis, P

    1999-05-01

    Direct Chemical Oxidation (DCO) is an ambient-pressure, low-temperature (<100 C), and aqueous-based process for general-purpose destruction of the organic fraction of hazardous or mixed waste. It uses the peroxydisulfate anion (S{sub 2}O{sub 8}{sup 2{minus}}) in acid or base solutions. The byproduct of the oxidation reaction, typically sodium or ammonium hydrogen sulfate, may be recycled electrolytically to produce the oxidant. The oxidation kinetic reaction is first order with respect to the peroxydisulfate concentration, expressed in equivalents. The rate constant is constant for nearly all dissolved organic compounds: k{sub a} = 0.01 {+-} 0.005 min{sup {minus}1}. This reflects a common rate-determining step, which is the decomposition of the peroxydisulfate anion into the chemically active derivative, the sulfate radical anion, SO{sub 4}{sup {minus}}. This decomposition is promoted in DCO by raising the operating temperature into the range of 80-100 C. Rates are given for approximately 30 substances with diverse functional groups at low concentrations, and for a number of solid and liquid wastes typical of nuclear and chemical industries. The process has been scale up for treatment studies on chlorinated hydrocarbons, in which the hydrolysis of solvent mixtures was followed by oxidation of products in a series of stirred tank reactors. Cost estimates, safety considerations, and a comprehensive bibliography are given.

  2. Nanoparticle cerium oxide and mixed cerium oxides for improved fuel cell lifetime

    NASA Astrophysics Data System (ADS)

    Stewart, Stephen Michael

    While there is a rich body of literature concerning of properties of bulk cerium oxide and cerium cations in solution, the discussion has been inappropriately applied to nanoscale cerium oxide resulting in many unexpected or unexplained results. In particular, there is very limited understanding about the properties of cerium oxide and its potential use as a radical scavenger, and how the catalytic properties of cerium oxide change as the particle size approaches the nanoscale. For example, the involvement of Ce+4 and Ce+3 cations in reactions such as hydrogen peroxide decomposition have been investigated for both cerium cations and bulk cerium oxide. However, while both are assumed to decompose hydrogen peroxide through the same mechanism, whereby Ce+4 is involved in peroxide decomposition while Ce +3 is involved in radical scavenging, there has been very little done to address how the selectivity and activity of these reactions are affected by changing the majority cation population, as cerium cations in solution are predominantly in the +3 oxidation state while cerium cations are predominantly in the +4 oxidation state in cerium oxide. This matter is further complicated in cerium oxide nanoparticles where the surface concentration of Ce +3 cations is increased due to particle curvature effects. Due to the potential of controlling the surface cerium oxidation state using particle size and using this control to change the catalytic properties, this project investigated the effect of particle size and composition and the activity and selectivity of cerium oxide nanoparticles, and has served to expand the understanding of the properties of pure and mixed nanoparticle cerium oxide. This work explains the metric developed for measuring the catalytic properties of pure and mixed cerium oxide nanoparticles, which is also good at predicting the immediate and long-term behavior of nanoparticles in hydrogen fuel cells. This work also directly demonstrates praseodymium

  3. Mixed protonic and electronic conductors hybrid oxide synaptic transistors

    NASA Astrophysics Data System (ADS)

    Fu, Yang Ming; Zhu, Li Qiang; Wen, Juan; Xiao, Hui; Liu, Rui

    2017-05-01

    Mixed ionic and electronic conductor hybrid devices have attracted widespread attention in the field of brain-inspired neuromorphic systems. Here, mixed protonic and electronic conductor (MPEC) hybrid indium-tungsten-oxide (IWO) synaptic transistors gated by nanogranular phosphorosilicate glass (PSG) based electrolytes were obtained. Unique field-configurable proton self-modulation behaviors were observed on the MPEC hybrid transistor with extremely strong interfacial electric-double-layer effects. Temporally coupled synaptic plasticities were demonstrated on the MPEC hybrid IWO synaptic transistor, including depolarization/hyperpolarization, synaptic facilitation and depression, facilitation-stead/depression-stead behaviors, spiking rate dependent plasticity, and high-pass/low-pass synaptic filtering behaviors. MPEC hybrid synaptic transistors may find potential applications in neuron-inspired platforms.

  4. Ambient temperature NO oxidation over Cr-based amorphous mixed oxide catalysts: effects from the second oxide components

    SciTech Connect

    Wang, Aiyong; Lin, Bo; Zhang, Hanlei; Engelhard, Mark H.; Guo, Yanglong; Lu, Guanzhong; Peden, Charles H. F.; Gao, Feng

    2017-01-01

    Three series of Cr-based mixed oxides (Cr-Co, Cr-Fe, and Cr-Ni oxides) with high specific surface areas and amorphous textures were synthesized using a novel sol-gel method. These mixed oxides, in comparison to their pure metal oxide (CrOx, Co3O4, FeOx and NiO) counterparts, display enhanced performance for catalytic oxidation of low-concentration NO at room temperature. The best performing catalysts achieve 100% NO conversion for ~30 h of operation at a high space velocity of 45,000 ml g-1 h-1. The amorphous structure was found to be critical for these catalysts to maintain high activity and durability. Control of Cr/M (M=Co, Fe and Ni) molar ratio, nitrate precursor decomposition temperature and catalyst calcination temperature was key to the synthesis of these highly active catalysts.

  5. Light water reactor mixed-oxide fuel irradiation experiment

    SciTech Connect

    Hodge, S.A.; Cowell, B.S.; Chang, G.S.; Ryskamp, J.M.

    1998-06-01

    The United States Department of Energy Office of Fissile Materials Disposition is sponsoring and Oak Ridge National Laboratory (ORNL) is leading an irradiation experiment to test mixed uranium-plutonium oxide (MOX) fuel made from weapons-grade (WG) plutonium. In this multiyear program, sealed capsules containing MOX fuel pellets fabricated at Los Alamos National Laboratory (LANL) are being irradiated in the Advanced Test Reactor (ATR) at the Idaho National Engineering and Environmental Laboratory (INEEL). The planned experiments will investigate the utilization of dry-processed plutonium, the effects of WG plutonium isotopics on MOX performance, and any material interactions of gallium with Zircaloy cladding.

  6. Synthesis and characterization of mixed melilite-type oxides

    NASA Astrophysics Data System (ADS)

    Granata, V.; Ubaldini, A.; Fittipaldi, R.; Rocco, L.; Pace, S.; Vecchione, A.

    2017-01-01

    The melilite-type oxides are potential targets for exploring interesting magnetic and electronic properties as well as multiferroicity and magnetoelectric effects. Polycrystalline samples of Ba2Cu1-xMnxGe2O7 have been synthesized by solid state reaction method. The morphology and chemical composition of the samples have been investigated by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). By using powder X-ray diffraction, the phase composition of the synthesized compounds and the evolution of their crystallographic axes as a function of the doping have been systematically studied. The synthesis of the polycrystalline compounds reported in this work is a prerequisite for the growth of high quality single crystals of mixed melilite-type oxides essential for the investigations of the complex magnetic phase diagram of these non-centrosymmetric systems.

  7. Reduction of spalling in mixed metal oxide desulfurization sorbents by addition of a large promoter metal oxide

    DOEpatents

    Poston, James A.

    1997-01-01

    Mixed metal oxide pellets for removing hydrogen sulfide from fuel gas mixes derived from coal are stabilized for operation over repeated cycles of desulfurization and regeneration reactions by addition of a large promoter metal oxide such as lanthanum trioxide. The pellets, which may be principally made up of a mixed metal oxide such as zinc titanate, exhibit physical stability and lack of spalling or decrepitation over repeated cycles without loss of reactivity. The lanthanum oxide is mixed with pellet-forming components in an amount of 1 to 10 weight percent.

  8. Reduction of spalling in mixed metal oxide desulfurization sorbents by addition of a large promoter metal oxide

    DOEpatents

    Poston, J.A.

    1997-12-02

    Mixed metal oxide pellets for removing hydrogen sulfide from fuel gas mixes derived from coal are stabilized for operation over repeated cycles of desulfurization and regeneration reactions by addition of a large promoter metal oxide such as lanthanum trioxide. The pellets, which may be principally made up of a mixed metal oxide such as zinc titanate, exhibit physical stability and lack of spalling or decrepitation over repeated cycles without loss of reactivity. The lanthanum oxide is mixed with pellet-forming components in an amount of 1 to 10 weight percent.

  9. Preparation of uniform nanoparticles of ultra-high purity metal oxides, mixed metal oxides, metals, and metal alloys

    DOEpatents

    Woodfield, Brian F.; Liu, Shengfeng; Boerio-Goates, Juliana; Liu, Qingyuan; Smith, Stacey Janel

    2012-07-03

    In preferred embodiments, metal nanoparticles, mixed-metal (alloy) nanoparticles, metal oxide nanoparticles and mixed-metal oxide nanoparticles are provided. According to embodiments, the nanoparticles may possess narrow size distributions and high purities. In certain preferred embodiments, methods of preparing metal nanoparticles, mixed-metal nanoparticles, metal oxide nanoparticles and mixed-metal nanoparticles are provided. These methods may provide tight control of particle size, size distribution, and oxidation state. Other preferred embodiments relate to a precursor material that may be used to form nanoparticles. In addition, products prepared from such nanoparticles are disclosed.

  10. [Synthesis and characterization of mixed metal oxide pigments].

    PubMed

    Ding, Jie; Yue, Shi-juan; Liu, Cui-ge; Wei, Yong-ju; Meng, Tao; Jiang, Han-jie; Shi, Yong-zheng; Xu, Yi-zhuang; Yu, Jiang; Wu, Jin-guang

    2012-03-01

    In the present work, aluminum chloride and various soluble salts of doping ions were dissolved in water. In addition, urea and polyvinyl pyrrolidone (PVP) were also dissolved in the above aqueous solution under supersonic treatments. Then the solutions were heated to induce the hydrolysis of urea so that soluble aluminum and doping ions convert into insoluble hydroxide or carbonate gels. After calcinations, the obtained gels change to mixed metal oxide pigments whose color is related to type and concentrations of the doping ions. XRD characterization demonstrates that the diffraction patterns of the products are the same as that of alpha-alumina. Diffuse reflectance spectra of samples of the samples in UV-Vis regions show that the absorption bands for d-d transitions of the doping ions undergo considerable change as the coordinate environments change. In addition, L*, a* and b* values of the pigments were measured by using UV-Vis densitometer. SEM results indicate that the size of the pigment powders is in the range 200-300 nm. The pigments are quite stable since no evidence of dissolution was observed after the synthesized pigment is soaked for 24 hours. ICP test shows that very little amount of doped metal occurs in the corresponding filtrate. The above results suggest that these new kinds of mixed metal oxide pigments are stable, non-toxic, environmental friendly and they may be applicable in molten spinning process and provide a new chance for non-aqueous printing and dyeing industry.

  11. 40 CFR 721.10148 - Acryloxy alkanoic alkane derivative with mixed metal oxides (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... with mixed metal oxides (generic). 721.10148 Section 721.10148 Protection of Environment ENVIRONMENTAL... mixed metal oxides (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as acryloxy alkanoic alkane derivative with mixed...

  12. 40 CFR 721.10148 - Acryloxy alkanoic alkane derivative with mixed metal oxides (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... with mixed metal oxides (generic). 721.10148 Section 721.10148 Protection of Environment ENVIRONMENTAL... mixed metal oxides (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as acryloxy alkanoic alkane derivative with mixed...

  13. Copper Zinc Cobalt Aluminium Chromium Hydroxycarbonates and Mixed Oxides

    NASA Astrophysics Data System (ADS)

    Morpurgo, Simone; Jacono, Mariano Lo; Porta, Piero

    1996-03-01

    Hydroxycarbonate precursors with different Cu/Zn/Co/Al/Cr atomic ratios were prepared by coprecipitation of the metal nitrates with a stoichiometric amount of NaHCO3under controlled conditions of temperature, stirring, and pH. Cu-Zn-Co-Al-Cr mixed oxides were obtained by decomposition of the precursors at different temperatures (623, 723, and 973 K in air). The characterization has been performed by X-ray powder diffraction (XRPD), diffuse reflectance spectroscopy in the UV-VIS-NIR region (DRS), thermal analysis (TGA/DTA), BET surface area determination, and measurements of magnetic susceptibility. The XRPD patterns show that the precursors are quasi-amorphous layered double hydroxides (LDHs or hydrotalcite-like materials with the general stoichiometric formula:MII6MIII2(OH)16CO3· 4H2O, whereMII= Cu, Zn, Co andMIII= Al, Cr) containing a variable amount of Cu2(OH)2CO3(malachite). The thermal decomposition of the precursors occurred through complete dehydration of the sample (up toT= 573 K) and further release of CO2(up toT= 773 K). The decomposition of Cu2(OH)2CO3occurred in a single step at about 653 K. The mixed oxides obtained by calcination of the precursors at 623 K were poorly crystalline materials. Crystalline oxide mixtures containing CuO, ZnO, and spinels as ZnCr2O4, ZnCo2O4, ZnAl2O4, and Co3O4in a solid solution were formed only at 973 K, after complete release of CO2.

  14. Oxidation control of fluxes for mixed-valent inorganic oxide materials synthesis

    NASA Astrophysics Data System (ADS)

    Schrier, Marc David

    This dissertation is concerned with controlling the flux synthesis and ensuing physical properties of mixed-valence metal oxides. Molten alkali metal nitrates and hydroxides have been explored to determine and exploit their variable redox chemistries for the synthesis of mixed-valent oxide materials. Cationic and anionic additives have been utilized in these molten salts to control the relative concentrations of the redox-active species present to effectively tune and cap the electrochemical potential of the flux. Atoms like bismuth, copper, and manganese are capable of providing different numbers of electrons for bonding. With appropriate doping near the metal-insulator transition, many of these mixed-valent inorganic metal oxides exhibit extraordinary electronic and magnetic properties. Traditionally, these materials have been prepared by classical high temperature solid state routes where microscopic homogeneity is hard to attain. In these routes, the starting composition dictates the doping level, and in turn, the formal oxidation state achieved. Molten flux syntheses developed in this work have provided the potential for preparing single-phase, homogeneous, and crystalline materials. The redox-active fluxes provide a medium for enhanced doping and mixed-valency control in which the electrochemical potential adjusts the formal oxidation state, and the doping takes place to maintain charge neutrality. The two superconductor systems investigated are: (1) the potassium-doped barium bismuth oxides, and (2) the alkali metal- and alkaline earth metal-doped lanthanum copper oxides. Controlled oxidative doping has been achieved in both systems by two different approaches. The superconducting properties of these materials have been assessed, and the materials have been characterized by powder X-ray diffraction and e-beam microprobe elemental analyses. In the course of these studies, several other materials have been identified. Analysis of these materials, and the

  15. Properties of mixed molybdenum oxide iridium oxide thin films synthesized by spray pyrolysis

    NASA Astrophysics Data System (ADS)

    Patil, P. S.; Kawar, R. K.; Sadale, S. B.; Inamdar, A. I.; Deshmukh, H. P.

    2006-09-01

    Molybdenum-doped iridium oxide thin films have been deposited onto corning glass- and fluorine-doped tin oxide coated corning glass substrates at 350 °C by using a pneumatic spray pyrolysis technique. An aqueous solution of 0.01 M ammonium molybdate was mixed with 0.01 M iridium trichloride solution in different volume proportions and the resultant solution was used as a precursor solution for spraying. The as-deposited samples were annealed at 600 °C in air medium for 1 h. The structural, electrical and optical properties of as-deposited and annealed Mo-doped iridium oxide were studied and values of room temperature electrical resistivity, and thermoelectric power were estimated. The as-deposited samples with 2% Mo doping exhibit more pronounced electrochromism than other samples, including pristine Ir oxide.

  16. Nanocasted synthesis of mesoporous metal oxides and mixed oxides from mesoporous cubic (Ia3d) vinylsilica.

    PubMed

    Wang, Yangang; Wang, Yanqin; Liu, Xiaohui; Guo, Yun; Guo, Yanglong; Lu, Guanzhong; Schüth, Ferdi

    2008-11-01

    Mesoporous metal oxides and mixed oxides, such as NiO, CeO2, Cr2O3, Fe203, Mn2O3, NiFe2O4 and Ce(x)Zr(1-x)O2 (x=0.8 and 0.6) have been synthesized by nanocasting from mesoporous cubic (la3d) vinyl-functionalized silica (vinylsilica). Their structural properties were characterized by XRD, TEM, N2-sorption and Raman spectra. Thus-prepared mesoporous materials possess a high BET surface area (110-190 m2g(-1)), high pore volume (0.25-0.40 cm3g(-1)) and relatively ordered structures. The catalytic properties of Cr2O3 were tested in the oxidation of toluene. The mesoporous Cr2O3 exhibits unusually high catalytic activity in the complete oxidation of toluene as compared with commercial Cr2O3.

  17. Local structures around the substituted elements in mixed layered oxides

    PubMed Central

    Akama, Shota; Kobayashi, Wataru; Amaha, Kaoru; Niwa, Hideharu; Nitani, Hiroaki; Moritomo, Yutaka

    2017-01-01

    The chemical substitution of a transition metal (M) is an effective method to improve the functionality of a material, such as its electrochemical, magnetic, and dielectric properties. The substitution, however, causes local lattice distortion because the difference in the ionic radius (r) modifies the local interatomic distances. Here, we systematically investigated the local structures in the pure (x = 0.0) and mixed (x = 0.05 or 0.1) layered oxides, Na(M1−xM′x)O2 (M and M′ are the majority and minority transition metals, respectively), by means of extended X-ray absorption fine structure (EXAFS) analysis. We found that the local interatomic distance (dM-O) around the minority element approaches that around the majority element to reduces the local lattice distortion. We further found that the valence of the minority Mn changes so that its ionic radius approaches that of the majority M. PMID:28252008

  18. Local structures around the substituted elements in mixed layered oxides

    NASA Astrophysics Data System (ADS)

    Akama, Shota; Kobayashi, Wataru; Amaha, Kaoru; Niwa, Hideharu; Nitani, Hiroaki; Moritomo, Yutaka

    2017-03-01

    The chemical substitution of a transition metal (M) is an effective method to improve the functionality of a material, such as its electrochemical, magnetic, and dielectric properties. The substitution, however, causes local lattice distortion because the difference in the ionic radius (r) modifies the local interatomic distances. Here, we systematically investigated the local structures in the pure (x = 0.0) and mixed (x = 0.05 or 0.1) layered oxides, Na(M1-xM‧x)O2 (M and M‧ are the majority and minority transition metals, respectively), by means of extended X-ray absorption fine structure (EXAFS) analysis. We found that the local interatomic distance (dM-O) around the minority element approaches that around the majority element to reduces the local lattice distortion. We further found that the valence of the minority Mn changes so that its ionic radius approaches that of the majority M.

  19. Calculational Benchmark Problems for VVER-1000 Mixed Oxide Fuel Cycle

    SciTech Connect

    Emmett, M.B.

    2000-03-17

    Standard problems were created to test the ability of American and Russian computational methods and data regarding the analysis of the storage and handling of Russian pressurized water reactor (VVER) mixed oxide fuel. Criticality safety and radiation shielding problems were analyzed. Analysis of American and Russian multiplication factors for fresh fuel storage for low-enriched uranium (UOX), weapons- (MOX-W) and reactor-grade (MOX-R) MOX differ by less than 2% for all variations of water density. For shielding calculations for fresh fuel, the ORNL results for the neutron source differ from the Russian results by less than 1% for UOX and MOX-R and by approximately 3% for MOX-W. For shielding calculations for fresh fuel assemblies, neutron dose rates at the surface of the assemblies differ from the Russian results by 5% to 9%; the level of agreement for gamma dose varies depending on the type of fuel, with UOX differing by the largest amount. The use of different gamma group structures and instantaneous versus asymptotic decay assumptions also complicate the comparison. For the calculation of dose rates from spent fuel in a shipping cask, the neutron source for UOX after 3-year cooling is within 1% and for MOX-W within 5% of one of the Russian results while the MOX-R difference is the largest at over 10%. These studies are a portion of the documentation required by the Russian nuclear regulatory authority, GAN, in order to certify Russian programs and data as being acceptably accurate for the analysis of mixed oxide fuels.

  20. Melting behavior of mixed U-Pu oxides under oxidizing conditions

    NASA Astrophysics Data System (ADS)

    Strach, Michal; Manara, Dario; Belin, Renaud C.; Rogez, Jacques

    2016-05-01

    In order to use mixed U-Pu oxide ceramics in present and future nuclear reactors, their physical and chemical properties need to be well determined. The behavior of stoichiometric (U,Pu)O2 compounds is relatively well understood, but the effects of oxygen stoichiometry on the fuel performance and stability are often still obscure. In the present work, a series of laser melting experiments were carried out to determine the impact of an oxidizing atmosphere, and in consequence the departure from a stoichiometric composition on the melting behavior of six mixed uranium plutonium oxides with Pu content ranging from 14 to 62 wt%. The starting materials were disks cut from sintered stoichiometric pellets. For each composition we have performed two laser melting experiments in pressurized air, each consisting of four shots of different duration and intensity. During the experiments we recorded the temperature at the surface of the sample with a pyrometer. Phase transitions were qualitatively identified with the help of a reflected blue laser. The observed phase transitions occur at a systematically lower temperature, the lower the Pu content of the studied sample. It is consistent with the fact that uranium dioxide is easily oxidized at elevated temperatures, forming chemical species rich in oxygen, which melt at a lower temperature and are more volatile. To our knowledge this campaign is a first attempt to quantitatively determine the effect of O/M on the melting temperature of MOX.

  1. Mixed Ti-O-Si oxide films formation by oxidation of titanium-silicon interfaces

    NASA Astrophysics Data System (ADS)

    Benito, N.; Palacio, C.

    2014-05-01

    The reaction of oxygen with titanium deposited on Si (1 0 0) surfaces has been studied at room temperature and low oxygen pressures, using XPS and ARXPS. The experimental results for Ti growth on Si can be explained using a model involving a two stage mechanism. The first stage is characterized by the formation of a uniform TiSix layer ˜4 ML thick and the second one by the formation of metallic titanium that grows following a Stranki-Krastanov mechanism, that is, the formation of a Ti monolayer followed by the growth of Ti islands (7 ML thick) over the TiSix layer previously formed. The oxidation of Ti/Si interfaces strongly depends on the interface that is oxidized. For an interface corresponding to the first stage of deposition a Ti-O-Si mixed oxide layer is formed on the near surface. This layer is on top of a multilayer structure which is composed of TiO2 (Ti4+), titanium suboxides along with TiSi (TiSi + Ti1+ + Ti2+ + Ti3+), and substrate when going from the outer surface to the substrate whereas for an interface corresponding to the second stage no Ti-O-Si mixed oxide is detected and a Ti0 rich layer is observed between the titanium suboxides and the Si substrate.

  2. Mixed oxide fuel testing capabilities in the Advanced Test Reactor

    SciTech Connect

    Ryskamp, J.M.; Sterbentz, J.W.; Chang, G.S.; Terry, W.K.

    1996-08-01

    The most attractive way to dispose of weapons-grade Plutonium (WGPu) is to use WGPu as fuel in existing light water reactors (LWRs) in the form of mixed oxide (MOX) fuel--i.e., plutonia (PuO{sub 2}) mixed with urania (UO{sub 2}). Before US reactors could be used for this purpose, their operating licenses would have to be amended. Numerous technical issues must be resolved before LWR operating licenses can be amended to allow the use of MOX fuel. The Advanced Test Reactor (ATR) at the Idaho National Engineering Laboratory (INEL) possesses many advantages for performing tests to resolve most of the issues. It has ample core test volume, high neutron flux, test loops with cooling systems independent of the core coolant, and extensive support facilities. The ATR can deliver a neutron flux of appropriate intensity and energy distribution to the MOX test specimens while simultaneously accommodating test requirements for other programs. The authors have performed calculations to show that the use of hafnium shrouds can produce spectrum adjustments that will bring the flux spectrum in ATR test loops into a good approximation to the spectrum anticipated in a commercial LWR containing MOX fuel while allowing operation of the test fuel assemblies near their design values of linear heat generation rate. The ATR would be a nearly ideal test bed for developing data needed to support applications to license LWRs for operation with MOX fuel made from weapons-grade plutonium. Furthermore, this data can be obtained more quickly by using ATR instead of testing in a commercial LWR.

  3. Rational synthesis of multifunctional mixed metal oxides by hydrothermal techniques

    NASA Astrophysics Data System (ADS)

    Stampler, Evan Scott

    Low temperature (<350°C) and pressure (<20 atm) hydrothermal methods have been developed for the synthesis of bismuth copper oxide chalcogenides, hexagonal rare-earth manganites, and silver delafossites with mixed cations on the B-site. These materials are of particular interest because they combine multiple functional properties, such as transparency and conductivity, or magnetism and ferroelectricity, in a single-phase material, thus enabling innovative technological applications. Phase-pure products were achieved by the appropriate combination of starting reagents, pH, and reaction temperature to control the solubility of the reactants. Phase-pure BiCuOS and BiCuOSe have been synthesized in high yield by a single-step hydrothermal reaction at low temperature (250°C) and pressure (< 20 atm). A reaction temperature of 250°C was sufficiently high to solubilize both Bi2O3 ([Bi3+] ≈ 10 -3 M) and Cu2O ([Cu+] ≈ 10-4 M) and stabilize monovalent copper species in solution, yet remains low enough to prevent the oxidation of sulfide and selenide. BiCuOS (Eg = 1.09 eV) and BiCuOSe (Eg = 0.75 eV) have smaller band gaps compared to the p-type transparent conductor LaCuOS (Eg = 3.1 eV) but have significantly higher room temperature conductivities (sigma ≈ 0.08 S cm-1 and 3.3 S cm-1, respectively). The high molar solubility of Mn2O3 ([Mn 3+] ≈ 10-3 M) and the slightly amphoteric character of the late rare-earth sesquioxides were exploited in the hydrothermal synthesis of rare-earth manganites, LnMnO3 (Ln=Ho-Lu and Y). While alkaline conditions were necessary for the solubilization of manganese, a reaction temperature approximately 50°C above the transition temperature of the respective rare-earth trihydroxide (100-300°C) accelerated the transition to the more reactive and soluble rare-earth oxide hydroxide and the subsequent reaction to yield the LnMnO3 phase. The high solubility of Ag2O, [Ag+] ≈ 10 -2.5 M, enabled the synthesis of two new silver delafossite

  4. 40 CFR 721.10148 - Acryloxy alkanoic alkane derivative with mixed metal oxides (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... with mixed metal oxides (generic). 721.10148 Section 721.10148 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES... mixed metal oxides (generic). (a) Chemical substance and significant new uses subject to reporting....

  5. A study of the redox properties and methanol oxidation rates for molybdenum-based mixed oxides

    SciTech Connect

    Baldychev, Ivan; Javadekar, Ashay; Buttrey, Doug J.; Vohs, J. M.; Gorte, R. J.

    2011-01-14

    The equilibrium properties of bulk MgMoO4, Zr(MoO4)2, Al2(MoO4)3, SrMoO4, and Cr2(MoO4)3 have been characterized by coulometric titration at 873 K in order to understand the effect of the mixed-cation environment on the Mo6+–Mo4+ redox properties and how this in turn affects reactivity for methanol oxidation. The structures of the oxidized and reduced phases were also characterized by XRD. With SrMoO4, reduction resulted in the formation of SrMoO3; however, each of the other oxides underwent a reversible decomposition. MgMoO4 formed a mixture of crystalline MgO and Mg2Mo3O8; Zr(MoO4)2 reduced to MoO2 and a mixture of monoclinic and tetragonal ZrO2; and Cr2(MoO4)3 formed a new crystalline phase. For MgMoO4, Zr(MoO4)2, Al2(MoO4)3, and Cr2(MoO4)3, removal of one O/Mo occurred at a P(O2) of 10-6 atm, corresponding to a ΔG of oxidation of -100 kJ/mol-O2; however, the equilibrium between SrMoO4 and SrMoO3 occurred at 10-26 atm O2, corresponding to a ΔG of oxidation equal to -375 kJ/mol-O2. These thermodynamic properties differ significantly from oxidation of MoO2 to MoO3, for which ΔG is -220 kJ/mol-O2 at 873 K. All of the mixed oxides were essentially inactive for the selective oxidation of methanol, with specific rates that were much lower than that observed for MoO3.

  6. Preparation of Mixed Perovskite Oxides for Blue-Green Lasers

    DTIC Science & Technology

    1984-02-01

    higher for oxide or fluoride . 𔃽. A high radiative lifetime and high fluorescent quantum yield for Ce or the rare earth are desirable. 3 + 4...for all of our single crystal -4- preparations are lanthanum oxide (La„0 ), aluminum oxide (Al^O^) , scandium oxide (Sc„0-.) , and cerium oxide (Ce...crystal material is highly important. Ideally, oxides should be grown in O2, fluorides in ?„, and so forth in order to prevent defects such as

  7. Experience in PWR and BWR mixed-oxide fuel management

    SciTech Connect

    Schlosser, G.J.; Krebs, W.; Urban, P. )

    1993-04-01

    Germany has adopted the strategy of a closed fuel cycle using reprocessing and recycling. The central issue today is plutonium recycling by the use of U-Pu mixed oxide (MOX) in pressurized water reactors (PWRs) and boiling water reactors (BWRs). The design of MOX fuel assemblies and fuel management in MOX-containing cores are strongly influenced by the nuclear properties of the plutonium isotopes. Optimized MOX fuel assembly designs for PWRs currently use up to three types of MOX fuel rods having different plutonium contents with natural uranium or uranium tailings as carrier material but without burnable absorbers. The MOX fuel assembly designs for BWRs use four to six rod types with different plutonium contents and Gd[sub 2]O[sub 3]/UO[sub 2] burnable absorber rods. Both the PWR and the BWR designs attain good burnup equivalence and compatibility with uranium fuel assemblies. High flexibility exists in the loading schemes relative to the position and number of MOX fuel assemblies in the reloads and in the core as a whole. The Siemens experience with MOX fuel assemblies is based on the insertion of 318 MOX fuel assemblies in eight PWRs and 168 in BWRs and pressurized heavy water reactors so far. The primary operating results include information on the cycle length, power distribution, reactivity coefficients, and control rod worth of cores containing MOX fuel assemblies.

  8. Cobalt silicon mixed oxide nanocomposites by modified sol gel method

    NASA Astrophysics Data System (ADS)

    Esposito, Serena; Turco, Maria; Ramis, Gianguido; Bagnasco, Giovanni; Pernice, Pasquale; Pagliuca, Concetta; Bevilacqua, Maria; Aronne, Antonio

    2007-12-01

    Cobalt-silicon mixed oxide materials (Co/Si=0.111, 0.250 and 0.428) were synthesised starting from Co(NO 3) 2·6H 2O and Si(OC 2H 5) 4 using a modified sol-gel method. Structural, textural and surface chemical properties were investigated by thermogravimetric/differential thermal analyses (TG/DTA), XRD, UV-vis, FT-IR spectroscopy and N 2 adsorption at -196 °C. The nature of cobalt species and their interactions with the siloxane matrix were strongly depending on both the cobalt loading and the heat treatment. All dried gels were amorphous and contained Co 2+ ions forming both tetrahedral and octahedral complexes with the siloxane matrix. After treatment at 400 °C, the sample with lowest Co content appeared amorphous and contained only Co 2+ tetrahedral complexes, while at higher cobalt loading Co 3O 4 was present as the only crystalline phase, besides Co 2+ ions strongly interacting with siloxane matrix. At 850 °C, in all samples crystalline Co 2SiO 4 was formed and was the only crystallising phase for the nanocomposite with the lowest cobalt content. All materials retained high surface areas also after treatments at 600 °C and exhibited surface Lewis acidity, due to cationic sites. The presence of cobalt affected the textural properties of the siloxane matrix decreasing microporosity and increasing mesoporosity.

  9. Mixed-oxide fuels testing in the advanced test reactor

    SciTech Connect

    Sterbentz, J.W.; Ryskamp, J.M.; Mason, S.C.; Chang, G.S.

    1994-12-31

    A report recently issued by the National Academy of Sciences describes the need to dispose of 50 metric tons of U.S. weapons-grade plutonium and a similar amount from Russia and makes recommendations for means of disposal. One principal recommendation is to use the plutonium as once-through fuel in existing commercial U.S. light water reactors (LWRs). The report states that a coordinated program of research and development should be undertaken immediately to clarify and resolve the identified technical uncertainties. This paper presents a solution to one needed program: reactor testing of mixed-oxide (MOX) fuels. Currently, weapons-grade plutonium MOX and other types of advanced plutonium-based fuels are being considered as a disposition fuel form. The proposed weapons-grade MOX fuel is unusual, even relative to ongoing foreign experience with reactor-grade MOX power reactor fuel. Some demonstration of the in-reactor thermal, mechanical, and fission gas release behavior of a prototype fuel will most likely be required in a limited number of test reactor irradiations.

  10. Complex catalytic behaviors of CuTiOx mixed-oxide during CO oxidation

    DOE PAGES

    Kim, Hyun You; Liu, Ping

    2015-09-21

    Mixed metal oxides have attracted considerable attention in heterogeneous catalysis due to the unique stability, reactivity, and selectivity. Here, the activity and stability of the CuTiOx monolayer film supported on Cu(111), CuTiOx/Cu(111), during CO oxidation was explored using density functional theory (DFT). The unique structural frame of CuTiOx is able to stabilize and isolate a single Cu+ site on the terrace, which is previously proposed active for CO oxidation. Furthermore, it is not the case, where the reaction via both the Langmuir–Hinshelwood (LH) and the Mars-van Krevelen (M-vK) mechanisms are hindered on such single Cu+ site. Upon the formation ofmore » step-edges, the synergy among Cuδ+ sites, TiOx matrix, and Cu(111) is able to catalyze the reaction well. Depending on temperatures and partial pressure of CO and O2, the surface structure varies, which determines the dominant mechanism. In accordance with our results, the Cuδ+ ion alone does not work well for CO oxidation in the form of single sites, while the synergy among multiple active sites is necessary to facilitate the reaction.« less

  11. Catalytic wet air oxidation with Ni- and Fe-doped mixed oxides derived from hydrotalcites.

    PubMed

    Ovejero, G; Rodríguez, A; Vallet, A; Gómez, P; García, J

    2011-01-01

    Catalytic wet air oxidation of Basic Yellow 11 (BY11), a basic dye, was studied in a batch reactor. Layered double hydroxides with the hydrotalcite-like structure containing nickel or iron cations have been prepared by coprecipitation and subsequently calcined leading to Ni- and Fe-doped mixed oxides, respectively. Compared with the results in the wet air oxidation of BY11, these catalysts showed high activity for total organic carbon (TOC), toxicity and dye removal at 120 degrees C and 50 bars after 120 min. It has been demonstrated that the activity depended strongly on the presence of catalyst. The results show that catalysts containing nickel provide a higher extent of oxidation of the dye whereas the reaction carried out with the iron catalyst is faster. The Ni and Fe dispersion determined from the TPR results was higher for the catalysts with a lower Ni or Fe content and decreased for higher Ni or Fe contents. On the basis of activity and selectivity, the Ni containing catalyst with the medium (3%) Ni content was found to be the best catalyst. Finally, a relationship between metal content of the catalyst and reaction rate has been established.

  12. Thermodynamic calculations of oxygen self-diffusion in mixed-oxide nuclear fuels

    DOE PAGES

    Parfitt, David C.; Cooper, Michael William; Rushton, Michael J.D.; ...

    2016-07-29

    Mixed-oxide fuels containing uranium with thorium and/or plutonium may play an important part in future nuclear fuel cycles. There are, however, significantly less data available for these materials than conventional uranium dioxide fuel. In the present study, we employ molecular dynamics calculations to simulate the elastic properties and thermal expansivity of a range of mixed oxide compositions. These are then used to support equations of state and oxygen self-diffusion models to provide a self-consistent prediction of the behaviour of these mixed oxide fuels at arbitrary compositions.

  13. Reduced graphene oxide/InGaZn mixed oxide nanocomposite photocatalysts for hydrogen production.

    PubMed

    Martha, Satyabadi; Padhi, Deepak Ku; Parida, Kulamani

    2014-02-01

    A series of reduced graphene oxide and indium-gallium-zinc mixed oxide (RGO/IGZ) nanocomposites were successfully synthesised by a simple one-step hydrothermal method. The as-synthesised nanocomposites were characterised by crystallographic, microscopic, and spectroscopic methods to explore the robust photocatalytic activity of the prepared materials. XRD patterns confirmed the formation of highly pure, single-phase, hexagonal In2 Ga2 ZnO7 with no impurity-related peaks. All the photocatalysts absorbed visible light as observed from the diffuse reflectance UV/Vis spectra. The electron-hole recombination is effectively minimised by the formation of an RGO/metal oxide nanocomposite, which was successfully derived from a photoluminescence (PL) study and photoelectrochemical measurements. The decoration of IGZ nanocrystals onto reduced graphene sheets leads to significant quenching of its luminescent intensity, dramatically improved photocurrent generation (33 times more than neat IGZ) and significantly enhanced photostability. The high photocatalytic activity for H2 production is explained by the strong interaction between the IGZ nanocrystals with RGO sheets, low PL intensity, high photocurrent and large surface area. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Synthesis and Characterization of Mixed Metal Oxide Nanocomposite Energetic Materials

    SciTech Connect

    Gash, A; Pantoya, M; Jr., J S; Zhao, L; Shea, K; Simpson, R; Clapsaddle, B

    2003-11-18

    In the field of composite energetic materials, properties such as ingredient distribution, particle size, and morphology, affect both sensitivity and performance. Since the reaction kinetics of composite energetic materials are typically controlled by the mass transport rates between reactants, one would anticipate new and potentially exceptional performance from energetic nanocomposites. We have developed a new method of making nanostructured energetic materials, specifically explosives, propellants, and pyrotechnics, using sol-gel chemistry. A novel sol-gel approach has proven successful in preparing metal oxide/silicon oxide nanocomposites in which the metal oxide is the major component. Two of the metal oxides are tungsten trioxide and iron(III) oxide, both of which are of interest in the field of energetic materials. Furthermore, due to the large availability of organically functionalized silanes, the silicon oxide phase can be used as a unique way of introducing organic additives into the bulk metal oxide materials. As a result, the desired organic functionality is well dispersed throughout the composite material on the nanoscale. By introducing a fuel metal into the metal oxide/silicon oxide matrix, energetic materials based on thermite reactions can be fabricated. The resulting nanoscale distribution of all the ingredients displays energetic properties not seen in its microscale counterparts due to the expected increase of mass transport rates between the reactants. The synthesis and characterization of these metal oxide/silicon oxide nanocomposites and their performance as energetic materials will be discussed.

  15. Leaching of pyrite by acidophilic heterotrophic iron-oxidizing bacteria in pure and mixed cultures

    SciTech Connect

    Bacelar-Nicolau, P.; Johnson, D.B.

    1999-02-01

    Seven strains of heterotrophic iron-oxidizing acidophilic bacteria were examined to determine their abilities to promote oxidative dissolution of pyrite (FeS{sub 2}) when they were grown in pure cultures and in mixed cultures with sulfur-oxidizing Thiobacillus spp. Only one of the isolates (strain T-24) oxidized pyrite when it was grown in pyrite-basal salts medium. However, when pyrite-containing cultures were supplemented with 0.02% (wt/vol) yeast extract, most of the isolates oxidized pyrite, and one (strain T-24) promoted rates of mineral dissolution similar to the rates observed with the iron-oxidizing autotroph Thiobacillus ferroxidans. Pyrite oxidation by another isolate (strain T-21) occurred in cultures containing between 0.005 and 0.05% (wt/vol) yeast extract but was completely inhibited in cultures containing 0.5% yeast extract. Ferrous iron was also needed for mineral dissolution by the iron-oxidizing heterotrophs, indicating that these organisms oxidize pyrite via the indirect mechanism. Mixed cultures of three isolates (strains T-21, T-232, and T-24) and the sulfur-oxidizing autotroph Thiobacillus thiooxidans promoted pyrite dissolution; since neither strains T-21 and T-23 nor T. thiooxidans could oxidize this mineral in yeast extract-free media, this was a novel example of bacterial synergism. Mixed cultures of strains T-21 and T-23 and the sulfur-oxidizing mixotroph Thiobacillus acidophilus also oxidized pyrite but to a lesser extent than did mixed cultures containing T. thiooxidans. Pyrite leaching by strain T -23 grown in an organic compound-rich medium and incubated either shaken or unshaken was also assessed. The potential environmental significance of iron-oxidizing heterotrophs in accelerating pyrite oxidation is discussed.

  16. Single crystal particles of a mesoporous mixed transition metal oxide with a wormhole structure.

    PubMed

    Lee, B; Lu, D; Kondo, J N; Domen, K

    2001-10-21

    A new type of mesoporous mixed transition metal oxide of Nb and Ta (NbTa-TIT-1) has been prepared through a two-step calcination, which consists of single crystal particles with wormhole mesoporous structure.

  17. Synthesis and Characterization of Mixed Metal Oxide Nanocomposite Energetic Materials

    SciTech Connect

    Clapsaddle, B; Gash, A; Plantier, K; Pantoya, M; Jr., J S; Simpson, R

    2004-04-27

    In the field of composite energetic materials, properties such as ingredient distribution, particle size, and morphology affect both sensitivity and performance. Since the reaction kinetics of composite energetic materials are typically controlled by the mass transport rates between reactants, one would anticipate new and potentially exceptional performance from energetic nanocomposites. We have developed a new method of making nanostructured energetic materials, specifically explosives, propellants, and pyrotechnics, using sol-gel chemistry. A novel sol-gel approach has proven successful in preparing metal oxide/silicon oxide nanocomposites in which the metal oxide is the major component. By introducing a fuel metal, such as aluminum, into the metal oxide/silicon oxide matrix, energetic materials based on thermite reactions can be fabricated. Two of the metal oxides are tungsten trioxide and iron(III) oxide, both of which are of interest in the field of energetic materials. In addition, due to the large availability of organically functionalized silanes, the silicon oxide phase can be used as a unique way of introducing organic additives into the bulk metal oxide materials. These organic additives can cause the generation of gas upon ignition of the materials, therefore resulting in a composite material that can perform pressure/volume work. Furthermore, the desired organic functionality is well dispersed throughout the composite material on the nanoscale with the other components, and is therefore subject to the same increased reaction kinetics. The resulting nanoscale distribution of all the ingredients displays energetic properties not seen in its microscale counterparts due to the expected increase of mass transport rates between the reactants. The synthesis and characterization of iron(III) oxide/organosilicon oxide nanocomposites and their performance as energetic materials will be discussed.

  18. Bioleaching of arsenopyrite by mixed cultures of iron-oxidizing and sulfur-oxidizing microorganisms.

    PubMed

    Deng, Sha; Gu, Guohua; Wu, Ziteng; Xu, Xiongyi

    2017-10-01

    Arsenic is a critical environmental pollutant associated with acid mine drainage. Arsenopyrite is one of the major arsenic sulfide minerals whose weathering lead to the contamination of arsenic. In this study, the leaching behaviors of arsenopyrite by two mixed cultures of iron-oxidizing and sulfur-oxidizing microorganisms (Ferroplasma thermophilum and Acidithiobacillus caldus, Sulfobacillus thermosulfidooxidans and Acidithiobacillus caldus) were investigated, accompanying with community structure analysis of free microorganisms. The ratio of F. thermophilum to A. caldus of 1/1 showed a more favorable effect on the arsenic leaching than other ratios, and F. thermophilum played a dominant role in the solution all the leaching time. While adding A. caldus in the S. thermosulfidooxidans bioleaching system, the dissolution of arsenopyrite was suppressed. Notably, when the ratio of S. thermosulfidooxidans to A. caldus was 2/1, the arsenic extraction was accelerated at the early stage, but later it slowed down. The reason was because A. caldus was the predominant species at the later stage which made the redox potential decrease faster. XRD demonstrated that the proper addition of A. caldus could eliminate the sulfur passivation and promote the leaching in a degree. These studies are helpful to evaluate the environmental impact of arsenic. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Molten carbonate fuel cell cathode with mixed oxide coating

    DOEpatents

    Hilmi, Abdelkader; Yuh, Chao-Yi

    2013-05-07

    A molten carbonate fuel cell cathode having a cathode body and a coating of a mixed oxygen ion conductor materials. The mixed oxygen ion conductor materials are formed from ceria or doped ceria, such as gadolinium doped ceria or yttrium doped ceria. The coating is deposited on the cathode body using a sol-gel process, which utilizes as precursors organometallic compounds, organic and inorganic salts, hydroxides or alkoxides and which uses as the solvent water, organic solvent or a mixture of same.

  20. Route of electrochemical oxidation of the antibiotic sulfamethoxazole on a mixed oxide anode.

    PubMed

    Hussain, Sajjad; Gul, Saima; Steter, Juliana R; Miwa, Douglas W; Motheo, Artur J

    2015-10-01

    The appearance of pharmaceutical compounds and their bioactive transformation products in aquatic environments is becoming an issue of increasing concern. In this study, the electrochemical oxidation of the widely used antibiotic sulfamethoxazole (SMX) was investigated using a commercial mixed oxide anode (Ti/Ru0.3Ti0.7O2) and a single compartment filter press-type flow reactor. The kinetics of SMX degradation was determined as a function of electrolyte composition, applied current density, and initial pH. Almost complete (98 %) degradation of SMX could be achieved within 30 min of electrolysis in 0.1 mol L(-1) NaCl solution at pH 3 with applied current densities ≥20 mA cm(-2). Nine major intermediates of the reaction were identified by LC-ESI-Q-TOF-MS (e.g., C6H9NO2S (m/z = 179), C6H4NOCl (m/z = 141), and C6H6O2 (m/z = 110)). The degradation followed various routes involving cleavage of the oxazole and benzene rings by hydroxyl and/or chlorine radicals, processes that could occur before or after rupture of the N-S bond, followed by oxidation of the remaining moieties. Analysis of the total organic carbon content revealed that the antibiotic was partially mineralized under the conditions employed and some inorganic ions, including NO3 (-) and SO4 (2-), could be identified. The results presented herein demonstrate the efficacy of the electrochemical process using a Ti/Ru0.3Ti0.7O2 anode for the remediation of wastewater containing the antibiotic SMX.

  1. Authigenic iron oxide formation in the estuarine mixing zone of the Yangtze River

    NASA Astrophysics Data System (ADS)

    Fan, D. J.; Neuser, R. D.; Sun, X. G.; Yang, Z. S.; Guo, Z. G.; Zhai, S. K.

    2008-02-01

    Estuaries are elementary geochemical fronts where river water and seawater mix. Within this mixing zone, iron and other non-conservative elements can undergo complex reactions to form new solid phases. In order to understand authigenic iron oxide formation in the Yangtze River Estuary, two onsite water-mixing sets of experiments were conducted, one by mixing variable amounts of unfiltered Yangtze River water with filtered East China Sea water of different salinity (set 1), the other by mixing variable amounts of filtered Yangtze River water with filtered East China Sea water of different salinity (set 2). In set 2, the minerals newly formed in the course of mixing were investigated by means of a scanning electron microscope fitted with an energy-dispersive X-ray analytical system. It was found that ferrihydrite and lepidocrocite were formed in these mixing experiments, coexisting in nearly equal amounts. These iron oxides appear as aggregated particles with a large grain-size range of several microns to more than 100 μm. The electrolytic properties of seawater played an important role in the formation of these authigenic iron oxides. Kaolinite and organic aggregates were also found in the experimentally mixed pre-filtered waters. Amounts of newly formed suspended matter (set 2) were one to three orders of magnitude lower than those of total suspended matter (TSM) (set 1). This implies that newly formed minerals represent only a very small proportion of TSM in the estuarine mixing zone of the Yangtze River.

  2. Electrooxidation of nitrite on a silica-cerium mixed oxide carbon paste electrode.

    PubMed

    Silveira, Gustavo; de Morais, Andréia; Villis, Paulo César Mendes; Maroneze, Camila Marchetti; Gushikem, Yoshitaka; Lucho, Alzira Maria Serpa; Pissetti, Fábio Luiz

    2012-03-01

    A silica-cerium mixed oxide (SiCe) was prepared by the sol-gel process, using tetraethylorthosilicate and cerium nitrate as precursors and obtained as an amorphous solid possessing a specific surface area of 459 m(2) g(-1). Infrared spectroscopy of the SiCe material showed the formation of the Si-O-Ce linkage in the mixed oxide. Scanning electron microscopy/energy dispersive spectroscopy indicated that the cerium oxide particles were homogenously dispersed on the matrix surface. X-ray diffraction and (29)Si solid-state nuclear magnetic resonance implied non-crystalline silica matrices with chemical environments that are typical for silica-based mixed oxides. X-ray photoelectron spectroscopy showed that Ce was present in approximately equal amounts of both the 3+ and 4+ oxidation states. Cyclic voltammetry data of electrode prepared from the silica-cerium mixed oxide showed a peak for oxidation of Ce(3+)/Ce(4+) at 0.76 V and electrochemical impedance spectroscopy equivalent circuit indicated a porous structure with low charge transfer resistance. In the presence of nitrite, the SiCe electrode shows an anodic oxidation peak at 0.76 V with a linear response as the concentration of the analyte increases from 3×10(-5) at 3.9×10(-3) mol L(-1).

  3. Control of differential strain during heating and cooling of mixed conducting metal oxide membranes

    DOEpatents

    Carolan, Michael Francis

    2007-12-25

    Method of operating an oxygen-permeable mixed conducting membrane having an oxidant feed side and a permeate side, which method comprises controlling the differential strain between the oxidant feed side and the permeate side by varying either or both of the oxygen partial pressure and the total gas pressure on either or both of the oxidant feed side and the permeate side of the membrane while changing the temperature of the membrane from a first temperature to a second temperature.

  4. Mixed Metal Oxides with the Structure of Perovskite for Anticorrosion Organic Coatings

    NASA Astrophysics Data System (ADS)

    Kantorová, M.; Veselý, D.

    Mixed metal oxides pigments of TiO2.ZnO, 2TiO2.ZnO, Zn2TiO4, MgTiO3, CaTiO3, TiO2.ZnO.MgO, and TiO2.ZnO.SrO were synthesized from corresponding oxides or carbonates at high temperature. The obtained metal mixed oxides were characterized by means of X-fray diffraction analysis, measurement of particle sizes and scanning electron microscopy. The synthesized metal mixed oxides were used to produce epoxy-ester coatings with PVC = 10% for a synthesized pigment. The coatings were tested for physical-mechanical properties and in corrosion atmospheres. The results of corrosion tests were compared with standard alumino zinc phosphomolybdate.

  5. Direct chemical oxidation of hazardous and mixed wastes

    SciTech Connect

    Cooper, J.F.; Wang, F.; Farmer, J.

    1995-04-11

    Direct Chemical Oxidation (DCO) refers to the use of continuously-regenerated peroxydisulfate (with possible hydrogen peroxide supplements) to effect total destruction of organic wastes in aqueous media. The process does not involve toxic catalysts or the cogeneration of secondary wastes. Peroxydisulfate (S{sub 2}O{sub 8}{sup -2}) is one the strongest known chemical oxidants. It is routinely used in laboratory total carbon analyzers--uncatalyzed at 100{degrees}C, or catalyzed by UV, platinum or dissolved transition metal ions--and detects by oxidative destruction to 0.01 ppm levels. We report: (1) development of a waste treatment approach grounded in industrial electrolysis practice and in reaction rate data for Pt-initiated S{sub 2}O{sub 8}{sup -2} oxidation at 100{degrees}C; (2) tests of an electrochemical cell generating 1.5 N peroxydisulfate solutions; (3) lower-limit rate data for destruction of surrogates for chemical warfare agents and compounds with functional groups resisting oxidation; and (4) destruction of a Dowex{reg_sign} ion exchange resin, such as used in nuclear processing. This technique is particularly suited for applications in analytical laboratories or in manufacturing industries where the waste generation is low in volume, highly toxic or fugitive, or changing. The process may be tailored for destruction of very small to bulk quantities of chemical warfare agents.

  6. Synergetic effects of mixed copper–iron oxides oxygen carriers in chemical looping combustion

    SciTech Connect

    Siriwardane, Ranjani; Tian, Hanjing; Simonyi, Thomas; Poston, James

    2013-06-01

    Chemical looping combustion (CLC) is an emerging technology for clean energy production from fuels. CLC produces sequestration-ready CO{sub 2}-streams without a significant energy penalty. Development of efficient oxygen carriers is essential to successfully operate a CLC system. Copper and iron oxides are promising candidates for CLC. Copper oxide possesses high reactivity but it has issues with particle agglomeration due to its low melting point. Even though iron oxide is an inexpensive oxygen carrier it has a slower reactivity. In this study, mixed metal oxide carriers containing iron and copper oxides were evaluated for coal and methane CLC. The components of CuO and Fe{sub 2}O{sub 3} were optimized to obtain good reactivity while maintaining physical and chemical stability during cyclic reactions for methane-CLC and solid-fuel CLC. Compared with single metal oxygen carriers, the optimized Cu–Fe mixed oxide oxygen carriers demonstrated high reaction rate, better combustion conversion, greater oxygen usage and improved physical stability. Thermodynamic calculations, XRD, TGA, flow reactor studies and TPR experiments suggested that there is a strong interaction between CuO and Fe{sub 2}O{sub 3} contributing to a synergistic effect during CLC reactions. The amount of oxygen release of the mixed oxide carrier in the absence of a fuel was similar to that of the single metal oxides. However, in the presence of fuels, the oxygen consumption and the reaction profiles of the mixed oxide carriers were significantly better than that of the single metal oxides. The nature of the fuel not only influenced the reactivity, but also the final reduction status of the oxygen carriers during chemical looping combustion. Cu oxide of the mixed oxide was fully reduced metallic copper with both coal and methane. Fe oxide of the mixed oxide was fully reduced Fe metal with methane but it was reduced to only FeO with coal. Possible mechanisms of how the presence of CuO enhances the

  7. How to stabilize highly active Cu+ cations in a mixed-oxide catalyst

    DOE PAGES

    Mudiyanselage, Kumudu; Luo, Si; Kim, Hyun You; ...

    2015-09-12

    Mixed-metal oxides exhibit novel properties that are not present in their isolated constituent metal oxides and play a significant role in heterogeneous catalysis. In this study, a titanium-copper mixed-oxide (TiCuOx) film has been synthesized on Cu(111) and characterized by complementary experimental and theoretical methods. At sub-monolayer coverages of titanium, a Cu2O-like phase coexists with TiCuOx and TiOx domains. When the mixed-oxide surface is exposed at elevated temperatures (600–650 K) to oxygen, the formation of a well-ordered TiCuOx film occurs. Stepwise oxidation of TiCuOx shows that the formation of the mixed-oxide is faster than that of pure Cu2O. As the Timore » coverage increases, Ti-rich islands (TiOx) form. The adsorption of CO has been used to probe the exposed surface sites on the TiOx–CuOx system, indicating the existence of a new Cu+ adsorption site that is not present on Cu2O/Cu(111). Adsorption of CO on Cu+ sites of TiCuOx is thermally more stable than on Cu(111), Cu2O/Cu(111) or TiO2(110). The Cu+ sites in TiCuOx domains are stable under both reducing and oxidizing conditions whereas the Cu2O domains present on sub-monolayer loads of Ti can be reduced or oxidized under mild conditions. Furthermore, the results presented here demonstrate novel properties of TiCuOx films, which are not present on Cu(111), Cu2O/Cu(111), or TiO2(110), and highlight the importance of the preparation and characterization of well-defined mixed-metal oxides in order to understand fundamental processes that could guide the design of new materials.« less

  8. Surface structure and properties of mixed fumed oxides.

    PubMed

    Gun'ko, V M; Blitz, J P; Gude, K; Zarko, V I; Goncharuk, E V; Nychiporuk, Y M; Leboda, R; Skubiszewska-Zieba, J; Osovskii, V D; Ptushinskii, Y G; Mishchuk, O A; Pakhovchishin, S V; Gorbik, P P

    2007-10-01

    A variety of fumed oxides such as silica, alumina, titania, silica/alumina (SA), silica/titania (ST), and alumina/silica/titania (AST) were characterized. These oxides have different specific surface areas and different primary particle composition in the bulk and at the surface. These materials were studied by FTIR, NMR, Auger electron spectroscopy, one-pass temperature-programmed desorption with mass spectrometry control (OP TPDMS), microcalorimetry, and nitrogen adsorption. Nonlinear changes in the surface content of alumina in SA and AST and titania in ST and AST samples with increasing oxide content along with simultaneous changes in their specific surface area cause complex dependencies of the heat of immersion in water and desorption of water on heating on the structural parameters. Simultaneous analysis of changes in the surface phase composition, in the concentration of hydroxyls, and in the structural characteristics reveals that at a low content of the second phase the structural characteristics (e.g., S(BET)) are predominant; however, at a large content of these oxides the phase composition plays a more important role.

  9. Microwave synthesis and electrochemical characterization of Mn/Ni mixed oxide for supercapacitor application

    SciTech Connect

    Prasankumar, T.; Jose, Sujin P.; Ilangovan, R.; Venkatesh, K. S.

    2015-06-24

    Nanostructured Mn/Ni mixed metal oxide was synthesized at ambient temperature by facile microwave irradiation technique. The crystal structure and surface morphology were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. X-ray diffraction analysis confirmed the formation of Mn/Ni mixed oxide in rhombohedral phase and the grain size calculated was found to be 87 nm. The irregular spherical morphology of the prepared sample was exhibited by the SEM images. The characteristic peaks of FTIR at about 630 cm{sup −1} and 749 cm{sup −1} were attributed to the Mn-O and Ni-O stretching vibrations respectively. The presence of both Mn and Ni in the prepared sample was validated by the EDS spectra which in turn confirmed the formation of mixed oxide. Cyclic voltammetry and galvanostatic chargedischarge measurements were employed to investigate the electrochemical performance of the mixed oxide. The cyclic voltammetry curves demonstrated good capacitive performance of the sample in the potential window −0.2V to 0.9V. The charge discharge study revealed the suitability of the prepared mixed oxide for the fabrication of supercapacitor electrode.

  10. Development of Mixed Ion-Electron Conducting Metal Oxides for Solid Oxide Fuel Cells

    NASA Astrophysics Data System (ADS)

    Kan, Wang Hay

    A solid oxide fuel cell (SOFC) is an energy conversion device, which directly converts chemical fuels (e.g., H2, C xHy) into electricity and heat with high efficiency up to 90%. The by-product of CO2 can be safely sequestrated or subsequently chemically transformed back into fuels (e.g., CO, CH 4) by electrolysis using renewable energy sources such as solar and wind. The state-of-the-art Ni-YSZ anode is de-activated in the presence of ppm level of H2S and forming coke in hydrocarbons. Currently, mixed ion and electron conductors (MIECs) are considered as alternatives for Ni-YSZ in SOFCs. The key goal of the research was to develop mixed ion-electron conducting metal oxides based on B-site disordered perovskite-type Ba(Ca,Nb)1-x MxO3-delta (M = Mn, Fe, Co), the B-site 1:1 ordered perovskite-type (M = Mn, Fe, Co) and the Sr2PbO4-type Sr2Ce1-xPrxO4 for SOFCs. Ba2(Ca,Nb)2-xMxO6-delta was chemically stable in 30 ppm levels of H2S at 600 °C for 24 h and in pure CO2 at 800 °C for 24 h. The thermal expansion coefficients (TEC) of the as-prepared ordered perovskites was found to be comparable to Zr0.84Y0.16O1.92 (YSZ). The near-surface concentration of Fe2+ in Ba2Ca 0.67Fe0.33NbO6-delta was found to be about 3 times higher than that in the bulk sample. The electrochemical performance of Ba2Ca0.67M0.33NbO6-delta was assessed by ac impedance spectroscopy using a YSZ supported half-cell. The area specific polarization resistance (ASR) of all samples was found to decrease with increasing temperature. The ASR for H2 gas oxidation can be correlated to the higher concentration of low valence Fe2+ species near-surface (nano-scale). BaCa0.335M0.165Nb0.5O3-delta crystallizes in the B-site disordered primitive perovskite (space group Pm-3m) at 900 °C in air, which can be converted into the B-site 1:2 ordered perovskite (space group P-3m1) at 1200 °C and the B-site 1:1 ordered double perovskite phase (space group Fm-3m ) at 1300 °C. The chemical stability of the perovskites in CO

  11. Facile preparation of highly-dispersed cobalt-silicon mixed oxide nanosphere and its catalytic application in cyclohexane selective oxidation

    PubMed Central

    2011-01-01

    Highly dispersed cobalt-silicon mixed oxide [Co-SiO2] nanosphere was successfully prepared with a modified reverse-phase microemulsion method. This material was characterized in detail by X-ray diffraction, transmission electron microscopy, Fourier transform infrared, ultraviolet-visible diffuse reflectance spectra, X-ray absorption spectroscopy near-edge structure, and N2 adsorption-desorption measurements. High valence state cobalt could be easily obtained without calcination, which is fascinating for the catalytic application for its strong oxidation ability. In the selective oxidation of cyclohexane, Co-SiO2 acted as an efficient catalyst, and good activity could be obtained under mild conditions. PMID:22067075

  12. Application of Ni-Oxide@TiO₂ Core-Shell Structures to Photocatalytic Mixed Dye Degradation, CO Oxidation, and Supercapacitors.

    PubMed

    Lee, Seungwon; Lee, Jisuk; Nam, Kyusuk; Shin, Weon Gyu; Sohn, Youngku

    2016-12-20

    Performing diverse application tests on synthesized metal oxides is critical for identifying suitable application areas based on the material performances. In the present study, Ni-oxide@TiO₂ core-shell materials were synthesized and applied to photocatalytic mixed dye (methyl orange + rhodamine + methylene blue) degradation under ultraviolet (UV) and visible lights, CO oxidation, and supercapacitors. Their physicochemical properties were examined by field-emission scanning electron microscopy, X-ray diffraction analysis, Fourier-transform infrared spectroscopy, and UV-visible absorption spectroscopy. It was shown that their performances were highly dependent on the morphology, thermal treatment procedure, and TiO₂ overlayer coating.

  13. Interspecies comparison of the metabolism and dosimetry of inhaled mixed oxides of plutonium and uranium

    SciTech Connect

    Boecker, B.B.; Mewhinney, J.A.; Eidson, A.F.

    1997-12-01

    Three studies were conducted to provide information on the biological fate, distribution of radiation doses among tissues, and implications for potential health consequences of an inhalation exposure to mixed-oxide nuclear fuel materials. In each study, Fischer-344 rats, beagle dogs, and cynomolgus monkeys inhaled one of three aerosols: 750{degrees}C calcined mixed oxides of UO{sub 2} and PuO{sub 2}, 1750{degrees}C sintered (U,Pu)O{sub 2}, or 850{degrees}C calcined {open_quotes}pure{close_quotes} PuO{sub 2}. These materials were collected from glove-box enclosures immediately after industrial processing of mixed-oxide fuel materials. Lung retention, tissue distribution, and mode of excretion of {sup 238-240}Pu, {sup 241}Am, and uranium (when present) were quantified by radiochemical analysis of tissue and excreta samples from animals sacrificed at selected times to 6.5 yr after inhalation exposure.

  14. Tuning Ferritin’s band gap through mixed metal oxide nanoparticle formation

    NASA Astrophysics Data System (ADS)

    Olsen, Cameron R.; Embley, Jacob S.; Hansen, Kameron R.; Henrichsen, Andrew M.; Peterson, J. Ryan; Colton, John S.; Watt, Richard K.

    2017-05-01

    This study uses the formation of a mixed metal oxide inside ferritin to tune the band gap energy of the ferritin mineral. The mixed metal oxide is composed of both Co and Mn, and is formed by reacting aqueous Co2+ with {{{{MnO}}}4}- in the presence of apoferritin. Altering the ratio between the two reactants allowed for controlled tuning of the band gap energies. All minerals formed were indirect band gap materials, with indirect band gap energies ranging from 0.52 to 1.30 eV. The direct transitions were also measured, with energy values ranging from 2.71 to 3.11 eV. Tuning the band gap energies of these samples changes the wavelengths absorbed by each mineral, increasing ferritin’s potential in solar-energy harvesting. Additionally, the success of using {{{{MnO}}}4}- in ferritin mineral formation opens the possibility for new mixed metal oxide cores inside ferritin.

  15. Oxidative stabilization of mixed mayonnaises made with linseed oil and saturated medium-chain triglyceride oil.

    PubMed

    Raudsepp, Piret; Brüggemann, Dagmar A; Lenferink, Aufried; Otto, Cees; Andersen, Mogens L

    2014-01-01

    Mayonnaises, made with either saturated medium chain triglyceride (MCT) oil or unsaturated purified linseed oil (LSO), were mixed. Raman confocal microspectrometry demonstrated that lipid droplets in mixed mayonnaise remained intact containing either MCT oil or LSO. Peroxide formation during storage was lower in mixed mayonnaise compared to LSO mayonnaise, while in mixed oil mayonnaise the level of peroxides was constantly low. Mixed oil mayonnaise had a lower rate of oxygen consumption than mixed mayonnaise, LSO mayonnaise having the highest rate. The decay of water-soluble nitroxyl radicals showed radicals are formed in the aqueous phase with the same rate independent of the lipids. This was also reflected in decay of α-tocopherol during storage being similar in MCT and LSO mayonnaises, but being stable in mixed oil mayonnaise and mixed mayonnaise. Results suggest that other effects than simply diluting unsaturated triglycerides with saturated triglycerides is causing the oxidative stabilization observed for mixed mayonnaise and mixed oil mayonnaise. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Redox state of plutonium in irradiated mixed oxide fuels

    NASA Astrophysics Data System (ADS)

    Degueldre, C.; Pin, S.; Poonoosamy, J.; Kulik, D. A.

    2014-03-01

    Nowadays, MOX fuels are used in about 20 nuclear power plants around the world. After irradiation, plutonium co-exists with uranium oxide. Due to the redox sensitive nature of UO2 other plutonium oxides than PuO2 potentially present in the fuel may interact with the matrix. The aim of this study is to determine which plutonium species are present in heterogeneous and homogeneous MOX. The results provided by X-ray Absorption Near Edge Spectroscopy (XANES) for non-irradiated as well as irradiated (center and periphery) homogeneous MOX fuel were published earlier and are completed by Extended X-ray Fine Structure (EXAFS) analysis in this work. The EXAFS signals have been extracted using the ATHENA code and the analyses were carried using EXCURE98 as performed earlier for an analogous element. EXAFS shows that plutonium redox state remains tetravalent in the solid solution and that the minor fraction of trivalent Pu must be below 10%. Independently, the study of homogeneous MOX was also approached by thermodynamics of solid solution of (U,Pu)O2. Such solid solutions were modeled using the Gibbs Energy Minimisation (GEM)-Selektor code (developed at LES, NES, PSI) supported by the literature data on such solid solutions. A comparative study was performed showing which plutonium oxides in their respective mole fractions are more likely to occur in (U,Pu)O2. In the modeling, these oxides were set as ideal and non-ideal solid solutions, as well as separate pure phases. Pu exists mainly as PuO2 in the case of separate phases, but can exist under its reduced forms, PuO1.61 and PuO1.5 in minor fraction i.e. ~15% in ideal solid solution (unlikely) and ~10% in non-ideal solid solution (likely) and at temperature around 1300 K. This combined thermodynamic and EXAFS studies confirm independently the results obtained so far by Pu XANES for the same MOX samples.

  17. Bench-scale operation of the DETOX wet oxidation process for mixed waste

    SciTech Connect

    Dhooge, P.M.

    1993-01-01

    Waste matrices containing organics, radionuclides, and metals pose difficult problems in waste treatment and disposal when the organic compounds and/or metals are considered to be hazardous. A means of destroying hazardous organic components while safely containing and concentrating metals would be extremely useful in mixed waste volume reduction or conversion to a radioactive-only form. Previous studies have found the DETOX, a patented process utilizing a novel catalytic wet oxidation by iron(III) oxidant, cold have successful application to mixed wastes, and to many other waste types. This paper describes the results of bench scale studies of DETOX applied to the components of liquid mixed wastes, with the goal of establishing parameters for the design of a prototype waste treatment unit. Apparent organic reaction rate orders, and the dependence of apparent reaction rate on the contact area, were measured for vacuum pump oil, scintillation fluids, and trichloroethylene. It was found that reaction rate was proportional to contact area above about 2.% w/w loading of organic. Oxidations in a 4 liter. volume, mixed bench top reactor have given destruction efficiencies of 99.9999+% for common organics. Reaction rates achieved in the mixedbench top reactor were one to two orders of magnitude greater than had been achieved in unmixed reactions; a thoroughly mixed reactor should be capable of oxidizing 10. to 100.+ grams of organic per liter-hour,depending on the nature and concentration of the organic.

  18. Bench-scale operation of the DETOX wet oxidation process for mixed waste

    SciTech Connect

    Dhooge, P.M.

    1993-03-01

    Waste matrices containing organics, radionuclides, and metals pose difficult problems in waste treatment and disposal when the organic compounds and/or metals are considered to be hazardous. A means of destroying hazardous organic components while safely containing and concentrating metals would be extremely useful in mixed waste volume reduction or conversion to a radioactive-only form. Previous studies have found the DETOX, a patented process utilizing a novel catalytic wet oxidation by iron(III) oxidant, cold have successful application to mixed wastes, and to many other waste types. This paper describes the results of bench scale studies of DETOX applied to the components of liquid mixed wastes, with the goal of establishing parameters for the design of a prototype waste treatment unit. Apparent organic reaction rate orders, and the dependence of apparent reaction rate on the contact area, were measured for vacuum pump oil, scintillation fluids, and trichloroethylene. It was found that reaction rate was proportional to contact area above about 2.% w/w loading of organic. Oxidations in a 4 liter. volume, mixed bench top reactor have given destruction efficiencies of 99.9999+% for common organics. Reaction rates achieved in the mixedbench top reactor were one to two orders of magnitude greater than had been achieved in unmixed reactions; a thoroughly mixed reactor should be capable of oxidizing 10. to 100.+ grams of organic per liter-hour,depending on the nature and concentration of the organic.

  19. Effect of standing transverse acoustic oscillations on fuel-oxidant mixing in cylindrical combustion chambers

    NASA Technical Reports Server (NTRS)

    Mickelsen, William R

    1957-01-01

    Vapor fuel-oxidant mixing is analyzed for standing transverse acoustic fields simulating those existing in screeching or screaming combustors. The additional mixing due to the acoustic field is shown to be a function of sound pressure and frequency, stream velocity, and turbulence. The effects of these parameters are shown graphically for a realistic range of combustor conditions. The fuel-oxidant ratio at various combustor stations is shown to have a cyclic fluctuation which is in phase with the pressure fluctuations. Possible mechanisms contributing to screech and scream are discussed.

  20. Interatomic potentials for mixed oxide and advanced nuclear fuels

    SciTech Connect

    Tiwary, Pratyush; Walle, Axel van de; Jeon, Byoungseon; Groenbech-Jensen, Niels

    2011-03-01

    We extend our recently developed interatomic potentials for UO{sub 2} to the fuel system (U,Pu,Np)O{sub 2}. We do so by fitting against an extensive database of ab initio results as well as to experimental measurements. The applicability of these interactions to a variety of mixed environments beyond the fitting domain is also assessed. The employed formalism makes these potentials applicable across all interatomic distances without the need for any ambiguous splining to the well-established short-range Ziegler-Biersack-Littmark universal pair potential. We therefore expect these to be reliable potentials for carrying out damage simulations (and molecular dynamics simulations in general) in nuclear fuels of varying compositions for all relevant atomic collision energies.

  1. Storage capacity and oxygen mobility in mixed oxides from transition metals promoted by cerium

    NASA Astrophysics Data System (ADS)

    Perdomo, Camilo; Pérez, Alejandro; Molina, Rafael; Moreno, Sonia

    2016-10-01

    The oxygen mobility and storage capacity of Ce-Co/Cu-MgAl or Ce-MgAl mixed oxides, obtained by hydrotalcite precursors, were evaluated using Toluene-temperature-programmed-reaction, 18O2 isotopic exchange and O2-H2 titration. The presence of oxygen vacancies-related species was evaluated by means of Electron Paramagnetic Resonance. A correlation was found between the studied properties and the catalytic activity of the oxides in total oxidation processes. It was evidenced that catalytic activity depends on two related processes: the facility with which the solid can be reduced and its ability to regenerate itself in the presence of molecular oxygen in the gas phase. These processes are enhanced by Cu-Co cooperative effect in the mixed oxides. Additionally, the incorporation of Ce in the Co-Cu catalysts improved their oxygen transport properties.

  2. Visibly transparent & radiopaque inorganic organic composites from flame-made mixed-oxide fillers

    NASA Astrophysics Data System (ADS)

    Mädler, Lutz; Krumeich, Frank; Burtscher, Peter; Moszner, Norbert

    2006-08-01

    Radiopaque composites have been produced from flame-made ytterbium/silica mixed oxide within a crosslinked methacrylate resin matrix. The refractive index of the filler powder increased with ytterbium oxide loading. A high transparency was achieved for a matching refractive index of the filler powder and the polymer in comparison to commercial materials with 52 wt% ceramic filling. It was demonstrated that powder homogeneity with regard to particle morphology and distribution of the individual metal atoms is essential to obtain a highly transparent composite. In contrast, segregation of crystalline single-oxide phases drastically decreased the composite transparency despite similar specific surface areas, refractive indices and overall composition. The superior physical strength, transparency and radiopacity compared to composites made from conventional silica based-fillers makes the flame-made mixed-oxide fillers especially attractive for dental restoration materials.

  3. Influence of electrolyte composition on the formation of mixed oxide nanotube arrays for solar fuel production

    NASA Astrophysics Data System (ADS)

    Deyab, Nourhan M.; Steegstra, Patrick; Hubin, Annick; Delplancke, Marie-Paule; Rahier, Hubert; Allam, Nageh K.

    2015-04-01

    Water splitting using sunlight is an important process for future energy supplies. TiO2 is widely used as photoanode, but has a limited light absorption range. Here, ternary Ti-Mo-Ni mixed oxide nanotube arrays were fabricated via electrochemical anodization of Ti-Mo-Ni alloy in formamide-ethylene glycol-based electrolytes, to extend the absorption range into visible light. The electrolyte composition and anodization time were found crucial in controlling the structural features of the nanotubes. By tuning these parameters, arrays of thin walled (∼9 nm) and ∼8 μm long nanotubes were obtained. In photoelectrochemical water splitting, the mixed oxides showed incident photon conversion efficiency (IPCE) up to 65% for wavelengths from 300 nm to 450 nm. This enhancement in the IPCE of the mixed oxide nanotubes, compared with pure titania, can be related to synergistic effects of Mo and Ni oxides as well as to the unique structural properties of the fabricated mixed oxide nanotubes.

  4. Mixed metal oxides as alternate cathodes for high energy density electric propulsion

    SciTech Connect

    Papp, J.E.

    1995-12-31

    Silver (II) oxide is currently the Navy`s cathode of choice in high energy density, high rate batteries for torpedo and mobile target applications, for medium rate applications such as Seal Delivery Vehicles, and may be useful for low rate, long endurance UUV missions. While it is certainly a versatile material, silver (II) oxide is expensive to produce and has a lower faradaic (storage) capacity than desired. New research being conducted at the NUWC electric propulsion laboratory is focused toward developing new, lower cost cathode materials with energy densities at least comparable to silver (II) oxide. Mixed metal oxides, with silver (II) oxide as one component, are under investigation. Other materials, without a silver component, are also being considered. This poster will illustrate recent developments in the modification of the silver (II) oxide cathode for Navy applications.

  5. In vitro dissolution of respirable aerosols of industrial uranium and plutonium mixed-oxide nuclear fuels.

    PubMed

    Eidson, A F; Mewhinney, J A

    1983-12-01

    Dissolution characteristics of mixed-oxide nuclear fuels are important considerations for prediction of biological behavior of inhaled particles. Four representative industrial mixed-oxide powders were obtained from fuel fabrication enclosures. Studies of the dissolution of Pu, Am and U from aerosol particles of these materials in a serum simulant solution and in 0.1M HCl showed: (1) dissolution occurred at a rapid rate initially and slowed at longer times, (2) greater percentages of U dissolved than Pu or Am: with the dissolution rates of U and Pu generally reflecting the physical nature of the UO2-PuO2 matrix, (3) the temperature history of industrial mixed-oxides could not be reliably related to Pu dissolution except for a 3-5% increase when incorporated into a solid solution by sintering at 1750 degrees C, and (4) dissolution in the serum simulant agreed with the in vivo UO2 dissolution rate and suggested the dominant role of mechanical processes in PuO2 clearance from the lung. The rapid initial dissolution rate was shown to be related, in part, to an altered surface layer. The advantages and uses of in vitro solubility data for estimation of biological behavior of inhaled industrial mixed oxides, such as assessing the use of chelation therapy and interpretation of urinary excretion data, are discussed. It was concluded that in vitro solubility tests were useful, simple and easily applied to individual materials potentially inhaled by humans.

  6. Mixed Oxidant Process for Control of Biological Growth in Cooling Towers

    DTIC Science & Technology

    2010-02-01

    feedstock of salt and water • Can generate either hypochlorite or mixed oxidants: – free chlorine – peroxide type compounds – hydroxyl radicals US Army...chlorine to control both algae and bacteria • Can remove existing biofilms US Army Corps of Engineers Engineer Research & Development Center

  7. 76 FR 22735 - Shaw AREVA MOX Services, Mixed Oxide Fuel Fabrication Facility; License Amendment Request, Notice...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-22

    ... COMMISSION Shaw AREVA MOX Services, Mixed Oxide Fuel Fabrication Facility; License Amendment Request, Notice... PDR reference staff at 1-800-397-4209, 301-415-4737, or by e-mail to pdr.resource@nrc.gov . The.... Introduction The NRC has received, by letter dated February 8, 2011, an amendment request from Shaw AREVA...

  8. Effect of Co/Ni ratios in cobalt nickel mixed oxide catalysts on methane combustion

    SciTech Connect

    Lim, Tae Hwan; Cho, Sung June; Yang, Hee Sung; Engelhard, Mark H.; Kim, Do Heui

    2015-07-31

    A series of cobalt nickel mixed oxide catalysts with the varying ratios of Co to Ni, prepared by co-precipitation method, were applied to methane combustion. Among the various ratios, cobalt nickel mixed oxides having the ratios of Co to Ni of (50:50) and (67:33) demonstrate the highest activity for methane combustion. Structural analysis obtained from X-ray diffraction (XRD) and extended X-ray absorption fine structure (EXAFS) evidently demonstrates that CoNi (50:50) and (67:33) samples consist of NiCo2O4and NiO phase and, more importantly, NiCo2O4spinel structure is largely distorted, which is attributed to the insertion of Ni2+ions into octahedral sites in Co3O4spinel structure. Such structural dis-order results in the enhanced portion of surface oxygen species, thus leading to the improved reducibility of the catalysts in the low temperature region as evidenced by temperature programmed reduction by hydrogen (H2TPR) and X-ray photoelectron spectroscopy (XPS) O 1s results. They prove that structural disorder in cobalt nickel mixed oxides enhances the catalytic performance for methane combustion. Thus, it is concluded that a strong relationship between structural property and activity in cobalt nickel mixed oxide for methane combustion exists and, more importantly, distorted NiCo2O4spinel structure is found to be an active site for methane combustion.

  9. Synthesis and catalytic properties of mesoporous, bifunctional, gallium-niobium mixed oxides.

    PubMed

    Deshmane, Chinmay A; Jasinski, Jacek B; Ratnasamy, Paul; Carreon, Moises A

    2010-09-14

    Thermally stable mesoporous Ga-Nb mixed oxides, active in both acid-catalysed and redox reactions have been synthesized via self-assembly hydrothermal assisted approach. Methyl oleate, a major component of biodiesels, undergoes double bond and skeletal isomerisation as well as dehydrogenation over these novel mesophases.

  10. Nickel/magnesium-lanthanum mixed oxide catalyst in the Kumada-coupling.

    PubMed

    Kiss, Arpád; Hell, Zoltán; Bálint, Mária

    2010-01-21

    A new, heterogeneous, magnesium-lanthanum mixed oxide solid base-supported nickel(ii) catalyst was developed. The catalyst was used successfully in the Kumada coupling of aryl halides, especially aryl bromides. The optimal reaction conditions of the coupling were determined.

  11. Catalyst support of mixed cerium zirconium titanium oxide, including use and method of making

    DOEpatents

    Willigan, Rhonda R [Manchester, CT; Vanderspurt, Thomas Henry [Glastonbury, CT; Tulyani, Sonia [Manchester, CT; Radhakrishnan, Rakesh [Vernon, CT; Opalka, Susanne Marie [Glastonbury, CT; Emerson, Sean C [Broad Brook, CT

    2011-01-18

    A durable catalyst support/catalyst is capable of extended water gas shift operation under conditions of high temperature, pressure, and sulfur levels. The support is a homogeneous, nanocrystalline, mixed metal oxide of at least three metals, the first being cerium, the second being Zr, and/or Hf, and the third importantly being Ti, the three metals comprising at least 80% of the metal constituents of the mixed metal oxide and the Ti being present in a range of 5% to 45% by metals-only atomic percent of the mixed metal oxide. The mixed metal oxide has an average crystallite size less than 6 nm and forms a skeletal structure with pores whose diameters are in the range of 4-9 nm and normally greater than the average crystallite size. The surface area of the skeletal structure per volume of the material of the structure is greater than about 240 m.sup.2/cm.sup.3. The method of making and use are also described.

  12. Combination of fuel-cladding chemical and mechanical interactions in mixed oxide fuel pins

    SciTech Connect

    Gotzmann, O.

    1982-04-01

    Encapsulated mixed oxide fuel pins were irradiated in the Belgian reactor BR-2 under epithermal flux conditions. Of 12 pins, 5 failed. Heavy cladding corrosion and significant cladding deformation was observed in postirradiation examination. The failures are attributed to a combined action of fuel-cladding mechanical and chemical interactions, for which favorable conditions existed in these tests.

  13. Superconducting Hg-Based Mixed Oxides and Oxyfluorides

    NASA Astrophysics Data System (ADS)

    Antipov, E. V.

    2000-09-01

    Syntheses under high pressure and under controlled mercury and oxygen partial pressures of different members of the HgBa2Can-1CunO2n+2+δ series have been developed. There are two main parameters influencing Tc in this family: width of a perovskite slab (n) and concentration (δ) of the extra oxygen located in the Hg layer. The increase of Tc with n occurs until the third member, while after that it decreases. All the members of the series exhibit similar cupola shaped dependencies of Tc vs. δ. Strongly overdoped high members of the series with n = 3-5 were prepared only using high pressure technique and BaO2 as an internal oxidizer. Neutron powder diffraction experiments were carried out for monophase oxygenated HgBa2CuO4F4+δ and fluorinated HgBa2CuO4Fδ samples with different extra oxygen or fluorine content and Tc values. Fluorinated series also exhibits the cupola -like behavior for the Tc vs. δ dependence. NPD showed twice the amount of extra fluorine in comparison with those for the oxygenated Hg-1201 phases with close Tc's. The exchange of the extra oxygen by double amount of fluorine causes shortening of the apical Cu-O distances, while the in-plane ones, as well as Tc, do not vary. The influence of the external pressure on the structure and Tc of Hg-1201 strongly depends on the doping level. The increase of the extra oxygen content on going from underdoped to overdoped state results in the larger compression of the apical Cu-O and Ba-OHg distances while the HgO2 dumbbell as well as the distance between Ba and O from the (CuO2) layers becomes practically pressure independent. These results together with the data for fluorinated materials allow to elucidate the crucial structural features responsible for the Tc variation under high pressure.

  14. Formation and electrochemical characterization of anodic ZrO2-WO3 mixed oxide nanotubular arrays

    NASA Astrophysics Data System (ADS)

    Whitman, Stuart R.; Raja, Krishnan S.

    2014-06-01

    ZrO2-WO3 mixed oxide nanotubes were synthesized by a simple electrochemical anodization route. The oxide nanotubes contained a mixture of metastable hexagonal WO3 and monoclinic (and orthorhombic) ZrO2 phases, as well as a mixed-oxide ZrW2O8 phase that showed a metastable tetragonal symmetry. Evaluation of photo-activity of the materials showed generation of photo-potentials of -85 mV and -230 mV in the as-anodized and annealed conditions. Because of the mismatch in the band edge positions of the WO3 and ZrO2 phases and the resultant relaxation of photo-generated charge carriers, no significant photo-current density could be observed. The arrays of oxide nanotubes are considered for electrochemical capacitor application because of their morphology-assisted fast charge/discharge kinetics and large surface area. Presence of a large concentration of charge defects (on the order of 1021 cm-3) and the reported high proton conductivity of the ZrO2-WO3 mixed oxide rendered high capacitance, which decreased with an increase in the scan rate of cyclic voltammetry. The highest measured capacitance was 40.03 mF/cm2 at a scan rate of 10 mV/s and the lowest was 1.93 mF/cm2 at 1 V/s in 1 M sulfuric acid solution.

  15. Porous microspheres of manganese-cerium mixed oxides by a polyvinylpyrrolidone assisted solvothermal method

    NASA Astrophysics Data System (ADS)

    Schmit, F.; Bois, L.; Chiriac, R.; Toche, F.; Chassagneux, F.; Descorme, C.; Besson, M.; Khrouz, L.

    2017-04-01

    Mixed cerium manganese oxides were synthesized using a polyvinylpyrrolidone (PVP) assisted solvothermal method. Materials obtained after calcination at 400 °C were characterized by X-ray diffraction, scanning and transmission electron microscopies, electron paramagnetic resonance (EPR), Raman spectroscopy, thermal analysis and nitrogen adsorption/desorption isotherms. The influence of the synthesis parameters on the oxide structure, such as the Mn:Ce ratio or the amount of PVP, was discussed. Micrometric spheres of mixed Mn-Ce oxides, resulting from the aggregation of 100 nm porous snowflakes, were successfully synthesized. These snowflakes were formed from the aggregation of smaller oriented crystallites (size 4 nm). The hydrothermal stability of these materials was also investigated.

  16. Mixed Molybdenum Oxides with Superior Performances as an Advanced Anode Material for Lithium-Ion Batteries

    PubMed Central

    Wu, Di; Shen, Rui; Yang, Rong; Ji, Wenxu; Jiang, Meng; Ding, Weiping; Peng, Luming

    2017-01-01

    A simple and effective carbon-free strategy is carried out to prepare mixed molybdenum oxides as an advanced anode material for lithium-ion batteries. The new material shows a high specific capacity up to 930.6 mAh·g−1, long cycle-life (>200 cycles) and high rate capability. 1D and 2D solid-state NMR, as well as XRD data on lithiated sample (after discharge) show that the material is associated with both insertion/extraction and conversion reaction mechanisms for lithium storage. The well mixed molybdenum oxides at the microscale and the involvement of both mechanisms are considered as the key to the better electrochemical properties. The strategy can be applied to other transition metal oxides to enhance their performance as electrode materials. PMID:28294179

  17. Effect of cooling rate on achieving thermodynamic equilibrium in uranium-plutonium mixed oxides

    NASA Astrophysics Data System (ADS)

    Vauchy, Romain; Belin, Renaud C.; Robisson, Anne-Charlotte; Hodaj, Fiqiri

    2016-02-01

    In situ X-ray diffraction was used to study the structural changes occurring in uranium-plutonium mixed oxides U1-yPuyO2-x with y = 0.15; 0.28 and 0.45 during cooling from 1773 K to room-temperature under He + 5% H2 atmosphere. We compare the fastest and slowest cooling rates allowed by our apparatus i.e. 2 K s-1 and 0.005 K s-1, respectively. The promptly cooled samples evidenced a phase separation whereas samples cooled slowly did not due to their complete oxidation in contact with the atmosphere during cooling. Besides the composition of the annealing gas mixture, the cooling rate plays a major role on the control of the Oxygen/Metal ratio (O/M) and then on the crystallographic properties of the U1-yPuyO2-x uranium-plutonium mixed oxides.

  18. Mixed Molybdenum Oxides with Superior Performances as an Advanced Anode Material for Lithium-Ion Batteries.

    PubMed

    Wu, Di; Shen, Rui; Yang, Rong; Ji, Wenxu; Jiang, Meng; Ding, Weiping; Peng, Luming

    2017-03-15

    A simple and effective carbon-free strategy is carried out to prepare mixed molybdenum oxides as an advanced anode material for lithium-ion batteries. The new material shows a high specific capacity up to 930.6 mAh·g(-1), long cycle-life (>200 cycles) and high rate capability. 1D and 2D solid-state NMR, as well as XRD data on lithiated sample (after discharge) show that the material is associated with both insertion/extraction and conversion reaction mechanisms for lithium storage. The well mixed molybdenum oxides at the microscale and the involvement of both mechanisms are considered as the key to the better electrochemical properties. The strategy can be applied to other transition metal oxides to enhance their performance as electrode materials.

  19. Preparation and properties of mixed-oxide pellets synthetized by GSP (gel supported precipitation) method

    SciTech Connect

    Centi, G.; Perathoner, S.; Marella, M.

    1995-12-01

    The preparation of TiO{sub 2}, ZrO{sub 2}, Al{sub 2}O{sub 3} or TiO{sub 2}-Al{sub 2}O{sub 3} and ZrO{sub 2}-Al{sub 2}O{sub 3} pellets synthesized by GSP (Gel Supported Method), their textural and physico-chemical characteristics and some examples of their use in cleanup technologies for the removal of nitrogen-oxide pollutants are reported, showing how this preparation methodology is well suited for the production of pure and mixed oxide supports for catalytic applications in fluid- or mobile-bed reactor technologies. The advantages in using mixed oxide for the promotion of the characteristics of zirconia or titania samples are also discussed. In comparison with sol-gel approach, the GSP method is based on the precipitation of the hydroxide of the element(s) with organic additives that allow to obtain hard spherical pellets.

  20. Mixed Molybdenum Oxides with Superior Performances as an Advanced Anode Material for Lithium-Ion Batteries

    NASA Astrophysics Data System (ADS)

    Wu, Di; Shen, Rui; Yang, Rong; Ji, Wenxu; Jiang, Meng; Ding, Weiping; Peng, Luming

    2017-03-01

    A simple and effective carbon-free strategy is carried out to prepare mixed molybdenum oxides as an advanced anode material for lithium-ion batteries. The new material shows a high specific capacity up to 930.6 mAh·g‑1, long cycle-life (>200 cycles) and high rate capability. 1D and 2D solid-state NMR, as well as XRD data on lithiated sample (after discharge) show that the material is associated with both insertion/extraction and conversion reaction mechanisms for lithium storage. The well mixed molybdenum oxides at the microscale and the involvement of both mechanisms are considered as the key to the better electrochemical properties. The strategy can be applied to other transition metal oxides to enhance their performance as electrode materials.

  1. Method of producing homogeneous mixed metal oxides and metal-metal oxide mixtures

    DOEpatents

    Quinby, Thomas C.

    1978-01-01

    Metal powders, metal oxide powders, and mixtures thereof of controlled particle size are provided by reacting an aqueous solution containing dissolved metal values with excess urea. Upon heating, urea reacts with water from the solution leaving a molten urea solution containing the metal values. The molten urea solution is heated to above about 180.degree. C. whereupon metal values precipitate homogeneously as a powder. The powder is reduced to metal or calcined to form oxide particles. One or more metal oxides in a mixture can be selectively reduced to produce metal particles or a mixture of metal and metal oxide particles.

  2. How to stabilize highly active Cu+ cations in a mixed-oxide catalyst

    SciTech Connect

    Mudiyanselage, Kumudu; Luo, Si; Kim, Hyun You; Yang, Xiaofang; Baber, Ashleigh E.; Hoffmann, Friedrich M.; Senanayake, Sananayake; Rodriguez, Jose A.; Chen, Jingguang G.; Liu, Ping; Stacchiola, Dario J.

    2015-09-12

    Mixed-metal oxides exhibit novel properties that are not present in their isolated constituent metal oxides and play a significant role in heterogeneous catalysis. In this study, a titanium-copper mixed-oxide (TiCuOx) film has been synthesized on Cu(111) and characterized by complementary experimental and theoretical methods. At sub-monolayer coverages of titanium, a Cu2O-like phase coexists with TiCuOx and TiOx domains. When the mixed-oxide surface is exposed at elevated temperatures (600–650 K) to oxygen, the formation of a well-ordered TiCuOx film occurs. Stepwise oxidation of TiCuOx shows that the formation of the mixed-oxide is faster than that of pure Cu2O. As the Ti coverage increases, Ti-rich islands (TiOx) form. The adsorption of CO has been used to probe the exposed surface sites on the TiOx–CuOx system, indicating the existence of a new Cu+ adsorption site that is not present on Cu2O/Cu(111). Adsorption of CO on Cu+ sites of TiCuOx is thermally more stable than on Cu(111), Cu2O/Cu(111) or TiO2(110). The Cu+ sites in TiCuOx domains are stable under both reducing and oxidizing conditions whereas the Cu2O domains present on sub-monolayer loads of Ti can be reduced or oxidized under mild conditions. Furthermore, the results presented here demonstrate novel properties of TiCuOx films, which are not present on Cu(111), Cu2O/Cu(111), or TiO2(110), and highlight the importance of the preparation and characterization of well-defined mixed-metal oxides in order to understand fundamental processes that could guide the design of new materials.

  3. Retrospective hit-deconvolution of mixed metal oxides: spotting structure-property-relationships in gas phase oxidation catalysis through high throughput experimentation.

    PubMed

    Schunk, Stephan Andreas; Sundermann, Andreas; Hibst, Hartmut

    2007-01-01

    Complex multi-element lead structures of mixed metal oxides that may be identified as hits during high throughput experimentation (HTE) campaigns, can be deconvoluted retrospectively on the basis of simple binary and ternary oxides as illustrated in the current example of a hit found in an ammoxidation reaction. On the basis of the performance of the simple binary and ternary mixed metal oxides structure property relationships can be established, that give insight into the roles of the different components of the complex mixed metal oxides and may also help in establishing a reaction mechanism and converting the hit into a development candidate.

  4. Cathodic electrodeposition of mixed molybdenum tungsten oxides from peroxo-polymolybdotungstate solutions.

    PubMed

    Kondrachova, Lilia; Hahn, Benjamin P; Vijayaraghavan, Ganesh; Williams, Ryan D; Stevenson, Keith J

    2006-12-05

    Mixed molybdenum tungsten trioxide films of varying stoichiometry (MoxW1 - xO3, 0 < x < 1) were prepared by cathodic electrodeposition on indium tin oxide (ITO)-coated glass substrates from aqueous peroxo-polymolybdotungstate solutions. Electrochemical quartz crystal microbalance (EQCM), cyclic voltammetry, and chronocoulometry were used to gain insight into the electrodeposition mechanism. The compositional and structural properties were characterized for MoxW1 - xO3 films deposited at intermediate potentials (-0.35 V vs Ag/AgCl) and sintered at 250 degrees C using energy-dispersive spectroscopy, X-ray diffraction, and Raman spectroscopy. These studies reveal that films consist of homogeneously mixed MoxW1 - xO3, with an enriched Mo content ranging in composition from 0.4 < x < 0.7 depending upon the mol % Mo present in the deposition solution. Chronoamperometry and spectroelectrochemical measurements were conducted to estimate lithium ion diffusion coefficients and coloration efficiencies for the mixed metal oxide films in 1 M LiClO4/propylene carbonate. The subtle interplay between structural and compositional properties due to the uniform mixing of Mo and W oxide components shows that electrochromic and lithium ion transport properties are moderately enhanced relative to those of single-component WO3 and MoO3 and demonstrate improved structural stability over pure MoO3 polymorphs during electrochemical cycling.

  5. Cu-Mn-Ce ternary mixed-oxide catalysts for catalytic combustion of toluene.

    PubMed

    Lu, Hanfeng; Kong, Xianxian; Huang, Haifeng; Zhou, Ying; Chen, Yinfei

    2015-06-01

    Cu-Mn, Cu-Mn-Ce, and Cu-Ce mixed-oxide catalysts were prepared by a citric acid sol-gel method and then characterized by XRD, BET, H2-TPR and XPS analyses. Their catalytic properties were investigated in the toluene combustion reaction. Results showed that the Cu-Mn-Ce ternary mixed-oxide catalyst with 1:2:4 mole ratios had the highest catalytic activity, and 99% toluene conversion was achieved at temperatures below 220°C. In the Cu-Mn-Ce catalyst, a portion of Cu and Mn species entered into the CeO2 fluorite lattice, which led to the formation of a ceria-based solid solution. Excess Cu and Mn oxides existed on the surface of the ceria-based solid solution. The coexistence of Cu-Mn mixed oxides and the ceria-based solid solution resulted in a better synergetic interaction than the Cu-Mn and Cu-Ce catalysts, which promoted catalyst reducibility, increased oxygen mobility, and enhanced the formation of abundant active oxygen species.

  6. A Thermodynamic Investigation of the Redox Properties of Ceria-Titania Mixed Oxides

    SciTech Connect

    Zhou,G.; Hanson, J.; Gorte, R.

    2008-01-01

    Ceria-titania solutions with compositions of Ce0.9Ti0.1O2 and Ce0.8Ti0.2O2 were prepared by the citric-acid (Pechini) method and characterized using X-ray diffraction (XRD) for structure, coulometric titration for redox thermodynamics, and water-gas-shift (WGS) reaction rates. Following calcination at 973 K, XRD suggests that the mixed oxides exist as single phase, fluorite structures, although there was no significant change in the lattice parameter compared to pure ceria. The mixed oxides are shown to be significantly more reducible than bulk ceria, with enthalpies for re-oxidation being approximately -500 kJ/mol O2, compared to -760 kJ/mol O2 for bulk ceria. However, WGS rates over 1 wt% Pd supported on ceria, Ce0.8Ti0.2O2, and Ce0.8Zr0.2O2 were nearly the same. For calcination at 1323 K, the mixed oxides separated into ceria and titania phases, as indicated by both the XRD and thermodynamic results.

  7. Soft chemical control of the crystal and magnetic structure of a layered mixed valent manganite oxide sulfide

    NASA Astrophysics Data System (ADS)

    Blandy, Jack N.; Abakumov, Artem M.; Christensen, Kirsten E.; Hadermann, Joke; Adamson, Paul; Cassidy, Simon J.; Ramos, Silvia; Free, David G.; Cohen, Harry; Woodruff, Daniel N.; Thompson, Amber L.; Clarke, Simon J.

    2015-04-01

    Oxidative deintercalation of copper ions from the sulfide layers of the layered mixed-valent manganite oxide sulfide Sr2MnO2Cu1.5S2 results in control of the copper-vacancy modulated superstructure and the ordered arrangement of magnetic moments carried by the manganese ions. This soft chemistry enables control of the structures and properties of these complex materials which complement mixed-valent perovskite and perovskite-related transition metal oxides.

  8. Mediated electrochemical oxidation of Rocky Flats combustible low level mixed wastes

    SciTech Connect

    Chiba, Z.

    1992-12-01

    Mediated Electrochemical Oxidation (MEO) was originally developed for dissolution of difficult to dissolve forms of plutonium oxide. It was also found to be effective for oxidizing non-polymerized organic materials. MEO is an inherently safe process since the hazardous and radioactive materials are completely contained in the aqueous phase, and operating temperatures and pressures of the system are low (well below 100 {degree}C and 30 psig). The most commonly used mediator-electrolyte combination is silver in nitric acid. The process produces divalent silver ion, a strong oxidizing agent, which dissolves the radioactive components of mixed wastes and destroys the organic components. In the past, work at LLNL has been focused on understanding the basic science and modeling the dissolution and destruction mechanisms. Reaction rates of water with Ag(H) were measured using spectrophotometric methods, and the diffusivity of silver ions in nitric acid was estimated using a rotating disk electrode.

  9. A hybrid water-splitting cycle using copper sulfate and mixed copper oxides

    NASA Technical Reports Server (NTRS)

    Schreiber, J. D.; Remick, R. J.; Foh, S. E.; Mazumder, M. M.

    1980-01-01

    The Institute of Gas Technology has derived and developed a hybrid thermochemical water-splitting cycle based on mixed copper oxides and copper sulfate. Similar to other metal oxide-metal sulfate cycles that use a metal oxide to 'concentrate' electrolytically produced sulfuric acid, this cycle offers the advantage of producing oxygen (to be vented) and sulfur dioxide (to be recycled) in separate steps, thereby eliminating the need of another step to separate these gases. The conceptual process flow-sheet efficiency of the cycle promises to exceed 50%. It has been completely demonstrated in the laboratory with recycled materials. Research in the electrochemical oxidation of sulfur dioxide to produce sulfuric acid and hydrogen performed at IGT indicates that the cell performance goals of 200 mA/sq cm at 0.5 V will be attainable using relatively inexpensive electrode materials.

  10. Nanodispersive mixed oxides for destruction of warfare agents prepared by homogeneous hydrolysis with urea

    NASA Astrophysics Data System (ADS)

    Daněk, Ondřej; Štengl, Václav; Bakardjieva, Snejana; Murafa, Nataliya; Kalendová, Andrea; Opluštil, Frantisek

    2007-05-01

    Nanocrystalline mixed oxides of Ti, Zn, Al and Fe were prepared by a homogeneous hydrolysis of sulphates with urea at temperature of 100 °C in an aqueous solution. The prepared samples were characterized by BET and BJH measurements, an X-ray powder diffraction and scanning electron microscopy. These oxides were taken for an experimental evaluation of their reactivity with yperite (2,2‧-dichloroethyl sulphide), soman (3,3-dimethyl-2-butyl methylphosphonofluoridate) and matter VX (O-ethyl S-2-(diisopropylamino)ethyl methylphosphonothionate). An excellent activity in decomposition of chemical warfare agents was observed in these materials (conversion degree higher then 96%/h).

  11. Bi–Mn mixed metal organic oxide: A novel 3d-6p mixed metal coordination network

    SciTech Connect

    Shi, Fa-Nian; Rosa Silva, Ana; Bian, Liang

    2015-05-15

    A new terminology of metal organic oxide (MOO) was given a definition as a type of coordination polymers which possess the feature of inorganic connectivity between metals and the direct bonded atoms and show 1D, 2D or 3D inorganic sub-networks. One such compound was shown as an example. A 3d-6p (Mn–Bi. Named MOOMnBi) mixed metals coordination network has been synthesized via hydrothermal method. The new compound with the molecular formula of [MnBi{sub 2}O(1,3,5-BTC){sub 2}]{sub n} (1,3,5-BTC stands for benzene-1,3,5-tricarboxylate) was characterized via single crystal X-ray diffraction technique that revealed a very interesting 3-dimensional (3D) framework with Bi{sub 4}O{sub 2}(COO){sub 12} clusters which are further connected to Mn(COO){sub 6} fragments into a 2D MOO. The topology study indicates an unprecedented topological type with the net point group of (4{sup 13}.6{sup 2})(4{sup 13}.6{sup 8})(4{sup 16}.6{sup 5})(4{sup 18}.6{sup 10})(4{sup 22}.6{sup 14})(4{sup 3}) corresponding to 3,6,7,7,8,9-c hexa-nodal net. MOOMnBi shows catalytic activity in the synthesis of (E)-α,β-unsaturated ketones. - Graphical abstract: This metal organic framework (MOF) is the essence of a 2D metal organic oxide (MOO). - Highlights: • New concept of metal organic oxide (MOO) was defined and made difference from metal organic framework. • New MOO of MOOMnBi was synthesized by hydrothermal method. • Crystal structure of MOOMnBi was determined by single crystal X-ray analysis. • The catalytic activity of MOOMnBi was studied showing reusable after 2 cycles.

  12. Characterization of Two Oxidatively Modified Phospholipids in Mixed Monolayers with DPPC

    PubMed Central

    Sabatini, Karen; Mattila, Juha-Pekka; Megli, Francesco M.; Kinnunen, Paavo K. J.

    2006-01-01

    The properties of two oxidatively modified phospholipids viz. 1-palmitoyl-2-(9′-oxo-nonanoyl)-sn-glycero-3-phosphocholine (PoxnoPC) and 1-palmitoyl-2-azelaoyl-sn-glycero-3-phosphocholine (PazePC), were investigated using a Langmuir balance, recording force-area (π-A) isotherms and surface potential ψ. In mixed monolayers with 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) a progressive disappearance of the liquid expanded-liquid condensed transition and film expansion was observed with increasing content of the oxidized phospholipids. The above is in agreement with fluorescence microscopy of the monolayers, which revealed an increase in the liquid expanded region of DPPC monolayers. At a critical pressure πs ∼ 42 mN/m both Poxo- and PazePC induced a deflection in the π-A isotherms, which could be rationalized in terms of reorientation of the oxidatively modified acyl chains into aqueous phase (adaptation of the so-called extended conformation), followed upon further film compression by solubilization of the oxidized phospholipids into the aqueous phase. Surface potential displayed a discontinuity at the same value of area/molecule, corresponding to the loss of the oxidized phospholipids from the monolayers. Our data support the view that lipid oxidation modifies both the small-scale structural dynamics of biological membranes as well as their more macroscopic lateral organization. Accordingly, oxidatively modified lipids can be expected to influence the organization and functions of membrane associated proteins. PMID:16581831

  13. Wet Chemical Oxidation and Stabilization of Mixed and Low Level Organic Wastes

    SciTech Connect

    Pierce, R.A.; Livingston, R.R.; Burge, D.A.; Ramsey, W.G.

    1998-03-01

    Mixed acid oxidation is a non-incineration process capable of destroying organic compounds, including papers, plastics, resins, and oils, at moderate temperatures and pressures. The technology, developed at the Savannah River Site, uses a mixture of an oxidant (nitric acid) and a carrier acid (phosphoric acid). The carrier acid acts as a holding medium which allows appreciable amounts of the oxidant to be retained in solution at atmospheric pressure and at the temperatures needed for oxidation. The phosphoric acid also provides the raw materials for making a final waste which contains the metal contaminants from the waste stream. Savannah River has designed, built, and started up a 40-liter pilot reaction vessel to demonstrate the process and its sub-systems on a larger scale than earlier testing. The unit has been demonstrated and has provided important data on the operation of the oxidation and acid recovery systems. Specific results will be presented on oxidation conditions, acid recovery efficiency, chloride removal, metal retention, and process monitoring. Additional studies have been conducted with a smaller vessel in a radioactive hood. Testing with plutonium-bearing waste simulants was performed to make preliminary predictions about the behavior of plutonium in the process. Samples of the remaining phosphoric acid from these tests has been converted to two separate final forms for analysis. Results will be presented on plutonium fractionation during the oxidation process and waste form stability.

  14. K-Al-based mixed oxides as high-capacity carbon dioxide adsorbents

    NASA Astrophysics Data System (ADS)

    Ikeue, Keita; Suzuki, Masashige; Sakai, Munetoshi; Chand Vagvala, Tarun; Kalousek, Vit

    2017-06-01

    K-Al-based mixed oxides (KAl6O9.5) with mullite structures were synthesized as CO2 adsorption materials using a polymerized complex method. Al3+ sites in the octahedral AlO6 units of K-Al-based mixed oxides were substituted with various metal ions with +2 or +3 valence states to enhance basicity. Among these samples, the Fe-introduced sample (KAl5.5Fe0.5O9.5) showed 130 times higher CO2 adsorption capacity than that of Li4SiO4. Raman spectra of these samples indicated that large distortions of the AlO6 unit were observed only for the Fe-introduced sample. Local polarization caused by such distortions could induce increased basicity of this sample.

  15. Ceramic waste form for residues from molten salt oxidation of mixed wastes

    SciTech Connect

    Van Konynenburg, R.A.; Hopper, R.W.; Rard, J.A.

    1995-11-01

    A ceramic waste form based on Synroc-D is under development for the incorporation of the mineral residues from molten salt oxidation treatment of mixed low-level wastes. Samples containing as many as 32 chemical elements have been fabricated, characterized, and leach-tested. Universal Treatment Standards have been satisfied for all regulated elements except and two (lead and vanadium). Efforts are underway to further improve chemical durability.

  16. Cluster molecular orbital description of the electronic structures of mixed-valence iron oxides and silicates

    USGS Publications Warehouse

    Sherman, David M.

    1986-01-01

    A molecular orbital description, based on spin-unrestricted X??-scattered wave calculations, is given for the electronic structures of mixed valence iron oxides and silicates. The cluster calculations show that electron hopping and optical intervalence charge-transger result from weak FeFe bonding across shared edges of FeO6 coordination polyhedra. In agreement with Zener's double exchange model, FeFe bonding is found to stabilize ferromagnetic coupling between Fe2+ and Fe3+ cations. ?? 1986.

  17. Simulated physical inventory verification exercise at a mixed-oxide fuel fabrication facility

    SciTech Connect

    Reilly, D.; Augustson, R.

    1985-01-01

    A physical inventory verification (PIV) was simulated at a mixed-oxide fuel fabrication facility. Safeguards inspectors from the International Atomic Energy Agency (IAEA) conducted the PIV exercise to test inspection procedures under ''realistic but relaxed'' conditions. Nondestructive assay instrumentation was used to verify the plutonium content of samples covering the range of material types from input powders to final fuel assemblies. This paper describes the activities included in the exercise and discusses the results obtained. 5 refs., 1 fig., 6 tabs.

  18. Selectivity of layered double hydroxides and their derivative mixed metal oxides as sorbents of hydrogen sulfide.

    PubMed

    Othman, Mohamed A; Zahid, Waleed M; Abasaeed, Ahmed E

    2013-06-15

    In the context of finding high efficient sorbent materials for removing hydrogen sulfide (H2S) from air stream, a screening study was performed to find the best combination of metals for the synthesis of layered double hydroxides (LDHs) and their derivative mixed metal oxides. Based on selectivity of 998 natural mineral species of sulfur-containing compounds, Cu(2+), Ni(2+) and Zn(2+) were selected as divalent metals, and Fe(3+), Al(3+) and Cr(3+) as trivalent metals to synthesis the LDHs sorbents. 10 LDHs materials and their calcined mixed metal oxides, Ni(0.66)Al(0.34), Cu(0.35)Ni(0.32)Al(0.33), Zn(0.66)Al(0.34), Cu(0.36)Zn(0.32)Al(0.32), Ni(0.64)Fe(0.36), Cu(0.35)Ni(0.31)Fe(0.34), Ni(0.66)Cr(0.34), Cu(0.35)Ni(0.31)Cr(0.34), Zn(0.66)Cr(0.34), Cu(0.33)Zn(0.32)Cr(0.35) were synthesized, characterized chemically and physically, and then tested using breakthrough test to determine their sulfur uptake. Ni(0.64)Fe(0.36) mixed metal oxides was found to have the best uptake of hydrogen sulfide (136 mg H₂S/g). Regeneration of spent Ni(0.64)Fe(0.36) mixed metal oxides was studied using two different mixture solutions, NaCl/NaOH and acetate-buffer/NaCl/NaOH. The latter mixture successfully desorbed the sulfur from the Ni0.64Fe0.36 sorbent for 2 cycles of regeneration/sorption. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Mutual Exclusion of Urea and Trimethylamine N-Oxide from Amino Acids in Mixed Solvent Environment.

    PubMed

    Ganguly, Pritam; Hajari, Timir; Shea, Joan-Emma; van der Vegt, Nico F A

    2015-02-19

    We study the solvation of amino acids in pure-osmolyte and mixed-osmolyte urea and trimethylamine N-oxide (TMAO) solutions using molecular dynamics simulations. Analysis of Kirkwood-Buff integrals between the solution components provides evidence that in the mixed osmolytic solution, both urea and TMAO are mutually excluded from the amino acid surface, accompanied by an increase in osmolyte-osmolyte aggregation. Similar observations are made in simulations of a model protein backbone, represented by triglycine, and suggest that TMAO stabilizes proteins under urea denaturation conditions by effectively removing urea from the protein surface. The effects of the mixed osmolytes on the solvation of the amino acids and the backbone are found to be highly nonlinear in terms of the effects of the individual osmolytes and independent of differences in the strength of the TMAO-water interactions, as observed with different TMAO force fields.

  20. Fabrication of uranium-americium mixed oxide pellet from microsphere precursors: Application of CRMP process

    NASA Astrophysics Data System (ADS)

    Remy, E.; Picart, S.; Delahaye, T.; Jobelin, I.; Lebreton, F.; Horlait, D.; Bisel, I.; Blanchart, P.; Ayral, A.

    2014-10-01

    Mixed uranium-americium oxides are one of the materials envisaged for Americium Bearing Blankets dedicated to transmutation in fast neutron reactors. Recently, several processes have been developed in order to validate fabrication flowchart in terms of material specifications such as density and homogeneity but also to suggest simplifications for lowering industrial costs and hazards linked to dust generation of highly contaminating and irradiating compounds. This study deals with the application of an innovative route using mixed oxide microspheres obtained from metal loaded resin bead calcination, called Calcined Resin Microsphere Pelletization (CRMP). The synthesis of mixed oxide microsphere precursor of U0.9Am0.1O2±δ is described as well as its characterisation. The use of this free-flowing precursor allows the pressing and sintering of one pellet of U0.9Am0.1O2±δ. The ceramic obtained was characterised and results showed that its microstructure is dense and homogeneous and its density attains 95% of the theoretical density. This study validates the scientific feasibility of the CRMP process applied to the fabrication of uranium and americium-containing materials.

  1. Effects of Transition-Metal Mixing on Na Ordering and Kinetics in Layered P 2 Oxides

    NASA Astrophysics Data System (ADS)

    Zheng, Chen; Radhakrishnan, Balachandran; Chu, Iek-Heng; Wang, Zhenbin; Ong, Shyue Ping

    2017-06-01

    Layered P 2 oxides are promising cathode materials for rechargeable sodium-ion batteries. In this work, we systematically investigate the effects of transition-metal (TM) mixing on Na ordering and kinetics in the NaxCo1 -yMnyO2 model system using density-functional-theory (DFT) calculations. The DFT-predicted 0-K stability diagrams indicate that Co-Mn mixing reduces the energetic differences between Na orderings, which may account for the reduction of the number of phase transformations observed during the cycling of mixed-TM P 2 layered oxides compared to a single TM. Using ab initio molecular-dynamics simulations and nudged elastic-band calculations, we show that the TM composition at the Na(1) (face-sharing) site has a strong influence on the Na site energies, which in turn impacts the kinetics of Na diffusion towards the end of the charge. By employing a site-percolation model, we establish theoretical upper and lower bounds for TM concentrations based on their effect on Na(1) site energies, providing a framework to rationally tune mixed-TM compositions for optimal Na diffusion.

  2. Investigation of some new hydro(solvo)thermal synthesis routes to nanostructured mixed-metal oxides

    SciTech Connect

    Burnett, David L.; Harunsani, Mohammad H.; Kashtiban, Reza J.; Playford, Helen Y.; Sloan, Jeremy; Hannon, Alex C.; Walton, Richard I.

    2014-06-01

    We present a study of two new solvothermal synthesis approaches to mixed-metal oxide materials and structural characterisation of the products formed. The solvothermal oxidation of metallic gallium by a diethanolamine solution of iron(II) chloride at 240 °C produces a crystalline sample of a spinel-structured material, made up of nano-scale particles typically 20 nm in dimension. XANES spectroscopy at the K-edge shows that the material contains predominantly Fe{sup 2+} in an octahedral environment, but that a small amount of Fe{sup 3+} is also present. Careful analysis using transmission electron microscopy and powder neutron diffraction shows that the sample is actually a mixture of two spinel materials: predominantly (>97%) an Fe{sup 2+} phase Ga{sub 1.8}Fe{sub 1.2}O{sub 3.9}, but with a minor impurity phase that is iron-rich. In contrast, the hydrothermal reaction of titanium bis(ammonium lactato)dihydroxide in water with increasing amounts of Sn(IV) acetate allows nanocrystalline samples of the SnO{sub 2}–TiO{sub 2} solid solution to be prepared directly, as proved by powder XRD and Raman spectroscopy. - Graphical abstract: New solvothermal synthesis approaches to spinel and rutile mixed-metal oxides are reported. - Highlights: • Solvothermal oxidation of gallium metal in organic iron(II) solution gives a novel iron gallate spinel. • Hydrothermal reaction of titanium(IV) complex and tin(IV) acetate produces the complete SnO{sub 2}–TiO{sub 2} solid solution. • Nanostructured mixed-metal oxide phases are produced directly from solution.

  3. Surface and bulk aspects of mixed oxide catalytic nanoparticles: oxidation and dehydration of CH(3)OH by polyoxometallates.

    PubMed

    Nakka, Lingaiah; Molinari, Julie E; Wachs, Israel E

    2009-10-28

    The molecular structures and surface chemistry of mixed metal oxide heteropolyoxo vanadium tungstate (H(3+x)PW(12-x)V(x)O(40) with x = 0, 1, 2, and 3) Keggin nanoparticles (NPs), where vanadium is incorporated into the primary Keggin structure, and supported VO(x) on tungstophosphoric acid (TPA, H(3)PW(12)O(40)), where vanadium is present on the surface of the Keggin unit, were investigated with solid-state magic angle spinning (51)V NMR, FT-IR, in situ Raman, in situ UV-vis, CH(3)OH temperature-programmed surface reaction (TPSR), and steady-state methanol oxidation. The incorporated VO(x) unit possesses one terminal V horizontal lineO bond, four bridging V-O-W/V bonds, and one long V-O-P bond in the primary Keggin structure, and the supported VO(x) unit possesses a similar coordination in the secondary structure under ambient conditions. The specific redox reaction rate for VO(x) in the Keggin primary structure is comparable to that of bulk V(2)O(5) and the more active supported vanadium oxide catalysts. The specific acidic reaction rate for the WO(x) in the TPA Keggin, however, is orders of magnitude greater than found for bulk WO(3), supported tungsten oxide catalysts, and even the highly acidic WO(3)-ZrO(2) catalyst synthesized by coprecipitation of ammonium metatungstate and ZrO(OH)(2). From CH(3)OH-TPSR and in situ Raman spectroscopy it was found that incorporation of vanadium oxide into the primary Keggin structure is also accompanied by the formation of surface VO(x) species at secondary sites on the Keggin outer surface. Both CH(3)OH-TPSR and steady-state methanol oxidation studies demonstrated that the surface VO(x) species on the Keggin outer surface are significantly less active than the VO(x) species incorporated into the primary Keggin structure. The presence of the less active surface VO(x) sites in the Keggins, thus, decreases the specific reaction rates for both methanol oxidation and methanol dehydration. During methanol oxidation/dehydration (O(2

  4. Catalytic wet-oxidation of a mixed liquid waste: COD and AOX abatement.

    PubMed

    Goi, D; de Leitenburg, C; Trovarelli, A; Dolcetti, G

    2004-12-01

    A series of catalytic wet oxidation (CWO) reactions, at temperatures of 430-500 K and in a batch bench-top pressure vessel were carried out utilizing a strong wastewater composed of landfill leachate and heavily organic halogen polluted industrial wastewater. A CeO2-SiO2 mixed oxide catalyst with large surface area to assure optimal oxidation performance was prepared. The catalytic process was examined during batch reactions controlling Chemical Oxygen Demand (COD) and Adsorbable Organic Halogen (AOX) parameters, resulting AOX abatement to achieve better effect. Color and pH were also controlled during batch tests. A simple first order-two stage reaction behavior was supposed and verified with the considered parameters. Finally an OUR test was carried out to evaluate biodegradability changes of wastewater as a result of the catalytic reaction.

  5. Complex catalytic behaviors of CuTiOx mixed-oxide during CO oxidation

    SciTech Connect

    Kim, Hyun You; Liu, Ping

    2015-09-21

    Mixed metal oxides have attracted considerable attention in heterogeneous catalysis due to the unique stability, reactivity, and selectivity. Here, the activity and stability of the CuTiOx monolayer film supported on Cu(111), CuTiOx/Cu(111), during CO oxidation was explored using density functional theory (DFT). The unique structural frame of CuTiOx is able to stabilize and isolate a single Cu+ site on the terrace, which is previously proposed active for CO oxidation. Furthermore, it is not the case, where the reaction via both the Langmuir–Hinshelwood (LH) and the Mars-van Krevelen (M-vK) mechanisms are hindered on such single Cu+ site. Upon the formation of step-edges, the synergy among Cuδ+ sites, TiOx matrix, and Cu(111) is able to catalyze the reaction well. Depending on temperatures and partial pressure of CO and O2, the surface structure varies, which determines the dominant mechanism. In accordance with our results, the Cuδ+ ion alone does not work well for CO oxidation in the form of single sites, while the synergy among multiple active sites is necessary to facilitate the reaction.

  6. Electrochemical oxidation of reverse osmosis concentrate on mixed metal oxide (MMO) titanium coated electrodes.

    PubMed

    Bagastyo, Arseto Y; Radjenovic, Jelena; Mu, Yang; Rozendal, René A; Batstone, Damien J; Rabaey, Korneel

    2011-10-15

    Reverse osmosis (RO) membranes have been successfully applied around the world for wastewater reuse applications. However, RO is a physical separation process, and besides the clean water stream (permeate) a reverse osmosis concentrate (ROC) is produced, usually representing 15-25% of the feed water flow and containing the organic and inorganic contaminants at higher concentrations. In this study, electrochemical oxidation was investigated for the treatment of ROC generated during the reclamation of municipal wastewater effluent. Using laboratory-scale two-compartment electrochemical systems, five electrode materials (i.e. titanium coated with IrO2-Ta2O5, RuO2-IrO2, Pt-IrO2, PbO2, and SnO2-Sb) were tested as anodes in batch mode experiments, using ROC from an advanced water treatment plant. The best oxidation performance was observed for Ti/Pt-IrO2 anodes, followed by the Ti/SnO2-Sb and Ti/PbO2 anodes. The effectiveness of the treatment appears to correlate with the formation of oxidants such as active chlorine (i.e. Cl2/HClO/ClO-). As a result, electro-generated chlorine led to the abundant formation of harmful by-products such as trihalomethanes (THMs) and haloacetic acids (HAAs), particularly at Ti/SnO2-Sb and Ti/Pt-IrO2 anodes. The highest concentration of total HAAs (i.e. 2.7 mg L(-1)) was measured for the Ti/SnO2-Sb electrode, after 0.55 Ah L(-1) of supplied specific electrical charge. Irrespective of the used material, electrochemical oxidation of ROC needs to be complemented by a polishing treatment to alleviate the release of halogenated by-products. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Uranium oxide and sodium oxide aerosol experiments: NSPP mixed-oxide tests 303-307, data record report. [LMFBR

    SciTech Connect

    Adams, R.E.; Kress, T.S.; Tobias, M.L.

    1982-10-01

    This data record report summarizes five tests, involving mixtures of uranium oxide and sodium oxide aerosols, conducted in the Nuclear Safety Pilot Plant project at Oak Ridge National Laboratory. The goal of this project is to establish the validity (or level of conservatism) of the aerosol behavioral code, HAARM-3, and follow-on codes under development at Battelle Columbus Laboratories for the US Nuclear Regulatory Commission. Descriptions of the five tests with tables and graphs summarizing the results are included.

  8. Kinetic study of the oxidation of n-butane on vanadium oxide supported on Al/Mg mixed oxide

    SciTech Connect

    Dejoz, A.; Vazquez, I.; Nieto, J.M.L.; Melo, F.

    1997-07-01

    The reaction kinetics of the oxidative dehydrogenation (ODH) of n-butane over vanadia supported on a heat-treated Mg/Al hydrotalcite (37.3 wt % of V{sub 2}O{sub 5}) was investigated by both linear and nonlinear regression techniques. A reaction network including the formation of butenes (1-, 2-cis-, and 2-trans-butene), butadiene, and carbon oxides by parallel and consecutive reactions, at low and high n-butane conversions, has been proposed. Langmuir-Hinshelwood (LH) models can be used as suitable models which allows reproduction of the global kinetic behavior, although differences between oxydehydrogenation and deep oxidation reactions have been observed. Thus, the formation of oxydehydrogenation products can be described by a LH equation considering a dissociative adsorption of oxygen while the formation of carbon oxides is described by a LH equation with a nondissociative adsorption of oxygen. Two different mechanisms operate on the catalyst: (i) a redox mechanism responsible of the formation of olefins and diolefins and associated to vanadium species, which is initiated by a hydrogen abstraction; (ii) a radical mechanism responsible of the formation of carbon oxides from n-butane and butenes and associated to vanadium-free sites of the support. On the other hand, the selectivity to oxydehydrogenation products increases with the reaction temperature. This catalytic performance can be explained taking into account the low reducibility of V{sup 5+}-sites and the higher apparent activation energies of the oxydehydrogenation reactions with respect to deep oxidation reactions.

  9. Effect of composition and calcination temperature of ceria-zirconia-alumina mixed oxides on catalytic performances of ethanol conversion

    NASA Astrophysics Data System (ADS)

    Chuklina, S. G.; Maslenkova, S. A.; Pylinina, A. I.; Podzorova, L. I.; Ilyicheva, A. A.

    2017-02-01

    In the present study, we investigated the effect of preparation method, phase composition and calcination temperature of the (Ce-TZP) - Al2O3 mixed oxides on their structural features and catalytic performance in ethanol conversion. Ceria-zirconia-alumina mixed oxides with different (Ce+Zr)/Al atomic ratios were prepared via sol-gel method. Catalytic activity and selectivity were investigated for ethanol conversion to acetaldehyde, ethylene and diethyl ether.

  10. Argonne National Laboratory`s photo-oxidation organic mixed waste treatment system - installation and startup testing

    SciTech Connect

    Shearer, T.L.; Nelson, R.A.; Torres, T.; Conner, C.; Wygmans, D.

    1997-09-01

    This paper describes the installation and startup testing of the Argonne National Laboratory (ANL-E) Photo-Oxidation Organic Mixed Waste Treatment System. This system will treat organic mixed (i.e., radioactive and hazardous) waste by oxidizing the organics to carbon dioxide and inorganic salts in an aqueous media. The residue will be treated in the existing radwaste evaporators. The system is installed in the Waste Management Facility at the ANL-E site in Argonne, Illinois. 1 fig.

  11. Oxidative aging of mixed oleic acid/sodium chloride aerosol particles

    NASA Astrophysics Data System (ADS)

    Dennis-Smither, Benjamin J.; Miles, Rachael E. H.; Reid, Jonathan P.

    2012-10-01

    Studies of the oxidative aging of single mixed component aerosol particles formed from oleic acid (OL) and sodium chloride over a range of relative humidities (RH) and ozone concentrations by aerosol optical tweezers are reported. The rate of loss of OL and changes in the organic phase volume are directly measured, comparing particles with effloresced and deliquesced inorganic seeds. The kinetics of the OL loss are analyzed and the value of the reactive uptake coefficient of ozone by OL is compared to previous studies. The reaction of OL is accompanied by a decrease in the particle volume, consistent with the evaporation of semivolatile products over a time scale of tens of thousands of seconds. Measurements of the change in the organic phase volume allow the branching ratio to involatile components to be estimated; between 50 and 85% of the initial organic volume remains involatile, depending on ozone concentration. The refractive index (RI) of the organic phase increases during and after evaporation of volatile products, consistent with aging followed by a slow restructuring in particle morphology. The hygroscopicity of the particle and kinetics of the response of the organic phase to changes in RH are investigated. Both size and RI of unoxidized and oxidized particles respond promptly to RH changes with values of the RI consistent with linear mixing rules. Such studies of the simultaneous changes in composition and size of mixed component aerosol provide valuable data for benchmarking kinetic models of heterogeneous atmospheric aging.

  12. Poisoning and reactivation processes in oxide-type cathodes: Part I. Polycrystalline mixed oxides

    NASA Astrophysics Data System (ADS)

    Shih, A.; Haas, G. A.

    A study has been made of the poisoning and reactivation characteristics of alkaline earth oxide-type cathodes after extended periods of shelf storage. Both emitted and incident electrons were used to measure changes in the electronics properties, i.e. work function. The variations in work function over the surface were obtained in both distribution form as well as topographic presentation using a scanning low energy electron probe (SLEEP). These measurements were correlated with simultaneously occurring compositional changes using Auger, gas desorption and ion scattering techniques. Measurements were made on realistic cathodes in actual vacuum tube ambients. The results showed that oxide-type cathodes poison within a few hours after shut-down by the adsorption of residual gases contained in the vacuum ambient. (The effects of CO 2 were specifically demonstrated.) These adsorbates are, however, desorbed upon heating and in combination with other reactivation processes (such as formation of surface Ba layers when using reducing substrates), the cathode can reach full activation again by the time the temperature reaches the normal operating temperature. The poisoning and reactivation phenomena are a combination of a number of simultaneous processes, and studies to separate and identify these is the objective of part II of this paper.

  13. Mixed Waste Focus Area alternative oxidation technologies development and demonstration program

    SciTech Connect

    Borduin, L.C.; Fewell, T.; Gombert, D.; Priebe, S.

    1998-07-01

    The Mixed Waste Focus Area (MWFA) is currently supporting the development and demonstration of several alternative oxidation technology (AOT) processes for treatment of combustible mixed low-level wastes. The impetus for this support derives from regulatory and political hurdles frequently encountered by traditional thermal techniques, primarily incinerators. AOTs have been defined as technologies that destroy organic material without using open-flame reactions. Whether thermal or nonthermal, the processes have the potential advantages of relatively low-volume gaseous emissions, generation of few or no dioxin/furan compounds, and operation at low enough temperatures that metals (except mercury) and most radionuclides are not volatilized. Technology development and demonstration are needed to confirm and realize the potential of AOTs and to compare them on an equal basis with their fully demonstrated thermal counterparts. AOTs include both thermal and nonthermal processes that oxidize organic wastes but operate under significantly different physical and chemical conditions than incinerators. Nonthermal processes currently being studied include Delphi DETOX and acid digestion at the Savannah River Site, and direct chemical oxidation at Lawrence Livermore National Laboratory. All three technologies are at advanced stages of development or are entering the demonstration phase. Nonflame thermal processes include catalytic chemical oxidation, which is being developed and deployed at Lawrence Berkeley National Laboratory, and team reforming, a commercial process being supported by Department of Energy. Related technologies include two low-flow, secondary oxidation processes (Phoenix and Thermatrix units) that have been tested at MSE, Inc., in Butte, Montana. Although testing is complete on some AOT technologies, most require additional support to complete some or all of the identified development objectives. Brief descriptions, status, and planned paths forward for each

  14. Microstructure and oxygen evolution of Fe-Ce mixed oxides by redox treatment

    NASA Astrophysics Data System (ADS)

    Li, Kongzhai; Haneda, Masaaki; Ning, Peihong; Wang, Hua; Ozawa, Masakuni

    2014-01-01

    The relationship between structure and reduction/redox properties of Fe-Ce mixed oxides with a Fe content of 5, 10, 20 or 30 mol%, prepared by a coprecipitation method, were investigated by XRD, Raman, TEM, TPR and TPO techniques. It is found that all the iron ions can be incorporated into the ceria lattice to form a solid solution for the FeCe 5 (Fe 5%) sample, but amorphous or crystal Fe2O3 particles were found to be present on the Fe-Ce oxide samples with higher the iron content. The reducibility of single solid solution was much better than the pure CeO2, and the appearance of dispersed Fe2O3 particles improved the surface reducibility of materials. The iron ions incorporated into the CeO2 lattice accelerated the oxygen release from bulk to surface, and surface Fe2O3 particles in close contact to CeO2 acted as a catalyst for the reaction between solid solution and hydrogen. The microstructure of exposed Fe2O3 with Ce-Fe-O solid solution allows the Fe-Ce mixed oxides to own good reducibility and high OSC, which also counteracts the deactivation of the reducibility resulting from the sintering of materials in the redox cycling.

  15. Joining Mixed Conducting Oxides Using an Air-Fired Electrically Conductive Braze

    SciTech Connect

    Hardy, John S.; Kim, Jin Yong Y.; Weil, K. Scott

    2004-10-01

    Due to their mixed oxygen ion and electron conducting properties, ceramics such as lanthanum strontium cobalt ferrites (LSCF) are attractive materials for use in active electrochemical devices such as solid oxide fuel cells (SOFC) and oxygen separation membranes. However, to take full advantage of the unique properties of these materials, reliable joining techniques need to be developed. If such a joining technique yields a ceramic-to-metal junction that is also electrically conductive, the hermetic seals in the device could provide the added function of either drawing current from the mixed conducting oxide, in the case of SOFC applications, or carrying it to the oxide to initate ionic conduction, in the case of oxygen separation and electrocatalysis applications. This would greatly reduce the need for complex interconnect design, thereby simplifying one of the major challenges faced in SOFC development. A process referred to as reactive air brazing (RAB) has been developed in which firing a Ag-CuO filler material in air creates a functional ceramic-to-metal junction, in which the silver-based matrix of the braze affords both metallic ductility and conductivity in the joint. Investigating a range of Ag-CuO alloy combinations determined that compositions containing between 1.4 and 16 mol% CuO appear to offer the best combination of wettability, joint strength, and electrical conductivity.

  16. Self-assembled hybrid metal oxide base catalysts prepared by simply mixing with organic modifiers

    NASA Astrophysics Data System (ADS)

    Tamura, Masazumi; Kishi, Ryota; Nakagawa, Yoshinao; Tomishige, Keiichi

    2015-10-01

    Multidentate materials formed by simply mixing heterogeneous and homogeneous components are promising for construction of versatile active sites on the surface of heterogeneous compounds, however, to the best of our knowledge, there are no reports on such materials. Self-assembly of hetero-hybrid catalytic materials occurs when heterogeneous catalysts having adjacent Lewis acid-Lewis base sites are mixed with an organic modifier that contains at least two Lewis base functional groups. Here we demonstrate the strategy by combining cerium oxide and 2-cyanopyridine that self-assembles to form a charge-transfer complex in methanol that exhibits a 2,000-fold increase in reaction rate for hydromethoxylation of acrylonitrile with high selectivity compared with cerium oxide or 2-cyanopyridine alone. The catalytic system is applied to the transesterification and Knoevenagel condensation affording 14-fold and 11-fold higher activity, respectively, than cerium oxide alone. These results demonstrate the potential versatility of the catalytic system and the generality of the catalyst preparation strategy.

  17. Preparation of extrusions of bulk mixed oxide compounds with high macroporosity and mechanical strength

    DOEpatents

    Flytzani-Stephanopoulos, Maria; Jothimurugesan, Kandaswami

    1990-01-01

    A simple and effective method for producing bulk single and mixed oxide absorbents and catalysts is disclosed. The method yields bulk single oxide and mixed oxide absorbent and catalyst materials which combine a high macroporosity with relatively high surface area and good mechanical strength. The materials are prepared in a pellet form using as starting compounds, calcined powders of the desired composition and physical properties these powders are crushed to broad particle size distribution, and, optionally may be combined with an inorganic clay binder. The necessary amount of water is added to form a paste which is extruded, dried and heat treated to yield and desired extrudate strength. The physical properties of the extruded materials (density, macroporosity and surface area) are substantially the same as the constituent powder is the temperature of the heat treatment of the extrudates is approximately the same as the calcination temperature of the powder. If the former is substantially higher than the latter, the surface area decreases, but the macroporosity of the extrusions remains essentially constant.

  18. Self-assembled hybrid metal oxide base catalysts prepared by simply mixing with organic modifiers

    PubMed Central

    Tamura, Masazumi; Kishi, Ryota; Nakagawa, Yoshinao; Tomishige, Keiichi

    2015-01-01

    Multidentate materials formed by simply mixing heterogeneous and homogeneous components are promising for construction of versatile active sites on the surface of heterogeneous compounds, however, to the best of our knowledge, there are no reports on such materials. Self-assembly of hetero-hybrid catalytic materials occurs when heterogeneous catalysts having adjacent Lewis acid-Lewis base sites are mixed with an organic modifier that contains at least two Lewis base functional groups. Here we demonstrate the strategy by combining cerium oxide and 2-cyanopyridine that self-assembles to form a charge-transfer complex in methanol that exhibits a 2,000-fold increase in reaction rate for hydromethoxylation of acrylonitrile with high selectivity compared with cerium oxide or 2-cyanopyridine alone. The catalytic system is applied to the transesterification and Knoevenagel condensation affording 14-fold and 11-fold higher activity, respectively, than cerium oxide alone. These results demonstrate the potential versatility of the catalytic system and the generality of the catalyst preparation strategy. PMID:26436638

  19. Electrochemical synthesis of new magnetic mixed oxides of Sr and Fe: Composition, magnetic properties, and microstructure

    SciTech Connect

    Amigo, R.; Asenjo, J.; Krotenko, E.; Torres, F.; Tejada, J.; Brillas, E.

    2000-02-01

    An electrochemical method for the preparation of magnetic nanoparticles of new Sr-Fe oxides is presented in this work. It consists of the electrolysis of nitrate or chloride solutions with Sr{sup 2+} and Fe{sup 3+} salts using commercial Fe electrodes. Magnetic materials are collected as precipitates from nitrate media in the pH range 1-3 and from chloride media within the pH range 1--12. The presence of 100--300 ppm aniline in acidic nitrate media yields a decrease in energy cost and particle size. Inductively coupled plasma analysis of materials and energy-dispersive X-ray spectrometry of single particles confirm that they are composed of mixed oxides of Sr and Fe. All synthesized materials crystallize as inverse cubic spinels, usually with intermediate structures between magnetite and maghemite. They are formed by nanoparticles with average sizes from 2 nm to {approximately} 50 nm, as observed by scanning electron microscopy. The electrogenerated mixed oxides have higher saturation magnetization, but lower remanent magnetization and coercive field, than commercial strontium hexaferrite with micrometric particle size.

  20. Low-temperature synthesis of Mn-based mixed metal oxides with novel fluffy structures as efficient catalysts for selective reduction of nitrogen oxides by ammonia.

    PubMed

    Meng, Bo; Zhao, Zongbin; Chen, Yongsheng; Wang, Xuzhen; Li, Yong; Qiu, Jieshan

    2014-10-21

    A series of Mn-based mixed metal oxide catalysts (Co-Mn-O, Fe-Mn-O, Ni-Mn-O) with high surface areas were prepared via low temperature crystal splitting and exhibited extremely high catalytic activity for the low-temperature selective catalytic reduction of nitrogen oxides with ammonia.

  1. Engineering development and demonstration of DETOX{sup SM} wet oxidation for mixed waste treatment

    SciTech Connect

    Dhooge, P.M.; Goldblatt, S.D.; Moslander, J.E.; Robertson, D.T.; Rogers, T.W.; Zigmond, J.A.

    1997-12-01

    DETOX{sup SM}, a catalyzed chemical oxidation process, is under development for treatment of hazardous and mixed wastes at Department of Energy sites. To support this effort, developmental engineering studies have been formed for aspects of the process to help ensure safe and effective operation. Subscale agitation studies have been preformed to identify a suitable mixing head and speed for the primary reaction vessel agitator. Mechanisms for feeding solid waste materials to the primary reaction vessel have been investigated. Filtration to remove solid field process residue, and the use of various filtration aids, has been studied. Extended compatibility studies on the materials of construction have been performed. Due to a change to Rocky Flats Environmental Technology Site (RFETS) for the mixed waste portion of the demonstration, types of wastes suitable and appropriate for treatment at RFETS had to be chosen. A Prototype unit has been fabricated and will be demonstrated on hazardous and mixed wastes at Savannah River Site (SRS) and RFETS during 1997 and 1998. The unit is in shakedown testing at present. Data validation and an engineering evaluation will be performed during the demonstration.

  2. Polyethylene encapsulation of molten salt oxidation mixed low-level radioactive salt residues

    SciTech Connect

    Lageraaen, P.R.; Kalb, P.D.; Grimmett, D.L.; Gay, R.L.; Newman, C.D.

    1995-10-01

    A limited scope treatability study was conducted for polyethylene encapsulation of salt residues generated by a Molten Salt Oxidation (MSO) technology demonstration at the Energy Technology Engineering Center (ETEC), operated by Rockwell International for the US Department of Energy (DOE). During 1992 and 1993, ETEC performed a demonstration with a prototype MSO unit and treated approximately 50 gallons of mixed waste comprised of radioactively contaminated oils produced by hot cell operations. A sample of the mixed waste contaminated spent salt was used during the BNL polyethylene encapsulation treatability study. A nominal waste loading of 50 wt % was successfully processed and waste form test specimens were made for Toxicity Characteristic Leaching Procedure (TCLP) testing. The encapsulated product was compared with base-line TCLP results for total chromium and was found to be well within allowable EPA guidelines.

  3. Method for acid oxidation of radioactive, hazardous, and mixed organic waste materials

    DOEpatents

    Pierce, Robert A.; Smith, James R.; Ramsey, William G.; Cicero-Herman, Connie A.; Bickford, Dennis F.

    1999-01-01

    The present invention is directed to a process for reducing the volume of low level radioactive and mixed waste to enable the waste to be more economically stored in a suitable repository, and for placing the waste into a form suitable for permanent disposal. The invention involves a process for preparing radioactive, hazardous, or mixed waste for storage by contacting the waste starting material containing at least one organic carbon-containing compound and at least one radioactive or hazardous waste component with nitric acid and phosphoric acid simultaneously at a contacting temperature in the range of about 140.degree. C. to about 210 .degree. C. for a period of time sufficient to oxidize at least a portion of the organic carbon-containing compound to gaseous products, thereby producing a residual concentrated waste product containing substantially all of said radioactive or inorganic hazardous waste component; and immobilizing the residual concentrated waste product in a solid phosphate-based ceramic or glass form.

  4. Neutronics benchmark for the Quad Cities-1 (Cycle 2) mixed oxide assembly irradiation

    SciTech Connect

    Fisher, S.E.; Difilippo, F.C.

    1998-04-01

    Reactor physics computer programs are important tools that will be used to estimate mixed oxide fuel (MOX) physics performance in support of weapons grade plutonium disposition in US and Russian Federation reactors. Many of the computer programs used today have not undergone calculational comparisons to measured data obtained during reactor operation. Pin power, the buildup of transuranics, and depletion of gadolinium measurements were conducted (under Electric Power Research Institute sponsorship) on uranium and MOX pins irradiated in the Quad Cities-1 reactor in the 1970`s. These measurements are compared to modern computational models for the HELIOS and SCALE computer codes. Good agreement on pin powers was obtained for both MOX and uranium pins. The agreement between measured and calculated values of transuranic isotopes was mixed, depending on the particular isotope.

  5. Molten salt oxidation of mixed waste: Preliminary bench-scale experiments without radioactivity

    SciTech Connect

    Haas, P.A.; Rudolph, J.C.; Bell, J.T.

    1994-06-01

    Molten salt oxidation (MSO) is a process in which organic wastes are oxidized by sparging them with air through a bed of molten sodium carbonate (bp 851 {degrees}C) at {ge} 900{degrees}C. This process is readily applicable to the mixed waste because acidic products from Cl, S, P, etc., in the waste, along with most metals and most radionuclides, are retained within the melt as oxides or salts. Rockwell International has studied the application of MSO to various wastes, including some mixed waste. A unit used by Rockwell to study the mixed waste treatment is presently in use at Oak Ridge National Laboratory (ORNL). ORNL`s studies to date have concentrated on chemical flowsheet questions. Concerns that were studied included carbon monoxide (CO) emissions, NO{sub x}, emissions, and metal retention under a variety of conditions. Initial experiments show that CO emissions increase with increasing NaCl content in the melt, increasing temperature, and increasing airflow. Carbon monoxide content is especially high (> 2000 ppm) with high chlorine content (> 10%). Thermal NO{sub x}, emissions are relatively low ( < 5 ppm) at temperatures < 1000{degrees}C. However, most (85--100%) of the nitrogen in the feed as organic nitrate or amine was released as NO{sub x}, The metal contents of the melt and of knockout pot samples of condensed salt show high volatilities of Cs as CsCl. Average condensed salt concentrations were 60% for barium and 100% for strontium and cobalt. The cerium disappeared -- perhaps from deposition on the alumina reactor walls.

  6. Mediated electrochemical oxidation as an alternative to incineration for mixed wastes

    SciTech Connect

    Chiba, Z.; Schumacher, B.; Lewis, P.; Murguia, L.

    1995-02-01

    Mediated Electrochemical Oxidation (MEO) is an aqueous process which oxidizes organics electrochemically at low temperatures and ambient pressures. The process can be used to treat mixed wastes containing hazardous organics by destroying the organic components of the wastes. The radioactive components of the wastes are dissolved in the electrolyte where they can be recovered if desired, or immobilized for disposal. The process of destroying organics is accomplished via a mediator, which is in the form of metallic ions in solution. At Lawrence Livermore National Laboratory (LLNL) we have worked with worked with several mediators, including silver, cobalt and cerium. We have tested mediators in nitric as well as sulfuric acids. We have recently completed extensive experimental studies on cobalt-sulfuric acid and silver-nitric acid systems for destroying the major organic components of Rocky Flats Plant combustible mixed wastes. Organics tested were: Trimsol (a cutting oil), cellulose (including paper and cloth), rubber (latex), plastics (Tyvek, polyethylene and polyvinyl chloride) and biomass (bacteria). The process was capable of destroying almost all of the organics tested, attaining high destruction efficiencies at reasonable coulombic efficiencies. The only exception was polyvinyl chloride, which was destroyed very slowly resulting in poor coulombic efficiencies. Besides the process development work mentioned above, we are working on the design of a pilot-plant scale integrated system to be installed in the Mixed Waste Management Facility (MWMF) at LLNL. The system will also be completely integrated with upstream and downstream processes (for example, feed preparation, off-gas and water treatment, and final forms encapsulation). The conceptual design for the NEO-MWMF system has been completed and preliminary design work has been initiated. Demonstration of the process with low-level mixed wastes is expected to commence in 1998.

  7. Catalytic activity of titania zirconia mixed oxide catalyst for dimerization eugenol

    NASA Astrophysics Data System (ADS)

    Tursiloadi, S.; Kristiani, A.; Jenie, S. N. Aisyiyah; Laksmono, J. A.

    2017-01-01

    Clove oil has been found to possess antibacterial, antifungal, antiviral, antitumor, antioxidant and insecticidal properties. The major compound of clove oil is eugenol about 49-87%. Eugenol as phenolic compounds exhibits antioxidant and antimicrobial activities. The derivative compound of eugenol, dieugenol, show antioxidant potency better than parent eugenol. A series of TiO2-ZrO2 mixed oxides (TZ) with various titanium contents from 0 to 100wt%, prepared by using sol gel method were tested their catalytic activity for dimerization eugenol, Their catalytic activity show that these catalysts resulted a low yield of dimer eugenol, dieugenol, about 2-9 % and the purity is more than 50%.

  8. Tunable catalytic properties of bi-functional mixed oxides in ethanol conversion to high value compounds

    SciTech Connect

    Ramasamy, Karthikeyan K.; Gray, Michel J.; Job, Heather M.; Smith, Colin D.; Wang, Yong

    2016-04-10

    tA highly versatile ethanol conversion process to selectively generate high value compounds is pre-sented here. By changing the reaction temperature, ethanol can be selectively converted to >C2alcohols/oxygenates or phenolic compounds over hydrotalcite derived bi-functional MgO–Al2O3cata-lyst via complex cascade mechanism. Reaction temperature plays a role in whether aldol condensationor the acetone formation is the path taken in changing the product composition. This article containsthe catalytic activity comparison between the mono-functional and physical mixture counterpart to thehydrotalcite derived mixed oxides and the detailed discussion on the reaction mechanisms.

  9. Study on mixed vanadium oxide thin film deposited by RF magnetron sputtering and its application

    NASA Astrophysics Data System (ADS)

    Ling, Zhang; Jianhui, Tu; Hao, Feng; Jingzhong, Cui

    Vanadium oxide (VOx) thin films were deposited on fused quartz using a pure metal vanadium target by RF reactive magnetron sputtering technique. Film microstructure, valence state, optical transmittance properties were studied. The mixed valence VOx thin films deposited with different thickness were found to be amorphous. And the optical transmittance curves are flatness in certain wavelength region. These films can be used to control the relative light intensity of the rubidium light beam between the rubidium lamp and the vapor cell, in order to optimize the working parameters of the rubidium frequency standard (RAFS).

  10. Tunable catalytic properties of bi-functional mixed oxides in ethanol conversion to high value compounds

    DOE PAGES

    Ramasamy, Karthikeyan K.; Gray, Michel; Job, Heather; ...

    2016-02-03

    Here, a highly versatile ethanol conversion process to selectively generate high value compounds is presented here. By changing the reaction temperature, ethanol can be selectively converted to >C2 alcohols/oxygenates or phenolic compounds over hydrotalcite derived bi-functional MgO–Al2O3 catalyst via complex cascade mechanism. Reaction temperature plays a role in whether aldol condensation or the acetone formation is the path taken in changing the product composition. This article contains the catalytic activity comparison between the mono-functional and physical mixture counterpart to the hydrotalcite derived mixed oxides and the detailed discussion on the reaction mechanisms.

  11. Tunable catalytic properties of bi-functional mixed oxides in ethanol conversion to high value compounds

    SciTech Connect

    Ramasamy, Karthikeyan K.; Gray, Michel; Job, Heather; Smith, Colin; Wang, Yong

    2016-02-03

    Here, a highly versatile ethanol conversion process to selectively generate high value compounds is presented here. By changing the reaction temperature, ethanol can be selectively converted to >C2 alcohols/oxygenates or phenolic compounds over hydrotalcite derived bi-functional MgO–Al2O3 catalyst via complex cascade mechanism. Reaction temperature plays a role in whether aldol condensation or the acetone formation is the path taken in changing the product composition. This article contains the catalytic activity comparison between the mono-functional and physical mixture counterpart to the hydrotalcite derived mixed oxides and the detailed discussion on the reaction mechanisms.

  12. Reliability of fast reactor mixed-oxide fuel during operational transients

    SciTech Connect

    Boltax, A.; Neimark, L.A.; Tsai, Hanchung ); Katsuragawa, M.; Shikakura, S. . Oarai Engineering Center)

    1991-07-01

    Results are presented from the cooperative DOE and PNC Phase 1 and 2 operational transient testing programs conducted in the EBR-2 reactor. The program includes second (D9 and PNC 316 cladding) and third (FSM, AST and ODS cladding) generation mixed-oxide fuel pins. The irradiation tests include duty cycle operation and extended overpower tests. the results demonstrate the capability of second generation fuel pins to survive a wide range of duty cycle and extended overpower events. 15 refs., 9 figs., 4 tabs.

  13. Impact of conversion to mixed-oxide fuels on reactor structural components

    SciTech Connect

    Yahr, G.T.

    1997-04-01

    The use of mixed-oxide (MOX) fuel to replace conventional uranium fuel in commercial light-water power reactors will result in an increase in the neutron flux. The impact of the higher flux on the structural integrity of reactor structural components must be evaluated. This report briefly reviews the effects of radiation on the mechanical properties of metals. Aging degradation studies and reactor operating experience provide a basis for determining the areas where conversion to MOX fuels has the potential to impact the structural integrity of reactor components.

  14. Application of a mixed metal oxide catalyst to a metallic substrate

    NASA Technical Reports Server (NTRS)

    Sevener, Kathleen M. (Inventor); Lohner, Kevin A. (Inventor); Mays, Jeffrey A. (Inventor); Wisner, Daniel L. (Inventor)

    2009-01-01

    A method for applying a mixed metal oxide catalyst to a metallic substrate for the creation of a robust, high temperature catalyst system for use in decomposing propellants, particularly hydrogen peroxide propellants, for use in propulsion systems. The method begins by forming a prepared substrate material consisting of a metallic inner substrate and a bound layer of a noble metal intermediate. Alternatively, a bound ceramic coating, or frit, may be introduced between the metallic inner substrate and noble metal intermediate when the metallic substrate is oxidation resistant. A high-activity catalyst slurry is applied to the surface of the prepared substrate and dried to remove the organic solvent. The catalyst layer is then heat treated to bind the catalyst layer to the surface. The bound catalyst layer is then activated using an activation treatment and calcinations to form the high-activity catalyst system.

  15. Defects and transport in mixed oxides. Progress report, October 1, 1993--December 20, 1994

    SciTech Connect

    Dieckmann, R.

    1994-12-20

    The PI of this research program came to Cornell University from Hannover (Germany) in July 1987. Beginning in Fall 1987 a new research group and a new research facilities were built up at Cornell. The program {open_quotes}Defects and Transport in Mixed Oxides{close_quotes} was started in July 1988. The last progress report for this program was written on September 30, 1993 and submitted to DOE with the last renewal proposal. Significant progress has been made in the areas of: (i) the nonstoichiometry of quasi-binary spinels, (ii) the cation tracer diffusion in oxide solid solutions of the type (Fe,Me){sub 3{minus}{delta}}O{sub 4}, (iii) the Monte-Carlo simulation of the cation diffusion in spinel solid solutions, (iv) interdiffusion measurements in the spinel solution (Fe,Mn){sub 3{minus}{delta}}O{sub 4}, and (v) defect-related properties of Co{sub 1{minus}{delta}}O.

  16. Vapor Phase Hydrogenolysis of Furanics Utilizing Reduced Cobalt Mixed Metal Oxide Catalysts

    DOE PAGES

    Sulmonetti, Taylor P.; Hu, Bo; Ifkovits, Zachary; ...

    2017-03-21

    Vapor phase hydrogenolysis of both furfuryl alcohol and furfural were investigated over reduced Co based mixed metal oxides derived from the calcination of a layered double hydroxide precursor. Although a reduced cobalt aluminate sample displays promising selectivity towards 2-methylfuran (2-MF) production, the addition of an Fe dopant into the oxide matrix significantly enhances the activity and selectivity per gram of catalyst. Approximately 82% 2-MF yield is achieved at high conversion when furfuryl alcohol is fed into the reactor at 180 °C over the reduced 3Co-0.25Fe-0.75Al catalyst. Based on structural characterization studies including TPR, XPS, and in-situ XAS it is suggestedmore » that Fe facilitates the reduction of Co, allowing for formation of more metallic species. Altogether, this study demonstrates that non-precious metal catalysts offer promise for the selective conversion of a key biomass oxygenate to a proposed fuel additive.« less

  17. Microstructural modeling of thermal conductivity of high burn-up mixed oxide fuel

    NASA Astrophysics Data System (ADS)

    Teague, Melissa; Tonks, Michael; Novascone, Stephen; Hayes, Steven

    2014-01-01

    Predicting the thermal conductivity of oxide fuels as a function of burn-up and temperature is fundamental to the efficient and safe operation of nuclear reactors. However, modeling the thermal conductivity of fuel is greatly complicated by the radially inhomogeneous nature of irradiated fuel in both composition and microstructure. In this work, radially and temperature-dependent models for effective thermal conductivity were developed utilizing optical micrographs of high burn-up mixed oxide fuel. The micrographs were employed to create finite element meshes with the OOF2 software. The meshes were then used to calculate the effective thermal conductivity of the microstructures using the BISON [1] fuel performance code. The new thermal conductivity models were used to calculate thermal profiles at end of life for the fuel pellets. These results were compared to thermal conductivity models from the literature, and comparison between the new finite element-based thermal conductivity model and the Duriez-Lucuta model was favorable.

  18. Microstructural Modeling of Thermal Conductivity of High Burn-up Mixed Oxide Fuel

    SciTech Connect

    Melissa Teague; Michael Tonks; Stephen Novascone; Steven Hayes

    2014-01-01

    Predicting the thermal conductivity of oxide fuels as a function of burn-up and temperature is fundamental to the efficient and safe operation of nuclear reactors. However, modeling the thermal conductivity of fuel is greatly complicated by the radially inhomogeneous nature of irradiated fuel in both composition and microstructure. In this work, radially and temperature-dependent models for effective thermal conductivity were developed utilizing optical micrographs of high burn-up mixed oxide fuel. The micrographs were employed to create finite element meshes with the OOF2 software. The meshes were then used to calculate the effective thermal conductivity of the microstructures using the BISON fuel performance code. The new thermal conductivity models were used to calculate thermal profiles at end of life for the fuel pellets. These results were compared to thermal conductivity models from the literature, and comparison between the new finite element-based thermal conductivity model and the Duriez–Lucuta model was favorable.

  19. Late-occurring pulmonary pathologies following inhalation of mixed oxide (uranium + plutonium oxide) aerosol in the rat.

    PubMed

    Griffiths, N M; Van der Meeren, A; Fritsch, P; Abram, M-C; Bernaudin, J-F; Poncy, J L

    2010-09-01

    Accidental exposure by inhalation to alpha-emitting particles from mixed oxide (MOX: uranium and plutonium oxide) fuels is a potential long-term health risk to workers in nuclear fuel fabrication plants. For MOX fuels, the risk of lung cancer development may be different from that assigned to individual components (plutonium, uranium) given different physico-chemical characteristics. The objective of this study was to investigate late effects in rat lungs following inhalation of MOX aerosols of similar particle size containing 2.5 or 7.1% plutonium. Conscious rats were exposed to MOX aerosols and kept for their entire lifespan. Different initial lung burdens (ILBs) were obtained using different amounts of MOX. Lung total alpha activity was determined by external counting and at autopsy for total lung dose calculation. Fixed lung tissue was used for anatomopathological, autoradiographical, and immunohistochemical analyses. Inhalation of MOX at ILBs ranging from 1-20 kBq resulted in lung pathologies (90% of rats) including fibrosis (70%) and malignant lung tumors (45%). High ILBs (4-20 kBq) resulted in reduced survival time (N = 102; p < 0.05) frequently associated with lung fibrosis. Malignant tumor incidence increased linearly with dose (up to 60 Gy) with a risk of 1-1.6% Gy for MOX, similar to results for industrial plutonium oxide alone (1.9% Gy). Staining with antibodies against Surfactant Protein-C, Thyroid Transcription Factor-1, or Oct-4 showed differential labeling of tumor types. In conclusion, late effects following MOX inhalation result in similar risk for development of lung tumors as compared with industrial plutonium oxide.

  20. Solution processable broadband transparent mixed metal oxide nanofilm optical coatings via substrate diffusion doping

    NASA Astrophysics Data System (ADS)

    Glynn, Colm; Aureau, Damien; Collins, Gillian; O'Hanlon, Sally; Etcheberry, Arnaud; O'Dwyer, Colm

    2015-11-01

    Devices composed of transparent materials, particularly those utilizing metal oxides, are of significant interest due to increased demand from industry for higher fidelity transparent thin film transistors, photovoltaics and a myriad of other optoelectronic devices and optics that require more cost-effective and simplified processing techniques for functional oxides and coatings. Here, we report a facile solution processed technique for the formation of a transparent thin film through an inter-diffusion process involving substrate dopant species at a range of low annealing temperatures compatible with processing conditions required by many state-of-the-art devices. The inter-diffusion process facilitates the movement of Si, Na and O species from the substrate into the as-deposited vanadium oxide thin film forming a composite fully transparent V0.0352O0.547Si0.4078Na0.01. Thin film X-ray diffraction and Raman scattering spectroscopy show the crystalline component of the structure to be α-NaVO3 within a glassy matrix. This optical coating exhibits high broadband transparency, exceeding 90-97% absolute transmission across the UV-to-NIR spectral range, while having low roughness and free of surface defects and pinholes. The production of transparent films for advanced optoelectronic devices, optical coatings, and low- or high-k oxides is important for planar or complex shaped optics or surfaces. It provides opportunities for doping metal oxides to ternary, quaternary or other mixed metal oxides on glass, encapsulants or other substrates that facilitate diffusional movement of dopant species.Devices composed of transparent materials, particularly those utilizing metal oxides, are of significant interest due to increased demand from industry for higher fidelity transparent thin film transistors, photovoltaics and a myriad of other optoelectronic devices and optics that require more cost-effective and simplified processing techniques for functional oxides and coatings

  1. Silica-based composite and mixed-oxide nanoparticles from atmospheric pressure flame synthesis

    NASA Astrophysics Data System (ADS)

    Akurati, Kranthi K.; Dittmann, Rainer; Vital, Andri; Klotz, Ulrich; Hug, Paul; Graule, Thomas; Winterer, Markus

    2006-08-01

    Binary TiO2/SiO2 and SnO2/SiO2 nanoparticles have been synthesized by feeding evaporated precursor mixtures into an atmospheric pressure diffusion flame. Particles with controlled Si:Ti and Si:Sn ratios were produced at various flow rates of oxygen and the resulting powders were characterized by BET (Brunauer-Emmett-Teller) surface area analysis, XRD, TEM and Raman spectroscopy. In the Si-O-Ti system, mixed oxide composite particles exhibiting anatase segregation formed when the Si:Ti ratio exceeded 9.8:1, while at lower concentrations only mixed oxide single phase particles were found. Arrangement of the species and phases within the particles correspond to an intermediate equilibrium state at elevated temperature. This can be explained by rapid quenching of the particles in the flame and is in accordance with liquid phase solubility data of Ti in SiO2. In contrast, only composite particles formed in the Sn-O-Si system, with SnO2 nanoparticles predominantly found adhering to the surface of SiO2 substrate nanoparticles. Differences in the arrangement of phases and constituents within the particles were observed at constant precursor mixture concentration and the size of the resultant segregated phase was influenced by varying the flow rate of the oxidant. The above effect is due to the variation of the residence time and quenching rate experienced by the binary oxide nanoparticles when varying the oxygen flow rate and shows the flexibility of diffusion flame aerosol reactors.

  2. Modeling of thermo-mechanical and irradiation behavior of mixed oxide fuel for sodium fast reactors

    NASA Astrophysics Data System (ADS)

    Karahan, Aydın; Buongiorno, Jacopo

    2010-01-01

    An engineering code to model the irradiation behavior of UO2-PuO2 mixed oxide fuel pins in sodium-cooled fast reactors was developed. The code was named fuel engineering and structural analysis tool (FEAST-OXIDE). FEAST-OXIDE has several modules working in coupled form with an explicit numerical algorithm. These modules describe: (1) fission gas release and swelling, (2) fuel chemistry and restructuring, (3) temperature distribution, (4) fuel-clad chemical interaction and (5) fuel-clad mechanical analysis. Given the fuel pin geometry, composition and irradiation history, FEAST-OXIDE can analyze fuel and cladding thermo-mechanical behavior at both steady-state and design-basis transient scenarios. The code was written in FORTRAN-90 program language. The mechanical analysis module implements the LIFE algorithm. Fission gas release and swelling behavior is described by the OGRES and NEFIG models. However, the original OGRES model has been extended to include the effects of joint oxide gain (JOG) formation on fission gas release and swelling. A detailed fuel chemistry model has been included to describe the cesium radial migration and JOG formation, oxygen and plutonium radial distribution and the axial migration of cesium. The fuel restructuring model includes the effects of as-fabricated porosity migration, irradiation-induced fuel densification, grain growth, hot pressing and fuel cracking and relocation. Finally, a kinetics model is included to predict the clad wastage formation. FEAST-OXIDE predictions have been compared to the available FFTF, EBR-II and JOYO databases, as well as the LIFE-4 code predictions. The agreement was found to be satisfactory for steady-state and slow-ramp over-power accidents.

  3. Solution processable broadband transparent mixed metal oxide nanofilm optical coatings via substrate diffusion doping.

    PubMed

    Glynn, Colm; Aureau, Damien; Collins, Gillian; O'Hanlon, Sally; Etcheberry, Arnaud; O'Dwyer, Colm

    2015-12-21

    Devices composed of transparent materials, particularly those utilizing metal oxides, are of significant interest due to increased demand from industry for higher fidelity transparent thin film transistors, photovoltaics and a myriad of other optoelectronic devices and optics that require more cost-effective and simplified processing techniques for functional oxides and coatings. Here, we report a facile solution processed technique for the formation of a transparent thin film through an inter-diffusion process involving substrate dopant species at a range of low annealing temperatures compatible with processing conditions required by many state-of-the-art devices. The inter-diffusion process facilitates the movement of Si, Na and O species from the substrate into the as-deposited vanadium oxide thin film forming a composite fully transparent V0.0352O0.547Si0.4078Na0.01. Thin film X-ray diffraction and Raman scattering spectroscopy show the crystalline component of the structure to be α-NaVO3 within a glassy matrix. This optical coating exhibits high broadband transparency, exceeding 90-97% absolute transmission across the UV-to-NIR spectral range, while having low roughness and free of surface defects and pinholes. The production of transparent films for advanced optoelectronic devices, optical coatings, and low- or high-k oxides is important for planar or complex shaped optics or surfaces. It provides opportunities for doping metal oxides to ternary, quaternary or other mixed metal oxides on glass, encapsulants or other substrates that facilitate diffusional movement of dopant species.

  4. Controlled Engineering of Oxide Surfaces for Bioelectronics Applications Using Organic Mixed Monolayers.

    PubMed

    Markov, Aleksandr; Wolf, Nikolaus; Yuan, Xiaobo; Mayer, Dirk; Maybeck, Vanessa; Offenhäusser, Andreas; Wördenweber, Roger

    2017-08-30

    Modifying the surfaces of oxides using self-assembled monolayers offers an exciting possibility to tailor their surface properties for various applications ranging from organic electronics to bioelectronics applications. The simultaneous use of different molecules in particular can extend this approach because the surface properties can be tuned via the ratio of the chosen molecules. This requires the composition and quality of the monolayers to be controlled on an organic level, that is, on the nanoscale. In this paper, we present a method of modifying the surface and surface properties of silicon oxide by growing self-assembled monolayers comprising various compositions of two different molecules, (3-aminopropyl)-triethoxysilane and (3-glycidyloxypropyl)-trimethoxysilane, by means of in situ controlled gas-phase deposition. The properties of the resulting mixed molecular monolayers (e.g., effective thickness, hydrophobicity, and surface potential) exhibit a perfect linear dependence on the composition of the molecular layer. Finally, coating the mixed layer with poly(l-lysine) proves that the density of proteins can be controlled by the composition as well. This indicates that the method might be an ideal way to optimize inorganic surfaces for bioelectronics applications.

  5. Nitric acid oxide mixing ratio measurements using a rocket launched chemiluminescent instrument

    NASA Technical Reports Server (NTRS)

    Horvath, Jack J.

    1989-01-01

    A total of 18 rocket launched parachute borne nitric oxide instruments were launched from 1977 to 1985. A very precise instrument for the measurement of the nitric oxide mixing ratio was fabricated. No changes were made in the main body of the instruments, i.e., things associated with the reaction volume. Except for the last 4 launches, however, it did not yield the required absolute values that was hoped for. Two major problems were encountered. First, the wrong choice of the background calibration gas, nitrogen, caused the first 10 data sets to be too low in the absolute mixing ratio by nearly the order of 2 to 5 ppbv. The error was realized, and air was substituted for the bias gas measurement. Second, in the desire to extend the measurement to higher altitudes, the problem of contaminating the inlet flow tube with ozone from the reagent gas was encountered. The ozone valve was opened too early in the flight and this caused the pressure in the reaction volume to exceed the pressure at the flow tube entrance, permitting the ozone to migrate backwards. This problem was restricted to an altitude above 45 km.

  6. Detailed Destructive Post-Irradiation Examinations of Mixed Uranium and Plutonium Oxide Fuel

    SciTech Connect

    Delashmitt, Jeffrey {Jeff} S; Keever, Tamara {Tammy} Jo; Smith, Rob R; Hexel, Cole R; Ilgner, Ralph H

    2010-01-01

    The United States Department of Energy (DOE) Fissile Materials Disposition Program (FMDP) is pursuing disposal of surplus weapons-usable plutonium by reactor irradiation as the fissile constituent of MOX fuel. Lead test assemblies (LTAs) have been irradiated for approximately 36 months in Duke Energy's Catawba-1 nuclear power plant (NPP). Per the mixed oxide (MOX) fuel topical report, approved by the U.S. Nuclear Regulatory Commission (NRC), destructive post-irradiation examinations (PIEs) are to be performed on second cycle rods (irradiated to an average burnup of approximately 45 GWd/MTHM). The Radiochemical Analysis Group (RAG) at Oak Ridge National Laboratory (ORNL) is currently performing the detailed destructive post-irradiation examinations (PIE) on four of the mixed uranium and plutonium oxide fuel rods. The analytical process involves dissolution of designated fuel segments in a shielded hot cell for high precision quantification of select fission products and actinide isotopes employing isotope dilution mass spectrometry (IDMS) among other analyses. The hot cell dissolution protocol to include the collection and subsequent alkaline fusion digestion of the fuel's acid resistant metallic particulates will be presented. Although the IDMS measurements of the fission products and actinide isotopes will not be completed by the time of the 51st INMM meeting, the setup and testing of the HPLC chromatographic separations in preparation for these measurements will be discussed.

  7. A versatile sol-gel synthesis route to metal-silicon mixed oxide nanocomposites that contain metal oxides as the major phase

    SciTech Connect

    Clapsaddle, B J; Sprehn, D W; Gash, A E; Satcher, J H; Simpson, R L

    2003-12-08

    The general synthesis of metal-silicon mixed oxide nanocomposite materials, including a variety of both main group and transition metals, in which the metal oxide is the major component is described. In a typical synthesis, the metal oxide precursor, MCl{sub x}{times}{sub y}H{sub 2}O (x=3-6, y=0-7), was mixed with the silica precursor, tetramethylorthosilicate (TMOS), in ethanol and gelled using an organic epoxide. The successful preparation of homogeneous, monolithic materials depended on the oxidation state of the metal as well as the epoxide chosen for gelation. The composition of the resulting materials was varied from M/Si=1-5 (mol/mol) by adjusting the amount of TMOS added to the initial metal oxide precursor solution. Supercritical processing of the gels in CO{sub 2} resulted in monolithic, porous aerogel nanocomposite materials with surface areas ranging from 100 - 800 m{sup 2}/g. The bulk materials are composed of metal oxide/silica particles that vary in size from 5 - 20 nm depending on the epoxide used for gelation. Metal oxide and silica dispersion throughout the bulk material is extremely uniform on the nanoscale. The versatility and control of the synthesis method will be discussed as well as the properties of the resulting metal-silicon mixed oxide nanocomposite materials.

  8. Evaluation of Co-precipitation Processes for the Synthesis of Mixed-Oxide Fuel Feedstock Materials

    SciTech Connect

    Collins, Emory D; Voit, Stewart L; Vedder, Raymond James

    2011-06-01

    The focus of this report is the evaluation of various co-precipitation processes for use in the synthesis of mixed oxide feedstock powders for the Ceramic Fuels Technology Area within the Fuels Cycle R&D (FCR&D) Program's Advanced Fuels Campaign. The evaluation will include a comparison with standard mechanical mixing of dry powders and as well as other co-conversion methods. The end result will be the down selection of a preferred sequence of co-precipitation process for the preparation of nuclear fuel feedstock materials to be used for comparison with other feedstock preparation methods. A review of the literature was done to identify potential nitrate-to-oxide co-conversion processes which have been applied to mixtures of uranium and plutonium to achieve recycle fuel homogeneity. Recent studies have begun to study the options for co-converting all of the plutonium and neptunium recovered from used nuclear fuels, together with appropriate portions of recovered uranium to produce the desired mixed oxide recycle fuel. The addition of recycled uranium will help reduce the safeguard attractiveness level and improve proliferation resistance of the recycled fuel. The inclusion of neptunium is primarily driven by its chemical similarity to plutonium, thus enabling a simple quick path to recycle. For recycle fuel to thermal-spectrum light water reactors (LWRs), the uranium concentration can be {approx}90% (wt.), and for fast spectrum reactors, the uranium concentration can typically exceed 70% (wt.). However, some of the co-conversion/recycle fuel fabrication processes being developed utilize a two-step process to reach the desired uranium concentration. In these processes, a 50-50 'master-mix' MOX powder is produced by the co-conversion process, and the uranium concentration is adjusted to the desired level for MOX fuel recycle by powder blending (milling) the 'master-mix' with depleted uranium oxide. In general, parameters that must be controlled for co

  9. Computational and Experimental Study of the Thermodynamics of Uranium-Cerium Mixed Oxides

    NASA Astrophysics Data System (ADS)

    Hanken, Benjamin Edward

    The thermophysical properties of mixed oxide (MOX) fuels, and how they are influenced by the incorporation of fission products and other actinides, must be well understood for their safe use in an advanced fuel cycle. Cerium is a common plutonium surrogate in experimental studies of MOX, as it closely matches plutonium's ionic radii in the 3+ and 4+ oxidation states, and is soluble in fluorite-structured UO2. As a fission product, cerium's effects on properties of MOX are also of practical interest. To provide additional insights on structure-dependent behavior, urania solid solutions can be studied via density functional theory (DFT), although approaches beyond standard DFT are needed to properly account for the localized nature of the ƒ-electrons. In this work, DFT with Hubbard-U corrections (DFT+U) was employed to study the energetics of fluorite-structured U1-yCe yO2 mixtures. The employed computational approach makes use of a procedure which facilitates convergence of the calculations to multiple self-consistent DFT+U solutions for a given cation arrangement, corresponding to different charge states for the U and Ce ions in several prototypical cation arrangements. Results indicate a significant dependence of the structural and energetic properties of U1-yCeyO2 on the nature of both charge and cation ordering. With the effective Hubbard-U parameters that reproduce well the measured oxidation-reduction energies for urania and ceria, it was found that charge transfer between U4+ and Ce4+ ions, leading to the formation of U5+ and Ce3+, gives rise to an increase in the mixing energy in the range of 4-14 kJ/mol of the formula unit, depending on the nature of the cation ordering. In conjunction with the computational approach, high-temperature oxide-melt drop-solution calorimetry experiments were performed on eight samples spanning compositions of y = 0.119 to y = 0.815. Room temperature mixing enthalpies of U1-yCeyO2 determined from these experiments show near

  10. Co-Al mixed metal oxides/carbon nanotubes nanocomposite prepared via a precursor route and enhanced catalytic property

    SciTech Connect

    Fan Guoli; Wang Hui; Xiang Xu; Li Feng

    2013-01-15

    The present work reported the synthesis of Co-Al mixed metal oxides/carbon nanotubes (CoAl-MMO/CNT) nanocomposite from Co-Al layered double hydroxide/CNTs composite precursor (CoAl-LDH/CNT). The materials were characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), low temperature nitrogen adsorption-desorption experiments, thermogravimetric and differential thermal analyses (TG-DTA), Raman spectra and X-ray photoelectron spectroscopy (XPS). The results revealed that in CoAl-MMO/CNT nanocomposite, the nanoparticles of cobalt oxide (CoO) and Co-containing spinel-type complex metal oxides could be well-dispersed on the surface of CNTs, thus forming the heterostructure of CoAl-MMO and CNTs. Furthermore, as-synthesized CoAl-MMO/CNT nanocomposite was utilized as additives for catalytic thermal decomposition of ammonium perchlorate (AP). Compared to those for pure AP and CoAl-MMO, the peak temperature of AP decomposition for CoAl-MMO/CNT was significantly decreased, which is attributed to the novel heterostructure and synergistic effect of multi-component metal oxides of nanocomposite. - Graphical abstract: Hybrid Co-Al mixed metal oxides/carbon nanotubes nanocomposite showed the enhanced catalytic activity in the thermal decomposition of ammonium perchlorate, as compared to carbon nanotubes and pure Co-Al mixed metal oxides. Highlights: Black-Right-Pointing-Pointer Co-Al mixed metal oxides/carbon nanotubes nanocomposite was synthesized. Black-Right-Pointing-Pointer Co-Al mixed metal oxides consisted of cobalt oxide and Co-containing spinels. Black-Right-Pointing-Pointer Nanocomposite exhibited excellent catalytic activity for the decomposition of AP. Black-Right-Pointing-Pointer The superior catalytic property is related to novel heterostructure and composition.

  11. High temperature X-ray diffraction study of the oxidation products and kinetics of uranium-plutonium mixed oxides.

    PubMed

    Strach, Michal; Belin, Renaud C; Richaud, Jean-Christophe; Rogez, Jacques

    2014-12-15

    The oxidation products and kinetics of two sets of mixed uranium-plutonium dioxides containing 14%, 24%, 35%, 46%, 54%, and 62% plutonium treated in air were studied by means of in situ X-ray diffraction (XRD) from 300 to 1773 K every 100 K. The first set consisted of samples annealed 2 weeks before performing the experiments. The second one consisted of powdered samples that sustained self-irradiation damage. Results were compared with chosen literature data and kinetic models established for UO2. The obtained diffraction patterns were used to determine the temperature of the hexagonal M3O8 (M for metal) phase formation, which was found to increase with Pu content. The maximum observed amount of the hexagonal phase in wt % was found to decrease with Pu addition. We conclude that plutonium stabilizes the cubic phases during oxidation, but the hexagonal phase was observed even for the compositions with 62 mol % Pu. The results indicate that self-irradiation defects have a slight impact on the kinetics of oxidation and the lattice parameter even after the phase transformation. It was concluded that the lattice constant of the high oxygen phase was unaffected by the changes in the overall O/M when it was in equilibrium with small quantities of M3O8. We propose that the observed changes in the high oxygen cubic phase lattice parameter are a result of either cation migration or an increase in the miscibility of oxygen in this phase. The solubility of Pu in the hexagonal phase was estimated to be below 14 mol % even at elevated temperatures.

  12. A magnetic route to measure the average oxidation state of mixed-valent manganese in manganese oxide octahedral molecular sieves (OMS).

    PubMed

    Shen, Xiong-Fei; Ding, Yun-Shuang; Liu, Jia; Han, Zhao-Hui; Budnick, Joseph I; Hines, William A; Suib, Steven L

    2005-05-04

    A magnetic route has been applied for measurement of the average oxidation state (AOS) of mixed-valent manganese in manganese oxide octahedral molecular sieves (OMS). The method gives AOS measurement results in good agreement with titration methods. A maximum analysis deviation error of +/-7% is obtained from 10 sample measurements. The magnetic method is able to (1) confirm the presence of mixed-valent manganese and (2) evaluate AOS and the spin states of d electrons of both single oxidation state and mixed-valent state Mn in manganese oxides. In addition, the magnetic method may be extended to (1) determine AOS of Mn in manganese oxide OMS with dopant "diamagnetic" ions, such as reducible V5+ (3d0) ions, which is inappropriate for the titration method due to interference of redox reactions between these dopant ions and titration reagents, such as KMnO4, (2) evaluate the dopant "paramagnetic" ions that are present as clusters or in the OMS framework, and (3) determine AOS of other mixed-valent/single oxidation state ion systems, such as Mo3+(3d3)-Mo4+(3d2) systems and Fe3+ in FeCl3.

  13. Mixed oxides derived from layered double hydroxides as novel catalysts for phenol photodegradation

    NASA Astrophysics Data System (ADS)

    Puscasu, C. M.; Carja, G.; Mureseanu, M.; Zaharia, C.

    2017-08-01

    The removal of organic pollutants is nowadays a very challenging aspect of the environmental research. There are strong interests to develop novel semiconducting photocatalysts able to efficiently promote advanced oxidation reactions. The development of photocatalysts based on the mixtures of mixed oxides derived from layered double hydroxides (LDHs) - a family of naturally occurring anionic clays - might offer novel environmental-friendly solutions for the cost effective removal of organic pollutants. This work presents ZnO/ZnAl2O4, ZnO/Zn2TiO4 and ZnO/ZnCr2O4 as novel photocatalytic formulations for phenol degradation under UV irradiation. They were obtained by the controlled thermal treatment of the layered double hydroxides matrices (LDHs), as precursors materials, type ZnM-LDH (M = Al3+, Cr3+ or Ti4+). The LDHs were synthesized by the co-precipitation method at a constant pH. Controlled calcination at 650°C gives rise to solutions of mixed metal oxides. The structural and nanoarchitectonics characteristics of the studied catalysts were described by: XRD, SEM/TEM and TG/DTG techniques. Results show that in the photocatalytic process of the phenol degradation from aqueous solutions, ZnO/ZnCr2O4 and ZnO/ZnAl2O4 showed the best performance degrading ∼98% of phenol after 3.5 hs and 5 hs, respectively; while ZnO/Zn2TiO4 has degraded almost 80 % after 7.5 hs of UV irradiation. These results open new opportunities in the development of new cost effective photoresponsive formulations able to facilitate the photo-degradation of the organic pollution as “green” solution for removal of dangerous pollutants.

  14. Laser-induced breakdown spectroscopy for determination of uranium in thorium-uranium mixed oxide fuel materials.

    PubMed

    Sarkar, Arnab; Alamelu, Devanathan; Aggarwal, Suresh K

    2009-05-15

    Laser-induced breakdown spectroscopy (LIBS) has been developed for determining the percentage of uranium in thorium-uranium mixed oxide fuel samples required as a part of the chemical quality assurance of fuel materials. The experimental parameters were optimized using mixed oxide pellets prepared from 1:1 (w/w) mixture of thorium-uranium mixed oxide standards and using boric acid as a binder. Calibration curves were established using U(II) 263.553 nm, U(II) 367.007 nm, U(II) 447.233 nm and U(II) 454.363 nm emission lines. The uranium amount determined in two synthetic mixed oxide samples using calibration curves agreed well with that of the expected values. Except for U(II) 263.553 nm, all the other emission lines exhibited a saturation effect due to self-absorption when U amount exceeded 20 wt.% in the Th-U mixture. The present method will be useful for fast and routine determination of uranium in mixed oxide samples of Th and U, without the need for dissolution, which is difficult and time consuming due to the refractory nature of ThO(2). The methodology developed is encouraging since a very good analytical agreement was obtained considering the limited resolution of the spectrometer employed in the work.

  15. Tuning Oleophobicity of Silicon Oxide Surfaces with Mixed Monolayers of Aliphatic and Fluorinated Alcohols.

    PubMed

    Lee, Austin W H; Gates, Byron D

    2016-12-13

    We demonstrate the formation of mixed monolayers derived from a microwave-assisted reaction of alcohols with silicon oxide surfaces in order to tune their surface oleophobicity. This simple, rapid method provides an opportunity to precisely tune the constituents of the monolayers. As a demonstration, we sought fluorinated alcohols and aliphatic alcohols as reagents to form monolayers from two distinct constituents for tuning the surface oleophobicity. The first aspect of this study sought to identify a fluorinated alcohol that formed monolayers with a relatively high surface coverage. It was determined that 1H,1H,2H,2H-perfluoro-1-octanol yielded high quality monolayers with a water contact angle (WCA) value of ∼110° and contact angle values of ∼80° with toluene and hexadecane exhibiting both an excellent hydrophobicity and oleophobicity. Tuning of the oleophobicity of the modified silicon oxide surfaces was achieved by controlling the molar ratio of 1H,1H,2H,2H-perfluoro-1-octanol within the reaction mixtures. Surface oleophobicity progressively decreased with a decrease in the fluorinated alcohol content while the monolayers maintained their hydrophobicity with WCA values of ∼110°. The simple and reliable approach to preparing monolayers of a tuned composition that is described in this article can be utilized to control the fluorocarbon content of the hydrophobic monolayers on silicon oxide surfaces.

  16. Catalytic combustion of soot over ceria-zinc mixed oxides catalysts supported onto cordierite.

    PubMed

    Nascimento, Leandro Fontanetti; Martins, Renata Figueredo; Silva, Rodrigo Ferreira; Serra, Osvaldo Antonio

    2014-03-01

    Modified substrates as outer heterogeneous catalysts was employed to reduce the soot generated from incomplete combustion of diesel or diesel/biodiesel blends, a process that harms the environment and public health. The unique storage properties of ceria (CeO2) makes it one of the most efficient catalysts available to date. Here, we proposed that ceria-based catalysts can lower the temperature at which soot combustion occurs; more specifically, from 610°C to values included in the diesel exhausts operation range (300-450°C). The sol-gel method was used to synthesize mixed oxide-based catalysts (CeO2:ZnO); the resulting catalysts were deposited onto cordierite substrates. In addition, the morphological and structural properties of the material were evaluated by XRD, BET, TPR-H2, and SEM. Thermogravimetric (TG/DTA) analysis revealed that the presence of the catalyst decreased the soot combustion temperature by 200°C on average, indicating that the oxygen species arise at low temperatures in this situation, promoting highly reactive oxidation reactions. Comparative analysis of soot emission by diffuse reflectance spectroscopy (DRS) showed that catalyst-impregnated cordierite samples efficiently oxidized soot in a diesel/biodiesel stationary motor: soot emission decreased by more than 70%.

  17. Microbial Ecology Assessment of Mixed Copper Oxide/Sulfide Dump Leach Operation

    SciTech Connect

    Bruhn, D F; Thompson, D N; Noah, K S

    1999-06-01

    Microbial consortia composed of complex mixtures of autotrophic and heterotrophic bacteria are responsible for the dissolution of metals from sulfide minerals. Thus, an efficient copper bioleaching operation depends on the microbial ecology of the system. A microbial ecology study of a mixed oxide/sulfide copper leaching operation was conducted using an "overlay" plating technique to differentiate and identify various bacterial consortium members of the genera Thiobacillus, Leptospirillum, Ferromicrobium, and Acidiphilium. Two temperatures (30C and 45C) were used to select for mesophilic and moderately thermophilic bacteria. Cell numbers varied from 0-106 cells/g dry ore, depending on the sample location and depth. After acid curing for oxide leaching, no viable bacteria were recovered, although inoculation of cells from raffinate re-established a microbial population after three months. Due to the low pH of the operation, very few non-iron-oxidizing acidophilic heterotrophs were recovered. Moderate thermophiles were isolated from the ore samples. Pregnant liquor solutions (PLS) and raffinate both contained a diversity of bacteria. In addition, an intermittently applied waste stream that contained high levels of arsenic and fluoride was tested for toxicity. Twenty vol% waste stream in PLS killed 100% of the cells in 48 hours, indicating substantial toxicity and/or growth inhibition. The data indicate that bacteria populations can recover after acid curing, and that application of the waste stream to the dump should be avoided. Monitoring the microbial ecology of the leaching operation provided significant information that improved copper recovery.

  18. Microstructural Characterization of High Burn-up Mixed Oxide Fast Reactor Fuel

    SciTech Connect

    Melissa C. Teague; Brian P. Gorman; Steven L. Hayes; Douglas L. Porter; Jeffrey King

    2013-10-01

    High burn-up mixed oxide fuel with local burn-ups of 3.4–23.7% FIMA (fissions per initial metal atom) were destructively examined as part of a research project to understand the performance of oxide fuel at extreme burn-ups. Optical metallography of fuel cross-sections measured the fuel-to-cladding gap, clad thickness, and central void evolution in the samples. The fuel-to-cladding gap closed significantly in samples with burn-ups below 7–9% FIMA. Samples with burn-ups in excess of 7–9% FIMA had a reopening of the fuel-to-cladding gap and evidence of joint oxide-gain (JOG) formation. Signs of axial fuel migration to the top of the fuel column were observed in the fuel pin with a peak burn-up of 23.7% FIMA. Additionally, high burn-up structure (HBS) was observed in the two highest burn-up samples (23.7% and 21.3% FIMA). The HBS layers were found to be 3–5 times thicker than the layers found in typical LWR fuel. The results of the study indicate that formation of JOG and or HBS prevents any significant fuel-cladding mechanical interaction from occurring, thereby extending the potential life of the fuel elements.

  19. Nanoporous composites prepared by a combination of SBA-15 with Mg–Al mixed oxides. Water vapor sorption properties

    PubMed Central

    Pérez-Verdejo, Amaury; Pfeiffer, Heriberto; Ruiz-Reyes, Mayra; Santamaría, Juana-Deisy; Fetter, Geolar

    2014-01-01

    Summary This work presents two easy ways for preparing nanostructured mesoporous composites by interconnecting and combining SBA-15 with mixed oxides derived from a calcined Mg–Al hydrotalcite. Two different Mg–Al hydrotalcite addition procedures were implemented, either after or during the SBA-15 synthesis (in situ method). The first procedure, i.e., the post-synthesis method, produces a composite material with Mg–Al mixed oxides homogeneously dispersed on the SBA-15 nanoporous surface. The resulting composites present textural properties similar to the SBA-15. On the other hand, with the second procedure (in situ method), Mg and Al mixed oxides occur on the porous composite, which displays a cauliflower morphology. This is an important microporosity contribution and micro and mesoporous surfaces coexist in almost the same proportion. Furthermore, the nanostructured mesoporous composites present an extraordinary water vapor sorption capacity. Such composites might be utilized as as acid-base catalysts, adsorbents, sensors or storage nanomaterials. PMID:25161858

  20. Nanoporous composites prepared by a combination of SBA-15 with Mg-Al mixed oxides. Water vapor sorption properties.

    PubMed

    Pérez-Verdejo, Amaury; Sampieri, Alvaro; Pfeiffer, Heriberto; Ruiz-Reyes, Mayra; Santamaría, Juana-Deisy; Fetter, Geolar

    2014-01-01

    This work presents two easy ways for preparing nanostructured mesoporous composites by interconnecting and combining SBA-15 with mixed oxides derived from a calcined Mg-Al hydrotalcite. Two different Mg-Al hydrotalcite addition procedures were implemented, either after or during the SBA-15 synthesis (in situ method). The first procedure, i.e., the post-synthesis method, produces a composite material with Mg-Al mixed oxides homogeneously dispersed on the SBA-15 nanoporous surface. The resulting composites present textural properties similar to the SBA-15. On the other hand, with the second procedure (in situ method), Mg and Al mixed oxides occur on the porous composite, which displays a cauliflower morphology. This is an important microporosity contribution and micro and mesoporous surfaces coexist in almost the same proportion. Furthermore, the nanostructured mesoporous composites present an extraordinary water vapor sorption capacity. Such composites might be utilized as as acid-base catalysts, adsorbents, sensors or storage nanomaterials.

  1. Amorphous mixed-metal hydroxide nanostructures for advanced water oxidation catalysts

    NASA Astrophysics Data System (ADS)

    Gao, Y. Q.; Liu, X. Y.; Yang, G. W.

    2016-02-01

    The design of highly efficient, durable, and earth-abundant catalysts for the oxygen evolution reaction (OER) is crucial in order to promote energy conversion and storage processes. Here, we synthesize amorphous mixed-metal (Ni-Fe) hydroxide nanostructures with a homogeneous distribution of Ni/Fe as well as a tunable Ni/Fe ratio by a simple, facile, green and low-cost electrochemical technique, and we demonstrate that the synthesized amorphous nanomaterials possess ultrahigh activity and super long-term cycle stability in the OER process. The amorphous Ni0.71Fe0.29(OH)x nanostructure affords a current density of 10 mA cm-2 at an overpotential of a mere 0.296 V and a small Tafel slope of 58 mV dec-1, while no deactivation is detected in the CV testing even up to 30 000 cycles, which suggests the promising application of these amorphous nanomaterials in electrochemical oxidation. Meanwhile, the distinct catalytic activities among these amorphous Ni-Fe hydroxide nanostructures prompts us to take notice of the composition of the alloy hydroxides/oxides when studying their catalytic properties, which opens an avenue for the rational design and controllable preparation of such amorphous nanomaterials as advanced OER electrocatalysts.The design of highly efficient, durable, and earth-abundant catalysts for the oxygen evolution reaction (OER) is crucial in order to promote energy conversion and storage processes. Here, we synthesize amorphous mixed-metal (Ni-Fe) hydroxide nanostructures with a homogeneous distribution of Ni/Fe as well as a tunable Ni/Fe ratio by a simple, facile, green and low-cost electrochemical technique, and we demonstrate that the synthesized amorphous nanomaterials possess ultrahigh activity and super long-term cycle stability in the OER process. The amorphous Ni0.71Fe0.29(OH)x nanostructure affords a current density of 10 mA cm-2 at an overpotential of a mere 0.296 V and a small Tafel slope of 58 mV dec-1, while no deactivation is detected in the CV

  2. Synthesis of Novel Nanostructured Lanthanum Cobalt Ferrite Mixed Metal Oxides by Sol-Gel

    NASA Astrophysics Data System (ADS)

    Teresita, V. Mary; Jeseentharani, V.; Josephine, B. Avila; Antony, S. Arul

    2013-04-01

    Properties of nanoscale materials are very interesting and these are either comparable to or superior to those of bulk. These materials are interesting due to their exciting size dependent optical, electronic, magnetic, thermal, mechanical and chemical properties. Different mole ratios of nanostructured mixed metal oxides of LaCoxFe1-xO3-δ (x = 0 to 1) were prepared by the sol-gel method by varying the mole ratios of iron and cobalt substrates. The compounds were sintered for 700°C in the tubular furnace for 8 h. The purity of the compounds was analyzed by TG-DTA. The compounds were characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) and scanning electron microscopy (SEM) studies were employed to study the structural phases, vibrational frequencies, surface morphology of the highest humidity sensing compounds.

  3. Low temperature photochemical vapor deposition of alloy and mixed metal oxide films

    DOEpatents

    Liu, David K.

    1992-01-01

    Method and apparatus for formation of an alloy thin film, or a mixed metal oxide thin film, on a substrate at relatively low temperatures. Precursor vapor(s) containing the desired thin film constituents is positioned adjacent to the substrate and irradiated by light having wavelengths in a selected wavelength range, to dissociate the gas(es) and provide atoms or molecules containing only the desired constituents. These gases then deposit at relatively low temperatures as a thin film on the substrate. The precursor vapor(s) is formed by vaporization of one or more precursor materials, where the vaporization temperature(s) is selected to control the ratio of concentration of metals present in the precursor vapor(s) and/or the total precursor vapor pressure.

  4. Low temperature photochemical vapor deposition of alloy and mixed metal oxide films

    DOEpatents

    Liu, D.K.

    1992-12-15

    Method and apparatus are described for formation of an alloy thin film, or a mixed metal oxide thin film, on a substrate at relatively low temperatures. Precursor vapor(s) containing the desired thin film constituents is positioned adjacent to the substrate and irradiated by light having wavelengths in a selected wavelength range, to dissociate the gas(es) and provide atoms or molecules containing only the desired constituents. These gases then deposit at relatively low temperatures as a thin film on the substrate. The precursor vapor(s) is formed by vaporization of one or more precursor materials, where the vaporization temperature(s) is selected to control the ratio of concentration of metals present in the precursor vapor(s) and/or the total precursor vapor pressure. 7 figs.

  5. The underwater coincidence counter (UWCC) for plutonium measurements in mixed oxide fuels

    SciTech Connect

    Eccleston, G.W.; Menlove, H.O.; Abhold, M.; Baker, M.; Pecos, J.

    1998-12-31

    The use of fresh uranium-plutonium mixed oxide (MOX) fuel in light-water reactors (LWR) is increasing in Europe and Japan and it is necessary to verify the plutonium content in the fuel for international safeguards purposes. The UWCC is a new instrument that has been designed to operate underwater and nondestructively measure the plutonium in unirradiated MOX fuel assemblies. The UWCC can be quickly configured to measure either boiling-water reactor (BWR) or pressurized-water reactor (PWR) fuel assemblies. The plutonium loading per unit length is measured using the UWCC to precisions of less than 1% in a measurement time of 2 to 3 minutes. Initial calibrations of the UWCC were completed on measurements of MOX fuel in Mol, Belgium. The MCNP-REN Monte Carlo simulation code is being benchmarked to the calibration measurements to allow accurate simulations for extended calibrations of the UWCC.

  6. Americium and plutonium release behavior from irradiated mixed oxide fuel during heating

    NASA Astrophysics Data System (ADS)

    Sato, I.; Suto, M.; Miwa, S.; Hirosawa, T.; Koyama, S.

    2013-06-01

    The release behavior of Pu and Am was investigated under the reducing atmosphere expected in sodium cooled fast reactor severe accidents. Irradiated Pu and U mixed oxide fuels were heated at maximum temperatures of 2773 K and 3273 K. EPMA, γ-ray spectrometry and α-ray spectrometry for released and residual materials revealed that Pu and Am can be released more easily than U under the reducing atmosphere. The respective release rate coefficients for Pu and Am were obtained as 3.11 × 10-4 min-1 and 1.60 × 10-4 min-1 at 2773 K under the reducing atmosphere with oxygen partial pressure less than 0.02 Pa. Results of thermochemical calculations indicated that the main released chemical forms would likely be PuO for Pu and Am for Am under quite low oxygen partial pressure.

  7. The underwater coincidence counter for plutonium measurements in mixed-oxide fuel assemblies manual

    SciTech Connect

    G. W. Eccleston; H. O. Menlove; M. Abhold; M. Baker; J. Pecos

    1999-05-01

    This manual describes the Underwater Coincidence Counter (UWCC) that has been designed for the measurement of plutonium in mixed-oxide (MOX) fuel assemblies prior to irradiation. The UWCC uses high-efficiency {sup 3}He neutron detectors to measure the spontaneous-fission and induced-fission rates in the fuel assembly. Measurements can be made on MOX fuel assemblies in air or underwater. The neutron counting rate is analyzed for singles, doubles, and triples time correlations to determine the {sup 240}Pu effective mass per unit length of the fuel assembly. The system can verify the plutonium loading per unit length to a precision of less than 1% in a measurement time of 2 to 3 minutes. System design, components, performance tests, and operational characteristics are described in this manual.

  8. Molecular data of mixed metal oxides with importance in nuclear safety

    NASA Astrophysics Data System (ADS)

    Kovács, Attila; Konings, Rudy J. M.

    2016-08-01

    The gas-phase structural and spectroscopic properties of selected mixed metal oxides (Cs2CrO4, Cs2MnO4, Cs2MoO4, Cs2RuO4, BaMoO4, BaMoO3) have been calculated using Density Functional Theory (DFT). The possible structural isomers have been analyzed and for the found global minima the vibrational (IR, Raman) spectra have been predicted taking into account also anharmonic corrections. The bonding properties have been characterized by means of the Natural Bond Orbital analysis model while the low-lying excited electronic states have been calculated using time-dependent DFT. In order to assess the stability of the target species the dissociation enthalpies have been evaluated.

  9. Mixed transition-metal oxides: design, synthesis, and energy-related applications.

    PubMed

    Yuan, Changzhou; Wu, Hao Bin; Xie, Yi; Lou, Xiong Wen David

    2014-02-03

    A promising family of mixed transition-metal oxides (MTMOs) (designated as Ax B3-x O4 ; A, B=Co, Ni, Zn, Mn, Fe, etc.) with stoichiometric or even non-stoichiometric compositions, typically in a spinel structure, has recently attracted increasing research interest worldwide. Benefiting from their remarkable electrochemical properties, these MTMOs will play significant roles for low-cost and environmentally friendly energy storage/conversion technologies. In this Review, we summarize recent research advances in the rational design and efficient synthesis of MTMOs with controlled shapes, sizes, compositions, and micro-/nanostructures, along with their applications as electrode materials for lithium-ion batteries and electrochemical capacitors, and efficient electrocatalysts for the oxygen reduction reaction in metal-air batteries and fuel cells. Some future trends and prospects to further develop advanced MTMOs for next-generation electrochemical energy storage/conversion systems are also presented.

  10. Technical specification: Mixed-oxide pellets for the light-water reactor irradiation demonstration test

    SciTech Connect

    Cowell, B.S.

    1997-06-01

    This technical specification is a Level 2 Document as defined in the Fissile Materials Disposition Program Light-Water Reactor Mixed-oxide Fuel Irradiation Test Project Plan. It is patterned after the pellet specification that was prepared by Atomic Energy of Canada, Limited, for use by Los Alamos National Laboratory in fabrication of the test fuel for the Parallex Project, adjusted as necessary to reflect the differences between the Canadian uranium-deuterium reactor and light-water reactor fuels. This specification and the associated engineering drawing are to be utilized only for preparation of test fuel as outlined in the accompanying Request for Quotation and for additional testing as directed by Oak Ridge National Laboratory or the Department of Energy.

  11. Shell Model for Atomistic Simulation of Lithium Diffusion in Mixed Mn/Ti Oxides

    SciTech Connect

    Kerisit, Sebastien N.; Chaka, Anne M.; Droubay, Timothy C.; Ilton, Eugene S.

    2014-10-23

    Mixed Mn/Ti oxides present attractive physicochemical properties such as their ability to accommodate Li for application in Li-ion batteries. In this work, atomic parameters for Mn were developed to extend an existing shell model of the Li-Ti-O system and allow simulations of pure and lithiated Mn and mixed Mn/Ti oxide polymorphs. The shell model yielded good agreement with experimentally-derived structures (i.e. lattice parameters and inter-atomic distances) and represented an improvement over existing potential models. The shell model was employed in molecular dynamics (MD) simulations of Li diffusion in the 1×1 c direction channels of LixMn1 yTiyO2 with the rutile structure, where 0 ≤ x ≤ 0.25 and 0 ≤ y ≤ 1. In the infinite dilution limit, the arrangement of Mn and Ti ions in the lattice was found to have a significant effect on the activation energy for Li diffusion in the c channels due to the destabilization of half of the interstitial octahedral sites. Anomalous diffusion was demonstrated for Li concentrations as low as x = 0.125, with a single Li ion positioned in every other c channel. Further increase in Li concentration showed not only the substantial effect of Li-Li repulsive interactions on Li mobility but also their influence on the time dependence of Li diffusion. The results of the MD simulations can inform intrinsic structure-property relationships for the rational design of improved electrode materials for Li-ion batteries.

  12. Thorium-based mixed oxide fuel in a pressurized water reactor: A feasibility analysis with MCNP

    NASA Astrophysics Data System (ADS)

    Tucker, Lucas Powelson

    This dissertation investigates techniques for spent fuel monitoring, and assesses the feasibility of using a thorium-based mixed oxide fuel in a conventional pressurized water reactor for plutonium disposition. Both non-paralyzing and paralyzing dead-time calculations were performed for the Portable Spectroscopic Fast Neutron Probe (N-Probe), which can be used for spent fuel interrogation. Also, a Canberra 3He neutron detector's dead-time was estimated using a combination of subcritical assembly measurements and MCNP simulations. Next, a multitude of fission products were identified as candidates for burnup and spent fuel analysis of irradiated mixed oxide fuel. The best isotopes for these applications were identified by investigating half-life, photon energy, fission yield, branching ratios, production modes, thermal neutron absorption cross section and fuel matrix diffusivity. 132I and 97Nb were identified as good candidates for MOX fuel on-line burnup analysis. In the second, and most important, part of this work, the feasibility of utilizing ThMOX fuel in a pressurized water reactor (PWR) was first examined under steady-state, beginning of life conditions. Using a three-dimensional MCNP model of a Westinghouse-type 17x17 PWR, several fuel compositions and configurations of a one-third ThMOX core were compared to a 100% UO2 core. A blanket-type arrangement of 5.5 wt% PuO2 was determined to be the best candidate for further analysis. Next, the safety of the ThMOX configuration was evaluated through three cycles of burnup at several using the following metrics: axial and radial nuclear hot channel factors, moderator and fuel temperature coefficients, delayed neutron fraction, and shutdown margin. Additionally, the performance of the ThMOX configuration was assessed by tracking cycle length, plutonium destroyed, and fission product poison concentration.

  13. Evaluation of tubular reactor designs for supercritical water oxidation of U.S. Department of Energy mixed waste

    SciTech Connect

    Barnes, C.M.

    1994-12-01

    Supercritical water oxidation (SCWO) is an emerging technology for industrial waste treatment and is being developed for treatment of the US Department of Energy (DOE) mixed hazardous and radioactive wastes. In the SCWO process, wastes containing organic material are oxidized in the presence of water at conditions of temperature and pressure above the critical point of water, 374 C and 22.1 MPa. DOE mixed wastes consist of a broad spectrum of liquids, sludges, and solids containing a wide variety of organic components plus inorganic components including radionuclides. This report is a review and evaluation of tubular reactor designs for supercritical water oxidation of US Department of Energy mixed waste. Tubular reactors are evaluated against requirements for treatment of US Department of Energy mixed waste. Requirements that play major roles in the evaluation include achieving acceptable corrosion, deposition, and heat removal rates. A general evaluation is made of tubular reactors and specific reactors are discussed. Based on the evaluations, recommendations are made regarding continued development of supercritical water oxidation reactors for US Department of Energy mixed waste.

  14. Conversion of Syngas-Derived C2+ Mixed Oxygenates to C3-C5 Olefins over ZnxZryOz Mixed Oxides Catalysts

    SciTech Connect

    Smith, Colin D.; Lebarbier, Vanessa M.; Flake, Matthew D.; Ramasamy, Karthikeyan K.; Kovarik, Libor; Bowden, Mark E.; Onfroy, Thomas; Dagle, Robert A.

    2016-04-01

    In this study we report on a ZnxZryOz mixed oxide type catalyst capable of converting a syngas-derived C2+ mixed oxygenate feedstock to isobutene-rich olefins. Aqueous model feed comprising of ethanol, acetaldehyde, acetic acid, ethyl acetate, methanol, and propanol was used as representative liquid product derived from a Rh-based mixed oxygenate synthesis catalyst. Greater than 50% carbon yield to C3-C5 mixed olefins was demonstrated when operating at 400-450oC and 1 atm. In order to rationalize formation of the products observed feed components were individually evaluated. Major constituents of the feed mixture (ethanol, acetaldehyde, acetic acid, and ethyl acetate) were found to produce isobutene-rich olefins. C-C coupling was also demonstrated for propanol feedstock - a minor constituent of the mixed oxygenate feed - producing branched C6 olefins, revealing scalability to alcohols higher than ethanol following an analogous reaction pathway. Using ethanol and propanol feed mixtures, cross-coupling reactions produced mixtures of C4, C5, and C6 branched olefins. The presence of H2 in the feed was found to facilitate hydrogenation of the ketone intermediates, thus producing straight chain olefins as byproducts. While activity loss from coking is observed complete catalyst regeneration is achieved by employing mild oxidation. For conversion of the mixed oxygenate feed a Zr/Zn ratio of 2.5 and a reaction temperature of 450oC provides the best balance of stability, activity, and selectivity. X-ray diffraction and scanning transmission electron microscopy analysis reveals the presence of primarily cubic phase ZrO2 and a minor amount of the monoclinic phase, with ZnO being highly dispersed in the lattice. The presence of ZnO appears to stabilize the cubic phase resulting in less monoclinic phase as the ZnO concentration increases. Infrared spectroscopy shows the mixed oxide acid sites are characterized as primarily Lewis type acidity. The direct relationship between

  15. Removal of Hazardous Pollutants from Wastewaters: Applications of TiO 2 -SiO 2 Mixed Oxide Materials

    DOE PAGES

    Rasalingam, Shivatharsiny; Peng, Rui; Koodali, Ranjit T.

    2014-01-01

    The direct release of untreated wastewaters from various industries and households results in the release of toxic pollutants to the aquatic environment. Advanced oxidation processes (AOP) have gained wide attention owing to the prospect of complete mineralization of nonbiodegradable organic substances to environmentally innocuous products by chemical oxidation. In particular, heterogeneous photocatalysis has been demonstrated to have tremendous promise in water purification and treatment of several pollutant materials that include naturally occurring toxins, pesticides, and other deleterious contaminants. In this work, we have reviewed the different removal techniques that have been employed for water purification. In particular, the applicationmore » of TiO 2 -SiO 2 binary mixed oxide materials for wastewater treatment is explained herein, and it is evident from the literature survey that these mixed oxide materials have enhanced abilities to remove a wide variety of pollutants.« less

  16. Mediated electrochemical oxidation treatment for Rocky Flats combustible low-level mixed waste. Final report, FY 1993 and 1994

    SciTech Connect

    Chiba, Z.; Lewis, P.R.; Murguia, L.C.

    1994-09-01

    Mediated Electrochemical Oxidation (MEO) is an aqueous process which destroys hazardous organics by oxidizing a mediator at the anode of an electrochemical cell; the mediator in turn oxidizes the organics within the bulk of the electrolyte. With this process organics can be nearly completely destroyed, that is, the carbon and hydrogen present in the hydrocarbon are almost entirely mineralized to carbon dioxide and water. The MEO process is also capable of dissolving radioactive materials, including difficult-to-dissolve compounds such as plutonium oxide. Hence, this process can treat mixed wastes, by destroying the hazardous organic components of the waste, and dissolving the radioactive components. The radioactive material can be recovered if desired, or disposed of as non-mixed radioactive waste. The process is inherently safe, since the hazardous and radioactive materials are completely contained in the aqueous phase, and the system operates at low temperatures (below 80{degree}C) and at ambient pressures.

  17. Mixed CuFe and ZnFe (hydr)oxides as reactive adsorbents of chemical warfare agent surrogates.

    PubMed

    Florent, Marc; Giannakoudakis, Dimitrios A; Wallace, Rajiv; Bandosz, Teresa J

    2017-05-05

    Two sets of zinc-iron and copper-iron mixed (hydr)oxides were prepared by a simple co-precipitation method. Either nitrate or chloride was a source of the metals. The decontamination ability of the materials was tested in closed vials saturated with vapors of 2-chloroethyl ethyl sulfide (CEES) or dimethyl chlorophosphate (DMCP), a blister agent and a nerve agent surrogate, respectively. In both cases, the weight uptakes on the mixed oxides were superior to the ones reported for the pure metal oxides or hydroxides. When exposed to CEES for 5days, zinc-iron (hydr)oxides show much higher activity than the copper-iron ones. The products of reactions in the vessel headspace were investigated by GC/MS and on the surface by FTIR. Ethyl vinylsulfide and chloromethane are the main products of the reactive adsorption of CEES and DMCP, respectively. This indicates that CEES is mainly degraded by dehydrochlorination and DMCP- by hydrolysis.

  18. DFT study on the electronic structure and chemical state of Americium in an (Am,U) mixed oxide

    NASA Astrophysics Data System (ADS)

    Suzuki, Chikashi; Nishi, Tsuyoshi; Nakada, Masami; Tsuru, Tomohito; Akabori, Mitsuo; Hirata, Masaru; Kaji, Yoshiyuki

    2013-12-01

    We investigated the electronic state of an (Am,U) mixed oxide with the fluorite structure using the all-electron full potential linear augmented plane wave method and compared it with those of Am2O3, AmO2, UO2, and La0.5U0.5O2. The valence of Am in the mixed oxide was close to that of Am2O3 and the valence of U in the mixed oxide was pentavalent. The electronic structure of AmO2 was different from that of Am2O3, particularly just above the Fermi level. In addition, the electronic states of Am and U in the mixed oxide were similar to those of trivalent Am and pentavalent U oxides. These electronic states reflected the high oxygen potential of AmO2 and the heightened oxygen potential resulting from the addition of Am to UO2 and also suggested the occurrence of charge transfer from Am to U in the solid solution process.

  19. The incorporation of graphene oxide into polysulfone mixed matrix membrane for CO2/CH4 separation

    NASA Astrophysics Data System (ADS)

    Zahri, K.; Goh, P. S.; Ismail, A. F.

    2016-06-01

    Carbon dioxide (CO2) is often found as the main impurity in natural gas, where methane (CH4) is the major component. The presence of CO2 in natural gas leads to several problems such as reducing the energy content of natural gas and cause pipeline corrosion. Thus it must be removed to meet specifications (CO2 ≤ 2 mol%) before the gas can be delivered to the pipeline. In this work, hollow fiber mixed matrix membrane (MMM) were fabricated by embedding graphene oxide (GO) into a polysulfone (PSf) polymer matrix to improve membrane properties as well as its separation performance towards CO2/CH4 gas. The membrane properties were investigated for pristine membrane and mixed matrix membrane filled with filler loading of 0.25%. The synthesized GO and properties of fabricated membranes were characterized and studied using TEM, AFM, XRD, FTIR and SEM respectively. The permeance of pure gases and ideal selectivity of CO2/CH4 gas were determined using pure gas permeation experiment. GO has affinity towards CO2 gas. The nanosheet structure creates path for small molecule gas and restricted large molecule gas to pass through the membrane. The incorporation of GO in PSf polymer enhanced the permeance of CO 2 and CO2/CH4 separation from 64.47 to 86.80 GPU and from 19 to 25 respectively.

  20. Mixed alkali effect on the spectroscopic properties of alkali-alkaline earth oxide borate glasses

    NASA Astrophysics Data System (ADS)

    Srinivas, G.; Ramesh, B.; Shareefuddin, Md.; Chary, M. N.; Sayanna, R.

    2016-05-01

    The mixed alkali and alkaline earth oxide borate glass with the composition xK2O - (25-x) Li2O-12.5BaO-12.5MgO-50B2O3 (x = 0, 5, 10, 15, 20 and 25mol %) and doped with 1mol% CuO were prepared by the melt quenching technique. From the optical absorption spectra the optical band gap, electronic polarizability(α02-), interaction parameter (A), theoretical and experimental optical basicity (Λ) values were evaluated. From the Electron Paramagnetic Resonance (EPR) spectral data the number of spins (N) and susceptibility (χ) were evaluated. The values of (α02-), and (Λ) increases with increasing of K2O content and electronic polarizability and interaction parameter show opposite behaviuor which may be due to the creation of non-bridging oxygens and expansion of borate network. The reciprocal of susceptibility (1/χ) and spin concentration (N) as a function of K2O content, varied nonlinearly which may be due to creation of non-bridging oxygens in the present glass system. This may be attributed to mixed alkali effect (MAE).

  1. Bio-nanocomposites by assembling of gelatin and layered perovskite mixed oxides.

    PubMed

    Ruiz, Ana I; Darder, Margarita; Aranda, Pilar; Jiménez, Ricardo; Van Damme, Henri; Ruiz-Hitzky, Eduardo

    2006-06-01

    A new class of bio-nanocomposites based on hybrid gelatin-perovskite hydrogels was prepared by mixing exfoliated perovskite-tetraalkylammonium species in aqueous suspensions with gelatin solutions. Colloidal nanosheets derived from the CsCa2Nb3O10 layered perovskite re-stacked in the gelatin solutions give bio-nanocomposite materials with different content in the inorganic moiety. These films can be easily processed as homogeneous self-supported films. The partial exfoliation of the pristine mixed oxide is produced from alkylammonium exchanged phases, being the tetraalkylammonium ions (tetraethylammonium, TEA+) an efficient intermediate to give the colloid phase constituted by well exfoliated materials useful to generate homogeneous films. The nanosheets are highly oriented in the bio-nanocomposite films in agreement with the XRD patterns and the FTIR dichroism. This orientation could be considered as a characteristic of this type of hybrid materials leading to new potential applications. In this way, we have observed that the assembling of perovskite to gelatin produces a greater increase of the dielectric permittivity than the dielectric loss in the studied samples.

  2. Mixed fuel strategy for carbon deposition mitigation in solid oxide fuel cells at intermediate temperatures.

    PubMed

    Su, Chao; Chen, Yubo; Wang, Wei; Ran, Ran; Shao, Zongping; Diniz da Costa, João C; Liu, Shaomin

    2014-06-17

    In this study, we propose and experimentally verified that methane and formic acid mixed fuel can be employed to sustain solid oxide fuel cells (SOFCs) to deliver high power outputs at intermediate temperatures and simultaneously reduce the coke formation over the anode catalyst. In this SOFC system, methane itself was one part of the fuel, but it also played as the carrier gas to deliver the formic acid to reach the anode chamber. On the other hand, the products from the thermal decomposition of formic acid helped to reduce the carbon deposition from methane cracking. In order to clarify the reaction pathways for carbon formation and elimination occurring in the anode chamber during the SOFC operation, O2-TPO and SEM analysis were carried out together with the theoretical calculation. Electrochemical tests demonstrated that stable and high power output at an intermediate temperature range was well-maintained with a peak power density of 1061 mW cm(-2) at 750 °C. With the synergic functions provided by the mixed fuel, the SOFC was running for 3 days without any sign of cell performance decay. In sharp contrast, fuelled by pure methane and tested at similar conditions, the SOFC immediately failed after running for only 30 min due to significant carbon deposition. This work opens a new way for SOFC to conquer the annoying problem of carbon deposition just by properly selecting the fuel components to realize their synergic effects.

  3. Mixed alkali effect on the spectroscopic properties of alkali-alkaline earth oxide borate glasses

    SciTech Connect

    Srinivas, G. Ramesh, B.; Shareefuddin, Md.; Chary, M. N.; Sayanna, R.

    2016-05-06

    The mixed alkali and alkaline earth oxide borate glass with the composition xK{sub 2}O - (25-x) Li{sub 2}O-12.5BaO-12.5MgO-50B{sub 2}O{sub 3} (x = 0, 5, 10, 15, 20 and 25mol %) and doped with 1mol% CuO were prepared by the melt quenching technique. From the optical absorption spectra the optical band gap, electronic polarizability(α{sub 0}2-), interaction parameter (A), theoretical and experimental optical basicity (Λ) values were evaluated. From the Electron Paramagnetic Resonance (EPR) spectral data the number of spins (N) and susceptibility (χ) were evaluated. The values of (α{sub 0}2-), and (Λ) increases with increasing of K{sub 2}O content and electronic polarizability and interaction parameter show opposite behaviuor which may be due to the creation of non-bridging oxygens and expansion of borate network. The reciprocal of susceptibility (1/χ) and spin concentration (N) as a function of K{sub 2}O content, varied nonlinearly which may be due to creation of non-bridging oxygens in the present glass system. This may be attributed to mixed alkali effect (MAE).

  4. Criticality experiments with mixed oxide fuel pin arrays in plutonium-uranium nitrate solution

    SciTech Connect

    Lloyd, R.C. ); Smolen, G.R. )

    1988-08-01

    A series of critical experiments was completed with mixed plutonium-uranium solutions having a Pu/(Pu + U) ratio of approximately 0.22 in a boiler tube-type lattice assembly. These experiments were conducted as part of the Criticality Data Development Program between the United States Department of Energy (USDOE) and the Power Reactor and Nuclear Fuel Development Corporation (PNC) of Japan. A complete description of the experiments and data are included in this report. The experiments were performed with an array of mixed oxide fuel pins in aqueous plutonium-uranium solutions. The fuel pins were contained in a boiler tube-type tank and arranged in a 1.4 cm square pitch array which resembled cylindrical geometry. One experiment was perfomed with the fuel pins removed from the vessel. The experiments were performed with a water reflector. The concentration of the solutions in the boiler tube-type tank was varied from 4 to 468 g (Pu + U)/liter. The ratio of plutonium to total heavy metal (plutonium plus uranium) was approximately 0.22 for all experiments.

  5. A general procedure to synthesize highly crystalline metal oxide and mixed oxide nanocrystals in aqueous medium and photocatalytic activity of metal/oxide nanohybrids.

    PubMed

    Nguyen, Thanh-Dinh; Dinh, Cao-Thang; Do, Trong-On

    2011-04-01

    A conventional and general route has been exploited to the high yield synthesis of many kinds of highly crystalline metal oxide and mixed oxide nanocrystals with different morphologies including belt, rod, truncated-octahedron, cubic, sphere, sheet via the hydrothermal reaction of inorganic precursors in aqueous solution in the presence of bifunctional 6-aminohexanoic acid (AHA) molecules as a capping agent. This method is a simple, reproducible and general route for the preparation of a variety of high-crystalline inorganic nanocrystals in scale-up. The shape of inorganic nanocrystals such as CoWO(4), La(2)(MoO(4))(3) can be controlled by simply adjusting the synthesis conditions including pH solution and reaction temperature. Further, by tuning precursor monomer concentration, the mesocrystal hierarchical aggregated microspheres (e.g., MnWO(4), La(2)(MoO(4))(3)) can be achieved, due to the spontaneous assembly of individual AHA-capped nanoparticles. These obtained AHA-capped nanocrystals are excellent supports for the synthesis of a variety of hybrid metal/oxide nanocrystals in which noble metal particles are uniformly deposited on the surface of each individual nanosupport. The photocatalytic activity of Ag/TiO(2) nanobelts as a typical hybrid photocatalyst sample for Methylene Blue degradation was also studied.

  6. Synthesis of Nanoporous Ni-Co Mixed Oxides by Thermal Decomposition of Metal-Cyanide Coordination Polymers.

    PubMed

    Zakaria, Mohamed B; Hu, Ming; Pramanik, Malay; Li, Cuiling; Tang, Jing; Aldalbahi, Ali; Alshehri, Saad M; Malgras, Victor; Yamauchi, Yusuke

    2015-07-01

    A straightforward strategy to prepare nanoporous metal oxides with well-defined shapes is highly desirable. Through thermal treatment and a proper selection of metal-cyanide coordination polymers, nanoporous nickel-cobalt mixed oxides with different shapes (i.e., flakes and cubes) can be easily prepared. Our nanoporous materials demonstrate high electrocatalytic activity for oxygen evolution reaction. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Semi-Coke–Supported Mixed Metal Oxides for Hydrogen Sulfide Removal at High Temperatures

    PubMed Central

    Jie, Mi; Yongyan, Zhang; Yongsheng, Zhu; Ting, Guo; Huiling, Fan

    2012-01-01

    Abstract To improve the desulfurization efficiency of sorbents at low cost, modified semi-coke was used as the substrate for mixed metal oxides (ZFM; oxides of zinc [Zn], iron [Fe], and manganese [Mn]) in hot gas desulfurization. Performance of the prepared ZFM/modified semi-coke (MS) sorbents were evaluated in a fixed-bed reactor in the temperature range 400–550°C. Results showed that the molar ratio of Mn to Zn, effect of the substrate, the calcination temperature, and the sulfidation temperature influenced the performance of the sorbents. Optimum conditions for the preparation of the ZFM/MS sorbents were molar ratio of Mn(NO3)2·6H2O, Zn(NO3)2, and Fe(NO3)3, 0.6:1:2; mass ratio of ZFM0.6 to modified semi-coke support, 1:1; and calcination temperature, 600°C. The ZFM0.6/MS sorbent thus prepared exhibited the best sorption sulfur capacity of 27.46% at 450°C. PMID:22783061

  8. Investigation of some new hydro(solvo)thermal synthesis routes to nanostructured mixed-metal oxides

    NASA Astrophysics Data System (ADS)

    Burnett, David L.; Harunsani, Mohammad H.; Kashtiban, Reza J.; Playford, Helen Y.; Sloan, Jeremy; Hannon, Alex C.; Walton, Richard I.

    2014-06-01

    We present a study of two new solvothermal synthesis approaches to mixed-metal oxide materials and structural characterisation of the products formed. The solvothermal oxidation of metallic gallium by a diethanolamine solution of iron(II) chloride at 240 °C produces a crystalline sample of a spinel-structured material, made up of nano-scale particles typically 20 nm in dimension. XANES spectroscopy at the K-edge shows that the material contains predominantly Fe2+ in an octahedral environment, but that a small amount of Fe3+ is also present. Careful analysis using transmission electron microscopy and powder neutron diffraction shows that the sample is actually a mixture of two spinel materials: predominantly (>97%) an Fe2+ phase Ga1.8Fe1.2O3.9, but with a minor impurity phase that is iron-rich. In contrast, the hydrothermal reaction of titanium bis(ammonium lactato)dihydroxide in water with increasing amounts of Sn(IV) acetate allows nanocrystalline samples of the SnO2-TiO2 solid solution to be prepared directly, as proved by powder XRD and Raman spectroscopy.

  9. Vapor phase hydrogenation of furfural over nickel mixed metal oxide catalysts derived from layered double hydroxides

    SciTech Connect

    Sulmonetti, Taylor P.; Pang, Simon H.; Claure, Micaela Taborga; Lee, Sungsik; Cullen, David A.; Agrawal, Pradeep K.; Jones, Christopher W.

    2016-05-01

    The hydrogenation of furfural is investigated over various reduced nickel mixed metal oxides derived from layered double hydroxides (LDHs) containing Ni-Mg-Al and Ni-Co-Al. Upon reduction, relatively large Ni(0) domains develop in the Ni-Mg-Al catalysts, whereas in the Ni-Co-Al catalysts smaller metal particles of Ni(0) and Co(0), potentially as alloys, are formed, as evidenced by XAS, XPS, STEM and EELS. All the reduced Ni catalysts display similar selectivities towards major hydrogenation products (furfuryl alcohol and tetrahydrofurfuryl alcohol), though the side products varied with the catalyst composition. The 1.1Ni-0.8Co-Al catalyst showed the greatest activity per titrated site when compared to the other catalysts, with promising activity compared to related catalysts in the literature. The use of base metal catalysts for hydrogenation of furanic compounds may be a promising alternative to the well-studied precious metal catalysts for making biomass-derived chemicals if catalyst selectivity can be improved in future work by alloying or tuning metal-oxide support interactions.

  10. High-temperature X-ray diffraction study of uranium-neptunium mixed oxides.

    PubMed

    Chollet, Mélanie; Belin, Renaud C; Richaud, Jean-Christophe; Reynaud, Muriel; Adenot, Frédéric

    2013-03-04

    Incorporating minor actinides (MAs = Am, Np, Cm) in UO2 fertile blankets is a viable option to recycle them. Despite this applied interest, phase equilibria between uranium and MAs still need to be thoroughly investigated, especially at elevated temperatures. In particular, few reports on the U-Np-O system are available. In the present work, we provide for the first time in situ high-temperature X-ray diffraction results obtained during the oxidation of (U1-yNpy)O2 uranium-neptunium mixed oxides up to 1373 K and discuss subsequent phase transformations. We show that (i) neptunium stabilizes the UO2-type fluorite structure at high temperature and that (ii) the U3O8-type orthorhombic structure is observed in a wide range of compositions. We clearly demonstrate the incorporation of neptunium in this phase, which was a controversial question in previous studies up to now. We believe it is the particular stability of the tetravalent state of neptunium that is responsible for the observed phase relationships.

  11. A solid oxide photoelectrochemical cell with UV light-driven oxygen storage in mixed conducting electrodes.

    PubMed

    Walch, Gregor; Rotter, Bernhard; Brunauer, Georg Christoph; Esmaeili, Esmaeil; Opitz, Alexander Karl; Kubicek, Markus; Summhammer, Johann; Ponweiser, Karl; Fleig, Jürgen

    2017-01-28

    A single crystalline SrTiO3 working electrode in a zirconia-based solid oxide electrochemical cell is illuminated by UV light at temperatures of 360-460 °C. In addition to photovoltaic effects, this leads to the build-up of a battery-type voltage up to more than 300 mV. After switching off UV light, this voltage only slowly decays. It is caused by UV-induced oxygen incorporation into the mixed conducting working electrode and thus by changes of the oxygen stoichiometry δ in SrTiO3-δ under UV illumination. These changes of the oxygen content could be followed in time-dependent voltage measurements and also manifest themselves in time-dependent resistance changes during and after UV illumination. Discharge currents measured after UV illumination reveal that a large fraction of the existing oxygen vacancies in SrTiO3 become filled under UV light. Additional measurements on cells with TiO2 thin film electrodes show the broader applicability of this novel approach for transforming light into chemical energy and thus the feasibility of solid oxide photoelectrochemical cells (SOPECs) in general and of a "light-charged oxygen battery" in particular.

  12. A solid oxide photoelectrochemical cell with UV light-driven oxygen storage in mixed conducting electrodes

    PubMed Central

    Walch, Gregor; Rotter, Bernhard; Brunauer, Georg Christoph; Esmaeili, Esmaeil; Opitz, Alexander Karl; Kubicek, Markus; Summhammer, Johann; Ponweiser, Karl

    2017-01-01

    A single crystalline SrTiO3 working electrode in a zirconia-based solid oxide electrochemical cell is illuminated by UV light at temperatures of 360–460 °C. In addition to photovoltaic effects, this leads to the build-up of a battery-type voltage up to more than 300 mV. After switching off UV light, this voltage only slowly decays. It is caused by UV-induced oxygen incorporation into the mixed conducting working electrode and thus by changes of the oxygen stoichiometry δ in SrTiO3–δ under UV illumination. These changes of the oxygen content could be followed in time-dependent voltage measurements and also manifest themselves in time-dependent resistance changes during and after UV illumination. Discharge currents measured after UV illumination reveal that a large fraction of the existing oxygen vacancies in SrTiO3 become filled under UV light. Additional measurements on cells with TiO2 thin film electrodes show the broader applicability of this novel approach for transforming light into chemical energy and thus the feasibility of solid oxide photoelectrochemical cells (SOPECs) in general and of a “light-charged oxygen battery” in particular. PMID:28261480

  13. EBSD and TEM Characterization of High Burn-up Mixed Oxide Fuel

    SciTech Connect

    Teague, Melissa C.; Gorman, Brian P.; Miller, Brandon D.; King, Jeffrey

    2014-01-01

    Understanding and studying the irradiation behavior of high burn-up oxide fuel is critical to licensing of future fast breeder reactors. Advancements in experimental techniques and equipment are allowing for new insights into previously irradiated samples. In this work dual column focused ion beam (FIB)/scanning electron microscope (SEM) was utilized to prepared transmission electron microscope samples from mixed oxide fuel with a burn-up of 6.7% FIMA. Utilizing the FIB/SEM for preparation resulted in samples with a dose rate of <0.5 mRem/h compared to approximately 1.1 R/h for a traditionally prepared TEM sample. The TEM analysis showed that the sample taken from the cooler rim region of the fuel pellet had approximately 2.5x higher dislocation density than that of the sample taken from the mid-radius due to the lower irradiation temperature of the rim. The dual column FIB/SEM was additionally used to prepared and serially slice approximately 25 um cubes. High quality electron back scatter diffraction (EBSD) were collected from the face at each step, showing, for the first time, the ability to obtain EBSD data from high activity irradiated fuel.

  14. Catalytic propane dehydrogenation over In₂O₃–Ga₂O₃ mixed oxides

    SciTech Connect

    Tan, Shuai; Gil, Laura Briones; Subramanian, Nachal; Sholl, David S.; Nair, Sankar; Jones, Christopher W.; Moore, Jason S.; Liu, Yujun; Dixit, Ravindra S.; Pendergast, John G.

    2015-08-26

    We have investigated the catalytic performance of novel In₂O₃–Ga₂O₃ mixed oxides synthesized by the alcoholic-coprecipitation method for propane dehydrogenation (PDH). Reactivity measurements reveal that the activities of In₂O₃–Ga₂O₃ catalysts are 1–3-fold (on an active metal basis) and 12–28-fold (on a surface area basis) higher than an In₂O₃–Al₂O₃ catalyst in terms of C₃H₈ conversion. The structure, composition, and surface properties of the In₂O₃–Ga₂O₃ catalysts are thoroughly characterized. NH₃-TPD shows that the binary oxide system generates more acid sites than the corresponding single-component catalysts. Raman spectroscopy suggests that catalysts that produce coke of a more graphitic nature suppress cracking reactions, leading to higher C₃H₆ selectivity. Lower reaction temperature also leads to higher C₃H₆ selectivity by slowing down the rate of side reactions. XRD, XPS, and XANES measurements, strongly suggest that metallic indium and In₂O₃ clusters are formed on the catalyst surface during the reaction. The agglomeration of In₂O₃ domains and formation of a metallic indium phase are found to be irreversible under O₂ or H₂ treatment conditions used here, and may be responsible for loss of activity with increasing time on stream.

  15. Enrichment and characteristics of mixed methane-oxidizing bacteria from a Chinese coal mine.

    PubMed

    Jiang, Hao; Duan, Changhong; Luo, Mingfang; Xing, Xin-Hui

    2016-12-01

    In methane-rich environments, methane-oxidizing bacteria usually occur predominantly among consortia including other types of microorganisms. In this study, artificial coal bed gas and methane gas were used to enrich mixed methanotrophic cultures from the soil of a coal mine in China, respectively. The changes in microbial community structure and function during the enrichment were examined. The microbial diversity was reduced as the enrichment proceeded, while the capacity for methane oxidation was significantly enhanced by the increased abundance of methanotrophs. The proportion of type II methanotrophs increased greatly from 7.84 % in the sampled soil to about 50 % in the enrichment cultures, due to the increase of methane concentration. After the microbial community of the cultures got stable, Methylomonas and Methylocystis became the dominant type I and type II methanotrophs, while Methylophilus was the prevailing methylotroph. The sequences affiliated with pigment-producing strains, Methylomonas rubra, Hydrogenophaga sp. AH-24, and Flavobacterium cucumis, could explain the orange appearance of the cultures. Comparing the two cultures, the multi-carbon sources in the artificial coal bed gas caused more variety of non-methanotrophic bacteria, but did not help to maintain the diversity or to increase the quantity and activity of methanotrophs. The results could help to understand the succession and interaction of microbial community in a methane-driven ecosystem.

  16. Amorphous mixed-metal hydroxide nanostructures for advanced water oxidation catalysts.

    PubMed

    Gao, Y Q; Liu, X Y; Yang, G W

    2016-03-07

    The design of highly efficient, durable, and earth-abundant catalysts for the oxygen evolution reaction (OER) is crucial in order to promote energy conversion and storage processes. Here, we synthesize amorphous mixed-metal (Ni-Fe) hydroxide nanostructures with a homogeneous distribution of Ni/Fe as well as a tunable Ni/Fe ratio by a simple, facile, green and low-cost electrochemical technique, and we demonstrate that the synthesized amorphous nanomaterials possess ultrahigh activity and super long-term cycle stability in the OER process. The amorphous Ni0.71Fe0.29(OH)x nanostructure affords a current density of 10 mA cm(-2) at an overpotential of a mere 0.296 V and a small Tafel slope of 58 mV dec(-1), while no deactivation is detected in the CV testing even up to 30 000 cycles, which suggests the promising application of these amorphous nanomaterials in electrochemical oxidation. Meanwhile, the distinct catalytic activities among these amorphous Ni-Fe hydroxide nanostructures prompts us to take notice of the composition of the alloy hydroxides/oxides when studying their catalytic properties, which opens an avenue for the rational design and controllable preparation of such amorphous nanomaterials as advanced OER electrocatalysts.

  17. Fuel/cladding chemical interaction in mixed-oxide fuel at high burnup

    SciTech Connect

    Lawrence, L.A.

    1984-02-01

    The character and extent of fuel/cladding chemical interaction (FCCI) have been established for mixed uranium-plutonium oxide, (U,Pu)O/sub 2/, fuels irradiated in Experimental Breeder Reactor-II to peak fuel burnups to 14.5 at. % at beginning-of-life peak cladding temperatures to 730/sup 0/C. The changes in character and the correlation of depth of FCCI were determined as functions of the initial as-fabricated fuel oxygen-tometal ratios (O/M), the cladding inner surface temperature, and fuel burnup. The character of the interaction and its evolution with burnup and temperatures were consistent with oxidation of the chromium in the stainless steel cladding under the influence of fission products. A statistically based design wastage correlation was developed for depth of interaction based on the largest set of fuel pin data for FCCI in the U.S. program, drawn from well-characterized and carefully controlled tests. The resultant correlation, linear in burnup, O/M, and cladding temperature, includes a factor for the level of confidence to use in application of the equation in design. The correlation accounted for the few instances, i.e., 3%, that were encountered of deep localized cladding interaction. Significant changes were also noted in the interaction in the cladding opposite the top fuel pellet and the first UO/sub 2/ insulator pellet. Comparisons to the limited Phenix data available showed the correlation adequately accounted for FCCI in large breeder fuel pins.

  18. Vapor phase hydrogenation of furfural over nickel mixed metal oxide catalysts derived from layered double hydroxides

    SciTech Connect

    Sulmonetti, Taylor P.; Pang, Simon H.; Claure, Micaela Taborga; Lee, Sungsik; Cullen, David A.; Agrawal, Pradeep K.; Jones, Christopher W.

    2016-03-09

    The hydrogenation of furfural is investigated over various reduced nickel mixed metal oxides derived from layered double hydroxides (LDHs) containing Ni-Mg-Al and Ni-Co-Al. Upon reduction, relatively large Ni(0) domains develop in the Ni-Mg-Al catalysts, whereas in the Ni-Co-Al catalysts smaller metal particles of Ni(0) and Co(0), potentially as alloys, are formed, as evidenced by XAS, XPS, STEM and EELS. All the reduced Ni catalysts display similar selectivities towards major hydrogenation products (furfuryl alcohol and tetrahydrofurfuryl alcohol), though the side products varied with the catalyst composition. The 1.1Ni-0.8Co-Al catalyst showed the greatest activity per titrated site when compared to the other catalysts, with promising activity compared to related catalysts in the literature. In conclusion, the use of base metal catalysts for hydrogenation of furanic compounds may be a promising alternative to the well-studied precious metal catalysts for making biomass-derived chemicals if catalyst selectivity can be improved in future work by alloying or tuning metal-oxide support interactions.

  19. Vapor phase hydrogenation of furfural over nickel mixed metal oxide catalysts derived from layered double hydroxides

    DOE PAGES

    Sulmonetti, Taylor P.; Pang, Simon H.; Claure, Micaela Taborga; ...

    2016-03-09

    The hydrogenation of furfural is investigated over various reduced nickel mixed metal oxides derived from layered double hydroxides (LDHs) containing Ni-Mg-Al and Ni-Co-Al. Upon reduction, relatively large Ni(0) domains develop in the Ni-Mg-Al catalysts, whereas in the Ni-Co-Al catalysts smaller metal particles of Ni(0) and Co(0), potentially as alloys, are formed, as evidenced by XAS, XPS, STEM and EELS. All the reduced Ni catalysts display similar selectivities towards major hydrogenation products (furfuryl alcohol and tetrahydrofurfuryl alcohol), though the side products varied with the catalyst composition. The 1.1Ni-0.8Co-Al catalyst showed the greatest activity per titrated site when compared to the othermore » catalysts, with promising activity compared to related catalysts in the literature. In conclusion, the use of base metal catalysts for hydrogenation of furanic compounds may be a promising alternative to the well-studied precious metal catalysts for making biomass-derived chemicals if catalyst selectivity can be improved in future work by alloying or tuning metal-oxide support interactions.« less

  20. Development of a novel wet oxidation process for hazardous and mixed wastes

    SciTech Connect

    Dhooge, P.M.

    1994-12-31

    Many DOE waste streams and remediates contain complex and variable mixtures of organic compounds, toxic metals, and radionuclides. These materials are often dispersed in organic or inorganic matrices, such as personal protective equipment, various sludges, soils, and water. The over all objective of the effort described here is to develop a novel catalytic wet oxidation process for the treatment of these multi-component wastes, with the aim of providing a versatile, non-thermal method which will destroy hazardous organic compounds while simultaneously containing and concentrating toxic and radioactive metals for recovery or disposal in a readily stabilized matrix. The DETOX process uses a unique combination of metal catalysts to increase the rate of oxidation of organic materials. The metal catalysts are in the form of salts dissolved in a dilute acid solution. A typical catalyst composition is 60% ferric chloride, 3--4% hydrochloric acid, 0.13% platinum ions, and 0.13% ruthenium ions in a water solution. The catalyst solution is maintained at 423--473 K. Wastes are introduced into contact with the solution, where their organic portion is oxidized to carbon dioxide and water. If the organic portion is chlorinated, hydrogen chloride will be produced as a product. The process is a viable alternative to incineration for the treatment of organic mixed wastes. Estimated costs for waste treatment using the process are from $2.50/kg to $25.00/kg, depending on the size of the unit and the amount of waste processed. Process units can be mobile for on-site treatment of wastes. Results from phase 1 and 2, design and engineering studies, are described.

  1. Microbial Ecology Assessment of Mixed Copper Oxide/Sulfide Dump Leach Operation

    SciTech Connect

    Bruhn, Debby Fox; Thompson, David Neal; Noah, Karl Scott

    1999-06-01

    Microbial consortia composed of complex mixtures of autotrophic and heterotrophic bacteria are responsible for the dissolution of metals from sulfide minerals. Thus, an efficient copper bioleaching operation depends on the microbial ecology of the system. A microbial ecology study of a mixed oxide/sulfide copper leaching operation was conducted using an "overlay" plating technique to differentiate and identify various bacterial consortium members of the genera Thiobacillus, “Leptospirillum”, “Ferromicrobium”, and Acidiphilium. Two temperatures (30°C and 45°C) were used to select for mesophilic and moderately thermophilic bacteria. Cell numbers varied from 0-106 cells/g dry ore, depending on the sample location and depth. After acid curing for oxide leaching, no viable bacteria were recovered, although inoculation of cells from raffinate re-established a microbial population after three months. Due to low the pH of the operation, very few non-iron-oxidizing acidophilic heterotrophs were recovered. Moderate thermophiles were isolated from the ore samples. Pregnant liquor solutions (PLS) and raffinate both contained a diversity of bacteria. In addition, an intermittently applied waste stream that contained high levels of arsenic and fluoride was tested for toxicity. Twenty vol% waste stream in PLS killed 100% of the cells in 48 hours, indicating substantial toxicity and/or growth inhibition. The data indicate that bacteria populations can recover after acid curing, and that application of the waste stream to the dump should be avoided. Monitoring the microbial ecology of the leaching operation provided significant information that improved copper recovery.

  2. Application of Ni-Oxide@TiO2 Core-Shell Structures to Photocatalytic Mixed Dye Degradation, CO Oxidation, and Supercapacitors

    PubMed Central

    Lee, Seungwon; Lee, Jisuk; Nam, Kyusuk; Shin, Weon Gyu; Sohn, Youngku

    2016-01-01

    Performing diverse application tests on synthesized metal oxides is critical for identifying suitable application areas based on the material performances. In the present study, Ni-oxide@TiO2 core-shell materials were synthesized and applied to photocatalytic mixed dye (methyl orange + rhodamine + methylene blue) degradation under ultraviolet (UV) and visible lights, CO oxidation, and supercapacitors. Their physicochemical properties were examined by field-emission scanning electron microscopy, X-ray diffraction analysis, Fourier-transform infrared spectroscopy, and UV-visible absorption spectroscopy. It was shown that their performances were highly dependent on the morphology, thermal treatment procedure, and TiO2 overlayer coating. PMID:28774145

  3. Design and Development of Mixed-Metal Oxide Photocatalysts: the Band Engineering Approach

    NASA Astrophysics Data System (ADS)

    Boltersdorf, Jonathan Andrew

    The design and development of mixed-metal oxides incorporating Ag(I), Pb(II), Sn(II), and Bi(III), i.e., with filled d10 or d10s2 electron configurations, have yielded new approaches to tune optical and photocatalytic properties for solar energy conversion. My research efforts in the area of solid-state photochemistry have focused on utilizing flux-mediated ion-exchange methods in conjunction with the band engineering approach to synthesize new materials for solar energy driven total water splitting. Layered perovskite phases and the polysomatic family of tantalate/niobate structures, with the general formula Am+ ( n+1)/mB(3 n+1)O(8n +3) (A = Na, Ag; B = Ta, Nb), have received increasing attention owing to their synthetic flexibility, tunable optical band gaps, and photocatalytic activities for total water splitting. Structures in the family of A m+ (n+1)/ mB(3n +1)O(8n+3) structures are based on the stacking of pentagonal bipyramidal layers, where n defines the average thickness (1 ≤ n ≤ 2) of the BO7 layers that alternate with isolated BO6 octahedra surrounded by A-site cations. Synthetic limitations in the discovery of new phases within the layered perovskites and the Am + (n+1)/mB(3 n+1)O(8n +3) structural families can be addressed with the aid of a metal-salt solvent, known as the molten-salt flux method. The flux synthetic route requires the use of an inorganic salt heated above its melting temperature in order to serve as a solvent system for crystallization. Molten fluxes allow for synthetic modification of particle characteristics and can enable the low temperature stabilization of new compositions and phases with limited stability using ion-exchange reactions (e.g., PbTa4O11, AgLaNb 2O7). Solid-state and flux-mediated exchange methods were utilized in order to synthetically explore and investigate the layered perovskites ALaNb2O7, AA2Nb3O 10, A'2La2Ti3O10 (A' = Rb, Ag; A = Ca, Sr), the Am+ (n+1)/mB 3n+1O(8 n+3) structural family (Am + = Na(I), Ag

  4. 77 FR 70193 - Shaw Areva MOX Services (Mixed Oxide Fuel Fabrication Facility); Notice of Atomic Safety and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-23

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Shaw Areva MOX Services (Mixed Oxide Fuel Fabrication Facility); Notice of Atomic Safety and Licensing Board Reconstitution Pursuant to 10 CFR 2.313(c) and 2.321(b), the Atomic Safety and...

  5. General synthesis of vanadium-based mixed metal oxides hollow nanofibers for high performance lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Xiang, Juan; Yu, Xin-Yao; Paik, Ungyu

    2016-10-01

    Hollow nanostructured mixed metal oxides have recently been intensively investigated as electrode materials for energy storage and conversion due to their remarkable electrochemical properties. Although great efforts have been made, the synthesis of hollow nanostructured vanadium-based mixed metal oxides especially those with one dimensional structure is rarely reported. Vanadium-based mixed metal oxides are promising electrode materials for lithium-ion batteries with high capacity and good rate capability. Here, we develop a facile and general method for the synthesis of one dimensional MxV2O8 (M = Co, Ni, Fe) tubular structure through a simple single-spinneret electrospinning technique followed by a calcination process. As a demonstration, Co3V2O8 hollow nanofibers are evaluated as anode materials for lithium-ion batteries. As expected, benefiting from their unique one dimensional tubular structure, the as-synthesized Co3V2O8 exhibits excellent electrochemical properties for lithium storage. To be specific, it can deliver a high specific capacity of 900 mAh g-1 at 5 A g-1, and long cycling stability up to 2000 cycles. The present work makes a significant contribution to the design and synthesis of mixed metal oxides with one dimensional tubular structure, as well as their potential applications in electrochemical energy storage.

  6. A stochastic model of turbulent mixing with chemical reaction: Nitric oxide formulation in a plug-flow burner

    NASA Technical Reports Server (NTRS)

    Flagan, R. C.; Appleton, J. P.

    1973-01-01

    A stochastic model of turbulent mixing was developed for a reactor in which mixing is represented by n-body fluid particle interactions. The model was used to justify the assumption (made in previous investigations of the role of turbulent mixing on burner generated thermal nitric oxide and carbon monoxide emissions) that for a simple plug flow reactor, composition nonuniformities can be described by a Gaussian distribution function in the local fuel:air equivalence ratio. Recent extensions of this stochastic model to include the combined effects of turbulent mixing and secondary air entrainment on thermal generation of nitric oxide in gas turbine combustors are discussed. Finally, rate limited upper and lower bounds of the nitric oxide produced by thermal fixation of molecular nitrogen and oxidation of organically bound fuel nitrogen are estimated on the basis of the stochastic model for a plug flow burner; these are compared with experimental measurements obtained using a laboratory burner operated over a wide range of test conditions; good agreement is obtained.

  7. Tunable Mixed Ionic/Electronic Conductivity and Permittivity of Graphene Oxide Paper for Electrochemical Energy Conversion.

    PubMed

    Bayer, Thomas; Bishop, Sean R; Perry, Nicola H; Sasaki, Kazunari; Lyth, Stephen M

    2016-05-11

    Graphene oxide (GO) is a two-dimensional graphitic carbon material functionalized with oxygen-containing surface functional groups. The material is of interest in energy conversion, sensing, chemical processing, gas barrier, and electronics applications. Multilayer GO paper has recently been applied as a new proton conducting membrane in low temperature fuel cells. However, a detailed understanding of the electrical/dielectric properties, including separation of the ionic vs electronic contributions under relevant operating conditions, has so far been lacking. Here, the electrical conductivity and dielectric permittivity of GO paper are investigated in situ from 30 to 120 °C, and from 0 to 100% relative humidity (RH) using impedance spectroscopy. These are related to the water content, measured by thermogravimetric analysis. With the aid of electron blocking measurements, GO is demonstrated to be a mixed electronic-protonic conductor, and the ion transference number is derived for the first time. For RH > 40%, conductivity is dominated by proton transport (with a maximum of 0.5 mS/cm at 90 °C and 100% RH). For RH < 40%, electronic conductivity dominates (with a maximum of 7.4 mS/cm at ∼80 °C and 0% RH). The relative permittivity of GO paper increases with decreasing humidity, from ∼10 at 100% RH to several 1000 at 10% RH. These results underline the potential of GO for application not only as a proton conducting electrolyte but also as a mixed conducting electrode material under appropriate conditions. Such materials are highly applicable in electrochemical energy conversion and storage devices such as fuel cells and electrolyzers.

  8. The behaviour of transuranic mixed oxide fuel in a Candu-900 reactor

    SciTech Connect

    Morreale, A. C.; Ball, M. R.; Novog, D. R.; Luxat, J. C.

    2012-07-01

    The production of transuranic actinide fuels for use in current thermal reactors provides a useful intermediary step in closing the nuclear fuel cycle. Extraction of actinides reduces the longevity, radiation and heat loads of spent material. The burning of transuranic fuels in current reactors for a limited amount of cycles reduces the infrastructure demand for fast reactors and provides an effective synergy that can result in a reduction of as much as 95% of spent fuel waste while reducing the fast reactor infrastructure needed by a factor of almost 13.5 [1]. This paper examines the features of actinide mixed oxide fuel, TRUMOX, in a CANDU{sup R}* nuclear reactor. The actinide concentrations used were based on extraction from 30 year cooled spent fuel and mixed with natural uranium in 3.1 wt% actinide MOX fuel. Full lattice cell modeling was performed using the WIMS-AECL code, super-cell calculations were analyzed in DRAGON and full core analysis was executed in the RFSP 2-group diffusion code. A time-average full core model was produced and analyzed for reactor coefficients, reactivity device worth and online fuelling impacts. The standard CANDU operational limits were maintained throughout operations. The TRUMOX fuel design achieved a burnup of 27.36 MWd/kg HE. A full TRUMOX fuelled CANDU was shown to operate within acceptable limits and provided a viable intermediary step for burning actinides. The recycling, reprocessing and reuse of spent fuels produces a much more sustainable and efficient nuclear fuel cycle. (authors)

  9. Mixed oxide fuels testing in the advanced test reactor to support plutonium disposition

    SciTech Connect

    Ryskamp, J.M.; Sterbentz, J.W.; Chang, G.S.

    1995-09-01

    An intense worldwide effort is now under way to find means of reducing the stockpile of weapons-grade plutonium. One of the most attractive solutions would be to use WGPu as fuel in existing light water reactors (LWRs) in the form of mixed oxide (MOX) fuel - i.e., plutonia (PUO{sub 2}) mixed with urania (UO{sub 2}). Before U.S. reactors could be used for this purpose, their operating licenses would have to be amended. Numerous technical issues must be resolved before LWR operating licenses can be amended to allow the use of MOX fuel. These issues include the following: (1) MOX fuel fabrication process verification, (2) Whether and how to use burnable poisons to depress MOX fuel initial reactivity, which is higher than that of urania, (3) The effects of WGPu isotopic composition, (4) The feasibility of loading MOX fuel with plutonia content up to 7% by weight, (5) The effects of americium and gallium in WGPu, (6) Fission gas release from MOX fuel pellets made from WGPu, (7) Fuel/cladding gap closure, (8) The effects of power cycling and off-normal events on fuel integrity, (9) Development of radial distributions of burnup and fission products, (10) Power spiking near the interfaces of MOX and urania fuel assemblies, and (11) Fuel performance code validation. We have performed calculations to show that the use of hafnium shrouds can produce spectrum adjustments that will bring the flux spectrum in ATR test loops into a good approximation to the spectrum anticipated in a commercial LWR containing MOX fuel while allowing operation of the test fuel assemblies near their optimum values of linear heat generation rate. The ATR would be a nearly ideal test bed for developing data needed to support applications to license LWRs for operation with MOX fuel made from weapons-grade plutonium. The requirements for planning and implementing a test program in the ATR have been identified.

  10. Dual Electrospray Pyrolysis for Mixed Metal Oxide (and Carbon) Composite Nanoparticle Synthesis with Applications in Energy Storage

    NASA Astrophysics Data System (ADS)

    Tang, Justin; Liu, Wen; Wang, Hailiang; Gomez, Alessandro

    We present a novel approach to synthesizing mixed metal oxide nanoparticles with a continuous, scalable aerosol flow process using the electrospray. The electrospray is a liquid atomization technique that generates a monodisperse population of highly charged liquid droplets over a broad size range (nanometric to tens of microns). Each liquid droplet serves as a micro-reactor, containing a payload of suitable precursors (such as metal nitrides), allowing for precise control over particle composition and size. By using two electrosprays of opposite polarities, the two highly charged droplets plumes are electrostatically mixed to produce a charge-neutral aerosol. Electrostatically driven droplet-droplet collisions can also be used to control morphology to some degree. This aerosol is passed through a tubular furnace via carrier gas, pyrolizing the precursors to synthesize nanomaterials. We apply this approach to manganese oxide, cobalt oxide, and carbon composite nanoparticles for use in energy storage applications.

  11. Conversion of ethanol to 1,3-butadiene over Na doped ZnxZryOz mixed metal oxides

    SciTech Connect

    Baylon, Rebecca A.; Sun, Junming; Wang, Yong

    2016-01-01

    Despite numerous studies on different oxide catalysts for the ethanol to 1,3-butadiene reaction, few have identified active sites (i.e., type of acidity) correlated to the catalytic performances. In this work, the type of acidity needed for ethanol to 1,3-butadiene conversion has been studied over Zn/Zr mixed oxide catalysts. Specifically, synthesis method, Zn/Zr ratio, and Na doping have been used to control the surface acid-base properties, as confirmed by characterizations such as NH3-TPD and IR-Py techniques. The 2000 ppm Na doped Zn1Zr10Oz-H with balanced base and weak Bronsted acid sites was found to give not only high selectivity to 1,3-butadiene (47%) at near complete ethanol conversion (97%), but also exhibited a much higher 1,3-butadiene productivity than other mixed oxides studied.

  12. Cobalt-silicon mixed oxide nanocomposites by modified sol-gel method

    SciTech Connect

    Esposito, Serena; Turco, Maria; Ramis, Gianguido; Bagnasco, Giovanni; Pernice, Pasquale; Pagliuca, Concetta; Bevilacqua, Maria; Aronne, Antonio

    2007-12-15

    Cobalt-silicon mixed oxide materials (Co/Si=0.111, 0.250 and 0.428) were synthesised starting from Co(NO{sub 3}){sub 2}.6H{sub 2}O and Si(OC{sub 2}H{sub 5}){sub 4} using a modified sol-gel method. Structural, textural and surface chemical properties were investigated by thermogravimetric/differential thermal analyses (TG/DTA), XRD, UV-vis, FT-IR spectroscopy and N{sub 2} adsorption at -196 deg. C. The nature of cobalt species and their interactions with the siloxane matrix were strongly depending on both the cobalt loading and the heat treatment. All dried gels were amorphous and contained Co{sup 2+} ions forming both tetrahedral and octahedral complexes with the siloxane matrix. After treatment at 400 deg. C, the sample with lowest Co content appeared amorphous and contained only Co{sup 2+} tetrahedral complexes, while at higher cobalt loading Co{sub 3}O{sub 4} was present as the only crystalline phase, besides Co{sup 2+} ions strongly interacting with siloxane matrix. At 850 deg. C, in all samples crystalline Co{sub 2}SiO{sub 4} was formed and was the only crystallising phase for the nanocomposite with the lowest cobalt content. All materials retained high surface areas also after treatments at 600 deg. C and exhibited surface Lewis acidity, due to cationic sites. The presence of cobalt affected the textural properties of the siloxane matrix decreasing microporosity and increasing mesoporosity. - Graphical abstract: Highly dispersed cobalt-silicon mixed oxide nanocomposites (Co/Si=0.111, 0.250 and 0.428) were obtained by a modified sol-gel method using almost solely aqueous solutions. The nature of cobalt species and their interactions with the siloxane matrix are strongly depending on both the cobalt loading and the heat treatment. All materials retained high surface areas also after treatments at 600 deg. C and exhibited surface Lewis acidity.

  13. Cu-Ce-O mixed oxides from Ce-containing layered double hydroxide precursors: Controllable preparation and catalytic performance

    SciTech Connect

    Chang Zheng; Zhao Na; Liu Junfeng; Li Feng; Evans, David G.; Duan Xue; Forano, Claude; Roy, Marie de

    2011-12-15

    Cu/Zn/Al layered double hydroxide (LDH) precursors have been synthesized using an anion exchange method with anionic Ce complexes containing the dipicolinate (pyridine-2,6-dicarboxylate) ligand. Cu-Ce-O mixed oxides were obtained by calcination of the Ce-containing LDHs. The materials were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, thermogravimetry-differential thermal analysis, elemental analysis, and low temperature N{sub 2} adsorption/desorption measurements. The results reveal that the inclusion of Ce has a significant effect on the specific surface area, pore structure, and chemical state of Cu in the resulting Cu-Ce-O mixed metal oxides. The resulting changes in composition and structure, particularly the interactions between Cu and Ce centers, significantly enhance the activity of the Ce-containing materials as catalysts for the oxidation of phenol by hydrogen peroxide. - Graphical Abstract: Cu-Ce-O mixed oxides calcined from [Ce(dipic){sub 3}]{sup 3-}- intercalated Cu/Zn/Al layered double hydroxides were synthesized and displayed good catalytic performances in phenol oxidation due to the Cu-Ce interactions. Highlights: Black-Right-Pointing-Pointer [Ce(dipic){sub 3}]{sup 3-}-intercalated Cu/Zn/Al layered double hydroxides were synthesized. Black-Right-Pointing-Pointer Cu-Ce-O mixed oxides derivated from the LDHs were characterized as catalysts. Black-Right-Pointing-Pointer Presence of Ce influenced physicochemical property and catalytic performance. Black-Right-Pointing-Pointer Cu-Ce interaction was largely responsible for enhanced catalytic ability.

  14. An experimental study of perovskite-structured mixed ionic- electronic conducting oxides and membranes

    NASA Astrophysics Data System (ADS)

    Zeng, Pingying

    In recent decades, ceramic membranes based on mixed ionic and electronic conducting (MIEC) perovskite-structured oxides have received many attentions for their applications for air separation, or as a membrane reactor for methane oxidation. While numerous perovskite oxide materials have been explored over the past two decades; there are hardly any materials with sufficient practical economic value and performance for large scale applications, which justifies continuing the search for new materials. The main purposes of this thesis study are: (1) develop several novel SrCoO3-delta based MIEC oxides, SrCoCo1-xMxO3-delta, based on which membranes exhibit excellent oxygen permeability; (2) investigate the significant effects of the species and concentration of the dopants M (metal ions with fixed valences) on the various properties of these membranes; (3) investigate the significant effects of sintering temperature on the microstructures and performance of oxygen permeation membranes; and (4) study the performance of oxygen permeation membranes as a membrane reactor for methane combustion. To stabilize the cubic phase structure of the SrCoO3-delta oxide, various amounts of scandium was doped into the B-site of SrCoO 3-delta to form a series of new perovskite oxides, SrScxCoCo 1-xO3-delta (SSCx, x = 0-0.7). The significant effects of scandium-doping concentration on the phase structure, electrical conductivity, sintering performance, thermal and structural stability, cathode performance, and oxygen permeation performance of the SSCx membranes, were systematically studied. Also for a more in-depth understanding, the rate determination steps for the oxygen transport process through the membranes were clarified by theoretical and experimental investigation. It was found that only a minor amount of scandium (5 mol%) doping into the B-site of SrCoO3-delta can effectively stabilize the cubic phase structure, and thus significantly improve the electrical conductivity and

  15. Enhancement of oxidative electrocatalytic properties of platinum nanoparticles by supporting onto mixed WO3/ZrO2 matrix

    NASA Astrophysics Data System (ADS)

    Rutkowska, Iwona A.; Wadas, Anna; Kulesza, Pawel J.

    2016-12-01

    Nanostructured mixed metal (W, Zr) oxide matrices (in a form of layered intercalated films of WO3 and ZrO2) are considered here for supporting and activating catalytic platinum nanoparticles toward electrooxidation of ethanol. Remarkable increases of electrocatalytic (voltammetric, chronoamperometric) currents measured in 0.5 mol dm-3 H2SO4 (containing 0.5 mol dm-3 ethanol) have been observed. Comparison has been made to the behavior of methanol and acetaldehyde under analogous conditions. The enhancement effects are interpreted in terms of specific interactions between platinum nanoparticles and the metal oxide species, high acidity of the mixed oxide sites, as well as high population of surface hydroxyl groups and high mobility of protons existing in close vicinity of Pt catalytic sites. The metal oxide nanostructures are expected to interact competitively (via the surface hydroxyl groups) with adsorbates of the undesirable reaction intermediates, including CO, facilitating their desorption ("third body effect"), or even oxidative removal (e.g., of CO to CO2). The fact that the partially reduced tungsten oxide (HxWO3) component is characterized by fast electron transfers coupled to proton displacements tends to improve the overall charge propagation at the electrocatalytic interface.

  16. Method of CO and/or CO.sub.2 hydrogenation using doped mixed-metal oxides

    DOEpatents

    Shekhawat, Dushyant; Berry, David A.; Haynes, Daniel J.; Abdelsayed, Victor; Smith, Mark W.; Spivey, James J.

    2015-10-06

    A method of hydrogenation utilizing a reactant gas mixture comprising a carbon oxide and a hydrogen agent, and a hydrogenation catalyst comprising a mixed-metal oxide containing metal sites supported and/or incorporated into the lattice. The mixed-metal oxide comprises a perovskite, a pyrochlore, a fluorite, a brownmillerite, or mixtures thereof doped at the A-site or the B-site. The metal site may comprise a deposited metal, where the deposited metal is a transition metal, an alkali metal, an alkaline earth metal, or mixtures thereof. Contact between the carbon oxide, hydrogen agent, and hydrogenation catalyst under appropriate conditions of temperature, pressure and gas flow rate generate a hydrogenation reaction and produce a hydrogenated product made up of carbon from the carbon oxide and some portion of the hydrogen agent. The carbon oxide may be CO, CO.sub.2, or mixtures thereof and the hydrogen agent may be H.sub.2. In a particular embodiment, the hydrogenated product comprises an alcohol, an olefin, an aldehyde, a ketone, an ester, an oxo-product, or mixtures thereof.

  17. Method of CO and/or CO.sub.2 hydrogenation to higher hydrocarbons using doped mixed-metal oxides

    DOEpatents

    Shekhawat, Dushyant; Berry, David A.; Haynes, Daniel J.; Abdelsayed, Victor; Smith, Mark W.; Spivey, James J.

    2017-03-21

    A method of hydrogenation utilizing a reactant gas mixture comprising a carbon oxide and a hydrogen agent, and a hydrogenation catalyst comprising a mixed-metal oxide containing metal sites supported and/or incorporated into the lattice. The mixed-metal oxide comprises a pyrochlore, a brownmillerite, or mixtures thereof doped at the A-site or the B-site. The metal site may comprise a deposited metal, where the deposited metal is a transition metal, an alkali metal, an alkaline earth metal, or mixtures thereof. Contact between the carbon oxide, hydrogen agent, and hydrogenation catalyst under appropriate conditions of temperature, pressure and gas flow rate generate a hydrogenation reaction and produce a hydrogenated product made up of carbon from the carbon oxide and some portion of the hydrogen agent. The carbon oxide may be CO, CO.sub.2, or mixtures thereof and the hydrogen agent may be H.sub.2. In a particular embodiment, the hydrogenated product comprises olefins, paraffins, or mixtures thereof.

  18. Neutron Emission Characteristics of Two Mixed-Oxide Fuels: Simulations and Initial Experiments

    SciTech Connect

    D. L. Chichester; S. A. Pozzi; J. L. Dolan; M. Flaska; J. T. Johnson; E. H. Seabury; E. M. Gantz

    2009-07-01

    Simulations and experiments have been carried out to investigate the neutron emission characteristics of two mixed-oxide (MOX) fuels at Idaho National Laboratory (INL). These activities are part of a project studying advanced instrumentation techniques in support of the U.S. Department of Energy's Fuel Cycle Research and Development program and it's Materials Protection, Accounting, and Control for Transmutation (MPACT) campaign. This analysis used the MCNP-PoliMi Monte Carlo simulation tool to determine the relative strength and energy spectra of the different neutron source terms within these fuels, and then used this data to simulate the detection and measurement of these emissions using an array of liquid scintillator neutron spectrometers. These calculations accounted for neutrons generated from the spontaneous fission of the actinides in the MOX fuel as well as neutrons created via (alpha,n) reactions with oxygen in the MOX fuel. The analysis was carried out to allow for characterization of both neutron energy as well as neutron coincidences between multiple detectors. Coincidences between prompt gamma rays and neutrons were also analyzed. Experiments were performed at INL with the same materials used in the simulations to benchmark and begin validation tests of the simulations. Data was collected in these experiments using an array of four liquid scintillators and a high-speed waveform digitizer. Advanced digital pulse-shape discrimination algorithms were developed and used to collect this data. Results of the simulation and modeling studies are presented together with preliminary results from the experimental campaign.

  19. Melting behavior of (Th,U)O2 and (Th,Pu)O2 mixed oxides

    NASA Astrophysics Data System (ADS)

    Ghosh, P. S.; Kuganathan, N.; Galvin, C. O. T.; Arya, A.; Dey, G. K.; Dutta, B. K.; Grimes, R. W.

    2016-10-01

    The melting behaviors of pure ThO2, UO2 and PuO2 as well as (Th,U)O2 and (Th,Pu)O2 mixed oxides (MOX) have been studied using molecular dynamics (MD) simulations. The MD calculated melting temperatures (MT) of ThO2, UO2 and PuO2 using two-phase simulations, lie between 3650-3675 K, 3050-3075 K and 2800-2825 K, respectively, which match well with experiments. Variation of enthalpy increments and density with temperature, for solid and liquid phases of ThO2, PuO2 as well as the ThO2 rich part of (Th,U)O2 and (Th,Pu)O2 MOX are also reported. The MD calculated MT of (Th,U)O2 and (Th,Pu)O2 MOX show good agreement with the ideal solidus line in the high thoria section of the phase diagram, and evidence for a minima is identified around 5 atom% of ThO2 in the phase diagram of (Th,Pu)O2 MOX.

  20. An experimental study of grain growth in mixed oxide samples with various microstructures and plutonium concentrations

    NASA Astrophysics Data System (ADS)

    Van Uffelen, P.; Botazzoli, P.; Luzzi, L.; Bremier, S.; Schubert, A.; Raison, P.; Eloirdi, R.; Barker, M. A.

    2013-03-01

    Samples of (U, Pu)O2 Mixed Oxide (MOX) with various microstructure and plutonium contents ranging between 4% and 25% have been submitted to a series of heat treatments in order to assess grain growth between 1350 and 1750 °C. XRD measurements on the samples indicated that they were not affected by modifications in the oxygen-to-metal ratio during annealing. The grain size distributions inferred by means of image analysis of metallographic pictures reveal that, when taking into account the experimental uncertainties, the grain growth kinetics are similar to those observed in conventional UO2 fuel that was also tested under the same conditions. An analysis of experimental data available in the open literature for both UO2 and MOX fuel leads to the same conclusion. It is therefore suggested that grain growth models for UO2 fuel can be applied to MOX fuel for fuel performance simulations, when taking into consideration the uncertainties pertaining to grain growth measurements.

  1. Improved layered mixed transition metal oxides for Li-ion batteries

    SciTech Connect

    Doeff, Marca M.; Conry, Thomas; Wilcox, James

    2010-03-05

    Recent work in our laboratory has been directed towards development of mixed layered transition metal oxides with general composition Li[Ni, Co, M, Mn]O2 (M=Al, Ti) for Li ion battery cathodes. Compounds such as Li[Ni1/3Co1/3Mn1/3]O2 (often called NMCs) are currently being commercialized for use in consumer electronic batteries, but the high cobalt content makes them too expensive for vehicular applications such as electric vehicles (EV), plug-in hybrid electric vehicles (PHEVs), or hybrid electric vehicles (HEVs). To reduce materials costs, we have explored partial or full substitution of Co with Al, Ti, and Fe. Fe substitution generally decreases capacity and results in poorer rate and cycling behavior. Interestingly, low levels of substitution with Al or Ti improve aspects of performance with minimal impact on energy densities, for some formulations. High levels of Al substitution compromise specific capacity, however, so further improvements require that the Ni and Mn content be increased and Co correspondingly decreased. Low levels of Al or Ti substitution can then be used offset negative effects induced by the higher Ni content. The structural and electrochemical characterization of substituted NMCs is presented in this paper.

  2. Mesoporous mixed metal oxides derived from P123-templated Mg-Al layered double hydroxides

    SciTech Connect

    Wang Jun; Zhou Jideng; Li Zhanshuang; He Yang; Lin Shuangshuang; Liu Qi; Zhang Milin; Jiang Zhaohua

    2010-11-15

    We report the preparation of mesoporous mixed metal oxides (MMOs) through a soft template method. Different amounts of P123 were used as structure directing agent to synthesize P123-templated Mg-Al layered double hydroxides (LDHs). After calcination of as-synthesized LDHs at 500 {sup o}C, the ordered mesopores were obtained by removal of P123. The mesoporous Mg-Al MMOs fabricated by using 2 wt% P123 exhibited a high specific surface area of 108.1 m{sup 2}/g, and wide distribution of pore size (2-18 nm). An investigation of the 'memory effect' of the mesoporous MMOs revealed that they were successfully reconstructed to ibuprofen intercalated LDHs having different gallery heights, which indicated different intercalation capacities. Due to their mesoporosity these unique MMOs have particular potential as drug or catalyst carriers. - Graphical abstract: Ordered mesoporous Mg-Al MMOs can be obtained through the calcination of P123-templated Mg-Al-CO{sub 3} LDHs. The pore diameter is 2.2 nm. At the presence of ibuprofen, the Mg-Al MMOs can recover to Mg-Al-IBU LDHs, based on its 'remember effect'. Display Omitted

  3. Chemical bonds and vibrational properties of ordered (U, Np, Pu) mixed oxides

    NASA Astrophysics Data System (ADS)

    Yang, Yu; Zhang, Ping

    2013-01-01

    We use density functional theory +U to investigate the chemical bonding characters and vibrational properties of the ordered (U, Np, Pu) mixed oxides (MOXs), UNpO4,NpPuO4, and UPuO4. It is found that the 5f electronic states of different actinide elements keep their localized characters in all three MOXs. The occupied 5f electronic states of different actinide elements do not overlap with each other and tend to distribute over the energy band gap of the other actinide element's 5f states. As a result, the three ordered MOXs all show smaller band gaps than those of the component dioxides, with values of 0.91, 1.47, and 0.19 eV for UNpO4,NpPuO4, and UPuO4, respectively. Through careful charge density analysis, we further show that the U-O and Pu-O bonds in MOXs show more ionic character than in UO2 and PuO2, while the Np-O bonds show more covalent character than in NpO2. The change in covalencies in the chemical bonds leads to vibrational frequencies of oxygen atoms that are different in MOXs.

  4. Integrated demonstration of molten salt oxidation with salt recycle for mixed waste treatment

    SciTech Connect

    Hsu, P.C.

    1997-11-01

    Molten Salt Oxidation (MSO) is a thermal, nonflame process that has the inherent capability of completely destroying organic constituents of mixed wastes, hazardous wastes, and energetic materials while retaining inorganic and radioactive constituents in the salt. For this reason, MSO is considered a promising alternative to incineration for the treatment of a variety of organic wastes. Lawrence Livermore National Laboratory (LLNL) has prepared a facility and constructed an integrated pilot-scale MSO treatment system in which tests and demonstrations are performed under carefully controlled (experimental) conditions. The system consists of a MSO processor with dedicated off-gas treatment, a salt recycle system, feed preparation equipment, and equipment for preparing ceramic final waste forms. This integrated system was designed and engineered based on laboratory experience with a smaller engineering-scale reactor unit and extensive laboratory development on salt recycle and final forms preparation. In this paper we present design and engineering details of the system and discuss its capabilities as well as preliminary process demonstration data. A primary purpose of these demonstrations is identification of the most suitable waste streams and waste types for MSO treatment.

  5. Nitric Oxide PLIF Visualization of Simulated Fuel-Air Mixing in a Dual-Mode Scramjet

    NASA Technical Reports Server (NTRS)

    Cantu, Luca M. L.; Gallo, Emanuela C. A.; Cutler, Andrew D.; Bathel, Brett F.; Danehy, Paul M.; Rockwell, Robert D.; Goyne, Christopher P.; McDaniel, James C.

    2015-01-01

    Nitric oxide (NO) planar induced laser fluorescence (PLIF) measurements have been performed in a small scale scramjet combustor at the University of Virginia Aerospace Research Laboratory at nominal simulated Mach 5 flight. A mixture of NO and N2 was injected at the upstream end of the inlet isolator as a surrogate for ethylene fuel, and the mixing of this fuel simulant was studied with and without a shock train. The shock train was produced by an air throttle, which simulated the blockage effects of combustion downstream of the cavity flame holder. NO PLIF signal was imaged in a plane orthogonal to the freestream at the leading edge of the cavity. Instantaneous planar images were recorded and analyzed to identify the most uniform cases, which were achieved by varying the location of the fuel injection and shock train. This method was used to screen different possible fueling configurations to provide optimized test conditions for follow-on combustion measurements using ethylene fuel. A theoretical study of the selected NO rotational transitions was performed to obtain a LIF signal that is linear with NO mole fraction and approximately independent of pressure and temperature.

  6. Survey of Worldwide Light Water Reactor Experience with Mixed Uranium-Plutonium Oxide Fuel

    SciTech Connect

    Cowell, B.S.; Fisher, S.E.

    1999-02-01

    The US and the Former Soviet Union (FSU) have recently declared quantities of weapons materials, including weapons-grade (WG) plutonium, excess to strategic requirements. One of the leading candidates for the disposition of excess WG plutonium is irradiation in light water reactors (LWRs) as mixed uranium-plutonium oxide (MOX) fuel. A description of the MOX fuel fabrication techniques in worldwide use is presented. A comprehensive examination of the domestic MOX experience in US reactors obtained during the 1960s, 1970s, and early 1980s is also presented. This experience is described by manufacturer and is also categorized by the reactor facility that irradiated the MOX fuel. A limited summary of the international experience with MOX fuels is also presented. A review of MOX fuel and its performance is conducted in view of the special considerations associated with the disposition of WG plutonium. Based on the available information, it appears that adoption of foreign commercial MOX technology from one of the successful MOX fuel vendors will minimize the technical risks to the overall mission. The conclusion is made that the existing MOX fuel experience base suggests that disposition of excess weapons plutonium through irradiation in LWRs is a technically attractive option.

  7. Defect physics vis-à-vis electrochemical performance in layered mixed-metal oxide cathode materials

    NASA Astrophysics Data System (ADS)

    Hoang, Khang; Johannes, Michelle

    Layered mixed-metal oxides with different compositions of (Ni,Co,Mn) [NCM] or (Ni,Co,Al) [NCA] have been used in commercial lithium-ion batteries. Yet their defect physics and chemistry is still not well understood, despite having important implications for the electrochemical performance. In this presentation, we report a hybrid density functional study of intrinsic point defects in the compositions LiNi1/3Co1/3Mn1/3O2 (NCM1/3) and LiNi1/3Co1/3Al1/3O2 (NCA1/3) which can also be regarded as model compounds for NCM and NCA. We will discuss defect landscapes in NCM1/3 and NCA1/3 under relevant synthesis conditions with a focus on the formation of metal antisite defects and its implications on the electrochemical properties and ultimately the design of NCM and NCA cathode materials.

  8. International safeguards for a modern MOX (mixed-oxide) fuel fabrication facility

    SciTech Connect

    Pillay, K.K.S.; Stirpe, D.; Picard, R.R.

    1987-03-01

    Bulk-handling facilities that process plutonium for commercial fuel cycles offer considerable challenges to nuclear materials safeguards. Modern fuel fabrication facilities that handle mixed oxides of plutonium and uranium (MOX) often have large inventories of special nuclear materials in their process lines and in storage areas for feed and product materials. In addition, the remote automated processing prevalent at new MOX facilities, which is necessary to minimize radiation exposures to personnel, tends to limit access for measurements and inspections. The facility design considered in this study incorporates all these features as well as state-of-the-art measurement technologies for materials accounting. Key elements of International Atomic Energy Agency (IAEA) safeguards for such a fuel-cycle facility have been identified in this report, and several issues of primary importance to materials accountancy and IAEA verifications have been examined. We have calculated detection sensitivities for abrupt and protracted diversions of plutonium assuming a single materials balance area for all processing areas. To help achieve optimal use of limited IAEA inspection resources, we have calculated sampling plans for attributes/variables verification. In addition, we have demonstrated the usefulness of calculating sigma/sub (MUF-D)/ and detection probabilities corresponding to specified material-loss scenarios and resource allocations. The data developed and the analyses performed during this study can assist both the facility operator and the IAEA in formulating necessary safeguards approaches and verification procedures to implement international safeguards for special nuclear materials.

  9. Safety issues in fabricating mixed oxide fuel using surplus weapons plutonium

    SciTech Connect

    Buksa, J.; Badwan, F.; Barr, M.; Motley, F.

    1998-07-01

    This paper presents an assessment of the safety issues and implications of fabricating mixed oxide (MOX) fuel using surplus weapons plutonium. The basis for this assessment is the research done at Los Alamos National Laboratory (LANL) in identifying and resolving the technical issues surrounding the production of PuO{sub 2} feed, removal of gallium from the PuO{sub 2} feed, the fabrication of test fuel, and the work done at the LANL plutonium processing facility. The use of plutonium in MOX fuel has been successfully demonstrated in Europe, where the experience has been almost exclusively with plutonium separated from commercial spent nuclear fuel. This experience in safely operating MOX fuel fabrication facilities directly applies to the fabrication and irradiation of MOX fuel made from surplus weapons plutonium. Consequently, this paper focuses on the technical difference between plutonium from surplus weapons, and light-water reactor recycled plutonium. Preliminary assessments and research lead to the conclusion that no new process or product safety concerns will arise from using surplus weapons plutonium in MOX fuel.

  10. Thermally induced growth of ZnO nanocrystals on mixed metal oxide surfaces.

    PubMed

    Inayat, Alexandra; Makky, Ayman; Giraldo, Jose; Kuhnt, Andreas; Busse, Corinna; Schwieger, Wilhelm

    2014-06-23

    An in situ method for the growth of ZnO nanocrystals on Zn/Al mixed metal oxide (MMO) surfaces is presented. The key to this method is the thermal treatment of Zn/Al layered double hydroxides (Zn/Al LDHs) in the presence of nitrate anions, which results in partial demixing of the LDH/MMO structure and the subsequent crystallization of ZnO crystals on the surface of the forming MMO layers. In a first experimental series, thermal treatment of Zn/Al LDHs with different fractions of nitrate and carbonate in the interlayer space was examined by thermogravimetry coupled with mass spectrometry (TG-MS) and in situ XRD. In a second experimental series, Zn/Al LDHs with only carbonate in the interlayer space were thermally treated in the presence of different amounts of an external nitrate source (NH4NO3). All obtained Zn/Al MMO samples were analysed by electron microscopy, nitrogen physisorption and powder X-ray diffraction. The gas phase formed during nitrate decomposition turned out to be responsible for the formation of crystalline ZnO nanoparticles. Accordingly, both interlayer nitrate and the presence of ammonium nitrate led to the formation of supported ZnO nanocrystals with mean diameters between 100 and 400 nm, and both methods offer the possibility to tailor the amount and size of the ZnO crystals by means of the amount of nitrate.

  11. Synthesis of Glycerol Carbonate by Transesterification of Glycerol with Urea Over Zn/Al Mixed Oxide.

    PubMed

    Ryu, Young Bok; Baek, Jae Ho; Kim, Yangdo; Lee, Man Sig

    2015-01-01

    Reactions of glycerol carbonate using glycerol and urea have been carried out previously using ZnSO4 and ZnO catalysts, and high yields have been reported using ZnSO4 as catalyst. However, this salt is soluble in glycerol, and recycling of catalyst is difficult after the reaction. In this study, we prepared a mixed metal oxide catalyst using Zn and Al, and this catalyst consisted of a mixture of ZnO and ZnAl2O4. We confirmed the conversion of glycerol and the yield of glycerol carbonate of the amount of Al. As a result, we obtained a yield of 82.3% and a conversion of 82.7%. In addition we obtained high yield in recycling of catalyst. The yield of the glycerol carbonate increases with an increase of acid and base site of catalysts and the highest catalytic activity was obtained when acid/base ratio was approx. 1. From this result, we may conclude that the acid and base site density and ratio of catalysts were very important parameters in the synthesis of glycerol carbonate from urea and glycerol.

  12. Development of ORIGEN Libraries for Mixed Oxide (MOX) Fuel Assembly Designs

    SciTech Connect

    Mertyurek, Ugur; Gauld, Ian C.

    2015-12-24

    In this research, ORIGEN cross section libraries for reactor-grade mixed oxide (MOX) fuel assembly designs have been developed to provide fast and accurate depletion calculations to predict nuclide inventories, radiation sources and thermal decay heat information needed in safety evaluations and safeguards verification measurements of spent nuclear fuel. These ORIGEN libraries are generated using two-dimensional lattice physics assembly models that include enrichment zoning and cross section data based on ENDF/B-VII.0 evaluations. Using the SCALE depletion sequence, burnup-dependent cross sections are created for selected commercial reactor assembly designs and a representative range of reactor operating conditions, fuel enrichments, and fuel burnup. The burnup dependent cross sections are then interpolated to provide problem-dependent cross sections for ORIGEN, avoiding the need for time-consuming lattice physics calculations. The ORIGEN libraries for MOX assembly designs are validated against destructive radiochemical assay measurements of MOX fuel from the MALIBU international experimental program. This program included measurements of MOX fuel from a 15 × 15 pressurized water reactor assembly and a 9 × 9 boiling water reactor assembly. The ORIGEN MOX libraries are also compared against detailed assembly calculations from the Phase IV-B numerical MOX fuel burnup credit benchmark coordinated by the Nuclear Energy Agency within the Organization for Economic Cooperation and Development. Finally, the nuclide compositions calculated by ORIGEN using the MOX libraries are shown to be in good agreement with other physics codes and with experimental data.

  13. Synthesis of metastable rare-earth-iron mixed oxide with the hexagonal crystal structure

    NASA Astrophysics Data System (ADS)

    Nishimura, Tatsuya; Hosokawa, Saburo; Masuda, Yuichi; Wada, Kenji; Inoue, Masashi

    2013-01-01

    Rare-earth-iron mixed oxides with the rare earth/iron ratio=1 have either orthorhombic (o-REFeO3) or hexagonal (h-REFeO3) structure. h-REFeO3 is a metastable phase and the synthesis of h-REFeO3 is usually difficult. In this work, the crystallization process of the precursors obtained by co-precipitation and Pechini methods was investigated in detail to synthesize h-REFeO3. It was found that the crystallization from amorphous to hexagonal phase and the phase transition from hexagonal to orthorhombic phase occurred at a similar temperature range for rare earth elements with small ionic radii (Er-Lu, Y). For both co-precipitation and Pechini methods, single-phase h-REFeO3 was obtained by shortening the heating time during calcination process. The hexagonal-to-orthorhombic phase transition took place by a nucleation growth mechanism and vermicular morphology of the thus-formed orthorhombic phase was observed. The hexagonal YbFeO3 had higher catalytic activity for C3H8 combustion than orthorhombic YbFeO3.

  14. Americium characterization by X-ray fluorescence and absorption spectroscopy in plutonium uranium mixed oxide

    NASA Astrophysics Data System (ADS)

    Degueldre, Claude; Cozzo, Cedric; Martin, Matthias; Grolimund, Daniel; Mieszczynski, Cyprian

    2013-06-01

    Plutonium uranium mixed oxide (MOX) fuels are currently used in nuclear reactors. The actinides in these fuels need to be analyzed after irradiation for assessing their behaviour with regard to their environment and the coolant. In this work the study of the atomic structure and next-neighbour environment of Am in the (Pu,U)O2 lattice in an irradiated (60 MW d kg-1) MOX sample was performed employing micro-X-ray fluorescence (µ-XRF) and micro-X-ray absorption fine structure (µ-XAFS) spectroscopy. The chemical bonds, valences and stoichiometry of Am (˜0.66 wt%) are determined from the experimental data gained for the irradiated fuel material examined in its peripheral zone (rim) of the fuel. In the irradiated sample Am builds up as Am3+ species within an [AmO8]13- coordination environment (e.g. >90%) and no (<10%) Am(IV) or (V) can be detected in the rim zone. The occurrence of americium dioxide is avoided by the redox buffering activity of the uranium dioxide matrix.

  15. O/M RATIO MEASUREMENT IN PURE AND MIXED OXIDE FULES - WHERE ARE WE NOW?

    SciTech Connect

    J. RUBIN; ET AL

    2000-12-01

    The oxygen-to-metal (O/M) ratio is one of the most critical parameters of nuclear fuel fabrication, and its measurement is closely monitored for manufacturing process control and to ensure the service behavior of the final product. Thermogravimetry is the most widely used method, the procedure for which has remained largely unchanged since its development some thirty years ago. It was not clear to us, however, that this method is still the optimum one in light of advances in instrumentation, and in the current regulatory environment, particularly with regard to waste management and disposal. As part of the MOX fuel fabrication program at Los Alamos, we conducted a comprehensive review of methods for O/M measurements in UO{sub 2}, PuO{sub 2} and mixed oxide fuels for thermal reactors. A concerted effort was made to access information not available in the open literature. We identified approximately thirty five experimental methods that (a) have been developed with the intent of measuring O/M, (b) provided O/M indirectly by suitable reduction of the measured data, or (c) could provide O/M data with suitable data reduction or when combined with other methods. We will discuss the relative strengths and weaknesses of these methods in their application to current routine and small-lot production environment.

  16. Development of ORIGEN Libraries for Mixed Oxide (MOX) Fuel Assembly Designs

    DOE PAGES

    Mertyurek, Ugur; Gauld, Ian C.

    2015-12-24

    In this research, ORIGEN cross section libraries for reactor-grade mixed oxide (MOX) fuel assembly designs have been developed to provide fast and accurate depletion calculations to predict nuclide inventories, radiation sources and thermal decay heat information needed in safety evaluations and safeguards verification measurements of spent nuclear fuel. These ORIGEN libraries are generated using two-dimensional lattice physics assembly models that include enrichment zoning and cross section data based on ENDF/B-VII.0 evaluations. Using the SCALE depletion sequence, burnup-dependent cross sections are created for selected commercial reactor assembly designs and a representative range of reactor operating conditions, fuel enrichments, and fuel burnup.more » The burnup dependent cross sections are then interpolated to provide problem-dependent cross sections for ORIGEN, avoiding the need for time-consuming lattice physics calculations. The ORIGEN libraries for MOX assembly designs are validated against destructive radiochemical assay measurements of MOX fuel from the MALIBU international experimental program. This program included measurements of MOX fuel from a 15 × 15 pressurized water reactor assembly and a 9 × 9 boiling water reactor assembly. The ORIGEN MOX libraries are also compared against detailed assembly calculations from the Phase IV-B numerical MOX fuel burnup credit benchmark coordinated by the Nuclear Energy Agency within the Organization for Economic Cooperation and Development. Finally, the nuclide compositions calculated by ORIGEN using the MOX libraries are shown to be in good agreement with other physics codes and with experimental data.« less

  17. Behavior of breached mixed-oxide fuel pins during off-normal high-temperature irradiation

    SciTech Connect

    Strain, R.V.; Gross, K.C.; Lambert, J.D.B. ); Colburn, R.P. ); Odo, T. )

    1992-02-01

    This paper reports on a test containing 19 mixed-oxide fuel pins that was operated in the Experimental Breeder Reactor II (EBR-II) at peak cladding temperatures near 800{degrees} C. Two test pins that had been designed to fail at {approximately}5 at.% burnup and two low-burnup environmental pins failed and then were operated in the run beyond cladding breach mode for 22 days. Very high delayed neutron signals occurred during the irradiation of the test, and it was terminated as a result of high delayed neutron signals and evidence of plutonium in the coolant. Each of the four pins exhibited multiple breaches in the upper half of the fuel column. Measurements of fuel trapped on the filter section of a deposition sampler that was located above the test indicated that {approximately}2.7 g of fuel was lost during the irradiation. Postirradiation examination of the pins indicates that most of the fuel was lost from a single pin. The fuel loss resulted in an increase in the background delayed neutron signal but had no other deleterious long-term effect on the operation of the EBR-II.

  18. Performance of IN-706 and PE-16 cladding in mixed-oxide fuel pins. [LMFBR

    SciTech Connect

    Makenas, B.J.; Lawrence, L.A.; Jensen, B.W.

    1982-05-01

    Iron-nickel base, precipitation-strengthened alloys, IN-706 and PE-16, advanced alloy cladding considered for breeder reactor applications, were irradiated in mixed-oxide fuel pins in the HEDL-P-60 subassembly in EBR-II. Initial selection of candidate advanced alloys was done using only nonfueled materials test results. However, to establish the performance characteristics of the candidate cladding alloys, i.e., dimensional stability and structural integrity under conditions of high neutron flux, elevated temperature, and applied stress, it was necessary to irradiate fuel pins under typical operating conditions. Fuel pins were clad with solution treated IN-706 and PE-16 and irradiated to peak fluences of 6.1 x 10/sup 22/ n/cm/sup 2/ (E > .1 MeV) and 8.8 x 10/sup 22/ n/cm/sup 2/ (E > .1 MeV) respectively. Fabrication and operating parameters for the fuel pins with the advanced cladding alloy candidates are summarized. Irradiation of HEDL-P-60 was interrupted with the breach of a pin with IN-706 cladding at 5.1 at % and the test was terminated with cladding breach in a pin with PE-16 cladding at 7.6 at %.

  19. Evaluation of the advanced mixed oxide fuel test FO-2 irradiated in Fast Flux Test Facility

    SciTech Connect

    Gilpin, L.L.; Baker, R.B.; Chastain, S.A.

    1989-05-01

    The advanced mixed-oxide (UO/sub 2/-PuO/sub 2/) test assembly, FO-2, irradiated in the Fast Flux Test Facility (FFTF), is undergoing postirradiation examination (PIE). This is one of the first FFTF tests examined that used the advanced ferrite-martensite alloy, HT9, which is highly resistant to irradiation swelling. The FO-2 includes the first annular fueled pins irradiated in FFTF to undergo destructive examination. The FO-2 is a lead assembly for the ongoing FFTF Core Demonstration Experiment (CDE) (Leggett and Omberg 1987) and was designed to evaluate the effects of fuel design variables, such as pellet density, smeared density, and fuel form (annular or solid fuel), on advanced pin performance. The assembly contains a total of 169 fuel pins of twelve different types. The test was irradiated for 312 equivalent full power days (EFPD) in FFTF. It had a peak pin power of 13.7 kW/ft and reached a peak burnup of 65.2 MWd/kgM with a peak fast fluence of 9.9 /times/ 10/sup 22/ n/cm/sup 2/ (E > 0.1 MeV). This document discusses the test and its results. 6 refs., 19 figs., 4 tabs.

  20. Room-temperature oxidation of hypostoichiometric uranium-plutonium mixed oxides U1-yPuyO2-x - A depth-selective approach

    NASA Astrophysics Data System (ADS)

    Vauchy, Romain; Robisson, Anne-Charlotte; Belin, Renaud C.; Martin, Philippe M.; Scheinost, Andreas C.; Hodaj, Fiqiri

    2015-10-01

    In the present work, TGA, XAS and XRD were used to evidence the spontaneous oxidation of biphasic U1-yPuyO2-x samples, with y = 0.28 and 0.45, at room temperature and upon exposure to low moisture and oxygen contents. The oxidation occurs within very short timescales (e.g. O/M ratio increasing from 1.94 to 1.98 within ∼1 μm surface layer in ∼50 h). The combined use of these three complementary methods offered a depth-selective approach from the sample's bulk to its surface and allowed a thorough understanding of the underlying processes involved during the formation of the oxidized layer and of its thickening with time. We believe our results to be of interest in the prospect of fabricating hypo-stoichiometric uranium-plutonium mixed oxides since mastering the oxygen content is a crucial point for many of the fuel properties.

  1. Role of flue gas components in mercury oxidation over TiO2 supported MnOx-CeO2 mixed-oxide at low temperature.

    PubMed

    Li, Hailong; Wu, Chang-Yu; Li, Ying; Li, Liqing; Zhao, Yongchun; Zhang, Junying

    2012-12-01

    MnO(x)-CeO(2) mixed-oxide supported on TiO(2) (Mn-Ce/Ti) was synthesized by an ultrasound-assisted impregnation method and employed to oxidize elemental mercury (Hg(0)) at 200°C in simulated coal combustion flue gas. Over 90% of Hg(0) oxidation was achieved on the Mn-Ce/Ti catalyst at 200°C under simulated flue gas representing those from burning low-rank coals with a high gas hourly space velocity of 60,000 h(-1). Gas-phase O(2) regenerated the lattice oxygen and replenished the chemisorbed oxygen, which facilitated Hg(0) oxidation. HCl was the most effective flue gas component responsible for Hg(0) oxidation. 10 ppm HCl plus 4% O(2) resulted in 100% Hg(0) oxidation under the experimental conditions. SO(2) competed with Hg(0) for active sites, thus deactivating the catalyst's capability in oxidizing Hg(0). NO covered the active sites and consumed surface oxygen active for Hg(0) oxidation, hence limiting Hg(0) oxidation. Water vapor showed prohibitive effect on Hg(0) oxidation due to its competition with HCl and Hg(0) for active adsorption sites. This study provides information about the promotional or inhibitory effects of individual flue gas components on Hg(0) oxidation over a highly effective Mn-Ce/Ti catalyst. Such knowledge is of fundamental importance for industrial applications of the Mn-Ce/Ti catalyst in coal-fired power plants. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Superior Dielectric Performance of Engineering Thermoplastic as a Result of In situ Embedding of Nanoscale Mixed-Phase Molybdenum Oxide

    NASA Astrophysics Data System (ADS)

    Qureshi, Nilam; Shinde, Manish; Ratheesh, R.; Bhalerao, Anand; Kale, Bharat; Mulik, Uttam; Amalnerkar, Dinesh P.

    2015-07-01

    To facilitate in situ generation of single and mixed-phase molybdenum oxide on the nanoscale in a network of polyphenylene sulfide (PPS), a novel polymer-inorganic solid-state reaction is proposed. Ammonium molybdate was homogeneously mixed with PPS in 1:1 molar ratio and heated at 285°C for different times (6 h, 24 h, or 48 h) under ambient conditions. The products were characterized by x-ray diffractometry, field emission scanning electron microscopy, and transmission electron microscopy. Structural investigations revealed the co-existence of mix-phased molybdenum oxide, i.e. dominant orthorhombic α-MoO3, and minor monoclinic Mo8O23 phases, within the modified PPS matrix. The resulting molybdenum oxide nanostructures had rod and sheet-like morphology in the PPS matrix. Dielectric measurements on pellets prepared from the resulting nanocomposites revealed improvement of the dielectric properties compared with values reported for pure PPS. The resulting nano-composites may exhibit properties synergistically derived from those of their components (molybdenum oxide and PPS), i.e. lower dielectric constant and loss tangent, enabling application as relatively high-temperature capacitors.

  3. Decolourisation of Acid Orange 7 recalcitrant auto-oxidation coloured by-products using an acclimatised mixed bacterial culture.

    PubMed

    Bay, Hui Han; Lim, Chi Kim; Kee, Thuan Chien; Ware, Ismail; Chan, Giek Far; Shahir, Shafinaz; Ibrahim, Zaharah

    2014-03-01

    This study focuses on the biodegradation of recalcitrant, coloured compounds resulting from auto-oxidation of Acid Orange 7 (AO7) in a sequential facultative anaerobic-aerobic treatment system. A novel mixed bacterial culture, BAC-ZS, consisting of Brevibacillus panacihumi strain ZB1, Lysinibacillus fusiformis strain ZB2, and Enterococcus faecalis strain ZL bacteria were isolated from environmental samples. The acclimatisation of the mixed culture was carried out in an AO7 decolourised solution. The acclimatised mixed culture showed 98 % decolourisation within 2 h of facultative anaerobic treatment using yeast extract and glucose as co-substrate. Subsequent aerobic post treatment caused auto-oxidation reaction forming dark coloured compounds that reduced the percentage decolourisation to 73 %. Interestingly, further agitations of the mixed culture in the solution over a period of 48 h significantly decolourise the coloured compounds and increased the decolourisation percentage to 90 %. Analyses of the degradation compounds using UV-visible spectrophotometer, Fourier transform infrared spectroscopy (FTIR) and high performance liquid chromatography (HPLC) showed complete degradation of recalcitrant AO7 by the novel BAC-ZS. Phytotoxicity tests using Cucumis sativus confirmed the dye solution after post aerobic treatment were less toxic compared to the parent dye. The quantitative real-time PCR revealed that E. faecalis strain ZL was the dominant strain in the acclimatised mix culture.

  4. Synthesis of Mixed Cu/Ce Oxide Nanoparticles by the Oil-in-Water Microemulsion Reaction Method.

    PubMed

    Pemartin-Biernath, Kelly; Vela-González, Andrea V; Moreno-Trejo, Maira B; Leyva-Porras, César; Castañeda-Reyna, Iván E; Juárez-Ramírez, Isaías; Solans, Conxita; Sánchez-Domínguez, Margarita

    2016-06-16

    Cerium oxide and mixed Cu/Ce oxide nanoparticles were prepared by the oil-in-water (O/W) microemulsion reaction method in mild conditions. The Cu/Ce molar ratio was varied between 0/100 and 50/50. According to X-ray diffraction (XRD), below 30/70 Cu/Ce molar ratio, the materials presented a single phase consistent with cubic fluorite CeO₂. However, above Cu/Ce molar ratio 30/70, an excess monoclinic CuO phase in coexistence with the predominant Cu/Ce mixed oxide was detected by XRD and High-Resolution Transmission Electron Microscopy (HRTEM). Raman spectroscopy showed that oxygen vacancies increased significantly as the Cu content was increased. Band gap (Eg) was investigated as a function of the Cu/Ce molar ratio, resulting in values from 2.91 eV for CeO₂ to 2.32 eV for the mixed oxide with 30/70 Cu/Ce molar ratio. These results indicate that below 30/70 Cu/Ce molar ratio, Cu(2+) is at least partially incorporated into the ceria lattice and very well dispersed in general. In addition, the photodegradation of Indigo Carmine dye under visible light irradiation was explored for selected samples; it was shown that these materials can remove such contaminants, either by adsorption and/or photodegradation. The results obtained will encourage investigation into the optical and photocatalytic properties of these mixed oxides, for widening their potential applications.

  5. Synthesis of Mixed Cu/Ce Oxide Nanoparticles by the Oil-in-Water Microemulsion Reaction Method

    PubMed Central

    Pemartin-Biernath, Kelly; Vela-González, Andrea V.; Moreno-Trejo, Maira B.; Leyva-Porras, César; Castañeda-Reyna, Iván E.; Juárez-Ramírez, Isaías; Solans, Conxita; Sánchez-Domínguez, Margarita

    2016-01-01

    Cerium oxide and mixed Cu/Ce oxide nanoparticles were prepared by the oil-in-water (O/W) microemulsion reaction method in mild conditions. The Cu/Ce molar ratio was varied between 0/100 and 50/50. According to X-ray diffraction (XRD), below 30/70 Cu/Ce molar ratio, the materials presented a single phase consistent with cubic fluorite CeO2. However, above Cu/Ce molar ratio 30/70, an excess monoclinic CuO phase in coexistence with the predominant Cu/Ce mixed oxide was detected by XRD and High-Resolution Transmission Electron Microscopy (HRTEM). Raman spectroscopy showed that oxygen vacancies increased significantly as the Cu content was increased. Band gap (Eg) was investigated as a function of the Cu/Ce molar ratio, resulting in values from 2.91 eV for CeO2 to 2.32 eV for the mixed oxide with 30/70 Cu/Ce molar ratio. These results indicate that below 30/70 Cu/Ce molar ratio, Cu2+ is at least partially incorporated into the ceria lattice and very well dispersed in general. In addition, the photodegradation of Indigo Carmine dye under visible light irradiation was explored for selected samples; it was shown that these materials can remove such contaminants, either by adsorption and/or photodegradation. The results obtained will encourage investigation into the optical and photocatalytic properties of these mixed oxides, for widening their potential applications. PMID:28773602

  6. Enhanced magnetization in highly crystalline and atomically mixed bcc Fe-Co nanoalloys prepared by hydrogen reduction of oxide composites

    NASA Astrophysics Data System (ADS)

    Sharif, Md Jafar; Yamauchi, Miho; Toh, Shoichi; Matsumura, Syo; Noro, Shin-Ichiro; Kato, Kenichi; Takata, Masaki; Tsukuda, Tatsuya

    2013-01-01

    FexCo100-x nanoalloys (NAs) with 20 <= x <= 80 were prepared by hydrogen reduction of Fe-Co oxide nano-composites, which were composed of mixed phases (or domains) of Fe2O3 and CoO. In situ X-ray diffraction (XRD) measurements using synchrotron radiation clearly showed development of a solid-solution Fe-Co phase by hydrogen reduction from the oxide composites. High-resolution transmission electron microscopy (TEM), high-angle annular dark-field scanning TEM and powder XRD revealed that Fe-Co NAs form a single crystal structure and the two elements are mixed homogeneously. The saturation magnetization depends on the size and metal composition and shows the highest value (250 emu g-1) for the Fe70Co30 NA in the size range of 30-55 nm, which is comparable to that of the Fe70Co30 bulk alloy (245 emu g-1). This high magnetization is attributable to high crystallinity and homogeneous mixing of constituent atoms, which are attained by thermal treatment of oxide phases under a hydrogen atmosphere.FexCo100-x nanoalloys (NAs) with 20 <= x <= 80 were prepared by hydrogen reduction of Fe-Co oxide nano-composites, which were composed of mixed phases (or domains) of Fe2O3 and CoO. In situ X-ray diffraction (XRD) measurements using synchrotron radiation clearly showed development of a solid-solution Fe-Co phase by hydrogen reduction from the oxide composites. High-resolution transmission electron microscopy (TEM), high-angle annular dark-field scanning TEM and powder XRD revealed that Fe-Co NAs form a single crystal structure and the two elements are mixed homogeneously. The saturation magnetization depends on the size and metal composition and shows the highest value (250 emu g-1) for the Fe70Co30 NA in the size range of 30-55 nm, which is comparable to that of the Fe70Co30 bulk alloy (245 emu g-1). This high magnetization is attributable to high crystallinity and homogeneous mixing of constituent atoms, which are attained by thermal treatment of oxide phases under a hydrogen

  7. Configurational electronic entropy and the phase diagram of mixed-valence oxides: the case of LixFePO4.

    PubMed

    Zhou, Fei; Maxisch, Thomas; Ceder, Gerbrand

    2006-10-13

    We demonstrate that configurational electronic entropy, previously neglected, in ab initio thermodynamics of materials can qualitatively modify the finite-temperature phase stability of mixed-valence oxides. While transformations from low-T ordered or immiscible states are almost always driven by configurational disorder (i.e., random occupation of lattice sites by multiple species), in FePO4-LiFePO4 the formation of a solid solution is almost entirely driven by electronic rather than ionic configurational entropy. We argue that such an electronic entropic mechanism may be relevant to most other mixed-valence systems.

  8. Enhanced photoassisted water electrolysis using vertically oriented anodically fabricated Ti-Nb-Zr-O mixed oxide nanotube arrays.

    PubMed

    Allam, Nageh K; Alamgir, Faisal; El-Sayed, Mostafa A

    2010-10-26

    Self-ordered, highly oriented arrays of titanium-niobium-zirconium mixed oxide nanotube films were fabricated by the anodization of Ti(35)Nb(5)Zr alloy in aqueous and formamide electrolytes containing NH(4)F at room temperature. The nanostructure topology was found to depend on the nature of the electrolyte and the applied voltage. Our results demonstrate the possibility to grow mixed oxide nanotube array films possessing several-micrometer-thick layers by a simple and straightforward electrochemical route. The fabricated Ti-Nb-Zr-O nanotubes showed a ∼17.5% increase in the photoelectrochemical water oxidation efficiency as compared to that measured for pure TiO(2) nanotubes under UV illumination (100 mW/cm(2), 320-400 nm, 1 M KOH). This enhancement could be related to a combination of the effect of the thin wall of the fabricated Ti-Nb-Zr-O nanotubes (10 ± 2 nm) and the formation of Zr oxide and Nb oxide layers on the nanotube surface, which seems to slow down the electron-hole recombination in a way similar to that reported for Grätzel solar cells.

  9. Bioleaching of metal from municipal waste incineration fly ash using a mixed culture of sulfur-oxidizing and iron-oxidizing bacteria.

    PubMed

    Ishigaki, Tomonori; Nakanishi, Akane; Tateda, Masafumi; Ike, Michihiko; Fujita, Masanori

    2005-08-01

    We investigated the behavior and characteristics of metal leaching from municipal solid waste incineration (MSWI) fly ash among pure cultures of a sulfur-oxidizing bacterium (SOB) and an iron-oxidizing bacterium (IOB) and a mixed culture. The IOB has a high metal-leaching ability, though its tolerability against the ash addition is low. The SOB might better tolerate an increase in ash addition than the IOB, though metal leaching ability of the SOB is limited. Mixed culture could compensate for these deficiencies, and high metal leachability was exhibited in the 1% ash culture, i.e., 67% and 78% of leachabilities for Cu and Zn, respectively, and 100% for Cr and Cd. Furthermore, comparably high leachabilities such as 42% and 78% for Cu and Zn were observed even in the 3% ash cultures. Characterization of metal leaching by the mixed culture revealed that the acidic and oxidizing condition had remained stable thorough the experimental period. Ferric iron remained in the mixed culture, and the metal leaching was enhanced by redox mechanisms coupling with the leaching by sulfate. An increase of ferrous iron enhanced the Cr, Cu, and As leaching. The optimum concentration of sulfur existed for As and Cr (5 gl(-1)) and Cu (2 gl(-1)). The presence of the degradable and non-degradable organic compound that must be existed in the natural environment or waste landfills made no significant change in the leachability of metals other than Zn. These results suggested that bioleaching using a mixed culture of SOB and IOB is a promising technology for recovering the valuable metals from MSWI fly ash.

  10. Improved performances of organic light-emitting diodes with mixed layer and metal oxide as anode buffer

    NASA Astrophysics Data System (ADS)

    Xue, Qin; Liu, Shouyin; Zhang, Shiming; Chen, Ping; Zhao, Yi; Liu, Shiyong

    2013-01-01

    We fabricated organic light-emitting devices (OLEDs) employing 2-methyl-9,10-di(2-naphthyl)-anthracene (MADN) as hole-transport material (HTM) instead of commonly used N,N'-bis-(1-naphthyl)-N,N'-diphenyl,1,1'-biphenyl-4,4'-diamine (NPB). After inserting a 0.9 nm thick molybdenum oxide (MoOx) layer at the indium tin oxide (ITO)/MADN interface and a 5 nm thick mixed layer at the organic/organic heterojunction interface, the power conversion efficiency of the device can be increased by 4-fold.

  11. Electric conductance of dispersions of metal oxides in solutions of weak acids in mixed dioxane-water solvents.

    PubMed

    Kosmulski, Marek; Mączka, Edward

    2012-08-15

    The electric conductance of solutions of sulfuric, oxalic, benzoic, and salicylic acid (up to 0.02 M) in dioxane-water mixed solvents (90% and 93% dioxane by mass) has been studied in the presence and absence of TiO(2) and Al(2)O(3) (0.5-5% by mass). TiO(2) and Al(2)O(3) enhanced the conductance of solutions of organic acids in aqueous dioxane. The conductance is interpreted in terms of adsorption of acid in molecular form, dissolution of ceramic oxides in form of anionic complexes, and leaching of acidic impurities from ceramic oxides.

  12. Mixed-oxide fuel decay heat analysis for BWR LOCA safety evaluation

    SciTech Connect

    Chiang, R. T.

    2013-07-01

    The mixed-oxide (MOX) fuel decay heat behavior is analyzed for Boiling Water Reactor (BWR) Loss of Coolant Accident (LOCA) safety evaluation. The physical reasoning on why the decay heat power fractions of MOX fuel fission product (FP) are significantly lower than the corresponding decay heat power fractions of uranium-oxide (UOX) fuel FP is illustrated. This is primarily due to the following physical phenomena. -The recoverable energies per fission of plutonium (Pu)-239 and Pu-241 are significantly higher than those of uranium (U)-235 and U-238. Consequently, the fission rate required to produce the same amount of power in MOX fuel is significantly lower than that in UOX fuel, which leads to lower subsequent FP generation rate and associated decay heat power in MOX fuel than those in UOX fuel. - The effective FP decay energy per fission of Pu-239 is significantly lower than the corresponding effective FP decay energy per fission of U-235, e.g., Pu-239's 10.63 Mega-electron-Volt (MeV) vs. U-235's 12.81 MeV at the cooling time 0.2 second. This also leads to lower decay heat power in MOX fuel than that in UOX fuel. The FP decay heat is shown to account for more than 90% of the total decay heat immediately after shutdown. The FP decay heat results based on the American National Standard Institute (ANSI)/American Nuclear Society (ANS)-5.1-1979 standard method are shown very close to the corresponding FP decay heat results based on the ANSI/ANS-5.1-2005 standard method. The FP decay heat results based on the ANSI/ANS-5.1-1979 simplified method are shown very close to but mostly slightly lower than the corresponding FP decay heat results based on the ANSI/ANS-5.1-1971 method. The FP decay heat results based on the ANSI/ANS-5.1-1979 simplified method or the ANSI/ANS-5.1-1971 method are shown significantly larger than the corresponding FP decay heat results based on the ANSI/ANS-5.1-1979 standard method or the ANSI/ANS-5.1-2005 standard method. (authors)

  13. Use of Raman spectroscopy to assess the efficiency of MgAl mixed oxides in removing cyanide from aqueous solutions

    NASA Astrophysics Data System (ADS)

    Cosano, Daniel; Esquinas, Carlos; Jiménez-Sanchidrián, César; Ruiz, José Rafael

    2016-02-01

    Calcining magnesium/aluminium layered double hydroxides (Mg/Al LDHs) at 450 °C provides excellent sorbents for removing cyanide from aqueous solutions. The process is based on the "memory effect" of LDHs; thus, rehydrating a calcined LDH in an aqueous solution restores its initial structure. The process, which conforms to a first-order kinetics, was examined by Raman spectroscopy. The metal ratio of the LDH was found to have a crucial influence on the adsorption capacity of the resulting mixed oxide. In this work, Raman spectroscopy was for the first time use to monitor the adsorption process. Based on the results, this technique is an effective, expeditious choice for the intended purpose and affords in situ monitoring of the adsorption process. The target solids were characterized by using various instrumental techniques including X-ray diffraction spectroscopy, which confirmed the layered structure of the LDHs and the periclase-like structure of the mixed oxides obtained by calcination.

  14. Preparation and characterization of vanadia-titania mixed oxide for immobilization of Serratia rubidaea CCT 5732 and Klebsiella marcescens bacteria

    SciTech Connect

    Saragiotto Colpini, Leda Maria Correia Goncalves, Regina A.; Goncalves, Jose Eduardo; Maieru Macedo Costa, Creusa

    2008-08-04

    Vanadia-titania mixed oxide was synthesized by sol-gel method and characterized by several techniques. Texturally, it is formed by mesopores and presents high-specific surface area and controlled porosity. Scanning electron microscopy revealed that vanadium is homogeneously distributed in the material. Structurally, it was possible to identify characteristic V=O stretching bands by IR. The analysis of X-ray diffraction showed that the material, particularly vanadium, is highly dispersed. Application experiments were carried out through the immobilization of Serratia rubidae CCT 5732 and Klebsiella marcescens bacteria by adsorption on the surface of mixed oxide. The micrographies revealed that the bacteria were adsorbed on the entire support, with average surface densities of 8.55 x 10{sup 11} cells/m{sup 2} (Serratia rubidae CCT 5732) and 3.40 x 10{sup 11} cells/m{sup 2} (K. marcescens)

  15. Thermally and chemically stable mixed valence copper oxide cluster ions revealed by post heating.

    PubMed

    Morita, Keisuke; Sakuma, Kazuko; Miyajima, Ken; Mafuné, Fumitaka

    2013-10-10

    Copper oxide clusters, Cu(n)O(m)(+) (n = 5-12), were prepared in the gas phase by laser ablation of a copper metal rod in the presence of oxygen diluted in He as the carrier gas. The stoichiometry of the cluster ions was investigated using mass spectrometry. The number ratio of copper atoms and oxygen atoms in Cu(n)O(m)(+) was distributed from n:m = 1:1-3:2, which was not affected significantly by the concentration of oxygen in the carrier gas as long as it exceeded 2%. When the cluster ions were heated up to 573 K downstream of the cluster source (post heating), Cu(n)O(m)(+) (n:m ≈ 3:2) clusters were selectively and dominantly formed as a result of thermal dissociation. No further changes in the ratio were observed when the clusters were heated up to 623 K. From the stoichiometry, Cu(n)O(m)(+) is considered to comprise both Cu(I) and Cu(II). Hence, the mixed valence states are found to be thermally stable for the small clusters in the gas phase, but they are not stable in the bulk phase. In addition to the thermal stability, we observed reactivity of Cu(n)O(m)(+) with CO molecules. It was found that Cu12O8(+) hardly binds to CO and that Cu9O6(+) and Cu6O4(+) along with other clusters with n:m ≈ 3:2 bind to CO very weakly, whereas CO attaches strongly to oxygen-rich clusters with release of an oxygen molecule.

  16. Spatial and temporal variability of nitrous oxide emissions in a mixed farming landscape of Denmark

    NASA Astrophysics Data System (ADS)

    Schelde, K.; Cellier, P.; Bertolini, T.; Dalgaard, T.; Weidinger, T.; Theobald, M. R.; Olesen, J. E.

    2012-08-01

    Nitrous oxide (N2O) emissions from agricultural land are variable at the landscape scale due to variability in land use, management, soil type, and topography. A field experiment was carried out in a typical mixed farming landscape in Denmark, to investigate the main drivers of variations in N2O emissions, measured using static chambers. Measurements were made over a period of 20 months, and sampling was intensified during two weeks in spring 2009 when chambers were installed at ten locations or fields to cover different crops and topography and slurry was applied to three of the fields. N2O emissions during spring 2009 were relatively low, with maximum values below 20 ng N m-2 s-1. This applied to all land use types including winter grain crops, grasslands, meadows, and wetlands. Slurry application to wheat fields resulted in short-lived two-fold increases in emissions. The moderate N2O fluxes and their moderate response to slurry application were attributed to dry soil conditions due to the absence of rain during the four previous weeks. Cumulative annual emissions from two arable fields that were both fertilized with mineral fertilizer and manure were large (17 kg N2O-N ha-1 yr-1 and 5.5 kg N2O-N ha-1 yr-1) during the previous year when soil water conditions were favourable for N2O production during the first month following fertilizer application. Our findings confirm the importance of weather conditions as well as nitrogen management on N2O fluxes.

  17. Electrolytic trichloroethene degradation using mixed metal oxide coated titanium mesh electrodes.

    PubMed

    Petersen, Matthew A; Sale, Thomas C; Reardon, Kenneth F

    2007-04-01

    Electrochemical systems provide a low cost, versatile, and controllable platform to potentially treat contaminants in water, including chlorinated solvents. Relative to bare metal or noble metal amended materials, dimensionally stable electrode materials such as mixed metal oxide coated titanium (Ti/MMO) have advantages in terms of stability and cost, important factors for sustainable remediation solutions. Here, we report the use of Ti/MMO as an effective cathode substrate for treatment of trichloroethene (TCE). TCE degradation in a batch reactor was measured as the decrease of TCE concentration over time and the corresponding evolution of chloride; notably, this occurred without the formation of commonly encountered chlorinated intermediates. The reaction was initiated when Ti/MMO cathode potentials were less than -0.8 V vs. the standard hydrogen electrode, and the rate of TCE degradation increased linearly with progressively more negative potentials. The maximum pseudo-first-order heterogeneous rate constant was approximately 0.05 cm min(-1), which is comparable to more commonly used cathode materials such as nickel. In laboratory-scale flow-though column reactors designed to simulate permeable reactive barriers (PRBs), TCE concentrations were reduced by 80-90%. The extent of TCE flux reduction increased with the applied potential difference across the electrodes and was largely insensitive to the spacing distance between the electrodes. This is the first report of the electrochemical reduction of a chlorinated organic contaminant at a Ti/MMO cathode, and these results support the use of this material in PRBs as a possible approach to manage TCE plume migration.

  18. 3D carbon/cobalt-nickel mixed-oxide hybrid nanostructured arrays for asymmetric supercapacitors.

    PubMed

    Zhu, Jianhui; Jiang, Jian; Sun, Zhipeng; Luo, Jingshan; Fan, Zhanxi; Huang, Xintang; Zhang, Hua; Yu, Ting

    2014-07-23

    The electrochemical performance of supercapacitors relies not only on the exploitation of high-capacity active materials, but also on the rational design of superior electrode architectures. Herein, a novel supercapacitor electrode comprising 3D hierarchical mixed-oxide nanostructured arrays (NAs) of C/CoNi3 O4 is reported. The network-like C/CoNi3 O4 NAs exhibit a relatively high specific surface area; it is fabricated from ultra-robust Co-Ni hydroxide carbonate precursors through glucose-coating and calcination processes. Thanks to their interconnected three-dimensionally arrayed architecture and mesoporous nature, the C/CoNi3 O4 NA electrode exhibits a large specific capacitance of 1299 F/g and a superior rate performance, demonstrating 78% capacity retention even when the discharge current jumps by 100 times. An optimized asymmetric supercapacitor with the C/CoNi3 O4 NAs as the positive electrode is fabricated. This asymmetric supercapacitor can reversibly cycle at a high potential of 1.8 V, showing excellent cycling durability and also enabling a remarkable power density of ∼13 kW/kg with a high energy density of ∼19.2 W·h/kg. Two such supercapacitors linked in series can simultaneously power four distinct light-emitting diode indicators; they can also drive the motor of remote-controlled model planes. This work not only presents the potential of C/CoNi3 O4 NAs in thin-film supercapacitor applications, but it also demonstrates the superiority of electrodes with such a 3D hierarchical architecture.

  19. Performance of fast reactor mixed-oxide fuels pins during extended overpower transients

    SciTech Connect

    Tsai, H.; Neimark, L.A. ); Asaga, T.; Shikakura, S. )

    1991-02-01

    The Operational Reliability Testing (ORT) program, a collaborative effort between the US Department of Energy and the Power Reactor and Nuclear Fuel Development Corp. (PNC) of Japan, was initiated in 1982 to investigate the behavior of mixed-oxide fuel pin under various slow-ramp transient and duty-cycle conditions. In the first phase of the program, a series of four extended overpower transient tests, with severity sufficient to challenge the pin cladding integrity, was conducted. The objectives of the designated TOPI-1A through -1D tests were to establish the cladding breaching threshold and mechanisms, and investigate the thermal and mechanical effects of the transient on pin behavior. The tests were conducted in EBR-2, a normally steady-state reactor. The modes of transient operation in EBR-2 were described in a previous paper. Two ramp rates, 0.1%/s and 10%/s, were selected to provide a comparison of ramp-rate effects on fuel behavior. The test pins chosen for the series covered a range of design and pre-test irradiation parameters. In the first test (1A), all pins maintained their cladding integrity during the 0.1%/s ramp to 60% peak overpower. Fuel pins with aggressive designs, i.e., high fuel- smear density and/or thin cladding, were, therefore, included in the follow-up 1B and 1C tests to enhance the likelihood of achieving cladding breaching. In the meantime, a higher pin overpower capability, to greater than 100%, was established by increasing the reactor power limit from 62.5 to 75 MWt. In this paper, the significant results of the 1B and 1C tests are presented. 4 refs., 5 figs., 1 tab.

  20. Spiral carbon tubes grown by a mixed-valent oxide-catalytic carbonization process

    SciTech Connect

    Wang, Z.L.; Kang, Z.C.

    1996-12-31

    Synthesis of carbon tubes is vitally important in carbon research and applications. In this paper, spiral carbon tubes are grown by a mixed-valent oxide-catalytic carbonization (MVOCC) process. The carbon tubes are highly twisted and have many growth induced nodes. The product has high purity and no catalyst particle is found in the product. With the presence of inter-lock structure, the mechanical properties of the material made using the spiral carbon tubes could be significantly improved. The inner tube is not completely hollow but interconnected by graphic layers. The surfaces of the tubes have many open graphitic edges, thus, a high chemical activity of the tubes is expected. Figure 2 shows a log-magnification TEM image at the initiation side of a carbon tube, where a spiral node is formed. The non-uniform contrast across the node region reflects the spiral geometry at the node. In the growth front, the inner tube is not hollow and is interconnected by graphitic {open_quotes}bridges{close_quotes}. The graphitic layers composing the inner-wall region of the tube have larger sizes, while the graphitic flakes in the outer-wall region are rather small, with sizes ranging from 1-10 nm. The growth front has a shape similar to a {open_quotes}cowboy hat{close_quotes}, where the graphitic layers across the top of the hat are severely bent, indicating the non-equilibrium shapes at the growth front. A sharp turn of the graphitic layers at the edge of the hat may be produced by a {open_quotes}boat-type{close_quotes} line defect proposed for interpretation of a 90{degrees} bending of carbon layers. The alignment between graphite layers is also visible at the left-side of the hat, suggesting a coherent layer-by-layer growth at the growth front.

  1. Acyloxylation of 1,4-Dioxanes and 1,4-Dithianes Catalyzed by a Copper-Iron Mixed Oxide.

    PubMed

    García-Cabeza, Ana Leticia; Marín-Barrios, Rubén; Moreno-Dorado, F Javier; Ortega, María J; Vidal, Hilario; Gatica, José M; Massanet, Guillermo M; Guerra, Francisco M

    2015-07-02

    The use of a copper-iron mixed oxide as a heterogeneous catalyst for the efficient synthesis of α-acyloxy-1,4-dioxanes and 1,4-dithianes employing t-butyl peroxyesters is reported. The preparation and characterization of the catalyst are described. The effect of the heteroatoms and a plausible mechanism are discussed. The method is operationally simple and involves low-cost starting materials affording products in good to excellent yields.

  2. Electrochemical properties of mixed conducting (La,M)(CoFe) oxide perovskites (M=3DSr, Ca, and Ba)

    SciTech Connect

    Stevenson, J.W.; Armstrong, T.R.; Bates, J.L.

    1996-04-01

    Electrical properties and oxygen permeation properties of solid mixed-conducting electrolytes (La,M)(CoFe) oxide perovskites (M=3DSr, Ca, and Ba) have been characterized. These materials are potentially useful as passive membranes to separate high purity oxygen from air and as the cathode in a fuel cell. Dilatometric linear expansion measurements were performed as a function of temperature and oxygen partial pressure to evaluate the stability.

  3. The behavior of SiC and Si3N4 ceramics in mixed oxidation/chlorination environments

    NASA Technical Reports Server (NTRS)

    Marra, John E.; Kreidler, Eric R.; Jacobson, Nathan S.; Fox, Dennis S.

    1989-01-01

    The behavior of silicon-based ceramics in mixed oxidation/chlorination environments was studied. High pressure mass spectrometry was used to quantitatively identify the reaction products. The quantitative identification of the corrosion products was coupled with thermogravimetric analysis and thermodynamic equilibrium calculations run under similar conditions in order to deduce the mechanism of corrosion. Variations in the behavior of the different silicon-based materials are discussed. Direct evidence of the existence of silicon oxychloride compounds is presented.

  4. Magnesium Recycling of Partially Oxidized, Mixed Magnesium-Aluminum Scrap through Combined Refining and Solid Oxide Membrane Electrolysis Processes

    SciTech Connect

    Xiaofei Guan; Peter A. Zink; Uday B. Pal; Adam C. Powell

    2012-01-01

    Pure magnesium (Mg) is recycled from 19g of partially oxidized 50.5wt.% Mg-Aluminum (Al) alloy. During the refining process, potentiodynamic scans (PDS) were performed to determine the electrorefining potential for magnesium. The PDS show that the electrorefining potential increases over time as the magnesium content inside the Mg-Al scrap decreases. Up to 100% percent of magnesium is refined from the Mg-Al scrap by a novel refining process of dissolving magnesium and its oxide into a flux followed by vapor phase removal of dissolved magnesium and subsequently condensing the magnesium vapor. The solid oxide membrane (SOM) electrolysis process is employed in the refining system to enable additional recycling of magnesium from magnesium oxide (MgO) in the partially oxidized Mg-Al scrap. The combination of the refining and SOM processes yields 7.4g of pure magnesium.

  5. Magnesium Recycling of Partially Oxidized, Mixed Magnesium-Aluminum Scrap through Combined Refining and Solid Oxide Membrane (SOM) Electrolysis Processes

    NASA Astrophysics Data System (ADS)

    Guan, Xiaofei; Zink, Peter; Pal, Uday

    Pure magnesium (Mg) is recycled from 19g of partially oxidized 50.5 wt.%Mg-Aluminum (Al) alloy. During the refining process, potentiodynamic scans (PDS) were performed to determine the electrorefining potential for magnesium. The PDS show that the electrorefining potential increases over time as the Mg content inside the Mg-Al scrap decreases. Up to 100% percent of magnesium is refined from the Mg-Al scrap by a novel refining process of dissolving magnesium and its oxide into a flux followed by vapor phase removal of dissolved magnesium and subsequently condensing the magnesium vapors in a separate condenser. The solid oxide membrane (SOM) electrolysis process is employed in the refining system to enable additional recycling of magnesium from magnesium oxide (MgO) in the partially oxidized Mg-Al scrap. The combination of the refining and SOM processes yields 7.4g of pure magnesium; could not collect and weigh all of the magnesium recovered.

  6. Magnesium Recycling of Partially Oxidized, Mixed Magnesium-Aluminum Scrap Through Combined Refining and Solid Oxide Membrane (SOM) Electrolysis Processes

    SciTech Connect

    Guan, Xiaofei; Zink, Peter; Pal, Uday

    2012-03-11

    Pure magnesium (Mg) is recycled from 19g of partially oxidized 50.5wt.%Mg-Aluminum (Al) alloy. During the refining process, potentiodynamic scans (PDS) were performed to determine the electrorefining potential for magnesium. The PDS show that the electrorefining potential increases over time as the Mg content inside the Mg-Al scrap decreases. Up to 100% percent of magnesium is refined from the Mg-Al scrap by a novel refining process of dissolving magnesium and its oxide into a flux followed by vapor phase removal of dissolved magnesium and subsequently condensing the magnesium vapors in a separate condenser. The solid oxide membrane (SOM) electrolysis process is employed in the refining system to enable additional recycling of magnesium from magnesium oxide (MgO) in the partially oxidized Mg-Al scrap. The combination of the refining and SOM processes yields 7.4g of pure magnesium; could not collect and weigh all of the magnesium recovered.

  7. Mixed species biofilms of Fusobacterium necrophorum and Porphyromonas levii impair the oxidative response of bovine neutrophils in vitro.

    PubMed

    Lockhart, Joey S; Buret, Andre G; Ceri, Howard; Storey, Douglas G; Anderson, Stefanie J; Morck, Douglas W

    2017-10-01

    Biofilms composed of anaerobic bacteria can result in persistent infections and chronic inflammation. Host immune cells have difficulties clearing biofilm-related infections and this can result in tissue damage. Neutrophils are a vital component of the innate immune system and help clear biofilms. The comparative neutrophilic response to biofilms versus planktonic bacteria remains incompletely understood, particularly in the context of mixed infections. The objective of this study was to generate mixed species anaerobic bacterial biofilms composed of two opportunistic pathogens, Fusobacterium necrophorum and Porphyromonas levii, and evaluate neutrophil responses to extracellular fractions from both biofilms and planktonic cell co-cultures of the same bacteria. Purified bovine neutrophils exposed to culture supernatants from mixed species planktonic bacteria showed elevated oxidative activity compared to neutrophils exposed to biofilms composed of the same bacteria. Bacterial lipopolysaccharide plays a significant role in the stimulation of neutrophils; biofilms produced substantially more lipopolysaccharide than planktonic bacteria under these experimental conditions. Removal of lipopolysaccharide significantly reduced neutrophil oxidative response to culture supernatants of planktonic bacteria. Oxidative responses to LPS-removed biofilm supernatants and LPS-removed planktonic cell supernatants were similar. The limited neutrophil response to biofilm bacteria observed in this study supports the reduced ability of the innate immune system to eradicate biofilm-associated infections. Lipopolysaccharide is likely important in neutrophil response; however, the presence of other extracellular, immune modifying molecules in the bacterial media also appears to be important in altering neutrophil function. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Enhanced magnetization in highly crystalline and atomically mixed bcc Fe-Co nanoalloys prepared by hydrogen reduction of oxide composites.

    PubMed

    Sharif, Md Jafar; Yamauchi, Miho; Toh, Shoichi; Matsumura, Syo; Noro, Shin-ichiro; Kato, Kenichi; Takata, Masaki; Tsukuda, Tatsuya

    2013-02-21

    Fe(x)Co(100-x) nanoalloys (NAs) with 20 ≤ x ≤ 80 were prepared by hydrogen reduction of Fe-Co oxide nano-composites, which were composed of mixed phases (or domains) of Fe(2)O(3) and CoO. In situ X-ray diffraction (XRD) measurements using synchrotron radiation clearly showed development of a solid-solution Fe-Co phase by hydrogen reduction from the oxide composites. High-resolution transmission electron microscopy (TEM), high-angle annular dark-field scanning TEM and powder XRD revealed that Fe-Co NAs form a single crystal structure and the two elements are mixed homogeneously. The saturation magnetization depends on the size and metal composition and shows the highest value (250 emu g(-1)) for the Fe(70)Co(30) NA in the size range of 30-55 nm, which is comparable to that of the Fe(70)Co(30) bulk alloy (245 emu g(-1)). This high magnetization is attributable to high crystallinity and homogeneous mixing of constituent atoms, which are attained by thermal treatment of oxide phases under a hydrogen atmosphere.

  9. Electronic Structure and Bonding in Co-Based Single and Mixed Valence Oxides: A Quantum Chemical Perspective.

    PubMed

    Singh, Vijay; Major, Dan Thomas

    2016-04-04

    The mixed valence cobalt oxide, Co3O4, is a potential candidate as a photovoltaic (PV) material, which also exhibits intriguing chemical and catalytic properties. Here, we present a comparative study of the electronic, magnetic, and chemical bonding properties of mixed valence Co3O4 (i.e., Co(2+/3+)) with the related single valence CoO (i.e., Co(2+)) and Co2O3 (i.e., Co(3+)) oxides using density functional theory (DFT). We have employed a range of theoretical methods, including pure DFT, DFT+U, and a range-separated exchange-correlation functional (HSE06). We compare the electronic structure and band gap of the oxide materials, with available photoemission spectroscopy and optical band gaps. Our calculations suggest that the bonding between Co(3+) and O(2-) ions in Co2O3 and Co3O4 and Co(2+) and O(2-) ions in CoO and Co3O4 are rather different. We find that Co2O3 and Co3O4 are weakly correlated materials, whereas CoO is a strongly correlated material. Furthermore, our computed one-electron energy level diagrams reveal that strong Co-O antibonding states are present at the top of the valence band for all the cobalt oxides, hinting at a defect tolerant capacity in these materials. These results, which give a detailed picture of the chemical bonding in related single and mixed valence cobalt oxides, may serve as a guide to enhance the PV or photoelectrochemical activity of Co3O4, by reducing its internal defect states or changing its electronic structure by doping or alloying with suitable elements.

  10. Facile method of quantification for oxidized tryptophan degradants of monoclonal antibody by mixed mode ultra performance liquid chromatography.

    PubMed

    Wong, Cintyu; Strachan-Mills, Camille; Burman, Sudhir

    2012-12-28

    Oxidation in therapeutic monoclonal antibody is a common occurrence and it may affect potency. Thus controlling and monitoring the amount of oxidized variant in the drug product sample is important since it may impact the purity. Here, we present the development of a fast and easy method utilizing size exclusion - ultra performance liquid chromatography (SE-UPLC) run under moderate hydrophobic conditions (mixed mode) to monitor the heterogeneity in drug product samples. The best separation was obtained using Waters Acquity BEH200 size exclusion column along with a mobile phase consisting of sodium acetate and sodium sulfate that separates IgG into aggregate, monomer, and fragment. The moderate salt concentration resulted in a second mode of separation based on hydrophobicity, resolving a monomer pre-peak from the monomer main peak. Multi-angle light scattering (MALS) determined the pre-peak has a similar mass as the IgG monomer. Characterization of the purified pre-peak fraction using mass spectrometry (MS), and bioactivity revealed this degradant to be a Trp-oxidized IgG monomer with significantly reduced bioactivity. Method qualification of the mixed mode UPLC method showed good recovery for the spiked monomer pre-peak and Fab fragment. However, the recovery of spiked dimer was low. This method is suitable for determining the relative distribution of the oxidized monomer and the native monomer species.

  11. Development of Impregnated Agglomerate Pelletization (IAP) process for fabrication of (Th,U)O 2 mixed oxide pellets

    NASA Astrophysics Data System (ADS)

    Khot, P. M.; Nehete, Y. G.; Fulzele, A. K.; Baghra, Chetan; Mishra, A. K.; Afzal, Mohd.; Panakkal, J. P.; Kamath, H. S.

    2012-01-01

    Impregnated Agglomerate Pelletization (IAP) technique has been developed at Advanced Fuel Fabrication Facility (AFFF), BARC, Tarapur, for manufacturing (Th, 233U)O 2 mixed oxide fuel pellets, which are remotely fabricated in hot cell or shielded glove box facilities to reduce man-rem problem associated with 232U daughter radionuclides. This technique is being investigated to fabricate the fuel for Indian Advanced Heavy Water Reactor (AHWR). In the IAP process, ThO 2 is converted to free flowing spheroids by powder extrusion route in an unshielded facility which are then coated with uranyl nitrate solution in a shielded facility. The dried coated agglomerate is finally compacted and then sintered in oxidizing/reducing atmosphere to obtain high density (Th,U)O 2 pellets. In this study, fabrication of (Th,U)O 2 mixed oxide pellets containing 3-5 wt.% UO 2 was carried out by IAP process. The pellets obtained were characterized using optical microscopy, XRD and alpha autoradiography. The results obtained were compared with the results for the pellets fabricated by other routes such as Coated Agglomerate Pelletization (CAP) and Powder Oxide Pelletization (POP) route.

  12. Effects of calcination temperature and acid-base properties on mixed potential ammonia sensors modified by metal oxides.

    PubMed

    Satsuma, Atsushi; Katagiri, Makoto; Kakimoto, Shiro; Sugaya, Satoshi; Shimizu, Kenichi

    2011-01-01

    Mixed potential sensors were fabriated using yttria-stabilized zirconia (YSZ) as a solid electrolyte and a mixture of Au and various metal oxides as a sensing electrode. The effects of calcination temperature ranging from 600 to 1,000 °C and acid-base properties of the metal oxides on the sensing properties were examined. The selective sensing of ammonia was achieved by modification of the sensing electrode using MoO(3), Bi(2)O(3) and V(2)O(5), while the use of WO(3,) Nb(2)O(5) and MgO was not effective. The melting points of the former group were below 820 °C, while those of the latter group were higher than 1,000 °C. Among the former group, the selective sensing of ammonia was strongly dependent on the calcination temperature, which was optimum around melting point of the corresponding metal oxides. The good spreading of the metal oxides on the electrode is suggested to be one of the important factors. In the former group, the relative response of ammonia to propene was in the order of MoO(3) > Bi(2)O(3) > V(2)O(5), which agreed well with the acidity of the metal oxides. The importance of the acidic properties of metal oxides for ammonia sensing was clarified.

  13. Effects of Calcination Temperature and Acid-Base Properties on Mixed Potential Ammonia Sensors Modified by Metal Oxides

    PubMed Central

    Satsuma, Atsushi; Katagiri, Makoto; Kakimoto, Shiro; Sugaya, Satoshi; Shimizu, Kenichi

    2011-01-01

    Mixed potential sensors were fabriated using yttria-stabilized zirconia (YSZ) as a solid electrolyte and a mixture of Au and various metal oxides as a sensing electrode. The effects of calcination temperature ranging from 600 to 1,000 °C and acid-base properties of the metal oxides on the sensing properties were examined. The selective sensing of ammonia was achieved by modification of the sensing electrode using MoO3, Bi2O3 and V2O5, while the use of WO3, Nb2O5 and MgO was not effective. The melting points of the former group were below 820 °C, while those of the latter group were higher than 1,000 °C. Among the former group, the selective sensing of ammonia was strongly dependent on the calcination temperature, which was optimum around melting point of the corresponding metal oxides. The good spreading of the metal oxides on the electrode is suggested to be one of the important factors. In the former group, the relative response of ammonia to propene was in the order of MoO3 > Bi2O3 > V2O5, which agreed well with the acidity of the metal oxides. The importance of the acidic properties of metal oxides for ammonia sensing was clarified. PMID:22319402

  14. To study the flow property of seven commercially available zinc oxide eugenol impression material at various time intervals after mixing.

    PubMed

    Katna, Vishal; Suresh, S; Vivek, Sharma; Meenakshi, Khandelwal; Ankita, Gaur

    2014-12-01

    Aims and objective of the study was to evaluate the flow property of seven commercially available zinc oxide eugenol impression materials at various time intervals, after mixing 49 samples (seven groups) were fabricated for flow property of the material. The sample were fabricated as equal length of base and accelerator paste of the test materials was taken on the glass slab and mixed with a rigid stainless steel spatula as per manufacturers recommendation till the homogenous mix was obtained. The mix material was loaded in glass syringe and 0.5 ml material was injected on a cellophane sheet placed on marked glass plate. A cellophane sheet and glass plate 70 and 500 g weight was carefully placed on freshly dispensed zinc oxide eugenol impression paste sequentially. The diameter of the mix was noted after 30 s and 1 min of load application and also after the final set of material. The diameter gives the flow of material. The samples were stored at the room temperature. The data of the flow property was analyzed with analysis of variance, Post hoc test and t test. The flow of the zinc oxide eugenol impression paste after 30 s, 1 min and final set of load application for Group A to Group G was noted. Maximum flow was seen for Group G zinc oxide eugenol impression material followed by Group F, D, E, B, C and A in descending order respectively after 30 s, where as the flow property changed after 1 min in the sequence of maximum for Group G followed by Group E, D, B, A, C, and F. Lastly after final set of the impression material the flow maximum for Group G followed by Group E, D, C, F, A and B in descending order. Based on statistical analysis of the results and within in the limitations of this in-vitro study, the following conclusions were drawn that; the flow of zinc oxide eugenol impression material after 30 s, 1 min and that after the final set was maximum for P.S.P. (Group G) and the flow for PYREX (Group A) was minimum.

  15. High-temperature thermochemical energy storage based on redox reactions using Co-Fe and Mn-Fe mixed metal oxides

    NASA Astrophysics Data System (ADS)

    André, Laurie; Abanades, Stéphane; Cassayre, Laurent

    2017-09-01

    Metal oxides are potential materials for thermochemical heat storage via reversible endothermal/exothermal redox reactions, and among them, cobalt oxide and manganese oxide are attracting attention. The synthesis of mixed oxides is considered as a way to answer the drawbacks of pure metal oxides, such as slow reaction kinetics, loss-in-capacity over cycles or sintering issues, and the materials potential for thermochemical heat storage application needs to be assessed. This work proposes a study combining thermodynamic calculations and experimental measurements by simultaneous thermogravimetric analysis and calorimetry, in order to identify the impact of iron oxide addition to Co and Mn-based oxides. Fe addition decreased the redox activity and energy storage capacity of Co3O4/CoO, whereas the reaction rate, reversibility and cycling stability of Mn2O3/Mn3O4 was significantly enhanced with added Fe amounts above 15 mol%, and the energy storage capacity was slightly improved. The formation of a reactive cubic spinel explained the improved re-oxidation yield of Mn-based oxides that could be cycled between bixbyite and cubic spinel phases, whereas a low reactive tetragonal spinel phase showing poor re-oxidation was formed below 15 mol% Fe. Thermodynamic equilibrium calculations predict accurately the behavior of both systems. The possibility to identify other suitable mixed oxides becomes conceivable, by enabling the selection of transition metal additives for tuning the redox properties of mixed metal oxides destined for thermochemical energy storage applications.

  16. Experimental and thermodynamic study of Co-Fe and Mn-Fe based mixed metal oxides for thermochemical energy storage application

    NASA Astrophysics Data System (ADS)

    André, Laurie; Abanades, Stéphane; Cassayre, Laurent

    2017-06-01

    Metal oxides are potential materials for thermochemical heat storage, and among them, cobalt oxide and manganese oxide are attracting attention. Furthermore, studies on mixed oxides are ongoing, as the synthesis of mixed oxides could be a way to answer the drawbacks of pure metal oxides, such as slow reaction kinetics, loss-in-capacity over cycles or sintering, selected for thermochemical heat storage application. The addition of iron oxide is under investigation and the obtained results are presented. This work proposes a comparison of thermodynamic modelling with experimental data in order to identify the impact of iron oxide addition to cobalt oxide and manganese oxide. Fe addition decreased the redox activity and energy storage capacity of Co3O4, whereas the cycling stability of Mn2O3 was significantly improved with added Fe amounts above 20 mol% while the energy storage capacity was unchanged. The thermodynamic modelling method to predict the behavior of the Mn-Fe-O and Co-Fe-O systems was validated, and the possibility to identify other mixed oxides becomes conceivable, by enabling the selection of transition metals additives for metal oxides destined for thermochemical energy storage applications.

  17. Chemical and Radiochemical Composition of Thermally Stabilized Plutonium Oxide from the Plutonium Finishing Plant Considered as Alternate Feedstock for the Mixed Oxide Fuel Fabrication Facility

    SciTech Connect

    Tingey, Joel M.; Jones, Susan A.

    2005-07-01

    Eighteen plutonium oxide samples originating from the Plutonium Finishing Plant (PFP) on the Hanford Site were analyzed to provide additional data on the suitability of PFP thermally stabilized plutonium oxides and Rocky Flats oxides as alternate feedstock to the Mixed Oxide Fuel Fabrication Facility (MFFF). Radiochemical and chemical analyses were performed on fusions, acid leaches, and water leaches of these 18 samples. The results from these destructive analyses were compared with nondestructive analyses (NDA) performed at PFP and the acceptance criteria for the alternate feedstock. The plutonium oxide materials considered as alternate feedstock at Hanford originated from several different sources including Rocky Flats oxide, scrap from the Remote Mechanical C-Line (RMC) and the Plutonium Reclamation Facility (PRF), and materials from other plutonium conversion processes at Hanford. These materials were received at PFP as metals, oxides, and solutions. All of the material considered as alternate feedstock was converted to PuO2 and thermally stabilized by heating the PuO2 powder at 950 C in an oxidizing environment. The two samples from solutions were converted to PuO2 by precipitation with Mg(OH)2. The 18 plutonium oxide samples were grouped into four categories based on their origin. The Rocky Flats oxide was divided into two categories, low- and high-chloride Rocky Flats oxides. The other two categories were PRF/RMC scrap oxides, which included scrap from both process lines and oxides produced from solutions. The two solution samples came from samples that were being tested at Pacific Northwest National Laboratory because all of the plutonium oxide from solutions at PFP had already been processed and placed in 3013 containers. These samples originated at the PFP and are from plutonium nitrate product and double-pass filtrate solutions after they had been thermally stabilized. The other 16 samples originated from thermal stabilization batches before canning at

  18. Nature of Catalytic Active Sites Present on the Surface of Advanced Bulk Tantalum Mixed Oxide Photocatalysts

    SciTech Connect

    Phivilay, Somphonh; Puretzky, Alexander A; Domen, Kazunari Domen; Wachs, Israel

    2013-01-01

    The most active photocatalyst system for water splitting under UV irradiation (270 nm) is the promoted 0.2%NiO/NaTaO3:2%La photocatalyst with optimized photonic efficiency (P.E.) of 56%, but fundamental issues about the nature of the surface catalytic active sites and their involvement in the photocatalytic process still need to be clarified. This is the first study to apply cutting edge surface spectroscopic analyses to determine the surface nature of tantalum mixed oxide photocatalysts. Surface analysis with HR-XPS (1-3nm) and HS-LEIS (0.3nm) spectroscopy indicates that the NiO and La2O3 promoters are concentrated in the surface region of the bulk NaTaO3 phase. The La2O3 is concentrated on the NaTaO3 outermost surface layers while NiO is distributed throughout the NaTaO3 surface region (1-3nm). Raman and UV-vis spectroscopy revealed that the bulk molecular and electronic structures, respectively, of NaTaO3 were not modified by the addition of the La2O3 and NiO promoters, with La2O3 resulting in a slightly more ordered structure. Photoluminescence (PL) spectroscopy reveals that the addition of La2O3 and NiO produces a greater number of electron traps resulting in the suppression of the recombination of excited electrons/holes. In contrast to earlier reports, the La2O3 is only a textural promoter (increasing the BET surface area ~7x by stabilizing smaller NaTaO3 particles), but causes a ~3x decrease in the specific photocatalytic TORs ( mol H2/m2/h) rate because surface La2O3 blocks exposed catalytic active NaTaO3 sites. The NiO promoter was found to be a potent electronic promoter that enhances the NaTaO3 surface normalized TORs by a factor of ~10-50 and TOF by a factor of ~10. The level of NiO promotion is the same in the absence and presence of La2O3 demonstrating that there is no promotional synergistic interaction between the NiO and La2O3 promoters. This study demonstrates the important contributions of the photocatalyst surface properties to the fundamental

  19. Catalytic transformations of biomass substrates using mixed metal oxides derived from substituted hydrotalcites

    NASA Astrophysics Data System (ADS)

    Macala, Gerald Stephen, II

    Fueled by seemingly endless reserves of cheap and easily accessible fossil energy, the industrial age has brought to the developed world tremendous advances in human health and well being. Unfortunately the burning of fossil fuels has also been implicated in increasing atmospheric CO2 concentrations and global climate change. Concerns about short-term and long-term supply further build a case for the need for alternative energy sources. Biomass derived materials are a tantalizing source of fuels and fine chemicals. Unlike petroleum derived hydrocarbons, biomass can be both renewable and carbon neutral. Crops can be regenerated annually or even more often in tropical climates, and since the captured carbon originates as atmospheric CO2, the overall cycle has the potential to be nearly carbon neutral regardless of the final fate of the carbon. In contrast to petroleum derived hydrocarbons, which can often be made more valuable by adding functionality, biomass derived materials are already highly functionalized and can usually be made more valuable by selective removal of functionality. The development of robust catalysts capable of selective defuntionalization of biomass derived substrates remains an important challenge with potentially enormous economic and societal impact. In addition to being robust and selective, catalysts should preferably be heterogeneous to allow for easier removal and regeneration after the reaction is complete. New materials consisting of Mg-Al hydrotalcite-like structures, with a limiting percentage of Mg or Al substituted with other M2+ or M3+ cations, were synthesized by a co-precipitation process in basic aqueous solution with carbonate as counterion. Calcination of these materials at 460 °C resulted in evolution of CO2 and water and yielded high surface area mixed metal oxides with enhanced reactivity. Materials were characterized by ICP for elemental analysis, XRD for structural information, XPS for surface elemental analysis and TEM

  20. Modeling the generation, distribution and transport of point defects in oxide mixed ionic-electronic conductors

    NASA Astrophysics Data System (ADS)

    Duncan, Keith Llewellyn

    Point defect equilibria were used to develop analytical expressions for the dependence of defect concentration on oxygen partial pressure ( PO2 ) in mixed ionic-electronic conductors (MIECs) with the fluorite and perovskite structures. This thermodynamic model was able to reproduce the results of the conventional Brouwer approach in the Brouwer regimes but unlike that approach the models were continuous across two Brouwer regimes. To verify the model, a case study was effected for samaria-doped ceria (SDC) in which (a) the model was compared to numerical solutions of SDC defect equilibria, (b) the model was used to obtain values for the external equilibrium constant, Kr, (c) the model was fitted to experimental data for total (ionic plus electronic) conductivity as a function of PO2 and (d) the impact of defect associates on defect concentration and total conductivity was evaluated. In addition Kr was correlated to the ratio of the diffusivities of the electronic and ionic species, theta (= De/4DV), and Kr(3+4theta)2 constitutes a material constant. Fundamental transport laws were then used to derive transport models for the spatial distribution and transport of defects in an MIEC in a PO2 gradient with and without assuming a linear potential gradient across the MIEC. The former was found to be applicable to true electrolytes (i.e., electrolytes with negligible electronic conductivity) while the latter had general application to all MIECs. As an advance over present models, the use of potential dependent rather than fixed boundary conditions was investigated. It was found that using fixed boundary conditions often caused misleading results. The transport model for open-circuit conditions was applied to experimental data consisting of OCV measurements for various values of PO2 (on the reducing side) and at temperatures from 500°C to 800°C. Excellent fits of this model to the experimental data were obtained, thereby demonstrating its accuracy. Finally, both

  1. Americium characterization by X-ray fluorescence and absorption spectroscopy in plutonium uranium mixed oxide

    SciTech Connect

    Degueldre, Claude Cozzo, Cedric; Martin, Matthias; Grolimund, Daniel; Mieszczynski, Cyprian

    2013-06-01

    Plutonium uranium mixed oxide (MOX) fuels are currently used in nuclear reactors. The actinides in these fuels need to be analyzed after irradiation for assessing their behaviour with regard to their environment and the coolant. In this work the study of the atomic structure and next-neighbour environment of Am in the (Pu,U)O₂ lattice in an irradiated (60 MW d kg⁻¹) MOX sample was performed employing micro-X-ray fluorescence (µ-XRF) and micro-X-ray absorption fine structure (µ-XAFS) spectroscopy. The chemical bonds, valences and stoichiometry of Am (~0.66 wt%) are determined from the experimental data gained for the irradiated fuel material examined in its peripheral zone (rim) of the fuel. In the irradiated sample Am builds up as Am³⁺ species within an [AmO₈]¹³⁻ coordination environment (e.g. >90%) and no (<10%) Am(IV) or (V) can be detected in the rim zone. The occurrence of americium dioxide is avoided by the redox buffering activity of the uranium dioxide matrix. - Graphical abstract: Americium LIII XAFS spectra recorded for the irradiated MOX sub-sample in the rim zone for a 300 μm×300 μm beam size area investigated over six scans of 4 h. The records remain constant during multi-scan. The analysis of the XAFS signal shows that Am is found as trivalent in the UO₂ matrix. This analytical work shall open the door of very challenging analysis (speciation of fission product and actinides) in irradiated nuclear fuels. - Highlights: • Americium was characterized by microX-ray absorption spectroscopy in irradiated MOX fuel. • The americium redox state as determined from XAS data of irradiated fuel material was Am(III). • In the sample, the Am³⁺ face an AmO₈¹³⁻coordination environment in the (Pu,U)O₂ matrix. • The americium dioxide is reduced by the uranium dioxide matrix.

  2. Properties of cerium-zirconium mixed oxides partially substituted by neodymium: Comparison with Zr-Ce-Pr-O ternary oxides

    SciTech Connect

    Mikulova, Jana; Rossignol, Sylvie . E-mail: Sylvie.rossignol@univ-poitiers.fr; Gerard, Francois; Mesnard, Danielle; Kappenstein, Charles; Duprez, Daniel

    2006-08-15

    CeO{sub 2} doped with praseodymium, neodymium and/or zirconium atoms were prepared by coprecipitation and by the sol-gel method. Structural properties were investigated by in situ XRD and Raman spectroscopy while oxygen storage capacity (OSC) was measured by transient CO oxidation. All the compounds, except pure Nd{sub 2}O{sub 3}, have a fluorite-type structure as well as a Raman band at 560 cm{sup -1} characteristic of the oxygen vacancies involving non-stoichiometric oxides. The lattice parameter under hydrogen, being dependent on the temperature, revealed two reduction mechanisms: one at a low temperature at the surface and another at a high temperature in the bulk. Ce-Nd binary oxides show a strong tendency towards crystallite aggregation, which reduces accessibility to gases and OSC properties. Zirconium improves the thermal resistance to sintering of both Ce-Nd and Ce-Pr oxides. The Zr-Ce-Pr-O followed by Zr-Ce-Nd-O compounds displaying high oxygen mobility at a low temperature, appear to be very promising for practical applications such as OSC materials. - Graphical abstract: Variation of oxygen vacancies under hydrogen on ternary oxides.

  3. Heterogeneously catalysed partial oxidation of acrolein to acrylic acid--structure, function and dynamics of the V-Mo-W mixed oxides.

    PubMed

    Kampe, Philip; Giebeler, Lars; Samuelis, Dominik; Kunert, Jan; Drochner, Alfons; Haass, Frank; Adams, Andreas H; Ott, Joerg; Endres, Silvia; Schimanke, Guido; Buhrmester, Thorsten; Martin, Manfred; Fuess, Hartmut; Vogel, Herbert

    2007-07-21

    The major objective of this research project was to reach a microscopic understanding of the structure, function and dynamics of V-Mo-(W) mixed oxides for the partial oxidation of acrolein to acrylic acid. Different model catalysts (from binary and ternary vanadium molybdenum oxides up to quaternary oxides with additional tungsten) were prepared via a solid state preparation route and hydrochemical preparation of precursors by spray-drying or crystallisation with subsequent calcination. The phase composition was investigated ex situ by XRD and HR-TEM. Solid state prepared samples are characterised by crystalline phases associated to suitable phase diagrams. Samples prepared from crystallised and spray-dried precursors show crystalline phases which are not part of the phase diagram. Amorphous or nanocrystalline structures are only found in tungsten doped samples. The kinetics of the partial oxidation as well as the catalysts' structure have been studied in situ by XAS, XRD, temperature programmed reaction and reduction as well as by a transient isotopic tracing technique (SSITKA). The reduction and re-oxidation kinetics of the bulk phase have been evaluated by XAS. A direct influence not only of the catalysts' composition but also of the preparation route is shown. Altogether correlations are drawn between structure, oxygen dynamics and the catalytic performance in terms of activity, selectivity and long-term stability. A model for the solid state behaviour under reaction conditions has been developed. Furthermore, isotope exchange experiments provided a closer image of the mechanism of the selective acrolein oxidation. Based on the in situ characterisation in combination with micro kinetic modelling a detailed reaction model which describes the oxygen exchange and the processes at the catalyst more precisely is discussed.

  4. Monte-Carlo Code (MCNP) Modeling of the Advanced Test Reactor Applicable to the Mixed Oxide (MOX) Test Irradiation

    SciTech Connect

    G. S. Chang; R. C. Pederson

    2005-07-01

    Mixed oxide (MOX) test capsules prepared with weapons-derived plutonium have been irradiated to a burnup of 50 GWd/t. The MOX fuel was fabricated at Los Alamos National Laboratory by a master-mix process and has been irradiated in the Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL). Previous withdrawals of the same fuel have occurred at 9, 21, 30, and 40 GWd/t. Oak Ridge National Laboratory (ORNL) manages this test series for the Department of Energy’s Fissile Materials Disposition Program (FMDP). The fuel burnup analyses presented in this study were performed using MCWO, a welldeveloped tool that couples the Monte Carlo transport code MCNP with the isotope depletion and buildup code ORIGEN-2. MCWO analysis yields time-dependent and neutron-spectrum-dependent minor actinide and Pu concentrations for the ATR small I-irradiation test position. The purpose of this report is to validate both the Weapons-Grade Mixed Oxide (WG-MOX) test assembly model and the new fuel burnup analysis methodology by comparing the computed results against the neutron monitor measurements.

  5. Electrochemical deposition and behavior of mixed-valent molybdenum oxide film at glassy carbon and ITO electrodes

    NASA Astrophysics Data System (ADS)

    Koçak, Süleyman; Ertaş, Fatma Nil; Dursun, Zekerya

    2013-01-01

    The effect of solution composition and the type of the anionic species on the electrochemical formation of mixed-valent molybdenum oxide on a glassy carbon and ITO electrode surfaces was elucidated. Susccessive recording of the voltammograms has shown that anionic species display different stabilizing effect on the reductive formation of hydrogen molybdenum bronzes [MoO3-x (OH)x] and chloroacetic acid buffer has given the best results. The deposit was built upon cycling the potential between 0 and -0.9 V (vs. Ag/AgCl) via reduction of Mo(VI) to Mo(V) on the electrode surface in pH 3.0 chloroacetic acid solution. Electrochemical impedance measurements carried out in this medium revealed a shift in potential zero charge values from -0.2 V to -0.55 V after the potential of the GCE had been cycled for 30 min. An establishment of mixed-valent molybdenum oxide deposit by time on the gold electrode surface was proved by quartz crystal microbalance measurements. Atomic force and scanning electron microscopy techniques were made use of so as to characterize the surface structures of the electrodes. X-ray photoelectron spectroscopy studies confirmed that the deposit contains both Mo(V) and Mo(VI). The deposited films exhibited unique catalytic activity towards nitrite oxidation consistent with the change in peak characteristics.

  6. Single-step preparation of the mixed Ba(II)-Nb(V) oxides from a heteropolynuclear oxalate complex.

    PubMed

    Jurić, Marijana; Popović, Jasminka; Šantić, Ana; Molčanov, Krešimir; Brničević, Nevenka; Planinić, Pavica

    2013-02-18

    A novel oxalate-based complex of the formula {Ba(2)(H(2)O)(5)[NbO(C(2)O(4))(3)]HC(2)O(4)}·H(2)O (1) was prepared from an aqueous solution containing the [NbO(C(2)O(4))(3)](3-) and Ba(2+) entities in the molar ratio 1:2, and characterized by X-ray single-crystal diffraction, IR spectroscopy, and thermal analysis. The crystal packing of 1 reveals a complex three-dimensional (3D) network: the Nb polyhedron is connected to eight neighboring Ba polyhedra through the oxalate ligands and the oxo-oxygen group, whereas the Ba polyhedra share edges and vertices. The ability of compound 1 to act as a single-source precursor for the formation of bimetallic oxides was investigated by the thermal analysis (TGA and DSC) and X-ray powder diffraction. Thermal processing of 1 resulted in the formation of mixed-metal oxide phases, Ba(4)Nb(2)O(9) and Ba(5)Nb(4)O(15). Three stable polymorphs of Ba(4)Nb(2)O(9) were isolated: the known, hexagonal α- and orthorhombic γ-Ba(4)Nb(2)O(9), and another one, not previously reported, hexagonal δ-Ba(4)Nb(2)O(9) polymorph. The new, δ-Ba(4)Nb(2)O(9) polymorph has the 6H-perovskite structure (space group P6(3)/m), in which the Nb(2)O(9)(8-) face-sharing octahedral dimers are interconnected via corners to the regular BaO(6)(10-) octahedra. Formation of the mixed-metal oxides takes place at different temperatures: the Ba(5)Nb(4)O(15) oxide occurred at ∼700 °C, as the major crystalline oxide phase; by heating the sample up to 1135 °C, the α-Ba(4)Nb(2)O(9) form was obtained, whereas the heating at 1175 °C caused the crystallization of two polymorphs, γ-Ba(4)Nb(2)O(9) and δ-Ba(4)Nb(2)O(9). Special focus was set on the electrical properties of the prepared mixed Ba(II)-Nb(V) oxides obtained by this molecular pathway in a single-step preparation.

  7. Aerosol synthesis and electrochemical analysis of niobium mixed-metal oxides for the ethanol oxidation reaction in acid and alkaline electrolyte

    NASA Astrophysics Data System (ADS)

    Konopka, Daniel A.

    Direct ethanol fuel cells are especially important among emerging electrochemical power systems with the potential to offset a great deal of the energy demand currently met through the use of fossil fuels. Ethanol can be refined from petroleum sources or attained from renewable biomass, and is more easily and safely stored and transported than hydrogen, methanol or gasoline. The full energy potential of ethanol in fuel cells can only be realized if the reaction follows a total oxidation pathway to produce CO2. This must be achieved by the development of advanced catalysts that are electrically conductive, stable in corrosive environments, contain a high surface area on which the reaction can occur, and exhibit a bi-functional effect for the ethanol oxidation reaction (EOR). The latter criterion is achievable in mixed-metal systems. Platinum is an effective metal for catalyzing surface reactions of many adsorbates and is usually implemented in the form of Pt nanoparticles supported on inexpensive carbon. This carbon is believed to be neutral in the catalysis of Pt. Instead, carbon can be replaced with carefully designed metals and metal oxides as co-catalysis or support structures that favorably alter the electronic structure of Pt slightly through a strong metal support interaction, while also acting as an oxygen source near adsorbates to facilitate the total oxidation pathway. Niobium mixed-metal-oxides were explored in this study as bi-functional catalyst supports to Pt nanoparticles. We developed a thermal aerosol synthesis process by which mesoporous powders of mixed-metal-oxides decorated with Pt nanoparticles could be obtained from liquid precursors within ˜5 seconds or less, followed by carefully refined chemical and thermal post-treatments. Exceptionally high surface areas of 170--180m2/g were achieved via a surfactant-templated 3D wormhole-type porosity, comparable on a per volume basis to commercial carbon blacks and high surface area silica supports

  8. Effect of animal mixing as a stressor on biomarkers of autophagy and oxidative stress during pig muscle maturation.

    PubMed

    Rubio-González, A; Potes, Y; Illán-Rodríguez, D; Vega-Naredo, I; Sierra, V; Caballero, B; Fàbrega, E; Velarde, A; Dalmau, A; Oliván, M; Coto-Montes, A

    2015-07-01

    The objective of this work was to study the postmortem evolution of potential biomarkers of autophagy (Beclin 1, LC3-II/LC3-I ratio) and oxidative stress (total antioxidant activity, TAA; superoxide dismutase activity, SOD and catalase activity, CAT) in the Longissimus dorsi muscle of entire male ((Large White×Landrace)×Duroc) pigs subjected to different management treatments that may promote stress, such as mixing unfamiliar animals at the farm and/or during transport and lairage before slaughter. During the rearing period at the farm, five animals were never mixed after the initial formation of the experimental groups (unmixed group at the farm, UF), whereas 10 animals were subjected to a common routine of being mixed with unfamiliar animals (mixed group at the farm, MF). Furthermore, two different treatments were used during the transport and lairage before slaughter: 10 pigs were not mixed (unmixed group during transport and lairage, UTL), whereas five pigs were mixed with unfamiliar animals on the lorry and during lairage (mixed group during transport and lairage, MTL). These mixing treatments were then combined into three pre-slaughter treatments - namely, UF-UTL, MF-UTL and MF-MTL. The results show that MF-UTL and MF-MTL increased significantly the muscle antioxidant defense (TAA, SOD and CAT) at short postmortem times (4 and 8 h; P<0.001), followed by an earlier depletion of the antioxidant activity at 24 h postmortem (P<0.05). We also found that mixing unfamiliar animals, both at the farm and during transport and lairage, triggers postmortem muscle autophagy, which showed an earlier activation (higher expression of Beclin 1 and LC3-II/LC3-I ratio at 4 h postmortem followed by a decreasing pattern of this ratio along first 24 h postmortem) in the muscle tissues of animals from the MF-UTL and MF-MTL groups, as an adaptive strategy of the muscle cells for counteracting induced stress. From these results, we propose that monitoring the evolution of the main

  9. Nanocomposites of polyimide and mixed oxide nanoparticles for high performance nanohybrid gate dielectrics in flexible thin film transistors

    NASA Astrophysics Data System (ADS)

    Kim, Ju Hyun; Hwang, Byeong-Ung; Kim, Do-Il; Kim, Jin Soo; Seol, Young Gug; Kim, Tae Woong; Lee, Nae-Eung

    2017-05-01

    Organic gate dielectrics in thin film transistors (TFTs) for flexible display have advantages of high flexibility yet have the disadvantage of low dielectric constant (low- k). To supplement low- k characteristics of organic gate dielectrics, an organic/inorganic nanocomposite insulator loaded with high- k inorganic oxide nanoparticles (NPs) has been investigated but high loading of high- k NPs in polymer matrix is essential. Herein, compositing of over-coated polyimide (PI) on self-assembled (SA) layer of mixed HfO2 and ZrO2 NPs as inorganic fillers was used to make dielectric constant higher and leakage characteristics lower. A flexible TFT with lower the threshold voltage and high current on/off ratio could be fabricated by using the hybrid gate dielectric structure of the nanocomposite with SA layer of mixed NPs on ultrathin atomic-layer deposited Al2O3. [Figure not available: see fulltext.

  10. Nanocomposites of polyimide and mixed oxide nanoparticles for high performance nanohybrid gate dielectrics in flexible thin film transistors

    NASA Astrophysics Data System (ADS)

    Kim, Ju Hyun; Hwang, Byeong-Ung; Kim, Do-Il; Kim, Jin Soo; Seol, Young Gug; Kim, Tae Woong; Lee, Nae-Eung

    2017-01-01

    Organic gate dielectrics in thin film transistors (TFTs) for flexible display have advantages of high flexibility yet have the disadvantage of low dielectric constant (low-k). To supplement low-k characteristics of organic gate dielectrics, an organic/inorganic nanocomposite insulator loaded with high-k inorganic oxide nanoparticles (NPs) has been investigated but high loading of high-k NPs in polymer matrix is essential. Herein, compositing of over-coated polyimide (PI) on self-assembled (SA) layer of mixed HfO2 and ZrO2 NPs as inorganic fillers was used to make dielectric constant higher and leakage characteristics lower. A flexible TFT with lower the threshold voltage and high current on/off ratio could be fabricated by using the hybrid gate dielectric structure of the nanocomposite with SA layer of mixed NPs on ultrathin atomic-layer deposited Al2O3.

  11. Preparation of N-doped graphene by reduction of graphene oxide with mixed microbial system and its haemocompatibility.

    PubMed

    Fan, Mengmeng; Zhu, Chunlin; Feng, Zhang-Qi; Yang, Jiazhi; Liu, Lin; Sun, Dongping

    2014-05-07

    A steady, effective and environment friendly method of introducing nitrogen into graphene is by microbial reduction of graphene oxide with mixed microorganisms from the anode chamber of microbial fuel cells (MFC). Using this method, N-doped graphene is easily obtained under mild conditions and by simple treatment processes, with the N/C ratio reaching 8.14%. Various characterizations demonstrate that the as-prepared N-doped graphene has excellent properties and is comparable with, and in some aspects, even better than, pristine graphene (containing only elemental C) prepared by chemical methods. The N-doped graphene (mainly substitution of C in the plane of the graphene sheet) with uniform distribution of N was haemocompatible, nontoxic, and water-dispersible, all of which are desirable properties for biomaterials and attributable to a synergetic metabolic effect of mixed microorganisms.

  12. THERMAL DESTRUCTION OF HIGHLY CHLORINATED MIXED WASTES WITHOUT GENERATING CORROSIVE OFF-GASES USING MOLTEN SALT OXIDATION (1,2)

    SciTech Connect

    Smith, W.; Feizollahi, F.

    2002-02-25

    A pilot-scale MSO (Molten Salt Oxidation) system was used to process 45-gallons of a halogenated mixed waste that is difficult to treat with other thermal systems. The mixed waste was a halogenated solvent that consisted mostly of methylchloroform. The 80 weight percent of waste consisting of highly corrosive chlorine was captured in the first process vessel as sodium chloride. The sodium chloride leached chrome from that process vessel and the solidified salt exhibited the toxicity characteristic for chrome as measured by TCLP (Toxicity Characteristic Leaching Procedure) testing. The operating ranges for parameters such as salt bed temperature, off-gas temperature, and feed rate that enable sustained operation were identified. At feed rates below the sustainable limit, both processing capacity and maintenance requirements increased with feed rate. Design and operational modifications to increase the sustainable feed rate limit and reduce maintenance requirements reduced both salt carryover and volumetric gas flows.

  13. Synthesis, characterization, and activity of yttrium(III) nitrate complexes bearing tripodal phosphine oxide and mixed phosphine-phosphine oxide ligands.

    PubMed

    Sues, Peter E; Lough, Alan J; Morris, Robert H

    2012-09-03

    A series of four tripodal phosphine oxide ligands, (OPR(2))(2)CHCH(2)POR(2) (1a-1d), and four mixed phosphine-phosphine oxide ligands, (OPR(2))(2)CHCH(2)PR(2) (3a-3d), were synthesized and coordinated to yttrium to produce Y(NO(3))(3)[(OPR(2))(2)CHCH(2)POR(2)] (2a-2d) and Y(NO(3))(3)[(OPR(2))(2)CHCH(2)PR(2)](OPPh(3)) (4a-4d) complexes. The previously reported ligand 1a and unknown phosphine oxide ligands 1b-1d were generated in an unprecedented trisubstitution reaction of bromoacetaldehyde diethyl acetal, while the novel partially reduced ligands 3a-3d were synthesized from 1a-1d according to a known literature protocol for the selective monoreduction of bisphosphine oxides. The neutral yttrium complexes 2a-2d are nine-coordinate and display a tricapped trigonal-prismatic geometry. Complexes 4a-4d are also neutral, nine-coordinate species and have a pendant phosphine functionality, which provides the potential to form bimetallic early-late transition-metal complexes. Additionally, yttrium complexes 2a-2d were activated with base and tested for the ring-opening polymerization of ε-caprolactone, but the results showed that base by itself was significantly more effective than the yttrium species investigated.

  14. Ozone interaction with rodent lung. III. Oxidation of reduced glutathione and formation of mixed disulfides between protein and nonprotein sulfhydryls.

    PubMed Central

    DeLucia, A J; Mustafa, M G; Hussain, M Z; Cross, C E

    1975-01-01

    Nonprotein sulfhydryls (NPSH), a major source of cellular reducing substances, were examined in lung tissue after short-term exposure of rats to O3. While the NPSH level was unaffected by low-level exposures (e.g., 0.8 ppm for up to 24 h or 1.5 ppm for up to 8 h), it was significantly lowered by higher exposure regimens (e.g., 25 per cent after 2 ppm for 8 h and 49 per cent after 4 ppm for 6 h). After exposure to 4 ppm O3 for 6 h the level of reduced glutathione (GSH), which accounted for approximately 90 per cent of NPSH in the lung, decreased 40 per cent but without a rise in the level of oxidized gluathione (GSSG). Treatment of lung homogenate with borohydride led to recovery of NPSH in exposed lungs to control values, suggesting that NPSH or GSH oxidation during in vivo O3 exposure resulted in formation of mixed disulfides with other sulfhydryl (SH) groups of lung tissue. Extracts of borohydride-treated particulate and supernatant fractions of lung homogenate were analyzed for NPSH by paper chromatography. From this analysis GSH appeared to be the only NPSH bound to lung tissue proteins via mixed disulfide linkage. The formation of mixed disulfides appeared to be a transient phenomenon. Immediately after a 4-h exposure to 3 ppm O3 the level of mixed disulfides was small (15 per cent of the total NPSH) but attained a peak (equivalent to 0.6 mumol NPSH/lung) after a recovery for 24 h. However, the level diminished considerably within 48 h of recovery. PMID:1120782

  15. Using jet mixing to prepare polyelectrolyte complexes: complex properties and their interaction with silicon oxide surfaces.

    PubMed

    Ankerfors, Caroline; Ondaral, Sedat; Wågberg, Lars; Odberg, Lars

    2010-11-01

    The influence of mixing procedure on the properties of polyelectrolyte complexes (PECs) was investigated using two complexation techniques, polyelectrolyte titration and jet mixing, the latter being a new method for PEC preparation. For the low-molecular-weight polyelectrolytes polyacrylic acid (PAA) and polyallyl amine hydrochloride (PAH), shorter mixing times produced smaller PECs, whereas for higher molecular weights of the same polyelectrolytes, PEC size first decreased with decreasing mixing time to a certain level, after which it started increasing again. This pattern was likely due to the diffusion-controlled formation of "pre-complexes", which, in the case of low-molecular-weight polymers, occurs sufficiently quickly to form stable complexes; when polyelectrolytes are larger, however, non-equilibrium pre-complexes, more prone to aggregation, are formed. Comparing the techniques revealed that jet mixing produced smaller complexes, allowing PEC size to be controlled by mixing time, which was not the case with polyelectrolyte titration. Higher polyelectrolyte concentration during jet mixing led to the formation of larger PECs. It was also demonstrated that PEC size could be changed after preparation: increasing the pH of the PEC dispersion led to an irreversible increase in PEC size, whereas lowering the pH did not influence PEC size. The adsorption behavior of PECs formed from weak polyelectrolytes on model substrates was studied using QCM-D, SPAR, and AFM imaging; the results indicated that increasing the pH increased the amount of PECs adsorbed to model surfaces. However, the amount of PECs adsorbed to the model surfaces was low compared with other systems in all studied cases. Copyright 2010 Elsevier Inc. All rights reserved.

  16. Electrochemical energy storage by polyaniline nanofibers: high gravity assisted oxidative polymerization vs. rapid mixing chemical oxidative polymerization.

    PubMed

    Zhao, Yibo; Wei, Huige; Arowo, Moses; Yan, Xingru; Wu, Wei; Chen, Jianfeng; Wang, Yiran; Guo, Zhanhu

    2015-01-14

    Polyaniline (PANI) nanofibers prepared by high gravity chemical oxidative polymerization in a rotating packed bed (RPB) have demonstrated a much higher specific capacitance of 667.6 F g(-1) than 375.9 F g(-1) of the nanofibers produced by a stirred tank reactor (STR) at a gravimetric current of 10 A g(-1). Meanwhile, the cycling stability of the electrode is 62.2 and 65.9% for the nanofibers from RPB and STR after 500 cycles, respectively.

  17. Destruction of hazardous and mixed wastes using mediated electrochemical oxidation in a Ag(II)HNO3 bench scale system

    SciTech Connect

    Balazs, B.; Chiba, Z.; Hsu, P.; Lewis, P.; Murguia, L.; Adamson, M.

    1997-02-01

    Mediated Electrochemical Oxidation (MEO) is a promising technology for the destruction of organic containing wastes and the remediation of mixed wastes containing transuranic components. The combination of a powerful oxidant and an acid solution allows the conversion of nearly all organics, whether present in hazardous or in mixed waste, to carbon dioxide. Insoluble transuranics are dissolved in this process and may be recovered by separation and precipitation. The oxidant, or mediator, is a multivalent transition metal ion which is cleanly recycled in a number of charge transfer steps in an electrochemical cell. The MEO technique offers several advantages which are inherent in the system. First, the oxidation/dissolution processes are accomplished at near ambient pressures and temperatures (30-70{degrees}C). Second, all waste stream components and oxidation products (with the exception of evolved gases) are contained in an aqueous environment. This electrolyte acts as an accumulator for inorganics which were present in the original waste stream, and the large volume of electrolyte provides a thermal buffer for the energy released during oxidation of the organics. Third, the generation of secondary waste is minimal, as the process needs no additional reagents. Finally, the entire process can be shut down by simply turning off the power, affording a level of control unavailable in some other techniques. Although the oxidation of organics and the dissolution of transuranics by higher valency metal ions has been known for some time, applying the MEO technology to waste treatment is a relatively recent development. Numerous groups, both in the United States and Europe, have made substantial progress in the last decade towards understanding the mechanistic pathways, kinetics, and engineering aspects of the process. At Lawrence Livermore National Laboratory, substantial contributions have been made to this knowledge base in these areas and others. Conceptual design and

  18. Strain Field in Ultrasmall Gold Nanoparticles Supported on Cerium-Based Mixed Oxides. Key Influence of the Support Redox State.

    PubMed

    López-Haro, Miguel; Yoshida, Kenta; Del Río, Eloy; Pérez-Omil, José A; Boyes, Edward D; Trasobares, Susana; Zuo, Jian-Min; Gai, Pratibha L; Calvino, José J

    2016-05-03

    Using a method that combines experimental and simulated Aberration-Corrected High Resolution Electron Microscopy images with digital image processing and structure modeling, strain distribution maps within gold nanoparticles relevant to real powder type catalysts, i.e., smaller than 3 nm, and supported on a ceria-based mixed oxide have been determined. The influence of the reduction state of the support and particle size has been examined. In this respect, it has been proven that reduction even at low temperatures induces a much larger compressive strain on the first {111} planes at the interface. This increase in compression fully explains, in accordance with previous DFT calculations, the loss of CO adsorption capacity of the interface area previously reported for Au supported on ceria-based oxides.

  19. Structure and electronic properties of MoVO type mixed-metal oxides - a combined view by experiment and theory.

    PubMed

    Chiu, Cheng-Chau; Vogt, Thomas; Zhao, Lili; Genest, Alexander; Rösch, Notker

    2015-08-21

    In this review we address recent efforts from experimental and theoretical side to study MoVO-type mixed metal oxides (MMOs) and their properties. We illustrate how structures of MMOs have been evaluated using a large variety of experimental techniques, such as electron microscopy, neutron diffraction, and X-ray diffraction. Furthermore, we discuss the current view on structure-catalysis correlations, derived from recent experiments. In a second part, we examine useful tools of theoretical chemistry for exploring MoVO-type systems. We discuss the need for using hybrid DFT methods and we analyze how, in the context of MMOs studies, semi-local DFT approximations can encounter problems due to a notable self-interaction error when describing oxidic species and reactions on them. In addition, we discuss various aspects of the model that are important when attempting to map complex MMO systems.

  20. Heterogeneous Oxidation of Laboratory-generated Mixed Composition and Biomass Burning Particles

    NASA Astrophysics Data System (ADS)

    Lim, C. Y.; Sugrue, R. A.; Hagan, D. H.; Cappa, C. D.; Kroll, J. H.; Browne, E. C.

    2016-12-01

    Heterogeneous oxidation of organic aerosol (OA) can significantly transform the chemical and physical properties of particulate matter in the atmosphere, leading to changes to the chemical composition of OA and potential volatilization of organic compounds. It has become increasingly apparent that the heterogeneous oxidation kinetics of OA depend on the phase and morphology of the particles. However, most laboratory experiments to date have been performed on single-component, purely organic precursors, which may exhibit fundamentally different behavior than more complex particles in the atmosphere. Here we present laboratory studies of the heterogeneous oxidation of two more complex chemical systems: thin, organic coatings on inorganic seed particles and biomass burning OA. In the first system, squalane (C30H62), a model compound for reduced OA, is coated onto dry ammonium sulfate particles at various thicknesses (10-20 nm) and exposed to hydroxyl radical (OH) in a flow tube reactor. In the second, we use a semi-batch reactor to study the heterogeneous OH-initiated oxidation of biomass burning particles as a part of the 2016 FIREX campaign in Missoula, MT. The resulting changes in chemical composition are monitored with an Aerodyne High Resolution Time-of-flight Aerosol Mass Spectrometer (AMS) and a soot-particle AMS for the non-refractory and refractory systems, respectively. We show that the heterogeneous oxidation kinetics of these multicomponent particles are substantially different than that of the single-component particles. The oxidation of organic coatings is rapid, undergoing dramatic changes to carbon oxidation state and losing a significant amount of organic mass after relatively low OH exposures (equivalent to several days of atmospheric processing). In the case of biomass burning particles, the kinetics are complex, with different components (inferred by aerosol mass spectrometry) undergoing oxidation at different rates.

  1. Electrochemical synthesis of nanoparticles of magnetic mixed oxides of Sr-Fe and Sr-Co-Fe.

    PubMed

    Asenjo, J; Amigó, R; Krotenko, E; Torres, F; Tejada, J; Brillas, E; Sardin, G

    2001-12-01

    The electrochemical synthesis of magnetic nanoparticles of new Sr-Fe and Sr-Co-Fe oxides using an undivided cell with two Fe electrodes is reported in this work. These materials are collected as precipitates by electrolyzing acidic solutions containing mixtures of chlorides and nitrates of Sr2+, Fe3+ and, optionally, Co2+ at temperatures between 40 degrees C and 80 degrees C. Sr-Fe oxides are produced with energy costs lower than 2.7 kWh kg-1 in the pH range 2.0-6.0 at 50 mA cm-2, whereas Sr-Co-Fe oxides are obtained with a cost of 3.0 kWh kg-1 at pH 1.5 and at 35 mA cm-2. Inductively coupled plasma analysis of materials and energy dispersive X-ray microanalysis of single particles confirm that they are composed of pure mixed oxides, without metallic Fe impurities. All synthesized compounds crystallize as inverse cubic spinels, with structures similar to those of maghemite and magnetite. They are formed by round-shape nanoparticles with sizes lower than 50 nm, as observed by transmission electron microscopy. Thermal desorption spectrometry allows us to detect the presence of hydrogen and volatiles proceeding from water decomposition in their lattices. After heating the electrogenerated materials at 300 degrees C during 1 h to eliminate such species, Sr-Co-Fe oxides with similar magnetic properties to those of hard ferrites are obtained, but magnetic Sr-Fe oxides only behave as soft ferrites.

  2. Controlling the oxygen potential to improve the densification and the solid solution formation of uranium-plutonium mixed oxides

    NASA Astrophysics Data System (ADS)

    Berzati, Ségolène; Vaudez, Stéphane; Belin, Renaud C.; Léchelle, Jacques; Marc, Yves; Richaud, Jean-Christophe; Heintz, Jean-Marc

    2014-04-01

    Diffusion mechanisms occurring during the sintering of oxide ceramics are affected by the oxygen content of the atmosphere, as it imposes the nature and the concentration of structural defects in the material. Thus, the oxygen partial pressure, p(O2), of the sintering gas has to be precisely controlled, otherwise a large dispersion in various parameters, critical for the manufacturing of ceramics such as nuclear oxides fuels, is likely to occur. In the present work, the densification behaviour and the solid solution formation of a mixed uranium-plutonium oxide (MOX) were investigated. The initial mixture, composed of 70% UO2 + 30% PuO2, was studied at p(O2) ranging from 10-15 to 10-4 atm up to 1873 K both with dilatometry and in situ high temperature X-ray diffraction. This study has shown that the initial oxides UO2+x and PuO2-x first densify during heating and then the solid solution formation starts at about 200 K higher. The densification and the formation of the solid solution both occur at a lower temperature when p(O2) increases. Based on this result, it is possible to better define the sintering atmosphere, eventually leading to optimized parameters such as density, oxygen stoichiometry and cations homogenization of nuclear ceramics and of a wide range of industrial ceramic materials.

  3. Deterioration of yttria-stabilized zirconia by boron carbide alone or mixed with metallic or oxidized Fe, Cr, Zr mixtures

    NASA Astrophysics Data System (ADS)

    De Bremaecker, A.; Ayrault, L.; Clément, B.

    2014-08-01

    In the frame of severe accident conditions (PHEBUS FPT3 test), different experiments were carried out on the interactions of 20% yttria-stabilized zirconia (YSZ) and 20% ceria-stab zirconia with boron carbide or its oxidation products (B2O3): either tests under steam between 1230° and 1700 °C with B4C alone or B4C mixed with metals, either tests under Ar with boron oxide present in a mixture of iron and chromium oxides. In all cases an interaction was observed with formation of intergranular yttrium borate. At 1700 °C boron oxide is able to “pump out” the Y stabiliser from the YSZ grains but also some trace elements (Ca and Al) and to form a eutectic containing YBO3 and yttrium calcium oxy-borate (YCOB). At the same time a substantial swelling (“bloating”) of the zirconia happens, qualitatively similar to the foaming of irradiated fuel in contact with a Zr-melt. In all samples the lowering of the Y (or Ce)-content in the YSZ grains is so sharp that in the interaction layers zirconia is no longer stabilized. This is important when YSZ is envisaged as simulant of UO2 or as inert matrix for Am-transmutation.

  4. DRIFT study of CuO-CeO₂-TiO₂ mixed oxides for NOx reduction with NH₃ at low temperatures.

    PubMed

    Chen, Lei; Si, Zhichun; Wu, Xiaodong; Weng, Duan

    2014-06-11

    A CuO-CeO2-TiO2 catalyst for selective catalytic reduction of NOx with NH3 (NH3-SCR) at low temperatures was prepared by a sol-gel method and characterized by X-ray diffraction, Brunner-Emmett-Teller surface area, ultraviolet-visible spectroscopy, H2 temperature-programmed reduction, scanning electron microscopy and in situ diffuse reflectance infrared Fourier transform spectroscopy (in situ DRIFTS). The CuO-CeO2-TiO2 ternary oxide catalyst shows excellent NH3-SCR activity in a low-temperature range of 150-250 °C. Lewis acid sites generated from Cu(2+) are the main active sites for ammonia activation at low temperature, which is crucial for low temperature NH3-SCR activity. The introduction of ceria results in increased reducibility of CuO species and strong interactions between CuO particles with the matrix. The interactions between copper, cerium and titanium oxides lead to high dispersion of metal oxides with increased active oxygen and enhanced catalyst acidity. Homogeneously mixed metal oxides facilitate the "fast SCR" reaction among Cu(2+)-NO, nitrate (coordinated on cerium sites) and ammonia (on titanium sites) on the CuO-CeO2-TiO2 catalyst at low temperatures.

  5. Cerium concentrate and mixed rare earth chloride by the oxidative decomposition of bastnaesite in molten sodium hydroxide

    SciTech Connect

    Iijima, Toshio; Kato, Kazuhiro; Kuno, Toyohiko; Okuwaki, Akitsugu; Umetsu, Yoshiaki; Okabe, Taijiro )

    1993-04-01

    Bastnaesite was treated in molten NaOH at 623-777 K for 10-60 min under atmosphere. Cerium-(III) in the ore was easily oxidized 95% or more within 30 min to give an oxidation product composed of solid solutions of CeO[sub 2]-rich and CeO[sub 2]-lean phases and Ce-free rare earth oxide phase. Simultaneously fluoride ion was removed 97% or more. Cerium concentrate was prepared from the oxidation product by leaching with 0.1-3 M HCl solution. The yield of cerium concentrate and the CeO[sub 2] content reached 55-57% and 70-72%, respectively. Mixed rare earth chloride is composed of about 90% rare earth chloride and 10% alkaline earth chloride, and the contents of CeCl[sub 3], LaCl[sub 3], NdCl[sub 3], and PrCl[sub 3] are 11.5, 58.5, 14.4, and 5.4%, respectively. The particle size of resulting cerium concentrate was fairly uniform and about 0.1 [mu]m.

  6. Tolerability of an equimolar mix of nitrous oxide and oxygen during painful procedures in very elderly patients.

    PubMed

    Bauer, Carole; Lahjibi-Paulet, Hayat; Somme, Dominique; Onody, Peter; Saint Jean, Olivier; Gisselbrecht, Mathilde

    2007-01-01

    Although an equimolar mix of nitrous oxide-oxygen (N(2)O/O(2)) [Kalinox] is widely used as an analgesic, there have been few specific studies of this product in the elderly. In this article, we investigate the tolerability of this equimolar mix in very elderly patients undergoing painful procedures. This was a prospective, observational study of patients hospitalised in the geriatric short-stay unit of a teaching hospital between July 2001 and September 2003. All patients aged >/=80 years who were scheduled for invasive care procedures were eligible for inclusion. Sixty-two patients were recruited and underwent a total of 68 procedures. The procedures were divided into four classes based on the degree of pain they were expected to cause and their duration. Patients received the equimolar N(2)O/O(2) mix (Kalinox) for 5 minutes before the beginning of the procedure and throughout its duration. The inhaled treatment was administered via a high-concentration mask. Assessments were carried out during the inhalation and over the 15 minute period following inhalation. The primary endpoint of the study was tolerability of the equimolar N(2)O/O(2) mix, and all adverse events were recorded. Secondary endpoints were the efficacy of the product (assessed on a verbal rating scale and/or the Doloplus scale), its ease of use and its acceptability to patients and staff. Fourteen patients (22.6%) each reported at least one adverse event: impaired hearing (n = 1), altered perception of the environment (n = 8), anxiety (n = 1), headache (n = 3) and drowsiness at the end of the procedure (n = 2). All these disorders subsided rapidly after treatment was completed. This study shows the favourable tolerability of the equimolar N(2)O/O(2) mix in very elderly subjects, which makes this product a valuable tool for the management of acute pain in this age group.

  7. Mixed proton and electron conduction in graphene oxide films: field effect in a transistor based on graphene oxide

    NASA Astrophysics Data System (ADS)

    Smirnov, V. A.; Mokrushin, A. D.; Vasiliev, V. P.; Denisov, N. N.; Denisova, K. N.

    2016-05-01

    GO films exhibited dual proton and electron conduction. Proton conduction showed the exponential dependence on relative humidity with the activation energy E a = 0.9 ± 0.05 eV. For the electron conductivity (220-273 K) induced by thermolysis and chemical means E a = 1.15 ± 0.05 eV. With increasing humidity, the electron conduction went down, which was associated with recombination phenomena. The GO films can be regarded as a first example of the mixed electron-proton conduction when sample conductivity can be regulated by external influence (humidity). Field effect is detected and studied in the transistor on the basis of the GO in different types of conduction.

  8. 40 CFR 721.10148 - Acryloxy alkanoic alkane derivative with mixed metal oxides (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Acryloxy alkanoic alkane derivative... Significant New Uses for Specific Chemical Substances § 721.10148 Acryloxy alkanoic alkane derivative with...) The chemical substance identified generically as acryloxy alkanoic alkane derivative with mixed...

  9. 40 CFR 721.10148 - Acryloxy alkanoic alkane derivative with mixed metal oxides (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Acryloxy alkanoic alkane derivative... Significant New Uses for Specific Chemical Substances § 721.10148 Acryloxy alkanoic alkane derivative with...) The chemical substance identified generically as acryloxy alkanoic alkane derivative with mixed...

  10. Nuclear waste treatment - Studying the mixed ion type effects and concentration on the behaviour of oxide dispersions

    SciTech Connect

    Omokanye, Qanitalillahi; Biggs, Simon

    2007-07-01

    In order to gain good control over a particulate dispersion it is necessary to accurately characterise the strength of inter-particle forces that may be operating. Such control is not routinely used, as yet, in the nuclear industry despite the possible benefits. We are investigating the impact of mixed electrolyte systems, for example NaCl and Na{sub 2}SO{sub 4}, on the stability of oxide simulant particle dispersions. The electro-acoustic zeta potentials and shear yield stresses for concentrated dispersions have been measured across a range of pH conditions and electrolyte concentrations (0.001 M - 1.0 M). This paper summarizes initial data from these studies showing how the shear yield stress of concentrated aqueous oxide particle dispersions, can be adjusted through regulation of pH and the addition of background electrolytes (salt). The yield stress as a function of pH for these dispersions in mixed electrolytes showed a direct correlation with corresponding measurements of the zeta potential. Changes in the background electrolyte concentration or type were seen to cause a shift in the position of the isoelectric point (iep). Measurements of the shear yield stress showed a maximum at the iep corresponding to the position of maximum instability in the suspension. The consequences of these data for the efficient treatment of solid-liquid systems will be discussed. (authors)

  11. Synthesis, characterization and photocatalytic activity of mixed oxides derived from ZnAlTi ternary layered double hydroxides

    NASA Astrophysics Data System (ADS)

    Sahu, R. K.; Mohanta, B. S.; Das, N. N.

    2013-09-01

    A new series of Ti4+ containing ZnAl-LDHs with varying Zn:Al:Ti (~3:1:0-3:0.5:0.5) ratio were prepared by coprecipitation of homogeneous solution metal salts and characterized by various physicochemical methods. Powder XRD revealed the formation of well crystallized LDH even at the highest Ti4+ content. On thermal treatment at 450 °C, the well crystallized LDH precursors yielded mixed oxides with BET surface area in the range 92-118 m2/g. UV-vis diffuse reflection spectroscopy (DRS) showed a marginal decrease of band gap energy for calcined ZnAlTi-LDHs in comparison to either ZnO or TiO2-P25. The TEM analyses of a representative sample (as-synthesized and calcined) indicated more or less uniform distribution of titanium species. The derived mixed oxides from titanium containing LDH precursors demonstrated better activity toward photodegradation of methylene blue and rhodamine B than those of a physical mixture of ZnO and TiO2. Moreover, the present work not only provided a first hand understanding about semiconductor properties of ZnAlTi-LDHs but also demonstrated their potential as photocatalysts for degradation of organic pollutants.

  12. Design study of an irradiation experiment with inert matrix and mixed-oxide fuel at the Halden boiling water reactor

    NASA Astrophysics Data System (ADS)

    Kasemeyer, U.; Joo, H.-K.; Ledergerber, G.

    1999-08-01

    An effective way to reduce the large quantities of plutonium currently accumulated worldwide would be to use uranium-free fuel in light water reactors (LWRs) so that no new plutonium is produced. To test such a new fuel under reactor conditions and in comparison with standard mixed-oxide (MOX) fuel, an irradiation experiment is planned at the Halden boiling water reactor. The behaviour of three fuel rods consisting of uranium-free fuel will be investigated together with three rods made out of uranium-plutonium mixed-oxide fuel in the same assembly. The fuel compositions were adjusted so that all rods produce a similar power. Because of the moderation with D 2O in the Halden reactor, two different surroundings of the considered assembly were examined to analyze the influence of the flux spectrum on the experiment. This showed that the influence of the spectrum on the material behaviour is negligible. The relation between assembly power and average neutron detector signal as well as the burnup or depletion function was calculated. The assumed power history was adapted to a usual LWR schedule. It is possible to reach a burnup of ˜540 MW d kg HM-1 with the uranium-free fuel and ˜54 MW d kg HM-1 with the MOX fuel after five years of irradiation, which is similar to the average burnup reached in commercial LWRs after four years of operation.

  13. Biodiesel production from waste cooking oil catalyzed by TiO2-MgO mixed oxides.

    PubMed

    Wen, Zhenzhong; Yu, Xinhai; Tu, Shan-Tung; Yan, Jinyue; Dahlquist, Erik

    2010-12-01

    Mixed oxides of TiO(2)-MgO obtained by the sol-gel method were used to convert waste cooking oil into biodiesel. Titanium improved the stability of the catalyst because of the defects induced by the substitution of Ti ions for Mg ions in the magnesia lattice. The best catalyst was determined to be MT-1-923, which is comprised of an Mg/Ti molar ratio of 1 and calcined at 923 K, based on an assessment of the activity and stability of the catalyst. The main reaction parameters, including methanol/oil molar ratio, catalyst amount, and temperature, were investigated. The catalytic activity of MT-1-923 decreased slowly in the reuse process. After regeneration, the activity of MT-1-923 slightly increased compared with that of the fresh catalyst due to an increase in the specific surface area and average pore diameter. The mixed oxides catalyst, TiO(2)-MgO, showed good potential in large-scale biodiesel production from waste cooking oil.

  14. Depletion analysis of mixed-oxide fuel pins in light water reactors and the Advanced Test Reactor

    SciTech Connect

    Chang, G.S.; Ryskamp, J.M.

    2000-03-01

    An experiment containing weapons-grade mixed-oxide (WG-MOX) fuel has been designed and is being irradiated in the Advanced Test Reactor (ATR) at the Idaho National Engineering and Environmental Laboratory (INEEL). The ability to accurately predict fuel pin performance is an essential requirement for the MOX fuel test assembly design. Detailed radial fission power and temperature profile effects and fission gas release in the fuel pin are a function of the fuel pin's temperature, fission power, and fission product ad actinide concentration profiles. In addition, the burnup-dependent profile analyses in irradiated fuel pins is important for fuel performance analysis to support the potential licensing of the MOX fuel made from WG-plutonium and depleted uranium for use in US reactors. The MCNP Coupling With ORIGEN2 burnup calculation code (MCWO) can analyze the detailed burnup profiles of WG-MOX and reactor-grade mixed-oxide (RG-MOX) fuel pins. The validated code MCWO can provide the best-estimate neutronic characteristics of fuel burnup performance analysis. Applying this capability with a new minicell method allows calculation of detailed nuclide concentration and power distributions within the MOX pins as a function of burnup. This methodology was applied to MOX fuel in a commercial pressurized water reactor and in an experiment currently being irradiated in the ATR. The prediction of nuclide concentration profiles and power distributions in irradiated MOX plus via this new methodology can provide insights into MOX fuel performance.

  15. Evaluation of the advanced mixed-oxide fuel test FO-2 irradiated in the FFTF (Fast Flux Test Facility)

    SciTech Connect

    Burley Gilpin, L.L.; Chastain, S.A.; Baker, R.B.

    1989-01-01

    The advanced mixed-oxide (UO{sub 2}-PuO{sub 2}) test assembly, FO-2, irradiated in the Fast Flux Test Facility (FFTF) is undergoing postirradiation examination. This is one of the first FFTF tests examined that used the advanced ferrite-martensite alloy, HT9, which is highly resistant to irradiation swelling. The FO-2 includes the first annular fueled pins irradiated in FFTF to undergo destructive examination. The FO-2 is a lead assembly for the ongoing FFTF Core Demonstration Experiment (CDE) and was designed to evaluate the effects of fuel design variables, such as pellet density, smeared density, and fuel form (annular or solid fuel), on advanced pin performance. The assembly contains a total of 169 fuel pins of 12 different types. Two L (annular) fuel pins, GF02L04 (FFTF and transient tested) and GF02L09 (FFTF only), were destructively examined. Evaluation of the FO-2 fuel pins and assembly shows the excellent and predictable performance of the mixed-oxide fuels with HT9 structural material. This, combined with the robust behavior of the pins in transient tests, and the continued excellent performance of the CDE indicate this is a superior fuel system for liquid-metal reactors. It offers greatly reduced deformation during irradiation, while maintaining good operating characteristics.

  16. Observations of reactive nitrogen oxide fluxes by eddy covariance above two midlatitude North American mixed hardwood forests

    NASA Astrophysics Data System (ADS)

    Geddes, J. A.; Murphy, J. G.

    2014-03-01

    Significant knowledge gaps persist in the understanding of forest-atmosphere exchange of reactive nitrogen oxides, partly due to a lack of direct observations. Chemical transport models require representations of dry deposition over a variety of land surface types, and the role of canopy exchange of NOx (= NO + NO2) is highly uncertain. Biosphere-atmosphere exchange of NOx and NOy (= NOx + HNO3 + PANs + RONO2 + pNO3- + ...) was measured by eddy covariance above a mixed hardwood forest in central Ontario (Haliburton Forest and Wildlife Reserve, or HFWR), and a mixed hardwood forest in northern lower Michigan (Program for Research on Oxidants: Photochemistry, Emissions and Transport, or PROPHET) during the summers of 2011 and 2012 respectively. NOx and NOy mixing ratios were measured by a custom-built two-channel analyser based on chemiluminescence, with selective NO2 conversion via LED photolysis and NOy conversion via a hot molybdenum converter. Consideration of interferences from water vapour and O3, and random uncertainty of the calculated fluxes are discussed. NOy flux observations were predominantly of deposition at both locations. In general, the magnitude of deposition scaled with NOy mixing ratios. Average midday (12:00-16:00) deposition velocities at HFWR and PROPHET were 0.20 ± 0.25 and 0.67 ± 1.24 cm s-1 respectively. Average nighttime (00:00-04:00) deposition velocities were 0.09 ± 0.25 cm s-1 and 0.08 ± 0.16 cm s-1 respectively. At HFWR, a period of highly polluted conditions (NOy concentrations up to 18 ppb) showed distinctly different flux characteristics than the rest of the campaign. Integrated daily average NOy flux was -0.14 mg (N) m-2 day-1 and -0.34 mg (N) m-2 day-1 (net deposition) at HFWR and PROPHET respectively. Concurrent wet deposition measurements were used to estimate the contributions of dry deposition to total reactive nitrogen oxide inputs, found to be 22 and 40% at HFWR and PROPHET respectively.

  17. Impact of bioavailable Pb2+ on Fe2+ oxidation in the presence of a mixed culture of Acidithiobacillus ferrooxidans

    NASA Astrophysics Data System (ADS)

    Wang, H.; Yang, X.; Gong, L.; Jiang, Z.

    2009-12-01

    Numerous investigations were conducted on the effects of a variety of metals, including As, Cu, Zn, Cr on the growth of Acidithiobacillus ferrooxidans (an iron oxidizer and indigenous to acidic environment) and Fe2+ oxidation. However, less work was reported concerning the Pb2+ effect due to its quick precipitation as anglesite in SO42--rich solutions. The reported inhibiting concentrations of Pb2+ varied greatly on the oxidizing rate of ferrous in the presence of A. ferrooxidans, and the reasons remain unclear. Comparative studies were conducted between chemical and microbial oxidation of ferrous by a mixed culture of A. ferrooxidans in the presence of different concentration of Pb2+. Eh, pH and Fe2+ concentration were monitored periodically and the final precipitates were analyzed by X-ray diffraction (XRD), scanning electronic microscopy (SEM), and SEM-EDAX (Energy-dispersive X-ray spectroscopy). To check the impact of bioavailable Pb2+ on Fe2+ oxidation, initial precipitation was removed before the microbial inoculation. Our data showed that Pb2+ will exert a remarkable inhibition on microbial oxidation of ferrous when initial Pb2+ concentration reached as high as 5 g/L. However, the bioavailable Pb2+ in this case should be much lower than 5 g/L in the solution due to the precipitation of anglesite (The absolute concentration was under analysis). The threshold of Pb2+ concentrations to inhibit the microbial oxidation varies among the previous studies. This might result from the different microbial strains used or the mistaking of initial concentration as the substantial concentration of bioavailable Pb2+ after precipitation as anglesite. In contrast, Pb2+ does not show any obvious influence on chemical oxidation of ferrous. XRD spectrum of the final precipitates showed that anglesite was the only solid phase detected in chemical systems, while pure jarosite was found in the microbial systems. No lead was detected in jarosite by SEM-EDAX, inferring that Pb was

  18. Direct Determination of Oxidation States of Uranium in Mixed-Valent Uranium Oxides Using Total Reflection X-ray Fluorescence X-ray Absorption Near-Edge Spectroscopy.

    PubMed

    Sanyal, Kaushik; Khooha, Ajay; Das, Gangadhar; Tiwari, M K; Misra, N L

    2017-01-03

    Total reflection X-ray fluorescence (TXRF)-based X-ray absorption near-edge spectroscopy has been used to determine the oxidation state of uranium in mixed-valent U3O8 and U3O7 uranium oxides. The TXRF spectra of the compounds were measured using variable X-ray energies in the vicinity of the U L3 edge in the TXRF excitation mode at the microfocus beamline of the Indus-2 synchrotron facility. The TXRF-based X-ray absorption near-edge spectroscopy (TXRF-XANES) spectra were deduced from the emission spectra measured using the energies below and above the U L3 edge in the XANES region. The data processing using TXRF-XANES spectra of U(IV), U(V), and U(VI) standard compounds revealed that U present in U3O8 is a mixture of U(V) and U(VI), whereas U in U3O7 is mixture of U(IV) and U(VI). The results obtained in this study are similar to that reported in literature using the U M edge. The present study has demonstrated the possibility of application of TXRF for the oxidation state determination and elemental speciation of radioactive substances in a nondestructive manner with very small amount of sample requirement.

  19. Polyphosphazene-poly(olefin oxide) mixed polymer electrolytes. II - Characterization of MEEP/PPO-(LiX)n

    NASA Astrophysics Data System (ADS)

    Abraham, K. M.; Alamgir, M.; Moulton, R. D.

    1991-04-01

    The preparation, and the conductivity, calorimetric,, and electrochemical studies of MEEP/PPO-(LiX)n mixed polymer electrolytes, where MEEP = poly(bis-methoxyethoxy ethoxide phosphazene) PPO = poly(propylene oxide) and LiX = LiBF4, LiClO4, LiCF3SO3, LiAsF6, and LiAlCl4, are described. The addition of PPO in various proportions to MEEP-(LiX)n electrolytes significantly improved the latter's dimensional stability but caused a slight decrease in its conductivity. The conductivities of these mixed-polymer electrolytes are much higher than that of PPO-(LiX)n. The Li(+) transport number in MEEP/PPO-(LiX)0.13 electrolytes, with LiX = LiBF4 and LiClO4, was determined to be between 0.3 and 0.5. Differential scanning calorimetric data established the predominantly amorphous nature of the mixed polymer complexes. Cyclic voltammetric studies at a stainless steel electrode indicated a stability domain between 1 and 4.5V and established the good Li plating and stripping efficiency in these electrolytes.

  20. Mechanisms of oxidative stress and alterations in gene expression by Libby six-mix in human mesothelial cells

    PubMed Central

    2010-01-01

    Background Exposures to an amphibole fiber in Libby, Montana cause increases in malignant mesothelioma (MM), a tumor of the pleural and peritoneal cavities with a poor prognosis. Affymetrix microarray/GeneSifter analysis was used to determine alterations in gene expression of a human mesothelial cell line (LP9/TERT-1) by a non-toxic concentration (15×106 μm2/cm2) of unprocessed Libby six-mix and negative (glass beads) and positive (crocidolite asbestos) controls. Because manganese superoxide dismutase (MnSOD; SOD2) was the only gene upregulated significantly (p < 0.05) at both 8 and 24 h, we measured SOD protein and activity, oxidative stress and glutathione (GSH) levels to better understand oxidative events after exposure to non-toxic (15×106 μm2/cm2) and toxic concentrations (75×106 μm2/cm2) of Libby six-mix. Results Exposure to 15×106 μm2/cm2 Libby six-mix elicited significant (p < 0.05) upregulation of one gene (SOD2; 4-fold) at 8 h and 111 gene changes at 24 h, including a 5-fold increase in SOD2. Increased levels of SOD2 mRNA at 24 h were also confirmed in HKNM-2 normal human pleural mesothelial cells by qRT-PCR. SOD2 protein levels were increased at toxic concentrations (75×106 μm2/cm2) of Libby six-mix at 24 h. In addition, levels of copper-zinc superoxide dismutase (Cu/ZnSOD; SOD1) protein were increased at 24 h in all mineral groups. A dose-related increase in SOD2 activity was observed, although total SOD activity remained unchanged. Dichlorodihydrofluorescein diacetate (DCFDA) fluorescence staining and flow cytometry revealed a dose- and time-dependent increase in reactive oxygen species (ROS) production by LP9/TERT-1 cells exposed to Libby six-mix. Both Libby six-mix and crocidolite asbestos at 75×106 μm2/cm2 caused transient decreases (p < 0.05) in GSH for up to 24 h and increases in gene expression of heme oxygenase 1 (HO-1) in LP9/TERT-1 and HKNM-2 cells. Conclusions Libby six-mix causes multiple gene expression changes in LP9/TERT-1

  1. Ruthenium(VI)-Catalyzed Oxidation of Alcohols by Hexacyanoferrate(III): An Example of Mixed Order

    ERIC Educational Resources Information Center

    Mucientes, Antonio E.; de la Pena, Maria A.

    2006-01-01

    The absorbance decay of hexacyanoferrate(III) as a function of time shows a progressive deviation from zero to first order. This variation follows an experimental rate law that has been analyzed. The change in reaction order is due to a change in the relative rate of substrate oxidation with respect to that of catalyst regeneration. (Contains 2…

  2. Ruthenium(VI)-Catalyzed Oxidation of Alcohols by Hexacyanoferrate(III): An Example of Mixed Order

    ERIC Educational Resources Information Center

    Mucientes, Antonio E.; de la Pena, Maria A.

    2006-01-01

    The absorbance decay of hexacyanoferrate(III) as a function of time shows a progressive deviation from zero to first order. This variation follows an experimental rate law that has been analyzed. The change in reaction order is due to a change in the relative rate of substrate oxidation with respect to that of catalyst regeneration. (Contains 2…

  3. Synthesis of coral-like tantalum oxide films via anodization in mixed organic-inorganic electrolytes.

    PubMed

    Yu, Hongbin; Zhu, Suiyi; Yang, Xia; Wang, Xinhong; Sun, Hongwei; Huo, Mingxin

    2013-01-01

    We report a simple method to fabricate nano-porous tantalum oxide films via anodization with Ta foils as the anode at room temperature. A mixture of ethylene glycol, phosphoric acid, NH4F and H2O was used as the electrolyte where the nano-porous tantalum oxide could be synthesized by anodizing a tantalum foil for 1 h at 20 V in a two-electrode configuration. The as-prepared porous film exhibited a continuous, uniform and coral-like morphology. The diameters of pores ranged from 30 nm to 50 nm. The pores interlaced each other and the depth was about 150 nm. After calcination, the as-synthesized amorphous tantalum oxide could be crystallized to the orthorhombic crystal system. As observed in photocatalytic experiments, the coral-like tantalum oxide exhibited a higher photocatalytic activity for the degradation of phenol than that with a compact surface morphology, and the elimination rate of phenol increased by 66.7%.

  4. Synthesis of Coral-Like Tantalum Oxide Films via Anodization in Mixed Organic-Inorganic Electrolytes

    PubMed Central

    Yu, Hongbin; Zhu, Suiyi; Yang, Xia; Wang, Xinhong; Sun, Hongwei; Huo, Mingxin

    2013-01-01

    We report a simple method to fabricate nano-porous tantalum oxide films via anodization with Ta foils as the anode at room temperature. A mixture of ethylene glycol, phosphoric acid, NH4F and H2O was used as the electrolyte where the nano-porous tantalum oxide could be synthesized by anodizing a tantalum foil for 1 h at 20 V in a two–electrode configuration. The as-prepared porous film exhibited a continuous, uniform and coral-like morphology. The diameters of pores ranged from 30 nm to 50 nm. The pores interlaced each other and the depth was about 150 nm. After calcination, the as-synthesized amorphous tantalum oxide could be crystallized to the orthorhombic crystal system. As observed in photocatalytic experiments, the coral-like tantalum oxide exhibited a higher photocatalytic activity for the degradation of phenol than that with a compact surface morphology, and the elimination rate of phenol increased by 66.7%. PMID:23799106

  5. Demonstration of a Mixed Oxide Process for Control of Corrosion and Microbiological Growth in Cooling Towers

    DTIC Science & Technology

    2009-08-01

    the early weeks of perfor - mance monitoring indicate that the pH and conductivity of the cooling tower water do not change significantly when the mixed...biologically-induced cor- rosion and corrosion due to sulfate -reducing bacteria. The equipment is available in a range of sizes, from battery-powered...when it requires additional salt or other service, and it can transmit data for remote display. 110 copper electrodes and C1010 steel electrodes

  6. Defect chemistry and charge transport properties of mixed bismuth oxides with layer lattices

    NASA Astrophysics Data System (ADS)

    Palanduz, Ahmet Cengiz

    Undoped SrBi2Ta2O9 (SBT) displays a broad ionic conductivity plateau and p-type conductivity at lower and higher oxygen activities, respectively, which is consistent with an oxide that has a net acceptor center concentration of 1--2%. Undoped SrBi2Nb 2O9 (SBN) displays n-type conductivity behaviour that is consistent with that of an oxide which has a net donor center concentration of 1--2% SBN also undergoes an unprecedented abrupt conductivity rise at very low oxygen activities. Recent structural studies indicate that there is substantial place exchange between Bi3+ and Sr2+ in the alternating layers of the structure and that there is significant distortion of Ta (Nb) octahedral environment. In a crystal with a 'homogeneous' unit cell the cation place exchange would be self-compensating. Defect chemistry studies suggest that in SBN and SBT, where there are two distinct layers, Bi ˙Sr and Sr 'Bi are locally compensated by strontium vacancies in the perovskite-like layers and by oxygen vacancies in the bismuth oxide layers, respectively. In SBT, where electron density is low due to its large band gap, oxygen vacancies in the bismuth oxide layers dominate the total conductivity. In SBN, which due to its easier reducibility is expected to have a lower band gap, n-type conductivity prevails. SBN displays thermally activated electron mobility. Superior ferroelectric fatigue resistance of SBT is attributed to the following: (i) large band gap and (ii) heavy donor presence suppress electron and oxygen vacancy formation in the perovskite-like layers; (iii) electron mobility is thermally activated; (iv) oxygen vacancies in the bismuth oxide layers can not enter the perovskite-like layer. Thus there are no mobile defects that could drift to the domain walls and pin their movement.

  7. A mixed solution-processed gate dielectric for zinc-tin oxide thin-film transistor and its MIS capacitance

    PubMed Central

    Kim, Hunho; Kwack, Young-Jin; Yun, Eui-Jung; Choi, Woon-Seop

    2016-01-01

    Solution-processed gate dielectrics were fabricated with the combined ZrO2 and Al2O3 (ZAO) in the form of mixed and stacked types for oxide thin film transistors (TFTs). ZAO thin films prepared with double coatings for solid gate dielectrics were characterized by analytical tools. For the first time, the capacitance of the oxide semiconductor was extracted from the capacitance-voltage properties of the zinc-tin oxide (ZTO) TFTs with the combined ZAO dielectrics by using the proposed metal-insulator-semiconductor (MIS) structure model. The capacitance evolution of the semiconductor from the TFT model structure described well the threshold voltage shift observed in the ZTO TFT with the ZAO (1:2) gate dielectric. The electrical properties of the ZTO TFT with a ZAO (1:2) gate dielectric showed low voltage driving with a field effect mobility of 37.01 cm2/Vs, a threshold voltage of 2.00 V, an on-to-off current ratio of 1.46 × 105, and a subthreshold slope of 0.10 V/dec. PMID:27641430

  8. Chemical thermodynamics of Cs and Te fission product interactions in irradiated LMFBR mixed-oxide fuel pins

    NASA Astrophysics Data System (ADS)

    Adamson, M. G.; Aitken, E. A.; Lindemer, T. B.

    1985-02-01

    A combination of fuel chemistry modelling and equilibrium thermodynamic calculations has been used to predict the atom ratios of Cs and Te fission products (Cs:Te) that find their way into the fuel-cladding interface region of irradiated stainless steel-clad mixed-oxide fast breeder reactor fuel pins. It has been concluded that the ratio of condensed, chemically-associated Cs and Te in the interface region,Čs:Te, which in turn determines the Te activity, is controlled by an equilibrium reaction between Cs 2Te and the oxide fuel, and that the value of Čs:Te is, depending on fuel 0:M, either equal to or slightly less than 2:1. Since Cs and Te fission products are both implicated as causative agents in FCCI (fission product-assisted inner surface attack of stainless steel cladding) and in FPLME (fission product-assisted liquid metal embrittlement of AISI-Type 316), the observed out-of-pile Cs:Te thresholds for FCCI (4˜:1) and FPLME (2˜:1) have been rationalized in terms of Cs:Te thermochemistry and phase equilibria. Also described in the paper is an updated chemical evolution model for reactive/volatile fission product behavior in irradiated oxide pins.

  9. Variations in methane and nitrous oxide mixing ratios at the southern boundary of a Canadian boreal forest

    NASA Astrophysics Data System (ADS)

    Simpson, I. J.; Edwards, G. C.; Thurtell, G. W.

    Diurnal and seasonal variations in methane (CH 4) and nitrous oxide (N 2O) mixing ratios were measured above a boreal aspen stand at the southern boundary of the Canadian boreal forest, about 5 km north of agricultural land. The research was conducted between 16 April and 16 September 1994, in the Prince Albert National Park, Saskatchewan, to better understand patterns of CH 4 and N 2O cycling in boreal ecosystems. The research also presents a method for detecting the long-range transport of trace gases using a micrometeorological, laser-based gas monitoring system. Both CH 4 and N 2O featured diurnal cycles consistent with a pattern of net emission for each trace gas. The CH 4 mixing ratio displayed a seasonal variation that was strongly related to soil temperature, with measured values roughly 30 ppb higher in the late summer than in spring. During the latter half of the experiment, the CH 4 mixing ratios varied with wind direction and suggested areas of higher emission to the northeast and east of the measurement tower. The N 2O fluxes also showed favoured directions, although in this case the highest mixing ratios were measured during the springtime in air masses originating south and southwest of the tower. The high springtime values coincided with spring thaw emissions of N 2O from agricultural fields to the south, and the results suggest that the trace gas analysis system detected the long-range transport of N 2O from the agricultural land. Ammonia and ammonium likewise may be transported to the southern boreal forest from agricultural land, and a future investigation at this site could seek to determine the effect of their long-range transport on the southern boreal forest.

  10. Manganese-Cobalt Mixed Spinel Oxides as Surface Modifiers for Stainless Steel Interconnects of Solid Oxide Fuel Cells

    SciTech Connect

    Xia, Gordon; Yang, Z Gary; Stevenson, Jeffry W.

    2006-11-06

    Ferritic stainless steels are promising candidates for interconnect applications in low- and mid-temperature solid oxide fuel cells (SOFCs). A couple of issues however remain for the particular application, including the chromium poisoning due to chromia evaporation, and long-term surface and electrical stability of the scale grown on these steels. Application of a manganese colbaltite spinel protection layer on the steels appears to be an effective approach to solve the issues. For an optimized performance, Mn{sub 1+x}Co{sub 2-x}O{sub 4} (-1 {le} x {le} 2) spinels were investigated against properties relative for protection coating applications on ferritic SOFC interconnects. Overall it appears that the spinels with x around 0.5 demonstrate a good CTE match to ceramic cell components, a relative high electrical conductivity, and a good thermal stability up to 1,250 C. This was confirmed by a long-term test on the Mn{sub 1.5}Co{sub 1.5}O{sub 4} protection layer that was thermally grown on Crofer22 APU, indicating the spinel protection layer not only significantly decreased the contact resistance between a LSF cathode and the stainless steel interconnects, but also inhibited the sub-scale growth on the stainless steels.

  11. Final Report: Fiscal Year 1997 demonstration of omnivorous non-thermal mixed waste treatment: Direct chemical oxidation of organic solids and liquids using peroxydisulfate

    SciTech Connect

    Cooper, J.F.

    1998-01-01

    Direct Chemical Oxidation (DCO) is a non-thermal, ambient pressure, aqueous-based technology for the oxidative destruction of the organic components of hazardous or mixed waste streams. The process has been developed for applications in waste treatment, chemical demilitarization and decontamination at LLNL since 1992. The process uses solutions of the peroxydisulfate ion (typically sodium or ammonium salts) to completely mineralize the organics to carbon dioxide and water. The expended oxidant may be electrolytically regenerated to minimize secondary waste. The paper briefly describes: free radical and secondary oxidant formation; electrochemical regeneration; offgas stream; and throughput.

  12. Calibration of the Lawrence Livermore National Laboratory Passive-Active Neutron Drum Shuffler for Measurement of Highly Enriched Uranium in Mixed Oxide

    SciTech Connect

    Mount, M; O'Connell, W; Cochran, C; Rinard, P; Dearborn, D; Endres, E

    2002-05-23

    As a follow-on to the Lawrence Livermore National Laboratory (LLNL) effort to calibrate the LLNL passive-active neutron drum (PAN) shuffler for measurement of highly enriched uranium (HEU) oxide, a method has been developed to extend the use of the PAN shuffler to the measurement of HEU in mixed uranium-plutonium (U-Pu) oxide. This method uses the current LLNL HEU oxide calibration algorithms, appropriately corrected for the mixed U-Pu oxide assay time, and recently developed PuO{sub 2} calibration algorithms to yield the mass of {sup 235}U present via differences between the expected count rate for the PuO{sub 2} and the measured count rate of the mixed U-Pu oxide. This paper describes the LLNL effort to use PAN shuffler measurements of units of certified reference material (CRM) 149 [uranium (93% Enriched) Oxide - U{sub 3}O{sub 8} Standard for Neutron Counting Measurements] and CRM 146 [Uranium Isotopic Standard for Gamma Spectrometry Measurements] and a selected set of LLNL PuO{sub 2}-bearing containers in consort with Monte Carlo simulations of the PAN shuffler response to each to (1) establish and validate a correction to the HEU calibration algorithm for the mixed U-Pu oxide assay time, (2) develop a PuO{sub 2} calibration algorithm that includes the effect of PuO{sub 2} density (2.4 g/cm{sup 3} to 4.8 g/cm{sup 3}) and container size (8.57 cm to 9.88 cm inside diameter and 9.60 cm to 13.29 cm inside height) on the PAN shuffler response, and (3) develop and validate the method for establishing the mass of {sup 235}U present in an unknown of mixed U-Pu oxide.

  13. Mixed oxide semiconductor CuInAlO4 nanoparticles: synthesis, structure and photocatalytic properties

    NASA Astrophysics Data System (ADS)

    Xu, Jian; Qin, Chuanxiang; Bi, Shala; Wan, Yingpeng; Huang, Yanlin; Wang, Yaorong; Seo, Hyo Jin

    2017-01-01

    CuInAlO4 nanoparticles were synthesized via the facile sol-gel route. The phase formations were investigated by x-ray powder diffraction and structure refinements. The morphological characteristic of the nano-oxides was tested with scanning electron microscopy, transmission electron microscopy, energy-dispersive spectra, N2-adsorption-desorption isotherms and the x-ray photoelectron spectrum. The optical absorption, band energy and structures of the nanoparticles were measured. CuInAlO4 has wide optical absorption from UV to visible wavelength. The nano-oxides have a narrow band energy of 2.191 eV. The photocatalysis ability of CuInAlO4 nanoparticles was confirmed by its efficient photodegradation on methylene blue (MB) dye under the excitation of the visible wavelengths: CuInAlO4 demonstrates efficient photocatalysis on MB photodegradation.

  14. Mixed valence transition metal 2D-oxides: Comparison between delafossite and crednerite compounds

    NASA Astrophysics Data System (ADS)

    Martin, Christine; Poienar, Maria

    2017-08-01

    Transition metal oxides offer large opportunities to study relationships between structures and properties. Indeed these compounds crystallize in numerous frameworks corresponding to different dimensionalities and, accordingly, show a huge variety of properties (as high Tc superconductivity, colossal magnetoresistivity, multiferroicity..). The control of the oxidation state of the transition metal, via the monitoring of the oxygen content, is of prime importance to understand and optimize the properties, due to the strong coupling that exists between the lattice and the charges and spins of the transition metals. In this large playground for chemists, we reinvestigated several 2D-compounds derived from delafossite structure. Considering this paper as a very short review, we report here the results obtained on CuMO2 compounds (with M = Cr, Mn or Mn+Cu) by using a combination of techniques, as X-ray, neutrons and/or electrons diffraction on poly-crystals for structural characterisations that are correlated with electrical and/or magnetic properties. The complementarity of studies is also addressed by the synthesis and characterization of single crystals in addition to poly-crystals. Moreover the comparison of the structures of similar Cr and Mn based oxides highlights the crucial role of the Jahn-Teller effect of trivalent manganese to lift the degeneracy, which is responsible of the magnetic frustration in CuCrO2.

  15. Synthesis, characterization, and crystal structures of uranyl compounds containing mixed chromium oxidation states

    SciTech Connect

    Unruh, Daniel K.; Quicksall, Andrew; Pressprich, Laura; Stoffer, Megan; Qiu, Jie; Nuzhdin, Kirill; Wu, Weiqiang; Vyushkova, Mariya; Burns, Peter C.

    2012-07-15

    The mixed-valence chromium uranyl compounds Li{sub 5}[(UO{sub 2}){sub 4}(Cr(V)O{sub 5})(Cr(VI)O{sub 4}){sub 4}](H{sub 2}O){sub 17} (1), (Mg(H{sub 2}O){sub 6}){sub 5}[(UO{sub 2}){sub 8}(Cr(V)O{sub 5}){sub 2}(Cr(VI)O{sub 4}){sub 8}] (2) and (NH{sub 4}){sub 5}[(UO{sub 2}){sub 4}(Cr(V)O{sub 5})(Cr(VI)O{sub 4}){sub 2}]H{sub 2}O{sub 11} (3) have been synthesized and characterized. Each contains an identical sheet of cation-centered polyhedra. Central to the connectivity of the sheet are four uranyl pentagonal bipyramids that share some of their equatorial vertices, giving a four-membered ring. The Cr(V) cation located near the center of this ring is coordinated by O atoms in a square pyramidal arrangement. The Cr(VI) is tetrahedrally coordinated by O atoms, and these tetrahedra link the four-membered rings of bipyramids. The mixed-valence nature of the sheet was verified by XANES, an EPR spectrum, and bond-valence analysis. Low-valence cations and H{sub 2}O groups reside between the sheets of uranyl and chromate polyhedra, where they provide linkages between adjacent sheets. - Graphical abstract: Three uranyl chromate compounds contain both pentavalent and hexavalent chromium. The unusual topology of the uranyl chromate sheet contains unusual pentavalent chromium in a square pyramidal coordination environment. Highlights: Black-Right-Pointing-Pointer The first uranyl compounds with mixed Cr valences are reported. Black-Right-Pointing-Pointer A sheet of uranyl polyhedra stabilizes pentavalent chromium. Black-Right-Pointing-Pointer Uranyl and chromate polyhedra form a topologically novel sheet.

  16. Changes in nitrogen-fixing and ammonia-oxidizing bacterial communities in soil of a mixed conifer forest after wildfire.

    PubMed

    Yeager, Chris M; Northup, Diana E; Grow, Christy C; Barns, Susan M; Kuske, Cheryl R

    2005-05-01

    This study was undertaken to examine the effects of forest fire on two important groups of N-cycling bacteria in soil, the nitrogen-fixing and ammonia-oxidizing bacteria. Sequence and terminal restriction fragment length polymorphism (T-RFLP) analysis of nifH and amoA PCR amplicons was performed on DNA samples from unburned, moderately burned, and severely burned soils of a mixed conifer forest. PCR results indicated that the soil biomass and proportion of nitrogen-fixing and ammonia-oxidizing species was less in soil from the fire-impacted sites than from the unburned sites. The number of dominant nifH sequence types was greater in fire-impacted soils, and nifH sequences that were most closely related to those from the spore-forming taxa Clostridium and Paenibacillus were more abundant in the burned soils. In T-RFLP patterns of the ammonia-oxidizing community, terminal restriction fragments (TRFs) representing amoA cluster 1, 2, or 4 Nitrosospira spp. were dominant (80 to 90%) in unburned soils, while TRFs representing amoA cluster 3A Nitrosospira spp. dominated (65 to 95%) in fire-impacted soils. The dominance of amoA cluster 3A Nitrosospira spp. sequence types was positively correlated with soil pH (5.6 to 7.5) and NH(3)-N levels (0.002 to 0.976 ppm), both of which were higher in burned soils. The decreased microbial biomass and shift in nitrogen-fixing and ammonia-oxidizing communities were still evident in fire-impacted soils collected 14 months after the fire.

  17. Iron Oxide Nanoparticles: Tunable Size Synthesis and Analysis in Terms of the Core-Shell Structure and Mixed Coercive Model

    NASA Astrophysics Data System (ADS)

    Phong, P. T.; Oanh, V. T. K.; Lam, T. D.; Phuc, N. X.; Tung, L. D.; Thanh, Nguyen T. K.; Manh, D. H.

    2017-04-01

    Iron oxide nanoparticles (NPs) are currently a very active research field. To date, a comprehensive study of iron oxide NPs is still lacking not only on the size dependence of structural phases but also in the use of an appropriate model. Herein, we report on a systematic study of the structural and magnetic properties of iron oxide NPs prepared by a co-precipitation method followed by hydrothermal treatment. X-ray diffraction and transmission electron microscopy reveal that the NPs have an inverse spinel structure of iron oxide phase (Fe3O4) with average crystallite sizes ( D XRD) of 6-19 nm, while grain sizes ( D TEM) are of 7-23 nm. In addition, the larger the particle size, the closer the experimental lattice constant value is to that of the magnetite structure. Magnetic field-dependent magnetization data and analysis show that the effective anisotropy constants of the Fe3O4 NPs are about five times larger than that of their bulk counterpart. Particle size ( D) dependence of the magnetization and the non-saturating behavior observed in applied fields up to 50 kOe are discussed using the core-shell structure model. We find that with decreasing D, while the calculated thickness of the shell of disordered spins ( t ˜ 0.3 nm) remains almost unchanged, the specific surface areas S a increases significantly, thus reducing the magnetization of the NPs. We also probe the coercivity of the NPs by using the mixed coercive Kneller and Luborsky model. The calculated results indicate that the coercivity rises monotonously with the particle size, and are well matched with the experimental ones.

  18. Novel Low Temperature Processing for Enhanced Properties of Ion Implanted Thin Films and Amorphous Mixed Oxide Thin Film Transistors

    NASA Astrophysics Data System (ADS)

    Vemuri, Rajitha

    This research emphasizes the use of low energy and low temperature post processing to improve the performance and lifetime of thin films and thin film transistors, by applying the fundamentals of interaction of materials with conductive heating and electromagnetic radiation. Single frequency microwave anneal is used to rapidly recrystallize the damage induced during ion implantation in Si substrates. Volumetric heating of the sample in the presence of the microwave field facilitates quick absorption of radiation to promote recrystallization at the amorphous-crystalline interface, apart from electrical activation of the dopants due to relocation to the substitutional sites. Structural and electrical characterization confirm recrystallization of heavily implanted Si within 40 seconds anneal time with minimum dopant diffusion compared to rapid thermal annealed samples. The use of microwave anneal to improve performance of multilayer thin film devices, e.g. thin film transistors (TFTs) requires extensive study of interaction of individual layers with electromagnetic radiation. This issue has been addressed by developing detail understanding of thin films and interfaces in TFTs by studying reliability and failure mechanisms upon extensive stress test. Electrical and ambient stresses such as illumination, thermal, and mechanical stresses are inflicted on the mixed oxide based thin film transistors, which are explored due to high mobilities of the mixed oxide (indium zinc oxide, indium gallium zinc oxide) channel layer material. Semiconductor parameter analyzer is employed to extract transfer characteristics, useful to derive mobility, subthreshold, and threshold voltage parameters of the transistors. Low temperature post processing anneals compatible with polymer substrates are performed in several ambients (oxygen, forming gas and vacuum) at 150 °C as a preliminary step. The analysis of the results pre and post low temperature anneals using device physics fundamentals

  19. Synthesis, characterization, and crystal structures of uranyl compounds containing mixed chromium oxidation states

    NASA Astrophysics Data System (ADS)

    Unruh, Daniel K.; Quicksall, Andrew; Pressprich, Laura; Stoffer, Megan; Qiu, Jie; Nuzhdin, Kirill; Wu, Weiqiang; Vyushkova, Mariya; Burns, Peter C.

    2012-07-01

    The mixed-valence chromium uranyl compounds Li5[(UO2)4(Cr(V)O5)(Cr(VI)O4)4](H2O)17 (1), (Mg(H2O)6)5[(UO2)8(Cr(V)O5)2(Cr(VI)O4)8] (2) and (NH4)5[(UO2)4(Cr(V)O5)(Cr(VI)O4)2]H2O11 (3) have been synthesized and characterized. Each contains an identical sheet of cation-centered polyhedra. Central to the connectivity of the sheet are four uranyl pentagonal bipyramids that share some of their equatorial vertices, giving a four-membered ring. The Cr(V) cation located near the center of this ring is coordinated by O atoms in a square pyramidal arrangement. The Cr(VI) is tetrahedrally coordinated by O atoms, and these tetrahedra link the four-membered rings of bipyramids. The mixed-valence nature of the sheet was verified by XANES, an EPR spectrum, and bond-valence analysis. Low-valence cations and H2O groups reside between the sheets of uranyl and chromate polyhedra, where they provide linkages between adjacent sheets.

  20. Use of impure inert gases in the controlled heating and cooling of mixed conducting metal oxide materials

    DOEpatents

    Carolan, Michael Francis [Allentown, PA; Bernhart, John Charles [Fleetwood, PA

    2012-08-21

    Method for processing an article comprising mixed conducting metal oxide material. The method comprises contacting the article with an oxygen-containing gas and either reducing the temperature of the oxygen-containing gas during a cooling period or increasing the temperature of the oxygen-containing gas during a heating period; during the cooling period, reducing the oxygen activity in the oxygen-containing gas during at least a portion of the cooling period and increasing the rate at which the temperature of the oxygen-containing gas is reduced during at least a portion of the cooling period; and during the heating period, increasing the oxygen activity in the oxygen-containing gas during at least a portion of the heating period and decreasing the rate at which the temperature of the oxygen-containing gas is increased during at least a portion of the heating period.

  1. Improvement of nonlinear optical properties of graphene oxide in mixed with Ag2S@ZnS core-shells

    NASA Astrophysics Data System (ADS)

    Khanzadeh, M.; Dehghanipour, M.; Karimipour, M.; Molaei, M.

    2017-04-01

    Nonlinear optical properties including size and sign of nonlinear refractive index and nonlinear absorption coefficient of Graphene Oxide (GO), Ag2S@ZnS quantum dots and GO-Ag2S@ZnS were investigated using a Z-scan technique by laser diode with 532 nm wavelength. Third-order susceptibility of the compounds was calculated and compared with the reported values. By comparing the nonlinear optical (NLO) properties of GO and the mixture of GO-Ag2S@ZnS, it was observed that the NLO properties of GO were increased using simply mixing with Ag2S@ZnS quantum dots. It was also observed that with increase of sonication time, the NLO properties of the mixture increased accordingly.

  2. Chemical potential of oxygen in (U, Pu) mixed oxide with Pu/(U+Pu) = 0.46

    NASA Astrophysics Data System (ADS)

    Dawar, Rimpi; Chandramouli, V.; Anthonysamy, S.

    2016-05-01

    Chemical potential of oxygen in (U,Pu) mixed oxide with Pu/(U + Pu) = 0.46 was measured for the first time using H2/H2O gas equilibration combined with solid electrolyte EMF technique at 1073, 1273 and 1473 K covering an oxygen potential range of -525 to -325 kJ mol-1. The effect of oxygen potential on the oxygen to metal ratio was determined. Increase in oxygen potential increases the O/M. In this study the minimum O/M obtained was 1.985 below which reduction was not possible. Partial molar enthalpy ΔHbar O2 and entropy ΔSbar O2 of oxygen were calculated from the oxygen potential data. The values of -752.36 kJ mol-1 and 0.25 kJ mol-1 were obtained for ΔHbar O2 and ΔSbar O2 respectively.

  3. Leaching behaviour of unirradiated high temperature reactor (HTR) UO 2-ThO 2 mixed oxides fuel particles

    NASA Astrophysics Data System (ADS)

    Alliot, Cyrille; Grambow, Bernd; Landesman, Catherine

    2005-11-01

    The dissolution of different mixed oxide (U, Th)O 2 particles under reducing conditions has been studied using a continuous flow-through reactor. The U/Th ratio seems to have no or little influence on the normalised leaching rate of thorium or uranium, The release rate of uranium from the outer surface of a Th rich matrix seems to follow the behaviour of pure UO 2 even though U is a minor component in these phases and the dissolution rate of Th is much lower. After long time U concentrations will become depleted at the solids surface and it will be expected that U release rates will become controlled by the release rates of thorium (rates at neutral pH < 10 -6 g m -2 d -1). Under reducing conditions, the matrix of HTR fuel particles presents significant intrinsic radionuclide confinement properties.

  4. Computer modelling of doped mixed metal fluorides and oxides for device applications: Rare earth, sodium and barium doped KYF 4

    NASA Astrophysics Data System (ADS)

    Jackson, Robert A.; Maddock, Elizabeth M.; Valerio, Mario E. G.

    2008-06-01

    The mixed metal fluorides and oxides have a range of important applications in optical and electronic devices. For example, rare earth doped LiCaAlF6 is used in solid state lasers; and pure and doped LiNbO3 is used in a wide range of optical and electronic applications. In attempting to develop new materials, two questions which arise include: which host lattices are most suitable, and which dopants will produce the required optical behaviour? This paper continues recent work designed to provide straightforward computational approaches to predict and assess properties of such materials, presenting the results of recent calculations on rare earth doping in KYF4, as well as sodium and barium doping, which has been prompted by experimental work in this area.

  5. Evaluation of existing United States` facilities for use as a mixed-oxide (MOX) fuel fabrication facility for plutonium disposition

    SciTech Connect

    Beard, C.A.; Buksa, J.J.; Chidester, K.; Eaton, S.L.; Motley, F.E.; Siebe, D.A.

    1995-12-31

    A number of existing US facilities were evaluated for use as a mixed-oxide fuel fabrication facility for plutonium disposition. These facilities include the Fuels Material Examination Facility (FMEF) at Hanford, the Washington Power Supply Unit 1 (WNP-1) facility at Hanford, the Barnwell Nuclear Fuel Plant (BNFP) at Barnwell, SC, the Fuel Processing Facility (FPF) at Idaho National Engineering Laboratory (INEL), the Device Assembly Facility (DAF) at the Nevada Test Site (NTS), and the P-reactor at the Savannah River Site (SRS). The study consisted of evaluating each facility in terms of available process space, available building support systems (i.e., HVAC, security systems, existing process equipment, etc.), available regional infrastructure (i.e., emergency response teams, protective force teams, available transportation routes, etc.), and ability to integrate the MOX fabrication process into the facility in an operationally-sound manner that requires a minimum amount of structural modifications.

  6. Exchange bias in a mixed metal oxide based magnetocaloric compound YFe0.5Cr0.5O3

    NASA Astrophysics Data System (ADS)

    Sharma, Mohit K.; Singh, Karan; Mukherjee, K.

    2016-09-01

    We report a detailed investigation of magnetization, magnetocaloric effect and exchange bias studies on a mixed metal oxide YFe0.5Cr0.5O3 belonging to perovskite family. Our results reveal that the compound is in canted magnetic state (CMS) where ferromagnetic correlations are present in an antiferromagnetic state. Magnetic entropy change of this compound follows a power law (∆SM∼Hm) dependence of magnetic field. In this compound, inverse magnetocaloric effect (IMCE) is observed below 260 K while conventional magnetocaloric effect (CMCE) above it. The exponent 'm' is found to be independent of temperature and field only in the IMCE region. Investigation of temperature and magnetic field dependence studies of exchange bias, reveal a competition between effective Zeeman energy of the ferromagnetic regions and anisotropic exchange energy at the interface between ferromagnetic and antiferromagnetic regions. Variation of exchange bias due to temperature and field cycling is also investigated.

  7. Synthesis of multifunctional nanostructured zinc-iron mixed oxide photocatalyst by a simple solution-combustion technique.

    PubMed

    Pradhan, Gajendra Kumar; Martha, Satyabadi; Parida, K M

    2012-02-01

    A series of nanostructure zinc-iron mixed oxide photocatalysts have been fabricated by solution-combustion method using urea as the fuel, and nitrate salts of both iron and zinc as the metal source. Different characterization tools, such as X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), diffuse reflectance UV-visible spectra (DRUV-vis), electron microscopy, and photoelectrochemical measurement were employed to establish the structural, electronic, and optical properties of the material. Electron microscopy confirmed the nanostructure of the photocatalyst. The synthesized photocatalysts were examined towards photodegradation of 4-chloro-2-nitro phenol (CNP), rhodamine 6G (R6G), and photocatalytic hydrogen production under visible light (λ ≥ 400 nm). The photocatalyst having zinc to iron ratio of 50:50 showed best photocatalytic activity among all the synthesized photocatalysts.

  8. Rational design of mixed ionic and electronic conducting perovskite oxides for solid oxide fuel cell anode materials: A case study for doped SrTiO3

    SciTech Connect

    Suthirakun, Suwit; Xiao, Guoliang; Ammal, Salai Cheettu; Chen, Fanglin; zur Loye, Hans-Conrad; Heyden, Andreas

    2014-01-01

    The effect of p- and n-type dopants on ionic and electronic conductivity of SrTiO3 based perovskites were investigated both computationally and experimentally. Specifically, we performed density functional theory (DFT) calculations of Na- and La-doped SrTiO3 and Na- and Nb-doped SrTiO3 systems. Constrained ab initio thermodynamic calculations were used to evaluate the phase stability and reducibility of doped SrTiO3 under both oxidizing and reducing synthesis conditions, as well as under anodic solid oxide fuel cell (SOFC) conditions. The density of states (DOS) of these materials was analyzed to study the effects of p- and n-doping on the electronic conductivity. Furthermore, Na- and La-doped SrTiO3 and Na- and Nb-doped SrTiO3 samples were experimentally prepared and the conductivity was measured to confirm our computational predictions. The experimental observations are in very good agreement with the theoretical predictions that doping n-doped SrTiO3 with small amounts of p-type dopants promotes both the ionic and electronic conductivity of the material. This doping strategy is valid independent of p- and n-doping site and permits the synthesis of perovskite based mixed ionic/electronic conductors.

  9. Transparent conductive oxide films mixed with gallium oxide nanoparticle/single-walled carbon nanotube layer for deep ultraviolet light-emitting diodes

    PubMed Central

    2013-01-01

    We propose a transparent conductive oxide electrode scheme of gallium oxide nanoparticle mixed with a single-walled carbon nanotube (Ga2O3 NP/SWNT) layer for deep ultraviolet light-emitting diodes using spin and dipping methods. We investigated the electrical, optical and morphological properties of the Ga2O3 NP/SWNT layers by increasing the thickness of SWNTs via multiple dipping processes. Compared with the undoped Ga2O3 films (current level 9.9 × 10-9 A @ 1 V, transmittance 68% @ 280 nm), the current level flowing in the Ga2O3 NP/SWNT increased by approximately 4 × 105 times and the transmittance improved by 9% after 15 times dip-coating (current level 4 × 10-4 A at 1 V; transmittance 77.0% at 280 nm). These improvements result from both native high transparency of Ga2O3 NPs and high conductivity and effective current spreading of SWNTs. PMID:24295342

  10. Strategy towards cost-effective low-temperature solid oxide fuel cells: A mixed-conductive membrane comprised of natural minerals and perovskite oxide

    NASA Astrophysics Data System (ADS)

    Xia, Chen; Cai, Yixiao; Wang, Baoyuan; Afzal, Muhammad; Zhang, Wei; Soltaninazarlou, Aslan; Zhu, Bin

    2017-02-01

    Our previous work has revealed the feasibility of natural hematite as an electrolyte material for solid oxide fuel cells (SOFCs), tailoring SOFCs to be a more economically competitive energy conversion technology. In the present work, with the aim of exploring more practical uses of natural minerals, a novel composite hematite/LaCePrOx-La0.6Sr0.4Co0.2Fe0.8O3-δ (hematite/LCP-LSCF) has been developed from natural hematite ore, rare-earth mineral LaCePr-carbonate, and perovskite oxide LSCF as a functional membrane in SOFCs. The heterogeneity, nanostructure and mixed-conductive property of the composite were investigated. The results showed that the hematite/LCP-30 wt% LSCF composite possessed balanced ionic and electronic conductivities, with an ionic conductivity as high as 0.153 S cm-1 at 600 °C. The as-designed fuel cell using the hematite/LCP-LSCF membrane exhibited encouraging power outputs of 303 - 662 mW cm-2 at 500 - 600 °C. These findings show that the hematite/LCP-LSCF based fuel cell is a viable strategy for developing cost-effective and practical low-temperature SOFCs (LTSOFCs).

  11. XRD monitoring of α self-irradiation in uranium-americium mixed oxides.

    PubMed

    Horlait, Denis; Lebreton, Florent; Roussel, Pascal; Delahaye, Thibaud

    2013-12-16

    The structural evolution under (241)Am self-irradiation of U(1-x)Am(x)O(2±δ) transmutation fuels (with x ≤ 0.5) was studied by X-ray diffraction (XRD). Samples first underwent a preliminary heat treatment performed under a reducing atmosphere (Ar/H2(4%)) aiming to recover the previously accumulated structural defects. Over all measurements (carried out over up to a full year and for integrated doses up to 1.5 × 10(18) α-decay events·g(-1)), only fluorite U(1-x)Am(x)O(2±δ) solid solutions were observed. Within a few days after the end of the heat treatment, each of the five studied samples was slowly oxidized as a consequence of their move to air atmosphere, which is evidenced by XRD by an initial sharp decrease of the unit cell parameter. For the compounds with x ≤ 0.15, this oxidation occurred without any phase transitions, but for U0.6Am0.4O(2±δ) and U0.5Am0.5O(2±δ), this process is accompanied by a transition from a first fluorite solid solution to a second oxidized one, as the latter is thermodynamically stable in ambient conditions. In the meantime and after the oxidation process, (241)Am α self-irradiation caused a structural swelling up to ∼0.8 vol %, independently of the sample composition. The kinetic constants of swelling were also determined by regression of experimental data and are, as expected, dependent on x and thus on the dose rate. The normalization of these kinetic constants by sample α-activity, however, leads to very close swelling rates among the samples. Finally, evolutions of microstrain and crystallite size were also monitored, but for the considered dose rates and cumulated doses, α self-irradiation was found, within the limits of the diffractometer used, to have almost no impact on these characteristics. Microstrain was found to be influenced instead by the americium content in the materials (i.e., by the impurities associated with americium starting material and the increase of cationic charge heterogeneity with

  12. Behavior of metallic fission products in uranium plutonium mixed oxide fuel

    NASA Astrophysics Data System (ADS)

    Sato, I.; Furuya, H.; Arima, T.; Idemitsu, K.; Yamamoto, K.

    1999-08-01

    Metallic fission products, ruthenium, rhodium, technetium, palladium, and molybdenum, exist in irradiated oxide fuels as metallic inclusions. In this work, the radial distributions of metallic inclusion constituents in the fuel specimen irradiated to a peak burnup of 7-13 at.% were observed with an electron probe microanalysis. Palladium concentration is high at the periphery in all the specimens. Molybdenum shows the same tendency for the 13 at.% burnup specimen. These results showed the significant difference between experimental data and calculations with ORIGEN-2 at such high burnups, which suggested that the migration of palladium and molybdenum was controlled mainly by diffusion of gaseous species containing each metal along the fuel temperature gradient.

  13. Effects of Silver Nanoparticles on Primary Mixed Neural Cell Cultures: Uptake, Oxidative Stress and Acute Calcium Responses

    PubMed Central

    Haase, Andrea; Rott, Stephanie; Mantion, Alexandre; Graf, Philipp; Plendl, Johanna; Thünemann, Andreas F.; Meier, Wolfgang P.; Taubert, Andreas; Luch, Andreas; Reiser, Georg

    2012-01-01

    In the body, nanoparticles can be systemically distributed and then may affect secondary target organs, such as the central nervous system (CNS). Putative adverse effects on the CNS are rarely investigated to date. Here, we used a mixed primary cell model consisting mainly of neurons and astrocytes and a minor proportion of oligodendrocytes to analyze the effects of well-characterized 20 and 40 nm silver nanoparticles (SNP). Similar gold nanoparticles served as control and proved inert for all endpoints tested. SNP induced a strong size-dependent cytotoxicity. Additionally, in the low concentration range (up to 10 μg/ml of SNP), the further differentiated cultures were more sensitive to SNP treatment. For detailed studies, we used low/medium dose concentrations (up to 20 μg/ml) and found strong oxidative stress responses. Reactive oxygen species (ROS) were detected along with the formation of protein carbonyls and the induction of heme oxygenase-1. We observed an acute calcium response, which clearly preceded oxidative stress responses. ROS formation was reduced by antioxidants, whereas the calcium response could not be alleviated by antioxidants. Finally, we looked into the responses of neurons and astrocytes separately. Astrocytes were much more vulnerable to SNP treatment compared with neurons. Consistently, SNP were mainly taken up by astrocytes and not by neurons. Immunofluorescence studies of mixed cell cultures indicated stronger effects on astrocyte morphology. Altogether, we can demonstrate strong effects of SNP associated with calcium dysregulation and ROS formation in primary neural cells, which were detectable already at moderate dosages. PMID:22240980

  14. Mixed-valent metals bridged by a radical ligand: fact or fiction based on structure-oxidation state correlations.

    PubMed

    Sarkar, Biprajit; Patra, Srikanta; Fiedler, Jan; Sunoj, Raghavan B; Janardanan, Deepa; Lahiri, Goutam Kumar; Kaim, Wolfgang

    2008-03-19

    Electron-rich Ru(acac)2 (acac- = 2,4-pentanedionato) binds to the pi electron-deficient bis-chelate ligands L, L = 2,2'-azobispyridine (abpy) or azobis(5-chloropyrimidine) (abcp), with considerable transfer of negative charge. The compounds studied, (abpy)Ru(acac)2 (1), meso-(mu-abpy)[Ru(acac)2]2 (2), rac-(mu-abpy)[Ru(acac)2]2 (3), and (mu-abcp)[Ru(acac)2]2 (4), were calculated by DFT to assess the degree of this metal-to-ligand electron shift. The calculated and experimental structures of 2 and 3 both yield about 1.35 A for the length of the central N-N bond which suggests a monoanion character of the bridging ligand. The NBO analysis confirms this interpretation, and TD-DFT calculations reproduce the observed intense long-wavelength absorptions. While mononuclear 1 is calculated with a lower net ruthenium-to-abpy charge shift as illustrated by the computed 1.30 A for d(N-N), compound 4 with the stronger pi accepting abcp bridge is calculated with a slightly lengthened N-N distance relative to that of 2. The formulation of the dinuclear systems with monoanionic bridging ligands implies an obviously valence-averaged Ru(III)Ru(II) mixed-valent state for the neutral molecules. Mixed valency in conjunction with an anion radical bridging ligand had been discussed before in the discussion of MLCT excited states of symmetrically dinuclear coordination compounds. Whereas 1 still exhibits a conventional electrochemical and spectroelectrochemical behavior with metal centered oxidation and two ligand-based one-electron reduction waves, the two one-electron oxidation and two one-electron reduction processes for each of the dinuclear compounds Ru2.5(L*-)Ru2.5 reveal more unusual features via EPR and UV-vis-NIR spectroelectrochemistry. In spite of intense near-infrared absorptions, the EPR results show that the first reduction leads to Ru(II)(L*-)Ru(II) species, with an increased metal contribution for system 4*-. The second reduction to Ru(II)(L2-)Ru(II) causes the

  15. Evaluation of oxide-chemical mechanical polishing characteristics using ceria-mixed abrasive slurry

    NASA Astrophysics Data System (ADS)

    Lee, Youngkyun; Seo, Yong-Jin; Jeong, Haedo

    2012-10-01

    Chemical-mechanical polishing (CMP) characteristics of mixed abrasive slurry (MAS) were studied which was retreated by adding of Ceria (CeO2) abrasives within 1:10 diluted silica slurry (DSS). The slurry was designed for optimal performance which produces reasonable removal rate, acceptable polishing selectivity with respect to underlying layer, low surface defects after polishing, and good slurry stability. The modified abrasives in MAS are evaluated with respect to their particle size distribution, surface morphology, and CMP performances such as removal rate and non-uniformity. As an experimental result, we could obtain successful slurry characteristics compared with traditional silica slurry in the viewpoint of removal rate and non-uniformity.

  16. Sputtering deposition of Al-doped zinc oxide thin films using mixed powder targets

    NASA Astrophysics Data System (ADS)

    Ohshima, Tamiko; Maeda, Takashi; Tanaka, Yuki; Kawasaki, Hiroharu; Yagyu, Yoshihito; Ihara, Takeshi; Suda, Yoshiaki

    2016-01-01

    Sputtering deposition generally uses high-density bulk targets. Such a fabrication process has various problems including deterioration of the material during heating and difficulty in mixing a large number of materials in precise proportions. However, these problems can be solved by using a powder target. In this study, we prepared Al-doped ZnO (AZO) as transparent conductive thin films by radio-frequency magnetron sputtering with powder and bulk targets. Both the powder and bulk targets formed crystalline structures. The ZnO (002) peak was observed in the X-ray diffraction measurements. The mean transparency and resistivity of the films prepared with the powder target were 82% and 0.548 Ω · cm, respectively. The deposition rate with the powder target was lower than that with the bulk target.

  17. Toward the Control of the Creation of Mixed Monolayers on Glassy Carbon Surfaces by Amine Oxidation.

    PubMed

    Groppi, Jessica; Bartlett, Philip N; Kilburn, Jeremy D

    2016-01-18

    A versatile and simple methodology for the creation of mixed monolayers on glassy carbon (GC) surfaces was developed, using an osmium-bipyridyl complex and anthraquinone as model redox probes. The work consisted in the electrochemical grafting on GC of a mixture of mono-protected diamine linkers in varying ratios which, after attachment to the surface, allowed orthogonal deprotection. After optimisation of the deprotection conditions, it was possible to remove one of the protecting groups selectively, couple a suitable osmium complex and cap the residual free amines. The removal of the second protecting group allowed the coupling of anthraquinone. The characterisation of the resulting surfaces by cyclic voltammetry showed the variation of the surface coverage of the two redox centres in relation to the initial ratio of the linking amine in solution.

  18. Mixed Pro- and Anti-Oxidative Effects of Pomegranate Polyphenols in Cultured Cells

    PubMed Central

    Danesi, Francesca; Kroon, Paul A.; Saha, Shikha; de Biase, Dario; D’Antuono, Luigi Filippo; Bordoni, Alessandra

    2014-01-01

    In recent years, the number of scientific papers concerning pomegranate (Punica granatum L.) and its health properties has increased greatly, and there is great potential for the use of bioactive-rich pomegranate extracts as ingredients in functional foods and nutraceuticals. To translate this potential into effective strategies it is essential to further elucidate the mechanisms of the reported bioactivity. In this study HepG2 cells were supplemented with a pomegranate fruit extract or with the corresponding amount of pure punicalagin, and then subjected to an exogenous oxidative stress. Overall, upon the oxidative stress the gene expression and activity of the main antioxidant enzymes appeared reduced in supplemented cells, which were more prone to the detrimental effects than unsupplemented ones. No differences were detected between cells supplemented with the pomegranate juice or the pure punicalagin. Although further studies are needed due to the gaps existing between in vitro and in vivo studies, our results suggest caution in the administration of high concentrations of nutraceutical molecules, particularly when they are administered in concentrated form. PMID:25350111

  19. INVESTIGATION OF MIXED METAL SORBENT/CATALYSTS FOR THE SIMULTANEOUS REMOVAL OF SULFUR AND NITROGEN OXIDES

    SciTech Connect

    Ates Akyurtlu; Jale F. Akyurtle

    2001-08-01

    Simultaneous removal of SO{sub 2} and NO{sub x} using a regenerable solid sorbent will constitute an important improvement over the use of separate processes for the removal of these two pollutants from stack gases and possibly eliminate several shortcomings of the individual SO{sub 2} and NO{sub x} removal operations. The work done at PETC and the DOE-funded investigation of the investigators on the sulfation and regeneration of alumina-supported cerium oxide sorbents have shown that they can perform well at relatively high temperatures (823-900 K) as regenerable desulfurization sorbents. Survey of the recent literature shows that addition of copper oxide to ceria lowers the sulfation temperature of ceria down to 773 K, sulfated ceria-based sorbents can function as selective SCR catalysts even at elevated temperatures, SO{sub 2} can be directly reduced to sulfur by CO on CuO-ceria catalysts, and ceria-based catalysts may have a potential for selective catalytic reduction of NO{sub x} by methane. These observations indicate a possibility of developing a ceria-based sorbent/catalyst which can remove both SO{sub 2} and NO{sub x} from flue gases within a relatively wide temperature window, produce significant amounts of elemental sulfur during regeneration, and use methane for the selective catalytic reduction of NO{sub x}.

  20. Expression of inducible nitric oxide synthase causes delayed neurotoxicity in primary mixed neuronal-glial cortical cultures.

    PubMed

    Dawson, V L; Brahmbhatt, H P; Mong, J A; Dawson, T M

    1994-11-01

    Nitric oxide (NO) is a potent biological messenger molecule in the central nervous system (CNS). There are several potential sources of NO production in the CNS, including neurons and endothelial cells which express NO synthase (NOS) constitutively. Astrocytes and microglia can be induced by cytokines to express a NOS isoform similar to macrophage NOS (mNOS). Primary mixed glial cultures exposed to lipopolysaccharide (LPS) or a combination of LPS and gamma-interferon (INF-gamma) produce nitrite, a breakdown product of NO formation, in a dose-dependent manner. Nitrite production is detectable at 12 hr, peaks at 48 hr and is sustained for at least 96 hr. The NOS inhibitor, nitro-L-arginine (NArg), inhibits nitrite formation, but the immunosuppressant agent, FK506, does not. In mixed glial-neuronal cultures exposed to 50 ng LPS or 5 ng LPS and 1 microgram INF-gamma, neurons begin to die at 48 hr, approx. 24-36 hr after detectable nitrite production. Neurotoxicity is attenuated by 100 microM NArg. These data indicate that expression of inducible mNOS causes delayed neurotoxicity.

  1. MOF-derived binary mixed metal/metal oxide @carbon nanoporous materials and their novel supercapacitive performances.

    PubMed

    Wang, Y C; Li, W B; Zhao, L; Xu, B Q

    2016-07-21

    Mixed cobalt and manganese oxides embedded in the nanoporous carbon framework (M/MO@C) were synthesized by the direct carbonization of a binary mixed-metal organic framework (CoMn-MOF-74) for the first time. The unique M/MO@C carbon materials maintained the primary morphology of CoMn-MOF-74, and showed a uniform dispersibility of Co, MnO and CoO nanoparticles in the carbon matrix, and therefore greatly increased the conductivity of the M/MO@C materials. A series of M/MO@C samples were tested as the electrode materials for supercapacitors, and a remarkable specific capacitance of 800 F g(-1) was obtained using the M/MO@C-700 sample at a current density of 1 A g(-1) in 6 M KOH electrolyte. Moreover, the M/MO@C sample showed a good cycling stability with a capacitance retention of 85% after 1000 cycles. It is also found that the optimized carbonization temperature is a critical parameter to obtain such a M/MO@C nanoporous carbon framework with the best capacitive performances. The present approach is convenient and reproducible, which could be easily extended to the preparation of other M/MO@C composites with excellent electrochemical performances.

  2. Smoothly tunable surface properties of aluminum oxide core-shell nanoparticles by a mixed-ligand approach.

    PubMed

    Portilla, Luis; Halik, Marcus

    2014-04-23

    We present a facile solution-based procedure for tailoring the surface properties of aluminum oxide nanoparticles (AlOx-NPs) by the formation of tunable core-shell systems with self-assembled monolayers. By employing chained molecules with a phosphonic acid anchor group and either hydrophobic or hydrophilic chains the surface properties of the nanoparticles change dramatically. So, the solubility can be tuned orthogonal from trifluorotoluene (CF3-C6H5) for hydrophobic shell to water (H2O) for hydrophilic functionalization respectively. Spray coated films of those functionalized nanoparticles exhibited superhydrophobic or superhydrophilic properties. The surface properties can be tuned smoothly by the formation of a mixed ligand monolayer from corresponding stoichiometric mixtures of the ligands. The core-shell nanoparticles were investigated by means of thermogravimetric analysis, TGA; Fourier transform infrared spectroscopy, FTIR; and static contact angle goniometry, SCA. The effect of different dipole moments of the SAM molecules in mixed shell nanoparticles to their stability in dispersions was studied by zeta potential measurements.

  3. Curium analysis in plutonium uranium mixed oxide by x-ray fluorescence and absorption fine structure spectroscopy.

    PubMed

    Degueldre, C; Borca, C; Cozzo, C

    2013-10-15

    Plutonium uranium mixed oxide (MOX) fuels are being used in commercial nuclear reactors. The actinides in these fuels need to be analyzed after irradiation for assessing their behaviour with regards to their environment and the coolant. In this work the study of the local occurrence, speciation and next-neighbour environment of curium (Cm) in the (Pu,U)O2 lattice within an irradiated (60 MW d kg(-1) average burn-up) MOX sample was performed employing micro-x-ray fluorescence (µ-XRF) and micro-x-ray absorption fine structure (µ-XAFS) spectroscopy. The chemical bonds, valences and stoichiometry of Cm (≈ 0.7 wt% in the rim and ≈ 0.03 wt% in the centre) are determined from the experimental data gained for the irradiated fuel material examined in its centre and peripheral (rim) zones of the fuel. Curium occurrence is also reduced from the centre (hot) to the periphery (colder) because of the condensation of these volatile oxides. In the irradiated sample Cm builds up as Cm(3+) species (>90%) within a [CmO8](13-) or [CmO7](11-) coordination environment and no (<10%) Cm(IV) can be detected in the rim zone. Curium dioxide is reduced because of the redox buffering activity of the uranium dioxide matrix and of its thermodynamic instability.

  4. Mixed valence as a necessary criteria for quasi-two dimensional electron gas in oxide hetero-interfaces

    NASA Astrophysics Data System (ADS)

    Singh, Vijeta; Pulikkotil, J. J.

    2017-02-01

    The origin of quasi-two dimensional electron gas at the interface of polar-nonpolar oxide hetero-structure, such as LaAlO3/SrTiO3, is debated over electronic reconstruction and defects/disorder models. Common to these models is the partial valence transformation of substrate Ti ions from its equilibrium 4 + state to an itinerant 3 + state. Given that the Hf ions have a lower ionization potential than Ti due to the 4 f orbital screening, one would expect a hetero-interface conductivity in the polar-nonpolar LaAlO3/SrHfO3 system as well. However, our first principles calculations show the converse. Unlike the Ti3+ -Ti4+ valence transition which occur at a nominal energy cost, the barrier energy associated with its isoelectronic Hf3+ -Hf4+ counterpart is very high, hence suppressing the formation of quasi-two dimensional electron gas at LaAlO3/SrHfO3 hetero-interface. These calculations, therefore, emphasize on the propensity of mixed valence at the interface as a necessary condition for an oxide hetero-structure to exihibit quasi two-dimensional electron gas.

  5. CaFeAl mixed oxide derived heterogeneous catalysts for transesterification of soybean oil to biodiesel.

    PubMed

    Lu, Yongsheng; Zhang, Zaiwu; Xu, Yunfeng; Liu, Qiang; Qian, Guangren

    2015-08-01

    CaAl layered double oxides (LDO) were prepared by co-precipitation and calcined at 750°C, and then applied to biodiesel production by transesterification reaction between methanol and soybean oil. Compared with characteristics of CaFe/LDO and CaAl/LDO, CaFeAl/LDO had the best performance based on prominent catalytic activity and stability, and achieved over 90% biodiesel yield, which stayed stable (over 85%) even after 8 cycles of reaction. The optimal catalytic reaction condition was 12:1M-ratio of methanol/oil, reaction temperatures of 60°C, 270rpm stirring rate, 60min reaction time, and 6% weight-ratio of catalyst/oil. In addition, the CaFeAl/LDO catalyst is insoluble in both methanol and methyl esters and can be easily separated for further reaction, turning it into an excellent alternative for biodiesel synthesis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Predictive Guide for Collective CO2 Adsorption Properties of Mg-Al Mixed Oxides.

    PubMed

    Kwon, Hyuk Jae; Kwon, Soonchul; Seo, Jeong Gil; Jung, In Sun; Son, You-Hwan; Lee, Chan Hyun; Lee, Ki Bong; Lee, Hyun Chul

    2017-04-22

    Although solid adsorption processes offer attractive benefits, such as reduced energy demands and penalties compared with liquid absorption processes, there are still pressing needs for solid adsorbents with high adsorption capacities, thermal efficiencies, and energy-intensive regeneration in gas-treatment processes. The CO2 adsorption capacities of layered double oxides (LDOs), which are attractive solid adsorbents, have an asymmetric volcano-type correlation with their relative crystallinities. Furthermore, new collective adsorption properties (adsorption capacity, adsorptive energy and charge-transfer amount based on the adsorbent weight) are proposed based on density functional theory (DFT) calculations and measured surface areas. The correlation of these collective properties with their crystallinities is in good agreement with the experimentally measured CO2 adsorptive capacity trend, providing a predictive guide for the development of solid adsorbents for gas-adsorption processes. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Raman spectroscopy and lattice-dynamics calculations of mixed layered copper-titanium oxides

    NASA Astrophysics Data System (ADS)

    Abrashev, M. V.; Thomsen, C.; Popov, V. N.; Bozukov, L. N.

    1997-02-01

    We report micro-Raman spectra obtained from R 2Ba 2Ti 2Cu 2O 11 (R = Nd, Gd) and Gd 2CaBa 2Ti 2O 12 ceramic samples. The analysis of the spectra was performed using the similarity between the investigated structures and related layered pure copper and titanium oxides. The assignment of the observed lines to definite atomic vibrations is supported by lattice-dynamics calculations, based on a shell model. The calculated frequencies for the IR-active modes are also presented. We stress that in contrast to Gd 2CaBa 2Ti 2Cu 2O 12, where the ceramics consist of optically anisotropic plate-like microcrystals, in the case of the quadruple perovskites R 2Ba 2Ti 2Cu 2O 11 the microcrystals are isotropic, probably due to the fine twinning, rendering it impossible to obtain polarized Raman spectra along different crystal directions.

  8. Post irradiation examination of simulated fission product doped hyperstoichiometric mixed oxide fuel pins*1

    NASA Astrophysics Data System (ADS)

    Götzmann, O.; Kleykamp, H.

    1980-03-01

    Two miniature fuel pins containing uranium-plutonium oxide with a hyperstoichiometric oxygen-to-metal ratio and selective fission product elements have been irradiated in the BR 2 reactor at Mol, Belgium, for two reactor cycles (46 days). One of the pins had a niobium metal coating on the inner cladding surface to act as oxygen getter. Both pins were subjected to a detailed examination by ceramography and electronprobe microanalysis. The results have been interpreted in the light of a recently published thermochemical model for the cladding attack. The very different oxygen potential environments in the two pins produced entirely different clad corrosion phenomena probably due to different cladding attack mechanisms. The niobium coating worked well in reducing the oxygen potential. However, there exists a draw back with niobium due to the formation of relatively stable intermetallic phases with noble metal fission products.

  9. Cladding inner surface wastage for mixed-oxide liquid metal reactor fuel pins

    SciTech Connect

    Lawrence, L.A.; Bard, F.E.; Cannon, N.S.

    1990-11-01

    Cladding inner surface wastage was measured on reference fuel pins with stainless steel and D9 cladding irradiated beyond goal burnup in the Fast Flux Test Facility. Measurements were compared to the Experimental Breeder Reactor No. 2 based fuel-cladding chemical interaction correlation developed for uranium-plutonium oxide fuels with 20% cold-worked stainless steel cladding. The fuel-cladding chemical interaction was also measured in fuel pins irradiated with HT9 cladding. Comparison of the measurements with the design correlation showed the correlation adequately accounted for the extent of interaction in the Fast Flux Test Facility fuel pins with cold-worked stainless steel D9, and HT9 cladding. 9 refs., 6 figs.

  10. Novel low temperature preparation methods for mixed complex oxide catalysts and their characterisation using in situ SR techniques

    NASA Astrophysics Data System (ADS)

    Beale, Andrew Michael

    The crystallisation of complex mixed oxide and metal phosphate oxidation catalysts prepared using a number of synthetic methods have been studied using in situ synchrotron radiation techniques. Some of these synthesis procedures have previously been employed to produce catalysts whilst others were new methods, making use of hydrothermal technology and zeolite precursors. For the iron phosphates catalysts studied it was observed that all of the synthetic methods employed produced a catalyst precursor having the chemical composition FePO4.2H2O. During calcination this phase transformed into the tridymite and quartz forms of FePO4 although, the material produced by hydrothermal methods was found to be the most phase pure and possess a higher surface area. A comparative study of the three catalytically active forms of bismuth molybdate revealed similar findings with two of the three phases observed (by EDXRD) to form directly from a precursor gel with an Avrami-Erofe'ev kinetic analysis of the crystallisation process suggesting that the mechanisms of formation were different for each phase. Hydrothermal methods were also used to prepare cobalt and manganese substituted aluminophosphate structures API and AEI, which were found to be efficient catalysts for the methanol to olefin reaction. However, it was also observed that during calcination to remove the structure-directing agent, that some of the cobalt and manganese in the tetrahedral framework sites underwent oxidation from 2+ to 3+ although the extent of this was found to be dependent upon both structure type and metal ion. Finally an investigation was carried out into the use of ion-exchanged zeolites as precursors for the low temperature crystallisation of the spinel structure CoA12O4. The results from this study suggested that very small spinel particles formed within the XRD amorphous collapsed zeolites although both zeolite structure type and cobalt salt were thought to have an effect on phase formation.

  11. Performance of Thorium-Based Mixed Oxide Fuels for the Consumption of Plutonium in Current and Advanced Reactors

    SciTech Connect

    Weaver, Kevan Dean; Herring, James Stephen

    2003-07-01

    A renewed interest in thorium-based fuels has arisen lately based on the need for proliferation resistance, longer fuel cycles, higher burnup, and improved waste form characteristics. Recent studies have been directed toward homogeneously mixed, heterogeneously mixed, and seed-and-blanket thorium-uranium oxide fuel cycles that rely on "in situ" use of the bred-in 233U. However, due to the higher initial enrichment required to achieve acceptable burnups, these fuels are encountering economic constraints. Thorium can nevertheless play a large role in the nuclear fuel cycle, particularly in the reduction of plutonium inventories. While uranium-based mixed-oxide (MOX) fuel will decrease the amount of plutonium in discharged fuel, the reduction is limited due to the breeding of more plutonium (and higher actinides) from the 238U. Here, we present calculational results and a comparison of the potential burnup of a thorium-based and uranium-based mixed-oxide fuel in a light water reactor. Although the uranium-based fuels outperformed the thorium-based fuels in achievable burnup, a depletion comparison of the initially charged plutonium (both reactor and weapons grade) showed that the thorium-based fuels outperformed the uranium-based fuels by more that a factor of 2, where >70% of the total plutonium in the thorium-based fuel is consumed during the cycle. This is significant considering that the achievable burnups of the thorium-based fuels were 1.4 to 4.6 times less than the uranium-based fuels for similar plutonium enrichments. For equal specific burnups of ~60 MWd/kg (i.e., using variable plutonium weight percentages to give the desired burnup), the thorium-based fuels still outperform the uranium-based fuels by more than a factor of 2, where the total plutonium consumption in a three-batch, 18-month cycle was 60 to 70%. This is fairly significant considering that 10 to 15% (by weight) more plutonium is needed in the thorium-based fuels as compared to the uranium

  12. Synthesis, characterization and trivalent arsenic sorption potential of Ce-Al nanostructured mixed oxide

    NASA Astrophysics Data System (ADS)

    Bhattacharya, S.; Gupta, K.; Ghosh, U. C.

    2017-04-01

    Arsenic contamination in the ground water has serious health consequences in many parts of the world. The surface sorption method for arsenic mitigation has been widely investigated due to its simple method, inexpensive operation, highly efficient and low content of by-products. In the present study, nanostructured hydrated cerium aluminum oxide (NHCAO) was synthesized and characterized and its arsenic (III) sorption behavior from the aqueous solution was studied. The material was characterized in SEM, FE-SEM, TEM, AFM, XRD, and FT-IR. Batch method was used for the kinetics of As (III) sorption on nanoparticles at 303 (± 1.6) K and at pH 7.0 (± 0.2). The experiments on isotherm subject were performed individually at 288K, 303K, 318K temperatures at pH 7.0 (± 0.2) using the batch sorption method. In the kinetics study of arsenic (III) sorption, the sorption percentage was observed to remain nearly unchanged up to pH 9.0, thereafter only slight reduction in sorption percentage. The equilibrium sorption results were tested using the models of Langmuir and the Freundlich isotherm. The Langmuir model is the most fitted model for the sorption reaction. NHCAO was highly efficient in As(III) removal out of the water in the extensive range of pH and could be used for arsenic removal from contaminated water.

  13. Synergistic Effect of Mixed Oxide on the Adsorption of Ammonia with Metal–Organic Frameworks

    DOE PAGES

    Mounfield, III, William P.; Taborga Claure, Micaela; Agrawal, Pradeep K.; ...

    2016-06-08

    A hydrotalcite-derived MgAl oxide (MMO) was evaluated in combination with the metal–organic frameworks (MOFs) UiO-66 and UiO-66-NH2 for the adsorption of ammonia. Analysis of the materials’ textural properties after ammonia breakthrough adsorption revealed no change in the PXRD patterns or FTIR spectra; however, a slight decrease in surface area was observed, consistent with the hypothesized presence of strongly adsorbed species after adsorption. UiO-66:MMO and UiO-66-NH2:MMO composites maintained ammonia adsorption capacity under dry conditions. An almost 2-fold increase in humid ammonia capacity was observed for the UiO-66:MMO composite, far beyond that expected through a linear combination of the two materials’ capacities.more » As a result, the synergistic effect observed in humid conditions was further investigated with water adsorption experiments, which suggested the effect is the result of the high water affinity of MMO.« less

  14. Aluminum manganese oxides with mixed crystal structure: high-energy-density cathodes for rechargeable sodium batteries.

    PubMed

    Han, Dong-Wook; Ku, Jun-Hwan; Kim, Ryoung-Hee; Yun, Dong-Jin; Lee, Seok-Soo; Doo, Seok-Gwang

    2014-07-01

    We report a new discovery for enhancing the energy density of manganese oxide (Nax MnO2 ) cathode materials for sodium rechargeable batteries by incorporation of aluminum. The Al incorporation results in NaAl(0.1) Mn(0.9) O2 with a mixture of tunnel and layered crystal structures. NaAl(0.1) Mn(0.9) O2 shows a much higher initial discharge capacity and superior cycling performance compared to pristine Na(0.65) MnO2 . We ascribe this enhancement in performance to the formation of a new orthorhombic layered NaMnO2 phase merged with a small amount of tunnel Na(0.44) MnO2 phase in NaAl(0.1) Mn(0.9) O2 , and to improvements in the surface stability of the NaAl(0.1) Mn(0.9) O2 particles caused by the formation of Al-O bonds on their surfaces. Our findings regarding the phase transformation and structure stabilization induced by incorporation of aluminum, closely related to the structural analogy between orthorhombic Na(0.44) MnO2 and NaAl(0.1) Mn(0.9) O2 , suggest a strategy for achieving sodium rechargeable batteries with high energy density and stability.

  15. Mixed titanium, silicon, and aluminum oxide nanostructures as novel adsorbent for removal of rhodamine 6G and methylene blue as cationic dyes from aqueous solution.

    PubMed

    Pal, Umapada; Sandoval, Alberto; Madrid, Sergio Isaac Uribe; Corro, Grisel; Sharma, Vivek; Mohanty, Paritosh

    2016-11-01

    Mixed oxide nanoparticles containing Ti, Si, and Al of 8-15 nm size range were synthesized using a combined sol-gel - hydrothermal method. Effects of composition on the structure, morphology, and optical properties of the nanoparticles were studied using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), microRaman spectroscopy, and diffuse reflectance spectroscopy (DRS). Dye removal abilities of the nanoparticles from aqueous solutions were tested for different cationic dyes. While all the mixed oxide nanoparticles revealed high and fast adsorption of cationic dyes, the particles containing Ti and Si turned out to be the best. The adsorption kinetics and equilibrium adsorption behavior of the adsorbate - adsorbent systems could be well described by pseudo-second-order kinetics and Langmuir isotherm model, respectively. Estimated thermodynamic parameters revealed the adsorption process is spontaneous, driven mainly by the electrostatic force between the cationic dye molecules and negative charge at nanoparticle surface. Highest dye adsorption capacity (162.96 mg MB/g) of the mixed oxide nanostructures containing Ti and Si is associated to their high specific surface area, and the presence of surface Si-O(δ-) groups, in addition to the hydroxyl groups of amorphous titania. Mixed oxide nanoparticles containing 75% Ti and 25% Si seen to be the most efficient adsorbents for removing cationic dye molecules from wastewater.

  16. Molybdenum-based additives to mixed-metal oxides for use in hot gas cleanup sorbents for the catalytic decomposition of ammonia in coal gases

    DOEpatents

    Ayala, Raul E.

    1993-01-01

    This invention relates to additives to mixed-metal oxides that act simultaneously as sorbents and catalysts in cleanup systems for hot coal gases. Such additives of this type, generally, act as a sorbent to remove sulfur from the coal gases while substantially simultaneously, catalytically decomposing appreciable amounts of ammonia from the coal gases.

  17. Band offset of Al1‑ x Si x O y mixed oxide on GaN evaluated by hard X-ray photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Ito, Kenji; Kikuta, Daigo; Narita, Tetsuo; Kataoka, Keita; Isomura, Noritake; Kitazumi, Kousuke; Mori, Tomohiko

    2017-04-01

    An Al1‑ x Si x O y mixed oxide has been deposited on GaN by plasma-enhanced atomic layer deposition. The band diagrams between the mixed oxide and GaN for various Si atom fraction x values are determined by hard X-ray photoelectron spectroscopy for the first time. The band gap of the mixed oxide increases with increasing x. This dependence has a large bowing parameter of 1.5 eV. We have successfully obtained conduction band offset (ΔE C) and valence band offset (ΔE V) as a function of x: ΔE C (eV) = 1.6 + 0.4x + 1.2x 2 and ΔE V (eV) = 1.7 + 0.34x + 0.36x 2. These relationships enable us to design GaN metal–oxide–semiconductor devices using the Al1‑ x Si x O y mixed oxide.

  18. Trinuclear nickel complexes with triplesalen ligands: simultaneous occurrence of mixed valence and valence tautomerism in the oxidized species.

    PubMed

    Glaser, Thorsten; Heidemeier, Maik; Fröhlich, Roland; Hildebrandt, Peter; Bothe, Eberhart; Bill, Eckhard

    2005-07-25

    The coordination chemistries of the triple tetradentate triplesalen ligands H(6)talen, H(6)talen(t)(-)(Bu)(2), and H(6)talen(NO)(2) have been investigated with nickel(II). These triplesalen ligands provide three salen-like coordination environments bridged in a meta-phenylene arrangement by a phloroglucinol backbone. The structures of the complexes [(talen)Ni(II)(3)], [(talen(t)(-)(Bu)(2)Ni(II)(3)], and [(talen(NO)(2)Ni(II)(3)] have been determined by single-crystal X-ray diffraction. All three compounds are composed of neutral trinuclear complexes with square-planar coordinated Ni(II) ions in a salen-like coordination environment. Whereas the overall molecular structure of [(talen(NO)(2)Ni(II)(3)] is nearly planar, the structures of [(talen)Ni(II)(3)] and [(talen(t)(-)(Bu)(2)Ni(II)(3)] are bowl-shaped as a result of ligand folding. The strongest ligand folding occurs at the central nickel-phenolate bond of [(talen(t)(-)(Bu)(2)Ni(II)(3)], resulting in the formation of a chiral hemispherical pocket. The dependence of the physical properties by the substituents on the terminal phenolates has been studied by FTIR, resonance Raman, UV-vis-NIR absorption, and electrochemistry. The three nickel-salen subunits are electronically interacting via the pi system of the bridging phloroglucinol backbone. The strength of this interaction is mediated by two opposing effects: the electron density at the terminal phenolates and the folding of the ligand at the central phenolates. The parent complex [(talen)Ni(II)(3)] is irreversibly oxidized at 0.32 V versus ferrocenium/ferrocene (Fc(+)/Fc), whereas [(talen(t)(-)(Bu)2)Ni(II)(3)] and [(talen(NO)(2)Ni(II)(3)] exhibit reversible oxidations at 0.22 V versus Fc(+)/Fc and 0.52 V versus Fc(+)/Fc, respectively. The oxidized species [(talen(t)(-)(Bu)(2)Ni(3)](+) and [(talen(NO)(2)Ni(3)](+) undergo a valence-tautomeric transformation involving a Ni(III) and a phenoxyl radical species, as observed by EPR spectroscopy. Thus, these oxidized

  19. Oxygen surface exchange kinetics of SrTi(1-x)Fe(x)O(3-δ) mixed conducting oxides.

    PubMed

    Yoo, Chung-Yul; Bouwmeester, Henny J M

    2012-09-07

    The oxygen surface exchange kinetics of mixed conducting perovskite oxides SrTi(1-x)Fe(x)O(3-δ) (x = 0, 0.01, 0.05, 0.35, 0.5) has been investigated as a function of temperature and oxygen partial pressure using the pulse-response (18)O-(16)O isotope exchange (PIE) technique. Arrhenius activation energies range from 140 kJ mol(-1) for x = 0 to 86 kJ mol(-1) for x = 0.5. Extrapolating the temperature dependence to the intermediate temperature range, 500-600 °C, indicates that the rate of oxygen exchange, in air, increases with increasing iron mole fraction, but saturates at the highest iron mole fraction for the given series. The observed behavior is concomitant with corresponding increases in both electronic and ionic conductivity with increasing x in SrTi(1-x)Fe(x)O(3-δ). Including literature data of related perovskite-type oxides Ba(0.5)Sr(0.5)Co(0.8)Fe(0.2)O(3-δ), La(0.6)Sr(0.4)Co(0.2)Fe(0.8)O(3-δ), La(0.6)Sr(0.4)CoO(3-δ), and Sm(0.5)Sr(0.5)CoO(3-δ), a linear relationship is observed in the log-log plot between oxygen exchange rate and oxide ionic conductivity with a slope fairly close to unity, suggesting that it is the magnitude of the oxide ionic conductivity that governs the rate of oxygen exchange in these solids. The distribution of oxygen isotopomers ((16)O(2), (16)O(18)O, (18)O(2)) in the effluent pulse can be interpreted on the basis of a two-step exchange mechanism for the isotopic exchange reaction. Accordingly, the observed power law dependence of the overall surface exchange rate on oxygen partial pressure turns out to be an apparent one, depending on the relative rates of both steps involved in the adopted two-step scheme. Supplementary research is, however, required to elucidate which of the two possible reaction schemes better reflects the actual kinetics of oxygen surface exchange on SrTi(1-x)Fe(x)O(3-δ).

  20. Characterization of the Fe-Doped Mixed-Valent Tunnel Structure 2 Manganese Oxide KOMS-2

    SciTech Connect

    Hanson J. C.; Shen X.; Morey A.M.; Liu J.; Ding Y.; Cai J.; Durand J.; Wang Q.; Wen W.; Hines W.A.; Bai J.; Frenkel A.I.; Reiff W.; Aindow M.; Suib S.L.

    2011-11-10

    A sol-gel-assisted combustion method was used to prepare Fe-doped manganese oxide octahedral molecular sieve (Fe-KOMS-2) materials with the cryptomelane structure. Characterization of the nanopowder samples over a wide range of Fe-doping levels (0 {le} Fe/Mn {le} 1/2) was carried out using a variety of experimental techniques. For each sample, Cu K{alpha} XRD and ICP-AES were used to index the cryptomelane structure and determine the elemental composition, respectively. A combination of SEM and TEM images revealed that the morphology changes from nanoneedle to nanorod after Fe doping. Furthermore, TGA scans indicated that the thermal stability is also enhanced with the doping. Anomalous XRD demonstrated that the Fe ions replace the Mn ions in the cryptomelane structure, particularly in the (211) planes, and results in a lattice expansion along the c axis, parallel to the tunnels. Reasonable fits to EXAFS data were obtained using a model based on the cryptomelane structure. Moessbauer spectra for selected Fe-KOMS-2 samples indicated that the Fe is present as Fe{sup 3+} in an octahedral environment similar to Mn in the MnO{sub 6} building blocks of KOMS-2. Magnetization measurements detected a small amount of {gamma}-Fe{sub 2}O{sub 3} second phase (e.g., 0.6 wt % for the Fe/Mn = 1/10 sample), the vast majority of the Fe being in the structure as Fe{sup 3+} in the high-spin state.

  1. Dielectric and Elastic Properties of Mixed Ferroelectric Material Potassium TANTALUM(1-X) Niobium(x) Oxide

    NASA Astrophysics Data System (ADS)

    Wang, Xiaomei

    Ferroelectricity is one of the important fields in solid state physics because of its scientific and technological significance. This dissertation describes dielectric and elastic properties of the ferroelectric system KTa_{1-x}Nb_{x}O _3 (KTN) with niobium in the concentration range 1.2% ~ 16%. The occurrence and the nature of the phase transition in mixed ferroelectric systems is an intriguing topic due to the introduction of configurational disorder. Experimental results have shown that the critical temperature T _{c} in the KTN system strongly depends on the concentration of Nb and that the transverse optic soft mode frequency decreases as the concentration of Nb increases. However, the origin of the phase transition in this system is not clearly known. In particular, it is not yet clear whether or not the transition is driven by a soft mode and how the nature of the transition evolves as the Nb concentration is changed. This dissertation describes experimental work on the dielectric and elastic behaviors of the KTN system. The results on the linear and the nonlinear dielectric constants and on the electric polarization of KTN reveal (a) the occurrence of a structural transition with the appearance of ferroelectric macroregions at T_{c }, even for relatively low impurity concentrations (b) the presence of polar microregions significantly above T_{c}. The phase transition in KTN is driven by the interaction between effective dipolar moments d* rather than a soft mode. Our experimental results also reveal the coexistence of both dipolar glass like and ferroelectric behaviors in KTN with low Nb concentrations. Elastic results obtained on KTN provide direct evidence of the two distinct stages which the transition go through when approaching the critical temperature T _{c}. The ultrasonic measurements of the longitudinal elastic constant C_ {11} shows the softening of C _{11} with a (T-T_ {c})^{-mu} dependence at intermediate temperature in the first stage. In the

  2. A simple route to improve rate performance of LiFePO4/reduced graphene oxide composite cathode by adding Mg2+ via mechanical mixing

    NASA Astrophysics Data System (ADS)

    Huang, Yuan; Liu, Hao; Gong, Li; Hou, Yanglong; Li, Quan

    2017-04-01

    Introducing Mg2+ to LiFePO4 and reduced graphene oxide composite via mechanical mixing and annealing leads to largely improved rate performance of the cathode (e.g. ∼78 mA h g-1 at 20 C for LiFePO4 and reduced graphene oxide composite with Mg2+ introduction vs. ∼37 mA h g-1 at 20 C for LiFePO4 and reduced graphene oxide composite). X-ray photoelectron spectroscopy unravels that the enhanced reduction of Fe2+ to Fe0 occurs in the simultaneous presence of Mg2+ and reduced graphene oxide, which is beneficial for the rate capability of cathode. The simple fabrication process provides a simple and effective means to improve the rate performance of the LiFePO4 and reduced graphene oxide composite cathode.

  3. Fe(II)Ti(IV)O3 mixed oxide monolayer at rutile TiO2(011): Structures and reactivities

    NASA Astrophysics Data System (ADS)

    Wen, Zhan-Hui; Halpegamage, Sandamali; Gong, Xue-Qing; Batzill, Matthias

    2016-11-01

    Mixed-metal oxide monolayer grown at an oxide support is of great potential in applications like heterogeneous catalysis. In this work, the experimentally obtained ordered mixed FeTiO3 oxide monolayer supported by rutile TiO2(011) surface has been carefully studied with density functional theory calculations. The genetic algorithm based optimization scheme has been employed to improve the searching capacity for possible structures, and a well ordered mixed Fe(II)Ti(IV)O3 monolayer oxide structure much more stable than the one proposed previously has been successfully located. The new surface structure consists of uniformly distributed Ti and Fe cations in the ratio of 2:1. The simulated Scanning Tunneling Microscopy image based on this model is well consistent with the experimental one. Our calculations have shown that the O vacancy formation energy is rather high at the surface. We have also studied the adsorption of O2 and CO at the exposed Fe sites on the surface as well as their reactions. The adsorption energies of O2 are generally higher than those of CO. The catalytic cycle of CO oxidation following an Eley-Rideal type mechanism has been located for CO to react with surface adsorbed O2 and O.

  4. Synthesis and Characterization of Mixed-Conducting Corrosion Resistant Oxide Supports

    SciTech Connect

    Ramani, Vijay K.

    2015-01-31

    An extensive search and evaluation of electrochemically stable catalyst supports (including metal oxides like RuO2-SiO2, RuO2-TiO2, and ITO was perfomed during the 4 years of the project. The suports were also catalyzed by deposition of Pt and tested for its performance and electrochemical stability in RDE and fuel cell experiments. For testing the electrochemical stability and fuel cell performance of the catalysts and supports, we have employed the protocols in use at the Department of Energy and Nissan Technological Center North America (NTCNA). The use of such procedures allows a precise and reproducible estimation of the performance and stability of the materials and permits comparisons among laboratories and DOE funded projects. RuO2-SiO2 catalyst supports showed no loss in surface area during start-stop stability tests that were performed by cycling the electrode potential between 0 V to 1.8 V for 1000 cycles. Catalyzed support (40% Pt/RuO2-SiO2; 1:1 mole ratio) were tested in a PEFC, resulting in a current density of 750 mA/cm2 at 0.6 Volts, and a maximum power density of 570 mW/cm2. Measurements were conducted at 80 ºC with 75% relative humidity of the inlet gases (H2/O2); Pt loadings were 0.4 mg/cm2 at the cathode and 0.2 mg/cm2 at the anode. Start-stop stability tests for support and catalyzed support performed in RDE and PEFC set-ups have confirmed RuO2-TiO2 support stability. The beginning of life performance was exactly equal to end of life performance (in an MEA that has been subjected to severe start-stop cycling for 10,000 start/stop cycles between 1 V to 1.5 V). This result was in sharp contrast to baseline Pt/C catalyst that showed significant performance deterioration after accelerated stability tests. The Pt/TRO showed minimal loss in performance upon exposure to start-stop cycles. The loss in cell voltage at 1 A/cm2 at 100% RH was almost 700 mV for Pt/C whereas it was only ca. 15 mV for Pt/TRO. 40% RH data (of inlet gases) revealed a similar

  5. Effects of asphalt rejuvenator on thermal and mechanical properties on oxidized hot mixed asphalt pavements

    NASA Astrophysics Data System (ADS)

    Farace, Nicholas A.; Buttlar, William G.; Reis, Henrique

    2016-04-01

    The utilization of asphalt rejuvenator, and its effectiveness for restoring thermal and mechanical properties was investigated via Disk-shaped Compact Tension (DC(T)) and acoustic emission (AE) testing for determining mechanical properties and embrittlement temperatures of the mixtures. During the DC(T) testing the fracture energies and peak loads were used to measure the resistance of the rejuvenated asphalt to low temperature cracking. The AE testing monitored the acoustic emission activity while the specimens were cooled from room temperature to -40 °C to estimate the temperature at which thermal cracking began (i.e. the embrittlement temperature). First, a baseline response was obtained by obtaining the mechanical and thermal response of virgin HMA samples and HMA samples that had been exposed to oxidative aging for 36 hours at 135°C. The results showed the virgin samples had much higher peak loads and fracture energies than the 36 hours aged samples. Acoustic Emission showed similar results with the virgin samples having embrittlement temperatures 10 °C cooler than the 36 hours aged specimens. Then, overaged for 36 hours specimens were treated different amounts of rejuvenator (10%, 15%, and 20% by weight of binder content) and left to dwell for increased amount of time periods varying from one to eight weeks. It was observed that the AE results showed an improvement of embrittlement temperature with increasing with the dwell times. The 8 weeks specimens had cooler embrittlement temperatures than the virgin specimens. Finally, the low temperature effects on fracture energy and peak load of the rejuvenated asphalt was investigated. Rejuvenator was applied (10% by weight of binder) to specimens aged 36 hours at 135 °C, and the dwell time was varied from 1 to 4 weeks. The results showed that the peak loads were restored to levels of the virgin specimens, and the fracture energies improved to levels beyond that of the virgin specimens. The results also showed a

  6. Mixed oxides of sodium, antimony (5+) and divalent metals (Ni, Co, Zn or Mg)

    SciTech Connect

    Politaev, V.V.; Nalbandyan, V.B.; Petrenko, A.A.; Shukaev, I.L.; Volotchaev, V.A.; Medvedev, B.S.

    2010-03-15

    A family of alpha-NaFeO{sub 2}-type oxides Na{sub x}M{sub (1+x)/3}Sb{sub (2-x)/3}O{sub 2} (M=Ni, Co, Zn, Mg; x{approx}0.8 or 0.9) has been prepared by solid state reactions and characterized by powder XRD. At x=1, ordering occurs with tripling the unit cells and formula units. The powder patterns for Na{sub 3}M{sub 2}SbO{sub 6} (M=Ni, Co) comply with both trigonal P3{sub 1}12 cell and monoclinic C2/m cell. The Ni compound exhibits also a series of extremely weak reflections (I<0.3%) that need doubling of the c axis, and the final cell is C2/c, a=5.3048(3), b=9.1879(4), c=10.8356(7), beta=99.390(5). These ambiguities are explained by stacking faults. The compounds absorb atmospheric moisture with c-axis expansion up to 29%. A delafossite-related superlattice Ag{sub 3}Co{sub 2}SbO{sub 6} has been prepared by ion exchange and refined: P3{sub 1}12, a=5.3842(2), c=18.6613(10). Ionic conductivity of the Na{sub 0.8}Ni{sub 0.6}Sb{sub 0.4}O{sub 2} ceramics, 0.4 S/m at 300 deg. C, is greater than reported previously, presumably owing to the grain orientation produced by hot pressing. - Graphical abstract: It is shown that the powder patterns for Na{sub 3}M{sub 2}SbO{sub 6} (M=Ni and Co) may be equally well described by a trigonal P3{sub 1}12 cell and a monoclinic C2/m cell. In addition, the Ni compound exhibits a series of extremely weak reflections (I<0.3%) that need doubling of the monoclinic c axis, and the final cell is C2/c.

  7. Oxidative stress, inflammation and recovery of muscle function after damaging exercise: effect of 6-week mixed antioxidant supplementation.

    PubMed

    Bailey, David M; Williams, Clyde; Betts, James A; Thompson, Dylan; Hurst, Tina L

    2011-06-01

    There is no consensus regarding the effects of mixed antioxidant vitamin C and/or vitamin E supplementation on oxidative stress responses to exercise and restoration of muscle function. Thirty-eight men were randomly assigned to receive either placebo group (n = 18) or mixed antioxidant (primarily vitamin C & E) supplements (n = 20) in a double-blind manner. After 6 weeks, participants performed 90 min of intermittent shuttle-running. Peak isometric torque of the knee flexors/extensors and range of motion at this joint were determined before and after exercise, with recovery of these variables tracked for up to 168 h post-exercise. Antioxidant supplementation elevated pre-exercise plasma vitamin C (93 ± 8 μmol l(-1)) and vitamin E (11 ± 3 μmol l(-1)) concentrations relative to baseline (P < 0.001) and the placebo group (P ≤ 0.02). Exercise reduced peak isometric torque (i.e. 9-19% relative to baseline; P ≤ 0.001), which persisted for the first 48 h of recovery with no difference between treatment groups. In contrast, changes in the urine concentration of F(2)-isoprostanes responded differently to each treatment (P = 0.04), with a tendency for higher concentrations after 48 h of recovery in the supplemented group (6.2 ± 6.1 vs. 3.7 ± 3.4 ng ml(-1)). Vitamin C & E supplementation also affected serum cortisol concentrations, with an attenuated increase from baseline to the peak values reached after 1 h of recovery compared with the placebo group (P = 0.02) and serum interleukin-6 concentrations were higher after 1 h of recovery in the antioxidant group (11.3 ± 3.4 pg ml(-1)) than the placebo group (6.2 ± 3.8 pg ml(-1); P = 0.05). Combined vitamin C & E supplementation neither reduced markers of oxidative stress or inflammation nor did it facilitate recovery of muscle function after exercise-induced muscle damage.

  8. Roles of Bulk and Surface Chemistry in the Oxygen Exchange Kinetics and Related Properties of Mixed Conducting Perovskite Oxide Electrodes

    PubMed Central

    Perry, Nicola H.; Ishihara, Tatsumi

    2016-01-01

    Mixed conducting perovskite oxides and related structures serving as electrodes for electrochemical oxygen incorporation and evolution in solid oxide fuel and electrolysis cells, respectively, play a significant role in determining the cell efficiency and lifetime. Desired improvements in catalytic activity for rapid surface oxygen exchange, fast bulk transport (electronic and ionic), and thermo-chemo-mechanical stability of oxygen electrodes will require increased understanding of the impact of both bulk and surface chemistry on these properties. This review highlights selected work at the International Institute for Carbon-Neutral Energy Research (I2CNER), Kyushu University, set in the context of work in the broader community, aiming to characterize and understand relationships between bulk and surface composition and oxygen electrode performance. Insights into aspects of bulk point defect chemistry, electronic structure, crystal structure, and cation choice that impact carrier concentrations and mobilities, surface exchange kinetics, and chemical expansion coefficients are emerging. At the same time, an understanding of the relationship between bulk and surface chemistry is being developed that may assist design of electrodes with more robust surface chemistries, e.g., impurity tolerance or limited surface segregation. Ion scattering techniques (e.g., secondary ion mass spectrometry, SIMS, or low energy ion scattering spectroscopy, LEIS) with high surface sensitivity and increasing lateral resolution are proving useful for measuring surface exchange kinetics, diffusivity, and corresponding outer monolayer chemistry of electrodes exposed to typical operating conditions. Beyond consideration of chemical composition, the use of strain and/or a high density of active interfaces also show promise for enhancing performance. PMID:28773978

  9. Plasma total oxidant and antioxidant status after oral glucose tolerance and mixed meal tests in patients with polycystic ovary syndrome.

    PubMed

    Kucukaydın, Zehra; Duran, Cevdet; Basaran, Mustafa; Camlica, Fatos; Erdem, Sami Said; Basaran, Ahmet; Kutlu, Orkide; Burnik, Ferda Sevimli; Elmas, Halis; Gonen, Mustafa Sait

    2016-10-01

    Insulin resistance (IR) and increased oxidative stress (OS) are the characteristics of polycystic ovary syndrome (PCOS). In this study, we aimed to evaluate the effects of oral glucose tolerance (OGTT) and mixed meal tests (MMT) on plasma total oxidant (TOS) and total antioxidant status (TAS) in patients with PCOS and the relationship between these parameters and IR, calculated via homeostasis of model assessment-IR (HOMA-IR) and Matsuda's insulin sensitivity index (ISI) derived from OGTT and MMT. Twenty-two patients with PCOS, and age- and body mass index (BMI)-matched 20 women as controls were enrolled into the study. Five-hour OGTT and MMT were performed on different days, and before and after these tests, plasma TOS and TAS levels were investigated. IR was calculated with HOMA-IR and Matsuda's ISI. HOMA-IR levels were higher in patients with PCOS, compared to controls, while Matsuda's ISI derived from OGTT and MMT was higher in controls. Plasma TOS levels before OGTT and MMT were higher in patients with PCOS than controls, while TAS levels were similar. After OGTT, plasma TOS levels became decreased at 5th hour, when compared to baseline values in PCOS group. Likewise, the same decrement was found in controls, but the decrement was not significant. After OGTT and MMT at 5th hour, no changes were observed in TAS levels, compared to baseline. Matsuda's ISIs derived from OGTT and MMT can be used instead of each other, and interestingly, we found a decrease in TOS levels after OGTT in patients with PCOS.

  10. Gas Transport Properties of Polybenzimidazole and Poly(Phenylene Oxide) Mixed Matrix Membranes Incorporated with PDA-Functionalised Titanate Nanotubes

    NASA Astrophysics Data System (ADS)

    Giel, V.; Perchacz, M.; Kredatusová, J.; Pientka, Z.

    2017-01-01

    Functionalised titanate nanotubes (TiNTs) were incorporated to poly(5,5-bisbenzimidazole-2,2-diyl-1,3-phenylene) (PBI) or poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) for improving the interfacial compatibility between the polymer matrix and inorganic material and for altering the gas separation performance of the neat polymer membranes. Functionalisation consisted in oxidative polymerisation of dopamine-hydrochloride on the surface of non-functionalised TiNTs. Transmission electron microscopy (TEM) confirmed that a thin polydopamine (PDA) layer was created on the surface of TiNTs. 1.5, 3, 6, and 9 wt.% of PDA-functionalised TiNTs (PDA-TiNTs) were dispersed to each type of polymer matrix to create so-called mixed matrix membranes (MMMs). Infrared spectroscopy confirmed that -OH and -NH groups exist on the surface of PDA-TiNTs and that the nanotubes interact via H-bonding with PBI but not with PPO. The distribution of PDA-TiNTs in the MMMs was to some extent uniform as scanning electron microscope (SEM) studies showed. Beyond, PDA-TiNTs exhibit positive effect on gas transport properties, resulting in increased selectivities of MMMs. The addition of nanotubes caused a decrease in permeabilities but an increase in selectivities. It is shown that 9 wt.% of PDA-TiNTs in PBI gave a rise to CO2/N2 and CO2/CH4 selectivities of 112 and 63 %, respectively. In case of PPO-PDA-TiNT MMMs, CO2/N2 and CO2/CH4 selectivity increased about 25 and 17 %, respectively. Sorption measurement showed that the presence of PDA-TiNTs in PBI caused an increase in CO2 sorption, whereas the influence on other gases is less noticeable.

  11. Gas Transport Properties of Polybenzimidazole and Poly(Phenylene Oxide) Mixed Matrix Membranes Incorporated with PDA-Functionalised Titanate Nanotubes.

    PubMed

    Giel, V; Perchacz, M; Kredatusová, J; Pientka, Z

    2017-12-01

    Functionalised titanate nanotubes (TiNTs) were incorporated to poly(5,5-bisbenzimidazole-2,2-diyl-1,3-phenylene) (PBI) or poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) for improving the interfacial compatibility between the polymer matrix and inorganic material and for altering the gas separation performance of the neat polymer membranes. Functionalisation consisted in oxidative polymerisation of dopamine-hydrochloride on the surface of non-functionalised TiNTs. Transmission electron microscopy (TEM) confirmed that a thin polydopamine (PDA) layer was created on the surface of TiNTs. 1.5, 3, 6, and 9 wt.% of PDA-functionalised TiNTs (PDA-TiNTs) were dispersed to each type of polymer matrix to create so-called mixed matrix membranes (MMMs). Infrared spectroscopy confirmed that -OH and -NH groups exist on the surface of PDA-TiNTs and that the nanotubes interact via H-bonding with PBI but not with PPO. The distribution of PDA-TiNTs in the MMMs was to some extent uniform as scanning electron microscope (SEM) studies showed. Beyond, PDA-TiNTs exhibit positive effect on gas transport properties, resulting in increased selectivities of MMMs. The addition of nanotubes caused a decrease in permeabilities but an increase in selectivities. It is shown that 9 wt.% of PDA-TiNTs in PBI gave a rise to CO2/N2 and CO2/CH4 selectivities of 112 and 63 %, respectively. In case of PPO-PDA-TiNT MMMs, CO2/N2 and CO2/CH4 selectivity increased about 25 and 17 %, respectively. Sorption measurement showed that the presence of PDA-TiNTs in PBI caused an increase in CO2 sorption, whereas the influence on other gases is less noticeable.

  12. Effects of exposure times on the toxic response of ammonia oxidizing mixed culture (AOMC) to phenol and chlorinated phenols.

    PubMed

    Tantasut, J; Satoh, H; Parkpian, P; Mongkolsuk, S

    2006-01-01

    This study investigated the effect of exposure times on the response of ammonia oxidizing mixed culture (AOMC) to phenolic compounds while having the future goal to develop a biosensor using AOMC for toxicity monitoring. AOMC was used instead of purified nitrifying culture because of the ease of culture development. The oxygen utilization rate (OUR) was measured during three exposure periods; 0-15, 25-40 and 50-65 min. It was found that phenolic compounds have a strong inhibitory effect on AOMC. The percentage of OUR reduction increased with higher concentrations and the extended exposure times improved the toxic response of AOMC, especially to the lower concentrations (0.25, 0.50, 1.0 mg/L). Further, AOMC detoxifying mechanisms might result in the reduction of toxic response when the longest exposure time was applied. However, at the higher concentrations (2.5 and 5.0 mg/L), the extended exposure times did not have a critical effect on the response pattern of AOMC, especially for phenol and mono-chlorinated phenols. It was illustrated that AOMC is very sensitive to phenolic compounds and its sensitivity is high enough for the detection of phenolic compounds at the level of effluent standard in Thailand and Japan with a rapid response time of 15 min. To improve the sensitivity of AOMC to low phenolic compound concentrations, an extended exposure time of 25-40 min would be recommended.

  13. Los Alamos National Laboratory summary plan to fabricate mixed oxide lead assemblies for the fissile material disposition program

    SciTech Connect

    Buksa, J.J.; Eaton, S.L.; Trellue, H.R.; Chidester, K.; Bowidowicz, M.; Morley, R.A.; Barr, M.

    1997-12-01

    This report summarizes an approach for using existing Los Alamos National Laboratory (Laboratory) mixed oxide (MOX) fuel-fabrication and plutonium processing capabilities to expedite and assure progress in the MOX/Reactor Plutonium Disposition Program. Lead Assembly MOX fabrication is required to provide prototypic fuel for testing in support of fuel qualification and licensing requirements. It is also required to provide a bridge for the full utilization of the European fabrication experience. In part, this bridge helps establish, for the first time since the early 1980s, a US experience base for meeting the safety, licensing, safeguards, security, and materials control and accountability requirements of the Department of Energy and Nuclear Regulatory Commission. In addition, a link is needed between the current research and development program and the production of disposition mission fuel. This link would also help provide a knowledge base for US regulators. Early MOX fabrication and irradiation testing in commercial nuclear reactors would provide a positive demonstration to Russia (and to potential vendors, designers, fabricators, and utilities) that the US has serious intent to proceed with plutonium disposition. This report summarizes an approach to fabricating lead assembly MOX fuel using the existing MOX fuel-fabrication infrastructure at the Laboratory.

  14. Mechanical and electrical properties of carbon nanotube/Cu nanocomposites by molecular-level mixing and controlled oxidation process.

    PubMed

    Lim, Byung K; Mo, Chan B; Nam, Dong H; Hong, Soon H

    2010-01-01

    A molecular-level mixing and controlled oxidation process is proposed as a novel fabrication technique for the production of CNT/Cu nanocomposite powders. The fabricated CNT/Cu2O nanocomposite powders showed microstructures with homogeneous dispersion of implanted CNTs in a Cu2O matrix. The CNT/Cu2O nanocomposite powders were reduced to CNT/Cu nanocomposite powders with H2 gas and then the as-prepared CNT/Cu nanocomposite powders were spark plasma sintered to fabricate CNT/Cu nanocomposites. The mechanical properties of the Cu and the CNT/Cu nanocomposites were characterized by tensile testing before and after hot compression. Before hot compression, the CNT/Cu nanocomposites were brittle, but after hot compression both yield strength and elongation were increased, while the yield strength of the Cu was decreased after hot compression. Hot compression enhanced the ductility and strength of the CNT/Cu nanocomposites due to alignment of Cu grains and CNTs. Electrical conductivity was also enhanced due to a reduced scattering of electrons because of the alignment of the CNTs and Cu grains as well as the annealing effects of the Cu matrix.

  15. Influence of nature of precursors on the formation and structure of Cu Ni Cr mixed oxides from layered double hydroxides

    NASA Astrophysics Data System (ADS)

    Zhang, Lihong; Zhu, Jia; Jiang, Xiaorui; Evans, David G.; Li, Feng

    2006-08-01

    Analogous layered double hydroxides (LDHs) with the Cu2+/Ni2+/Cr3+ molar ratio of 1/2/1 on the brucite-like layers and interlayer anions (viz sulfate, nitrate and carbonate, respectively) were synthesized by a coprecipitation method. For the first time, the effects of interlayer anions on the structural properties of as-synthesized LDHs and resulting calcined products at 773 K were investigated by means of powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), simultaneous thermogravimetric and differential thermal analysis (TG-DTA), X-ray photoelectron spectroscopy (XPS) and temperature programmed reduction (TPR). The results indicate that the nature of interlayer anions involved within the hydrotalcite (HT)-like structure has a larger influence on the thermal stability of LDHs precursors. Calcination of well-crystallized LDHs leads to the formation of mixed metal oxides including CuO, NiO and Cu2+-, Ni2+- and Cr3+-containing spinel phases, the composition distributions of which obtained from LDHs precursors depend on the nature of interlayer anions, thus resulting in the difference of the reducibility of reducible metal species in the calcined LDHs. Moreover, the surface basicity of the calcined material, which is related to the different behaviour of LDHs precursors during the thermal decomposition depending on the interlayer anions, increases progressively following the order of calcined LDHs from sulfate to nitrate and carbonate.

  16. Sequential Fenton oxidation and hydrothermal treatment to improve the effect of pretreatment and enzymatic hydrolysis on mixed hardwood.

    PubMed

    Jeong, So-Yeon; Lee, Jae-Won

    2016-01-01

    Sequential Fenton oxidation (FO) and hydrothermal treatment were performed to improve the effect of pretreatment and enzymatic hydrolysis of mixed hardwood. The molar ratio of the Fenton reagent (FeSO4·7H2O and H2O2) was 1:25, and the reaction time was 96h. During the reaction, little or no weight loss of biomass was observed. The concentration of Fe(2+) was determined and was found to increase continuously during FO. Hydrothermal treatment at 190-210°C for 10-80min was performed following FO. Sequential FO and hydrothermal treatment showed positive effects on pretreatment and enzymatic hydrolysis. Xylose concentration in the hydrolysate was as high as 14.16g/L when FO-treated biomass was treated at 190°C, while its concentration in the raw material was 3.72g/L. After 96h of enzymatic hydrolysis, cellulose conversion in the biomass obtained following sequential treatment was 69.58-79.54%. In contrast, the conversion in the raw material (without FO) was 64.41-67.92%.

  17. Biodiesel synthesis by TiO2-ZnO mixed oxide nanocatalyst catalyzed palm oil transesterification process.

    PubMed

    Madhuvilakku, Rajesh; Piraman, Shakkthivel

    2013-12-01

    Biodiesel is a promising alternating environmentally benign fuel to mineral diesel. For the development of easier transesterification process, stable and active heterogeneous mixed metal oxide of TiO2-ZnO and ZnO nanocatalysts were synthesized and exploited for the palm oil transesterification process. The synthesized catalysts were characterized by XRD, FT-IR, and FE-SEM studies for their structural and morphological characteristics. It was found that TiO2-ZnO nanocatalyst exhibits good catalytic activity and the catalytic performance was greatly depends on (i) catalyst concentration (ii) methanol to oil molar ratio (iii) reaction temperature and (iv) reaction time. A highest 98% of conversion was obtained at the optimum reaction parameters with 200 mg of catalyst loading and the biodiesel was analyzed by TLC and (1)H NMR techniques. The TiO2-ZnO nanocatalyst shows good catalytic performance over the ZnO catalyst, which could be a potential candidate for the large-scale biodiesel production from palm oil at the reduced temperature and time.

  18. An integrated approach for the verification of fresh mixed oxide fuel (MOX) assemblies at light water reactor MOX recycle reactors

    SciTech Connect

    Menlove, Howard O; Lee, Sang - Yoon

    2009-01-01

    This paper presents an integrated approach for the verification of mixed oxide (MOX) fuel assemblies prior to their being loaded into the reactor. There is a coupling of the verification approach that starts at the fuel fabrication plant and stops with the transfer of the assemblies into the thermal reactor. The key measurement points are at the output of the fuel fabrication plant, the receipt at the reactor site, and the storage in the water pool as fresh fuel. The IAEA currently has the capability to measure the MOX fuel assemblies at the output of the fuel fabrication plants using a passive neutron coincidence counting systems of the passive neutron collar (PNCL) type. Also. at the MOX reactor pool, the underwater coincidence counter (UWCC) has been developed to measure the MOX assemblies in the water. The UWCC measurement requires that the fuel assembly be lifted about two meters up in the storage rack to avoid interference from the fuel that is stored in the rack. This paper presents a new method to verify the MOX fuel assemblies that are in the storage rack without the necessity of moving the fuel. The detector system is called the Underwater MOX Verification System (UMVS). The integration and relationship of the three measurements systems is described.

  19. Impact of the cation distribution homogeneity on the americium oxidation state in the U0.54Pu0.45Am0.01O2-x mixed oxide

    NASA Astrophysics Data System (ADS)

    Vauchy, Romain; Robisson, Anne-Charlotte; Martin, Philippe M.; Belin, Renaud C.; Aufore, Laurence; Scheinost, Andreas C.; Hodaj, Fiqiri

    2015-01-01

    The impact of the cation distribution homogeneity of the U0.54Pu0.45Am0.01O2-x mixed oxide on the americium oxidation state was studied by coupling X-ray diffraction (XRD), electron probe micro analysis (EPMA) and X-ray absorption spectroscopy (XAS). Oxygen-hypostoichiometric Am-bearing uranium-plutonium mixed oxide pellets were fabricated by two different co-milling based processes in order to obtain different cation distribution homogeneities. The americium was generated from β- decay of 241Pu. The XRD analysis of the obtained compounds did not reveal any structural difference between the samples. EPMA, however, revealed a high homogeneity in the cation distribution for one sample, and substantial heterogeneity of the U-Pu (so Am) distribution for the other. The difference in cation distribution was linked to a difference in Am chemistry as investigated by XAS, with Am being present at mixed +III/+IV oxidation state in the heterogeneous compound, whereas only Am(IV) was observed in the homogeneous compound. Previously reported discrepancies on Am oxidation states can hence be explained by cation distribution homogeneity effects.

  20. Atomic-Resolution Visualization of Distinctive Chemical Mixing Behavior of Ni, Co and Mn with Li in Layered Lithium Transition-Metal Oxide Cathode Materials

    SciTech Connect

    Yan, Pengfei; Zheng, Jianming; Lv, Dongping; Wei, Yi; Zheng, Jiaxin; Wang, Zhiguo; Kuppan, Saravanan; Yu, Jianguo; Luo, Langli; Edwards, Danny J.; Olszta, Matthew J.; Amine, Khalil; Liu, Jun; Xiao, Jie; Pan, Feng; Chen, Guoying; Zhang, Jiguang; Wang, Chong M.

    2015-07-06

    Capacity and voltage fading of layer structured cathode based on lithium transition metal oxide is closely related to the lattice position and migration behavior of the transition metal ions. However, it is scarcely clear about the behavior of each of these transition metal ions. We report direct atomic resolution visualization of interatomic layer mixing of transition metal (Ni, Co, Mn) and lithium ions in layer structured oxide cathodes for lithium ion batteries. Using chemical imaging with aberration corrected scanning transmission electron microscope (STEM) and DFT calculations, we discovered that in the layered cathodes, Mn and Co tend to reside almost exclusively at the lattice site of transition metal (TM) layer in the structure or little interlayer mixing with Li. In contrast, Ni shows high degree of interlayer mixing with Li. The fraction of Ni ions reside in the Li layer followed a near linear dependence on total Ni concentration before reaching saturation. The observed distinctively different behavior of Ni with respect to Co and Mn provides new insights on both capacity and voltage fade in this class of cathode materials based on lithium and TM oxides, therefore providing scientific basis for selective tailoring of oxide cathode materials for enhanced performance.

  1. Surface sites on Pt-CeO2 mixed oxide catalysts probed by CO adsorption: a synchrotron radiation photoelectron spectroscopy study.

    PubMed

    Neitzel, Armin; Lykhach, Yaroslava; Skála, Tomáš; Tsud, Nataliya; Vorokhta, Mykhailo; Mazur, Daniel; Prince, Kevin C; Matolín, Vladimír; Libuda, Jörg

    2014-12-07

    By means of synchrotron radiation photoemission spectroscopy, we have investigated Pt-CeO2 mixed oxide films prepared on CeO2(111)/Cu(111). Using CO molecules as a probe, we associate the corresponding surface species with specific surface sites. This allows us to identify the changes in the composition and morphology of Pt-CeO2 mixed oxide films caused by annealing in an ultrahigh vacuum. Specifically, two peaks in C 1s spectra at 289.4 and 291.2 eV, associated with tridentate and bidentate carbonate species, are formed on the nanostructured stoichiometric CeO2 film. The peak at 290.5-291.0 eV in the C 1s spectra indicates the onset of restructuring, i.e. coarsening, of the Pt-CeO2 film. This peak is associated with a carbonate species formed near an oxygen vacancy. The onset of cerium oxide reduction is indicated by the peak at 287.8-288.0 eV associated with carbonite species formed near Ce(3+) cations. The development of surface species on the Pt-CeO2 mixed oxides suggests that restructuring of the films occurs above 300 K irrespective of Pt loadings. We do not find any adsorbed CO species associated with Pt(4+) or Pt(2+). The onset of Pt(2+) reduction is indicated by the peak at 286.9 eV in the C 1s spectra due to CO adsorption on metallic Pt particles. The thermal stability of Pt(2+) in Pt-CeO2 mixed oxide depends on Pt loading. We find excellent stability of Pt(2+) for 12% Pt content in the CeO2 film, whereas at a Pt concentration of 25% in the CeO2 film, a large fraction of the Pt(2+) is converted into metallic Pt particles above 300 K.

  2. Neutronics Benchmarks for the Utilization of Mixed-Oxide Fuel: Joint US/Russian Progress Report for Fiscal 1997. Volume 3 - Calculations Performed in the Russian Federation

    SciTech Connect

    1998-06-01

    This volume of the progress report provides documentation of reactor physics and criticality safety studies conducted in the Russian Federation during fiscal year 1997 and sponsored by the Fissile Materials Disposition Program of the US Department of Energy. Descriptions of computational and experimental benchmarks for the verification and validation of computer programs for neutron physics analyses are included. All benchmarks include either plutonium, uranium, or mixed uranium and plutonium fuels. Calculated physics parameters are reported for all of the contaminated benchmarks that the United States and Russia mutually agreed in November 1996 were applicable to mixed-oxide fuel cycles for light-water reactors.

  3. Mixed N-Heterocyclic Carbene-Bis(oxazolinyl)borato Rhodium and Iridium Complexes in Photochemical and Thermal Oxidative Addition Reactions

    SciTech Connect

    Xu, Songchen; Manna, Kuntal; Ellern, Arkady; Sadow, Aaron D

    2014-12-08

    In order to facilitate oxidative addition chemistry of fac-coordinated rhodium(I) and iridium(I) compounds, carbene–bis(oxazolinyl)phenylborate proligands have been synthesized and reacted with organometallic precursors. Two proligands, PhB(OxMe2)2(ImtBuH) (H[1]; OxMe2 = 4,4-dimethyl-2-oxazoline; ImtBuH = 1-tert-butylimidazole) and PhB(OxMe2)2(ImMesH) (H[2]; ImMesH = 1-mesitylimidazole), are deprotonated with potassium benzyl to generate K[1] and K[2], and these potassium compounds serve as reagents for the synthesis of a series of rhodium and iridium complexes. Cyclooctadiene and dicarbonyl compounds {PhB(OxMe2)2ImtBu}Rh(η4-C8H12) (3), {PhB(OxMe2)2ImMes}Rh(η4-C8H12) (4), {PhB(OxMe2)2ImMes}Rh(CO)2 (5), {PhB(OxMe2)2ImMes}Ir(η4-C8H12) (6), and {PhB(OxMe2)2ImMes}Ir(CO)2 (7) are synthesized along with ToMM(η4-C8H12) (M = Rh (8); M = Ir (9); ToM = tris(4,4-dimethyl-2-oxazolinyl)phenylborate). The spectroscopic and structural properties and reactivity of this series of compounds show electronic and steric effects of substituents on the imidazole (tert-butyl vs mesityl), effects of replacing an oxazoline in ToM with a carbene donor, and the influence of the donor ligand (CO vs C8H12). The reactions of K[2] and [M(μ-Cl)(η2-C8H14)2]2 (M = Rh, Ir) provide {κ4-PhB(OxMe2)2ImMes'CH2}Rh(μ-H)(μ-Cl)Rh(η2-C8H14)2 (10) and {PhB(OxMe2)2ImMes}IrH(η3-C8H13) (11). In the former compound, a spontaneous oxidative addition of a mesityl ortho-methyl to give a mixed-valent dirhodium species is observed, while the iridium compound forms a monometallic allyl hydride. Photochemical reactions of dicarbonyl compounds 5 and 7 result in C–H bond oxidative addition providing the compounds {κ4-PhB(OxMe2)2ImMes'CH2}RhH(CO) (12) and {PhB(OxMe2)2ImMes}IrH(Ph)CO (13). In 12, oxidative addition results in cyclometalation of the mesityl ortho-methyl similar to 10, whereas the iridium compound reacts with the benzene solvent to give a rare crystallographically characterized cis

  4. Probing Oxide-Ion Mobility in the Mixed Ionic–Electronic Conductor La2NiO4+δ by Solid-State 17O MAS NMR Spectroscopy

    PubMed Central

    2016-01-01

    While solid-state NMR spectroscopic techniques have helped clarify the local structure and dynamics of ionic conductors, similar studies of mixed ionic–electronic conductors (MIECs) have been hampered by the paramagnetic behavior of these systems. Here we report high-resolution 17O (I = 5/2) solid-state NMR spectra of the mixed-conducting solid oxide fuel cell (SOFC) cathode material La2NiO4+δ, a paramagnetic transition-metal oxide. Three distinct oxygen environments (equatorial, axial, and interstitial) can be assigned on the basis of hyperfine (Fermi contact) shifts and quadrupolar nutation behavior, aided by results from periodic DFT calculations. Distinct structural distortions among the axial sites, arising from the nonstoichiometric incorporation of interstitial oxygen, can be resolved by advanced magic angle turning and phase-adjusted sideband separation (MATPASS) NMR experiments. Finally, variable-temperature spectra reveal the onset of rapid interstitial oxide motion and exchange with axial sites at ∼130 °C, associated with the reported orthorhombic-to-tetragonal phase transition of La2NiO4+δ. From the variable-temperature spectra, we develop a model of oxide-ion dynamics on the spectral time scale that accounts for motional differences of all distinct oxygen sites. Though we treat La2NiO4+δ as a model system for a combined paramagnetic 17O NMR and DFT methodology, the approach presented herein should prove applicable to MIECs and other functionally important paramagnetic oxides. PMID:27538437

  5. Probing Oxide-Ion Mobility in the Mixed Ionic-Electronic Conductor La2NiO4+δ by Solid-State (17)O MAS NMR Spectroscopy.

    PubMed

    Halat, David M; Dervişoğlu, Rıza; Kim, Gunwoo; Dunstan, Matthew T; Blanc, Frédéric; Middlemiss, Derek S; Grey, Clare P

    2016-09-14

    While solid-state NMR spectroscopic techniques have helped clarify the local structure and dynamics of ionic conductors, similar studies of mixed ionic-electronic conductors (MIECs) have been hampered by the paramagnetic behavior of these systems. Here we report high-resolution (17)O (I = 5/2) solid-state NMR spectra of the mixed-conducting solid oxide fuel cell (SOFC) cathode material La2NiO4+δ, a paramagnetic transition-metal oxide. Three distinct oxygen environments (equatorial, axial, and interstitial) can be assigned on the basis of hyperfine (Fermi contact) shifts and quadrupolar nutation behavior, aided by results from periodic DFT calculations. Distinct structural distortions among the axial sites, arising from the nonstoichiometric incorporation of interstitial oxygen, can be resolved by advanced magic angle turning and phase-adjusted sideband separation (MATPASS) NMR experiments. Finally, variable-temperature spectra reveal the onset of rapid interstitial oxide motion and exchange with axial sites at ∼130 °C, associated with the reported orthorhombic-to-tetragonal phase transition of La2NiO4+δ. From the variable-temperature spectra, we develop a model of oxide-ion dynamics on the spectral time scale that accounts for motional differences of all distinct oxygen sites. Though we treat La2NiO4+δ as a model system for a combined paramagnetic (17)O NMR and DFT methodology, the approach presented herein should prove applicable to MIECs and other functionally important paramagnetic oxides.

  6. Novel synthesis of manganese and vanadium mixed oxide (V{sub 2}O{sub 5}/OMS-2) as an efficient and selective catalyst for the oxidation of alcohols in liquid phase

    SciTech Connect

    Mahdavi, Vahid Soleimani, Shima

    2014-03-01

    Graphical abstract: Oxidation of various alcohols is studied in the liquid phase over new composite mixed oxide (V{sub 2}O{sub 5}/OMS-2) catalyst using tert-butyl hydroperoxide (TBHP). The activity of V{sub 2}O{sub 5}/OMS-2 samples was considerably increased with respect to OMS-2 catalyst and these samples are found to be suitable for the selective oxidation of alcohols. - Highlights: • V{sub 2}O{sub 5}/K-OMS-2 with different V/Mn molar ratios prepared by the impregnation method. • Oxidation of alcohols was studied in the liquid phase over V{sub 2}O{sub 5}/K-OMS-2 catalyst. • V{sub 2}O{sub 5}/K-OMS-2 catalyst had excellent activity for alcohol oxidation. • Benzyl alcohol oxidation using excess TBHP followed a pseudo-first order kinetic. • The selected catalyst was reused without significant loss of activity. - Abstract: This work reports the synthesis and characterization of mixed oxide vanadium–manganese V{sub 2}O{sub 5}/K-OMS-2 at various V/Mn molar ratios and prepared by the impregnation method. Characterization of these new composite materials was made by elemental analysis, BET, XRD, FT-IR, SEM and TEM techniques. Results of these analyses showed that vanadium impregnated samples contained mixed phases of cryptomelane and crystalline V{sub 2}O{sub 5} species. Oxidation of various alcohols was studied in the liquid phase over the V{sub 2}O{sub 5}/K-OMS-2 catalyst using tert-butyl hydroperoxide (TBHP) and H{sub 2}O{sub 2} as the oxidant. Activity of the V{sub 2}O{sub 5}/K-OMS-2 samples was increased considerably with respect to K-OMS-2 catalyst due to the interaction of manganese oxide and V{sub 2}O{sub 5}. The kinetic of benzyl alcohol oxidation using excess TBHP over V{sub 2}O{sub 5}/K-OMS-2 catalyst was investigated at different temperatures and a pseudo-first order reaction was determined with respect to benzyl alcohol. The effects of reaction time, oxidant/alcohol molar ratio, reaction temperature, solvents, catalyst recycling potential and

  7. A SCALE 5.0 Reactor Physics Assessment using the Module TRITON against Mixed Oxide (MOX) OECD/NEA Benchmarks

    SciTech Connect

    Saccheri, J.G.B.; Diamond, D.J.

    2006-07-01

    Reactor physics numerical benchmarks have been performed at the Brookhaven National Laboratory (BNL) with the software package SCALE 5.0 and its TRITON module to assess their capability to predict neutronics parameters for mixed oxide (MOX) fuels. The results of such calculations are herein presented. Specifically, BNL results for neutron multiplication factors (kINF), neutron fluxes and fuel burnup have been added to published OECD/NEA benchmarks for MOX fuels and particular emphasis has been given to the impact of cross-section libraries and their energy structure on the results. Among the OECD/NEA published benchmarks two have been considered here: the first one models a fuel pin surrounded by moderator, in which two different MOX fuels can be introduced, and for each one of them kINF and neutron fluxes as a function of burnup are calculated. The second one includes both a fuel pin case and a macro-cell case (a heterogeneous 30 by 30 configuration of fuel pins), for which the void coefficient is determined by calculating kINF at zero burnup as a function of moderation. The calculations are repeated for several combinations of MOX and uranium oxide fuels using several different cross-section libraries. The final results have been compared with each other. This study shows that SCALE 5.0 (with TRITON) overall performs in line with the other codes in the benchmark, but the results are dependent on the energy group structure of the cross section libraries used. For instance, when fissile plutonium is increased in the fuel, TRITON results become slightly divergent with burnup (with respect to the other codes in the benchmark) and if the standard 44-group library provided with SCALE 5.0 is used void coefficient calculations become inadequate for very low void (below 10% of the operating value of moderator density). Moreover, the prediction capabilities of the code are shown to be dependent on the MOX fuel enrichment and the MOX isotopic composition. (authors)

  8. Oxygen self-diffusion in polycrystalline uranium-plutonium mixed oxide U0.55Pu0.45O2

    NASA Astrophysics Data System (ADS)

    Vauchy, Romain; Robisson, Anne-Charlotte; Bienvenu, Philippe; Roure, Ingrid; Hodaj, Fiqiri; Garcia, Philippe

    2015-12-01

    Atomic transport properties in uranium-plutonium mixed oxides U1-yPuyO2 are of essential concern because they impact numerous aspects of their physicochemical behavior at all stages of the fuel cycle. In this paper, we report oxygen tracer diffusion coefficients in homogeneous U0.55Pu0.45O2 mixed oxide. The study is based on tracer diffusion coefficient measurements obtained using Secondary Ion Mass Spectrometry (SIMS) following diffusion annealing involving gas-solid 18O/16O isotopic exchange. As for other fundamental material properties governed by the nature and behavior of point defects, we show that a careful study of tracer diffusion coefficients as a function of oxygen partial pressure and temperature is liable to provide insight into prevailing diffusion mechanisms. Under the conditions studied in this work, it appears that oxygen diffusion is vacancy mediated.

  9. Direct Conversion of Bio-ethanol to Isobutene on Nanosized ZnxZryOz Mixed Oxides with Balanced Acid–Base Sites

    SciTech Connect

    Sun, Junming; Zhu, Kake; Gao, Feng; Wang, Chong M.; Liu, Jun; Peden, Charles HF; Wang, Yong

    2011-06-17

    Bio-mass conversion has attracted increasing research interests to produce bio-fuels with bio-ethanol being a major product. Development of advanced processes to further upgrade bio-ethanol to other value added fuels or chemicals are pivotal to improving the economics of biomass conversion and deversifying the utilization of biomass resources. In this paper, for the first time, we report the direct conversion of bio-ethanol to isobutene with high yield (~83%) on a multifunctional ZnxZryOz mixed oxide with a dedicated balance of surface acid-base properties. This work illustrates the significance of rational design of a multifunctional mixed oxide catalyst for one step bio-ethanol conversion to a value-added intermediate, isobutene, for chemical and fuel production. This work was supported by the US Department of Energy Basic Energy Sciences' Chemical Sciences, Geosciences & Biosciences Division. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

  10. Direct conversion of bio-ethanol to isobutene on nanosized Zn(x)Zr(y)O(z) mixed oxides with balanced acid-base sites.

    PubMed

    Sun, Junming; Zhu, Kake; Gao, Feng; Wang, Chongmin; Liu, Jun; Peden, Charles H F; Wang, Yong

    2011-07-27

    We report the design and synthesis of nanosized Zn(x)Zr(y)O(z) mixed oxides for direct and high-yield conversion of bio-ethanol to isobutene (~83%). ZnO is addded to ZrO(2) to selectively passivate zirconia's strong Lewis acidic sites and weaken Brönsted acidic sites, while simultaneously introducing basicity. As a result, the undesired reactions of bio-ethanol dehydration and acetone polymerization/coking are suppressed. Instead, a surface basic site-catalyzed ethanol dehydrogenation to acetaldehyde, acetaldehyde to acetone conversion via a complex pathway including aldol-condensation/dehydrogenation, and a Brönsted acidic site-catalyzed acetone-to-isobutene reaction pathway dominates on the nanosized Zn(x)Zr(y)O(z) mixed oxide catalyst, leading to a highly selective process for direct conversion of bio-ethanol to isobutene.

  11. ZIRCONIA-BASED MIXED POTENTIAL CARBON MONOXIDE/HYDROCARBON SENSORS WITH LANTHANUM MAGNESIUM OXIDE, AND TERBIUM-DOPED YTTRIUM STABILIZED ZIRCONIA ELECTRODES

    SciTech Connect

    E. L. BROSHA; R. MUKUNDAN; ET AL

    2000-10-01

    We have investigated the performance of dual metal oxide electrode mixed potential sensors in an engine-out, dynamometer environment. Sensors were fabricated by sputtering thin films of LaMnO{sub 3} and Tb-doped YSZ onto YSZ electrolyte. Au gauze held onto the metal oxide thin films with Au ink was used for current collection. The exhaust gas from a 4.8L, V8 engine operated in open loop, steady-state mode around stoichiometry at 1500 RPM and 50 Nm. The sensor showed a stable EMF response (with no hysteresis) to varying concentrations of total exhaust gas HC content. The sensor response was measured at 620 and 670 C and shows temperature behavior characteristic of mixed potential-type sensors. The results of these engine-dynamometer tests are encouraging; however, the limitations associated with Au current collection present the biggest impediment to automotive use.

  12. Controlling nanotube dimensions: correlation between composition, diameter, and internal energy of single-walled mixed oxide nanotubes.

    PubMed

    Konduri, Suchitra; Mukherjee, Sanjoy; Nair, Sankar

    2007-12-01

    Control over the diameter of nanotubes is of significance in manipulating their properties, which depend on their dimensions in addition to their structure and composition. This aspect has remained a challenge in both carbon and inorganic nanotubes, since there is no obvious aspect of the formation mechanism that allows facile control over nanotube curvature. Here we develop and analyze a quantitative correlation between the composition, diameter, and internal energy of a class of single-walled mixed oxide aluminosilicogermanate (AlSiGeOH) nanotubes. A series of synthetic AlSiGeOH nanotubes with varying Si/Ge ratio are characterized by X-ray photoelectron spectroscopy, vibrational spectroscopy, energy dispersive X-ray spectroscopy, and X-ray diffraction to relate their compositions and diameters. We then study these nanotubes computationally by first parametrizing and validating a suitable interatomic potential model, and then using this potential model to investigate the internal energy of the nanotube as a function of diameter and composition via molecular dynamics simulations. There are minima in the internal energy as a function of diameter which progressively shift to larger nanotube diameters with increasing Ge content. An approximate analytical theory of nanotube diameter control, which contains a small number of physically significant fitted parameters, well describes the computational data by relating the composition and geometry to the strain energy of bending into a nanotube. The predicted composition-dependent shift in the energetically favored diameter follows the experimental trends. We suggest related methods of controlling nanotube energetics and their role in engineering nanotubes of controlled dimensions by liquid-phase chemistry.

  13. Angular-resolution and material-characterization measurements for a dual-particle imaging system with mixed-oxide fuel

    NASA Astrophysics Data System (ADS)

    Poitrasson-Rivière, Alexis; Polack, J. Kyle; Hamel, Michael C.; Klemm, Dietrich D.; Ito, Kai; McSpaden, Alexander T.; Flaska, Marek; Clarke, Shaun D.; Pozzi, Sara A.; Tomanin, Alice; Peerani, Paolo

    2015-10-01

    A dual-particle imaging (DPI) system, capable of simultaneously imaging fast neutrons and gamma rays, has been operated in the presence of mixed-oxide (MOX) fuel to assess the system's angular resolution and material-characterization capabilities. The detection principle is based on the scattering physics of neutrons (elastic scattering) and gamma rays (Compton scattering) in organic and inorganic scintillators. The detection system is designed as a combination of a two-plane Compton camera and a neutron-scatter camera. The front plane consists of EJ-309 liquid scintillators and the back plane consists of interleaved EJ-309 and NaI(Tl) scintillators. MCNPX-PoliMi was used to optimize the geometry of the system and the resulting prototype was built and tested using a Cf-252 source as an SNM surrogate. A software package was developed to acquire and process data in real time. The software was used for a measurement campaign to assess the angular resolution of the imaging system with MOX samples. Measurements of two MOX canisters of similar isotopics and intensity were performed for 6 different canister separations (from 5° to 30°, corresponding to distances of 21 cm and 131 cm, respectively). The measurements yielded a minimum separation of 20° at 2.5 m (86-cm separation) required to see 2 separate hot spots. Additionally, the results displayed good agreement with MCNPX-PoliMi simulations. These results indicate an angular resolution between 15° and 20°, given the 5° step. Coupled with its large field of view, and its capability to differentiate between spontaneous fission and (α,n) sources, the DPI system shows its potential for nuclear-nonproliferation applications.

  14. Magnetoresponsive Poly(ether sulfone)-Based Iron Oxide cum Hydrogel Mixed Matrix Composite Membranes for Switchable Molecular Sieving.

    PubMed

    Lin, Xi; Nguyen Quoc, Bao; Ulbricht, Mathias

    2016-10-11

    Stimuli-responsive membranes that can adjust mass transfer and interfacial properties "on demand" have drawn large interest over the last few decades. Here, we designed and prepared a novel magnetoresponsive separation membrane with remote switchable molecular sieving effect by simple one-step and scalable nonsolvent induced phase separation (NIPS) process. Specifically, poly(ether sulfone) (PES) as matrix for an anisotropic membrane, prefabricated poly(N-isopropylacrylamide) (PNIPAAm) nanogel (NG) particles as functional gates, and iron oxide magnetic nanoparticles (MNP) as localized heaters were combined in a synergistic way. Before membrane casting, the properties of the building blocks, including swelling property and size distribution for NG, and magnetic property and heating efficiency for MNP, were investigated. Further, to identify optimal film casting conditions for membrane preparation by NIPS, in-depth rheological study of the effects of composition and temperature on blend dope solutions was performed. At last, a composite membrane with 10% MNP and 10% NG blended in a porous PES matrix was obtained, which showed a large, reversible, and stable magneto-responsivity. It had 9 times higher water permeability at the "on" state of alternating magnetic field (AMF) than at the "off"-state. Moreover, the molecular weight cutoff of such membrane could be reversibly shifted from ∼70 to 1750 kDa by switching off or on the external AMF, as demonstrated in dextran ultrafiltration tests. Overall, it has been proved that the molecular sieving performance of the novel mixed matrix composite membrane can be controlled by the swollen/shrunken state of PNIPAAm NG embedded in the nanoporous barrier layer of a PES-based anisotropic porous matrix, via the heat generation of nearby MNP. And the structure of such membrane can be tailored by the NIPS process conditions. Such membrane has potential as enabling material for remote-controlled drug release systems or devices for

  15. Review of behavior of mixed-oxide fuel elements in extended overpower transient tests in EBR-II

    SciTech Connect

    Tsai, H.; Neimark, L.A.; Nagai, S.; Nakae, N.

    1994-10-01

    From a series of five tests conducted in EBR-II, a substantial data base has been established on the performance of mixed-oxide fuel elements in a liquid-metal-cooled reactor under slow-ramp transient overpower conditions. Each test contained 19 preirradiated fuel elements with varying design and prior operating histories. Elements with aggressive design features, such as high fuel smear density and/or thin cladding, were included to accentuate transient effects. The ramp rates were either 0.1 or 10% {Delta}P/P/s and the overpowers ranged between {approx}60 and 100% of the elements` prior power ratings. Six elements breached during the tests, all with aggressive design parameters. The other elements, including all those with moderate design features for the reference or advanced long-life drivers for PNC`s prototype fast reactor Monju, maintained their cladding integrity during the tests. Posttest examination results indicated that fuel/cladding mechanical interaction (FCMI) was the most significant mechanism causing the cladding strain and breach. In contrast, pressure loading from the fission gas in the element plenum was less important, even in high-burnup elements. During an overpower transient, FCMI arises from fuel/cladding differential thermal expansion, transient fuel swelling, and, significantly, the gas pressure in the sealed central cavity of elements with substantial centerline fuel melting. Fuel performance data from these tests, including cladding breaching margin and transient cladding strain, are correlatable with fuel-element design and operating parameters. These correlations are being incorporated into fuel-element behavior codes. At the two tested ramp rates, fuel element behavior appears to be insensitive to transient ramp rate and there appears to be no particular vulnerability to slow ramp transients as previously perceived.

  16. Hafnia-rich mixed oxide ceramics of the system HfO2-ZrO2-TiO2 for heaters and heat exchangers in electrothermal thrusters: The effects of titania on selected electrical and mechanical properties of Hafnia-rich mixed oxides in the system Hafnia-Zirconia-Titania, volume 1

    NASA Technical Reports Server (NTRS)

    Staszak, Paul Russell; Wirtz, G. P.; Berg, M.; Brown, S. D.

    1988-01-01

    A study of the effects of titania on selected properties of hafnia-rich mixed oxides in the system hafnia-zirconia-titania (HZT) was made in the region 5 to 20 mol percent titania. The studied properties included electrical conductivity, thermal expansion, and fracture strength and toughness. The effects of titania on the properties were studied for the reduced state as well as the oxidized state of the sintered mixed oxides. X-ray analysis showed that the materials were not always single phase. The oxidized compositions went from being monoclinic solid solutions at low titania additions to having three phases (two monoclinic and a titanate phase) at high additions of titania. The reduced compositions showed an increasing cubic phase presence mixed with the monoclinic phase as titania was added. The electrical conductivity increased with temperature at approximately 0.1 mhos/cm at 1700 C for all compositions. The thermal expansion coefficient decreased with increasing titania as did the monoclinic to tetragonal transformation temperature. The fracture strength of the oxidized bars tended to decrease with the addition of titania owing to the presence of the second phase titania. The fracture strength of the reduced bars exhibited a minimum corresponding to a two-phase region of monoclinic and cubic phases. When the second phases were suppressed, the titania tended to increase the fracture strength slightly in both the oxidized and reduced states. The fracture toughness followed similar trends.

  17. Lanthanum-promoted copper-based hydrotalcites derived mixed oxides for NO{sub x} adsorption, soot combustion and simultaneous NO{sub x}-soot removal

    SciTech Connect

    Wang, Zhongpeng; Yan, Xiaotong; Bi, Xinlin; Wang, Liguo; Zhang, Zhaoliang; Jiang, Zheng; Xiao, Tiancun; Umar, Ahmad; Wang, Qiang

    2014-03-01

    Graphical abstract: - Highlights: • The addition of La in Cu-based oxides increased the types of active oxygen. • NO{sub x} adsorption, soot oxidation and simultaneous NO{sub x}-soot removal were enhanced. • The possible catalytic mechanism was studied via in situ FTIR analysis. • Soot oxidation was promoted by the NO{sub 2} intermediate. - Abstract: La-promoted Cu-based hydrotalcites derived mixed oxides were prepared and their catalytic activities for NO{sub x} adsorption, soot oxidation, and simultaneous NO{sub x}-soot removal were investigated. The catalysts were characterized by XRD, DTG, BET, FTIR, H2-TPR, TPD and TPO techniques. The oxides catalysts exhibited mesoporous properties with specific surface area of 45–160 m{sup 2}/g. The incorporation of La and Cu decreased the amount of basic sites due to the large decrease in surface areas. Under O{sub 2} atmosphere, La incorporation is dominant for soot oxidation activity, while Cu favors high selectivity to CO{sub 2} formation. A synergetic effect between La and Cu for catalyzed soot oxidation lies in the improved redox property and suitable basicity. The presence of NO in O{sub 2} significantly promoted soot oxidation on the catalysts with the ignition temperature decreased to about 300 °C. In O{sub 2}/NO atmosphere, NO{sub 2} acts as an intermediate which oxidizes soot to CO{sub 2} at a lower temperature with itself reduced to NO or N{sub 2}, contributing to the high catalytic performance in simultaneous removal of NO{sub x} and soot.

  18. Au-supported Pt-Au mixed atomic monolayer electrocatalyst with ultrahigh specific activity for oxidation of formic acid in acidic solution.

    PubMed

    Huang, Zhao; Liu, Yan; Xie, Fangyun; Fu, Yingchun; He, Yong; Ma, Ming; Xie, Qingji; Yao, Shouzhuo

    2012-12-25

    Au-supported Pt-Au mixed atomic monolayer electrocatalyst was prepared by underpotential deposition of Cu on Au and then redox replacement with noble metal atoms, which shows an ultrahigh Pt-mass (or Pt-area) normalized specific electrocatalytic activity of 102 mA μg(Pt)(-1) (124 mA cm(Pt)(-2)) for oxidation of formic acid in acidic aqueous solution.

  19. Obtaining Mixed Ionic/Electronic Conductivity in Perovskite Oxides in a Reducing Environment: A Computational Prediction for Doped SrTiO3

    SciTech Connect

    Suthirakun, Suwit; Ammal, Salai Cheettu; Xiao, Guoliang; Chen, Fanglin; Huang, Kevin; zur Loye, Hans-Conrad; Heyden, Andreas

    2012-11-30

    The electronic conductivity and thermodynamic stability of mixed p- and n-doped SrTiO3 perovskites have been investigated under anodic solid oxide fuel cell conditions using density functional theory (DFT). In particular, constrained ab initio thermodynamic calculations have been performed to evaluate the phase stability of various Ga- and La-doped SrTiO3 at synthesized and anodic SOFC conditions. The density of states (DOS) of these materials was analyzed to determine the number of charge carriers and the degree of electronic conductivity. We find that a mixed ionic/electronic conductor can be obtained when doping SrTiO3 perovskite oxide with both p-type and n-type dopants. Calculations show that 10% Ga- and 20% La-doped SrTiO3 exhibit mixed ionic/electronic conductivity at high temperature and low oxygen partial pressure whereas doping with higher concentrations of Ga, e.g., 20%, diminishes the electronic conductivity of the material. Furthermore, changing the n-dopant from La (A-site) to Nb (B-site) does not significantly affect the reducibility and number of charge carriers in p- and n-doped SrTiO3. However, a higher degree of oxygen vacancy clustering is observed for the La-doped material which reduces the oxygen ion diffusion rate and traps electrons. Nevertheless, our findings suggest that independent of doping site, mixed ionic/ electronic conductivity can be obtained in SrTiO3 perovskite oxides under reducing conditions and high temperatures when using a mixed p- and n-type doping strategy that uses a p-dopant concentration smaller than the n-dopant concentration.

  20. High catalytic activity of Au/CeOx/TiO2(110) controlled by the nature of the mixed-metal oxide at the nanometer level

    PubMed Central

    Park, Joon B.; Graciani, Jesus; Evans, Jaime; Stacchiola, Dario; Ma, Shuguo; Liu, Ping; Nambu, Akira; Sanz, Javier Fernández; Hrbek, Jan; Rodriguez, José A.

    2009-01-01

    Mixed-metal oxides play a very important role in many areas of chemistry, physics, materials science, and geochemistry. Recently, there has been a strong interest in understanding phenomena associated with the deposition of oxide nanoparticles on the surface of a second (host) oxide. Here, scanning tunneling microscopy, photoemission, and density-functional calculations are used to study the behavior of ceria nanoparticles deposited on a TiO2(110) surface. The titania substrate imposes nontypical coordination modes on the ceria nanoparticles. In the CeOx/TiO2(110) systems, the Ce cations adopt an structural geometry and an oxidation state (+3) that are quite different from those seen in bulk ceria or for ceria nanoparticles deposited on metal substrates. The increase in the stability of the Ce3+ oxidation state leads to an enhancement in the chemical and catalytic activity of the ceria nanoparticles. The codeposition of ceria and gold nanoparticles on a TiO2(110) substrate generates catalysts with an extremely high activity for the production of hydrogen through the water–gas shift reaction (H2O + CO → H2 + CO2) or for the oxidation of carbon monoxide (2CO + O2 → 2CO2). The enhanced stability of the Ce3+ state is an example of structural promotion in catalysis described here on the atomic level. The exploration of mixed-metal oxides at the nanometer level may open avenues for optimizing catalysts through stabilization of unconventional surface structures with special chemical activity. PMID:19276120

  1. Thermal and sonochemical synthesis of porous (Ce,Zr)O2 mixed oxides from metal β-diketonate precursors and their catalytic activity in wet air oxidation process of formic acid.

    PubMed

    Cau, Camille; Guari, Yannick; Chave, Tony; Larionova, Joulia; Nikitenko, Sergey I

    2014-07-01

    Porous (Ce0.5Zr0.5)O2 solid solutions were prepared by thermolysis (T=285 °C) or sonolysis (20 kHz, I=32 W cm(-2), Pac=0.46 W mL(-1), T=200 °C) of Ce(III) and Zr(IV) acetylacetonates in oleylamine or hexadecylamine under argon followed by heat treatment of the precipitates obtained in air at 450 °C. Transmission Electron Microscopy images of the samples show nanoparticles of ca. 4-6 nm for the two synthetic approaches. The powder X-ray diffraction, scanning electron microscopy, energy dispersive X-ray and μ-Raman spectroscopy of solids obtained after heat treatment indicate the formation of (Ce0.5Zr0.5)O2 solid solutions with a metastable tetragonal crystal structure for the two synthetic routes. The specific surface area of the samples varies between 78 and 149 m(2) g(-1) depending on synthesis conditions. The use of Barrett-Joyner-Halenda and t-plot methods reveal the formation of mixed oxides with a hybrid morphology that combines mesoporosity and microporosity regardless of the method of preparation. Platinum nanoparticles were deposited on the surface of the mixed oxides by sonochemical reduction of Pt(IV). It was found that the materials prepared by sonochemistry exhibit better resistance to dissolution during the deposition process of platinum. X-ray photoelectron spectroscopy analysis shows the presence of Pt(0) and Pt(II) on the surface of mixed oxides. Porous (Ce0.5Zr0.5)O2 mixed oxides loaded with 1.5%wt. platinum exhibit high activity in catalytic wet air oxidation of formic acid at 40 °C. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Mixed-valence iron minerals on Venus: Fe(2+)-Fe(3+) oxides and oxy-silicates formed by surface-atmosphere interactions

    NASA Technical Reports Server (NTRS)

    Burns, Roger G.; Straub, Darcy W.

    1992-01-01

    Inferences from these investigations are that Fe(3+)-bearing minerals such as hematite magnesioferrite, acmite, and epidote are thermodynamically unstable, and that magnetite is the predominant mixed-valence iron oxide mineral on venus. Recently, the Fe(2+)-Fe(3+) silicate mineral laihunite was proposed to be a reaction product of olivine with the venusian atmosphere. This possibility is discussed further here. We suggest that other mixed-valence Fe(2+)-Fe(3+)-Oz-OH(-) silicates could also result from surface-atmosphere interactions on Venus. Topics discussed include the following: (1) conversion of hematite to magnetite; (2) stability of laihunite; (3) the possible existence of oxy-amphiboles and oxy-micas on Venus; and (4) other mixed-valence Fe(2+)-Fe(3+) silicates likely to exist on Venus.

  3. Experimental and molecular dynamics study of thermo-physical and transport properties of ThO2-5wt.%CeO2 mixed oxides

    NASA Astrophysics Data System (ADS)

    Somayajulu, P. S.; Ghosh, P. S.; Banerjee, J.; Babu, K. L. N. C.; Danny, K. M.; Mandal, B. P.; Mahata, T.; Sengupta, P.; Sali, S. K.; Arya, A.

    2015-12-01

    We have determined the thermo-physical (elastic modulus, specific heat, thermal expansion and thermal conductivity) and transport (ionic conductivity) properties of ThO2-5wt.%CeO2 mixed oxide (MOX) using a combined experimental and theoretical methodology. The specific heat, ionic conductivity and elastic properties of ThO2-5wt.%CeO2 pellets prepared by conventional powder metallurgy (POP) and coated agglomerate pelletization (CAP) routes (sintered in both air and Ar-8%H2 atmosphere) are compared with respect to homogeneity (CeO2 distribution in ThO2 matrix), microstructure, porosity and oxygen to metal ratio. The effects of inhomogeneity and pore distribution on thermal expansion and thermal conductivity of the mixed-oxide pellets are identified. Molecular dynamics (MD) simulations using the Coulomb-Buckingham-Morse-many-body model based interatomic potentials are used to predict elastic properties in the temperature range between 300 and 2000 K and thermodynamic properties, viz., enthalpy increment and specific heats of ThO2. Finally, the thermal expansion coefficient and thermal conductivity of ThO2 and (Th,Ce)O2 mixed-oxides obtained from MD are compared with available experimental results.

  4. Mixed oxides prosthetic ceramic ball heads. Part 1: effect of the ZrO2 fraction on the wear of ceramic on polythylene joints.

    PubMed

    Affatato, S; Testoni, M; Cacciari, G L; Toni, A

    1999-05-01

    Although mixed oxides ceramics have been indicated in the literature as a promising compromise between strength and wear, to the authors' knowledge no reports are available on the influence of the percentage of zirconia in ceramic femoral heads when sliding against polyethylene cups. Two types of mixed oxides ceramic ball heads (alumina plus, respectively, 60 and 80% of zirconia) were compared to pure zirconia and pure alumina heads in terms of wear behaviour against UHMWPE in a hip joint simulator. Polyethylene cups and ceramic femoral heads were fixed on a simulator apparatus with a sinusoidal movement and load in presence of bovine calf serum. The experimental results did not show significant difference between the two experimental ceramic materials or in comparison with pure materials. Considering that all specimens, regardless of the material, had the same level of surface roughness, this roughness factor seems to have a more relevant role than the mix of oxides used to manufacture the ceramic head. Wear tests are conducted on materials used in prosthetic hip implants in order to obtain quality control and to acquire further knowledge of the tribological processes that involve joint prostheses, therefore reducing the risk of implant failure of innovative prostheses.

  5. Formation of Titania-Silica Mixed Oxides in Solvent Mixtures and Their Influences for the Photocatalytic CO2 Conversion to Hydrocarbon.

    PubMed

    Parayil, Sreenivasan Koliyat; Razzaq, Abdul; In, Su-Il

    2015-09-01

    TiO2-SiO2 mixed oxide photocatalyst materials responsive to simulated solar light illumination have been synthesized by sol-gel method in various polar and nonpolar organic solvent mixtures. The photocatalysts were characterized by numerous experimental techniques and investigated for the photocatalytic conversion of CO2 to CH4. The TiO2-SiO2 mixed oxide photocatalysts prepared in the presence of nonpolar aromatic solvents such as xylene, toluene or benzene along with ethanol show high surface area, huge mesoporosity and enormous pore volume compared to the materials conventionally synthesized in a mixture of ethanol and hexane. The TiO2-SiO2 mixed oxide photocatalyst prepared in benzene along with ethanol yields 21.0 ppm g(-1) h(-1) of methane production; however the material synthesized in hexane shows negligible amount of methane production under simulated solar light irradiation. These results indicate that aromatic nonpolar solvents can tune the textural properties of photocatalysts compared to non-polar aliphatic solvents.

  6. A practical organometallic decorated nano-size SiO2-Al2O3 mixed-oxides for methyl orange removal from aqueous solution

    NASA Astrophysics Data System (ADS)

    Arshadi, M.; Salimi Vahid, F.; Salvacion, J. W. L.; Soleymanzadeh, M.

    2013-09-01

    In this study, the application of a functional ferrocene (ferrocenecarboxaldehyde) firmly heterogenized over a modified nano-size SiO2-Al2O3 mixed-oxides was reported as a novel adsorbent for the removal of methyl orange from aqueous solution. SiO2-Al2O3 mixed-oxides was functionalized with 3-aminopropyl-triethoxysilane (3-APTES) group and ferrocenecarboxaldehyde covalently linked on this organo-functionalized SiO2-Al2O3 mixed-oxides support. The synthesized materials were characterized by FT-IR spectroscopy, UV-vis, CHN elemental analysis, BET, TGA, ICP-MS, TEM, and XPS. The contact time to obtain equilibrium for maximum adsorption was 50 min. XPS of Fe ions evidenced that most of the active sites of the nano-adsorbent is in the form of Fe3+ ions at the surface. The heterogeneous Fe3+ ions were found to be effective adsorbent for the removal of dyes from solution. The adsorption of methyl orange ions has been studied in terms of pseudo-first-order and pseudo-second-order kinetics, and the Freundlich, Langmuir, and Langmuir-Freundlich isotherm models have also been applied to the equilibrium adsorption data. The adsorption process was spontaneous and endothermic in nature and followed pseudo-second-order kinetic model.

  7. Dual-mode T1 and T2 magnetic resonance imaging contrast agent based on ultrasmall mixed gadolinium-dysprosium oxide nanoparticles: synthesis, characterization, and in vivo application

    NASA Astrophysics Data System (ADS)

    Tegafaw, Tirusew; Xu, Wenlong; Wasi Ahmad, Md; Baeck, Jong Su; Chang, Yongmin; Bae, Ji Eun; Chae, Kwon Seok; Kim, Tae Jeong; Lee, Gang Ho

    2015-09-01

    A new type of dual-mode T1 and T2 magnetic resonance imaging (MRI) contrast agent based on mixed lanthanide oxide nanoparticles was synthesized. Gd3+ (8S7/2) plays an important role in T1 MRI contrast agents because of its large electron spin magnetic moment resulting from its seven unpaired 4f-electrons, and Dy3+ (6H15/2) has the potential to be used in T2 MRI contrast agents because of its very large total electron magnetic moment: among lanthanide oxide nanoparticles, Dy2O3 nanoparticles have the largest magnetic moments at room temperature. Using these properties of Gd3+ and Dy3+ and their oxide nanoparticles, ultrasmall mixed gadolinium-dysprosium oxide (GDO) nanoparticles were synthesized and their potential to act as a dual-mode T1 and T2 MRI contrast agent was investigated in vitro and in vivo. The D-glucuronic acid coated GDO nanoparticles (davg = 1.0 nm) showed large r1 and r2 values (r2/r1 ≈ 6.6) and as a result clear dose-dependent contrast enhancements in R1 and R2 map images. Finally, the dual-mode imaging capability of the nanoparticles was confirmed by obtaining in vivo T1 and T2 MR images.

  8. Mixed hemimicelles solid-phase extraction of cephalosporins in biological samples with ionic liquid-coated magnetic graphene oxide nanoparticles coupled with high-performance liquid chromatographic analysis.

    PubMed

    Wu, Jianrong; Zhao, Hongyan; Xiao, Deli; Chuong, Pham-Huy; He, Jia; He, Hua

    2016-07-08

    A novel mixed hemimicelles solid phase extraction based on magnetic graphene oxide (Fe3O4/GO) and ionic liquid (IL) was developed for the simultaneous extraction and determination of trace cephalosporins in spiked human urine. The high surface area and excellent adsorption capacity of the graphene oxide after modification with1-hexadecyl-3-methylmidazoliumbromide(C16mimBr) were utilized adequately in the solid phase extraction(SPE) process. A comprehensive study of the parameters affecting the extraction recovery, such as the zeta-potential of magnetic graphene oxide, amounts of magnetic graphene oxide and surfactant, pH of solution, ionic strength, extraction time, and desorption condition were optimized. A comparative study on the use of different surfacant-coated Fe3O4/GO NPs as sorbents was presented. Good linearity (R(2)>0.9987) for all calibration curves was obtained. The LODs were ranged between 0.6 and 1.9ng mL(-1) for the cephalosporins and the LOQs were 1.5 to 5.5, respectively. Satisfactory recoveries(84.3% to 101.7%)and low relative standard deviations from 1.7% to 6.3% in biological matrices were achieved. The mixed hemimicelles magnetic SPE (MSPE) method based on ILs and Fe3O4/GO NPs magnetic separation has ever been successfully used for pretreatment of complex biological samples.

  9. Study of the Energy Characteristics of Metallized Mixed Compositions Based on a Binary Oxidizer at Increased Pressures

    NASA Astrophysics Data System (ADS)

    Gorbenko, T. I.; Gorbenko, M. V.; Dyundin, E. O.; Zolotorev, N. N.

    2014-09-01

    Results of a thermodynamic calculation of the energy characteristics for mixed compositions containing aluminum powder are presented. The influence of the aluminum content in the mixed compositions on the adiabatic combustion temperature, specific impulse, and composition of the combustion products is considered. Results of an experimental study of combustion of metallized mixed compositions in the pressure range from 0.1 to 6 MPa are presented. The effect of the aluminum powder dispersity and the relative content of the components of the mixed composition on the pressure dependence of the burning rate is demonstrated.

  10. Transparent, conducting ATO thin films by epoxide-initiated sol-gel chemistry: a highly versatile route to mixed-metal oxide films.

    PubMed

    Koebel, Matthias M; Nadargi, Digambar Y; Jimenez-Cadena, Giselle; Romanyuk, Yaroslav E

    2012-05-01

    A robust synthesis approach to transparent conducting oxide (TCO) materials using epoxide assisted sol-gel chemistry is reported. The new route utilizes simple tin and antimony chloride precursors in aqueous solution, thus eliminating the need for organometallic precursors. Propylene oxide acts as a proton scavenger and drives metal hydroxide formation and subsequent polycondensation reactions. Thin films of antimony-doped tin oxide (ATO) were prepared by dip-coating of mixed metal oxide sols. After annealing at 600 °C in air, structural, electrical and optical properties of undoped and Sb-doped tin oxide films were characterized. Single layer films with 5 mol % Sb doping exhibited an optical transparency which was virtually identical to that of the plain glass substrate and an electrical resistivity of 2.8 × 10(-2) Ω cm. SEM and AFM analysis confirmed the presence of surface defects and cracks which increased with increasing Sb dopant concentration. Multiple depositions of identical ATO films showed a roughly 1 order of magnitude decrease in the film resistivity after the third layer, with typical values below 5 × 10(-3) Ω cm. This suggests that a second and third deposition fill up residual cracks and defects in the first layer and thus brings out the full performance of the ATO material. The epoxide-assisted sol chemistry is a promising technique for the preparation of mixed oxide thin film materials. Its superiority over conventional alkoxide and metal salt-based methods is explained in the context of a general description of the reaction mechanism.

  11. The preparation and characterization of nanostructured TiO{sub 2}-ZrO{sub 2} mixed oxide electrode for efficient dye-sensitized solar cells

    SciTech Connect

    Kitiyanan, Athapol; Ngamsinlapasathian, Supachai; Pavasupree, Soropong; Yoshikawa, Susumu . E-mail: s-yoshi@iae.kyoto-u.ac.jp

    2005-04-15

    The preparation of nanostructured mixed metal oxide based on a sol-gel method with surfactant-assisted mechanism, and its application for dye-sensitized solar cell (DSSC) are reported. The mixed zirconia (ZrO{sub 2}) and titania (TiO{sub 2}) mesoporous powder possessed larger surface area than the corresponding titania. For the UV action spectra of unsensitized photochemical cell, the mixed zirconia/titania electrode can absorb UV light below 380nm, corresponding to band gap (E{sub g}) around 3.27eV, which is higher than that of pure component of titania (E{sub g}=3.2eV). Both of these improved properties, i.e., BET surface area and band gap, contributed to the improvement on a short-circuit photocurrent up to 11%, an open-circuit voltage up to 4%, and a solar energy conversion efficiency up to 17%, for the DSSC fabricated by mesoporous zirconia/titania mixed system when compared to the cell that was fabricated only by nanostructured TiO{sub 2}. The cell fabricated by 5{mu}m thick mixed TiO{sub 2}-ZrO{sub 2} electrode gave the short-circuit photocurrent about 13mA/cm{sup 2}, open-circuit voltage about 600 mV and the conversion efficiency 5.4%.

  12. Phototherapy with blue and green mixed-light is as effective against unconjugated jaundice as blue light and reduces oxidative stress in the Gunn rat model.

    PubMed

    Uchida, Yumiko; Morimoto, Yukihiro; Uchiike, Takao; Kamamoto, Tomoyuki; Hayashi, Tamaki; Arai, Ikuyo; Nishikubo, Toshiya; Takahashi, Yukihiro

    2015-07-01

    Phototherapy using blue light-emitting diodes (LED) is effective against neonatal jaundice. However, green light phototherapy also reduces unconjugated jaundice. We aimed to determine whether mixed blue and green light can relieve jaundice with minimal oxidative stress as effectively as either blue or green light alone in a rat model. Gunn rats were exposed to phototherapy with blue (420-520 nm), filtered blue (FB; 440-520 nm without<440-nm wavelengths, FB50 (half the irradiance of filtered blue), mixed (filtered 50% blue and 50% green), and green (490-590 nm) LED irradiation for 24h. The effects of phototherapy are expressed as ratios of serum total (TB) and unbound (UB) bilirubin before and after exposure to each LED. Urinary 8-hydroxy-2'-deoxyguanosine (8-OHdG) was measured by HPLC before and after exposure to each LED to determine photo-oxidative stress. Values < 1.00 indicate effective phototherapy. The ratios of TB and UB were decreased to 0.85, 0.89, 1.07, 0.90, and 1.04, and 0.85, 0.94, 0.93, 0.89, and 1.09 after exposure to blue, filtered blue, FB50, and filtered blue mixed with green LED, respectively. In contrast, urinary 8-OHdG increased to 2.03, 1.25, 0.96, 1.36, 1.31, and 1.23 after exposure to blue, filtered blue, FB50, mixed, green LED, and control, indicating side-effects (> 1.00), respectively. Blue plus green phototherapy is as effective as blue phototherapy and it attenuates irradiation-induced oxidative stress. Combined blue and green spectra might be effective against neonatal hyperbilirubinemia. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  13. Adriamycin-induced oxidative stress is prevented by mixed hydro-alcoholic extract of Nigella sativa and Curcuma longa in rat kidney

    PubMed Central

    Mohebbati, Reza; Shafei, Mohammad Naser; Soukhtanloo, Mohammad; Mohammadian Roshan, Noema; Khajavi Rad, Abolfazl; Anaeigoudari, Akbar; Hosseinian, Sara; Karimi, Sareh; Beheshti, Farimah

    2016-01-01

    Objective: Inflammation and oxidative stress is considered to have a crucial role in induction of nephropathy. Curcuma longa (C. longa) and Nigella sativa (N. sativa) have anti-inflammatory and antioxidant effects. This study was designed to investigate the effect of mixed hydro-alcoholic extract of N.sativa and C. longa on the oxidative stress induced by Adriamycin (ADR) in rat kidney. Materials and Methods: The animals were divided into 6 groups: control (CO), ADR, Adriamycin+ Vitamin C (ADR+VIT C), C. longa extract+ Adriamycin (C.LE+ADR), N. sativa extract+ Adriamycin (N.SE+ADR) and C. longa extract+ N. sativa extract + Adriamycin (N.S+C.L+ADR). ADR (5mg/kg) was injected intravenously, whereas VITC (100mg/kg) and extract of C. longa (1000mg/kg) and N. sativa (200mg/kg) were administrated orally. Finally, the renal tissue, urine and blood samples were collected and submitted to measure of redox markers, osmolarity and renal index. Results: The renal content of total thiol and superoxide dismutase (SOD) activity significantly decreased and Malondialdehyde (MDA) concentration increased in Adriamycin group compared to control group. The renal content of total thiol and SOD activity significantly enhanced and MDA concentration reduced in treated-mixed extract of C. longa and N. sativa along with ADR group compared to ADR group. The mixed extract did not restore increased renal index percentage induced by ADR. There also was no significant difference in urine and serum osmolarity between the groups. Conclusion: hydro-alcoholic extracts of N.sativa and C.longa led to an improvement in ADR-induced oxidative stress and mixed administration of the extracts enhanced the aforementioned therapeutic effect. PMID:27247925

  14. Toward improved mechanical, tribological, corrosion and in-vitro bioactivity properties of mixed oxide nanotubes on Ti-6Al-7Nb implant using multi-objective PSO.

    PubMed

    Rafieerad, A R; Bushroa, A R; Nasiri-Tabrizi, B; Kaboli, S H A; Khanahmadi, S; Amiri, Ahmad; Vadivelu, J; Yusof, F; Basirun, W J; Wasa, K

    2017-05-01

    Recently, the robust optimization and prediction models have been highly noticed in district of surface engineering and coating techniques to obtain the highest possible output values through least trial and error experiments. Besides, due to necessity of finding the optimum value of dependent variables, the multi-objective metaheuristic models have been proposed to optimize various processes. Herein, oriented mixed oxide nanotubular arrays were grown on Ti-6Al-7Nb (Ti67) implant using physical vapor deposition magnetron sputtering (PVDMS) designed by Taguchi and following electrochemical anodization. The obtained adhesion strength and hardness of Ti67/Nb were modeled by particle swarm optimization (PSO) to predict the outputs performance. According to developed models, multi-objective PSO (MOPSO) run aimed at finding PVDMS inputs to maximize current outputs simultaneously. The provided sputtering parameters were applied as validation experiment and resulted in higher adhesion strength and hardness of interfaced layer with Ti67. The as-deposited Nb layer before and after optimization were anodized in fluoride-base electrolyte for 300min. To crystallize the coatings, the anodically grown mixed oxide TiO2-Nb2O5-Al2O3 nanotubes were annealed at 440°C for 30min. From the FESEM observations, the optimized adhesive Nb interlayer led to further homogeneity of mixed nanotube arrays. As a result of this surface modification, the anodized sample after annealing showed the highest mechanical, tribological, corrosion resistant and in-vitro bioactivity properties, where a thick bone-like apatite layer was formed on the mixed oxide nanotubes surface within 10 days immersion in simulated body fluid (SBF) after applied MOPSO. The novel results of this study can be effective in optimizing a variety of the surface properties of the nanostructured implants.

  15. Structural and spectroscopic properties of high temperature prepared ZrO2-TiO2 mixed oxides

    NASA Astrophysics Data System (ADS)

    Gionco, Chiara; Battiato, Alfio; Vittone, Ettore; Paganini, Maria Cristina; Giamello, Elio

    2013-05-01

    ZrO2-TiO2 mixed oxides of various composition, with the molar fraction of TiO2 ranging from 0.1% to 15%, have been prepared via sol-gel synthesis and then calcined at 1273 K to check both their thermal stability and physicochemical properties. These solids are usually employed in photocatalytic processes and as active phase supports in heterogeneous catalysis. As indicated by X-ray diffraction and Raman spectroscopy, solid solutions based on Ti ions diluted in the ZrO2 matrix are formed in the whole range of Ti molar fraction examined. Materials with low Ti loading (0.1%-1%) are basically constituted by the monoclinic phase of ZrO2 while the tetragonal phase becomes prevalent at 15% of TiO2 molar fraction. The presence of Ti ions modify the electronic structure of the solid as revealed by investigation of the optical properties. The typical band gap transition of ZrO2 undergoes, in fact, a red shift roughly proportional to the Ti loading which reach the remarkable value of 1.6 eV for the sample with 10% of molar Ti concentration. Comparing chemical analysis of the solids with XPS data it has been put into evidence that the titanium ions distribution into the solid is not uniform and the concentration of Ti4+ tend to be higher in subsurface layers than in the crystal bulk. The introduction of titanium ions in the structure increases the reducibility of the solid. Annealing under vacuum at various temperatures causes oxygen depletion with consequent reduction of the solid which shows up mainly in terms of formation of Ti3+ reduced centres which are characterized by a typical EPR signal. Ti3+ defects forms, as also forecast by theoretical modelling of the solid, as their energy is lower than that of other possible reduced defective centers. The reduced solids are able to transfer electrons to adsorbed oxygen molecules in mild condition resulting in the formation of surface superoxide anions (O2•-) which are stabilized on surface Zr4+ or, alternatively, on Ti4+ ions

  16. Preparation and characterization of Mg-Zr mixed oxide aerogels and their application as aldol condensation catalysts.

    PubMed

    Sádaba, Irantzu; Ojeda, Manuel; Mariscal, Rafael; Richards, Ryan; López Granados, Manuel

    2012-10-08

    A series of Mg-Zr mixed oxides with different nominal Mg/(Mg+Zr) atomic ratios, namely 0, 0.1, 0.2, 0.4, 0.85, and 1, is prepared by alcogel methodology and fundamental insights into the phases obtained and resulting active sites are studied. Characterization is performed by X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, N(2) adsorption-desorption isotherms, and thermal and chemical analysis. Cubic Mg(x)Zr(1-x)O(2-x) solid solution, which results from the dissolution of Mg(2+) cations within the cubic ZrO(2) structure, is the main phase detected for the solids with theoretical Mg/(Mg+Zr) atomic ratio ≤0.4. In contrast, the cubic periclase (c-MgO) phase derived from hydroxynitrates or hydroxy precursors predominates in the solid with Mg/(Mg+Zr)=0.85. c-MgO is also incipiently detected in samples with Mg/(Mg+Zr)=0.2 and 0.4, but in these solids the c-MgO phase mostly arises from the segregation of Mg atoms out of the alcogel-derived c-Mg(x)Zr(1-x)O(2-x) phase during the calcination process, and therefore the species c-MgO and c-Mg(x)Zr(1-x)O(2-x) are in close contact. Regarding the intrinsic activity in furfural-acetone aldol condensation in the aqueous phase, these Mg-O-Zr sites located at the interface between c-Mg(x)Zr(1-x)O(2-x) and segregated c-MgO display a much larger intrinsic activity than the other noninterface sites that are present in these catalysts: Mg-O-Mg sites on c-MgO and Mg-O-Zr sites on c-Mg(x)Zr(1-x)O(2-x). The very active Mg-O-Zr sites rapidly deactivate in the furfural-acetone condensation due to the leaching of active phases, deposition of heavy hydrocarbonaceous compounds, and hydration of the c-MgO phase. Nonetheless, these Mg-Zr materials with very high specific surface areas would be suitable solid catalysts for other relevant reactions catalyzed by strong basic sites in nonaqueous environments. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Copper-manganese mixed oxides: CO2-selectivity, stable, and cyclic performance for chemical looping combustion of methane.

    PubMed

    Mungse, Pallavi; Saravanan, Govindachetty; Uchiyama, Tomoki; Nishibori, Maiko; Teraoka, Yasutake; Rayalu, Sadhana; Labhsetwar, Nitin

    2014-09-28

    Chemical looping combustion (CLC) is a key technology for oxy-fuel combustion with inherent separation of CO2 from a flue gas, in which oxygen is derived from a solid oxygen carrier. Multi-cycle CLC performance and the product selectivity towards CO2 formation were achieved using mixed oxide of Cu and Mn (CuMn2O4) (Fd3[combining macron]m, a = b = c = 0.83 nm) as an oxygen carrier. CuMn2O4 was prepared by the co-precipitation method followed by annealing at 900 °C using copper(II) nitrate trihydrate and manganese(II) nitrate tetrahydrate as metal precursors. CuMn2O4 showed oxygen-desorption as well as reducibility at elevated temperatures under CLC conditions. The lattice of CuMn2O4 was altered significantly at higher temperature, however, it was reinstated virtually upon cooling in the presence of air. CuMn2O4 was reduced to CuMnO2, Mn3O4, and Cu2O phases at the intermediate stages, which were further reduced to metallic Cu and MnO upon the removal of reactive oxygen from their lattice. CuMn2O4 showed a remarkable activity towards methane combustion reaction at 750 °C. The reduced phase of CuMn2O4 containing Cu and MnO was readily reinstated when treated with air or oxygen at 750 °C, confirming efficient regeneration of the oxygen carrier. Neither methane combustion efficiency nor oxygen carrying capacity was altered with the increase of CLC cycles at any tested time. The average oxygen carrying capacity of CuMn2O4 was estimated to be 114 mg g(-1), which was not altered significantly with the repeated CLC cycles. Pure CO2 but no CO, which is one of the possible toxic by-products, was formed solely upon methane combustion reaction of CuMn2O4. CuMn2O4 shows potential as a practical CLC material both in terms of multi-cycle performance and product selectivity towards CO2 formation.

  18. The isolation and purification of a specific "protector" protein which inhibits enzyme inactivation by a thiol/Fe(III)/O2 mixed-function oxidation system.

    PubMed

    Kim, K; Kim, I H; Lee, K Y; Rhee, S G; Stadtman, E R

    1988-04-05

    Mixed-function oxidation systems comprised of Fe3+, O2, and electron donors such as thiol compounds, ascorbate, NAD(P)H/NAD(P)H oxidase, and xanthine oxidase/hypoxanthine, catalyze the inactivation of many enzymes. This report describes the isolation and purification of a soluble protein from Saccharomyces cerevisiae, which specifically inhibits the inactivation of various enzymes by a nonenzymatic Fe3+/O2/thiol mixed-function oxidase system. When thiol is replaced with another electron donor (e.g. ascorbate), this specific protein no longer protects against iron (or copper)/O2-dependent radical-induced enzyme inactivation. Purification steps included a polyethylene glycol precipitation followed sequentially by a chromatography on DE52 and high pressure liquid chromatography on phenyl, DEAE, and gel-filtrated columns. The final gel filtration step yielded two protein peaks exhibiting protector activity and possessing a Mr of 500,000 and 90,000. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of these two fractions gave a single band at 27 kDa suggesting that these protein species simply represent different oligomeric structures. The protector protein did not possess catalase, glutathione peroxidase, superoxide dismutase, or iron chelation activities. Since the protection activity reported herein is specific for mixed-function oxidation systems containing thiols, we propose that the protector protein functions as a sulfur radical scavenger.

  19. Self-assembly of mixed Pt and Au nanoparticles on PDDA-functionalized graphene as effective electrocatalysts for formic acid oxidation of fuel cells.

    PubMed

    Wang, Shuangyin; Wang, Xin; Jiang, San Ping

    2011-04-21

    Pt and Au nanoparticles with controlled Pt : Au molar ratios and PtAu nanoparticle loadings were successfully self-assembled onto poly(diallyldimethylammonium chloride) (PDDA)-functionalized graphene (PDDA-G) as highly effective electrocatalysts for formic acid oxidation in direct formic acid fuel cells (DFAFCs). The simultaneously assembled Pt and Au nanoparticles on PDDA-G showed superb electrocatalytic activity for HCOOH oxidation, and the current density associated with the preferred dehydrogenation pathway for the direct formation of CO(2) through HCOOH oxidation on a Pt(1)Au(8)/PDDA-G (i.e., a Pt : Au ratio of 1 : 8) is 32 times higher than on monometallic Pt/PDDA-G. The main function of the Au in the mixed Pt and Au nanoparticles on PDDA-G is to facilitate the first electron transfer from HCOOH to HCOO(ads) and the effective spillover of HCOO(ads) from Au to Pt nanoparticles, where HCOO(ads) is further oxidized to CO(2). The Pt : Au molar ratio and PtAu nanoparticle loading on PDDA-G supports are the two critical factors to achieve excellent electrocatalytic activity of PtAu/PDDA-G catalysts for the HCOOH oxidation reactions.

  20. Solid state reactions of nanocrystalline Ce{sub 0.5}Yb{sub 0.5}O{sub 1.75} mixed oxide with high surface area silica in oxidizing and reducing atmosphere

    SciTech Connect

    Malecka, Malgorzata A.; Kepinski, Leszek

    2012-08-15

    The interaction of nanocrystalline Ce{sub 0.5}Yb{sub 0.5}O{sub 1.75} mixed oxide with a high surface amorphous silica support in an oxidizing and reducing atmosphere was studied by XRD, HRTEM, SAED, SEM and BET techniques. The Ce{sub 0.5}Yb{sub 0.5}O{sub 1.75}-SiO{sub 2} system shows very high structural and size stability in the oxidizing atmosphere up to 1000 Degree-Sign C, but in hydrogen spreading of the oxide onto silica occurs at temperatures above 800 Degree-Sign C. In the oxidizing atmosphere stability of the mixed oxide is limited by extraction of ytterbium from the oxide driven by a tendency to form ytterbium silicates. A new polymorph of Yb silicate, isomorphic with y-Y{sub 2}Si{sub 2}O{sub 7} (yttrialite), has been identified in the samples containing the mixed Ce-Yb oxide. The absence of y-Yb{sub 2}Si{sub 2}O{sub 7} silicate in the Yb{sub 2}O{sub 3}-SiO{sub 2} samples treated in similar conditions indicates that Ce{sup 4+} ions are needed to stabilize the structure. - Graphical abstract: Structure evolution of nano-Ce{sub 0.5}Yb{sub 0.5}O{sub 1.75}-SiO{sub 2} in air and in H{sub 2}. Highlights: Black-Right-Pointing-Pointer Nano-Ce{sub 0.50}Yb{sub 0.50}O{sub 1.75} on SiO{sub 2} is stable in air up to 1000 Degree-Sign C but spreads in hydrogen at 800 Degree-Sign C. Black-Right-Pointing-Pointer Formation of Yb silicates determines the stability of Ce{sub 0.50}Yb{sub 0.50}O{sub 1.75} at high temperatures. Black-Right-Pointing-Pointer New, y-Yb{sub 2}Si{sub 2}O{sub 7} silicate (yttrialite type) forms in Ce{sub 0.5}Yb{sub 0.5}O{sub 1.75}-SiO{sub 2} in H{sub 2} at 1100 Degree-Sign C.