Sample records for co2 fixation technology

  1. Synthetic biology for CO2 fixation.

    PubMed

    Gong, Fuyu; Cai, Zhen; Li, Yin

    2016-11-01

    Recycling of carbon dioxide (CO 2 ) into fuels and chemicals is a potential approach to reduce CO 2 emission and fossil-fuel consumption. Autotrophic microbes can utilize energy from light, hydrogen, or sulfur to assimilate atmospheric CO 2 into organic compounds at ambient temperature and pressure. This provides a feasible way for biological production of fuels and chemicals from CO 2 under normal conditions. Recently great progress has been made in this research area, and dozens of CO 2 -derived fuels and chemicals have been reported to be synthesized by autotrophic microbes. This is accompanied by investigations into natural CO 2 -fixation pathways and the rapid development of new technologies in synthetic biology. This review first summarizes the six natural CO 2 -fixation pathways reported to date, followed by an overview of recent progress in the design and engineering of CO 2 -fixation pathways as well as energy supply patterns using the concept and tools of synthetic biology. Finally, we will discuss future prospects in biological fixation of CO 2 .

  2. Fixation of CO2 and CO on a diverse range of carbohydrates using anaerobic, non-photosynthetic mixotrophy.

    PubMed

    Maru, Biniam T; Munasinghe, Pradeep C; Gilary, Hadar; Jones, Shawn W; Tracy, Bryan P

    2018-04-01

    Biological CO2 fixation is an important technology that can assist in combating climate change. Here, we show an approach called anaerobic, non-photosynthetic mixotrophy can result in net CO2 fixation when using a reduced feedstock. This approach uses microbes called acetogens that are capable of concurrent utilization of both organic and inorganic substrates. In this study, we investigated the substrate utilization of 17 different acetogens, both mesophilic and thermophilic, on a variety of different carbohydrates and gases. Compared to most model acetogen strains, several non-model mesophilic strains displayed greater substrate flexibility, including the ability to utilize disaccharides, glycerol and an oligosaccharide, and growth rates. Three of these non-model strains (Blautia producta, Clostridium scatologenes and Thermoanaerobacter kivui) were chosen for further characterization, under a variety of conditions including H2- or syngas-fed sugar fermentations and a CO2-fed glycerol fermentation. In all cases, CO2 was fixed and carbon yields approached 100%. Finally, the model acetogen C. ljungdahlii was engineered to utilize glucose, a non-preferred sugar, while maintaining mixotrophic behavior. This work demonstrates the flexibility and robustness of anaerobic, non-photosynthetic mixotrophy as a technology to help reduce CO2 emissions.

  3. Microbial fixation of CO2 in water bodies and in drylands to combat climate change, soil loss and desertification.

    PubMed

    Rossi, Federico; Olguín, Eugenia J; Diels, Ludo; De Philippis, Roberto

    2015-01-25

    The growing concern for the increase of the global warming effects due to anthropogenic activities raises the challenge of finding novel technological approaches to stabilize CO2 emissions in the atmosphere and counteract impinging interconnected issues such as desertification and loss of biodiversity. Biological-CO2 mitigation, triggered through biological fixation, is considered a promising and eco-sustainable method, mostly owing to its downstream benefits that can be exploited. Microorganisms such as cyanobacteria, green algae and some autotrophic bacteria could potentially fix CO2 more efficiently than higher plants, due to their faster growth. Some examples of the potential of biological-CO2 mitigation are reported and discussed in this paper. In arid and semiarid environments, soil carbon sequestration (CO2 fixation) by cyanobacteria and biological soil crusts is considered an eco-friendly and natural process to increase soil C content and a viable pathway to soil restoration after one disturbance event. Another way for biological-CO2 mitigation intensively studied in the last few years is related to the possibility to perform carbon dioxide sequestration using microalgae, obtaining at the same time bioproducts of industrial interest. Another possibility under study is the exploitation of specific chemotrophic bacteria, such as Ralstonia eutropha (or picketii) and related organisms, for CO2 fixation coupled with the production chemicals such as polyhydroxyalkanoates (PHAs). In spite of the potential of these processes, multiple factors still have to be optimized for maximum rate of CO2 fixation by these microorganisms. The optimization of culture conditions, including the optimal concentration of CO2 in the provided gas, the use of metabolic engineering and of dual purpose systems for the treatment of wastewater and production of biofuels and high value products within a biorefinery concept, the design of photobioreactors in the case of phototrophs are some of the issues that, among others, have to be addressed and tested for cost-effective CO2 sequestration. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Investigation on energy conversion technology using biochemical reaction elements, 2

    NASA Astrophysics Data System (ADS)

    1994-03-01

    For measures taken for resource/energy and environmental issues, a study is made on utilization of microbial biochemical reaction. As a reaction system using chemical energy, cited is production of petroleum substitution substances and food/feed by CO2 fixation using hydrogen energy and hydrogen bacteria. As to photo energy utilization, regarded as promising are CO2 fixation using photo energy and microalgae, and production of hydrogen and useful carbon compound using photosynthetic organisms. As living organism/electric energy interconversion, cited is the culture of chemoautotrophic bacteria which fix CO2 using electric energy. For enhancing its conversion efficiency, it is important to develop a technology of gene manipulation of the bacteria and a system to use functional biochemical elements adaptable to the electrode reaction. With regard to utilization of the microorganism metabolic function, the paper presents emission of soluble nitrogen in the hydrosphere into the atmosphere using denitrifying bacteria, removal of phosphorus, reduction in environmental pollution caused by heavy metal dilute solutions, and recovery as resources, etc.

  5. The importance of nodule CO2 fixation for the efficiency of symbiotic nitrogen fixation in pea at vegetative growth and during pod formation.

    PubMed

    Fischinger, Stephanie Anastasia; Schulze, Joachim

    2010-05-01

    Nodule CO2 fixation is of pivotal importance for N2 fixation. The process provides malate for bacteroids and oxaloacetate for nitrogen assimilation. The hypothesis of the present paper was that grain legume nodules would adapt to higher plant N demand and more restricted carbon availability at pod formation through increased nodule CO2 fixation and a more efficient N2 fixation. Growth, N2 fixation, and nodule composition during vegetative growth and at pod formation were studied in pea plants (Pisum sativum L.). In parallel experiments, 15N2 and 13CO2 uptake, as well as nodule hydrogen and CO2 release, was measured. Plants at pod formation showed higher growth rates and N2 fixation per plant when compared with vegetative growth. The specific activity of active nodules was about 25% higher at pod formation. The higher nodule activity was accompanied by higher amino acid concentration in nodules and xylem sap with a higher share of asparagine. Nodule 13CO2 fixation was increased at pod formation, both per plant and per 15N2 fixed unit. However, malate concentration in nodules was only 40% of that during vegetative growth and succinate was no longer detectable. The data indicate that increased N2 fixation at pod formation is connected with strongly increased nodule CO2 fixation. While the sugar concentration in nodules at pod formation was not altered, the concentration of organic acids, namely malate and succinate, was significantly lower. It is concluded that strategies to improve the capability of nodules to fix CO2 and form organic acids might prolong intensive N2 fixation into the later stages of pod formation and pod filling in grain legumes.

  6. Response of Carbon Dioxide Fixation to Water Stress

    PubMed Central

    Plaut, Z.; Bravdo, B.

    1973-01-01

    Application of water stress to isolated spinach (Spinacia oleracea) chloroplasts by redutcion of the osmotic potentials of CO2 fixation media below −6 to −8 bars resulted in decreased rates of fixation regardless of solute composition. A decrease in CO2 fixation rate of isolated chloroplasts was also found when leaves were dehydrated in air prior to chloroplast isolation. An inverse response of CO2 fixation to osmotic potential of the fixation medium was found with chloroplasts isolated from dehydrated leaves—namely, fixation rate was inhibited at −8 bars, compared with −16 or −24 bars. Low leaf water potentials were found to inhibit CO2 fixation of intact leaf discs to almost the same degree as they did CO2 fixation by chloroplasts isolated from those leaves. CO2 fixation by intact leaves was decreased by 50 and 80% when water potentials were reduced from −7.1 to −9.6 and from −7.1 to −17.6 bars, respectively. Transpiration was decreased by only 40 and 60%, under the same conditions. However, correction for the increase in leaf temperature indicated transpiration decreases of 57 and 80%, similar to the relative decreases in CO2 fixation. Despite the 4-fold increase in leaf resistance to CO2 diffusion in the gas phase when the water potential of leaves was reduced from −6.5 to −14.0 bars, an additional increase of about 50% in mesophyll resistance was obtained. CO2 concentration at compensation also increased when leaf water potential was reduced. PMID:16658493

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    PAUL, JOHN H

    Oceanic river plumes represent some of the most productive environments on Earth. As major conduits for freshwater and nutrients into the coastal ocean, their impact on water column ecosystems extend for up to a thousand km into oligotrophic oceans. Upon entry into the oceans rivers are tremendous sources of CO2 and dissolved inorganic carbon (DIC). Yet owing to increased light transmissivity from sediment deposition coupled with the influx of nutrients, dramatic CO2 drawdown occurs, and plumes rapidly become sinks for CO2. Using state-of-the-art gene expression technology, we have examined the molecular biodiversity of CO2 fixation in the Mississippi River Plumemore » (MRP; two research cruises) and the Orinoco River Plume (ORP; one cruise). When the MRP extends far into the Gulf because of entrainment with the Loop Current, MRP production (carbon fixation) can account for up to 41% of the surface production in the Gulf of Mexico. Nearer-shore plume stations (“high plume,” salinity< 32 ppt) had tremendous CO2 drawdown that was correlated to heterokont (principally diatom) carbon fixation gene expression. The principal form of nitrogen for this production based upon 15N studies was urea, believed to be from anthropogenic origin (fertilizer) from the MRP watershed. Intermediate plume environments (salinity 34 ppt) were characterized by high levels of Synechococcuus carbon fixation that was fueled by regenerated ammonium. Non-plume stations were characterized by high light Prochlorococcus carbon fixation gene expression that was positively correlated with dissolved CO2 concentrations. Although data from the ORP cruise is still being analyzed, some similarities and striking differences were found between the ORP and MRP. High levels of heterokont carbon fixation gene expression that correlated with CO2 drawdown were observed in the high plume, yet the magnitude of this phenomenon was far below that of the MRP, most likely due to the lower levels of anthropogenic nutrient input. The offshore ORP was characterized by haptophyte and in places Prochlorococcus carbon fixation gene expression in surface water, with greater heterokont rbcL RNA at SCM depths. MODIS satellite chlorophyll-a data implied a plume of high chlorophyll water far into the eastern Caribbean, yet field observations did not support this, most likely because of high levels of colored dissolved organic matter (cDOM) in the ORP. The presence of pelagic nitrogen fixers (Trichodesmium and cyanobacterial diatom endosymbionts) most likely provided N for the offshore MRP production. The results underscore the importance of oceanic river plumes as sinks for CO2 and the need for their incorporation in global carbon models as well as estimates of CO2 sequestration.« less

  8. CO2 and soil water potential as regulators of the growth and N fraction derived from fixation of a legume in tallgrass prairie communities

    USDA-ARS?s Scientific Manuscript database

    CO2 enrichment may increase N input to ecosystems by increasing N2 fixation, but the fixation-CO2 response depends on factors such as soil water availability that are influenced by both CO2 and soil properties. We used the d15N natural abundance method to determine N2 fixation by the legume Desmant...

  9. Fixation of carbon dioxide by a hydrogen-oxidizing bacterium for value-added products.

    PubMed

    Yu, Jian

    2018-06-09

    With rapid technology progress and cost reduction, clean hydrogen from water electrolysis driven by renewable powers becomes a potential feedstock for CO 2 fixation by hydrogen-oxidizing bacteria. Cupriavidus necator (formally Ralstonia eutropha), a representative member of the lithoautotrophic prokaryotes, is a promising producer of polyhydroxyalkanoates and single cell proteins. This paper reviews the fundamental properties of the hydrogen-oxidizing bacterium, the metabolic activities under limitation of individual gases and nutrients, and the value-added products from CO 2 , including the products with large potential markets. Gas fermentation and bioreactor safety are discussed for achieving high cell density and high productivity of desired products under chemolithotrophic conditions. The review also updates the recent research activities in metabolic engineering of C. necator to produce novel metabolites from CO 2 .

  10. Chemical approaches to carbon dioxide utilization for manned Mars missions

    NASA Technical Reports Server (NTRS)

    Hepp, Aloysius F.; Landis, Geoffrey A.; Kubiak, Clifford P.

    1991-01-01

    Use of resources available in situ is a critical enabling technology for a permanent human presence in space. A permanent presence on Mars, e.g., requires a large infrastructure to sustain life under hostile conditions. As a resource on Mars, atmospheric CO2 is as follows: abundant; available at all points on the surface; of known presence; chemically simple; and can be obtained by simple compression. Many studies focus on obtaining O2 and the various uses for O2 including life support and fuel; discussion of CO, the coproduct from CO2 fixation revolves around its uses as a fuel, being oxidized back to CO2. Several new proposals are studied for CO2 fixation through chemical, photochemical, and photoelectrochemical means. For example, the reduction of CO2 to hydrocarbons such as acetylene (C2H2) can be accomplished with H2. C2H2 has a theoretical vacuum specific impulse of approx. 375 secs. Potential uses were also studied of CO2, as obtained or further reduced to carbon, as a reducing agent in metal oxide processing to form metals or metal carbides for use as structural or power materials; the CO2 can be recycled to generate O2 and CO.

  11. Heterotrophic Carbon Dioxide Fixation Products of Euglena

    PubMed Central

    Peak, Jennifer G.; Peak, Meyrick J.; Ting, Irwin P.

    1980-01-01

    The metabolic products of heterotrophic (dark) CO2 fixation by Euglena gracilis Klebs strain Z Pringsheim were separated and identified. They consisted of amino acids, phosphorylated compounds, tricarboxylic acid cycle intermediates, and nucleotides. Exposure of the cells to NH4+ after a period of NH4+ deprivation stimulated heterotrophic CO2 fixation almost 4-fold, modifying the spectrum of the fixation products. In particular, the NH4+ treatment stimulated fixation of CO2 into glutamine, glycine, alanine, and serine. PMID:16661238

  12. Elevated CO2: Impact on diurnal patterns of photosynthesis in natural microbial ecosystems

    NASA Technical Reports Server (NTRS)

    Rothschild, L. J.

    1994-01-01

    Algae, including blue-green algae (cyanobacteria), are the major source of fixed carbon in many aquatic ecosystems. Previous work has shown that photosynthetic carbon fixation is often enhanced in the presence of additional carbon dioxide (CO2). This study was undertaken to determine if this CO2 fertilization effect extended to microbial mats, and, if so, at what times during the day might the addition of CO2 affect carbon fixation. Four microbial mats from diverse environments were selected, including mats from a hypersaline pond (area 5, Exportadora de Sal, Mexico), the marine intertidal (Lyngbya, Laguna Ojo de Liebre, Mexico), an acidic hotspring (Cyanidium, Nymph Creek, Yellowstone National Park), and an acidic stream at ambient temperature (Zygogonium, Yellowstone National Park). Carbon fixation in the absence of additional CO2 essentially followed the rising and falling sunlight levels, except that during the middle of the day there was a short dip in carbon fixation rates. The addition of CO2 profoundly enhanced carbon fixation rates during the daylight hours, including during the midday dip. Therefore, it is unlikely that the midday dip was due to photoinhibition. Surprisingly, enhancement of carbon fixation was often greatest in the early morning or late afternoon, times when carbon fixation would be most likely to be light limited.

  13. Transcriptome and key genes expression related to carbon fixation pathways in Chlorella PY-ZU1 cells and their growth under high concentrations of CO2.

    PubMed

    Huang, Yun; Cheng, Jun; Lu, Hongxiang; He, Yong; Zhou, Junhu; Cen, Kefa

    2017-01-01

    The biomass yield of Chlorella PY-ZU1 drastically increased when cultivated under high CO 2 condition compared with that cultivated under air condition. However, less attention has been given to the microalgae photosynthetic mechanisms response to different CO 2 concentrations. The genetic reasons for the higher growth rate, CO 2 fixation rate, and photosynthetic efficiency of microalgal cells under higher CO 2 concentration have not been clearly defined yet. In this study, the Illumina sequencing and de novo transcriptome assembly of Chlorella PY-ZU1 cells cultivated under 15% CO 2 were performed and compared with those of cells grown under air. It was found that carbonic anhydrase (CAs, enzyme for interconversion of bicarbonate to CO 2 ) dramatically decreased to near 0 in 15% CO 2 -grown cells, which indicated that CO 2 molecules directly permeated into cells under high CO 2 stress without CO 2 -concentrating mechanism. Extrapolating from the growth conditions and quantitative Real-Time PCR of CCM-related genes, the K m (CO 2 ) (the minimum intracellular CO 2 concentration that rubisco required) of Chlorella PY-ZU1 might be in the range of 80-192 μM. More adenosine triphosphates was saved for carbon fixation-related pathways. The transcript abundance of rubisco (the most important enzyme of CO 2 fixation reaction) was 16.3 times higher in 15% CO 2 -grown cells than that under air. Besides, the transcript abundances of most key genes involved in carbon fixation pathways were also enhanced in 15% CO 2 -grown cells. Carbon fixation and nitrogen metabolism are the two most important metabolisms in the photosynthetic cells. These genes related to the two most metabolisms with significantly differential expressions were beneficial for microalgal growth (2.85 g L -1 ) under 15% CO 2 concentration. Considering the micro and macro growth phenomena of Chlorella PY-ZU1 under different concentrations of CO 2 (0.04-60%), CO 2 transport pathways responses to different CO 2 (0.04-60%) concentrations was reconstructed.

  14. Sequestration and utilization of carbon dioxide by chemical and biological methods for biofuels and biomaterials by chemoautotrophs: Opportunities and challenges.

    PubMed

    Thakur, Indu Shekhar; Kumar, Manish; Varjani, Sunita J; Wu, Yonghong; Gnansounou, Edgard; Ravindran, Sindhu

    2018-05-01

    To meet the CO 2 emission reduction targets, carbon dioxide capture and utilization (CCU) comes as an evolve technology. CCU concept is turning into a feedstock and technologies have been developed for transformation of CO 2 into useful organic products. At industrial scale, utilization of CO 2 as raw material is not much significant as compare to its abundance. Mechanisms in nature have evolved for carbon concentration, fixation and utilization. Assimilation and subsequent conversion of CO 2 into complex molecules are performed by the photosynthetic and chemolithotrophic organisms. In the last three decades, substantial research is carry out to discover chemical and biological conversion of CO 2 in various synthetic and biological materials, such as carboxylic acids, esters, lactones, polymer biodiesel, bio-plastics, bio-alcohols, exopolysaccharides. This review presents an over view of catalytic transformation of CO 2 into biofuels and biomaterials by chemical and biological methods. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Biocatalysis for the application of CO2 as a chemical feedstock.

    PubMed

    Alissandratos, Apostolos; Easton, Christopher J

    2015-01-01

    Biocatalysts, capable of efficiently transforming CO2 into other more reduced forms of carbon, offer sustainable alternatives to current oxidative technologies that rely on diminishing natural fossil-fuel deposits. Enzymes that catalyse CO2 fixation steps in carbon assimilation pathways are promising catalysts for the sustainable transformation of this safe and renewable feedstock into central metabolites. These may be further converted into a wide range of fuels and commodity chemicals, through the multitude of known enzymatic reactions. The required reducing equivalents for the net carbon reductions may be drawn from solar energy, electricity or chemical oxidation, and delivered in vitro or through cellular mechanisms, while enzyme catalysis lowers the activation barriers of the CO2 transformations to make them more energy efficient. The development of technologies that treat CO2-transforming enzymes and other cellular components as modules that may be assembled into synthetic reaction circuits will facilitate the use of CO2 as a renewable chemical feedstock, greatly enabling a sustainable carbon bio-economy.

  16. Abundance and distribution of archaeal acetyl-CoA/propionyl-CoA carboxylase genes indicative for putatively chemoautotrophic Archaea in the tropical Atlantic's interior.

    PubMed

    Bergauer, Kristin; Sintes, Eva; van Bleijswijk, Judith; Witte, Harry; Herndl, Gerhard J

    2013-06-01

    Recently, evidence suggests that dark CO2 fixation in the pelagic realm of the ocean does not only occur in the suboxic and anoxic water bodies but also in the oxygenated meso- and bathypelagic waters of the North Atlantic. To elucidate the significance and phylogeny of the key organisms mediating dark CO2 fixation in the tropical Atlantic, we quantified functional genes indicative for CO2 fixation. We used a Q-PCR-based assay targeting the bifunctional acetyl-CoA/propionyl-CoA carboxylase (accA subunit), a key enzyme powering inter alia the 3-hydroxypropionate/4-hydroxybutyrate cycle (HP/HB) and the archaeal ammonia monooxygenase (amoA). Quantification of accA-like genes revealed a consistent depth profile in the upper mesopelagial with increasing gene abundances from subsurface layers towards the oxygen minimum zone (OMZ), coinciding with an increase in archaeal amoA gene abundance. Gene abundance profiles of metabolic marker genes (accA, amoA) were correlated with thaumarchaeal 16S rRNA gene abundances as well as CO2 fixation rates to link the genetic potential to actual rate measurements. AccA gene abundances correlated with archaeal amoA gene abundance throughout the water column (r(2)  = 0.309, P < 0.0001). Overall, a substantial genetic predisposition of CO2 fixation was present in the dark realm of the tropical Atlantic in both Archaea and Bacteria. Hence, dark ocean CO2 fixation might be more widespread among prokaryotes inhabiting the oxygenated water column of the ocean's interior than hitherto assumed. © 2013 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  17. Carbon sequestration in soybean crop soils: the role of hydrogen-coupled CO2 fixation

    NASA Astrophysics Data System (ADS)

    Graham, A.; Layzell, D. B.; Scott, N. A.; Cen, Y.; Kyser, T. K.

    2011-12-01

    Conversion of native vegetation to agricultural land in order to support the world's growing population is a key factor contributing to global climate change. However, the extent to which agricultural activities contribute to greenhouse gas emissions compared to carbon storage is difficult to ascertain, especially for legume crops, such as soybeans. Soybean establishment often leads to an increase in N2O emissions because N-fixation leads to increased soil available N during decomposition of the low C:N legume biomass. However, soybean establishment may also reduce net greenhouse gas emissions by increasing soil fertility, plant growth, and soil carbon storage. The mechanism behind increased carbon storage, however, remains unclear. One explanation points to hydrogen coupled CO2 fixation; the process by which nitrogen fixation releases H2 into the soil system, thereby promoting chemoautotrophic carbon fixation by soil microbes. We used 13CO2 as a tracer to track the amount and fate of carbon fixed by hydrogen coupled CO2 fixation during one-year field and laboratory incubations. The objectives of the research are to 1) quantify rates of 13CO2 fixation in soil collected from a field used for long-term soybean production 2) examine the impact of H2 gas concentration on rates of 13CO2 fixation, and 3) measure changes in δ13C signature over time in 3 soil fractions: microbial biomass, light fraction, and acid stable fraction. If this newly-fixed carbon is incorporated into the acid-stable soil C fraction, it has a good chance of contributing to long-term soil C sequestration under soybean production. Soil was collected in the field both adjacent to root nodules (nodule soil) and >3cm away (root soil) and labelled with 13CO2 (1% v/v) in the presence and absence of H2 gas. After a two week labelling period, δ13C signatures already revealed differences in the four treatments of bulk soil: -17.1 for root, -17.6 for nodule, -14.2 for root + H2, and -6.1 for nodule + H2. Labelled soil was then placed in nylon mesh bags and buried in the field at a depth of 15cm in a soybean field at the Central Experiment Farm in Ottawa, Ontario. Samples will be removed at intervals of 1,2,3,6,9,12, and 15 months, and the δ13C of three soil fractions will be examined to reveal changes in carbon storage over time. Our results will provide insights into the fate of carbon fixed during hydrogen coupled CO2 fixation, and demonstrate whether this CO2 fixation can contribute to the long-term greenhouse gas balance of soybean production systems.

  18. Carbon dioxide fixation in the metabolism of propylene and propylene oxide by Xanthobacter strain Py2.

    PubMed Central

    Small, F J; Ensign, S A

    1995-01-01

    Evidence for a requirement for CO2 in the productive metabolism of aliphatic alkenes and epoxides by the propylene-oxidizing bacterium Xanthobacter strain Py2 is presented. In the absence of CO2, whole-cell suspensions of propylene-grown cells catalyzed the isomerization of propylene oxide (epoxypropane) to acetone. In the presence of CO2, no acetone was produced. Acetone was not metabolized by suspensions of propylene-grown cells, in either the absence or presence of CO2. The degradation of propylene and propylene oxide by propylene-grown cells supported the fixation of 14CO2 into cell material, and the time course of 14C fixation correlated with the time course of propylene and propylene oxide degradation. The degradation of glucose and propionaldehyde by propylene-grown or glucose-grown cells did not support significant 14CO2 fixation. With propylene oxide as the substrate, the concentration dependence of 14CO2 fixation exhibited saturation kinetics, and at saturation, 0.9 mol of CO2 was fixed per mol of propylene oxide consumed. Cultures grown with propylene in a nitrogen-deficient medium supplemented with NaH13CO3 specifically incorporated 13C label into the C-1 (major labeled position) and C-3 (minor labeled position) carbon atoms of the endogenous storage compound poly-beta-hydroxybutyrate. No specific label incorporation was observed when cells were cultured with glucose or n-propanol as a carbon source. The depletion of CO2 from cultures grown with propylene, but not glucose or n-propanol, inhibited bacterial growth. We propose that propylene oxide metabolism in Xanthobacter strain Py2 proceeds by terminal carboxylation of an isomerization intermediate, which, in the absence of CO2, is released as acetone. PMID:7592382

  19. Combined effects of CO2 and light on the N2-fixing cyanobacterium Trichodesmium IMS101: a mechanistic view.

    PubMed

    Levitan, Orly; Kranz, Sven A; Spungin, Dina; Prásil, Ondrej; Rost, Björn; Berman-Frank, Ilana

    2010-09-01

    The marine diazotrophic cyanobacterium Trichodesmium responds to elevated atmospheric CO(2) partial pressure (pCO(2)) with higher N(2) fixation and growth rates. To unveil the underlying mechanisms, we examined the combined influence of pCO(2) (150 and 900 microatm) and light (50 and 200 micromol photons m(-2) s(-1)) on Trichodesmium IMS101. We expand on a complementary study that demonstrated that while elevated pCO(2) enhanced N(2) fixation and growth, oxygen evolution and carbon fixation increased mainly as a response to high light. Here, we investigated changes in the photosynthetic fluorescence parameters of photosystem II, in ratios of the photosynthetic units (photosystem I:photosystem II), and in the pool sizes of key proteins involved in the fixation of carbon and nitrogen as well as their subsequent assimilation. We show that the combined elevation in pCO(2) and light controlled the operation of the CO(2)-concentrating mechanism and enhanced protein activity without increasing their pool size. Moreover, elevated pCO(2) and high light decreased the amounts of several key proteins (NifH, PsbA, and PsaC), while amounts of AtpB and RbcL did not significantly change. Reduced investment in protein biosynthesis, without notably changing photosynthetic fluxes, could free up energy that can be reallocated to increase N(2) fixation and growth at elevated pCO(2) and light. We suggest that changes in the redox state of the photosynthetic electron transport chain and posttranslational regulation of key proteins mediate the high flexibility in resources and energy allocation in Trichodesmium. This strategy should enable Trichodesmium to flourish in future surface oceans characterized by elevated pCO(2), higher temperatures, and high light.

  20. Global metabolic rewiring for improved CO2 fixation and chemical production in cyanobacteria.

    PubMed

    Kanno, Masahiro; Carroll, Austin L; Atsumi, Shota

    2017-03-13

    Cyanobacteria have attracted much attention as hosts to recycle CO 2 into valuable chemicals. Although cyanobacteria have been engineered to produce various compounds, production efficiencies are too low for commercialization. Here we engineer the carbon metabolism of Synechococcus elongatus PCC 7942 to improve glucose utilization, enhance CO 2 fixation and increase chemical production. We introduce modifications in glycolytic pathways and the Calvin Benson cycle to increase carbon flux and redirect it towards carbon fixation. The engineered strain efficiently uses both CO 2 and glucose, and produces 12.6 g l -1 of 2,3-butanediol with a rate of 1.1 g l -1  d -1 under continuous light conditions. Removal of native regulation enables carbon fixation and 2,3-butanediol production in the absence of light. This represents a significant step towards industrial viability and an excellent example of carbon metabolism plasticity.

  1. Global metabolic rewiring for improved CO2 fixation and chemical production in cyanobacteria

    NASA Astrophysics Data System (ADS)

    Kanno, Masahiro; Carroll, Austin L.; Atsumi, Shota

    2017-03-01

    Cyanobacteria have attracted much attention as hosts to recycle CO2 into valuable chemicals. Although cyanobacteria have been engineered to produce various compounds, production efficiencies are too low for commercialization. Here we engineer the carbon metabolism of Synechococcus elongatus PCC 7942 to improve glucose utilization, enhance CO2 fixation and increase chemical production. We introduce modifications in glycolytic pathways and the Calvin Benson cycle to increase carbon flux and redirect it towards carbon fixation. The engineered strain efficiently uses both CO2 and glucose, and produces 12.6 g l-1 of 2,3-butanediol with a rate of 1.1 g l-1 d-1 under continuous light conditions. Removal of native regulation enables carbon fixation and 2,3-butanediol production in the absence of light. This represents a significant step towards industrial viability and an excellent example of carbon metabolism plasticity.

  2. A synthetic pathway for the fixation of carbon dioxide in vitro.

    PubMed

    Schwander, Thomas; Schada von Borzyskowski, Lennart; Burgener, Simon; Cortina, Niña Socorro; Erb, Tobias J

    2016-11-18

    Carbon dioxide (CO 2 ) is an important carbon feedstock for a future green economy. This requires the development of efficient strategies for its conversion into multicarbon compounds. We describe a synthetic cycle for the continuous fixation of CO 2 in vitro. The crotonyl-coenzyme A (CoA)/ethylmalonyl-CoA/hydroxybutyryl-CoA (CETCH) cycle is a reaction network of 17 enzymes that converts CO 2 into organic molecules at a rate of 5 nanomoles of CO 2 per minute per milligram of protein. The CETCH cycle was drafted by metabolic retrosynthesis, established with enzymes originating from nine different organisms of all three domains of life, and optimized in several rounds by enzyme engineering and metabolic proofreading. The CETCH cycle adds a seventh, synthetic alternative to the six naturally evolved CO 2 fixation pathways, thereby opening the way for in vitro and in vivo applications. Copyright © 2016, American Association for the Advancement of Science.

  3. Effect of simulated tillage on microbial autotrophic CO2 fixation in paddy and upland soils

    PubMed Central

    Ge, Tida; Wu, Xiaohong; Liu, Qiong; Zhu, Zhenke; Yuan, Hongzhao; Wang, Wei; Whiteley, A. S.; Wu, Jinshui

    2016-01-01

    Tillage is a common agricultural practice affecting soil structure and biogeochemistry. To evaluate how tillage affects soil microbial CO2 fixation, we incubated and continuously labelled samples from two paddy soils and two upland soils subjected to simulated conventional tillage (CT) and no-tillage (NT) treatments. Results showed that CO2 fixation (14C-SOC) in CT soils was significantly higher than in NT soils. We also observed a significant, soil type- and depth-dependent effect of tillage on the incorporation rates of labelled C to the labile carbon pool. Concentrations of labelled C in the carbon pool significantly decreased with soil depth, irrespective of tillage. Additionally, quantitative PCR assays revealed that for most soils, total bacteria and cbbL-carrying bacteria were less abundant in CT versus NT treatments, and tended to decrease in abundance with increasing depth. However, specific CO2 fixation activity was significantly higher in CT than in NT soils, suggesting that the abundance of cbbL-containing bacteria may not always reflect their functional activity. This study highlights the positive effect of tillage on soil microbial CO2 fixation, and the results can be readily applied to the development of sustainable agricultural management. PMID:26795428

  4. Irreversibly increased nitrogen fixation in Trichodesmium experimentally adapted to elevated carbon dioxide

    PubMed Central

    Hutchins, David A.; Walworth, Nathan G.; Webb, Eric A.; Saito, Mak A.; Moran, Dawn; McIlvin, Matthew R.; Gale, Jasmine; Fu, Fei-Xue

    2015-01-01

    Nitrogen fixation rates of the globally distributed, biogeochemically important marine cyanobacterium Trichodesmium increase under high carbon dioxide (CO2) levels in short-term studies due to physiological plasticity. However, its long-term adaptive responses to ongoing anthropogenic CO2 increases are unknown. Here we show that experimental evolution under extended selection at projected future elevated CO2 levels results in irreversible, large increases in nitrogen fixation and growth rates, even after being moved back to lower present day CO2 levels for hundreds of generations. This represents an unprecedented microbial evolutionary response, as reproductive fitness increases acquired in the selection environment are maintained after returning to the ancestral environment. Constitutive rate increases are accompanied by irreversible shifts in diel nitrogen fixation patterns, and increased activity of a potentially regulatory DNA methyltransferase enzyme. High CO2-selected cell lines also exhibit increased phosphorus-limited growth rates, suggesting a potential advantage for this keystone organism in a more nutrient-limited, acidified future ocean. PMID:26327191

  5. Irreversibly increased nitrogen fixation in Trichodesmium experimentally adapted to elevated carbon dioxide

    NASA Astrophysics Data System (ADS)

    Hutchins, David A.; Walworth, Nathan G.; Webb, Eric A.; Saito, Mak A.; Moran, Dawn; McIlvin, Matthew R.; Gale, Jasmine; Fu, Fei-Xue

    2015-09-01

    Nitrogen fixation rates of the globally distributed, biogeochemically important marine cyanobacterium Trichodesmium increase under high carbon dioxide (CO2) levels in short-term studies due to physiological plasticity. However, its long-term adaptive responses to ongoing anthropogenic CO2 increases are unknown. Here we show that experimental evolution under extended selection at projected future elevated CO2 levels results in irreversible, large increases in nitrogen fixation and growth rates, even after being moved back to lower present day CO2 levels for hundreds of generations. This represents an unprecedented microbial evolutionary response, as reproductive fitness increases acquired in the selection environment are maintained after returning to the ancestral environment. Constitutive rate increases are accompanied by irreversible shifts in diel nitrogen fixation patterns, and increased activity of a potentially regulatory DNA methyltransferase enzyme. High CO2-selected cell lines also exhibit increased phosphorus-limited growth rates, suggesting a potential advantage for this keystone organism in a more nutrient-limited, acidified future ocean.

  6. In‐loop flow [11C]CO2 fixation and radiosynthesis of N,N′‐[11C]dibenzylurea

    PubMed Central

    Downey, Joseph; Bongarzone, Salvatore; Hader, Stefan

    2017-01-01

    Cyclotron‐produced carbon‐11 is a highly valuable radionuclide for the production of positron emission tomography (PET) radiotracers. It is typically produced as relatively unreactive carbon‐11 carbon dioxide ([11C]CO2), which is most commonly converted into a more reactive precursor for synthesis of PET radiotracers. The development of [11C]CO2 fixation methods has more recently enabled the direct radiolabelling of a diverse array of structures directly from [11C]CO2, and the advantages afforded by the use of a loop‐based system used in 11C‐methylation and 11C‐carboxylation reactions inspired us to apply the [11C]CO2 fixation “in‐loop.” In this work, we developed and investigated a new ethylene tetrafluoroethylene (ETFE) loop‐based [11C]CO2 fixation method, enabling the fast and efficient, direct‐from‐cyclotron, in‐loop trapping of [11C]CO2 using mixed DBU/amine solutions. An optimised protocol was integrated into a proof‐of‐concept in‐loop flow radiosynthesis of N,N′‐[11C]dibenzylurea. This reaction exhibited an average 78% trapping efficiency and a crude radiochemical purity of 83% (determined by radio‐HPLC), giving an overall nonisolated radiochemical yield of 72% (decay‐corrected) within just 3 minutes from end of bombardment. This proof‐of‐concept reaction has demonstrated that efficient [11C]CO2 fixation can be achieved in a low‐volume (150 μL) ETFE loop and that this can be easily integrated into a rapid in‐loop flow radiosynthesis of carbon‐11–labelled products. This new in‐loop methodology will allow fast radiolabelling reactions to be performed using cheap/disposable ETFE tubing setup (ideal for good manufacturing practice production) thereby contributing to the widespread usage of [11C]CO2 trapping/fixation reactions for the production of PET radiotracers. PMID:28977686

  7. In-loop flow [11 C]CO2 fixation and radiosynthesis of N,N'-[11 C]dibenzylurea.

    PubMed

    Downey, Joseph; Bongarzone, Salvatore; Hader, Stefan; Gee, Antony D

    2018-03-01

    Cyclotron-produced carbon-11 is a highly valuable radionuclide for the production of positron emission tomography (PET) radiotracers. It is typically produced as relatively unreactive carbon-11 carbon dioxide ([ 11 C]CO 2 ), which is most commonly converted into a more reactive precursor for synthesis of PET radiotracers. The development of [ 11 C]CO 2 fixation methods has more recently enabled the direct radiolabelling of a diverse array of structures directly from [ 11 C]CO 2 , and the advantages afforded by the use of a loop-based system used in 11 C-methylation and 11 C-carboxylation reactions inspired us to apply the [ 11 C]CO 2 fixation "in-loop." In this work, we developed and investigated a new ethylene tetrafluoroethylene (ETFE) loop-based [ 11 C]CO 2 fixation method, enabling the fast and efficient, direct-from-cyclotron, in-loop trapping of [ 11 C]CO 2 using mixed DBU/amine solutions. An optimised protocol was integrated into a proof-of-concept in-loop flow radiosynthesis of N,N'-[ 11 C]dibenzylurea. This reaction exhibited an average 78% trapping efficiency and a crude radiochemical purity of 83% (determined by radio-HPLC), giving an overall nonisolated radiochemical yield of 72% (decay-corrected) within just 3 minutes from end of bombardment. This proof-of-concept reaction has demonstrated that efficient [ 11 C]CO 2 fixation can be achieved in a low-volume (150 μL) ETFE loop and that this can be easily integrated into a rapid in-loop flow radiosynthesis of carbon-11-labelled products. This new in-loop methodology will allow fast radiolabelling reactions to be performed using cheap/disposable ETFE tubing setup (ideal for good manufacturing practice production) thereby contributing to the widespread usage of [ 11 C]CO 2 trapping/fixation reactions for the production of PET radiotracers. © 2017 The Authors. Journal of Labelled Compounds and Radiopharmaceuticals Published by John Wiley & Sons, Ltd.

  8. Carbon Dioxide Fixation in Isolated Kalanchoe Chloroplasts 1

    PubMed Central

    Levi, Carolyn; Gibbs, Martin

    1975-01-01

    Chloroplasts isolated from Kalanchoe diagremontiana leaves were capable of photosynthesizing at a rate of 5.4 μmoles of CO2 per milligram of chlorophyll per hour. The dark rate of fixation was about 1% of the light rate. A high photosynthetic rate was associated with low starch content of the leaves. Ribose 5-phosphate, fructose 1,6-diphosphate, and dithiothreitol stimulated fixation, whereas phosphoenolpyruvate and azide were inhibitors. The products of CO2 fixation were primarily those of the photosynthetic carbon reduction cycle. PMID:16659249

  9. The Biological Deep Sea Hydrothermal Vent as a Model to Study Carbon Dioxide Capturing Enzymes

    PubMed Central

    Minic, Zoran; Thongbam, Premila D.

    2011-01-01

    Deep sea hydrothermal vents are located along the mid-ocean ridge system, near volcanically active areas, where tectonic plates are moving away from each other. Sea water penetrates the fissures of the volcanic bed and is heated by magma. This heated sea water rises to the surface dissolving large amounts of minerals which provide a source of energy and nutrients to chemoautotrophic organisms. Although this environment is characterized by extreme conditions (high temperature, high pressure, chemical toxicity, acidic pH and absence of photosynthesis) a diversity of microorganisms and many animal species are specially adapted to this hostile environment. These organisms have developed a very efficient metabolism for the assimilation of inorganic CO2 from the external environment. In order to develop technology for the capture of carbon dioxide to reduce greenhouse gases in the atmosphere, enzymes involved in CO2 fixation and assimilation might be very useful. This review describes some current research concerning CO2 fixation and assimilation in the deep sea environment and possible biotechnological application of enzymes for carbon dioxide capture. PMID:21673885

  10. Inhibitory effect of self-generated extracellular dissolved organic carbon on carbon dioxide fixation in sulfur-oxidizing bacteria during a chemoautotrophic cultivation process and its elimination.

    PubMed

    Wang, Ya-Nan; Tsang, Yiu Fai; Wang, Lei; Fu, Xiaohua; Hu, Jiajun; Li, Huan; Le, Yiquan

    2018-03-01

    The features of extracellular dissolved organic carbon (EDOC) generation in two typical aerobic sulfur-oxidizing bacteria (Thiobacillus thioparus DSM 505 and Halothiobacillus neapolitanus DSM 15147) and its impact on CO 2 fixation during chemoautotrophic cultivation process were investigated. The results showed that EDOC accumulated in both strains during CO 2 fixation process. Large molecular weight (MW) EDOC derived from cell lysis and decay was dominant during the entire process in DSM 505, whereas small MW EDOC accounted for a large proportion during initial and middle stages of DSM 15147 as its cytoskeleton synthesis rate did not keep up with CO 2 assimilation rate. The self-generated EDOC feedback repressed cbb gene transcription and thus decreased total bacterial cell number and CO 2 fixation yield in both strains, but DSM 505 was more sensitive to this inhibition effect. Moreover, the membrane bioreactor effectively decreased the EDOC/TOC ratio and improved carbon fixation yield of DSM 505. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Systems analysis of the CO2 concentrating mechanism in cyanobacteria

    PubMed Central

    Mangan, Niall M; Brenner, Michael P

    2014-01-01

    Cyanobacteria are photosynthetic bacteria with a unique CO2 concentrating mechanism (CCM), enhancing carbon fixation. Understanding the CCM requires a systems level perspective of how molecular components work together to enhance CO2 fixation. We present a mathematical model of the cyanobacterial CCM, giving the parameter regime (expression levels, catalytic rates, permeability of carboxysome shell) for efficient carbon fixation. Efficiency requires saturating the RuBisCO reaction, staying below saturation for carbonic anhydrase, and avoiding wasteful oxygenation reactions. We find selectivity at the carboxysome shell is not necessary; there is an optimal non-specific carboxysome shell permeability. We compare the efficacy of facilitated CO2 uptake, CO2 scavenging, and HCO3− transport with varying external pH. At the optimal carboxysome permeability, contributions from CO2 scavenging at the cell membrane are small. We examine the cumulative benefits of CCM spatial organization strategies: enzyme co-localization and compartmentalization. DOI: http://dx.doi.org/10.7554/eLife.02043.001 PMID:24842993

  12. Nitrification and CO2 fixation in hot springs in the presence and absence of a nitrification inhibitor

    NASA Astrophysics Data System (ADS)

    Hungate, B. A.; Dijkstra, P.; Brown, J.; Mau, R. L.; Thomas, S.; Dodsworth, J. A.; Hedlund, B. P.; Boyd, E. S.; de la Torre, J. R.; Jewell, T.

    2012-12-01

    Ammonium oxidation occurs in terrestrial and aquatic ecosystems, and from temperatures approaching freezing to close to 80 °C. This reaction is catalyzed by ammonium oxidase associated with both Bacteria and Archaea, although those associated with Archaea appear dominant at temperatures above ~ 60°C. For bacteria, this process is coupled to active CO2 uptake, although whether Archaea use this reaction in situ to drive C fixation has yet to be definitively established. For some hot spring communities, the Thaumarcheota (specifically close relatives of Nitrosocaldus yellowstonii) represent a substantial proportion of the microbial community. We conducted gross nitrification and CO2 fixation measurements to determine 1- the upper in situ temperature limit for nitrification and 2- the contribution of ammonium oxidizers to the community C fixation by inhibiting nitrification using allylthiourea (ATU). We used 15NO3- pool dilution to determine nitrification in sediment slurries and incubated sediment with 14C-labeled bicarbonate to measure C fixation. Sediment samples were collected from the Great Boiling Spring near Gerlach, Nevada. The water temperature ranged between 83 and 50°C depending on the location in the main pool. We collected samples at 82, 72, 59, and 51 °C. The sediment was homogenized, 15NO3- was added. The nitrification inhibitor ATU was added before adding the 15N label. One sample was immediately stored cold, while another was incubated overnight at the collection temperature. In parallel experiments, 14C bicarbonate was added to the headspace and likewise incubated in situ for several hours in the presence and absence of ATU. We observed significant nitrification at temperatures from 51-72 °C, but not at 82 °C. This nitrification was blocked by ATU. We also observed significant CO2 fixation at 51 and 59 °C, but not at higher temperature. CO2 fixation was not blocked by the nitrification inhibitor. We conclude that 1- ammonium oxidizers are responsible for at most a small proportion of the community CO2 fixation, and 2- at the highest temperature assessed, nitrification is negligible even though the organism capable of ammonium oxidization is still present.

  13. Biology of Symbioses between Marine Invertebrates and Intracellular Bacteria

    DTIC Science & Technology

    1989-01-05

    number of gene probes for enzymes of CO2 (ribulose-1,5-bisphosphate carboxylase; RuBisCo ) and N2 (nitrogenase) fixation (see table 2). Using these probes... RuBisCo we could establish relationships and homologies for this enzyme among different symbionts. Table 1. Type and disposition of symblont DNA samples...st:;bution I Avail ?, I Table 2. Molecular probes available for this study. Prokaryote Type Plasrnid Probe Carbon Fixation ( RuBisCo ) Anabaena 7120

  14. Conversion of 4-Hydroxybutyrate to Acetyl Coenzyme A and Its Anapleurosis in the Metallosphaera sedula 3-Hydroxypropionate/4-Hydroxybutyrate Carbon Fixation Pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hawkins, AB; Adams, MWW; Kelly, RM

    2014-03-25

    The extremely thermoacidophilic archaeon Metallosphaera sedula (optimum growth temperature, 73 degrees C, pH 2.0) grows chemolithoautotrophically on metal sulfides or molecular hydrogen by employing the 3-hydroxypropionate/4-hydroxybutyrate (3HP/4HB) carbon fixation cycle. This cycle adds two CO2 molecules to acetyl coenzyme A (acetyl-CoA) to generate 4HB, which is then rearranged and cleaved to form two acetyl-CoA molecules. Previous metabolic flux analysis showed that two-thirds of central carbon precursor molecules are derived from succinyl-CoA, which is oxidized to malate and oxaloacetate. The remaining one-third is apparently derived from acetyl-CoA. As such, the steps beyond succinyl-CoA are essential for completing the carbon fixation cyclemore » and for anapleurosis of acetyl-CoA. Here, the final four enzymes of the 3HP/4HB cycle, 4-hydroxybutyrate-CoA ligase (AMP forming) (Msed_0406), 4-hydroxybutyryl-CoA dehydratase (Msed_1321), crotonyl-CoA hydratase/(S)-3-hydroxybutyryl-CoA dehydrogenase (Msed_0399), and acetoacetyl-CoA beta-ketothiolase (Msed_0656), were produced recombinantly in Escherichia coli, combined in vitro, and shown to convert 4HB to acetyl-CoA. Metabolic pathways connecting CO2 fixation and central metabolism were examined using a gas-intensive bioreactor system in which M. sedula was grown under autotrophic (CO2-limited) and heterotrophic conditions. Transcriptomic analysis revealed the importance of the 3HP/4HB pathway in supplying acetyl-CoA to anabolic pathways generating intermediates in M. sedula metabolism. The results indicated that flux between the succinate and acetyl-CoA branches in the 3HP/4HB pathway is governed by 4-hydroxybutyrate-CoA ligase, possibly regulated posttranslationally by the protein acetyltransferase (Pat)/Sir2-dependent system. Taken together, this work confirms the final four steps of the 3HP/4HB pathway, thereby providing the framework for examining connections between CO2 fixation and central metabolism in M. sedula.« less

  15. Free-air CO2 enrichment (FACE) reduces the inhibitory effect of soil nitrate on N2 fixation of Pisum sativum.

    PubMed

    Butterly, Clayton R; Armstrong, Roger; Chen, Deli; Tang, Caixian

    2016-01-01

    Additional carbohydrate supply resulting from enhanced photosynthesis under predicted future elevated CO2 is likely to increase symbiotic nitrogen (N) fixation in legumes. This study examined the interactive effects of atmospheric CO2 and nitrate (NO3(-)) concentration on the growth, nodulation and N fixation of field pea (Pisum sativum) in a semi-arid cropping system. Field pea was grown for 15 weeks in a Vertosol containing 5, 25, 50 or 90 mg NO3(-)-N kg(-1) under either ambient CO2 (aCO2; 390 ppm) or elevated CO2 (eCO2; 550 ppm) using free-air CO2 enrichment (SoilFACE). Under aCO2, field pea biomass was significantly lower at 5 mg NO3(-)-N kg(-1) than at 90 mg NO3(-)-N kg(-1) soil. However, increasing the soil N level significantly reduced nodulation of lateral roots but not the primary root, and nodules were significantly smaller, with 85% less nodule mass in the 90 NO3(-)-N kg(-1) than in the 5 mg NO3(-)-N kg(-1) treatment, highlighting the inhibitory effects of NO3(-). Field pea grown under eCO2 had greater biomass (approx. 30%) than those grown under aCO2, and was not affected by N level. Overall, the inhibitory effects of NO3(-) on nodulation and nodule mass appeared to be reduced under eCO2 compared with aCO2, although the effects of CO2 on root growth were not significant. Elevated CO2 alleviated the inhibitory effect of soil NO3(-) on nodulation and N2 fixation and is likely to lead to greater total N content of field pea growing under future elevated CO2 environments. © The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Augmenting the Calvin-Benson-Bassham cycle by a synthetic malyl-CoA-glycerate carbon fixation pathway.

    PubMed

    Yu, Hong; Li, Xiaoqian; Duchoud, Fabienne; Chuang, Derrick S; Liao, James C

    2018-05-22

    The Calvin-Benson-Bassham (CBB) cycle is presumably evolved for optimal synthesis of C3 sugars, but not for the production of C2 metabolite acetyl-CoA. The carbon loss in producing acetyl-CoA from decarboxylation of C3 sugar limits the maximum carbon yield of photosynthesis. Here we design a synthetic malyl-CoA-glycerate (MCG) pathway to augment the CBB cycle for efficient acetyl-CoA synthesis. This pathway converts a C3 metabolite to two acetyl-CoA by fixation of one additional CO 2 equivalent, or assimilates glyoxylate, a photorespiration intermediate, to produce acetyl-CoA without net carbon loss. We first functionally demonstrate the design of the MCG pathway in vitro and in Escherichia coli. We then implement the pathway in a photosynthetic organism Synechococcus elongates PCC7942, and show that it increases the intracellular acetyl-CoA pool and enhances bicarbonate assimilation by roughly 2-fold. This work provides a strategy to improve carbon fixation efficiency in photosynthetic organisms.

  17. Light Driven CO2 Fixation by Using Cyanobacterial Photosystem I and NADPH-Dependent Formate Dehydrogenase

    PubMed Central

    Ihara, Masaki; Kawano, Yusuke; Urano, Miho; Okabe, Ayako

    2013-01-01

    The ultimate goal of this research is to construct a new direct CO2 fixation system using photosystems in living algae. Here, we report light-driven formate production from CO2 by using cyanobacterial photosystem I (PS I). Formate, a chemical hydrogen carrier and important industrial material, can be produced from CO2 by using the reducing power and the catalytic function of formate dehydrogenase (FDH). We created a bacterial FDH mutant that experimentally switched the cofactor specificity from NADH to NADPH, and combined it with an in vitro-reconstituted cyanobacterial light-driven NADPH production system consisting of PS I, ferredoxin (Fd), and ferredoxin-NADP+-reductase (FNR). Consequently, light-dependent formate production under a CO2 atmosphere was successfully achieved. In addition, we introduced the NADPH-dependent FDH mutant into heterocysts of the cyanobacterium Anabaena sp. PCC 7120 and demonstrated an increased formate concentration in the cells. These results provide a new possibility for photo-biological CO2 fixation. PMID:23936519

  18. Light driven CO2 fixation by using cyanobacterial photosystem I and NADPH-dependent formate dehydrogenase.

    PubMed

    Ihara, Masaki; Kawano, Yusuke; Urano, Miho; Okabe, Ayako

    2013-01-01

    The ultimate goal of this research is to construct a new direct CO2 fixation system using photosystems in living algae. Here, we report light-driven formate production from CO2 by using cyanobacterial photosystem I (PS I). Formate, a chemical hydrogen carrier and important industrial material, can be produced from CO2 by using the reducing power and the catalytic function of formate dehydrogenase (FDH). We created a bacterial FDH mutant that experimentally switched the cofactor specificity from NADH to NADPH, and combined it with an in vitro-reconstituted cyanobacterial light-driven NADPH production system consisting of PS I, ferredoxin (Fd), and ferredoxin-NADP(+)-reductase (FNR). Consequently, light-dependent formate production under a CO2 atmosphere was successfully achieved. In addition, we introduced the NADPH-dependent FDH mutant into heterocysts of the cyanobacterium Anabaena sp. PCC 7120 and demonstrated an increased formate concentration in the cells. These results provide a new possibility for photo-biological CO2 fixation.

  19. Cell-specific CO2 fixation rates of two distinct groups of plastidic protists in the Atlantic Ocean remain unchanged after nutrient addition.

    PubMed

    Grob, Carolina; Jardillier, Ludwig; Hartmann, Manuela; Ostrowski, Martin; Zubkov, Mikhail V; Scanlan, David J

    2015-04-01

    To assess the role of open-ocean ecosystems in global CO2 fixation, we investigated how picophytoplankton, which dominate primary production, responded to episodic increases in nutrient availability. Previous experiments have shown nitrogen alone, or in combination with phosphorus or iron, to be the proximate limiting nutrient(s) for total phytoplankton grown over several days. Much less is known about how nutrient upshift affects picophytoplankton CO2 fixation over the duration of the light period. To address this issue, we performed a series of small volume (8-60 ml) - short term (10-11 h) nutrient addition experiments in different regions of the Atlantic Ocean using NH4 Cl, FeCl3 , K medium, dust and nutrient-rich water from 300 m depth. We found no significant nutrient stimulation of group-specific CO2 fixation rates of two taxonomically and size-distinct groups of plastidic protists. The above was true regardless of the region sampled or nutrient added, suggesting that this is a generic phenomenon. Our findings show that at least in the short term (i.e. daylight period), nutrient availability does not limit CO2 fixation by the smallest plastidic protists, while their taxonomic composition does not determine their response to nutrient addition. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  20. Direct gas-solid carbonation of serpentinite residues in the absence and presence of water vapor: a feasibility study for carbon dioxide sequestration.

    PubMed

    Veetil, Sanoopkumar Puthiya; Pasquier, Louis-César; Blais, Jean-François; Cecchi, Emmanuelle; Kentish, Sandra; Mercier, Guy

    2015-09-01

    Mineral carbonation of serpentinite mining residue offers an environmentally secure and permanent storage of carbon dioxide. The strategy of using readily available mining residue for the direct treatment of flue gas could improve the energy demand and economics of CO2 sequestration by avoiding the mineral extraction and separate CO2 capture steps. The present is a laboratory scale study to assess the possibility of CO2 fixation in serpentinite mining residues via direct gas-solid reaction. The degree of carbonation is measured both in the absence and presence of water vapor in a batch reactor. The gas used is a simulated gas mixture reproducing an average cement flue gas CO2 composition of 18 vol.% CO2. The reaction parameters considered are temperature, total gas pressure, time, and concentration of water vapor. In the absence of water vapor, the gas-solid carbonation of serpentinite mining residues is negligible, but the residues removed CO2 from the feed gas possibly due to reversible adsorption. The presence of small amount of water vapor enhances the gas-solid carbonation, but the measured rates are too low for practical application. The maximum CO2 fixation obtained is 0.07 g CO2 when reacting 1 g of residue at 200 °C and 25 barg (pCO2 ≈ 4.7) in a gas mixture containing 18 vol.% CO2 and 10 vol.% water vapor in 1 h. The fixation is likely surface limited and restricted due to poor gas-solid interaction. It was identified that both the relative humidity and carbon dioxide-water vapor ratio have a role in CO2 fixation regardless of the percentage of water vapor.

  1. Biochemistry and control of the reductive tricarboxylic acid pathway of CO 2 fixation and physiological role of the Rubis CO-like protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tabita, F. Robert

    2008-12-04

    During the past years of this project we have made progress relative to the two major goals of the proposal: (1) to study the biochemistry and regulation of the reductive TCA cycle of CO 2 fixation and (2) to probe the physiological role of a RubisCO-like protein (RLP). Both studies primarily employ the green sulfur bacterium Chlorobium tepidum as well as other photosynthetic bacteria including Rhodospirillum rubrum and Rhodopseudomonas palustris.

  2. Products of dark CO sub 2 fixation in pea root nodules support bacteroid metabolism. [Pisum sativum L

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosendahl, L.; Pedersen, W.B.; Vance, C.P.

    1990-05-01

    Products of the nodule cytosol in vivo dark ({sup 14}C)CO{sub 2} fixation were detected in the plant cytosol as well as in the bacteroids of pea (Pisum sativum L. cv Bodil) nodules. The distribution of the metabolites of the dark CO{sub 2} fixation products was compared in effective (fix{sup +}) nodules infected by a wild-type Rhizobium leguminosarum (MNF 300), and ineffective (fix{sup {minus}}) nodules of the R. leguminosarum mutant MNF 3080. The latter has a defect in the dicarboxylic acid transport system of the bacterial membrane. The {sup 14}C incorporation from ({sup 14}C)CO{sub 2} was about threefold greater in themore » wild-type nodules than in the mutant nodules. Similarly, in wild-type nodules the in vitro phosphoenolpyruvate carboxylase activity was substantially greater than that of the mutant. Almost 90% of the {sup 14}C label in the cytosol was found in organic acids in both symbioses. The results indicate a central role for nodule cytosol dark CO{sub 2} fixation in the supply of the bacteroids with dicarboxylic acids.« less

  3. Feasibility of biodiesel production and CO2 emission reduction by Monoraphidium dybowskii LB50 under semi-continuous culture with open raceway ponds in the desert area.

    PubMed

    Yang, Haijian; He, Qiaoning; Hu, Chunxiang

    2018-01-01

    Compared with other general energy crops, microalgae are more compatible with desert conditions. In addition, microalgae cultivated in desert regions can be used to develop biodiesel. Therefore, screening oil-rich microalgae, and researching the algae growth, CO 2 fixation and oil yield in desert areas not only effectively utilize the idle desertification lands and other resources, but also reduce CO 2 emission. Monoraphidium dybowskii LB50 can be efficiently cultured in the desert area using light resources, and lipid yield can be effectively improved using two-stage induction and semi-continuous culture modes in open raceway ponds (ORPs). Lipid content (LC) and lipid productivity (LP) were increased by 20% under two-stage industrial salt induction, whereas biomass productivity (BP) increased by 80% to enhance LP under semi-continuous mode in 5 m 2 ORPs. After 3 years of operation, M. dybowskii LB50 was successfully and stably cultivated under semi-continuous mode for a month during five cycles of repeated culture in a 200 m 2 ORP in the desert area. This culture mode reduced the supply of the original species. The BP and CO 2 fixation rate were maintained at 18 and 33 g m -2  day -1 , respectively. Moreover, LC decreased only during the fifth cycle of repeated culture. Evaporation occurred at 0.9-1.8 L m -2  day -1 , which corresponded to 6.5-13% of evaporation loss rate. Semi-continuous and two-stage salt induction culture modes can reduce energy consumption and increase energy balance through the energy consumption analysis of life cycle. This study demonstrates the feasibility of combining biodiesel production and CO 2 fixation using microalgae grown as feedstock under culture modes with ORPs by using the resources in the desert area. The understanding of evaporation loss and the sustainability of semi-continuous culture render this approach practically viable. The novel strategy may be a promising alternative to existing technology for CO 2 emission reduction and biofuel production.

  4. Promoting helix pitch and trichome length to improve biomass harvesting efficiency and carbon dioxide fixation rate by Spirulina sp. in 660 m2 raceway ponds under purified carbon dioxide from a coal chemical flue gas.

    PubMed

    Cheng, Jun; Guo, Wangbiao; Ameer Ali, Kubar; Ye, Qing; Jin, Guiyong; Qiao, Zhanshan

    2018-08-01

    The helix pitch and trichome length of Spirulina sp. were promoted to improve the biomass harvesting efficiency and CO 2 fixation rate in 660 m 2 raceway ponds aerated with food-grade CO 2 purified from a coal chemical flue gas. The CO 2 fixation rate was improved with increased trichome length of the Spirulina sp. in a raceway pond with double paddlewheels, baffles, and CO 2 aerators (DBA raceway pond). The trichome length has increased by 33.3 μm, and CO 2 fixation rate has increased by 42.3% and peaked to 51.3 g/m 2 /d in a DBA raceway pond. Biomass harvesting efficiency was increased with increased helix pitch. When the day-average greenhouse temperature was 33 °C and day-average sunlight intensity was 72,100 lu×, the helix pitch of Spirulina sp. was increased to 56.2 μm. Hence the biomass harvesting efficiency was maximized to 75.6% and biomass actual yield was increased to 35.9 kg in a DBA raceway pond. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Dark CO2 Fixation in Gladiolus Cormels and Its Regulation during the Break of Dormancy 1

    PubMed Central

    Ginzburg, Chen

    1975-01-01

    The increase in dark CO2 fixation during cold storage of Gladiolus x gandavensis van Houtte-type grandiflorus cormels is used to monitor changes in their state of dormancy. Dark fixation is also promoted by benzyladenine, which breaks cormel dormancy, and is inhibited by abscisic acid and gibberellin A3, which inhibit cormel germination. The rate of dark fixation by nondormant cormels is five times higher than that in dormant ones. Dark fixation is not due to microorganisms. It is temperature-dependent and can be measured stoichiometrically in vivo. The apex and base of the cormels accumulate more label than the central part. Dark fixation of both dormant and nondormant cormels is also promoted by imbibition in water. The fate of the labeled assimilates was followed by ion exchange chromatography. PMID:16659256

  6. Community structure and soil pH determine chemoautotrophic carbon dioxide fixation in drained paddy soils.

    PubMed

    Long, Xi-En; Yao, Huaiying; Wang, Juan; Huang, Ying; Singh, Brajesh K; Zhu, Yong-Guan

    2015-06-16

    Previous studies suggested that microbial photosynthesis plays a potential role in paddy fields, but little is known about chemoautotrophic carbon fixers in drained paddy soils. We conducted a microcosm study using soil samples from five paddy fields to determine the environmental factors and quantify key functional microbial taxa involved in chemoautotrophic carbon fixation. We used stable isotope probing in combination with phospholipid fatty acid (PLFA) and molecular approaches. The amount of microbial (13)CO2 fixation was determined by quantification of (13)C-enriched fatty acid methyl esters and ranged from 21.28 to 72.48 ng of (13)C (g of dry soil)(-1), and the corresponding ratio (labeled PLFA-C:total PLFA-C) ranged from 0.06 to 0.49%. The amount of incorporationof (13)CO2 into PLFAs significantly increased with soil pH except at pH 7.8. PLFA and high-throughput sequencing results indicated a dominant role of Gram-negative bacteria or proteobacteria in (13)CO2 fixation. Correlation analysis indicated a significant association between microbial community structure and carbon fixation. We provide direct evidence of chemoautotrophic C fixation in soils with statistical evidence of microbial community structure regulation of inorganic carbon fixation in the paddy soil ecosystem.

  7. Element interactions limit soil carbon storage

    PubMed Central

    van Groenigen, Kees-Jan; Six, Johan; Hungate, Bruce A.; de Graaff, Marie-Anne; van Breemen, Nico; van Kessel, Chris

    2006-01-01

    Rising levels of atmospheric CO2 are thought to increase C sinks in terrestrial ecosystems. The potential of these sinks to mitigate CO2 emissions, however, may be constrained by nutrients. By using metaanalysis, we found that elevated CO2 only causes accumulation of soil C when N is added at rates well above typical atmospheric N inputs. Similarly, elevated CO2 only enhances N2 fixation, the major natural process providing soil N input, when other nutrients (e.g., phosphorus, molybdenum, and potassium) are added. Hence, soil C sequestration under elevated CO2 is constrained both directly by N availability and indirectly by nutrients needed to support N2 fixation. PMID:16614072

  8. An efficient copper-based magnetic nanocatalyst for the fixation of carbon dioxide at atmospheric pressure.

    PubMed

    Sharma, Rakesh Kumar; Gaur, Rashmi; Yadav, Manavi; Goswami, Anandarup; Zbořil, Radek; Gawande, Manoj B

    2018-01-30

    In the last few decades, the emission of carbon dioxide (CO 2 ) in the environment has caused havoc across the globe. One of the most promising strategies for fixation of CO 2 is the cycloaddition reaction between epoxides and CO 2 to produce cyclic carbonates. For the first time, we have fabricated copper-based magnetic nanocatalyst and have applied for the CO 2 fixation. The prepared catalyst was thoroughly characterized using various techniques including XRD, FT-IR, TEM, FE-SEM, XPS, VSM, ICP-OES and elemental mapping. The reactions proceeded at atmospheric pressure, relatively lower temperature, short reaction time, solvent- less and organic halide free reaction conditions. Additionally, the ease of recovery through an external magnet, reusability of the catalyst and excellent yields of the obtained cyclic carbonates make the present protocol practical and sustainable.

  9. Ocean Acidification Alters the Photosynthetic Responses of a Coccolithophorid to Fluctuating Ultraviolet and Visible Radiation1[OPEN

    PubMed Central

    Jin, Peng; Gao, Kunshan; Villafañe, Virginia E.; Campbell, Douglas A.; Helbling, E. Walter

    2013-01-01

    Mixing of seawater subjects phytoplankton to fluctuations in photosynthetically active radiation (400–700 nm) and ultraviolet radiation (UVR; 280–400 nm). These irradiance fluctuations are now superimposed upon ocean acidification and thinning of the upper mixing layer through stratification, which alters mixing regimes. Therefore, we examined the photosynthetic carbon fixation and photochemical performance of a coccolithophore, Gephyrocapsa oceanica, grown under high, future (1,000 μatm) and low, current (390 μatm) CO2 levels, under regimes of fluctuating irradiances with or without UVR. Under both CO2 levels, fluctuating irradiances, as compared with constant irradiance, led to lower nonphotochemical quenching and less UVR-induced inhibition of carbon fixation and photosystem II electron transport. The cells grown under high CO2 showed a lower photosynthetic carbon fixation rate but lower nonphotochemical quenching and less ultraviolet B (280–315 nm)-induced inhibition. Ultraviolet A (315–400 nm) led to less enhancement of the photosynthetic carbon fixation in the high-CO2-grown cells under fluctuating irradiance. Our data suggest that ocean acidification and fast mixing or fluctuation of solar radiation will act synergistically to lower carbon fixation by G. oceanica, although ocean acidification may decrease ultraviolet B-related photochemical inhibition. PMID:23749851

  10. Effects of Carbon Dioxide and Oxygen on the Regulation of Photosynthetic Carbon Metabolism by Ammonia in Spinach Mesophyll Cells 1

    PubMed Central

    Lawyer, Arthur L.; Cornwell, Karen L.; Larsen, Peder O.; Bassham, James A.

    1981-01-01

    Photosynthetic carbon metabolism of isolated spinach mesophyll cells was characterized under conditions favoring photorespiratory (PR; 0.04% CO2 and 20% O2) and nonphotorespiratory (NPR; 0.2% CO2 and 2% O2) metabolism, as well as intermediate conditions. Comparisons were made between the metabolic effects of extracellularly supplied NH4+ and intracellular NH4+, produced primarily via PR metabolism. The metabolic effects of 14CO2 fixation under PR conditions were similar to perturbations of photosynthetic metabolism brought about by externally supplied NH4+; both increased labeling and intracellular concentrations of glutamine at the expense of glutamate and increased anaplerotic synthesis through α-ketoglutarate. The metabolic effects of added NH4+ during NPR fixation were greater than those during PR fixation, presumably due to lower initial NH4+ levels during NPR fixation. During PR fixation, addition of ammonia caused decreased pools and labeling of glutamate and serine and increased glycolate, glyoxylate, and glycine labeling. The glycolate pathway was thus affected by increased rates of carbon flow and decreased glutamate availability for glyoxylate transamination, resulting in increased usage of serine for transamination. Sucrose labeling decreased with NH4+ addition only during PR fixation, suggesting that higher photosynthetic rates under NPR conditions can accommodate the increased drain of carbon toward amino acid synthesis while maintaining sucrose synthesis. PMID:16662084

  11. Engineering strategies for simultaneous enhancement of C-phycocyanin production and CO2 fixation with Spirulina platensis.

    PubMed

    Chen, Chun-Yen; Kao, Pei-Chun; Tsai, Chia-Jung; Lee, Duu-Jong; Chang, Jo-Shu

    2013-10-01

    Spirulina platensis produces nutraceutical product C-phycocyanin (C-PC) and simultaneously mitigates CO2 emissions during its growth. Using a designed flat-type photobioreactor, the S. platensis biomass production was markedly enhanced, leading to a CO2 removal rate and a biomass concentration of 0.23 g/L/d and 2.25 g/L, respectively. The cell growth, CO2 fixation rate and C-PC production of S. platensis were investigated when it was cultivated under different irradiation conditions. As the light intensity increased from 100 to 700 μmol/m(2)/s, the overall biomass productivity, CO2 consumption rate and maximal C-PC productivity increased significantly to 0.74, 1.53 and 0.11 g/L/d, respectively. After determining the suitable light intensity, the nitrogen concentration was also adjusted to further enhance the performance of CO2 fixation and C-PC production. The results show that with an optimal nitrogen concentration of 0.045 M, the CO2 consumption rate and maximal C-PC productivity were further increased to 1.58 and 0.13 g/L/d, respectively. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Demonstration of Both a Photosynthetic and a Nonphotosynthetic CO(2) Requirement for NH(4) Assimilation in the Green Alga Selenastrum minutum.

    PubMed

    Amory, A M; Vanlerberghe, G C; Turpin, D H

    1991-01-01

    Nitrogen-limited and nitrogen-sufficient cell cultures of Selenastrum minutum (Naeg.) Collins (Chlorophyta) were used to investigate the dependence of NH(4) (+) assimilation on exogenous CO(2). N-sufficient cells were only able to assimilate NH(4) (+) maximally in the presence of CO(2) and light. Inhibition of photosynthesis with 3-(3,4-dichlorophenyl)-1,1-dimethylurea, diuron also inhibited NH(4) (+) assimilation. These results indicate that NH(4) (+) assimilation by N-sufficient cells exhibited a strict requirement for photosynthetic CO(2) fixation. N-limited cells assimilated NH(4) (+) both in the dark and in the light in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea, diuron, indicating that photosynthetic CO(2) fixation was not required for NH(4) (+) assimilation. Using CO(2) removal techniques reported previously in the literature, we were unable to demonstrate CO(2)-dependent NH(4) (+) assimilation in N-limited cells. However, employing more stringent CO(2) removal techniques we were able to show a CO(2) dependence of NH(4) (+) assimilation in both the light and dark, which was independent of photosynthesis. The results indicate two independent CO(2) requirements for NH(4) (+) assimilation. The first is as a substrate for photosynthetic CO(2) fixation, whereas the second is a nonphoto-synthetic requirement, presumably as a substrate for the anaplerotic reaction catalyzed by phosphoenolpyruvate carboxylase.

  13. Demonstration of Both a Photosynthetic and a Nonphotosynthetic CO2 Requirement for NH4+ Assimilation in the Green Alga Selenastrum minutum1

    PubMed Central

    Amory, Alan M.; Vanlerberghe, Greg C.; Turpin, David H.

    1991-01-01

    Nitrogen-limited and nitrogen-sufficient cell cultures of Selenastrum minutum (Naeg.) Collins (Chlorophyta) were used to investigate the dependence of NH4+ assimilation on exogenous CO2. N-sufficient cells were only able to assimilate NH4+ maximally in the presence of CO2 and light. Inhibition of photosynthesis with 3-(3,4-dichlorophenyl)-1,1-dimethylurea, diuron also inhibited NH4+ assimilation. These results indicate that NH4+ assimilation by N-sufficient cells exhibited a strict requirement for photosynthetic CO2 fixation. N-limited cells assimilated NH4+ both in the dark and in the light in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea, diuron, indicating that photosynthetic CO2 fixation was not required for NH4+ assimilation. Using CO2 removal techniques reported previously in the literature, we were unable to demonstrate CO2-dependent NH4+ assimilation in N-limited cells. However, employing more stringent CO2 removal techniques we were able to show a CO2 dependence of NH4+ assimilation in both the light and dark, which was independent of photosynthesis. The results indicate two independent CO2 requirements for NH4+ assimilation. The first is as a substrate for photosynthetic CO2 fixation, whereas the second is a nonphoto-synthetic requirement, presumably as a substrate for the anaplerotic reaction catalyzed by phosphoenolpyruvate carboxylase. PMID:16667950

  14. Effect of CO2 Concentration on Growth and Biochemical Composition of Newly Isolated Indigenous Microalga Scenedesmus bajacalifornicus BBKLP-07.

    PubMed

    Patil, Lakkanagouda; Kaliwal, Basappa

    2017-05-01

    Photosynthetic mitigation of CO 2 through microalgae is gaining great importance due to its higher photosynthetic ability compared to plants, and the biomass can be commercially exploited for various applications. CO 2 fixation capability of the newly isolated freshwater microalgae Scenedesmus bajacalifornicus BBKLP-07 was investigated using a 1-l photobioreactor. The cultivation was carried at varying concentration of CO 2 ranging from 5 to 25%, and the temperature and light intensities were kept constant. A maximum CO 2 fixation rate was observed at 15% CO 2 concentration. Characteristic growth parameters such as biomass productivity, specific growth rate, and maximum biomass yield, and biochemical parameters such as carbohydrate, protein, lipid, chlorophyll, and carotenoid were determined and discussed. It was observed that the effect of CO 2 concentration on growth and biochemical composition was quite significant. The maximum biomass productivity was 0.061 ± 0.0007 g/l/day, and the rate of CO 2 fixation was 0.12 ± 0.002 g/l/day at 15% CO 2 concentration. The carbohydrate and lipid content were maximum at 25% CO 2 with 26.19 and 25.81% dry cell weight whereas protein, chlorophyll, and carotenoid contents were 32.89% dry cell weight, 25.07 μg/ml and 6.15 μg/ml respectively at 15% CO 2 concentration.

  15. Effects of long-term elevated CO2, warming, and prolonged drought on Pleurozium-associated diazotrophic activity and abundance

    NASA Astrophysics Data System (ADS)

    Dyrnum, Kristine; Priemé, Anders; Michelsen, Anders

    2014-05-01

    Nitrogen (N2) fixation is the primary natural influx of N to terrestrial ecosystems, and changes in N2 fixation may have consequences for primary productivity and thus ecosystem function. We studied the activity and abundance of diazotrophs associated with the feather moss Pleurozium schreberi in a temperate heathland, after seven years of global change manipulations, including elevated atmospheric CO2 (510 ppm), increased temperature (0.5-1.5 ° C), and prolonged pre-summer droughts (4-6 weeks /year). Acetylene reduction assay was carried out monthly to monitor N2 fixation rates throughout one year, while nif H copy abundance, serving as a diazotroph abundance estimate, was measured by quantitative polymerase chain reaction (q-PCR). Prolonged summer droughts significantly increased both N2 fixation and nif H copy abundance, contrasting previous studies that demonstrate a direct negative correlation between N2 fixation and water availability. A shift in the relative abundance of N2-fixing bacteria from the green, upper parts of the moss stem to the lower, brown parts was observed. This shift could make diazotrophs less sensitive to desiccation, enabling N2 fixation to be upheld for longer during drought and thus causing higher abundance. Increased temperature likewise had a positive effect on the diazotroph abundance, although this did not translate into increased activity. Possibly, warming protects diazotrophs during extreme cold events, while actual N2 fixation is limited by water, disregarding a rise in potential N2 fixation caused by higher abundance. Increased CO2 caused no significant diazotroph response. Our study showed that long-term increase in temperature and recurrent drought events cause higher diazotroph abundance in Pleurozium schreberi and thus enhance the potential N2 fixations rate. Furthermore, our results indicate that diazotrophs may alter colonization patterns and thereby actively remain in the moss fraction less likely affected by desiccation. In consequence, Pleurozium-associated N2 fixation may become an even more important contributor of N for terrestrial ecosystems in a predicted future climate.

  16. Transcriptome-based analysis on carbon metabolism of Haematococcus pluvialis mutant under 15% CO2.

    PubMed

    Li, Ke; Cheng, Jun; Lu, Hongxiang; Yang, Weijuan; Zhou, Junhu; Cen, Kefa

    2017-06-01

    To elucidate the mechanism underlying the enhanced growth rate in the Haematococcus pluvialis mutated with 60 Co-γ rays and domesticated with 15% CO 2 , transcriptome sequencing was conducted to clarify the carbon metabolic pathways of mutant cells. The CO 2 fixation rate of mutant cells increased to 2.57gL -1 d -1 under 15% CO 2 due to the enhanced photosynthesis, carbon fixation, glycolysis pathways. The upregulation of PetH, ATPF0A and PetJ related to photosynthetic electron transport, ATP synthase and NADPH generation promoted the photosynthesis. The upregulation of genes related to Calvin cycle and ppdK promoted carbon fixation in both C3 and C4 photosynthetic pathways. The reallocation of carbon was also enhanced under 15% CO 2 . The 19-, 14- and 3.5-fold upregulation of FBA, TPI and PK genes, respectively, remarkably promoted the glycolysis pathways. This accelerated the conversion of photosynthetic carbon to pyruvate, which was an essential precursor for astaxanthin and lipids biosynthesis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Biotransformation of carbon dioxide in bioelectrochemical systems: State of the art and future prospects

    NASA Astrophysics Data System (ADS)

    Bajracharya, Suman; Srikanth, Sandipam; Mohanakrishna, Gunda; Zacharia, Renju; Strik, David PBTB; Pant, Deepak

    2017-07-01

    Carbon dioxide (CO2) utilization/recycling for the production of chemicals and gaseous/liquid energy-carriers is a way to moderate the rising CO2 in the atmosphere. One of the possible solutions for the CO2 sequestration is the electrochemical reduction of this stable molecule to useful fuel/products. Nevertheless, the surface chemistry of CO2 reduction is a challenge due to the presence of large energy barriers, requiring noticeable catalysis. The recent approach of microbial electrocatalysis of CO2 reduction has promising prospects to reduce the carbon level sustainably, taking full advantage of CO2-derived chemical commodities. We review the currently investigated bioelectrochemical approaches that could possibly be implemented to enable the handling of CO2 emissions. This review covers the most recent advances in the bioelectrochemical approaches of CO2 transformations in terms of biocatalysts development and process design. Furthermore, the extensive research on carbon fixation and conversion to different value added chemicals is reviewed. The review concludes by detailing the key challenges and future prospects that could enable economically feasible microbial electrosynthesis technology.

  18. Diurnal patterns of chlorophyll fluorescence and CO2 fixation in orchard grown Torreya taxifolia (Arn.).

    Treesearch

    Anita C. Koehn; Robert L. Doudrick

    1999-01-01

    Diurnal patterns of chlorophyll fluorescence and CO2 fixation in orchard measurements were taken on sunny days in October 1996, on three Torreya taxifolia (Arn.) plants grown in an open canopy orchard. Information from chlorophyll fluorescence quenching analysis indicated that during periods of highest light intensity and temperatures there were...

  19. Ammonia oxidation coupled to CO2 fixation by archaea and bacteria in an agricultural soil.

    PubMed

    Pratscher, Jennifer; Dumont, Marc G; Conrad, Ralf

    2011-03-08

    Ammonia oxidation is an essential part of the global nitrogen cycling and was long thought to be driven only by bacteria. Recent findings expanded this pathway also to the archaea. However, most questions concerning the metabolism of ammonia-oxidizing archaea, such as ammonia oxidation and potential CO(2) fixation, remain open, especially for terrestrial environments. Here, we investigated the activity of ammonia-oxidizing archaea and bacteria in an agricultural soil by comparison of RNA- and DNA-stable isotope probing (SIP). RNA-SIP demonstrated a highly dynamic and diverse community involved in CO(2) fixation and carbon assimilation coupled to ammonia oxidation. DNA-SIP showed growth of the ammonia-oxidizing bacteria but not of archaea. Furthermore, the analysis of labeled RNA found transcripts of the archaeal acetyl-CoA/propionyl-CoA carboxylase (accA/pccB) to be expressed and labeled. These findings strongly suggest that ammonia-oxidizing archaeal groups in soil autotrophically fix CO(2) using the 3-hydroxypropionate-4-hydroxybutyrate cycle, one of the two pathways recently identified for CO(2) fixation in Crenarchaeota. Catalyzed reporter deposition (CARD)-FISH targeting the gene encoding subunit A of ammonia monooxygenase (amoA) mRNA and 16S rRNA of archaea also revealed ammonia-oxidizing archaea to be numerically relevant among the archaea in this soil. Our results demonstrate a diverse and dynamic contribution of ammonia-oxidizing archaea in soil to nitrification and CO(2) assimilation and that their importance to the overall archaeal community might be larger than previously thought.

  20. Ammonia oxidation coupled to CO2 fixation by archaea and bacteria in an agricultural soil

    PubMed Central

    Pratscher, Jennifer; Dumont, Marc G.; Conrad, Ralf

    2011-01-01

    Ammonia oxidation is an essential part of the global nitrogen cycling and was long thought to be driven only by bacteria. Recent findings expanded this pathway also to the archaea. However, most questions concerning the metabolism of ammonia-oxidizing archaea, such as ammonia oxidation and potential CO2 fixation, remain open, especially for terrestrial environments. Here, we investigated the activity of ammonia-oxidizing archaea and bacteria in an agricultural soil by comparison of RNA- and DNA-stable isotope probing (SIP). RNA-SIP demonstrated a highly dynamic and diverse community involved in CO2 fixation and carbon assimilation coupled to ammonia oxidation. DNA-SIP showed growth of the ammonia-oxidizing bacteria but not of archaea. Furthermore, the analysis of labeled RNA found transcripts of the archaeal acetyl-CoA/propionyl-CoA carboxylase (accA/pccB) to be expressed and labeled. These findings strongly suggest that ammonia-oxidizing archaeal groups in soil autotrophically fix CO2 using the 3-hydroxypropionate–4-hydroxybutyrate cycle, one of the two pathways recently identified for CO2 fixation in Crenarchaeota. Catalyzed reporter deposition (CARD)-FISH targeting the gene encoding subunit A of ammonia monooxygenase (amoA) mRNA and 16S rRNA of archaea also revealed ammonia-oxidizing archaea to be numerically relevant among the archaea in this soil. Our results demonstrate a diverse and dynamic contribution of ammonia-oxidizing archaea in soil to nitrification and CO2 assimilation and that their importance to the overall archaeal community might be larger than previously thought. PMID:21368116

  1. Rechargeable Al-CO2 Batteries for Reversible Utilization of CO2.

    PubMed

    Ma, Wenqing; Liu, Xizheng; Li, Chao; Yin, Huiming; Xi, Wei; Liu, Ruirui; He, Guang; Zhao, Xian; Luo, Jun; Ding, Yi

    2018-05-21

    The excessive emission of CO 2 and the energy crisis are two major issues facing humanity. Thus, the electrochemical reduction of CO 2 and its utilization in metal-CO 2 batteries have attracted wide attention because the batteries can simultaneously accelerate CO 2 fixation/utilization and energy storage/release. Here, rechargeable Al-CO 2 batteries are proposed and realized, which use chemically stable Al as the anode. The batteries display small discharge/charge voltage gaps down to 0.091 V and high energy efficiencies up to 87.7%, indicating an efficient battery performance. Their chemical reaction mechanism to produce the performance is revealed to be 4Al + 9CO 2 ↔ 2Al 2 (CO 3 ) 3 + 3C, by which CO 2 is reversibly utilized. These batteries are envisaged to effectively and safely serve as a potential CO 2 fixation/utilization strategy with stable Al. © 2018 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Methanotrophy induces nitrogen fixation during peatland development

    PubMed Central

    Larmola, Tuula; Leppänen, Sanna M.; Tuittila, Eeva-Stiina; Aarva, Maija; Merilä, Päivi; Fritze, Hannu; Tiirola, Marja

    2014-01-01

    Nitrogen (N) accumulation rates in peatland ecosystems indicate significant biological atmospheric N2 fixation associated with Sphagnum mosses. Here, we show that the linkage between methanotrophic carbon cycling and N2 fixation may constitute an important mechanism in the rapid accumulation of N during the primary succession of peatlands. In our experimental stable isotope enrichment study, previously overlooked methane-induced N2 fixation explained more than one-third of the new N input in the younger peatland stages, where the highest N2 fixation rates and highest methane oxidation activities co-occurred in the water-submerged moss vegetation. PMID:24379382

  3. NanoSIMS Analyses of Mo Indicate Nitrogenase Activity and Help Solve a N and C Fixation Puzzle in a Marine Cyanobacterium

    NASA Astrophysics Data System (ADS)

    Pett-Ridge, J.; Weber, P. K.; Finzi, J.; Hutcheon, I. D.; Capone, D. G.

    2006-12-01

    Diazotrophic cyanobacteria are capable of both CO2 and N2 fixation, yet must separate these two functions because the nitrogenase enzymes used in N2 fixation are strongly inhibited by O2 produced during photosynthesis. Some lineages, such as Anabaena, use specialized cells (heterocysts) to maintain functional segregation. However the mechanism of this segregation is poorly understood in Trichodesmium, a critical component of marine primary production in the tropical and subtropical North Atlantic. While some Trichodesmium studies suggest a temporal segregation of the nitrogen and carbon fixing processes, others indicate nitrogen fixation is spatially isolated in differentiated cells called diazocytes. In order to isolate the intracellular location of N fixation in both species, we used a combination of TEM, SEM and NanoSIMS analysis to map the distribution of C, N and Mo (a critical nitrogenase co-factor) isotopes in intact cells. NanoSIMS is a powerful surface analysis tool which combines nanometer-scale imaging resolution with the high sensitivity of mass spectrometry. Using cells grown in a 13CO^2 and 15N2 enriched atmosphere, our analyses indicate that in Anabaena, heterocysts are consistently enriched in Mo, and Mo accumulation suggests active N fixation (as opposed to N storage). In the non- heterocystous Trichodesmium, Mo is concentrated in sub-regions of individual cells, and is not associated with regions of N storage (cyanophycin granules). We suggest that NanoSIMS mapping of metal enzyme co- factors is a unique method of identifying physiological and morphological characteristics within individual bacterial cells. This combination of NanoSIMS analysis and high resolution microscopy allows isotopic analysis to be linked to morphological features and holds great promise for fine-scale studies of bacteria metabolism.

  4. Effects of nutrient ratios and carbon dioxide bio-sequestration on biomass growth of Chlorella sp. in bubble column photobioreactor.

    PubMed

    Vo, Hoang-Nhat-Phong; Bui, Xuan-Thanh; Nguyen, Thanh-Tin; Nguyen, Dinh Duc; Dao, Thanh-Son; Cao, Ngoc-Dan-Thanh; Vo, Thi-Kim-Quyen

    2018-08-01

    Photobioreactor technology, especially bubble column configuration, employing microalgae cultivation (e.g., Chlorella sp.), is an ideal man-made environment to achieve sufficient microalgae biomass through its strictly operational control. Nutrients, typically N and P, are necessary elements in the cultivation process, which determine biomass yield and productivity. Specifically, N:P ratios have certain effects on microalgae's biomass growth. It is also attractive that microalgae can sequester CO 2 by using that carbon source for photosynthesis and, subsequently, reducing CO 2 emission. Therefore, this study aims to investigate the effect of N:P ratios on Chlorella sp.'s growth, and to study the dynamic of CO 2 fixation in the bubble column photobioreactor. According to our results, N:P ratio of 15:1 could produce the highest biomass yield (3568 ± 158 mg L -1 ). The maximum algae concentration was 105 × 10 6  cells mL -1 , receiving after 92 h. Chlorella sp. was also able to sequester CO 2 at 28 ± 1.2%, while the specific growth rate and carbon fixation rate were observed at 0.064 h -1 and 68.9 ± 1.91 mg L -1  h -1 , respectively. The types of carbon sources (e.g., organic and inorganic carbon) possessed potential impact on microalgae's cultivation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Influence of elevated CO2 concentrations on cell division and nitrogen fixation rates in the bloom-forming cyanobacterium Nodularia spumigena

    NASA Astrophysics Data System (ADS)

    Czerny, J.; Ramos, J. Barcelos E.; Riebesell, U.

    2009-09-01

    The surface ocean absorbs large quantities of the CO2 emitted to the atmosphere from human activities. As this CO2 dissolves in seawater, it reacts to form carbonic acid. While this phenomenon, called ocean acidification, has been found to adversely affect many calcifying organisms, some photosynthetic organisms appear to benefit from increasing [CO2]. Among these is the cyanobacterium Trichodesmium, a predominant diazotroph (nitrogen-fixing) in large parts of the oligotrophic oceans, which responded with increased carbon and nitrogen fixation at elevated pCO2. With the mechanism underlying this CO2 stimulation still unknown, the question arises whether this is a common response of diazotrophic cyanobacteria. In this study we therefore investigate the physiological response of Nodularia spumigena, a heterocystous bloom-forming diazotroph of the Baltic Sea, to CO2-induced changes in seawater carbonate chemistry. N. spumigena reacted to seawater acidification/carbonation with reduced cell division rates and nitrogen fixation rates, accompanied by significant changes in carbon and phosphorus quota and elemental composition of the formed biomass. Possible explanations for the contrasting physiological responses of Nodularia compared to Trichodesmium may be found in the different ecological strategies of non-heterocystous (Trichodesmium) and heterocystous (Nodularia) cyanobacteria.

  6. Nitrogen Fixation by Gliding Arc Plasma: Better Insight by Chemical Kinetics Modelling.

    PubMed

    Wang, Weizong; Patil, Bhaskar; Heijkers, Stjin; Hessel, Volker; Bogaerts, Annemie

    2017-05-22

    The conversion of atmospheric nitrogen into valuable compounds, that is, so-called nitrogen fixation, is gaining increased interest, owing to the essential role in the nitrogen cycle of the biosphere. Plasma technology, and more specifically gliding arc plasma, has great potential in this area, but little is known about the underlying mechanisms. Therefore, we developed a detailed chemical kinetics model for a pulsed-power gliding-arc reactor operating at atmospheric pressure for nitrogen oxide synthesis. Experiments are performed to validate the model and reasonable agreement is reached between the calculated and measured NO and NO 2 yields and the corresponding energy efficiency for NO x formation for different N 2 /O 2 ratios, indicating that the model can provide a realistic picture of the plasma chemistry. Therefore, we can use the model to investigate the reaction pathways for the formation and loss of NO x . The results indicate that vibrational excitation of N 2 in the gliding arc contributes significantly to activating the N 2 molecules, and leads to an energy efficient way of NO x production, compared to the thermal process. Based on the underlying chemistry, the model allows us to propose solutions on how to further improve the NO x formation by gliding arc technology. Although the energy efficiency of the gliding-arc-based nitrogen fixation process at the present stage is not comparable to the world-scale Haber-Bosch process, we believe our study helps us to come up with more realistic scenarios of entering a cutting-edge innovation in new business cases for the decentralised production of fertilisers for agriculture, in which low-temperature plasma technology might play an important role. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. [CAM in Tillandsia usneoides: Studies on the pathway of carbon and the dependency of CO2-exchange on light intensity, temperature and water content of the plant].

    PubMed

    Kluge, M; Lange, O L; Eichmann, M V; Schmid, R

    1973-12-01

    Tillandsia usneoides, in the common sense a non-succulent plant, exhibits CO2 exchange characterized by net CO2 dark fixation during the night and depression of CO2 exchange during the day. Malate has been demonstrated to accumulate during CO2 dark fixation and to be converted to carbohydrates in light. Thus, T. usneoides exhibits CAM like typical succulents.Net CO2 uptake during the day is increased with net CO2 output being suppressed in duration of time and extent when light intensity increases. Furthermore, a slight increase in CO2 fixation during the following night can be observed if the plants were treated with high light intensity during the previous day.Curves of CO2 exchange typical for CAM are obtained if T. usneoides is kept at 15°C and 20°C. Lower temperature tend to increase CO2 uptake during the day and to inhibit CO2 dark fixation. Temperatures higher than 20°C favour loss of CO2 by respiration, which becomes apparent during the whole day and night at 30°C and higher temperatures. Thus, T. usneoides gains carbon only at temperatures well below 25°C.Net CO2 uptake during the day occurs only in moist plant material and is inhibited in plants cept under water stress conditions. However, CO2 uptake during the night is clearly favoured if the plants dry out. Therefore dry plants gain more carbon than moist ones.Curves of CO2 exchange typical for CAM were also obtained with 13 other species of the genus Tillandsia.The exhibition of CAM by the non-succulent T. usneoides calls for a new definition of the term "succulence" if it is to remain useful in characterizing this metabolic pathway. Because CO2-fixing cells of T. usneoides possess relatively large vacuoles and are relatively poor in chloroplasts, they resembles the assimilatory cells of typical CAM-exhibiting succulents. Therefore, if "succulence" only means the capacity of big vacuoles to store malate, the assimilatory cells in T. usneoides are succulent. It seems to be useful to investigate parameters which would allow a definition of the term "succulence" on the level of the cell rather than on the level of the whole plant or plant organs.

  8. Influence of elevated CO2 concentrations on cell division and nitrogen fixation rates in the bloom-forming cyanobacterium Nodularia spumigena

    NASA Astrophysics Data System (ADS)

    Czerny, J.; Ramos, J. Barcelos E.; Riebesell, U.

    2009-04-01

    The surface ocean currently absorbs about one-fourth of the CO2 emitted to the atmosphere from human activities. As this CO2 dissolves in seawater, it reacts with seawater to form carbonic acid, increasing ocean acidity and shifting the partitioning of inorganic carbon species towards increased CO2 at the expense of CO32- concentrations. While the decrease in [CO32-] and/or increase in [H+] has been found to adversely affect many calcifying organisms, some photosynthetic organisms appear to benefit from increasing [CO2]. Among these is the cyanobacterium Trichodesmium, a predominant diazotroph (nitrogen-fixing) in large parts of the oligotrophic oceans, which responded with increased carbon and nitrogen fixation at elevated pCO2. With the mechanism underlying this CO2 stimulation still unknown, the question arises whether this is a common response of diazotrophic cyanobacteria. In this study we therefore investigate the physiological response of Nodularia spumigena, a heterocystous bloom-forming diazotroph of the Baltic Sea, to CO2-induced changes in seawater carbonate chemistry. N. spumigena reacted to seawater acidification/carbonation with reduced cell division rates and nitrogen fixation rates, accompanied by significant changes in carbon and phosphorus quota and elemental composition of the formed biomass. Possible explanations for the contrasting physiological responses of Nodularia compared to Trichodesmium may be found in the different ecological strategies of non-heterocystous (Trichodesmium) and heterocystous (Nodularia) cyanobacteria.

  9. Methanotrophy Induces Nitrogen Fixation in Boreal Mosses

    NASA Astrophysics Data System (ADS)

    Tiirola, M. A.

    2014-12-01

    Many methanotrophic bacterial groups fix nitrogen in laboratory conditions. Furthermore, nitrogen (N) is a limiting nutrient in many environments where methane concentrations are highest. Despite these facts, methane-induced N fixation has previously been overlooked, possibly due to methodological problems. To study the possible link between methanotrophy and diazotrophy in terrestrial and aquatic habitats, we measured the co-occurrence of these two processes in boreal forest, peatland and stream mosses using a stable isotope labeling approach (15 N2 and 13 CH4 double labeling) and sequencing of the nifH gene marker. N fixation associated with forest mosses was dependent on the annual N deposition, whereas methane stimulate N fixation neither in high (>3 kg N ha -1 yr -1) nor low deposition areas, which was in accordance with the nifH gene sequencing showing that forest mosses (Pleurozium schreberi and Hylocomium splendens ) carried mainly cyanobacterial N fixers. On the other extreme, in stream mosses (Fontinalis sp.) methane was actively oxidized throughout the year, whereas N fixation showed seasonal fluctuation. The co-occurrence of the two processes in single cell level was proven by co-localizing both N and methane-carbon fixation with the secondary ion mass spectrometry (SIMS) approach. Methanotrophy and diazotrophy was also studied in peatlands of different primary successional stages in the land-uplift coast of Bothnian Bay, in the Siikajoki chronosequence, where N accumulation rates in peat profiles indicate significant N fixation. Based on experimental evidence it was counted that methane-induced N fixation explained over one-third of the new N input in the younger peatland successional stages, where the highest N fixation rates and highest methane oxidation activities co-occurred in the water-submerged Sphagnum moss vegetation. The linkage between methanotrophic carbon cycling and N fixation may therefore constitute an important mechanism in the rapid accumulation of N during the primary succession of peatlands. It is still an open issue whether methanotrophy induces N fixation directly or by enhancing phototrophic or heterotrophic N fixation.

  10. Attention and Recall of Point-of-sale Tobacco Marketing: A Mobile Eye-Tracking Pilot Study.

    PubMed

    Bansal-Travers, Maansi; Adkison, Sarah E; O'Connor, Richard J; Thrasher, James F

    2016-01-01

    As tobacco advertising restrictions have increased, the retail 'power wall' behind the counter is increasingly invaluable for marketing tobacco products. The primary objectives of this pilot study were 3-fold: (1) evaluate the attention paid/fixations on the area behind the cash register where tobacco advertising is concentrated and tobacco products are displayed in a real-world setting, (2) evaluate the duration (dwell-time) of these fixations, and (3) evaluate the recall of advertising displayed on the tobacco power wall. Data from 13 Smokers (S) and 12 Susceptible or non-daily Smokers (SS) aged 180-30 from a mobile eye-tracking study. Mobile-eye tracking technology records the orientation (fixation) and duration (dwell-time) of visual attention. Participants were randomized to one of three purchase tasks at a convenience store: Candy bar Only (CO; N = 10), Candy bar + Specified cigarette Brand (CSB; N = 6), and Candy bar + cigarette Brand of their Choice (CBC; N = 9). A post-session survey evaluated recall of tobacco marketing. Key outcomes were fixations and dwell-time on the cigarette displays at the point-of-sale. Participants spent a median time of 44 seconds during the standardized time evaluated and nearly three-quarters (72%) fixated on the power wall during their purchase, regardless of smoking status (S: 77%, SS: 67%) or purchase task (CO: 44%, CSB: 71%, CBC: 100%). In the post session survey, nearly all participants (96%) indicated they noticed a cigarette brand and 64% were able to describe a specific part of the tobacco wall or recall a promotional offer. Consumers are exposed to point-of-sale tobacco marketing, regardless of smoking status. FDA should consider regulations that limit exposure to point-of-sale tobacco marketing among consumers.

  11. Response of Spring Diatoms to CO2 Availability in the Western North Pacific as Determined by Next-Generation Sequencing.

    PubMed

    Endo, Hisashi; Sugie, Koji; Yoshimura, Takeshi; Suzuki, Koji

    2016-01-01

    Next-generation sequencing (NGS) technologies have enabled us to determine phytoplankton community compositions at high resolution. However, few studies have adopted this approach to assess the responses of natural phytoplankton communities to environmental change. Here, we report the impact of different CO2 levels on spring diatoms in the Oyashio region of the western North Pacific as estimated by NGS of the diatom-specific rbcL gene (DNA), which encodes the large subunit of RubisCO. We also examined the abundance and composition of rbcL transcripts (cDNA) in diatoms to assess their physiological responses to changing CO2 levels. A short-term (3-day) incubation experiment was carried out on-deck using surface Oyashio waters under different pCO2 levels (180, 350, 750, and 1000 μatm) in May 2011. During the incubation, the transcript abundance of the diatom-specific rbcL gene decreased with an increase in seawater pCO2 levels. These results suggest that CO2 fixation capacity of diatoms decreased rapidly under elevated CO2 levels. In the high CO2 treatments (750 and 1000 μatm), diversity of diatom-specific rbcL gene and its transcripts decreased relative to the control treatment (350 μatm), as well as contributions of Chaetocerataceae, Thalassiosiraceae, and Fragilariaceae to the total population, but the contributions of Bacillariaceae increased. In the low CO2 treatment, contributions of Bacillariaceae also increased together with other eukaryotes. These suggest that changes in CO2 levels can alter the community composition of spring diatoms in the Oyashio region. Overall, the NGS technology provided us a deeper understanding of the response of diatoms to changes in CO2 levels in terms of their community composition, diversity, and photosynthetic physiology.

  12. Atmospheric dynamics of combined crops of wheat, cowpea, pinto beans in the Laboratory Biosphere closed ecological system

    NASA Astrophysics Data System (ADS)

    Dempster, W.; Nelson, M.; Silverstone, S.; Allen, J.; Alling, A.; van Thillo, M.

    A mixed crop consisting of cowpeas pinto beans and Apogee ultra-dwarf wheat was grown in Laboratory Biosphere a 40 m 3 closed life system equipped with 12000 watts of high pressure sodium lamps over planting beds with 5 37 m 2 of soil Similar to earlier reported experiments the concentration of carbon dioxide initially increased to 7860 ppm at 10 days after planting due to soil respiration plus CO 2 contributed from researchers breathing while in the chamber for brief periods before plant growth became substantial fell rapidly as plant growth increased up to 29 days after planting and then was maintained mostly in the range of about 200 -- 3000 ppm with a few excursions by CO 2 injections to feed plant growth Numerous analyses of rate of change of CO 2 concentration at many different concentrations and at many different days after planting reveals a strong dependence of fixation rates on CO 2 concentration In the middle period of growth days 31 -- 61 fixation rates doubled for CO 2 at 450 ppm compared to 270 ppm doubled again at 1000 ppm and increased a further 50 at 2040 ppm High productivity from these crops and the increase of fixation rates with elevated CO 2 concentration supports the concept that enhanced CO2 can be a useful strategy for remote life support systems

  13. Distinct responses of soil microbial communities to elevated CO2 and O3 in a soybean agro-ecosystem

    PubMed Central

    He, Zhili; Xiong, Jinbo; Kent, Angela D; Deng, Ye; Xue, Kai; Wang, Gejiao; Wu, Liyou; Van Nostrand, Joy D; Zhou, Jizhong

    2014-01-01

    The concentrations of atmospheric carbon dioxide (CO2) and tropospheric ozone (O3) have been rising due to human activities. However, little is known about how such increases influence soil microbial communities. We hypothesized that elevated CO2 (eCO2) and elevated O3 (eO3) would significantly affect the functional composition, structure and metabolic potential of soil microbial communities, and that various functional groups would respond to such atmospheric changes differentially. To test these hypotheses, we analyzed 96 soil samples from a soybean free-air CO2 enrichment (SoyFACE) experimental site using a comprehensive functional gene microarray (GeoChip 3.0). The results showed the overall functional composition and structure of soil microbial communities shifted under eCO2, eO3 or eCO2+eO3. Key functional genes involved in carbon fixation and degradation, nitrogen fixation, denitrification and methane metabolism were stimulated under eCO2, whereas those involved in N fixation, denitrification and N mineralization were suppressed under eO3, resulting in the fact that the abundance of some eO3-supressed genes was promoted to ambient, or eCO2-induced levels by the interaction of eCO2+eO3. Such effects appeared distinct for each treatment and significantly correlated with soil properties and soybean yield. Overall, our analysis suggests possible mechanisms of microbial responses to global atmospheric change factors through the stimulation of C and N cycling by eCO2, the inhibition of N functional processes by eO3 and the interaction by eCO2 and eO3. This study provides new insights into our understanding of microbial functional processes in response to global atmospheric change in soybean agro-ecosystems. PMID:24108327

  14. Elevated CO2 did not mitigate the effect of a short-term drought on biological soil crusts

    USGS Publications Warehouse

    Wertin, Timothy M.; Phillips, Susan L.; Reed, Sasha C.; Belnap, Jayne

    2012-01-01

    Biological soil crusts (biocrusts) are critical components of arid and semi-arid ecosystems that contribute significantly to carbon (C) and nitrogen (N) fixation, water retention, soil stability, and seedling recruitment. While dry-land ecosystems face a number of environmental changes, our understanding of how biocrusts may respond to such perturbation remains notably poor. To determine the effect that elevated CO2 may have on biocrust composition, cover, and function, we measured percent soil surface cover, effective quantum yield, and pigment concentrations of naturally occurring biocrusts growing in ambient and elevated CO2 at the desert study site in Nevada, USA, from spring 2005 through spring 2007. During the experiment, a year-long drought allowed us to explore the interacting effects that elevated CO2 and water availability may have on biocrust cover and function. We found that, regardless of CO2 treatment, precipitation was the major regulator of biocrust cover. Drought reduced moss and lichen cover to near-zero in both ambient and elevated CO2 plots, suggesting that elevated CO2 did not alleviate water stress or increase C fixation to levels sufficient to mitigate drought-induced reduction in cover. In line with this result, lichen quantum yield and soil cyanobacteria pigment concentrations appeared more strongly dependent upon recent precipitation than CO2 treatment, although we did find evidence that, when hydrated, elevated CO2 increased lichen C fixation potential. Thus, an increase in atmospheric CO2 may only benefit biocrusts if overall climate patterns shift to create a wetter soil environment.

  15. Acetogenesis and the Wood-Ljungdahl Pathway of CO2 Fixation

    PubMed Central

    Ragsdale, Stephen W.; Pierce, Elizabeth

    2008-01-01

    I. Summary Conceptually, the simplest way to synthesize an organic molecule is to construct it one carbon at a time. The Wood-Ljungdahl pathway of CO2 fixation involves this type of stepwise process. The biochemical events that underlie the condensation of two one-carbon units to form the two-carbon compound, acetate, have intrigued chemists, biochemists, and microbiologists for many decades. We begin this review with a description of the biology of acetogenesis. Then, we provide a short history of the important discoveries that have led to the identification of the key components and steps of this usual mechanism of CO and CO2 fixation. In this historical perspective, we have included reflections that hopefully will sketch the landscape of the controversies, hypotheses, and opinions that led to the key experiments and discoveries. We then describe the properties of the genes and enzymes involved in the pathway and conclude with a section describing some major questions that remain unanswered. PMID:18801467

  16. Key role of symbiotic dinitrogen fixation in tropical forest secondary succession

    NASA Astrophysics Data System (ADS)

    Batterman, Sarah A.; Hedin, Lars O.; van Breugel, Michiel; Ransijn, Johannes; Craven, Dylan J.; Hall, Jefferson S.

    2013-10-01

    Forests contribute a significant portion of the land carbon sink, but their ability to sequester CO2 may be constrained by nitrogen, a major plant-limiting nutrient. Many tropical forests possess tree species capable of fixing atmospheric dinitrogen (N2), but it is unclear whether this functional group can supply the nitrogen needed as forests recover from disturbance or previous land use, or expand in response to rising CO2 (refs 6, 8). Here we identify a powerful feedback mechanism in which N2 fixation can overcome ecosystem-scale deficiencies in nitrogen that emerge during periods of rapid biomass accumulation in tropical forests. Over a 300-year chronosequence in Panama, N2-fixing tree species accumulated carbon up to nine times faster per individual than their non-fixing neighbours (greatest difference in youngest forests), and showed species-specific differences in the amount and timing of fixation. As a result of fast growth and high fixation, fixers provided a large fraction of the nitrogen needed to support net forest growth (50,000kg carbon per hectare) in the first 12years. A key element of ecosystem functional diversity was ensured by the presence of different N2-fixing tree species across the entire forest age sequence. These findings show that symbiotic N2 fixation can have a central role in nitrogen cycling during tropical forest stand development, with potentially important implications for the ability of tropical forests to sequester CO2.

  17. Key role of symbiotic dinitrogen fixation in tropical forest secondary succession.

    PubMed

    Batterman, Sarah A; Hedin, Lars O; van Breugel, Michiel; Ransijn, Johannes; Craven, Dylan J; Hall, Jefferson S

    2013-10-10

    Forests contribute a significant portion of the land carbon sink, but their ability to sequester CO2 may be constrained by nitrogen, a major plant-limiting nutrient. Many tropical forests possess tree species capable of fixing atmospheric dinitrogen (N2), but it is unclear whether this functional group can supply the nitrogen needed as forests recover from disturbance or previous land use, or expand in response to rising CO2 (refs 6, 8). Here we identify a powerful feedback mechanism in which N2 fixation can overcome ecosystem-scale deficiencies in nitrogen that emerge during periods of rapid biomass accumulation in tropical forests. Over a 300-year chronosequence in Panama, N2-fixing tree species accumulated carbon up to nine times faster per individual than their non-fixing neighbours (greatest difference in youngest forests), and showed species-specific differences in the amount and timing of fixation. As a result of fast growth and high fixation, fixers provided a large fraction of the nitrogen needed to support net forest growth (50,000 kg carbon per hectare) in the first 12 years. A key element of ecosystem functional diversity was ensured by the presence of different N2-fixing tree species across the entire forest age sequence. These findings show that symbiotic N2 fixation can have a central role in nitrogen cycling during tropical forest stand development, with potentially important implications for the ability of tropical forests to sequester CO2.

  18. Bicarbonate-based cultivation of Dunaliella salina for enhancing carbon utilization efficiency.

    PubMed

    Kim, Ga-Yeong; Heo, Jina; Kim, Hee-Sik; Han, Jong-In

    2017-08-01

    In this study, bicarbonate was proposed as an alternative carbon source to overcome exceedingly low CO 2 fixation efficiency of conventional microalgae cultivation system. 5gL -1 of sodium bicarbonate was found to well support the growth of Dunaliella salina, showing 2.84-fold higher specific growth rate than a bicarbonate-free control. This bicarbonate-fed cultivation also could yield biomass productivity similar to that of CO 2 -based system as long as pH was controlled. While the supplied CO 2 , because of its being a gas, was mostly lost and only 3.59% of it was used for biomass synthesis, bicarbonate was effectively incorporated into the biomass with 91.40% of carbon utilization efficiency. This study showed that the bicarbonate-based microalgae cultivation is indeed possible, and can even become a truly environment-friendly and workable approach, provided that a CO 2 mineralization technology is concomitantly established. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Identifying the missing steps of the autotrophic 3-hydroxypropionate CO2 fixation cycle in Chloroflexus aurantiacus.

    PubMed

    Zarzycki, Jan; Brecht, Volker; Müller, Michael; Fuchs, Georg

    2009-12-15

    The phototrophic bacterium Chloroflexus aurantiacus uses a yet unsolved 3-hydroxypropionate cycle for autotrophic CO(2) fixation. It starts from acetyl-CoA, with acetyl-CoA and propionyl-CoA carboxylases acting as carboxylating enzymes. In a first cycle, (S)-malyl-CoA is formed from acetyl-CoA and 2 molecules of bicarbonate. (S)-Malyl-CoA cleavage releases the CO(2) fixation product glyoxylate and regenerates the starting molecule acetyl-CoA. Here we complete the missing steps devoted to glyoxylate assimilation. In a second cycle, glyoxylate is combined with propionyl-CoA, an intermediate of the first cycle, to form beta-methylmalyl-CoA. This condensation is followed by dehydration to mesaconyl-C1-CoA. An unprecedented CoA transferase catalyzes the intramolecular transfer of the CoA moiety to the C4 carboxyl group of mesaconate. Mesaconyl-C4-CoA then is hydrated by an enoyl-CoA hydratase to (S)-citramalyl-CoA. (S)-Citramalyl-CoA is cleaved into acetyl-CoA and pyruvate by a tri-functional lyase, which previously cleaved (S)-malyl-CoA and formed beta-methylmalyl-CoA. Thus, the enigmatic disproportionation of glyoxylate and propionyl-CoA into acetyl-CoA and pyruvate is solved in an elegant and economic way requiring only 3 additional enzymes. The whole bicyclic pathway results in pyruvate formation from 3 molecules of bicarbonate and involves 19 steps but only 13 enzymes. Elements of the 3-hydroxypropionate cycle may be used for the assimilation of small organic molecules. The 3-hydroxypropionate cycle is compared with the Calvin-Benson-Bassham cycle and other autotrophic pathways.

  20. Impacts of CO2 concentration on growth, lipid accumulation, and carbon-concentrating-mechanism-related gene expression in oleaginous Chlorella.

    PubMed

    Fan, Jianhua; Xu, Hui; Luo, Yuanchan; Wan, Minxi; Huang, Jianke; Wang, Weiliang; Li, Yuanguang

    2015-03-01

    Biodiesel production by microalgae with photosynthetic CO2 biofixation is thought to be a feasible way in the field of bioenergy and carbon emission reduction. Knowledge of the carbon-concentrating mechanism plays an important role in improving microalgae carbon fixation efficiency. However, little information is available regarding the dramatic changes of cells suffered upon different environmental factors, such as CO2 concentration. The aim of this study was to investigate the growth, lipid accumulation, carbon fixation rate, and carbon metabolism gene expression under different CO2 concentrations in oleaginous Chlorella. It was found that Chlorella pyrenoidosa grew well under CO2 concentrations ranging from 1 to 20 %. The highest biomass and lipid productivity were 4.3 g/L and 107 mg/L/day under 5 % CO2 condition. Switch from high (5 %) to low (0.03 %, air) CO2 concentration showed significant inhibitory effect on growth and CO2 fixation rate. The amount of the saturated fatty acids was increased obviously along with the transition. Low CO2 concentration (0.03 %) was suitable for the accumulation of saturated fatty acids. Reducing the CO2 concentration could significantly decrease the polyunsaturated degree in fatty acids. Moreover, the carbon-concentrating mechanism-related gene expression revealed that most of them, especially CAH2, LCIB, and HLA3, had remarkable change after 1, 4, and 24 h of the transition, which suggests that Chlorella has similar carbon-concentrating mechanism with Chlamydomonas reinhardtii. The findings of the present study revealed that C. pyrenoidosa is an ideal candidate for mitigating CO2 and biodiesel production and is appropriate as a model for mechanism research of carbon sequestration.

  1. Carboxysomes: metabolic modules for CO 2 fixation

    DOE PAGES

    Turmo, Aiko; Gonzalez-Esquer, Cesar Raul; Kerfeld, Cheryl A.

    2017-08-14

    The carboxysome is a bacterial microcompartment encapsulating the enzymes carbonic anhydrase and ribulose-1,5-bisphosphate carboxylase/oxygenase. As the site of CO 2 fixation, it serves an essential role in the carbon dioxide concentrating mechanism of many chemoautotrophs and all cyanobacteria. Carboxysomes and other bacterial microcompartments self-assemble through specific protein–protein interactions that are typically mediated by conserved protein domains. In this review, we frame our current understanding of carboxysomes in the context of their component protein domains with their inherent function as the ‘building blocks’ of carboxysomes. These building blocks are organized in genetic modules (conserved chromosomal loci) that encode for carboxysomes andmore » ancillary proteins essential for the integration of the organelle with the rest of cellular metabolism. This conceptual framework provides the foundation for ‘plug-and-play’ engineering of carboxysomes as CO 2 fixation modules in a variety of biotechnological applications.« less

  2. A carbon sink pathway increases carbon productivity in cyanobacteria.

    PubMed

    Oliver, John W K; Atsumi, Shota

    2015-05-01

    The burning of fossil reserves, and subsequent release of carbon into the atmosphere is depleting the supply of carbon-based molecules used for synthetic materials including plastics, oils, medicines, and glues. To provide for future society, innovations are needed for the conversion of waste carbon (CO2) into organic carbon useful for materials. Chemical production directly from photosynthesis is a nascent technology, with great promise for capture of CO2 using sunlight. To improve low yields, it has been proposed that photosynthetic capacity can be increased by a relaxation of bottlenecks inherent to growth. The limits of carbon partitioning away from growth within the cell and the effect of partitioning on carbon fixation are not well known. Here we show that expressing genes in a pathway between carbon fixation and pyruvate increases partitioning to 2,3-butanediol (23BD) and leads to a 1.8-fold increase in total carbon yield in the cyanobacterium Synechococcus elongatus PCC 7942. Specific 2,3-butanediol production increases 2.4-fold. As partitioning increases beyond 30%, it leads to a steep decline in total carbon yield. The data suggests a local maximum for carbon partitioning from the Calvin Benson cycle that is scalable with light intensity. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  3. Products of Dark CO2 Fixation in Pea Root Nodules Support Bacteroid Metabolism 1

    PubMed Central

    Rosendahl, Lis; Vance, Carroll P.; Pedersen, Walther B.

    1990-01-01

    Products of the nodule cytosol in vivo dark [14C]CO2 fixation were detected in the plant cytosol as well as in the bacteroids of pea (Pisum sativum L. cv “Bodil”) nodules. The distribution of the metabolites of the dark CO2 fixation products was compared in effective (fix+) nodules infected by a wild-type Rhizobium leguminosarum (MNF 300), and ineffective (fix−) nodules of the R. leguminosarum mutant MNF 3080. The latter has a defect in the dicarboxylic acid transport system of the bacterial membrane. The 14C incorporation from [14C]CO2 was about threefold greater in the wild-type nodules than in the mutant nodules. Similarly, in wild-type nodules the in vitro phosphoenolpyruvate carboxylase activity was substantially greater than that of the mutant. Almost 90% of the 14C label in the cytosol was found in organic acids in both symbioses. Malate comprised about half of the total cytosol organic acid content on a molar basis, and more than 70% of the cytosol radioactivity in the organic acid fraction was detected in malate in both symbioses. Most of the remaining 14C was contained in the amino acid fraction of the cytosol in both symbioses. More than 70% of the 14C label found in the amino acids of the cytosol was incorporated in aspartate, which on a molar basis comprised only about 1% of the total amino acid pool in the cytosol. The extensive 14C labeling of malate and aspartate from nodule dark [14C]CO2 fixation is consistent with the role of phosphoenolpyruvate carboxlase in nodule dark CO2 fixation. Bacteroids from the effective wild-type symbiosis accumulated sevenfold more 14C than did the dicarboxylic acid transport defective bacteroids. The bacteroids of the effective MNF 300 symbiosis contained the largest proportion of the incorporated 14C in the organic acids, whereas ineffective MNF 3080 bacteroids mainly contained 14C in the amino acid fraction. In both symbioses a larger proportion of the bacteroid 14C label was detected in malate and aspartate than their corresponding proportions of the organic acids and amino acids on a molar basis. The proportion of 14C label in succinate, 2-oxogultarate, citrate, and fumarate in the bacteroids of the wild type greatly exceeded that of the dicarboxylate uptake mutant. The results indicate a central role for nodule cytosol dark CO2 fixation in the supply of the bacteroids with dicarboxylic acids. PMID:16667422

  4. Significance of Phosphoenolpyruvate Carboxylase during Ammonium Assimilation

    PubMed Central

    Guy, Robert D.; Vanlerberghe, Greg C.; Turpin, David H.

    1989-01-01

    The effect of N-assimilation on the partitioning of carbon fixation between phosphoenolpyruvate carboxylase (PEPcase) and ribulose bisphosphate carboxylase/oxygenase (Rubisco) was determined by measuring stable carbon isotope discrimination during photosynthesis by an N-limited green alga, Selenastrum minutum (Naeg.) Collins. This was facilitated by a two process model accounting for simultaneous CO2 fixation and respiratory CO2 release. Discrimination by control cells was consistent with the majority of carbon being fixed by Rubisco. During nitrogen assimilation however, discrimination was greatly reduced indicating an enhanced flux through PEPcase which accounted for upward of 70% of total carbon fixation. This shift toward anaplerotic metabolism supports a large increase in tricarboxylic acid cycle activity primarily between oxaloacetate and α-ketoglutarate thereby facilitating the provision of carbon skeletons for amino acid synthesis. This provides an example of a unique set of conditions under which anaplerotic carbon fixation by PEPcase exceeds photosynthetic carbon fixation by Rubisco in a C3 organism. Images Figure 6 PMID:16666678

  5. Significance of Phosphoenolpyruvate Carboxylase during Ammonium Assimilation: Carbon Isotope Discrimination in Photosynthesis and Respiration by the N-Limited Green Alga Selenastrum minutum.

    PubMed

    Guy, R D; Vanlerberghe, G C; Turpin, D H

    1989-04-01

    The effect of N-assimilation on the partitioning of carbon fixation between phosphoenolpyruvate carboxylase (PEPcase) and ribulose bisphosphate carboxylase/oxygenase (Rubisco) was determined by measuring stable carbon isotope discrimination during photosynthesis by an N-limited green alga, Selenastrum minutum (Naeg.) Collins. This was facilitated by a two process model accounting for simultaneous CO(2) fixation and respiratory CO(2) release. Discrimination by control cells was consistent with the majority of carbon being fixed by Rubisco. During nitrogen assimilation however, discrimination was greatly reduced indicating an enhanced flux through PEPcase which accounted for upward of 70% of total carbon fixation. This shift toward anaplerotic metabolism supports a large increase in tricarboxylic acid cycle activity primarily between oxaloacetate and alpha-ketoglutarate thereby facilitating the provision of carbon skeletons for amino acid synthesis. This provides an example of a unique set of conditions under which anaplerotic carbon fixation by PEPcase exceeds photosynthetic carbon fixation by Rubisco in a C(3) organism.

  6. A short history of RubisCO: the rise and fall (?) of Nature's predominant CO2 fixing enzyme.

    PubMed

    Erb, Tobias J; Zarzycki, Jan

    2018-02-01

    Ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) is arguably one of the most abundant proteins in the biosphere and a key enzyme in the global carbon cycle. Although RubisCO has been intensively studied, its evolutionary origins and rise as Nature's most dominant carbon dioxide (CO 2 )-fixing enzyme still remain in the dark. In this review we will bring together biochemical, structural, physiological, microbiological, as well as phylogenetic data to speculate on the evolutionary roots of the CO 2 -fixation reaction of RubisCO, the emergence of RubisCO-based autotrophic CO 2 -fixation in the context of the Calvin-Benson-Bassham cycle, and the further evolution of RubisCO into the 'RubisCOsome', a complex of various proteins assembling and interacting with the enzyme to improve its operational capacity (functionality) under different biological and environmental conditions. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. Nutrient co-limited Trichodesmium as nitrogen source or sink in a future ocean.

    PubMed

    Walworth, Nathan G; Fu, Fei-Xue; Lee, Michael D; Cai, Xiaoni; Saito, Mak A; Webb, Eric A; Hutchins, David A

    2017-11-27

    Nitrogen-fixing (N 2 ) cyanobacteria provide bioavailable nitrogen to vast ocean regions but are in turn limited by iron (Fe) and/or phosphorus (P), which may force them to employ alternative nitrogen acquisition strategies. The adaptive responses of nitrogen-fixers to global-change drivers under nutrient-limited conditions could profoundly alter the current ocean nitrogen and carbon cycles. Here, we show that the globally-important N 2 -fixer Trichodesmium fundamentally shifts nitrogen metabolism towards organic-nitrogen scavenging following long-term high-CO 2 adaptation under iron and/or phosphorus (co)-limitation. Global shifts in transcripts and proteins under high CO 2 /Fe-limited and/or P-limited conditions include decreases in the N 2 -fixing nitrogenase enzyme, coupled with major increases in enzymes that oxidize trimethylamine (TMA). TMA is an abundant, biogeochemically-important organic nitrogen compound that supports rapid Trichodesmium growth while inhibiting N 2 fixation. In a future high-CO 2 ocean, this whole-cell energetic reallocation towards organic nitrogen scavenging and away from N 2 -fixation may reduce new-nitrogen inputs by Trichodesmium , while simultaneously depleting the scarce fixed-nitrogen supplies of nitrogen-limited open ocean ecosystems. Importance Trichodesmium is among the most biogeochemically-significant microorganisms in the ocean, since it supplies up to 50% of the new nitrogen supporting open ocean food webs. We used Trichodesmium cultures adapted to high CO 2 for 7 years followed by additional exposure to iron and/or phosphorus (co)-limitation. We show that 'future ocean' conditions of high CO 2 and concurrent nutrient limitation(s) fundamentally shift nitrogen metabolism away from nitrogen fixation, and instead towards upregulation of organic-nitrogen scavenging pathways. We show that Trichodesmium's responses to projected future ocean conditions include decreases in the nitrogen-fixing nitrogenase enzymes, coupled with major increases in enzymes that oxidize the abundant organic nitrogen source trimethylamine (TMA). Such a shift towards organic nitrogen uptake and away from nitrogen fixation may substantially reduce new-nitrogen inputs by Trichodesmium to the rest of the microbial community in the future high-CO 2 ocean, with potential global implications for ocean carbon and nitrogen cycling. Copyright © 2017 American Society for Microbiology.

  8. Co-regulation of photosynthetic processes under potassium deficiency across CO2 levels in soybean: mechanisms of limitations and adaptations

    USDA-ARS?s Scientific Manuscript database

    Plants photosynthesis-related traits are often co-regulated to capture light and CO2 to optimize the rate of CO2 fixation (A) via photo-biochemical processes. However, potassium (K) limitations and adaptations strategies of photosynthetic processes across CO2 levels are not well understood. To evalu...

  9. Integration of metagenomic and stable carbon isotope evidence reveals the extent and mechanisms of carbon dioxide fixation in high-temperature microbial communities

    DOE PAGES

    Jennings, Ryan de Montmollin; Moran, James J.; Jay, Zackary J.; ...

    2017-02-03

    Biological fixation of CO 2 is the primary mechanism of C reduction in natural systems, and provides a diverse suite of organic compounds utilized by chemoorganoheterotrophs. The extent and mechanisms of CO 2 fixation were evaluated across a comprehensive set of high-temperature, chemotrophic microbial communities in Yellowstone National Park by combining metagenomic and stable 13C isotope analyses. Fifteen geothermal sites representing three distinct habitat types (iron-oxide mats, anoxic sulfur sediments, and filamentous ‘streamer’ communities) were investigated. Genes of the 3-hydroxypropionate/4-hydroxybutyrate, dicarboxylate/4-hydroxybutyrate, and reverse tricarboxylic acid CO 2 fixation pathways were identified in assembled genome sequence corresponding to the predominant Crenarchaeotamore » and Aquificales observed across this habitat range. Stable 13C analyses of dissolved inorganic and organic C (DIC, DOC), and possible landscape C sources were used to interpret the 13C content of microbial community samples. Isotope mixing models showed that the minimum amounts of autotrophic C in microbial biomass were > 50 % in the majority of communities analyzed, but were also dependent on the amounts of heterotrophy and/or accumulation of landscape C. Furthermore, the significance of CO 2 as a C source in these communities provides a foundation for understanding metabolic linkages among autotrophs and heterotrophs, community assembly and succession, and the likely coevolution of deeply-branching thermophiles.« less

  10. Carbon assimilation in Eucalyptus urophylla grown under high atmospheric CO2 concentrations: A proteomics perspective.

    PubMed

    Santos, Bruna Marques Dos; Balbuena, Tiago Santana

    2017-01-06

    Photosynthetic organisms may be drastically affected by the future climate projections of a considerable increase in CO 2 concentrations. Growth under a high concentration of CO 2 could stimulate carbon assimilation-especially in C3-type plants. We used a proteomics approach to test the hypothesis of an increase in the abundance of the enzymes involved in carbon assimilation in Eucalyptus urophylla plants grown under conditions of high atmospheric CO 2 . Our strategy allowed the profiling of all Calvin-Benson cycle enzymes and associated protein species. Among the 816 isolated proteins, those involved in carbon fixation were found to be the most abundant ones. An increase in the abundance of six key enzymes out of the eleven core enzymes involved in carbon fixation was detected in plants grown at a high CO 2 concentration. Proteome changes were corroborated by the detection of a decrease in the stomatal aperture and in the vascular bundle area in Eucalyptus urophylla plantlets grown in an environment of high atmospheric CO 2 . Our proteomics approach indicates a positive metabolic response regarding carbon fixation in a CO 2 -enriched atmosphere. The slight but significant increase in the abundance of the Calvin enzymes suggests that stomatal closure did not prevent an increase in the carbon assimilation rates. The sample enrichment strategy and data analysis used here enabled the identification of all enzymes and most protein isoforms involved in the Calvin-Benson-Bessham cycle in Eucalyptus urophylla. Upon growth in CO 2 -enriched chambers, Eucalyptus urophylla plantlets responded by reducing the vascular bundle area and stomatal aperture size and by increasing the abundance of six of the eleven core enzymes involved in carbon fixation. Our proteome approach provides an estimate on how a commercially important C3-type plant would respond to an increase in CO 2 concentrations. Additionally, confirmation at the protein level of the predicted genes involved in carbon assimilation may be used in plant transformation strategies aiming to increase plant adaptability to climate changes or to increase plant productivity. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Nanoparticles of ZrPO4 for green catalytic applications

    NASA Astrophysics Data System (ADS)

    Sreenivasulu, Peta; Pendem, Chandrasekhar; Viswanadham, Nagabhatla

    2014-11-01

    Here we report the successful room temperature synthesis of zirconium phosphate nanoparticles (ZPNP) using the P123 tri-co-block polymer for the first time. The samples were characterized by SEM, TEM, XRD, TPD, and BET and were employed for fixation of CO2 on aniline to produce pharmaceutically important acetanilide under mild reaction conditions (150 °C and 150 Psi CO2 pressure).Here we report the successful room temperature synthesis of zirconium phosphate nanoparticles (ZPNP) using the P123 tri-co-block polymer for the first time. The samples were characterized by SEM, TEM, XRD, TPD, and BET and were employed for fixation of CO2 on aniline to produce pharmaceutically important acetanilide under mild reaction conditions (150 °C and 150 Psi CO2 pressure). Electronic supplementary information (ESI) available: Experimental details, wide angle XRD, EDX, IR spectra, GC data etc. See DOI: 10.1039/c4nr03209h

  12. Carbon dioxide dynamics of combined crops of wheat, cowpea, pinto beans in the Laboratory Biosphere closed ecological system

    NASA Astrophysics Data System (ADS)

    Dempster, William F.; Nelson, M.; Silverstone, S.; Allen, J. P.

    2009-04-01

    A mixed crop consisting of cowpeas, pinto beans and Apogee ultra-dwarf wheat was grown in the Laboratory Biosphere, a 40 m 3 closed life system equipped with 12,000 W of high pressure sodium lamps over planting beds with 5.37 m 2 of soil. Similar to earlier reported experiments, the concentration of carbon dioxide initially increased to 7860 ppm at 10 days after planting due to soil respiration plus CO 2 contributed from researchers breathing while in the chamber for brief periods before plant growth became substantial. Carbon dioxide concentrations then fell rapidly as plant growth increased up to 29 days after planting and subsequently was maintained mostly in the range of about 200-3000 ppm (with a few excursions) by CO 2 injections to feed plant growth. Numerous analyses of rate of change of CO 2 concentration at many different concentrations and at many different days after planting reveal a strong dependence of fixation rates on CO 2 concentration. In the middle period of growth (days 31-61), fixation rates doubled for CO 2 at 450 ppm compared to 270 ppm, doubled again at 1000 ppm and increased a further 50% at 2000 ppm. High productivity from these crops and the increase of fixation rates with elevated CO 2 concentration supports the concept that enhanced CO 2 can be a useful strategy for remote life support systems. The data suggests avenues of investigation to understand the response of plant communities to increasing CO 2 concentrations in the Earth's atmosphere. Carbon balance accounting and evapotranspiration rates are included.

  13. Calcium silicates synthesised from industrial residues with the ability for CO2 sequestration.

    PubMed

    Morales-Flórez, Victor; Santos, Alberto; López, Antonio; Moriña, Isabel; Esquivias, Luis

    2014-12-01

    This work explored several synthesis routes to obtain calcium silicates from different calcium-rich and silica-rich industrial residues. Larnite, wollastonite and calcium silicate chloride were successfully synthesised with moderate heat treatments below standard temperatures. These procedures help to not only conserve natural resources, but also to reduce the energy requirements and CO2 emissions. In addition, these silicates have been successfully tested as carbon dioxide sequesters, to enhance the viability of CO2 mineral sequestration technologies using calcium-rich industrial by-products as sequestration agents. Two different carbon sequestration experiments were performed under ambient conditions. Static experiments revealed carbonation efficiencies close to 100% and real-time resolved experiments characterised the dynamic behaviour and ability of these samples to reduce the CO2 concentration within a mixture of gases. The CO2 concentration was reduced up to 70%, with a carbon fixation dynamic ratio of 3.2 mg CO2 per g of sequestration agent and minute. Our results confirm the suitability of the proposed synthesis routes to synthesise different calcium silicates recycling industrial residues, being therefore energetically more efficient and environmentally friendly procedures for the cement industry. © The Author(s) 2014.

  14. CO2 Uptake and Fixation by a Thermoacidophilic Microbial Community Attached to Precipitated Sulfur in a Geothermal Spring▿ †

    PubMed Central

    Boyd, Eric S.; Leavitt, William D.; Geesey, Gill G.

    2009-01-01

    Carbon fixation at temperatures above 73°C, the upper limit for photosynthesis, is carried out by chemosynthetic thermophiles. Yellowstone National Park (YNP), Wyoming possesses many thermal features that, while too hot for photosynthesis, presumably support chemosynthetic-based carbon fixation. To our knowledge, in situ rates of chemosynthetic reactions at these high temperatures in YNP or other high-temperature terrestrial geothermal springs have not yet been reported. A microbial community attached to precipitated elemental sulfur (So floc) at the source of Dragon Spring (73°C, pH 3.1) in Norris Geyser Basin, YNP, exhibited a maximum rate of CO2 uptake of 21.3 ± 11.9 μg of C 107 cells−1 h−1. When extrapolated over the estimated total quantity of So floc at the spring's source, the So floc-associated microbial community accounted for the uptake of 121 mg of C h−1 at this site. On a per-cell basis, the rate was higher than that calculated for a photosynthetic mat microbial community dominated by Synechococcus spp. in alkaline springs at comparable temperatures. A portion of the carbon taken up as CO2 by the So floc-associated biomass was recovered in the cellular nucleic acid pool, demonstrating that uptake was coupled to fixation. The most abundant sequences in a 16S rRNA clone library of the So floc-associated community were related to chemolithoautotrophic Hydrogenobaculum strains previously isolated from springs in the Norris Geyser Basin. These microorganisms likely contributed to the uptake and fixation of CO2 in this geothermal habitat. PMID:19429558

  15. The contribution of changes in P release and CO2 consumption by chemical weathering to the historical trend in land carbon uptake

    NASA Astrophysics Data System (ADS)

    Goodale, C. L.; Fredriksen, G.; McCalley, C. K.; Sparks, J. P.; Thomas, S. A.

    2011-12-01

    The atmospheric carbon dioxide (CO2) concentration has increased to a level unprecedented in the last 2 million years, and the concentration is projected to increase further with a rate unseen in geological past. The increase in CO2 cause a rise in surface temperatures and changes in the hydrological cycle through the redistribution of rainfall patterns. All of these changes will impact the weathering of rocks, which in turn affect atmospheric CO2 concentrations via two different pathways. On the one hand, CO2 is consumed by the dissolution reaction of the exposed minerals. And on the other hand, biological CO2 fixation is affected due to changes in phosphorus release from minerals, as biological activity is constrained by phosphorus availability at large scales. The traditional view is that both effects are negligible on a centennial time scale, but recent work on catchment scale challenge this view in favor of a potential high sensitivity of weathering to ongoing climate and land use changes. To globally quantify the contribution of CO2 fixation associated with weathering on the historical trend in terrestrial CO2 uptake, we applied a model of chemical weathering and phosphorus release under climate reconstructions from four Earth System Models. The simulations indicate that changes in weathering could have contributed considerably to the trend in terrestrial CO2 uptake since the pre-industrial revolution, with warming being the main driver of change. The increase in biological CO2 fixation is of comparable magnitude as the increase in CO2 consumption by chemical weathering. Our simulations support the previous findings on catchment scale that weathering can change significantly on a centennial time scale. This finding has implications for 21st century climate projections, which ignore changes in weathering, as well as for long-term airborne fraction of CO2 emissions, whose calculation usually neglects changes in phosphorus availability.

  16. The contribution of changes in P release and CO2 consumption by chemical weathering to the historical trend in land carbon uptake

    NASA Astrophysics Data System (ADS)

    Goll, D. S.; Moosdorf, N.; Brovkin, V.; Hartmann, J.

    2013-12-01

    The atmospheric carbon dioxide (CO2) concentration has increased to a level unprecedented in the last 2 million years, and the concentration is projected to increase further with a rate unseen in geological past. The increase in CO2 cause a rise in surface temperatures and changes in the hydrological cycle through the redistribution of rainfall patterns. All of these changes will impact the weathering of rocks, which in turn affect atmospheric CO2 concentrations via two different pathways. On the one hand, CO2 is consumed by the dissolution reaction of the exposed minerals. And on the other hand, biological CO2 fixation is affected due to changes in phosphorus release from minerals, as biological activity is constrained by phosphorus availability at large scales. The traditional view is that both effects are negligible on a centennial time scale, but recent work on catchment scale challenge this view in favor of a potential high sensitivity of weathering to ongoing climate and land use changes. To globally quantify the contribution of CO2 fixation associated with weathering on the historical trend in terrestrial CO2 uptake, we applied a model of chemical weathering and phosphorus release under climate reconstructions from four Earth System Models. The simulations indicate that changes in weathering could have contributed considerably to the trend in terrestrial CO2 uptake since the pre-industrial revolution, with warming being the main driver of change. The increase in biological CO2 fixation is of comparable magnitude as the increase in CO2 consumption by chemical weathering. Our simulations support the previous findings on catchment scale that weathering can change significantly on a centennial time scale. This finding has implications for 21st century climate projections, which ignore changes in weathering, as well as for long-term airborne fraction of CO2 emissions, whose calculation usually neglects changes in phosphorus availability.

  17. Model of carbon fixation in microbial mats from 3,500 Myr ago to the present

    NASA Technical Reports Server (NTRS)

    Rothschild, Lynn J.; Mancinelli, Rocco L.

    1990-01-01

    Using modern microbial mats as analogs for ancient stromatolites, it is shown that the rate of carbon fixation is higher at the greater levels of atmospheric CO2 that were probably present in the past. It is suggested that carbon fixation in microbial mats was not carbon-limited during the early Precambrian, but became carbon-limited as the supply of inorganic carbon decreased. Carbon limitation led to a lower rate of carbon fixation, especially towards the end of the Precambrian.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Capone, D.G.; Penhale, P.A.; Oremland, R.S.

    N/sub 2/ (C/sub 2/H/sub 2/) fixation and primary production were measured in communities of Thalassia testudinum at two sites in Bimini Harbor (Bahamas). Production was determined by uptake of (/sup 14/C)NaHCO/sub 3/, by leaf growth measurements, and by applying an empirical formula based on leaf dimensions. The last two methods gave similar results but the /sup 14/C method gave higher values. Anaerobic sediment N/sub 2/ fixation supplied about 1/4 to 1/2 of the nitrogen demand for leaf production (by leaf growth method) and there was a significant correlation between N/sub 2/ fixation and CO/sub 2/ fixation rates when all componentsmore » of the communities were considered (macrophyte, phyllosphere epiphytes, and detrital leaves). N/sub 2/ fixation is important to production in Thalassia communities and the plant and its leaf epiphytes may be distinct entities in terms of nitrogen and carbon metabolism.« less

  19. Effect of light intensity and nitrogen starvation on CO2 fixation and lipid/carbohydrate production of an indigenous microalga Scenedesmus obliquus CNW-N.

    PubMed

    Ho, Shih-Hsin; Chen, Chun-Yen; Chang, Jo-Shu

    2012-06-01

    Engineering strategies were applied to improve the CO(2) fixation rate and carbohydrate/lipid production of a Scenedesmus obliquus CNW-N isolate. The light intensity that promotes cell growth, carbohydrate/lipid productivity, and CO(2) fixation efficiency was identified. Nitrogen starvation was also employed to trigger the accumulation of lipid and carbohydrate. The highest productivity of biomass, lipid, and carbohydrate was 840.57 mg L(-1)d(-1), 140.35 mg L(-1)d(-1). The highest lipid and carbohydrate content was 22.4% (5-day N-starvation) and 46.65% (1-day N-starvation), respectively. The optimal CO(2) consumption rate was 1420.6 mg L(-1)d(-1). This performance is better than that reported in most other studies. Under nitrogen starvation, the microalgal lipid was mainly composed of C16/C18 fatty acid (around 90%), which is suitable for biodiesel synthesis. The carbohydrate present in the biomass was mainly glucose, accounting for 77-80% of total carbohydrates. This carbohydrate composition is also suitable for fermentative biofuels production (e.g., bioethanol and biobutanol). Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Photosynthetic carbon fixation characteristics of fruiting structures of Brassica campestris L

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singal, H.R.; Sheoran, I.S.; Singh, R.

    1987-04-01

    Activities of key enzymes of the Calvin cycle and C/sub 4/ metabolism, rates of CO/sub 2/ fixation, and the initial products of photosynthetic /sup 14/CO/sub 2/ fixation were determined in the podwall, seed coat (fruiting structures), and the subtending leaf (leaf below a receme) of Brassica campestris L. cv Toria. Compared to activities of ribulose-1,5-bisphosphate carboxylase and other Calvin cycle enzymes, e.g. NADP-glyceraldehyde-3-phosphate-dehydrogenase and ribulose-5-phosphate kinase, the activities of phosphoenol pyruvate carboxylase and other enzymes of C/sub 4/ metabolism, viz. NADP-malate dehydrogenase, NADP-malic enzyme, glutamate pyruvate transaminase, and glutamate oxaloacetate transaminase, were generally much higher in seed than in podwallmore » and leaf. Podwall and leaf were comparable to each other. Pulse-chase experiments showed that in seed the major product of /sup 14/CO/sub 2/ assimilation was malate (in short time), whereas in podwall and leaf, the label initially appeared in 3-PGA. With time, the label moved to sucrose. In contrast to legumes, Brassica pods were able to fix net CO/sub 2/ during light. However, respiratory losses were very high during the dark period.« less

  1. Application of Biotechnology to Construct a Sustainable Biodiesel Production System on Wastewater

    NASA Astrophysics Data System (ADS)

    Wu, Xiaodan; Liu, Yuhuan; Xu, Erni; Liu, Jianqiang; Ruan, Roger; Fu, Guiming

    2010-11-01

    The potential of microalgae biodiesel is unlimited. The ingenious combination of microalgae biomass exploitation, decontamination of municipal wastewater, and CO2 fixation may gestate the ultimate hope for solving the problem of liquid alternative fuel. However, the municipal wastewater has some characteristics, such as high content of nitrogen and phosphorus, low C/N ratio, fluctuation of loading rate, toxicity of heavy metal, etc. To overcome these problems, studies are currently underway in our laboratory. In this paper, an idea of constructing a sustainable biodiesel production system from microalgae on wastewater is assumed. The system could realize CO2 fixation, decontamination of municipal wastewater, and production of high value-added biodiesel by microalgae. Firstly, municipal wastewater is used as the cultivation media and CO2 as gaseous fertilizer for mass culture of Shuihua microalgae. So with the harvest of large quantities of low-price Shuihua microalgae, the nitrogen, phosphorus and heavy metals can be removed from the wastewater, and the emission of greenhouse gas can be reduced. Secondly, try to breed a high-oil content engineering microalgae by heterotrophic cultivation which could realize high-density growth through the conjunction of the advanced methods of fermentation engineering with the microalgae breeding technology. Finally, make the high-oil content engineering microalgae cultivated on the decomposed Shuihua microalgae cells, and try to make the high-oil content engineering microalgae grow rapidly in the initial stage and start oil accumulation when nitrogen is exhausted by controlling the conditions of fermentation.

  2. Crassulacean acid metabolism and fitness under water deficit stress: if not for carbon gain, what is facultative CAM good for?

    PubMed Central

    Herrera, Ana

    2009-01-01

    Background In obligate Crassulacean acid metabolism (CAM), up to 99 % of CO2 assimilation occurs during the night, therefore supporting the hypothesis that CAM is adaptive because it allows CO2 fixation during the part of the day with lower evaporative demand, making life in water-limited environments possible. By comparison, in facultative CAM (inducible CAM, C3-CAM) and CAM-cycling plants drought-induced dark CO2 fixation may only be, with few exceptions, a small proportion of C3 CO2 assimilation in watered plants and occur during a few days. From the viewpoint of survival the adaptive advantages, i.e. increased fitness, of facultative CAM and CAM-cycling are not obvious. Therefore, it is hypothesized that, if it is to increase fitness, CAM must aid in reproduction. Scope An examination of published reports of 23 facultative CAM and CAM-cycling species finds that, in 19 species, drought-induced dark CO2 fixation represents on average 11 % of C3 CO2 assimilation of watered plants. Evidence is discussed on the impact of the operation of CAM in facultative and CAM-cycling plants on their survival – carbon balance, water conservation, water absorption, photo-protection of the photosynthetic apparatus – and reproductive effort. It is concluded that in some species, but not all, facultative and cycling CAM contribute, rather than to increase carbon balance, to increase water-use efficiency, water absorption, prevention of photoinhibition and reproductive output. PMID:18708641

  3. Crassulacean acid metabolism and fitness under water deficit stress: if not for carbon gain, what is facultative CAM good for?

    PubMed

    Herrera, Ana

    2009-02-01

    In obligate Crassulacean acid metabolism (CAM), up to 99 % of CO(2) assimilation occurs during the night, therefore supporting the hypothesis that CAM is adaptive because it allows CO(2) fixation during the part of the day with lower evaporative demand, making life in water-limited environments possible. By comparison, in facultative CAM (inducible CAM, C(3)-CAM) and CAM-cycling plants drought-induced dark CO(2) fixation may only be, with few exceptions, a small proportion of C(3) CO(2) assimilation in watered plants and occur during a few days. From the viewpoint of survival the adaptive advantages, i.e. increased fitness, of facultative CAM and CAM-cycling are not obvious. Therefore, it is hypothesized that, if it is to increase fitness, CAM must aid in reproduction. Scope An examination of published reports of 23 facultative CAM and CAM-cycling species finds that, in 19 species, drought-induced dark CO(2) fixation represents on average 11 % of C(3) CO(2) assimilation of watered plants. Evidence is discussed on the impact of the operation of CAM in facultative and CAM-cycling plants on their survival--carbon balance, water conservation, water absorption, photo-protection of the photosynthetic apparatus--and reproductive effort. It is concluded that in some species, but not all, facultative and cycling CAM contribute, rather than to increase carbon balance, to increase water-use efficiency, water absorption, prevention of photoinhibition and reproductive output.

  4. Experimental assessment of diazotroph responses to elevated seawater pCO2 in the North Pacific Subtropical Gyre

    NASA Astrophysics Data System (ADS)

    Böttjer, Daniela; Karl, David M.; Letelier, Ricardo M.; Viviani, Donn A.; Church, Matthew J.

    2014-06-01

    We examined short-term (24-72 h) responses of naturally occurring marine N2 fixing microorganisms (termed diazotrophs) to abrupt increases in the partial pressure of carbon dioxide (pCO2) in seawater during nine incubation experiments conducted between May 2010 and September 2012 at Station ALOHA (A Long-term Oligotrophic Habitat Assessment) (22°45'N, 158°W) in the North Pacific Subtropical Gyre (NPSG). Rates of N2 fixation, nitrogenase (nifH) gene abundances and transcripts of six major groups of cyanobacterial diazotrophs (including both unicellular and filamentous phylotypes), and rates of primary productivity (as measured by 14C-bicarbonate assimilation into plankton biomass) were determined under contemporary (~390 ppm) and elevated pCO2 conditions (~1100 ppm). Quantitative polymerase chain reaction (QPCR) amplification of planktonic nifH genes revealed that unicellular cyanobacteria phylotypes dominated gene abundances during these experiments. In the majority of experiments (seven out of nine), elevated pCO2 did not significantly influence rates of dinitrogen (N2) fixation or primary productivity (two-way analysis of variance (ANOVA), P > 0.05). During two experiments, rates of N2 fixation and primary productivity were significantly lower (by 79 to 82% and 52 to 72%, respectively) in the elevated pCO2 treatments relative to the ambient controls (two-way ANOVA, P < 0.05). QPCR amplification of nifH genes and gene transcripts revealed that diazotroph abundances and nifH gene expression were largely unchanged by the perturbation of the seawater pCO2. Our results suggest that naturally occurring N2 fixing plankton assemblages in the NPSG are relatively resilient to large, short-term increases in pCO2.

  5. Accelerated carbonation using municipal solid waste incinerator bottom ash and cold-rolling wastewater: Performance evaluation and reaction kinetics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, E-E; Pan, Shu-Yuan; Yang, Liuhanzi

    2015-09-15

    Highlights: • Carbonation was performed using CO{sub 2}, wastewater and bottom ash in a slurry reactor. • A maximum capture capacity of 102 g CO{sub 2} per kg BA was achieved at mild conditions. • A maximum carbonation conversion of MSWI-BA was predicted to be 95% by RSM. • The CO{sub 2} emission from Bali incinerator could be expected to reduce by 6480 ton/y. • The process energy consumption per ton CO{sub 2} captured was estimated to be 180 kW h. - Abstract: Accelerated carbonation of alkaline wastes including municipal solid waste incinerator bottom ash (MSWI-BA) and the cold-rolling wastewatermore » (CRW) was investigated for carbon dioxide (CO{sub 2}) fixation under different operating conditions, i.e., reaction time, CO{sub 2} concentration, liquid-to-solid ratio, particle size, and CO{sub 2} flow rate. The MSWI-BA before and after carbonation process were analyzed by the thermogravimetry and differential scanning calorimetry, X-ray diffraction, and scanning electron microscopy equipped with energy dispersive X-ray spectroscopy. The MSWI-BA exhibits a high carbonation conversion of 90.7%, corresponding to a CO{sub 2} fixation capacity of 102 g per kg of ash. Meanwhile, the carbonation kinetics was evaluated by the shrinking core model. In addition, the effect of different operating parameters on carbonation conversion of MSWI-BA was statistically evaluated by response surface methodology (RSM) using experimental data to predict the maximum carbonation conversion. Furthermore, the amount of CO{sub 2} reduction and energy consumption for operating the proposed process in refuse incinerator were estimated. Capsule abstract: CO{sub 2} fixation process by alkaline wastes including bottom ash and cold-rolling wastewater was developed, which should be a viable method due to high conversion.« less

  6. Cyanobacterial-based approaches to improving photosynthesis in plants.

    PubMed

    Zarzycki, Jan; Axen, Seth D; Kinney, James N; Kerfeld, Cheryl A

    2013-01-01

    Plants rely on the Calvin-Benson (CB) cycle for CO(2) fixation. The key carboxylase of the CB cycle is ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO). Efforts to enhance carbon fixation in plants have traditionally focused on RubisCO or on approaches that can help to remedy RubisCO's undesirable traits: its low catalytic efficiency and photorespiration. Towards reaching the goal of improving plant photosynthesis, cyanobacteria may be instrumental. Because of their evolutionary relationship to chloroplasts, they represent ideal model organisms for photosynthesis research. Furthermore, the molecular understanding of cyanobacterial carbon fixation provides a rich source of strategies that can be exploited for the bioengineering of chloroplasts. These strategies include the cyanobacterial carbon concentrating mechanism (CCM), which consists of active and passive transporter systems for inorganic carbon and a specialized organelle, the carboxysome. The carboxysome encapsulates RubisCO together with carbonic anhydrase in a protein shell, resulting in an elevated CO(2) concentration around RubisCO. Moreover, cyanobacteria differ from plants in the isoenzymes involved in the CB cycle and the photorespiratory pathways as well as in mechanisms that can affect the activity of RubisCO. In addition, newly available cyanobacterial genome sequence data from the CyanoGEBA project, which has more than doubled the amount of genomic information available for cyanobacteria, increases our knowledge on the CCM and the occurrence and distribution of genes of interest.

  7. CO(2) fixation through hydrogenation by chemical or enzymatic methods.

    PubMed

    Beller, Matthias; Bornscheuer, Uwe T

    2014-04-25

    Two birds with one stone: The simulaneous fixation of the greenhouse gas carbon dioxide and storage of the alternative fuel hydrogen can be accomplished with the formation of formic acid. In principle, this is now possible either with an enzymatic system based on a newly discovered bacterial hydrogen-dependent carbon dioxide reductase or by using organometallic catalysts at room temperature and ambient pressure. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. The marine diatom and diazotroph under future climate: Role of Iron

    NASA Astrophysics Data System (ADS)

    Li, Xuefeng; Fonseca-batista, Debany; Brouwers, Julie; Roevros, Nathalie; Dehairs, Frank; Chou, Lei

    2016-04-01

    Diatoms constitute a major group of phytoplankton, accounting for one quarter of the world's net primary productivity. Diazotrophs provide the largest input of new nitrogen (N) to the ocean and control the marine N budgets. It has been shown that iron (Fe) can be the limiting factor for diatom growth, in particular, in the HNLC (High Nutrient Low Chlorophyll) regions. This trace element can also govern the development of marine diazotrophs due to the high Fe demand necessary for biological N2 fixation. Iron plays thus an essential role in governing the marine primary productivity and the efficiency of biological carbon pump. Ocean systems are undergoing continuous modifications at varying rates and magnitudes as a result of changing climate. The objectives of our research is to evaluate 1) how climate change (dust deposition, ocean warming and acidification) can affect Fe biogeochemistry and the growth of diatoms and diazotrophs, and 2) the role of Fe in the control of biological N2 fixation under future climate scenarios. Laboratory culture experiments using Chaetoceros socialis were examined at two temperatures (13°C and 18°C) and two CO2 conditions (400 μatm and 800 μatm). The present study demonstrates clearly the influence of ocean acidification on the release of Fe upon dust deposition. It also shows that dust particles could provide a readily utilizable source of Fe and other macronutrients (dissolved phosphate and silicate) for phytoplankton growth. Elevated pCO2 concentrations may have adverse impact on the diatom growth; seawater warming may cause poleward shifts in the biogeographic distribution of diatoms. The impact of Fe on the natural N2 fixation was tested via field incubation experiments using natureal phytoplankton assemblage in the Bay of Biscay and along the Iberian Margin. N2 fixation rates in oligotrophic waters were greatly stimulated through the addition of dissolved Fe compared to the control, demonstrating the limitation of N2 fixation by Fe. Numerous factors can affect the extent of N2 fixation, but a better understanding of the major controlling factors is highly required. Semi-continuous dilution culture experiments were conducted on Trichodesmium IMS-101 under future high pCO2 and warming seawater conditions. Additionally, special attention has been given to studying the effects of mineral dust deposition which is believed to promote N2 fixation through increasing Fe availability.

  9. Molybdenum and Phosphorus Interact to Constrain Asymbiotic Nitrogen Fixation in Tropical Forests

    PubMed Central

    Wurzburger, Nina; Bellenger, Jean Philippe; Kraepiel, Anne M. L.; Hedin, Lars O.

    2012-01-01

    Biological di-nitrogen fixation (N2) is the dominant natural source of new nitrogen to land ecosystems. Phosphorus (P) is thought to limit N2 fixation in many tropical soils, yet both molybdenum (Mo) and P are crucial for the nitrogenase reaction (which catalyzes N2 conversion to ammonia) and cell growth. We have limited understanding of how and when fixation is constrained by these nutrients in nature. Here we show in tropical forests of lowland Panama that the limiting element on asymbiotic N2 fixation shifts along a broad landscape gradient in soil P, where Mo limits fixation in P-rich soils while Mo and P co-limit in P-poor soils. In no circumstance did P alone limit fixation. We provide and experimentally test a mechanism that explains how Mo and P can interact to constrain asymbiotic N2 fixation. Fixation is uniformly favored in surface organic soil horizons - a niche characterized by exceedingly low levels of available Mo relative to P. We show that soil organic matter acts to reduce molybdate over phosphate bioavailability, which, in turn, promotes Mo limitation in sites where P is sufficient. Our findings show that asymbiotic N2 fixation is constrained by the relative availability and dynamics of Mo and P in soils. This conceptual framework can explain shifts in limitation status across broad landscape gradients in soil fertility and implies that fixation depends on Mo and P in ways that are more complex than previously thought. PMID:22470462

  10. Revisiting RuBisCO.

    PubMed

    Yokota, Akiho

    2017-11-01

    Since the discovery of its role in the CO 2 fixation reaction in photosynthesis, RuBisCO has been one of the most extensively researched enzymes in the fields of biochemistry, molecular biology, and molecular genetics as well as conventional plant physiology, agricultural chemistry, and crop science. In addition, the RuBisCO and RuBisCO-like genes of more than 2000 organisms have been sequenced during the past 20 years. During the course of those studies, the origin of the RuBisCO gene began to be discussed. Recent studies have reported that the RuBisCO gene emerged in methanogenic bacteria long before photosynthetic organisms appeared. The origin of similar early genes might have allowed this gene to overcome changes in global environments during ancient and recent eras and to participate in the fixation of 200 GT of CO 2 annually. In this review, I focus on several points that have not been discussed at length in the literature thus far.

  11. Impact of bubble size on growth and CO2 uptake of Arthrospira (Spirulina) platensis KMMCC CY-007.

    PubMed

    Kim, Kisok; Choi, Jaeho; Ji, Yosep; Park, Soyoung; Do, Hyungki; Hwang, Cherwon; Lee, Bongju; Holzapfel, Wilhelm

    2014-10-01

    Optimisation of cyanobacterial cell productivity should consider the key factors light cycle and carbon source. We studied the influence of CO2 bubble size on carbon uptake and fixation, on basis of mRNA expression levels in Arthrospira platensis KMMCC CY-007 at 30°C (light intensity: 40μmolm(-2)s(-1); 1% CO2). Growth rate, carbon fixation and lipid accumulation were examined over 7days under fine bubble (FB) (100μm Ø) bulk bubble (BB) (5000μm Ø) and non-CO2 (NB) aeration. The low affinity CO2 uptake mRNA (NDH-I4 complex) was stronger expressed than the high affinity NDH-I3 complex (bicA and sbtA) under 1% CO2 and FB conditions, with no expression of bicA1 and sbtA1 after 4days. The high affinity CO2 uptake mRNA levels corresponded to biomass, carbon content and lipid accumulation, and increase in NDH-I3 complex (9.72-fold), bicA (5.69-fold), and sbtA (10.61-fold), compared to NB, or BB conditions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. CO2 Fixation, Lipid Production, and Power Generation by a Novel Air-Lift-Type Microbial Carbon Capture Cell System.

    PubMed

    Hu, Xia; Liu, Baojun; Zhou, Jiti; Jin, Ruofei; Qiao, Sen; Liu, Guangfei

    2015-09-01

    An air-lift-type microbial carbon capture cell (ALMCC) was constructed for the first time by using an air-lift-type photobioreactor as the cathode chamber. The performance of ALMCC in fixing high concentration of CO2, producing energy (power and biodiesel), and removing COD together with nutrients was investigated and compared with the traditional microbial carbon capture cell (MCC) and air-lift-type photobioreactor (ALP). The ALMCC system produced a maximum power density of 972.5 mW·m(-3) and removed 86.69% of COD, 70.52% of ammonium nitrogen, and 69.24% of phosphorus, which indicate that ALMCC performed better than MCC in terms of power generation and wastewater treatment efficiency. Besides, ALMCC demonstrated 9.98- and 1.88-fold increases over ALP and MCC in the CO2 fixation rate, respectively. Similarly, the ALMCC significantly presented a higher lipid productivity compared to those control reactors. More importantly, the preliminary analysis of energy balance suggested that the net energy of the ALMCC system was significantly superior to other systems and could theoretically produce enough energy to cover its consumption. In this work, the established ALMCC system simultaneously achieved the high level of CO2 fixation, energy recycle, and municipal wastewater treatment effectively and efficiently.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jennings, Ryan de Montmollin; Moran, James J.; Jay, Zackary J.

    Biological fixation of CO 2 is the primary mechanism of C reduction in natural systems, and provides a diverse suite of organic compounds utilized by chemoorganoheterotrophs. The extent and mechanisms of CO 2 fixation were evaluated across a comprehensive set of high-temperature, chemotrophic microbial communities in Yellowstone National Park by combining metagenomic and stable 13C isotope analyses. Fifteen geothermal sites representing three distinct habitat types (iron-oxide mats, anoxic sulfur sediments, and filamentous ‘streamer’ communities) were investigated. Genes of the 3-hydroxypropionate/4-hydroxybutyrate, dicarboxylate/4-hydroxybutyrate, and reverse tricarboxylic acid CO 2 fixation pathways were identified in assembled genome sequence corresponding to the predominant Crenarchaeotamore » and Aquificales observed across this habitat range. Stable 13C analyses of dissolved inorganic and organic C (DIC, DOC), and possible landscape C sources were used to interpret the 13C content of microbial community samples. Isotope mixing models showed that the minimum amounts of autotrophic C in microbial biomass were > 50 % in the majority of communities analyzed, but were also dependent on the amounts of heterotrophy and/or accumulation of landscape C. Furthermore, the significance of CO 2 as a C source in these communities provides a foundation for understanding metabolic linkages among autotrophs and heterotrophs, community assembly and succession, and the likely coevolution of deeply-branching thermophiles.« less

  14. Sustained effects of atmospheric [CO2] and nitrogen availability on forest soil CO2 efflux

    Treesearch

    A. Christopher Oishi; Sari Palmroth; Kurt H. Johnsen; Heather R. McCarthy; Ram Oren

    2014-01-01

    Soil CO2 efflux (Fsoil) is the largest source of carbon from forests and reflects primary productivity as well as how carbon is allocated within forest ecosystems. Through early stages of stand development, both elevated [CO2] and availability of soil nitrogen (N; sum of mineralization, deposition, and fixation) have been shown to increase gross primary productivity,...

  15. A Triazole-Containing Metal-Organic Framework as a Highly Effective and Substrate Size-Dependent Catalyst for CO2 Conversion.

    PubMed

    Li, Pei-Zhou; Wang, Xiao-Jun; Liu, Jia; Lim, Jie Sheng; Zou, Ruqiang; Zhao, Yanli

    2016-02-24

    A highly porous metal-organic framework (MOF) incorporating both exposed metal sites and nitrogen-rich triazole groups was successfully constructed via solvothermal assembly of a clicked octcarboxylate ligand and Cu(II) ions, which presents a high affinity toward CO2 molecules clearly verified by gas adsorption and Raman spectral detection. The constructed MOF featuring CO2-adsorbing property and exposed Lewis-acid metal sites could serve as an excellent catalyst for CO2-based chemical fixation. Catalytic activity of the MOF was confirmed by remarkably high efficiency on CO2 cycloaddition with small epoxides. When extending the substrates to larger ones, its activity showed a sharp decrease. These observations reveal that MOF-catalyzed CO2 cycloaddition of small substrates was carried out within the framework, while large ones cannot easily enter into the porous framework for catalytic reactions. Thus, the synthesized MOF exhibits high catalytic selectivity to different substrates on account of the confinement of the pore diameter. The high efficiency and size-dependent selectivity toward small epoxides on catalytic CO2 cycloaddition make this MOF a promising heterogeneous catalyst for carbon fixation.

  16. Raman-activated cell sorting and metagenomic sequencing revealing carbon-fixing bacteria in the ocean.

    PubMed

    Jing, Xiaoyan; Gou, Honglei; Gong, Yanhai; Su, Xiaolu; Xu, La; Ji, Yuetong; Song, Yizhi; Thompson, Ian P; Xu, Jian; Huang, Wei E

    2018-05-04

    It is of great significance to understand CO 2 fixation in the oceans. Using single cell Raman spectra (SCRS) as biochemical profiles, Raman activated cell ejection (RACE) was able to link phenotypes and genotypes of cells. Here we show that mini-metagenomic sequences from RACE can be used as a reference to reconstruct nearly complete genomes of key functional bacteria by binning shotgun metagenomic sequencing data. By applying this approach to 13 C-bicarbonate spiked seawater from euphotic zone of the Yellow Sea of China, the dominant bacteria Synechococcus spp. and Pelagibacter spp. were revealed, and both of them contain carotenoid and were able to incorporate 13 C into the cells at the same time. Genetic analysis of the reconstructed genomes suggests that both Synechococcus spp. and Pelagibacter spp. contained all genes necessary for carotenoid synthesis, light energy harvesting and CO 2 fixation. Interestingly, the reconstructed genome indicates that Pelagibacter spp. harbored intact sets of genes for β-carotene (precursor of retional), proteorhodopsin synthesis and anaplerotic CO 2 fixation. This novel approach shines light on the role of marine "microbial dark matter" in global carbon cycling, by linking yet-to-be-cultured Synechococcus spp. and Pelagibacter spp. to carbon fixation and flow activities in situ. This article is protected by copyright. All rights reserved. © 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.

  17. Transition metal-catalyzed carboxylation reactions with carbon dioxide.

    PubMed

    Martin, Ruben; Tortajada, Andreu; Juliá-Hernández, Francisco; Borjesson, Marino; Moragas, Toni

    2018-05-03

    Driven by the inherent synthetic potential of CO2 as an abundant, inexpensive and renewable C1 chemical feedstock, the recent years have witnessed renewed interest in devising catalytic CO2 fixations into organic matter. Although the formation of C-C bonds via catalytic CO2 fixation remained rather limited for a long period of time, a close look into the recent literature data indicates that catalytic carboxylation reactions have entered a new era of exponential growth, evolving into a mature discipline that allows for streamlining the synthesis of carboxylic acids, building blocks of utmost relevance in industrial endeavours. These strategies have generally proven broadly applicability and convenient to perform. However, substantial challenges still need to be addressed reinforcing the need to cover metal-catalyzed carboxylation arena in a conceptual and concise manner, delineating the underlying new principles that are slowly emerging in this vibrant area of expertise. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Serial lantern-shaped draft tube enhanced flashing light effect for improving CO2 fixation with microalgae in a gas-lift circumflux column photobioreactor.

    PubMed

    Ye, Qing; Cheng, Jun; Guo, Wangbiao; Xu, Junchen; Li, Ke; Zhou, Junhu

    2018-05-01

    A novel serial lantern-shaped draft tube (LDT) that generates vortices is proposed to increase radial velocity between dark and light regions for improving CO 2 fixation with microalgae in a gas-lift circumflux column (GCC) photobioreactor. Clockwise vortices are generated in the downflow outerloop of the GCC photobioreactor with LDT. Radial velocity was improved from 1.50 to 4.35 × 10 -2  m/s, thereby decreased liquid cycle period between dark and light regions by 1.9 times. Mixing time decreased by 21%, and mass transfer coefficient increased by 26% with LDT. Liquid radial velocity in the downflow outerloop and mass transfer coefficient in the GCC photobioreactor both first increased and then decreased when single-lantern height was increased. Peak CO 2 fixation rate increased from 0.62 to 0.87 g/L/d, microalgal biomass yield increased by 50%. Removal efficiencies of pollutants (chemical oxygen demand, ammonium, tilmicosin, and ethinylestradiol) in wastewater were 62-90% with microalgae growth in GCC photobioreactor with LDT. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Inoculation with an enhanced N2-fixing Bradyrhizobium japonicum strain (USDA110) does not alter soybean (Glycine max Merr.) response to elevated [CO2

    USDA-ARS?s Scientific Manuscript database

    This study tested the hypothesis that inoculation of soybean (Glycine max Merr.) with a selected Bradyrhizobium japonicum strain (USDA110) with greater N2 fixation rates would enhance soybean photosynthetic, growth and yield response to elevated [CO2]. In field experiments at the Soybean Free Air CO...

  20. Study of Superbase-Based Deep Eutectic Solvents as the Catalyst in the Chemical Fixation of CO2 into Cyclic Carbonates under Mild Conditions

    PubMed Central

    García-Argüelles, Sara; Iglesias, Marta; Del Monte, Francisco

    2017-01-01

    Superbases have shown high performance as catalysts in the chemical fixation of CO2 to epoxides. The proposed reaction mechanism typically assumes the formation of a superbase, the CO2 adduct as the intermediate, most likely because of the well-known affinity between superbases and CO2, i.e., superbases have actually proven quite effective for CO2 absorption. In this latter use, concerns about the chemical stability upon successive absorption-desorption cycles also merits attention when using superbases as catalysts. In this work, 1H NMR spectroscopy was used to get further insights about (1) whether a superbase, the CO2 adduct, is formed as an intermediate and (2) the chemical stability of the catalyst after reaction. For this purpose, we proposed as a model system the chemical fixation of CO2 to epichlorohydrin (EP) using a deep eutectic solvent (DES) composed of a superbase, e.g., 2,3,4,6,7,8-hexahydro-1H-pyrimido[1,2-a]pyrimidine (TBD) or 2,3,4,6,7,8,9,10-octahydropyrimido[1,2-a]azepine (DBU), as a hydrogen acceptor and an alcohol as a hydrogen bond donor, e.g., benzyl alcohol (BA), ethylene glycol (EG), and methyldiethanolamine (MDEA), as the catalyst. The resulting carbonate was obtained with yields above 90% and selectivities approaching 100% after only two hours of reaction in pseudo-mild reaction conditions, e.g., 1.2 bars and 100 °C, and after 20 h if the reaction conditions of choice were even milder, e.g., 1.2 bars and 50 °C. These results were in agreement with previous works using bifunctional catalytic systems composed of a superbase and a hydrogen bond donor (HBD) also reporting good yields and selectivities, thus confirming the suitability of our choice to perform this study. PMID:28773128

  1. The effects of environmental physical factors on the microbial communities and the distribution of different CO2 fixation pathways in a limestone landscape

    NASA Astrophysics Data System (ADS)

    Wun, S. R.; Huang, T. Y.; Hsu, B. M.; Fan, C. W.

    2017-12-01

    We aimed to study the effects of physical factors on the relative abundance of bacteria and their preferential admissions of autotrophic CO2 fixation pathways after subjected to environmental long-term influence. The Narrow-Sky located in upper part of Takangshan is a small gulch of Pleistocene coralline limestone formation in southern Taiwan. The physical parameters such as illumination, humidity, and temperature were varied largely in habitats around the gulch, namely on the limestone wall at the opening of gulch, on the coordinate ground soil, on the wall inside the gulch, and the water drip from limestone wall. The total organic carbon was measured in solid samples to evaluate the biomass of the habitats. A metagenomic approach was carried out to reveal their microbial community structure. After the metagenomic library of operational taxonomic units (OTUs) was constructed, a BLAST search by "nomenclature of bacteria" instead of sequences between the OTU libraries and KEGG database was carried out to generate libraries of "model microbial communities", which the complete genomes of the entire bacterial populations were available. Our results showed the biomass of habitats in the opening of gulch was twice higher than the inside, suggesting the illumination played an important role in biosynthesis. In quantitative comparison in key enzymes of CO2 fixation pathways by model communities, 70% to 90% of bacteria possessed key enzymes of Fuchs-Holo cycle, while only 5% to 20% of bacteria contained key enzymes of Calvin-Benson cycle. The key enzymes for hydroxypropionate/ hydroxybutyrate and dicarboxylate/ 4-hydroxybutyrate cycles were not found in this study. In the water sample, approximate 10% of bacteria consisted of the key enzyme for Arnon-Buchanan cycle. Less than 2% of bacteria in all habitats take the reductive acetyl-CoA cycle for CO2 fixation. This study provides a novel method to study biosynthetic process of microbial communities in natural habitats.

  2. Stem and leaf gas exchange and their responses to fire in a north Australian tropical savanna.

    PubMed

    Cernusak, Lucas A; Hutley, Lindsay B; Beringer, Jason; Tapper, Nigel J

    2006-04-01

    We measured stem CO2 efflux and leaf gas exchange in a tropical savanna ecosystem in northern Australia, and assessed the impact of fire on these processes. Gas exchange of mature leaves that flushed after a fire showed only slight differences from that of mature leaves on unburned trees. Expanding leaves typically showed net losses of CO2 to the atmosphere in both burned and unburned trees, even under saturating irradiance. Fire caused stem CO2 efflux to decline in overstory trees, when measured 8 weeks post-fire. This decline was thought to have resulted from reduced availability of C substrate for respiration, due to reduced canopy photosynthesis caused by leaf scorching, and to priority allocation of fixed C towards reconstruction of a new canopy. At the ecosystem scale, we estimated the annual above-ground woody-tissue CO2 efflux to be 275 g C m(-2) ground area year(-1) in a non-fire year, or approximately 13% of the annual gross primary production. We contrasted the canopy physiology of two co-dominant overstory tree species, one of which has a smooth bark on its branches capable of photosynthetic re-fixation (Eucalyptus miniata), and the other of which has a thick, rough bark incapable of re-fixation (Eucalyptus tetrodonta). Eucalyptus miniata supported a larger branch sapwood cross-sectional area in the crown per unit subtending leaf area, and had higher leaf stomatal conductance and photosynthesis than E. tetrodonta. Re-fixation by photosynthetic bark reduces the C cost of delivering water to evaporative sites in leaves, because it reduces the net C cost of constructing and maintaining sapwood. We suggest that re-fixation allowed leaves of E. miniata to photosynthesize at higher rates than those of E. tetrodonta, while the two invested similar amounts of C in the maintenance of branch sapwood.

  3. Exploring stress tolerance mechanism of evolved freshwater strain Chlorella sp. S30 under 30 g/L salt.

    PubMed

    Li, Xuyang; Yuan, Yizhong; Cheng, Dujia; Gao, Juan; Kong, Lingzhao; Zhao, Quanyu; Wei, Wei; Sun, Yuhan

    2018-02-01

    Enhancement of stress tolerance to high concentration of salt and CO 2 is beneficial for CO 2 capture by microalgae. Adaptive evolution was performed for improving the tolerance of a freshwater strain, Chlorella sp. AE10, to 30 g/L salt. A resulting strain denoted as Chlorella sp. S30 was obtained after 46 cycles (138 days). The stress tolerance mechanism was analyzed by comparative transcriptomic analysis. Although the evolved strain could tolerate 30 g/L salt, high salinity caused loss to photosynthesis, oxidative phosphorylation, fatty acid biosynthesis and tyrosine metabolism. The related genes of antioxidant enzymes, CO 2 fixation, amino acid biosynthesis, central carbon metabolism and ABC transporter proteins were up-regulated. Besides the up-regulation of several genes in Calvin-Benson cycle, they were also identified in C4 photosynthetic pathway and crassulacean acid metabolism pathway. They were essential for the survival and CO 2 fixation of Chlorella sp. S30 under 30 g/L salt and 10% CO 2 . Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. A repeat protein links Rubisco to form the eukaryotic carbon-concentrating organelle.

    PubMed

    Mackinder, Luke C M; Meyer, Moritz T; Mettler-Altmann, Tabea; Chen, Vivian K; Mitchell, Madeline C; Caspari, Oliver; Freeman Rosenzweig, Elizabeth S; Pallesen, Leif; Reeves, Gregory; Itakura, Alan; Roth, Robyn; Sommer, Frederik; Geimer, Stefan; Mühlhaus, Timo; Schroda, Michael; Goodenough, Ursula; Stitt, Mark; Griffiths, Howard; Jonikas, Martin C

    2016-05-24

    Biological carbon fixation is a key step in the global carbon cycle that regulates the atmosphere's composition while producing the food we eat and the fuels we burn. Approximately one-third of global carbon fixation occurs in an overlooked algal organelle called the pyrenoid. The pyrenoid contains the CO2-fixing enzyme Rubisco and enhances carbon fixation by supplying Rubisco with a high concentration of CO2 Since the discovery of the pyrenoid more that 130 y ago, the molecular structure and biogenesis of this ecologically fundamental organelle have remained enigmatic. Here we use the model green alga Chlamydomonas reinhardtii to discover that a low-complexity repeat protein, Essential Pyrenoid Component 1 (EPYC1), links Rubisco to form the pyrenoid. We find that EPYC1 is of comparable abundance to Rubisco and colocalizes with Rubisco throughout the pyrenoid. We show that EPYC1 is essential for normal pyrenoid size, number, morphology, Rubisco content, and efficient carbon fixation at low CO2 We explain the central role of EPYC1 in pyrenoid biogenesis by the finding that EPYC1 binds Rubisco to form the pyrenoid matrix. We propose two models in which EPYC1's four repeats could produce the observed lattice arrangement of Rubisco in the Chlamydomonas pyrenoid. Our results suggest a surprisingly simple molecular mechanism for how Rubisco can be packaged to form the pyrenoid matrix, potentially explaining how Rubisco packaging into a pyrenoid could have evolved across a broad range of photosynthetic eukaryotes through convergent evolution. In addition, our findings represent a key step toward engineering a pyrenoid into crops to enhance their carbon fixation efficiency.

  5. Porous Ionic Polymers as a Robust and Efficient Platform for Capture and Chemical Fixation of Atmospheric CO2.

    PubMed

    Sun, Qi; Jin, Yingyin; Aguila, Briana; Meng, Xiangju; Ma, Shengqian; Xiao, Feng-Shou

    2017-03-22

    Direct use of atmospheric CO 2 as a C 1 source to synthesize high-value chemicals through environmentally benign processes is of great interest, yet challenging. Porous heterogeneous catalysts that are capable of simultaneously capturing and converting CO 2 are promising candidates for such applications. Herein, a family of organic ionic polymers with nanoporous structure, large surface area, strong affinity for CO 2 , and very high density of catalytic active sites (halide ions) was synthesized through the free-radical polymerization of vinylfunctionalized quaternary phosphonium salts. The resultant porous ionic polymers (PIPs) exhibit excellent activities in the cycloaddition of epoxides with atmospheric CO 2 , outperforming the corresponding soluble phosphonium salt analogues and ranking among the highest of known metal-free catalytic systems. The high CO 2 uptake capacity of the PIPs facilitates the enrichment of CO 2 molecules around the catalytic centers, thereby benefiting its conversion. We have demonstrated for the first time that atmospheric CO 2 can be directly converted to cyclic carbonates at room temperature using a heterogeneous catalytic system under metal-solvent free conditions. Moreover, the catalysts proved to be robust and fully recyclable, demonstrating promising potential for practical utilization for the chemical fixation of CO 2 . Our work thereby paves a way to the advance of PIPs as a new type of platform for capture and conversion of CO 2 . © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Microalgae and Its Premises towards Sustainable Energy Development

    NASA Astrophysics Data System (ADS)

    Chik, M. N.; Yahya, L.; Zainal, A.; Boosroh, M. H.

    2017-06-01

    This paper features the use of nature’s element as a tool to combat current global issues on environment. Through research works by TNB Research Sdn. Bhd. (TNBR), marine phototrophic microalgae is used in reducing CO2 emissions from its fossil-fuel based power plants using. The research program commenced in 2011 with the aim to develop capacity, capability and facilities in biological CO2 fixation. The research program focuses on improving and enhancing the CO2 fixation through four core measures; namely species selection, nutrient optimization, flue gas admission and photobioreactor (PBR) design and engineering. The measures lead to the migration and evolution of culture facilities from laboratory conditions to outdoor, from shake flasks to 6 x 250 liter pilot PBR facility at a live coal-fired power plant, from mono species to consortium of species. Increment of CO2 fixation rates is summarized with discussion on comparisons of other achievements reported elsewhere. A considerable amount of work on analysing the bioactive compound present in the algae - protein, amino acids, carbohydrate, lipid, fatty acids - and its encouraging results, as an impetus towards sustainable development, will also be shared. Premises and observations from various microalgae research works are collated and presented in a manner sufficient to highlight the eminent roles of this tiny creature to become our mentor in providing some solutions to our worldly problems.

  7. Engineered yeast with a CO2-fixation pathway to improve the bio-ethanol production from xylose-mixed sugars.

    PubMed

    Li, Yun-Jie; Wang, Miao-Miao; Chen, Ya-Wei; Wang, Meng; Fan, Li-Hai; Tan, Tian-Wei

    2017-03-06

    Bio-ethanol production from lignocellulosic raw materials could serve as a sustainable potential for improving the supply of liquid fuels in face of the food-to-fuel competition and the growing energy demand. Xylose is the second abundant sugar of lignocelluloses hydrolysates, but its commercial-scale conversion to ethanol by fermentation is challenged by incomplete and inefficient utilization of xylose. Here, we use a coupled strategy of simultaneous maltose utilization and in-situ carbon dioxide (CO 2 ) fixation to achieve efficient xylose fermentation by the engineered Saccharomyces cerevisiae. Our results showed that the introduction of CO 2 as electron acceptor for nicotinamide adenine dinucleotide (NADH) oxidation increased the total ethanol productivity and yield at the expense of simultaneous maltose and xylose utilization. Our achievements present an innovative strategy using CO 2 to drive and redistribute the central pathways of xylose to desirable products and demonstrate a possible breakthrough in product yield of sugars.

  8. Crassulacean acid metabolism in submerged aquatic plants

    USGS Publications Warehouse

    Keeley, Jon E.; Sybesme, C.

    1984-01-01

    CO2-fixation in the dark is known to occur in various organs of many plants. However, only in species possessing crassulacean acid metabolism (CAM) does dark CO2-fixation contribute substantially to the carbon economy of the plant. Until very recently CAM was known only from terrestrial species, largely drought adapted succulents. The discovery of CAM in the submerged aquatic fern ally Isoetes howellii (Isoetaceae)(Keeley 1981) adds a new dimension to our understanding of crassulacean acid metabolism. In this paper I will summarize 1) the evidence of CAM in Isoetes howellii, 2) the data on the distribution of CAM in aquatic species, and 3) the work to date on the functional significance of CAM in aquatic species.

  9. Iron catalysis at the origin of life.

    PubMed

    Camprubi, Eloi; Jordan, Sean F; Vasiliadou, Rafaela; Lane, Nick

    2017-06-01

    Iron-sulphur proteins are ancient and drive fundamental processes in cells, notably electron transfer and CO 2 fixation. Iron-sulphur minerals with equivalent structures could have played a key role in the origin of life. However, the 'iron-sulphur world' hypothesis has had a mixed reception, with questions raised especially about the feasibility of a pyrites-pulled reverse Krebs cycle. Phylogenetics suggests that the earliest cells drove carbon and energy metabolism via the acetyl CoA pathway, which is also replete in Fe(Ni)S proteins. Deep differences between bacteria and archaea in this pathway obscure the ancestral state. These differences make sense if early cells depended on natural proton gradients in alkaline hydrothermal vents. If so, the acetyl CoA pathway diverged with the origins of active ion pumping, and ancestral CO 2 fixation might have been equivalent to methanogens, which depend on a membrane-bound NiFe hydrogenase, energy converting hydrogenase. This uses the proton-motive force to reduce ferredoxin, thence CO 2 . The mechanism suggests that pH could modulate reduction potential at the active site of the enzyme, facilitating the difficult reduction of CO 2 by H 2 . This mechanism could be generalised under abiotic conditions so that steep pH differences across semi-conducting Fe(Ni)S barriers drives not just the first steps of CO 2 fixation to C1 and C2 organics such as CO, CH 3 SH and CH 3 COSH, but a series of similar carbonylation and hydrogenation reactions to form longer chain carboxylic acids such as pyruvate, oxaloacetate and α-ketoglutarate, as in the incomplete reverse Krebs cycle found in methanogens. We suggest that the closure of a complete reverse Krebs cycle, by regenerating acetyl CoA directly, displaced the acetyl CoA pathway from many modern groups. A later reliance on acetyl CoA and ATP eliminated the need for the proton-motive force to drive most steps of the reverse Krebs cycle. © 2017 IUBMB Life, 69(6):373-381, 2017. © 2017 The Authors IUBMB Life published by Wiley Periodicals, Inc. on behalf of International Union of Biochemistry and Molecular Biology.

  10. Potential use of sugar binding proteins in reactors for regeneration of CO2 fixation acceptor D-Ribulose-1,5-bisphosphate

    PubMed Central

    Mahato, Sourav; De, Debojyoti; Dutta, Debajyoti; Kundu, Moloy; Bhattacharya, Sumana; Schiavone, Marc T; Bhattacharya, Sanjoy K

    2004-01-01

    Sugar binding proteins and binders of intermediate sugar metabolites derived from microbes are increasingly being used as reagents in new and expanding areas of biotechnology. The fixation of carbon dioxide at emission source has recently emerged as a technology with potentially significant implications for environmental biotechnology. Carbon dioxide is fixed onto a five carbon sugar D-ribulose-1,5-bisphosphate. We present a review of enzymatic and non-enzymatic binding proteins, for 3-phosphoglycerate (3PGA), 3-phosphoglyceraldehyde (3PGAL), dihydroxyacetone phosphate (DHAP), xylulose-5-phosphate (X5P) and ribulose-1,5-bisphosphate (RuBP) which could be potentially used in reactors regenerating RuBP from 3PGA. A series of reactors combined in a linear fashion has been previously shown to convert 3-PGA, (the product of fixed CO2 on RuBP as starting material) into RuBP (Bhattacharya et al., 2004; Bhattacharya, 2001). This was the basis for designing reactors harboring enzyme complexes/mixtures instead of linear combination of single-enzyme reactors for conversion of 3PGA into RuBP. Specific sugars in such enzyme-complex harboring reactors requires removal at key steps and fed to different reactors necessitating reversible sugar binders. In this review we present an account of existing microbial sugar binding proteins and their potential utility in these operations. PMID:15175111

  11. Method for reducing CO2, CO, NOX, and SOx emissions

    DOEpatents

    Lee, James Weifu; Li, Rongfu

    2002-01-01

    Industrial combustion facilities are integrated with greenhouse gas-solidifying fertilizer production reactions so that CO.sub.2, CO, NO.sub.x, and SO.sub.x emissions can be converted prior to emission into carbonate-containing fertilizers, mainly NH.sub.4 HCO.sub.3 and/or (NH.sub.2).sub.2 CO, plus a small fraction of NH.sub.4 NO.sub.3 and (NH.sub.4).sub.2 SO.sub.4. The invention enhances sequestration of CO.sub.2 into soil and the earth subsurface, reduces N0.sub.3.sup.- contamination of surface and groundwater, and stimulates photosynthetic fixation of CO.sub.2 from the atmosphere. The method for converting CO.sub.2, CO, NO.sub.x, and SO.sub.x emissions into fertilizers includes the step of collecting these materials from the emissions of industrial combustion facilities such as fossil fuel-powered energy sources and transporting the emissions to a reactor. In the reactor, the CO.sub.2, CO, N.sub.2, SO.sub.x, and/or NO.sub.x are converted into carbonate-containing fertilizers using H.sub.2, CH.sub.4, or NH.sub.3. The carbonate-containing fertilizers are then applied to soil and green plants to (1) sequester inorganic carbon into soil and subsoil earth layers by enhanced carbonation of groundwater and the earth minerals, (2) reduce the environmental problem of NO.sub.3.sup.- runoff by substituting for ammonium nitrate fertilizer, and (3) stimulate photosynthetic fixation of CO.sub.2 from the atmosphere by the fertilization effect of the carbonate-containing fertilizers.

  12. Efficient Hydrogen-Dependent Carbon Dioxide Reduction by Escherichia coli.

    PubMed

    Roger, Magali; Brown, Fraser; Gabrielli, William; Sargent, Frank

    2018-01-08

    Hydrogen-dependent reduction of carbon dioxide to formic acid offers a promising route to greenhouse gas sequestration, carbon abatement technologies, hydrogen transport and storage, and the sustainable generation of renewable chemical feedstocks [1]. The most common approach to performing direct hydrogenation of CO 2 to formate is to use chemical catalysts in homogeneous or heterogeneous reactions [2]. An alternative approach is to use the ability of living organisms to perform this reaction biologically. However, although CO 2 fixation pathways are widely distributed in nature, only a few enzymes have been described that have the ability to perform the direct hydrogenation of CO 2 [3-5]. The formate hydrogenlyase (FHL) enzyme from Escherichia coli normally oxidizes formic acid to carbon dioxide and couples that reaction directly to the reduction of protons to molecular hydrogen [6]. In this work, the reverse reaction of FHL is unlocked. It is established that FHL can operate as a highly efficient hydrogen-dependent carbon dioxide reductase when gaseous CO 2 and H 2 are placed under pressure (up to 10 bar). Using intact whole cells, the pressurized system was observed to rapidly convert 100% of gaseous CO 2 to formic acid, and >500 mM formate was observed to accumulate in solution. Harnessing the reverse reaction has the potential to allow the versatile E. coli system to be employed as an exciting new carbon capture technology or as a cell factory dedicated to formic acid production, which is a commodity in itself as well as a feedstock for the synthesis of other valued chemicals. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  13. Metagenomic Insights of Microbial Feedbacks to Elevated CO2 (Invited)

    NASA Astrophysics Data System (ADS)

    Zhou, J.; Tu, Q.; Wu, L.; He, Z.; Deng, Y.; Van Nostrand, J. D.

    2013-12-01

    Understanding the responses of biological communities to elevated CO2 (eCO2) is a central issue in ecology and global change biology, but its impacts on the diversity, composition, structure, function, interactions and dynamics of soil microbial communities remain elusive. In this study, we first examined microbial responses to eCO2 among six FACE sites/ecosystems using a comprehensive functional gene microarray (GeoChip), and then focused on details of metagenome sequencing analysis in one particular site. GeoChip is a comprehensive functional gene array for examining the relationships between microbial community structure and ecosystem functioning and is a very powerful technology for biogeochemical, ecological and environmental studies. The current version of GeoChip (GeoChip 5.0) contains approximately 162,000 probes from 378,000 genes involved in C, N, S and P cycling, organic contaminant degradation, metal resistance, antibiotic resistance, stress responses, metal homeostasis, virulence, pigment production, bacterial phage-mediated lysis, soil beneficial microorganisms, and specific probes for viruses, protists, and fungi. Our experimental results revealed that both ecosystem and CO2 significantly (p < 0.05) affected the functional composition, structure and metabolic potential of soil microbial communities with the ecosystem having much greater influence (~47%) than CO2 (~1.3%) or CO2 and ecosystem (~4.1%). On one hand, microbial responses to eCO2 shared some common patterns among different ecosystems, such as increased abundances for key functional genes involved in nitrogen fixation, carbon fixation and degradation, and denitrification. On the other hand, more ecosystem-specific microbial responses were identified in each individual ecosystem. Such changes in the soil microbial community structure were closely correlated with geographic distance, soil NO3-N, NH4-N and C/N ratio. Further metagenome sequencing analysis of soil microbial communities in one particular site showed eCO2 altered the overall structure of soil microbial communities with ambient CO2 samples retaining a higher functional gene diversity than eCO2 samples. Also the taxonomic diversity of functional genes decreased at eCO2. Random matrix theory (RMT)-based network analysis showed that the identified networks under ambient and elevated CO2 were substantially different in terms of overall network topology, network composition, node overlap, module preservation, module-based higher order organization (meta-modules), topological roles of individual nodes, and network hubs, indicating that elevated CO2 dramatically altered the network interactions among different phylogenetic and functional groups/populations. In addition, the changes in network structure were significantly correlated with soil carbon and nitrogen content, indicating the potential importance of network interactions in ecosystem functioning. Taken together, this study indicates that eCO2 may decrease the overall functional and taxonomic diversity of soil microbial communities, but such effects appeared to be ecosystem-specific, which makes it more challenging for predicting global or regional terrestrial ecosystems responses to eCO2.

  14. Regulation of autotrophic CO2 fixation in the archaeon Thermoproteus neutrophilus.

    PubMed

    Ramos-Vera, W Hugo; Labonté, Valérie; Weiss, Michael; Pauly, Julia; Fuchs, Georg

    2010-10-01

    Thermoproteus neutrophilus, a hyperthermophilic, chemolithoautotrophic, anaerobic crenarchaeon, uses a novel autotrophic CO(2) fixation pathway, the dicarboxylate/hydroxybutyrate cycle. The regulation of the central carbon metabolism was studied on the level of whole cells, enzyme activity, the proteome, transcription, and gene organization. The organism proved to be a facultative autotroph, which prefers organic acids as carbon sources that can easily feed into the metabolite pools of this cycle. Addition of the preferred carbon sources acetate, pyruvate, succinate, and 4-hydroxybutyrate to cultures resulted in stimulation of the growth rate and a diauxic growth response. The characteristic enzyme activities of the carbon fixation cycle, fumarate hydratase, fumarate reductase, succinyl coenzyme A (CoA) synthetase, and enzymes catalyzing the conversion of succinyl-CoA to crotonyl-CoA, were differentially downregulated in the presence of acetate and, to a lesser extent, in the presence of other organic substrates. This regulation pattern correlated well with the differential expression profile of the proteome as well as with the transcription of the encoding genes. The genes encoding phosphoenolpyruvate (PEP) carboxylase, fumarate reductase, and four enzymes catalyzing the conversion of succinyl-CoA to crotonyl-CoA are clustered. Two putative operons, one comprising succinyl-CoA reductase plus 4-hydroxybutyrate-CoA ligase genes and the other comprising 4-hydroxybutyryl-CoA dehydratase plus fumarate reductase genes, were divergently transcribed into leaderless mRNAs. The promoter regions were characterized and used for isolating DNA binding proteins. Besides an Alba protein, a 18-kDa protein characteristic for autotrophic Thermoproteales that bound specifically to the promoter region was identified. This system may be suitable for molecular analysis of the transcriptional regulation of autotrophy-related genes.

  15. Synthetic CO2-fixation enzyme cascades immobilized on self-assembled nanostructures that enhance CO2/O2 selectivity of RubisCO.

    PubMed

    Satagopan, Sriram; Sun, Yuan; Parquette, Jon R; Tabita, F Robert

    2017-01-01

    With increasing concerns over global warming and depletion of fossil-fuel reserves, it is attractive to develop innovative strategies to assimilate CO 2 , a greenhouse gas, into usable organic carbon. Cell-free systems can be designed to operate as catalytic platforms with enzymes that offer exceptional selectivity and efficiency, without the need to support ancillary reactions of metabolic pathways operating in intact cells. Such systems are yet to be exploited for applications involving CO 2 utilization and subsequent conversion to valuable products, including biofuels. The Calvin-Benson-Bassham (CBB) cycle and the enzyme ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO) play a pivotal role in global CO 2 fixation. We hereby demonstrate the co-assembly of two RubisCO-associated multienzyme cascades with self-assembled synthetic amphiphilic peptide nanostructures. The immobilized enzyme cascades sequentially convert either ribose-5-phosphate (R-5-P) or glucose, a simpler substrate, to ribulose 1,5-bisphosphate (RuBP), the acceptor for incoming CO 2 in the carboxylation reaction catalyzed by RubisCO. Protection from proteolytic degradation was observed in nanostructures associated with the small dimeric form of RubisCO and ancillary enzymes. Furthermore, nanostructures associated with a larger variant of RubisCO resulted in a significant enhancement of the enzyme's selectivity towards CO 2 , without adversely affecting the catalytic activity. The ability to assemble a cascade of enzymes for CO 2 capture using self-assembling nanostructure scaffolds with functional enhancements show promise for potentially engineering entire pathways (with RubisCO or other CO 2 -fixing enzymes) to redirect carbon from industrial effluents into useful bioproducts.

  16. The potential for co-evolution of CO2-concentrating mechanisms and Rubisco in diatoms.

    PubMed

    Young, Jodi N; Hopkinson, Brian M

    2017-06-01

    Diatoms are a diverse group of unicellular algae that contribute significantly to global photosynthetic carbon fixation and export in the modern ocean, and are an important source of microfossils for paleoclimate reconstructions. Because of their importance in the environment, diatoms have been a focus of study on the physiology and ecophysiology of carbon fixation, in particular their CO2-concentrating mechanisms (CCMs) and Rubisco characteristics. While carbon fixation in diatoms is not as well understood as in certain model aquatic photoautotrophs, a greater number of species have been examined in diatoms. Recent work has highlighted a large diversity in the function, physiology, and kinetics of both the CCM and Rubisco between different diatom species. This diversity was unexpected since it has generally been assumed that CCMs and Rubiscos were similar within major algal lineages as the result of selective events deep in evolutionary history, and suggests a more recent co-evolution between the CCM and Rubisco within diatoms. This review explores our current understanding of the diatom CCM and highlights the diversity of both the CCM and Rubisco kinetics. We will suggest possible environmental, physiological, and evolutionary drivers for the co-evolution of the CCM and Rubisco in diatoms. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  17. Livestock waste-to-bioenergy generation opportunities.

    PubMed

    Cantrell, Keri B; Ducey, Thomas; Ro, Kyoung S; Hunt, Patrick G

    2008-11-01

    The use of biological and thermochemical conversion (TCC) technologies in livestock waste-to-bioenergy treatments can provide livestock operators with multiple value-added, renewable energy products. These products can meet heating and power needs or serve as transportation fuels. The primary objective of this work is to present established and emerging energy conversion opportunities that can transform the treatment of livestock waste from a liability to a profit center. While biological production of methanol and hydrogen are in early research stages, anaerobic digestion is an established method of generating between 0.1 to 1.3m3m(-3)d(-1) of methane-rich biogas. The TCC processes of pyrolysis, direct liquefaction, and gasification can convert waste into gaseous fuels, combustible oils, and charcoal. Integration of biological and thermal-based conversion technologies in a farm-scale hybrid design by combining an algal CO2-fixation treatment requiring less than 27,000m2 of treatment area with the energy recovery component of wet gasification can drastically reduce CO2 emissions and efficiently recycle nutrients. These designs have the potential to make future large scale confined animal feeding operations sustainable and environmentally benign while generating on-farm renewable energy.

  18. The complex effects of ocean acidification on the prominent N2-fixing cyanobacterium Trichodesmium.

    PubMed

    Hong, Haizheng; Shen, Rong; Zhang, Futing; Wen, Zuozhu; Chang, Siwei; Lin, Wenfang; Kranz, Sven A; Luo, Ya-Wei; Kao, Shuh-Ji; Morel, François M M; Shi, Dalin

    2017-05-05

    Acidification of seawater caused by anthropogenic carbon dioxide (CO 2 ) is anticipated to influence the growth of dinitrogen (N 2 )-fixing phytoplankton, which contribute a large fraction of primary production in the tropical and subtropical ocean. We found that growth and N 2 -fixation of the ubiquitous cyanobacterium Trichodesmium decreased under acidified conditions, notwithstanding a beneficial effect of high CO 2 Acidification resulted in low cytosolic pH and reduced N 2 -fixation rates despite elevated nitrogenase concentrations. Low cytosolic pH required increased proton pumping across the thylakoid membrane and elevated adenosine triphosphate production. These requirements were not satisfied under field or experimental iron-limiting conditions, which greatly amplified the negative effect of acidification. Copyright © 2017, American Association for the Advancement of Science.

  19. New Insight into the Role of the Calvin Cycle: Reutilization of CO2 Emitted through Sugar Degradation.

    PubMed

    Shimizu, Rie; Dempo, Yudai; Nakayama, Yasumune; Nakamura, Satoshi; Bamba, Takeshi; Fukusaki, Eiichiro; Fukui, Toshiaki

    2015-07-01

    Ralstonia eutropha is a facultative chemolithoautotrophic bacterium that uses the Calvin-Benson-Bassham (CBB) cycle for CO2 fixation. This study showed that R. eutropha strain H16G incorporated (13)CO2, emitted by the oxidative decarboxylation of [1-(13)C1]-glucose, into key metabolites of the CBB cycle and finally into poly(3-hydroxybutyrate) [P(3HB)] with up to 5.6% (13)C abundance. The carbon yield of P(3HB) produced from glucose by the strain H16G was 1.2 times higher than that by the CBB cycle-inactivated mutants, in agreement with the possible fixation of CO2 estimated from the balance of energy and reducing equivalents through sugar degradation integrated with the CBB cycle. The results proved that the 'gratuitously' functional CBB cycle in R. eutropha under aerobic heterotrophic conditions participated in the reutilization of CO2 emitted during sugar degradation, leading to an advantage expressed as increased carbon yield of the storage compound. This is a new insight into the role of the CBB cycle, and may be applicable for more efficient utilization of biomass resources.

  20. Structural and kinetic study of reversible CO2 fixation by dicopper macrocyclic complexes. From intramolecular binding to self-assembly of molecular boxes.

    PubMed

    Company, Anna; Jee, Joo-Eun; Ribas, Xavi; Lopez-Valbuena, Josep Maria; Gómez, Laura; Corbella, Montserrat; Llobet, Antoni; Mahía, José; Benet-Buchholz, Jordi; Costas, Miquel; van Eldik, Rudi

    2007-10-29

    A study of the reversible CO2 fixation by a series of macrocyclic dicopper complexes is described. The dicopper macrocyclic complexes [Cu2(OH)2(Me2p)](CF3SO3)2, 1(CF3SO3)2, and [Cu2(mu-OH)2(Me2m)](CF3SO3)2, 2(CF3SO3)2, (Scheme 1) containing terminally bound and bridging hydroxide ligands, respectively, promote reversible inter- and intramolecular CO2 fixation that results in the formation of the carbonate complexes [{Cu2(Me2p)}2(mu-CO3)2](CF3SO3)4, 4(CF3SO3)4, and [Cu2(mu-CO3)(Me2m)](CF3SO3)2, 5(CF3SO3)2. Under a N2 atmosphere the complexes evolve CO2 and revert to the starting hydroxo complexes 1(CF3SO3)2 and 2(CF3SO3)2, a reaction the rate of which linearly depends on [H2O]. In the presence of water, attempts to crystallize 5(CF3SO3)2 afford [{Cu2(Me2m)(H2O)}2(mu-CO3)2](CF3SO3)4, 6(CF3SO3)4, which appears to rapidly convert to 5(CF3SO3)2 in acetonitrile solution. [Cu2(OH)2(H3m)]2+, 7, which contains a larger macrocyclic ligand, irreversibly reacts with atmospheric CO2 to generate cagelike [{Cu2(H3m)}2(mu-CO3)2](ClO4)4, 8(ClO4)4. However, addition of 1 equiv of HClO4 per Cu generates [Cu2(H3m)(CH3CN)4]4+ (3), and subsequent addition of Et3N under air reassembles 8. The carbonate complexes 4(CF3SO3)4, 5(CF3SO3)2, 6(CF3SO3)4, and 8(ClO4)4 have been characterized in the solid state by X-ray crystallography. This analysis reveals that 4(CF3SO3)4, 6(CF3SO3)4, and 8(ClO4)4 consist of self-assembled molecular boxes containing two macrocyclic dicopper complexes, bridged by CO32- ligands. The bridging mode of the carbonate ligand is anti-anti-mu-eta1:eta1 in 4(CF3SO3)4, anti-anti-mu-eta2:eta1 in 6(CF3SO3)4 and anti-anti-mu-eta2:eta2 in 5(CF3SO3)2 and 8(ClO4)4. Magnetic susceptibility measurements on 4(CF3SO3)4, 6(CF3SO3)4, and 8(ClO4)4 indicate that the carbonate ligands mediate antiferromagnetic coupling between each pair of bridged CuII ions (J = -23.1, -108.3, and -163.4 cm-1, respectively, H = -JS1S2). Detailed kinetic analyses of the reaction between carbon dioxide and the macrocyclic complexes 1(CF3SO3)2 and 2(CF3SO3)2 suggest that it is actually hydrogen carbonate formed in aqueous solution on dissolving CO2 that is responsible for the observed formation of the different carbonate complexes controlled by the binding mode of the hydroxy ligands. This study shows that CO2 fixation can be used as an on/off switch for the reversible self-assembly of supramolecular structures based on macrocyclic dicopper complexes.

  1. Shifts in nitrogen acquisition strategies enable enhanced terrestrial carbon storage under elevated CO2 in a global model

    NASA Astrophysics Data System (ADS)

    Sulman, B. N.; Brzostek, E. R.; Menge, D.; Malyshev, S.; Shevliakova, E.

    2017-12-01

    Earth System Model (ESM) projections of terrestrial carbon (C) uptake are critical to understanding the future of the global C cycle. Current ESMs include intricate representations of photosynthetic C fixation in plants, allowing them to simulate the stimulatory effect of increasing atmospheric CO2 levels on photosynthesis. However, they lack sophisticated representations of plant nutrient acquisition, calling into question their ability to project the future land C sink. We conducted simulations using a new model of terrestrial C and nitrogen (N) cycling within the Geophysical Fluid Dynamics Laboratory (GFDL) global land model LM4 that uses a return on investment framework to simulate global patterns of N acquisition via fixation of N2 from the atmosphere, scavenging of inorganic N from soil solution, and mining of organic N from soil organic matter (SOM). We show that these strategies drive divergent C cycle responses to elevated CO2 at the ecosystem scale, with the scavenging strategy leading to N limitation of plant growth and the mining strategy facilitating stimulation of plant biomass accumulation over decadal time scales. In global simulations, shifts in N acquisition from inorganic N scavenging to organic N mining along with increases in N fixation supported long-term acceleration of C uptake under elevated CO2. Our results indicate that the ability of the land C sink to mitigate atmospheric CO2 levels is tightly coupled to the functional diversity of ecosystems and their capacity to change their N acquisition strategies over time. Incorporation of these mechanisms into ESMs is necessary to improve confidence in model projections of the global C cycle.

  2. Markisa fruit (Passiflora edulis var. flavicarpa) as a fixation material of natural colour of mangrove waste on batik

    NASA Astrophysics Data System (ADS)

    Izzah, S. N.; Marwoto, P.; Iswari, R. S.

    2018-03-01

    The process of natural colouring of batik using mangrove waste with the markisa fruit as a fixation material has been reported. In this experiment, the fixation material of markisa fruit has been compared with the commonly used fixation materials, such as CaCO3, AlK(SO4)2, and FeSO4 as material controls. Both grey scale and staining scale have been used as standard evaluations. Based on the Indonesian National Standard (SNI) it can be shown that batik with markisa fruit as a fixation material has a colour fastness value against average washing at good-excellent level (4-5) and colour fastness value to sunshine is moderate-excellent level (3-5). Thus, we conclude that Markisa fruit can be used as a fixation material in the colouring process of natural colour batik from mangrove waste.

  3. Climate change conditions (elevated CO2 and temperature) and UV-B radiation affect grapevine (Vitis vinifera cv. Tempranillo) leaf carbon assimilation, altering fruit ripening rates.

    PubMed

    Martínez-Lüscher, J; Morales, F; Sánchez-Díaz, M; Delrot, S; Aguirreolea, J; Gomès, E; Pascual, I

    2015-07-01

    The increase in grape berry ripening rates associated to climate change is a growing concern for wine makers as it rises the alcohol content of the wine. The present work studied the combined effects of elevated CO2, temperature and UV-B radiation on leaf physiology and berry ripening rates. Three doses of UV-B: 0, 5.98, 9.66 kJm(-2)d(-1), and two CO2-temperature regimes: ambient CO2-24/14 °C (day/night) (current situation) and 700 ppm CO2-28/18 °C (climate change) were imposed to grapevine fruit-bearing cuttings from fruit set to maturity under greenhouse-controlled conditions. Photosynthetic performance was always higher under climate change conditions. High levels of UV-B radiation down regulated carbon fixation rates. A transient recovery took place at veraison, through the accumulation of flavonols and the increase of antioxidant enzyme activities. Interacting effects between UV-B and CO2-temperature regimes were observed for the lipid peroxidation, which suggests that UV-B may contribute to palliate the signs of oxidative damage induced under elevated CO2-temperature. Photosynthetic and ripening rates were correlated. Thereby, the hastening effect of climate change conditions on ripening, associated to higher rates of carbon fixation, was attenuated by UV-B radiation. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  4. Metagenomics-guided analysis of microbial chemolithoautotrophic phosphite oxidation yields evidence of a seventh natural CO2 fixation pathway.

    PubMed

    Figueroa, Israel A; Barnum, Tyler P; Somasekhar, Pranav Y; Carlström, Charlotte I; Engelbrektson, Anna L; Coates, John D

    2018-01-02

    Dissimilatory phosphite oxidation (DPO), a microbial metabolism by which phosphite (HPO 3 2- ) is oxidized to phosphate (PO 4 3- ), is the most energetically favorable chemotrophic electron-donating process known. Only one DPO organism has been described to date, and little is known about the environmental relevance of this metabolism. In this study, we used 16S rRNA gene community analysis and genome-resolved metagenomics to characterize anaerobic wastewater treatment sludge enrichments performing DPO coupled to CO 2 reduction. We identified an uncultivated DPO bacterium, Candidatus Phosphitivorax ( Ca. P.) anaerolimi strain Phox-21, that belongs to candidate order GW-28 within the Deltaproteobacteria , which has no known cultured isolates. Genes for phosphite oxidation and for CO 2 reduction to formate were found in the genome of Ca. P. anaerolimi, but it appears to lack any of the known natural carbon fixation pathways. These observations led us to propose a metabolic model for autotrophic growth by Ca. P. anaerolimi whereby DPO drives CO 2 reduction to formate, which is then assimilated into biomass via the reductive glycine pathway.

  5. Nitrogen starvation strategies and photobioreactor design for enhancing lipid content and lipid production of a newly isolated microalga Chlorella vulgaris ESP-31: implications for biofuels.

    PubMed

    Yeh, Kuei-Ling; Chang, Jo-Shu

    2011-11-01

    Microalgae are recognized for serving as a sustainable source for biodiesel production. This study investigated the effect of nitrogen starvation strategies and photobioreactor design on the performance of lipid production and of CO(2) fixation of an indigenous microalga Chlorella vulgaris ESP-31. Comparison of single-stage and two-stage nitrogen starvation strategies shows that single-stage cultivation on basal medium with low initial nitrogen source concentration (i.e., 0.313 g/L KNO(3)) was the most effective approach to enhance microalgal lipid production, attaining a lipid productivity of 78 mg/L/d and a lipid content of 55.9%. The lipid productivity of C. vulgaris ESP-31 was further upgraded to 132.4 mg/L/d when it was grown in a vertical tubular photobioreactor with a high surface to volume ratio of 109.3 m(2)/m(3) . The high lipid productivity was also accompanied by fixation of 6.36 g CO(2) during the 10-day photoautotrophic growth with a CO(2) fixation rate of 430 mg/L/d. Analysis of fatty acid composition of the microalgal lipid indicates that over 65% of fatty acids in the microalgal lipid are saturated [i.e., palmitic acid (C16:0) and stearic acid (C18:0)] and monounsaturated [i.e., oleic acid (C18:1)]. This lipid quality is suitable for biodiesel production. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Fixation strength of a polyetheretherketone femoral component in total knee arthroplasty.

    PubMed

    de Ruiter, Lennert; Janssen, Dennis; Briscoe, Adam; Verdonschot, Nico

    2017-11-01

    Introducing polyetheretherketone (PEEK) polymer as a material for femoral components in total knee arthroplasty (TKA) could potentially lead to a reduction of the cemented fixation strength. A PEEK implant is more likely to deform under high loads, rendering geometrical locking features less effective. Fixation strength may be enhanced by adding more undercuts or specific surface treatments. The aim of this study is to measure the initial fixation strength and investigate the associated failure patterns of three different iterations of PEEK-OPTIMA ® implants compared with a Cobalt-Chromium (CoCr) component. Femoral components were cemented onto trabecular bone analogue foam blocks and preconditioned with 86,400 cycles of compressive loading (2600 N-260 N at 1 Hz). They were then extracted while the force was measured and the initial failure mechanism was recorded. Four groups were compared: CoCr, regular PEEK, PEEK with an enhanced cement-bonding surface and the latter with additional surface primer. The mean pull-off forces for the four groups were 3814 N, 688 N, 2525 N and 2552 N, respectively. The initial failure patterns for groups 1, 3 and 4 were the same; posterior condylar foam fracture and cement-bone debonding. Implants from group 2 failed at the cement-implant interface. This study has shown that a PEEK-OPTIMA ® femoral TKA component with enhanced macro- and microtexture is able to replicate the main failure mechanism of a conventional CoCr femoral implant. The fixation strength is lower than for a CoCr implant, but substantially higher than loads occurring under in-vivo conditions. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.

  7. Photosynthetic Performance of the Red Alga Pyropia haitanensis During Emersion, With Special Reference to Effects of Solar UV Radiation, Dehydration and Elevated CO2 Concentration.

    PubMed

    Xu, Juntian; Gao, Kunshan

    2015-11-01

    Macroalgae distributed in intertidal zones experience a series of environmental changes, such as periodical desiccation associated with tidal cycles, increasing CO2 concentration and solar UVB (280-315 nm) irradiance in the context of climate change. We investigated how the economic red macroalga, Pyropia haitanensis, perform its photosynthesis under elevated atmospheric CO2 concentration and in the presence of solar UV radiation (280-400 nm) during emersion. Our results showed that the elevated CO2 (800 ppmv) significantly increased the photosynthetic carbon fixation rate of P. haitanensis by about 100% when the alga was dehydrated. Solar UV radiation had insignificant effects on the net photosynthesis without desiccation stress and under low levels of sunlight, but significantly inhibited it with increased levels of desiccation and sunlight intensity, to the highest extent at the highest levels of water loss and solar radiation. Presence of UV radiation and the elevated CO2 acted synergistically to cause higher inhibition of the photosynthetic carbon fixation, which exacerbated at higher levels of desiccation and sunlight. While P. haitanensis can benefit from increasing atmospheric CO2 concentration during emersion under low and moderate levels of solar radiation, combined effects of elevated CO2 and UV radiation acted synergistically to reduce its photosynthesis under high solar radiation levels during noon periods. © 2015 The American Society of Photobiology.

  8. Processes regulating progressive nitrogen limitation under elevated carbon dioxide: a meta-analysis

    NASA Astrophysics Data System (ADS)

    Liang, J.; Qi, X.; Souza, L.; Luo, Y.

    2015-10-01

    Nitrogen (N) cycle has the potential to regulate climate change through its influence on carbon (C) sequestration. Although extensive researches have been done to explore whether or not progressive N limitation (PNL) occurs under CO2 enrichment, a comprehensive assessment of the processes that regulate PNL is still lacking. Here, we quantitatively synthesized the responses of all major processes and pools in terrestrial N cycle with meta-analysis of CO2 experimental data available in the literature. The results showed that CO2 enrichment significantly increased N sequestration in plant and litter pools but not in soil pool. Thus, the basis of PNL occurrence partially exists. However, CO2 enrichment also significantly increased the N influx via biological N fixation, but decreased the N efflux via leaching. In addition, no general diminished CO2 fertilization effect on plant growth over time was observed. Overall, our analyses suggest that the extra N supply by the increased biological N fixation and decreased leaching may potentially alleviate PNL under elevated CO2 conditions. Moreover, our synthesis showed that CO2 enrichment increased soil ammonium (NH4+) but decreased nitrate (NO3-). The different responses of NH4+ and NO3-, and the consequent biological processes, may result in changes in soil microenvironment, community structures and above-belowground interactions, which could potentially affect the terrestrial biogeochemical cycles and the feedback to climate change.

  9. Nanoparticles of ZrPO4 for green catalytic applications.

    PubMed

    Sreenivasulu, Peta; Pendem, Chandrasekhar; Viswanadham, Nagabhatla

    2014-12-21

    Here we report the successful room temperature synthesis of zirconium phosphate nanoparticles (ZPNP) using the P123 tri-co-block polymer for the first time. The samples were characterized by SEM, TEM, XRD, TPD, and BET and were employed for fixation of CO2 on aniline to produce pharmaceutically important acetanilide under mild reaction conditions (150 °C and 150 Psi CO2 pressure).

  10. Artificial photosynthesis: biomimetic approaches to solar energy conversion and storage.

    PubMed

    Kalyanasundaram, K; Graetzel, M

    2010-06-01

    Using sun as the energy source, natural photosynthesis carries out a number of useful reactions such as oxidation of water to molecular oxygen and fixation of CO(2) in the form of sugars. These are achieved through a series of light-induced multi-electron-transfer reactions involving chlorophylls in a special arrangement and several other species including specific enzymes. Artificial photosynthesis attempts to reconstruct these key processes in simpler model systems such that solar energy and abundant natural resources can be used to generate high energy fuels and restrict the amount of CO(2) in the atmosphere. Details of few model catalytic systems that lead to clean oxidation of water to H(2) and O(2), photoelectrochemical solar cells for the direct conversion of sunlight to electricity, solar cells for total decomposition of water and catalytic systems for fixation of CO(2) to fuels such as methanol and methane are reviewed here. Copyright 2010 Elsevier Ltd. All rights reserved.

  11. Nitrogen fixation on early Mars and other terrestrial planets: experimental demonstration of abiotic fixation reactions to nitrite and nitrate.

    PubMed

    Summers, David P; Khare, Bishun

    2007-04-01

    Understanding the abiotic fixation of nitrogen is critical to understanding planetary evolution and the potential origin of life on terrestrial planets. Nitrogen, an essential biochemical element, is certainly necessary for life as we know it to arise. The loss of atmospheric nitrogen can result in an incapacity to sustain liquid water and impact planetary habitability and hydrological processes that shape the surface. However, our current understanding of how such fixation may occur is almost entirely theoretical. This work experimentally examines the chemistry, in both gas and aqueous phases, that would occur from the formation of NO and CO by the shock heating of a model carbon dioxide/nitrogen atmosphere such as is currently thought to exist on early terrestrial planets. The results show that two pathways exist for the abiotic fixation of nitrogen from the atmosphere into the crust: one via HNO and another via NO(2). Fixation via HNO, which requires liquid water, could represent fixation on a planet with liquid water (and hence would also be a source of nitrogen for the origin of life). The pathway via NO(2) does not require liquid water and shows that fixation could occur even when liquid water has been lost from a planet's surface (for example, continuing to remove nitrogen through NO(2) reaction with ice, adsorbed water, etc.).

  12. Young and Older Adults' Reading of Distracters

    ERIC Educational Resources Information Center

    Kemper, Susan; Mcdowd, Joan; Metcalf, Kim; Liu, Chiung-Ju

    2008-01-01

    Eye-tracking technology was employed to examine young and older adults' performance in the reading with distraction paradigm. Distracters of 1, 2, and 4 words that formed meaningful phrases were used. There were marked age differences in fixation patterns. Young adults' fixations to the distracters and targets increased with distracter length.…

  13. CO2 Biofixation and Growth Kinetics of Chlorella vulgaris and Nannochloropsis gaditana.

    PubMed

    Adamczyk, Michał; Lasek, Janusz; Skawińska, Agnieszka

    2016-08-01

    CO2 biofixation was investigated using tubular bioreactors (15 and 1.5 l) either in the presence of green algae Chlorella vulgaris or Nannochloropsis gaditana. The cultivation was carried out in the following conditions: temperature of 25 °C, inlet-CO2 of 4 and 8 vol%, and artificial light enhancing photosynthesis. Higher biofixation were observed in 8 vol% CO2 concentration for both microalgae cultures than in 4 vol%. Characteristic process parameters such as productivity, CO2 fixation, and kinetic rate coefficient were determined and discussed. Simplified and advanced methods for determination of CO2 fixation were compared. In a simplified method, it is assumed that 1 kg of produced biomass equals 1.88 kg recycled CO2. Advance method is based on empirical results of the present study (formula with carbon content in biomass). It was observed that application of the simplified method can generate large errors, especially if the biomass contains a relatively low amount of carbon. N. gaditana is the recommended species for CO2 removal due to a high biofixation rate-more than 1.7 g/l/day. On day 10 of cultivation, the cell concentration was more than 1.7 × 10(7) cells/ml. In the case of C. vulgaris, the maximal biofixation rate and cell concentration did not exceed 1.4 g/l/day and 1.3 × 10(7) cells/ml, respectively.

  14. CARBON DIOXIDE FIXATION.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    FUJITA,E.

    2000-01-12

    Solar carbon dioxide fixation offers the possibility of a renewable source of chemicals and fuels in the future. Its realization rests on future advances in the efficiency of solar energy collection and development of suitable catalysts for CO{sub 2} conversion. Recent achievements in the efficiency of solar energy conversion and in catalysis suggest that this approach holds a great deal of promise for contributing to future needs for fuels and chemicals.

  15. Vertical observation of molecular hydrogen and carbon monoxide: Implication for non-photochemical H2 production at ocean surface and subsurface

    NASA Astrophysics Data System (ADS)

    Kawagucci, S.; Narita, T.; Obata, H.; Ogawa, H.; Gamo, T.

    2009-12-01

    Biological nitrogen fixation is a key metabolism controlling marine N-cycling and also known as a main H2 source. Recently, it was proposed that a monitoring of surface H2 concentration could be used quickly to figure out the spatial extent of biological nitrogen fixation activity without onboard incubation required for currently used methods for detecting the activity. However, H2 behavior in ocean water was still unresolved. This study carried out vertical observation of H2 and CO concentrations in south of Japan, western North Pacific. Because carbon monoxide, CO, in seawater has no relation with nitrogen fixation metabolism and is produced dominantly by the photochemical reaction, which is an altanative H2 source, simultaneous observation and comparison of H2 and CO concentration is helpful to investigate H2 behavior in ocean water. Reductive gases in seawater were observed during the R/V Tansei-maru KT-08-14 cruise by using a wired CTD-CMS (CTD-carousel multiple sampling) system to conduct vertical sampling (at most 200 m depth) and by using a plastic bucket for sampling surface seawater. The sample in the Niskin-X bottle was directed to the bottom of a 120 mL brown-colored glass vial allowed to overflow by 2 volumes before the tube was slowly withdrawn. After the addition of 0.5 mL HgCl2-saturated solution for poisoning, the PTFE-lined butyl-gum septum was used to cap the vials. Molecular hydrogen (H2) and carbon monoxide (CO) were analyzed at an onboard laboratory within 6 hours after subsampling. 20 mL of sample water was substituted by 20 mL of H2- and CO-free air using a gas-tight syringe; then the vial was put on an automatic shaker and shaken upside down for 6 minutes to achieve a complete equilibrium between the dissolved and head space gases in the vial. The equilibrated headspace was taken by another gas-tight syringe and then injected into a gas chromatograph equipped with a trace reduced gas detector. Vertical distribution of dissolved H2 and CO concentration were observed. Apparently different vertical distributions between H2 and CO concentration were revealed at all the observed stations. At a station where N-nutrient was depleted through surface mixed layer, H2 was supersaturated at the surface while CO concentration was constant through the depths. In contrast, at another station where some amount of terrestrial humic matter was introduced into the surface, H2 concentration was constantly undersaturated through the depth while vertical distribution of CO concentration showed the highest at the surface and exponentially decreased to deep. These facts suggest that H2 production involved with nitrogen fixation played an important role for H2 behavior in ocean water while photochemical H2 production would be a minor process. In addition to the surface, H2 supersaturation accoumpanied with little CO concentration rise were observed at depths just below the mixed layer in pycnocline with Chlorophyll maximum.

  16. Response of the unicellular diazotrophic cyanobacterium Crocosphaera watsonii to iron limitation.

    PubMed

    Jacq, Violaine; Ridame, Céline; L'Helguen, Stéphane; Kaczmar, Fanny; Saliot, Alain

    2014-01-01

    Iron (Fe) is widely suspected as a key controlling factor of N2 fixation due to the high Fe content of nitrogenase and photosynthetic enzymes complex, and to its low concentrations in oceanic surface seawaters. The influence of Fe limitation on the recently discovered unicellular diazotrophic cyanobacteria (UCYN) is poorly understood despite their biogeochemical importance in the carbon and nitrogen cycles. To address this knowledge gap, we conducted culture experiments on Crocosphaera watsonii WH8501 growing under a range of dissolved Fe concentrations (from 3.3 to 403 nM). Overall, severe Fe limitation led to significant decreases in growth rate (2.6-fold), C, N and chlorophyll a contents per cell (up to 4.1-fold), N2 and CO2 fixation rates per cell (17- and 7-fold) as well as biovolume (2.2-fold). We highlighted a two phased response depending on the degree of limitation: (i) under a moderate Fe limitation, the biovolume of C. watsonii was strongly reduced, allowing the cells to keep sufficient energy to maintain an optimal growth, volume-normalized contents and N2 and CO2 fixation rates; (ii) with increasing Fe deprivation, biovolume remained unchanged but the entire cell metabolism was affected, as shown by a strong decrease in the growth rate, volume-normalized contents and N2 and CO2 fixation rates. The half-saturation constant for growth of C. watsonii with respect to Fe is twice as low as that of the filamentous Trichodesmium indicating a better adaptation of C. watsonii to poor Fe environments than filamentous diazotrophs. The physiological response of C. watsonii to Fe limitation was different from that previously shown on the UCYN Cyanothece sp, suggesting potential differences in Fe requirements and/or Fe acquisition within the UCYN community. These results contribute to a better understanding of how Fe bioavailability can control the activity of UCYN and explain the biogeography of diverse N2 fixers in ocean.

  17. Importance of N2-Fixation on the Productivity at the North-Western Azores Current/Front System, and the Abundance of Diazotrophic Unicellular Cyanobacteria.

    PubMed

    Riou, Virginie; Fonseca-Batista, Debany; Roukaerts, Arnout; Biegala, Isabelle C; Prakya, Shree Ram; Magalhães Loureiro, Clara; Santos, Mariana; Muniz-Piniella, Angel E; Schmiing, Mara; Elskens, Marc; Brion, Natacha; Martins, M Ana; Dehairs, Frank

    2016-01-01

    To understand the impact of the northwestern Azores Current Front (NW-AzC/AzF) system on HCO3--and N2-fixation activities and unicellular diazotrophic cyanobacteria (UCYN) distribution, we combined geochemical and biological approaches from the oligotrophic surface to upper mesopelagic waters. N2-fixation was observed to sustain 45-85% of the HCO3--fixation in the picoplanktonic fraction performing 47% of the total C-fixation at the deep chlorophyll maximum north and south of the AzF. N2-fixation rates as high as 10.9 μmol N m-3 d-1 and surface nitrate δ15N as low as 2.7‰ were found in the warm (18-24°C), most saline (36.5-37.0) and least productive waters south of the AzF, where UCYN were the least abundant. However, picoplanktonic UCYN abundances up to 55 cells mL-1 were found at 45-200m depths in the coolest nutrient-rich waters north of the AzF. In this area, N2-fixation rates up to 4.5 μmol N m-3 d-1 were detected, associated with depth-integrated H13CO3--fixation rates at least 50% higher than observed south of the AzF. The numerous eddies generated at the NW-AzC/AzF seem to enhance exchanges of plankton between water masses, as well as vertical and horizontal diapycnal diffusion of nutrients, whose increase probably enhances the growth of diazotrophs and the productivity of C-fixers.

  18. Atmospheric dynamics in the “Laboratory Biosphere” with wheat and sweet potato crops

    NASA Astrophysics Data System (ADS)

    Dempster, William F.; Allen, J. P.; Alling, A.; Silverstone, S.; Van Thillo, M.

    Laboratory Biosphere is a 40-m 3 closed life system equipped with 12,000 W of high pressure sodium lamps over planting beds with 5.37 m 2 of soil. Atmospheric composition changes due to photosynthetic fixation of carbon dioxide and corresponding production of oxygen or the reverse, respiration, are observed in short timeframes, e.g., hourly. To focus on inherent characteristics of the crop as distinct from its area or the volume of the chamber, we report fixation and respiration rates in mmol h -1 m -2 of planted area. An 85-day crop of USU Apogee wheat under a 16-h lighted/8-h dark regime peaked in fixation rate at about 100 mmol h -1 m -2 approximately 24 days after planting. Light intensity was about 840 μmol m -2 s -1. Dark respiration peaked at about 31 mmol h -1 m -2 at the same time. Thereafter, both fixation and respiration declined toward zero as harvest time approached. A residual soil respiration rate of about 1.9 mmol h -1 m -2 was observed in the dark closed chamber for 100 days after the harvest. A 126-day crop of Tuskegee TU-82-155 sweet potato behaved quite differently. Under a 680 μmol m -2 s -1, 18-h lighted/6-h dark regime, fixation during lighted hours rose to a plateau ranging from about 27 to 48 mmol h -1 m -2 after 42 days and dark respiration settled into a range of 12-23 mmol h -1 m -2. These rates continued unabated until the harvest at 126 days, suggesting that tuber biomass production might have continued at about the same rate for some time beyond the harvest time that was exercised in this experiment. In both experiments CO 2 levels were allowed to range widely from a few hundred to about 3000 ppm, which permitted observation of fixation rates both at varying CO 2 concentrations and at each number of days after planting. This enables plotting the fixation rate as a function of both variables. Understanding the atmospheric dynamics of individual crops will be essential for design and atmospheric management of more complex CELSS which integrate the simultaneous growth of several crops as in a sustainable remote life support system.

  19. Autotrophic fixation of geogenic CO2 by microorganisms contributes to soil organic matter formation and alters isotope signatures in a wetland mofette

    NASA Astrophysics Data System (ADS)

    Nowak, M. E.; Beulig, F.; von Fischer, J.; Muhr, J.; Küsel, K.; Trumbore, S. E.

    2015-12-01

    To quantify the contribution of autotrophic microorganisms to organic matter (OM) formation in soils, we investigated natural CO2 vents (mofettes) situated in a wetland in northwest Bohemia (Czech Republic). Mofette soils had higher soil organic matter (SOM) concentrations than reference soils due to restricted decomposition under high CO2 levels. We used radiocarbon (Δ14C) and stable carbon (δ13C) isotope ratios to characterize SOM and its sources in two mofettes and compared it with respective reference soils, which were not influenced by geogenic CO2. The geogenic CO2 emitted at these sites is free of radiocarbon and enriched in 13C compared to atmospheric CO2. Together, these isotopic signals allow us to distinguish C fixed by plants from C fixed by autotrophic microorganisms using their differences in 13C discrimination. We can then estimate that up to 27 % of soil organic matter in the 0-10 cm layer of these soils was derived from microbially assimilated CO2. Isotope values of bulk SOM were shifted towards more positive δ13C and more negative Δ14C values in mofettes compared to reference soils, suggesting that geogenic CO2 emitted from the soil atmosphere is incorporated into SOM. To distinguish whether geogenic CO2 was fixed by plants or by CO2 assimilating microorganisms, we first used the proportional differences in radiocarbon and δ13C values to indicate the magnitude of discrimination of the stable isotopes in living plants. Deviation from this relationship was taken to indicate the presence of microbial CO2 fixation, as microbial discrimination should differ from that of plants. 13CO2-labelling experiments confirmed high activity of CO2 assimilating microbes in the top 10 cm, where δ13C values of SOM were shifted up to 2 ‰ towards more negative values. Uptake rates of microbial CO2 fixation ranged up to 1.59 ± 0.16 μg gdw-1 d-1. We inferred that the negative δ13C shift was caused by the activity of autotrophic microorganisms using the Calvin-Benson-Bassham (CBB) cycle, as indicated from quantification of cbbL/cbbM marker genes encoding for RubisCO by quantitative polymerase chain reaction (qPCR) and by acetogenic and methanogenic microorganisms, shown present in the mofettes by previous studies. Combined Δ14C and δ13C isotope mass balances indicated that microbially derived carbon accounted for 8-27 % of bulk SOM in this soil layer. The findings imply that autotrophic microorganisms can recycle significant amounts of carbon in wetland soils and might contribute to observed radiocarbon reservoir effects influencing Δ14C signatures in peat deposits.

  20. Autotrophic fixation of geogenic CO2 by microorganisms contributes to soil organic matter formation and alters isotope signatures in a wetland mofette

    NASA Astrophysics Data System (ADS)

    Nowak, M. E.; Beulig, F.; von Fischer, J.; Muhr, J.; Küsel, K.; Trumbore, S. E.

    2015-09-01

    To quantify the contribution of autotrophic microorganisms to organic matter formation (OM) in soils, we investigated natural CO2 vents (mofettes) situated in a wetland in NW Bohemia (Czech Republic). Mofette soils had higher SOM concentrations than reference soils due to restricted decomposition under high CO2 levels. We used radiocarbon (Δ14C) and stable carbon isotope ratios (δ13C) to characterize SOM and its sources in two moffetes and compared it with respective reference soils, which were not influenced by geogenic CO2. The geogenic CO2 emitted at these sites is free of radiocarbon and enriched in δ13C compared to atmospheric CO2. Together, these isotopic signals allow us to distinguish C fixed by plants from C fixed by autotrophic microorganisms using their differences in δ13C discrimination. We can then estimate that up to 27 % of soil organic matter in the 0-10 cm layer of these soils was derived from microbially assimilated CO2. Isotope values of bulk SOM were shifted towards more positive δ13C and more negative Δ14C values in mofettes compared to reference soils, suggesting that geogenic CO2 emitted from the soil atmosphere is incorporated into SOM. To distinguish whether geogenic CO2 was fixed by plants or by CO2 assimilating microorganisms, we first used the proportional differences in radiocarbon and δ13C values to indicate the magnitude of discrimination of the stable isotopes in living plants. Deviation from this relationship was taken to indicate the presence of microbial CO2 fixation, as microbial discrimination should differ from that of plants. 13CO2-labelling experiments confirmed high activity of CO2 assimilating microbes in the top 10 cm, where δ13C values of SOM were shifted up to 2 ‰ towards more negative values. Uptake rates of microbial CO2 fixation ranged up to 1.59 ± 0.16 μg gdw-1 d-1. We inferred that the negative δ13C shift was caused by the activity of chemo-lithoautotrophic microorganisms, as indicated from quantification of cbbL/cbbM marker genes encoding for RubisCO by quantitative polymerase chain reaction (qPCR) and by acetogenic and methanogenic microorganisms, shown present in the moffettes by previous studies. Combined Δ14C and δ13C isotope mass balances indicated that microbially derived carbon accounted for 8 to 27 % of bulk SOM in this soil layer. The findings imply that autotrophic organisms can recycle significant amounts of carbon in wetland soils and might contribute to observed reservoir effects influencing radiocarbon signatures in peat deposits.

  1. Atmospheric dynamics in Laboratory Biosphere with wheat and sweet potato crops

    NASA Astrophysics Data System (ADS)

    Dempster, W. F.; Allen, J. P.; Alling, A.; Nelson, M.; Silvertone, S.; van Thillo, M.

    Laboratory Biosphere is a 40 m3 closed life system equipped with 12000 watts of high pressure sodium lamps over planting beds with 5.37 m2 of soil. Atmospheric composition changes due to photosynthetic fixation of carbon dioxide and corresponding production of oxygen or the reverse, respiration, are observed in short timeframes, eg. hourly. To focus on inherent characteristics of the crop as distinct from its area or the volume of the chamber, we report fixation and respiration rates in millimoles per hour per square meter of planted area. An 85 day crop of USU Apogee wheat under a 16 hour lighted / 8 hour dark regime peaked in fixation rate at about 100 mmol h-1 m-2 approximately 24 days after planting. Light intensity was about 840 mol m-2 s-1. Dark respiration peaked at about 31 mmol h-1 m-2 at the same time. Thereafter, both fixation and respiration declined toward zero as harvest time approached. A residual soil respiration rate of about 1.9 mmol h-1 m-2 was observed in the dark closed chamber for 100 days after the harvest. A 126 day crop of Tuskegee TU-82-155 sweet potato behaved quite differently. Under a 680 mol m-2 s-1, 18 hour lighted / 6 hour dark regime, fixation during lighted hours rose to a plateau ranging from about 27 to 48 mmol h-1 m-2 after 42 days and respiration settled into a range of 12 to 23 mmol h-1 m-2. These rates continued unabated until the harvest at 126 days, suggesting that tuber biomass production might have continued at about the same rate for some time beyond the harvest time that was exercised in this experiment. In both experiments CO2 levels were allowed to range widely from a few hundred ppm to about 3000 ppm, which permitted observation of fixation rates both at varying CO2 concentrations and at each number of days after planting. This enables plotting the fixation rate as a function of both variables. Understanding the atmospheric dynamics of individual crops will be essential for design and atmospheric management of more complex CES which integrate the simultaneous growth of several crops as in a sustainable remote life support system.

  2. Hybrid Amine-Functionalized Graphene Oxide as a Robust Bifunctional Catalyst for Atmospheric Pressure Fixation of Carbon Dioxide using Cyclic Carbonates.

    PubMed

    Saptal, Vitthal B; Sasaki, Takehiko; Harada, Kei; Nishio-Hamane, Daisuke; Bhanage, Bhalchandra M

    2016-03-21

    An environmentally-benign carbocatalyst based on amine-functionalized graphene oxide (AP-GO) was synthesized and characterized. This catalyst shows superior activity for the chemical fixation of CO2 into cyclic carbonates at the atmospheric pressure. The developed carbocatalyst exhibits superior activity owing to its large surface area with abundant hydrogen bonding donor (HBD) capability and the presence of well-defined amine functional groups. The presence of various HBD and amine functional groups on the graphene oxide (GO) surface yields a synergistic effect for the activation of starting materials. Additionally, this catalyst shows high catalytic activity to synthesize carbonates at 70 °C and at 1 MPa CO2 pressure. The developed AP-GO could be easily recovered and used repetitively in up to seven recycle runs with unchanged catalyst activity. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. The Structure of Isolated Synechococcus Strain WH8102 Carboxysomes as Revealed by Electron Cryotomography

    PubMed Central

    Iancu, Cristina V.; Ding, H. Jane; Morris, Dylan M.; Dias, D. Prabha; Gonzales, Arlene D.; Martino, Anthony; Jensen, Grant J.

    2007-01-01

    Carboxysomes are organelle-like polyhedral bodies found in cyanobacteria and many chemoautotrophic bacteria that are thought to facilitate carbon fixation. Carboxysomes are bounded by a proteinaceous outer shell and filled with ribulose 1,5-bisphosphate carboxylase/oxygenase (RuBisCO), the first enzyme in the CO2 fixation pathway, but exactly how they enhance carbon fixation is unclear. Here we report the three-dimensional structure of purified carboxysomes from Synechococcus species strain WH8102 as revealed by electron cryotomography. We found that while the sizes of individual carboxysomes in this organism varied from 114 to 137 nm, surprisingly, all were approximately icosahedral. There were on average ∼250 RuBisCOs per carboxysome, organized into 3-4 concentric layers. Some models of carboxysome function depend on specific contacts between individual RuBisCOs and the shell, but no evidence of such contacts was found: no systematic patterns of connecting densities or RuBisCO positions against the shell's presumed hexagonal lattice could be discerned, and simulations showed that packing forces alone could account for the layered organization of RuBisCOs. PMID:17669419

  4. Biotechnological storage and utilization of entrapped solar energy.

    PubMed

    Bhattacharya, Sumana; Schiavone, Marc; Nayak, Amiya; Bhattacharya, Sanjoy K

    2005-03-01

    Our laboratory has recently developed a device employing immobilized F0F1 adenosine triphosphatase (ATPase) that allows synthesis of adenosine triphosphate (ATP) from adenosine 5'-diphosphate and inorganic phosphate using solar energy. We present estimates of total solar energy received by Earth's land area and demonstrate that its efficient capture may allow conversion of solar energy and storage into bonds of biochemicals using devices harboring either immobilized ATPase or NADH dehydrogenase. Capture and storage of solar energy into biochemicals may also enable fixation of CO2 emanating from polluting units. The cofactors ATP and NADH synthesized using solar energy could be used for regeneration of acceptor D-ribulose-1,5-bisphosphate from 3-phosphoglycerate formed during CO2 fixation.

  5. Perception of co-speech gestures in aphasic patients: a visual exploration study during the observation of dyadic conversations.

    PubMed

    Preisig, Basil C; Eggenberger, Noëmi; Zito, Giuseppe; Vanbellingen, Tim; Schumacher, Rahel; Hopfner, Simone; Nyffeler, Thomas; Gutbrod, Klemens; Annoni, Jean-Marie; Bohlhalter, Stephan; Müri, René M

    2015-03-01

    Co-speech gestures are part of nonverbal communication during conversations. They either support the verbal message or provide the interlocutor with additional information. Furthermore, they prompt as nonverbal cues the cooperative process of turn taking. In the present study, we investigated the influence of co-speech gestures on the perception of dyadic dialogue in aphasic patients. In particular, we analysed the impact of co-speech gestures on gaze direction (towards speaker or listener) and fixation of body parts. We hypothesized that aphasic patients, who are restricted in verbal comprehension, adapt their visual exploration strategies. Sixteen aphasic patients and 23 healthy control subjects participated in the study. Visual exploration behaviour was measured by means of a contact-free infrared eye-tracker while subjects were watching videos depicting spontaneous dialogues between two individuals. Cumulative fixation duration and mean fixation duration were calculated for the factors co-speech gesture (present and absent), gaze direction (to the speaker or to the listener), and region of interest (ROI), including hands, face, and body. Both aphasic patients and healthy controls mainly fixated the speaker's face. We found a significant co-speech gesture × ROI interaction, indicating that the presence of a co-speech gesture encouraged subjects to look at the speaker. Further, there was a significant gaze direction × ROI × group interaction revealing that aphasic patients showed reduced cumulative fixation duration on the speaker's face compared to healthy controls. Co-speech gestures guide the observer's attention towards the speaker, the source of semantic input. It is discussed whether an underlying semantic processing deficit or a deficit to integrate audio-visual information may cause aphasic patients to explore less the speaker's face. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Simultaneous microalgal biomass production and CO2 fixation by cultivating Chlorella sp. GD with aquaculture wastewater and boiler flue gas.

    PubMed

    Kuo, Chiu-Mei; Jian, Jhong-Fu; Lin, Tsung-Hsien; Chang, Yu-Bin; Wan, Xin-Hua; Lai, Jinn-Tsyy; Chang, Jo-Shu; Lin, Chih-Sheng

    2016-12-01

    A microalgal strain, Chlorella sp. GD, cultivated in aquaculture wastewater (AW) aerated with boiler flue gas, was investigated. When AW from a grouper fish farm was supplemented with additional nutrients, the microalgal biomass productivity after 7days of culture was 0.794gL -1 d -1 . CO 2 fixation efficiencies of the microalgal strains aerated with 0.05, 0.1, 0.2, and 0.3vvm of boiler flue gas (containing approximately 8% CO 2 ) were 53, 51, 38, and 30%, respectively. When the microalgal strain was cultured with boiler flue gas in nutrient-added AW, biomass productivity increased to 0.892gL -1 d -1 . In semi-continuous cultures, average biomass productivities of the microalgal strain in 2-day, 3-day, and 4-day replacement cultures were 1.296, 0.985, and 0.944gL -1 d -1 , respectively. These results demonstrate the potential of using Chlorella sp. GD cultivations in AW aerated with boiler flue gas for reusing water resources, reducing CO 2 emission, and producing microalgal biomass. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Microwave energy fixation for electron microscopy.

    PubMed Central

    Login, G. R.; Dvorak, A. M.

    1985-01-01

    We have demonstrated that microwave energy (MW) can be used in conjunction with chemical cross-linking agents in order to rapidly fix cell suspensions and tissue blocks for electron microscopy in 7-9 seconds. The optimal MW fixation method involved immersing tissues up to 1 cu cm in dilute aldehyde fixation and immediately irradiating the specimens in a conventional microwave oven for 9 seconds to 50 C. Ultrastructural preservation of samples irradiated by MW energy was comparable to that of the control samples immersed in aldehyde fixative for 2 hours at 25 C. Stereologic analysis showed that tissue blocks fixed by the MW fixation method did not cause organelles such as liver mitochondria and salivary gland granules to shrink or to swell. Potential applications for this new fixation technology include the investigation of rapid intracellular processes (eg, vesicular transport) and preservation of proteins that are difficult to demonstrate with routine fixation methods (eg, antigens and enzymes). Images Figure 4 Figure 5 Figure 2 Figure 3 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 Figure 11 PMID:3927740

  8. The Activity of Nodules of the Supernodulating Mutant Mtsunn Is not Limited by Photosynthesis under Optimal Growth Conditions

    PubMed Central

    Cabeza, Ricardo A.; Lingner, Annika; Liese, Rebecca; Sulieman, Saad; Senbayram, Mehmet; Tränkner, Merle; Dittert, Klaus; Schulze, Joachim

    2014-01-01

    Legumes match the nodule number to the N demand of the plant. When a mutation in the regulatory mechanism deprives the plant of that ability, an excessive number of nodules are formed. These mutants show low productivity in the fields, mainly due to the high carbon burden caused through the necessity to supply numerous nodules. The objective of this study was to clarify whether through optimal conditions for growth and CO2 assimilation a higher nodule activity of a supernodulating mutant of Medicago truncatula (M. truncatula) can be induced. Several experimental approaches reveal that under the conditions of our experiments, the nitrogen fixation of the supernodulating mutant, designated as sunn (super numeric nodules), was not limited by photosynthesis. Higher specific nitrogen fixation activity could not be induced through short- or long-term increases in CO2 assimilation around shoots. Furthermore, a whole plant P depletion induced a decline in nitrogen fixation, however this decline did not occur significantly earlier in sunn plants, nor was it more intense compared to the wild-type. However, a distinctly different pattern of nitrogen fixation during the day/night cycles of the experiment indicates that the control of N2 fixing activity of the large number of nodules is an additional problem for the productivity of supernodulating mutants. PMID:24727372

  9. [Potential Carbon Fixation Capability of Non-photosynthetic Microbial Community at Different Depth of the South China Sea and Its Response to Different Electron Donors].

    PubMed

    Fang, Feng; Wang, Lei; Xi, Xue-fei; Hu, Jia-jun; Fu, Xiao-hua; Lu, Bing; Xu, Dian-sheng

    2015-05-01

    The seawater samples collected from many different areas with different depth in the South China Sea were cultivated using different electron donors respectively. And the variation in the potential carbon fixation capability ( PCFC ) of non-photosynthetic microbial community (NPMC) in seawater with different depth was determined after a cycle of cultivation through the statistic analysis. In addition, the cause for the variation was clarified through analyzing key gene abundance regarding CO2 fixation and characteristics of seawater with different depth. The result showed that the PCFCs of NPMC in seawater with different depth were generally low and had no significant difference when using NaNO2 as the electron donor. The PCFC of NPMC in surface seawater was higher than that in deep seawater when using H2 as the electron donor, on the contrary, the PCFC of NPMC in deep seawater was higher than that in surface seawater when using Na2S2O3 as the electron donor. The abundance of the main CO2 fixation gene cbbL in surface seawater was higher than that in deep seawater while the cbbM gene abundance in deep seawater was higher than that in surface seawater. Most hydrogen-oxidizing bacteria had the cbbL gene, and most sulfur bacteria had the cbbM gene. The tendency of seawater cbbL/cbbM gene abundance with the change of depth revealed that there were different kinds of bacteria accounting for the majority in NPMC fixing CO2 at different depth of ocean, which led to different response of PCFC of NPMC at different depth of the sea to different electron donors. The distributions of dissolved oxygen and inorganic carbon concentration with the change of the depth of the sea might be an important reason leading to the difference of NPMC structure and even the difference of PCFC at different depth of the sea.

  10. The effect of CO2 availability on the growth, iron oxidation and CO2-fixation rates of pure cultures of Leptospirillum ferriphilum and Acidithiobacillus ferrooxidans.

    PubMed

    Bryan, C G; Davis-Belmar, C S; van Wyk, N; Fraser, M K; Dew, D; Rautenbach, G F; Harrison, S T L

    2012-07-01

    Understanding how bioleaching systems respond to the availability of CO(2) is essential to developing operating conditions that select for optimum microbial performance. Therefore, the effect of inlet gas and associated dissolved CO(2) concentration on the growth, iron oxidation and CO(2) -fixation rates of pure cultures of Acidithiobacillus ferrooxidans and Leptospirillum ferriphilum was investigated in a batch stirred tank system. The minimum inlet CO(2) concentrations required to promote the growth of At. ferrooxidans and L. ferriphilum were 25 and 70 ppm, respectively, and corresponded to dissolved CO(2) concentrations of 0.71 and 1.57 µM (at 30°C and 37°C, respectively). An actively growing culture of L. ferriphilum was able to maintain growth at inlet CO(2) concentrations less than 30 ppm (0.31-0.45 µM in solution). The highest total new cell production and maximum specific growth rates from the stationary phase inocula were observed with CO(2) inlet concentrations less than that of air. In contrast, the amount of CO(2) fixed per new cell produced increased with increasing inlet CO(2) concentrations above 100 ppm. Where inlet gas CO(2) concentrations were increased above that of air the additional CO(2) was consumed by the organisms but did not lead to increased cell production or significantly increase performance in terms of iron oxidation. It is proposed that At. ferrooxidans has two CO(2) uptake mechanisms, a high affinity system operating at low available CO(2) concentrations, which is subject to substrate inhibition and a low affinity system operating at higher available CO(2) concentrations. L. ferriphilum has a single uptake system characterised by a moderate CO(2) affinity. At. ferrooxidans performed better than L. ferriphilum at lower CO(2) availabilities, and was less affected by CO(2) starvation. Finally, the results demonstrate the limitations of using CO(2) uptake or ferrous iron oxidation data as indirect measures of cell growth and performance across varying physiological conditions. Copyright © 2012 Wiley Periodicals, Inc.

  11. Isolation of a new two-dimensional honeycomb carbonato-bridged copper(II) complex exhibiting long-range ferromagnetic ordering.

    PubMed

    Majumder, Arpi; Choudhury, Chirantan Roy; Mitra, Samiran; Rosair, Georgina M; El Fallah, M Salah; Ribas, Joan

    2005-04-28

    Atmospheric CO2 fixation by an aqueous solution containing Cu(ClO4)2.6H2O and 4-aminopyridine (4-apy) yields a novel example of a two-dimensional mu3-CO3 bridged copper(II) complex {[Cu(4-apy)2]3(mu3-CO3)2(ClO4)2.(1/2)CH3OH}n that has been characterized by IR, UV and X-ray crystallography; preliminary magnetic measurements show that complex exhibits long-range ordered ferromagnetic coupling.

  12. Synthesis of Ureas from CO2.

    PubMed

    Wang, Hua; Xin, Zhuo; Li, Yuehui

    2017-04-01

    Ureas are an important class of bioactive organic compounds in organic chemistry and exist widely in natural products, agricultural pesticides, uron herbicides, pharmaceuticals. Even though urea itself has been synthesized from CO 2 and ammonia for a long time, the selective and efficient synthesis of substituted ureas is still challenging due to the difficulty of dehydration processes. Efficient and economic fixation of CO 2 is of great importance in solving the problems of resource shortages, environmental issues, global warming, etc. During recent decades, chemists have developed different catalytic systems to synthesize ureas from CO 2 and amines. Herein, we focus on catalytic synthesis of ureas using CO 2 and amines.

  13. Study on new biomass energy systems

    NASA Astrophysics Data System (ADS)

    1992-03-01

    A biomass energy total system is proposed, and its feasibility is studied. It is the system in which liquid fuel is produced from eucalyptuses planted in the desert area in Australia for production of biomass resource. Eucalyptus tree planting aims at a growth amount of 40 cu m/ha. per year and a practical application area of 45,000ha. CO2 fixation in the biomass plantation becomes 540,000 tons at a 12 ton/ha. rate. Assuming that 0.55 ton of liquid fuel is produced from 1 ton of biomass, a petrochemical plant having a production of 2.5 million bbl/year per unit (equivalent to the fuel used in the 100,000kW class power plant) is needed. Moreover, survey is made on practicality of diesel substitution fuel by esterification of palm oil, and a marked effect of reduction in soot/smoke and particulates in exhaust gas is confirmed. The biomass conversion process technology and the technology for afforestation at the arid land and irrigation are important as future subjects, and the technology development using a bench plant and a pilot plant is needed.

  14. Viruses Inhibit CO2 Fixation in the Most Abundant Phototrophs on Earth.

    PubMed

    Puxty, Richard J; Millard, Andrew D; Evans, David J; Scanlan, David J

    2016-06-20

    Marine picocyanobacteria of the genera Prochlorococcus and Synechococcus are the most numerous photosynthetic organisms on our planet [1, 2]. With a global population size of 3.6 × 10(27) [3], they are responsible for approximately 10% of global primary production [3, 4]. Viruses that infect Prochlorococcus and Synechococcus (cyanophages) can be readily isolated from ocean waters [5-7] and frequently outnumber their cyanobacterial hosts [8]. Ultimately, cyanophage-induced lysis of infected cells results in the release of fixed carbon into the dissolved organic matter pool [9]. What is less well known is the functioning of photosynthesis during the relatively long latent periods of many cyanophages [10, 11]. Remarkably, the genomes of many cyanophage isolates contain genes involved in photosynthetic electron transport (PET) [12-18] as well as central carbon metabolism [14, 15, 19, 20], suggesting that cyanophages may play an active role in photosynthesis. However, cyanophage-encoded gene products are hypothesized to maintain or even supplement PET for energy generation while sacrificing wasteful CO2 fixation during infection [17, 18, 20]. Yet this paradigm has not been rigorously tested. Here, we measured the ability of viral-infected Synechococcus cells to fix CO2 as well as maintain PET. We compared two cyanophage isolates that share different complements of PET and central carbon metabolism genes. We demonstrate cyanophage-dependent inhibition of CO2 fixation early in the infection cycle. In contrast, PET is maintained throughout infection. Our data suggest a generalized strategy among marine cyanophages to redirect photosynthesis to support phage development, which has important implications for estimates of global primary production. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  15. CO2 and vitamin B12 interactions determine bioactive trace metal requirements of a subarctic Pacific diatom.

    PubMed

    King, Andrew L; Sañudo-Wilhelmy, Sergio A; Leblanc, Karine; Hutchins, David A; Fu, Feixue

    2011-08-01

    Phytoplankton growth can be limited by numerous inorganic nutrients and organic growth factors. Using the subarctic diatom Attheya sp. in culture studies, we examined how the availability of vitamin B(12) and carbon dioxide partial pressure (pCO(2)) influences growth rate, primary productivity, cellular iron (Fe), cobalt (Co), zinc (Zn) and cadmium (Cd) quotas, and the net use efficiencies (NUEs) of these bioactive trace metals (mol C fixed per mol cellular trace metal per day). Under B(12)-replete conditions, cells grown at high pCO(2) had lower Fe, Zn and Cd quotas, and used those trace metals more efficiently in comparison with cells grown at low pCO(2). At high pCO(2), B(12)-limited cells had ~50% lower specific growth and carbon fixation rates, and used Fe ~15-fold less efficiently, and Zn and Cd ~3-fold less efficiently, in comparison with B(12)-replete cells. The observed higher Fe, Zn and Cd NUE under high pCO(2)/B(12)-replete conditions are consistent with predicted downregulation of carbon-concentrating mechanisms. Co quotas of B(12)-replete cells were ∼5- to 14-fold higher in comparison with B(12)-limited cells, suggesting that >80% of cellular Co of B(12)-limited cells was likely from B(12). Our results demonstrate that CO(2) and vitamin B(12) interactively influence growth, carbon fixation, trace metal requirements and trace metal NUE of this diatom. This suggests the need to consider complex feedback interactions between multiple environmental factors for this biogeochemically critical group of phytoplankton in the last glacial maximum as well as the current and future changing ocean.

  16. Functions, Compositions, and Evolution of the Two Types of Carboxysomes: Polyhedral Microcompartments That Facilitate CO2 Fixation in Cyanobacteria and Some Proteobacteria

    PubMed Central

    Rae, Benjamin D.; Long, Benedict M.; Badger, Murray R.

    2013-01-01

    SUMMARY Cyanobacteria are the globally dominant photoautotrophic lineage. Their success is dependent on a set of adaptations collectively termed the CO2-concentrating mechanism (CCM). The purpose of the CCM is to support effective CO2 fixation by enhancing the chemical conditions in the vicinity of the primary CO2-fixing enzyme, d-ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO), to promote the carboxylase reaction and suppress the oxygenase reaction. In cyanobacteria and some proteobacteria, this is achieved by encapsulation of RubisCO within carboxysomes, which are examples of a group of proteinaceous bodies called bacterial microcompartments. Carboxysomes encapsulate the CO2-fixing enzyme within the selectively permeable protein shell and simultaneously encapsulate a carbonic anhydrase enzyme for CO2 supply from a cytoplasmic bicarbonate pool. These bodies appear to have arisen twice and undergone a process of convergent evolution. While the gross structures of all known carboxysomes are ostensibly very similar, with shared gross features such as a selectively permeable shell layer, each type of carboxysome encapsulates a phyletically distinct form of RubisCO enzyme. Furthermore, the specific proteins forming structures such as the protein shell or the inner RubisCO matrix are not identical between carboxysome types. Each type has evolutionarily distinct forms of the same proteins, as well as proteins that are entirely unrelated to one another. In light of recent developments in the study of carboxysome structure and function, we present this review to summarize the knowledge of the structure and function of both types of carboxysome. We also endeavor to cast light on differing evolutionary trajectories which may have led to the differences observed in extant carboxysomes. PMID:24006469

  17. Genomewide transcriptional reprogramming in the seagrass Cymodocea nodosa under experimental ocean acidification.

    PubMed

    Ruocco, Miriam; Musacchia, Francesco; Olivé, Irene; Costa, Monya M; Barrote, Isabel; Santos, Rui; Sanges, Remo; Procaccini, Gabriele; Silva, João

    2017-08-01

    Here, we report the first use of massive-scale RNA-sequencing to explore seagrass response to CO 2 -driven ocean acidification (OA). Large-scale gene expression changes in the seagrass Cymodocea nodosa occurred at CO 2 levels projected by the end of the century. C. nodosa transcriptome was obtained using Illumina RNA-Seq technology and de novo assembly, and differential gene expression was explored in plants exposed to short-term high CO 2 /low pH conditions. At high pCO 2 , there was a significant increased expression of transcripts associated with photosynthesis, including light reaction functions and CO 2 fixation, and also to respiratory pathways, specifically for enzymes involved in glycolysis, in the tricarboxylic acid cycle and in the energy metabolism of the mitochondrial electron transport. The upregulation of respiratory metabolism is probably supported by the increased availability of photosynthates and increased energy demand for biosynthesis and stress-related processes under elevated CO 2 and low pH. The upregulation of several chaperones resembling heat stress-induced changes in gene expression highlighted the positive role these proteins play in tolerance to intracellular acid stress in seagrasses. OA further modifies C. nodosa secondary metabolism inducing the transcription of enzymes related to biosynthesis of carbon-based secondary compounds, in particular the synthesis of polyphenols and isoprenoid compounds that have a variety of biological functions including plant defence. By demonstrating which physiological processes are most sensitive to OA, this research provides a major advance in the understanding of seagrass metabolism in the context of altered seawater chemistry from global climate change. © 2017 John Wiley & Sons Ltd.

  18. Processes regulating progressive nitrogen limitation under elevated carbon dioxide: a meta-analysis

    NASA Astrophysics Data System (ADS)

    Liang, Junyi; Qi, Xuan; Souza, Lara; Luo, Yiqi

    2016-05-01

    The nitrogen (N) cycle has the potential to regulate climate change through its influence on carbon (C) sequestration. Although extensive research has explored whether or not progressive N limitation (PNL) occurs under CO2 enrichment, a comprehensive assessment of the processes that regulate PNL is still lacking. Here, we quantitatively synthesized the responses of all major processes and pools in the terrestrial N cycle with meta-analysis of CO2 experimental data available in the literature. The results showed that CO2 enrichment significantly increased N sequestration in the plant and litter pools but not in the soil pool, partially supporting one of the basic assumptions in the PNL hypothesis that elevated CO2 results in more N sequestered in organic pools. However, CO2 enrichment significantly increased the N influx via biological N fixation and the loss via N2O emission, but decreased the N efflux via leaching. In addition, no general diminished CO2 fertilization effect on plant growth was observed over time up to the longest experiment of 13 years. Overall, our analyses suggest that the extra N supply by the increased biological N fixation and decreased leaching may potentially alleviate PNL under elevated CO2 conditions in spite of the increases in plant N sequestration and N2O emission. Moreover, our syntheses indicate that CO2 enrichment increases soil ammonium (NH4+) to nitrate (NO3-) ratio. The changed NH4+/NO3- ratio and subsequent biological processes may result in changes in soil microenvironments, above-belowground community structures and associated interactions, which could potentially affect the terrestrial biogeochemical cycles. In addition, our data synthesis suggests that more long-term studies, especially in regions other than temperate ones, are needed for comprehensive assessments of the PNL hypothesis.

  19. Chemical microenvironments and single-cell carbon and nitrogen uptake in field-collected colonies of Trichodesmium under different pCO2

    PubMed Central

    Eichner, Meri J; Klawonn, Isabell; Wilson, Samuel T; Littmann, Sten; Whitehouse, Martin J; Church, Matthew J; Kuypers, Marcel MM; Karl, David M; Ploug, Helle

    2017-01-01

    Gradients of oxygen (O2) and pH, as well as small-scale fluxes of carbon (C), nitrogen (N) and O2 were investigated under different partial pressures of carbon dioxide (pCO2) in field-collected colonies of the marine dinitrogen (N2)-fixing cyanobacterium Trichodesmium. Microsensor measurements indicated that cells within colonies experienced large fluctuations in O2, pH and CO2 concentrations over a day–night cycle. O2 concentrations varied with light intensity and time of day, yet colonies exposed to light were supersaturated with O2 (up to ~200%) throughout the light period and anoxia was not detected. Alternating between light and dark conditions caused a variation in pH levels by on average 0.5 units (equivalent to 15 nmol l−1 proton concentration). Single-cell analyses of C and N assimilation using secondary ion mass spectrometry (SIMS; large geometry SIMS and nanoscale SIMS) revealed high variability in metabolic activity of single cells and trichomes of Trichodesmium, and indicated transfer of C and N to colony-associated non-photosynthetic bacteria. Neither O2 fluxes nor C fixation by Trichodesmium were significantly influenced by short-term incubations under different pCO2 levels, whereas N2 fixation increased with increasing pCO2. The large range of metabolic rates observed at the single-cell level may reflect a response by colony-forming microbial populations to highly variable microenvironments. PMID:28398346

  20. Metabolic flux analysis of the mixotrophic metabolisms in the green sulfur bacterium Chlorobaculum tepidum.

    PubMed

    Feng, Xueyang; Tang, Kuo-Hsiang; Blankenship, Robert E; Tang, Yinjie J

    2010-12-10

    The photosynthetic green sulfur bacterium Chlorobaculum tepidum assimilates CO(2) and organic carbon sources (acetate or pyruvate) during mixotrophic growth conditions through a unique carbon and energy metabolism. Using a (13)C-labeling approach, this study examined biosynthetic pathways and flux distributions in the central metabolism of C. tepidum. The isotopomer patterns of proteinogenic amino acids revealed an alternate pathway for isoleucine synthesis (via citramalate synthase, CimA, CT0612). A (13)C-assisted flux analysis indicated that carbons in biomass were mostly derived from CO(2) fixation via three key routes: the reductive tricarboxylic acid (RTCA) cycle, the pyruvate synthesis pathway via pyruvate:ferredoxin oxidoreductase, and the CO(2)-anaplerotic pathway via phosphoenolpyruvate carboxylase. During mixotrophic growth with acetate or pyruvate as carbon sources, acetyl-CoA was mainly produced from acetate (via acetyl-CoA synthetase) or citrate (via ATP citrate lyase). Pyruvate:ferredoxin oxidoreductase converted acetyl-CoA and CO(2) to pyruvate, and this growth-rate control reaction is driven by reduced ferredoxin generated during phototrophic growth. Most reactions in the RTCA cycle were reversible. The relative fluxes through the RTCA cycle were 80∼100 units for mixotrophic cultures grown on acetate and 200∼230 units for cultures grown on pyruvate. Under the same light conditions, the flux results suggested a trade-off between energy-demanding CO(2) fixation and biomass growth rate; C. tepidum fixed more CO(2) and had a higher biomass yield (Y(X/S), mole carbon in biomass/mole substrate) in pyruvate culture (Y(X/S) = 9.2) than in acetate culture (Y(X/S) = 6.4), but the biomass growth rate was slower in pyruvate culture than in acetate culture.

  1. Transgenic Perturbation of the Decarboxylation Phase of Crassulacean Acid Metabolism Alters Physiology and Metabolism But Has Only a Small Effect on Growth

    DOE PAGES

    Dever, Louisa V.; Boxall, Susanna F.; Knerova, Jana; ...

    2014-11-05

    Here, mitochondrial NAD-malic enzyme (ME) and/or cytosolic/plastidic NADP-ME combined with the cytosolic/plastidic pyruvate orthophosphate dikinase (PPDK) catalyze two key steps during light-period malate decarboxylation that underpin secondary CO 2 fixation in some Crassulacean acid metabolism (CAM) species. We report the generation and phenotypic characterization of transgenic RNA interference lines of the obligate CAM species Kalanchoë fedtschenkoi with reduced activities of NAD-ME or PPDK. Transgenic line rNAD-ME1 had 8%, and rPPDK1 had 5% of the wild-type level of activity, and showed dramatic changes in the light/dark cycle of CAM CO 2 fixation. In well-watered conditions, these lines fixed all of theirmore » CO 2 in the light; they thus performed C 3 photosynthesis. The alternative malate decarboxylase, NADP-ME, did not appear to compensate for the reduction in NAD-ME, suggesting that NAD-ME was the key decarboxylase for CAM. The activity of other CAM enzymes was reduced as a consequence of knocking out either NAD-ME or PPDK activity, particularly phosphoenolpyruvate carboxylase (PPC) and PPDK in rNAD-ME1. Furthermore, the circadian clock-controlled phosphorylation of PPC in the dark was reduced in both lines, especially in rNAD-ME1. This had the consequence that circadian rhythms of PPC phosphorylation, PPC kinase transcript levels and activity, and the classic circadian rhythm of CAM CO 2 fixation were lost, or dampened toward arrhythmia, under constant light and temperature conditions. Surprisingly, oscillations in the transcript abundance of core circadian clock genes also became arrhythmic in the rNAD-ME1 line, suggesting that perturbing CAM in K. fedtschenkoi feeds back to perturb the central circadian clock.« less

  2. Transgenic Perturbation of the Decarboxylation Phase of Crassulacean Acid Metabolism Alters Physiology and Metabolism But Has Only a Small Effect on Growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dever, Louisa V.; Boxall, Susanna F.; Knerova, Jana

    Here, mitochondrial NAD-malic enzyme (ME) and/or cytosolic/plastidic NADP-ME combined with the cytosolic/plastidic pyruvate orthophosphate dikinase (PPDK) catalyze two key steps during light-period malate decarboxylation that underpin secondary CO 2 fixation in some Crassulacean acid metabolism (CAM) species. We report the generation and phenotypic characterization of transgenic RNA interference lines of the obligate CAM species Kalanchoë fedtschenkoi with reduced activities of NAD-ME or PPDK. Transgenic line rNAD-ME1 had 8%, and rPPDK1 had 5% of the wild-type level of activity, and showed dramatic changes in the light/dark cycle of CAM CO 2 fixation. In well-watered conditions, these lines fixed all of theirmore » CO 2 in the light; they thus performed C 3 photosynthesis. The alternative malate decarboxylase, NADP-ME, did not appear to compensate for the reduction in NAD-ME, suggesting that NAD-ME was the key decarboxylase for CAM. The activity of other CAM enzymes was reduced as a consequence of knocking out either NAD-ME or PPDK activity, particularly phosphoenolpyruvate carboxylase (PPC) and PPDK in rNAD-ME1. Furthermore, the circadian clock-controlled phosphorylation of PPC in the dark was reduced in both lines, especially in rNAD-ME1. This had the consequence that circadian rhythms of PPC phosphorylation, PPC kinase transcript levels and activity, and the classic circadian rhythm of CAM CO 2 fixation were lost, or dampened toward arrhythmia, under constant light and temperature conditions. Surprisingly, oscillations in the transcript abundance of core circadian clock genes also became arrhythmic in the rNAD-ME1 line, suggesting that perturbing CAM in K. fedtschenkoi feeds back to perturb the central circadian clock.« less

  3. Fixation parameter test-retest repeatability of the worse eye in central field loss.

    PubMed

    Samet, Saba; Tarita-Nistor, Luminita; González, Esther G; Mandelcorn, Mark S; Mandelcorn, Efrem D; Steinbach, Martin J

    2018-06-01

    Patients with bilateral central field loss develop peripheral retinal loci (PRLs) in the functional eccentric retina. PRL characteristics and visual performance in the better-seeing eye (BE) of these patients have previously been reported. In this study, we determined the test-retest repeatability of fixation parameters, including fixation stability, PRL eccentricity, and PRL span in the worse-seeing eye (WE). Retrospective consecutive case series. Thirty-six patients with bilateral central field loss referred from the Toronto Western Hospital Retina Clinic, who had completed 2 consecutive fixation examinations on the same day. Fixation stability was recorded using the Nidek MP-1 microperimeter (Nidek Technologies Srl., Padova, Italy). For each fixation recording, the following parameters were retrieved: (i) 68.2% bivariate contour ellipse area (BCEA), (ii) PRL span (major and minor axes of the BCEA), (iii) PRL meridian (polar angle), and (iv) PRL eccentricity. Test-retest repeatability for each parameter was assessed using Bland-Altman plots to determine 95% limits of agreement. The mean difference between the fixation trial pairs and the 95% limits of agreement for fixation stability, PRL major axis, PRL minor axis, PRL meridian, and PRL eccentricity were 0.06 ± 0.47 log deg 2 , 0.05° ± 1.42°, 0.07° ± 0.63°, -0.44° ± 66.0°, and -0.23° ±1.56°, respectively. The fixation parameters in the WE showed robust repeatability, comparable to that of the BE as determined from previous studies. The WE's fixation repeatability should be considered in the interpretation of fixation outcome measures subsequent to treatment interventions. Crown Copyright © 2018. Published by Elsevier Inc. All rights reserved.

  4. Soil DIC uptake and fixation in Pinus taeda seedlings and its C contribution to plant tissues and ectomycorrhizal fungi

    Treesearch

    Chelcy R. Ford; Nina Wurzburger; Ronald L. Henderick; Robert O. Teskey

    2007-01-01

    Plants can aquaire carbon from sources other than atmospheric carbon dioxide (CO2), including soil-dissolved inorganic carbon (DIC). Although the next flux of CO2 is out of the root, soil DIC can be taken up by the root, transported within the plant, and fixed either photosynthetically or anaplerotically by plant tissues....

  5. Biotechnology of Anoxygenic Phototrophic Bacteria.

    PubMed

    Frigaard, Niels-Ulrik

    Anoxygenic phototrophic bacteria are a diverse collection of organisms that are defined by their ability to grow using energy from light without evolving oxygen. The dominant groups are purple sulfur bacteria, purple nonsulfur bacteria, green sulfur bacteria, and green and red filamentous anoxygenic phototrophic bacteria. They represent several bacterial phyla but they all have bacteriochlorophylls and carotenoids and photochemical reaction centers which generate ATP and cellular reductants used for CO 2 fixation. They typically have an anaerobic lifestyle in the light, although some grow aerobically in the dark. Some of them oxidize inorganic sulfur compounds for light-dependent CO 2 fixation; this ability can be exploited for photobiological removal of hydrogen sulfide from wastewater and biogas. The anoxygenic phototrophic bacteria also perform bioremediation of recalcitrant dyes, pesticides, and heavy metals under anaerobic conditions. Finally, these organisms may be useful for overexpression of membrane proteins and photobiological production of H 2 and other valuable compounds.

  6. Visualizing Single Cell Biology: Nanosims Studies of Carbon and Nitrogen Metabolism in Diazotrophic Cyanobacteria

    NASA Astrophysics Data System (ADS)

    Pett-Ridge, J.; Finzi, J. A.; Capone, D. G.; Popa, R.; Nealson, K. H.; Ng, W.; Spormann, A. M.; Hutcheon, I. D.; Weber, P. K.

    2007-12-01

    Filamentous nitrogen fixing (diazotrophic) cyanobacteria are key players in global nutrient cycling, but the relationship between CO2- and N2-fixation and intercellular exchange of these elements remains poorly understood in many genera. These bacteria are faced with the challenge of isolating regions of N-fixation (O2 inhibited) and photosynthetic (O2 producing) activity. We used isotope labeling in conjunction with a high-resolution isotope and elemental mapping technique (NanoSIMS) to quantitatively describe 13C and 15N uptake and transport in two aquatic cyanobacteria grown on NaH13CO3 and 15N2. The technical challenges of tracing isotopes within individual bacteria can be overcome with high resolution Secondary Ion Mass Spectrometry (NanoSIMS). In NanoSIMS analysis, samples are sputtered with an energetic primary beam (Cs+, O-) liberating secondary ions that are separated by the mass spectrometer and detected in a suite of electron multipliers. Five isotopic species may be analyzed concurrently with spatial resolution as fine as 50nm. A high sensitivity isotope ratio 'map' can then be generated for the analyzed area. Using sequentially harvested cyanobacteria in conjunction with enriched H13CO3 and 15N2 incubations, we measured temporal enrichment patterns that evolve over the course of a day's growth and suggest tightly regulated changes in fixation kinetics. With a combination of TEM, SEM and NanoSIMS analyses, we also mapped the distribution of C, N and Mo (a critical nitrogenase co-factor) isotopes in intact cells. Our results suggest that NanoSIMS mapping of metal enzyme co-factors may be a powerful method of identifying physiological and morphological characteristics within individual bacterial cells, and could be used to provide a 3-dimensional context for more traditional analyses such as immunogold labeling. Finally, we resolved patterns of isotope enrichment at multiple spatial scales: sub-cellular variation, cell-cell differences along filaments, inter-species transfers (with Rhizobium epibionts), and within-cell depth profiles. Spatial enrichment patterns were correlated with morphological features evidenced in TEM images of microtomed filaments. These features indicate how 15N and 13C "hotspots" are dispersed throughout individual cells in different species, and may indicate isolated locations of increased N2 fixation, sites of amino acid/protein synthesis, or cyanophycin storage granules. This combination of Nano-Secondary Ion Mass Spectrometry (NanoSIMS) analysis and high resolution microscopy allows isotopic analysis to be linked to morphological features and holds great promise for fine-scale studies of bacteria metabolism.

  7. Quantitation of fixative-induced morphologic and antigenic variation in mouse and human breast cancers

    PubMed Central

    Cardiff, Robert D; Hubbard, Neil E; Engelberg, Jesse A; Munn, Robert J; Miller, Claramae H; Walls, Judith E; Chen, Jane Q; Velásquez-García, Héctor A; Galvez, Jose J; Bell, Katie J; Beckett, Laurel A; Li, Yue-Ju; Borowsky, Alexander D

    2013-01-01

    Quantitative Image Analysis (QIA) of digitized whole slide images for morphometric parameters and immunohistochemistry of breast cancer antigens was used to evaluate the technical reproducibility, biological variability, and intratumoral heterogeneity in three transplantable mouse mammary tumor models of human breast cancer. The relative preservation of structure and immunogenicity of the three mouse models and three human breast cancers was also compared when fixed with representatives of four distinct classes of fixatives. The three mouse mammary tumor cell models were an ER + /PR + model (SSM2), a Her2 + model (NDL), and a triple negative model (MET1). The four breast cancer antigens were ER, PR, Her2, and Ki67. The fixatives included examples of (1) strong cross-linkers, (2) weak cross-linkers, (3) coagulants, and (4) combination fixatives. Each parameter was quantitatively analyzed using modified Aperio Technologies ImageScope algorithms. Careful pre-analytical adjustments to the algorithms were required to provide accurate results. The QIA permitted rigorous statistical analysis of results and grading by rank order. The analyses suggested excellent technical reproducibility and confirmed biological heterogeneity within each tumor. The strong cross-linker fixatives, such as formalin, consistently ranked higher than weak cross-linker, coagulant and combination fixatives in both the morphometric and immunohistochemical parameters. PMID:23399853

  8. Large Fractions of CO2-Fixing Microorganisms in Pristine Limestone Aquifers Appear To Be Involved in the Oxidation of Reduced Sulfur and Nitrogen Compounds

    PubMed Central

    Herrmann, Martina; Rusznyák, Anna; Akob, Denise M.; Schulze, Isabel; Opitz, Sebastian; Totsche, Kai Uwe

    2015-01-01

    The traditional view of the dependency of subsurface environments on surface-derived allochthonous carbon inputs is challenged by increasing evidence for the role of lithoautotrophy in aquifer carbon flow. We linked information on autotrophy (Calvin-Benson-Bassham cycle) with that from total microbial community analysis in groundwater at two superimposed—upper and lower—limestone groundwater reservoirs (aquifers). Quantitative PCR revealed that up to 17% of the microbial population had the genetic potential to fix CO2 via the Calvin cycle, with abundances of cbbM and cbbL genes, encoding RubisCO (ribulose-1,5-bisphosphate carboxylase/oxygenase) forms I and II, ranging from 1.14 × 103 to 6 × 106 genes liter−1 over a 2-year period. The structure of the active microbial communities based on 16S rRNA transcripts differed between the two aquifers, with a larger fraction of heterotrophic, facultative anaerobic, soil-related groups in the oxygen-deficient upper aquifer. Most identified CO2-assimilating phylogenetic groups appeared to be involved in the oxidation of sulfur or nitrogen compounds and harbored both RubisCO forms I and II, allowing efficient CO2 fixation in environments with strong oxygen and CO2 fluctuations. The genera Sulfuricella and Nitrosomonas were represented by read fractions of up to 78 and 33%, respectively, within the cbbM and cbbL transcript pool and accounted for 5.6 and 3.8% of 16S rRNA sequence reads, respectively, in the lower aquifer. Our results indicate that a large fraction of bacteria in pristine limestone aquifers has the genetic potential for autotrophic CO2 fixation, with energy most likely provided by the oxidation of reduced sulfur and nitrogen compounds. PMID:25616797

  9. Environmental forcing of nitrogen fixation in the eastern tropical and sub-tropical North Atlantic Ocean.

    PubMed

    Rijkenberg, Micha J A; Langlois, Rebecca J; Mills, Matthew M; Patey, Matthew D; Hill, Polly G; Nielsdóttir, Maria C; Compton, Tanya J; Laroche, Julie; Achterberg, Eric P

    2011-01-01

    During the winter of 2006 we measured nifH gene abundances, dinitrogen (N(2)) fixation rates and carbon fixation rates in the eastern tropical and sub-tropical North Atlantic Ocean. The dominant diazotrophic phylotypes were filamentous cyanobacteria, which may include Trichodesmium and Katagnymene, with up to 10(6) L(-1)nifH gene copies, unicellular group A cyanobacteria with up to 10(5) L(-1)nifH gene copies and gamma A proteobacteria with up to 10(4) L(-1)nifH gene copies. N(2) fixation rates were low and ranged between 0.032-1.28 nmol N L(-1) d(-1) with a mean of 0.30 ± 0.29 nmol N L(-1) d(-1) (1σ, n = 65). CO(2)-fixation rates, representing primary production, appeared to be nitrogen limited as suggested by low dissolved inorganic nitrogen to phosphate ratios (DIN:DIP) of about 2 ± 3.2 in surface waters. Nevertheless, N(2) fixation rates contributed only 0.55 ± 0.87% (range 0.03-5.24%) of the N required for primary production. Boosted regression trees analysis (BRT) showed that the distribution of the gamma A proteobacteria and filamentous cyanobacteria nifH genes was mainly predicted by the distribution of Prochlorococcus, Synechococcus, picoeukaryotes and heterotrophic bacteria. In addition, BRT indicated that multiple a-biotic environmental variables including nutrients DIN, dissolved organic nitrogen (DON) and DIP, trace metals like dissolved aluminum (DAl), as a proxy of dust inputs, dissolved iron (DFe) and Fe-binding ligands as well as oxygen and temperature influenced N(2) fixation rates and the distribution of the dominant diazotrophic phylotypes. Our results suggest that lower predicted oxygen concentrations and higher temperatures due to climate warming may increase N(2) fixation rates. However, the balance between a decreased supply of DIP and DFe from deep waters as a result of more pronounced stratification and an enhanced supply of these nutrients with a predicted increase in deposition of Saharan dust may ultimately determine the consequences of climate warming for N(2) fixation in the North Atlantic.

  10. In vitro synthesis of the iron–molybdenum cofactor of nitrogenase from iron, sulfur, molybdenum, and homocitrate using purified proteins

    PubMed Central

    Curatti, Leonardo; Hernandez, Jose A.; Igarashi, Robert Y.; Soboh, Basem; Zhao, Dehua; Rubio, Luis M.

    2007-01-01

    Biological nitrogen fixation, the conversion of atmospheric N2 to NH3, is an essential process in the global biogeochemical cycle of nitrogen that supports life on Earth. Most of the biological nitrogen fixation is catalyzed by the molybdenum nitrogenase, which contains at its active site one of the most complex metal cofactors known to date, the iron–molybdenum cofactor (FeMo-co). FeMo-co is composed of 7Fe, 9S, Mo, R-homocitrate, and one unidentified light atom. Here we demonstrate the complete in vitro synthesis of FeMo-co from Fe2+, S2−, MoO42−, and R-homocitrate using only purified Nif proteins. This synthesis provides direct biochemical support to the current model of FeMo-co biosynthesis. A minimal in vitro system, containing NifB, NifEN, and NifH proteins, together with Fe2+, S2−, MoO42−, R-homocitrate, S-adenosyl methionine, and Mg-ATP, is sufficient for the synthesis of FeMo-co and the activation of apo-dinitrogenase under anaerobic-reducing conditions. This in vitro system also provides a biochemical approach to further study the function of accessory proteins involved in nitrogenase maturation (as shown here for NifX and NafY). The significance of these findings in the understanding of the complete FeMo-co biosynthetic pathway and in the study of other complex Fe-S cluster biosyntheses is discussed. PMID:17978192

  11. Engineering chloroplasts to improve Rubisco catalysis: prospects for translating improvements into food and fiber crops.

    PubMed

    Sharwood, Robert E

    2017-01-01

    494 I. 495 II. 496 III. 496 IV. 499 V. 499 VI. 501 VII. 501 VIII. 502 IX. 505 X. 506 507 References 507 SUMMARY: The uncertainty of future climate change is placing pressure on cropping systems to continue to provide stable increases in productive yields. To mitigate future climates and the increasing threats against global food security, new solutions to manipulate photosynthesis are required. This review explores the current efforts available to improve carbon assimilation within plant chloroplasts by engineering Rubisco, which catalyzes the rate-limiting step of CO 2 fixation. Fixation of CO 2 and subsequent cycling of 3-phosphoglycerate through the Calvin cycle provides the necessary carbohydrate building blocks for maintaining plant growth and yield, but has to compete with Rubisco oxygenation, which results in photorespiration that is energetically wasteful for plants. Engineering improvements in Rubisco is a complex challenge and requires an understanding of chloroplast gene regulatory pathways, and the intricate nature of Rubisco catalysis and biogenesis, to transplant more efficient forms of Rubisco into crops. In recent times, major advances in Rubisco engineering have been achieved through improvement of our knowledge of Rubisco synthesis and assembly, and identifying amino acid catalytic switches in the L-subunit responsible for improvements in catalysis. Improving the capacity of CO 2 fixation in crops such as rice will require further advances in chloroplast bioengineering and Rubisco biogenesis. © 2016 The Author. New Phytologist © 2016 New Phytologist Trust.

  12. Heterologous Expression of the Clostridium carboxidivorans CO Dehydrogenase Alone or Together with the Acetyl Coenzyme A Synthase Enables both Reduction of CO2 and Oxidation of CO by Clostridium acetobutylicum

    PubMed Central

    Carlson, Ellinor D.

    2017-01-01

    ABSTRACT With recent advances in synthetic biology, CO2 could be utilized as a carbon feedstock by native or engineered organisms, assuming the availability of electrons. Two key enzymes used in autotrophic CO2 fixation are the CO dehydrogenase (CODH) and acetyl coenzyme A (acetyl-CoA) synthase (ACS), which form a bifunctional heterotetrameric complex. The CODH/ACS complex can reversibly catalyze CO2 to CO, effectively enabling a biological water-gas shift reaction at ambient temperatures and pressures. The CODH/ACS complex is part of the Wood-Ljungdahl pathway (WLP) used by acetogens to fix CO2, and it has been well characterized in native hosts. So far, only a few recombinant CODH/ACS complexes have been expressed in heterologous hosts, none of which demonstrated in vivo CO2 reduction. Here, functional expression of the Clostridium carboxidivorans CODH/ACS complex is demonstrated in the solventogen Clostridium acetobutylicum, which was engineered to express CODH alone or together with the ACS. Both strains exhibited CO2 reduction and CO oxidation activities. The CODH reactions were interrogated using isotopic labeling, thus verifying that CO was a direct product of CO2 reduction, and vice versa. CODH apparently uses a native C. acetobutylicum ferredoxin as an electron carrier for CO2 reduction. Heterologous CODH activity depended on actively growing cells and required the addition of nickel, which is inserted into CODH without the need to express the native Ni insertase protein. Increasing CO concentrations in the gas phase inhibited CODH activity and altered the metabolite profile of the CODH-expressing cells. This work provides the foundation for engineering a complete and functional WLP in nonnative host organisms. IMPORTANCE Functional expression of CO dehydrogenase (CODH) from Clostridium carboxidivorans was demonstrated in C. acetobutylicum, which is natively incapable of CO2 fixation. The expression of CODH, alone or together with the C. carboxidivorans acetyl-CoA synthase (ACS), enabled C. acetobutylicum to catalyze both CO2 reduction and CO oxidation. Importantly, CODH exhibited activity in both the presence and absence of ACS. 13C-tracer studies confirmed that the engineered C. acetobutylicum strains can reduce CO2 to CO and oxidize CO during growth on glucose. PMID:28625981

  13. Heterologous Expression of the Clostridium carboxidivorans CO Dehydrogenase Alone or Together with the Acetyl Coenzyme A Synthase Enables both Reduction of CO2 and Oxidation of CO by Clostridium acetobutylicum.

    PubMed

    Carlson, Ellinor D; Papoutsakis, Eleftherios T

    2017-08-15

    With recent advances in synthetic biology, CO 2 could be utilized as a carbon feedstock by native or engineered organisms, assuming the availability of electrons. Two key enzymes used in autotrophic CO 2 fixation are the CO dehydrogenase (CODH) and acetyl coenzyme A (acetyl-CoA) synthase (ACS), which form a bifunctional heterotetrameric complex. The CODH/ACS complex can reversibly catalyze CO 2 to CO, effectively enabling a biological water-gas shift reaction at ambient temperatures and pressures. The CODH/ACS complex is part of the Wood-Ljungdahl pathway (WLP) used by acetogens to fix CO 2 , and it has been well characterized in native hosts. So far, only a few recombinant CODH/ACS complexes have been expressed in heterologous hosts, none of which demonstrated in vivo CO 2 reduction. Here, functional expression of the Clostridium carboxidivorans CODH/ACS complex is demonstrated in the solventogen Clostridium acetobutylicum , which was engineered to express CODH alone or together with the ACS. Both strains exhibited CO 2 reduction and CO oxidation activities. The CODH reactions were interrogated using isotopic labeling, thus verifying that CO was a direct product of CO 2 reduction, and vice versa. CODH apparently uses a native C. acetobutylicum ferredoxin as an electron carrier for CO 2 reduction. Heterologous CODH activity depended on actively growing cells and required the addition of nickel, which is inserted into CODH without the need to express the native Ni insertase protein. Increasing CO concentrations in the gas phase inhibited CODH activity and altered the metabolite profile of the CODH-expressing cells. This work provides the foundation for engineering a complete and functional WLP in nonnative host organisms. IMPORTANCE Functional expression of CO dehydrogenase (CODH) from Clostridium carboxidivorans was demonstrated in C. acetobutylicum , which is natively incapable of CO 2 fixation. The expression of CODH, alone or together with the C. carboxidivorans acetyl-CoA synthase (ACS), enabled C. acetobutylicum to catalyze both CO 2 reduction and CO oxidation. Importantly, CODH exhibited activity in both the presence and absence of ACS. 13 C-tracer studies confirmed that the engineered C. acetobutylicum strains can reduce CO 2 to CO and oxidize CO during growth on glucose. Copyright © 2017 American Society for Microbiology.

  14. Alternations of Structure and Functional Activity of Below Ground Microbial Communities at Elevated Atmospheric Carbon Dioxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Zhili; Xu, Meiying; Deng, Ye

    2010-05-17

    The global atmospheric concentration of CO2 has increased by more than 30percent since the industrial revolution. Although the stimulating effects of elevated CO2 (eCO2) on plant growth and primary productivity have been well studied, its influences on belowground microbial communities are poorly understood and controversial. In this study, we showed a significant change in the structure and functional potential of soil microbial communities at eCO2 in a grassland ecosystem, the BioCON (Biodiversity, CO2 and Nitrogen) experimental site (http://www.biocon.umn.edu/) using a comprehensive functional gene array, GeoChip 3.0, which contains about 28,0000 probes and covers approximately 57,000 gene variants from 292 functionalmore » gene families involved in carbon, nitrogen, phosphorus and sulfur cycles as well as other functional processes. GeoChip data indicated that the functional structure of microbial communities was markedly different between ambient CO2 (aCO2) and eCO2 by detrended correspondence analysis (DCA) of all 5001 detected functional gene probes although no significant differences were detected in the overall microbial diversity. A further analysis of 1503 detected functional genes involved in C, N, P, and S cycles showed that a considerable portion (39percent) of them were only detected under either aCO2 (14percent) or eCO2 (25percent), indicating that the functional characteristics of the microbial community were significantly altered by eCO2. Also, for those shared genes (61percent) detected, some significantly (p<0.05) changed their abundance at eCO2. Especially, genes involved in labile C degradation, such as amyA, egl, and ara for starch, cellulose, and hemicelluloses, respectively, C fixation (e.g., rbcL, pcc/acc), N fixation (nifH), and phosphorus utilization (ppx) were significantly increased under eCO2, while those involved in decomposing recalcitrant C, such as glx, lip, and mnp for lignin degradation remained unchanged. This study provides insights into our understanding of belowground microbial communities and their feedbacks to terrestrial ecosystems at eCO2.« less

  15. Mechanical Stress Regulation of Plant Growth and Development

    NASA Technical Reports Server (NTRS)

    Mitchell, C. A.

    1985-01-01

    Growth dynamics analysis was used to determine to what extent the seismic stress induced reduction in photosynthetic productivity in shaken soybeans was due to less photosynthetic surface, and to what extent to lower efficiency of assimulation. Seismic stress reduces shoot transpiration rate 17% and 15% during the first and second 45 minute periods following a given treatment. Shaken plants also had a 36% greater leaf water potential 30 minutes after treatment. Continuous measurement of whole plant photosynthetic rate shows that a decline in CO2 fixation began within seconds after the onset of shaking treatment and continued to decline to 16% less than that of controls 20 minutes after shaking, after which gradual recovery of photosynthesis begins. Photosynthetic assimilation recovered completely before the next treatment 5 hours later. The transitory decrease in photosynthetic rate was due entirely to a two fold increase in stomatal resistance to CO2 by the abaxial leaf surface. Mesophyll resistance was not significantly affected by periodic seismic treatment. Temporary stomatal aperture reduction and decreased CO2 fixation are responsible for the lower dry weight of seismic stressed plants growing in a controlled environment.

  16. No observed effect of ocean acidification on nitrogen biogeochemistry in a summer Baltic Sea plankton community

    NASA Astrophysics Data System (ADS)

    Paul, A. J.; Achterberg, E. P.; Bach, L. T.; Boxhammer, T.; Czerny, J.; Haunost, M.; Schulz, K.-G.; Stuhr, A.; Riebesell, U.

    2015-10-01

    Nitrogen fixation by filamentous cyanobacteria supplies significant amounts of new nitrogen (N) to the Baltic Sea. This balances N loss processes such as denitrification and anammox and forms an important N source supporting primary and secondary production in N-limited post-spring bloom plankton communities. Laboratory studies suggest that filamentous diazotrophic cyanobacteria growth and N2-fixation rates are sensitive to ocean acidification with potential implications for new N supply to the Baltic Sea. In this study, our aim was to assess the effect of ocean acidification on diazotroph growth and activity as well as the contribution of diazotrophically-fixed N to N supply in a natural plankton assemblage. We enclosed a natural plankton community in a summer season in the Baltic Sea near the entrance to the Gulf of Finland in six large-scale mesocosms (volume ~ 55 m3) and manipulated fCO2 over a range relevant for projected ocean acidification by the end of this century (average treatment fCO2: 365-1231 μatm). The direct response of diazotroph growth and activity was followed in the mesocosms over a 47 day study period during N-limited growth in the summer plankton community. Diazotrophic filamentous cyanobacteria abundance throughout the study period and N2-fixation rates (determined only until day 21 due to subsequent use of contaminated commercial 15N-N2 gas stocks) remained low. Thus estimated new N inputs from diazotrophy were too low to relieve N limitation and stimulate a summer phytoplankton bloom. Instead regeneration of organic N sources likely sustained growth in the plankton community. We could not detect significant CO2-related differences in inorganic or organic N pools sizes, or particulate matter N : P stoichiometry. Additionally, no significant effect of elevated CO2 on diazotroph activity was observed. Therefore, ocean acidification had no observable impact on N cycling or biogeochemistry in this N-limited, post-spring bloom plankton assemblage in the Baltic Sea.

  17. No observed effect of ocean acidification on nitrogen biogeochemistry in a summer Baltic Sea plankton community

    NASA Astrophysics Data System (ADS)

    Paul, Allanah J.; Achterberg, Eric P.; Bach, Lennart T.; Boxhammer, Tim; Czerny, Jan; Haunost, Mathias; Schulz, Kai-Georg; Stuhr, Annegret; Riebesell, Ulf

    2016-07-01

    Nitrogen fixation by filamentous cyanobacteria supplies significant amounts of new nitrogen (N) to the Baltic Sea. This balances N loss processes such as denitrification and anammox, and forms an important N source supporting primary and secondary production in N-limited post-spring bloom plankton communities. Laboratory studies suggest that filamentous diazotrophic cyanobacteria growth and N2-fixation rates are sensitive to ocean acidification, with potential implications for new N supply to the Baltic Sea. In this study, our aim was to assess the effect of ocean acidification on diazotroph growth and activity as well as the contribution of diazotrophically fixed N to N supply in a natural plankton assemblage. We enclosed a natural plankton community in a summer season in the Baltic Sea near the entrance to the Gulf of Finland in six large-scale mesocosms (volume ˜ 55 m3) and manipulated fCO2 over a range relevant for projected ocean acidification by the end of this century (average treatment fCO2: 365-1231 µatm). The direct response of diazotroph growth and activity was followed in the mesocosms over a 47 day study period during N-limited growth in the summer plankton community. Diazotrophic filamentous cyanobacteria abundance throughout the study period and N2-fixation rates (determined only until day 21 due to subsequent use of contaminated commercial 15N-N2 gas stocks) remained low. Thus estimated new N inputs from diazotrophy were too low to relieve N limitation and stimulate a summer phytoplankton bloom. Instead, regeneration of organic N sources likely sustained growth in the plankton community. We could not detect significant CO2-related differences in neither inorganic nor organic N pool sizes, or particulate matter N : P stoichiometry. Additionally, no significant effect of elevated CO2 on diazotroph activity was observed. Therefore, ocean acidification had no observable impact on N cycling or biogeochemistry in this N-limited, post-spring bloom plankton assemblage in the Baltic Sea.

  18. Do Tree Stems Recapture Respired CO2?

    NASA Astrophysics Data System (ADS)

    Hilman, B.; Angert, A.

    2016-12-01

    Tree stem respiration is an important, yet not well understood, component of the terrestrial carbon cycle. Predicting how trees as whole organisms respond to changes in climate and atmospheric CO2 requires understanding of the variability in the fraction of assimilated carbon allocated to respiration, versus the allocation to growth, damage repair, and to rhizosphere symbionts. Here we used the ratio of CO2 efflux/O2 influx (Apparent Respiratory Quotient, ARQ) to study stem respiration. The ARQ in trees stems is predicted to be 1.0, as a result of carbohydrates metabolism. Lower than 1.0 ARQ values may indicate a local assimilation of respired CO2, or dissolution and transport of CO2 in the xylem stream. We measured stems ARQ in 16 tree species at tropical, Mediterranean and temperate ecosystems using stem chambers and in-vitro incubations. The CO2 and O2 were measured by a system we developed, which is based on an IRGA and a Fuel-cell O2 analyzer (Hilman and Angert 2016). We found typical values of ARQ in the range of 0.4-0.8. Since incubations of detach stem tissues yielded similar ARQ values, and since the influence of natural variations in the transpiration stream on ARQ was found to be small, we conclude that the removal of the respired CO2 is not via dissolution in the xylem stream. Using 13C labeling, dark fixation of stem tissues was detected, which is most probably phosphoenolpyruvate carboxylase (PEPC) mediated. Hence, we suggest that in-stem dark fixation of respired CO2 to organic acids (e.g. malate) affects the outgoing efflux. Further research should determine if these organic acids are transported to the canopy, stored in the stem, or transported to the roots to serve as exudates. Hilman B, Angert A (2016) Measuring the ratio of CO2 efflux to O2 influx in tree stem respiration. Tree Physiol 2016, doi: 10.1093/treephys/tpw057

  19. Carbon recycling by cyanobacteria: improving CO2 fixation through chemical production.

    PubMed

    Zhang, Angela; Carroll, Austin L; Atsumi, Shota

    2017-09-01

    Atmospheric CO2 levels have reached an alarming level due to industrialization and the burning of fossil fuels. In order to lower the level of atmospheric carbon, strategies to sequester excess carbon need to be implemented. The CO2-fixing mechanism in photosynthetic organisms enables integration of atmospheric CO2 into biomass. Additionally, through exogenous metabolic pathways in these photosynthetic organisms, fixed CO2 can be routed to produce various commodity chemicals that are currently produced from petroleum. This review will highlight studies and modifications to different components of cyanobacterial CO2-fixing systems, as well as the application of these systems toward CO2-derived chemical production. 2,3-Butanediol is given particular focus as one of the most thoroughly studied systems for conversion of CO2 to a bioproduct. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Mechanisms of carbon dioxide acquisition and CO2 sensing in marine diatoms: a gateway to carbon metabolism.

    PubMed

    Matsuda, Yusuke; Hopkinson, Brian M; Nakajima, Kensuke; Dupont, Christopher L; Tsuji, Yoshinori

    2017-09-05

    Diatoms are one of the most successful marine eukaryotic algal groups, responsible for up to 20% of the annual global CO 2 fixation. The evolution of a CO 2 -concentrating mechanism (CCM) allowed diatoms to overcome a number of serious constraints on photosynthesis in the marine environment, particularly low [CO 2 ] aq in seawater relative to concentrations required by the CO 2 fixing enzyme, ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO), which is partly due to the slow diffusion rate of CO 2 in water and a limited CO 2 formation rate from [Formula: see text] in seawater. Diatoms use two alternative strategies to take up dissolved inorganic carbon (DIC) from the environment: one primarily relies on the direct uptake of [Formula: see text] through plasma-membrane type solute carrier (SLC) 4 family [Formula: see text] transporters and the other is more reliant on passive diffusion of CO 2 formed by an external carbonic anhydrase (CA). Bicarbonate taken up into the cytoplasm is most likely then actively transported into the chloroplast stroma by SLC4-type transporters on the chloroplast membrane system. Bicarbonate in the stroma is converted into CO 2 only in close proximity to RubisCO preventing unnecessary CO 2 leakage. CAs play significant roles in mobilizing DIC as it is progressively moved towards the site of fixation. However, the evolutionary types and subcellular locations of CAs are not conserved between different diatoms, strongly suggesting that this DIC mobilization strategy likely evolved multiple times with different origins. By contrast, the recent discovery of the thylakoid luminal θ-CA indicates that the strategy to supply CO 2 to RubisCO in the pyrenoid may be very similar to that of green algae, and strongly suggests convergent coevolution in CCM function of the thylakoid lumen not only among diatoms but among eukaryotic algae in general. In this review, both experimental and corresponding theoretical models of the diatom CCMs are discussed.This article is part of the themed issue 'The peculiar carbon metabolism in diatoms'. © 2017 The Author(s).

  1. Testing simulations of intra- and inter-annual variation in the plant production response to elevated CO(2) against measurements from an 11-year FACE experiment on grazed pasture.

    PubMed

    Li, Frank Yonghong; Newton, Paul C D; Lieffering, Mark

    2014-01-01

    Ecosystem models play a crucial role in understanding and evaluating the combined impacts of rising atmospheric CO2 concentration and changing climate on terrestrial ecosystems. However, we are not aware of any studies where the capacity of models to simulate intra- and inter-annual variation in responses to elevated CO2 has been tested against long-term experimental data. Here we tested how well the ecosystem model APSIM/AgPasture was able to simulate the results from a free air carbon dioxide enrichment (FACE) experiment on grazed pasture. At this FACE site, during 11 years of CO2 enrichment, a wide range in annual plant production response to CO2 (-6 to +28%) was observed. As well as running the full model, which includes three plant CO2 response functions (plant photosynthesis, nitrogen (N) demand and stomatal conductance), we also tested the influence of these three functions on model predictions. Model/data comparisons showed that: (i) overall the model over-predicted the mean annual plant production response to CO2 (18.5% cf 13.1%) largely because years with small or negative responses to CO2 were not well simulated; (ii) in general seasonal and inter-annual variation in plant production responses to elevated CO2 were well represented by the model; (iii) the observed CO2 enhancement in overall mean legume content was well simulated but year-to-year variation in legume content was poorly captured by the model; (iv) the best fit of the model to the data required all three CO2 response functions to be invoked; (v) using actual legume content and reduced N fixation rate under elevated CO2 in the model provided the best fit to the experimental data. We conclude that in temperate grasslands the N dynamics (particularly the legume content and N fixation activity) play a critical role in pasture production responses to elevated CO2 , and are processes for model improvement. © 2013 John Wiley & Sons Ltd.

  2. Satellite captures trichodesmium blooms in the southwestern tropical Pacific

    NASA Astrophysics Data System (ADS)

    Dupouy, Cécile; Neveux, Jacques; Subramaniam, Ajit; Mulholland, Margaret R.; Montoya, Joseph P.; Campbell, Lisa; Carpenter, Edward J.; Capone, Douglas G.

    Obtaining a true estimate of nitrogen fixation by cyanobacteria in the oceans, mainly Trichodesmium, is an important step toward understanding the entire nitrogen cycle in the tropical ocean. This strictly anaerobic process, which has a high Fe requirement, could regulate atmospheric CO2 over geological time. For example, during interglacial periods, N2 fixation would be too low (low Fe) to balance denitrification and the ocean would lose its fixed nitrogen [Falkowski, 1997]. Has the level of marine nitrogen fixation been underestimated until now? High N2 fixation rates measured on Trichodesmium spp. communities have led to an upward revision of this marine flux [Capone et al, 1997]. Recent modeling studies and observations predict that N2 fixation could regulate the long-term N:P equilibrium in the oceans and balance denitrification [Tyrell, 1999; J L. Sarmiento and N. Gruber, manuscript in preparation, 1999].The major nitrogen fixer, Trichodesmium spp., which are filamentous, nonheterocystous N2-fixing cyanobacteria, has a nearly ubiquitous distribution in the euphotic zone of tropical and subtropical seas and could play a major role in bringing new N to these oligotrophic systems. Satellite images from Sea-viewing Wide Field-of-view Sensor (SeaWiFs), the recently launched ocean color sensor, and data from a recent cruise, provide further evidence of the importance of Trichodesmium in the southwestern tropical Pacific Ocean.

  3. Electro-autotrophic synthesis of higher alcohols

    DOEpatents

    Liao, James C.; Cho, Kwang Myung

    2016-11-01

    The disclosure provides a process that converts CO.sub.2 to higher alcohols (e.g. isobutanol) using electricity as the energy source. This process stores electricity (e.g. from solar energy, nuclear energy, and the like) in liquid fuels that can be used as high octane number gasoline substitutes. Instead of deriving reducing power from photosynthesis, this process derives reducing power from electrically generated mediators, either H.sub.2 or formate. H.sub.2 can be derived from electrolysis of water. Formate can be generated by electrochemical reduction of CO.sub.2. After delivering the reducing power in the cell, formate becomes CO.sub.2 and recycles back. Therefore, the biological CO.sub.2 fixation process can occur in the dark.

  4. Electro-autotrophic synthesis of higher alcohols

    DOEpatents

    Liao, James C.; Cho, Kwang Myung

    2015-10-06

    The disclosure provides a process that converts CO.sub.2 to higher alcohols (e.g. isobutanol) using electricity as the energy source. This process stores electricity (e.g. from solar energy, nuclear energy, and the like) in liquid fuels that can be used as high octane number gasoline substitutes. Instead of deriving reducing power from photosynthesis, this process derives reducing power from electrically generated mediators, either H.sub.2 or formate. H.sub.2 can be derived from electrolysis of water. Formate can be generated by electrochemical reduction of CO.sub.2. After delivering the reducing power in the cell, formate becomes CO.sub.2 and recycles back. Therefore, the biological CO.sub.2 fixation process can occur in the dark.

  5. Connecting biodiversity and potential functional role in modern euxinic environments by microbial metagenomics

    PubMed Central

    Llorens-Marès, Tomàs; Yooseph, Shibu; Goll, Johannes; Hoffman, Jeff; Vila-Costa, Maria; Borrego, Carles M; Dupont, Chris L; Casamayor, Emilio O

    2015-01-01

    Stratified sulfurous lakes are appropriate environments for studying the links between composition and functionality in microbial communities and are potentially modern analogs of anoxic conditions prevailing in the ancient ocean. We explored these aspects in the Lake Banyoles karstic area (NE Spain) through metagenomics and in silico reconstruction of carbon, nitrogen and sulfur metabolic pathways that were tightly coupled through a few bacterial groups. The potential for nitrogen fixation and denitrification was detected in both autotrophs and heterotrophs, with a major role for nitrogen and carbon fixations in Chlorobiaceae. Campylobacterales accounted for a large percentage of denitrification genes, while Gallionellales were putatively involved in denitrification, iron oxidation and carbon fixation and may have a major role in the biogeochemistry of the iron cycle. Bacteroidales were also abundant and showed potential for dissimilatory nitrate reduction to ammonium. The very low abundance of genes for nitrification, the minor presence of anammox genes, the high potential for nitrogen fixation and mineralization and the potential for chemotrophic CO2 fixation and CO oxidation all provide potential clues on the anoxic zones functioning. We observed higher gene abundance of ammonia-oxidizing bacteria than ammonia-oxidizing archaea that may have a geochemical and evolutionary link related to the dominance of Fe in these environments. Overall, these results offer a more detailed perspective on the microbial ecology of anoxic environments and may help to develop new geochemical proxies to infer biology and chemistry interactions in ancient ecosystems. PMID:25575307

  6. Porous MOF with Highly Efficient Selectivity and Chemical Conversion for CO2.

    PubMed

    Wang, Hai-Hua; Hou, Lei; Li, Yong-Zhi; Jiang, Chen-Yu; Wang, Yao-Yu; Zhu, Zhonghua

    2017-05-31

    A new Co(II)-based MOF, {[Co 2 (tzpa)(OH)(H 2 O) 2 ]·DMF} n (1) (H 3 tzpa = 5-(4-(tetrazol-5-yl)phenyl)isophthalic acid), was constructed by employing a tetrazolyl-carboxyl ligand H 3 tzpa. 1 possesses 1D tubular channels that are decorated by μ 3 -OH groups, uncoordinated carboxylate O atoms, and open metal centers generated by the removal of coordinated water molecules, leading to high CO 2 adsorption capacity and significantly selective capture for CO 2 over CH 4 and CO in the temperature range of 298-333 K. Moreover, 1 shows the chemical stability in acidic and basic aqueous solutions. Grand canonical Monte Carlo simulations identified multiple CO 2 -philic sites in 1. In addition, the activated 1 as the heterogeneous Lewis and Brønsted acid bifunctional catalyst facilitates the chemical fixation of CO 2 coupling with epoxides into cyclic carbonates under ambient conditions.

  7. Photosynthesis, N(2) fixation and taproot reserves during the cutting regrowth cycle of alfalfa under elevated CO(2) and temperature.

    PubMed

    Erice, G; Sanz-Sáez, A; Aranjuelo, I; Irigoyen, J J; Aguirreolea, J; Avice, J-C; Sánchez-Díaz, M

    2011-11-15

    Future climatic conditions, including rising atmospheric CO(2) and temperature may increase photosynthesis and, consequently, plant production. A larger knowledge of legume performance under the predicted growth conditions will be crucial for safeguarding crop management and extending the area under cultivation with these plants in the near future. N(2) fixation is a key process conditioning plant responsiveness to varying growth conditions. Moreover, it is likely to increase under future environments, due to the higher photosynthate availability, as a consequence of the higher growth rate under elevated CO(2). However, as described in the literature, photosynthesis performance is frequently down-regulated (acclimated) under long-term exposure to CO(2), especially when affected by stressful temperature and water availability conditions. As growth responses to elevated CO(2) are dependent on sink-source status, it is generally accepted that down-regulation occurs in situations with insufficient plant C sink capacity. Alfalfa management involves the cutting of shoots, which alters the source-sink relationship and thus the photosynthetic behaviour. As the growth rate decreases at the end of the pre-cut vegetative growth period, nodulated alfalfa plants show photosynthetic down-regulation, but during regrowth following defoliation, acclimation to elevated CO(2) disappears. The shoot harvest also leads to a drop in mineral N uptake and C translocation to the roots, resulting in a reduction in N(2) fixation due to the dependence on photosynthate supply to support nodule function. Therefore, the production of new shoots during the first days following cutting requires the utilization of reduced C and N compounds that have been stored previously in reserve organs. The stored reserves are mediated by phytohormones such as methyl jasmonate and abscisic acid and in situations where water stress reduces shoot production this potentially enables the enhancement of taproot protein levels in nodulated alfalfa, which may lead to these plants being in better condition in the following cut/regrowth cycle. Furthering our knowledge of legume performance under predicted climate change conditions will be crucial for the development of varieties with better adaptation that will achieve greater and more efficient production values. Furthermore, for this purpose it will be necessary to improve existing methodologies and create new ones for phenotype characterization. Such knowledge will provide key information for future plant breeding programs. Copyright © 2011 Elsevier GmbH. All rights reserved.

  8. Application of photosynthetic N(2)-fixing cyanobacteria to the CELSS program

    NASA Technical Reports Server (NTRS)

    Fry, Ian V.; Hrabeta, Jana; Dsouza, Joe; Packer, Lester

    1987-01-01

    The feasibility of using photosynthetic microalgae (cyanobacteria) as a subsystem component for the closed ecological life support system program, with particular emphasis on the manipulation of the biomass (protein/carbohydrate) was addressed. Using factors which retard growth rates, but not photosynthetic electron flux, the partitioning of photosynthetically derived reductant may be dictated towards CO2 fixation (carbohydrate formation) and away from N2 fixation (protein formation). Cold shock treatment of fairly dense cultures markedly increases the glycogen content from 1 to 35 percent (dry weight), and presents a useful technique to change the protein/carbohydrate ratio of these organisms to a more nutritionally acceptable form.

  9. Protocol for HER2 FISH Using a Non-cross-linking, Formalin-free Tissue Fixative to Combine Advantages of Cryo-preservation and Formalin Fixation

    PubMed Central

    Loibner, Martina; Oberauner-Wappis, Lisa; Viertler, Christian; Groelz, Daniel; Zatloukal, Kurt

    2017-01-01

    Morphologic assessment of formalin-fixed, paraffin-embedded (FFPE) tissue samples has been the gold standard for cancer diagnostics for decades due to its excellent preservation of morphology. Personalized medicine increasingly provides individually adapted and targeted therapies for characterized individual diseases enabled by combined morphological and molecular analytical technologies and diagnostics. Performance of morphologic and molecular assays from the same FFPE specimen is challenging because of the negative impact of formalin due to chemical modification and cross-linking of nucleic acids and proteins. A non-cross-linking, formalin-free tissue fixative has been recently developed to fulfil both requirements, i.e., to preserve morphology like FFPE and biomolecules like cryo-preservation. Since FISH is often required in combination with histopathology and molecular diagnostics, we tested the applicability of FISH protocols on tissues treated with this new fixative. We found that formalin post-fixation of histological sections of non-cross-linking, formalin-free and paraffin-embedded (NCFPE) breast cancer tissue generated equivalent results to those with FFPE tissue in human epidermal growth factor receptor 2 (HER2) FISH analysis. This protocol describes how a FISH assay originally developed and validated for FFPE tissue can be used for NCFPE tissues by a simple post-fixation step of histological sections. PMID:29364207

  10. A novel tridentate coordination mode for the carbonatonickel system exhibited in an unusual hexanuclear nickel(II) mu3-carbonato-bridged complex.

    PubMed

    Anderson, James C; Blake, Alexander J; Moreno, Rafael Bou; Raynel, Guillaume; van Slageren, Joris

    2009-11-14

    The fixation of CO(2) at ambient temperature has been achieved by the reaction of Ni(cod)(2) and TMEDA in CO(2) saturated THF that yields a novel hexanuclear nickel(II) mu(3)-carbonato bridged complex [Ni(6)(mu(3)-CO(3))(4)(TMEDA)(6)(H(2)O)(12)](OH)(4) in 59% yield. The complex was characterised by MS analysis and the structure corroborated by single-crystal X-ray crystallography. The complex exhibits a rare carbonato binding mode for Ni(II) complexes and moderately strong antiferromagnetic interactions.

  11. Biomechanical monitoring of healing bone based on acoustic emission technology.

    PubMed

    Hirasawa, Yasusuke; Takai, Shinro; Kim, Wook-Cheol; Takenaka, Nobuyuki; Yoshino, Nobuyuki; Watanabe, Yoshinobu

    2002-09-01

    Acoustic emission testing is a well-established method for assessment of the mechanical integrity of general construction projects. The purpose of the current study was to investigate the usefulness of acoustic emission technology in monitoring the yield strength of healing callus during external fixation. Thirty-five patients with 39 long bones treated with external fixation were evaluated for fracture healing by monitoring load for the initiation of acoustic emission signal (yield strength) under axial loading. The major criteria for functional bone union based on acoustic emission testing were (1) no acoustic emission signal on full weightbearing, and (2) a higher estimated strength than body weight. The yield strength monitored by acoustic emission testing increased with the time of healing. The external fixator could be removed safely and successfully in 97% of the patients. Thus, the acoustic emission method has good potential as a reliable method for monitoring the mechanical status of healing bone.

  12. Ultradian metabolic rhythm in the diazotrophic cyanobacterium Cyanothece sp. ATCC 51142.

    PubMed

    Červený, Jan; Sinetova, Maria A; Valledor, Luis; Sherman, Louis A; Nedbal, Ladislav

    2013-08-06

    The unicellular cyanobacterium Cyanothece sp. American Type Culture Collection (ATCC) 51142 is capable of performing oxygenic photosynthesis during the day and microoxic nitrogen fixation at night. These mutually exclusive processes are possible only by temporal separation by circadian clock or another cellular program. We report identification of a temperature-dependent ultradian metabolic rhythm that controls the alternating oxygenic and microoxic processes of Cyanothece sp. ATCC 51142 under continuous high irradiance and in high CO2 concentration. During the oxygenic photosynthesis phase, nitrate deficiency limited protein synthesis and CO2 assimilation was directed toward glycogen synthesis. The carbohydrate accumulation reduced overexcitation of the photosynthetic reactions until a respiration burst initiated a transition to microoxic N2 fixation. In contrast to the circadian clock, this ultradian period is strongly temperature-dependent: 17 h at 27 °C, which continuously decreased to 10 h at 39 °C. The cycle was expressed by an oscillatory modulation of net O2 evolution, CO2 uptake, pH, fluorescence emission, glycogen content, cell division, and culture optical density. The corresponding ultradian modulation was also observed in the transcription of nitrogenase-related nifB and nifH genes and in nitrogenase activities. We propose that the control by the newly identified metabolic cycle adds another rhythmic component to the circadian clock that reflects the true metabolic state depending on the actual temperature, irradiance, and CO2 availability.

  13. Fermentative hydrogen production using pretreated microalgal biomass as feedstock.

    PubMed

    Wang, Jianlong; Yin, Yanan

    2018-02-14

    Microalgae are simple chlorophyll containing organisms, they have high photosynthetic efficiency and can synthesize and accumulate large quantities of carbohydrate biomass. They can be cultivated in fresh water, seawater and wastewater. They have been used as feedstock for producing biodiesel, bioethanol and biogas. The production of these biofuels can be integrated with CO 2 mitigation, wastewater treatment, and the production of high-value chemicals. Biohydrogen from microalgae is renewable. Microalgae have several advantages compared to terrestrial plants, such as higher growth rate with superior CO 2 fixation capacity; they do not need arable land to grow; they do not contain lignin. In this review, the biology of microalgae and the chemical composition of microalgae were briefly introduced, the advantages and disadvantages of hydrogen production from microalgae were discussed, and the pretreatment of microalgal biomass and the fermentative hydrogen production from microalgal biomass pretreated by different methods (including physical, chemical, biological and combined methods) were summarized and evaluated. For the production of biohydrogen from microalgae, the economic feasibility remains the most important aspect to consider. Several technological and economic issues must be addressed to achieve success on a commercial scale.

  14. Ocean acidification decreases plankton respiration: evidence from a mesocosm experiment

    NASA Astrophysics Data System (ADS)

    Spilling, Kristian; Paul, Allanah J.; Virkkala, Niklas; Hastings, Tom; Lischka, Silke; Stuhr, Annegret; Bermúdez, Rafael; Czerny, Jan; Boxhammer, Tim; Schulz, Kai G.; Ludwig, Andrea; Riebesell, Ulf

    2016-08-01

    Anthropogenic carbon dioxide (CO2) emissions are reducing the pH in the world's oceans. The plankton community is a key component driving biogeochemical fluxes, and the effect of increased CO2 on plankton is critical for understanding the ramifications of ocean acidification on global carbon fluxes. We determined the plankton community composition and measured primary production, respiration rates and carbon export (defined here as carbon sinking out of a shallow, coastal area) during an ocean acidification experiment. Mesocosms ( ˜ 55 m3) were set up in the Baltic Sea with a gradient of CO2 levels initially ranging from ambient ( ˜ 240 µatm), used as control, to high CO2 (up to ˜ 1330 µatm). The phytoplankton community was dominated by dinoflagellates, diatoms, cyanobacteria and chlorophytes, and the zooplankton community by protozoans, heterotrophic dinoflagellates and cladocerans. The plankton community composition was relatively homogenous between treatments. Community respiration rates were lower at high CO2 levels. The carbon-normalized respiration was approximately 40 % lower in the high-CO2 environment compared with the controls during the latter phase of the experiment. We did not, however, detect any effect of increased CO2 on primary production. This could be due to measurement uncertainty, as the measured total particular carbon (TPC) and combined results presented in this special issue suggest that the reduced respiration rate translated into higher net carbon fixation. The percent carbon derived from microscopy counts (both phyto- and zooplankton), of the measured total particular carbon (TPC), decreased from ˜ 26 % at t0 to ˜ 8 % at t31, probably driven by a shift towards smaller plankton (< 4 µm) not enumerated by microscopy. Our results suggest that reduced respiration leads to increased net carbon fixation at high CO2. However, the increased primary production did not translate into increased carbon export, and consequently did not work as a negative feedback mechanism for increasing atmospheric CO2 concentration.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cannon, Gordon C.; Heinhorst, Sabine; Kerfeld, Cheryl A.

    Cyanobacteria and some chemoautotrophic bacteria are able to grow in environments with limiting CO2 concentrations by employing a CO2-concentrating mechanism (CCM) that allows them to accumulate inorganic carbon in their cytoplasm to concentrations several orders of magnitude higher than that on the outside. The final step of this process takes place in polyhedral protein microcompartments known as carboxysomes, which contain the majority of the CO2-fixing enzyme, RubisCO. The efficiency of CO2 fixation by the sequestered RubisCO is enhanced by co-localization with a specialized carbonic anhydrase that catalyzes dehydration of the cytoplasmic bicarbonate and ensures saturation of RubisCO with its substrate,more » CO2. There are two genetically distinct carboxysome types that differ in their protein composition and in the carbonic anhydrase(s) they employ. Here we review the existing information concerning the genomics, structure and enzymology of these uniquely adapted carbonic anhydrases, which are of fundamental importance in the global carbon cycle.« less

  16. Divergent Responses of Forest Soil Microbial Communities under Elevated CO 2 in Different Depths of Upper Soil Layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Hao; He, Zhili; Wang, Aijie

    Numerous studies have shown that the continuous increase of atmosphere CO 2 concentrations may have profound effects on the forest ecosystem and its functions. However, little is known about the response of belowground soil microbial communities under elevated atmospheric CO 2 (eCO 2) at different soil depth profiles in forest ecosystems. In this paper, we examined soil microbial communities at two soil depths (0 to 5 cm and 5 to 15 cm) after a 10-year eCO 2 exposure using a high-throughput functional gene microarray (GeoChip). The results showed that eCO 2 significantly shifted the compositions, including phylogenetic and functional genemore » structures, of soil microbial communities at both soil depths. Key functional genes, including those involved in carbon degradation and fixation, methane metabolism, denitrification, ammonification, and nitrogen fixation, were stimulated under eCO 2 at both soil depths, although the stimulation effect of eCO 2 on these functional markers was greater at the soil depth of 0 to 5 cm than of 5 to 15 cm. Moreover, a canonical correspondence analysis suggested that NO 3-N, total nitrogen (TN), total carbon (TC), and leaf litter were significantly correlated with the composition of the whole microbial community. This study revealed a positive feedback of eCO 2 in forest soil microbial communities, which may provide new insight for a further understanding of forest ecosystem responses to global CO 2 increases. The concentration of atmospheric carbon dioxide (CO 2) has continuously been increasing since the industrial revolution. Understanding the response of soil microbial communities to elevated atmospheric CO 2 (eCO 2) is important for predicting the contribution of the forest ecosystem to global atmospheric change. This study analyzed the effect of eCO 2 on microbial communities at two soil depths (0 to 5 cm and 5 to 15 cm) in a forest ecosystem. Our findings suggest that the compositional and functional structures of microbial communities shifted under eCO 2 at both soil depths. Finally, more functional genes involved in carbon, nitrogen, and phosphorus cycling were stimulated under eCO 2 at the soil depth of 0 to 5 cm than at the depth of 5 to 15 cm.« less

  17. Divergent Responses of Forest Soil Microbial Communities under Elevated CO 2 in Different Depths of Upper Soil Layers

    DOE PAGES

    Yu, Hao; He, Zhili; Wang, Aijie; ...

    2017-10-27

    Numerous studies have shown that the continuous increase of atmosphere CO 2 concentrations may have profound effects on the forest ecosystem and its functions. However, little is known about the response of belowground soil microbial communities under elevated atmospheric CO 2 (eCO 2) at different soil depth profiles in forest ecosystems. In this paper, we examined soil microbial communities at two soil depths (0 to 5 cm and 5 to 15 cm) after a 10-year eCO 2 exposure using a high-throughput functional gene microarray (GeoChip). The results showed that eCO 2 significantly shifted the compositions, including phylogenetic and functional genemore » structures, of soil microbial communities at both soil depths. Key functional genes, including those involved in carbon degradation and fixation, methane metabolism, denitrification, ammonification, and nitrogen fixation, were stimulated under eCO 2 at both soil depths, although the stimulation effect of eCO 2 on these functional markers was greater at the soil depth of 0 to 5 cm than of 5 to 15 cm. Moreover, a canonical correspondence analysis suggested that NO 3-N, total nitrogen (TN), total carbon (TC), and leaf litter were significantly correlated with the composition of the whole microbial community. This study revealed a positive feedback of eCO 2 in forest soil microbial communities, which may provide new insight for a further understanding of forest ecosystem responses to global CO 2 increases. The concentration of atmospheric carbon dioxide (CO 2) has continuously been increasing since the industrial revolution. Understanding the response of soil microbial communities to elevated atmospheric CO 2 (eCO 2) is important for predicting the contribution of the forest ecosystem to global atmospheric change. This study analyzed the effect of eCO 2 on microbial communities at two soil depths (0 to 5 cm and 5 to 15 cm) in a forest ecosystem. Our findings suggest that the compositional and functional structures of microbial communities shifted under eCO 2 at both soil depths. Finally, more functional genes involved in carbon, nitrogen, and phosphorus cycling were stimulated under eCO 2 at the soil depth of 0 to 5 cm than at the depth of 5 to 15 cm.« less

  18. Divergent Responses of Forest Soil Microbial Communities under Elevated CO2 in Different Depths of Upper Soil Layers.

    PubMed

    Yu, Hao; He, Zhili; Wang, Aijie; Xie, Jianping; Wu, Liyou; Van Nostrand, Joy D; Jin, Decai; Shao, Zhimin; Schadt, Christopher W; Zhou, Jizhong; Deng, Ye

    2018-01-01

    Numerous studies have shown that the continuous increase of atmosphere CO 2 concentrations may have profound effects on the forest ecosystem and its functions. However, little is known about the response of belowground soil microbial communities under elevated atmospheric CO 2 (eCO 2 ) at different soil depth profiles in forest ecosystems. Here, we examined soil microbial communities at two soil depths (0 to 5 cm and 5 to 15 cm) after a 10-year eCO 2 exposure using a high-throughput functional gene microarray (GeoChip). The results showed that eCO 2 significantly shifted the compositions, including phylogenetic and functional gene structures, of soil microbial communities at both soil depths. Key functional genes, including those involved in carbon degradation and fixation, methane metabolism, denitrification, ammonification, and nitrogen fixation, were stimulated under eCO 2 at both soil depths, although the stimulation effect of eCO 2 on these functional markers was greater at the soil depth of 0 to 5 cm than of 5 to 15 cm. Moreover, a canonical correspondence analysis suggested that NO 3 -N, total nitrogen (TN), total carbon (TC), and leaf litter were significantly correlated with the composition of the whole microbial community. This study revealed a positive feedback of eCO 2 in forest soil microbial communities, which may provide new insight for a further understanding of forest ecosystem responses to global CO 2 increases. IMPORTANCE The concentration of atmospheric carbon dioxide (CO 2 ) has continuously been increasing since the industrial revolution. Understanding the response of soil microbial communities to elevated atmospheric CO 2 (eCO 2 ) is important for predicting the contribution of the forest ecosystem to global atmospheric change. This study analyzed the effect of eCO 2 on microbial communities at two soil depths (0 to 5 cm and 5 to 15 cm) in a forest ecosystem. Our findings suggest that the compositional and functional structures of microbial communities shifted under eCO 2 at both soil depths. More functional genes involved in carbon, nitrogen, and phosphorus cycling were stimulated under eCO 2 at the soil depth of 0 to 5 cm than at the depth of 5 to 15 cm. Copyright © 2017 American Society for Microbiology.

  19. Green Roots: Photosynthesis and Photoautotrophy in an Underground Plant Organ.

    PubMed Central

    Flores, H. E.; Dai, Yr.; Cuello, J. L.; Maldonado-Mendoza, I. E.; Loyola-Vargas, V. M.

    1993-01-01

    The potential for photosynthetic and photoautotrophic growth was studied in hairy root cultures of Asteraceae and Solanaceae species. Upon transfer to light, initially heterotrophic root cultures of Acmella oppositifolia and Datura innoxia greened rapidly, differentiated chloroplasts, and developed light-dependent CO2 fixation in the cortical cells. Photosynthetic potential was expressed in root cultures of all the Asteraceae genera examined (Acmella, Artemisia, Rudbeckia, Stevia, and Tagetes). Hairy roots of A. oppositifolia and D. innoxia were further adapted to photoautotrophy by growing in the presence of light and added CO2 (1-5%) and by direct or sequential transfers into media containing progressively lower sugar concentrations. The transition to photoautotrophy was accompanied by an increase in CO2 fixation and in the specific activity of 1,5-ribulose-bisphosphate carboxylase/ oxygenase (Rubisco). During the adaptation of A. oppositifolia roots to photoautotrophy, the ratio of Rubisco to phosphoenolpyruvate carboxylase increased significantly, approaching that found in the leaves. The levels and patterns of alkaloids and polyacetylenes produced by Solanaceae and Asteraceae hairy roots, respectively, were dramatically altered in photomixotrophic and photoautotrophic cultures. Photoautotrophic roots of A. oppositifolia have been mainitained in vitro for over 2 years. PMID:12231691

  20. Culture characteristics of the atmospheric and room temperature plasma-mutated Spirulina platensis mutants in CO2 aeration culture system for biomass production.

    PubMed

    Tan, Yinyee; Fang, Mingyue; Jin, Lihua; Zhang, Chong; Li, He-Ping; Xing, Xin-Hui

    2015-10-01

    For biomass production of Spirulina platensis as feedstock of fermentation, the culture characteristics of three typical mutants of 3-A10, 3-B2 and 4-B3 generated by atmospheric and room temperature plasmas (ARTP) mutagenesis were systematically studied by using CO2 aeration culture system and compared with the wild strain. The specific growth rate of wild strain in the pure air aeration culture system exhibited a 76.2% increase compared with static culture, while the specific growth rates of the 3-A10, 3-B2 and 4-B3 in pure air aeration culture system were increased by 114.4%, 95.9% and 88.2% compared with their static cultures. Compared with static culture, the carbohydrate contents of wild strain, 3-A10, 3-B2 and 4-B3 in pure air aeration culture system dropped plainly by 51.0%, 79.3%, 85.5% and 26.1%. Increase of CO2 concentration enhanced carbohydrate content and productivity. Based on the carbohydrate productivity, the optimal inlet of CO2 concentration in aeration culture was determined to be 12% (v/v). Under this condition, 3-B2 exhibited the highest carbohydrate content (30.7%), CO2 fixation rate (0.120gCO2·g(-1)·d(-1)) and higher growth rate (0.093 g L(-1)·d(-1)), while 3-A10 showed the highest growth rate (0.118 g L(-1)·d(-1)) and higher CO2 fixation rate (0.117gCO2·g(-1)·d(-1)) but low carbohydrate content (24.5%), and 4-B3 showed the highest chlorophyll (Chl) content (3.82 mg·g(-1)). The most outstanding mutant by static culture in terms of growth rate and carbohydrate productivity (3-B2), was also demonstrated by CO2 aeration culture system. This study revealed that the ARTP mutagenesis could generate the S. platensis mutants suitable for CO2 aeration culture aiming at biomass production. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  1. What would optimal vegetation do when confronted with steadily increasing atmospheric CO2

    NASA Astrophysics Data System (ADS)

    Roderick, M. L.; Donohue, R. J.; Yang, Y.; McVicar, T.; Farquhar, G. D.

    2015-12-01

    The ongoing increase in atmospheric CO2 presents an interesting opportunity for primary producers. An increase in the substrate availability would, with all else equal, stimulate fixation of carbon from the atmosphere. But all else is not necessarily equal and this is only the beginning of a cascade of changes that can ultimately be traced back to the stomatal regulation of water-carbon exchanges. We first discuss theoretical expectations and then deduce how vegetation might respond to changing CO2 in water- and energy-limited environments. We then use satellite observations to test the theoretical expectations.

  2. Processes regulating progressive nitrogen limitation under elevated carbon dioxide: A meta-analysis

    DOE PAGES

    Liang, Junyi; Qi, Xuan; Souza, Lara; ...

    2016-05-10

    Here, the nitrogen (N) cycle has the potential to regulate climate change through its influence on carbon (C) sequestration. Although extensive research has explored whether or not progressive N limitation (PNL) occurs under CO 2 enrichment, a comprehensive assessment of the processes that regulate PNL is still lacking. Here, we quantitatively synthesized the responses of all major processes and pools in the terrestrial N cycle with meta-analysis of CO 2 experimental data available in the literature. The results showed that CO 2 enrichment significantly increased N sequestration in the plant and litter pools but not in the soil pool, partiallymore » supporting one of the basic assumptions in the PNL hypothesis that elevated CO 2 results in more N sequestered in organic pools. However, CO 2 enrichment significantly increased the N influx via biological N fixation and the loss via N 2O emission, but decreased the N efflux via leaching. In addition, no general diminished CO 2 fertilization effect on plant growth was observed over time up to the longest experiment of 13 years. Overall, our analyses suggest that the extra N supply by the increased biological N fixation and decreased leaching may potentially alleviate PNL under elevated CO 2 conditions in spite of the increases in plant N sequestration and N 2O emission. Moreover, our syntheses indicate that CO 2 enrichment increases soil ammonium (NH 4 +) to nitrate (NO 3 –) ratio. The changed NH 4 +/NO 3 – ratio and subsequent biological processes may result in changes in soil microenvironments, above-belowground community structures and associated interactions, which could potentially affect the terrestrial biogeochemical cycles. In addition, our data synthesis suggests that more long-term studies, especially in regions other than temperate ones, are needed for comprehensive assessments of the PNL hypothesis.« less

  3. Understanding of Electrochemical Mechanisms for CO2 Capture and Conversion into Hydrocarbon Fuels in Transition-Metal Carbides (MXenes).

    PubMed

    Li, Neng; Chen, Xingzhu; Ong, Wee-Jun; MacFarlane, Douglas R; Zhao, Xiujian; Cheetham, Anthony K; Sun, Chenghua

    2017-11-28

    Two-dimensional (2D) transition-metal (groups IV, V, VI) carbides (MXenes) with formulas M 3 C 2 have been investigated as CO 2 conversion catalysts with well-resolved density functional theory calculations. While MXenes from the group IV to VI series have demonstrated an active behavior for the capture of CO 2 , the Cr 3 C 2 and Mo 3 C 2 MXenes exhibit the most promising CO 2 to CH 4 selective conversion capabilities. Our results predicted the formation of OCHO • and HOCO • radical species in the early hydrogenation steps through spontaneous reactions. This provides atomic level insights into the computer-aided screening for high-performance catalysts and the understanding of electrochemical mechanisms for CO 2 reduction to energy-rich hydrocarbon fuels, which is of fundamental significance to elucidate the elementary steps for CO 2 fixation.

  4. Phenotypic heterogeneity in metabolic traits among single cells of a rare bacterial species in its natural environment quantified with a combination of flow cell sorting and NanoSIMS

    PubMed Central

    Zimmermann, Matthias; Escrig, Stéphane; Hübschmann, Thomas; Kirf, Mathias K.; Brand, Andreas; Inglis, R. Fredrik; Musat, Niculina; Müller, Susann; Meibom, Anders; Ackermann, Martin; Schreiber, Frank

    2015-01-01

    Populations of genetically identical microorganisms residing in the same environment can display marked variability in their phenotypic traits; this phenomenon is termed phenotypic heterogeneity. The relevance of such heterogeneity in natural habitats is unknown, because phenotypic characterization of a sufficient number of single cells of the same species in complex microbial communities is technically difficult. We report a procedure that allows to measure phenotypic heterogeneity in bacterial populations from natural environments, and use it to analyze N2 and CO2 fixation of single cells of the green sulfur bacterium Chlorobium phaeobacteroides from the meromictic lake Lago di Cadagno. We incubated lake water with 15N2 and 13CO2 under in situ conditions with and without NH4+. Subsequently, we used flow cell sorting with auto-fluorescence gating based on a pure culture isolate to concentrate C. phaeobacteroides from its natural abundance of 0.2% to now 26.5% of total bacteria. C. phaeobacteroides cells were identified using catalyzed-reporter deposition fluorescence in situ hybridization (CARD-FISH) targeting the 16S rRNA in the sorted population with a species-specific probe. In a last step, we used nanometer-scale secondary ion mass spectrometry to measure the incorporation 15N and 13C stable isotopes in more than 252 cells. We found that C. phaeobacteroides fixes N2 in the absence of NH4+, but not in the presence of NH4+ as has previously been suggested. N2 and CO2 fixation were heterogeneous among cells and positively correlated indicating that N2 and CO2 fixation activity interact and positively facilitate each other in individual cells. However, because CARD-FISH identification cannot detect genetic variability among cells of the same species, we cannot exclude genetic variability as a source for phenotypic heterogeneity in this natural population. Our study demonstrates the technical feasibility of measuring phenotypic heterogeneity in a rare bacterial species in its natural habitat, thus opening the door to study the occurrence and relevance of phenotypic heterogeneity in nature. PMID:25932020

  5. Novel on-demand bioadhesion to soft tissue in wet environments.

    PubMed

    Mogal, Vishal; Papper, Vladislav; Chaurasia, Alok; Feng, Gao; Marks, Robert; Steele, Terry

    2014-04-01

    Current methods of tissue fixation rely on mechanical-related technologies developed from the clothing and carpentry industries. Herein, a novel bioadhesive method that allows tuneable adhesion and is also applicable to biodegradable polyester substrates is described. Diazirine is the key functional group that allows strong soft tissue crosslinking and on-demand adhesion based on a free radical mechanism. Plasma post-irradiation grafting makes it possible to graft diazirine onto PLGA substrates. When the diazirine-PLGA films, placed on wetted ex vivo swine aortas, are activated with low intensity UV light, lap shear strength of up to 450 ± 50 mN cm(-2) is observed, which is one order of magnitude higher than hydrogel bioadhesives placed on similar soft tissues. The diazirine-modified PLGA thin films could be added on top of previously developed technologies for minimally invasive surgeries. The present work is focused on the chemistry, grafting, and lap shear strength of the alkyl diazirine-modified PLGA bioadhesive films. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Acetogenesis from H2 plus CO2 and nitrogen fixation by an endosymbiotic spirochete of a termite-gut cellulolytic protist

    PubMed Central

    Ohkuma, Moriya; Noda, Satoko; Hattori, Satoshi; Iida, Toshiya; Yuki, Masahiro; Starns, David; Inoue, Jun-ichi; Darby, Alistair C.; Hongoh, Yuichi

    2015-01-01

    Symbiotic associations of cellulolytic eukaryotic protists and diverse bacteria are common in the gut microbial communities of termites. Besides cellulose degradation by the gut protists, reductive acetogenesis from H2 plus CO2 and nitrogen fixation by gut bacteria play crucial roles in the host termites’ nutrition by contributing to the energy demand of termites and supplying nitrogen poor in their diet, respectively. Fractionation of these activities and the identification of key genes from the gut community of the wood-feeding termite Hodotermopsis sjoestedti revealed that substantial activities in the gut—nearly 60% of reductive acetogenesis and almost exclusively for nitrogen fixation—were uniquely attributed to the endosymbiotic bacteria of the cellulolytic protist in the genus Eucomonympha. The rod-shaped endosymbionts were surprisingly identified as a spirochete species in the genus Treponema, which usually exhibits a characteristic spiral morphology. The endosymbionts likely use H2 produced by the protist for these dual functions. Although H2 is known to inhibit nitrogen fixation in some bacteria, it seemed to rather stimulate this important mutualistic process. In addition, the single-cell genome analyses revealed the endosymbiont's potentials of the utilization of sugars for its energy requirement, and of the biosynthesis of valuable nutrients such as amino acids from the fixed nitrogen. These metabolic interactions are suitable for the dual functions of the endosymbiont and reconcile its substantial contributions in the gut. PMID:25979941

  7. Microbial Communities and Chemosynthesis in Yellowstone Lake Sublacustrine Hydrothermal Vent Waters

    PubMed Central

    Yang, Tingting; Lyons, Shawn; Aguilar, Carmen; Cuhel, Russell; Teske, Andreas

    2011-01-01

    Five sublacustrine thermal spring locations from 1 to 109 m water depth in Yellowstone Lake were surveyed by 16S ribosomal RNA gene sequencing in relation to their chemical composition and dark CO2 fixation rates. They harbor distinct chemosynthetic bacterial communities, depending on temperature (16–110°C) and electron donor supply (H2S <1 to >100 μM; NH3 <0.5 to >10 μM). Members of the Aquificales, most closely affiliated with the genus Sulfurihydrogenibium, are the most frequently recovered bacterial 16S rRNA gene phylotypes in the hottest samples; the detection of these thermophilic sulfur-oxidizing autotrophs coincided with maximal dark CO2 fixation rates reaching near 9 μM C h−1 at temperatures of 50–60°C. Vents at lower temperatures yielded mostly phylotypes related to the mesophilic gammaproteobacterial sulfur oxidizer Thiovirga. In contrast, cool vent water with low chemosynthetic activity yielded predominantly phylotypes related to freshwater Actinobacterial clusters with a cosmopolitan distribution. PMID:21716640

  8. Amino Acid Synthesis in Photosynthesizing Spinach Cells: Effects of Ammonia on Pool Sizes and Rates of Labeling from 14CO 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larsen, Peder Olesen; Cornwell, Karen L.; Gee, Sherry L.

    1981-08-01

    In this paper, isolated cells from leaves of Spinacia oleracea have been maintained in a state capable of high rates of photosynthetic CO 2 fixation for more than 60 hours. The incorporation of 14CO 2 under saturating CO 2 conditions into carbohydrates, carboxylic acids, and amino acids, and the effect of ammonia on this incorporation have been studied. Total incorporation, specific radioactivity, and pool size have been determined as a function of time for most of the protein amino acids and for γ-aminobutyric acid. The measurements of specific radio-activities and of the approaches to 14C “saturation” of some amino acidsmore » indicate the presence and relative sizes of metabolically active and passive pools of these amino acids. Added ammonia decreased carbon fixation into carbohydrates and increased fixation into carboxylic acids and amino acids. Different amino acids were, however, affected in different and highly specific ways. Ammonia caused large stimulatory effects in incorporation of 14C into glutamine (a factor of 21), aspartate, asparagine, valine, alanine, arginine, and histidine. No effect or slight decreases were seen in glycine, serine, phenylalanine, and tyrosine labeling. In the case of glutamate, 14C labeling decreased, but specific radioactivity increased. The production of labeled γ-aminobutyric acid was virtually stopped by ammonia. The results indicate that added ammonia stimulates the reactions mediated by pyruvate kinase and phosphoenolpyruvate carboxylase, as seen with other plant systems. Finally, the data on the effects of added ammonia on total labeling, pool sizes, and specific radioactivities of several amino acids provides a number of indications about the intracellular sites of principal synthesis from carbon skeletons of these amino acids and the selective nature of effects of increased intracellular ammonia concentration on such synthesis.« less

  9. Carbon Fixation Driven by Molecular Hydrogen Results in Chemolithoautotrophically Enhanced Growth of Helicobacter pylori.

    PubMed

    Kuhns, Lisa G; Benoit, Stéphane L; Bayyareddy, Krishnareddy; Johnson, Darryl; Orlando, Ron; Evans, Alexandra L; Waldrop, Grover L; Maier, Robert J

    2016-05-01

    A molecular hydrogen (H2)-stimulated, chemolithoautotrophic growth mode for the gastric pathogen Helicobacter pylori is reported. In a culture medium containing peptides and amino acids, H2-supplied cells consistently achieved 40 to 60% greater growth yield in 16 h and accumulated 3-fold more carbon from [(14)C]bicarbonate (on a per cell basis) in a 10-h period than cells without H2 Global proteomic comparisons of cells supplied with different atmospheric conditions revealed that addition of H2 led to increased amounts of hydrogenase and the biotin carboxylase subunit of acetyl coenzyme A (acetyl-CoA) carboxylase (ACC), as well as other proteins involved in various cellular functions, including amino acid metabolism, heme synthesis, or protein degradation. In agreement with this result, H2-supplied cells contained 3-fold more ACC activity than cells without H2 Other possible carbon dioxide (CO2) fixation enzymes were not up-expressed under the H2-containing atmosphere. As the gastric mucus is limited in carbon and energy sources and the bacterium lacks mucinase, this new growth mode may contribute to the persistence of the pathogen in vivo This is the first time that chemolithoautotrophic growth is described for a pathogen. Many pathogens must survive within host areas that are poorly supplied with carbon and energy sources, and the gastric pathogen Helicobacter pylori resides almost exclusively in the nutritionally stringent mucus barrier of its host. Although this bacterium is already known to be highly adaptable to gastric niches, a new aspect of its metabolic flexibility, whereby molecular hydrogen use (energy) is coupled to carbon dioxide fixation (carbon acquisition) via a described carbon fixation enzyme, is shown here. This growth mode, which supplements heterotrophy, is termed chemolithoautotrophy and has not been previously reported for a pathogen. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  10. Co-inoculation of a Pea Core-Collection with Diverse Rhizobial Strains Shows Competitiveness for Nodulation and Efficiency of Nitrogen Fixation Are Distinct traits in the Interaction

    PubMed Central

    Bourion, Virginie; Heulin-Gotty, Karine; Aubert, Véronique; Tisseyre, Pierre; Chabert-Martinello, Marianne; Pervent, Marjorie; Delaitre, Catherine; Vile, Denis; Siol, Mathieu; Duc, Gérard; Brunel, Brigitte; Burstin, Judith; Lepetit, Marc

    2018-01-01

    Pea forms symbiotic nodules with Rhizobium leguminosarum sv. viciae (Rlv). In the field, pea roots can be exposed to multiple compatible Rlv strains. Little is known about the mechanisms underlying the competitiveness for nodulation of Rlv strains and the ability of pea to choose between diverse compatible Rlv strains. The variability of pea-Rlv partner choice was investigated by co-inoculation with a mixture of five diverse Rlv strains of a 104-pea collection representative of the variability encountered in the genus Pisum. The nitrogen fixation efficiency conferred by each strain was determined in additional mono-inoculation experiments on a subset of 18 pea lines displaying contrasted Rlv choice. Differences in Rlv choice were observed within the pea collection according to their genetic or geographical diversities. The competitiveness for nodulation of a given pea-Rlv association evaluated in the multi-inoculated experiment was poorly correlated with its nitrogen fixation efficiency determined in mono-inoculation. Both plant and bacterial genetic determinants contribute to pea-Rlv partner choice. No evidence was found for co-selection of competitiveness for nodulation and nitrogen fixation efficiency. Plant and inoculant for an improved symbiotic association in the field must be selected not only on nitrogen fixation efficiency but also for competitiveness for nodulation. PMID:29367857

  11. Co-inoculation of a Pea Core-Collection with Diverse Rhizobial Strains Shows Competitiveness for Nodulation and Efficiency of Nitrogen Fixation Are Distinct traits in the Interaction.

    PubMed

    Bourion, Virginie; Heulin-Gotty, Karine; Aubert, Véronique; Tisseyre, Pierre; Chabert-Martinello, Marianne; Pervent, Marjorie; Delaitre, Catherine; Vile, Denis; Siol, Mathieu; Duc, Gérard; Brunel, Brigitte; Burstin, Judith; Lepetit, Marc

    2017-01-01

    Pea forms symbiotic nodules with Rhizobium leguminosarum sv. viciae (Rlv). In the field, pea roots can be exposed to multiple compatible Rlv strains. Little is known about the mechanisms underlying the competitiveness for nodulation of Rlv strains and the ability of pea to choose between diverse compatible Rlv strains. The variability of pea-Rlv partner choice was investigated by co-inoculation with a mixture of five diverse Rlv strains of a 104-pea collection representative of the variability encountered in the genus Pisum . The nitrogen fixation efficiency conferred by each strain was determined in additional mono-inoculation experiments on a subset of 18 pea lines displaying contrasted Rlv choice. Differences in Rlv choice were observed within the pea collection according to their genetic or geographical diversities. The competitiveness for nodulation of a given pea-Rlv association evaluated in the multi-inoculated experiment was poorly correlated with its nitrogen fixation efficiency determined in mono-inoculation. Both plant and bacterial genetic determinants contribute to pea-Rlv partner choice. No evidence was found for co-selection of competitiveness for nodulation and nitrogen fixation efficiency. Plant and inoculant for an improved symbiotic association in the field must be selected not only on nitrogen fixation efficiency but also for competitiveness for nodulation.

  12. Monitoring CO[subscript 2] Fixation Using GC-MS Detection of a [superscript 13]C-Label

    ERIC Educational Resources Information Center

    Hammond, Daniel G.; Bridgham, April; Reichert, Kara; Magers, Martin

    2010-01-01

    Much of our understanding of metabolic pathways has resulted from the use of chemical and isotopic labels. In this experiment, a heavy isotope of carbon, [superscript 13]C, is used to label the product of the well-known RuBisCO enzymatic reaction. This is a key reaction in photosynthesis that converts inorganic carbon to organic carbon; a process…

  13. The Path of Carbon in Photosynthesis XIII. pH Effects in C{sup 14}O{sub 2} Fixation by Scenedesmus

    DOE R&D Accomplishments Database

    Ouellet, C.; Benson, A. A.

    1951-10-23

    The rates of photosynthesis and dark fixation of C{sup 14}O{sub 2} in Scenedesmus have been compared in dilute phosphate buffers of 1.6 to 11.4 pH; determination of C{sup 14} incorporation into the various products shows enhancement of uptake in an acid medium into sucrose, polysaccharides, alanine and serine, in an alkaline medium into malic asparctic acids. kinetic experiments at extreme pH values suggest that several paths are available for CO{sub 2} assimilation. A tentative correlation of the results with the pH optima of some enzymes and resultant effects upon concentrations of intermediates is presented.

  14. Isolation of Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase from Leaves

    USDA-ARS?s Scientific Manuscript database

    Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) is a multi-functional enzyme that catalyzes the fixation of CO2 and O2 in photosynthesis and photorespiration, respectively. As the rate-limiting step in photosynthesis, improving the catalytic properties of Rubisco has long been viewed as a...

  15. Chlorobium limicola forma thiosulfatophilum: Biocatalyst in the Production of Sulfur and Organic Carbon from a Gas Stream Containing H2S and CO2

    PubMed Central

    Cork, Douglas J.; Garunas, Ruta; Sajjad, Ashfaq

    1983-01-01

    Chlorobium limicola forma thiosulfatophilum (ATCC 17092) was grown in a 1-liter continuously stirred tank reactor (800-ml liquid volume) at pH 6.8, 30°C, saturated light intensity, and a gas flow rate of 23.6 ml/min from a gas cylinder blend consisting of 3.9 mol% H2S, 9.2 mol% CO2, 86.4 mol% N2, and 0.5 mol% H2. This is the first demonstration of photoautotrophic growth of a Chlorobium sp. on a continuous inorganic gas feed. A significant potential exists for applying this photoautotrophic process to desulfurization and CO2 fixation of gases containing acidic components (H2S and CO2). PMID:16346255

  16. Experimental multi-phase H2O-CO2 brine interactions at elevated temperature and pressure: Implications for CO2 sequestration in deep-saline aquifers

    USGS Publications Warehouse

    Rosenbauer, R.; Koksalan, T.

    2004-01-01

    The burning of fossil fuel and other anthropogenic activities have caused a continuous and dramatic 30% increase of atmospheric CO2 over the past 150 yr. CO2 sequestration is increasingly being viewed as a tool for managing these anthropogenic CO2 emissions to the atmosphere. CO2-saturated brine-rock experiments were carried out to evaluate the effects of multiphase H2O-CO2 fluids on mineral equilibria and the potential for CO2 sequestration in mineral phases within deep-saline aquifers. Experimental results were generally consistent with theoretical thermodynamic calculations. The solubility of CO2 was enhanced in brines in the presence of both limestone and sandstone relative to brines alone. Reactions between CO2 saturated brines and arkosic sandstones were characterized by desiccation of the brine and changes in the chemical composition of the brine suggesting fixation of CO2 in mineral phases. These reactions were occurring on a measurable but kinetically slow time scale at 120??C.

  17. 3D printing of MRI compatible components: why every MRI research group should have a low-budget 3D printer.

    PubMed

    Herrmann, Karl-Heinz; Gärtner, Clemens; Güllmar, Daniel; Krämer, Martin; Reichenbach, Jürgen R

    2014-10-01

    To evaluate low budget 3D printing technology to create MRI compatible components. A 3D printer is used to create customized MRI compatible components, a loop-coil platform and a multipart mouse fixation. The mouse fixation is custom fit for a dedicated coil and facilitates head fixation with bite bar, anesthetic gas supply and biomonitoring sensors. The mouse fixation was tested in a clinical 3T scanner. All parts were successfully printed and proved MR compatible. Both design and printing were accomplished within a few days and the final print results were functional with well defined details and accurate dimensions (Δ<0.4mm). MR images of the mouse head clearly showed reduced motion artifacts, ghosting and signal loss when using the fixation. We have demonstrated that a low budget 3D printer can be used to quickly progress from a concept to a functional device at very low production cost. While 3D printing technology does impose some restrictions on model geometry, additive printing technology can create objects with complex internal structures that can otherwise not be created by using lathe technology. Thus, we consider a 3D printer a valuable asset for MRI research groups. Copyright © 2014 IPEM. Published by Elsevier Ltd. All rights reserved.

  18. Large fractions of CO2-fixing microorganisms in pristine limestone aquifers appear to be involved in the oxidation of reduced sulfur and nitrogen compounds

    USGS Publications Warehouse

    Herrmann, Martina; Rusznyák, Anna; Akob, Denise M.; Schulze, Isabel; Opitz, Sebastian; Totsche, Kai Uwe; Küsel, Kirsten

    2015-01-01

    The traditional view of the dependency of subsurface environments on surface-derived allochthonous carbon inputs is challenged by increasing evidence for the role of lithoautotrophy in aquifer carbon flow. We linked information on autotrophy (Calvin-Benson-Bassham cycle) with that from total microbial community analysis in groundwater at two superimposed—upper and lower—limestone groundwater reservoirs (aquifers). Quantitative PCR revealed that up to 17% of the microbial population had the genetic potential to fix CO2 via the Calvin cycle, with abundances of cbbM and cbbL genes, encoding RubisCO (ribulose-1,5-bisphosphate carboxylase/oxygenase) forms I and II, ranging from 1.14 × 103 to 6 × 106 genes liter−1 over a 2-year period. The structure of the active microbial communities based on 16S rRNA transcripts differed between the two aquifers, with a larger fraction of heterotrophic, facultative anaerobic, soil-related groups in the oxygen-deficient upper aquifer. Most identified CO2-assimilating phylogenetic groups appeared to be involved in the oxidation of sulfur or nitrogen compounds and harbored both RubisCO forms I and II, allowing efficient CO2 fixation in environments with strong oxygen and CO2 fluctuations. The genera Sulfuricellaand Nitrosomonas were represented by read fractions of up to 78 and 33%, respectively, within the cbbM and cbbL transcript pool and accounted for 5.6 and 3.8% of 16S rRNA sequence reads, respectively, in the lower aquifer. Our results indicate that a large fraction of bacteria in pristine limestone aquifers has the genetic potential for autotrophic CO2 fixation, with energy most likely provided by the oxidation of reduced sulfur and nitrogen compounds.

  19. Nitrogen Limitation of Pond Ecosystems on the Plains of Eastern Colorado

    PubMed Central

    Mischler, John A.; Taylor, Philip G.; Townsend, Alan R.

    2014-01-01

    Primary production in freshwater ecosystems is often limited by the availability of phosphorus (P), nitrogen (N), or a combination of both (NP co-limitation). While N fixation via heterocystous cyanobacteria can supply additional N, no comparable mechanism for P exists; hence P is commonly considered to be the predominant and ultimate limiting nutrient in freshwater ecosystems. However, N limitation can be maintained if P is supplied in stoichiometric excess of N (including N fixation). The main objective of this study was to examine patterns in nutrient limitation across a series of 21 vernal ponds in Eastern Colorado where high P fluxes are common. Across all ponds, water column dissolved inorganic N steadily decreased throughout the growth season due to biological demand while total dissolved P remained stable. The water column dissolved inorganic N to total dissolved P ratios suggested a transition from NP co-limitation to N limitation across the growth season. Periphyton and phytoplankton %C was strongly correlated with %N while %P was assimilated in excess of %N and %C in many ponds. Similarly, in nutrient addition bottle assays algae responded more strongly to N additions (11 out of 18 water bodies) than P additions (2 out of 18 water bodies) and responded most strongly when N and P were added in concert (12 out of 18 water bodies). Of the ponds that responded to nutrient addition, 92% exhibited some sort of N limitation while less than 8% were limited by P alone. Despite multiple lines of evidence for N limitation or NP co-limitation, N fixation rates were uniformly low across most ponds, most likely due to inhibition by water column nitrate. Within this set of 18 water bodies, N limitation or NP co-limitation is widespread due to the combination high anthropogenic P inputs and constrained N fixation rates. PMID:24824838

  20. Sequestration of carbon dioxide with hydrogen to useful products

    DOEpatents

    Adams, Michael W. W.; Kelly, Robert M.; Hawkins, Aaron B.; Menon, Angeli Lal; Lipscomb, Gina Lynette Pries; Schut, Gerrit Jan

    2017-03-07

    Provided herein are genetically engineered microbes that include at least a portion of a carbon fixation pathway, and in one embodiment, use molecular hydrogen to drive carbon dioxide fixation. In one embodiment, the genetically engineered microbe is modified to convert acetyl CoA, molecular hydrogen, and carbon dioxide to 3-hydroxypropionate, 4-hydroxybutyrate, acetyl CoA, or the combination thereof at levels greater than a control microbe. Other products may also be produced. Also provided herein are cell free compositions that convert acetyl CoA, molecular hydrogen, and carbon dioxide to 3-hydroxypropionate, 4-hydroxybutyrate, acetyl CoA, or the combination thereof. Also provided herein are methods of using the genetically engineered microbes and the cell free compositions.

  1. Can observed ecosystem responses to elevated CO2 and N fertilisation be explained by optimal plant C allocation?

    NASA Astrophysics Data System (ADS)

    Stocker, Benjamin; Prentice, I. Colin

    2016-04-01

    The degree to which nitrogen availability limits the terrestrial C sink under rising CO2 is a key uncertainty in carbon cycle and climate change projections. Results from ecosystem manipulation studies and meta-analyses suggest that plant C allocation to roots adjusts dynamically under varying degrees of nitrogen availability and other soil fertility parameters. In addition, the ratio of biomass production to GPP appears to decline under nutrient scarcity. This reflects increasing plant C export into the soil and to symbionts (Cex) with decreasing nutrient availability. Cex is consumed by an array of soil organisms and may imply an improvement of nutrient availability to the plant. These concepts are left unaccounted for in Earth system models. We present a model for the coupled cycles of C and N in grassland ecosystems to explore optimal plant C allocation under rising CO2 and its implications for the ecosystem C balance. The model follows a balanced growth approach, accounting for the trade-offs between leaf versus root growth and Cex in balancing C fixation and N uptake. We further model a plant-controlled rate of biological N fixation (BNF) by assuming that Cex is consumed by N2-fixing processes if the ratio of Nup:Cex falls below the inverse of the C cost of N2-fixation. The model is applied at two temperate grassland sites (SwissFACE and BioCON), subjected to factorial treatments of elevated CO2 (FACE) and N fertilization. Preliminary simulation results indicate initially increased N limitation, evident by increased relative allocation to roots and Cex. Depending on the initial state of N availability, this implies a varying degree of aboveground growth enhancement, generally consistent with observed responses. On a longer time scale, ecosystems are progressively released from N limitation due tighter N cycling. Allowing for plant-controlled BNF implies a quicker release from N limitation and an adjustment to more open N cycling. In both cases, optimal plant C allocation implies a sustained growth enhancement but a decreased ratio of biomass productivity to GPP. Flexible allocation, C cost of N uptake, and flexible N retention imply plant control on N availability. Thereby, plant control on BNF is essential to determine the ultimate growth enhancement under elevated CO2 and whether this implies higher N losses and N2O emissions.

  2. Response of vegetation to carbon dioxide. Field studies of plant responses to elevated carbon dioxide levels 1984

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-08-01

    In the present study, CO{sub 2} enrichment has been applied to sweet potatoes and cowpeas in order to investigate its effect on their growth, physiology, and yield under field condition. Objectives were: (1) to establish at Tuskegee Institute the facilities for growing crops in the field under enriched CO{sub 2} atmospheric conditions; (2) to obtain field data on the morphological, physiological, biochemical, growth and yield responses of sweet potatoes and cowpeas to elevated levels of CO{sub 2}; (3) to determine the effects of elevated CO{sub 2} in the rate of nitrogen fixation of cowpeas; (4) to provide data for amore » generalized crop growth model for predicting yield of both sweet potatoes and cowpeas as a function of atmospheric CO{sub 2} enrichment.« less

  3. Design Fixation

    ERIC Educational Resources Information Center

    Kelley, Todd R.; Sung, Euisuk

    2017-01-01

    The purpose of this article is to provide awareness of the danger of design fixation and promote the uses of brainstorming early in the design process--before fixation limits creative ideas. The authors challenged technology teachers to carefully limit the use of design examples too early in the process and provided suggestions for facilitating…

  4. Overcoming Organizational Fixation: Creating and Sustaining an Innovation Culture

    ERIC Educational Resources Information Center

    Stempfle, Joachim

    2011-01-01

    Fixation on established paradigms and practices can severely limit the capability of organizations to change, thereby jeopardizing the ability of organizations to keep up with changes in their environment and new technological developments. Overcoming organizational fixation is therefore a requirement for any organization that strives to achieve…

  5. Tracing nitrogen accumulation in decaying wood and examining its impact on wood decomposition rate

    NASA Astrophysics Data System (ADS)

    Rinne, Katja T.; Rajala, Tiina; Peltoniemi, Krista; Chen, Janet; Smolander, Aino; Mäkipää, Raisa

    2016-04-01

    Decomposition of dead wood, which is controlled primarily by fungi is important for ecosystem carbon cycle and has potentially a significant role in nitrogen fixation via diazotrophs. Nitrogen content has been found to increase with advancing wood decay in several studies; however, the importance of this increase to decay rate and the sources of external nitrogen remain unclear. Improved knowledge of the temporal dynamics of wood decomposition rate and nitrogen accumulation in wood as well as the drivers of the two processes would be important for carbon and nitrogen models dealing with ecosystem responses to climate change. To tackle these questions we applied several analytical methods on Norway spruce logs from Lapinjärvi, Finland. We incubated wood samples (density classes from I to V, n=49) in different temperatures (from 8.5oC to 41oC, n=7). After a common seven day pre-incubation period at 14.5oC, the bottles were incubated six days in their designated temperature prior to CO2 flux measurements with GC to determine the decomposition rate. N2 fixation was measured with acetylene reduction assay after further 48 hour incubation. In addition, fungal DNA, (MiSeq Illumina) δ15N and N% composition of wood for samples incubated at 14.5oC were determined. Radiocarbon method was applied to obtain age distribution for the density classes. The asymbiotic N2 fixation rate was clearly dependent on the stage of wood decay and increased from stage I to stage IV but was substantially reduced in stage V. CO2 production was highest in the intermediate decay stage (classes II-IV). Both N2 fixation and CO2 production were highly temperature sensitive having optima in temperature 25oC and 31oC, respectively. We calculated the variation of annual levels of respiration and N2 fixation per hectare for the study site, and used the latter data together with the 14C results to determine the amount of N2 accumulated in wood in time. The proportion of total nitrogen in wood originating from N2 increased from 0.4% (class I) to 22% (V). Despite significant N inputs, N2 fixation explained only 34%-57% of the increase in wood N content of classes III-V. The DNA results indicated that mycorrhizal colonization of wood could only partially explain the remaining increase in N content. However, majority of the samples contained one or more wood decomposing fungal species that have been reported to have the capability to produce rhizomorphs or mycelial cords used for scavenging nutrients from outside sources. Assuming that the remaining increase in N content was due to fungal activity, we modelled the δ15N variation of wood from class I to V and compared the modelled and measured δ15N values (r = 0.95, p<0.05). The increase in wood nitrogen content in time was observed to have a significant, positive impact on the respiration rate (I-IV: r = 0.57, p<0.01).

  6. Experimental multi-phase CO2-brine-rock interactions at elevated temperature and pressure: Implications for CO2 sequestration in deep-saline aquifers

    USGS Publications Warehouse

    Rosenbauer, R.J.; Koksalan, T.

    2004-01-01

    Long-term CO2 saturated brine-rock experiments were conducted to evaluate the effects of multiphase H2O-CO2 fluids on mineral equilibria and the potential for CO2 sequestration mineral phases within deep-saline aquifers. Experimental results were consistent with theoretical thermodynamic calculations when CO2-saturated brines were reacted with limestone rocks. The CO2-saturated brine-limestone reactions were characterized by compositional and mineralogical-changes in the aquifer fluid and formation rocks that were dependent on initial brine composition as were the changes in formation porosity, especially dissolved sulfate. The solubility of CO2 was enhanced in brines in the presence of both limestone and sandstone rocks relative to brines alone. Reactions between CO2 saturated brines and arkosic sandstones were characterized by desiccation of the brine and changes in the chemical composition of the brine suggesting fixation of CO2 in mineral phases. These reactions occured on a measurable but kinetically slow time scale at 120??C.

  7. 13C-isotope analyses reveal that chemolithoautotrophic Gamma- and Epsilonproteobacteria feed a microbial food web in a pelagic redoxcline of the central Baltic Sea.

    PubMed

    Glaubitz, Sabine; Lueders, Tillmann; Abraham, Wolf-Rainer; Jost, Günter; Jürgens, Klaus; Labrenz, Matthias

    2009-02-01

    Marine pelagic redoxclines are zones of high dark CO(2) fixation rates, which can correspond up to 30% of the surface primary production. However, despite this significant contribution to the pelagic carbon cycle, the identity of most chemolithoautotrophic organisms is still unknown. Therefore, the aim of this study was to directly link the dark CO(2) fixation capacity of a pelagic redoxcline in the central Baltic Sea (Landsort Deep) with the identity of the main chemolithoautotrophs involved. Our approach was based on the analysis of natural carbon isotope signatures in fatty acid methyl esters (FAMEs) and on measurements of CO(2) incorporation in (13)C-bicarbonate pulse experiments. The incorporation of (13)C into chemolithoautotrophic cells was investigated by rRNA-based stable isotope probing (RNA-SIP) and FAME analysis after incubation for 24 and 72 h under in situ conditions. Our results demonstrated that fatty acids indicative of Proteobacteria were significantly enriched in (13)C slightly below the chemocline. RNA-SIP analyses revealed that two different Gammaproteobacteria and three closely related Epsilonproteobacteria of the Sulfurimonas cluster were active dark CO(2)-fixing microorganisms, with a time-dependent community shift between these groups. Labelling of Archaea was not detectable, but after 72 h of incubation the (13)C-label had been transferred to a potentially bacterivorous ciliate related to Euplotes sp. Thus, RNA-SIP provided direct evidence for the contribution of chemolithoautotrophic production to the microbial food web in this marine pelagic redoxcline, emphasizing the importance of dark CO(2)-fixing Proteobacteria within this habitat.

  8. Irrigation management and phosphorus addition alter the abundance of carbon dioxide-fixing autotrophs in phosphorus-limited paddy soil.

    PubMed

    Wu, Xiaohong; Ge, Tida; Yan, Wende; Zhou, Juan; Wei, Xiaomeng; Chen, Liang; Chen, Xiangbi; Nannipieri, Paolo; Wu, Jinshui

    2017-12-01

    In this study, we assessed the interactive effects of phosphorus (P) application and irrigation methods on the abundances of marker genes (cbbL, cbbM, accA and aclB) of CO2-fixing autotrophs. We conducted rice-microcosm experiments using a P-limited paddy soil, with and without the addition of P fertiliser (P-treated-pot (P) versus control pot (CK)), and using two irrigation methods, namely alternate wetting and drying (AWD) and continuous flooding (CF). The abundances of bacterial 16S rRNA, archaeal 16S rRNA, cbbL, cbbM, accA and aclB genes in the rhizosphere soil (RS) and bulk soil (BS) were quantified. The application of P significantly altered the soil properties and stimulated the abundances of Bacteria, Archaea and CO2-fixation genes under CF treatment, but negatively influenced the abundances of Bacteria and marker genes of CO2-fixing autotrophs in BS soils under AWD treatment. The response of CO2-fixing autotrophs to P fertiliser depended on the irrigation management method. The redundancy analysis revealed that 54% of the variation in the functional marker gene abundances could be explained by the irrigation method, P fertiliser and the Olsen-P content; however, the rhizosphere effect did not have any significant influence. P fertiliser application under CF was more beneficial in improving the abundance of CO2-fixing autotrophs compared to the AWD treatment; thus, it is an ideal irrigation management method to increase soil carbon fixation. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Chin plate with a detachable C-tube head serves for both osteotomy fixation and orthodontic anchorage.

    PubMed

    Seo, Kyung-Won; Nahm, Kyung-Yen; Kim, Seong-Hun; Chung, Kyu-Rhim; Nelson, Gerald

    2013-07-01

    This article reports the dual function of a double-Y miniplate with a detachable C-tube head (C-chin plate; Jin Biomed Co., Bucheon, Korea) used to fixate an anterior segmental osteotomy and provide skeletal anchorage during orthodontic tooth movement. Cases were selected for this study from patients who underwent anterior segmental osteotomy under local anesthesia. A detachable C-tube head portion was combined with a double-Y chin plate. The double-Y chin plates were fixated between the osteotomy segments and the mandibular base with screws in a conventional way. The C-tube head portion exited the tissue near the mucogingival junction. Biocreative Chin Plates were placed on the anterior segmental osteotomy sites. The device allowed 3 points of fixation: 1, minor postosteotomy vertical adjustment of the segment during healing; 2, minor shift of the midline during healing; and 3, to serve as temporary skeletal anchorage device during the post-anterior segmental osteotomy orthodontic treatment. When tooth movement goals are accomplished, the C-tube head of the chin plate can be easily detached from the fixation miniplate by twisting the head using a Weingart plier under local anesthesia. This dual-purpose device spares the patient from the need for 2 separate installations for stabilization of osteotomy segments. The dual-purpose double-Y miniplate combined with a C-tube head (Biocreative Chin Plate) provided versatile application of 3 points of post-osteotomy fixation and of temporary skeletal anchorage for orthodontic tooth movement.

  10. Dimeric, trimeric and tetrameric complexes of immunoglobulin G fix complement.

    PubMed Central

    Wright, J K; Tschopp, J; Jaton, J C; Engel, J

    1980-01-01

    The binding of pure dimers, trimers and tetramers of randomly cross-linked non-immune rabbit immunoglobulin G to the first component and subcomponent of the complement system, C1 and C1q respectively, was studied. These oligomers possessed open linear structures. All three oligomers fixed complement with decreasing affinity in the order: tetramer, trimer, dimer. Complement fixation by dimeric immunoglobulin exhibited the strongest concentration-dependence. No clear distinction between a non-co-operative and a co-operative binding mechanism could be achieved, although the steepness of the complement-fixation curves for dimers and trimers was better reflected by the co-operative mechanism. Intrinsic binding constants were about 10(6)M-1 for dimers, 10(7)M-1 for trimers and 3 X 10(9)M-1 for tetramers, assuming non-co-operative binding. The data are consistent with a maximum valency of complement component C1 for immunoglobulin G protomers in the range 6-18. The binding of dimers to purified complement subcomponent C1q was demonstrated by sedimentation-velocity ultracentrifugation. Mild reduction of the complexes by dithioerythritol caused the immunoglobulin to revert to the monomeric state (S20,w = 6.2-6.5S) with concomitant loss of complement-fixing ability. Images Fig. 2. PMID:6985362

  11. Net ecosystem productivity of temperate and boreal forests after clearcutting - a Fluxnet-Canada measurement and modelling synthesis

    NASA Astrophysics Data System (ADS)

    Grant, R. F.; Barr, A.; Black, T. A.; Margolis, H. A.; McCaughey, J. H.; Trofymow, J. A.

    2010-05-01

    Clearcutting strongly affects subsequent forest net ecosystem productivity (NEP). Hypotheses for ecological controls on NEP in the ecosystem model ecosys were tested with CO2 fluxes measured by eddy covariance (EC) in three post-clearcut conifer chronosequences. An algorithm for microbial colonization of fine and woody debris allowed the model to reproduce sigmoidal declines in debris observed after clearcutting. In the model, Rh drove debris decomposition that drove microbial growth, N mineralization and asymbiotic N2 fixation. These processes controlled root N uptake, and thereby CO2 fixation in regrowing vegetation. Interactions among soil and plant processes allowed the model to simulate hourly CO2 fluxes and annual NEP within the uncertainty of EC measurements from 2003 through 2007 over forest stands from 1 to 80 years of age in all three chronosequences without site- or species-specific parameterization. The model was then used to study the impacts of increasing harvest removals on subsequent C stocks at one of the chronosequence sites. Model results indicated that increasing harvest removals would hasten recovery of NEP during the first 30 years after clearcutting, but would reduce ecosystem C stocks by about 15% of the increased removals at the end of an 80 year harvest cycle.

  12. Shedding light on the paradox of high alkaline phosphatase utilization at high end-product concentrations

    NASA Astrophysics Data System (ADS)

    Baltar, F.; Lundin, D.; Palovaara, J.; Reinthaler, T.; Herndl, G. J.; Pinhassi, J.

    2016-02-01

    Alkaline phosphatase (APase) activity is supposed to be regulated by the concentration of its endproduct, decreasing with increasing inorganic phosphate (Pi) concentrations. Since Pi is readily available in the deep ocean, APase activity would be expected to be low. However, high APase activities at high Pi concentrations have been found in the deep Indian and Atlantic Ocean. To understand how APase activities are regulated and what mechanisms are responsible for its regulation we performed microcosm experiments with mesopelagic North Atlantic waters. Treatments consisted of enrichment with either ammonium or organic carbon, and were compared to unamended controls. We assessed changes in prokaryotic abundance, APase, leucine aminopeptidase, heterotrophic production, dark CO2 fixation and community gene expression (metatranscriptomics) between treatments and control. In the organic matter enrichments, APase increased along with all measured rates, whereas only dark CO2 fixation and APase were enhanced in the ammonium enrichment. In the organic matter enrichment, genes for heterotrophic metabolism were strongly upregulated, whereas genes for ammonia oxidation and CO2 fixation were upregulated in the ammonium treatment. In both treatments, the Pho regulon -a global regulatory mechanism involved in bacterial Pi management- was also upregulated, including genes encoding alkaline phosphatases. The activation of the Pho regulon seemed to be related to cross-activation by nonpartner histidine kinases, and/or the activation of genes involved in the regulation of elemental balance during catabolic processes. Increased C or N bioavailability thus appear to elicit a Pi deficiency inside cells and activate the Pho regulon. These results indicate possible ways (e.g. pulses of C or N or changes in elemental ratios) in which APase can be activated irrespectively of the environmental Pi concentration.

  13. Synthesis and coordination chemistry of 1,1,1-tris-(pyrid-2-yl)ethane.

    PubMed

    Santoro, Amedeo; Sambiagio, Carlo; McGowan, Patrick C; Halcrow, Malcolm A

    2015-01-21

    A new synthesis of 1,1,1-tris(pyrid-2-yl)ethane (L), and a survey of its coordination chemistry, are reported. The complexes [ML2](n+) (M(n+) = Fe(2+), Co(2+), Co(3+), Cu(2+) and Ag(+)), [PdCl2L] and [CuI(L)] have all been crystallographically characterised. Noteworthy results include an unusual square planar silver(i) complex [Ag(L)2]X (X(-) = NO3(-) and SbF6(-)); the oxidative fixation of aerobic CO2 by [CuI(L)] to yield [Cu2I(L)2(μ-CO3)]2[CuI3] and [Cu(CO3)(L)]; and, water/carbonato tape and water/iodo layer hydrogen bonding networks in hydrate crystals of two of the copper(ii) complexes. Cyclic voltammetric data on [Fe(L)2](2+) and [Co(L)2](2+/3+) imply that the peripheral methyl substituent has a weak influence on the ligand field exerted by L onto a coordinated metal ion.

  14. Metal-CO2 Batteries on the Road: CO2 from Contamination Gas to Energy Source.

    PubMed

    Xie, Zhaojun; Zhang, Xin; Zhang, Zhang; Zhou, Zhen

    2017-04-01

    Rechargeable nonaqueous metal-air batteries attract much attention for their high theoretical energy density, especially in the last decade. However, most reported metal-air batteries are actually operated in a pure O 2 atmosphere, while CO 2 and moisture in ambient air can significantly impact the electrochemical performance of metal-O 2 batteries. In the study of CO 2 contamination on metal-O 2 batteries, it has been gradually found that CO 2 can be utilized as the reactant gas alone; namely, metal-CO 2 batteries can work. On the other hand, investigations on CO 2 fixation are in focus due to the potential threat of CO 2 on global climate change, especially for its steadily increasing concentration in the atmosphere. The exploitation of CO 2 in energy storage systems represents an alternative approach towards clean recycling and utilization of CO 2 . Here, the aim is to provide a timely summary of recent achievements in metal-CO 2 batteries, and inspire new ideas for new energy storage systems. Moreover, critical issues associated with reaction mechanisms and potential directions for future studies are discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Self-assembly of a [Ni8] carbonate cube incorporating four μ4-carbonato linkers through fixation of atmospheric CO2 by ligated [Ni2] complexes.

    PubMed

    Ghosh, Aloke Kumar; Pait, Moumita; Shatruk, Michael; Bertolasi, Valerio; Ray, Debashis

    2014-02-07

    The communication reports the synthesis, characterization, and magnetic behavior of a novel μ4-carbonato supported and imidazole capped ligated nickel cage [Ni8(μ-H2bpmp)4(μ4-CO3)4(ImH)8](NO3)4·2H2O (1) through self-assembly of ligand bound ferromagnetic Ni2 building blocks. Structural analysis indicates newer geometrical features for the coordination cage formation and dominant interdimer antiferromagnetic coupling resulting in a diamagnetic ground state.

  16. Nitrogenase (nifH) gene expression in diazotrophic cyanobacteria in the Tropical North Atlantic in response to nutrient amendments

    PubMed Central

    Turk-Kubo, Kendra A.; Achilles, Katherine M.; Serros, Tracy R. C.; Ochiai, Mari; Montoya, Joseph P.; Zehr, Jonathan P.

    2012-01-01

    The Tropical North Atlantic (TNAtl) plays a critical role in the marine nitrogen cycle, as it supports high rates of biological nitrogen (N2) fixation, yet it is unclear whether this process is limited by the availability of iron (Fe), phosphate (P) or is co-limited by both. In order to investigate the impact of nutrient limitation on the N2-fixing microorganisms (diazotrophs) in the TNAtl, trace metal clean nutrient amendment experiments were conducted, and the expression of nitrogenase (nifH) in cyanobacterial diazotrophs in response to the addition of Fe, P, or Fe+P was measured using quantitative PCR. To provide context, N2 fixation rates associated with the <10 μm community and diel nifH expression in natural cyanobacterial populations were measured. In the western TNAtl, nifH expression in Crocosphaera, Trichodesmium, and Richelia was stimulated by Fe and Fe+P additions, but not by P, implying that diazotrophs may be Fe-limited in this region. In the eastern TNAtl, nifH expression in unicellular cyanobacteria UCYN-A and Crocosphaera was stimulated by P, implying P-limitation. In equatorial waters, nifH expression in Trichodesmium was highest in Fe+P treatments, implying co-limitation in this region. Nutrient additions did not measurably stimulate N2 fixation rates in the <10 μm fraction in most of the experiments, even when upregulation of nifH expression was evident. These results demonstrate the utility of using gene expression to investigate the physiological state of natural populations of microorganisms, while underscoring the complexity of nutrient limitation on diazotrophy, and providing evidence that diazotroph populations are slow to respond to the addition of limiting nutrients and may be limited by different nutrients on basin-wide spatial scales. This has important implications for our current understanding of controls on N2 fixation in the TNAtl and may partially explain why it appears to be intermittently limited by Fe, P, or both. PMID:23130017

  17. Ultrathin 2D Photocatalysts: Electronic-Structure Tailoring, Hybridization, and Applications.

    PubMed

    Di, Jun; Xiong, Jun; Li, Huaming; Liu, Zheng

    2018-01-01

    As a sustainable technology, semiconductor photocatalysis has attracted considerable interest in the past several decades owing to the potential to relieve or resolve energy and environmental-pollution issues. By virtue of their unique structural and electronic properties, emerging ultrathin 2D materials with appropriate band structure show enormous potential to achieve efficient photocatalytic performance. Here, the state-of-the-art progress on ultrathin 2D photocatalysts is reviewed and a critical appraisal of the classification, controllable synthesis, and formation mechanism of ultrathin 2D photocatalysts is presented. Then, different strategies to tailor the electronic structure of ultrathin 2D photocatalysts are summarized, including component tuning, thickness tuning, doping, and defect engineering. Hybridization with the introduction of a foreign component and maintaining the ultrathin 2D structure is presented to further boost the photocatalytic performance, such as quantum dots/2D materials, single atoms/2D materials, molecular/2D materials, and 2D-2D stacking materials. More importantly, the advancement of versatile photocatalytic applications of ultrathin 2D photocatalysts in the fields of water oxidation, hydrogen evolution, CO 2 reduction, nitrogen fixation, organic syntheses, and removal pollutants is discussed. Finally, the future opportunities and challenges regarding ultrathin 2D photocatalysts to bring about new opportunities for future research in the field of photocatalysis are also presented. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Crassulacean acid metabolism in the shade. Studies on an epiphytic fern, Pyrrosia longifolia, and other rainforest species from Australia.

    PubMed

    Winter, K; Osmond, C B; Hubick, K T

    1986-01-01

    Crassulacean acid metabolism (CAM) was studied in a tropical epiphytic fern, Pyrrosia longifolia, from a fully sun-exposed and from a very shaded site in Northern Queensland, Australia. Measurements of instantaneous net CO 2 exchange showed carbon gain via CO 2 dark fixation with some net CO 2 uptake also occuring during late afternoon, in both sun and shade fronds. Maximum rates of net CO 2 uptake and the nocturnal increase in titratable acidity were lower in shade than in sun fronds. δ 13 C values of sun and shade fronds were not significantly different, and ranged between-14 and-15‰ suggesting that, in the long term, carbon gain was mainly via CO 2 dark fixation. Sun fronds had a higher light compensation point of photosynthesis than shade fronds but the same quantum yield. Yet there was no acclimation of photosynthetic O 2 evolution, (measured at 5% CO 2 ) in sun and shade fronds and photosynthesis saturated at between 200 and 400 μmol quanta m -2 s -1 . Use of higher light intensities for photosynthesis of sun fronds was probably precluded by low nutrient availability. Total nitrogen was less than 1% of dry weight in fully expanded sun and shade fronds. Exposure of shade fronds to full sunlight for 6 h led to a 60% decline in the quantum yield of photosynthesis and to a decline in variable fluorescence measured at room temperature. Photoinhibition by high light was also observed in Hoya nicholsoniae, a rainforest climber growing in deep shade. This species also exhibited CAM as demonstrated by nocturnal net CO 2 uptake, nocturnal acidification and a δ 13 C value of-14‰. Photosynthetic O 2 evolution in this species was saturated at 2.5% of full sunlight. Two species of Dendrobium (Orchidaceae) from sun-exposed sites, one species exhibiting CAM and the other one exhibiting net CO 2 uptake exclusively during daytime via conventional C 3 photosynthesis, showed similar light response curves and the same quantum yield for photosynthetic O 2 evolution.

  19. Inhibition of the. beta. -carboxylation pathway of CO/sub 2/ fixation by bisulfite compounds. [Leaves of Sedum praealtum and Atriplex spongiosa were used

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osmond, C.B.; Avadhani, P.N.

    1970-01-01

    Bisulfite compounds are well known as inhibitors of glycolate oxidase in green tissues of higher plants. In an effort to understand the relation between low glycolate oxidase activity and high P-enolpyruvate carboxylase activity in plants with the C/sub 4/ dicarboxylic acid pathway of photosynthesis, the authors have treated leaves of related species of Atriplex with these compounds. In this photosynthetic process, as well as during dark CO/sub 2/ fixation leading to acidification of Sedum leaves, they have found bisulfite compounds to be effective inhibitors of the P-enolpyruvate carboxylation system. This report provides evidence in vivo for this inhibition and describesmore » the inhibition in vitro of P-enolpyruvate carboxylation system. This report provides evidence in vivo for this inhibition and describes the inhibition in vitro of P-enolpyruvate carboxylase and NADH malate dehydrogenase. 16 references, 4 figures, 1 table.« less

  20. A new index to assess chemicals increasing the greenhouse effect based on their toxicity to algae.

    PubMed

    Wang, Ting; Zhang, Xiaoxian; Tian, Dayong; Gao, Ya; Lin, Zhifen; Liu, Ying; Kong, Lingyun

    2015-11-01

    CO2, as the typical greenhouse gas causing the greenhouse effect, is a major global environmental problem and has attracted increasing attention from governments. Using algae to eliminate CO2, which has been proposed as an effective way to reduce the greenhouse effect in the past decades, can be disturbed by a growing number of artificial chemicals. Thus, seven types of chemicals and Selenastrum capricornutum (algae) were examined in this study, and the good consistency between the toxicity of artificial chemicals to algae and the disturbance of carbon fixation by the chemicals was revealed. This consistency showed that the disturbance of an increasing number of artificial chemicals to the carbon fixation of algae might be a "malware" worsening the global greenhouse effect. Therefore, this study proposes an original, promising index to assess the risk of deepening the greenhouse effect by artificial chemicals before they are produced and marketed. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Weather resistance of CaSO4 ṡ 1/2H2O-based sand-fixation material

    NASA Astrophysics Data System (ADS)

    Liu, Xin; Tie, Shengnian

    2017-07-01

    Searching for an economical and effective sand-fixing material and technology is of great importance in Northwest China. This paper described the use of a semihydrated gypsum-(CaSO4 ṡ 1/2H2O-)based composite as a sand-fixing material. Its morphology and composition were characterized by SEM, and its water resistance, freezing-thawing resistance and wind erosion resistance were tested in the field. The results indicated that semihydrated gypsum-(CaSO4 ṡ 1/2H2O-)based sand-fixing composite has good water resistance and water-holding capacity. Its strength is maintained at 1.42 MPa after 50 freezing and thawing cycles, and its wind erosion increases with increasing wind speed and slope. Its compressive strength starts to decrease after nine months of field tests with no change in appearance, but it still satisfies the requirements of fixation technology. This sand-fixing material should have wide application owing to its good weather resistance.

  2. Alternate Fuel Cycle Technologies/Thorium Fuel Cycle Technology Programs. Quarterly report for period 1 April--30 June 1978

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vondra, B.L.

    1978-08-01

    Voloxidation and dissolution studies: rotary-kiln heat-transfer tests are under way using a small rotary kiln along with the development of a mathematical model to determine kiln-heat-flux profiles necessary to maintain a desired temperature gradient. The erosion/corrosion test for evaluating materials of construction is operational. Fuel from a BWR (Big Rock Point) yielded more fine solid residue on dissolution than in previous tests with PWR fuel. Two additional parametric voloxidation tests with H.B. Robinson fuel compared air vs pure oxygen atmospheres at 550{sup 0}C; overall tritium release and subsequent fuel dissolution were equivalent. Thorium dissolution studies: the dissolution rate of thoriamore » in fluoride-catalyzed 8 to 14 M HNO{sub 3} (100{sup 0}C) was max between 0.04 to 0.06 M HF; at higher fluoride concentrations, ThF{sub 4}.5H{sub 2}O precipitated. The rate of zircaloy dissolution continued to increase with increasing fluoride concentration. Stainless-steel-clad (Th,U)0{sub 2} fuel rods irradiated in the NRX reactor were sheared, voloxidized, and dissolved. {le}10% of the tritium was released during voloxidation in air at 600{sup 0}C. Carbon-14 removal from off-gas and fixation: carbon dioxide removal with Linde 13X molecular sieves to less than 100 ppB was experimentally verified using 300 ppM CO in air. Decontamination factors from 3000 to 7500 were obtained for CO{sub 2} removal in the gas-slurry stirred-tank reactor with CA(OH){sub 2}.or Ba(0H){sub 2}/sup .8H2O./. With Ba(OH){sub 2}.H{sub 2}0{sup 2} in a fixed-bed column, decontamination factors of about 30,000 were obtained.« less

  3. Activation of formylmethanofuran synthesis in cell extracts of Methanobacterium thermoautotrophicum.

    PubMed Central

    Bobik, T A; Wolfe, R S

    1989-01-01

    In cell extracts of Methanobacterium thermoautotrophicum, formylmethanofuran (formyl-MFR) synthesis (an essential CO2 fixation reaction that is an early step in CO2 reduction to methane) is subject to a complex activation that involves a heterodisulfide of coenzyme M and N-(7-mercaptoheptanoyl)threonine O3-phosphate (CoM-S-S-HTP). In this paper we report that titanium(III) citrate, a low-potential reducing agent, stimulated CO2 reduction to methane and activated formyl-MFR synthesis in cell extracts. Titanium(III) citrate functioned as the sole source of electrons for formyl-MFR synthesis and enabled this reaction to occur independently of CoM-S-S-HTP. In addition, CoM-S-S-HTP was found to activate an unknown electron carrier that reduced metronidazole. The activation of formyl-MFR synthesis by CoM-S-S-HTP may involve the activation of a low-potential electron carrier. PMID:2921239

  4. Use of CO2 laser and AgClBr infrared transmitting fibers for tympanoplasty: experiments on animal models

    NASA Astrophysics Data System (ADS)

    Grundfest, Warren S.

    1999-06-01

    One of the most common ear disease is Chronic Otitis Media that leads to a tympanic membrane perforation. The treatment of this condition is by a surgical procedure, tympanoplasty that is often done under local or general anesthesia. During this procedure an autologous fascia is applied to close the perforation. Commonly, fixation of the fascia is achieved mostly by Gel-Form. During the last several years various fascia fixation techniques were suggested. These included a welding procedure based on using an Argon laser. The disadvantages of the latter is that the visible Argon laser is not absorbed well by the relatively thin tympanic membrane and the fascia. It does not lead to strong weld and it may heat the middle of the ear, causing neural hearing loss. The CO2 laser IR radiation is much more suitable for welding of these thin tissues, because of its very high absorption in tissues. There is still a need to deliver this radiation to the weld site using a thin and flexible optical fiber. In this work we have welded fascia on the tympanic membranes of guinea pigs using a CO2 laser. Holes of diameter 2-3 mm were punctured in the membranes and apiece of fascia was placed on the holes. Laser power of the order of 0.5W was delivered to the fascia using an IR transmitting AgClBr fiber. In experiments done on 11 animals and CO2 laser welding was successfully done on in 15 years. The success of these preliminary studies in the animal models shows that CO2 laser tympanoplasty could be a very valuable surgical technique.

  5. Fixation of CO2 in bi-layered coordination networks of zinc tetra(4-carboxyphenyl)porphyrin with multi-component [Pr2Na3(NO3)(H2O)3] connectors.

    PubMed

    Nandi, Goutam; Goldberg, Israel

    2014-11-14

    CO2 is fixed in a rare μ2-η bridging mode by bi-layered coordination networks of ZnTCPP tessellated along the four equatorial directions by [Pr2Na3(NO3)(H2O)3](8+) connecting clusters in a 2 : 1 ratio (1), but not in the isomorphous free-base porphyrin analogue [(TCPPH2)2(Pr2Na3(NO3)(H2O)3)]n (2), revealing the crucial role of the zinc metal in this process.

  6. Facets of diazotrophy in the oxygen minimum zone waters off Peru

    PubMed Central

    Loescher, Carolin R; Großkopf, Tobias; Desai, Falguni D; Gill, Diana; Schunck, Harald; Croot, Peter L; Schlosser, Christian; Neulinger, Sven C; Pinnow, Nicole; Lavik, Gaute; Kuypers, Marcel M M; LaRoche, Julie; Schmitz, Ruth A

    2014-01-01

    Nitrogen fixation, the biological reduction of dinitrogen gas (N2) to ammonium (NH4+), is quantitatively the most important external source of new nitrogen (N) to the open ocean. Classically, the ecological niche of oceanic N2 fixers (diazotrophs) is ascribed to tropical oligotrophic surface waters, often depleted in fixed N, with a diazotrophic community dominated by cyanobacteria. Although this applies for large areas of the ocean, biogeochemical models and phylogenetic studies suggest that the oceanic diazotrophic niche may be much broader than previously considered, resulting in major implications for the global N-budget. Here, we report on the composition, distribution and abundance of nifH, the functional gene marker for N2 fixation. Our results show the presence of eight clades of diazotrophs in the oxygen minimum zone (OMZ) off Peru. Although proteobacterial clades dominated overall, two clusters affiliated to spirochaeta and archaea were identified. N2 fixation was detected within OMZ waters and was stimulated by the addition of organic carbon sources supporting the view that non-phototrophic diazotrophs were actively fixing dinitrogen. The observed co-occurrence of key functional genes for N2 fixation, nitrification, anammox and denitrification suggests that a close spatial coupling of N-input and N-loss processes exists in the OMZ off Peru. The wide distribution of diazotrophs throughout the water column adds to the emerging view that the habitat of marine diazotrophs can be extended to low oxygen/high nitrate areas. Furthermore, our statistical analysis suggests that NO2− and PO43− are the major factors affecting diazotrophic distribution throughout the OMZ. In view of the predicted increase in ocean deoxygenation resulting from global warming, our findings indicate that the importance of OMZs as niches for N2 fixation may increase in the future. PMID:24813564

  7. Facets of diazotrophy in the oxygen minimum zone waters off Peru.

    PubMed

    Loescher, Carolin R; Großkopf, Tobias; Desai, Falguni D; Gill, Diana; Schunck, Harald; Croot, Peter L; Schlosser, Christian; Neulinger, Sven C; Pinnow, Nicole; Lavik, Gaute; Kuypers, Marcel M M; LaRoche, Julie; Schmitz, Ruth A

    2014-11-01

    Nitrogen fixation, the biological reduction of dinitrogen gas (N2) to ammonium (NH4(+)), is quantitatively the most important external source of new nitrogen (N) to the open ocean. Classically, the ecological niche of oceanic N2 fixers (diazotrophs) is ascribed to tropical oligotrophic surface waters, often depleted in fixed N, with a diazotrophic community dominated by cyanobacteria. Although this applies for large areas of the ocean, biogeochemical models and phylogenetic studies suggest that the oceanic diazotrophic niche may be much broader than previously considered, resulting in major implications for the global N-budget. Here, we report on the composition, distribution and abundance of nifH, the functional gene marker for N2 fixation. Our results show the presence of eight clades of diazotrophs in the oxygen minimum zone (OMZ) off Peru. Although proteobacterial clades dominated overall, two clusters affiliated to spirochaeta and archaea were identified. N2 fixation was detected within OMZ waters and was stimulated by the addition of organic carbon sources supporting the view that non-phototrophic diazotrophs were actively fixing dinitrogen. The observed co-occurrence of key functional genes for N2 fixation, nitrification, anammox and denitrification suggests that a close spatial coupling of N-input and N-loss processes exists in the OMZ off Peru. The wide distribution of diazotrophs throughout the water column adds to the emerging view that the habitat of marine diazotrophs can be extended to low oxygen/high nitrate areas. Furthermore, our statistical analysis suggests that NO2(-) and PO4(3-) are the major factors affecting diazotrophic distribution throughout the OMZ. In view of the predicted increase in ocean deoxygenation resulting from global warming, our findings indicate that the importance of OMZs as niches for N2 fixation may increase in the future.

  8. The computer-aided parallel external fixator for complex lower limb deformity correction.

    PubMed

    Wei, Mengting; Chen, Jianwen; Guo, Yue; Sun, Hao

    2017-12-01

    Since parameters of the parallel external fixator are difficult to measure and calculate in real applications, this study developed computer software that can help the doctor measure parameters using digital technology and generate an electronic prescription for deformity correction. According to Paley's deformity measurement method, we provided digital measurement techniques. In addition, we proposed an deformity correction algorithm to calculate the elongations of the six struts and developed a electronic prescription software. At the same time, a three-dimensional simulation of the parallel external fixator and deformed fragment was made using virtual reality modeling language technology. From 2013 to 2015, fifteen patients with complex lower limb deformity were treated with parallel external fixators and the self-developed computer software. All of the cases had unilateral limb deformity. The deformities were caused by old osteomyelitis in nine cases and traumatic sequelae in six cases. A doctor measured the related angulation, displacement and rotation on postoperative radiographs using the digital measurement techniques. Measurement data were input into the electronic prescription software to calculate the daily adjustment elongations of the struts. Daily strut adjustments were conducted according to the data calculated. The frame was removed when expected results were achieved. Patients lived independently during the adjustment. The mean follow-up was 15 months (range 10-22 months). The duration of frame fixation from the time of application to the time of removal averaged 8.4 months (range 2.5-13.1 months). All patients were satisfied with the corrected limb alignment. No cases of wound infections or complications occurred. Using the computer-aided parallel external fixator for the correction of lower limb deformities can achieve satisfactory outcomes. The correction process can be simplified and is precise and digitized, which will greatly improve the treatment in a clinical application.

  9. Effect of altered sink:source ratio on photosynthetic metabolism of source leaves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plaut, Z.; Mayoral, M.L.; Reinhold, L.

    When seven crop species were grown under identical environmental conditions, decreased sink:source ratio led to a decreased photosynthetic rate within 1 to 3 days in Cucumis sativus L., Gossypium hirsutum L., and Raphanus sativus L., but not in Capsicum annuum L., Solanum melongena L., Phaseolus vulgaris L., or Ricinus communis L. The decrease was not associated with stomatal closure. In cotton and cucumbers, sink removal led to an increase in starch and sugar content, in glucose 6-phosphate and fructose 6-phosphate pools, and in the proportion of /sup 14/C detected in sugar phosphates and UDPglucose following /sup 14/CO/sub 2/ supply. Whenmore » mannose was supplied to leaf discs to sequester cytoplasmic inorganic phosphate, promotion of starch synthesis, and inhibition of CO/sub 2/ fixation, were observed in control discs, but not in discs from treated plants. Phosphate buffer reduced starch synthesis in the latter, but not the former discs. The findings suggest that sink removal led to a decreased ratio inorganic phosphate:phosphorylated compounds. In beans /sup 14/C in sugar phosphates increased following sink removal, but without sucrose accumulation, suggesting tighter feedback control of sugar level. Starch accumulated to higher levels than in the other plants, but CO/sub 2/ fixation rate was constant for several days.« less

  10. The fate of nitrogen fixed by diazotrophs in the ocean

    NASA Astrophysics Data System (ADS)

    Mulholland, M. R.

    2007-01-01

    While we now know that N2 fixation is a significant source of new nitrogen (N) in the marine environment, little is known about the fate of this N (and associated C), despite the importance of diazotrophs to global carbon and nutrient cycles. Specifically, does N fixed during N2 fixation fuel autotrophic or heterotrophic growth and thus facilitate carbon (C) export from the euphotic zone, or does it contribute primarily to bacterial productivity and respiration in the euphotic zone? For Trichodesmium, the diazotroph we know the most about, the transfer of recently fixed N2 (and C) appears to be primarily through dissolved pools. The release of N varies among and within populations and as a result of the changing physiological state of cells and populations. The net result of trophic transfers appears to depend on the co-occurring organisms and the complexity of the colonizing community. In order to understand the impact of diazotrophy on carbon flow and export in marine systems, we need a better understanding of the trophic flow of elements in Trichodesmium-dominated communities and other diazotrophic communities under various defined physiological states. Nitrogen and carbon fixation rates themselves vary by orders of magnitude within and among studies of Trichodesmium, highlighting the difficulty in extrapolating global rates of N2 fixation from direct measurements. Because the stoichiometry of N2 and C fixation does not appear to be in balance with that of particles, and the relationship between C and N2 fixation rates is also variable, it is equally difficult to derive global rates of one from the other. This paper seeks to synthesize what is known about the fate of diazotrophic production in the environment. A better understanding of the physiology and physiological ecology of Trichodesmium and other marine diazotrophs is necessary to quantify and predict the effects of increased or decreased diazotrophy in the context of the carbon cycle and global change.

  11. Toward solar biodiesel production from CO2 using engineered cyanobacteria.

    PubMed

    Woo, Han Min; Lee, Hyun Jeong

    2017-05-01

    Metabolic engineering of cyanobacteria has received attention as a sustainable strategy to convert carbon dioxide to various biochemicals including fatty acid-derived biodiesel. Recently, Synechococcus elongatus PCC 7942, a model cyanobacterium, has been engineered to convert CO2 to fatty acid ethyl esters (FAEEs) as biodiesel. Modular pathway has been constructed for FAEE production. Several metabolic engineering strategies were discussed to improve the production levels of FAEEs, including host engineering by improving CO2 fixation rate and photosynthetic efficiency. In addition, protein engineering of key enzyme in S. elongatus PCC 7942 was implemented to address issues on FAEE secretions toward sustainable FAEE production from CO2. Finally, advanced metabolic engineering will promote developing biosolar cell factories to convert CO2 to feasible amount of FAEEs toward solar biodiesel. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Regulators of nonsulfur purple phototrophic bacteria and the interactive control of CO2 assimilation, nitrogen fixation, hydrogen metabolism and energy generation.

    PubMed

    Dubbs, James M; Tabita, F Robert

    2004-06-01

    For the metabolically diverse nonsulfur purple phototrophic bacteria, maintaining redox homeostasis requires balancing the activities of energy supplying and energy-utilizing pathways, often in the face of drastic changes in environmental conditions. These organisms, members of the class Alphaproteobacteria, primarily use CO2 as an electron sink to achieve redox homeostasis. After noting the consequences of inactivating the capacity for CO2 reduction through the Calvin-Benson-Bassham (CBB) pathway, it was shown that the molecular control of many additional important biological processes catalyzed by nonsulfur purple bacteria is linked to expression of the CBB genes. Several regulator proteins are involved, with the two component Reg/Prr regulatory system playing a major role in maintaining redox poise in these organisms. Reg/Prr was shown to be a global regulator involved in the coordinate control of a number of metabolic processes including CO2 assimilation, nitrogen fixation, hydrogen metabolism and energy-generation pathways. Accumulating evidence suggests that the Reg/Prr system senses the oxidation/reduction state of the cell by monitoring a signal associated with electron transport. The response regulator RegA/PrrA activates or represses gene expression through direct interaction with target gene promoters where it often works in concert with other regulators that can be either global or specific. For the key CO2 reduction pathway, which clearly triggers whether other redox balancing mechanisms are employed, the ability to activate or inactivate the specific regulator CbbR is of paramount importance. From these studies, it is apparent that a detailed understanding of how diverse regulatory elements integrate and control metabolism will eventually be achieved.

  13. Efficient Hydrogen Storage and Production Using a Catalyst with an Imidazoline-Based, Proton-Responsive Ligand.

    PubMed

    Wang, Lin; Onishi, Naoya; Murata, Kazuhisa; Hirose, Takuji; Muckerman, James T; Fujita, Etsuko; Himeda, Yuichiro

    2017-03-22

    A series of new imidazoline-based iridium complexes has been developed for hydrogenation of CO 2 and dehydrogenation of formic acid. One of the proton-responsive complexes bearing two -OH groups at ortho and para positions on a coordinating pyridine ring (3 b) can catalyze efficiently the chemical fixation of CO 2 and release H 2 under mild conditions in aqueous media without using organic additives/solvents. Notably, hydrogenation of CO 2 can be efficiently carried out under CO 2 and H 2 at atmospheric pressure in basic water by 3 b, achieving a turnover frequency of 106 h -1 and a turnover number of 7280 at 25 °C, which are higher than ever reported. Moreover, highly efficient CO-free hydrogen production from formic acid in aqueous solution employing the same catalyst under mild conditions has been achieved, thus providing a promising potential H 2 -storage system in water. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Effect of CO2 enrichment on phytoplankton photosynthesis in the North Atlantic sub-tropical gyre

    NASA Astrophysics Data System (ADS)

    Tilstone, Gavin; Šedivá, Barbora; Tarran, Glen; Kaňa, Radek; Prášil, Ondřej

    2017-11-01

    The effects of changes in CO2 concentration in seawater on phytoplankton community structure and photosynthesis were studied in the North Atlantic sub-tropical gyre. Three shipboard incubations were conducted for 48 h at ∼760 ppm CO2 and control (360 ppm CO2) from 49°N to 7°N during October and November 2010. Elevated CO2 caused a decrease in pH to ∼7.94 compared to ∼8.27 in the control. During one experiment, the biomass of nano- and picoeukaryotes increased under CO2 enrichment, but primary production decreased relative to the control. In two of the experiments the biomass was dominated by dinoflagellates, and there was a significant increase in the maximum photosynthetic rate (PmB) and light-limited slope of photosynthesis (αB) at CO2 concentrations of 760 ppm relative to the controls. 77 K emission spectroscopy showed that the higher photosynthetic rates measured under CO2 enrichment increased the connection of reversible photosystem antennae, which resulted in an increase in light harvesting efficiency and carbon fixation.

  15. Plant RuBisCo assembly in E. coli with five chloroplast chaperones including BSD2.

    PubMed

    Aigner, H; Wilson, R H; Bracher, A; Calisse, L; Bhat, J Y; Hartl, F U; Hayer-Hartl, M

    2017-12-08

    Plant RuBisCo, a complex of eight large and eight small subunits, catalyzes the fixation of CO 2 in photosynthesis. The low catalytic efficiency of RuBisCo provides strong motivation to reengineer the enzyme with the goal of increasing crop yields. However, genetic manipulation has been hampered by the failure to express plant RuBisCo in a bacterial host. We achieved the functional expression of Arabidopsis thaliana RuBisCo in Escherichia coli by coexpressing multiple chloroplast chaperones. These include the chaperonins Cpn60/Cpn20, RuBisCo accumulation factors 1 and 2, RbcX, and bundle-sheath defective-2 (BSD2). Our structural and functional analysis revealed the role of BSD2 in stabilizing an end-state assembly intermediate of eight RuBisCo large subunits until the small subunits become available. The ability to produce plant RuBisCo recombinantly will facilitate efforts to improve the enzyme through mutagenesis. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  16. Early fixation of cobalt-chromium based alloy surgical implants to bone using a tissue-engineering approach.

    PubMed

    Ogawa, Munehiro; Tohma, Yasuaki; Ohgushi, Hajime; Takakura, Yoshinori; Tanaka, Yasuhito

    2012-01-01

    To establish the methods of demonstrating early fixation of metal implants to bone, one side of a Cobalt-Chromium (CoCr) based alloy implant surface was seeded with rabbit marrow mesenchymal cells and the other side was left unseeded. The mesenchymal cells were further cultured in the presence of ascorbic acid, β-glycerophosphate and dexamethasone, resulting in the appearance of osteoblasts and bone matrix on the implant surface. Thus, we succeeded in generating tissue-engineered bone on one side of the CoCr implant. The CoCr implants were then implanted in rabbit bone defects. Three weeks after the implantation, evaluations of mechanical test, undecalcified histological section and electron microscope analysis were performed. Histological and electron microscope images of the tissue engineered surface exhibited abundant new bone formation. However, newly formed bone tissue was difficult to detect on the side without cell seeding. In the mechanical test, the mean values of pull-out forces were 77.15 N and 44.94 N for the tissue-engineered and non-cell-seeded surfaces, respectively. These findings indicate early bone fixation of the tissue-engineered CoCr surface just three weeks after implantation.

  17. Early Fixation of Cobalt-Chromium Based Alloy Surgical Implants to Bone Using a Tissue-engineering Approach

    PubMed Central

    Ogawa, Munehiro; Tohma, Yasuaki; Ohgushi, Hajime; Takakura, Yoshinori; Tanaka, Yasuhito

    2012-01-01

    To establish the methods of demonstrating early fixation of metal implants to bone, one side of a Cobalt-Chromium (CoCr) based alloy implant surface was seeded with rabbit marrow mesenchymal cells and the other side was left unseeded. The mesenchymal cells were further cultured in the presence of ascorbic acid, β-glycerophosphate and dexamethasone, resulting in the appearance of osteoblasts and bone matrix on the implant surface. Thus, we succeeded in generating tissue-engineered bone on one side of the CoCr implant. The CoCr implants were then implanted in rabbit bone defects. Three weeks after the implantation, evaluations of mechanical test, undecalcified histological section and electron microscope analysis were performed. Histological and electron microscope images of the tissue engineered surface exhibited abundant new bone formation. However, newly formed bone tissue was difficult to detect on the side without cell seeding. In the mechanical test, the mean values of pull-out forces were 77.15 N and 44.94 N for the tissue-engineered and non-cell-seeded surfaces, respectively. These findings indicate early bone fixation of the tissue-engineered CoCr surface just three weeks after implantation. PMID:22754313

  18. Lanthanide Complexes with Multidentate Oxime Ligands as Single-Molecule Magnets and Atmospheric Carbon Dioxide Fixation Systems.

    PubMed

    Hołyńska, Małgorzata; Clérac, Rodolphe; Rouzières, Mathieu

    2015-09-14

    The synthesis, structure, and magnetic properties of five lanthanide complexes with multidentate oxime ligands are described. Complexes 1 and 2 (1: [La2 (pop)2 (acac)4 (CH3 OH)], 2: [Dy2 (pop)(acac)5 ]) are synthesized from the 2-hydroxyimino-N-[1-(2-pyridyl)ethylidene]propanohydrazone (Hpop) ligand, while 3, 4, and 5 (3: [Dy2 (naphthsaoH)2 (acac)4 H(OH)]⋅0.85 CH3 CN⋅1.58 H2 O; 4: [Tb2 (naphthsaoH)2 (acac)4 H(OH)]⋅0.52 CH3 CN⋅1.71 H2 O; 5: [La6 (CO3 )2 (naphthsao)5 (naphthsaoH)0.5 (acac)8 (CO3 )0.5 (CH3 OH)2.76 H5.5 (H2 O)1.24 ]⋅2.39 CH3 CN⋅0.12 H2 O) contain 1-(1-hydroxynaphthalen-2-yl)-ethanone oxime (naphthsaoH2 ). In 1-4, dinuclear [Ln2 ] complexes crystallize, whereas hexanuclear La(III) complex 5 is formed after fixation of atmospheric carbon dioxide. Dy(III) -based complexes 2 and 3 display single-molecule-magnet properties with energy barriers of 27 and 98 K, respectively. The presence of a broad and unsymmetrical relaxation mode observed in the ac susceptibility data for 3 suggest two different dynamics of the magnetization which might be a consequence of independent relaxation processes of the two different Dy(3+) ions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Iodide-Photocatalyzed Reduction of Carbon Dioxide to Formic Acid with Thiols and Hydrogen Sulfide.

    PubMed

    Berton, Mateo; Mello, Rossella; González-Núñez, María Elena

    2016-12-20

    The photolysis of iodide anions promotes the reaction of carbon dioxide with hydrogen sulfide or thiols to quantitatively yield formic acid and sulfur or disulfides. The reaction proceeds in acetonitrile and aqueous solutions, at atmospheric pressure and room temperature by irradiation using a low-pressure mercury lamp. This transition-metal-free photocatalytic process for CO 2 capture coupled with H 2 S removal may have been relevant as a prebiotic carbon dioxide fixation. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Transcriptional Activities of the Microbial Consortium Living with the Marine Nitrogen-Fixing Cyanobacterium Trichodesmium Reveal Potential Roles in Community-Level Nitrogen Cycling.

    PubMed

    Lee, Michael D; Webb, Eric A; Walworth, Nathan G; Fu, Fei-Xue; Held, Noelle A; Saito, Mak A; Hutchins, David A

    2018-01-01

    Trichodesmium is a globally distributed cyanobacterium whose nitrogen-fixing capability fuels primary production in warm oligotrophic oceans. Like many photoautotrophs, Trichodesmium serves as a host to various other microorganisms, yet little is known about how this associated community modulates fluxes of environmentally relevant chemical species into and out of the supraorganismal structure. Here, we utilized metatranscriptomics to examine gene expression activities of microbial communities associated with Trichodesmium erythraeum (strain IMS101) using laboratory-maintained enrichment cultures that have previously been shown to harbor microbial communities similar to those of natural populations. In enrichments maintained under two distinct CO 2 concentrations for ∼8 years, the community transcriptional profiles were found to be specific to the treatment, demonstrating a restructuring of overall gene expression had occurred. Some of this restructuring involved significant increases in community respiration-related transcripts under elevated CO 2 , potentially facilitating the corresponding measured increases in host nitrogen fixation rates. Particularly of note, in both treatments, community transcripts involved in the reduction of nitrate, nitrite, and nitrous oxide were detected, suggesting the associated organisms may play a role in colony-level nitrogen cycling. Lastly, a taxon-specific analysis revealed distinct ecological niches of consistently cooccurring major taxa that may enable, or even encourage, the stable cohabitation of a diverse community within Trichodesmium consortia. IMPORTANCE Trichodesmium is a genus of globally distributed, nitrogen-fixing marine cyanobacteria. As a source of new nitrogen in otherwise nitrogen-deficient systems, these organisms help fuel carbon fixation carried out by other more abundant photoautotrophs and thereby have significant roles in global nitrogen and carbon cycling. Members of the Trichodesmium genus tend to form large macroscopic colonies that appear to perpetually host an association of diverse interacting microbes distinct from the surrounding seawater, potentially making the entire assemblage a unique miniature ecosystem. Since its first successful cultivation in the early 1990s, there have been questions about the potential interdependencies between Trichodesmium and its associated microbial community and whether the host's seemingly enigmatic nitrogen fixation schema somehow involved or benefited from its epibionts. Here, we revisit these old questions with new technology and investigate gene expression activities of microbial communities living in association with Trichodesmium . Copyright © 2017 American Society for Microbiology.

  1. Proteomic and Mutant Analysis of the CO 2 Concentrating Mechanism of Hydrothermal Vent Chemolithoautotroph Thiomicrospira crunogena

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mangiapia, Mary; Brown, Terry-René W.; Chaput, Dale

    Many autotrophic microorganisms are likely to adapt to scarcity in dissolved inorganic carbon (DIC; CO 2+ HCO 3 -+ CO 3 2-) with CO 2 concentrating mechanisms (CCM) that actively transport DIC across the cell membrane to facilitate carbon fixation. Surprisingly, DIC transport has been well studied among cyanobacteria and microalgae only. The deep-sea vent gammaproteobacterial chemolithoautotrophThiomicrospira crunogenahas a low-DIC inducible CCM, though the mechanism for uptake is unclear, as homologs to cyanobacterial transporters are absent. To identify the components of this CCM, proteomes ofT. crunogenacultivated under low- and high-DIC conditions were compared. Fourteen proteins, including those comprising carboxysomes, weremore » at least 4-fold more abundant under low-DIC conditions. One of these proteins was encoded byTcr_0854; strains carrying mutated copies of this gene, as well as the adjacent Tcr_0853, required elevated DIC for growth. Strains carrying mutated copies of Tcr_0853 and Tcr_0854 overexpressed carboxysomes and had diminished ability to accumulate intracellular DIC. Based on reverse transcription (RT)-PCR, Tcr_0853 and Tcr_0854 were cotranscribed and upregulated under low-DIC conditions. The Tcr_0853 -encoded protein was predicted to have 13 transmembrane helices. Given the mutant phenotypes described above, Tcr_0853 and Tcr_0854 may encode a two-subunit DIC transporter that belongs to a previously undescribed transporter family, though it is widespread among autotrophs from multiple phyla.DIC uptake and fixation by autotrophs are the primary input of inorganic carbon into the biosphere. The mechanism for dissolved inorganic carbon uptake has been characterized only for cyanobacteria despite the importance of DIC uptake by autotrophic microorganisms from many phyla among theBacteriaandArchaea. In this work, proteins necessary for dissolved inorganic carbon utilization in the deep-sea vent chemolithoautotrophT. crunogenawere identified, and two of these may be able to form a novel transporter. Homologs of these proteins are present in 14 phyla inBacteriaand also in one phylum ofArchaea, theEuryarchaeota. Many organisms carrying these homologs are autotrophs, suggesting a role in facilitating dissolved inorganic carbon uptake and fixation well beyond the genusThiomicrospira.« less

  2. Proteomic and Mutant Analysis of the CO 2 Concentrating Mechanism of Hydrothermal Vent Chemolithoautotroph Thiomicrospira crunogena

    DOE PAGES

    Mangiapia, Mary; Brown, Terry-René W.; Chaput, Dale; ...

    2017-01-23

    Many autotrophic microorganisms are likely to adapt to scarcity in dissolved inorganic carbon (DIC; CO 2+ HCO 3 -+ CO 3 2-) with CO 2 concentrating mechanisms (CCM) that actively transport DIC across the cell membrane to facilitate carbon fixation. Surprisingly, DIC transport has been well studied among cyanobacteria and microalgae only. The deep-sea vent gammaproteobacterial chemolithoautotrophThiomicrospira crunogenahas a low-DIC inducible CCM, though the mechanism for uptake is unclear, as homologs to cyanobacterial transporters are absent. To identify the components of this CCM, proteomes ofT. crunogenacultivated under low- and high-DIC conditions were compared. Fourteen proteins, including those comprising carboxysomes, weremore » at least 4-fold more abundant under low-DIC conditions. One of these proteins was encoded byTcr_0854; strains carrying mutated copies of this gene, as well as the adjacent Tcr_0853, required elevated DIC for growth. Strains carrying mutated copies of Tcr_0853 and Tcr_0854 overexpressed carboxysomes and had diminished ability to accumulate intracellular DIC. Based on reverse transcription (RT)-PCR, Tcr_0853 and Tcr_0854 were cotranscribed and upregulated under low-DIC conditions. The Tcr_0853 -encoded protein was predicted to have 13 transmembrane helices. Given the mutant phenotypes described above, Tcr_0853 and Tcr_0854 may encode a two-subunit DIC transporter that belongs to a previously undescribed transporter family, though it is widespread among autotrophs from multiple phyla.DIC uptake and fixation by autotrophs are the primary input of inorganic carbon into the biosphere. The mechanism for dissolved inorganic carbon uptake has been characterized only for cyanobacteria despite the importance of DIC uptake by autotrophic microorganisms from many phyla among theBacteriaandArchaea. In this work, proteins necessary for dissolved inorganic carbon utilization in the deep-sea vent chemolithoautotrophT. crunogenawere identified, and two of these may be able to form a novel transporter. Homologs of these proteins are present in 14 phyla inBacteriaand also in one phylum ofArchaea, theEuryarchaeota. Many organisms carrying these homologs are autotrophs, suggesting a role in facilitating dissolved inorganic carbon uptake and fixation well beyond the genusThiomicrospira.« less

  3. Prospects for improving CO2 fixation in C3-crops through understanding C4-Rubisco biogenesis and catalytic diversity.

    PubMed

    Sharwood, Robert E; Ghannoum, Oula; Whitney, Spencer M

    2016-06-01

    By operating a CO2 concentrating mechanism, C4-photosynthesis offers highly successful solutions to remedy the inefficiency of the CO2-fixing enzyme Rubisco. C4-plant Rubisco has characteristically evolved faster carboxylation rates with low CO2 affinity. Owing to high CO2 concentrations in bundle sheath chloroplasts, faster Rubisco enhances resource use efficiency in C4 plants by reducing the energy and carbon costs associated with photorespiration and lowering the nitrogen investment in Rubisco. Here, we show that C4-Rubisco from some NADP-ME species, such as maize, are also of potential benefit to C3-photosynthesis under current and future atmospheric CO2 pressures. Realizing this bioengineering endeavour necessitates improved understanding of the biogenesis requirements and catalytic variability of C4-Rubisco, as well as the development of transformation capabilities to engineer Rubisco in a wider variety of food and fibre crops. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. CO2 fixation by anaerobic non-photosynthetic mixotrophy for improved carbon conversion.

    PubMed

    Jones, Shawn W; Fast, Alan G; Carlson, Ellinor D; Wiedel, Carrissa A; Au, Jennifer; Antoniewicz, Maciek R; Papoutsakis, Eleftherios T; Tracy, Bryan P

    2016-09-30

    Maximizing the conversion of biogenic carbon feedstocks into chemicals and fuels is essential for fermentation processes as feedstock costs and processing is commonly the greatest operating expense. Unfortunately, for most fermentations, over one-third of sugar carbon is lost to CO 2 due to the decarboxylation of pyruvate to acetyl-CoA and limitations in the reducing power of the bio-feedstock. Here we show that anaerobic, non-photosynthetic mixotrophy, defined as the concurrent utilization of organic (for example, sugars) and inorganic (for example, CO 2 ) substrates in a single organism, can overcome these constraints to increase product yields and reduce overall CO 2 emissions. As a proof-of-concept, Clostridium ljungdahlii was engineered to produce acetone and achieved a mass yield 138% of the previous theoretical maximum using a high cell density continuous fermentation process. In addition, when enough reductant (that is, H 2 ) is provided, the fermentation emits no CO 2 . Finally, we show that mixotrophy is a general trait among acetogens.

  5. Phytoplankton plasticity drives large variability in carbon fixation efficiency

    NASA Astrophysics Data System (ADS)

    Ayata, Sakina-Dorothée.; Lévy, Marina; Aumont, Olivier; Resplandy, Laure; Tagliabue, Alessandro; Sciandra, Antoine; Bernard, Olivier

    2014-12-01

    Phytoplankton C:N stoichiometry is highly flexible due to physiological plasticity, which could lead to high variations in carbon fixation efficiency (carbon consumption relative to nitrogen). However, the magnitude, as well as the spatial and temporal scales of variability, remains poorly constrained. We used a high-resolution biogeochemical model resolving various scales from small to high, spatially and temporally, in order to quantify and better understand this variability. We find that phytoplankton C:N ratio is highly variable at all spatial and temporal scales (5-12 molC/molN), from mesoscale to regional scale, and is mainly driven by nitrogen supply. Carbon fixation efficiency varies accordingly at all scales (±30%), with higher values under oligotrophic conditions and lower values under eutrophic conditions. Hence, phytoplankton plasticity may act as a buffer by attenuating carbon sequestration variability. Our results have implications for in situ estimations of C:N ratios and for future predictions under high CO2 world.

  6. Optimization of CO₂ bio-mitigation by Chlorella vulgaris.

    PubMed

    Anjos, Mariana; Fernandes, Bruno D; Vicente, António A; Teixeira, José A; Dragone, Giuliano

    2013-07-01

    Biofixation of CO2 by microalgae has been recognized as an attractive approach to CO2 mitigation. The main objective of this work was to maximize the rate of CO2 fixation ( [Formula: see text] ) by the green microalga Chlorella vulgaris P12 cultivated photoautotrophically in bubble column photobioreactors under different CO2 concentrations (ranging from 2% to 10%) and aeration rates (ranging from 0.1 to 0.7 vvm). Results showed that the maximum [Formula: see text] (2.22 gL(-1)d(-1)) was obtained by using 6.5% CO2 and 0.5 vvm after 7 days of cultivation at 30°C. Although final biomass concentration and maximum biomass productivity of microalgae were affected by the different cultivation conditions, no significant differences were obtained in the biochemical composition of microalgal cells for the evaluated levels of aeration and CO2. The present study demonstrated that optimization of microalgal cultivation conditions can be considered a useful strategy for maximizing CO2 bio-mitigation by C. vulgaris. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Porous Metal Organic Polyhedral Framework Containing Cuboctahedron Cages as SBUs with High Affinity for H2 and CO2 Sorptions: A Heterogeneous Catalyst for Chemical Fixation of CO2.

    PubMed

    Biradha, Kumar; Maity, Kartik; Karan, Chandan Kumar

    2018-06-11

    Development of active porous materials that can efficiently adsorb H2 and CO2 are in need due to their practical utilities. Here we present the design and synthesis of an interpenetrated Cu(II)-MOF that is thermally stable, highly porous and can act as a heterogeneous catalyst. The Cu(II)-MOF contains highly symmetric polyhedral metal cluster (Cu24) with cuboctahedron geometry as SBU. The double interpenetration of such huge cluster containing nets provides high density of open metal sites due to which it exhibits remarkable H2 storage capacity (313 cm3g-1 at 1bar and 77K) as well as high CO2 capture ability (159 cm3g-1 at 1bar and 273K). Further, its propensity towards the CO2 sorption utilized for the heterogeneous catalysis of chemical conversion of CO2 into the corresponding cyclic carbonates upon reaction with epoxides with high TON and TOF values. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. High CO2 subsurface environment enriches for novel microbial lineages capable of autotrophic carbon fixation

    NASA Astrophysics Data System (ADS)

    Probst, A. J.; Jerett, J.; Castelle, C. J.; Thomas, B. C.; Sharon, I.; Brown, C. T.; Anantharaman, K.; Emerson, J. B.; Hernsdorf, A. W.; Amano, Y.; Suzuki, Y.; Tringe, S. G.; Woyke, T.; Banfield, J. F.

    2015-12-01

    Subsurface environments span the planet but remain little understood from the perspective of the capacity of the resident organisms to fix CO2. Here we investigated the autotrophic capacity of microbial communities in range of a high-CO2 subsurface environments via analysis of 250 near-complete microbial genomes (151 of them from distinct species) that represent the most abundant organisms over a subsurface depth transect. More than one third of the genomes belonged to the so-called candidate phyla radiation (CPR), which have limited metabolic capabilities. Approximately 30% of the community members are autotrophs that comprise 70% of the microbiome with metabolism likely supported by sulfur and nitrogen respiration. Of the carbon fixation pathways, the Calvin Benson Basham Cycle was most common, but the Wood-Ljungdhal pathway was present in the greatest phylogenetic diversity of organisms. Unexpectedly, one organism from a novel phylum sibling to the CPR is predicted to fix carbon by the reverse TCA cycle. The genome of the most abundant organism, an archaeon designated "Candidatus Altiarchaeum hamiconexum", was also found in subsurface samples from other continents including Europe and Asia. The archaeon was proven to be a carbon fixer using a novel reductive acetyl-CoA pathway. These results provide evidence that carbon dioxide is the major carbon source in these environments and suggest that autotrophy in the subsurface represents a substantial carbon dioxide sink affecting the global carbon cycle.

  9. Unique pioneer microbial communities exposed to volcanic sulfur dioxide

    PubMed Central

    Fujimura, Reiko; Kim, Seok-Won; Sato, Yoshinori; Oshima, Kenshiro; Hattori, Masahira; Kamijo, Takashi; Ohta, Hiroyuki

    2016-01-01

    Newly exposed volcanic substrates contain negligible amounts of organic materials. Heterotrophic organisms in newly formed ecosystems require bioavailable carbon and nitrogen that are provided from CO2 and N2 fixation by pioneer microbes. However, the knowledge of initial ecosystem developmental mechanisms, especially the association between microbial succession and environmental change, is still limited. This study reports the unique process of microbial succession in fresh basaltic ash, which was affected by long-term exposure to volcanic sulfur dioxide (SO2). Here we compared the microbial ecosystems among deposits affected by SO2 exposure at different levels. The results of metagenomic analysis suggested the importance of autotrophic iron-oxidizing bacteria, particularly those involved in CO2 and N2 fixation, in the heavily SO2 affected site. Changes in the chemical properties of the deposits after the decline of the SO2 impact led to an apparent decrease in the iron-oxidizer abundance and a possible shift in the microbial community structure. Furthermore, the community structure of the deposits that had experienced lower SO2 gas levels showed higher similarity with that of the control forest soil. Our results implied that the effect of SO2 exposure exerted a selective pressure on the pioneer community structure by changing the surrounding environment of the microbes. PMID:26791101

  10. Soil Carbon-Fixation Rates and Associated Bacterial Diversity and Abundance in Three Natural Ecosystems.

    PubMed

    Lynn, Tin Mar; Ge, Tida; Yuan, Hongzhao; Wei, Xiaomeng; Wu, Xiaohong; Xiao, Keqing; Kumaresan, Deepak; Yu, San San; Wu, Jinshui; Whiteley, Andrew S

    2017-04-01

    CO 2 assimilation by autotrophic microbes is an important process in soil carbon cycling, and our understanding of the community composition of autotrophs in natural soils and their role in carbon sequestration of these soils is still limited. Here, we investigated the autotrophic C incorporation in soils from three natural ecosystems, i.e., wetland (WL), grassland (GR), and forest (FO) based on the incorporation of labeled C into the microbial biomass. Microbial assimilation of 14 C ( 14 C-MBC) differed among the soils from three ecosystems, accounting for 14.2-20.2% of 14 C-labeled soil organic carbon ( 14 C-SOC). We observed a positive correlation between the cbbL (ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) large-subunit gene) abundance, 14 C-SOC level, and 14 C-MBC concentration confirming the role of autotrophic bacteria in soil carbon sequestration. Distinct cbbL-bearing bacterial communities were present in each soil type; form IA and form IC RubisCO-bearing bacteria were most abundant in WL, followed by GR soils, with sequences from FO soils exclusively derived from the form IC clade. Phylogenetically, the diversity of CO 2 -fixing autotrophs and CO oxidizers differed significantly with soil type, whereas cbbL-bearing bacterial communities were similar when assessed using coxL. We demonstrate that local edaphic factors such as pH and salinity affect the C-fixation rate as well as cbbL and coxL gene abundance and diversity. Such insights into the effect of soil type on the autotrophic bacterial capacity and subsequent carbon cycling of natural ecosystems will provide information to enhance the sustainable management of these important natural ecosystems.

  11. A Simple Method for Rapid Depletion of Rubisco from Soybean (Glycine max) Leaf for Proteomic Analysis of Lower Abundance Proteins

    USDA-ARS?s Scientific Manuscript database

    2-DE analysis of complex plant proteomes has limited dynamic resolution because only abundant proteins can be detected. Proteomic assessment of the low abundance proteins within leaf tissue is difficult when it is comprised of 30 – 50% of the CO2 fixation enzyme Rubisco. Resolution can be improved t...

  12. Complete Genome Sequence of Nitrosomonas cryotolerans ATCC 49181, a Phylogenetically Distinct Ammonia-Oxidizing Bacterium Isolated from Arctic Waters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rice, Marlen C.; Norton, Jeanette M.; Stein, Lisa Y.

    ABSTRACT Nitrosomonas cryotoleransATCC 49181 is a cold-tolerant marine ammonia-oxidizing bacterium isolated from seawater collected in the Gulf of Alaska. The high-quality complete genome contains a 2.87-Mbp chromosome and a 56.6-kbp plasmid. Chemolithoautotrophic modules encoding ammonia oxidation and CO 2 fixation were identified.

  13. Complete Genome Sequence of Nitrosomonas cryotolerans ATCC 49181, a Phylogenetically Distinct Ammonia-Oxidizing Bacterium Isolated from Arctic Waters

    DOE PAGES

    Rice, Marlen C.; Norton, Jeanette M.; Stein, Lisa Y.; ...

    2017-03-16

    ABSTRACT Nitrosomonas cryotoleransATCC 49181 is a cold-tolerant marine ammonia-oxidizing bacterium isolated from seawater collected in the Gulf of Alaska. The high-quality complete genome contains a 2.87-Mbp chromosome and a 56.6-kbp plasmid. Chemolithoautotrophic modules encoding ammonia oxidation and CO 2 fixation were identified.

  14. CO2 acclimation impacts leaf isoprene emissions: evidence from past to future CO2 levels

    NASA Astrophysics Data System (ADS)

    de Boer, Hugo; van der Laan, Annick; Dekker, Stefan; Holzinger, Rupert

    2017-04-01

    Isoprene is emitted by many plant species as a side-product of photosynthesis. Once in the atmosphere, isoprene exhibits climate forcing through various feedback mechanisms. In order to quantify the climate feedbacks of biogenic isoprene emission it is crucial to establish how isoprene emissions are effected by plant acclimation to rising atmospheric CO2 levels. A promising development for modelling CO2-induced changes in isoprene emissions is the Leaf-Energetic-Status model (referred to as LES-model hereafter, see Harrison et al., 2013 and Morfopoulos et al., 2014). This model simulates isoprene emissions based on the hypothesis that isoprene biosynthesis depends on the imbalance between the photosynthetic electron supply of reducing power and the electron demands of carbon fixation. The energetic imbalance is critically related to the photosynthetic electron transport capacity (Jmax) and the maximum carboxylation capacity of Rubisco (Vcmax). Here we compare predictions of the LES-model with observed isoprene emission responses of Quercus robur (pedunculate oak) specimen that acclimated to CO2 growth conditions representative of the last glacial, the present and the end of this century (200, 400 and 800 ppm, respectively) for two growing seasons. These plants were grown in walk-in growth chambers with tight control of light, temperature, humidity and CO2 concentrations. Photosynthetic biochemical parameters Vcmax and Jmax were determined with a Licor LI-6400XT photosynthesis system. The relationship between photosynthesis and isoprene emissions was measured by coupling the photosynthesis system with a Proton-Transfer Reaction Time-of-Flight Mass Spectrometer. Our empirical results support the LES-model and show that the fractional allocation of carbon to isoprene biosynthesis is reduced in response to both short-term and long-term CO2 increases. In the short term, an increase in CO2 stimulates photosynthesis through an increase in the leaf interior CO2 concentration and marginally decreases isoprene production owing to an increase in the electron demand for carbon fixation. In the long-term, acclimation to rising CO2 growth conditions leads to down regulation of both Jmax and Vcmax, which modulates the stimulating effect of rising CO2 on photosynthesis. This CO2 effect is most pronounced between sub-ambient to present CO2. Our results highlight that the LES-model provides a suitable theoretical framework to model changes in leaf isoprene emissions related to biochemical acclimation to rising CO2. References Harrison, S. P. et al: Volatile isoprenoid emissions from plastid to planet, New Phytol., 197(1), 49-57, 2013. Morfopoulos, C. et al: A model of plant isoprene emission based on available reducing power captures responses to atmospheric CO2, New Phytol., 203(1), 125-139, 2014.

  15. Formate production through carbon dioxide hydrogenation with recombinant whole cell biocatalysts.

    PubMed

    Alissandratos, Apostolos; Kim, Hye-Kyung; Easton, Christopher J

    2014-07-01

    The biological conversion of CO2 and H2 into formate offers a sustainable route to a valuable commodity chemical through CO2 fixation, and a chemical form of hydrogen fuel storage. Here we report the first example of CO2 hydrogenation utilising engineered whole-cell biocatalysts. Escherichia coli JM109(DE3) cells transformed for overexpression of either native formate dehydrogenase (FDH), the FDH from Clostridium carboxidivorans, or genes from Pyrococcus furiosus and Methanobacterium thermoformicicum predicted to express FDH based on their similarity to known FDH genes were all able to produce levels of formate well above the background, when presented with H2 and CO2, the latter in the form of bicarbonate. In the case of the FDH from P. furiosus the yield was highest, reaching more than 1 g L(-1)h(-1) when a hydrogen-sparging reactor design was used. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Efficient hydrogen storage and production using a catalyst with an imidazoline-based, proton-responsive ligand

    DOE PAGES

    Wang, Lin; Onishi, Naoya; Murata, Kazuhisa; ...

    2016-12-28

    A series of new imidazoline-based iridium complexes has been developed for hydrogenation of CO 2 and dehydrogenation of formic acid. One of the proton-responsive complexes bearing two –OH groups at ortho and para positions on a coordinating pyridine ring (3 b) can catalyze efficiently the chemical fixation of CO 2 and release H 2 under mild conditions in aqueous media without using organic additives/solvents. Notably, hydrogenation of CO 2 can be efficiently carried out under CO 2 and H 2 at atmospheric pressure in basic water by 3 b, achieving a turnover frequency of 106 h –1 and a turnovermore » number of 7280 at 25 °C, which are higher than ever reported. Furthermore, highly efficient CO-free hydrogen production from formic acid in aqueous solution employing the same catalyst under mild conditions has been achieved, thus providing a promising potential H 2-storage system in water.« less

  17. Supramolecular Porphyrin Cages Assembled at Molecular–Materials Interfaces for Electrocatalytic CO Reduction

    PubMed Central

    2017-01-01

    Conversion of carbon monoxide (CO), a major one-carbon product of carbon dioxide (CO2) reduction, into value-added multicarbon species is a challenge to addressing global energy demands and climate change. Here we report a modular synthetic approach for aqueous electrochemical CO reduction to carbon–carbon coupled products via self-assembly of supramolecular cages at molecular–materials interfaces. Heterobimetallic cavities formed by face-to-face coordination of thiol-terminated metalloporphyrins to copper electrodes through varying organic struts convert CO to C2 products with high faradaic efficiency (FE = 83% total with 57% to ethanol) and current density (1.34 mA/cm2) at a potential of −0.40 V vs RHE. The cage-functionalized electrodes offer an order of magnitude improvement in both selectivity and activity for electrocatalytic carbon fixation compared to parent copper surfaces or copper functionalized with porphyrins in an edge-on orientation. PMID:28979945

  18. Supramolecular Porphyrin Cages Assembled at Molecular–Materials Interfaces for Electrocatalytic CO Reduction

    DOE PAGES

    Gong, Ming; Cao, Zhi; Liu, Wei; ...

    2017-09-13

    Conversion of carbon monoxide (CO), a major one-carbon product of carbon dioxide (CO 2) reduction, into value-added multicarbon species is a challenge to addressing global energy demands and climate change. Here in this paper, we report a modular synthetic approach for aqueous electrochemical CO reduction to carbon-carbon coupled products via self-assembly of supramolecular cages at molecular-materials interfaces. Heterobimetallic cavities formed by face-to-face coordination of thiol-terminated metalloporphyrins to copper electrodes through varying organic struts convert CO to C2 products with high faradaic efficiency (FE = 83% total with 57% to ethanol) and current density (1.34 mA/cm 2) at a potential ofmore » -0.40 V vs RHE. The cage-functionalized electrodes offer an order of magnitude improvement in both selectivity and activity for electrocatalytic carbon fixation compared to parent copper surfaces or copper functionalized with porphyrins in an edge-on orientation.« less

  19. Intramedullary nail fixation versus locking plate fixation for adults with a fracture of the distal tibia: the UK FixDT RCT.

    PubMed

    Costa, Matthew L; Achten, Juul; Hennings, Susie; Boota, Nafisa; Griffin, James; Petrou, Stavros; Maredza, Mandy; Dritsaki, Melina; Wood, Thomas; Masters, James; Pallister, Ian; Lamb, Sarah E; Parsons, Nick R

    2018-05-01

    The best treatment for fractures of the distal tibia remains controversial. Most of these fractures require surgical fixation, but the outcomes are unpredictable and complications are common. To assess disability, quality of life, complications and resource use in patients treated with intramedullary (IM) nail fixation versus locking plate fixation in the 12 months following a fracture of the distal tibia. This was a multicentre randomised trial. The trial was conducted in 28 UK acute trauma centres from April 2013 to final follow-up in February 2017. In total, 321 adult patients were recruited. Participants were excluded if they had open fractures, fractures involving the ankle joint, contraindication to nailing or inability to complete questionnaires. IM nail fixation ( n  = 161), in which a metal rod is inserted into the hollow centre of the tibia, versus locking plate fixation ( n  = 160), in which a plate is attached to the surface of the tibia with fixed-angle screws. The primary outcome measure was the Disability Rating Index (DRI) score, which ranges from 0 points (no disability) to 100 points (complete disability), at 6 months with a minimum clinically important difference of 8 points. The DRI score was also collected at 3 and 12 months. The secondary outcomes were the Olerud-Molander Ankle Score (OMAS), quality of life as measured using EuroQol-5 Dimensions (EQ-5D), complications such as infection, and further surgery. Resource use was collected to inform the health economic evaluation. Participants had a mean age of 45 years (standard deviation 16.2 years), were predominantly male (61%, 197/321) and had experienced traumatic injury after a fall (69%, 223/321). There was no statistically significant difference in DRI score at 6 months [IM nail fixation group, mean 29.8 points, 95% confidence interval (CI) 26.1 to 33.7 points; locking plate group, mean 33.8 points, 95% CI 29.7 to 37.9 points; adjusted difference, 4.0 points, 95% CI -1.0 to 9.0 points; p  = 0.11]. There was a statistically significant difference in DRI score at 3 months in favour of IM nail fixation (IM nail fixation group, mean 44.2 points, 95% CI 40.8 to 47.6 points; locking plate group, mean 52.6 points, 95% CI 49.3 to 55.9 points; adjusted difference 8.8 points, 95% CI 4.3 to 13.2 points; p  < 0.001), but not at 12 months (IM nail fixation group, mean 23.1 points, 95% CI 18.9 to 27.2 points; locking plate group, 24.0 points, 95% CI 19.7 to 28.3 points; adjusted difference 1.9 points, 95% CI -3.2 to 6.9 points; p  = 0.47). Secondary outcomes showed the same pattern, including a statistically significant difference in mean OMAS and EQ-5D scores at 3 and 6 months in favour of IM nail fixation. There were no statistically significant differences in complications, including the number of postoperative infections (13% in the locking plate group and 9% in the IM nail fixation group). Further surgery was more common in the locking plate group (12% in locking plate group and 8% in IM nail fixation group at 12 months). The economic evaluation showed that IM nail fixation provided a slightly higher quality of life in the 12 months after injury and at lower cost and, therefore, it was cost-effective compared with locking plate fixation. The probability of cost-effectiveness for IM nail fixation exceeded 90%, regardless of the value of the cost-effectiveness threshold. As wound dressings after surgery are clearly visible, it was not possible to blind the patients to their treatment allocation. This evidence does not apply to intra-articular (pilon) fractures of the distal tibia. Among adults with an acute fracture of the distal tibia who were randomised to IM nail fixation or locking plate fixation, there were similar disability ratings at 6 months. However, recovery across all outcomes was faster in the IM nail fixation group and costs were lower. The potential benefit of IM nail fixation in several other fractures requires investigation. Research is also required into the role of adjuvant treatment and different rehabilitation strategies to accelerate recovery following a fracture of the tibia and other long-bone fractures in the lower limb. The patients in this trial will remain in longer-term follow-up. Current Controlled Trials ISRCTN99771224 and UKCRN 13761. This project was funded by the National Institute for Health Research (NIHR) Health Technology Assessment programme and will be published in full in Health Technology Assessment ; Vol. 22, No. 25. See the NIHR Journals Library website for further project information.

  20. The bovine immune response to Brucella abortus. III. Preparation of antisera against a Brucella component precipitated by sera of some infected cattle.

    PubMed Central

    Stemshorn, B; Nielsen, K; Samagh, B

    1981-01-01

    Two methods are described for the partial purification of a high molecular weight, heat-resistant component (CO1) of sonicates of smooth and rough Brucella abortus which is precipitated by sera of some infected cattle. Method 1, a combination of gel filtration chromatography and polyacrylamide gel electrophoresis, was used to prepare CO1 from sonicates of a smooth field strain of B. abortus. Method 2, a combination of gel filtration chromatography and heat treatment, was used to obtain CO1, from sonicates of rough B. abortus strain 45/20. Rabbit antisera produced against CO1 prepared by either method contained only CO1 precipitins but were negative in standard agglutination and complement fixation tests conducted with whole cell antigens. Evidence is presented that CO1 is identical to Brucella antigen A2, and it is proposed that in future the designation A2 be employed. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. PMID:6791797

  1. Characteristics of hydroxyapatite coated titanium porous coatings on Ti-6Al-4V substrates by plasma sprayed method.

    PubMed

    Yang, C Y; Chen, C R; Chang, E; Lee, T M

    2007-08-01

    A porous metal coating applied to solid substrate implants has been shown, in vivo, to anchor implants by bone ingrowth. Calcium phosphate ceramics, in particular hydroxyapatite [Ca(10)(PO(4))(6)(OH)(2), HA], are bioactive ceramics, which are known to be biocompatible and osteoconductive, and these ceramics deposited on to porous-coated devices may enhance bone ingrowth and implant fixation. In this study, bi-feedstock of the titanium powder and composite (Na(2)CO(3)/HA) powder were simultaneously deposited on a Ti-6Al-4V substrate by a plasma sprayed method. At high temperature of plasma torch, the solid state of Na(2)CO(3) would decompose to release CO(2) gas and then eject the molten Ti powder to induce the interconnected pores in the coatings. After cleaning and soaking in deionized water, the residual Na(2)CO(3) in the coating would dissolve to form the open pores, and the HA would exist at the surface of pores in the inner coatings. By varying the particle size of the composite powder, the porosity of porous coating could be varied from 25.0 to 34.0%, and the average pore size of the porous coating could be varied to range between 158.5 and 202.0 microm. Using a standard adhesive test (ASTM C-633), the bonding strength of the coating is between 27.3 and 38.2 MPa. By SEM, the HA was observed at the surface of inner pore in the porous coating. These results suggest that the method exhibits the potential to manufacture the bioactive ceramics on to porous-coated specimen to achieve bone ingrowth fixation for biomedical applications.

  2. Proteomic and Mutant Analysis of the CO2 Concentrating Mechanism of Hydrothermal Vent Chemolithoautotroph Thiomicrospira crunogena

    PubMed Central

    Mangiapia, Mary; Brown, Terry-René W.; Chaput, Dale; Haller, Edward; Harmer, Tara L.; Hashemy, Zahra; Keeley, Ryan; Leonard, Juliana; Mancera, Paola; Nicholson, David; Stevens, Stanley; Wanjugi, Pauline; Zabinski, Tania; Pan, Chongle

    2017-01-01

    ABSTRACT Many autotrophic microorganisms are likely to adapt to scarcity in dissolved inorganic carbon (DIC; CO2 + HCO3− + CO32−) with CO2 concentrating mechanisms (CCM) that actively transport DIC across the cell membrane to facilitate carbon fixation. Surprisingly, DIC transport has been well studied among cyanobacteria and microalgae only. The deep-sea vent gammaproteobacterial chemolithoautotroph Thiomicrospira crunogena has a low-DIC inducible CCM, though the mechanism for uptake is unclear, as homologs to cyanobacterial transporters are absent. To identify the components of this CCM, proteomes of T. crunogena cultivated under low- and high-DIC conditions were compared. Fourteen proteins, including those comprising carboxysomes, were at least 4-fold more abundant under low-DIC conditions. One of these proteins was encoded by Tcr_0854; strains carrying mutated copies of this gene, as well as the adjacent Tcr_0853, required elevated DIC for growth. Strains carrying mutated copies of Tcr_0853 and Tcr_0854 overexpressed carboxysomes and had diminished ability to accumulate intracellular DIC. Based on reverse transcription (RT)-PCR, Tcr_0853 and Tcr_0854 were cotranscribed and upregulated under low-DIC conditions. The Tcr_0853-encoded protein was predicted to have 13 transmembrane helices. Given the mutant phenotypes described above, Tcr_0853 and Tcr_0854 may encode a two-subunit DIC transporter that belongs to a previously undescribed transporter family, though it is widespread among autotrophs from multiple phyla. IMPORTANCE DIC uptake and fixation by autotrophs are the primary input of inorganic carbon into the biosphere. The mechanism for dissolved inorganic carbon uptake has been characterized only for cyanobacteria despite the importance of DIC uptake by autotrophic microorganisms from many phyla among the Bacteria and Archaea. In this work, proteins necessary for dissolved inorganic carbon utilization in the deep-sea vent chemolithoautotroph T. crunogena were identified, and two of these may be able to form a novel transporter. Homologs of these proteins are present in 14 phyla in Bacteria and also in one phylum of Archaea, the Euryarchaeota. Many organisms carrying these homologs are autotrophs, suggesting a role in facilitating dissolved inorganic carbon uptake and fixation well beyond the genus Thiomicrospira. PMID:28115547

  3. Requirement of carbon dioxide for initial growth of facultative methylotroph, Acidomonas methanolica MB58.

    PubMed

    Mitsui, Ryoji; Katayama, Hiroko; Tanaka, Mitsuo

    2015-07-01

    The facultative methylotrophic bacterium Acidomonas methanolica MB58 can utilize C1 compounds via the ribulose monophosphate pathway. A large gene cluster comprising three components related to C1 metabolism was found in the genome. From upstream, the first was an mxa cluster encoding proteins for oxidation of methanol to formaldehyde; the second was the rmp cluster encoding enzymes for formaldehyde fixation; and the third was the cbb gene cluster encoding proteins for carbon dioxide (CO2) fixation. Examination of CO2 requirements for growth of A. methanolica MB58 cells demonstrated that it did not grow on any carbon source under CO2-free conditions. Measurement of ribulose-1,5-bisphosphate carboxylase activity and RT-PCR analysis demonstrated enzymatic activity was detected in A. methanolica MB58 at growth phase, regardless of carbon sources. However, methanol dehydrogenase and 3-hexlose-6-phosphate synthase expression was regulated by methanol or formaldehyde; it were detected during growth and apparently differed from ribulose-1,5-bisphosphate carboxylase expression. These results suggested that A. methanolica MB58 may be initially dependent on autotrophic growth and that carbon assimilation was subsequently coupled with the ribulose monophosphate pathway at early- to mid-log phases during methylotrophic growth. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  4. A New Class of Metal-Cyclam-Based Zirconium Metal-Organic Frameworks for CO2 Adsorption and Chemical Fixation.

    PubMed

    Zhu, Jie; Usov, Pavel M; Xu, Wenqian; Celis-Salazar, Paula J; Lin, Shaoyang; Kessinger, Matthew C; Landaverde-Alvarado, Carlos; Cai, Meng; May, Ann M; Slebodnick, Carla; Zhu, Dunru; Senanayake, Sanjaya D; Morris, Amanda J

    2018-01-24

    Metal-organic frameworks (MOFs) have shown great promise in catalysis, mainly due to their high content of active centers, large internal surface areas, tunable pore size, and versatile chemical functionalities. However, it is a challenge to rationally design and construct MOFs that can serve as highly stable and reusable heterogeneous catalysts. Here two new robust 3D porous metal-cyclam-based zirconium MOFs, denoted VPI-100 (Cu) and VPI-100 (Ni), have been prepared by a modulated synthetic strategy. The frameworks are assembled by eight-connected Zr 6 clusters and metallocyclams as organic linkers. Importantly, the cyclam core has accessible axial coordination sites for guest interactions and maintains the electronic properties exhibited by the parent cyclam ring. The VPI-100 MOFs exhibit excellent chemical stability in various organic and aqueous solvents over a wide pH range and show high CO 2 uptake capacity (up to ∼9.83 wt% adsorption at 273 K under 1 atm). Moreover, VPI-100 MOFs demonstrate some of the highest reported catalytic activity values (turnover frequency and conversion efficiency) among Zr-based MOFs for the chemical fixation of CO 2 with epoxides, including sterically hindered epoxides. The MOFs, which bear dual catalytic sites (Zr and Cu/Ni), enable chemistry not possible with the cyclam ligand under the same conditions and can be used as recoverable stable heterogeneous catalysts without losing performance.

  5. Carbon dioxide utilisation of Dunaliella tertiolecta for carbon bio-mitigation in a semicontinuous photobioreactor.

    PubMed

    Farrelly, Damien J; Brennan, Liam; Everard, Colm D; McDonnell, Kevin P

    2014-04-01

    Bio-fixation of carbon dioxide (CO2) by microalgae has been recognised as an attractive approach to offset anthropogenic emissions. Biological carbon mitigation is the process whereby autotrophic organisms, such as microalgae, convert CO2 into organic carbon and O2 through photosynthesis; this process through respiration produces biomass. In this study Dunaliella tertiolecta was cultivated in a semicontinuous culture to investigate the carbon mitigation rate of the system. The algae were produced in 1.2-L Roux bottles with a working volume of 1 L while semicontinuous production commenced on day 4 of cultivation when the carbon mitigation rate was found to be at a maximum for D. tertiolecta. The reduction in CO2 between input and output gases was monitored to predict carbon fixation rates while biomass production and microalgal carbon content are used to calculate the actual carbon mitigation potential of D. tertiolecta. A renewal rate of 45 % of flask volume was utilised to maintain the culture in exponential growth with an average daily productivity of 0.07 g L(-1) day(-1). The results showed that 0.74 g L(-1) of biomass could be achieved after 7 days of semicontinuous production while a total carbon mitigation of 0.37 g L(-1) was achieved. This represented an increase of 0.18 g L(-1) in carbon mitigation rate compared to batch production of D. tertiolecta over the same cultivation period.

  6. Integrated CO2 capture-fixation chemistry via interfacial ionic liquid catalyst in laminar gas/liquid flow

    NASA Astrophysics Data System (ADS)

    Vishwakarma, Niraj K.; Singh, Ajay K.; Hwang, Yoon-Ho; Ko, Dong-Hyeon; Kim, Jin-Oh; Babu, A. Giridhar; Kim, Dong-Pyo

    2017-03-01

    Simultaneous capture of carbon dioxide (CO2) and its utilization with subsequent work-up would significantly enhance the competitiveness of CO2-based sustainable chemistry over petroleum-based chemistry. Here we report an interfacial catalytic reaction platform for an integrated autonomous process of simultaneously capturing/fixing CO2 in gas-liquid laminar flow with subsequently providing a work-up step. The continuous-flow microreactor has built-in silicon nanowires (SiNWs) with immobilized ionic liquid catalysts on tips of cone-shaped nanowire bundles. Because of the superamphiphobic SiNWs, a stable gas-liquid interface maintains between liquid flow of organoamines in upper part and gas flow of CO2 in bottom part of channel. The intimate and direct contact of the binary reagents leads to enhanced mass transfer and facilitating reactions. The autonomous integrated platform produces and isolates 2-oxazolidinones and quinazolines-2,4(1H,3H)-diones with 81-97% yields under mild conditions. The platform would enable direct CO2 utilization to produce high-valued specialty chemicals from flue gases without pre-separation and work-up steps.

  7. Integrated CO2 capture-fixation chemistry via interfacial ionic liquid catalyst in laminar gas/liquid flow.

    PubMed

    Vishwakarma, Niraj K; Singh, Ajay K; Hwang, Yoon-Ho; Ko, Dong-Hyeon; Kim, Jin-Oh; Babu, A Giridhar; Kim, Dong-Pyo

    2017-03-06

    Simultaneous capture of carbon dioxide (CO 2 ) and its utilization with subsequent work-up would significantly enhance the competitiveness of CO 2 -based sustainable chemistry over petroleum-based chemistry. Here we report an interfacial catalytic reaction platform for an integrated autonomous process of simultaneously capturing/fixing CO 2 in gas-liquid laminar flow with subsequently providing a work-up step. The continuous-flow microreactor has built-in silicon nanowires (SiNWs) with immobilized ionic liquid catalysts on tips of cone-shaped nanowire bundles. Because of the superamphiphobic SiNWs, a stable gas-liquid interface maintains between liquid flow of organoamines in upper part and gas flow of CO 2 in bottom part of channel. The intimate and direct contact of the binary reagents leads to enhanced mass transfer and facilitating reactions. The autonomous integrated platform produces and isolates 2-oxazolidinones and quinazolines-2,4(1H,3H)-diones with 81-97% yields under mild conditions. The platform would enable direct CO 2 utilization to produce high-valued specialty chemicals from flue gases without pre-separation and work-up steps.

  8. Integrated CO2 capture-fixation chemistry via interfacial ionic liquid catalyst in laminar gas/liquid flow

    PubMed Central

    Vishwakarma, Niraj K.; Singh, Ajay K.; Hwang, Yoon-Ho; Ko, Dong-Hyeon; Kim, Jin-Oh; Babu, A. Giridhar; Kim, Dong-Pyo

    2017-01-01

    Simultaneous capture of carbon dioxide (CO2) and its utilization with subsequent work-up would significantly enhance the competitiveness of CO2-based sustainable chemistry over petroleum-based chemistry. Here we report an interfacial catalytic reaction platform for an integrated autonomous process of simultaneously capturing/fixing CO2 in gas–liquid laminar flow with subsequently providing a work-up step. The continuous-flow microreactor has built-in silicon nanowires (SiNWs) with immobilized ionic liquid catalysts on tips of cone-shaped nanowire bundles. Because of the superamphiphobic SiNWs, a stable gas–liquid interface maintains between liquid flow of organoamines in upper part and gas flow of CO2 in bottom part of channel. The intimate and direct contact of the binary reagents leads to enhanced mass transfer and facilitating reactions. The autonomous integrated platform produces and isolates 2-oxazolidinones and quinazolines-2,4(1H,3H)-diones with 81–97% yields under mild conditions. The platform would enable direct CO2 utilization to produce high-valued specialty chemicals from flue gases without pre-separation and work-up steps. PMID:28262667

  9. Enhanced CO2 sequestration by a novel microalga: Scenedesmus obliquus SA1 isolated from bio-diversity hotspot region of Assam, India.

    PubMed

    Basu, Samarpita; Roy, Abhijit Sarma; Mohanty, Kaustubha; Ghoshal, Aloke K

    2013-09-01

    The present study aimed to isolate a high CO2 and temperature tolerant microalga capable of sequestering CO2 from flue gas. Microalga strain SA1 was isolated from a freshwater body of Assam and identified as Scenedesmus obliquus (KC733762). At 13.8±1.5% CO2 and 25 °C, maximum biomass (4.975±0.003 g L(-1)) and maximum CO2 fixation rate (252.883±0.361 mg L(-1) d(-1)) were obtained which were higher than most of the relevant studies. At elevated temperature (40 °C) and 13.8±1.5% CO2 maximum biomass (0.883±0.001 g L(-1)) was obtained. The carbohydrate, protein, lipid, and chlorophyll content of the CO2 treated SA1 were 30.87±0.64%, 9.48±1.65%, 33.04±0.46% and 6.03±0.19% respectively, which were higher than previous reports. Thus, SA1 could prove to be a potential candidate for CO2 sequestration from flue gas as well as for the production of value added substances. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Experimental and simulation studies of iron oxides for geochemical fixation of CO2-SO2 gas mixtures

    USGS Publications Warehouse

    Garcia, Susana; Rosenbauer, Robert J.; Palandri, James; Maroto-Valer, M. Mercedes

    2011-01-01

    Iron-bearing minerals are reactive phases of the subsurface environment and could potentially trap CO2–SO2gas mixtures derived from fossil fuel combustion processes by their conversion to siderite (FeCO3) and dissolved sulfate. Changes in fluid and mineral compositions resulting from reactions, involving the co-injection of SO2 with CO2 were observed both theoretically and experimentally. Experiments were conducted with a natural hematite (α-Fe2O3) sample. A high pressure-high temperature apparatus was used to simulate conditions in geologic formations deeper than 800 m, where CO2 is in the supercritical state. Solid samples were allowed to react with a NaCl–NaOH brine and SO2-bearing CO2-dominated gas mixtures. The predicted equilibrium mineral assemblage at 100 °C and 250 bar became hematite, dawsonite (NaAl(OH)2CO3), siderite (FeCO3) and quartz (SiO2). Experimentally, siderite and dawsonite, derived from the presence of kaolinite (Al2Si2O5(OH)4) in the parent material, were present in residual solids at longer reaction time intervals, which agreed well with results from the modelling work.

  11. Catalytic fixation of atmospheric carbon dioxide by copper(ii) complexes of bidentate ligands.

    PubMed

    Muthuramalingam, Sethuraman; Khamrang, Themmila; Velusamy, Marappan; Mayilmurugan, Ramasamy

    2017-11-28

    New copper(ii) complexes, [Cu(L1) 2 (H 2 O)](ClO 4 ) 2 , 1 [L1 = 2-pyridin-2-yl-quinoline], [Cu(L2) 2 (H 2 O)](ClO 4 ) 2 , 2 [L2 = 2-pyridin-2-yl-quinoxaline], [Cu(L3) 2 (H 2 O)](ClO 4 ) 2 , 3 [L3 = 6,7-dimethyl-2-pyridin-2-yl-quinoxaline], [Cu(L4) 2 (H 2 O)](ClO 4 ) 2 , 4 [L4 = 4-phenyl-2-pyridin-2-yl-quinoline] and [Cu(L5) 2 (H 2 O)](ClO 4 ) 2 , 5 [L5 = 4-phenyl-2-pyridin-2-yl-quinazoline], were synthesized and characterized as catalysts for selective fixation of atmospheric CO 2 . The molecular structure of 2 was determined by single-crystal X-ray studies and shown to have an unusual trigonal bipyramid geometry (τ, 0.936) around the copper(ii) center, with the coordination of two ligand units and a water molecule. The Cu-N quin (2.040, 2.048 Å) bonds are slightly longer than the Cu-N pyr (1.987 Å) bonds but shorter than the Cu-O water bond (2.117 Å). Well-defined Cu(ii)/Cu(i) redox potentials of around 0.352 to 0.401 V were observed for 1-5 in acetonitrile. The electronic absorption spectra of 1-5 showed ligand-based transitions at around 208-286 nm with a visible shoulder at around 342-370 nm. The d-d transitions appeared at around 750-800 and 930-955 nm in acetonitrile. The rhombic EPR spectra of 1-5 exhibited three different g values g x , 2.27-2.34; g y , 2.06-2.09; and g z , 1.95-1.98 at 70 K. Atmospheric CO 2 was successfully fixed by 1-5 using Et 3 N as a sacrificial reducing agent, resulting in CO 3 2- -bound complexes of type [Cu(L)CO 3 (H 2 O)] that display an absorption band at around 614-673 nm and a ν st at 1647 cm -1 . This CO 3 2- -bound complex of 1 was crystallized from the reaction mixture and it displayed a distorted square pyramidal geometry (τ, 0.369) around the copper(ii) center via the coordination of only one ligand unit, a carbonate group, and water molecules. Furthermore, treatment of the carbonate-bound Cu(ii) complexes with one equivalent of H + under N 2 atmosphere resulted in the liberation of bicarbonate (HCO 3 - ) and regenerated the parent complexes. These regenerated catalysts were active enough to fix CO 2 in eight repeating cycles without any change in efficiency. The fixation of CO 2 possibly occurs via the formation of Cu(i)-species, which is accompanied by the formation of an MLCT band at around 450-500 nm. The rates of Cu(i)-species formation, k obs , were determined and found to be 5.41-10.31 × 10 -3 s -1 in the presence of Et 3 N in acetonitrile at 25 °C. Interestingly, the copper(i)-species of 3 has been successfully crystallized and displayed a distorted tetrahedral geometry through the coordination of two units of ligand L3.

  12. Hybrid bioinorganic approach to solar-to-chemical conversion.

    PubMed

    Nichols, Eva M; Gallagher, Joseph J; Liu, Chong; Su, Yude; Resasco, Joaquin; Yu, Yi; Sun, Yujie; Yang, Peidong; Chang, Michelle C Y; Chang, Christopher J

    2015-09-15

    Natural photosynthesis harnesses solar energy to convert CO2 and water to value-added chemical products for sustaining life. We present a hybrid bioinorganic approach to solar-to-chemical conversion in which sustainable electrical and/or solar input drives production of hydrogen from water splitting using biocompatible inorganic catalysts. The hydrogen is then used by living cells as a source of reducing equivalents for conversion of CO2 to the value-added chemical product methane. Using platinum or an earth-abundant substitute, α-NiS, as biocompatible hydrogen evolution reaction (HER) electrocatalysts and Methanosarcina barkeri as a biocatalyst for CO2 fixation, we demonstrate robust and efficient electrochemical CO2 to CH4 conversion at up to 86% overall Faradaic efficiency for ≥ 7 d. Introduction of indium phosphide photocathodes and titanium dioxide photoanodes affords a fully solar-driven system for methane generation from water and CO2, establishing that compatible inorganic and biological components can synergistically couple light-harvesting and catalytic functions for solar-to-chemical conversion.

  13. Ocean acidification: the other CO2 problem.

    PubMed

    Doney, Scott C; Fabry, Victoria J; Feely, Richard A; Kleypas, Joan A

    2009-01-01

    Rising atmospheric carbon dioxide (CO2), primarily from human fossil fuel combustion, reduces ocean pH and causes wholesale shifts in seawater carbonate chemistry. The process of ocean acidification is well documented in field data, and the rate will accelerate over this century unless future CO2 emissions are curbed dramatically. Acidification alters seawater chemical speciation and biogeochemical cycles of many elements and compounds. One well-known effect is the lowering of calcium carbonate saturation states, which impacts shell-forming marine organisms from plankton to benthic molluscs, echinoderms, and corals. Many calcifying species exhibit reduced calcification and growth rates in laboratory experiments under high-CO2 conditions. Ocean acidification also causes an increase in carbon fixation rates in some photosynthetic organisms (both calcifying and noncalcifying). The potential for marine organisms to adapt to increasing CO2 and broader implications for ocean ecosystems are not well known; both are high priorities for future research. Although ocean pH has varied in the geological past, paleo-events may be only imperfect analogs to current conditions.

  14. Hybrid bioinorganic approach to solar-to-chemical conversion

    PubMed Central

    Nichols, Eva M.; Gallagher, Joseph J.; Liu, Chong; Su, Yude; Resasco, Joaquin; Yu, Yi; Sun, Yujie; Yang, Peidong; Chang, Michelle C. Y.; Chang, Christopher J.

    2015-01-01

    Natural photosynthesis harnesses solar energy to convert CO2 and water to value-added chemical products for sustaining life. We present a hybrid bioinorganic approach to solar-to-chemical conversion in which sustainable electrical and/or solar input drives production of hydrogen from water splitting using biocompatible inorganic catalysts. The hydrogen is then used by living cells as a source of reducing equivalents for conversion of CO2 to the value-added chemical product methane. Using platinum or an earth-abundant substitute, α-NiS, as biocompatible hydrogen evolution reaction (HER) electrocatalysts and Methanosarcina barkeri as a biocatalyst for CO2 fixation, we demonstrate robust and efficient electrochemical CO2 to CH4 conversion at up to 86% overall Faradaic efficiency for ≥7 d. Introduction of indium phosphide photocathodes and titanium dioxide photoanodes affords a fully solar-driven system for methane generation from water and CO2, establishing that compatible inorganic and biological components can synergistically couple light-harvesting and catalytic functions for solar-to-chemical conversion. PMID:26305947

  15. Catalytic Space Engineering in Porphyrin Metal-Organic Frameworks for Combinatorial CO2 Capture and Conversion under Low Concentration.

    PubMed

    Zhang, Li; Liu, Jiewei; Fan, Yan-Zhong; Li, Xin; Xu, Yao-Wei; Su, Cheng-Yong

    2018-05-22

    Porous porphyrin metal-organic frameworks (PMOFs) provide a promising platform to study CO2 capture and conversion (C3) owing to their versatility in photoelectric, catalytic and redox activities and porphyrin coordination chemistry. Herein, we report the C3 application of two PMOFs by engineering the coordination space through introduction of two catalytic metalloporphyrins, Rh-PMOF-1 and Ir-PMOF-1, both of which can serve as heterogeneous catalysts for the chemical fixation of CO2 into cyclic carbonates with up to 99% yields. Remarkably, the catalytic reactions can effectively proceed under low concentration of CO2, and the high yields of 83% and 73% can be obtained under 5% concentration of CO2 in the presence of Rh-PMOF-1 and Ir-PMOF-1, respectively. The synergistic effect of the metalloporphyrin ligand and the Zr6O8 cluster, in combination with the CO2 concentrating effect from the pore space, might account for the excellent catalytic performance of Rh-PMOF-1 under low CO2 concentration. Recycling tests of Rh-PMOF-1 show negligible loss of catalytic activity after 10 runs. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Glacial-Interglacial and Holocene N2O Stable Isotope Changes Constrain Terrestrial N Cycling

    NASA Astrophysics Data System (ADS)

    Schmitt, J.; Spahni, R.; Bock, M.; Seth, B.; Stocker, B. D.; Ri, X.; Schilt, A.; Brook, E.; Otto-Bliesner, B. L.; Liu, Z.; Prentice, I. C.; Fischer, H.; Joos, F.

    2015-12-01

    The land biosphere contributes most to the natural source of the long-lived greenhouse gas nitrous oxide (N2O), with N2O emissions being dependent on the turnover rate of both the terrestrial nitrogen (N) and carbon (C) cycle. The C:N stoichiometry of vegetation and soil organic matter links the cycles intimately. Sustained plant productivity increase must be supported by biological N fixation. Intensified N cycling in turn enhances N loss and thereby N2O emissions. The temporal and spatial dynamics of terrestrial N and C cycles and related terrestrial N2O emissions are poorly constrained over the glacial-interglacial transition and the Holocene. Here we reconstruct increased terrestrial N2O emissions since the Last Glacial Maximum based on N2O concentration and isotope measurements on several ice cores and show that this N2O increase can be explained by N cycle modelling - provided N fixation is allowed to respond dynamically to increasing N demand and turnover. The Ice core reconstructions suggest a deglacial increase of 1.1 ± 0.4 Tg N/yr in terrestrial and 0.6 ± 0.4 Tg/yr in oceanic N2O emissions, but relatively constant terrestrial emissions over the Holocene. Transient simulations with a Dynamic Global Vegetation Model are shown to represent the climate and CO2 induced changes in terrestrial N2O emission, and suggest a deglacial increase in biological N fixation by 20%, independently of its absolute magnitude. Deciphering the response of biological N fixation during climatic changes is an important factor for our understanding of plant growth and the land carbon sink, alongside anthropogenic greenhouse gas emissions.

  17. Diurnal variation in the functioning of cowpea nodules.

    PubMed

    Rainbird, R M; Atkins, C A; Pate, J S

    1983-06-01

    Nitrogenase (EC 1.7.99.2) activity of nodules of cowpea (Vigna unguiculata [L.] Walp), maintained under conditions of a 12-hour day at 30 degrees C and 800 to 1,000 microeinsteins per square meter per second (photosynthetically active radiation) and a 12-hour night at 20 degrees C, showed a marked diurnal variation with the total electron flux through the enzyme at night being 60% of that in the photoperiod. This diurnal pattern was, however, due to changes in hydrogen evolution. The rate of nitrogen fixation, measured by short-term (15)N(2) assimilation or estimated from the difference in hydrogen evolution in air or Ar:O(2) (80:20; v/v), showed no diurnal variation. Carbon dioxide released from nodules showed a diurnal variation synchronized with that of nitrogenase functioning and, as a consequence, the apparent ;respiratory cost' of nitrogen fixation in the photoperiod was almost double that at night (9.74 +/- 0.38 versus 5.70 +/- 0.90 moles CO(2) evolved per mole N(2) fixed). Separate carbon and nitrogen balances constructed for nodules during the photoperiod and dark period showed that, at night, nodule functioning required up to 40% less carbohydrate to achieve the same level of nitrogen fixation as during the photoperiod (2.4 versus 1.4 moles hexose per mole N(2) fixed).Stored reserves of nonstructural carbohydrate of the nodule only partly satisfied the requirement for carbon at night, and fixation was dependent on continued import of translocated assimilates at all times. Measurements of the soluble nitrogen pools of the nodule together with (15)N studies indicated that, both during the day and night, nitrogenous products of fixation were effectively translocated to all organs of the host plant despite low rates of transpiration at night. Reduced fluxes of water through the plant at night were apparently counteracted by increased concentration of nitrogen, especially as ureides, in the xylem stream.

  18. Additive manufactured push-fit implant fixation with screw-strength pull out.

    PubMed

    van Arkel, Richard J; Ghouse, Shaaz; Milner, Piers E; Jeffers, Jonathan R T

    2017-10-11

    Additive manufacturing offers exciting new possibilities for improving long-term metallic implant fixation in bone through enabling open porous structures for bony ingrowth. The aim of this research was to investigate how the technology could also improve initial fixation, a precursor to successful long-term fixation. A new barbed fixation mechanism, relying on flexible struts was proposed and manufactured as a push-fit peg. The technology was optimized using a synthetic bone model and compared with conventional press-fit peg controls tested over a range of interference fits. Optimum designs, achieving maximum pull-out force, were subsequently tested in a cadaveric femoral condyle model. The barbed fixation surface provided more than double the pull-out force for less than a third of the insertion force compared to the best performing conventional press-fit peg (p < 0.001). Indeed, it provided screw-strength pull out from a push-fit device (1,124 ± 146 N). This step change in implant fixation potential offers new capabilities for low profile, minimally invasive implant design, while providing new options to simplify surgery, allowing for one-piece push-fit components with high levels of initial stability. © 2017 The Authors. Journal of Orthopaedic Research Published by WileyPeriodicals, Inc. on behalf of the Orthopaedic Research Society. J Orthop Res 9999:1-11, 2017. © 2017 The Authors. Journal of Orthopaedic Research Published by WileyPeriodicals, Inc. on behalf of the Orthopaedic Research Society.

  19. Accurate and Simple Screw Insertion Procedure With Patient-Specific Screw Guide Templates for Posterior C1-C2 Fixation.

    PubMed

    Sugawara, Taku; Higashiyama, Naoki; Kaneyama, Shuichi; Sumi, Masatoshi

    2017-03-15

    Prospective clinical trial of the screw insertion method for posterior C1-C2 fixation utilizing the patient-specific screw guide template technique. To evaluate the efficacy of this method for insertion of C1 lateral mass screws (LMS), C2 pedicle screws (PS), and C2 laminar screws (LS). Posterior C1LMS and C2PS fixation, also known as the Goel-Harms method, can achieve immediate rigid fixation and high fusion rate, but the screw insertion carries the risk of injury to neuronal and vascular structures. Dissection of venous plexus and C2 nerve root to confirm the insertion point of the C1LMS may also cause problems. We have developed an intraoperative screw guiding method using patient-specific laminar templates. Preoperative bone images of computed tomography (CT) were analyzed using three-dimensional (3D)/multiplanar imaging software to plan the trajectories of the screws. Plastic templates with screw guiding structures were created for each lamina using 3D design and printing technology. Three types of templates were made for precise multistep guidance, and all templates were specially designed to fit and lock on the lamina during the procedure. Surgery was performed using this patient-specific screw guide template system, and placement of the screws was postoperatively evaluated using CT. Twelve patients with C1-C2 instability were treated with a total of 48 screws (24 C1LMS, 20 C2PS, 4 C2LS). Intraoperatively, each template was found to exactly fit and lock on the lamina and screw insertion was completed successfully without dissection of the venous plexus and C2 nerve root. Postoperative CT showed no cortical violation by the screws, and mean deviation of the screws from the planned trajectories was 0.70 ± 0.42 mm. The multistep, patient-specific screw guide template system is useful for intraoperative screw navigation in posterior C1-C2 fixation. This simple and economical method can improve the accuracy of screw insertion, and reduce operation time and radiation exposure of posterior C1-C2 fixation surgery. 3.

  20. Current Concepts in the Mandibular Condyle Fracture Management Part I: Overview of Condylar Fracture

    PubMed Central

    Yang, Jung-Dug; Chung, Ho-Yun; Cho, Byung-Chae

    2012-01-01

    The incidence of condylar fractures is high, but the management of fractures of the mandibular condyle continues to be controversial. Historically, maxillomandibular fixation, external fixation, and surgical splints with internal fixation systems were the techniques commonly used in the treatment of the fractured mandible. Condylar fractures can be extracapsular or intracapsular, undisplaced, deviated, displaced, or dislocated. Treatment depends on the age of the patient, the co-existence of other mandibular or maxillary fractures, whether the condylar fracture is unilateral or bilateral, the level and displacement of the fracture, the state of dentition and dental occlusion, and the surgeonnds on the age of the patient, the co-existence of othefrom which it is difficult to recover aesthetically and functionally;an appropriate treatment is required to reconstruct the shape and achieve the function ofthe uninjured status. To do this, accurate diagnosis, appropriate reduction and rigid fixation, and complication prevention are required. In particular, as mandibular condyle fracture may cause long-term complications such as malocclusion, particularly open bite, reduced posterior facial height, and facial asymmetry in addition to chronic pain and mobility limitation, great caution should be taken. Accordingly, the authors review a general overview of condyle fracture. PMID:22872830

  1. On Being the Right Size as an Animal with Plastids

    PubMed Central

    Rauch, Cessa; Jahns, Peter; Tielens, Aloysius G. M.; Gould, Sven B.; Martin, William F.

    2017-01-01

    Plastids typically reside in plant or algal cells—with one notable exception. There is one group of multicellular animals, sea slugs in the order Sacoglossa, members of which feed on siphonaceous algae. The slugs sequester the ingested plastids in the cytosol of cells in their digestive gland, giving the animals the color of leaves. In a few species of slugs, including members of the genus Elysia, the stolen plastids (kleptoplasts) can remain morphologically intact for weeks and months, surrounded by the animal cytosol, which is separated from the plastid stroma by only the inner and outer plastid membranes. The kleptoplasts of the Sacoglossa are the only case described so far in nature where plastids interface directly with the metazoan cytosol. That makes them interesting in their own right, but it has also led to the idea that it might someday be possible to engineer photosynthetic animals. Is that really possible? And if so, how big would the photosynthetic organs of such animals need to be? Here we provide two sets of calculations: one based on a best case scenario assuming that animals with kleptoplasts can be, on a per cm2 basis, as efficient at CO2 fixation as maize leaves, and one based on 14CO2 fixation rates measured in plastid-bearing sea slugs. We also tabulate an overview of the literature going back to 1970 reporting direct measurements or indirect estimates of the CO2 fixing capabilities of Sacoglossan slugs with plastids. PMID:28861094

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    F. Robert Tabita

    The ocean/atmosphere interface is the major conduit for the entry of atmospheric CO2 into oceanic carbon pools that can lead to sequestration or recycled release. The surface layers of the temperate and tropical oceans are often too oligotrophic to result in significant primary production that might lead to carbon sequestration. However, nutrient-rich river plumes can alter the primary production schemes of oligotrophic ocean basins, resulting in increased phytoplankton biomass and carbon fixation. The ultimate goal of this proposal is to understand these carbon cycling processes in major river plumes from the molecular processes involved in biological DIC uptake to contributionmore » to basin-wide production and potential sequestration. Our research efforts include a field component to answer the questions raised concerning DIC in plumes entering ocean basins and an intensive genomics approach to understanding these processes on the cellular level using genomic fragments obtained from plume biota. This project is actually composed of 3 separate PI-initiated projects, including projects at the University of South Florida (USF) College of Marine Science, the University of Puerto Rico, and The Ohio State University. This report concerns research conducted at The Ohio State University and studies performed in collaboration with USF. In order to understand what might occur in the field, two model sysytems were studied in the laboratory. Carbon fixation in the unicellular cyanobacterium Synechococcus sp Strain PCC 7002 took place mainly through the CBB pathway. Nitrogen nutrition in cyanobacteria is regulated by NtcA, a transcriptional regulatory protein. We show that the rubisco activity and gene (rbcL) expression were not affected when cells were exposed to prolonged periods of nitrogen stress, however cells appear to use intracellular nitrogen reserves during nitrogen starvation. Transcripts of the global transcriptional regulator NtcA are expressed under nitrogen starved and nitrogen replete (nitrate or ammonia) growth conditions, with slight decrease in transcription in the presence of ammonia. These results suggest that intracellular levels of NtcA do not directly affect carbon metabolism. Gene expression of the other nitrogen regulatory signal transducer, encoded by glnB was also studied. The glnB gene was highly transcribed in nitrogen-limited cells compared to nitrogen depleted growth conditions. Therefore in the cyanobacterium Synechococcus sp PCC 7002, nitrogen does not affect the metabolic potential and carbon fixation. The NtcA regulator behaved differently and studies indicate that the product of the ntcA gene (NtcA) has an indirect effect on ca rbon assimilation and the genes involved in the carbon concentrating mechanism of strain 7002. The product of the ccmM gene plays an important role in carboxysome assembly and inorganic carbon transport within the cell. We hypothesized that under nitrogen limiting conditions the transcriptional regulator NtcA binds at the region upstream of ccmM, near the transcription start site, and blocks the transcription of ccmM. This hypothesis was experimentally proven. In another study, with USF researchers, we performed experiments in situ on RubisCO espression. To determine the relationship between expression of the major gene in carbon fixation, we evaluated rbcL mRNA abundance using novel quantitative PCR assays, phytoplankton cell analyses, photophysiological parameters, and pCO2 in and around the Mississippi River plume (MRP) in the Gulf of Mexico. Lower salinity (30–32) stations were dominated by rbcL mRNA concentrations from heterokonts; i.e., diatoms and pelagophytes, which were at least an order of magnitude greater than haptophytes, a-Synechococcus or high-light Prochlorococcus. However, rbcL transcript abundances were similar among these groups at oligotrophic stations (salinity 34–36). Diatom cell counts and heterokont rbcL RNA showed a strong negative correlation to seawater pCO2. While Prochlorococcus cells did not exhibit a large difference between low and high pCO2 water, Prochlorococcus rbcL RNA concentrations had a strong positive correlation to pCO2, suggesting a very low level of RuBisCO RNA transcription among Prochlorococcus in the plume waters, possibly due to their relatively poor carbon concentrating mechanisms (CCMs). These results provide molecular evidence that diatom/pelagophyte productivity is largely responsible for the large CO2 drawdown occurring in the MRP, based on the cooccurrence of elevated RuBisCO gene transcript concentrations from this group and reduced seawater pCO2 levels. This may partly be due to efficient CCMs that enable heterokont eukaryotes such as diatoms to continue fixing CO2 in the face of strong CO2 drawdown. This work represents the first attempt to relate in situ microbial gene expression to contemporaneous CO2 flux measurements in the ocean.« less

  3. Porcine Intestinal Mast Cells. Evaluation of Different Fixatives for Histochemical Staining Techniques Considering Tissue Shrinkage

    PubMed Central

    Rieger, J.; Twardziok, S.; Huenigen, H.; Hirschberg, R.M.; Plendl, J.

    2013-01-01

    Staining of mast cells (MCs), including porcine ones, is critically dependent upon the fixation and staining technique. In the pig, mucosal and submucosal MCs do not stain or stain only faintly after formalin fixation. Some fixation methods are particularly recommended for MC staining, for example the fixation with Carnoy or lead salts. Zinc salt fixation (ZSF) has been reported to work excellently for the preservation of fixation-sensitive antigens. The aim of this study was to establish a reliable histological method for counting of MCs in the porcine intestinum. For this purpose, different tissue fixation and staining methods that also allow potential subsequent immunohistochemical investigations were evaluated in the porcine mucosa, as well as submucosa of small and large intestine. Tissues were fixed in Carnoy, lead acetate, lead nitrate, Zamboni and ZSF and stained subsequently with either polychromatic methylene blue, alcian blue or toluidine blue. For the first time our study reveals that ZSF, a heavy metal fixative, preserves metachromatic staining of porcine MCs. Zamboni fixation was not suitable for histochemical visualization of MCs in the pig intestine. All other tested fixatives were suitable. Alcian blue and toluidine blue co-stained intestinal goblet cells which made a prima facie identification of MCs difficult. The polychromatic methylene blue proved to be the optimal staining. In order to compare MC counting results of the different fixation methods, tissue shrinkage was taken into account. As even the same fixation caused shrinkagedifferences between tissue from small and large intestine, different factors for each single fixation and intestinal localization had to be calculated. Tissue shrinkage varied between 19% and 57%, the highest tissue shrinkage was found after fixation with ZSF in the large intestine, the lowest one in the small intestine after lead acetate fixation. Our study emphasizes that MC counting results from data using different fixation techniques can only be compared if the respective studyimmanent shrinkage factor has been determined and quantification results are adjusted accordingly. PMID:24085270

  4. Cyanophages: Starving the Host to Recruit Resources.

    PubMed

    Kaplan, Aaron

    2016-06-20

    Phytoplankton and the viruses that infect them are locked in an evolutionary arms race, the nature of which is presently being revealed. A new study shows that cyanophage-mediated inhibition of CO2 fixation enables the phages to recruit photosynthetically formed redox and ATP to fulfill their nucleotide and metabolic demand. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Atomic resolution x-ray structure of the substrate recognition domain of higher plant rubisco activase

    USDA-ARS?s Scientific Manuscript database

    The rapid release of tight-binding inhibitors from dead-end Rubisco complexes requires the activity of Rubisco activase, an AAA+ ATPase that utilizes chemo-mechanical energy to catalyze the reactivation of Rubisco. Activase is thought to play a central role in coordinating the rate of CO2 fixation w...

  6. Kinetin Reversal of NaCl Effects

    PubMed Central

    Katz, Adriana; Dehan, Klara; Itai, Chanan

    1978-01-01

    Leaf discs of Nicotiana rustica L. were floated on NaCl in the presence of kinetin or abscisic acid. On the 5th day 14CO2 fixation, [3H]leucine incorporation, stomatal conductance, and chlorophyll content were determined. Kinetin either partially or completely reversed the inhibitory effects of NaCl while ABA had no effect. PMID:16660618

  7. Sedum-dominated green-roofs in a semi-arid region increase CO2 concentrations during the dry season.

    PubMed

    Agra, Har'el; Klein, Tamir; Vasl, Amiel; Shalom, Hadar; Kadas, Gyongyver; Blaustein, Leon

    2017-04-15

    Green roofs are expected to absorb and store carbon in plants and soils and thereby reduce the high CO 2 concentration levels in big cities. Sedum species, which are succulent perennials, are commonly used in extensive green roofs due to their shallow root system and ability to withstand long water deficiencies. Here we examined CO 2 fixation and emission rates for Mediterranean Sedum sediforme on green-roof experimental plots. During late winter to early spring, we monitored CO 2 concentrations inside transparent tents placed over 1m 2 plots and followed gas exchange at the leaf level using a portable gas-exchange system. We found high rates of CO 2 emission at daytime, which is when CO 2 concentration in the city is the highest. Both plot- and leaf-scale measurements showed that these CO 2 emissions were not fully compensated by the nighttime uptake. We conclude that although carbon sequestration may only be a secondary benefit of green roofs, for improving this ecosystem service, other plant species than Sedum should also be considered for use in green roofs, especially in Mediterranean and other semi-arid climates. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. N-fixation in legumes--An assessment of the potential threat posed by ozone pollution.

    PubMed

    Hewitt, D K L; Mills, G; Hayes, F; Norris, D; Coyle, M; Wilkinson, S; Davies, W

    2016-01-01

    The growth, development and functioning of legumes are often significantly affected by exposure to tropospheric ozone (O3) pollution. However, surprisingly little is known about how leguminous Nitrogen (N) fixation responds to ozone, with a scarcity of studies addressing this question in detail. In the last decade, ozone impacts on N-fixation in soybean, cowpea, mung bean, peanut and clover have been shown for concentrations which are now commonly recorded in ambient air or are likely to occur in the near future. We provide a synthesis of the existing literature addressing this issue, and also explore the effects that may occur on an agroecosystem scale by predicting reductions in Trifolium (clovers) root nodule biomass in United Kingdom (UK) pasture based on ozone concentration data for a "high" (2006) and "average" ozone year (2008). Median 8% and 5% reductions in clover root nodule biomass in pasture across the UK were predicted for 2006 and 2008 respectively. Seasonal exposure to elevated ozone, or short-term acute concentrations >100 ppb, are sufficient to reduce N-fixation and/or impact nodulation, in a range of globally-important legumes. However, an increasing global burden of CO2, the use of artificial fertiliser, and reactive N-pollution may partially mitigate impacts of ozone on N-fixation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Cemented fixation with PMMA or Bis-GMA resin hydroxyapatite cement: effect of implant surface roughness.

    PubMed

    Walsh, W R; Svehla, M J; Russell, J; Saito, M; Nakashima, T; Gillies, R M; Bruce, W; Hori, R

    2004-09-01

    Implant surface roughness is an important parameter governing the overall mechanical properties at the implant-cement interface. This study investigated the influence of surface roughness using polymethylmethcrylate (PMMA) and a Bisphenol-a-glycidylmethacyrlate resin-hydroxyapatite cement (CAP). Mechanical fixation at the implant-cement interface was evaluated in vitro using static shear and fatigue loading with cobalt chrome alloy (CoCr) dowels with different surface roughness preparations. Increasing surface roughness improved the mechanical properties at the implant-cement interface for both types of cement. CAP cement fixation was superior to PMMA under static and dynamic loading.

  10. Photosynthetic potential and accumulation of assimilates in the developing chloroembryos of Cyamposis tetragonoloba (L. ) Taub

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaladharan, P.; Vivekanandan, M.

    1990-02-01

    The photosynthetic potential of leaves and chloroembryos of Cyamopsis tetragonoloba (L.) Taub as measured by {sup 14}C-bicarbonate fixation, Hill activity, and in vivo fluorescence transients is compared. On a chlorophyll basis, dark fixation of NaH{sup 14}CO{sub 3} in chloroembryos was 1.5 times higher than that of the leaf, whereas carbon fixation under illumination was threefold higher in the leaf than in the embryos. Rates of O{sub 2} evolution were four times more in embryo than in leaf chloroplasts. Shading of developing fruits on the day of anthesis for 10 days induced a 65% reduction in dry matter accumulation in themore » etiolated embryos, as compared to the normal green embryos of the same fruit half covered by a transparent Polythene sheet. The reduction in dry weight, size of the embryos, and levels of assimilates after shading the developing fruits may be ascribed to partial autotrophy of the chloroembryos.« less

  11. Photocatalytic conversion of CO(2) into renewable hydrocarbon fuels: state-of-the-art accomplishment, challenges, and prospects.

    PubMed

    Tu, Wenguang; Zhou, Yong; Zou, Zhigang

    2014-07-16

    Photocatalytic reduction of CO2 into hydrocarbon fuels, an artificial photosynthesis, is based on the simulation of natural photosynthesis in green plants, whereby O2 and carbohydrates are produced from H2 O and CO2 using sunlight as an energy source. It couples the reductive half-reaction of CO2 fixation with a matched oxidative half-reaction such as water oxidation, to achieve a carbon neutral cycle, which is like killing two birds with one stone in terms of saving the environment and supplying future energy. The present review provides an overview and highlights recent state-of-the-art accomplishments of overcoming the drawback of low photoconversion efficiency and selectivity through the design of highly active photocatalysts from the point of adsorption of reactants, charge separation and transport, light harvesting, and CO2 activation. It specifically includes: i) band-structure engineering, ii) nanostructuralization, iii) surface oxygen vacancy engineering, iv) macro-/meso-/microporous structuralization, v) exposed facet engineering, vi) co-catalysts, vii) the development of a Z-scheme system. The challenges and prospects for future development of this field are also present. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. In situ treatment of arsenic contaminated groundwater by aquifer iron coating: Experimental study.

    PubMed

    Xie, Xianjun; Wang, Yanxin; Pi, Kunfu; Liu, Chongxuan; Li, Junxia; Liu, Yaqing; Wang, Zhiqiang; Duan, Mengyu

    2015-09-15

    In situ arsenic removal from groundwater by an aquifer iron coating method has great potential to be a cost effective and simple groundwater remediation technology, especially in rural and remote areas where groundwater is used as the main water source for drinking. The in situ arsenic removal technology was first optimized by simulating arsenic removal in various quartz sand columns under anoxic conditions. The effectiveness was then evaluated in an actual high-arsenic groundwater environment. The arsenic removal mechanism by the coated iron oxide/hydroxide was investigated under different conditions using scanning electron microscopy (SEM)/X-ray absorption spectroscopy, electron probe microanalysis, and Fourier transformation infrared spectroscopy. Aquifer iron coating method was developed via a 4-step alternating injection of oxidant, iron salt and oxygen-free water. A continuous injection of 5.0 mmol/L FeSO4 and 2.5 mmol/L NaClO for 96 h can form a uniform goethite coating on the surface of quartz sand without causing clogging. At a flow rate of 7.2 mL/min of the injection reagents, arsenic (as Na2HAsO4) and tracer fluorescein sodium to pass through the iron-coated quartz sand column were approximately at 126 and 7 column pore volumes, respectively. The retardation factor of arsenic was 23.0, and the adsorption capacity was 0.11 mol As per mol Fe. In situ arsenic removal from groundwater in an aquifer was achieved by simultaneous injections of As(V) and Fe(II) reagents. Arsenic fixation resulted from a process of adsorption/co-precipitation with fine goethite particles by way of bidentate binuclear complexes. Therefore, the study results indicate that the high arsenic removal efficiency of the in situ aquifer iron coating technology likely resulted from the expanded specific surface area of the small goethite particles, which enhanced arsenic sorption capability and/or from co-precipitation of arsenic on the surface of goethite particles. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Biochemical characterization of predicted Precambrian RuBisCO

    PubMed Central

    Shih, Patrick M.; Occhialini, Alessandro; Cameron, Jeffrey C.; Andralojc, P John; Parry, Martin A. J.; Kerfeld, Cheryl A.

    2016-01-01

    The antiquity and global abundance of the enzyme, RuBisCO, attests to the crucial and longstanding role it has played in the biogeochemical cycles of Earth over billions of years. The counterproductive oxygenase activity of RuBisCO has persisted over billions of years of evolution, despite its competition with the carboxylase activity necessary for carbon fixation, yet hypotheses regarding the selective pressures governing RuBisCO evolution have been limited to speculation. Here we report the resurrection and biochemical characterization of ancestral RuBisCOs, dating back to over one billion years ago (Gyr ago). Our findings provide an ancient point of reference revealing divergent evolutionary paths taken by eukaryotic homologues towards improved specificity for CO2, versus the evolutionary emphasis on increased rates of carboxylation observed in bacterial homologues. Consistent with these distinctions, in vivo analysis reveals the propensity of ancestral RuBisCO to be encapsulated into modern-day carboxysomes, bacterial organelles central to the cyanobacterial CO2 concentrating mechanism. PMID:26790750

  14. Biochemical characterization of predicted Precambrian RuBisCO.

    PubMed

    Shih, Patrick M; Occhialini, Alessandro; Cameron, Jeffrey C; Andralojc, P John; Parry, Martin A J; Kerfeld, Cheryl A

    2016-01-21

    The antiquity and global abundance of the enzyme, RuBisCO, attests to the crucial and longstanding role it has played in the biogeochemical cycles of Earth over billions of years. The counterproductive oxygenase activity of RuBisCO has persisted over billions of years of evolution, despite its competition with the carboxylase activity necessary for carbon fixation, yet hypotheses regarding the selective pressures governing RuBisCO evolution have been limited to speculation. Here we report the resurrection and biochemical characterization of ancestral RuBisCOs, dating back to over one billion years ago (Gyr ago). Our findings provide an ancient point of reference revealing divergent evolutionary paths taken by eukaryotic homologues towards improved specificity for CO2, versus the evolutionary emphasis on increased rates of carboxylation observed in bacterial homologues. Consistent with these distinctions, in vivo analysis reveals the propensity of ancestral RuBisCO to be encapsulated into modern-day carboxysomes, bacterial organelles central to the cyanobacterial CO2 concentrating mechanism.

  15. A RuBisCO-mediated carbon metabolic pathway in methanogenic archaea

    PubMed Central

    Kono, Takunari; Mehrotra, Sandhya; Endo, Chikako; Kizu, Natsuko; Matusda, Mami; Kimura, Hiroyuki; Mizohata, Eiichi; Inoue, Tsuyoshi; Hasunuma, Tomohisa; Yokota, Akiho; Matsumura, Hiroyoshi; Ashida, Hiroki

    2017-01-01

    Two enzymes are considered to be unique to the photosynthetic Calvin–Benson cycle: ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO), responsible for CO2 fixation, and phosphoribulokinase (PRK). Some archaea possess bona fide RuBisCOs, despite not being photosynthetic organisms, but are thought to lack PRK. Here we demonstrate the existence in methanogenic archaea of a carbon metabolic pathway involving RuBisCO and PRK, which we term ‘reductive hexulose-phosphate' (RHP) pathway. These archaea possess both RuBisCO and a catalytically active PRK whose crystal structure resembles that of photosynthetic bacterial PRK. Capillary electrophoresis-mass spectrometric analysis of metabolites reveals that the RHP pathway, which differs from the Calvin–Benson cycle only in a few steps, is active in vivo. Our work highlights evolutionary and functional links between RuBisCO-mediated carbon metabolic pathways in methanogenic archaea and photosynthetic organisms. Whether the RHP pathway allows for autotrophy (that is, growth exclusively with CO2 as carbon source) remains unknown. PMID:28082747

  16. Dilution-triggered SMM behavior under zero field in a luminescent Zn2Dy2 tetranuclear complex incorporating carbonato-bridging ligands derived from atmospheric CO2 fixation.

    PubMed

    Titos-Padilla, Silvia; Ruiz, José; Herrera, Juan Manuel; Brechin, Euan K; Wersndorfer, Wolfgang; Lloret, Francesc; Colacio, Enrique

    2013-08-19

    The synthesis, structure, magnetic, and luminescence properties of the Zn2Dy2 tetranuclear complex of formula {(μ3-CO3)2[Zn(μ-L)Dy(NO3)]2}·4CH3OH (1), where H2L is the compartmental ligand N,N',N″-trimethyl-N,N″-bis(2-hydroxy-3-methoxy-5-methylbenzyl)diethylenetriamine, are reported. The carbonate anions that bridge two Zn(μ-L)Dy units come from the atmospheric CO2 fixation in a basic medium. Fast quantum tunneling relaxation of the magnetization (QTM) is very effective in this compound, so that single-molecule magnet (SMM) behavior is only observed in the presence of an applied dc field of 1000 Oe, which is able to partly suppress the QTM relaxation process. At variance, a 1:10 Dy:Y magnetic diluted sample, namely, 1', exhibits SMM behavior at zero applied direct-current (dc) field with about 3 times higher thermal energy barrier than that in 1 (U(eff) = 68 K), thus demonstrating the important role of intermolecular dipolar interactions in favoring the fast QTM relaxation process. When a dc field of 1000 Oe is applied to 1', the QTM is almost fully suppressed, the reversal of the magnetization slightly slows, and U(eff) increases to 78 K. The dilution results combined with micro-SQUID magnetization measurements clearly indicate that the SMM behavior comes from single-ion relaxation of the Dy(3+) ions. Analysis of the relaxation data points out that a Raman relaxation process could significantly affect the Orbach relaxation process, reducing the thermal energy barrier U(eff) for slow relaxation of the magnetization.

  17. Design and analysis of synthetic carbon fixation pathways

    PubMed Central

    Bar-Even, Arren; Noor, Elad; Lewis, Nathan E.; Milo, Ron

    2010-01-01

    Carbon fixation is the process by which CO2 is incorporated into organic compounds. In modern agriculture in which water, light, and nutrients can be abundant, carbon fixation could become a significant growth-limiting factor. Hence, increasing the fixation rate is of major importance in the road toward sustainability in food and energy production. There have been recent attempts to improve the rate and specificity of Rubisco, the carboxylating enzyme operating in the Calvin–Benson cycle; however, they have achieved only limited success. Nature employs several alternative carbon fixation pathways, which prompted us to ask whether more efficient novel synthetic cycles could be devised. Using the entire repertoire of approximately 5,000 metabolic enzymes known to occur in nature, we computationally identified alternative carbon fixation pathways that combine existing metabolic building blocks from various organisms. We compared the natural and synthetic pathways based on physicochemical criteria that include kinetics, energetics, and topology. Our study suggests that some of the proposed synthetic pathways could have significant quantitative advantages over their natural counterparts, such as the overall kinetic rate. One such cycle, which is predicted to be two to three times faster than the Calvin–Benson cycle, employs the most effective carboxylating enzyme, phosphoenolpyruvate carboxylase, using the core of the naturally evolved C4 cycle. Although implementing such alternative cycles presents daunting challenges related to expression levels, activity, stability, localization, and regulation, we believe our findings suggest exciting avenues of exploration in the grand challenge of enhancing food and renewable fuel production via metabolic engineering and synthetic biology. PMID:20410460

  18. A two-dimensional microscale model of gas exchange during photosynthesis in maize (Zea mays L.) leaves.

    PubMed

    Retta, Moges; Ho, Quang Tri; Yin, Xinyou; Verboven, Pieter; Berghuijs, Herman N C; Struik, Paul C; Nicolaï, Bart M

    2016-05-01

    CO2 exchange in leaves of maize (Zea mays L.) was examined using a microscale model of combined gas diffusion and C4 photosynthesis kinetics at the leaf tissue level. Based on a generalized scheme of photosynthesis in NADP-malic enzyme type C4 plants, the model accounted for CO2 diffusion in a leaf tissue, CO2 hydration and assimilation in mesophyll cells, CO2 release from decarboxylation of C4 acids, CO2 fixation in bundle sheath cells and CO2 retro-diffusion from bundle sheath cells. The transport equations were solved over a realistic 2-D geometry of the Kranz anatomy obtained from light microscopy images. The predicted responses of photosynthesis rate to changes in ambient CO2 and irradiance compared well with those obtained from gas exchange measurements. A sensitivity analysis showed that the CO2 permeability of the mesophyll-bundle sheath and airspace-mesophyll interfaces strongly affected the rate of photosynthesis and bundle sheath conductance. Carbonic anhydrase influenced the rate of photosynthesis, especially at low intercellular CO2 levels. In addition, the suberin layer at the exposed surface of the bundle sheath cells was found beneficial in reducing the retro-diffusion. The model may serve as a tool to investigate CO2 diffusion further in relation to the Kranz anatomy in C4 plants. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  19. Influence of Calcium Carbonate on Cobalt Phytoavailability in Fluvo-aquic Soil

    NASA Astrophysics Data System (ADS)

    Wang, Mengyuan; Liu, Borui; Ma, Yufei; Xue, Qianhui; Huang, Qing

    2017-12-01

    In order to study the efficacy of calcium carbonate for cobalt (Co) fixation, as well as its influence on chemical speciation of Co in fluvo-aquic soil, pakchoies were planted in the soil with different quantities of exogenous Co and calcium carbonate. Co concentrations in the mature plant shoots were analyzed, and the chemical speciation of Co were detected with the Tessier five-step sequential extraction. The results showed that the Co concentration in plants tended to decrease first and then get higher with the concentration of calcium carbonate increasing (0-12g/kg) in soil (P < 0.05). The proportion of Co in the exchangeable form in the soil followed the similar tendency (P < 0.05), which might transform from the exchangeable form into the carbonate-associated and organic-associated forms. A regression analysis showed that when the concentrations of calcium carbonate were in the range of 5.0 to 7.5 g/kg, Co concentration in the plant reached to the lowest point, while the proportion of Co in the exchangeable form reached the minimum. In conclusion, to get the optimum effect, the dosage of calcium carbonate should be kept in the range of 5.0 to 7.5 g/kg when it is applied to Co fixation.

  20. Bioabsorbable bone fixation plates for X-ray imaging diagnosis by a radiopaque layer of barium sulfate and poly(lactic-co-glycolic acid).

    PubMed

    Choi, Sung Yoon; Hur, Woojune; Kim, Byeung Kyu; Shasteen, Catherine; Kim, Myung Hun; Choi, La Mee; Lee, Seung Ho; Park, Chun Gwon; Park, Min; Min, Hye Sook; Kim, Sukwha; Choi, Tae Hyun; Choy, Young Bin

    2015-04-01

    Bone fixation systems made of biodegradable polymers are radiolucent, making post-operative diagnosis with X-ray imaging a challenge. In this study, to allow X-ray visibility, we separately prepared a radiopaque layer and attached it to a bioabsorbable bone plate approved for clinical use (Inion, Finland). We employed barium sulfate as a radiopaque material due to the high X-ray attenuation coefficient of barium (2.196 cm(2) /g). The radiopaque layer was composed of a fine powder of barium sulfate bound to a biodegradable material, poly(lactic-co-glycolic acid) (PLGA), to allow layer degradation similar to the original Inion bone plate. In this study, we varied the mass ratio of barium sulfate and PLGA in the layer between 3:1 w/w and 10:1 w/w to modulate the degree and longevity of X-ray visibility. All radiopaque plates herein were visible via X-ray, both in vitro and in vivo, for up to 40 days. For all layer types, the radio-opacity decreased with time due to the swelling and degradation of PLGA, and the change in the layer shape was more apparent for layers with a higher PLGA content. The radiopaque plates released, at most, 0.5 mg of barium sulfate every 2 days in a simulated in vitro environment, which did not appear to affect the cytotoxicity. The radiopaque plates also exhibited good biocompatibility, similar to that of the Inion plate. Therefore, we concluded that the barium sulfate-based, biodegradable plate prepared in this work has the potential to be used as a fixation device with both X-ray visibility and biocompatibility. © 2014 Wiley Periodicals, Inc.

  1. Biomechanical and Histologic Evaluation of LifeMesh™: A Novel Self-Fixating Mesh Adhesive.

    PubMed

    Shahan, Charles P; Stoikes, Nathaniel N; Roan, Esra; Tatum, James; Webb, David L; Voeller, Guy R

    2018-04-01

    Mesh fixation with the use of adhesives results in an immediate and total surface area adhesion of the mesh, removing the need for penetrating fixation points. The purpose of this study was to evaluate LifeMesh™, a prototype mesh adhesive technology which coats polypropylene mesh. The strength of the interface between mesh and tissue, inflammatory responses, and histology were measured at varying time points in a swine model, and these results were compared with sutures. Twenty Mongrel swine underwent implantation of LifeMesh™ and one piece of bare polypropylene mesh secured with suture (control). One additional piece of either LifeMesh™ or control was used for histopathologic evaluation. The implants were retrieved at 3, 7, and 14 days. Only 3- and 7-day specimens underwent lap shear testing. On Day 3, LifeMesh™ samples showed considerably less contraction than sutured samples. The interfacial strength of Day 3 LifeMesh™ samples was similar to that of sutured samples. At seven days, LifeMesh™ samples continued to show significantly less contraction than sutured samples. The strength of fixation at seven days was greater in the control samples. The histologic findings were similar in LifeMesh™ and control samples. LifeMesh™ showed significantly less contraction than sutured samples at all measured time points. Although fixation strength was similar at three days, the interfacial strength of LifeMesh™ remained unchanged, whereas sutured controls increased by day 7. With histologic equivalence, considerably less contraction, and similar early fixation strength, LifeMesh™ is a viable mesh fixation technology.

  2. Crassulacean acid metabolism-cycling in Euphorbia milii.

    PubMed

    Herrera, Ana

    2013-01-01

    Crassulacean acid metabolism (CAM) occurs in many Euphorbiaceae, particularly Euphorbia, a genus with C3 and C4 species as well. With the aim of contributing to our knowledge of the evolution of CAM in this genus, this study examined the possible occurrence of CAM in Euphorbia milii, a species with leaf succulence and drought tolerance suggestive of this carbon fixation pathway. Leaf anatomy consisted of a palisade parenchyma, a spongy parenchyma and a bundle sheath with chloroplasts, which indicates the possible functioning of C2 photosynthesis. No evidence of nocturnal CO2 fixation was found in plants of E. milii either watered or under drought; watered plants had a low nocturnal respiration rate (R). After 12 days without watering, the photosynthetic rate (P N) decreased 85 % and nocturnal R was nearly zero. Nocturnal H(+) accumulation (ΔH(+)) in watered plants was 18 ± 2 (corresponding to malate) and 18 ± 4 (citrate) μmol H(+) (g fresh mass)(-1). Respiratory CO2 recycling through acid synthesis contributed to a night-time water saving of 2 and 86 % in watered plants and plants under drought, respectively. Carbon isotopic composition (δ(13)C) was -25.2 ± 0.7 ‰ in leaves and -24.7 ± 0.1 ‰ in stems. Evidence was found for the operation of weak CAM in E. milii, with statistically significant ΔH(+), no nocturnal CO2 uptake and values of δ(13)C intermediate between C3 and constitutive CAM plants; ΔH(+) was apparently attributable to both malate and citrate. The results suggest that daily malate accumulation results from recycling of part of the nocturnal respiratory CO2, which helps explain the occurrence of an intermediate value of leaf δ(13)C. Euphorbia milii can be considered as a CAM-cycling species. The significance of the operation of CAM-cycling in E. milii lies in water conservation, rather than carbon acquisition. The possible occurrence of C2 photosynthesis merits research.

  3. New concept of 3D printed bone clip (polylactic acid/hydroxyapatite/silk composite) for internal fixation of bone fractures.

    PubMed

    Yeon, Yeung Kyu; Park, Hae Sang; Lee, Jung Min; Lee, Ji Seung; Lee, Young Jin; Sultan, Md Tipu; Seo, Ye Bin; Lee, Ok Joo; Kim, Soon Hee; Park, Chan Hum

    Open reduction with internal fixation is commonly used for the treatment of bone fractures. However, postoperative infection associated with internal fixation devices (intramedullary nails, plates, and screws) remains a significant complication, and it is technically difficult to fix multiple fragmented bony fractures using internal fixation devices. In addition, drilling in the bone to install devices can lead to secondary fracture, bone necrosis associated with postoperative infection. In this study, we developed bone clip type internal fixation device using three- dimensional (3D) printing technology. Standard 3D model of the bone clip was generated based on computed tomography (CT) scan of the femur in the rat. Polylacticacid (PLA), hydroxyapatite (HA), and silk were used for bone clip material. The purpose of this study was to characterize 3D printed PLA, PLA/HA, and PLA/HA/Silk composite bone clip and evaluate the feasibility of these bone clips as an internal fixation device. Based on the results, PLA/HA/Silk composite bone clip showed similar mechanical property, and superior biocompatibility compared to other types of the bone clip. PLA/HA/Silk composite bone clip demonstrated excellent alignment of the bony segments across the femur fracture site with well-positioned bone clip in an animal study. Our 3D printed bone clips have several advantages: (1) relatively noninvasive (drilling in the bone is not necessary), (2) patient-specific design (3) mechanically stable device, and (4) it provides high biocompatibility. Therefore, we suggest that our 3D printed PLA/HA/Silk composite bone clip is a possible internal fixation device.

  4. Carbon Dioxide Exchange and Acidity Levels in Detached Pineapple, Ananas comosus (L.), Merr., Leaves during the Day at Various Temperatures, Oxygen and Carbon Dioxide Concentrations.

    PubMed

    Moradshahi, A; Vines, H M; Black, C C

    1977-02-01

    The effects of temperature, O(2), and CO(2) on titratable acid content and on CO(2) exchange were measured in detached pineapple (Ananas comosus) leaves during the daily 15-hour light period. Comparative measurements were made in air and in CO(2)-free air. Increasing the leaf temperature from 20 to 35 C decreased the total CO(2) uptake in air and slightly increased the total CO(2) released into CO(2)-free air. Between 25 and 35 C, the activation energy for daily acid loss was near 12 kcal mol(-1), but at lower temperatures the activation energy was much greater.Increasing O(2) or decreasing the CO(2) concentration decreased the total CO(2) fixation in air, whereas the total CO(2) released in CO(2)-free air was increased. The total acid content remained constant at 20 C, but it decreased progressively with increasing temperature both in air and in CO(2)-free air. The total acid content at 30 C remained constant in 2% O(2) irrespective of CO(2) concentration. The total acid content decreased in 21 and 50% O(2) as the CO(2) increased from 0 to 300, and 540 mul/l of CO(2). The data indicate that photorespiration is present in pineapple. The lack of acid loss in 2% O(2) suggests that light deacidification is dependent upon respiration and that higher O(2) concentrations are required to saturate deacidification.

  5. Development of an activity-directed selection system enabled significant improvement of the carboxylation efficiency of Rubisco.

    PubMed

    Cai, Zhen; Liu, Guoxia; Zhang, Junli; Li, Yin

    2014-07-01

    Photosynthetic CO(2) fixation is the ultimate source of organic carbon on earth and thus is essential for crop production and carbon sequestration. Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) catalyzes the first step of photosynthetic CO(2) fixation. However, the extreme low carboxylation efficiency of Rubisco makes it the most attractive target for improving photosynthetic efficiency. Extensive studies have focused on re-engineering a more efficient enzyme, but the effort has been impeded by the limited understanding of its structure-function relationships and the lack of an efficient selection system towards its activity. To address the unsuccessful molecular engineering of Rubisco, we developed an Escherichia coli-based activity-directed selection system which links the growth of host cell solely to the Rubisco activity therein. A Synechococcus sp. PCC7002 Rubisco mutant with E49V and D82G substitutions in the small subunit was selected from a total of 15,000 mutants by one round of evolution. This mutant showed an 85% increase in specific carboxylation activity and a 45% improvement in catalytic efficiency towards CO(2). The small-subunit E49V mutation was speculated to influence holoenzyme catalysis through interaction with the large-subunit Q225. This interaction is conserved among various Rubisco from higher plants and Chlamydomonas reinhardtii. Knowledge of these might provide clues for engineering Rubisco from higher plants, with the potential of increasing the crop yield.

  6. A New Class of Metal-Cyclam-Based Zirconium Metal–Organic Frameworks for CO 2 Adsorption and Chemical Fixation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Jie; Usov, Pavel M.; Xu, Wenqian

    Metal–organic frameworks (MOFs) have shown great promise in catalysis, mainly due to their high content of active centers, large internal surface areas, tunable pore size, and versatile chemical functionalities. However, it is a challenge to rationally design and construct MOFs that can serve as highly stable and reusable heterogeneous catalysts. Here two new robust 3D porous metal-cyclam-based zirconium MOFs, denoted VPI-100 (Cu) and VPI-100 (Ni), have been prepared by a modulated synthetic strategy. The frameworks are assembled by eight-connected Zr 6 clusters and metallocyclams as organic linkers. Importantly, the cyclam core has accessible axial coordination sites for guest interactions andmore » maintains the electronic properties exhibited by the parent cyclam ring. The VPI-100 MOFs exhibit excellent chemical stability in various organic and aqueous solvents over a wide pH range and show high CO 2 uptake capacity (up to ~9.83 wt% adsorption at 273 K under 1 atm). Moreover, VPI-100 MOFs demonstrate some of the highest reported catalytic activity values (turnover frequency and conversion efficiency) among Zr-based MOFs for the chemical fixation of CO 2 with epoxides, including sterically hindered epoxides. Thus, the MOFs, which bear dual catalytic sites (Zr and Cu/Ni), enable chemistry not possible with the cyclam ligand under the same conditions and can be used as recoverable stable heterogeneous catalysts without losing performance.« less

  7. A New Class of Metal-Cyclam-Based Zirconium Metal–Organic Frameworks for CO 2 Adsorption and Chemical Fixation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Jie; Usov, Pavel M.; Xu, Wenqian

    Metal-organic frameworks (MOFs) have shown great promise in catalysis, mainly due to their high content of active centers, large internal surface areas, tunable pore size, and versatile chemical functionalities. However, it is a challenge to rationally design and construct MOFs that can serve as highly stable and reusable heterogeneous catalysts. Here two new robust 3D porous metal-cyclam-based zirconium MOFs, denoted VPI-100 (Cu) and VPI-100 (Ni), have been prepared by a modulated synthetic strategy. The frameworks are assembled by eight-connected Zr-6 clusters and metallocyclams as organic linkers. Importantly, the cyclam core has accessible axial coordination sites for guest interactions and maintainsmore » the electronic properties exhibited by the parent cyclam ring. The VPI-100 MOFs exhibit excellent chemical stability in various organic and aqueous solvents over a wide pH range and show high CO2 uptake capacity (up to similar to 9.83 wt% adsorption at 273 K under 1 atm). Moreover, VPI-100 MOFs demonstrate some of the highest reported catalytic activity values (turnover frequency and conversion efficiency) among Zr-based MOFs for the chemical fixation of CO2 with epoxides, including sterically hindered epoxides. The MOFs, which bear dual catalytic sites (Zr and Cu/Ni), enable chemistry not possible with the cyclam ligand under the same conditions and can be used as recoverable stable heterogeneous catalysts without losing performance.« less

  8. A New Class of Metal-Cyclam-Based Zirconium Metal–Organic Frameworks for CO 2 Adsorption and Chemical Fixation

    DOE PAGES

    Zhu, Jie; Usov, Pavel M.; Xu, Wenqian; ...

    2017-12-22

    Metal–organic frameworks (MOFs) have shown great promise in catalysis, mainly due to their high content of active centers, large internal surface areas, tunable pore size, and versatile chemical functionalities. However, it is a challenge to rationally design and construct MOFs that can serve as highly stable and reusable heterogeneous catalysts. Here two new robust 3D porous metal-cyclam-based zirconium MOFs, denoted VPI-100 (Cu) and VPI-100 (Ni), have been prepared by a modulated synthetic strategy. The frameworks are assembled by eight-connected Zr 6 clusters and metallocyclams as organic linkers. Importantly, the cyclam core has accessible axial coordination sites for guest interactions andmore » maintains the electronic properties exhibited by the parent cyclam ring. The VPI-100 MOFs exhibit excellent chemical stability in various organic and aqueous solvents over a wide pH range and show high CO 2 uptake capacity (up to ~9.83 wt% adsorption at 273 K under 1 atm). Moreover, VPI-100 MOFs demonstrate some of the highest reported catalytic activity values (turnover frequency and conversion efficiency) among Zr-based MOFs for the chemical fixation of CO 2 with epoxides, including sterically hindered epoxides. Thus, the MOFs, which bear dual catalytic sites (Zr and Cu/Ni), enable chemistry not possible with the cyclam ligand under the same conditions and can be used as recoverable stable heterogeneous catalysts without losing performance.« less

  9. In Situ Gene Expression Responsible for Sulfide Oxidation and CO2 Fixation of an Uncultured Large Sausage-Shaped Aquificae Bacterium in a Sulfidic Hot Spring

    PubMed Central

    Tamazawa, Satoshi; Yamamoto, Kyosuke; Takasaki, Kazuto; Mitani, Yasuo; Hanada, Satoshi; Kamagata, Yoichi; Tamaki, Hideyuki

    2016-01-01

    We investigated the in situ gene expression profile of sulfur-turf microbial mats dominated by an uncultured large sausage-shaped Aquificae bacterium, a key metabolic player in sulfur-turfs in sulfidic hot springs. A reverse transcription-PCR analysis revealed that the genes responsible for sulfide, sulfite, and thiosulfate oxidation and carbon fixation via the reductive TCA cycle were continuously expressed in sulfur-turf mats taken at different sampling points, seasons, and years. These results suggest that the uncultured large sausage-shaped bacterium has the ability to grow chemolithoautotrophically and plays key roles as a primary producer in the sulfidic hot spring ecosystem in situ. PMID:27297893

  10. In Situ Gene Expression Responsible for Sulfide Oxidation and CO2 Fixation of an Uncultured Large Sausage-Shaped Aquificae Bacterium in a Sulfidic Hot Spring.

    PubMed

    Tamazawa, Satoshi; Yamamoto, Kyosuke; Takasaki, Kazuto; Mitani, Yasuo; Hanada, Satoshi; Kamagata, Yoichi; Tamaki, Hideyuki

    2016-06-25

    We investigated the in situ gene expression profile of sulfur-turf microbial mats dominated by an uncultured large sausage-shaped Aquificae bacterium, a key metabolic player in sulfur-turfs in sulfidic hot springs. A reverse transcription-PCR analysis revealed that the genes responsible for sulfide, sulfite, and thiosulfate oxidation and carbon fixation via the reductive TCA cycle were continuously expressed in sulfur-turf mats taken at different sampling points, seasons, and years. These results suggest that the uncultured large sausage-shaped bacterium has the ability to grow chemolithoautotrophically and plays key roles as a primary producer in the sulfidic hot spring ecosystem in situ.

  11. Application and Removal of Strippable Coatings via Remote Platform - 13133

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shoffner, P.; Lagos, L.; Maggio, S.

    2013-07-01

    Florida International University's (FIU's) Applied Research Center is currently supporting the Department of Energy (DOE) Environmental Management Office of D and D and Facility Engineering program. FIU is supporting DOE's initiative to improve safety, reduce technical risks, and limit uncertainty within D and D operations by identifying technologies suitable to meet specific facility D and D requirements, assessing the readiness of those technologies for field deployment, and conducting feasibility studies and technology demonstrations of selected technologies and working with technology vendors to optimize the design of their current technologies to accomplish dangerous and demanding tasks during D and D operations.more » To meet one identified technology gap challenge for a technology to remotely apply strippable coatings, fixatives and decontamination gels, FIU identified and performed an initial demonstration of an innovative remote fixative sprayer platform from International Climbing Machines (ICM). The selected technology was demonstrated spraying fixative products at the hot cell mockup facility at the Applied Research Center at FIU in November 2008 under cold (non-radioactive) conditions. The remotely controlled platform was remotely operated and entered the facility and sprayed a fixative onto horizontal and vertical surfaces. Based on the initial FIU demonstration and the specific technical requirements identified at the DOE facilities, a follow-up demonstration was expanded to include strippable coatings and a decontamination gel, which was demonstrated in June 2010 at the ICM facility in Ithaca, NY. This second technology evaluation documented the ability of the remote system to spray the selected products on vertical stainless steel and concrete surfaces to a height of 3 meters (10 feet) and to achieve sufficient coverage and product thickness to promote the ability to peel/remove the strippable coatings and decontamination gel. The next challenge was to determine if a remote platform could be used to remove the strippable coatings and decontamination gels. In 2012, FIU worked with the technology provider, ICM, to conduct feasibility and trade studies to identify the requirements for the remote removal of strippable coatings or decontamination gels using the existing remote controlled platform. (authors)« less

  12. Hydroxyl-Exchanged Nanoporous Ionic Copolymer toward Low-Temperature Cycloaddition of Atmospheric Carbon Dioxide into Carbonates.

    PubMed

    Guo, Zengjing; Cai, Xiaochun; Xie, Jingyan; Wang, Xiaochen; Zhou, Yu; Wang, Jun

    2016-05-25

    An ionic copolymer catalyst with nanopores, large surface area, high ionic density, and superior basicity was prepared via the radical copolymerization of amino-functionalized ionic liquid bromide and divinylbenzene, followed with a hydroxyl exchange for removing bromonium. Evaluated in chemical fixation of CO2 with epoxides into cyclic carbonates in the absence of any solvent and basic additive, the nanoporous copolymer catalyst showed high and stable activity, superior to various control catalysts including the halogen-containing analogue. Further, high yields were obtained over a wide scope of substrates including aliphatic long carbon-chain alkyl epoxides and internal epoxide, even under atmospheric pressure and less than 100 °C for the majority of the substrates. On the basis of in situ Fourier transform infrared (FT-IR) investigation and density functional theory (DFT) calculation for the reaction intermediates, we proposed a possible reaction mechanism accounting for the superior catalytic activity of the ionic copolymer. The specifically prepared ionic copolymer material of this work features highly stable, noncorrosive, and sustainable catalysis and, thus, may be a new possibility for efficient chemical fixation of CO2 since it is an environmentally friendly, metal-free solid catalyst.

  13. CO2 , NOx and SOx removal from flue gas via microalgae cultivation: a critical review.

    PubMed

    Yen, Hong-Wei; Ho, Shih-Hsin; Chen, Chun-Yen; Chang, Jo-Shu

    2015-06-01

    Flue gas refers to the gas emitting from the combustion processes, and it contains CO2 , NOx , SOx and other potentially hazardous compounds. Due to the increasing concerns of CO2 emissions and environmental pollution, the cleaning process of flue gas has attracted much attention. Using microalgae to clean up flue gas via photosynthesis is considered a promising CO2 mitigation process for flue gas. However, the impurities in the flue gas may inhibit microalgal growth, leading to a lower microalgae-based CO2 fixation rate. The inhibition effects of SOx that contribute to the low pH could be alleviated by maintaining a stable pH level, while NOx can be utilized as a nitrogen source to promote microalgae growth when it dissolves and is oxidized in the culture medium. The yielded microalgal biomass from fixing flue gas CO2 and utilizing NOx and SOx as nutrients would become suitable feedstock to produce biofuels and bio-based chemicals. In addition to the removal of SOx , NOx and CO2 , using microalgae to remove heavy metals from flue gas is also quite attractive. In conclusion, the use of microalgae for simultaneous removal of CO2 , SOx and NOx from flue gas is an environmentally benign process and represents an ideal platform for CO2 reutilization. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eckert, C. A.; Sullivan, R.; Johnson, C.

    CO2 and H2 are promising feedstocks for production of valuable biocompounds. Ralstonia eutropha utilizes these feedstocks to generate energy (ATP) and reductant (NAD(P)H) via oxidation of H2 by a membrane-bound (MBH) and a soluble hydrogenase (SH) for CO2 fixation by the Calvin-Benson-Bassham (CBB) cycle. Increased expression of the enzyme that fixes CO2 (RubisCO) resulted in 6-fold activity improvement in vitro, while increased expression of the MBH operon or the SH operon plus MBH operon maturation factors necessary for activity resulted in a 10-fold enhancement. Current research involves genetic manipulation of two endogenous cbb operons for increased expression, analysis of expressionmore » and activity of CBB/MBH/SH, cofactor ratios, and downstream products during autotrophic growth in control versus enhanced strains, and development of strategies for long-term, optimal overexpression. These studies will improve our understanding of autotrophic metabolism and provide a chassis strain for autotrophic production of biodiesel and other valuable carbon biocompounds.« less

  15. Carbon Dioxide Reduction Technology Trade Study

    NASA Technical Reports Server (NTRS)

    Jeng, Frank F.; Anderson, Molly S.; Abney, Morgan B.

    2011-01-01

    For long-term human missions, a closed-loop atmosphere revitalization system (ARS) is essential to minimize consumables. A carbon dioxide (CO2) reduction technology is used to reclaim oxygen (O2) from metabolic CO2 and is vital to reduce the delivery mass of metabolic O2. A key step in closing the loop for ARS will include a proper CO2 reduction subsystem that is reliable and with low equivalent system mass (ESM). Sabatier and Bosch CO2 reduction are two traditional CO2 reduction subsystems (CRS). Although a Sabatier CRS has been delivered to International Space Station (ISS) and is an important step toward closing the ISS ARS loop, it recovers only 50% of the available O2 in CO2. A Bosch CRS is able to reclaim all O2 in CO2. However, due to continuous carbon deposition on the catalyst surface, the penalties of replacing spent catalysts and reactors and crew time in a Bosch CRS are significant. Recently, technologies have been developed for recovering hydrogen (H2) from Sabatier-product methane (CH4). These include methane pyrolysis using a microwave plasma, catalytic thermal pyrolysis of CH4 and thermal pyrolysis of CH4. Further, development in Sabatier reactor designs based on microchannel and microlith technology could open up opportunities in reducing system mass and enhancing system control. Improvements in Bosch CRS conversion have also been reported. In addition, co-electrolysis of steam and CO2 is a new technology that integrates oxygen generation and CO2 reduction functions in a single system. A co-electrolysis unit followed by either a Sabatier or a carbon formation reactor based on Bosch chemistry could improve the overall competitiveness of an integrated O2 generation and CO2 reduction subsystem. This study evaluates all these CO2 reduction technologies, conducts water mass balances for required external supply of water for 1-, 5- and 10-yr missions, evaluates mass, volume, power, cooling and resupply requirements of various technologies. A system analysis and comparison among the technologies was made based on ESM, technology readiness level and reliability. Those technologies with potential were recommended for development.

  16. Effect of visual attention on postural control in children with attention-deficit/hyperactivity disorder.

    PubMed

    Bucci, Maria Pia; Seassau, Magali; Larger, Sandrine; Bui-Quoc, Emmanuel; Gerard, Christophe-Loic

    2014-06-01

    We compared the effect of oculomotor tasks on postural sway in two groups of ADHD children with and without methylphenidate (MPH) treatment against a group of control age-matched children. Fourteen MPH-untreated ADHD children, fourteen MPH-treated ADHD children and a group of control children participated to the study. Eye movements were recorded using a video-oculography system and postural sway measured with a force platform simultaneously. Children performed fixation, pursuits, pro- and anti-saccades. We analyzed the number of saccades during fixation, the number of catch-up saccades during pursuits, the latency of pro- and anti-saccades; the occurrence of errors in the anti-saccade task and the surface and mean velocity of the center of pressure (CoP). During the postural task, the quality of fixation was significantly worse in both groups of ADHD children with respect to control children; in contrast, the number of catch-up saccades during pursuits, the latency of pro-/anti-saccades and the rate of errors in the anti-saccade task did not differ in the three groups of children. The surface of the CoP in MPH-treated children was similar to that of control children, while MPH-untreated children showed larger postural sway. When performing any saccades, the surface of the CoP improved with respect to fixation or pursuits tasks. This study provides evidence of poor postural control in ADHD children, probably due to cerebellar deficiencies. Our study is also the first to show an improvement on postural sway in ADHD children performing saccadic eye movements. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Reverse Dynamization: Influence of Fixator Stiffness on the Mode and Efficiency of Large-Bone-Defect Healing at Different Doses of rhBMP-2.

    PubMed

    Glatt, Vaida; Bartnikowski, Nicole; Quirk, Nicholas; Schuetz, Michael; Evans, Christopher

    2016-04-20

    Reverse dynamization is a technology for enhancing the healing of osseous defects. With use of an external fixator, the axial stiffness across the defect is initially set low and subsequently increased. The purpose of the study described in this paper was to explore the efficacy of reverse dynamization under different conditions. Rat femoral defects were stabilized with external fixators that allowed the stiffness to be modulated on living animals. Recombinant human bone morphogenetic protein-2 (rhBMP-2) was implanted into the defects on a collagen sponge. Following a dose-response experiment, 5.5 μg of rhBMP-2 was placed into the defect under conditions of very low (25.4-N/mm), low (114-N/mm), medium (185-N/mm), or high (254-N/mm) stiffness. Reverse dynamization was evaluated with 2 different starting stiffnesses: low (114 N/mm) and very low (25.4 N/mm). In both cases, high stiffness (254 N/mm) was imposed after 2 weeks. Healing was assessed with radiographs, micro-computed tomography (μCT), histological analysis, and mechanical testing. In the absence of dynamization, the medium-stiffness fixators provided the best healing. Reverse dynamization starting with very low stiffness was detrimental to healing. However, with low initial stiffness, reverse dynamization considerably improved healing with minimal residual cartilage, enhanced cortication, increased mechanical strength, and smaller callus. Histological analysis suggested that, in all cases, healing provoked by rhBMP-2 occurred by endochondral ossification. These data confirm the potential utility of reverse dynamization as a way of improving bone healing but indicate that the stiffness parameters need to be selected carefully. Reverse dynamization may reduce the amount of rhBMP-2 needed to induce healing of recalcitrant osseous lesions, reduce the time to union, and decrease the need for prolonged external fixation. Copyright © 2016 by The Journal of Bone and Joint Surgery, Incorporated.

  18. Co-occurrence of methanogenesis and N2 fixation in oil sands tailings.

    PubMed

    Collins, C E Victoria; Foght, Julia M; Siddique, Tariq

    2016-09-15

    Oil sands tailings ponds in northern Alberta, Canada have been producing biogenic gases via microbial metabolism of hydrocarbons for decades. Persistent methanogenic activity in tailings ponds without any known replenishment of nutrients such as fixed nitrogen (N) persuaded us to investigate whether N2 fixation or polyacrylamide (PAM; used as a tailings flocculant) could serve as N sources. Cultures comprising mature fine tailings (MFT) plus methanogenic medium supplemented with or deficient in fixed N were incubated under an N2 headspace. Some cultures were further amended with citrate, which is used in oil sands processing, as a relevant carbon source, and/or with PAM. After an initial delay, N-deficient cultures with or without PAM produced methane (CH4) at the same rate as N-containing cultures, indicating a mechanism of overcoming apparent N-deficiency. Acetylene reduction and (15)N2 incorporation in all N-deficient cultures (with or without PAM) suggested active N2 fixation concurrently with methanogenesis but inability to use PAM as a N source. 16S rRNA gene pyrosequencing revealed little difference between archaeal populations regardless of N content. However, bacterial sequences in N-deficient cultures showed enrichment of Hyphomicrobiaceae and Clostridium members that might contain N2-fixing species. The results are important in understanding long-term production of biogenic greenhouse gases in oil sands tailings. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Simultaneous flue gas bioremediation and reduction of microalgal biomass production costs.

    PubMed

    Douskova, I; Doucha, J; Livansky, K; Machat, J; Novak, P; Umysova, D; Zachleder, V; Vitova, M

    2009-02-01

    A flue gas originating from a municipal waste incinerator was used as a source of CO(2) for the cultivation of the microalga Chlorella vulgaris, in order to decrease the biomass production costs and to bioremediate CO(2) simultaneously. The utilization of the flue gas containing 10-13% (v/v) CO(2) and 8-10% (v/v) O(2) for the photobioreactor agitation and CO(2) supply was proven to be convenient. The growth rate of algal cultures on the flue gas was even higher when compared with the control culture supplied by a mixture of pure CO(2) and air (11% (v/v) CO(2)). Correspondingly, the CO(2) fixation rate was also higher when using the flue gas (4.4 g CO(2) l(-1) 24 h(-1)) than using the control gas (3.0 g CO(2) l(-1) 24 h(-1)). The toxicological analysis of the biomass produced using untreated flue gas showed only a slight excess of mercury while all the other compounds (other heavy metals, polycyclic aromatic hydrocarbons, polychlorinated dibenzodioxins and dibenzofurans, and polychlorinated biphenyls) were below the limits required by the European Union foodstuff legislation. Fortunately, extending the flue gas treatment prior to the cultivation unit by a simple granulated activated carbon column led to an efficient absorption of gaseous mercury and to the algal biomass composition compliant with all the foodstuff legislation requirements.

  20. Utilization of CO2 fixating bacterium Actinobacillus succinogenes 130Z for simultaneous biogas upgrading and biosuccinic acid production.

    PubMed

    Gunnarsson, Ingólfur B; Alvarado-Morales, Merlin; Angelidaki, Irini

    2014-10-21

    Biogas is an attractive renewable energy carrier. However, it contains CO2 which limits its use for certain applications. Here we report a novel approach for removing CO2 from biogas and capturing it as a biochemical through a biological process. This approach entails converting CO2 into biosuccinic acid using the bacterial strain Actinobacillus succinogenes 130 Z, and simultaneously producing high-purity CH4 (> 95%). Results showed that when pressure during fermentation was increased from 101.325 to 140 kPa, higher CO2 solubility was achieved, thereby positively affecting final succinic acid yield and titer, CO2 consumption rate, and CH4 purity. When using biogas as the only CO2 source at 140 kPa, the CO2 consumption rate corresponded to 2.59 L CO2 L(-1) d(-1) with a final succinic acid titer of 14.4 g L(-1). Under this pressure condition, the highest succinic acid yield and biogas quality reached corresponded to 0.635 g g(-1) and 95.4% (v v(-1)) CH4 content, respectively, after 24 h fermentation. This work represents the first successful attempt to develop a system capable of upgrading biogas to vehicle fuel/gas grid quality and simultaneously produce biosuccinic acid, a valuable building block with large market potential in the near term.

  1. Expression of endogenous and foreign ribulose 1,5-bisphosphate carboxylase-oxygenase (RubisCO) genes in a RubisCO deletion mutant of Rhodobacter sphaeroides.

    PubMed Central

    Falcone, D L; Tabita, F R

    1991-01-01

    A Rhodobacter sphaeroides ribulose 1,5-bisphosphate carboxylase-oxygenase (RubisCO) deletion strain was constructed that was complemented by plasmids containing either the form I or form II CO2 fixation gene cluster. This strain was also complemented by genes encoding foreign RubisCO enzymes expressed from a Rhodospirillum rubrum RubisCO promoter. In R. sphaeroides, the R. rubrum promoter was regulated, resulting in variable levels of disparate RubisCO molecules under different growth conditions. Photosynthetic growth of the R. sphaeroides deletion strain complemented with cyanobacterial RubisCO revealed physiological properties reflective of the unique cellular environment of the cyanobacterial enzyme. The R. sphaeroides RubisCO deletion strain and R. rubrum promoter system may be used to assess the properties of mutagenized proteins in vivo, as well as provide a potential means to select for altered RubisCO molecules after random mutagenesis of entire genes or gene regions encoding RubisCO enzymes. Images PMID:1900508

  2. Standardized cell samples for midIR technology development

    NASA Astrophysics Data System (ADS)

    Kastl, Lena; Rommel, Christina E.; Kemper, Björn; Schnekenburger, Jürgen

    2015-03-01

    The application of midIR spectroscopy towards human cell and tissue samples is impaired by the need for technical solutions and lacking sample standards for technology development. We here present the standardization of stable test samples for the continuous development and testing of novel optical system components. We have selected cell lines representing the major cellular skin constituents keratinocytes and fibroblasts (NIH-3T3, HaCaT). In addition, two skin cancer cell types (A-375 and SK-MEL-28 cells) were analyzed. Cells were seeded on CaF2 substrates and measured dried and under aqueous medium as well as fixated and unfixated. Several independent cell preparations were analyzed with an FTIR spectrometer in the wave number range from 1000 - 4000 cm-1. The obtained data demonstrate that fixed and dehydrated cells on CaF2 can be stored in pure ethanol for several weeks without significant losses in quality of the spectral properties. The established protocol of cell seeding on CaF2 substrates, chemical fixation, dehydration, storage under ethanol and air-drying is suitable for the production of reliable midIR standards. The retrieved spectra demonstrate that fixed cells on CaF2 can be prepared reproducibly; with stable midIR spectral properties over several weeks and properties mimicking reliable unfixed cells. Moreover, the fixated samples on CaF2 show clear differences in the cell type specific spectra that can be identified by principle component analysis. In summary, the standardized cell culture samples on CaF2 substrates are suitable for the development of a midIR device and the optimization of the specific midIR spectra.

  3. Changing nutrient stoichiometry affects phytoplankton production, DOP accumulation and dinitrogen fixation - a mesocosm experiment in the eastern tropical North Atlantic

    NASA Astrophysics Data System (ADS)

    Meyer, J.; Löscher, C. R.; Neulinger, S. C.; Reichel, A. F.; Loginova, A.; Borchard, C.; Schmitz, R. A.; Hauss, H.; Kiko, R.; Riebesell, U.

    2016-02-01

    Ocean deoxygenation due to climate change may alter redox-sensitive nutrient cycles in the marine environment. The productive eastern tropical North Atlantic (ETNA) upwelling region may be particularly affected when the relatively moderate oxygen minimum zone (OMZ) deoxygenates further and microbially driven nitrogen (N) loss processes are promoted. Consequently, water masses with a low nitrogen to phosphorus (N : P) ratio could reach the euphotic layer, possibly influencing primary production in those waters. Previous mesocosm studies in the oligotrophic Atlantic Ocean identified nitrate availability as a control of primary production, while a possible co-limitation of nitrate and phosphate could not be ruled out. To better understand the impact of changing N : P ratios on primary production and N2 fixation in the ETNA surface ocean, we conducted land-based mesocosm experiments with natural plankton communities and applied a broad range of N : P ratios (2.67-48). Silicic acid was supplied at 15 µmol L-1 in all mesocosms. We monitored nutrient drawdown, biomass accumulation and nitrogen fixation in response to variable nutrient stoichiometry. Our results confirmed nitrate to be the key factor determining primary production. We found that excess phosphate was channeled through particulate organic matter (POP) into the dissolved organic matter (DOP) pool. In mesocosms with low inorganic phosphate availability, DOP was utilized while N2 fixation increased, suggesting a link between those two processes. Interestingly this observation was most pronounced in mesocosms where nitrate was still available, indicating that bioavailable N does not necessarily suppress N2 fixation. We observed a shift from a mixed cyanobacteria-proteobacteria dominated active diazotrophic community towards a diatom-diazotrophic association of the Richelia-Rhizosolenia symbiosis. We hypothesize that a potential change in nutrient stoichiometry in the ETNA might lead to a general shift within the diazotrophic community, potentially influencing primary productivity and carbon export.

  4. Reaction kinetic analysis of the 3-hydroxypropionate/4-hydroxybutyrate CO 2 fixation cycle in extremely thermoacidophilic archaea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loder, Andrew J.; Han, Yejun; Hawkins, Aaron B.

    Here, the 3-hydroxypropionate/4-hydroxybutyrate (3HP/4HB) cycle fixes CO 2 in extremely thermoacidophilic archaea and holds promise for metabolic engineering because of its thermostability and potentially rapid pathway kinetics. A reaction kinetics model was developed to examine the biological and biotechnological attributes of the 3HP/4HB cycle as it operates in Metallosphaera sedula, based on previous information as well as on kinetic parameters determined here for recombinant versions of five of the cycle enzymes (malonyl-CoA/succinyl-CoA reductase, 3-hydroxypropionyl-CoA synthetase, 3-hydroxypropionyl-CoA dehydratase, acryloyl-CoA reductase, and succinic semialdehyde reductase). The model correctly predicted previously observed features of the cycle: the 35%–65% split of carbon flux throughmore » the acetyl-CoA and succinate branches, the high abundance and relative ratio of acetyl-CoA/propionyl-CoA carboxylase (ACC) and MCR, and the significance of ACC and hydroxybutyryl-CoA synthetase (HBCS) as regulated control points for the cycle. The model was then used to assess metabolic engineering strategies for incorporating CO 2 into chemical intermediates and products of biotechnological importance: acetyl-CoA, succinate, and 3-hydroxyproprionate.« less

  5. Reaction kinetic analysis of the 3-hydroxypropionate/4-hydroxybutyrate CO 2 fixation cycle in extremely thermoacidophilic archaea

    DOE PAGES

    Loder, Andrew J.; Han, Yejun; Hawkins, Aaron B.; ...

    2016-10-19

    Here, the 3-hydroxypropionate/4-hydroxybutyrate (3HP/4HB) cycle fixes CO 2 in extremely thermoacidophilic archaea and holds promise for metabolic engineering because of its thermostability and potentially rapid pathway kinetics. A reaction kinetics model was developed to examine the biological and biotechnological attributes of the 3HP/4HB cycle as it operates in Metallosphaera sedula, based on previous information as well as on kinetic parameters determined here for recombinant versions of five of the cycle enzymes (malonyl-CoA/succinyl-CoA reductase, 3-hydroxypropionyl-CoA synthetase, 3-hydroxypropionyl-CoA dehydratase, acryloyl-CoA reductase, and succinic semialdehyde reductase). The model correctly predicted previously observed features of the cycle: the 35%–65% split of carbon flux throughmore » the acetyl-CoA and succinate branches, the high abundance and relative ratio of acetyl-CoA/propionyl-CoA carboxylase (ACC) and MCR, and the significance of ACC and hydroxybutyryl-CoA synthetase (HBCS) as regulated control points for the cycle. The model was then used to assess metabolic engineering strategies for incorporating CO 2 into chemical intermediates and products of biotechnological importance: acetyl-CoA, succinate, and 3-hydroxyproprionate.« less

  6. High-nitrogen fixation rates in the particulate and dissolved pools in the Western Tropical Pacific (Solomon and Bismarck Seas)

    NASA Astrophysics Data System (ADS)

    Berthelot, H.; Benavides, M.; Moisander, P. H.; Grosso, O.; Bonnet, S.

    2017-08-01

    Dinitrogen (N2) fixation rates were investigated in the euphotic layer of the Bismarck and Solomon Seas using 15N2 incubation assays taking into account both the particulate and the dissolved pools. Average depth-integrated particulate N2 fixation rates were 203 (range 43-399) and 1396 (range 176-3132) μmol N m-2 d-1 in the Bismarck and Solomon Seas, respectively. In both seas, N2 fixation measured in the dissolved pool was similar to particulate N2 fixation, highlighting the potentially substantial underestimation of N2 fixation in oceanic budgets when only particulate N2 fixation is considered. Among the diazotroph phylotypes targeted using quantitative polymerase chain reaction amplification of nifH genes, Trichodesmium was the most abundant. Regression analyses suggest that it accounted for the major proportion of N2 fixation. However, unicellular cyanobacterial and non-cyanobacterial diazotrophs were also occasionally abundant. This study reports high pelagic N2 fixation rates and confirms that the Western Tropical South Pacific is a hot spot for marine N2 fixation.

  7. Nocturnal versus diurnal CO2 uptake: how flexible is Agave angustifolia?

    PubMed Central

    Winter, Klaus; Garcia, Milton; Holtum, Joseph A. M.

    2014-01-01

    Agaves exhibit the water-conserving crassulacean acid metabolism (CAM) photosynthetic pathway. Some species are potential biofuel feedstocks because they are highly productive in seasonally dry landscapes. In plants with CAM, high growth rates are often believed to be associated with a significant contribution of C3 photosynthesis to total carbon gain when conditions are favourable. There has even been a report of a shift from CAM to C3 in response to overwatering a species of Agave. We investigated whether C3 photosynthesis can contribute substantially to carbon uptake and growth in young and mature Agave angustifolia collected from its natural habitat in Panama. In well-watered plants, CO2 uptake in the dark contributed about 75% of daily carbon gain. This day/night pattern of CO2 exchange was highly conserved under a range of environmental conditions and was insensitive to intensive watering. Elevated CO2 (800 ppm) stimulated CO2 fixation predominantly in the light. Exposure to CO2-free air at night markedly enhanced CO2 uptake during the following light period, but CO2 exchange rapidly reverted to its standard pattern when CO2 was supplied during the subsequent 24h. Although A. angustifolia consistently engages in CAM as its principal photosynthetic pathway, its relatively limited photosynthetic plasticity does not preclude it from occupying a range of habitats, from relatively mesic tropical environments in Panama to drier habitats in Mexico. PMID:24648568

  8. Multi-scale modeling of Arabidopsis thaliana response to different CO2 conditions: From gene expression to metabolic flux.

    PubMed

    Liu, Lin; Shen, Fangzhou; Xin, Changpeng; Wang, Zhuo

    2016-01-01

    Multi-scale investigation from gene transcript level to metabolic activity is important to uncover plant response to environment perturbation. Here we integrated a genome-scale constraint-based metabolic model with transcriptome data to explore Arabidopsis thaliana response to both elevated and low CO2 conditions. The four condition-specific models from low to high CO2 concentrations show differences in active reaction sets, enriched pathways for increased/decreased fluxes, and putative post-transcriptional regulation, which indicates that condition-specific models are necessary to reflect physiological metabolic states. The simulated CO2 fixation flux at different CO2 concentrations is consistent with the measured Assimilation-CO2intercellular curve. Interestingly, we found that reactions in primary metabolism are affected most significantly by CO2 perturbation, whereas secondary metabolic reactions are not influenced a lot. The changes predicted in key pathways are consistent with existing knowledge. Another interesting point is that Arabidopsis is required to make stronger adjustment on metabolism to adapt to the more severe low CO2 stress than elevated CO2 . The challenges of identifying post-transcriptional regulation could also be addressed by the integrative model. In conclusion, this innovative application of multi-scale modeling in plants demonstrates potential to uncover the mechanisms of metabolic response to different conditions. © 2015 Institute of Botany, Chinese Academy of Sciences.

  9. Analysis of microbial communities in the oil reservoir subjected to CO2-flooding by using functional genes as molecular biomarkers for microbial CO2 sequestration

    PubMed Central

    Liu, Jin-Feng; Sun, Xiao-Bo; Yang, Guang-Chao; Mbadinga, Serge M.; Gu, Ji-Dong; Mu, Bo-Zhong

    2015-01-01

    Sequestration of CO2 in oil reservoirs is considered to be one of the feasible options for mitigating atmospheric CO2 building up and also for the in situ potential bioconversion of stored CO2 to methane. However, the information on these functional microbial communities and the impact of CO2 storage on them is hardly available. In this paper a comprehensive molecular survey was performed on microbial communities in production water samples from oil reservoirs experienced CO2-flooding by analysis of functional genes involved in the process, including cbbM, cbbL, fthfs, [FeFe]-hydrogenase, and mcrA. As a comparison, these functional genes in the production water samples from oil reservoir only experienced water-flooding in areas of the same oil bearing bed were also analyzed. It showed that these functional genes were all of rich diversity in these samples, and the functional microbial communities and their diversity were strongly affected by a long-term exposure to injected CO2. More interestingly, microorganisms affiliated with members of the genera Methanothemobacter, Acetobacterium, and Halothiobacillus as well as hydrogen producers in CO2 injected area either increased or remained unchanged in relative abundance compared to that in water-flooded area, which implied that these microorganisms could adapt to CO2 injection and, if so, demonstrated the potential for microbial fixation and conversion of CO2 into methane in subsurface oil reservoirs. PMID:25873911

  10. N-Heterocyclic Olefins as Robust Organocatalyst for the Chemical Conversion of Carbon Dioxide to Value-Added Chemicals.

    PubMed

    Saptal, Vitthal B; Bhanage, Bhalchandra M

    2016-08-09

    In this report, the activity of N-heterocyclic olefins (NHOs) as a newly emerging class of organocatalyst is investigated for the chemical fixation of carbon dioxide through reactions with aziridines to form oxazolidinones and the N-formylation of amines with polymethylhydrosiloxane (PMHS) or 9-borabicyclo[3.3.1]nonane (9-BBN) as the reducing agent under mild conditions. The exocyclic carbon atoms of NHOs are highly nucleophilic owing to the electron-donating ability of the two nitrogen atoms. This high nucleophilicity of the NHOs activates CO2 molecules to form zwitterionic NHO-carboxylate (NHO-CO2 ) adducts, which are active in formylation reactions as well as the carboxylation of aziridines to oxazolidinones. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. An orthopedic surgeon survey on the treatment of displaced femoral neck fracture: opposing views

    PubMed Central

    Chua, David; Jaglal, Susan B.; Schatzker, Joseph

    1997-01-01

    Objective To examine the reasons for practice variation in the treatment of displaced femoral neck fractures. Design A survey, asking surgeons to choose either hemiarthroplasty or internal fixation for 2 different female patients with a displaced femoral neck fracture. Setting The Canadian Orthopaedic Association Meeting, Halifax, May 1995. Patients The scenario in the first patient was of an independent 70-year-old woman with no pre-existing medical conditions. The scenario in the second patient was of a housebound 84-year-old woman with co-morbidity. Main outcome measures Proportion of surgeons choosing either hemiarthroplasty or internal fixation for each case scenario. Distribution of reasons to explain the treatment decision. Results Ninety-nine surgeons responded. For the case of the 70-year-old woman, 47% chose hemiarthroplasty and 53% chose internal fixation (p = 0.60), and for the 84-year-old woman, 96% chose hemiarthroplasty. These findings were consistent within the subgroups of teaching surgeons and community practice surgeons. Surgeons with 10 years or less of practice tended to favour hemiarthroplasty whereas those with more than 15 years’ practice favoured internal fixation. Important reasons for treatment choice were avoidance of reoperation in the hemiarthroplasty group (85%) and better hip function in the fixation group (83%), durability (83%) and ease of revision (77%). Conclusion The surgeon’s interpretation of the importance of reoperation and function underlies the differences in treatment decision regarding the management of femoral neck fractures in elderly patients. PMID:9267295

  12. Comparative genomic analysis of carbon and nitrogen assimilation mechanisms in three indigenous bioleaching bacteria: predictions and validations

    PubMed Central

    Levicán, Gloria; Ugalde, Juan A; Ehrenfeld, Nicole; Maass, Alejandro; Parada, Pilar

    2008-01-01

    Background Carbon and nitrogen fixation are essential pathways for autotrophic bacteria living in extreme environments. These bacteria can use carbon dioxide directly from the air as their sole carbon source and can use different sources of nitrogen such as ammonia, nitrate, nitrite, or even nitrogen from the air. To have a better understanding of how these processes occur and to determine how we can make them more efficient, a comparative genomic analysis of three bioleaching bacteria isolated from mine sites in Chile was performed. This study demonstrated that there are important differences in the carbon dioxide and nitrogen fixation mechanisms among bioleaching bacteria that coexist in mining environments. Results In this study, we probed that both Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans incorporate CO2 via the Calvin-Benson-Bassham cycle; however, the former bacterium has two copies of the Rubisco type I gene whereas the latter has only one copy. In contrast, we demonstrated that Leptospirillum ferriphilum utilizes the reductive tricarboxylic acid cycle for carbon fixation. Although all the species analyzed in our study can incorporate ammonia by an ammonia transporter, we demonstrated that Acidithiobacillus thiooxidans could also assimilate nitrate and nitrite but only Acidithiobacillus ferrooxidans could fix nitrogen directly from the air. Conclusion The current study utilized genomic and molecular evidence to verify carbon and nitrogen fixation mechanisms for three bioleaching bacteria and provided an analysis of the potential regulatory pathways and functional networks that control carbon and nitrogen fixation in these microorganisms. PMID:19055775

  13. Plate versus intramedullary fixation of two-part and multifragmentary displaced midshaft clavicle fractures - a long-term analysis.

    PubMed

    Chan, Gareth; Korac, Zelimir; Miletic, Matija; Vidovic, Dinko; Phadnis, Joideep; Bakota, Bore

    2017-11-01

    Surgical fixation of displaced midshaft clavicle fractures is predominantly achieved with intramedullary (IM) or plate fixation. Both techniques have potential pitfalls: plate fixation involves greater periosteal stripping and protuberance of the implant, whereas IM fixation may be associated with implant-related complications, such as migration or skin irritation, which may lead to further surgery for implant removal. The aim of this study was to compare these two methods in simple (Robinson 2b.1) and multifragmentary (Robinson 2b.2) displaced midshaft clavicle fractures. A total of 133 consecutive patients who underwent surgical fixation for a displaced midshaft clavicle fracture with either IM fixation using a 2.5-mm Kirschner wire or plate fixation using an 8-hole Dynamic Compression Plate (DCP) were retrospectively reviewed. Follow-up was a minimum of 1 year. The patients were allocated into two injury groups: displaced simple 2-part fractures (64 IM vs. 16 DCP) and displaced multifragmentary fractures (27 IM vs. 26 DCP). The major observed outcome measures were: infection rate, non-union rate, reoperation rate and postoperative range of motion (ROM). Rates of non-union for displaced 2-part fractures were 2/64 (3.13%) with IM fixation and 0/16 (0.00%) with plate fixation (p = 0.477). For displaced multifragmentary fractures, rates of non-union were 2/27 (7.41%) with IM fixation and 0/26 (0.00%) with plate fixation (p = 0.161). No significant difference was observed between the two fixation modalities in patient-reported time to regain ROM on the injured side for displaced 2-part fractures (p = 0.129) and displaced multifragmentary fractures (p = 0.070). Deep infection rate was zero (p = 1.000) overall in the study, and reoperation rate for IM and plate fixation, respectively, was 3.13% and 6.25% in the Robinson 2b.1 group (p = 0.559) and 7.41% and 7.69% in the Robinson 2b.2 group (p = 0.969). IM fixation of displaced midshaft clavicle fractures (Robinson 2b.1) has an equivalent non-union rate to plate fixation and similarly low complication and reoperation rates. For displaced midshaft multifragmentary clavicle fractures (Robinson 2b.2), the higher non-union rates observed with IM fixation leads us to recommend consideration of plate fixation for Robinson 2b.2 fractures. © 2017 Elsevier Ltd. All rights reserved.

  14. Metal trafficking for nitrogen fixation: NifQ donates molybdenum to NifEN/NifH for the biosynthesis of the nitrogenase FeMo-cofactor

    PubMed Central

    Hernandez, Jose A.; Curatti, Leonardo; Aznar, Constantino P.; Perova, Zinaida; Britt, R. David; Rubio, Luis M.

    2008-01-01

    The molybdenum nitrogenase, present in a diverse group of bacteria and archea, is the major contributor to biological nitrogen fixation. The nitrogenase active site contains an iron–molybdenum cofactor (FeMo-co) composed of 7Fe, 9S, 1Mo, one unidentified light atom, and homocitrate. The nifQ gene was known to be involved in the incorporation of molybdenum into nitrogenase. Here we show direct biochemical evidence for the role of NifQ in FeMo-co biosynthesis. As-isolated NifQ was found to carry a molybdenum–iron–sulfur cluster that serves as a specific molybdenum donor for FeMo-co biosynthesis. Purified NifQ supported in vitro FeMo-co synthesis in the absence of an additional molybdenum source. The mobilization of molybdenum from NifQ required the simultaneous participation of NifH and NifEN in the in vitro FeMo-co synthesis assay, suggesting that NifQ would be the physiological molybdenum donor to a hypothetical NifEN/NifH complex. PMID:18697927

  15. Evaluation of photosynthetic efficacy and CO2 removal of microalgae grown in an enriched bicarbonate medium.

    PubMed

    Abinandan, S; Shanthakumar, S

    2016-06-01

    Bicarbonate species in the aqueous phase is the primary source for CO 2 for the growth of microalgae. The potential of carbon dioxide (CO 2 ) fixation by Chlorella pyrenoidosa in enriched bicarbonate medium was evaluated. In the present study, effects of parameters such as pH, sodium bicarbonate concentration and inoculum size were assessed for the removal of CO 2 by C. pyrenoidosa under mixotrophic condition. Central composite design tool from response surface methodology was used to validate statistical methods in order to study the influence of these parameters. The obtained results reveal that the maximum removal of CO 2 was attained at pH 8 with sodium bicarbonate concentration of 3.33 g/l, and inoculum size of 30 %. The experimental results were statistically significant with R 2 value of 0.9527 and 0.960 for CO 2 removal and accumulation of chlorophyll content, respectively. Among the various interactions, interactive effects between the parameters pH and inoculum size was statistically significant (P < 0.05) for CO 2 removal and chlorophyll accumulation. Based on the studies, the application of C. pyrenoidosa as a potential source for carbon dioxide removal at alkaline pH from bicarbonate source is highlighted.

  16. Assessment of filtration efficiency and physiological responses of selected plant species to indoor air pollutants (toluene and 2-ethylhexanol) under chamber conditions.

    PubMed

    Hörmann, Vanessa; Brenske, Klaus-Reinhard; Ulrichs, Christian

    2018-01-01

    Three common plant species (Dieffenbachia maculata, Spathiphyllum wallisii, and Asparagus densiflorus) were tested against their capacity to remove the air pollutants toluene (20.0 mg m -3 ) and 2-ethylhexanol (14.6 mg m -3 ) under light or under dark in chamber experiments of 48-h duration. Results revealed only limited pollutant filtration capabilities and indicate that aerial plant parts of the tested species are only of limited value for indoor air quality improvement. The removal rate constant ranged for toluene from 3.4 to 5.7 L h -1  m -2 leaf area with no significant differences between plant species or light conditions (light/dark). The values for 2-ethylhexanol were somewhat lower, fluctuating around 2 L h -1  m -2 leaf area for all plant species tested, whereas differences between light and dark were observed for two of the three species. In addition to pollutant removal, CO 2 fixation/respiration and transpiration as well as quantum yield were evaluated. These physiological characteristics seem to have no major impact on the VOC removal rate constant. Exposure to toluene or 2-ethylhexanol revealed no or only minor effects on D. maculata and S. wallisii. In contrast, a decrease in quantum yield and CO 2 fixation was observed for A. densiflorus when exposed to 2-ethylhexanol or toluene under light, indicating phytotoxic effects in this species.

  17. Awake craniotomy using electromagnetic navigation technology without rigid pin fixation.

    PubMed

    Morsy, Ahmed A; Ng, Wai Hoe

    2015-11-01

    We report our institutional experience using an electromagnetic navigation system, without rigid head fixation, for awake craniotomy patients. The StealthStation® S7 AxiEM™ navigation system (Medtronic, Inc.) was used for this technique. Detailed preoperative clinical and neuropsychological evaluations, patient education and contrast-enhanced MRI (thickness 1.5mm) were performed for each patient. The AxiEM Mobile Emitter was typically placed in a holder, which was mounted to the operating room table, and a non-invasive patient tracker was used as the patient reference device. A monitored conscious sedation technique was used in all awake craniotomy patients, and the AxiEM Navigation Pointer was used for navigation during the procedure. This offers the same accuracy as optical navigation, but without head pin fixation or interference with intraoperative neurophysiological techniques and surgical instruments. The application of the electromagnetic neuronavigation technology without rigid head fixation during an awake craniotomy is accurate, and offers superior patient comfort. It is recommended as an effective adjunctive technique for the conduct of awake surgery. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Diurnal Changes in Volume and Specific Tissue Weight of Crassulacean Acid Metabolism Plants 1

    PubMed Central

    Chen, Sheng-Shu; Black, Clanton C.

    1983-01-01

    The diurnal variations in volume and in specific weight were determined for green stems and leaves of Crassulacen acid metabolism (CAM) plants. Volume changes were measured by a water displacement method. Diurnal variations occurred in the volume of green CAM tissues. Their volume increased early in the light period reaching a maximum about mid-day, then the volume decreased to a minimum near midnight. The maximum volume increase each day was about 2.7% of the total volume. Control leaves of C3 and C4 plants exhibited reverse diurnal volume changes of 0.2 to 0.4%. The hypothesis is presented and supported that green CAM tissues should exhibit a diurnal increase in volume due to the increase of internal gas pressure from CO2 and O2 when their stomata are closed. Conversely, the volume should decrease when the gas pressure is decreased. The second hypothesis presented and supported was that the specific weight (milligrams of dry weight per square centimeter of green surface area) of green CAM tissues should increase at night due to the net fixation of CO2. Green CAM tissues increased their specific weight at night in contrast to control C3 and C4 leaves which decreased their specific weight at night. With Kalanchoë daigremontiana leaves, the calculated increase in specific leaf weight at night based on estimates of carbohydrate available for net CO2 fixation was near 6% and the measured increase in specific leaf weight was 6%. Diurnal measurements of CAM tissue water content were neither coincident nor reciprocal with their diurnal patterns of either volume or specific weight changes. PMID:16662833

  19. Aspects of internal fixation of fractures in porotic bone. Principles, technologies and procedures using locked plate screws.

    PubMed

    Perren, S M; Linke, B; Schwieger, K; Wahl, D; Schneider, E

    2005-01-01

    Fractures of the bones of elderly people occur more often and have a more important effect because of a generally diminished ability to coordinate stance and walking. These fractures occur at a lower level of load because of lack of strength of the porotic bone. Prompt recovery of skeletal support function is essential to avoid respiratory and circulatory complications in the elderly. To prevent elderly people from the risks of being bedridden, demanding internal fixation of fractures is required. The weak porotic bone and the high level of uncontrolled loading after internal fixation pose complex problems. A combination of several technical elements of design, application and aftercare in internal fixation are proposed. Internal fixators with locked screws improve the biology and the mechanics of internal fixation. When such fixators are used as elevated splints they may stimulate early callus formation because of their flexibility, the limit of flexibility being set by the demands of resistance and function of the limb. Our own studies of triangulation of locked screws have demonstrated their beneficial effects and unexpected limitations.

  20. Self-repairable polyurethane networks by atmospheric carbon dioxide and water.

    PubMed

    Yang, Ying; Urban, Marek W

    2014-11-03

    Sugar moieties were incorporated into cross-linked polyurethane (PUR) networks in an effort to achieve self-repairing in the presence of atmospheric carbon dioxide (CO2) and water (H2O). When methyl-α-D-glucopyranoside (MGP) molecules are reacted with hexamethylene diisocyanate trimer (HDI) and polyethylene glycol (PEG) to form cross-linked MGP-polyurethane (PUR) networks, these materials are capable of self-repairing in air. This process requires atmospheric amounts of CO2 and H2O, thus resembling plant behavior of carbon fixation during the photosynthesis cycle. Molecular processes responsible for this unique self-repair process involve physical diffusion of cleaved network segments as well as the formation of carbonate and urethane linkages. Unlike plants, MGP-PUR networks require no photo-initiated reactions, and they are thus capable of repair in darkness under atmospheric conditions. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Photochemistry of monodentate and bidentate carbonato complexes of rhodium (3). [applications to spacecraft fuel cells

    NASA Technical Reports Server (NTRS)

    Sheridan, P. S.

    1980-01-01

    A scheme for the photochemical fixation of water is proposed which involves a five-step reaction sequence; the first step involves the 2 electron reduction of a metal by a coordinated carbonate ligand, with corresponding oxidation of the carbonate to CO2 and O2. Ligand field photolysis of trans- (RH(en)2 H2O CO3) ClO4, and (Rh(en)2 CO3) CLO4 have been studied in the solid state and in aqueous solution at various pH values. Both salts are photoinert in the solid phase, but are quite photoreactive in aqueous solution. In solution, the monodentate ion undergoes efficient isomerization to a mixture of cis and trans - (Rh(en)2 H2O CO3)+, presumably with water exchange. A minor pH increase upon photolysis is evidence of inefficient carbonate (CO3 =) release, with formation of (Rh(en)2 (H2O)2)3+. In contrast, aqueous solutions of the bidentate carbonato complex undergo efficient pH decrease upon ligand field photolysis. Changes in the electronic spectrum (200-500 nm) and pH changes indicate that the desired redox is occurring. The pH increase is due to the aqueous behavior of CO2.

  2. Photosynthesis sensitivity to climate change in land surface models

    NASA Astrophysics Data System (ADS)

    Manrique-Sunen, Andrea; Black, Emily; Verhoef, Anne; Balsamo, Gianpaolo

    2016-04-01

    Accurate representation of vegetation processes within land surface models is key to reproducing surface carbon, water and energy fluxes. Photosynthesis determines the amount of CO2 fixated by plants as well as the water lost in transpiration through the stomata. Photosynthesis is calculated in land surface models using empirical equations based on plant physiological research. It is assumed that CO2 assimilation is either CO2 -limited, radiation -limited ; and in some models export-limited (the speed at which the products of photosynthesis are used by the plant) . Increased levels of atmospheric CO2 concentration tend to enhance photosynthetic activity, but the effectiveness of this fertilization effect is regulated by environmental conditions and the limiting factor in the photosynthesis reaction. The photosynthesis schemes at the 'leaf level' used by land surface models JULES and CTESSEL have been evaluated against field photosynthesis observations. Also, the response of photosynthesis to radiation, atmospheric CO2 and temperature has been analysed for each model, as this is key to understanding the vegetation response that climate models using these schemes are able to reproduce. Particular emphasis is put on the limiting factor as conditions vary. It is found that while at present day CO2 concentrations export-limitation is only relevant at low temperatures, as CO2 levels rise it becomes an increasingly important restriction on photosynthesis.

  3. Elevated CO2 improves lipid accumulation by increasing carbon metabolism in Chlorella sorokiniana.

    PubMed

    Sun, Zhilan; Chen, Yi-Feng; Du, Jianchang

    2016-02-01

    Supplying microalgae with extra CO2 is a promising means for improving lipid production. The molecular mechanisms involved in lipid accumulation under conditions of elevated CO2, however, remain to be fully elucidated. To understand how elevated CO2 improves lipid production, we performed sequencing of Chlorella sorokiniana LS-2 cellular transcripts during growth and compared transcriptional dynamics of genes involved in carbon flow from CO2 to triacylglycerol. These analyses identified the majority genes of carbohydrate metabolism and lipid biosynthesis pathways in C. sorokiniana LS-2. Under high doses of CO2 , despite down-regulation of most de novo fatty acid biosynthesis genes, genes involved in carbohydrate metabolic pathways including carbon fixation, chloroplastic glycolysis, components of the pyruvate dehydrogenase complex (PDHC) and chloroplastic membrane transporters were upexpressed at the prolonged lipid accumulation phase. The data indicate that lipid production is largely independent of de novo fatty acid synthesis. Elevated CO2 might push cells to channel photosynthetic carbon precursors into fatty acid synthesis pathways, resulting in an increase of overall triacylglycerol generation. In support of this notion, genes involved in triacylglycerol biosynthesis were substantially up-regulated. Thus, elevated CO2 may influence regulatory dynamics and result in increased carbon flow to triacylglycerol, thereby providing a feasible approach to increase lipid production in microalgae. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  4. DFT insight into the effect of potassium on the adsorption, activation and dissociation of CO2 over Fe-based catalysts.

    PubMed

    Nie, Xiaowa; Meng, Linlin; Wang, Haozhi; Chen, Yonggang; Guo, Xinwen; Song, Chunshan

    2018-05-30

    Catalytic conversion of CO2 including hydrogenation has attracted great attention as a method for chemical fixation of CO2 in combination with other techniques such as CO2 capture and storage. Potassium is a well-known promotor for many industrial catalytic processes such as in Fischer-Tropsch synthesis. In this work, we performed density functional theory (DFT) calculations to investigate the effect of potassium on the adsorption, activation, and dissociation of CO2 over Fe(100), Fe5C2(510) and Fe3O4(111) surfaces. The function of K was analyzed in terms of electronic interactions between co-adsorbed CO2 and K-surfaces which showed conspicuous promotion in the presence of K of the adsorption and activation of CO2. The adsorption strength of CO2 on these surfaces ranks as oct2-Fe3O4(111) > Fe(100) > Fe5C2(510). Generally, we observed a direct proportional correlation between the adsorption strength and the charges on the adsorbates. Adding K on the catalyst surface also reduces the kinetic barrier for CO2 dissociation. CO2 dissociation is more facile to occur on Fe(100) and Fe5C2(510) in the presence of K whereas the Fe3O4(111) surfaces impede CO2 dissociation regardless of the existence of K. Instead, a stable CO3- species is formed upon CO2 adsorption on Fe3O4(111) which will be directly hydrogenated when sufficient H* are available on the surface. Our results highlight the origin of the promotion effect of potassium and provide insight for the future design of K-promoted Fe-based catalysts for CO2 hydrogenation.

  5. Biomechanical comparison of four C1 to C2 rigid fixative techniques: anterior transarticular, posterior transarticular, C1 to C2 pedicle, and C1 to C2 intralaminar screws.

    PubMed

    Lapsiwala, Samir B; Anderson, Paul A; Oza, Ashish; Resnick, Daniel K

    2006-03-01

    We performed a biomechanical comparison of several C1 to C2 fixation techniques including crossed laminar (intralaminar) screw fixation, anterior C1 to C2 transarticular screw fixation, C1 to 2 pedicle screw fixation, and posterior C1 to C2 transarticular screw fixation. Eight cadaveric cervical spines were tested intact and after dens fracture. Four different C1 to C2 screw fixation techniques were tested. Posterior transarticular and pedicle screw constructs were tested twice, once with supplemental sublaminar cables and once without cables. The specimens were tested in three modes of loading: flexion-extension, lateral bending, and axial rotation. All tests were performed in load and torque control. Pure bending moments of 2 nm were applied in flexion-extension and lateral bending, whereas a 1 nm moment was applied in axial rotation. Linear displacements were recorded from extensometers rigidly affixed to the C1 and C2 vertebrae. Linear displacements were reduced to angular displacements using trigonometry. Adding cable fixation results in a stiffer construct for posterior transarticular screws. The addition of cables did not affect the stiffness of C1 to C2 pedicle screw constructs. There were no significant differences in stiffness between anterior and posterior transarticular screw techniques, unless cable fixation was added to the posterior construct. All three posterior screw constructs with supplemental cable fixation provide equal stiffness with regard to flexion-extension and axial rotation. C1 lateral mass-C2 intralaminar screw fixation restored resistance to lateral bending but not to the same degree as the other screw fixation techniques. All four screw fixation techniques limit motion at the C1 to 2 articulation. The addition of cable fixation improves resistance to flexion and extension for posterior transarticular screw fixation.

  6. Critical gases for critical issues: CO2 technologies for oral drug delivery.

    PubMed

    Danan, Hana; Esposito, Pierandrea

    2014-02-01

    In recent years, CO2-based technologies have gained considerable interest in the pharmaceutical industry for their potential applications in drug formulation and drug delivery. The exploitation of peculiar properties of gases under supercritical conditions has been studied in the last 20 years with mixed results. Promising drug-delivery technologies, based on supercritical CO2, have mostly failed when facing challenges of industrial scaleability and economical viability. Nevertheless, a 'second generation' of processes, based on CO2 around and below critical point has been developed, possibly offering technology-based solutions to some of the current issues of pharmaceutical development. In this review, we highlight the most recent advancements in this field, with a particular focus on the potential of CO2-based technologies in addressing critical issues in oral delivery, and briefly discuss the future perspectives of dense CO2-assisted processes as enabling technologies in drug delivery.

  7. 40 CFR 86.1869-12 - CO2 credits for off-cycle CO2-reducing technologies.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... where the CO2 reduction benefit of the technology is not adequately captured on the Federal Test Procedure and/or the Highway Fuel Economy Test. These technologies must have a measurable, demonstrable, and verifiable real-world CO2 reduction that occurs outside the conditions of the Federal Test Procedure and the...

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spreitzer, Robert Joseph

    Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) catalyzes the rate-limiting step of CO 2 fixation in photosynthesis. However, it is a slow enzyme, and O 2 competes with CO 2 at the active site. Oxygenation initiates the photorespiratory pathway, which also results in the loss of CO 2. If carboxylation could be increased or oxygenation decreased, an increase in net CO 2 fixation would be realized. Because Rubisco provides the primary means by which carbon enters all life on earth, there is much interest in engineering Rubisco to increase the production of food and renewable energy. Rubisco is located in the chloroplasts of plants,more » and it is comprised of two subunits. Much is known about the chloroplast-gene-encoded large subunit (rbcL gene), which contains the active site, but much less is known about the role of the nuclear-gene-encoded small subunit in Rubisco function (rbcS gene). Both subunits are coded by multiple genes in plants, which makes genetic engineering difficult. In the eukaryotic, green alga Chlamydomonas reinhardtii, it has been possible to eliminate all the Rubisco genes. These Rubisco-less mutants can be maintained by providing acetate as an alternative carbon source. In this project, focus has been placed on determining whether the small subunit might be a better genetic-engineering target for improving Rubisco. Analysis of a variable-loop structure (βA-βB loop) of the small subunit by genetic selection, directed mutagenesis, and construction of chimeras has shown that the small subunit can influence CO 2/O 2 specificity. X-ray crystal structures of engineered chimeric-loop enzymes have indicated that additional residues and regions of the small subunit may also contribute to Rubisco function. Structural dynamics of the small-subunit carboxyl terminus was also investigated. Alanine-scanning mutagenesis of the most-conserved small-subunit residues has identified a possible structural pathway between the small-subunit βA-βB loop and alpha-helix 8 of the large-subunit α/β-barrel active site. Hybrid enzymes were also created comprised of plant small subunits and Chlamydomonas large subunits, and these enzymes have increases in CO 2/O 2 specificity, further indicating that small subunits may be the key for ultimately engineering an improved Rubisco enzyme.« less

  9. Carbon dioxide consumption of the microalga Scenedesmus obtusiusculus under transient inlet CO2 concentration variations.

    PubMed

    Cabello, Juan; Morales, Marcia; Revah, Sergio

    2017-04-15

    The extensive microalgae diversity offers considerable versatility for a wide range of biotechnological applications in environmental and production processes. Microalgal cultivation is based on CO 2 fixation via photosynthesis and, consequently, it is necessary to evaluate, in a short time and reliable way, the effect of the CO 2 gas concentration on the consumption rate and establish the tolerance range of different strains and the amount of inorganic carbon that can be incorporated into biomass in order to establish the potential for industrial scale application. Dynamic experiments allow calculating the short-term microalgal photosynthetic activity of strains in photobioreactors. In this paper, the effect of step-changes in CO 2 concentration fed to a 20L bubble column photobioreactor on the CO 2 consumption rate of Scenedesmus obtusiusculus was evaluated at different operation times. The highest apparent CO 2 consumption rate (336μmolm -2 s -1 and 5.6% of CO 2 ) was 6530mg CO2 g b -1 d -1 and it decreased to 222mg CO2 g b -1 d -1 when biomass concentration increased of 0.5 to 3.1g b L -1 and 5.6% of CO 2 was fed. For low CO 2 concentrations (<3.8%) the pH remained close to the optimal value (7.5 and 8). The CO 2 consumption rates show that S. obtusiusculus was not limited by CO 2 availability for concentrations above of 3.8%. The CO 2 mass balance showed that 90% of the C-CO 2 transferred was used for S. obtusiusculus growth. Copyright © 2017. Published by Elsevier B.V.

  10. Numerical cell model investigating cellular carbon fluxes in Emiliania huxleyi.

    PubMed

    Holtz, Lena-Maria; Wolf-Gladrow, Dieter; Thoms, Silke

    2015-01-07

    Coccolithophores play a crucial role in the marine carbon cycle and thus it is interesting to know how they will respond to climate change. After several decades of research the interplay between intracellular processes and the marine carbonate system is still not well understood. On the basis of experimental findings given in literature, a numerical cell model is developed that describes inorganic carbon fluxes between seawater and the intracellular sites of calcite precipitation and photosynthetic carbon fixation. The implemented cell model consists of four compartments, for each of which the carbonate system is resolved individually. The four compartments are connected to each other via H(+), CO2, and HCO3(-) fluxes across the compartment-confining membranes. For CO2 accumulation around RubisCO, an energy-efficient carbon concentrating mechanism is proposed that relies on diffusive CO2 uptake. At low external CO2 concentrations and high light intensities, CO2 diffusion does not suffice to cover the carbon demand of photosynthesis and an additional uptake of external HCO3(-) becomes essential. The model is constrained by data of Emiliania huxleyi, the numerically most abundant coccolithophore species in the present-day ocean. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. [Effectiveness comparison of flexible fixation and rigid fixation in treatment of ankle pronation-external rotation fractures with distal tibiofibular syndesmosis].

    PubMed

    Li, Yuewei; Zhang, Minghui; Li, Xiaorong; Chen, Xiaoyong; Deng, Jianlong

    2017-07-01

    To compare the effectiveness of flexible fixation and rigid fixation in the treatment of ankle pronation-external rotation fractures with distal tibiofibular syndesmosis. A retrospective analysis was made on the clinical data of 50 patients with ankle pronation-external rotation fractures and distal tibiofibular syndesmosis treated between January 2013 and December 2015. Suture-button fixation was used in 23 patients (flexible fixation group) and cortical screw fixation in 27 patients (rigid fixation group). There was no significant difference in age, gender, weight, side, fracture type, and time from trauma to surgery between 2 groups ( P >0.05). The operation time, medial clear space (MCS), tibiofibular clear space (TFCS), tibiofibular overlap (TFO), American Orthopaedic Foot and Ankle Society (AOFAS) score, and Foot and Ankle Disability Index (FADI) score were compared between 2 groups. The operation time was (83.0±9.1) minutes in the flexible fixation group and was (79.6±13.1) minutes in the rigid fixation group, showing no significant difference ( t =1.052, P =0.265). All patients achieved healing of incision by first intention. The patients were followed up 12-20 months (mean, 14 months). The X-ray films showed good healing of fracture in 2 groups. There was no screw fracture, delayed union or nounion. The fracture healing time was (12.1±2.5) months in the flexible fixation group and was (11.3±3.2) months in the rigid fixation group, showing no significant difference between 2 groups ( t =1.024, P =0.192). Reduction loss occurred after removal of screw in 2 cases of the rigid fixation group. At last follow-up, there was no significant difference in MCS, TFCS, TFO, AOFAS score and FADI score between 2 groups ( P >0.05). Suture-button fixation has similar effectiveness to screw fixation in ankle function and imaging findings, and flexible fixation has lower risk of reduction loss of distal tibiofibular syndesmosis than rigid fixation.

  12. Solubility trapping in formation water as dominant CO(2) sink in natural gas fields.

    PubMed

    Gilfillan, Stuart M V; Lollar, Barbara Sherwood; Holland, Greg; Blagburn, Dave; Stevens, Scott; Schoell, Martin; Cassidy, Martin; Ding, Zhenju; Zhou, Zheng; Lacrampe-Couloume, Georges; Ballentine, Chris J

    2009-04-02

    Injecting CO(2) into deep geological strata is proposed as a safe and economically favourable means of storing CO(2) captured from industrial point sources. It is difficult, however, to assess the long-term consequences of CO(2) flooding in the subsurface from decadal observations of existing disposal sites. Both the site design and long-term safety modelling critically depend on how and where CO(2) will be stored in the site over its lifetime. Within a geological storage site, the injected CO(2) can dissolve in solution or precipitate as carbonate minerals. Here we identify and quantify the principal mechanism of CO(2) fluid phase removal in nine natural gas fields in North America, China and Europe, using noble gas and carbon isotope tracers. The natural gas fields investigated in our study are dominated by a CO(2) phase and provide a natural analogue for assessing the geological storage of anthropogenic CO(2) over millennial timescales. We find that in seven gas fields with siliciclastic or carbonate-dominated reservoir lithologies, dissolution in formation water at a pH of 5-5.8 is the sole major sink for CO(2). In two fields with siliciclastic reservoir lithologies, some CO(2) loss through precipitation as carbonate minerals cannot be ruled out, but can account for a maximum of 18 per cent of the loss of emplaced CO(2). In view of our findings that geological mineral fixation is a minor CO(2) trapping mechanism in natural gas fields, we suggest that long-term anthropogenic CO(2) storage models in similar geological systems should focus on the potential mobility of CO(2) dissolved in water.

  13. Microbial potential for carbon and nutrient cycling in a geogenic supercritical carbon dioxide reservoir

    PubMed Central

    Freedman, Adam J.E.; Tan, BoonFei

    2017-01-01

    Summary Microorganisms catalyze carbon cycling and biogeochemical reactions in the deep subsurface and thus may be expected to influence the fate of injected supercritical (sc) CO2 following geological carbon sequestration (GCS). We hypothesized that natural subsurface scCO2 reservoirs, which serve as analogs for the long‐term fate of sequestered scCO2, harbor a ‘deep carbonated biosphere’ with carbon cycling potential. We sampled subsurface fluids from scCO2‐water separators at a natural scCO2 reservoir at McElmo Dome, Colorado for analysis of 16S rRNA gene diversity and metagenome content. Sequence annotations indicated dominance of Sulfurospirillum, Rhizobium, Desulfovibrio and four members of the Clostridiales family. Genomes extracted from metagenomes using homology and compositional approaches revealed diverse mechanisms for growth and nutrient cycling, including pathways for CO2 and N2 fixation, anaerobic respiration, sulfur oxidation, fermentation and potential for metabolic syntrophy. Differences in biogeochemical potential between two production well communities were consistent with differences in fluid chemical profiles, suggesting a potential link between microbial activity and geochemistry. The existence of a microbial ecosystem associated with the McElmo Dome scCO2 reservoir indicates that potential impacts of the deep biosphere on CO2 fate and transport should be taken into consideration as a component of GCS planning and modelling. PMID:28229521

  14. Microbial potential for carbon and nutrient cycling in a geogenic supercritical carbon dioxide reservoir: Microbial life in the deep carbonated biosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freedman, Adam J. E.; Tan, BoonFei; Thompson, Janelle R.

    Microorganisms catalyze carbon cycling and biogeochemical reactions in the deep subsurface and thus may be expected to influence the fate of injected super-critical (sc) CO 2 following geological carbon sequestration (GCS). We hypothesized that natural subsurface scCO 2 reservoirs, which serve as analogs for the long-term fate of sequestered scCO 2 harbor a ‘deep carbonated biosphere’ with carbon cycling potential. We sampled subsurface fluids from scCO 2- water separators at a natural scCO 2 reservoir at McElmo Dome, Colorado for analysis of 16S rRNA gene diversity and metagenome content. Sequence annotations indicated dominance of Sulfurospirillum, Rhizobium, Desulfovibrio and four membersmore » of the Clostridiales family. Genomes extracted from metagenomes using homology and compositional approaches revealed diverse mechanisms for growth and nutrient cycling, including pathways for CO 2 and N 2 fixation, anaerobic respiration, sulfur oxidation, fermentation and potential for metabolic syntrophy. Differences in biogeochemical potential between two production well communities were consistent with differences in fluid chemical profiles, suggesting a potential link between microbial activity and geochemistry. In conclusion, the existence of a microbial ecosystem associated with the McElmo Dome scCO 2 reservoir indicates that potential impacts of the deep biosphere on CO 2 fate and transport should be taken into consideration as a component of GCS planning and modelling.« less

  15. Microbial potential for carbon and nutrient cycling in a geogenic supercritical carbon dioxide reservoir: Microbial life in the deep carbonated biosphere

    DOE PAGES

    Freedman, Adam J. E.; Tan, BoonFei; Thompson, Janelle R.

    2017-05-02

    Microorganisms catalyze carbon cycling and biogeochemical reactions in the deep subsurface and thus may be expected to influence the fate of injected super-critical (sc) CO 2 following geological carbon sequestration (GCS). We hypothesized that natural subsurface scCO 2 reservoirs, which serve as analogs for the long-term fate of sequestered scCO 2 harbor a ‘deep carbonated biosphere’ with carbon cycling potential. We sampled subsurface fluids from scCO 2- water separators at a natural scCO 2 reservoir at McElmo Dome, Colorado for analysis of 16S rRNA gene diversity and metagenome content. Sequence annotations indicated dominance of Sulfurospirillum, Rhizobium, Desulfovibrio and four membersmore » of the Clostridiales family. Genomes extracted from metagenomes using homology and compositional approaches revealed diverse mechanisms for growth and nutrient cycling, including pathways for CO 2 and N 2 fixation, anaerobic respiration, sulfur oxidation, fermentation and potential for metabolic syntrophy. Differences in biogeochemical potential between two production well communities were consistent with differences in fluid chemical profiles, suggesting a potential link between microbial activity and geochemistry. In conclusion, the existence of a microbial ecosystem associated with the McElmo Dome scCO 2 reservoir indicates that potential impacts of the deep biosphere on CO 2 fate and transport should be taken into consideration as a component of GCS planning and modelling.« less

  16. Disentangling the initiation from the response in joint attention: an eye-tracking study in toddlers with autism spectrum disorders.

    PubMed

    Billeci, L; Narzisi, A; Campatelli, G; Crifaci, G; Calderoni, S; Gagliano, A; Calzone, C; Colombi, C; Pioggia, G; Muratori, F

    2016-05-17

    Joint attention (JA), whose deficit is an early risk marker for autism spectrum disorder (ASD), has two dimensions: (1) responding to JA and (2) initiating JA. Eye-tracking technology has largely been used to investigate responding JA, but rarely to study initiating JA especially in young children with ASD. The aim of this study was to describe the differences in the visual patterns of toddlers with ASD and those with typical development (TD) during both responding JA and initiating JA tasks. Eye-tracking technology was used to monitor the gaze of 17 children with ASD and 15 age-matched children with TD during the presentation of short video sequences involving one responding JA and two initiating JA tasks (initiating JA-1 and initiating JA-2). Gaze accuracy, transitions and fixations were analyzed. No differences were found in the responding JA task between children with ASD and those with TD, whereas, in the initiating JA tasks, different patterns of fixation and transitions were shown between the groups. These results suggest that children with ASD and those with TD show different visual patterns when they are expected to initiate joint attention but not when they respond to joint attention. We hypothesized that differences in transitions and fixations are linked to ASD impairments in visual disengagement from face, in global scanning of the scene and in the ability to anticipate object's action.

  17. Optimal Plant Carbon Allocation Implies a Biological Control on Nitrogen Availability

    NASA Astrophysics Data System (ADS)

    Prentice, I. C.; Stocker, B. D.

    2015-12-01

    The degree to which nitrogen availability limits the terrestrial C sink under rising CO2 is a key uncertainty in carbon cycle and climate change projections. Results from ecosystem manipulation studies and meta-analyses suggest that plant C allocation to roots adjusts dynamically under varying degrees of nitrogen availability and other soil fertility parameters. In addition, the ratio of biomass production to GPP appears to decline under nutrient scarcity. This reflects increasing plant C exudation into the soil (Cex) with decreasing nutrient availability. Cex is consumed by an array of soil organisms and may imply an improvement of nutrient availability to the plant. Thus, N availability is under biological control, but incurs a C cost. In spite of clear observational support, this concept is left unaccounted for in Earth system models. We develop a model for the coupled cycles of C and N in terrestrial ecosystems to explore optimal plant C allocation under rising CO2 and its implications for the ecosystem C balance. The model follows a balanced growth approach, accounting for the trade-offs between leaf versus root growth and Cex in balancing C fixation and N uptake. We assume that Cex is proportional to root mass, and that the ratio of N uptake (Nup) to Cex is proportional to inorganic N concentration in the soil solution. We further assume that Cex is consumed by N2-fixing processes if the ratio of Nup:Cex falls below the inverse of the C cost of N2-fixation. Our analysis thereby accounts for the feedbacks between ecosystem C and N cycling and stoichiometry. We address the question of how the plant C economy will adjust under rising atmospheric CO2 and what this implies for the ecosystem C balance and the degree of N limitation.

  18. Characterization of a heat-tolerant Chlorella sp. GD mutant with enhanced photosynthetic CO2 fixation efficiency and its implication as lactic acid fermentation feedstock.

    PubMed

    Lee, Tse-Min; Tseng, Yu-Fei; Cheng, Chieh-Lun; Chen, Yi-Chuan; Lin, Chih-Sheng; Su, Hsiang-Yen; Chow, Te-Jin; Chen, Chun-Yen; Chang, Jo-Shu

    2017-01-01

    Fermentative production of lactic acid from algae-based carbohydrates devoid of lignin has attracted great attention for its potential as a suitable alternative substrate compared to lignocellulosic biomass. A Chlorella sp. GD mutant with enhanced thermo-tolerance was obtained by mutagenesis using N -methyl- N '-nitro- N -nitrosoguanidine to overcome outdoor high-temperature inhibition and it was used as a feedstock for fermentative lactic acid production. The indoor experiments showed that biomass, reducing sugar content, photosynthetic O 2 evolution rate, photosystem II activity ( F v / F m and F v '/ F m '), and chlorophyll content increased as temperature, light intensity, and CO 2 concentration increased. The mutant showed similar DIC affinity and initial slope of photosynthetic light response curve (α) as that of the wild type but had higher dissolved inorganic carbon (DIC) utilization capacity and maximum photosynthesis rate ( P max ). Moreover, the PSII activity ( F v '/ F m ') in the mutant remained normal without acclimation process after being transferred to photobioreactor. This suggests that efficient utilization of incident high light and enhanced carbon fixation with its subsequent flux to carbohydrates accumulation in the mutant contributes to higher sugar and biomass productivity under enriched CO 2 condition. The mutant was cultured outdoors in a photobioreactor with 6% CO 2 aeration in hot summer season in southern Taiwan. The harvested biomass was subjected to separate hydrolysis and fermentation (SHF) for lactic acid production with carbohydrate concentration equivalent to 20 g/L glucose using the lactic acid-producing bacterium Lactobacillus plantarum 23. The conversion rate and yield of lactic acid were 80% and 0.43 g/g Chlorella biomass, respectively. These results demonstrated that the thermo-tolerant Chlorella mutant with high photosynthetic efficiency and biomass productivity under hot outdoor condition is an efficient fermentative feedstock for large-scale lactic acid production.

  19. Bimetallic Metal-Organic Frameworks: Probing the Lewis Acid Site for CO2 Conversion.

    PubMed

    Zou, Ruyi; Li, Pei-Zhou; Zeng, Yong-Fei; Liu, Jia; Zhao, Ruo; Duan, Hui; Luo, Zhong; Wang, Jin-Gui; Zou, Ruqiang; Zhao, Yanli

    2016-05-01

    A highly porous metal-organic framework (MOF) incorporating two kinds of second building units (SBUs), i.e., dimeric paddlewheel (Zn2 (COO)4 ) and tetrameric (Zn4 (O)(CO2 )6 ), is successfully assembled by the reaction of a tricarboxylate ligand with Zn(II) ion. Subsequently, single-crystal-to-single-crystal metal cation exchange using the constructed MOF is investigated, and the results show that Cu(II) and Co(II) ions can selectively be introduced into the MOF without compromising the crystallinity of the pristine framework. This metal cation-exchangeable MOF provides a useful platform for studying the metal effect on both gas adsorption and catalytic activity of the resulted MOFs. While the gas adsorption experiments reveal that Cu(II) and Co(II) exchanged samples exhibit comparable CO2 adsorption capability to the pristine Zn(II) -based MOF under the same conditions, catalytic investigations for the cycloaddition reaction of CO2 with epoxides into related carbonates demonstrate that Zn(II) -based MOF affords the highest catalytic activity as compared with Cu(II) and Co(II) exchanged ones. Molecular dynamic simulations are carried out to further confirm the catalytic performance of these constructed MOFs on chemical fixation of CO2 to carbonates. This research sheds light on how metal exchange can influence intrinsic properties of MOFs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Electrocarboxylation: towards sustainable and efficient synthesis of valuable carboxylic acids

    PubMed Central

    Matthessen, Roman; Fransaer, Jan; Binnemans, Koen

    2014-01-01

    Summary The near-unlimited availability of CO2 has stimulated a growing research effort in creating value-added products from this greenhouse gas. This paper presents the trends on the most important methods used in the electrochemical synthesis of carboxylic acids from carbon dioxide. An overview is given of different substrate groups which form carboxylic acids upon CO2 fixation, including mechanistic considerations. While most work focuses on the electrocarboxylation of substrates with sacrificial anodes, this review considers the possibilities and challenges of implementing other synthetic methodologies. In view of potential industrial application, the choice of reactor setup, electrode type and reaction pathway has a large influence on the sustainability and efficiency of the process. PMID:25383120

  1. Toward FRP-Based Brain-Machine Interfaces—Single-Trial Classification of Fixation-Related Potentials

    PubMed Central

    Finke, Andrea; Essig, Kai; Marchioro, Giuseppe; Ritter, Helge

    2016-01-01

    The co-registration of eye tracking and electroencephalography provides a holistic measure of ongoing cognitive processes. Recently, fixation-related potentials have been introduced to quantify the neural activity in such bi-modal recordings. Fixation-related potentials are time-locked to fixation onsets, just like event-related potentials are locked to stimulus onsets. Compared to existing electroencephalography-based brain-machine interfaces that depend on visual stimuli, fixation-related potentials have the advantages that they can be used in free, unconstrained viewing conditions and can also be classified on a single-trial level. Thus, fixation-related potentials have the potential to allow for conceptually different brain-machine interfaces that directly interpret cortical activity related to the visual processing of specific objects. However, existing research has investigated fixation-related potentials only with very restricted and highly unnatural stimuli in simple search tasks while participant’s body movements were restricted. We present a study where we relieved many of these restrictions while retaining some control by using a gaze-contingent visual search task. In our study, participants had to find a target object out of 12 complex and everyday objects presented on a screen while the electrical activity of the brain and eye movements were recorded simultaneously. Our results show that our proposed method for the classification of fixation-related potentials can clearly discriminate between fixations on relevant, non-relevant and background areas. Furthermore, we show that our classification approach generalizes not only to different test sets from the same participant, but also across participants. These results promise to open novel avenues for exploiting fixation-related potentials in electroencephalography-based brain-machine interfaces and thus providing a novel means for intuitive human-machine interaction. PMID:26812487

  2. Iron deficiency increases growth and nitrogen-fixation rates of phosphorus-deficient marine cyanobacteria.

    PubMed

    Garcia, Nathan S; Fu, Feixue; Sedwick, Peter N; Hutchins, David A

    2015-01-01

    Marine dinitrogen (N2)-fixing cyanobacteria have large impacts on global biogeochemistry as they fix carbon dioxide (CO2) and fertilize oligotrophic ocean waters with new nitrogen. Iron (Fe) and phosphorus (P) are the two most important limiting nutrients for marine biological N2 fixation, and their availabilities vary between major ocean basins and regions. A long-standing question concerns the ability of two globally dominant N2-fixing cyanobacteria, unicellular Crocosphaera and filamentous Trichodesmium, to maintain relatively high N2-fixation rates in these regimes where both Fe and P are typically scarce. We show that under P-deficient conditions, cultures of these two cyanobacteria are able to grow and fix N2 faster when Fe deficient than when Fe replete. In addition, growth affinities relative to P increase while minimum concentrations of P that support growth decrease at low Fe concentrations. In Crocosphaera, this effect is accompanied by a reduction in cell sizes and elemental quotas. Relatively high growth rates of these two biogeochemically critical cyanobacteria in low-P, low-Fe environments such as those that characterize much of the oligotrophic ocean challenge the common assumption that low Fe levels can have only negative effects on marine primary producers. The closely interdependent influence of Fe and P on N2-fixing cyanobacteria suggests that even subtle shifts in their supply ratio in the past, present and future oceans could have large consequences for global carbon and nitrogen cycles.

  3. Rapid, Microwave-Assisted Synthesis of Cubic, Three-Dimensional, Highly Porous MOF-205 for Room Temperature CO2 Fixation via Cyclic Carbonate Synthesis.

    PubMed

    Babu, Robin; Roshan, Roshith; Kathalikkattil, Amal Cherian; Kim, Dong Woo; Park, Dae-Won

    2016-12-14

    A dual-porous, three-dimensional, metal-organic framework [Zn 4 O(2,6-NDC)(BTB) 4/3 ] (MOF-205, BET = 4200 m 2 /g) has been synthesized using microwave power as an alternative energy source for the first time, and its catalytic activity has been exploited for CO 2 -epoxide coupling reactions to produce five-membered cyclic carbonates under solvent-free conditions. Microwave synthesis was performed at different time intervals to reveal the formation of the crystals. Significant conversion of various epoxides was obtained at room temperature, with excellent selectivity toward the desired five-membered cyclic carbonates. The importance of the dual porosity and the synergistic effect of quaternary ammonium salts on efficiently catalyzed CO 2 conversion were investigated using various experimental and physicochemical characterization techniques, and the results were compared with those of the solvothermally synthesized MOF-205 sample. On the basis of literature and experimental inferences, a rationalized mechanism mediated by the zinc center of MOF-205 for the CO 2 -epoxide cycloaddition reaction has been proposed.

  4. Preinoculation of Soybean Seeds Treated with Agrichemicals up to 30 Days before Sowing: Technological Innovation for Large-Scale Agriculture

    PubMed Central

    da Cruz, Sonia Purin; Martin, Thomas Newton; Nakatani, André Shigueyoshi; Nogueira, Marco Antonio; Hungria, Mariangela

    2017-01-01

    The cultivation of soybean in Brazil experienced an expressive growth in the last decades. Soybean is highly demanding on nitrogen (N) that must come from fertilizers or from biological fixation. The N supply to the soybean crop in Brazil relies on the inoculation with elite strains of Bradyrhizobium japonicum, B. elkanii, and B. diazoefficiens, which are able to fulfill the crop's N requirements and enrich the soil for the following crop. The effectiveness of the association between N2-fixing bacteria and soybean plants depends on the efficacy of the inoculation process. Seed treatment with pesticides, especially fungicides or micronutrients, may rapidly kill the inoculated bacteria, affecting the establishment and outcome of the symbiosis. The development of technologies that allow inoculation to become a successful component of industrial seed treatment represents a valuable tool for the seed industry, as well as for the soybean crop worldwide. In this article, we report the results of new technologies, developed by the company Total Biotecnologia Indústria e Comércio S/A of Brazil, for preinoculation of soybean seeds with bradyrhizobia, in the presence of agrichemicals. Our results demonstrate improved bacterial survival for up to 30 days after inoculation, without compromising nodulation, N2-fixation, and yield in the field. PMID:29129977

  5. Preinoculation of Soybean Seeds Treated with Agrichemicals up to 30 Days before Sowing: Technological Innovation for Large-Scale Agriculture.

    PubMed

    Araujo, Ricardo Silva; da Cruz, Sonia Purin; Souchie, Edson Luiz; Martin, Thomas Newton; Nakatani, André Shigueyoshi; Nogueira, Marco Antonio; Hungria, Mariangela

    2017-01-01

    The cultivation of soybean in Brazil experienced an expressive growth in the last decades. Soybean is highly demanding on nitrogen (N) that must come from fertilizers or from biological fixation. The N supply to the soybean crop in Brazil relies on the inoculation with elite strains of Bradyrhizobium japonicum, B. elkanii, and B. diazoefficiens , which are able to fulfill the crop's N requirements and enrich the soil for the following crop. The effectiveness of the association between N 2 -fixing bacteria and soybean plants depends on the efficacy of the inoculation process. Seed treatment with pesticides, especially fungicides or micronutrients, may rapidly kill the inoculated bacteria, affecting the establishment and outcome of the symbiosis. The development of technologies that allow inoculation to become a successful component of industrial seed treatment represents a valuable tool for the seed industry, as well as for the soybean crop worldwide. In this article, we report the results of new technologies, developed by the company Total Biotecnologia Indústria e Comércio S/A of Brazil, for preinoculation of soybean seeds with bradyrhizobia, in the presence of agrichemicals. Our results demonstrate improved bacterial survival for up to 30 days after inoculation, without compromising nodulation, N 2 -fixation, and yield in the field.

  6. Plant acclimation impacts carbon allocation to isoprene emissions: evidence from past to future CO2 levels

    NASA Astrophysics Data System (ADS)

    de Boer, Hugo J.; van der Laan, Annick; Dekker, Stefan C.; Holzinger, Rupert

    2016-04-01

    Isoprene (C5H8) is produced in plant leaves as a side product of photosynthesis, whereby approximately 0.1-2.0% of the photosynthetic carbon uptake is released back into the atmosphere via isoprene emissions. Isoprene biosynthesis is thought to alleviate oxidative stress, specifically in warm, dry and high-light environments. Moreover, isoprene biosynthesis is influenced by atmospheric CO2 concentrations in the short term (weeks) via acclimation in photosynthetic biochemistry. In order to understand the effects of CO2-induced climate change on carbon allocation in plants it is therefore important to quantify how isoprene biosynthesis and emissions are effected by both short-term responses and long-term acclimation to rising atmospheric CO2 levels. A promising development for modelling CO2-induced changes in isoprene emissions is the Leaf-Energetic-Status model (referred to as LES-model hereafter, see Harrison et al., 2013 and Morfopoulos et al., 2014). This model simulates isoprene emissions based on the hypothesis that isoprene biosynthesis depends on the imbalance between the photosynthetic electron supply of reducing power and the electron demands of carbon fixation. In addition to environmental conditions, this imbalance is determined by the photosynthetic electron transport capacity (Jmax) and the maximum carboxylation capacity of Rubisco (V cmax). Here we compare predictions of the LES-model with observed isoprene emission responses of Quercus robur (pedunculate oak) specimen that acclimated to CO2 levels representative of the last glacial, the present and the end of this century (200, 400 and 800 ppm, respectively) for two growing seasons. Plants were grown in walk-in growth chambers with tight control of light, temperature, humidity and CO2 concentrations. Photosynthetic biochemical parameters V cmax and Jmax were determined with a Licor LI-6400XT photosynthesis system. The relationship between photosynthesis and isoprene emissions was measured by coupling the photosynthesis system with a Proton-Transfer Reaction Time-of-Flight Mass Spectrometer. Our empirical results support the LES-model and show that the fractional allocation of carbon to isoprene biosynthesis is reduced in response to both short-term and long-term CO2 increases. This CO2 effect is most pronounced going from glacial to present CO2. In the short term, an increase in CO2 stimulates photosynthesis through an increase in Ci and marginally decreases isoprene production owing to an increase in the electron demand for carbon fixation. In the long-term, acclimation to rising CO2 leads to down regulation of both Jmax and V cmax, which modulates the stimulating effect of rising CO2 on photosynthesis. Specifically the down-regulation of Jmax reduces isoprene emissions at this time scale, whereas the down-regulation of V cmax has a marginal effect according to the LES-model. Our results highlight that biochemical acclimation to rising CO2 influences the allocation of carbon to isoprene biosynthesis. References Harrison, S. P. et al: Volatile isoprenoid emissions from plastid to planet, New Phytol., 197(1), 49-57, 2013. Morfopoulos, C. et al: A model of plant isoprene emission based on available reducing power captures responses to atmospheric CO2, New Phytol., 203(1), 125-139, 2014.

  7. Reverse Dynamization

    PubMed Central

    Glatt, Vaida; Bartnikowski, Nicole; Quirk, Nicholas; Schuetz, Michael; Evans, Christopher

    2016-01-01

    Background: Reverse dynamization is a technology for enhancing the healing of osseous defects. With use of an external fixator, the axial stiffness across the defect is initially set low and subsequently increased. The purpose of the study described in this paper was to explore the efficacy of reverse dynamization under different conditions. Methods: Rat femoral defects were stabilized with external fixators that allowed the stiffness to be modulated on living animals. Recombinant human bone morphogenetic protein-2 (rhBMP-2) was implanted into the defects on a collagen sponge. Following a dose-response experiment, 5.5 μg of rhBMP-2 was placed into the defect under conditions of very low (25.4-N/mm), low (114-N/mm), medium (185-N/mm), or high (254-N/mm) stiffness. Reverse dynamization was evaluated with 2 different starting stiffnesses: low (114 N/mm) and very low (25.4 N/mm). In both cases, high stiffness (254 N/mm) was imposed after 2 weeks. Healing was assessed with radiographs, micro-computed tomography (μCT), histological analysis, and mechanical testing. Results: In the absence of dynamization, the medium-stiffness fixators provided the best healing. Reverse dynamization starting with very low stiffness was detrimental to healing. However, with low initial stiffness, reverse dynamization considerably improved healing with minimal residual cartilage, enhanced cortication, increased mechanical strength, and smaller callus. Histological analysis suggested that, in all cases, healing provoked by rhBMP-2 occurred by endochondral ossification. Conclusions: These data confirm the potential utility of reverse dynamization as a way of improving bone healing but indicate that the stiffness parameters need to be selected carefully. Clinical Relevance: Reverse dynamization may reduce the amount of rhBMP-2 needed to induce healing of recalcitrant osseous lesions, reduce the time to union, and decrease the need for prolonged external fixation. PMID:27098327

  8. Metal-Organic Frameworks as Potential Platforms for Carbon Dioxide Capture and Chemical Transformation

    NASA Astrophysics Data System (ADS)

    Gao, Wenyang

    The anthropogenic carbon dioxide (CO2) emission into the atmosphere, mainly through the combustion of fossil fuels, has resulted in a balance disturbance of the carbon cycle. Overwhelming scientific evidence proves that the escalating level of atmospheric CO2 is deemed as the main culprit for global warming and climate change. It is thus imperative to develop viable CO2 capture and sequestration (CCS) technologies to reduce CO2 emissions, which is also essential to avoid the potential devastating effects in future. The drawbacks of energy-cost, corrosion and inefficiency for amine-based wet-scrubbing systems which are currently used in industry, have prompted the exploration of alternative approaches for CCS. Extensive efforts have been dedicated to the development of functional porous materials, such as activated carbons, zeolites, porous organic polymers, and metal-organic frameworks (MOFs) to capture CO2. However, these adsorbents are limited by either poor selectivity for CO2 separation from gas mixtures or low CO2 adsorption capacity. Therefore, it is still highly demanding to design next-generation adsorbent materials fulfilling the requirements of high CO2 selectivity and enough CO2 capacity, as well as high water/moisture stability under practical conditions. Metal-organic frameworks (MOFs) have been positioned at the forefront of this area as a promising type of candidate amongst various porous materials. This is triggered by the modularity and functionality of pore size, pore walls and inner surface of MOFs by use of crystal engineering approaches. In this work, several effective strategies, such as incorporating 1,2,3-triazole groups as moderate Lewis base centers into MOFs and employing flexible azamacrocycle-based ligands to build MOFs, demonstrate to be promising ways to enhance CO 2 uptake capacity and CO2 separation ability of porous MOFs. It is revealed through in-depth studies on counter-intuitive experimental observations that the local electric field favours more than the richness of exposed nitrogen atoms for the interactions between MOFs and CO2 molecules, which provides a new perspective for future design of new MOFs and other types of porous materials for CO2 capture. Meanwhile, to address the water/moisture stability issue of MOFs, remote stabilization of copper paddlewheel clusters is achieved by strengthening the bonding between organic ligands and triangular inorganic copper trimers, which in turn enhances the stability of the whole MOF network and provides a better understanding of the mechanism promoting prospective suitable MOFs with enhanced water stability. In contrast with CO2 capture by sorbent materials, the chemical transformation of the captured CO2 into value-added products represents an alternative which is attractive and sustainable, and has been of escalating interest. The nanospace within MOFs not only provides the inner porosity for CO2 capture, but also engenders accessible room for substrate molecules for catalytic purpose. It is demonstrated that high catalytic efficiency for chemical fixation of CO2 into cyclic carbonates under ambient conditions is achieved on MOF-based nanoreactors featuring a high-density of well-oriented Lewis active sites. Furthermore, described for the first time is that CO 2 can be successfully inserted into aryl C-H bonds of a MOF to generate carboxylate groups. This proof-of-concept study contributes a different perspective to the current landscape of CO2 capture and transformation. In closing, the overarching goal of this work is not only to seek efficient MOF adsorbents for CO2 capture, but also to present a new yet attractive scenario of CO2 utilization on MOF platforms.

  9. Elevated Carbon Dioxide Alleviates Aluminum Toxicity by Decreasing Cell Wall Hemicellulose in Rice (Oryza sativa)

    PubMed Central

    Zhu, Xiao Fang; Zhao, Xu Sheng; Wang, Bin; Wu, Qi; Shen, Ren Fang

    2017-01-01

    Carbon dioxide (CO2) is involved in plant growth as well as plant responses to abiotic stresses; however, it remains unclear whether CO2 is involved in the response of rice (Oryza sativa) to aluminum (Al) toxicity. In the current study, we discovered that elevated CO2 (600 μL·L−1) significantly alleviated Al-induced inhibition of root elongation that occurred in ambient CO2 (400 μL·L−1). This protective effect was accompanied by a reduced Al accumulation in root apex. Al significantly induced citrate efflux and the expression of OsALS1, but elevated CO2 had no further effect. By contrast, elevated CO2 significantly decreased Al-induced accumulation of hemicellulose, as well as its Al retention. As a result, the amount of Al fixed in the cell wall was reduced, indicating an alleviation of Al-induced damage to cell wall function. Furthermore, elevated CO2 decreased the Al-induced root nitric oxide (NO) accumulation, and the addition of the NO scavenger c-PTIO (2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide) abolished this alleviation effect, indicating that NO maybe involved in the CO2-alleviated Al toxicity. Taken together, these results demonstrate that the alleviation of Al toxicity in rice by elevated CO2 is mediated by decreasing hemicellulose content and the Al fixation in the cell wall, possibly via the NO pathway. PMID:28769823

  10. Silicate minerals for CO2 scavenging from biogas in Autogenerative High Pressure Digestion.

    PubMed

    Lindeboom, Ralph E F; Ferrer, Ivet; Weijma, Jan; van Lier, Jules B

    2013-07-01

    Autogenerative High Pressure Digestion (AHPD) is a novel concept that integrates gas upgrading with anaerobic digestion by selective dissolution of CO2 at elevated biogas pressure. However, accumulation of CO2 and fatty acids after anaerobic digestion of glucose resulted in pH 3-5, which is incompatible with the commonly applied high-rate methanogenic processes. Therefore, we studied the use of wollastonite, olivine and anorthosite, with measured composition of CaSi1.05O3.4, Mg2Fe0.2Ni0.01Si1.2O5.3 and Na0.7Ca1K0.1Mg0.1Fe0.15Al3.1Si4O24, respectively, to scavenge CO2 during batch AHPD of glucose. Depending on the glucose to mineral ratio the pH increased to 6.0-7.5. Experiments with wollastonite showed that Ca(2+)-leaching was caused by volatile fatty acid (VFA) production during glucose digestion. At 1, 3 and 9 bar, the CH4 content reached 74%, 86% and 88%, respectively, indicating CO2 scavenging. Fixation of produced CO2 by CaCO3 precipitation in the sludge was confirmed by Fourier Transferred-InfraRed, Combined Field emission Scanning Electron Microscopy-Energy-dispersive X-ray spectroscopy and Thermogravimetric Analysis-Mass Spectroscopy. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. CO 2-fixing one-carbon metabolism in a cellulose-degrading bacterium Clostridium thermocellum

    DOE PAGES

    Xiong, Wei; Lin, Paul P.; Magnusson, Lauren; ...

    2016-10-28

    Clostridium thermocellum can ferment cellulosic biomass to formate and other end products, including CO 2. This organism lacks formate dehydrogenase (Fdh), which catalyzes the reduction of CO 2 to formate. However, feeding the bacterium 13C-bicarbonate and cellobiose followed by NMR analysis showed the production of 13C-formate in C. thermocellum culture, indicating the presence of an uncharacterized pathway capable of converting CO 2 to formate. Combining genomic and experimental data, we demonstrated that the conversion of CO 2 to formate serves as a CO 2 entry point into the reductive one-carbon (C1) metabolism, and internalizes CO 2 via two biochemical reactions:more » the reversed pyruvate:ferredoxin oxidoreductase (rPFOR), which incorporates CO 2 using acetyl-CoA as a substrate and generates pyruvate, and pyruvate-formate lyase (PFL) converting pyruvate to formate and acetyl-CoA. We analyzed the labeling patterns of proteinogenic amino acids in individual deletions of all five putative PFOR mutants and in a PFL deletion mutant. We identified two enzymes acting as rPFOR, confirmed the dual activities of rPFOR and PFL crucial for CO 2 uptake, and provided physical evidence of a distinct in vivo 'rPFOR-PFL shunt' to reduce CO 2 to formate while circumventing the lack of Fdh. Such a pathway precedes CO 2 fixation via the reductive C1 metabolic pathway in C. thermocellum. Lastly, these findings demonstrated the metabolic versatility of C. thermocellum, which is thought of as primarily a cellulosic heterotroph but is shown here to be endowed with the ability to fix CO 2 as well.« less

  12. CO 2-fixing one-carbon metabolism in a cellulose-degrading bacterium Clostridium thermocellum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiong, Wei; Lin, Paul P.; Magnusson, Lauren

    Clostridium thermocellum can ferment cellulosic biomass to formate and other end products, including CO 2. This organism lacks formate dehydrogenase (Fdh), which catalyzes the reduction of CO 2 to formate. However, feeding the bacterium 13C-bicarbonate and cellobiose followed by NMR analysis showed the production of 13C-formate in C. thermocellum culture, indicating the presence of an uncharacterized pathway capable of converting CO 2 to formate. Combining genomic and experimental data, we demonstrated that the conversion of CO 2 to formate serves as a CO 2 entry point into the reductive one-carbon (C1) metabolism, and internalizes CO 2 via two biochemical reactions:more » the reversed pyruvate:ferredoxin oxidoreductase (rPFOR), which incorporates CO 2 using acetyl-CoA as a substrate and generates pyruvate, and pyruvate-formate lyase (PFL) converting pyruvate to formate and acetyl-CoA. We analyzed the labeling patterns of proteinogenic amino acids in individual deletions of all five putative PFOR mutants and in a PFL deletion mutant. We identified two enzymes acting as rPFOR, confirmed the dual activities of rPFOR and PFL crucial for CO 2 uptake, and provided physical evidence of a distinct in vivo 'rPFOR-PFL shunt' to reduce CO 2 to formate while circumventing the lack of Fdh. Such a pathway precedes CO 2 fixation via the reductive C1 metabolic pathway in C. thermocellum. Lastly, these findings demonstrated the metabolic versatility of C. thermocellum, which is thought of as primarily a cellulosic heterotroph but is shown here to be endowed with the ability to fix CO 2 as well.« less

  13. Nitrate-Dependent O2 Evolution in Intact Leaves 1

    PubMed Central

    de la Torre, Angel; Delgado, Begoña; Lara, Catalina

    1991-01-01

    Evolution of O2 by illuminated intact detached leaves from barley (Hordeum vulgare L. cv Athos) and pea (Pisum sativum L. cv Lincoln) in a CO2-saturating atmosphere was enhanced when KNO3 (1-2.5 millimolar) had been previously supplied through the transpiration stream. The extra O2 evolution observed after feeding KNO3 increased with the light intensity, being maximal at near saturating photon flux densities and resulting in no changes in the initial slope of the O2 versus light-intensity curve. No stimulation of O2 evolution was otherwise observed after feeding KCl or NH4Cl. The data indicate that nitrate assimilation uses photosynthetically generated reductant and stimulates the rate of non-cyclic electron flow by acting as a second electron-accepting assimilatory process in addition to CO2 fixation. PMID:16668272

  14. Unsaturated C3,5,7,9-Monocarboxylic Acids by Aqueous, One-Pot Carbon Fixation: Possible Relevance for the Origin of Life

    PubMed Central

    Scheidler, Christopher; Sobotta, Jessica; Eisenreich, Wolfgang; Wächtershäuser, Günter; Huber, Claudia

    2016-01-01

    All scientific approaches to the origin of life share a common problem: a chemical path to lipids as main constituents of extant cellular enclosures. Here we show by isotope-controlled experiments that unsaturated C3,5,7,9-monocarboxylic acids form by one-pot reaction of acetylene (C2H2) and carbon monoxide (CO) in contact with nickel sulfide (NiS) in hot aqueous medium. The primary products are toto-olefinic monocarboxylic acids with CO-derived COOH groups undergoing subsequent stepwise hydrogenation with CO as reductant. In the resulting unsaturated monocarboxylic acids the double bonds are mainly centrally located with mainly trans-configuration. The reaction conditions are compatible with an origin of life in volcanic-hydrothermal sub-seafloor flow ducts. PMID:27283227

  15. Levels of daily light doses under changed day-night cycles regulate temporal segregation of photosynthesis and N2 Fixation in the cyanobacterium Trichodesmium erythraeum IMS101.

    PubMed

    Cai, Xiaoni; Gao, Kunshan

    2015-01-01

    While the diazotrophic cyanobacterium Trichodesmium is known to display inverse diurnal performances of photosynthesis and N2 fixation, such a phenomenon has not been well documented under different day-night (L-D) cycles and different levels of light dose exposed to the cells. Here, we show differences in growth, N2 fixation and photosynthetic carbon fixation as well as photochemical performances of Trichodesmium IMS101 grown under 12L:12D, 8L:16D and 16L:8D L-D cycles at 70 μmol photons m-2 s-1 PAR (LL) and 350 μmol photons m-2 s-1 PAR (HL). The specific growth rate was the highest under LL and the lowest under HL under 16L:8D, and it increased under LL and decreased under HL with increased levels of daytime light doses exposed under the different light regimes, respectively. N2 fixation and photosynthetic carbon fixation were affected differentially by changes in the day-night regimes, with the former increasing directly under LL with increased daytime light doses and decreased under HL over growth-saturating light levels. Temporal segregation of N2 fixation from photosynthetic carbon fixation was evidenced under all day-night regimes, showing a time lag between the peak in N2 fixation and dip in carbon fixation. Elongation of light period led to higher N2 fixation rate under LL than under HL, while shortening the light exposure to 8 h delayed the N2 fixation peaking time (at the end of light period) and extended it to night period. Photosynthetic carbon fixation rates and transfer of light photons were always higher under HL than LL, regardless of the day-night cycles. Conclusively, diel performance of N2 fixation possesses functional plasticity, which was regulated by levels of light energy supplies either via changing light levels or length of light exposure.

  16. Low rates of nitrogen fixation in eastern tropical South Pacific surface waters

    PubMed Central

    Knapp, Angela N.; Casciotti, Karen L.; Berelson, William M.; Prokopenko, Maria G.; Capone, Douglas G.

    2016-01-01

    An extensive region of the Eastern Tropical South Pacific (ETSP) Ocean has surface waters that are nitrate-poor yet phosphate-rich. It has been proposed that this distribution of surface nutrients provides a geochemical niche favorable for N2 fixation, the primary source of nitrogen to the ocean. Here, we present results from two cruises to the ETSP where rates of N2 fixation and its contribution to export production were determined with a suite of geochemical and biological measurements. N2 fixation was only detectable using nitrogen isotopic mass balances at two of six stations, and rates ranged from 0 to 23 µmol N m−2 d−1 based on sediment trap fluxes. Whereas the fractional importance of N2 fixation did not change, the N2-fixation rates at these two stations were several-fold higher when scaled to other productivity metrics. Regardless of the choice of productivity metric these N2-fixation rates are low compared with other oligotrophic locations, and the nitrogen isotope budgets indicate that N2 fixation supports no more than 20% of export production regionally. Although euphotic zone-integrated short-term N2-fixation rates were higher, up to 100 µmol N m−2 d−1, and detected N2 fixation at all six stations, studies of nitrogenase gene abundance and expression from the same cruises align with the geochemical data and together indicate that N2 fixation is a minor source of new nitrogen to surface waters of the ETSP. This finding is consistent with the hypothesis that, despite a relative abundance of phosphate, iron may limit N2 fixation in the ETSP. PMID:26976587

  17. Fractionation of carbon isotopes by phytoplankton and estimates of ancient CO2 levels

    NASA Technical Reports Server (NTRS)

    Freeman, K. H.; Hayes, J. M.

    1992-01-01

    Reports of the 13C content of marine particulate organic carbon are compiled and on the basis of GEOSECS data and temperatures, concentrations, and isotopic compositions of dissolved CO2 in the waters in which the related phytoplankton grew are estimated. In this way, the fractionation of carbon isotopes during photosynthetic fixation of CO2 is found to be significantly correlated with concentrations of dissolved CO2. Because ancient carbon isotopic fractionations have been determined from analyses of sedimentary porphyrins [Popp et al., 1989], the relationship between isotopic fractionation and concentrations of dissolved CO2 developed here can be employed to estimate concentrations of CO2 dissolved in ancient oceans and, in turn, partial pressures of CO2 in ancient atmospheres. The calculations take into account the temperature dependence of chemical and isotopic equilibria in the dissolved-inorganic-carbon system and of air-sea equilibria. Paleoenvironmental temperatures for each sample are estimated from reconstructions of paleogeography, latitudinal temperature gradients, and secular changes in low-latitude sea surface temperature. It is estimated that atmospheric partial pressures of CO2 were over 1000 micro atm 160 - 100 Ma ago, then declined to values near 300 micro atm during the next 100 Ma. Analysis of a high-resolution record of carbon isotopic fractionation at the Cenomanian-Turonian boundary suggests that the partial pressure of CO2 in the atmosphere was drawn down from values near 840 micro atm to values near 700 micro atm during the anoxic event.

  18. Mechanical comparison between lengthened and short sacroiliac screws in sacral fracture fixation: a finite element analysis.

    PubMed

    Zhao, Y; Zhang, S; Sun, T; Wang, D; Lian, W; Tan, J; Zou, D; Zhao, Y

    2013-09-01

    To compare the stability of lengthened sacroiliac screw and standard sacroiliac screw for the treatment of unilateral vertical sacral fractures; to provide reference for clinical applications. A finite element model of Tile type C pelvic ring injury (unilateral Denis type II fracture of the sacrum) was produced. The unilateral sacral fractures were fixed with lengthened sacroiliac screw and sacroiliac screw in six different types of models respectively. The translation and angle displacement of the superior surface of the sacrum (in standing position on both feet) were measured and compared. The stability of one lengthened sacroiliac screw fixation in S1 or S2 segment is superior to that of one sacroiliac screw fixation in the same sacral segment. The stability of one lengthened sacroiliac screw fixation in S1 and S2 segments respectively is superior to that of one sacroiliac screw fixation in S1 and S2 segments respectively. The stability of one lengthened sacroiliac screw fixation in S1 and S2 segments respectively is superior to that of one lengthened sacroiliac screw fixation in S1 or S2 segment. The stability of one sacroiliac screw fixation in S1 and S2 segments respectively is markedly superior to that of one sacroiliac screw fixation in S1 or S2 segment. The vertical and rotational stability of lengthened sacroiliac screw fixation and sacroiliac screw fixation in S2 is superior to that of S1. In a finite element model of type C pelvic ring disruption, S1 and S2 lengthened sacroiliac screws should be utilized for the fixation as regularly as possible and the most stable fixation is the combination of the lengthened sacroiliac screws of S1 and S2 segments. Even if lengthened sacroiliac screws cannot be systematically used due to specific conditions, one sacroiliac screw fixation in S1 and S2 segments respectively is recommended. No matter which kind of sacroiliac screw is used, if only one screw can be implanted, the fixation in S2 segment is more recommended than that in S1. Experimental study Level III. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  19. Influence of elevated atmospheric carbon dioxide on transcriptional responses of Bradyrhizobium japonicum in the soybean rhizoplane.

    PubMed

    Sugawara, Masayuki; Sadowsky, Michael J

    2013-01-01

    Elevated atmospheric CO2 can influence the structure and function of rhizoplane and rhizosphere microorganisms by altering root growth and the quality and quantity of compounds released into the rhizoplane and rhizosphere via root exudation. In these studies we investigated the transcriptional responses of Bradyrhizobium japonicum cells growing in the rhizoplane of soybean plants exposed to elevated atmospheric CO2. The results of microarray analyses indicated that elevated atmospheric CO2 concentration indirectly influenced the expression of a large number of genes in Bradyrhizobium attached to soybean roots. In addition, relative to plants and bacteria grown under ambient CO2 growth conditions, genes involved in C1 metabolism, denitrification and FixK2-associated genes, including those involved in nitrogen fixation, microaerobic respiration, respiratory nitrite reductase, and heme biosynthesis, were significantly up-regulated under conditions of elevated CO2 in the rhizosphere. The expression profile of genes involved in lipochitooligosaccharide Nod factor biosynthesis and negative transcriptional regulators of nodulation genes, nolA and nodD2, were also influenced by plant growth under conditions of elevated CO2. Taken together, the results of these studies indicate that the growth of soybeans under conditions of elevated atmospheric CO2 influences gene expressions in B. japonicum in the soybean rhizoplane, resulting in changes to carbon/nitrogen metabolism, respiration, and nodulation efficiency.

  20. Influence of Elevated Atmospheric Carbon Dioxide on Transcriptional Responses of Bradyrhizobium japonicum in the Soybean Rhizoplane

    PubMed Central

    Sugawara, Masayuki; Sadowsky, Michael J.

    2013-01-01

    Elevated atmospheric CO2 can influence the structure and function of rhizoplane and rhizosphere microorganisms by altering root growth and the quality and quantity of compounds released into the rhizoplane and rhizosphere via root exudation. In these studies we investigated the transcriptional responses of Bradyrhizobium japonicum cells growing in the rhizoplane of soybean plants exposed to elevated atmospheric CO2. The results of microarray analyses indicated that elevated atmospheric CO2 concentration indirectly influenced the expression of a large number of genes in Bradyrhizobium attached to soybean roots. In addition, relative to plants and bacteria grown under ambient CO2 growth conditions, genes involved in C1 metabolism, denitrification and FixK2-associated genes, including those involved in nitrogen fixation, microaerobic respiration, respiratory nitrite reductase, and heme biosynthesis, were significantly up-regulated under conditions of elevated CO2 in the rhizosphere. The expression profile of genes involved in lipochitooligosaccharide Nod factor biosynthesis and negative transcriptional regulators of nodulation genes, nolA and nodD2, were also influenced by plant growth under conditions of elevated CO2. Taken together, the results of these studies indicate that the growth of soybeans under conditions of elevated atmospheric CO2 influences gene expressions in B. japonicum in the soybean rhizoplane, resulting in changes to carbon/nitrogen metabolism, respiration, and nodulation efficiency. PMID:23666536

  1. Mechanistic Basis for Biological Polymer Stability, Electron Transfer and Molecular Sensing in Extreme Environments

    DTIC Science & Technology

    2015-12-02

    electrically driven CO2 fixation. Many different types of extremophiles are known that are robust and resistant to heat or DISTRIBUTION A: Distribution...Metabolic and photosynthetic consequences of blocking starch biosynthesis in the green alga Chlamydomonas reinhardtii sta6 mutant. Plant Journal 81...photosynthetic consequences of blocking starch biosynthesis in the green alga Chlamydomonas reinhardtii sta6 mutant. Plant Journal 81, 947-960

  2. Transcriptional Response of the Archaeal Ammonia Oxidizer Nitrosopumilus maritimus to Low and Environmentally Relevant Ammonia Concentrations

    PubMed Central

    Stahl, David A.

    2013-01-01

    The ability of chemoautotrophic ammonia-oxidizing archaea to compete for ammonia among marine microorganisms at low ambient concentrations has been in part attributed to their extremely high affinity for ammonia, but as yet there is no mechanistic understanding of supporting metabolism. We examined transcription of selected genes for anabolic functions (CO2 fixation, ammonia transport, and cell wall synthesis) and a central catabolic function (ammonia oxidation) in the thaumarchaeon Nitrosopumilus maritimus SCM1 growing at two ammonia concentrations, as measured by combined ammonia and ammonium, one well above the Km for ammonia oxidation (∼500 μM) and the other well below the Km (<10 nM). Transcript levels were generally immediately and differentially repressed when cells transitioned from ammonia-replete to ammonia-limiting conditions. Transcript levels for ammonia oxidation, CO2 fixation, and one of the ammonia transport genes were approximately the same at high and low ammonia availability. Transcripts for all analyzed genes decreased with time in the complete absence of ammonia, but with various rates of decay. The new steady-state mRNA levels established are presumably more reflective of the natural physiological state of ammonia-oxidizing archaea and offer a reference for interpreting message abundance patterns in the natural environment. PMID:23995944

  3. Major role of microbes in carbon fluxes during Austral winter in the Southern Drake Passage.

    PubMed

    Manganelli, Maura; Malfatti, Francesca; Samo, Ty J; Mitchell, B Greg; Wang, Haili; Azam, Farooq

    2009-09-14

    Carbon cycling in Southern Ocean is a major issue in climate change, hence the need to understand the role of biota in the regulation of carbon fixation and cycling. Southern Ocean is a heterogeneous system, characterized by a strong seasonality, due to long dark winter. Yet, currently little is known about biogeochemical dynamics during this season, particularly in the deeper part of the ocean. We studied bacterial communities and processes in summer and winter cruises in the southern Drake Passage. Here we show that in winter, when the primary production is greatly reduced, Bacteria and Archaea become the major producers of biogenic particles, at the expense of dissolved organic carbon drawdown. Heterotrophic production and chemoautotrophic CO(2) fixation rates were substantial, also in deep water, and bacterial populations were controlled by protists and viruses. A dynamic food web is also consistent with the observed temporal and spatial variations in archaeal and bacterial communities that might exploit various niches. Thus, Southern Ocean microbial loop may substantially maintain a wintertime food web and system respiration at the expense of summer produced DOC as well as regenerate nutrients and iron. Our findings have important implications for Southern Ocean ecosystem functioning and carbon cycle and its manipulation by iron enrichment to achieve net sequestration of atmospheric CO(2).

  4. Progression of Local Glaucomatous Damage Near Fixation as Seen with Adaptive Optics Imaging.

    PubMed

    Hood, Donald C; Lee, Dongwon; Jarukasetphon, Ravivarn; Nunez, Jason; Mavrommatis, Maria A; Rosen, Richard B; Ritch, Robert; Dubra, Alfredo; Chui, Toco Y P

    2017-07-01

    Deep glaucomatous defects near fixation were followed over time with an adaptive optics-scanning light ophthalmoscope (AO-SLO) to better understand the progression of these defects and to explore the use of AO-SLO in detecting them. Six eyes of 5 patients were imaged with an AO-SLO from 2 to 4 times for a range of 14.6 to 33.6 months. All eyes had open-angle glaucoma with deep defects in the superior visual field (VF) near fixation as defined by 10-2 VFs with 5 or more points less than -15 dB; two of the eyes had deep defects in the inferior VF as well. AO-SLO images were obtained around the temporal edge of the disc. In 4 of the 6 eyes, the edge of the inferior-temporal disc region of the retinal nerve fiber (RNF) defect seen on AO-SLO moved closer to fixation within 10.6 to 14.7 months. In 4 eyes, RNF bundles in the affected region appeared to lose contrast and/or disappear. Progressive changes in RNF bundles associated with deep defects on 10-2 VFs can be seen within about 1 year with AO-SLO imaging. These changes are well below the spatial resolution of the 10-2 VF. On the other hand, subtle thinning of regions with RNF bundles is not easy to see with current AO-SLO technology, and may be better followed with OCT. AO-SLO imaging may be useful in clinical trials designed to see very small changes in deep defects.

  5. Aqua[bis(pyrimidin-2-yl-kappa N)amine](carbonato-kappa 2O,O')copper(II) dihydrate.

    PubMed

    van Albada, Gerard A; Mutikainen, Ilpo; Turpeinen, Urho; Reedijk, Jan

    2002-03-01

    The title mononuclear complex, [Cu(CO(3))(C(8)H(7)N(5))(H(2)O)] x 2H(2)O, was obtained by fixation of CO(2) by a mixture of copper(II) tetrafluoroborate and the ligand bis(pyrimidin-2-yl)amine in ethanol/water. The Cu(II) ion of the complex has a distorted square-pyramidal environment, with a basal plane formed by two N atoms of the ligand and two chelating O atoms of the carbonate group, while the apical position is occupied by the O atom of the coordinating water molecule. In the solid state, hydrogen-bonding interactions are dominant, the most unusual being the Watson-Crick-type coplanar ligand pairing through two N--H...N bonds. Lattice water molecules also participate in hydrogen bonding.

  6. Iron availability limits the ocean nitrogen inventory stabilizing feedbacks between marine denitrification and nitrogen fixation

    NASA Astrophysics Data System (ADS)

    Moore, J. Keith; Doney, Scott C.

    2007-06-01

    Recent upward revisions in key sink/source terms for fixed nitrogen (N) in the oceans imply a short residence time and strong negative feedbacks involving denitrification and N fixation to prevent large swings in the ocean N inventory over timescales of a few centuries. We tested the strength of these feedbacks in a global biogeochemical elemental cycling (BEC) ocean model that includes water column denitrification and an explicit N fixing phytoplankton group. In the northern Indian Ocean and over longer timescales in the tropical Atlantic, we find strong stabilizing feedbacks that minimize changes in marine N inventory over timescales of ˜30-200 years. In these regions high atmospheric dust/iron inputs lead to phosphorus limitation of diazotrophs, and thus a tight link between N fixation and surface water N/P ratios. Maintenance of the oxygen minimum zones in these basins depends on N fixation driven export. The stabilizing feedbacks in other regions are significant but weaker owing to iron limitation of the diazotrophs. Thus Fe limitation appears to restrict the ability of N fixation to compensate for changes in denitrification in the current climate, perhaps leading the oceans to lose fixed N. We suggest that iron is the ultimate limiting nutrient leading to nitrogen being the proximate limiting nutrient over wide regions today. Iron stress was at least partially alleviated during more dusty, glacial times, leading to a higher marine N inventory, increased export production, and perhaps widespread phosphorus limitation of the phytoplankton community. The increased efficiency of the biological pump would have contributed to the glacial drawdown in atmospheric CO2.

  7. Fixation of the Achilles tendon insertion using suture button technology.

    PubMed

    Fanter, Nathan J; Davis, Edward W; Baker, Champ L

    2012-09-01

    In the operative treatment of Achilles insertional tendinopathy, no guidelines exist concerning which form of fixation of the Achilles tendon insertion is superior. Transcalcaneal drill pin passage does not place any major plantar structures at risk, and the addition of a Krackow stitch and suture button to the fixation technique provides a significant increase in ultimate load to failure in Achilles tendon insertional repairs. Controlled laboratory study. The Achilles tendon insertions in 6 fresh-frozen cadaveric ankles were detached, and transcalcaneal drill pins were passed. Plantar dissection took place to evaluate the drill pin relationship to the plantar fascia, lateral plantar nerve and artery, flexor digitorum longus tendon, and master knot of Henry. The Achilles tendons were then repaired with a double-row suture anchor construct alone or with a suture button and Krackow stitch added to the double-row suture anchor construct. The repairs were then tested to maximum load to failure at 20 mm/min. The mode of failure was recorded, and the mean maximum load to failure was assessed using the Student t test for distributions with equal variance. Transcalcaneal drill pin passage did not place any selected anatomic structures at risk. The mean maximum load to failure for the suture bridge group was 239.2 N; it was 391.4 N for the group with the suture button (P = .014). The lateral plantar artery was the structure placed at greatest risk from drill pin placement, with a mean distance of 22.7 mm (range, 16.5-29.2 mm) between the pin and artery. In this laboratory study, transcalcaneal drill pin passage appeared to be anatomically safe, and the use of suture button technology with a Krackow stitch for Achilles tendon insertional repair significantly increased repair strength. Achilles tendon insertional repair with suture button fixation and a Krackow stitch may facilitate the earlier institution of postoperative rehabilitation and improve clinical outcomes.

  8. Electrochemical Reduction of N2 under Ambient Conditions for Artificial N2 Fixation and Renewable Energy Storage Using N2 /NH3 Cycle.

    PubMed

    Bao, Di; Zhang, Qi; Meng, Fan-Lu; Zhong, Hai-Xia; Shi, Miao-Miao; Zhang, Yu; Yan, Jun-Min; Jiang, Qing; Zhang, Xin-Bo

    2017-01-01

    Using tetrahexahedral gold nanorods as a heterogeneous electrocatalyst, an electrocatalytic N 2 reduction reaction is shown to be possible at room temperature and atmospheric pressure, with a high Faradic efficiency up to 4.02% at -0.2 V vs reversible hydrogen electrode (1.648 µg h -1 cm -2 and 0.102 µg h -1 cm -2 for NH 3 and N 2 H 4 ·H 2 O, respectively). © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Relaxation of ferromagnetic nanoparticles in macrophages: In vitro and in vivo studies

    NASA Astrophysics Data System (ADS)

    Möller, Winfried; Takenaka, Shinji; Buske, Norbert; Felten, Kathrin; Heyder, Joachim

    2005-05-01

    The relaxation characteristics of magnetic nanoparticles (CoFe 2O 4) were investigated in J774A.1 macrophages and after voluntary inhalation. In dry form 25% of the particles showed Néel relaxation. Relaxation in macrophages occurred within minutes and could be inhibited by fixation, showing Brownian relaxation and intracellular transport processes. Relaxation in the lung happened similarly, but was dependent on the time after deposition. The particles were cleared from the lung within 2 weeks.

  10. RuBisCO large-subunit gene primers for assessing the CO2-assimilating planktonic community structure in Jiaozhou Bay, China.

    PubMed

    Chi, Xiang-Qun; Wang, Long; Guo, Ruoyu; Zhao, Dexi; Li, Jia; Zhang, Yongyu; Jiao, Nianzhi

    2018-06-19

    The protein coding genes (rbcL/cbbL/cbbM) for RuBisCO large subunit, the most abundant protein on earth that drives biological CO2 fixation, were considered as useful marker genes in characterizing CO2-assimilating plankton. However, their community specificity has hindered comprehensive screening of genetic diversity. In this study, six different rbcL/cbbL/cbbM primers were employed to screen clone libraries to identify CO2-assimilating plankton in Jiaozhou Bay. The following community compositions were observed: the community components in Form I A/B rbcL/cbbL clone library mainly comprised Chlorophyta and Proteobacteria, Form ID2 and ID3 libraries consisted of Bacillariophyta, Form II cbbM library consisted of Proteobacteria and Alveolata, and both Form I green and red libraries included Proteobacteria, respectively. At the genus taxonomic level, no overlaps among these clone libraries were observed, except for ID2 and ID3. Overall, the phytoplankton in Jiaozhou Bay mainly consists of Bacillariophyta, Chlorophyta, Cryptophyta, Haptophyceae, and Alveolata. The CO2-assimilating prokaryotes mainly consist of Proteobacteria. Considering the high sequence specificities of these marker genes, we propose that the joint use of multiple primers may be utilized in unveiling the diversity of CO2-assimilating organisms. In addition, designing novel RuBisCO gene primers that generate longer amplicons and have broader phylogenetic coverage may be necessary in the future.

  11. Photosynthesis: Action Spectra for Leaves in Normal and Low Oxygen 1

    PubMed Central

    Bulley, N. R.; Nelson, C. D.; Tregunna, E. B.

    1969-01-01

    The action spectrum of apparent photosynthesis for attached radish (Raphanus sativus L. var. Early Scarlet Globe) and corn (Zea mays L. var. Pride V.) leaves was measured at 300 μl/l CO2 and both 21% and 2% O2. The spectra were measured at light intensities where apparent photosynthesis was proportional to intensity. For radish, a high compensation point plant, oxygen had an inhibiting effect on photosynthesis at all wavelengths from 402 to 694 mμ. If a constant rate of photosynthesis at 21% O2 for the different wavelengths was chosen, then the percent increase in net CO2 fixation at 2% O2 was constant. For corn, a low compensation point plant, no inhibitory effect of oxygen concentration from 2% to 21% O2 was found over the visible spectrum. The CO2 compensation point for light intensities greater than the light compensation point was found to be constant and independent of wavelength for both radish and corn leaves. For radish, the lowering of the oxygen concentration from 21% to 2% at these intensities was found to reduce the CO2 compensation point by the same amount for the wavelengths studied. PMID:16657120

  12. N2 production and fixation in deep-tier burrows of Squilla empusa in muddy sediments of Great Peconic Bay

    NASA Astrophysics Data System (ADS)

    Waugh, Stuart; Aller, Robert C.

    2017-11-01

    Global marine N budgets often show deficits due to dominance of benthic N2 production relative to pelagic N2 fixation. Recent studies have argued that benthic N2 fixation in shallow water environments has been underestimated. In particular, N2 fixation associated with animal burrows may be significant as indicated by high rates of N2 fixation reported in muddy sands populated by the ghost shrimp, Neotrypaea californiensis (Bertics et al., 2010). We investigated whether N2 fixation occurs at higher rates in the burrow-walls of the deep-burrowing ( 0.5-4 m) mantis shrimp, Squilla empusa, compared to ambient, estuarine muds and measured seasonal in-situ N2 concentrations in burrow-water relative to bottom-water. Acetylene reduction assays showed lower N2 fixation in burrow-walls than in un-populated sediments, likely due to inhibitory effects of O2 on ethylene production. Dissolved N2 was higher in burrow-water than proximate bottom-water at all seasons, demonstrating a consistent balance of net N2 production relative to fixation in deep-tier biogenic structures.

  13. The possible evolution and future of CO2-concentrating mechanisms.

    PubMed

    Raven, John A; Beardall, John; Sánchez-Baracaldo, Patricia

    2017-06-01

    CO2-concentrating mechanisms (CCMs), based either on active transport of inorganic carbon (biophysical CCMs) or on biochemistry involving supplementary carbon fixation into C4 acids (C4 and CAM), play a major role in global primary productivity. However, the ubiquitous CO2-fixing enzyme in autotrophs, Rubisco, evolved at a time when atmospheric CO2 levels were very much higher than today and O2 was very low and, as CO2 and O2 approached (by no means monotonically), today's levels, at some time subsequently many organisms evolved a CCM that increased the supply of CO2 and decreased Rubisco oxygenase activity. Given that CO2 levels and other environmental factors have altered considerably between when autotrophs evolved and the present day, and are predicted to continue to change into the future, we here examine the drivers for, and possible timing of, evolution of CCMs. CCMs probably evolved when CO2 fell to 2-16 times the present atmospheric level, depending on Rubisco kinetics. We also assess the effects of other key environmental factors such as temperature and nutrient levels on CCM activity and examine the evidence for evolutionary changes in CCM activity and related cellular processes as well as limitations on continuity of CCMs through environmental variations. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  14. Nitrate and Ammonium Induced Photosynthetic Suppression in N-Limited Selenastrum minutum: II. Effects of NO(3) and NH(4) Addition to CO(2) Efflux in the Light.

    PubMed

    Birch, D G; Elrifi, I R; Turpin, D H

    1986-11-01

    The effects of nitrate and ammonium addition on net and gross photosynthesis, CO(2) efflux and the dissolved inorganic carbon compensation point of nitrogen-limited Selenastrum minutum Naeg. Collins (Chlorophyta) were studied. Cultures pulsed with nitrate or ammonium exhibited a marked decrease in both net and gross photosynthetic carbon fixation. During this period of suppression the specific activity of exogenous dissolved inorganic carbon decreased rapidly in comparison to control cells indicating an increase in the rate of CO(2) efflux in the light. The nitrate and ammmonium induced rates of CO(2) efflux were 31.0 and 33.8 micromoles CO(2) per milligram chlorophyll per hour, respectively, and represented 49 and 48% of the rate of gross photosynthesis. Nitrate addition to cells at dissolved inorganic carbon compensation point caused an increase in compensation point while ammonium had no effect. In the presence of the tricarboxylic acid cycle inhibitor fluoroacetate, the nitrate-induced change in compensation point was greatly reduced suggesting the source of this CO(2) was the tricarboxylic acid cycle. These results are consistent with the mechanism of N-induced photosynthetic suppression outlined by Elrifi and Turpin (1986 Plant Physiol 81: 273-279).

  15. Nitrate and Ammonium Induced Photosynthetic Suppression in N-Limited Selenastrum minutum1

    PubMed Central

    Birch, Douglas G.; Elrifi, Ivor R.; Turpin, David H.

    1986-01-01

    The effects of nitrate and ammonium addition on net and gross photosynthesis, CO2 efflux and the dissolved inorganic carbon compensation point of nitrogen-limited Selenastrum minutum Naeg. Collins (Chlorophyta) were studied. Cultures pulsed with nitrate or ammonium exhibited a marked decrease in both net and gross photosynthetic carbon fixation. During this period of suppression the specific activity of exogenous dissolved inorganic carbon decreased rapidly in comparison to control cells indicating an increase in the rate of CO2 efflux in the light. The nitrate and ammmonium induced rates of CO2 efflux were 31.0 and 33.8 micromoles CO2 per milligram chlorophyll per hour, respectively, and represented 49 and 48% of the rate of gross photosynthesis. Nitrate addition to cells at dissolved inorganic carbon compensation point caused an increase in compensation point while ammonium had no effect. In the presence of the tricarboxylic acid cycle inhibitor fluoroacetate, the nitrate-induced change in compensation point was greatly reduced suggesting the source of this CO2 was the tricarboxylic acid cycle. These results are consistent with the mechanism of N-induced photosynthetic suppression outlined by Elrifi and Turpin (1986 Plant Physiol 81: 273-279). PMID:16665097

  16. Prebiotic chemistry and atmospheric warming of early Earth by an active young Sun

    NASA Astrophysics Data System (ADS)

    Airapetian, V. S.; Glocer, A.; Gronoff, G.; Hébrard, E.; Danchi, W.

    2016-06-01

    Nitrogen is a critical ingredient of complex biological molecules. Molecular nitrogen, however, which was outgassed into the Earth’s early atmosphere, is relatively chemically inert and nitrogen fixation into more chemically reactive compounds requires high temperatures. Possible mechanisms of nitrogen fixation include lightning, atmospheric shock heating by meteorites, and solar ultraviolet radiation. Here we show that nitrogen fixation in the early terrestrial atmosphere can be explained by frequent and powerful coronal mass ejection events from the young Sun--so-called superflares. Using magnetohydrodynamic simulations constrained by Kepler Space Telescope observations, we find that successive superflare ejections produce shocks that accelerate energetic particles, which would have compressed the early Earth’s magnetosphere. The resulting extended polar cap openings provide pathways for energetic particles to penetrate into the atmosphere and, according to our atmospheric chemistry simulations, initiate reactions converting molecular nitrogen, carbon dioxide and methane to the potent greenhouse gas nitrous oxide as well as hydrogen cyanide, an essential compound for life. Furthermore, the destruction of N2, CO2 and CH4 suggests that these greenhouse gases cannot explain the stability of liquid water on the early Earth. Instead, we propose that the efficient formation of nitrous oxide could explain a warm early Earth.

  17. R&D100: CO2 Memzyme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rempe, Susan; Brinker, Jeff; Jiang, Ying-Bing

    2015-11-19

    By combining a water droplet loaded with CO2 enzymes in an ultrathin nanopore on a flexible substrate, researchers at Sandia National Laboratories realized the first technology that meets and exceeds DOE targets for cost-effective CO2 capture. When compared with the nearest membrane competitor, this technology delivers a three times permeation rate, twenty times higher selectivity, and ten time lower fabrication cost. The CO2 Memzyme has the potential to remove 90% of CO2 emissions and is forecasted to save the U.S. coal industry $90 billion a year compared to conventional technology.

  18. R&D100: CO2 Memzyme

    ScienceCinema

    Rempe, Susan; Brinker, Jeff; Jiang, Ying-Bing; Vanegas, Juan

    2018-06-25

    By combining a water droplet loaded with CO2 enzymes in an ultrathin nanopore on a flexible substrate, researchers at Sandia National Laboratories realized the first technology that meets and exceeds DOE targets for cost-effective CO2 capture. When compared with the nearest membrane competitor, this technology delivers a three times permeation rate, twenty times higher selectivity, and ten time lower fabrication cost. The CO2 Memzyme has the potential to remove 90% of CO2 emissions and is forecasted to save the U.S. coal industry $90 billion a year compared to conventional technology.

  19. The relationship between dissolved hydrogen and nitrogen fixation in ocean waters

    NASA Astrophysics Data System (ADS)

    Moore, Robert M.; Punshon, Stephen; Mahaffey, Claire; Karl, David

    2009-09-01

    Fixed nitrogen is a key nutrient involved in regulating global marine productivity and hence the global oceanic carbon cycle. Oceanic nitrogen (N 2) fixation is estimated to supply 8×10 12 moles N y -1 to the ocean, approximately equal to current riverine and the atmospheric inputs of fixed N, and between 50 and 100% of current estimates of oceanic denitrification. However, the spatial and temporal variability of N 2 fixation remains uncertain, mostly because of the normal low resolution sampling for diazotroph distribution and fixation rates. It is well established that N 2 fixation, mediated by the enzyme nitrogenase, is a source of hydrogen (H 2), but the extent to which it leads to supersaturation of H 2 in oceanic waters is unresolved. Here, we present simultaneous measurements of upper ocean dissolved H 2 concentration (nmol L -1), and rates of N 2 fixation (μmol N m -3 d -1), determined using 15N 2 tracer techniques (at 7 or 15 m), on a transect from Fiji to Hawaii. We find a significant correlation ( r=0.98) between dissolved H 2 and rates of N 2 fixation, with the greatest supersaturation of H 2 and highest rates of N 2 fixation being observed in the subtropical gyres at the southern (˜18°S) and northern (18°N) reaches of the transect. The lowest H 2 saturation and N 2 fixation were observed in the equatorial region between 8°S and 14°N. We propose that an empirical relationship between H 2 supersaturations and N 2 fixation measurements could be used to guide sampling for 15N fixation measurements or to aid the spatial interpolation of such measurements.

  20. [Study on new extraction technology of astragaloside IV].

    PubMed

    Sun, Haiyan; Guan, Su; Huang, Min

    2005-08-01

    To explore the possibility and the optimal extraction technology of astragaloside IV by SFE-CO2. According the content of astragaloside IV, the optimum extraction technology parameters such as extraction temperature, pressure, extraction time, velocity of fluid and co-solvent were investigated and the result was compared with that of water extraction. The optimum technical parameters were as follows: Extracting pressure 40 Mpa, temperature 45 degrees C, extracting time 2h, co-solvent was 95% ethanol and its dosage was 4ml/g, the ratio of CO2 fluid was 10 kg/kg x h. Extraction technology of astragaloside IV by SFE-CO2 is reliable, stable.

  1. Distribution of nitrogen fixation and nitrogenase-like sequences amongst microbial genomes

    PubMed Central

    2012-01-01

    Background The metabolic capacity for nitrogen fixation is known to be present in several prokaryotic species scattered across taxonomic groups. Experimental detection of nitrogen fixation in microbes requires species-specific conditions, making it difficult to obtain a comprehensive census of this trait. The recent and rapid increase in the availability of microbial genome sequences affords novel opportunities to re-examine the occurrence and distribution of nitrogen fixation genes. The current practice for computational prediction of nitrogen fixation is to use the presence of the nifH and/or nifD genes. Results Based on a careful comparison of the repertoire of nitrogen fixation genes in known diazotroph species we propose a new criterion for computational prediction of nitrogen fixation: the presence of a minimum set of six genes coding for structural and biosynthetic components, namely NifHDK and NifENB. Using this criterion, we conducted a comprehensive search in fully sequenced genomes and identified 149 diazotrophic species, including 82 known diazotrophs and 67 species not known to fix nitrogen. The taxonomic distribution of nitrogen fixation in Archaea was limited to the Euryarchaeota phylum; within the Bacteria domain we predict that nitrogen fixation occurs in 13 different phyla. Of these, seven phyla had not hitherto been known to contain species capable of nitrogen fixation. Our analyses also identified protein sequences that are similar to nitrogenase in organisms that do not meet the minimum-gene-set criteria. The existence of nitrogenase-like proteins lacking conserved co-factor ligands in both diazotrophs and non-diazotrophs suggests their potential for performing other, as yet unidentified, metabolic functions. Conclusions Our predictions expand the known phylogenetic diversity of nitrogen fixation, and suggest that this trait may be much more common in nature than it is currently thought. The diverse phylogenetic distribution of nitrogenase-like proteins indicates potential new roles for anciently duplicated and divergent members of this group of enzymes. PMID:22554235

  2. 78 FR 23472 - Amendments to Existing Validated End-User Authorizations: CSMC Technologies Corporation in the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-19

    ... of Wuxi CR Semiconductor Wafers & Chips Co., Ltd. and CSMC Technologies Fab 1 Co., Ltd., which is... Validated End-User: CSMC Technologies Corporation. Eligible Destinations: CSMC Technologies Fab 1 Co., Ltd., 14 Liangxi Road, Wuxi, Jiangsu 214061, China. CSMC Technologies Fab 2 Co., Ltd., 8 Xinzhou Rd., Wuxi...

  3. Coordination-driven self-assembly of a novel carbonato-bridged heteromolecular neutral nickel(II) triangle by atmospheric CO2 fixation.

    PubMed

    Mukherjee, Pampa; Drew, Michael G B; Estrader, Marta; Ghosh, Ashutosh

    2008-09-01

    Formation of a quasi-symmetrical mu 3-carbonato-bridged self-assembled heteromolecular triangle of Ni(II), [(mu 3-CO 3){Ni 2(salmeNH) 2(NCS) 2}{Ni(salmeNH 2) 2].Et 2O.H 2O (HsalmeNH = 2-[(3-methylamino-propylimino)-methyl]-phenol) involves atmospheric CO 2 uptake in a neutral medium, by spontaneous self-reorganization of the starting mononuclear Ni(II)-Schiff-base complex, [Ni(salmeNH) 2]. The environment around Ni(II) in two of the subunits is different from the third one. The starting complex, [Ni(salmeNH) 2], and one of the possible intermediate species, [Ni(salmeNH 2) 2(NCS) 2], which has a very similar coordination environment to that in the third Ni(II) center, have been characterized structurally. A plausible mechanism for the formation of such a triangle has also been proposed. The compound shows a very strong antiferromagnetic coupling. Fit as a regular triangular arrangement gave J = -53.1, g = 2.24, and R = 1.5 x 10 (-4).

  4. Fixation-free rehalogenating bleached reflection holograms recorded on BB-640 plates

    NASA Astrophysics Data System (ADS)

    Neipp, C.; Pascual, I.; Beléndez, A.

    2000-08-01

    Fixation-free rehalogenating bleaching is an interesting process for the production of phase reflection holograms. The shrinkage of the emulsion is reduced in comparison with other bleaching methods (reversal bleaching or rehalogenating bleaching with a fixation step), which is particularly interesting in the case of reflection holograms. In this communication, we present experimental results for fixation-free rehalogenating bleached holograms derived from the novel BB-640 emulsion, a red-sensitive ultra-fine grain emulsion from Holographic Recording Technologies using an R-10 type bleach bath. The influence of the potassium bromide concentrations in the bleach solution on the final quality of the holograms is also studied. The concentrations of the different components of the bleach solution are adjusted to obtain the highest diffraction efficiencies. A high diffraction efficiency of 72% is obtained.

  5. RubisCO selection using the vigorously aerobic and metabolically versatile bacterium Ralstonia eutropha.

    PubMed

    Satagopan, Sriram; Tabita, F Robert

    2016-08-01

    Recapturing atmospheric CO2 is key to reducing global warming and increasing biological carbon availability. Ralstonia eutropha is a biotechnologically useful aerobic bacterium that uses the Calvin-Benson-Bassham (CBB) cycle and the enzyme ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO) for CO2 utilization, suggesting that it may be a useful host to bioselect RubisCO molecules with improved CO2 -capture capabilities. A host strain of R. eutropha was constructed for this purpose after deleting endogenous genes encoding two related RubisCOs. This strain could be complemented for CO2 -dependent growth by introducing native or heterologous RubisCO genes. Mutagenesis and suppressor selection identified amino acid substitutions in a hydrophobic region that specifically influences RubisCO's interaction with its substrates, particularly O2 , which competes with CO2 at the active site. Unlike most RubisCOs, the R. eutropha enzyme has evolved to retain optimal CO2 -fixation rates in a fast-growing host, despite the presence of high levels of competing O2 . Yet its structure-function properties resemble those of several commonly found RubisCOs, including the higher plant enzymes, allowing strategies to engineer analogous enzymes. Because R. eutropha can be cultured rapidly under harsh environmental conditions (e.g., with toxic industrial flue gas), in the presence of near saturation levels of oxygen, artificial selection and directed evolution studies in this organism could potentially impact efforts toward improving RubisCO-dependent biological CO2 utilization in aerobic environments. d-ribulose 1,5-bisphosphate carboxylase/oxygenase, EC 4.1.1.39; phosphoribulokinase, EC 2.7.1.19. © 2016 Federation of European Biochemical Societies.

  6. Productivity and carbon dioxide exchange of leguminous crops: estimates from flux tower measurements

    USGS Publications Warehouse

    Gilmanov, Tagir G.; Baker, John M.; Bernacchi, Carl J.; Billesbach, David P.; Burba, George G.; Castro, Saulo; Chen, Jiquan; Eugster, Werner; Fischer, Marc L.; Gamon, John A.; Gebremedhin, Maheteme T.; Glenn, Aaron J.; Griffis, Timothy J.; Hatfield, Jerry L.; Heuer, Mark W.; Howard, Daniel M.; Leclerc, Monique Y.; Loescher, Henry W.; Marloie, Oliver; Meyers, Tilden P.; Olioso, Albert; Phillips, Rebecca L.; Prueger, John H.; Skinner, R. Howard; Suyker, Andrew E.; Tenuta, Mario; Wylie, Bruce K.

    2014-01-01

    Net CO2 exchange data of legume crops at 17 flux tower sites in North America and three sites in Europe representing 29 site-years of measurements were partitioned into gross photosynthesis and ecosystem respiration by using the nonrectangular hyperbolic light-response function method. The analyses produced net CO2 exchange data and new ecosystem-scale ecophysiological parameter estimates for legume crops determined at diurnal and weekly time steps. Dynamics and annual totals of gross photosynthesis, ecosystem respiration, and net ecosystem production were calculated by gap filling with multivariate nonlinear regression. Comparison with the data from grain crops obtained with the same method demonstrated that CO2 exchange rates and ecophysiological parameters of legumes were lower than those of maize (Zea mays L.) but higher than for wheat (Triticum aestivum L.) crops. Year-round annual legume crops demonstrated a broad range of net ecosystem production, from sinks of 760 g CO2 m–2 yr–1 to sources of –2100 g CO2 m–2 yr–1, with an average of –330 g CO2 m–2 yr–1, indicating overall moderate CO2–source activity related to a shorter period of photosynthetic uptake and metabolic costs of N2 fixation. Perennial legumes (alfalfa, Medicago sativa L.) were strong sinks for atmospheric CO2, with an average net ecosystem production of 980 (range 550–1200) g CO2 m–2 yr–1.

  7. Importance of salt fingering for new nitrogen supply in the oligotrophic ocean.

    PubMed

    Fernández-Castro, B; Mouriño-Carballido, B; Marañón, E; Chouciño, P; Gago, J; Ramírez, T; Vidal, M; Bode, A; Blasco, D; Royer, S-J; Estrada, M; Simó, R

    2015-09-09

    The input of new nitrogen into the euphotic zone constrains the export of organic carbon to the deep ocean and thereby the biologically mediated long-term CO2 exchange between the ocean and atmosphere. In low-latitude open-ocean regions, turbulence-driven nitrate diffusion from the ocean's interior and biological fixation of atmospheric N2 are the main sources of new nitrogen for phytoplankton productivity. With measurements across the tropical and subtropical Atlantic, Pacific and Indian oceans, we show that nitrate diffusion (171±190 μmol m(-2) d(-1)) dominates over N2 fixation (9.0±9.4 μmol m(-2) d(-1)) at the time of sampling. Nitrate diffusion mediated by salt fingers is responsible for ca. 20% of the new nitrogen supply in several provinces of the Atlantic and Indian Oceans. Our results indicate that salt finger diffusion should be considered in present and future ocean nitrogen budgets, as it could supply globally 0.23-1.00 Tmol N yr(-1) to the euphotic zone.

  8. An ex vivo mechanical evaluation of single versus double semitubular plate fixation of a transverse distal-third scapular osteotomy in the dog.

    PubMed

    Mair, Jacqueline J; Belkoff, Stephen M; Boudrieau, Randy J

    2003-01-01

    To compare single versus double semitubular plate fixation for scapular body fractures. Ex vivo mechanical study. Eighteen paired cadaveric canine scapulae. Transverse scapular body osteotomies were created in the distal third of 18 pairs of scapulae. One scapula of each pair was repaired with a single plate, whereas the contralateral scapula was repaired with 2 plates. Initial strength and stiffness of the constructs were measured in 10 pairs of scapulae. Eight pairs of scapulae underwent cyclic loading and then were subjected to failure testing. Double-plate fixation was significantly stronger (3,899 +/- 632 N) but not stiffer (614 +/- 130 N/mm) than the single-plate fixation (3,238 +/- 935 N and 537 +/- 202 N/mm, respectively). Cyclic loading variables were not significantly different between the 2 methods of fixation. After cyclic loading, double-plate fixation was significantly stronger (2,916 +/- 618 N) than single-plate fixation (2,347 +/- 495 N). There was no significant difference (P =.11) in stiffness between double- versus single-plate fixations: 734 +/- 247 N/mm and 595 +/- 139 N/mm, respectively. Double-plate fixation was generally stronger and stiffer than single-plate fixation. Because all constructs failed at loads that greatly exceeded those estimated to occur clinically, any difference between the 2 methods of fixation probably is not clinically relevant. Single-plate fixation may be of sufficient strength for fixation of scapular body fractures. Copyright 2003 by The American College of Veterinary Surgeons

  9. Cyanofuels: biofuels from cyanobacteria. Reality and perspectives.

    PubMed

    Sarsekeyeva, Fariza; Zayadan, Bolatkhan K; Usserbaeva, Aizhan; Bedbenov, Vladimir S; Sinetova, Maria A; Los, Dmitry A

    2015-08-01

    Cyanobacteria are represented by a diverse group of microorganisms that, by virtue of being a part of marine and freshwater phytoplankton, significantly contribute to the fixation of atmospheric carbon via photosynthesis. It is assumed that ancient cyanobacteria participated in the formation of earth's oil deposits. Biomass of modern cyanobacteria may be converted into bio-oil by pyrolysis. Modern cyanobacteria grow fast; they do not compete for agricultural lands and resources; they efficiently convert excessive amounts of CO2 into biomass, thus participating in both carbon fixation and organic chemical production. Many cyanobacterial species are easier to genetically manipulate than eukaryotic algae and other photosynthetic organisms. Thus, the cyanobacterial photosynthesis may be directed to produce carbohydrates, fatty acids, or alcohols as renewable sources of biofuels. Here we review the recent achievements in the developments and production of cyanofuels-biofuels produced from cyanobacterial biomass.

  10. A comprehensive update on current fixation options for two-part proximal humerus fractures: a biomechanical investigation.

    PubMed

    Yoon, Richard S; Dziadosz, Daniel; Porter, David A; Frank, Matthew A; Smith, Wade R; Liporace, Frank A

    2014-03-01

    Recent advancements in implant technology offer updated options for surgical management that have been rapidly adopted into clinical practice. The objective of this study is to biomechanically test and compare the current fixation options available for surgical fixation of two-part proximal humerus fractures and establish load to failure and stiffness values. Sixteen match-paired (32 total) fresh-frozen, cadaveric specimens were randomized to receive 1 of 4 fixation constructs following creation of an AO/OTA Type 11A3 (two-part) proximal humerus fractures. Fixation constructs tested consisted of 3.5 mm fixed angle plate (3.5-FAP), 4.5 mm fixed angle plate (4.5-FAP), humeral intramedullary nail (IMN), and a humeral intramedullary nail with a fixed angle blade (IMN-FAB). Specimen bone density was measured to ensure no adequate, non-osteoporotic bone. Constructs were tested for stiffness and ultimate load to failure and compared via one-way ANOVA analysis with subsequent post hoc Tukey HSD multiple group comparison statistical analysis. The IMN-FAB construct was significantly stiffer than the 3.5-FAP construct (123.8 vs. 23.9, p<0.0001), the 4.5-FAP construct (123.8 vs. 33.3, p<0.0001) and the IMN construct (123.8 vs. 60.1, p=0.005). The IMN-FAB construct reported a significantly higher load to failure than the 3.5-FAB construct (4667.3 N vs. 1756.9 N, p<0.0001), and the 4.5-FAP construct (4667.3 N vs. 2829.4 N, p=0.019, Table 2). The IMN construct had a significantly higher load to failure than the 3.5-FAP construct (3946.8 vs. 1756.9, p=0.001, Table 2). Biomechanical testing of modern fixation options for two-part proximal humerus fracture exhibited that the stiffest and highest load to failure construct was the IMN-FAB followed by the IMN, 3.5-FAP and then the 4.5-FAP constructs. However, prospective clinical trials with longer-term follow-up are required for definitive assessment of the ideal fixation construct for surgical management of two-part proximal humerus fractures. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Microbial potential for carbon and nutrient cycling in a geogenic supercritical carbon dioxide reservoir.

    PubMed

    Freedman, Adam J E; Tan, BoonFei; Thompson, Janelle R

    2017-06-01

    Microorganisms catalyze carbon cycling and biogeochemical reactions in the deep subsurface and thus may be expected to influence the fate of injected supercritical (sc) CO 2 following geological carbon sequestration (GCS). We hypothesized that natural subsurface scCO 2 reservoirs, which serve as analogs for the long-term fate of sequestered scCO 2 , harbor a 'deep carbonated biosphere' with carbon cycling potential. We sampled subsurface fluids from scCO 2 -water separators at a natural scCO 2 reservoir at McElmo Dome, Colorado for analysis of 16S rRNA gene diversity and metagenome content. Sequence annotations indicated dominance of Sulfurospirillum, Rhizobium, Desulfovibrio and four members of the Clostridiales family. Genomes extracted from metagenomes using homology and compositional approaches revealed diverse mechanisms for growth and nutrient cycling, including pathways for CO 2 and N 2 fixation, anaerobic respiration, sulfur oxidation, fermentation and potential for metabolic syntrophy. Differences in biogeochemical potential between two production well communities were consistent with differences in fluid chemical profiles, suggesting a potential link between microbial activity and geochemistry. The existence of a microbial ecosystem associated with the McElmo Dome scCO 2 reservoir indicates that potential impacts of the deep biosphere on CO 2 fate and transport should be taken into consideration as a component of GCS planning and modelling. © 2017 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.

  12. The paleobiological record of photosynthesis.

    PubMed

    William Schopf, J

    2011-01-01

    Fossil evidence of photosynthesis, documented in Precambrian sediments by microbially laminated stromatolites, cyanobacterial microscopic fossils, and carbon isotopic data consistent with the presence of Rubisco-mediated CO2-fixation, extends from the present to ~3,500 million years ago. Such data, however, do not resolve time of origin of O2-producing photoautotrophy from its anoxygenic, bacterial, evolutionary precursor. Though it is well established that Earth's ecosystem has been based on autotrophy since its very early stages, the time of origin of oxygenic photosynthesis, more than 2,450 million years ago, has yet to be established.

  13. Calcification response of a key phytoplankton family to millennial-scale environmental change.

    PubMed

    McClelland, H L O; Barbarin, N; Beaufort, L; Hermoso, M; Ferretti, P; Greaves, M; Rickaby, R E M

    2016-09-28

    Coccolithophores are single-celled photosynthesizing marine algae, responsible for half of the calcification in the surface ocean, and exert a strong influence on the distribution of carbon among global reservoirs, and thus Earth's climate. Calcification in the surface ocean decreases the buffering capacity of seawater for CO 2 , whilst photosynthetic carbon fixation has the opposite effect. Experiments in culture have suggested that coccolithophore calcification decreases under high CO 2 concentrations ([CO 2 (aq)]) constituting a negative feedback. However, the extent to which these results are representative of natural populations, and of the response over more than a few hundred generations is unclear. Here we describe and apply a novel rationale for size-normalizing the mass of the calcite plates produced by the most abundant family of coccolithophores, the Noëlaerhabdaceae. On average, ancient populations subjected to coupled gradual increases in [CO 2 (aq)] and temperature over a few million generations in a natural environment become relatively more highly calcified, implying a positive climatic feedback. We hypothesize that this is the result of selection manifest in natural populations over millennial timescales, so has necessarily eluded laboratory experiments.

  14. The acclimation process of phytoplankton biomass, carbon fixation and respiration to the combined effects of elevated temperature and pCO2 in the northern South China Sea.

    PubMed

    Gao, Guang; Jin, Peng; Liu, Nana; Li, Futian; Tong, Shanying; Hutchins, David A; Gao, Kunshan

    2017-05-15

    We conducted shipboard microcosm experiments at both off-shore (SEATS) and near-shore (D001) stations in the northern South China Sea (NSCS) under three treatments, low temperature and low pCO 2 (LTLC), high temperature and low pCO 2 (HTLC), and high temperature and high pCO 2 (HTHC). Biomass of phytoplankton at both stations were enhanced by HT. HTHC did not affect phytoplankton biomass at station D001 but decreased it at station SEATS. HT alone increased net primary productivity by 234% at station SEATS and by 67% at station D001 but the stimulating effect disappeared when HC was combined. HT also increased respiration rate by 236% at station SEATS and by 87% at station D001 whereas HTHC reduced it by 61% at station SEATS and did not affect it at station D001. Overall, our findings indicate that the positive effect of ocean warming on phytoplankton assemblages in NSCS could be damped or offset by ocean acidification. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Chemical Fixation of CO2 in Coal Combustion Products and Recycling through Biosystems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    C. Henry Copeland; Paul Pier; Samantha Whitehead

    2001-09-30

    This Annual Technical Progress Report presents the principle results in enhanced growth of algae using coal combustion products as a catalyst to increase bicarbonate levels in solution. A co-current reactor is present that increases the gas phase to bicarbonate transfer rate by a factor of five to nine. The bicarbonate concentration at a given pH is approximately double that obtained using a control column of similar construction. Algae growth experiments were performed under laboratory conditions to obtain baseline production rates and to perfect experimental methods. The final product of this initial phase in algae production is presented.

  16. [Comparison of external fixation with or without limited internal fixation for open knee fractures].

    PubMed

    Li, K N; Lan, H; He, Z Y; Wang, X J; Yuan, J; Zhao, P; Mu, J S

    2018-03-01

    Objective: To explore the characteristics and methods of different fixation methods and prevention of open knee joint fracture. Methods: The data of 86 cases of open knee joint fracture admitted from January 2002 to December 2015 in Department of Orthopaedics, Affiliated Hospital of Chengdu University were analyzed retrospectively.There were 65 males and 21 females aged of 38.6 years. There were 38 cases treated with trans articular external fixation alone, 48 cases were in the trans articular external fixation plus auxiliary limited internal fixation group. All the patients were treated according to the same three stages except for different fixation methods. Observation of external fixation and fracture fixation, fracture healing, wound healing and treatment, treatment and related factors of infection control and knee function recovery. χ(2) test was used to analyze data. Results: Eleven patients had primary wound healing, accounting for 12.8%. Seventy-five patients had two wounds healed, accounting for 87.2%. Only 38 cases of trans articular external fixator group had 31 cases of articular surface reduction, accounting for 81.6%; Five cases of trans articular external fixator assisted limited internal fixation group had 5 cases of poor reduction, accounting for 10.4%; There was significant difference between the two groups (χ(2)=44.132, P <0.05). Take a single cross joint external fixation group, a total of 23 cases of patients with infection, accounted for 60.5% of external fixation group; trans articular external fixation assisted limited internal fixation group there were 30 cases of patients with infection, accounting for the assistance of external fixator and limited internal fixation group 62.5%; There was significant difference between the two groups(χ(2)=0.035, P >0.05). Five cases of fracture nonunion cases of serious infection, patients voluntarily underwent amputation. The Lysholm Knee Scale: In the external fixation group, 23 cases were less than 50 points, accounting for 60.5%, 15 cases were more than 50 points, accounting for 39.5%, external fixation and limited internal fixation group 20 cases were less than 50 points, accounting for 41.7%, 28 cases were more than 50 points, accounting for 58.3%; There was significant difference between the two groups(χ(2)=1.279, P >0.05). Conclusions: Prevention and control of infection is a central link in the treatment of open fracture of the knee. Trans articular external fixator plus limited internal fixation is an important measure to treat open fracture of the knee-joint.

  17. Rates of Dinitrogen Fixation and the Abundance of Diazotrophs in North American Coastal Waters Between Cape Hatteras and Georges Bank

    NASA Technical Reports Server (NTRS)

    Mulholland, M.R.; Bernhardt, P. W.; Blanco-Garcia, J. L.; Mannino, A.; Hyde, K.; Mondragon, E.; Turk, K.; Moisander, P. H.; Zehr, J. P.

    2012-01-01

    We coupled dinitrogen (N2) fixation rate estimates with molecular biological methods to determine the activity and abundance of diazotrophs in coastal waters along the temperate North American Mid-Atlantic continental shelf during multiple seasons and cruises. Volumetric rates of N2 fixation were as high as 49.8 nmol N L(sup -1) d(sup -1) and areal rates as high as 837.9 micromol N m(sup -2) d(sup -1) in our study area. Our results suggest that N2 fixation occurs at high rates in coastal shelf waters that were previously thought to be unimportant sites of N2 fixation and so were excluded from calculations of pelagic marine N2 fixation. Unicellular N2-fixing group A cyanobacteria were the most abundant diazotrophs in the Atlantic coastal waters and their abundance was comparable to, or higher than, that measured in oceanic regimes where they were discovered. High rates of N2 fixation and the high abundance of diazotrophs along the North American Mid-Atlantic continental shelf highlight the need to revise marine N budgets to include coastal N2 fixation. Integrating areal rates of N2 fixation over the continental shelf area between Cape Hatteras and Nova Scotia, the estimated N2 fixation in this temperate shelf system is about 0.02 Tmol N yr(sup -1), the amount previously calculated for the entire North Atlantic continental shelf. Additional studies should provide spatially, temporally, and seasonally resolved rate estimates from coastal systems to better constrain N inputs via N2 fixation from the neritic zone.

  18. Are watershed and lacustrine controls on planktonic N2 fixation hierarchically structured?

    PubMed

    Scott, J Thad; Doyle, Robert D; Prochnow, Shane J; White, Joseph D

    2008-04-01

    N2 fixation can be an important source of N to limnetic ecosystems and can influence the structure of phytoplankton communities. However, watershed-scale conditions that favor N2 fixation in lakes and reservoirs have not been well studied. We measured N2 fixation and lacustrine variables monthly over a 19-month period in Waco Reservoir, Texas, USA, and linked these data with nutrient-loading estimates from a physically based watershed model. Readily available topographic, soil, land cover, effluent discharge, and climate data were used in the Soil and Water Assessment Tool (SWAT) to derive watershed nutrient-loading estimates. Categorical and regression tree (CART) analysis revealed that lacustrine and watershed correlates of N2 fixation were hierarchically structured. Lacustrine conditions showed greater predictive capability temporally. For instance, low NO3(-) concentration (<25 microg N/L) and high water temperatures (>27 degrees C) in the reservoir were correlated with the initiation of N2 fixation seasonally. When lacustrine conditions were favorable for N2 fixation, watershed conditions appeared to influence spatial patterns of N2 fixation within the reservoir. For example, spatially explicit patterns of N2 fixation were correlated with the ratio of N:P in nutrient loadings and the N loading rate, which were driven by anthropogenic activity in the watershed and periods of low stream flow, respectively. Although N2 fixation contributed <5% of the annual N load to the reservoir, 37% of the N load was derived from atmospheric N2 fixation during summertime when stream flow in the watershed was low. This study provides evidence that watershed anthropogenic activity can exert control on planktonic N2 fixation, but that temporality is controlled by lacustrine conditions. Furthermore, this study also supports suggestions that reduced inflows may increase the propensity of N2-fixing cyanobacterial blooms in receiving waters of anthropogenically modified landscapes.

  19. Tropical Dominance of N2 Fixation in the North Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Marconi, Dario; Sigman, Daniel M.; Casciotti, Karen L.; Campbell, Ethan C.; Alexandra Weigand, M.; Fawcett, Sarah E.; Knapp, Angela N.; Rafter, Patrick A.; Ward, Bess B.; Haug, Gerald H.

    2017-10-01

    To investigate the controls on N2 fixation and the role of the Atlantic in the global ocean's fixed nitrogen (N) budget, Atlantic N2 fixation is calculated by combining meridional nitrate fluxes across World Ocean Circulation Experiment sections with observed nitrate 15N/14N differences between northward and southward transported nitrate. N2 fixation inputs of 27.1 ± 4.3 Tg N/yr and 3.0 ± 0.5 Tg N/yr are estimated north of 11°S and 24°N, respectively. That is, 90% of the N2 fixation in the Atlantic north of 11°S occurs south of 24°N in a region with upwelling that imports phosphorus (P) in excess of N relative to phytoplankton requirements. This suggests that, under the modern iron-rich conditions of the equatorial and North Atlantic, N2 fixation occurs predominantly in response to P-bearing, N-poor conditions. We estimate a N2 fixation rate of 30.5 ± 4.9 Tg N/yr north of 30°S, implying only 3 Tg N/yr between 30° and 11°S, despite evidence of P-bearing, N-poor surface waters in this region as well; this is consistent with iron limitation of N2 fixation in the South Atlantic. Since the ocean flows through the Atlantic surface in <2,500 years, similar to the residence time of oceanic fixed N, Atlantic N2 fixation can stabilize the N-to-P ratio of the global ocean. However, the calculated rate of Atlantic N2 fixation is a small fraction of global ocean estimates for either N2 fixation or fixed N loss. This suggests that, in the modern ocean, an approximate balance between N loss and N2 fixation is achieved within the combined Indian and Pacific basins.

  20. Nitrogenase Reduction of Carbon-Containing Compounds

    PubMed Central

    Seefeldt, Lance C.; Yang, Zhi-Yong; Duval, Simon; Dean, Dennis R.

    2013-01-01

    Nitrogenase is an enzyme found in many bacteria and archaea that catalyzes biological dinitrogen fixation, the reduction of N2 to NH3, accounting for the major input of fixed nitrogen into the biogeochemical N cycle. In addition to reducing N2 and protons, nitrogenase can reduce a number of small, non-physiological substrates. Among these alternative substrates are included a wide array of carbon containing compounds. These compounds have provided unique insights into aspects of the nitrogenase mechanism. Recently, it was shown that carbon monoxide (CO) and carbon dioxide (CO2) can also be reduced by nitrogenase to yield hydrocarbons, opening new insights into the mechanism of small molecule activation and reduction by this complex enzyme as well as providing clues for the design of novel molecular catalysts. PMID:23597875

  1. Stomata of the CAM plant Tillandsia recurvata respond directly to humidity.

    PubMed

    Lange, O L; Medina, E

    1979-01-01

    Under controlled conditions, CO 2 exchange of Tillandsia recurvata showed all characteristics of CAM. During the phase of nocturnal CO 2 fixation stomata of the plant responded sensitively to changes in ambient air humidity. Dry air resulted in an increase, moist air in a decrease of diffusion resistance. The evaporative demand of the air affected the level of stomatal resistance during the entire night period. Due to stomatal closure, the total nocturnal water loss of T. recurvata was less at low than at high humidity. It is concluded that stomata respond directly to humidity and not via bulk tissue water conditions of the leaves. Such control of transpiration may optimize water use efficiency for this almost rootless, extreme epiphyte.

  2. Phase-contrast Hounsfield units of fixated and non-fixated soft-tissue samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Willner, Marian; Fior, Gabriel; Marschner, Mathias

    X-ray phase-contrast imaging is a novel technology that achieves high soft-tissue contrast. Although its clinical impact is still under investigation, the technique may potentially improve clinical diagnostics. In conventional attenuation-based X-ray computed tomography, radiological diagnostics are quantified by Hounsfield units. Corresponding Hounsfield units for phase-contrast imaging have been recently introduced, enabling a setup-independent comparison and standardized interpretation of imaging results. Thus far, the experimental values of few tissue types have been reported; these values have been determined from fixated tissue samples. This study presents phase-contrast Hounsfield units for various types of non-fixated human soft tissues. A large variety of tissuemore » specimens ranging from adipose, muscle and connective tissues to liver, kidney and pancreas tissues were imaged by a grating interferometer with a rotating-anode X-ray tube and a photon-counting detector. In addition, we investigated the effects of formalin fixation on the quantitative phase-contrast imaging results.« less

  3. Phase-Contrast Hounsfield Units of Fixated and Non-Fixated Soft-Tissue Samples

    PubMed Central

    Willner, Marian; Fior, Gabriel; Marschner, Mathias; Birnbacher, Lorenz; Schock, Jonathan; Braun, Christian; Fingerle, Alexander A.; Noël, Peter B.; Rummeny, Ernst J.; Pfeiffer, Franz; Herzen, Julia

    2015-01-01

    X-ray phase-contrast imaging is a novel technology that achieves high soft-tissue contrast. Although its clinical impact is still under investigation, the technique may potentially improve clinical diagnostics. In conventional attenuation-based X-ray computed tomography, radiological diagnostics are quantified by Hounsfield units. Corresponding Hounsfield units for phase-contrast imaging have been recently introduced, enabling a setup-independent comparison and standardized interpretation of imaging results. Thus far, the experimental values of few tissue types have been reported; these values have been determined from fixated tissue samples. This study presents phase-contrast Hounsfield units for various types of non-fixated human soft tissues. A large variety of tissue specimens ranging from adipose, muscle and connective tissues to liver, kidney and pancreas tissues were imaged by a grating interferometer with a rotating-anode X-ray tube and a photon-counting detector. Furthermore, we investigated the effects of formalin fixation on the quantitative phase-contrast imaging results. PMID:26322638

  4. Phase-contrast Hounsfield units of fixated and non-fixated soft-tissue samples

    DOE PAGES

    Willner, Marian; Fior, Gabriel; Marschner, Mathias; ...

    2015-08-31

    X-ray phase-contrast imaging is a novel technology that achieves high soft-tissue contrast. Although its clinical impact is still under investigation, the technique may potentially improve clinical diagnostics. In conventional attenuation-based X-ray computed tomography, radiological diagnostics are quantified by Hounsfield units. Corresponding Hounsfield units for phase-contrast imaging have been recently introduced, enabling a setup-independent comparison and standardized interpretation of imaging results. Thus far, the experimental values of few tissue types have been reported; these values have been determined from fixated tissue samples. This study presents phase-contrast Hounsfield units for various types of non-fixated human soft tissues. A large variety of tissuemore » specimens ranging from adipose, muscle and connective tissues to liver, kidney and pancreas tissues were imaged by a grating interferometer with a rotating-anode X-ray tube and a photon-counting detector. In addition, we investigated the effects of formalin fixation on the quantitative phase-contrast imaging results.« less

  5. Origin of the Reductive Tricarboxylic Acid (rTCA) Cycle-Type CO2 Fixation: A Perspective

    PubMed Central

    Fujishima, Kosuke

    2017-01-01

    The reductive tricarboxylic acid (rTCA) cycle is among the most plausible candidates for the first autotrophic metabolism in the earliest life. Extant enzymes fixing CO2 in this cycle contain cofactors at the catalytic centers, but it is unlikely that the protein/cofactor system emerged at once in a prebiotic process. Here, we discuss the feasibility of non-enzymatic cofactor-assisted drive of the rTCA reactions in the primitive Earth environments, particularly focusing on the acetyl-CoA conversion to pyruvate. Based on the energetic and mechanistic aspects of this reaction, we propose that the deep-sea hydrothermal vent environments with active electricity generation in the presence of various sulfide catalysts are a promising setting for it to progress. Our view supports the theory of an autotrophic origin of life from primordial carbon assimilation within a sulfide-rich hydrothermal vent.

  6. Implantable sensor technology: measuring bone and joint biomechanics of daily life in vivo

    PubMed Central

    2013-01-01

    Stresses and strains are major factors influencing growth, remodeling and repair of musculoskeletal tissues. Therefore, knowledge of forces and deformation within bones and joints is critical to gain insight into the complex behavior of these tissues during development, aging, and response to injury and disease. Sensors have been used in vivo to measure strains in bone, intraarticular cartilage contact pressures, and forces in the spine, shoulder, hip, and knee. Implantable sensors have a high impact on several clinical applications, including fracture fixation, spine fixation, and joint arthroplasty. This review summarizes the developments in strain-measurement-based implantable sensor technology for musculoskeletal research. PMID:23369655

  7. A New Paradigm for Tissue Diagnostics: Tools and Techniques to Standardize Tissue Collection, Transport, and Fixation.

    PubMed

    Bauer, Daniel R; Otter, Michael; Chafin, David R

    2018-01-01

    Studying and developing preanalytical tools and technologies for the purpose of obtaining high-quality samples for histological assays is a growing field. Currently, there does not exist a standard practice for collecting, fixing, and monitoring these precious samples. There has been some advancement in standardizing collection for the highest profile tumor types, such as breast, where HER2 testing drives therapeutic decisions. This review examines the area of tissue collection, transport, and monitoring of formalin diffusion and details a prototype system that could be used to help standardize tissue collection efforts. We have surveyed recent primary literature sources and conducted several site visits to understand the most error-prone processes in histology laboratories. This effort identified errors that resulted from sample collection techniques and subsequent transport delays from the operating room (OR) to the histology laboratories. We have therefore devised a prototype sample collection and transport concept. The system consists of a custom data logger and cold transport box and takes advantage of a novel cold + warm (named 2 + 2) fixation method. This review highlights the beneficial aspects of standardizing tissue collection, fixation, and monitoring. In addition, a prototype system is introduced that could help standardize these processes and is compatible with use directly in the OR and from remote sites.

  8. An in-vitro biomechanical study of different fixation techniques for the extended trochanteric osteotomy in revision THA.

    PubMed

    Zhu, Zhonglin; Ding, Hui; Shao, Hongyi; Zhou, Yixin; Wang, Guangzhi

    2013-04-09

    The wire fixation and the cable grip fixation have been developed for the extended trochanteric osteotomy (ETO) in the revision of total hip arthroplasty (THA). Many studies reported the postoperative performance of the patients, but with little quantitative biomechanical comparison of the two fixation systems. An in-vitro testing approach was designed to record the loosening between the femoral bed and the greater trochanter after fixations. Ten cadaveric femurs were chosen in this study. Each femur underwent the THA, revision by ETO and fixations. The tension to the greater trochanter was from 0 to 500N in vertical and lateral direction, respectively. The translation and rotation of the greater trochanter with respect to the bony bed were captured by an optical tracking system. In the vertical tension tests, the overall translation of the greater trochanter was observed 0.4 mm in the cable fixations and 7.0 mm in the wire fixations. In the lateral tension tests, the overall motion of the greater trochanter was 2.0 mm and 1.2° in the cable fixations, while it was 6.2 mm and 5.3° in the wire fixations. The result was significantly different between the two fixation systems. The stability of the proximal femur after ETO using different fixations in the revision THA was investigated. The cable grip fixation was significantly more stable than the wire fixation.

  9. Effects of ultraviolet radiation on photosynthetic performance and N2 fixation in Trichodesmium erythraeum IMS 101

    NASA Astrophysics Data System (ADS)

    Cai, Xiaoni; Hutchins, David A.; Fu, Feixue; Gao, Kunshan

    2017-10-01

    Biological effects of ultraviolet radiation (UVR; 280-400 nm) on marine primary producers are of general concern, as oceanic carbon fixers that contribute to the marine biological CO2 pump are being exposed to increasing UV irradiance due to global change and ozone depletion. We investigated the effects of UV-B (280-320 nm) and UV-A (320-400 nm) on the biogeochemically critical filamentous marine N2-fixing cyanobacterium Trichodesmium (strain IMS101) using a solar simulator as well as under natural solar radiation. Short exposure to UV-B, UV-A, or integrated total UVR significantly reduced the effective quantum yield of photosystem II (PSII) and photosynthetic carbon and N2 fixation rates. Cells acclimated to low light were more sensitive to UV exposure compared to high-light-grown ones, which had more UV-absorbing compounds, most likely mycosporine-like amino acids (MAAs). After acclimation under natural sunlight, the specific growth rate was lower (by up to 44 %), MAA content was higher, and average trichome length was shorter (by up to 22 %) in the full spectrum of solar radiation with UVR, than under a photosynthetically active radiation (PAR) alone treatment (400-700 nm). These results suggest that prior shipboard experiments in UV-opaque containers may have substantially overestimated in situ nitrogen fixation rates by Trichodesmium, and that natural and anthropogenic elevation of UV radiation intensity could significantly inhibit this vital source of new nitrogen to the current and future oligotrophic oceans.

  10. [Surgical strategy for upper cervical vertebrae instability through the anterior approach].

    PubMed

    Huang, Wei-bing; Cai, Xian-hua; Chen, Zhuang-hong; Huang, Ji-feng; Liu, Xi-ming; Wei, Shi-jun

    2013-07-01

    To explore the choice and effect of internal fixation in treating upper cervical vertebrae instability through anterior approach. From March 2000 to September 2010,83 patients with upper cervical vertebrae instability were treated with internal fixation through anterior approach. There were 59 males and 24 females with a mean age of 42 years old (ranged, 20 to 68). Among these patients, 36 patients were treated with odontoid screw fixation, 16 patients with C1,2 transarticular screw fixation, 23 patients with C2,3 steel plate fixation, 5 patients with odontoid screw and transarticular screw fixation,2 patients with odontoid screw and C2.3 steel plate fixation, 1 patient with C1,2 transarticular screw and C2,3 steel plate fixation. One patient with completely cervical vertebrae cord injury died of pulmonary infection after C1,2 transarticular screw fixation. Other patients were followed up from 8 to 36 months with an average of 15 months. Upper cervical vertebrae stability were restored without vertebral artery and spinal cord injury. Thirty-six patients were treated with odontoid screw fixation and 5 patients were treated with screw combined with transarticular screw fixation obtained bone union in the dentations without bone graft. Among the 16 patients treated with C1,2 transarticular screw fixation, 13 patients obtained bone union after bone graft; 1 patient died of pulmonary infection after surgery; 1 patient with comminuted odontoid fracture of type II C and atlantoaxial anterior dislocation did not obtain bone union after bone graft,but the fibrous healing was strong enough to maintain the atlantoaixal joint stability; 1 patient with obsolete atlantoaxial anterior dislocation were re-treated with Brooks stainless steel wire fixation and bone graft through posterior approach, and finally obtained bone union. It could obtain satisfactory effects depending on the difference of cervical vertebrae instability to choose the correctly surgical method.

  11. Ecosystem nitrogen fixation throughout the snow-free period in subarctic tundra: effects of willow and birch litter addition and warming.

    PubMed

    Rousk, Kathrin; Michelsen, Anders

    2017-04-01

    Nitrogen (N) fixation in moss-associated cyanobacteria is one of the main sources of available N for N-limited ecosystems such as subarctic tundra. Yet, N 2 fixation in mosses is strongly influenced by soil moisture and temperature. Thus, temporal scaling up of low-frequency in situ measurements to several weeks, months or even the entire growing season without taking into account changes in abiotic conditions cannot capture the variation in moss-associated N 2 fixation. We therefore aimed to estimate moss-associated N 2 fixation throughout the snow-free period in subarctic tundra in field experiments simulating climate change: willow (Salix myrsinifolia) and birch (Betula pubescens spp. tortuosa) litter addition, and warming. To achieve this, we established relationships between measured in situ N 2 fixation rates and soil moisture and soil temperature and used high-resolution measurements of soil moisture and soil temperature (hourly from May to October) to model N 2 fixation. The modelled N 2 fixation rates were highest in the warmed (2.8 ± 0.3 kg N ha -1 ) and birch litter addition plots (2.8 ± 0.2 kg N ha -1 ), and lowest in the plots receiving willow litter (1.6 ± 0.2 kg N ha -1 ). The control plots had intermediate rates (2.2 ± 0.2 kg N ha -1 ). Further, N 2 fixation was highest during the summer in the warmed plots, but was lowest in the litter addition plots during the same period. The temperature and moisture dependence of N 2 fixation was different between the climate change treatments, indicating a shift in the N 2 fixer community. Our findings, using a combined empirical and modelling approach, suggest that a longer snow-free period and increased temperatures in a future climate will likely lead to higher N 2 fixation rates in mosses. Yet, the consequences of increased litter fall on moss-associated N 2 fixation due to shrub expansion in the Arctic will depend on the shrub species' litter traits. © 2016 John Wiley & Sons Ltd.

  12. Environmental Benefit Assessment for the Carbonation Process of Petroleum Coke Fly Ash in a Rotating Packed Bed.

    PubMed

    Pei, Si-Lu; Pan, Shu-Yuan; Li, Ye-Mei; Chiang, Pen-Chi

    2017-09-19

    A high-gravity carbonation process was deployed at a petrochemical plant using petroleum coke fly ash and blowdown wastewater to simultaneously mineralized CO 2 and remove nitrogen oxides and particulate matters from the flue gas. With a high-gravity carbonation process, the CO 2 removal efficiency was found to be 95.6%, corresponding to a capture capacity of 600 kg CO 2 per day, at a gas flow rate of 1.47 m 3 /min under ambient temperature and pressure. Moreover, the removal efficiency of nitrogen oxides and particulate matters was 99.1% and 83.2%, respectively. After carbonation, the reacted fly ash was further utilized as supplementary cementitious materials in the blended cement mortar. The results indicated that cement with carbonated fly ash exhibited superior compressive strength (38.1 ± 2.5 MPa at 28 days in 5% substitution ratio) compared to the cement with fresh fly ash. Furthermore, the environmental benefits for the high-gravity carbonation process using fly ash were critically assessed. The energy consumption of the entire high-gravity carbonation ranged from 80 to 169 kWh/t-CO 2 (0.29-0.61 GJ/t-CO 2 ). Compared with the scenarios of business-as-usual and conventional carbon capture and storage plant, the economic benefit from the high-gravity carbonation process was approximately 90 and 74 USD per ton of CO 2 fixation, respectively.

  13. Reverse Anterior Cruciate Ligament Reconstruction Fixation: A Biomechanical Comparison Study of Tibial Cross-Pin and Femoral Interference Screw Fixation.

    PubMed

    Lawley, Richard J; Klein, Samuel E; Chudik, Steven C

    2017-03-01

    To evaluate the biomechanical performance of tibial cross-pin (TCP) fixation relative to femoral cross-pin (FCP), femoral interference screw (FIS), and tibial interference screw (TIS) fixation. We randomized 40 porcine specimens (20 tibias and 20 femurs) to TIS fixation (group 1, n = 10), FIS fixation (group 2, n = 10), TCP fixation (group 3, n = 10), or FCP fixation (group 4, n = 10) and performed biomechanical testing to compare ultimate load, stiffness, yield load, cyclic displacement, and load at 5-mm displacement. We performed cross-pin fixation of the looped end and interference screw fixation of the free ends of 9-mm-diameter bovine extensor digitorum communis tendon grafts. Graft fixation constructs were cyclically loaded and then loaded to failure in line with the tunnels. Regarding yield load, FIS was superior to TIS (704 ± 125 N vs 504 ± 118 N, P = .002), TCP was superior to TIS (1,449 ± 265 N vs 504 ± 118 N, P < .001), and TCP was superior to FCP (1,449 ± 265 N vs 792 ± 397 N, P < .001). Cyclic displacement for FCP was superior to TCP. Cyclic displacement for TIS versus FIS showed no statistically significant difference (2.5 ± 1.0 mm vs 2.2 ± 0.6 mm, P = .298). Interference screw fixation consistently failed by graft slippage, whereas TCP fixation failed by tibial bone failure. FCP fixation failed by either femoral bone failure or failure elsewhere in the testing apparatus. Regarding yield load, TCP fixation performed biomechanically superior to the clinically proven FCP at time zero. Because TIS fixation shows the lowest yield strength, it represents the weak link, and combined TCP-FIS fixation theoretically would be biomechanically superior relative to combined FCP-TIS fixation with regard to yield load. Cyclic displacement showed a small difference in favor of FCP over TCP fixation and no difference between TIS and FIS. Time-zero biomechanics of TCP fixation paired with FIS fixation show that this method of fixation can be considered a potential alternative to current practice and may pose clinical benefits in different clinical scenarios of anterior cruciate ligament reconstruction. Copyright © 2016 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  14. Novel Highly Porous Metal Technology in Artificial Hip and Knee Replacement: Processing Methodologies and Clinical Applications

    NASA Astrophysics Data System (ADS)

    Muth, John; Poggie, Matthew; Kulesha, Gene; Michael Meneghini, R.

    2013-02-01

    Hip and knee replacement can dramatically improve a patient's quality of life through pain relief and restored function. Fixation of hip and knee replacement implants to bone is critical to the success of the procedure. A variety of roughened surfaces and three-dimensional porous surfaces have been used to enhance biological fixation on orthopedic implants. Recently, highly porous metals have emerged as versatile biomaterials that may enhance fixation to bone and are suitable to a number of applications in hip and knee replacement surgery. This article provides an overview of several processes used to create these implant surfaces.

  15. Integrating transient heterogeneity of non-photochemical quenching in shade-grown heterobaric leaves of avocado (Persea americana L.): responses to CO2 concentration, stomatal occlusion, dehydration and relative humidity.

    PubMed

    Takayama, Kotaro; King, Diana; Robinson, Sharon A; Osmond, Barry

    2013-11-01

    Long-lived shade leaves of avocado had extremely low rates of photosynthesis. Gas exchange measurements of photosynthesis were of limited use, so we resorted to Chl fluorescence imaging (CFI) and spot measurements to evaluate photosynthetic electron transport rates (ETRs) and non-photochemical quenching (NPQ). Imaging revealed a remarkable transient heterogeneity of NPQ during photosynthetic induction in these hypostomatous, heterobaric leaves, but was adequately integrated by spot measurements, despite long-lasting artifacts from repeated saturating flashes during assays. Major veins (mid-vein, first- and second-order veins) defined areas of more static large-scale heterogeneous NPQ, with more dynamic small-scale heterogeneity most strongly expressed in mesophyll cells between third- and fourth-order veins. Both responded to external CO2 concentration ([CO2]), occlusion of stomata with Vaseline™, leaf dehydration and relative humidity (RH). We interpreted these responses in terms of independent behavior of stomata in adjacent areoles that was largely expressed through CO2-limited photosynthesis. Heterogeneity was most pronounced and prolonged in the absence of net CO2 fixation in 100 p.p.m. [CO2] when respiratory and photorespiratory CO2 cycling constrained the inferred ETR to ~75% of values in 400 or 700 p.p.m. [CO2]. Likewise, sustained higher NPQ under Vaseline™, after dehydration or at low RH, also restricted ETR to ~75% of control values. Low NPQ in chloroplast-containing cells adjacent to major veins but remote from stomata suggested internal sources of high [CO2] in these tissues.

  16. What Should We Make with CO 2 and How Can We Make It?

    DOE PAGES

    Bushuyev, Oleksandr S.; De Luna, Phil; Dinh, Cao Thang; ...

    2018-03-29

    In this forward-looking Perspective, we discuss the current state of technology and the economics of electrocatalytic transformation of CO 2 into various chemical fuels. Furthermore, our analysis finds that short-chain simple building-block molecules currently present the most economically compelling targets. Making an optimistic prediction of technology advancement in the future, we propose the gradual rise of photocatalytic, CO 2 polymerization, biohybrid, and molecular machine technologies to augment and enhance already practical electrocatalytic CO 2 conversion methods.

  17. What Should We Make with CO 2 and How Can We Make It?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bushuyev, Oleksandr S.; De Luna, Phil; Dinh, Cao Thang

    In this forward-looking Perspective, we discuss the current state of technology and the economics of electrocatalytic transformation of CO 2 into various chemical fuels. Furthermore, our analysis finds that short-chain simple building-block molecules currently present the most economically compelling targets. Making an optimistic prediction of technology advancement in the future, we propose the gradual rise of photocatalytic, CO 2 polymerization, biohybrid, and molecular machine technologies to augment and enhance already practical electrocatalytic CO 2 conversion methods.

  18. Operative Fixation of Rib Fractures Indications, Techniques, and Outcomes.

    PubMed

    Galos, David; Taylor, Benjamin; McLaurin, Toni

    2017-01-01

    Rib fractures are extremely common injuries and vary in there severity from single nondisplaced fractures to multiple segmental fractures resulting in flail chest and respiratory compromise. Historically, rib fractures have been treated conservatively with pain control and respiratory therapy. However this method may not be the best treatment modality in all situations. Operative fixation of select rib fractures has been increasing in popularity especially in patients with flail chest and respiratory compromise. Newer techniques use muscle sparing approaches and precontoured locking plate technology to obtain stable fixation and allow improved respiration. Current reports shows that rib fracture fixation offers the benefits of improved respiratory mechanics and improved pain control in the severe chest wall injury with resultant improvement in patient outcomes by decreasing time on the ventilator, time in the intensive care unit, and overall hospital length of stay.

  19. Environmental Remediation and Conversion of Carbon Dioxide (CO2) into Useful Green Products by Accelerated Carbonation Technology

    PubMed Central

    Lim, Mihee; Han, Gi-Chun; Ahn, Ji-Whan; You, Kwang-Suk

    2010-01-01

    This paper reviews the application of carbonation technology to the environmental industry as a way of reducing carbon dioxide (CO2), a green house gas, including the presentation of related projects of our research group. An alternative technology to very slow natural carbonation is the co-called ‘accelerated carbonation’, which completes its fast reaction within few hours by using pure CO2. Carbonation technology is widely applied to solidify or stabilize solid combustion residues from municipal solid wastes, paper mill wastes, etc. and contaminated soils, and to manufacture precipitated calcium carbonate (PCC). Carbonated products can be utilized as aggregates in the concrete industry and as alkaline fillers in the paper (or recycled paper) making industry. The quantity of captured CO2 in carbonated products can be evaluated by measuring mass loss of heated samples by thermo-gravimetric (TG) analysis. The industrial carbonation technology could contribute to both reduction of CO2 emissions and environmental remediation. PMID:20195442

  20. Measurement of Fe2+ ion by coulometry method at incubation of Thiobacillus ferrooxidans.

    PubMed

    Tsuda, I; Kato, K; Nozaki, K

    1996-12-01

    Thiobacillus ferrooxidans is a chemoautotrophic bacterium that is capable of using Fe2+ oxidation by O2 as the sole source of energy for growth and CO2 fixation. The idea of the solar bacterial biomass farm by using of this bacterium is proposed. The incubation experiment of these bacteria was carried out, and the 9K culture medium as the standard medium for T. ferrooxidans was used. The measurement of Fe2+ in the growth stage was carried out as the first step of the experiments to clarify the possibility of this system. The items of measurement were Fe2+ ion density, pH of the medium, bacterium density and quantity of total organic carbon (TOC). The density of Fe2+ ion in the medium was measured by coulometry method. This method has the following advantage, high accuracy (<1%), easy operation, short measurement time (a few minutes) and small sample quantity (about 0.1 ml). The experimental results show that the Fe 2+ ion density is measured as same as the accuracy of pH measurement. At the final stage of the growth, the pH decreased due to the generation of the iron hydroxide (Fe(OH)3). The bacterium density and TOC slightly increased after that Fe2+ runs short. This result shows that the CO2 fixation speed is slower than Fe2+ oxidation speed. It is shown by the experiment that the growth limit of T. ferrooxidans is caused by the disappearance of the Fe2+ ion. It may be possible that the bacterium density increases by the continuous supply of Fe2+ ion.

  1. Estimation of Pre-industrial Nitrous Oxide Emission from the Terrestrial Biosphere

    NASA Astrophysics Data System (ADS)

    Xu, R.; Tian, H.; Lu, C.; Zhang, B.; Pan, S.; Yang, J.

    2015-12-01

    Nitrous oxide (N2O) is currently the third most important greenhouse gases (GHG) after methane (CH4) and carbon dioxide (CO2). Global N2O emission increased substantially primarily due to reactive nitrogen (N) enrichment through fossil fuel combustion, fertilizer production, and legume crop cultivation etc. In order to understand how climate system is perturbed by anthropogenic N2O emissions from the terrestrial biosphere, it is necessary to better estimate the pre-industrial N2O emissions. Previous estimations of natural N2O emissions from the terrestrial biosphere range from 3.3-9.0 Tg N2O-N yr-1. This large uncertainty in the estimation of pre-industrial N2O emissions from the terrestrial biosphere may be caused by uncertainty associated with key parameters such as maximum nitrification and denitrification rates, half-saturation coefficients of soil ammonium and nitrate, N fixation rate, and maximum N uptake rate. In addition to the large estimation range, previous studies did not provide an estimate on preindustrial N2O emissions at regional and biome levels. In this study, we applied a process-based coupled biogeochemical model to estimate the magnitude and spatial patterns of pre-industrial N2O fluxes at biome and continental scales as driven by multiple input data, including pre-industrial climate data, atmospheric CO2 concentration, N deposition, N fixation, and land cover types and distributions. Uncertainty associated with key parameters is also evaluated. Finally, we generate sector-based estimates of pre-industrial N2O emission, which provides a reference for assessing the climate forcing of anthropogenic N2O emission from the land biosphere.

  2. Termites create spatial structure and govern ecosystem function by affecting N2 fixation in an East African savanna.

    PubMed

    Fox-Dobbs, Kena; Doak, Daniel F; Brody, Alison K; Palmer, Todd M

    2010-05-01

    The mechanisms by which even the clearest of keystone or dominant species exert community-wide effects are only partially understood in most ecosystems. This is especially true when a species or guild influences community-wide interactions via changes in the abiotic landscape. Using stable isotope analyses, we show that subterranean termites in an East African savanna strongly influence a key ecosystem process: atmospheric nitrogen fixation by a monodominant tree species and its bacterial symbionts. Specifically, we applied the 15N natural abundance method in combination with other biogeochemical analyses to assess levels of nitrogen fixation by Acacia drepanolobium and its effects on co-occurring grasses and forbs in areas near and far from mounds and where ungulates were or were not excluded. We find that termites exert far stronger effects than do herbivores on nitrogen fixation. The percentage of nitrogen derived from fixation in Acacia drepanolobium trees is higher (55-80%) away from mounds vs. near mounds (40-50%). Mound soils have higher levels of plant available nitrogen, and Acacia drepanolobium may preferentially utilize soil-based nitrogen sources in lieu of fixed nitrogen when these sources are readily available near termite mounds. At the scale of the landscape, our models predict that termite/soil derived nitrogen sources influence >50% of the Acacia drepanolobium trees in our system. Further, the spatial extent of these effects combine with the spacing of termite mounds to create highly regular patterning in nitrogen fixation rates, resulting in marked habitat heterogeneity in an otherwise uniform landscape. In summary, we show that termite-associated effects on nitrogen processes are not only stronger than those of more apparent large herbivores in the same system, but also occur in a highly regular spatial pattern, potentially adding to their importance as drivers of community and ecosystem structure.

  3. Interactions between bacterial carbon monoxide and hydrogen consumption and plant development on recent volcanic deposits.

    PubMed

    King, Gary M; Weber, Carolyn F

    2008-02-01

    Patterns of microbial colonization and interactions between microbial processes and vascular plants on volcanic deposits have received little attention. Previous reports have shown that atmospheric CO and hydrogen contribute significantly to microbial metabolism on Kilauea volcano (Hawaii) deposits with varied ages and successional development. Relationships between CO oxidation and plant communities were not clear, however, since deposit age and vegetation status covaried. To determine plant-microbe interactions in deposits of uniform ages, CO and hydrogen dynamics have been assayed for unvegetated tephra on a 1959 deposit at Pu'u Puai (PP-bare), at the edge of tree 'islands' within the PP deposit (PP-edge) and within PP tree islands (PP-canopy). Similar assays have been conducted for vegetated and unvegetated sites on a 1969 Mauna Ulu (MU) lava flow. Net in situ atmospheric CO uptake was highest at PP-edge and PP-bare sites (2.2+/-0.5 and 1.3+/-0.1 mg CO m(-2) day(-1), respectively), and least for PP-canopy (-3.2+/-0.9 mg CO m(-2) day(-1), net emission). Respiration rates, microbial biomass and maximum CO uptake potential showed an opposing pattern. Comparisons of atmospheric CO uptake and CO(2) production rates indicate that CO contributes significantly to microbial metabolism in PP-bare and MU-unvegetated sites, but negligibly where vegetation is well developed. Nonetheless, maximum potential CO uptake rates indicate that CO oxidizer populations increase with increasing plant biomass and consume CO actively. Some of these CO oxidizers may contribute to elevated nitrogen fixation rates (acetylene reduction) measured within tree islands, and thus, support plant successional development.

  4. Bench-scale Development of an Advanced Solid Sorbent-based CO 2 Capture Process for Coal-fired Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, Thomas; Kataria, Atish; Soukri, Mustapha

    It is increasingly clear that CO 2 capture and sequestration (CCS) must play a critical role in curbing worldwide CO 2 emissions to the atmosphere. Development of these technologies to cost-effectively remove CO 2 from coal-fired power plants is very important to mitigating the impact these power plants have within the world’s power generation portfolio. Currently, conventional CO 2 capture technologies, such as aqueous-monoethanolamine based solvent systems, are prohibitively expensive and if implemented could result in a 75 to 100% increase in the cost of electricity for consumers worldwide. Solid sorbent CO 2 capture processes – such as RTI’s Advancedmore » Solid Sorbent CO 2, Capture Process – are promising alternatives to conventional, liquid solvents. Supported amine sorbents – of the nature RTI has developed – are particularly attractive due to their high CO 2 loadings, low heat capacities, reduced corrosivity/volatility and the potential to reduce the regeneration energy needed to carry out CO 2 capture. Previous work in this area has failed to adequately address various technology challenges such as sorbent stability and regenerability, sorbent scale-up, improved physical strength and attrition-resistance, proper heat management and temperature control, proper solids handling and circulation control, as well as the proper coupling of process engineering advancements that are tailored for a promising sorbent technology. The remaining challenges for these sorbent processes have provided the framework for the project team’s research and development and target for advancing the technology beyond lab- and bench-scale testing. Under a cooperative agreement with the US Department of Energy, and part of NETL’s CO 2 Capture Program, RTI has led an effort to address and mitigate the challenges associated with solid sorbent CO 2 capture. The overall objective of this project was to mitigate the technical and economic risks associated with the scale-up of solid sorbent-based CO 2 capture processes, enabling subsequent larger pilot demonstrations and ultimately commercial deployment. An integrated development approach has been a key focus of this project in which process development, sorbent development, and economic analyses have informed each of the other development processes. Development efforts have focused on improving the performance stability of sorbent candidates, refining process engineering and design, and evaluating the viability of the technology through detailed economic analyses. Sorbent advancements have led to a next generation, commercially-viable CO 2 capture sorbent exhibiting performance stability in various gas environments and a physically strong fluidizable form. The team has reduced sorbent production costs and optimized the production process and scale-up of PEI-impregnated, fluidizable sorbents. Refinement of the process engineering and design, as well as the construction and operation of a bench-scale research unit has demonstrated promising CO 2 capture performance under simulated coal-fired flue gas conditions. Parametric testing has shown how CO 2 capture performance is impacted by changing process variables, such as Adsorber temperature, Regenerator temperature, superficial flue gas velocity, solids circulation rate, CO 2 partial pressure in the Regenerator, and many others. Long-term testing has generated data for the project team to set the process conditions needed to operate a solids-based system for optimal performance, with continuous 90% CO 2 capture, and no operational interruptions. Data collected from all phases of testing has been used to develop a detailed techno-economic assessment of RTI’s technology. These detailed analyses show that RTI’s technology has significant economic advantages over current amine scrubbing and potential to achieve the DOE’s Carbon Capture Program’s goal of >90% CO 2 capture rate at a cost of < $40/T-CO 2 captured by 2025. Through this integrated technology development approach, the project team has advanced RTI’s CO 2 capture technology to TRL-4 (nearly TRL-5, with the missing variable being testing on actual, coal-fired flue gas), according to the DOE/FE definitions for Technology Readiness Levels. At a broader level, this project has advanced the whole of the solid sorbent CO 2 capture field, with advancements in process engineering and design, technical risk mitigation, sorbent scale-up optimization, and an understanding of the commercial viability and applicability of solid sorbent CO 2 capture technologies for the U.S. existing fleet of coal-fired power plants.« less

  5. Environmental and biogeochemical controls on N2 fixation in ombrotrophic peatlands

    NASA Astrophysics Data System (ADS)

    Zivkovic, T.; Moore, T. R.

    2017-12-01

    Northern peatlands have low atmospheric nitrogen (N) inputs and acquire N mostly via biological, microbially-driven N2-fixation. Little is known about rates and controls on N2-fixation in ombrotrophic bogs. We conducted two studies to test environmental and biogeochemical controls on N2-fixation. First, we used acetylene reduction assay (ARA) calibrated with 15N2 tracer to measure N2-fixation rates in three species of Sphagnum mosses along a hydrological gradient (beaver pond, hollow and hummock in bog margin and in bog) at Mer Bleue bog from June-October 2013 and May - November 2014. We tested the following controls: moisture availability, temperature, and PAR. The largest ARA rates throughout both seasons occurred in the pond in floating Sphagnum cuspidatum mats (50.3 ± 12.9 μmol m-2 d-1 Mean ± SE), which were up to 2.5 times larger than the rates found in the driest hummock site. There was a significant seasonal peak in both years in July and early August that coincided with the peak of the air temperature. In fact, 45% of the variance of N2 fixation rates over the two field seasons was explained by rain events, water table fluctuations and the surface peat temperature (multiple regression analysis, n = 539). Our results highlight the potential impact of climate change, namely negative effects due to potential droughts and positive effect of warming, on N2 fixation patterns in ombrotrophic peatlands. Secondly, we tested stoichiometric controls (Sphagnum tissue N and phosphorous (P) ratio) of N2-fixation. In a controlled environment, we selected eight study sites along a latitudinal gradient from temperate, boreal to subarctic zone in eastern Canada. We found that decreasing N:P ratio corresponded to increasing N2-fixation. N:P explained 65% of the variance in N2-fixation in hollows but only 20% in hummocks. Changes in neither N or P concentration alone explained the increase in N2-fixation better than N:P ratio. We interpret that the difference between hollows and hummocks results from the availability of moisture that further limits N2-fixation. When moisture is not a limiting factor, i.e. in hollows, N:P is the best predictor of N2-fixation in bogs.

  6. Microalgae community shifts during the biogas upgrading in an alkaline open photobioreactor.

    PubMed

    Granada-Moreno, C I; Aburto-Medina, A; de Los Cobos Vasconcelos, D; González-Sánchez, A

    2017-10-01

    To achieve the functional specialization of a microalgae community through operational tuning of an open photobioreactor used for biogas upgrading under alkaline conditions. An open photobioreactor was inoculated with an indigenous microalgae sample from the Texcoco Soda Lake. A microalgae community was adapted to fix CO 2 from synthetic biogas through different culture conditions reaching a maximum of 220 mg CO 2  l -1 per day. Picochlorum sp. and Scenedesmus sp. were identified as the prominent microalgae genera by molecular fingerprinting (partial sequencing of 16S rRNA and 18S rRNA genes) but only the first was detected by microscopy screening. Changes in the microalgae community profile were monitored by a range-weighted richness index, reaching the lowest value when biogas was upgraded. A robust microalgae community in the open photobioreactor was obtained after different culture conditions. The specialization of microalgae community for CO 2 fixation under H 2 S presence was driven by biogas upgrading conditions. The alkaline conditions enhance the CO 2 absorption from biogas and could optimize specialized microalgae communities in the open photobioreactor. Denaturing gradient gel electrophoresis fingerprinting and richness index comparison are useful methods for the evaluation of microalgae community shifts and photosynthetic activity performance, particularly in systems intended for CO 2 removal from biogas where the CO 2 assimilation potential can be related to the microbial richness. © 2017 The Society for Applied Microbiology.

  7. High potential of nitrogen fixation in pristine, ombrotrophic bogs in Southern Patagonia

    NASA Astrophysics Data System (ADS)

    Knorr, Klaus-Holger; Horn, Marcus A.; Bahamonde Aguilar, Nelson A.; Borken, Werner

    2015-04-01

    Nitrogen (N) input in pristine peatlands occurs via natural input of inorganic N through atmospheric deposition or biological dinitrogen (N2) fixation. However, N2 fixation is to date mostly attributed to bacteria and algae associated to Sphagnum and its contribution to plant productivity and peat buildup has been often underestimated in previous studies. Based on net N storage, exceptionally low N deposition, and high abundance of vascular plants at pristine peatlands in Southern Patagonia, we hypothesized that there must be a high potential of non-symbiotic N2 fixation not limited to the occurrence of Sphagnum. To this end, we chose two ombrotrophic bogs with spots that are dominated either by Sphagnum or by vascular, cushion-forming plants and sampled peat from different depths for incubation with 15N2 to determine N2 fixation potentials. Moreover, we analyzed 15N2 fixation by a nodule-forming, endemic conifer inhabiting the peatlands. Results from 15N2 uptake were compared to the conventional approach to study N2 fixation by the acetylene reduction assay (ARA). Using 15N2 as a tracer, high non-symbiotic N2 fixation rates of 0.3-1.4 μmol N g-1 d-1 were found down to 50 cm under micro-oxic conditions (2 vol.%) in samples from both plots either covered by Sphagnum magellanicum or by vascular cushion plants. Peat N concentrations suggested a higher potential of non-symbiotic N2 fixation under cushion plants, likely because of the availability of easily decomposable organic compounds as substrates and oxic conditions in the rhizosphere. In the Sphagnum plots, high N2 fixation below 10 cm depth would rather reflect a potential fixation that may switch on during periods of low water levels when oxygen penetrates deeper into the peat. 15N natural abundance of live Sphagnum from 0-10 cm pointed to N uptake solely from atmospheric deposition and non-symbiotic N2 fixation. 15N signatures of peat from the cushion plant plots indicated additional N supply from N mineralization. Nitrogen fixation by the conifer Lepidothamnus fonkii was exceptionally high, reaching 3.1 μmol N g-1 d.w. d-1 detected in roots, stems, and green biomass. For L. fonkii, we could identify a specific association with Beijerinckiaceae as N2 fixing bacteria in the root nodules, whereas the rhizosphere peat was dominated by other diazotrophs. The ARA considerably underestimated N2 fixation and can thus not be recommended for peatland studies. Our findings suggest that non-symbiotic or associative N2 fixation overcomes N deficiency in different vegetation communities and has great significance for N cycling and peat accumulation in pristine peatlands.

  8. [Effectiveness comparison of suspension fixation plus hinged external fixator and double plate internal fixation in treatment of type C humeral intercondylar fractures].

    PubMed

    Zhang, Jian; Lin, Xu; Zhong, Zeli; Wu, Chao; Tan, Lun

    2017-07-01

    To compare the effectiveness of suspension fixation plus hinged external fixator with double plate internal fixation in the treatment of type C humeral intercondylar fractures. Between January 2014 and April 2016, 30 patients with type C (Association for the Study of Internal Fixation, AO/ASIF) humeral intercondylar fractures were treated. Kirschner wire suspension fixation plus hinged external fixator was used in 14 cases (group A), and double plate internal fixation in 16 cases (group B). There was no significant difference in gender, age, injury cause, disease duration, injury side, and type of fracture between 2 groups ( P >0.05). There was no significant difference in operation time and hospitalization stay between 2 groups ( P >0.05). But the intraoperative blood loss in group A was significantly less than that in group B ( P <0.05); the visual analogue scale (VAS) score at 1 day and 3 days after operation in group A were significantly less than those in group B ( P <0.05). Primary healing of incision was obtained in all patients of 2 groups, and no surgery-related complications occurred. The patients were followed up 6-24 months (mean, 12.3 months) in group A and 6-24 months (mean, 12.8 months) in group B. The self-evaluation satisfaction rate was 85.7% (12/14) in group A and was 81.2% (13/16) in group B at 3 months after operation, showing no significant difference ( χ 2 =0.055, P =0.990). Based on the improved Gassebaum elbow performance score at 6 months after operation, excellent and good rate of the elbow function was 78.6% (excellent in 5 cases, good in 6 cases, fair in 2 cases, and poor in 1 case) in group A and was 81.2% (excellent in 6 cases, good in 7 cases, fair in 2 cases, and poor in 1 case) in group B, showing no significant difference between 2 groups ( χ 2 =0.056, P =0.990). Heterotopic ossification occurred at 3 months after operation in 1 case of each group respectively. The X-ray films showed bony union in all cases; no loosening or breakage of screw was observed. The bone union time showed no significant difference between 2 groups ( t =-0.028, P =0.978). The time of internal fixation removal, the intraoperative blood loss, and VAS score at 1 day and 3 days after operation in group A were significant better than those in group B ( P <0.05). The suspension fixation plus hinged external fixator and double plate internal fixation for the treatment of type C humeral intercondylar fractures have ideal outcome in elbow function. But the suspension fixation plus hinged external fixator is better than double plate internal fixation in intraoperative blood loss, postoperative VAS score, and time of internal fixation removal.

  9. Feasibility of carbon dioxide sequestration by Spongiochloris sp microalgae during petroleum wastewater treatment in airlift bioreactor.

    PubMed

    Abid, Abdeldjalil; Saidane, Faten; Hamdi, Moktar

    2017-06-01

    The aim of this work was to study the ability of using Hydrocabonoclastic native microbial and Spongiochloris sp microalgae in airlift bioreactors couples in order to restore hydrocarbons wastewater and develop the capacity of natural systems to reduce greenhouse effect through maximal control of CO 2 gas emission in atmosphere. The kinetic parameters of CO 2 gas fixation level and conversion it into biological material by microalgae as the biodegradation process effect in hydrocarbon have been evaluated. The result present that maximum specific growth rate μ max of Spongiochloris sp was (0.87±0.04day -1 ) and the biomass productivity P max was attended (1.5±0.3gL -1 day -1 ) with maximal CO 2 biofixation rate RCO 2 (2.9205gL -1 day -1 ). At 30°C and pH (7.6-7.4) the bioreactor showed a good wastewater removal efficiency (99.18%) in total hydrocarbons with COD stabilized within (1.30g/L), this result obtained suggesting that, the bioreactor applied system represented a useful strategy for maximizing CO 2 bio-mitigation. Copyright © 2017. Published by Elsevier Ltd.

  10. Cyanuric Acid-Based Organocatalyst for Utilization of Carbon Dioxide at Atmospheric Pressure.

    PubMed

    Yu, Bing; Kim, Daeun; Kim, Seoksun; Hong, Soon Hyeok

    2017-03-22

    A organocatalytic system based on economical and readily available cyanuric acid has been developed for the synthesis of 2-oxazolidinones and quinazoline-2,4(1H,3H)-diones from propargylamines and 2-aminobenzonitriles under atmospheric pressure carbon dioxide. Notably, a low concentration of carbon dioxide in air was directly converted into 2-oxazolidinone in excellent yields without an external base. Through mechanistic investigation by in situ FTIR spectroscopy, cyanuric acid was demonstrated to be an efficient catalyst for carbon dioxide fixation. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. The Concept and Experimental Investigation of CO2 and Steam Co-electrolysis for Resource Utilization in Space Exploration

    NASA Technical Reports Server (NTRS)

    Stoots, Carl; Mulloth, Lila M.; Luna, Bernadette; Varghese, Mini M.

    2009-01-01

    CO2 acquisition and utilization technologies will have a vital role in determining sustained and affordable life support and in-situ fuel production architectures for human and robotic exploration of Moon and Mars. For long-term human exploration to be practical, reliable technologies have to be implemented to capture and chemically reduce the metabolic CO2 from the cabin air to restitute oxygen consumption. Technologies that facilitate the in-situ capture and conversion of atmospheric CO2 to fuel are essential for a viable human mission to Mars and their demonstration on the moon is critical as well. This paper describes the concept and experimental investigation of a CO2 capture and reduction system that comprises an adsorption compressor and a CO2 and steam co-electrolysis unit. The process products include oxygen for life support and Syngas (CO and H2) for synthetic fuel production. Electrochemical performance in terms of CO2 conversion, oxygen production, and power consumption of a system with a capacity to process 1kg CO2 per day (1-person equivalent) will be discussed.

  12. A closed-loop air revitalization process technology demonstrator

    NASA Astrophysics Data System (ADS)

    Mulloth, Lila; Perry, Jay; Luna, Bernadette; Kliss, Mark

    Demonstrating a sustainable, reliable life support system process design that possesses the capability to close the oxygen cycle to the greatest extent possible is required for extensive surface exploration of the Moon and Mars by humans. A conceptual closed-loop air revitalization system process technology demonstrator that combines the CO2 removal, recovery, and reduction and oxygen generation operations in a single compact envelope is described. NASA has developed, and in some cases flown, process technologies for capturing metabolic CO2 from air, reducing CO2 to H2O and CH4, electrolyzing H2O to O2, and electrolyzing CO2 to O2 and CO among a number of candidates. Traditionally, these processes either operate in parallel with one another or have not taken full benefit of a unit operation-based design approach to take complete advantage of the synergy between individual technologies. The appropriate combination of process technologies must capitalize on the advantageous aspects of individual technologies while eliminating or transforming the features that limit their feasibility when considered alone. Such a process technology integration approach also provides advantages of optimized mass, power and volume characteristics for the hardware embodiment. The conceptual air revitalization system process design is an ideal technology demonstrator for the critically needed closed-loop life support capabilities for long duration human exploration of the lunar surface and extending crewed space exploration toward Mars. The conceptual process design incorporates low power CO2 removal, process gas drying, and advanced engineered adsorbents being developed by NASA and industry.

  13. Bundle Sheath Diffusive Resistance to CO2 and Effectiveness of C4 Photosynthesis and Refixation of Photorespired CO2 in a C4 Cycle Mutant and Wild-Type Amaranthus edulis1

    PubMed Central

    Kiirats, Olavi; Lea, Peter J.; Franceschi, Vincent R.; Edwards, Gerald E.

    2002-01-01

    A mutant of the NAD-malic enzyme-type C4 plant, Amaranthus edulis, which lacks phosphoenolpyruvate carboxylase (PEPC) in the mesophyll cells was studied. Analysis of CO2 response curves of photosynthesis of the mutant, which has normal Kranz anatomy but lacks a functional C4 cycle, provided a direct means of determining the liquid phase-diffusive resistance of atmospheric CO2 to sites of ribulose 1,5-bisphosphate carboxylation inside bundle sheath (BS) chloroplasts (rbs) within intact plants. Comparisons were made with excised shoots of wild-type plants fed 3,3-dichloro-2-(dihydroxyphosphinoyl-methyl)-propenoate, an inhibitor of PEPC. Values of rbs in A. edulis were 70 to 180 m2 s−1 mol−1, increasing as the leaf matured. This is about 70-fold higher than the liquid phase resistance for diffusion of CO2 to Rubisco in mesophyll cells of C3 plants. The values of rbs in A. edulis are sufficient for C4 photosynthesis to elevate CO2 in BS cells and to minimize photorespiration. The calculated CO2 concentration in BS cells, which is dependent on input of rbs, was about 2,000 μbar under maximum rates of CO2 fixation, which is about six times the ambient level of CO2. High re-assimilation of photorespired CO2 was demonstrated in both mutant and wild-type plants at limiting CO2 concentrations, which can be explained by high rbs. Increasing O2 from near zero up to ambient levels under low CO2, resulted in an increase in the gross rate of O2 evolution measured by chlorophyll fluorescence analysis in the PEPC mutant; this increase was simulated from a Rubisco kinetic model, which indicates effective refixation of photorespired CO2 in BS cells. PMID:12376660

  14. When do anterior external or internal fixators provide additional stability in an unstable (Tile C) pelvic fracture? A biomechanical study.

    PubMed

    Mcdonald, E; Theologis, A A; Horst, P; Kandemir, U; Pekmezci, M

    2015-12-01

    This study aimed at evaluating the additional stability that is provided by anterior external and internal fixators in an unstable pelvic fracture model (OTA 61-C). An unstable pelvic fracture (OTA 61-C) was created in 27 synthetic pelves by making a 5-mm gap through the sacral foramina (posterior injury) and an ipsilateral pubic rami fracture (anterior injury). The posterior injury was fixed with either a single iliosacral (IS) screw, a single trans-iliac, trans-sacral (TS) screw, or two iliosacral screws (S1S2). Two anterior fixation techniques were utilized: external fixation (Ex-Fix) and supra-acetabular external fixation and internal fixation (In-Fix); supra-acetabular pedicle screws connected with a single subcutaneous spinal rod. The specimens were tested using a nondestructive single-leg stance model. Peak-to-peak (P2P) displacement and rotation and conditioning displacement (CD) were calculated. The Ex-Fix group failed in 83.3 % of specimens with concomitant single-level posterior fixation (Total: 15/18-7 of 9 IS fixation, 8 of 9 TS fixation), and 0 % (0/9) of specimens with concomitant two-level (S1S2) posterior fixation. All specimens with the In-Fix survived testing except for two specimens treated with In-Fix combined with IS fixation. Trans-sacral fixation had higher pubic rotation and greater sacral and pubic displacement than S1S2 (p < 0.05). Rotation of the pubis and sacrum was not different between In-Fix constructs combined with single-level IS and TS fixation. In this model of an unstable pelvic fracture (OTA 61-C), anterior fixation with an In-Fix was biomechanically superior to an anterior Ex-Fix in the setting of single-level posterior fixation. There was no biomechanical difference between the In-Fix and Ex-Fix when each was combined with two levels of posterior sacral fixation.

  15. SPIRE spinous process stabilization plate: biomechanical evaluation of a novel technology. Invited submission from the Joint Section Meeting on Disorders of the Spine and Peripheral Nerves, March 2005.

    PubMed

    Wang, Jeremy C; Spenciner, David; Robinson, James C

    2006-02-01

    The authors studied the biomechanical properties of a novel spinous process stabilization plate (CD HORIZON SPIRE Spinal System) and present the results in comparison with those of other posterior fixation methods. Ten functional cadaveric lumbar segments were subjected to nondestructive quasistatic loading forces in 10 different conditions: intact, destabilized (discectomy), fitted with spinous process plate (SPP) alone, with anterior-column support (ACS) alone, ACS with SPP, ACS with posterior translaminar facet screw (PTFS) fixation, ACS with unilateral pedicle screw and rod (UPSR) fixation, ACS with bilateral pedicle screw and rod (BPSR) fixation, UPSR alone, or BPSR alone. Stiffness and range of motion (ROM) data were compared using a repeated-measures, one-way analysis of variance. The construct with greatest mean limitation of flexion-extension ROM was ACS/SPP at 4.14 degrees whereas it was 5.75 degrees for ACS/UPSR fixation, 5.03 degrees for ACS/BPSR fixation, and 10.13 degrees for the intact spine. The SPIRE plate alone also provided greater flexion and extension stiffness, with less ROM than other posterior stabilization options. Fixation with BPSR with or without ACS resulted in the stiffest construct in lateral bending and axial rotation. The SPP and UPSR fixation groups were equivalent in resisting lateral bending and axial rotation forces with or without ACS. The SPIRE plate effectively stabilized the spine, and the test results compare favorably with other fixation techniques that are more time consuming to perform and have greater inherent risks.

  16. Diluted povidone-iodine versus saline for dressing metal-skin interfaces in external fixation.

    PubMed

    Chan, C K; Saw, A; Kwan, M K; Karina, R

    2009-04-01

    To compare infection rates associated with 2 dressing solutions for metal-skin interfaces. 60 patients who underwent distraction osteogenesis with external fixators were equally randomised into 2 dressing solution groups (diluted povidone-iodine vs. saline). Fixations were attained using either rigid stainless steel 5-mm diameter half pins or smooth stainless steel 1.8-mm diameter wires. Half-pin fixation had one metal-skin interface, whereas wire fixation had 2 interfaces. Patients were followed up every 2 weeks for 6 months. Of all 788 metal-skin interfaces, 143 (18%) were infected: 72 (19%) of 371 in the diluted povidone-iodine group and 71 (17%) of 417 in the saline group. Dressing solution and patient age did not significantly affect infection rates. Half-pin fixation was more likely to become infected than wire fixation (25% vs 15%). Saline is as effective as diluted povidone-iodine as a dressing solution for metal-skin interfaces of external fixators. Saline is recommended in view of its easy availability and lower costs.

  17. Magnesium hydroxide extracted from a magnesium-rich mineral for CO2 sequestration in a gas-solid system.

    PubMed

    Lin, Pao-Chung; Huang, Cheng-Wei; Hsiao, Ching-Ta; Teng, Hsisheng

    2008-04-15

    Magnesium hydroxide extracted from magnesium-bearing minerals is considered a promising agent for binding CO2 as a carbonate mineral in a gas-solid reaction. An efficient extraction route consisting of hydrothermal treatment on serpentine in HCl followed by NaOH titration for Mg(OH)2 precipitation was demonstrated. The extracted Mg(OH)2 powder had a mean crystal domain size as small as 12 nm and an apparent surface area of 54 m2/g. Under one atmosphere of 10 vol% CO2/N2, carbonation of the serpentine-derived Mg(OH)2 to 26% of the stoichiometric limit was achieved at 325 degrees C in 2 h; while carbonation of a commercially available Mg(OH)2, with a mean crystal domain size of 33 nm and an apparent surface area of 3.5 m2/g, reached only 9% of the stoichiometric limit. The amount of CO2 fixation was found to be inversely proportional to the crystal domain size of the Mg(OH)2 specimens. The experimental data strongly suggested that only a monolayer of carbonates was formed on the crystal domain boundary in the gas-solid reaction, with little penetration of the carbonates into the crystal domain.

  18. Expression of drought-tolerant N2 fixation in heterogeneous inbred families derived from PI 471938 and Hutcheson soybean

    USDA-ARS?s Scientific Manuscript database

    Nitrogen fixation of soybean is particularly vulnerable to drought, since, in most genotypes, N2 fixation activity decreases very early in the soil drying cycle. Although a few soybean genotypes, including ‘PI 471938’, have been identified that express N2 fixation tolerance of drought, it is unknown...

  19. Production and secretion of glucose in photosynthetic prokaryotes (cyanobacteria)

    DOEpatents

    Nobles, Jr., David R. , Brown, Jr., R. Malcolm

    2010-09-28

    The present invention includes compositions and methods for making and using an isolated cyanobacterium that includes a portion of an exogenous bacterial cellulose operon sufficient to express bacterial cellulose, whereby the cyanobacterium produces extracellular glucose. The compositions and methods of the present invention may be used as a new global crop for the manufacture of cellulose, CO.sub.2 fixation, for the production of alternative sources of conventional cellulose as well as a biofuel and precursors thereof.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tabita, Fred Robert

    The overall objective of this project is to determine the mechanism by which a transcriptional activator protein affects CO 2 fixation (cbb) gene expression in nonsulfur purple photosynthetic bacteria, with special emphasis to Rhodobacter sphaeroides and with comparison to Rhodopseudomonas palustris. These studies culminated in several publications which indicated that additional regulators interact with the master regulator CbbR in both R. sphaeroides and R. palustris. In addition, the interactive control of the carbon and nitrogen assimilatory pathways was studied and unique regulatory signals were discovered.

Top